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Spectroscopy of neon for the advanced undergraduate laboratory
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(Received 8 October 2018; accepted 29 December 2018)

We describe a spectroscopy experiment, suitable for upper-division laboratory courses, that

investigates saturated absorption spectroscopy and polarization spectroscopy in a neon discharge.

Both experiments use nearly identical components, allowing students to explore both techniques in

a single apparatus. Furthermore, because the wavelength of the laser is in the visible part of the

spectrum (640 nm), the experiment is well-suited for students with limited experience in optical

alignment. The labs nicely complement a course in atomic or plasma physics, provide students

with the opportunity to gain important technical skills in the area of optics and lasers, and can

provide an introduction to radio-frequency electronics. VC 2019 American Association of Physics Teachers.

https://doi.org/10.1119/1.5088806

I. INTRODUCTION

The importance of the Advanced Laboratory course for
undergraduate students has received increased attention over
the last few years.1–3 In addition to promoting a better under-
standing of a variety of topics within subfields of physics,
the Advanced Laboratory also enables students to gain
hands-on, technical skills. In the area of atomic, molecular
and optical physics (AMO), experiments involving spectros-
copy are a powerful educational component of any labora-
tory curriculum and can be used to elucidate material in
upper-level special-topics courses.4–10

With the advent of inexpensive semiconductor diode
lasers operating at 780 nm and the ability to fabricate home-
built, tunable lasers,11,12 Doppler-free saturated absorption
spectroscopy13 (SAS) of rubidium (Rb) has now become a
staple offering of many undergraduate lab courses.14–17 This
experiment is rich in atomic physics, requires only a modest
amount of equipment, can largely be assembled with off-
the-shelf optical components, and works well even with a
simple, homebuilt semiconductor diode laser. In addition,
rubidium is a good candidate for this Advanced Laboratory
experiment because its vapor pressure at room temperature is
sufficient to perform experiments without the need for heat-
ing the vapor cell or producing an atomic beam. One draw-
back of performing Rb SAS, though, is that 780 nm is at the
edge of the wavelength range that is visible to the naked eye
and so viewing faint beams of this wavelength requires a
dark room, the aid of an infrared (IR) viewing card, or possi-
bly even an IR viewer. These conditions are not ideal for
beginning students.

One option to enable students to investigate SAS while
developing laser and optical alignment skills using visible
light is to swap lithium (Li) for Rb and use a 671 nm diode
laser. To get the required vapor pressure, however, requires
considerable heating of a specialized vapor cell.19 Another
option is to investigate the 640 nm transition in neon (Ne).

As we describe in this paper, we have developed a spec-
troscopy experiment for the Advanced Laboratory that inves-
tigates SAS and another spectroscopic technique, known
as polarization spectroscopy13,20 (PS), in Ne. Both experi-
ments can be performed with a nearly identical set of

components. There are three stable isotopes of neon: 20Ne
(90.48%), 21Ne (0.27%), and 22Ne (9.25%), with natural
abundances given in parentheses; our experiment performs
spectroscopy on 20Ne. The optical transition studied is the
3s½3=2�2 ! 3p½5=2�3 transition at 640.2 nm (wavelength in
air) as shown in Fig. 1. This red wavelength is easily visible
even at very low laser powers.

The Rb and Ne SAS experiments have many common fea-
tures, but an important difference (in addition to the required
laser wavelength) is that the involved Rb transition goes
from the atom’s ground state (5s1=2) to its first excited state
(5p3=2), whereas the utilized Ne transition takes place
between two excited states. Laser excitation of Ne from its
ground state to its first excited state, via an allowed electric
dipole transition, is not practical because the required (ultra-
violet) wavelength is 74 nm. This constraint is common to all
noble gases. However, once neon is excited, the transition
from the 3s[3/2]2 with J¼ 2 to the ground state with J¼ 0
does not satisfy the following selection rules for allowed
electric dipole transitions: DJ ¼ 0;61, but J ¼ 0 /$0. As a
result, the 3s½3=2�2 state decays by the much weaker mag-
netic quadrupole decay and has a lifetime of �15 s.21 This
long-lived “metastable” state is denoted as Ne* and it plays
the same role as the 5s1=2 ground state in Rb SAS.

Because laser excitation is impractical, excitation from the
ground state to higher-energy metastable states in noble
gases is usually done using a direct-current (dc) or radio-
frequency (rf) discharge. In the experiments described
below, we used a rf discharge operated at �80 MHz to pro-
mote Ne atoms to the 3s[3/2]2 state. The discharge require-
ment does add some additional equipment to the apparatus
as compared to Rb SAS. However, the inclusion of a plasma
in our experiment provides students with an opportunity to
learn about plasma physics (including a connection to the
physics of the helium-neon laser) and rf electronics.22

II. THEORY

A. Saturated absorption spectroscopy

Saturated absorption spectroscopy13 is a pump-probe tech-
nique for gas samples, which allows one to remove Doppler
broadening of absorption peaks, thereby greatly improving
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the resolution of spectra. Doppler broadening of the absorp-
tion peaks results from the thermal motion of atoms or mole-
cules in the gas. Here, we highlight the essential physics of
the technique. A weak laser beam is sent through a gas of
atoms, usually at room temperature or in a heated cell, and
the absorption of that beam is monitored, typically with a
photodiode. This beam will be called the “probe beam.”
Assume that, when an atom is at rest, it will absorb the probe
beam at the resonant frequency �0. Then, as a result of the
Maxwell-Boltzmann distribution of atomic velocities in a
gas sample, the sample’s absorption spectrum will be broad-
ened because, for each atom with its own particular velocity
component vz along the direction of laser propagation, the
laser will need to be tuned to � ¼ �0ð1þ vz=cÞ in the labora-
tory frame in order to be resonant in the atom’s reference
frame, where c is the speed of light. Therefore, a laser on
resonance in the lab frame appears out of resonance to most
atoms, whose vz velocity distribution is proportional to
e�Mv2

z =2kBT , where M is the mass of the atom, kB is
Boltzmann’s constant, and T is the temperature. As the laser
is scanned, this distribution will give rise, in the low absorp-
tion limit, to a Gaussian absorption profile whose full-width
at half maximum is given by

D�1=2 ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kBT ln 2=Mc2

p
: (1)

This is known as the Doppler width. For neon at room tem-
perature T¼ 300 K, the Doppler width is �1.3 GHz. The hot-
ter the gas, the greater the thermal distribution of velocities
and the broader the observed spectrum.

Now consider a second, stronger laser beam (called the
“pump beam”) of identical frequency to the probe beam,
also sent through the cell, but counter-propagating to the
probe laser beam. If the strong pump beam excites an atom
that otherwise would be excited by the weak probe beam,
that atom is no longer available for excitation by the probe
beam and absorption of the probe beam will decrease. For
most laser frequencies within the Doppler-broadened absorp-
tion profile this will not be the case because for a particular
moving atom, one of the laser beams will be “red-shifted”
(down in frequency) and the other “blue-shifted” (up in

frequency) owing to the fact that the beams are counter-
propagating. However, for a certain velocity class of atoms,
namely, those with vz¼ 0, there is no Doppler shift to either
beam and excitation by the strong beam will modify the
probe absorption. In other words, the SAS technique moni-
tors the change to the absorption of a weak probe beam due
to a strong pump beam that is interacting with the specific
velocity class of atoms for which there is no Doppler shift.

As the laser scans, a broad Doppler absorption peak is
observed peppered with narrow features. These features
appear at the resonance frequencies of the atomic transitions
and have widths that can be comparable to the natural line-
width of the transition. In practice, these features are often
broader than the natural linewidth due to power-broadening
by the laser beams.23 If c is the natural linewidth, then the
power broadened linewidth crad will be

crad ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I=Isat

p
; (2)

where I is the intensity of the laser and Isat is the saturation
intensity, defined as Isat ¼ phc=ð3k3sÞ, where k is the wave-
length of the transition and s is the excited state lifetime. Isat

is defined such that when I¼ Isat, there is a 25% chance that
the atom is in the excited state. The saturation intensity for
the 3s½3=2�2 ! 3p½5=2�3 transition in neon, studied here, is
Isat¼ 4.22 mW/cm2 and c¼ 8.47 MHz.24 Note that, with the
multilevel structure of atoms, optical pumping can be impor-
tant, yielding a spectrum that differs from the one predicted
by a simple two-level atom model.15,25 Furthermore, for
some atoms, it is possible to observe narrow features in the
spectra that do not correspond to resonant frequencies of the
atom but rather appear at frequencies that are midway
between two resonant frequencies. These are known as
crossover peaks and arise when both the pump and probe
beams interact with the same atom, but excite different tran-
sitions.13 Because 20Ne does not have hyperfine structure,
crossover peaks are not observed in the experiments
described here (in contrast to SAS in rubidium), but optical
pumping that redistributes the population of magnetic suble-
vels is present.

B. Polarization spectroscopy

Polarization spectroscopy is also a sub-Doppler spectro-
scopic technique usually accomplished with two counter-
propagating laser beams of different intensity, and with both
beams derived from the same laser. In PS, the polarization of
the strong pump beam is set to be circular. The circularly
polarized pump beam modifies the optical properties of the
atomic gas. This effect can then be interrogated by the weak
probe beam. The signature of PS is a dispersion-like signal
that results when the different polarization components of
the probe beam are subtracted after traversing the gas.
Typically, a weak linearly polarized probe beam is superim-
posed on a circularly polarized counter-propagating pump
beam in a gas or vapor cell.26–29

The observed signal is derived from the change in the
polarization of the probe laser beam after it traverses the gas.
This change is due to the optical anisotropy induced by the
stronger pump beam, which arises from optical pumping that
redistributes the population of the magnetic sublevels. The
incident linearly polarized probe beam can be decomposed
into two beams of opposite circular polarization (usually
denoted rþ and r–). As a result of both optical pumping and

Fig. 1. Partial energy level diagram for neon (not to scale). Atomic levels

are labelled in both LS coupling and Racah notation (Ref. 18). Even isotopes

of noble gases have nuclear spin I¼ 0 and therefore do not possess hyperfine

structure. Energy is shown in brackets in units of wavenumbers [cm�1]

(1 eV¼ 8065.5 cm�1). The 3s[3/2]2 metastable state decays via a magnetic

quadrupole (M2) transition (dashed arrow) and has a lifetime of�15 s.
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saturation effects, the pump beam places atoms into a non-
uniform population distribution of the magnetic sublevels,
which in turn gives rise to a difference in index of refraction
(optical birefringence) and absorption (circular dichroism)
between the two polarization components of the probe beam.
The circular dichroism causes the probe beam to have an
elliptical polarization upon exiting the gas, whereas the
optical birefringence gives rise to a rotation in the axis of
polarization. If the probe beam is sent to a linear polarization
analyzer after exiting the cell, and the two polarization chan-
nels are subtracted, the resulting signal is dispersion-like and
can be used for laser stabilization without the need for any
modulation. This technique has been applied in alkali-metal
vapors, in gas discharges, and in hollow cathode lamps.30–37

As we describe below, we use a hollow cathode lamp
(HCL), but do not operate it as such. Instead, we create a
radio-frequency discharge using the neon buffer gas that is
in the lamp.

For the probe beam traveling in the z-direction, the PS sig-
nal Isignal derived from its horizontal (x) and vertical (y) lin-
ear components will be

Isignal ¼ Iy � Ix;

¼ I0e�aL cos 2/þ x
c

LDn

� �
: (3)

Here, Dn ¼ nþ � n� with n6 being the refractive indices of
the neon for circular polarization components of the laser
that drive r6 transitions and a ¼ 1

2
aþ þ a�Þð with a6 being

the absorption coefficients, respectively. L is the length of
the gas cell. Finally, x is the angular frequency of the laser
light, I0 is the intensity of the light before the cell, and / is
the polarization of the probe beam with respect to the
x-axis.30 We have neglected any birefringence from the cell
windows (see Ref. 30 to include these effects). In most cases,
it is a good assumption that both Da and Dn are “small” such
that LDa� 1 and ðx=cÞLDn� 1. With the laser scanned
across an isolated resonance, Da can be written as a
Lorentzian function of the form

Da xð Þ ¼ Da0

1þ x2
; (4)

where Da0 is the maximum difference in absorption at reso-
nance line center and x ¼ ðx0 � xÞ=ðC=2Þ, with C being the
linewidth of the resonance. For /¼p/4 and using the
Kramers-Kronig dispersion relation13 to relate Dn to Da, we
can write an approximation for the observed signal as

Isignal ¼ �I0e�aL LDa0

x

1þ x2

� �
: (5)

III. EQUIPMENT

A. Optical layout

The equipment and optical layout for both the SAS and PS
experiments are nearly identical, enabling students to per-
form both experiments as part of a single Advanced
Laboratory module. We used a mix of commercial and
homebuilt controllers for the laser, largely making use of
existing equipment in our Advanced Laboratory. We give
manufacturer and model numbers for reference only. We

begin with the arrangement for the SAS experiment as
shown in Fig. 2. A visible 639 nm laser diode (Opnext
HL6358MG) was placed in a homebuilt external cavity
diode laser (ECDL) operating in Littrow configuration with a
linewidth of �1 MHz.12 The diffraction grating had 1800
lines/mm (Thorlabs GR13-1850). Coarse tuning of the laser
was achieved by rotating the diffraction grating. Finer tuning
was achieved with a combination of current and temperature
adjustments to the laser diode as well as a voltage supplied
to a piezoelectric transducer (PZT) installed on the diffrac-
tion grating mount that enabled precise mechanical adjust-
ment of the cavity. The PZT (Thorlabs AE0203D04) was
driven by an amplifier/driver (Burleigh PZ-150M) that in
turn was controlled by a homebuilt scan controller. We used
a commercial diode laser current controller (ILX Lightwave
LDX-3412) and a homebuilt temperature controller. The
laser was tuned to 640.2 nm (air wavelength), corresponding
to the 3s½3=2�2 ! 3p½5=2�3 transition. The PZT allowed the
laser to be scanned in frequency with a mode-hop free range
of �500 MHz. After leaving the ECDL, the laser beam
passed through an optical isolator (Electro-Optics
Technology) to prevent feedback and a plate beamsplitter to
pick off a small amount of light directed to a Fabry-Perot
spectrum analyzer. The spectrum analyzer (Spectra Physics,
Model 470-03, with a free spectral range of 2 GHz), was
used to monitor the ECDL to ensure single longitudinal
mode operation and to calibrate the frequency scan. We had
a commercial spectrum analyzer on hand, but one can also
build an inexpensive instrument for the lab.38 A mirror on a
flip mount was used, when needed, to intercept the laser
beam and direct it to a fiber optic cable that was sent to a
wavelength meter to assist with initial tuning of the ECDL.
If a precision wavelength meter is not available, a

Fig. 2. Schematic of the optical layout for both the saturated absorption

spectroscopy experiment and the polarization spectroscopy experiment.

Components in the dashed boxes are employed for polarization spectroscopy

only. Both experiments share most components and can be performed with

minimal modification to the optical layout. Key: ECDL: External cavity

diode laser; PD: Photodiode; PBS: Polarizing beamsplitter cube; BS:

Beamsplitter; ND: Neutral density filter; FPI: Fabry-Perot Interferometer

(optical spectrum analyzer); HCL: Hollow cathode lamp; k/2: half wave-

plate; k/4: quarter waveplate. The HCL is shown mounted horizontally for

clarity, but was actually mounted vertically in the experiment to save space

and keep reflections from curved surfaces in the horizontal plane.
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monochromator or even a simple homebuilt grating spec-
trometer can be used for coarse tuning.39 The laser passes
through a half-waveplate before impinging on a broadband
polarizing beamsplitter cube (PBS1). The waveplate allows
the laser power to be split between the weak probe beam and
the strong pump beam. A separate neutral density filter
wheel placed in the path of the strong pump beam allows for
independent adjustment of the pump beam power. After tra-
versing the discharge cell (in this case, a HCL), the weak
beam is directed onto a photodiode (PD1). Our photodiode
assembly uses an OPT101P (Texas Instruments) which is a
combined monolithic photodiode and transimpedance ampli-
fier on a single chip. The HCL we used was manufactured by
Thermo Electron Corp (P/N 9423 393 31241). This unit was
a 6 in. long cylinder with a flat window at one end and elec-
trical feedthroughs at the other end; it had a 1.25 in. long sec-
tion with a diameter of 1 in. at the window end and the
remainder of the lamp was 1.5 in. in diameter. The laser
beams enter and exit the HCL through the 1 in. diameter
curved surface near the window and, as a result, the spatial
quality of the laser beam is degraded and the divergence
increased after traversing the cell. Because the probe beams
need only travel a few inches before reaching the detector,
however, this effect was not a significant issue. In Fig. 2, the
HCL is shown mounted horizontally for clarity. In the exper-
iment, the HCL was actually mounted vertically. Vertical
mounting reduces the footprint of the setup and also keeps
all reflections from the curved lamp surface in the original
horizontal plane, which is important for safety.

Only minor modifications to the optical setup are required
for the polarization spectroscopy experiment. The additional
required components are shown inside the dashed boxes in
Fig. 2. A polarizing beamsplitter cube (PBS2, Newport
05FC16PB.5), which acts as a polarization analyzer, is
placed in the path of the probe beam, between the discharge
cell and PD1 and a second photodiode (PD2) is added.
Output from each photodiode is sent to a separate channel of
an oscilloscope and is subtracted to provide the PS signal.
This difference signal can be viewed directly on the oscillo-
scope by using the built-in math functions common to most
digital oscilloscopes or the signals from each PD can be indi-
vidually saved and the data processed in software afterwards.
If the signal is to be further used for another application
(such as laser frequency stabilization), then the two channels
will need to be subtracted with a simple electronic circuit. In
addition, two waveplates are added. A half-wave plate is
installed after PBS1, but before the discharge, and is used to
rotate the vertical polarization of the probe beam by �45� in
order to balance the light sent to the two photodiodes in the
absence of the pump beam. A quarter-wave plate is added just
before the “D” folding mirror of the pump beam to circularly
polarize the pump light. Ideally the circularly polarized pump
beam would not be reflected off of a mirror before being sent
to the discharge because birefringence of the mirror can dis-
tort the light polarization. Geometrical constraints made it dif-
ficult to avoid the placement of this mirror between the
waveplate and the discharge cell. Though not ideal, the
arrangement works fine; the counter-propagating probe and
pump beams cross with a small angle of less than 2�.

B. Neon plasma

As mentioned above, metastable Ne atoms are created in a
rf discharge. While commercial gas cells are readily

available for both alkali metal atoms and noble gases, we
found it convenient and cost effective to use a commercial
hollow-cathode lamp to create the discharge. Most commer-
cial HCLs (manufactured for installation in spectrometers)
are filled with neon, irrespective of the cathode element.
Lamps filled with argon or krypton are also available, though
harder to find. One benefit of using a commercial HCL as the
gas cell source is that “spent” discharge tubes that have been
removed from spectrometers are usually just discarded and
can be repurposed for use here. Further details about options
for the discharge cell can be found in the Appendix.

A block diagram of the rf electronics is shown in Fig. 3.
The antenna used to transmit the rf waves to the discharge
was a 15-turn helical coil (3 in. long, �1.75 in. in diameter)
of 14-gauge copper magnet wire placed inside a cylindrical 3
in. diameter copper tube.40 The antenna is similar to the
design analyzed in Ref. 41. The coil pitch and number of
turns can be easily modified to accommodate different dis-
charge frequency ranges.42 The discharge does not need to be
run at the resonant frequency of the antenna circuit in order
to produce Ne*. We have used this type of antenna (with var-
ious coil pitches and total turns) for discharges ranging from
tens of MHz to 1 GHz. Tuning of the rf frequency once the
discharge has been established reveals specific frequencies
where a given antenna/HCL combination prefers to operate,
but we have found that the discharge will typically work over
several hundred MHz, thereby lessening the tolerances on
coil geometry during construction. A voltage controlled oscil-
lator (VCO, Mini-Circuits ZOS-100þ) with an output of 10
dBm, and operating at �80 MHz, was sent to a voltage-
controlled attenuator (Mini-Circuits ZX73-2500-Sþ), which
allowed adjustment of the power ultimately delivered to the
discharge. The signal was then amplified with a rf power
amplifier (Mini-Circuits TVA-R5-13) and passed through a rf
power meter (Bird Technologies, Model 43) before being
sent to the antenna that surrounded the HCL tube. We did not
use an “antenna tuner” (impedance matcher) in this arrange-
ment, though one could be added just past the power ampli-
fier to cut down on reflected power. Typical forward power
was measured to be a few Watts. The discharge sometimes
started on its own when the rf power was applied. Other
times, we ignited the discharge using a piezo sparker
extracted from a common butane barbecue lighter. With the

Fig. 3. Block diagram of the radio-frequency electronics used to create the

neon discharge.
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HCL inserted into the rf antenna, the discharge running and
the laser on resonance, the rf power was adjusted to obtain a
plasma plume in the lamp with a strong visible “pencil” of
fluorescence where the laser passed through the discharge.

IV. EXPERIMENTAL RESULTS

In Fig. 4, we show the observed saturation absorption
peak for the 640 nm transition in 20Ne. The laser beam had
an elliptical spatial profile with 1/e2 diameters of
3.8 mm� 1.8 mm. Here, the probe beam power was �60 lW
while the pump beam power was �1.6 mW. The FWHM of
a Lorentzian function fitted to the peak is �64 MHz, which
is larger than would be explained by power broadening
alone, suggesting that other mechanisms such as collisional
broadening may also be contributing to the observed line-
width. The pressure in our HCL was not known, which is
one disadvantage of using a lamp of this type; precise speci-
fications from the manufacturer are often limited.

With modifications to the SAS setup described earlier, we
were able to perform polarization spectroscopy of 20Ne. The
half-waveplate just before PBS1 was adjusted so that the
probe laser power was set to �30 lW. The pump laser power
was 3.6 mW. We were able to observe a signal with powers
as low as 1.6 mW for the pump and 9 lW for the probe. A
neutral density filter was used to vary the intensity of the
pump beam to observe the effect of pump power on the PS
signal strength. The PS signal was largest when the pump
beam was at the maximum power available. Figure 5 shows
the PS signal. Here, the output of each photodiode is shown,
along with the difference signal that displays the characteris-
tic PS dispersive shape. Note that if the quarter-waveplate
were rotated by 90�, thereby changing the pump laser polari-
zation helicity, the PS signal would be inverted. This feature
is convenient when using the signal to frequency stabilize
(i.e., lock) a laser and when the locking electronics require a
specific slope of the error signal.

V. CONCLUSION

We have described a spectroscopy experiment for the
Advanced Laboratory that explores saturated absorption
spectroscopy and polarization spectroscopy of metastable

neon produced in an rf discharge, using a nearly identical
apparatus for both. Both experiments use 640 nm light. The
visible wavelength used in these experiments is better suited
for training students with limited experience in optical align-
ment in comparison to similar experiments that use a near-
infrared wavelength (which is challenging to see). The labs
nicely complement a course in atomic or plasma physics,
provide students with the opportunity to gain important tech-
nical skills in the area of optics and lasers, and offer an intro-
duction to the radio-frequency electronics used to produce
the discharge. With the addition of a power meter or cali-
brated photodiode, students can also explore the intensity
dependence of the observed signal linewidth. In addition,
either experiment can be expanded to be a component in a
separate laboratory investigating frequency stabilization
(locking) of lasers or the discussion of polarization spectros-
copy can be utilized to modify an existing Rb saturated
absorption spectroscopy apparatus to investigate polarization
spectroscopy in alkali metal atoms. Finally, we plan to
extend the mode-hop-free frequency tuning range of our
laser44 in order to enable students to measure the isotope
shift between 20Ne and 22Ne as part of the same laboratory
module.45
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APPENDIX: CHOOSING A DISCHARGE CELL

For this experiment, we chose to create an rf discharge in
a commercial hollow cathode lamp. We have found that
commercial noble gas cells (with fills of �200 mTorr) tend
to go bad over time in a discharge, especially at frequencies
below a few hundred MHz. Homebuilt cells that include

Fig. 4. Signal obtained for the neon Saturated Absorption Spectroscopy

experiment. Unlike rubidium, which has many peaks because of hyperfine

structure, 20Ne has no hyperfine structure and the saturation absorption spec-

trum has only a single peak.

Fig. 5. Signal obtained for the neon Polarization Spectroscopy experiment.

(a) Signal from PD1; (b) signal from PD2; (c) difference when trace (a) is

subtracted from trace (b).
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some form of getter mechanism tend to last longer as do cells
operated in the GHz frequency range. It should be noted that
when developing this advanced lab, we investigated running
the HCL with a dc current (as is done in spectrometers),
using a HCL supply (Emco, Model HC2012). While we
were able to obtain spectra, we found a number of drawbacks
to this arrangement. First, many tube geometries did not
afford good optical access to the discharge region. Second,
in order to obtain a suitable population of Ne* for the experi-
ment, we had to run the current beyond the rated limit, which
resulted in sputtering of the cathode that coated the walls of
the tube, thereby attenuating the laser beams over time. On
the other hand, using a rf discharge to create Ne* in the HCL
significantly increased the ease of optical alignment, while
eliminating the sputtering issue.
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Horizontal Electromagnet 

This apparatus list listed at $2 to $3 in the 1842 edition of Daniel Davis 's Manual of Magnetism. Davis spends a fair 
amount of text explaining how the terminals of the battery must be connected to the helix to provide North and South 
Magnetic Poles. The one in my own collection I use with various rods inserted into the core of the helix. Paper clips 
attracted to the ends of the rod give a measure of the magnetic field that is produced. My favorite is a brass rod that 
is plated with nickel-silver or chrome, which looks as if it ought to be magnetized, but is not. The instrument in the 
picture is in the collection of Transylvania University in Lexington, Kentucky. (Picture and Text by Thomas B. Green
slade, Jr., Kenyon College.) 
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