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The beam spin asymmetry (BSA) in the exclusive reaction �ep → epπ0 was measured with the CEBAF
5.77 GeV polarized electron beam and Large Acceptance Spectrometer (CLAS). The xB, Q2, t , and φ

dependences of the π 0 BSA are presented in the deep inelastic regime. The asymmetries are fitted with a sin φ

function and their amplitudes are extracted. Overall, they are of the order of 0.04–0.11 and roughly independent
of t . This is the signature of a nonzero longitudinal-transverse interference. The implications concerning the
applicability of a formalism based on generalized parton distributions, as well as the extension of a Regge
formalism at high photon virtualities, are discussed.

DOI: 10.1103/PhysRevC.77.042201 PACS number(s): 12.40.Vv, 13.40.Gp, 13.60.Hb, 13.60.Le

Introduction. Deeply virtual exclusive reactions γ ∗N →
Nγ,Nπ,Nρ · · ·, where the γ ∗ virtuality Q2 is large, have
the potential to probe nucleon structure at the parton level,
as described by generalized parton distributions (GPDs).
These distributions are universal functions that parametrize
the nonperturbative structure of the nucleon. They include as
limiting cases form factors and parton distributions, and they
also provide access to hitherto unknown observables like the
spatial distribution of partons of given longitudinal momentum
fraction or the angular momentum of quarks and gluons inside
the nucleon [1–3]. The description of deeply virtual meson
production in terms of GPDs relies on a factorization theorem
[4], which applies when the virtual photon γ ∗ is longitudinally
polarized. In other words, meson production is expected
to proceed mostly through longitudinal virtual photons in
the Bjorken regime (Q2 → ∞ and the Bjorken variable xB

finite). The corresponding leading-twist diagram (or handbag
diagram, illustrated in Fig. 1) for π0 production is sensitive
to specific flavor combinations of quark-helicity dependent
(or “polarized”) GPDs: 2

3 H̃ u + 1
3 H̃ d and 2

3 Ẽu + 1
3 Ẽd [3]. The

H̃ q are partly constrained by the polarized parton distributions
�q, while the Ẽq , largely unknown, are often modeled by a
pion-pole term, which would not contribute to the ep → epπ0

process [3]. The Q2 range in which the handbag diagram
dominates, or where its contribution can be safely extracted,
is not yet known for meson production.

An alternative description of exclusive meson production is
based on Regge models, where trajectories are exchanged in
the t channel as mediators of the interaction. While extensively
studied for photoproduction [5], i.e., for Q2 = 0 and transverse
photons, the extension and applicability to virtual photons has
not yet been considered in the specific case of neutral pion
production.

So, two theoretical descriptions are a priori possible. The
Regge approach starts from Q2 = 0 and must be extended

to nonzero Q2, while the GPD approach has a firm QCD
foundation in the Bjorken regime and its applicability must be
tested at finite values of Q2.

On the experimental side, while the focus has recently
been on the production of real photons [6] (the so-called
deeply virtual Compton scattering process, or DVCS) and of
vector mesons [7–9], there is essentially no experimental data
available on neutral pseudoscalar meson production above the
resonance region. Cross sections were measured at DESY [10]
at low values of Q2, while a first result on the target spin
asymmetry was obtained at CLAS [11]. For recent data on
charged pion electroproduction in this kinematic regime, see
Refs. [12] and [13].

The ep → epπ0 observables depend on the Q2 and xB

variables, on the squared four-momentum transfer t to the
proton, and on the angle φ between the leptonic and hadronic
planes. The polarization of the exchanged virtual photon may
be transverse (T ) or longitudinal (L). It induces an azimuthal
dependence of the reduced cross section for the γ ∗p → pπ0

process. For each (xB,Q2, t), taking the ratio of the difference
over the sum of cross sections for opposite beam helicities, the
beam spin asymmetry (BSA) has the following φ dependence:

A =
−→σ − ←−σ
−→σ + ←−σ = α sin φ

1 + β cos φ + γ cos 2φ
. (1)

The parameter α is proportional to a term denoted σLT ′ ,
originating from the imaginary part of an interference between
the helicity amplitudes describing the process [14].

α =
√

2ε(1 − ε)σLT ′

σT + εσL

, (2)

where σT and σL are the pure transverse and longitudinal
cross sections, and ε is the usual virtual photon polarization
parameter. Any measurement of a nonzero BSA would be in-
dicative of an L-T interference, and therefore of contributions
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FIG. 1. (Color online) Schematic representation of the handbag
diagram for neutral pion production. The symbol g stands for a gluon
exchange between quark lines.

that cannot be described in terms of GPDs. Indeed, earlier but
limited CLAS data indicated sizable BSA both for exclusive
π+ and π0 production at large Q2 [15].

Experiment and data analysis. This experiment used the
CEBAF 5.77 GeV longitudinally polarized electron beam
impinging on a 2.5-cm-long liquid-hydrogen target. The beam
helicity was switched pseudorandomly at a frequency of
30 Hz, and the beam polarization, measured with a Møller
polarimeter, had an average value of 79.4%. All final-state
particles from the reaction ep → epπ0 followed by the decay
π0 → γ γ were detected. The six-sector CLAS spectrometer
[16] was used to detect scattered electrons, recoil protons,
and photons emitted at large angles. An additional small
electromagnetic calorimeter ensured photon detection in the
near forward region (4.5–15◦). This inner calorimeter (IC)
was built of 424 tapered lead-tungstate crystals, read out with
avalanche photodiodes. It was calibrated using the two-photon
decay of (inclusively produced) neutral pions.

Events were selected if an electron had generated a trigger,
one and only one proton was identified, and any number
of photons (above an energy threshold of 150 MeV) were
detected in either the IC or the standard CLAS calorimeter
EC [17]. Electrons were identified through signals in the EC
and in the Čerenkov counters. Events considered hereafter
included the kinematic requirements : Q2 > 1 GeV2, γ ∗p
invariant mass W > 2 GeV, and scattered electron energy
E′ > 0.8 GeV. Protons were unambiguously identified over the
whole momentum range of interest using time-of-flight from
the target to the CLAS scintillators, as well as the track length
and momentum determined by the drift chambers. A cut at
±3σ was applied around the pion mass in the squared missing
mass MM2(ep → epX) distribution to exclude multipion
background.

All clusters detected in the IC were assumed to originate
from photons, while additional time-of-flight information
was used in the EC to separate photons from neutrons.
Photons hitting the calorimeters’ edges were excluded. In
addition, because the most forward hits in the IC had a
sizable probability of originating from Møller accidental
coincidences, a minimal angle was imposed on all photon
candidates: θγ > 8◦ − 0.75◦ × (Eγ /1 GeV).

To reconstruct the π0 candidates, the two most energetic
detected photons were considered, originating from either
calorimeter. Four combinations were then possible: IC-IC,
IC-EC, EC-IC, and EC-EC, where the photon with the
highest energy was in the first mentioned calorimeter. The
two calorimeters (IC and EC) had similar angular resolutions
(about 4 mrad for 1 GeV photons) but different energy

)2 epX) (GeV→(ep2MM
-0.5 0 0.5 1

2
C

o
u

n
ts

/0
.0

2 
G

eV

0

5000

10000

15000

20000

25000

 0π

 ω/ρ

 η

FIG. 2. (Color online) Distribution of squared missing mass for
the ep → epX reaction before (black line) and after (thick red line)
all cuts on other variables are applied. The arrow points to the pion
mass, while the shaded green area corresponds to the selected events.

resolutions (σEγ
/Eγ 	 4.5% for IC and 11.6% for EC). When

considering photon pairs, the kinematic cuts described below
depended then on the four possible photon configurations
defined previously.

Events were then selected using a cut at ±3σ in the squared
missing mass MM2(ep → eπ0X) and a cut in the cone angle
between the expected direction of the pion from ep → epX

kinematics and the measured direction of the two-photon
system. This selection resulted in very clean peaks in all
kinematic correlations (Fig. 2 gives one example) and in the
distributions of the two-photon invariant mass (see Fig. 3),
with, respectively, 191K, 12K, 7K, and 14K events. The small
remaining background was estimated using side-bands on the
two-photon invariant mass spectra, for each beam helicity state
and for each of the elementary bins in (xB,Q2, t , and φ).

π0 asymmetry. The data were divided into 13 bins in the
(xB,Q2) plane (see Fig. 4), 5 bins in −t (defined by the bin
limits 0.09, 0.2, 0.4, 0.6, 1, and 1.8 GeV2), and 12 30◦ bins in
φ. The resolutions in all corresponding variables were smaller
than the bin sizes. Bin centering corrections were applied.

Within statistical accuracy, the φ distributions were found
to be compatible with A 	 α sin φ in each t bin (Fig. 4, right).
The same compatibility was observed when the φ distributions
were integrated in t . The determination of the asymmetry
amplitude at 90◦ was stable whether the terms in cos φ and
cos 2φ in Eq. (1) were included in the fit or not. Figure 5
gives the values of α in the 62 (xB,Q2, t) bins considered. By
conservation of angular momentum, the helicity-flip transverse
amplitude, and thus A and α, is identically zero as t reaches
its kinematic limit t0, corresponding to π0s emitted in the
direction of the virtual photon. At small xB , the value of −t0
is smaller than our first bin limit 0.09 GeV2 (corresponding to
the proton-energy detection threshold), which is why A does
not go to zero. The increase of −t0 explains the missing t bins
at large xB .

Systematic uncertainties arise from the event selection, as
well as from the choice of the fit function used to extract
α. Together, they were estimated at 0.016. The comparison
between two separate analyses led to the increase of this value
for two points in Fig. 5. Small compared to the systematic and
statistical uncertainties, radiative corrections were neglected.
The beam polarization measurements induce an additional

042201-3
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FIG. 3. (Color online) Distributions of the two-photon invariant mass, after the application of all cuts described in the text, for the four
configurations IC-IC, IC-EC, EC-IC, and EC-EC, from left to right. The shaded areas correspond to the selected peaks (in green) and to the
side-bands used in the background subtraction (in red). Note the change of scale for the last three configurations.

overall relative uncertainty of 3.5%. The data set may be found
in Ref. [18].

Discussion of results. As seen in Fig. 5, the measured
beam spin asymmetries are systematically of the order of
0.04 to 0.11, over a wide kinematic range in xB,Q2, and t .
In particular, there is no evidence of a decrease of α(t) as
a function of Q2. This is a clear sign of a nonzero LT ′
interference among the amplitudes describing the γ ∗p → pπ0

reaction.
In the GPD formalism, only the longitudinal amplitude,

dominant in the Bjorken regime, is calculated. The present
evidence of nonzero transverse terms indicates that it may
be necessary to perform a L/T separation to isolate the
longitudinal part of the cross section.

A Regge-type model (JML) describes the pion photo- and
electroproduction according to the diagrams in Fig. 6. The
model parameters are tuned to describe the photoproduction
data. In particular the strength of the b1 exchange term is

adjusted to reproduce the linearly polarized photon beam
asymmetry [5]. In extending the model to the case of
electroproduction, vertex electromagnetic form factors are
adjusted to reproduce the DESY data [10]. The application to
the kinematic range of the present data is then an extrapolation
of the model, which will be fully described elsewhere [19] and
reproduces the target spin asymmetry [11]. When considering
the pole terms, only the b1 exchange, through its interference
with the ρ and ω exchanges (because of opposite parities),
may generate a nonzero beam spin asymmetry. Treating the
box diagrams in the approximation of on-shell intermediate
particles yields the solid curves presented in Figs. 4 and 5. As
apparent in Fig. 4, the model generates sizable γ and β terms
in Eq. (1), corresponding, respectively, to a TT interference
due to the pole terms of Fig. 6(a) and to an LT interference due
to the box diagrams of Fig. 6(c).

Summary. Sizeable beam spin asymmetries for exclusive
neutral pion electroproduction of the proton have been

FIG. 4. (Color online) (Left)
Kinematic coverage and binning in
the (xB, Q2) plane. (Right) A(φ) for
one of the 13 (xB, Q2) bins and one
of the 5 bins in t , corresponding to
〈xB〉 = 0.249, 〈Q2〉 = 1.95 GeV2,
and 〈t〉 = −0.29 GeV2; the black
dashed curve corresponds to a fit
with A 	 α sin φ and the red solid
curve to the JML model discussed
in the text.
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FIG. 5. (Color online) Fit parameter α, as extracted from A 	
α sin φ, as a function of −t . The location of each individual plot
corresponds to the approximate coverage in (xB, Q2), except the
upper left one (an enlargement of the lower left one), which indicates
the scales common to all plots. The grey areas indicate the maximal
size of systematic uncertainties. For selected kinematics, the red
curves correspond to the JML model discussed in the text.

measured above the resonance region for the first time.
These nonzero asymmetries imply that both transverse and
longitudinal amplitudes participate in the process. The deter-
mination of the longitudinal cross section in the kinematic
regime considered here, and the subsequent extraction of
polarized generalized parton distributions, may then neces-
sitate to perform an L/T separation. For the same purpose,
measurements at still higher values of Q2 would be crucial in

0

p p

00

b1

0

p

(a) (b) (c)

P

N,

ρ

π

ωω, ρ,

γ

∆

π

π, ρ

∗ ∗ γ∗ πγ π π

FIG. 6. Diagrams describing the neutral pion production in the
JML model. (a) Pole terms. (b) Box diagram with elastic π0

rescattering. (c) Box diagram with charge exchange (π+N, π+�0,
and π−�++ are the three intermediate states considered). The
exchanged mesons are to be understood as the corresponding Regge
trajectories, and P stands for the Pomeron.

providing evidence for the expected decrease of the transverse
cross section. Presently, the only available model to calculate
this observable is based on Regge theory. It reproduces the
magnitude of the asymmetries at intermediate values of t ,
but does not exhibit the measured kinematic dependencies.
Beam spin asymmetries for exclusive η electroproduction, as
well as cross sections for π0 and η meson production, will be
considered in forthcoming publications.
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