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Abstract

A FEASIBILITY STUDY OF DYNAMICAL ASSIMILATION OF
TIDE GAUGE DATA IN THE CHESAPEAKE BAY

Yvette Huberte Spitz

Old Dominion University, 1995
Director: Dr. J. M. Klinck

The feasibility of dynamical assimilation of surface elevation from tide gauges
is investigated to estimate the bottom drag coefficient and surface stress as a first
step in improving modeled tidal and wind-driven circulation in the Chesapeake Bay.
A two-dimensional shallow water model and an adjoint variational method with a
limited memory quasi-Newton optimization algorithm are used to achieve this goal.

Assimilation of tide gauge observations from ten permanent stations in the Bay
and use of a two-dimensional model adequately estimate the bottom drag coefficient,
wind stress and surface elevation at the Bay mouth. Subsequent use of these esti-
mates in the circulation model considerably improves the modeled surface elevation
in the entire Bay. Assimilation of predicted tidal elevations yields a drag coefficient,
defined in the hydraulic way, varying between 2.5 x 10™* and 3.1 x 10~3. The bottom
drag coefficient displays a periodicity corresponding to the spring-neap tide cycle.
From assimilation of actual tide gauge observations, it is found that the fortnightly
modulation is altered during frontal passage. Furthermore, the response of the sea
surface to the wind forcing is found to be more important in the lower Bay than in
the upper Bay, where the barometric pressure effect could be more important.

In addition, identical twin experiments with model generated data show that a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



penalty term has to be added to the simple cost function defined as the distance
between modeled and observed surface elevation in order to assure smoothness of
the surface elevation field at the Bay mouth. Classical scaling of the parameters
to bring them to the same order of magnitude was not effective in accelerating
the convergence during the assimilation procedure and yielded larger errors in the

estimated parameters.
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1 Introduction

Chesapeake Bay, the largest estuary in the United States, is not only a major water-
way for commercial marine transportation, naval operations and recreational boating
but also a highly productive marine environment. For instance, larvae and postlar-
vae of fishes and crab, which have been spawned in the coastal ocean, re-enter the
Bay in late summer and early fall. Because of its interrelation with other processes
taking place in the Chesapeake Bay, e.g., water quality and biological productivity,
circulation in the Bay is probably the first process that needs to be understood.
The main components of the estuarine circulation are the tidal, gravitational and
wind-driven circulation. During the last 40 years, circulation in the Bay has mainly
been studied from observations of temperature, salinity, sea level, and currents.
Pritchard (Officer, 1976) has extensively studied the gravitational circulation while
Wang and Elliott (1978), Wang (1979a,b) have analyzed the response of the Bay
to the wind forcing, and recently, Paraso and Valle-Levinson (1995) have studied
the response of the lower Bay to atmospheric forcings, i.e., wind and barometric
pressure. An extensive analysis of the tidal circulation from tide gauge sea level and
current measurements was done by Fisher (1986). These studies helped to recognize
that wind and bottom stress greatly influence the circulation in the Bay. However,
wind stress and bottom friction are difficult to estimate. For instance, the wind
speed and direction are essentially measured at major airports on the wesiern side
of the Bay. But, conversion of the wind on land to wind over water is not an easy

task. For instance, Goodrich (1985) showed that a different correction has to be done
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to the alongshore and cross-shore wind components measured at airports. Bottom
friction, while hard to measure, is usually defined in the two-dimensional models as
a quadratic function of the vertically-integrated velocity. An empirical parameter,
the bottom drag coefficient, is adjusted for a best fit between the modeled surface
elevations and observations at tide gauge stations (Crean et al., 1988).

Recently, variational data assimilation and inverse methods have been used to
determine the bottom drag coefficient. Using a two-dimensional model and assim-
ilation of tide gauges data, Das and Lardner (1992), Lardner et al. (1993) showed
that a depth correction and bottom friction coefficient can be estimated. Using an
inverse method and tidal current measurements, Bang (1994) estimated the bottom
drag coefficient in the Chesapeake Bay. The study from Lardner et al. (1993) in
the Arabian Gulf is probably most closely related to our study. However, several
major differences can be pointed out. In our study, the bottom drag coefficient is
not only estimated but also the surface forcing, and the tide gauges located close to
the coast are used, which is far more challenging than the use of open water gauges.
Finally, the drag coeflicient parameterization is different in both studies.

Data assimilation techniques have been recently developed in meteorology as
well as in oceanography and are numerous (Ghil et al., 1981; Navon, 1986; Ghil
and Malanotte-Rizzoli, 1991; Navon et al., 1992b,c). Most of these methods fit in
one of the following classes: i) local polynomial interpolation methods (Cressman,
1959), ii) statistical (optimal) interpolation methods (Lorenc, 1981), iii) variational
numerical analysis. The latter technique was originated in meteorology by Sasaki
(1955, 1970) and has been developed considerably since then. It addresses the
question of sensitivity analysis (Cacuci, 1981; Hall et al., 1982; Hall and Cacuci,
1983; Cacuci and Hall, 1984; Cacuci, 1988; Zou et al., 1993b), variational adjustment
(Lewis and Derber, 1985; Talagrand and Courtier, 1987; Thacker and Long, 1988,

Navon et al., 1992a) and parameter estimation (Panchang and O’Brien, 1989; Das
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and Lardner, 1991; Smedstad and O’Brien, 1991; Yu and O’Brien, 1991; Zou et al.,
1992b; Lardner, 1993; Lawson et al., 1995a,b). This list of references represents only
a small sample of what has been done in data assimilation.

The objective of variational data assimilation is to minimize a cost function
with respect to the control variables by minimizing the misfit between model equiv-
alents of the data and observations. The goodness-of-fit of the model equivalents
of the data to the observations is measured by a cost function, which is minimized
by adjusting the control variables. Most of the optimization algorithms are based
on iterative descent large-scale unconstrained local minimization methods which re-
quire the computation of the gradient of the cost function with respect to the control
variables. The adjoint of the model equations is used to compute the gradient of the
cost function. The adjoint model equations can be derived by using different meth-
ods: the derivation of Euler-Lagrange equations (Morse and Feshbach, 1953), the
control theory (Le Dimet and Talagrand, 1986), the Lagrange multiplier approach
(Thacker and Long, 1988). In those methods, the continuous adjoint equations are
first derived then discretized. However, recent studies have shown that the adjoint
model code can be derived directly from the model code, which has two main ad-
vantages. It reduces the complexity of the construction of the adjoint model and
it avoids the inconsistency that can arise from the derivation of the adjoint model
followed by its discretization due to non-commutativity of adjoint and discretiza-
tion operations. Navon et al. (1992a) and Talagrand (1991) derived the adjoint
model code from the tangent linear model code while Lawson et al. (1995a) used
the Lagrange multiplier approach to derive the adjoint code from the direct model
code. The variational adjoint assimilation algorithm includes four parts: the direct
model, the construction of the adjoint code of the forward model, the computation
of the cost function and its gradient with respect to the control parameters, and the

large-scale unconstrained local optimization algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The objective of this study is to assimilate tide gauge observations in order to
estimate the important model parameters, i.e., bottom and wind stress, and get
the best representation of the circulation in the Bay. This goal was achieved by
using a two-dimensional (2-D), vertically-integrated shallow water equations model.
Several studies for the English Channel (Ozer and Jamart, 1988; Jamart and Ozer,
1989; Werner and Lynch, 1987) have indeed recognized that the 2-D, inviscid shallow
water equations can provide an accurate solution to the problem of tidal propagation.
The assimilation technique is the variational adjoint method where the adjoint model
code is obtained from the tangent linear version of the model code. The minimization
algorithm used to minimize the cost function is the limited memory quasi-Newton
method developed by Gilbert and Lemaréchal (1989) which is similar to the method
developed by Liu and Nocedal (1989).

Specifically, the results obtained from the assimilation study address the follow-

ing questions:

e How can variational data assimilation be used to determine the forcing in the
model, i.e wind stress and bottom friction? Can we estimate the spatial and/or

time dependence of the bottom friction and wind stress using tide gauge data?

o Is the number of tide gauges adequate to predict the sea level in the bay? Are the

gauges well distributed around the bay?
e Can variational data assimilation be used to determine the adequacy of a two-
dimensional model to reproduce the main features of the circulation in the Chesa-

peake Bay?

Section 2 contains background information on the physics and the circulation of
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the Chesapeake Bay. Section 3 contains details of the variational adjoint data as-
similation method, the direct model and application of data assimilation to the Bay.
The results of surface elevation assimilation in the case of identical twin experiments,
tidal and wind-driven circulation experiments using the tide gauge observations are
given in Section 4 while they are discussed in Section 5. Conclusions of this study

are presented in Section 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 Background

The first question that might be asked is “what is an estuary?”. Historically, the
term estuary comes from the latin name aetus, which means tide, and applied to
the lower tidal reaches of rivers. Cameron and Pritchard (1963) extended the def-
inition as follows: “ An estuary is a semi-enclosed body of water which has a free
connection with the open ocean and within which seawater is measurably diluted
with fresh water derived from land drainage”. Estuaries have been classified based
on two criteria: 1) geomorphological properties (Pritchard, 1952a; Dyer, 1973) and
2) circulation and stratification patterns (Dyer, 1973). In terms of shape, an es-
tuary can be of three types: coastal plain, deep basin, and bar-built estuary. In
terms of the water properties, an estuary can be classified as highly stratified salt
wedge type, highly stratified, partially mixed and vertically homogeneous. Com-
plete descriptions of estuary types can be found in Dyer (1973) and Pickard and
Emery (1982). In the past decades, the main focus of estuarine studies has been
on tidal and gravitational circulation as well as river runoff. Only recently, it has
been acknowledged that wind-driven circulation might at times be more important
than the gravitational circulation. In the following sections, the physical character-
istics of the Chesapeake Bay, the field observations, and the tidal and wind-driven

circulation in the Bay are briefly described.
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2.1 Physical characteristics of the Chesapeake Bay and its
tributaries

Chesapeake Bay is the largest estuary in the United States with a length of roughly
310 km, a width averaging 30 km (Fig. 1) and a complex topography. The Bay
can be divided into two regions which have different dimensional and physical char-
acteristics: the main stem and the tributaries (over 50). The main stem which is
very narrow at the entrance (18.5 km) widens to about 35 km near the mouth of
the Potomac River. It then narrows to about 6 km near the mouth of the Severn
River. Its main axis is directed north-south except in the lower part where it is
in the northwest-southeast direction. The main stem has an average depth of 8 m
with a maximum depth, nearly 53 m, off Kent Island. The 18 ft (5.5 m) and 36 ft
(11 m) depth contours are shown in Fig. 1. The depth contours show that there is
a complicated system of channels starting at the Bay mouth and branching into the
tributaries. Two main channels and a third narrow channel start at the entrance of
the Bay. The southern channel in the entrance extends westward as Thimble Shoal
channel and branches up the James River. The main channel extends into the main
stem while the northern channel, very narrow and deep, extends northward along
the eastern shore into the Pocomoke sound. The major tributaries of the lower Bay
are the Rappahannock, York, and James Rivers which account for approximately
20% of the freshwater input in the Bay. The Potomac and Susquehanna Rivers are
the major tributaries of the upper Bay, with the Susquehanna accounting for about
50% of the total freshwater input.

Based on geomorphological properties (Pritchard, 1952a), the Chesapeake Bay
has been classified as drowned river valley or coastal plain estuary. After the glacial
period, roughly 10 thousand years ago, the Chesapeake Bay system was formed.
Before sea level rose about 100 m following the glacial period, the Susquehanna River

reached the ocean about 180 km seaward of the present shoreline and the York and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1: Depth contours of the Chesapeake Bay expressed in feet (Fisher, 1986).
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other rivers were tributaries of the Susquehanna River. Based on the circulation and
stratification patterns, the lower Bay has been classified as vertically homogeneous
with lateral variations of salinity during normal runoff conditions (Pritchard, 1952b).
In that region, tidal flow is dominant. The upper Bay and the tributaries have been
classified as slightly stratified. Due to the river discharge and the tide, a two layer
circulation is present with a net seaward flow of fresh water in the upper layer and

a net flow of saline water toward the head in the lower layer.

2.2 Observations in the Chesapeake Bay

Observations are required not only to understand the circulation in the Bay but also
to verify the success of the numerical models and to estimate model parameters us-
ing data assimilation techniques. The most useful information comes from synoptic
data. The Chesapeake Bay has now been monitored for decades by several labo-
ratories and universities and measurements include sea level, current, temperature,
salinity, water quality as well as meteorological observations. Below is a brief review

of the publically available observations.

o Water level and current

For more than a century, tide and tidal currents have been observed in the Chesa-
peake Bay. The first tide station was installed in Annapolis in 1844 (Haight et al.,
1930; Hicks, 1964; Fisher, 1986). Prior to 1964, more than 200 tide gauge stations
and over 100 near-surface current stations were deployed. However, they were not
usually deployed for a long time or at the same time. From those stations, ten
tide gauge stations in the Chesapeake Bay and its tributaries are now part of the
National Tide and Water Level Observation Network (Table 1) and are permanent
installations maintained by the National Oceanic and Atmospheric Administration

(NOAA). In addition to those long term measurements, two extensive tide and cur-
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rent surveys of the Chesapeake Bay were conducted from 1970 to 1974 and from
1981 to 1983 (Fig. 2) by the National Ocean Survey to update tide and tidal current

predictions and to provide tidal datum for shoreline boundary determination.

o Meteorological observations

For a long time, meteorological observations were collected only at the major air-
ports, e.g., Baltimore, Washington DC, Norfolk International Airports and Patuxent
River Naval Air Station. It is only recently that meteorological observations became
available over the water. Starting in 1985, two buoys were deployed in the Chesa-
peake Bay by the National Data Buoy Center (NDBC) as part of the Coastal-Marine
Automated Network (C-MAN) program. The first buoy is located in the upper Bay
at Thomas Point, Maryland (38.9° N, 76.4° W) while the second one is located
outside the Bay at the Chesapeake Light Tower, Virginia (36.9° N, 75.7° W). Wind
speed, direction and gust, barometric pressure and air temperature are processed
every hour and transmitted to the users. In addition to those buoys, meteorological
observations are available at some tide gauge stations, e.g., at the Chesapeake Bay

Bridge Tunnel (CBBT).

e Water properties

From 1985 to 1991, water quality data were collected at more than 130 stations in
the main stem and the tributaries. Monitoring in the main stem was part of a joint
program between University of Maryland, Old Dominion University, and Virginia
Institute of Marine Science and was supported by the U.S. Environmental Protection
Agency (EPA). Monitoring in the tributaries was done by state regulatory agencies.
This comprehensive data set is now available on CD-ROM (Rennie and Neilson,
1994). In addition, sea temperature is routinely measured at the aforementioned

buoys and some of the tide gauge stations.
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National Ocean Service long term control tide stations

Station Number Station Name Latitude (N) Longitude (W) Installation date
8574070 Havre de Grace, MD 39°46.9' 76°05.5' 1971
8574680 Baltimore, MD 39°16.0 76°34.7' 1902
8575512 Annapolis, MD 38°59.0 76°28.8' 1929
8571890 Cambridge, MD 38°34.5' 76°04.3 1942
8577330 Solomons Is, MD 38°19.0/ 76°27.2' 1938
8635750 Lewisetta, MD 37°59.8' 76°27.8' 1970
8637624 Gloucester Pt, VA 37°14.8' 76°30.0' 1950
8632200 Kiptopeake, VA 37°10.0' 75°59.3 1951
8638610 Hampton Roads, VA 36°56.8' 76°19.8 1927
8638863 CBBT, VA 36°68.1' 76°06.8' 1975

Table 1: Tide gauge stations part of the National Tide and Water Level Observation
Network.

11
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Figure 2: Overview of tide and current station deployments in the Chesapeake Bay
and its tributaries (Fisher, 1986; Browne and Fisher, 1988).
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e Bathymetry

Bathymetry of the Chesapeake Bay is available from the National Ocean Service
(NOS) hydrographic data base. The data set includes depths for the main stem
(except a small portion north of Baltimore) as well as the major tributaries. The

bathymetry is available on a 15-second grid.

2.3 Circulation in the Chesapeake Bay

Estuarine circulation, due to the combined effects of tide action, horizontal salinity
gradients, river runoff and meteorological forcing (wind stress, inverted barometer
effect), has been intensively studied in the Chesapeake Bay and its tributaries and is
still an ongoing source of research activity. Diverse investigations from field obser-
vations, e.g., temperature, salinity and current, and from simple models have been
carried out by Pritchard and other researchers in order to explain the gravitational
and tidal circulation. A summary of those studies can be found in Officer (1976).
It is only during the last two decades that wind-driven circulation has been shown
to be as important as the gravitational circulation, indeed the dominant non-tidal
circulation at times. For example, Weisberg (1976) found that in the Providence
River of the Narragansett Bay, wind effects can be of equal or greater importance
to the tidal or gravitational circulation. Since our study focuses on the barotropic
circulation, only tidal and wind-driven circulation will be discussed in the following

sections.

2.3.1 Tidal circulation

Description of the tidal circulation of the Chesapeake Bay from sea level and cur-
rent measurements started with Harris (1907) and was further investigated by Hicks
(1964). They were able to construct approximate cotidal and co-current charts for

the main stem and the tributaries. Their study showed that the dominant tidal
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constituents in the Bay are the semidiurnal, M5, and the diurnal, K;, constituents.
Hicks (1964) also found that the Chesapeake Bay can contain one complete wave-
length of a semidiurnal tidal wave and a half wavelength of a diurnal wave. More
recently, an extensive analysis by Fisher (1986) of the sea level and current data col-
lected by NOAA at 108 and 124 locations (Fig. 2), respectively, during two surveys,
from 1970 to 1974 and from 1981 to 1983, gave more insight into the details of the
tidal circulation. Charts of the cophase and coamplitude lines for M, and K; tides
are shown in Figs. 3 and 4. One degree in phase of an M, tidal cycle corresponds
approximately to two minutes in time while one degree in phase of an K tidal cycle
corresponds to four minutes. Charts of the cospeed and cophase of the M, tidal
current are plotted in Figs. 5 and 6.

Several main features of the tidal circulation can be pointed out from these
charts. First, the coamplitude line configuration reflects the expected effect of the
earth’s rotation which is manifested by a larger amplitude of the tide on the Eastern
Shore than on the Western Shore. The M, and K; tides are Kelvin waves, which
is suggested by the pattern of orthogonally-oriented cophase and coamplitude lines
in the lower Bay. The nature of the waves is further supported by the location of
the minimum of the M, amplitude near the Potomac River, three-quarters of an M,
wavelength from the head of the Bay, which is consistent with the pattern expected
from the superposition of incident and reflected Kelvin waves damped by friction.
The reflected wave can also be seen in the rapid decrease of the current north of
Havre de Grace. An increasing effect from the north end of the Bay is found in the
phase difference between tidal elevation and current. At the entrance of the Bay,
the tidal elevation leads the tidal current while in the middle of the Bay they are in
phase. At the head of the Bay, the tidal current leads the tidal elevation.

The effect of the bottom friction and topography is further seen in the configura-

tion of the coamplitude and cophase lines of the M; and K; as well as in the pattern
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Figure 3: Superposition of coamplitude and cophase lines of M, tide (Fisher, 1986').
Cophase lines (solid) are expressed in degrees and coamplitude lines (dashed) in

feet.
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Figure 4: Superposition of coamplitude and cophase of K; tide (Fisher, 1986).
Cophase lines (solid) are expressed in degrees and coamplitude lines (dashed) in
feet.
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CHESAPEARL EAY

Figure 5: M, tidal current cospeed lines expressed in centimeters per second (Fisher,
1986).
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Figure 6: M, tidal current cophase lines expressed in degrees (Fisher, 1986).
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of the cophase of the tidal current. Two virtual amphidromic points (Defant, 1961),
characterized by the convergence of the cophase lines of the M, and the concentric
nature of the coamplitude lines with an outwards increasing amplitude are found
near the Potomac River (north of Smith Point) and west of the Severn River. The
migration of the amphidromic point towards the Western Shore and the Bay’s en-
trance is the result of the bottom friction (Fisher, 1986). An amphidromic point
north of Smith Point is also found for the K; tide. While the M, tidal current
cophase pattern differs significantly from that of the M; tide throughout the main
stem, the curvature of the tidal current cophase lines towards the entrance of the Bay
is mainly due to bottom friction. The effect of the topography can be pointed out
by the presence of two flood currents at the entrance of the Bay which are located
in the two channels. In the southern channel, the current splits in two parts, i.e.,
the major current proceeds northward up the Bay and the smaller one is directed
towards the James River. In the northern channel, the speed decreases very quickly
up the Bay. North of the Patuxent River, the cospeed lines are closed which also
suggests a strong effect of the bottom topography.

The M; and K, cophase and coamplitude lines in the major tributaries are
mainly oriented cross channel. The phase in the lower region of the rivers increases
rapidly while it changes very little with distance in the upper part near the limit of
tide. This suggests that the wave is more like a progressive wave in the lower part
and a standing wave in the upper region. Fisher (1986) also shows that there is
little amplification of the elementary tidal constituents, e.g., M, and K;. However,
the shallow water constituents, which include the overtides and the compound tides,
are significantly amplified near the limit of tide in the major tributaries.

As shown in the study from Fisher (1986), the bottom friction is one of the
major forcings for the tidal circulation. Yet, this forcing is little-known and hard to

measure. As shown in the next sections, by assimilating surface elevations from tide
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gauges, it is possible to get an estimate of the bottom drag coefficient and therefore

the bottom stress.

2.3.2 Wind-driven circulation

Non-tidal circulation in partially mixed estuaries can be driven by a horizontal den-
sity gradient, wind forcing and river runoff. While the gravitational circulation was
thought during the past decades to be the main component of the non-tidal circu-
lation and was extensively studied in the Chesapeake Bay, it has been shown that
the wind-driven circulation can at times be larger than the gravitational circulation.
Wind-driven circulation has mainly been studied from field observations.

While the response of the water to the wind forcing in the Bay is complex,
several studies have shown that sea level fluctuations depend on local winds (local
forcing) and exchange between coastal ocean and estuary (non-local forcing). Sea
level measurements for a period of two months in 1974, show non-tidal fluctuations
at period of 20, 5 and 2.5 days (Fig. 7) (Wang and Elliott, 1978). The 20-day sea
level fluctuations, with amplitude decreasing towards the head of the Bay and phase
increasing up Bay, were found to be the result of up-Bay propagation of coastal sea
level fluctuations generated by alongshore winds. Fluctuations of 5-day period, with
amplitude almost uniform in the Bay, were driven by coastal sea level fluctuations
and local cross-shore winds. Seiche oscillations at 2.5 day periods, with amplitude
larger at the head of the Bay and with constant phase within the Bay, were driven
by the local longitudinal winds. Wang (1979a) extended the previous study to one
year of sea level measurements and found barotropic responses at similar periods.
Contrary to the study by Wang and Elliott (1978), Wang (1979a) found that the
driving force at 10-day period was not the coastal alongshore forcing but instead the
cross-shore wind. He also observed that the seiche oscillations were intensified in

winter due to the passage of extratropical cyclones. More recently, Valle-Levinson
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Figure 7: Power spectra of sea level, at (I) Kiptopeake Beach, (II) Lewisetta, (III)
Solomons Island and (IV) Annapolis. (Wang and Elliott, 1978).
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(1995) and Paraso and Valle-Levinson (1995) studied the atmospheric response on
the barotropic exchange in the lower Bay. From observations of sea level, wind and
sea temperature, they showed that northeasterly winds cause net barotropic inflows
at the Bay entrance while southwesterly winds cause net outflows. A more rapid
change in the sea level was also noticed when the wind blows from the north-east.

The influence of the wind on the vertical structure of the nontidal circulation
has also been investigated. A study by Pritchard and Rives (1979) in the middle
reaches of the Chesapeake Bay showed that the subtidal nongravitational currents
were wind-driven in the upper layer of the column of water while in the deeper layer
the currents were in the opposite direction. Based on current measurements during
winter 1975, Wang (1979b) reported a strong wind-driven barotropic circulation in
the lower Bay and a baroclinic circulation in the upper Bay which he related to
two forcing mechanisms, i.e., surface slope of the water and the wind. He further
explained this flow pattern using a conceptual frictional model. The effect of the
wind on the vertical structure of the residual currents in the middle reaches of the
Bay was further investigated by Vieira (1986). Based on current, tidal elevation
and wind measurements, Vieira (1986) concluded that the upper layers (8 m) are
directly driven by the wind while in the lower layers the flow is in the opposite
direction of the wind as a result of the surface slope associated with it. Finally,
several events leading to the destratification of large areas of the Bay has been
studied by Goodrich et al. (1987) from current and salinity observations between
1981 through fall 1983. They found that those events mainly occur from early fall
through mid-spring. Blumberg and Goodrich (1990) further investigated a specific
event during September 1983 using a three-dimensional numerical model.

While general patterns of the wind-driven circulation have mostly been studied,
isolated events of wind-driven circulation have also been pointed out by Chuang

and Boicourt (1989). An abnormal seiche motion was detected in April 1986. The
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seiche lasted for seven days and had a period of 1.7 days which is shorter than the
natural period of the Bay. The seiche was found to be generated by a cross-shore
wind at the mouth of the Bay. The wind-driven current was then able to initiate
a resonant seiche in the rest of the Bay. Those conclusions were also supported by
a simple analytical model. Chao (personal communication) developed an analytical
model for a L-shaped estuary such as the Chesapeake Bay in order to explain the
April 1986 event. He showed that for L-shaped estuaries, both locally and remotely
forces responses are important.

Based on the previous studies, it appears that the wind-driven circulation is
important in the Chesapeake Bay and is very complex. However, the wind data are
mainly available at the major airports and conversion of wind on land to wind over
water is not an easy task. Chao (personal communication) showed that in order to
reproduce the event found in April 1986 the longitudinal wind used in the Bay has
to be increased compared to the wind measured at Norfolk airport. This increase of
wind over water compared to that measured over land has also been pointed out by
Wong and Garvine (1984), Goodrich (1985). To explain the sea level in the Delaware
Bay, Wong and Garvine (1984) had to increase the shore-based wind stress fourfold.
Goodrich (1985) found that while the longitudinal winds attenuate rapidly toward
the shores, the lateral winds do not, and that over-water/over-land regression slopes
for north and east components of the wind are 2.5 and 1.43, respectively. In the
next sections, we shall show how it is possible to estimate the wind forcing in the
Bay from assimilation of tide gauge observations and get the best representation of

the wind-driven circulation.
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3 Method
3.1 Overview

During the past decade, interest in data assimilation has increased in meteorology
as well as in oceanography. One of the reasons for developing data assimilation
methods in meteorology was the need for weather prediction. Meteorologists are now
routinely assimilating atmospheric data in numerical weather forecasting systems.
While the need of data assimilation in oceanography is generally not for prediction
but rather for understanding the ocean, data assimilation has become an important
tool for the oceanographers with the availability of larger data sets, development of
new observational techniques (e.g., altimeters, satellites, tomography), and increases
in computing power. Reviews of data assimilation can be found in Ghil et al. (1981),
Bengtsson et al. (1981), Lorenc (1986), Navon (1986), Haidvogel and Robinson
(1989), and Ghil and Malanotte-Rizzoli (1991).

Data assimilation techniques can be divided into two main classes: statistical
interpolation and variational analysis. Statistical interpolation methods which in-
clude successive correction (Cressman, 1959; Bratseth, 1986) and optimal interpo-
lation (Gandin, 1963; Lorenc, 1981) are routinely applied in weather forecasting. In
optimal interpolation, the model results are corrected by adding a weighted fraction
of the difference between model results and data. The weight is determined from
the error covariance of the model. An extension of the optimal interpolation method
is the Kalman or Kalman-Bucy filtering (Kalman, 1960; Kalman and Bucy, 1961),

where the correction to the model solution is obtained by computing the error co-
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variance function, i.e., the covariance of the differences between model results and
data, from the numerical model dynamics. This method is more accurate than the
classical optimal interpolation but it requires considerable computing power. Sev-
eral applications of Kalman filtering can be found in oceanography (Miller, 1986;
Budgell, 1986, 1987; Bennett and Budgell, 1987; Heemink and Kloosterhuis, 1990;
Fukumori et al., 1993). The main weakness of these methods is that, for non-linear
models, it is difficult to estimate the model and observation error covariance matri-
ces.

The second class of data assimilation methods, the variational analysis, has as
its objective to find the assimilating model solution which minimizes a predefined
objective function. This function, called the cost function, measures the distance
between model solutions and chservations. The main difference between variational
technique and interpolation methods is that the analyzed field must satisfy an ex-
plicit dynamical constraint which is usually expressed by the model equations. Fur-
thermore, variational assimilation has two main advantages: it can be applied to
linear as well as non-linear models; and, as shown in the next sections, it can be
implemented in a straightforward manner.

Calculus of variations was introduced in meteorology by Sasaki (1955, 1970) who
introduced the concept of “weak” and “strong” constraints, i.e., conditions imposed
on the resulting flow field. Since then, this method has been considerably developed
in both meteorology and oceanography. For example, Bennett and McIntosh (1982)
and Bennett (1985) used variational methods to investigate open boundary condi-
tions in tidal model and array design. Schréter and Wunsch (1986) studied the effect
of data errors in oceanic circulation models. In the same time, methods to compute
the gradient of the cost function, which is required during the minimization process,
were going through considerable development. The adjoint method is the most pow-

erful tool to compute the gradient of the cost function with respect to the control
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variables. The variational adjoint technique then leads to the question of sensitivity
analysis, variational adjustment and parameter estimation. For example, Cacuci
(1981), Hall et al. (1982), Hall and Cacuci (1983) and Cacuci and Hall (1984) used
adjoint models to assess sensitivity of model forecasts to changes in boundary con-
ditions and model parameters. Lacarra and Talagrand (1988) identified regions of
enhanced barotropic and baroclinic instability while Farrell and Moore (1992) tried
to find the fastest growing unstable modes of an oceanic jet. Zou et al. (1993b) ex-
amined the sensitivity of a blocking index in a 2-layer primitive equation isentropic
spectral model.

Variational adjustment found its first applications in meteorology for weather
forecasting. While first limited to barotropic models (Courtier, 1984; Lewis and
Derber, 1985; Courtier and Talagrand, 1987; Talagrand and Courtier, 1987), the
method has been extended in the recent years to more complicated models (Thépaut
and Courtier, 1991; Navon et al., 1992; Thépaut et al., 1993; Courtier et al., 1993).
In oceanography, variational adjustment was first applied with simple models. For
example, Long and Thacker (1989a,b) used a simple equatorial-wave model to re-
cover the model state from surface elevation and wind stress observations, while
Sheinbaum and Anderson (1990) used a one-layer, linear, reduced-gravity model.
With the increase of computer power and of data availability (e.g., from Geosat
altimeter and satellites), variational adjustment became extensively used. Moore
(1991) assimilated data into a quasi-geostrophic, multi-layer, open-ocean model of
the Gulf Stream region and estimated initial conditions. Tziperman et al. (1992a,b)
used a general circulation model and estimated values of the model inputs consis-
tent with a steady circulation and available data in the North Atlantic Ocean. Seiler
(1993) used a similar quasi-geostrophic model for estimation of the open boundary
conditions. Greiner and Périgaud (1994) assimilated Geosat sea-level variations into

a nonlinear shallow-water model of the Indian Ocean. These studies only represent
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a limited sample of what has been done in the field of variational adjustment.
Parameter estimation also became a field of interest for variational adjoint meth-
ods. Panchang and O’Brien (1989) used the adjoint method to determine the bottom
friction coefficient in a channel. Smedstad and O’Brien (1991) estimated the effective
phase speed in a model of the equatorial Pacific ocean using sea level observations,
while Yu and O’Brien (1991) used the same technique to estimate the eddy viscos-
ity and surface drag coefficient from an observed velocity field. This work has been
extended by Richardson and Panchang (1992), and Lardner and Das (1994). Das
and Lardner (1991, 1992) and Lardner (1993) used a two-dimensional tidal model
and a variational method to estimate bottom drag, depth and open boundary con-
ditions. Similarly, Lardner et al. (1993) estimated the bottom drag coeflicient and
bathymetry correction for a two-dimensional tidal model of the Arabian Gulf.
Finally, a new field of application of the adjoint variational method, marine sys-
tem modeling, has captured interest. Lawson et al. (1995a) applied the variational
adjoint method to a prey-predator model to assess the recovery of little-known bio-
logical parameters, such as initial concentrations, growth and mortality rates. It was
shown that the ease of recovering initial concentrations and rates depends not only
on data availability but also on the form of the model equations. Based on identical
twin experiments, the recovery of initial concentrations and rates was possible even
with a data set containing only information on either prey or predator abundance.
However, when only the abundance of one species was available, the structure of
the biological model, i.e., the process that couple ecosystem components, had to be
modified. In a second study, Lawson et al. (1995b) applied the adjoint method to a
five-component time-dependent ecosystem model and recovered population growth
and death rates, amplitudes of forcing events and component initial conditions. The
effect of data distribution and data type on the ability to recover model parameters

was investigated using identical twin experiments and sampling strategies corre-
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sponding to US. JGOFS experiments at the Bermuda Atlantic Time Series (BATS)
and the Hawaii Ocean Time Series (HOT) stations.

The approach chosen to assimilate tide gauge data in the Chesapeake Bay and
recover wind, bottom forcing and circulation in the Bay is the variational formal-
ism, often referred to as the adjoint method. As mentioned earlier, variational data
assimilation consists in finding the model solution which minimizes an objective
function, the cost function, measuring the difference between the model solution
and the available data. Various optimization procedures can be used to determine
the minimum of the cost function. Most of the optimization techniques require
the computation of the gradient of the cost function with respect to the control
variables, which can be achieved by direct perturbation (Hoffman, 1986) but the
numerical computation is very costly. A powerful mathematical tool used to numer-
ically compute the gradient of the cost function is the adjoint of the equations of
the assimilating model. As shown in the coming subsections, the derivation of the
adjoint equations can be achieved by various methods.

The variational adjoint method then includes four components: the mathemati-
cal model (circulation model) or forward model, the computation of the cost func-
tion from the data and model output, the adjoint of the forward model or backward
model and an optimization technique. The four components are used in an iterative
process which leads to the determination of the control variables giving the best fit
to the data (Fig. 8) and can be described as follows. The direct model is run using
a first guess of the control variables. The model output and data are then used to
compute the value of the cost function. Thereafter, the adjoint of the model is used
to compute the gradient of the cost function with respect to the control variables,
which is then used in the large scale unconstraint local optimization procedure to
compute the search direction towards the minimum and the optimal step size in

that direction. A new value of the control variables is then estimated and the model
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is rerun. This procedure is applied until a preset convergence criterion is satisfied,
e.9., IVJ|| £ & and/or J < € where € denotes a small value and J is the cost
function. The four steps of the assimilation technique are described in the following

sections.

3.2 Circulation model

The circulation model used to study the barotropic circulation in the Chesapeake
Bay is a conventional 2-D vertically-integrated shallow water equations model. This
model was developed by MUMM (Management Unit of the Mathematical Models
of the North Sea and Scheldt Estuary) to study the tidal propagation in the English
channel (Ozer and Jamart, 1988; Jamart and Ozer, 1989) and will be referred to as
the MU-model.

In a right handed coordinate system, with the z-axis pointing upwards, the

governing equations are :

Ou  Ou u o T, W

§+u8_z+v6 - fu= ‘qa-}-p_H_pH (1)
Oov dv 0Ov __op 1 T
ot +u6:v+vay+fu—_gay+pH ~ pH 2)
dn  O(Hu)  O(Hv) _
ot T "ar T oy 0 (3)

where t denotes time, f the Coriolis parameter, g the acceleration due to gravity,
75 and 7Y the components of the wind stress, and H the total water depth. The
unknown 7 is the elevation of the free surface with respect to the mean sea level,
and u and v are the components of the vertically-averaged velocity. The bottom
stress 7, is parameterized by means of a quadratic dependence with respect to the

depth mean current,

7o = pep || . (4)
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Figure 8: Schematic of the steps involved in the data assimilation scheme. The solid
lines indicate the main path taken during the procedure.
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In practice, the bottom drag coefficient ¢p varies with water depth, seabed compo-

sition and phase of the tide. It is parameterized as

o

g .
=3 with ¢ = — (5)

where ¢ (m'/2s™!) is the Chezy coefficient and n is the Manning’s roughness (Officer,
1976). Typical values for a and n are respectively 1/6 and 0.02 giving a drag
coefficient of ~ 0.002 for a depth of 10 m. Other parameterizations of the bottom
drag coefficient will be described in Section 5.

Along the open boundaries which coincide with a grid line containing elevation
points (see grid definition, Fig. 9), the free surface elevation is imposed. For in-
stance, the forcing due to the tide is introduced by specifying the time evolution of

the free surface as follows:

K
n(3,t) = Y frarcos(wit + (Vo + u)y — ) (6)
k=1

where § denotes the position of a point along the boundary, a; and ¢ are the
harmonic constants (amplitude and phase) of the kth constituent, wy is the frequency
of the kth constituent, fi is a factor to reduce the mean amplitude of the constituent
to the starting time of the simulation, (V, 4+ u), is the value of the equilibrium
argument of the kth constituent at the starting time of the simulation, ¢ denotes the
time elapsed from the beginning of the computational time. Due to the presence of
the advection terms in the momentum equation, an additional boundary condition
is necessary at those times when the water flows towards the interior of the domain.
In that case, the gradient of the depth mean current in the direction perpendicular
to the boundary is set equal to zero along the boundary grid line and the grid line
half a Az or a Ay inside the domain.

Along the solid boundaries which coincide with a grid line containing velocity
unknowns, the component of the total transport in the direction perpendicular ()

to the boundary is set equal to zero. The additional condition (g—g = 0) is applied
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along a grid line a half Az or a Ay inside when the water flows towards the interior
of the domain.

The equations are solved by means of finite difference analogs (Ozer et al., 1990)
on a uniform staggered grid (Arakawa C-grid) (Fig. 9) . The time stepping scheme
is a semi-implicit, alternate direction method (ADI) (Beckers and Neves, 1985),
which is unconditionally stable and allows larger time steps than permissible by
other explicit time differencing schemes such as leapfrog. The ADI scheme can be
summarized as follows.

During the first half time-step, the north-south (y) component of the momentum
equation is solved explicitly, except for the bottom stress term. Thereafter, the
east-west (x) component of the momentum equation is solved by taking the surface
gradient term at the new time level. The continuity equation is then solved with the
x-component of the depth mean current at the new time level. Due to the linearity of
the finite difference approximation of the x-component of the momentum during this
step, the x-component of the velocity is decomposed into two components. The first
component is the solution of the momentum equation without the surface gradient
term and is already obtained. The second component is proportional to the unknown
surface gradient term. Its finite difference approximation is then introduced into
the finite difference analog of the continuity equation which leads to a tridiagonal
algebraic system for the surface elevation at the new time level. Once the value of
the free surface is known at the new time level, the x-component of the velocity can
be computed. The procedure during the second half-time step is entirely similar

except that the implicit procedure is applied in the y-direction.

3.3 Cost function

The variational adjoint method attempts to find a set of model control variables,

e.g., initial conditions at the start of the assimilation window, open boundary con-
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Figure 9: Staggered grid and indexing used in the model. The variables inside of
the dotted box have the same value of the indexes i and j.
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ditions, parameters of the model, most consistent in a least-squares sense with the
observations over a given period of time, i.e., the window of assimilation. This is
achieved by computing the minimum of a cost function with respect to the control
variables. Thus, the first task is to define a cost function suitable for the study
under consideration.

In a general sense, the cost function takes the form
J(X) = J,(X) + Jp(X) (7

where X is the control variable vector. J, measures the distance of the model
solution from the observations and J,, referred to as penalty term, includes all the
physical constraints to be imposed on the model solution.

The first term of Eq. 7 is often expressed as
Jo(X) = %(CY —dTW-I(CY - d) (8)

where d and Y are the vectors containing the observations and the model variables,
respectively, and C is an interpolation matrix which maps the model variables to the
space and time locations of the observations. The matrix W~ is ideally the inverse
of the error covariance matrix for the observations. If W= is approximated by a
diagonal matrix, J becomes a weighted sum of squares and the technique simply
corresponds to a least-squares fit method. In practice, the value of the elements of
W1 are determined by the relative magnitude of the various model variables, their
dimensional scaling and the quality of the data sets. The specific form for J used in
this study is given in Section 3.6.

The addition of a penalty term J, to the cost function can provide smoother
model solutions and estimated parameters, and result in a much faster convergence
of the minimization process. Indeed, Sasaki (1970) showed that the penalty term
suppresses the high frequencies and wave numbers in the solution. Courtier and

Talagrand (1990), Zou et al. (1992a, 1993) showed that the penalty term can control
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the amount of spurious gravity waves. Richardson and Panchang (1992), Lardner
et al. (1993) introduced a penalty term in the cost function in order to penalize
large variations in the recovered parameters and avoid negative drag coefficients.
The penalty term might also introduce prior information on the parameters to be
recovered and lead to a unique solution (Carrera and Neuman, 1986a,b,c). In that
case, the penalty term convexifies the cost function and renders the Hessian of the
cost function with respect to the control variables to be positive definite, resulting

in a unique solution.

3.4 Adjoint model

While the adjoint method is a very powerful tool for obtaining the gradient of the
cost function with respect to the control variables, the most difficult aspect of this
technique is the development of the adjoint model code. Several approaches have
been taken in the recent years.

One of the methods consists in the derivation of the continuous adjoint equations
from the model equations followed by their discretization using the same scheme as
for the direct model equations. The derivation of the continuous adjoint equations
can be done following various approaches: the derivation of Euler-Lagrange equa-
tions (Morse and Feshbach, 1953), the control theory (Le Dimet and Talagrand,
1986), the Lagrangian multiplier approach (Thacker and Long, 1988; Smedstad and
O’Brien, 1991; Lardner and Das, 1992).

Another approach consists of deriving the adjoint code directly from the dis-
cretized model code. In that case, the adjoint code can either be built from the
tangent linear model code (Talagrand, 1991; Navon, 1992a) or it can be constructed
based on the use of Lagrange multipliers (Lawson et al., 1995a). Both techniques
have two main advantages: they reduce the complexity of the construction of the

adjoint model; and, they avoid the inconsistency that can arise from the deriva-
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tion of the adjoint model followed by its discretization. Since the tangent linear
method (TLM) and the Lagrange multiplier (LM) techniques are straightforward
to implement, a full description of those methods and a simple example of their
application is given in Appendices A.1 and A.2. It should be noted that, recently,
adjoint compilers have been developed (Giering, 1995). However, their application

is still limited to simple models.

3.4.1 Tangent linear model technique

The derivation of the adjoint model code from the tangent linear model code and the
computation of the gradient of the cost function are based on the following principle.
Let Y = (y1,¥2, .-, ym) represent the model variable vector, X = (z1, T2, ...,Zn) the

control variable vector, and write the discretized model equations as
Y = G(X) (9)

where G can be either a linear or a non-linear operator. If the input (control)
variables are perturbed, represented by the vector 6X, the resulting perturbation to

first order in the control variables is

n

6yj = Z %&D;

T Oz;
or in matrix form
§Y = G'(6X),
where G’ is the Jacobian, given by
dr, Oz,
G=|% o
aIL‘l 61132

Note that G’ is the tangent linear operator of G linearized at the vicinity of X.
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Let J represent a cost function where J = J(X). The gradient of J with respect

to the control variables can be written as

o O[O
6:1:1 6:1:1 6y1
V=] 9 || 0]
6:02 3:::2 6y2
which means that
VxJ = (G')*'VyJ (10)

where (G')* is the transpose of (G') or adjoint of the tangent linear operator. Hence,
the tangent linear adjoint method consists in numerically computing the gradient
of the cost function with respect to the control variables using Eq. 10.
If the tangent linear operator (G’) is viewed as the multiplication of a number

of operators, i.e.,

G' =G'nNG'N-1...G2 Gy
the equivalent adjoint operator is then

G =G1G,..G'y.G'N (11)
Each operator in Eq. 11 can be a subroutine, a DO loop, or a line in the FOR-
TRAN code. The essence of the adjoint method is then to systematically perform
computations like Eq. (10) for all steps of the basic code which will be in general
a single line of code. Note that in the adjoint code, the input and output spaces of
the direct code will be reversed. One should also note that only one integration of
the adjoint code in reversed order from the direct model is then required to obtain

the gradient of the cost function with respect to the control variables. From Eqs. 7,

8, 10 and 11, one indeed obtains
VxJ = G1G..G'y,G'y [WTIC(CY - d) + VyJ,] (12)

and the expression in brackets can be interpreted as the forcing of the adjoint model.

A simple example of the application of this method is presented in Appendix A.1.
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3.4.2 Lagrange multiplier method

The construction of the adjoint code based on a scheme using Lagrange multipliers
has been developed by Lawson et al. (1995a) and is based on the following principle.
Consider the cost function (Eq. 8) as the last variable to be computed in the

sequence of computations in the direct model, i.e.,
Ym41 = J(xa Y1y-ees ym)-
The model equation (Eq. 9) can be rewritten as
n =a(X), y;=9;(X,y1,92,...,yj-1), forl<j<m+1 (13)

and the Lagrange function, L, is then defined as

m+1

LX,Y,A) = ymp1 — My —1(X) = Y M(wi — (XK mny - - ywic1) (14)

=2

where A = (A1,...,An41) is the vector of Lagrange multipliers. Lawson et al.
(1995a) showed that at a saddle point, which corresponds to a point in the space
Y, X, A where all the derivatives of L vanish simultaneously, one obtains the model
equations, the adjoint equations and the gradient of the cost function with respect
to the control variables.

Requiring that the derivatives of Eq. 14 vanish with the Lagrange multipliers
and the control variables, respectively, yields the adjoint equations

m+1 .
Am+1=1 and)\j= 2 Qg—'-)«;,j:m,...,l (15)

i=j+1 ay]
and the gradient of the cost function with respect to the control variables

aJ oL sy 6g,~
—_—= = —; <k<n.
B2 = oy ,E « Bz djy, 1<k<n (16)

The adjoint equations (Eq. 15) are then used to compute the Lagrange multipliers,

which are used in Eq. 16 to compute the gradient of the cost function with respect

to the control variables.
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If the model code is thought as a succession of model equations (Eq. 13), the
essence of the adjoint method based on Lagrange multipliers is then to systematically
construct a Lagrange function as the function given in Eq. 14 for all steps of the
basic code which will be in general a single line of code. Again, it is important to
note that the computations in the adjoint equations are done in reverse order. A
full description of the technique can be found in Lawson et al. (1995a). A simple

example of the application of this method is presented in Appendix A.2.

3.4.3 Verification of adjoint code and gradient of the cost function

Any error introduced in the coding of the adjoint model can be devastating. Errors
introduced in the coding of the adjoint model from the tangent linear code and the
computation of the gradient of the cost function with respect to the control variables
can be detected using the following two verification methods.

At any level of the coding of the adjoint model, the correctness can be checked
based on the equality of scalar products, < v, Au >=< ATv,u >. In other words,
the sum of the square of the outputs of either a DO loop or a direct subroutine of
the tangent linear code must be equal to the sum of the inputs of that DO loop
(direct subroutine) multiplied by the corresponding outputs of the adjoint DO loop
(adjoint subroutine), within the limits of computer accuracy.

A second verification of the correctness of the gradient of the cost function can

be done as follows (Navon et al., 1992a). Perturb the control variable vector by an

amount aU where «a is a small scalar and U is a normalized vector, e.g., U = ﬂ-g—j”-
The Taylor expansion of the cost function is
J(X +aU) = J(X) + aUTVxJ(X) + O(a?). (17)
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For
sa) = TE+ V) — IX)
YETUTVIX)

in the limit as a goes to 0, we have
lin}) #la) =1 (18)

When the Lagrange multiplier technique is used, the first verification cannot
carried out. One can only verify the correctness of the gradient of the cost function
as a check of the correctness of the adjoint coding. Lawson et al. (1995a) developed
a verification technique similar to that mentioned above. Using the definition of the
cost function (Eq. 8) with C = I, Eq. 18 becomes
. (Y =-d)TW-1§Y

L Sy Ly s (19)

where §Y is the change in the model output due to a change in the model input X =
aU. U denotes a direction along which the model input changes, e.g., the gradient
of the cost function. Note that the numerator of Eq. 19 is entirely determined from
the model while the denominator is computed using the adjoint code.

Before any assimilation experiments, it is judicious to verify the correctness of
the adjoint code. An example of the verification of the adjoint code of the circulation
model in the case of the identical twin experiment described in Sections 3.6 and 4.1.2
is shown in Fig. 10. Note that for 1071 < a < 102, the ratio in Eq. 18 approaches
L.

3.5 Optimization techniques

As mentioned above, each integration of the direct model and the corresponding
adjoint model provides the value of the cost function and its gradient with respect
to the control variables. In most of the large-scale unconstrained local optimization

algorithms, the gradient information is used in an iterative optimization process
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Figure 10: Verification of the gradient of the cost function using Taylor expansion.
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which consists in finding the direction to adjust the control variables to minimize the
misfit between model results and observations; an optimal step-size in that direction
is also computed. A description of the computation of the step-size, referred to as
line search, can be found in Appendix B. For linear models with a cost function as
defined in Eq. 8, the number of iterations required to reach the minimum of the cost
is theoretically equal to the dimension of the control variable vector X. However,
most of the models are non-linear and many more iterations are required, which
may be computationally challenging. It is therefore crucial to choose a robust and
efficient minimization algorithm providing a fast convergence towards the minimum
of the cost function. With that in mind, only a few optimization algorithms will be
mentioned. Their characteristics are described in Appendix B.

The simplest minimization method is the steepest-descent technique where the
direction is taken as minus the gradient of the function being minimized. For large
problems, like in oceanography and meteorology, this technique has a very slow
rate of convergence and is therefore not very efficient. Several algorithms have
been developed based on the descent direction method, designed to accelerate the
convergence as well as to reduce the memory required to store the matrices used to
compute the direction. The most useful algorithms are: i) conjugate-gradient (C-G)
methods (Fletcher, 1987; Gill et al., 1981, Navon and Legler, 1987), ii) Newton and
truncated Newton methods (O’Leary, 1982; Toint, 1981; Nash, 1984a,b; Schlick and
Fogelson, 1992a,b; Wang et al., 1992; Wang, 1993; Wang et al., 1995), iii) quasi-
Newton methods (Shanno, 1978; Nocedal, 1980), iv) limited memory quasi-Newton
methods (Liu and Nocedal, 1989; Gilbert and Lemaréchal, 1989). The numerical
implementations of these algorithms are now available from various libraries.

Based on studies by Gilbert and Lemaréchal (1989) and Zou et al. (1993a),
the limited-memory quasi-Newton method based on Nocedal’s proposal is a robust

method requiring the fewest iterations and storage memory. The version N1QN3
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developed by Gilbert and Lemaréchal (1989) has therefore been used in our study.
This procedure computes the descent direction from an approximation of the Hes-
sian matrix (see Appendix B.2.2) which is updated at every iteration during the
minimization using the past history. The number of updates is a user defined pa-
rameter. The step-size is computed following an algorithm developed by Lemaréchal
(1981) and satisfies Wolfe’s conditions. A description of the method can be found

in Appendix B.2.

3.6 Data assimilation in Chesapeake Bay

The main influences in the tidal and wind-driven circulation in the Chesapeake Bay
are the bottom stress and the wind stress. In the past, wind stress was computed
from wind speed and direction data collected at major airports along the west coast
of the Chesapeake Bay. The most difficult task is then to relate wind data collected
over land to the winds over the water and get an estimate of the wind stress. For
example, in order to produce monthly average 1-degree pseudostress vector fields
over the Indian Ocean and circumvent this difficulty, Legler et «l. (1989) and Legler
and Navon (1991) used a variational approach to develop an objective analysis tech-
nique of meteorological data. The bottom drag coefficient, needed to compute the
bottom stress, is a major part of the tidal circulation, and is poorly known for the
Chesapeake Bay. Hence, the main goal of this research is to use sea level mea-
surements from tide gauges to estimate the wind forcing, bottom drag coefficient
in order to get the best representation of the circulation in the Bay for the period
under consideration. In addition, as mentioned in Section 2, the exchange between
the open ocean and the Chesapeake Bay is dynamically important. It has been
shown that the wind driven circulation with period of a few days can be remotely
generated from the open ocean (Wang, 1979a). It is therefore desired to estimate

open boundary conditions at the Bay mouth. The parameters to be optimally esti-
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mated using variational data assimilation are then the two components of the wind
stress, the bottom drag coefficient (more specifically, the inverse of the Manning’s
roughness [1/n] and the exponent «), and the surface elevation at the Bay mouth.
The assimilation technique to be used is the variational adjoint method using the
MU-model with the adjoint code written directly from the MU-model FORTRAN
code following the tangent linear technique (Section 3.4.1 and Appendix A.1). The
optimization routine is the NIQN3 routine developed by Gilbert and Lemaréchal
(1989) (Appendix B.2.2). The first step in the variational method consists of defining
a cost function which is then minimized with respect to the control variables. The
cost function (Eq. 8), which measures the difference between the model results and
the observations, is chosen to be
1 2
= 5T 0,9 -0, (20)
where t and § are the time and location of data. # and 7 are the observed sea surface
elevation and model-derived values interpolated to the location of the observations.
The interpolation scheme is simple bilinear interpolation. The weight matrix in Eq. 8
is taken to be the identity matrix so that elevation observations are considered to
have equal importance at all the tide gauges in the Bay. A penalty term, J,, similar
to the term taken by Lardner et al. (1993) and Richardson and Panchang (1992),
is added when wind forcing and boundary conditions are recovered. This term was
found to be necessary to ensure smoothness of the recovered wind field and elevation

at the Bay mouth (see Section 4.1). It is defined as

1 N-1 . Y2 1 M1 2
Jp= 5;31 ; [(Tw,k+1 o) (Th e — Th ) ] + §ﬂ2 > (s (t) = mi(t)
J

(21)
where 7% and 7Y are the components of the wind stress and 7, the surface elevation

at the Bay mouth. N and M are the total number of estimated values for the wind

stress and the number of grid points along the open boundary, respectively, and
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t is the time at which the boundary elevation is recovered. Several experiments
showed that the penalty coefficients §; = 0.1 and 5; = 0.01 give the best results;
the oscillations in the recovered values are greatly reduced while the structure is
preserved.

Since the minimization algorithm, such as the limited memory quasi-Newton
method used in this study, uses an approximation of the Hessian matrix, the relative
sizes of the parameters to recover have an effect on the rate of convergence (Navon
et al., 1992; Seiler, 1993). It is important to choose the right scaling; otherwise the
optimization may yield senseless parameters or fail to converge. A general form of

the scaling procedure is

X = SX°
g’ =Sg
H’ = SHS

where S is a diagonal matrix containing the scaling factors, and X, g, H are the
control variable vector, the gradient vector and the Hessian matrix, respectively,
and s indicates a scaled matrix or vector. Here, only the inverse of the Manning’s
roughness is two orders of magnitude larger than the other control variables. Divid-
ing that parameter by 100 would then reduce it to the same order of magnitude as
the other control variables and thus should accelerate the convergence. However, it
was found that scaling the Manning’s roughness damaged the recovery when data
are sparse (Section 4.1). Therefore, no scaling was used for any of the experiments.
More advanced scaling procedures can be found in Gill et al. (1981) but these have
not been investigated.

The model domain and grid are represented in Fig. 11. The domain includes not
only the main stem but also the tributaries. The grid size is 1 in latitude (Ay = 1.8
km) and 1.2% in longitude (Az = 2.0 km) giving grid dimensions of 168x68. The
depths at the grid points are interpolated from the NOS 15-second grid data set (see

Section 2). In order to keep the problem simple, the river outflows are not taken
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Figure 11: Model domain (dotted line) and grid. The dots represent grid points.
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into account in the simulations, and closed boundary conditions are chosen at the
head of the rivers. Therefore, the simulations correspond to periods when the river
discharges are minimal and can be neglected. At the mouth of the Bay, the open
boundary conditions are either imposed by the tidal forcing defined in Eq. 6 (tidal
circulation experiment) or assimilated (identical twin experiments and wind-driven
circulation experiments). Based on several runs of the direct model, a time step of
At = 10 min seems to be appropriate to represent the circulation in the Bay. Note
that the adjoint model was run with the same grid spacing, bathymetry and time
step as the forward model.

The recovery experiments presented in this study are divided into three cat-
egories: identical twin, tidal circulation and wind-driven circulation experiments.
They essentially differ by the nature and density of available observations for assim-
ilation as well as the kind of control parameters that are recovered. In identical twin
experiments, the observations are hourly sea surface elevations generated by the cir-
culation model with tidal forcing and either a northeasterly or a southwesterly wind.
Those observations are assimilated either at every grid point of the model domain
or at ten locations corresponding to the permanent tide gauge stations in the Bay
(Fig. 12). In tidal circulation experiments, the observations are hourly tidal eleva-
tions at the ten permanent tide gauge stations, reconstructed from the harmonic
constants of five major constituents of the tidal signal in the Bay (M2, Sz, N2, Ki,
01) using Eq. 6. In the wind-driven circulation experiment, the observations are the
hourly sea surface elevation measured at the ten permanent tide gauge stations. A
detailed description of the observations used in the different experiments is given in
Section 4.

In all the experiments, hourly surface elevations are assimilated for a period of
24 hours. The choice of the assimilation window was dictated by the time scale of

the tidal and wind-driven circulation in the Bay, the limit of the computer capacity,
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Figure 12: Locations of the tide gauge stations and buoys. The circles indicate
permanent gauges and the squares indicate the stations used for comparison between
modeled and observed elevations. The stars represent buoys. TPLM2 and CHLV2
designate the buoy at Thomas Point and Chesapeake Light Tower, respectively.
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and the validity of the tangent linear model approximation (Li et al., 1993). Fisher
(1986) showed that one complete wavelength of the semi-diurnal tide is contained
within the Bay. Wang (1979a) found that seiche oscillations at period of a few days
were driven by the local longitudinal winds. An assimilation window of 24 hours is
therefore appropriate to estimate the main control processes, i.e., bottom stress and
wind stress, for the tidal and wind-driven circulation studies. Computer capacity
was the second limiting factor for the length of the assimilation window. Every
model variable at every time step has to be stored in order to run the adjoint model
(see Appendix A.1). Furthermore, using the ADI scheme defined in Section 3.2, the
model variables have to be stored at the half time-step, i.e., every five minutes. An
assimilation run with a 24 hour window and recovery of all the control variables
of the circulation model typically required over 180 Megabytes of memory and ap-
proximatively 10 hours of CPU time on an IBM RS-6000/590. An increase of the
assimilation window does not significantly improve the resolution of the physical
processes under study but would have required a larger memory capacity and would
have increased the computer time for each run. It was verified that the tangent lin-
ear model correctly approximated the non-linear model in the 24 hour assimilation
window.

In the identical twin experiments and wind-driven circulation simulation, the
bottom drag coefficient parameters (inverse of the Manning’s roughness (1/n) and
the exponent a (Eq. 5)), the boundary elevations at the Bay mouth and the wind
stress components are estimated during the assimilation process. Since the wind over
the Bay changes over a period of two to three days, the wind stress components are
taken constant during the 24 hour assimilation. The wind stress components are
estimated at four locations in the north-south direction while they are kept uniform
in the east-west direction. They are then linearly interpolated in space to get an

estimate at every grid point. The first location where wind stress components are
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evaluated corresponds to the Chesapeake Bay Bridge Tunnel (CBBT) station and
the other three locations are taken 80 km apart in the north-south direction. The
sea surface elevation is recovered at every grid point along the open boundary and at
every hour. Since these elevation values are required at every half time-step (every
5 min), the hourly values are linearly interpolated in time.

For the tidal experiments, only the bottom drag coefficient parameters are esti-
mated. Since the tidal signal is well known at the Bay mouth, there was no need to
recover the boundary elevations during the assimilation process. Instead, the open
boundary condition at the Bay mouth is prescribed by the tidal forcing based on the
five major constituents and defined by Eq. 6 when the phases and amplitudes of the
constituents are taken at the Chesapeake Bay Bridge Tunnel. The total number of
parameters to be estimated, then, varies from 2 for the tidal circulation experiment
to 235 for the wind-driven circulation and identical twin experiments.

For all experiments, the main question is: does the new value of the parameters
really improve the model results? To evaluate quantitatively the performance of
the data assimilation, three quantities were computed: the root mean square (rms)

error defined as

= () @

=1

the relative average error (F) defined as

Zﬁl(ﬂi - 77:')2

E =100% 5 —— (23)
Ty (mi =4l + 1 —4l)
and the correlation coefficient given by
N (o _ =\(~ _ %
. Yiza(ni — 1) — 1) (20)

_ - 2,2\1/2
(S (mi - )y (5 - 7))
where 7; and #; represent the time series of the modeled and observed elevation at
some location, respectively, and “over bar” denotes time mean values. N is equal

to 24, the number of observations for the 24 hour assimilation window. The root
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mean square and relative average error give a measure of the difference in amplitude
between modeled and observed elevations while the correlation coefficient gives a
measure of the phase shift. It is important to consider all three of these quantities
when evaluating the success of the data assimilation. Indeed, a small relative error
with a small correlation indicates a phase shift between the observations and the

recovery, an indication of poor performance of the data assimilation procedure.
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4 Results

Optimal parameter estimation in the Chesapeake Bay is investigated with three
types of experiments: identical twin experiments, experiments focusing on tidal
circulation, and experiments focusing on wind-driven circulation.

Since it is important to check the performance of the data assimilation procedure,
identical twin experiments with data generated by the circulation model itself are
considered first. This corresponds to the best possible situation since the data are
not contaminated with observational errors and contain the same dynamics as the
circulation model used in the assimilation procedure.

As shown in Section 2, two types of circulations, i.e., tidal and wind-driven cir-
culations, are dominant in the Chesapeake Bay. The emphasis of the second set
of experiments is on tidal circulation. The assimilated observations are hourly pre-
dicted sea surface elevations reconstructed at ten permanent tide gauge locations
from the harmonic constants determined by Fisher (1986). The focus of these ex-
periments is on the estimate of the bottom drag coefficient needed to compute the
bottom stress.

The third set of experiments focuses on the wind-driven circulation and empha-
sis is on the estimate of the bottom and surface stresses. The observations used in
this case are hourly sea surface elevations measured at ten permanent tide gauges.
For all three types of experiments, the observations are taken in November when
the stratification in the entire Bay is weak. Depending on the availability of obser-

vations, either the year 1983 or 1990 has been considered. A detailed description of
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the observations and the results of the assimilation for the mentioned experiments

are presented in the following sections.

4.1 Identical twin experiments

Identical twin experiments use observations generated by the circulation model and
focus on the feasibility of data assimilation in the Chesapeake Bay and on the per-
formance of the technique. In order to address those questions, the set of identical
twin experiments is divided in four classes. In the first experiment, the observations
are the hourly model generated surface elevation with tidal forcing and a north-
easterly wind. The wind speed varies between 6.5 and 7.5 m/s over the entire Bay.
Data are assimilated at every grid point of the model domain. The second experi-
ment differs from the first one by the density of available observations. Only hourly
model generated elevations at locations corresponding to the permanent tide gauge
stations are assimilated. The third experiment repeats the second experiment but
the model is forced with a southwesterly wind. Finally, the fourth experiment shows
the importance of the penalty term in the cost function (Section 3.6) and the effect
of the scaling of the inverse of the Manning’s roughness (Section 3.6) on the recovery.
In all the experiments, the bottom drag coefficient, the hourly boundary elevation
and the four wind stress components (Section 3.6) are estimated during the assimi-
lation process. The assimilated observations and results of the four experiments are

presented in the following two subsections.

4.1.1 Model derived observations

Two time series of observations, i.e., sea surface elevations, are generated using the
circulation model described in Section 3.2 with predefined values for the control
variables (Table 2 and Section 3.6), bottom drag coeflicient parameters, four values

of the wind stress components and hourly elevation at the Bay mouth. The wind
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Parameter Units Value
a 0.15

I/ m= 6500
™ Nm™ 003
T Nm=? +£0.06
Tols Nm=? +0.04
T, Nm~=% £ 0.07

TV Nm~2 +0.10

vl
T, Nm=? 10.08
. Nm™ £ 0.09

T, Nm=% 10.08

Table 2: Summary of the parameter values used to generate the set of observations
for the identical twin experiments.
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stress field, representing two typical winds in the Chesapeake Bay, a northeasterly
and a southwesterly wind, was generated as described in Section 3.6. Note that in
the northeasterly (southwesterly) wind case, both components of the wind stress are
negative (positive) (Table 2). In order to create observations corresponding to the
same period of time as for real data assimilation, the hourly boundary elevations
were taken equal to the predicted elevation at the Chesapeake Bay Bridge Tunnel
(CBBT) for November 1, 1983. A slope of 25 cm from the southern to the northern
end of the Bay mouth was added to simulate the spatial variation of the surface
elevation across the Bay mouth due to the wind and the spatial variation of the
tide. The hourly surface elevations were then linearly interpolated in time in order
to get a value at every half time step when boundary conditions are required.

The circulation model was first spun up for two days with only tidal forcing in
order to minimize the effect of the initial conditions. The model was then run for
24 hours with wind. This simulation corresponds to the case of weak wind followed
by a frontal passage when wind speeds are larger. The modeled output were then
subsampled to produce the hourly surface elevations which are used as observations

in the identical twin experiments.

4.1.2 Recovery

As mentioned in Section 3, variational method is an iterative process leading to
the best estimate of the control variables which minimize a cost function. The
recovery process then starts with a first guess for all the control variables. For
all the identical twin experiments, no wind, hourly predicted elevations at the Bay
mouth, and a constant drag coefficient computed with @ = 0 and 1/n = 50 were
chosen as a first guess. As an indication of the discrepancy between the modeled
elevation with the first guess control variables and the observations, the relative

average error over the 24 hours of assimilation was computed at every grid point
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using Eq. 23. Maps of the relative average error are given in Figs. 13 and 14 for
the northeasterly and the southwesterly wind case, respectively. As expected with
a northeasterly wind (Fig. 13), the highest error is on the western side of the Bay.
It varies from a few percents to 40% in the main stem while a maximum error of
65% is found in the tributaries (white areas in Fig. 13). It is also clearly seen that
the narrow portion of the upper Bay is less affected by a northeasterly wind than
the rest of the Bay. In the case of a southwesterly wind (Fig. 14), the highest
error is found in the upper Bay and is much higher than with a northeasterly wind.
Note that the relative average error pattern found for those experiments would not
necessarily be found with real observations. For instance, the boundary condition at
the Bay mouth mainly acts as a tidal forcing since the slope added to the predicted
elevation is constant in time. Therefore, inflow and outflow due to the wind are not
well represented. This might create higher or lower elevations in some part of the

Bay than in a real situation.

e Ezperiment 1: Northeasterly wind and observations everywhere

The first assimilation experiment corresponds to the best situation when observa-
tions are available at every grid point of the model domain, i.e., everywhere in the
main stem and the tributaries. The recovery of the bottom drag coefficient param-
eters (@, 1/n) and of the four values of the wind stress components (73, 7,%; with
i=1,..,4) is shown in Fig. 15. The adjustment of the boundary elevation at the
southern end of the Bay mouth after 24 hours from the beginning of the recovery
day, representative of the recovery of the boundary condition, is also shown in Fig.
15. The wind stress components are adjusted within the first thirty iterations. The

drag coefficient parameters remain constant until the wind stress components are

completely recovered. Then, they converge towards their true values, followed by
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Figure 13: Map of the relative average error (%) over 24 hours between modeled
elevation using the first guess control parameters and the observations for a north-
easterly wind.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



340N T

3840 N |:

3740 N |;

3640 N |
170 W 7630 W 7530 W

0% 35% 70%

Figure 14: Map of the relative average error (%) over 24 hours between modeled
elevation using the first guess control parameters and the observations for a south-
westerly wind.
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Figure 15: Difference between recovered and true values for the model parameters
and boundary elevation at the southern end of the Bay mouth 24 hours after the
beginning of the recovery day versus the number of minimization iterations. The
data are available everywhere and a northeasterly wind is considered.
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the recovery of the boundary conditions. In this case, the exact original values (four
significant figures) are obtained for the bottom drag coefficient parameters and the
wind stress components while a difference of less than 1 mm between estimated and
true values is found for the boundary elevations. The cost function (Fig. 16) rapidly
decreases during the adjustment of the wind stress components then again during
adjustment of the drag coefficient parameters. The norm of the gradient of the cost
function essentially follows the same pattern, except that it continues to decrease
considerably after recovery of the drag coefficient and wind stress until the boundary
elevations reach their true values. The pattern of adjustment of the control variables
suggests that the wind stress contributes more to the data misfit for the entire Bay
than the drag coefficient and the boundary condition. Indeed, after 15 iterations,
when only the wind stress components are close to their true values, the relative
average error between estimated and observed surface elevation (Fig. 17) shows a
maximum of 1.5 % in the main stem compared to a maximum of 40 % for the first
guess error (Fig. 13). Furthermore, the spatial effect of the bottom friction and the
boundary condition on the surface elevation can be seen in the spatial variation of
the relative average error after 15 iterations (Fig. 17). While the error is small in
the main stem, the highest value is found in a small region near the Bay mouth,
where the circulation is controlled by the interaction between the open ocean and

the Bay and therefore is more sensitive to the boundary conditions.

o Ezperiment 2: Northeasterly wind and observations at ten locations

In real cases, observations are not available everywhere in the domain. For instance,
in the Chesapeake Bay, only ten tide gauges are permanent (Fig. 12). Therefore, the
previous experiment was repeated with observations available at only ten locations

corresponding to the permanent tide gauge stations.
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Figure 16: Logarithm of the cost function normalized by its initial value (a) and
logarithm of the normalized norm of the gradient of the cost function (b) versus the
number of iterations. The data are available everywhere and a northeasterly wind
is considered.
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Figure 17: Map of the relative average error (%) over 24 hours between recovered
and observed surface elevation after 15 iterations of the assimilation process. The
data are available everywhere and a northeasterly wind is considered.
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The recovery of the bottom drag coefficient parameters (a, 1/n), the four values
of the wind stress components (7%, 7, with i=1,..,4), and the recovery of the
boundary elevation at the southern end of the Bay mouth after 24 hours from the
beginning of the recovery day are shown in Fig. 18. The pattern of adjustment
found in the experiment with observations everywhere is also observed when data
are only available at ten locations. The wind stress components is recovered within
the first thirty iterations, followed by the recovery of the drag coefficient and finally
the boundary elevation adjustment. While the drag coefficient and the components
of the wind stress are obtained to two significant figures, the boundary conditions do
not converge to their true values. The estimated boundary elevation reaches about
85% of its real value. As previously, the cost function (Fig. 19) rapidly decreases
during the adjustment of the wind stress components and the drag coefficient. The
norm of the gradient reaches its minimum value after approximatively 250 iterations.
A map of the relative average error over 24 hours between recovered and observed
elevation after 15 iterations of the assimilation process (Fig. 20) shows different
patterns from when data were available everywhere (Fig. 17). Note that the color
scales are different between Fig. 20 and Fig. 17. A higher error indicates that the
recovery is slower. The adjustment in the middle of the Bay is mainly uniform and
is faster than in the other regions of the Bay. The highest error is found at the head
of the Bay (white area) where the data at the station equivalent to Havre de Grace
influence the adjustment only locally. As in the previous experiment when data
were available everywhere, the effect of the boundary condition on the recovery of
the surface elevation is limited to a small region close to the Bay mouth. The effect
of the data at the two stations corresponding to Gloucester and Hampton Road are
noticeable in the process of recovery in the lower Bay. The error is indeed smaller

in the surrounding region of those two stations than in other area of the lower Bay.
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Figure 18: Difference between recovered and true values for the model parameters
and boundary elevation at the southern end of the Bay mouth 24 hours after the
beginning of the recovery day versus the number of minimization iterations. The
data are available at ten stations and a northeasterly wind is considered.
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Figure 19: Logarithm of the normalized cost function (a) and normalized norm of
the gradient of the cost function (b) versus the number of iterations. The data are
available at ten stations and a northeasterly wind is considered.
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Figure 20: Map of the relative average error (%) over 24 hours between recovered
and observed surface elevation after 15 iterations of the assimilation process. The
data are available at ten stations and a northeasterly wind is considered.
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o Ezperiment 3: Southwesterly wind and observations at ten locations

This experiment was designed to evaluate the difference in recovery when the wind
blows from the southwest instead of from the northeast. A southwesterly wind is
indeed typical for the Chesapeake Bay. Only observations from the ten locations cor-
responding to the permanent tide gauge stations were assimilated. The simulation
was run the same way as the previous experiment.

While the patterns of recovery (Fig. 21) are similar to the experiment with a
northeasterly wind (Fig. 18), the adjustment of the bottom drag coefficient param-
eters is slower for a southwesterly wind. The boundary elevation after 24 hours now
reaches 87% of its real value. The better recovery of the boundary elevation is also
reflected in the smaller value of the cost function and the norm of its gradient after
250 iterations (Fig. 22).

The map of the relative average error over 24 hours between estimated and
observed elevations after 15 iterations of the assimilation process (Fig. 23) shows
a different pattern of adjustment from the case of a northeasterly wind (Fig. 20).
The elevation in the main stem seems to adjust at the same rate. The highest error
is found in the middle of the Bay near the shores and at the Bay mouth which was
not the case with a northeasterly wind. The effect of the boundary condition is
the same for both winds. Finally, it should be pointed out that the error after 15
iterations is of the same order of magnitude in the case of a northeasterly and a
southwesterly wind even though its initial value was much higher in the case of a

southwesterly wind.

o Ezperiment 4: Penalty term and scaling effects
As mentioned in Section 3.6, several studies related to parameter estimation showed

the necessity of adding a penalty term in the cost function. In our study, a penalty
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Figure 21: Difference between recovered and true values for the model parameters
and boundary elevation at the southern end of the Bay mouth 24 hours after the
beginning of the recovery day versus the number of minimization iterations. The
data are available at ten stations and a southwesterly wind is considered.
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Figure 22: Logarithm of the normalized cost function (a) and normalized norm
of the gradient of the cost function (b) versus the number of iterations when a
southwesterly wind is blowing and data are available at ten stations.
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Figure 23: Map of the relative average error (%) over 24 hours between recovered
and observed surface elevation after 15 iterations of the assimilation process. The
data are available at ten stations and a southwesterly wind is considered.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



term was added in the cost function (Eq. 21) in order to avoid oscillation of the
recovered boundary conditions and in the wind stress field. This was found necessary
even in the best situation when observations are available at every grid point of the
model domain. Recovery of the control parameters and the boundary conditions for
the first experiment but without the penalty term in the cost function is shown in
Fig. 24. In both cases (Figs. 15 and 24), the pattern of recovery is similar. However,
the boundary elevations do not converge to their real values when the penalty term
is not added in the cost function. Furthermore, the boundary elevation (Fig. 25)
oscillates in space.

The second crucial issue in the success of non-linear optimization problems is
the scaling of the control variables (Section 3.6). In our study, only the inverse
of the Manning’s roughness is two orders of magnitude larger than the other pa-
rameters (Table 2). Therefore, scaling the inverse of the Manning’s roughness by
a factor 102 would seem appropriate. Experiments 1 and 2 were repeated when
the mentioned scaling was adopted. While there is no difference in the estimate of
the control variables when data are available everywhere, an effect of the scaling is
noticeable when data are only available at ten stations. The recovered values for
the wind stress reach two significant figures in the case of no scaling compared to
one significant figure in the case of scaling. While the boundary elevations do not
converge toward their true values, the recovery is, however, better without scaling.
The surface elevation reaches 85% of the real value without scaling and 75% with
scaling. The pattern of recovery with scaling (Fig. 26) is slightly different from the
pattern without scaling (Fig. 18). In the case of scaling, the bottom drag coefficient
parameters are adjusted at the same time as the wind stress components. Finally,
the cost function (Fig. 27) continuously decreases until recovery of the wind stress
components and drag coefficient. Same decreasing pattern is found for the norm of

the gradient of the cost function. Overall, the full recovery of all the parameters
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Figure 24: Difference between recovered and true values for the model parameters
and boundary elevation at the southern end of the Bay mouth 24 hours after the
beginning of the recovery day versus the number of minimization iterations. The
data are available everywhere, a northeasterly wind is considered, and the penalty
term is not added to the cost function.
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Figure 25: Recovered boundary elevation from the southern to the northern end of
the Bay mouth with a penalty term in the cost function (solid line) and without the
penalty term (dotted line).
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is not faster but the recovered values are not as close to their true value when the

inverse of the Manning’s roughness is scaled.

4.2 Tidal Circulation

The success of recovery of control parameters in the identical twin experiments
leads us to consider real observations in the Chesapeake Bay. As a first experiment,
tidal circulation is investigated and the bottom drag coefficient parameters (Eq. 5)
are estimated during the assimilation process. The assimilated observations are
predicted surface elevations at several tide gauge stations in the Bay. Observations

and results of the assimilation are presented in the next subsections.

4.2.1 Observations and simulation

Tidal circulation is investigated by assimilating hourly time series of sea surface
elevation for a period extending from November 1 to November 19, 1983 when the
most comprehensive set of simultaneous observations is available (Section 2). The
hourly elevation data, referred to as predicted sea surface elevation, are predicted
on the basis of five major tidal constituents, M5, S5, N,, K, Oy, using the harmonic
constants determined by Fisher (1986) (Table 3). From the deployed tide gauges in
1983, only ten tide gauges (Fig. 12) are permanent, that is, have been in place con-
sistently for more than 30 years. Therefore, only the predicted sea surface elevations
at those ten stations are used in the assimilation process and nine supplementary
tide gauge stations, referred to as comparison stations, are used to compare the
modeled surface elevation with the predicted observations. Locations of the tide
gauges are shown in Fig. 12.

Two typical time series of predicted surface elevation at two permanent stations
in the lower Bay (Chesapeake Bay Bridge Tunnel, CBBT) and in the upper Bay
(Baltimore) are plotted in Fig. 28 for November 1 through November 20, 1983. Two
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Figure 26: Difference between recovered with scaling of the Manning’s roughness
and true values for the model parameters and boundary elevation at the southern
end of the Bay mouth 24 hours after the beginning of the recovery day versus the
number of minimization iterations. The data are available at ten stations and a
northeasterly wind is considered.
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of the gradient of the cost function (b) versus the number of iterations when a
northeasterly wind is blowing and the Manning’s roughness is scaled.
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Station Name My Sy Ny I 01

a ¢ a ¢ a ¢ a ¢ a ¢
Havre de Grace, MD | 0.259 278.74 | 0.045 320.09 | 0.051 250.12 | 0.084 310.85 | 0.057 313.08
Baltimore, MD 0.150 186.70 | 0.023 216.59 | 0.031 162.56 | 0.070 294.54 | 0.036 294.25
Annapolis, MD 0.127 139.17 | 0.021 172.04 | 0.025 115.25 | 0.055 282.00 | 0.047 287.30
Cambridge, MD 0.231 10745 | 0.032 136.84 | 0.044 84.06 | 0.052 268.54 | 0.045 263.76
Solomons Is, MD 0.167 45.99 { 0.026  70.52 | 0.036 19.06 | 0.026 240.33 | 0.023 256.08
Lewisetta, VA 0.179 2494 | 0.030 52.72 | 0.036 358.96 | 0.023 196.67 | 0.020 228.09
Gloucester Pt, VA 0.347 260.14 | 0.063 286.78 | 0.078 241.26 | 0.048 121.87 | 0.033 141.41
Kiptopeake, VA 0.383 241.18 | 0.069 266.58 | 0.088 218.20 | 0.058 117.06 | 0.044 135.60
Hampton Roads, VA | 0.358 255.80 | 0.066 285.04 | 0.082 236.20 | 0.051 124.62 | 0.039 143.67
CBBT, VA 0.377 229.12 | 0.070 254.93 | 0.091 208.20 | 0.056 110.66 | 0.046 130.25
Betterton, MD 0.223 25349 | 0.031 29265 | 0.044 221.41 ] 0.076 301.71 | 0.068 312.49
Matapeake, MD 0.141 139.00 ] 0.023 166.36 | 0.031 115.92 | 0.059 275.01 | 0.047 282.14
Avalon, MD 0.202 9533 | 0.038 106.63 | 0.036 58.24 | 0.046 266.84 | 0.034 263.23
Chesapeake Bch, MD | 0.137 95.66 | 0.022 125.37 | 0.030 71.44 | 0.044 272.45 ] 0.038 275.71
Colonial Bch, VA 0.242 60.05 | 0.039 93.98 { 0.049 40.03 { 0.030 217.28 | 0.026 234.62
Holland Bar Lt, MD 0.203 8.41 ] 0.036 26.49 | 0.042 353.70 | 0.027 195.88 | 0.029 203.74
Guardshore, VA 0.336 351.36 | 0.057 27.42 | 0.080 340.39 | 0.048 198.75 | 0.029 180.95
Rappahannock, VA 0.218 304.61 | 0.037 329.82 | 0.055 280.03 | 0.032 155.38 | 0.029 168.37
New Pt Comf Sh, VA | 0.309 247.35 | 0.044 279.13 | 0.064 219.67 | 0.049 121.86 | 0.038 146.73

Table 3: Amplitude (m) and phase (deg.) for the major harmonic constituents at
ten permanent and nine comparison tide gauge stations (Fisher, 1986).
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Figure 28: Time series of predicted sea surface elevation (m) at Baltimore and
CBBT for November 1 to November 20, 1983.
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main features can be pointed out. Spring tide occurs around November 5 when the
high tide reaches its maximum while neap tide occurs around November 15 when
the high tide reaches its minimum. At CBBT, the tide is mainly semi-diurnal while
in Baltimore the tide is mixed mainly semi-diurnal, which is typical of the lower and
upper Bay (Fisher, 1986).

A first trial of tidal circulation modeling was undertaken using the MU circula-
tion model (Eqs. 1, 2, 3). The wind stress was set equal to zero and the quadratic
bottom stress was considered with a typical constant drag coefficient of 0.002 which
would be an average value for the Chesapeake Bay (Section 3.2). The circulation in
the Bay was forced at the Bay mouth by imposing the predicted surface elevation
based on the harmonic constants at the Chesapeake Bay Bridge Tunnel. Modeled
and predicted surface elevation (Fig. 29) show poor agreement, especially in the
upper Bay where modeled low and high tide amplitudes are smaller than the cor-
responding predicted tide. A comparison between modeled M, coamplitude and
cophase charts (Figs. 30 and 31) and the corresponding charts from Fisher (1986)
(Fig. 3) indicates that the discrepancy between modeled and observed tidal am-
plitudes increases towards the upper Bay.  Furthermore, the modeled M, tide
propagates slightly faster than the observed M, tide in the entire Bay. As a remedy
to the discrepancy, one could think to decrease the drag coefficient. Decreasing the
drag coefficient would indeed increase the amplitude of the tide and also change the
phase lag. The question is then how much can the drag coefficient be decreased to
match phase and amplitude of the M, tide everywhere in the Bay. One should also
realize that the adjustment of the drag coefficient to match the M, tide would not
necessarily lead to a match of the amplitude and phase of the other four constituents
(Crean et al., 1988). The tuning of the drag coefficient can quickly become very
tedious.

An analysis of the relative average error (Eq. 23) computed over 24 hours for
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Figure 29: Time series of modeled (dotted line) and predicted (solid line) surface ele-
vation (m) at six representative permanent tide gauge stations. The drag coefficient
was taken as cp = 0.002. Note the change of scale for the last two stations.
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Figure 30: Coamplitude lines of the modeled M, tide expressed in feet.
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November 1 to November 19 (Table 4 and Appendix C) between modeled and pre-
dicted elevation shows an increase from a few percents in the lower Bay to about
15% in the upper Bay with a maximum in the Potomac river where the maximum
relative error reaches a value of 24.3% at Colonial Beach. This variation in the
relative average error from the lower Bay to the upper Bay would suggest a spatial
dependency of the drag coefficient. A strong fluctuation of the relative average in
time is also noted. For example, the error at Baltimore drops from a maximum of
20.7% on November 6 to a minimum of 10.7% on November 17.

Time and spatial dependence of the bottom drag coefficient was then taken
into account in the following recovery experiment. A drag coefficient defined by
Eq. 5 was chosen and the parameters 1/n and a were optimally estimated using the
variational technique described previously. While those parameters are constant,
the bottom drag coefficient is a function of space through its dependence in H,
the total water depth. The time variation of the drag coefficient was introduced by
evaluating the parameters for a period of one day for eighteen consecutive days which
includes one spring and one neap tide. The actual recovery started on November
2, 1983 through November 19, 1983 while the recovery for November 1, 1983 was
only used to initialize the procedure. Once the bottom drag coefficient parameters
were estimated, the direct model was run for 24 hours with the new parameters in
order to initialize the circulation for the following day and compare modeled and

predicted elevations.

4.2.2 Recovery

For each day of the recovery experiment, the initial guesses for the parameters 1/n
and o were taken as their estimated values from the previous day. The assimilation
process was stopped when the normalized norm of the gradient of the cost function

reached the value of 1076. This convergence criterion has been determined from the

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



results of November 1 and corresponded to the minimum value that the normalized
norm of the gradient of the cost function could attain. For the period under study,
convergence occurred after 9 to 18 iterations and the cost function decreased an
order of magnitude. This small decrease in the cost function is due to the fact that
the initial cost function was already small since the recovery was started with the
best initial guess.

Predicted and modeled tidal elevations for six typical permanent and six typical
comparison tide gauge stations are shown in Figs. 32 and 33, respectively. A sum-
mary of the root-mean square error, relative average error and correlation coefficient
computed using Eqs. 22, 23, 24 is given in Table 4 while values for each day between
November 2 and November 19 are given in Appendix C (Tables 6 to 11). Modeled
elevations with the estimated drag coefficients show an excellent agreement with the
predicted elevations not only at the permanent stations but also at the comparison
stations. In general, the estimated low tide amplitudes are slightly smaller than
the predicted amplitudes in the lower Bay. On the other hand, the recovered high
tide amplitudes are slightly higher than the predicted amplitudes in the upper Bay.
However, differences between modeled and predicted elevation are of the same order
of magnitude as the measurement errors for the entire Bay. A maximum of less
than 7% for the relative average error (Table 4) is found in the main stem while the
relative error in the Potomac river (Colonial Beach) reaches a maximum of 9.86%.
Moreover, the variation between spring tide and neap tide in the relative error that
was found with a constant uniform drag coefficient is greatly reduced (Figs. 34, 35
and Appendix C). A correlation coefficient larger than 0.96 is found in the main
stem and a minimum correlation coefficient equal to 0.91 is found in the Potomac
river. This indicates a very small shift between modeled and predicted elevations,
which could result from the fact that modeled elevations have been linearly inter-

polated in space to the location of the tide gauge. Finally, it should also be pointed
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November 2 to November 19, 1983

Station Name rms error {cm) relative error (%) correlation
Min. Max. Mean Min. Max. Mean Min. Max. Mean

Havre de Grace, MD 24 118 731 173 1690 9.70 0.955 0.990 0.973
2.8 91 648 216 6.15 4.73 0.958 0.986 0.970

Baltimore, MD 33 76 548 10.66 20.74 15.89 0.936 0.977 0.965
2.1 46 311 167 647 392 0951 0989 0.975
Annapolis, MD 1.7 64 413 454 1773 1133 0.969 0.985 0.975
11 46 265 093 7.03 343 0979 0.996 0.989
Cambridge, MD 4.5 98 716 894 17.16 13.78 0.945 0.996 0.974
34 40 38 18 6.71 353 0.956 0.995 0.979
Solomons Is, MD 2.5 74 476 701 1630 1097 0961 0.988 0.976
2.0 49 3.25 209 538 4.07 0.962 0992 0.983
Lewisetta, MD 1.9 67 410 330 1132 6.76 0.985 0.997 0.993
1.2 51 303 096 455 272 0988 0.998 0.993
Gloucester Pt, VA 26 125 7.29 179 1044 5.87 0.971 0.997 0.985
1.6 73 431 062 292 173 0989 0.999 0.995
Kiptopeake, VA 34 84 526 097 341 232 0976 0999 0.993

29 41 347 054 251 111 0.976 1.000 0.993
Hampton Roads, VA 29 110 651 201 736 426 099 0.998 0.994
2.7 74 473 144 292 205 0988 0.999 0.996
CBBT, VA 2.3 58 372 040 1.8 1.17 0983 0999 0.995
2.9 44 349 060 225 1.09 0.980 1.000 0.994

Betterton, MD 24 109 697 278 19.65 11.67 0.970 0996 0.982
21 64 437 172 4.04 285 0983 0994 0.990
Matapeake, MD 1.9 64 413 386 14.15 9.03 0962 0.995 0.978
1.5 43 272 171 457 276 0.986 0.996 0.993
Avalon, MD 3.2 86 548 134 1434 856 0955 0.994 0.983

2.1 54 354 136 495 295 0964 0998 0.985
Chesapeake Bch, MD 1.6 55 346 280 1145 6.99 0971 0.997 0.985
1.6 49 313 235 6.09 399 0984 0998 0.993
Colonial Bch, VA 35 122 7.77 6.59 2429 1558 0.924 0.976 0.950
29 96 608 377 9.8 672 0910 0968 0.939
Holland Bar Lt, MD 24 68 431 309 881 570 0966 0995 0.985
2.0 47 322 172 3.24 252 0974 0998 0.991
Guardshore, VA 38 105 6.70 327 806 532 0.967 0.992 0.982
3.0 66 477 141 314 220 0973 0991 0.983
Rappahannock, VA 3.0 6.2 415 250 557 439 0950 0.995 0.978
3.1 43 361 183 5.07 3.07 0958 0998 0.983
New Pt ComfSh, VA 2.6 82 520 138 536 349 0.979 0.997 0991
2.3 5.2 3.67 103 207 158 0.988 0.998 0.994

Table 4: Minimum, maximum and mean value of the root-mean square error (cm),
the relative average error (%) and the correlation coefficient for November 2 to
November 19, 1983. The first ten stations are the permanent stations while the last
nine are the comparison stations.
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Figure 32: Time series of modeled (dotted line) and predicted (solid line) surface
elevation (m) at six permanent tide gauge stations. Note the change of scale for the
last two stations.
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Figure 33: Time series of modeled (dotted line) and predicted (solid line) surface
elevation (m) at six comparison tide gauge stations.
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Figure 34: Time series of relative average error (%) for recovered (solid line) and
modeled (cp = 0.002) (dotted line) surface elevations at six permanent tide gauge
stations.
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modeled (cp = 0.002) (dotted line) surface elevations at six comparison tide gauge

stations.
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out that the same agreement is found at Havre de Grace despite the fact that the
station is near the Susquehanna river which has the biggest discharge of all rivers.

Using harmonic analysis for the time series of the modeled elevations with the
estimated drag coefficients between November 2 and November 19, the amplitude
and phase of the M; and K, tide at every grid point of the model domain were
computed. A comparison between the M, coamplitude chart from Fisher (1986)
(Fig. 3) and the corresponding chart for the modeled M, (Fig. 36) shows a very
good agreement. Same agreement (not shown) was found for the K; tide. The
M; coamplitude lines run across the Bay at the entrance, then become longitudinal
and finally run across the Bay in the upper Bay. The M; amplitude decreases
from the Bay mouth towards the main stem, and then increases north of Baltimore.
The amplitude of modeled M, tide is slightly larger than the amplitude found by
Fisher (1986), which can be attributed to the fact that the time series of modeled
elevations (18 days) was too short to fully separate the Mz, N; and S; tides. A
comparison between the M, cophase chart from Fisher (1986) (Fig. 3) and modeled
M, cophase chart (Fig. 37) again shows excellent agreement. For example, the
310 degree cophase line goes through Rappahannock in both cases. The cophase
lines are uniformly spaced in the lower Bay. In the upper Bay, the cophase line
spacing decreases in the narrow portions and increases in the wider portions. The
fact that the curvature of the recovered cophase lines at the entrance of the Bay is
not as pronounced as the curvature found by Fisher (1986) is due to the imposed
boundary condition at the Bay mouth. The predicted elevation was taken uniform
at the Bay mouth which does not allow any curvature of the cophase lines. Two
virtual amphidromic points, i.e., near the Severn river (north of Annapolis, Fig.
12) and the Potomac river, are evident. At those locations, the coamplitude lines
are concentric and the cophase lines converge. Those two points were also found by

Browne and Fisher (1988).
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Figure 36: Coamplitude of the recovered M, tide expressed in feet.
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Figure 37: Cophase of the recovered M, tide expressed in degrees.
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While predicted and modeled elevations are in excellent agreement, probably the
most interesting feature to note is the periodicity of the estimated inverse Manning’s
roughness and therefore of the bottom drag coefficient. As shown in Fig. 38, the
bottom drag coefficient decreases during spring tide (day 5-6) and increases during
neap time (day 14-15). The exponent a (Eq. 5) is mainly constant during the entire
period.

The difference between spring and neap tide values is larger in the regions with
a depth less than 10 m. The estimated bottom drag coefficient varies between
2.5 x 10* and 3.1 x 1073, The lower value is smaller than the values found in the
classical tidal modeling literature (Ronday, 1976; Werner and Lynch, 1987; Crean et
al., 1988). However, using an inverse method and tidal-current observations in the
lower and upper Bay, Bang (1994) found a similar range of values for the bottom
drag coefficient, i.e., 2.0 x 10~* < ¢p < 1.6 x 1072, Discussion of the eventual causes

of the periodicity of the drag coefficient can be found in Section 5.

4.3 Wind-driven circulation

Since modeled tidal circulation in the Bay has shown to be considerably improved
by using variational data assimilation, our next focus is on wind-driven circulation
which is even harder to model. Indeed, the surface forcing, i.e., the wind stress,
is poorly known for the Chesapeake Bay since the wind observations are available
only at the major airports and do not necessarily represent the wind over the water.
As mentioned in Section 3.6, the goal of the present experiment is to estimate
the bottom drag coefficient, the wind stress components at four locations and the
hourly surface elevations at the open boundary during the assimilation process and
get the best representation of the wind-driven circulation in the Bay. As for the
tidal circulation study, the assimilation period is in November. However, in order

to have wind observations to compare to the estimated wind using the variational
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Figure 38: Time series of estimated bottom drag coefficient ¢p for depths between
2 and 50 m.
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assimilation technique, the year 1990 had to be considered instead of the year 1983.
Observations and results of the assimilation process are described in the next two
subsections.

As additional evidence of the improvement of the modeled wind-driven circula-
tion by using data assimilation, two days in September 1983 when data are available
at more tide gauges than the one used for assimilation were also considered. Hence,
it was possible to compare modeled elevations with observations which were not
assimilated. Unfortunately, during that period of time, wind speed and direction
was only measured at the airports. The results of that experiment is presented in

the last subsection.

4.3.1 Observations

Wind-driven circulation in the Chesapeake Bay was investigated by assimilating
hourly sea surface elevation observations from ten permanent tide gauges (Fig. 12)
between November 2 and November 8, 1990. As in the tidal circulation experiment,
observations of November 1 are used to initialize the recovery process. During that
period of time, hourly wind speed and direction observations were available at two
buoys deployed by NOAA (Fig. 12), Thomas Point and Chesapeake Light Tower,
and at the tide gauge station CBBT. A comparison between observed and estimated
wind was therefore possible.

Time series of predicted using the harmonic constants from Fisher (1986) and
observed sea surface elevations at two permanent tide gauge stations, Baltimore
and CBBT, are plotted in Fig. 39 for November 1 through November 10, 1990.
Differences between predicted tidal and observed elevations are noticeable during
those few days, which suggests that the wind plays an important role. During the
chosen assimilation period, either a southwesterly or southeasterly wind (Fig. 40)

persisted for about four days over the entire Bay with a speed less than 5 m/s in
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Figure 39: Time series of predicted tidal (solid line) and observed (dotted line)
elevation in Baltimore and CBBT for November 1 to November 10, 1990.
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the upper Bay and slightly higher in the lower Bay. During those few days, a sea
breeze pattern is also noticeable. In the afternoon of November 5, the wind speed
increased to about 10 m/s in the upper Bay. An increase of the surface elevation is
immediately noticeable in the upper Bay, e.g., the high tide elevation is about twice
its predicted value at Baltimore. A smaller change in the surface elevation can also
be seen at CBBT. On November 6, a change of the wind direction associated with
the passage of a cold front, is evident. The wind became northwesterly in the upper
Bay and northeasterly in the lower Bay. Again, a similar effect of the wind direction
change can be seen in the observed surface elevation at both stations. The surface
elevation decreased in Baltimore and increased at CBBT, which is the expected
response to a northwesterly and a northeasterly wind, respectively. This change
in the surface elevation is larger on November 8 when the wind become stronger.
Finally, notice that the wind direction outside of the Bay (Chesapeake Light Tower)
is roughly the same at CBBT while the wind speed is slightly larger. Therefore,
we do not anticipate any different behavior in the surface elevation from the Bay
mouth and at CBBT.

The time variations of the wind stress and the bottom drag coefficient were intro-
duced in the recovery experiment by evaluating the parameters for a period of one
day for seven consecutive days. The actual recovery started on November 2 through
November 8, 1990 while the estimated parameters for November 1, 1990 were only
used to initialize the procedure. Once the bottom drag coefficient parameters, wind
stress and boundary conditions were estimated, the direct model was run for 24
hours with the new parameters in order to initialize the circulation for the following

day and compare modeled and predicted elevations.
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Figure 40: Hourly observed wind in November 1990 at two buoys, Thomas Point and
Chesapeake Light Tower, and at the tide gauge station CBBT. The stick diagram
is plotted using the oceanographic convention.



4.3.2 Recovery

For each day of the assimilation experiment, the initial guess for the control variables
was taken as their estimated value from the previous day. Based on the recovery on
November 1, the recovery was stopped when the normalized norm of the gradient
of the cost function reached a value of 10~3. The convergence criterion was set to a
higher value than for the tidal experiments. The assimilated data are indeed actual
observations and are noisier than the data used in the tidal recovery. For each day
of assimilation, the cost function decreased one order of magnitude. As for the tidal
experiment, the small decrease in the cost function can be attributed to the fact
that the assimilation runs were started with the best initial guess. The number of
iterations necessary to satisfy the preset convergence criterion varied between 244
and 370. The cost function decreased rapidly during the first 30 iterations and
continued to slowly decrease until convergence was reached. This pattern was also
found for the twin experiments (Section 4.1).

Time series of modeled sea surface elevation is shown in Fig. 41. The relative
average error over 24 hours at six permanent tide gauge locations is plotted in
Fig. 42. Root-mean square error, relative average error and correlation coefficient
(Eqgs. 22, 23, 24) are given in Table 5 for every day of the assimilation period.
Excellent agreement between estimated and observed surface elevation is evident
for the entire period of assimilation in the lower Bay. In general, a relative average
of error less than 3% is found for the stations in the lower Bay and the correlation
coeflicient is over 0.99. In the upper Bay, the agreement is also very good until the
frontal passage. The relative average error is less than 5% until November 6 when
it increases to about 15%. While the correlation coefficient is over 0.9, a variation
in its value is also noticeable for the same period.

Recovered wind vectors at Thomas point and CBBT for November 2 to November

8, 1990 are plotted in Figs. 43 and 44, respectively. Wind speed and direction
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Figure 41: Time series of modeled (dotted line) and observed (solid line) surface
elevation (m) at six permanent tide gauge stations.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20 BALTIMORE, MD

/

CAMBRIDGE, MD

10

20

10

20 SOLOMONS IS, MD

10

LEWISETTA, VA

Relative overage error (%)

[ KIPTOPEAKE, VA
2l
ol
4 CBBT, VA
2 .-—
oF
2 3 4 S 6 7

November 1990

Figure 42: Time series of relative average error (%) between modeled and observed
surface elevation at six permanent tide gauges. Note the change of scale for the last
three stations.
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Station Name November 1990
1 2 3 4 5 6 7
. Havre de Grace, MD 5.3 6.2 43 1.9 9.2 5.8 1.1
173 303 124 344 371 177 11.51
0.985 0.971 0991 0.968 0.972 0.985 0.895

Baltimore, MD 4.0 4.5 4.1 5.5 75 9.5 8.0
378 446 361 446 5.71 1429 1643
0.976 0983 0890 0986 0976 0.937 0.897

Annapolis, MD 4.9 20 24 21 36 8.5 5.0
711 103 144 091 1.72 1491 749
0.970 0990 0994 0991 0983 0.926 0.949

Cambridge, MD 60 38 37 50 48 112 112
482 156 145 258 214 13.64 1647
0.986 0994 0994 0.994 0.988 0.930 0.943

Solomons Is, MD 3.9 2.6 2.2 29 44 5.4 5.8
340 126 091 173 353 502 921
0.974 0.990 0.992 0.087 0.978 0.960 0.957

Lewisetta, MD 2.2 2.3 1.9 24 4.5 3.8 3.3
092 08 05 089 3.15 248 258
0.992 0.995 0.996 0.995 0.987 0.982 0.984

Gloucester Pt, VA 4.1 4.0 38 34 2.8 6.5 5.5
092 082 065 048 035 213 1.93
0.992 0.994 0.994 0.996 0.997 0.985 0.982

Kiptopeake, VA 18 16 18 21 23 32 38
013 009 011 013 018 038 0.71
0.999 0.999 0999 0.999 0.998 0.997 0.995

Hampton Roads, VA 35 4.1 4.2 3.6 3.0 5.3 5.6
0.63 079 073 050 036 132 1.84
0.998 0.997 0.997 0.999 0.998 0.995 0.986

CBBT, VA 23 3.1 3.1 2.7 19 3.0 3.5
022 033 030 022 012 034 061
0.999 0.998 0.098 1.000 1.000 0.999 0.996

Table 5: Root-mean square error (cm) (first number), relative average error (%)
(second number), and correlation coefficient (third number) for the wind-driven
experiment
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were obtained from the wind stress components using a quadratic law with a drag
coefficient of 2.0 x 10~3 (Schwab, 1982). The wind pattern is well represented in
the lower Bay. At CBBT, the estimated wind is mainly southwesterly and shows
an increase of magnitude late on November 5. A change of direction occurs on
November 6, which is in agreement with the observed wind pattern. In the upper
Bay, the agreement is not as good until the frontal passage when the wind speed
increased to 10 m/s and a change in direction occurred. This would suggest that
during periods of weak wind, mechanisms other than the local wind forcing are more
important in the narrowest part of the Bay.

The recovered drag coefficient (Fig. 45) shows a minimum on November 5, which
corresponds to the period of spring tide. This is followed by an increase until
November G when there is a frontal passage. The drag coefficient then decreases
and reaches roughly the same value regardless of the depth of the considered region
in the Bay. While a continuous increase of the drag coefficient was expected until
neap tide, northwesterly and northeasterly winds seem to decrease the magnitude
of the drag coefficient compared to its value with no wind or southeasterly wind.

The last recovered contral variable to examine is the boundary elevation at the
Bay mouth. As expected, the high tide elevation (Fig. 46) is higher and the low
tide is lower 6n the northern end of the Bay mouth than at the southern end. This
difference in elevation decreased when the wind changed direction and blew from the
northwest and the northeast. The elevation at the northern end of the Bay mouth
is slightly higher than the expected value. This can be due to the fact that the

boundary region in our model is about half the width of the real boundary (Fig. 9).
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Surface elevation (m)

Figure 46: Time series of hourly boundary surface elevation (m) from the southern
end to the northern end of the Bay mouth.
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4.3.3 Further investigation of the recovery

In the previous wind-driven circulation experiment, sea level was only measured at
ten tide gauges and all the observations were used in the assimilation process. In the
best case, one can expect that at those ten stations there is no misfit between the
modeled elevations obtained using the estimated parameters and the observations.
Indeed, the assimilation procedure is based on the minimization of the misfit be-
tween modeled and observed elevations. However, this does not guarantee no misfit
at other locations in the Bay. In order to increase our confidence in the feasibility
of recovery of wind-driven circulation in the Bay, the previous recovery experiment
has been repeated for September 20 and September 21, 1983. During that period of
time, sea level measurements are also available at tide gauges other than the per-
manent tide gauges. It was then possible to compare modeled and observed surface
elevations from other tide gauges than the one used during the assimilation pro-
cess. Unfortunately, the wind observations are only available at the major airports
and comparison between estimated and observed wind is very difficult. Time series
of the predicted based on five major constituents and observed elevations at two
tide gauge stations, Baltimore and Chesapeake Bay Bridge Tunnel, are plotted in
Fig. 47. During the considered period of time, a dominant effect of the wind on
the surface elevation can be seen. One should also point out that at the same time
there was a destratification of the Bay (Blumberg and Goodrich, 1990). Therefore,
the circulation during those two days should be well represented by our barotropic
model.

The modeled sea surface elevation with the estimated bottom drag coefficient
is plotted in Fig. 48. Modeled and observed surface elevations show a very good
agreement not only at the permanent but also comparison tide gauges. Furthermore,
the magnitude and direction of the recovered middle Bay wind, ‘.e., southwesterly

wind, was found to be comparable to the wind measured at the Patuxent River Naval
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Figure 47: Time series of observed (dotted line) and predicted (solid line) elevation
at Baltimore and CBBT from September 18 to September 24, 1983.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BALTIMORE, MD

06

06l
06 CBBT, VA
o 7N\ /N 7N\
g 067 .
g
E _ FERRY COVE, MD
S 06
s o5[
o
o
060
06 CHESAPEAKE BCH, MD

September 1983

Figure 48: September 1983 time series of recovered (dotted line) and observed (solid
line) surface elevation (m) at three permanent and three comparison tide gauge
stations.
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Air station (Blumberg and Goodrich, 1990). This experiment indicates that the
modeled wind-driven circulation in the main stem can be improved by assimilating

only the surface elevations measured at the ten permanent tide gauges.
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5 Discussion

The previous sections presented the formalism, implementation and results of adjoint
variational assimilation of tide gauge observations in the Chesapeake Bay when the
dynamical constraint is a 2-D vertically-integrated shallow water model. The follow-
ing sections first describe the problem of identifiability and regularization in param-
eter estimation. The results of the data assimilation experiments are then discussed
from two perspectives: first from the point of view of the assimilation technique and
second from the improvement of the modeled circulation in the Chesapeake Bay.
There was no attempt to improve the assimilation technique nor the circulation
model] but rather to use those two tools and tide gauge observations to estimate
the model control variables which could improve the modeled tidal and wind-driven
circulation in the Bay.

The discussion of the identical twin experiments focuses on the definition of
the cost function. This is followed by a discussion of the rate and precision of the
recovery of the control parameters and boundary conditions when model generated
observations are subsampled. The results of the tidal and wind-driven circulation
experiments are discussed within the context of the physics of the Bay. Particular
attention is given to the estimated bottom drag coefficient for tidal and wind-driven
circulation and to the recovered wind stress in the wind-driven circulation. Finally,

future studies are indicated.
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5.1 Identifiability and regularization in parameter estima-
tion

The main problem in parameter estimation comes from the identifiability of param-
eters, especially when the number of parameters is large. In general, identification
refers to the determination of unknown parameters such that the predicted response
of the model is close to the process observations. Banks and Kunish (1989) and
Omatu and Seinfeld (1989) addressed the question of identifiability of distributed
parameter systems and proposed performance criteria, e.g. least-squares perfor-
mance criterion (cost function). Due to the ill-posedness of the problem, regular-
ization approach is often used which leads to a well-posed problem. The problem
of regularization has been defined by Omatu and Seinfeld as follows. Regularization
of a problem refers to solving a related system called the regularized problem, the
solution of which is more regular in a sense than that of the original problem, and
which approximates the solution of the original problem. Regularization is thus an
approach to circumvent lack of continuous dependence on the data. The regular-
ized problem is a well-posed problem whose solution yields a physically meaningful
answer to the given ill-posed parameter estimation problem (Kravaris and Seinfeld,
1985). Banks and Kunish (1989) pointed out that the addition of the regularization
term changes the nature of the problem and that the solutions of the regularized
problem are different from those of the original problem. Adding a regularization
term to the fit-to-data criterion can, for instance, specify certain additional smooth-
ness properties of the solution. Finally, experience with parameter estimation shows
that severe difficulties arise when using unconstrained unregularized algorithms with
the adjoint approach to cstimate unknown parameters when the dimension of the
approximating state is kept fixed while increasing dimension of approximating pa-
rameter spaces (Kunish and White, 1986; Yeh, 1986).

In this study, the important parameters to be estimated were identified from
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previous studies of the circulation in the Chesapeake Bay (Section 2). The regu-
larization approach consists in the use of penalty-regularization terms in the cost
function. The effect of the addition of a penalty term to the cost function is discussed

in the following section.

5.2 Data assimilation and twin experiments

First and foremost, the identical twin experiments provide insight into the feasibility
of parameter estimation in the Chesapeake Bay, in the use of an appropriate cost
function, and in the adequacy of the observations that are not contaminated with

observational errors.

5.2.1 Definition of the cost function

As mentioned in Section 3, variational data assimilation consists of estimating the
best value of the control parameters by minimizing a cost function which measures
the misfit between model results and observations. The main concern in parame-
ter estimation using variational data assimilation is the adequacy of the type and
number of observations used to define the cost function. In his discussion of linear
regression as a paradigm of model fitting, Thacker (1987) showed that the mini-
mum number of observations must be at least as large as the independent model
variables. However, even if the number of observations is large enough, adequacy
of the data is not guaranteed. Tziperman et al. (1992a) showed that even though
the number of temperature and salinity observations was larger than the number of
unknown wind stress components, those observations did not provide independent
information and therefore the convergence to the correct forcing was relatively slow.
They showed that adding surface velocity observations improved the convergence
to the correct wind forcing. Similar problems can arise from the discretization on

fine grids required to resolve the phenomenon under study. Indeed, the observations
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might be too sparse in space and time to determine the gridded variables. Adding
observations is not always possible. A cure is to supplement the inadequate data
with prior knowledge or prejudice that the gridded values should be smooth. This
is equivalent to adding penalty terms to the cost function, which is defined as the
weighted square of the differences between model results and observations. As men-
tioned in Section 3.6, Richardson and Panchang (1992) and Lardner et al. (1993)
showed that it was necessary to add a penalty term to the cost function in order to
assure smoothness of the estimated field.

In this study, the identical twin experiments show that in order to recover a
smooth open boundary condition close to its real value, a term, J, (Eq. 21), which
penalizes large variations of the surface elevation from one grid point to another
at the boundary, need to be added to the cost function (Eq. 20). The necessity
of the penalty term is evident even when there is a maximum of observations, i.e.,
data at every grid point. In that case, the number of observations is more than
ten times the number of unknown variables. This suggests that surface elevation
does not provide enough information about the boundary elevation, which can be
explained as follows. The exchange between the open ocean and the Bay through
the Bay mouth has a strong influence on the surface elevation in a limited area
of the lower Bay even though the signal generated at the boundary propagates
throughout the entire Bay. Furthermore, the elevations at the Bay mouth have a
smaller phase lag with the elevation in the lower Bay than with the elevation in
the upper Bay. Therefore, the intensity of the signal from the boundary conditions
will be stronger in the surface elevation observations in the lower Bay than in the
upper Bay. This explanation is also supported by the distribution of the relative
average error between observations and recovered elevation after 15 iterations of
the assimilation process (Figs. 17, 20, 23). After 15 iterations, when wind stress

components almost reach their true values, the effect of the boundary condition is
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clearly seen in the lower Bay where the relative average error is larger than elsewhere
in the Bay.

Instead of penalizing the cost function, one could increase the window of assim-
ilation to two days, for example, which would result in an increase in the number
of observations. However, a larger window would not solve the problem since the
number of required boundary conditions will also increase. One could assimilate
different types of observations, e.g., current velocities. This is not possible in the
Chesapeake Bay since the current is not routinely measured. The addition‘ of the

penalty term thus seems the most appropriate for our study.

5.2.2 Scaling of the control variables

The second concern in the variational method comes from the use of non-linear
optimization, such as the limited memory quasi-Newton method. The control vari-
ables often differ by several orders of magnitude and the scaling of those variables
has been shown to be important in order to accelerate the convergence. Discussion
of the role of various scaling techniques in improving the performance of descent
algorithms can be found in Gill et al. (1981), Navon and de Villiers (1983). Seiler
(1993) showed that it is important to have the right scaling of the control variables
otherwise the optimization might fail to converge, indeed yield senseless parame-
ters. In this study, scaling similar to the one used by Navon et al. (1992a) was
applied. This scaling (Section 3.6) brings all the control variables to the same order
of magnitude. The only unknown parameter, two orders of magnitude larger than
the other parameters, is the inverse of the Manning’s roughness. Dividing it by a
factor 100 is the simplest way of bringing all the parameters to the same order of
magnitude (Section 3.6). However, when scaling of the inverse of the Manning’s
roughness parameter is applied, the true value of the parameters is not recovered.

On the other hand, good results in an acceptable number of iterations was obtained
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without scaling of the parameters. In that case, wind stress components are first
adjusted followed by the drag coefficient parameters and finally the boundary ele-
vations. For this study, scaling of the largest parameter does not help the recovery
process and therefore is not used. Investigation of different scalings of the control
variables was beyond the scope of the study. But, that problem needs to be ad-
dressed in a future study, especially when the number of parameters is larger than

in the cases treated here.

5.2.3 Rate and precision of the recovery

The rate and precision at which the control variables are recovered in the twin
experiments clearly show a dependence on the availability of observations. Over
the past several decades, only ten permanent tide gauges (Section 2 and Fig. 12)
have been deployed in the Chesapeake Bay. Most of those tide gauges are situated
in embayments or entrances to rivers. It is, however, very encouraging to see that
even with limited observations, i.e., with hourly surface elevation observations at
ten stations, it is possible to recover, to two significant figures, the bottom drag
coeflicient parameters, the wind stress components at four locations in the main
stem while boundary conditions are recovered to 85% of their true values. For
all the twin experiments, the wind stress components are first recovered, which
indicates that the wind stress is the dominant forcing in the circulation model. As
previously mentioned, the lack of recovery of the boundary conditions to their true
values can be due to the fact that the signal from the boundary is strong only in
the surface elevation measured at the tide gauges in the lower Bay. In addition,
the number of tide gauges near the Bay mouth (Fig. 12) is rather small. Indeed,
only two stations, CBBT and Kiptopeake are in the main stem while two other
stations, Hampton Roads and Gloucester, are located ear the Bay mouth in the

entrance to rivers. The surface elevation at the latter two stations would also reflect
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the effect of the river discharge, of the geometry of the rivers and of bottom and
surface stresses, which are probably more important than the effect of the boundary
conditions. A way of increasing the importance of the boundary elevation signal
during the recovery would be to weight differently the data misfit between modeled
and observed elevations from the lower Bay Proper stations in the cost function.
In this study, there was no attempt to give more weight to those observations to
compute the cost function which could lead to a better recovery of the boundary
condition. The boundary is indeed arbitrarily taken some distance from the Bay
mouth and is also narrower than the real opening at that distance. Therefore, we
are not interested in the recovery of the boundary condition itself but in an estimate
of the boundary condition which would be physically acceptable and lead to the best

circulation in the Bay.

5.3 Data assimilation and Chesapeake Bay

While the identical twin experiments guide us on the rate of recovery of the control
variables, the appropriate density of data, and the definition of an appropriate cost
function, data assimilation using tidal elevations (Section 4.2) and real observations
(Section 4.3) gives some insight into the physics of the Bay and some empirical
quantities used in the model, such as the bottom drag coefficient. Indeed, these
results indicate that the bottom drag coefficient displays a periodicity corresponding
to the spring-neap tide cycle and its value is a function of the wind speed and
direction. The results also confirm Wang’s (1979a,b) findings that the response to

the wind is different in the lower and upper Bay.

5.3.1 Estimate of the bottom stress and drag coefficient

During the past decades, the bottom stress in tidal models has been defined as

a quadratic law with the bottom drag coefficient being determined empirically to
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match the amplitude and phase of the observed major tidal constituents. For exam-
ple, in their study of the coastal seas of southern British Columbia and Washington
States, Crean et al. (1988) found it necessary to vary spatially the bottom drag
coefficient. The overall friction was taken equal to 0.003, with different values (0.03
or 0.006) in the Puget Sound and various straits and passages. In the modeling of
tidal motion in the English Channel and southern part of the North Sea, a constant
bottom drag coefficient was taken equal to 2.32 x 10~ (Werner and Lynch, 1987;
Ozer and Jamart, 1988). Mofjeld (1988) showed that the quadratic coefficient re-
lating the bottom stress to the vertically averaged velocities depends explicitly on
the water depth and found that it can be related to the ratio H/z, where 2, is the
bottom roughness and H the total water depth. Based on the non-rotating channel
theory in which frictional drag balances barotropic pressure forcing and shear pro-
duction of turbulence is balanced by local dissipation (closure of level 2), Mofjeld

(1988) found that the bottom drag coefficient is given by

K2

where £ = 0.4 is the von Karman constant.

¢p (25)

Using a variational data assimilation technique and tidal elevations, Lardner et
al. (1993) estimated the bottom drag coefficient for the Arabian Gulf. The drag
coefficient was defined as g/c? where ¢ = Clog(h) is the Chezy coefficient, h the
undisturbed depth of the water, and ¢ is the acceleration due to gravity. They found
in general a higher value for C than the empirical value of 25 used in a previous
tidal model for the same region (Lardner et al., 1982). Using an inverse method
and tidal-current measurements in the Chesapeake Bay, Bang (1994) found values
between 2.0 x 10~* and 1.6 x 10~3. Note that all the mentioned studies consider only
a spatial variation of the drag coefficient. The temporal variation was not taken into

account in 2-D modeling of tidal and wind-driven circulation.
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o Temporal variation of the bottom drag coefficient

In our study, the bottom drag coefficient was defined in terms of a Chezy coef-
ficient, t.e., it depends on the total depth, and a roughness coefficient called Man-
ning’s roughness (Eq. 5). A systematic adjustment of the drag coefficient was done
by assimilation of tidal elevations and estimation of the two free parameters, i.e.,
the exponent of the total depth and the inverse of the Manning’s roughness. In
the tidal experiment, by assimilating the predicted tidal elevation on 24 hours for
19 consecutive days, temporal variation of the drag coefficient for a spring-neap
tide cycle was allowed. Furthermore, the spatial variation was taken into account
through the dependence of the coefficient on the total depth. As results of tidal
elevations assimilation in the Chesapeake Bay, it is found that the bottom drag
coeflicient displays a periodicity corresponding to the fortnightly modulation. The
drag coefficient varies between 2.5 x 10~4 and 3.1 x 1072 with a minimum value at
spring tide and a maximum at neap tide. While the lower value seems to be smaller
than the value found in the literature related to tidal modeling (Johns, 1983; Crean
et al., 1988; Ozer and Jamart, 1988), a similar range was found by Bang (1994) in
his study in the Chesapeake Bay. The fortnightly modulation is mainly found in the
Manning’s roughness while the exponent remains close to 1/6, the value commonly
used in estuary studies (Officer, 1975).

The first plausible cause for the temporal variation of the drag coefficient can
be attributed to the variation of the bottom roughness. Indeed, several studies
(McCave, 1973; Taylor and Dyer, 1977; Grant and Madsen, 1982; Davies, 1983;
Gross and Nowell, 1983; Wright et al., 1992) showed temporal variability of the
bottom drag coeflicient due to variation in roughness elements such as ripples and
biogenic micromorphology, in movable bed roughness caused by sediment transport
and in interactions between waves and currents. Although the temporal changes of

the bottom roughness in the Chesapeake Bay are not yet well understood, Wright
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et al. (1992) found seasonal variability due to biological processes controlling bed
micromorphology and variation at period of a few hours due to wave activity.

A second cause which would account for the periodicity of the bottom drag coef-
ficient can be related to the level of stratification. In their study of the Rhine regions
of freshwater influence, Visser et al. (1995) showed that the constituents of the tidal
currents depend not only on tidal forcing at astronomic periods but also on the less
predictable stratification and destratification processes and questioned the robust-
ness of the standard tidal analyses. It has been shown that mixing in the lower
Chesapeake Bay and tributaries appears most intense at spring tide while strati-
fication appears most highly developed at neap tide (Haas, 1977; Valle-Levinson,
1995). At spring tide, the vertically averaged current and the bottom current are of
the same order of magnitude while the vertically averaged current is smaller than
the bottom current at neap tide. Since the bottom stress in our model is defined in
terms of the vertically averaged current, the drag coefficient must be larger during
neap tide than during spring tide in order to compensate the difference between
averaged and bottom current assuming that the bottom drag is the same.

By adjusting the drag coefficient spatially and temporally, the simulation of the
tidal circulation in the Chesapeake Bay is improved. Comparable results were found
by Lardner et al. (1993) in the Arabian Gulf. However, the periodicity of the drag
coefficient was not taken into account. As a consequence, the rms error found by
Lardner at various stations in the Gulf is higher during spring tide than neap tide
(see Fig. 49) which would lead to the proposition that a temporal variation of the
drag coefficient is not only true for the Chesapeake Bay, but also for other bodies
of water.

Finally, using Eqs. 5 and 25 and an average depth of 8 m, the bottom roughness
is found to be equal to 0.01 cm during neap tide which is in good agreement with

the value found by Wright et al. (1992). During spring tide, the bottom roughness
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Figure 49: Root-mean square errors at stations in the Arabian Gulf for 100 days
following the beginning of the assimilation period. The errors are shown before
(dotted line) and after (solid line) optimization. (Lardner et al., 1993).
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value averages 0.001 cm which is slightly too small. In order to get a more accurate
estimate of the bottom roughness, the relation (25) should be used in the circulation

model and 2, be estimated during the assimilation process.

o Wind effects

The study of wind-driven circulation shows that the bottom drag coefficient
decreased during strong northeasterly and northwesterly wind compared to its value
without wind or with a weak wind (Figs. 38, 45). Again, the decrease can be related
to the level of stratification and changes in the bottom roughness. During frontal
passage, the water column becomes less stratified, indeed destratified (Blumberg
and Goodrich, 1990). Therefore, bottom velocity and vertically averaged velocity
approach the same value. Furthermore, Wright et al. (1992) argued that strong
winds should be able to generate 5-s waves large enough to agitate the bed at depth
of 10 to 12 m in the Bay and yield variation in the bottom roughness.

Similar wind effect on the bottom friction was found by Ronday (1976) for his
study of the North Sea. He showed that a term proportional to the wind stress had
to be subtracted from the bottom stress in order to match modeled and observed
elevation when the drag coefficient was taken equal to its value without wind. For a
northeasterly wind, this corresponds to an increase of the bottom stress which can

also be achieved by a decrease of the bottom drag coefficient.

5.3.2 Atmospheric forces in the Bay

The second important feature noticed during the wind-driven circulation experiment
is the relative importance of the driving forces in the Bay. While the modeled surface
elevation is in excellent agreement with the observed elevations in the main stem, the
estimated wind speed and direction in the upper Bay are not in as good agreement

with the observations as in the lower Bay. Thomas Point buoy, which is situated
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at the narrowest portion of the Bay (Fig. 12) was used to compare the modeled
results with the observations in the upper Bay and CBBT tide gauge station was
used in the lower Bay. Near Thomas Point, the main stem changes its orientation
from northwest-southeast to northeast-southwest and becomes shallower (Fig. 1).
Then, during periods of weak wind, the topographic and narrowing effect should be
dominant. The model grid spacing, roughly 2 km, is probably too large to correctly
resolve the influence of the narrowing of the Bay. Instead, the correction is done to
the wind stress in order to minimize the data misfit at Annapolis which is the closest
tide gauge station. When the wind becomes stronger, as in the case during a frontal
passage, the surface elevation response to the wind is larger and the wind signal in
the observations is also stronger. In those conditions, estimated and observed wind
speed and direction are in excellent agreement. Further investigation with a finer
grid than 2 km is needed to fully investigate the circulation in that area.

A second effect that is neglected and could be a cause for the disagreement
between estimated and observed wind is the inverted barometer effect, which induces
an increase of the surface elevation for a low pressure system and a decrease of the
surface elevation for a high pressure system. For example, Paraso and Valle-Levinson
(1995) showed that for 10-11 February 1992, the barometric pressure rise contributed
57% to the sea level change at CBBT and in general the effects of the atmospheric
pressure on sea level are not negligible. Vieria (1986) found that the 2-2.5 day sea
level oscillations in mid-Bay could not be identified with a seiche in the Bay but
could be due to the atmospheric pressure. During the period corresponding to our
study, changes in the barometric pressure are also important. From November 1 to
November 3, 1990, the atmospheric pressure was about 1023 mb (Fig. 50). It then
decreased to a minimum of 1002 mb on November 6 after which it increased to a
maximum of 1022 mb in the afternoon of November 7. High pressure during the

first three days of November acted to decrease the surface elevation near Thomas
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Point and acts against the effect of the wind. The inverted barometer effect, not
included in our model, is accounted for through modification of the wind speed and

direction.

5.4 Future study

This study represents the first attempt to use surface elevations from tide gauges
to estimate the bottom and surface forcings in the Chesapeake Bay. Although the
circulation model did not include stratification, river runoff, or the inverted barome-
ter effect and the number of available observations was limited, the modeled surface
elevations with the estimated drag coefficient and wind stress are in excellent agree-
ment with the observations at the ten permanent tide gauge stations. Based on
the results of the various experiments, several questions however arise. How can
the estimated drag coefficient and wind field, and thereby the simulation of the
circulation in the Bay, be improved? Can the experiments be repeated for other
seasons, e.g., spring and summer? Can the convergence rate of the assimilation pro-
cess be improved? In order to address these questions, the following investigations

are proposed:

¢ Two remedies should be investigated to improve the estimated wind field in
the Bay. Since it has been shown that the inverted barometer effect is not
negligible in general (Paraso and Valle-Levinson, 1995), a natural extension
of the MU circulation model is to include the inverted barometer effect. The
barometric pressure is routinely measured at the major airports, at Thomas
Point buoy and at the CBBT station, which could be used to estimate the
pressure field over the Bay. Second, assimilation of wind observations from
Thomas Point buoy and CBBT station would give more information on the
wind field, in addition to surface elevations from the ten tide gauge stations.

On the other hand, several twin experiments (not included) showed that as-
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similation of surface elevation from additional tide gauges on the eastern shore

also gives better estimates of the wind field.

In our study, the wind field was taken constant during the assimilation period.
However, during frontal passages, the wind speed and direction change quite
rapidly, as well as the surface elevation in response to it. An estimate of the
wind stress every three hours would better represent the temporal changes of

the wind field and therefore the wind effect on the circulation in the Bay.

The bottom stress in the circulation model is taken as a quadratic law with
the bottom drag coeflicient defined in terms of a Chezy coefficient. Using data
assimilation, we might want to estimate the bottom friction in a more general
form, e.g., as a free parameter varying in space and time. This would be very
important in the case of strong wind when bottom drag coeflicient was found
to be function of the wind strength (Fig. 45), which could be different from
the lower to the upper Bay. Of course, the success of such an experiment will
depend on the number of available observations compared to the number of

parameters to be estimated (see Section 5.2).

Data assimila.tion experiments, shown to be very successful, were conducted for
the Fall when the stratification effect is minimal. During spring and summer,
stratification may be very important especially at calm wind conditions. Pre-
liminary studies (not included) indicate that, using a two-dimensional model
and assimilation of sea level, the surface elevation during times of strong strat-
ification can be estimated with a relative average error of less than 15% at all
the stations. A three-dimensional model might however be required at those
periods to further improve the estimated circulation in the Bay. Conceptu-
ally, data assimilation can be done the same way as for the 2-D modeling.

However, a three-dimensional model will require larger memory and computer
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time, which could limit the feasibility of the study. Additionally, the number
of surface elevation observations might not be sufficient. One could seek other

data to assimilate, such as current measurements.

While the large numbers of iterations needed for convergence in the assimila-
tion process was not an issue in our study, it can become a problem for the
aforementioned investigations, when the number of estimated parameters will
be larger. Scaling of the parameters, weighting in the cost function (Eq. 8),
addition of penalty terms will have to be carefully studied in that case. For
example, a preconditioning technique, such as scaling of the gradient of the
cost function (Zou and Holloway, 1995) has proved to be very effective in im-
proving the quality of the fit. Furthermore, as pointed out by Tziperman et al.
(1992a), the issues of scaling and preconditioning should be investigated while
considering real observations. The level of noise in the observations might
indeed pose a problem in the conditioning of the cost function which would

not occur during identical twin experiments.
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6 Conclusions

The feasibility of dynamical assimilation of tide gauge observations was investigated
to estimate the bottom drag coefficient, the surface stress and the sea level at the Bay
mouth, as a first step in improving the modeling of tidal and wind-driven circulation
in the Chesapeake Bay. The circulation model used in the study was a 2-D vertically
integrated shallow water model where the bottom stress is defined as a quadratic
law with a drag coefficient defined in terms of a Chezy coefficient depending on
the total depth of the water column and some roughness. The data assimilation
technique was the variational adjoint method where the distance between modeled
and observed surface elevations is minimized in order to get the optimal value of
the control variables. The adjoint model code was developed from the tangent
linear code of the circulation model and the optimization technique was the limited
memory quasi-Newton method (Gilbert and Lemaréchal, 1989).

Although the model is simple and does not include stratification, river runoff,
or inverted barometer effect, the estimate of bottom friction and of surface stress
by assimilating tide gauge observations from ten permanent stations yields good
agreement between modeled and observed surface elevation in the Bay. It is also
found that a one-layer model is adequate to model the sea level and the response to
the bottom friction and the wind stress in fall. Whether this is true in spring and
summer when the stratification is strong requires further investigations.

The assimilation experiments considered in the present study give some insight

into the physics of the Bay as well as into empirical quantities such as the bottom
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drag coeflicient. It is found that the drag coefficient displays a fortnightly mod-
ulation. Its value for depth less than 10 meters doubles from spring to neap tide
while the variation is much reduced in deeper regions. This fortnightly modulation
is altered by the strength of the wind, which, during a frontal passage, yields a drag
coefficient value roughly independent of the depth of the water column. It is also
found that the response to meteorological forcing is different in the lower and upper
Bay. While the estimated wind field in the lower Bay was in excellent agreement
with the wind measured at the Chesapeake Bay Bridge Tunnel, the agreement in
the upper Bay was not as good. The disagreement between the estimated wind field
in the upper Bay and measured at Thomas Point would indicate that the response
of the sea level to the barometric pressure could be as important as the response to
the wind forcing in the upper Bay.

From a set of identical twin experiments with model generated data, it was
found that a penalty term had to be added to the cost function in order to assure
smoothness of the estimated surface elevation field at the Bay mouth. Furthermore,
classical scaling of the parameters to bring them to the same order of magnitude
was not efficient in accelerating the convergence and yielded a larger error in the
estimated parameters.

Finally, in the light of the identical twin, tidal and wind-driven experiments
considered in this study, we can conclude that assimilation of tide gauge data in the
Chesapeake Bay improved the agreement between modeled and observed surface
elevation. We can also propose as a natural extension of this study to include the
inverted barometric effect in the model and also repeat the experiments for seasons

when stratification is strong,.
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A Construction of the adjoint code

A.1 Tangent linear model method

The following simple example shows how to construct the adjoint code from the
tangent linear code. We also show that the gradient of the cost function is obtained
from the adjoint code without extra computation. Consider the following set of

equations that can be thought of as the discretized model equations.

1 =21,
Y=22—I1
(A1)
Y3 = Y2
= 1(ys — 9)*

One can think of this model in steps
(z1,22) == [G1] = (41, 12) = [Go] = (33)

In terms of the notations used in Eq. (9), Y = G.G:1(X),8Y = G,G(6X), where
G' = G4,Gj so that (G')* = (G)*(G5)*. For the example

I ]

G,1= 8331 3:122 20
% % -11 ,
0z; Oz, | L

G| os]_| ]

2 on ayu |92 W)

Hence using Y; = (y1,2) and Y; = (y3) we have

VxJ = (G1)(Gy)"Vy,J
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or

2 -1 Y2 . 2y2 — .
VxJ = [ys - y] = [ya - y]
0 1 )1 (3]
which gives
%y — s
VxJ = (292 yl)(ya y) (A2)
y(ys —79)

The tangent linear model from (A1) is

oy, = 26,
8y = —6z1 + bz (A3)
6ys = n16ya + Y26

Consider each line of the tangent linear model separately and in reverse order. The

last line can be written in a matrix form as

6y1 1 0

o
Sy, [=] 0 1

0y,
éys Y2 N

Its adjoint can be written out by matrix transposition as

ay,

a1 10 y
= ayz

ayz 01 n
ays

or
ayy = ay1 + y2ay3
(A4)
ays = ayz + y1ays3
if we replace é by a to denote an adjoint variable. By repeating the same sequence
of operations for the second and first line of the tangent linear model respectively,

we obtain

azr) = ary — ayYq

(AS)

az; = arz + ays
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and
az; = ary + 2ay (AS6)
Finally, from the definition of the cost function (last equation of (Al)), we can

obtain the forcing to apply to the adjoint system, i.e.,
ays = (y3 — ) (A7)

Combining (A4), (AS5), (A6), (A7), the adjoint model corresponding to the non-
linear model (A1) is
ay, =ay; = ayz = ar; = ary =0
ays = (y3 — §)
ay2 = ayz + y1ays
ay1 = ay + yzays (A8)
ar; = ary — ayz
aTy; = azz + ays
azry = ac; + 2ay,
where y1,72,y3 are given by the non-linear model. Note that combining (A8) in

order gives,

azy = yi(ys — 9) (A9)

aty = 2y2(ys — §) —n1(ys — 9) = (2y2 — v1)(ys — §)
A comparison of (A2) and (A9) yields

—
6(131
o
ar; = a—mz'

The “tangent linear technique” gives then a systematic way to obtain the gradient
of the cost function with respect to control variables.
It is worth noting that the adjoint equations have to be written in reverse order

from the tangent linear model. The adjoint variables have to be carefully initialized
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to zero at the beginning of the adjoint code. The adjoint variables are accumu-
lated for every equation where the direct variables appear on the right side of the
equation. Finally, the quantities computed during the direct computation are used
in the adjoint computation. Therefore, they have to be stored during the direct
computation.

With that simple example, we have shown that the writing of the adjoint code
from the code is a straightforward operation. To any subroutine of the direct code
will correspond an adjoint subroutine. Furthermore, to any statement in one sub-
routine of the direct code will correspond an statement in the adjoint code.

A.2 Lagrange multiplier technique

In this section, we show how to apply the Lagrange multiplier technique developed
in Section 3.4.2 and how to write the adjoint equations for the model (Al). For the

example (Al), the Lagrange function defined in Eq. 14 is

L=J =M = 505 = 5)) = D31 = 200) = M2 = 22+ 22) = M (35 = 1132).

Requiring that the derivatives of L vanish with respect to J, y3,y2, ¥ yields
l1-A=0= ;=1

’\J(y3 - :’7) - ’\ya =0= Aya = (?/3 - ?})’\J
=Ap + A =0=> 4y, =y,
=y F Ay =0=> Ay, =12,

Requiring that the derivatives of L vanish with respect to z2,z; and letting the

gradient be stored in the Lagrange multipliers associated with z,, z, yields
Az, = Ay,

’\-"-'1 = 2Ay1 - ’\yz
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Note that the last equation contains contributions from the first and second equation
of the model (Al).

If we replace A by a to denote an adjoint variable corresponding to the model
and control variables, the adjoint code corresponding to the system of equations
(A1) is

ays = ay; = ay; = ar; =az; =0

aJ =1

ays = (ys — §)aJ

ayz = Hhays + ay,

ayy = yaays + ay (A10)
arz = ayz + azx;

ayy = —ayz + azr,

azy = 2ay; + ar,

It should be pointed out that there is no need to write the Lagrange function. The
adjoint model code is simply written by considering the direct code line-by-line in
reverse order. To every variable of the right-hand side of any line of direct code
corresponds an adjoint variable and therefore an adjoint equation. The adjoint
variables have to be carefully initialized to zero at the beginning of the adjoint code.

Notice that combining (A10) in order gives
azy = —y1(ys — §)
az1 = 24(ys — §) — y1(¥s — §) = (252 — 1)(ys — §)

and from (A2) we have

_aJ
ary = a—ml
83:2

This method gives a straightforward procedure to derive the adjoint code and
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compute the gradient of the cost function without having to derive the tangent linear
code which can be a tedious task for a complicated model. There is therefore less
chance of error coding. However, it can have its disadvantage in the fact that the
gradient of the cost function can only be checked at the end of the coding. If an
error is introduced in the coding, it can be hard to know in which subroutine the
mistake was introduced. By contrast, as shown in Section 3.4.3, each subroutine of

the adjoint code can be checked separately when using the tangent linear method.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B Optimization algorithms

This appendix is a brief review of a few useful algorithms based on the descent-
direction method. We follow the notation usually used in the optimization literature.
Suppose that the function to be minimized is the cost function J(X) defined by Eq. 7.
The descent-direction method is based on an iterative process which calculates a
value of the control variable vector which minimizes the cost function. Xj4;, the

control variable vector at iteration (k + 1), has then to satisfy
I (K1) < J(X). (B1)

From an approximation X of the control variable vector at the iteration k, the
new value Xy is computed in two stages: 1) find a descent-direction dg, and, 2)
determine a positive step size ax along di. The second stage is called line search.

X)+1 is then taken as

Xk+1 = Xk + O’kdk (B2)

The way that the descent direction is computed will characterize the descent
method. For instance, the simplest form for a descent direction is the negative value

of the gradient of the function, i.e.,
di = —VJ(Xi) = —g& (B3)

This method is called gradient or steepest descent method. As we shall see, most of

the minimization techniques use a more general form of (B3), i.ec.,
dk = _Hkgk (B4)
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where Hj, is a positive definite matrix.

The determination of the step size a; requires some attention. Indeed, the step
size has to be small enough in order to satisfy the relationship (B1). However, it
has been shown that an arbitrarily small positive a; can yield to the convergence
to a non-stationary point. In most of the minimization algorithms, the dilemma is
solved by choosing the step size such that it satisfies the Wolfe’s conditions {Wolfe,
1969),

J(Xi1) < J(Xk) + mangi di, (BS)

gf+1dk 2 72g{dk’ (B6)

where 0 < 11 < 0.5 and 13 < 42 < 1, and T denotes the transpose. The first
condition assures a sufficient decrease of the cost function while the second one
avoids taking a step that is too small. In some cases, strong Wolfe’s conditions have

been found necessary. In that case, condition (B6) is replaced by
lgi1del < [rogidil. (B)

An algorithm to find a point X4, referred to as Wolfe’s point, which satisfies
Egs. B5 and B6 can be found in Lemaréchal (1981) while an algorithm for a point
which satisfies the strong Wolfe’s conditions can be found in Al-Baali and Fletcher

(1986). Let us now examine different algorithms based on the descent method.

B.1 Conjugate-gradient method

In the conjugate-gradient method, the descent direction is computed by combining
the gradient of the function with some information from the previous iterations.

The general scheme of the conjugate-gradient algorithm is
1. take an initial value Xy and compute dp = —gp
2. for k=0,1,2,...
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e compute the step size ax
o compute X4y = X + ards

e compute gr41

check if restart is necessary (see discussion below)
o if convergence (B1) then stop

o else compute diy1 = — i1 + Pr1ds
3. go to 2

Br+1 has been defined by Fletcher-Reeves as

0, for k=0,
ﬂk+1 = ) ) (BS)
lgesrll*/llgsll,  for k=1,2,3,..,

and by Polak-Riebere (Polak and Ribiere, 1969) as

Brsr = Bry1(8r+1 — 8x)/llgkll?,  for k>0 (B9)

Powell (1977, 1985) showed that Eq. B9 gives a much faster convergence than Eq. B8
and is preferred. It should also be mentioned that for minimization with regard to
a large number of control variables, e.g., like in oceanography, the conjugacy of the
gradient mignt be lost after a few iterations and the direction of search might not
be efficient. Powell (1977) suggested a criterion based on Beale (1972) for a restart

to be performed, i.e., when

|g{+1gk| 2 0-2”gk+1”2 (B10)

One has also to check if the direction of search is sufficiently downhill. Therefore, if

the two following criteria are not satisfied a restart is indicated, i.e.,

T dig < —-0.8 2
Bk4+1Qk41 llgk+1]] (B11)

ghadisr > —1.2)ges |’
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The reader is referred to Derber (1985) and Long and Tacker (1989a,b) for compu-
tation of an optimal step-size, and to Beale (1972) and Navon and Legler (1987) for
restart formulae.

The conjugate-gradient method has the advantage of being simple to implement
but for large problems, the convergence can be slow and therefore costly if there is no
preconditioning. One has to realize that at every iteration during the minimization
process, the use of the cost function and its gradient requires a run of the model and

its adjoint, respectively. The following techniques have a faster rate of convergence.

B.2 Newton method and its variations
B.2.1 Newton and truncated Newton methods

The Newton minimization method is based on the Newton method for solving the
non-linear equations VJ = 0, i.e., the equations are first linearized and then solved.

In the minimization context, the linear equation system is
V2J(Xk)dk +g.=0

where V2J(X}) is the Hessian matrix of the cost function at X;. This equation is

solved for dy,

d; = -—Hk_lgk (Bl2)

where H;' = [V2J(X,)]™' is the inverse of the Hessian matrix. This method
requires the computation of the cost function, its first and second derivative at
every point X;. While the convergence is faster than in the CG method, it can still
be very costly, indeed impossible for large problems.

To overcome that difficulty, a truncated Newton method has been derived. This
technique is based on the idea that the linear system (B12) can be partially solved
using an iterative process. Dembo and Steibaug (1983), Schlick and Fogelson (1992a)

considered a CG method to determine di. In that case, the iteration is stopped
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when the non-positiveness of the Hessian is detected. Another method, i.e., Lanczos
tridiagonalization, was used by O’Leary (1982). Two truncated Newton algorithms
developed by Nash (1984a,b) and Schlick and Fogelson (1992a,b) are made publically
available (see Wang et al., 1992, 1995; Wang, 1993; Zou et al., 1993a).

B.2.2 Quasi-Newton and limited memory quasi-Newton methods

As showed in the previous section, the Newton and truncated Newton methods
require the computation of the Hessian. This computation can be very expensive.
The quasi-Newton (QN), first developed by Davidon (1959), and limited-memory
quasi-Newton (LMQN) methods circumvent this problem based on the idea that
the Hessian matrix can be estimated as part of the iteration process using the
information about the behavior of the cost function and its gradient to make rank-
one or rank-two updates. These two methods do not actually compute the Hessian
matrix but an approximation of it. The general scheme of the QN and LMQN

methods are summarized as follows:
1. get an initial value X, and Bg
2. for k=0,1,2,...

o di = -B'g:
o get a; satisfying the Wolfe’s conditions (B5, B6)
o compute X411 = X + ardy
o get By},
3. if convergence (B1) then stop else go to 2

where By represents an approximation of the Hessian matrix at the kth iteration

and B;? its inverse. Often, the initial value for By is taken as the unit matrix or a
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multiple of it. The updated matrix B4, has to satisfy the quasi-Newton condition,
ie.,

Biyisk = Yk

where s = Xj41 — X denotes the variation in the control variables during the kth
iteration and yi = gr+1 — g« the change in the gradient.

The main difference between the QN and LMQN algorithms resides in the way
of updating the matrix Bx. The most effective algorithm to update B in the QN
method is the BFGS (Broyden, Flecther, Golfard and Shanno) algorithm (Gilbert
and Lemaréchal, 1989), i.e.,

Y+¥i _ BisisiBy

B..: = B.
k+1 L+ y{sk SZBkSk

(B13)

The inverse B;! can be directly updated using the inverse BFGS formula, i.e.,

T T T
B! = (I - S""k) B;! ( - YESk ks") + %k Bl4
yTse) B U~ 7s0) T 9Ts (B14)

From Eqs. B13 and Bl4, one can guess that the main disadvantage of the QN
method is the need of a large storage capacity. While combining the low storage
advantage of the CG method and the computational efficiency of the QN method, the
LMQN method seems to be more appropriate for large problems. From Eq. B13,
B; is formed from By and k pairs (y;,s;) with 0 < ¢ < k. Therefore, one only
needs to store By (usually a multiple of the identity matrix) and the couples (y;,s;)
(0 < i < k) in memory, and compute B;'g, (1 < i < k) with an appropriate
algorithm. Unfortunately, the number of couples to store becomes quickly very
large for large problems. The LMQN method, very often referred to as m-storage
QN method, proposes to approximate B;! at iteration k by computing its value from
m couples and a starting matrix By 1, and only those m couples (y;,s;) are stored.
All the LMQN methods are based on that concept and only differ in the selection

of the couples (yi,s;), in the choice of the starting matrix Bg}, in the method
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for computing B; gy and also the presence or not of a restart. For example, the
CONMIN algorithm of Shanno and Phua (1976) is a 2-storage LMQN method with
a Beale restart, the algorithm from Buckley and LeNir (1983) is a m-storage LMQN
method where m varies with the iteration index. For a description of these methods,
see Zou et al. (1993a), Gilbert and Lemaréchal (1989).

The algorithm used in our study is based on Nocedal’s proposal (1980) and has
been implemented by Gilbert and Lemaréchal (1989). Nocedal’s algorithm proposes
to form B! by updating a matrix By using the last m couples (y;,s;) with k—m <
¢ < k —1, and going from iteration k to k+ 1 the couple (Yi—m,Sk—m) is replaced by
(Y&,8k). Therefore, B;! is always updated with the latest information. In practice,
the number of updates m is optimal between 3 < m < 7. The step (2) in the

schematic of the QN algorithm is then replaced by
o choose a positive definite matrix By

e for i=0 to i=m-1 compute B, + using the inverse BFGS formula,

TV T T
B_1 =[7- Skem+iYk-m+i Bl({7I- Yk-m+iSkomii + Sk—m+iSg_mti
+1,k T T . ik T . T .
Yi—m4iSk-m+i Ykwm4iSk—m+i Yi—m4iSk-m4i

o take B;! = B,'nfk

Since one has to choose By} at every iteration of the minimization, its choice is
very important. The simplest choice would be to take a diagonal matrix multiple of
the identity matrix I, i.e.,

T
Bjl = 61 where §_, = Li=121
|yk-1]
In the algorithm proposed by Gilbert and Lemaréchal (1989), the matrix Bg} is
taken as a diagonal matrix D, which is updated at each iteration k from D,_,.

When k& = 1, the diagonal matrix is taken as

T
D, = 2%
llyoll
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When k > 1, each element j of the matrix is updated as follows

pY). = (Diyr,yi) | (yr.e))? (D&Y, Yi)(sk, €;)? -
k+1 — () - -1 (D2 )
(Y&, 8k)D; (YerSe)  (yi,si) (D5 sk, ) (DY)

where e; is a vector with its jth element equal to 1 and the other elements equal to
zero, and (.,.) represents the inner product.

This algorithm routine and its double precision version are called M1QN3 and
N1QN3 in the French optimization library MODULOPT. It has been shown to be
the LMQN method with the fastest convergence rate (Zou et al., 1993; Gilbert and
Lemaréchal, 1989, Liu and Nocedal, 1989). Note that the Nocedal (1980) LMQN is
practically identical to M1QN3.
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C Performance of the tidal data assimilation

This appendix gives the root-mean square error (rms), the relative average error (E)
and correlation coefficient between modeled and predicted elevations for November
2 to November 19, 1983. The various quantities have been computed for each day
of the assimilation experiment using Eqs. 22, 23, 24. In each table, the first six
stations are the permanent tide gauge stations and the last six stations are the
comparison stations. Their locations are plotted in Fig. 12. For each station, the
first number corresponds to the case when modeled elevations were obtained using
a constant bottom drag coefficient equal to 0.002. The second number corresponds
to the case when the modeled elevations were computed using the estimated bottom

drag coefficient from the data assimilation.
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Station Name November 1983

2 3 4 5 6 7 8 9 10

Havre de Grace, MD §4 94 106 114 118 116 109 98 84
82 85 88 91 89 88 85 82 7T

Baltimore, MD 64 68 72 75 76 74 71 63 56
44 46 46 44 41 35 30 25 22
Annapolis, MD 45 51 56 61 64 63 6.0 53 45
41 44 46 45 42 36 31 25 1.9
Cambridge, MD 85 90 95 98 98 95 89 82 73
37 38 39 39 39 40 40 39 39
Solomons Is., MD 64 70 73 74 72 66 58 50 4.1
42 46 48 49 46 40 34 27 22
Lewisetta, MD 56 62 66 67 65 59 51 42 34

45 48 51 51 49 44 37 30 23
Gloucester Pt, VA 108 11.8 124 125 120 110 95 7.8 6.1
66 70 73 72 69 62 53 42 3.1
Kiptopeake, VA 67 75 81 84 82 75 65 54 44
34 37 40 41 40 37 34 31 3.0
Hampton Roads, VA 93 102 108 11.0 10.7 9.8 856 71 56
62 68 73 74 72 67 58 49 39
CBBT, VA 46 52 56 58 56 51 44 36 29
35 39 42 44 43 41 36 32 3.0

Betterton, MD 78 87 97 105 109 108 102 92 7.9
56 60 63 64 63 59 54 49 43
Matapeake, MD 48 53 58 62 64 62 58 51 4.2
38 42 43 43 39 35 30 26 23
Avalon, MD 70 79 84 86 82 75 6.6 54 43

43 49 53 54 51 45 38 3.0 24
Chesapeake Bch, MD 43 48 52 55 55 52 4.8 41 34
44 47 49 49 47 43 38 32 27
Colonial Bch, VA 106 114 120 122 11.8 109 98 85 7.1
84 91 95 96 92 85 76 65 55
Holland Bar Lt, MD 61 66 68 67 62 55 46 3.7 3.0
41 44 46 47 45 40 35 29 24
Guardshore, VA 91 99 104 105 101 92 80 68 5.6
53 55 58 62 66 66 63 58 53
Rappahannock, VA 51 57 61 62 60 54 48 41 3.5
37 40 42 43 42 39 37 35 34
New Pt ComfSh,VA 74 78 81 82 80 75 67 58 5.0
51 52 52 51 48 44 40 36 34

Table 6: Root-mean square error (cm) at ten permanent and nine comparison tide
gauge stations for November 2 to November 10, 1983. The first number corresponds
to the experiment with ¢p = 0.002 and the second number corresponds to the
recovery experiment.
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Station Name November 1983
11 12 13 14 15 16 17 18 19
Havre de Grace, MD 6.9 55 43 33 25 24 3.1 47 6.8
69 60 49 40 32 28 3.1 4.0 5.0

Baltimore, MD 49 43 39 36 33 33 3.7 44 54
21 23 24 26 27 26 25 26 29
Annapolis, MD 3.7 29 24 19 1.7 19 24 33 43
15 12 11 12 13 15 18 23 29
Cambridge, MD 64 56 51 47 45 45 49 58 6.9
40 40 39 38 3.7 35 34 34 3.7
Solomons Is, MD 34 29 26 25 26 29 34 39 4.7
20 20 21 23 24 26 29 32 36
Lewisetta, MD 27 22 20 19 21 24 28 34 4.1

16 13 12 13 16 18 21 26 3.2
Gloucester Pt, VA 46 34 27 26 29 35 45 58 73
23 18 16 18 21 25 30 38 438
Kiptopeake, VA 38 35 35 36 36 35 34 34 137
31 34 36 36 36 35 33 30 29
Hampton Roads, VA 43 33 29 29 30 33 39 47 59
32 28 27 28 29 3.0 33 38 44
CBBT, VA 26 26 28 30 3.0 28 26 23 25
29 31 33 34 33 33 31 31 3.2

Betterton, MD 65 51 38 28 24 28 39 54 7.0
38 32 27 22 21 24 30 37 45
Matapeake, MD 34 28 24 21 19 19 24 33 43
20 17 15 15 16 1.7 19 23 28
Avalon, MD 35 32 33 35 3.7 38 41 45 5.1

21 22 25 29 31 32 31 29 3.1
Chesapeake Bch, MD 2.7 22 19 17 16 16 19 25 34
22 18 16 16 1.7 19 22 26 3.2
Colonial Bch, VA 57 46 38 35 36 43 54 6.7 8.0
45 36 31 29 30 34 41 50 6.0
Holland Bar Lt, MD 25 24 24 26 28 31 36 4.1 438
21 20 21 23 24 26 28 31 3.5
Guardshore, VA 48 43 39 38 38 40 45 53 6.6
47 39 33 31 30 3.1 33 3.7 43
Rappahannock, VA 32 31 31 30 30 30 30 31 33
33 33 32 31 31 32 33 36 4.0
New Pt ComfSh, VA 43 37 32 28 26 26 28 32 39
32 31 28 26 23 23 25 29 35

Table 7: Root-mean square error (cm) at ten permanent and nine comparison tide
gauge stations for November 11 to November 19, 1983. The first number corresponds
to the experiment with ¢cp = 0.002 and the second number corresponds to the
recovery experiment.
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Station Name November 1983
2 3 4 5 6 7 8 9 10
Havre de Grace, MD 10.93 12,54 14.50 16.12 16.90 16.69 15.66 14.01 11.94
615 6.08 597 573 540 527 529 543 562

Baltimore, MD 17.78 18.63 19.53 20.34 20.74 20.48 19.58 18.12 16.33
581 569 526 458 383 3.08 237 184 167
Annapolis, MD 12.05 13.54 1527 16.68 17.56 17.73 17.00 15.26 12.83
662 703 6.78 6.00 491 386 296 218 1.56
Cambridge, MD 1466 1547 16.32 1690 17.16 17.16 16.87 16.18 15.28
207 194 188 18 190 206 230 267 332
Solomons Is, MD 14.05 15.26 16.09 16.30 15.92 14.93 13.32 11.50 9.84
449 479 495 491 452 387 3.18 253 209
Lewisetta, MD 9.08 10.23 11.04 11.32 1099 10.09 871 7.07 551
413 434 450 455 438 393 329 257 184
Gloucester Pt, VA 893 9.68 1025 1044 1012 9.32 813 6.70 518
278 285 292 289 274 247 207 158 114
Kiptopeake, VA 244 286 320 341 340 318 280 235 198

055 061 067 071 071 068 065 066 080
Hampton Roads, VA 596 659 710 736 724 672 589 488 3.85
239 260 280 292 291 275 244 207 173
CBBT, VA 108 127 142 151 151 140 121 099 083
060 067 075 081 084 0.8 079 076 083

Betterton, MD 1271 14.58 16.80 18.67 19.65 19.50 18.23 16.16 13.60
387 404 401 391 366 3.28 2.88 259 240
Matapeake, MD 996 11.25 12.61 13.62 14.15 14.06 13.20 11.57 9.53
431 457 447 406 344 281 230 196 177
Avalon, MD 1134 1295 14.06 14.34 13.72 12.40 10.64 8.59 6.61

293 339 367 367 334 283 227 173 136
Chesapeake Bch, MD  8.64 9.63 10.67 11.34 1145 11.01 10.08 8.70 7.05
587 6.09 6.05 580 529 459 388 327 281
Colonial Bch, VA 21.33 2288 23.94 2429 23.64 2210 20.07 17.61 14.94
915 958 9.83 98 950 883 803 7.18 6.30
Holland Bar Lt, MD 794 854 881 860 791 6.85 560 435 343
258 274 28 291 282 258 228 200 176
Guardshore, VA 689 752 798 8.06 777 714 628 537 461
171 171 178 199 233 260 279 294 313
Rappahannock, VA 432 493 540 557 541 498 441 393 3.74
183 193 202 206 204 202 208 232 282
New Pt ComfSh, VA 494 514 529 536 528 501 458 412 3.72
200 194 18 172 159 148 140 139 152

Table 8: Relative average error (%) at ten permanent and nine comparison tide
gauge stations for November 2 to November 10, 1983. The first number corresponds
to the experiment with ¢p = 0.002 and the second number corresponds to the
recovery experiment.
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Station Name November 1983
11 12 13 14 15 16 17 18 19
Havre de Grace, MD 964 737 530 350 216 173 256 4.86 8.13
573 565 529 440 3.03 218 216 262 3.10

Baltimore, MD 1464 13.62 13.31 13.03 1202 10.76 10.66 12.08 14.43
195 272 396 554 647 558 4.04 318 3.04
Annapolis, MD 1030 8.14 650 535 454 465 6.13 8.73 11.68
112 093 107 162 231 273 296 330 3.8
Cambridge, MD 14.35 13.47 1253 1132 994 894 9.04 10.28 12.08
428 544 639 671 6.16 501 3.77 298 273
Solomons Is, MD 849 754 709 7.01 704 714 760 852 9.80
212 275 390 495 538 520 474 443 446
Lewisetta, MD 432 358 330 335 358 393 442 514 607
126 096 101 135 1795 195 2.03 229 281
Gloucester Pt, VA 377 265 197 179 197 241 312 4.06 518
079 062 065 0.83 1.00 112 127 154 192
Kiptopeake, VA 183 199 237 257 230 176 128 1.01 0.97

115 172 230 251 220 164 110 073 0.54
Hampton Roads, VA 293 231 206 2.04 203 201 214 248 3.04
151 151 169 182 1.7 158 145 144 158
CBBT, VA 08 1.13 158 1.8 164 115 070 045 040
1.06 152 205 225 196 146 102 074 0.64

Betterton, MD 1082 8.06 551 3.58 278 342 547 8.52 11.92
225 211 194 176 172 202 254 3.00 3.32
Matapeake, MD 762 6.25 545 488 418 386 469 6.62 9.06
171 171 180 213 250 246 232 246 287
Avalon, MD 529 521 623 729 748 T7.02 6.62 6.78 748

137 197 3.18 442 495 442 326 231 203
Chesapeake Bch, MD 550 443 394 368 324 280 3.07 434 6.28
251 235 242 279 325 346 3.50 3.69 4.21
Colonial Bch, VA 1222 964 762 659 6.74 804 10.23 1291 1558
540 4.59 4.02 3.77 388 423 479 559 645
Holland Bar Lt, MD 309 335 393 446 471 480 499 536 593
172 2.00 253 3.05 324 298 257 236 242
Guardshore, VA 415 398 389 379 358 332 327 3.65 447
314 278 235 218 202 174 147 141 1.50
Rappahannock, VA 397 461 531 547 488 393 3.10 261 250
359 447 5.05 507 466 4.00 338 3.00 286
New Pt ComfSh, VA 343 3.17 278 224 1.73 144 138 150 174
175 201 207 179 136 109 103 111 129

Table 9: Relative average error (%) at ten permanent and nine comparison tide
gauge stations for November 11 to November 19, 1983. The first number corresponds
to the experiment with ¢p = 0.002 and the second number corresponds to the
recovery experiment.
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Station Name November 1983
2 3 4 5 6 7 8 9 10
Havre de Grace, MD 0.980 0.982 0.981 0.978 0.973 0.968 0.964 0.961 0.957
0.967 0.964 0963 0966 0.970 0971 0.971 0970 0.969

Baltimore, MD 0972 0.975 0976 0.977 0.977 0.975 0974 0.972 0.969
0.966 0.968 0.972 0977 0.982 0985 0.988 0.989 0.988
Annapolis, MD 0.985 0.984 0979 0974 0.970 0969 0.969 0.971 0973
0981 0.979 0980 0982 0.986 0.989 0.991 0.993 0.994
Cambridge, MD 0995 0.996 0.996 0994 0.990 0.986 0.980 0.973 0.966
0993 0.994 0.995 0.994 0.992 0.988 0.984 0.980 0.973
Solomons Is, MD 0.988 0.987 0987 0.986 0.985 0.983 0.981 0979 0.976
0992 0.991 099 0.990 0.990 0.992 0.992 0.992 0.991
Lewisetta, MD 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.996 0.995

0991 0.990 0.989 0988 0.988 0.989 0.991 0.993 0.995
Gloucester Pt, VA 0.972 0.971 0.971 0971 0.973 0976 0.980 0.984 0.988
0.989 0.989 0.990 0990 0.991 0.992 0.993 0.995 0.997
Kiptopeake, VA 0.998 0.998 0998 0.999 0.999 0.999 0.999 0.998 0.996
1.006 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.995
Hampton Roads, VA 0.991 0.991 0.991 0992 0992 0994 0.996 0.997 0.998
0.998 0.999 0.999 0999 0.998 0.998 0.998 0.998 0.997
CBBT, VA 0998 0.998 0.998 0.998 0.999 0.999 0999 0.999 0.998
1.000 1.000 0.999 0999 0999 0.999 0999 0.998 0.995

Betterton, MD 0996 0.994 099 0985 0.980 0.977 0975 0.975 0.975
0.994 0.993 0993 0992 0.991 0.991 0.992 0.992 0.993
Matapeake, MD 0995 0.995 0.992 0987 0.982 0.978 0975 0974 0.972
0.994 0.993 0993 0994 0.995 0.996 0.996 0.996 0.995
Avalon, MD 0.993 0.991 0.989 0988 0.988 0.990 0.992 0.993 0.993

0992 0.990 0.987 0.986 0.987 0.990 0.993 0.996 0.998
Chesapeake Bch, MD  0.997 0.997 0.996 0.992 0.989 0.986 0984 0.981 0.979
0.996 0.997 0997 0.997 0.997 0.998 0.997 0.997 0.995
Colonial Beh, VA 0927 0.925 0924 0924 0.927 0.932 0.939 0947 0.955
0917 0.913 0911 0910 0.913 0.919 0.925 0.933 0.941
Holland Bar Lt, MD  0.992 0.993 0.994 0.995 0995 0.995 0.994 0992 0.989
0.997 0.996 0.99 0996 0.997 0.997 0.998 0.998 0.997
Guardshore, VA 0991 0.992 0991 0991 0.990 0.980 0.987 0.984 0.980
0.990 0.990 0.990 0.988 0.985 0.982 0.979 0.977 0.974
Rappahannock, VA 0995 0.995 0994 0994 0.992 0.990 0.987 0.983 0.976
0998 0.998 0.997 0997 0.996 0.995 0.992 0.988 0.982
New Pt ComfSh, VA 0979 0.980 0.982 0.985 0.988 0.992 0.995 0997 0.997
0.991 0.992 0.993 0.995 0.997 0.998 0.998 0.998 0.996

Table 10: Correlation coefficient at ten permanent and nine comparison tide gauge
stations for November 2 to November 10, 1983. The first number corresponds to
the experiment with ¢p = 0.002 and the second number corresponds to the recovery
experiment.
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Station Name November 1983
11 12 13 14 15 16 17 18 19
Havre de Grace, MD 0.955 0.955 0.959 0.969 0.982 0.989 0.990 0.987 0.981
0.967 0.962 0.958 0.962 0.975 0.984 0.986 0.983 0.980

Baltimore, MD 0.964 0956 0.945 0.936 0.939 0954 0.968 0.973 0.974
0.984 0.976 0966 0.956 0.951 0.960 0.974 0.984 0.988
Annapolis, MD 0.975 0.975 0973 0.973 0977 0.981 0.980 0.975 0.971
0.995 0.996 0995 0.993 0.991 0.991 0.992 0.992 0.990
Cambridge, MD 0.958 0.950 0.945 0.947 0956 0.968 0.977 0.981 0.982
0.965 0.958 0.956 0.960 0.966 0.974 0.982 0.987 0.988
Solomons Is, MD 0.972 0.967 0963 0.961 0.964 0.968 0.973 0.976 0.978
0.988 0.980 0.969 0.962 0.962 0.967 0973 0.980 0.985
Lewisetta, MD 0.993 0.990 0.987 0.985 0.985 0.987 0.989 0.991 0.993

0.997 0.998 0.996 0.993 0.992 0.993 0995 0.997 0.998
Gloucester Pt, VA 0.992 0.994 0.996 0.997 0.997 0.997 0995 0.991 0.985
0.998 0.998 0.998 0.998 0.998 0999 0.998 0.996 0.993
Kiptopeake, VA 0.991 0.985 0979 0.976 0.979 0986 0.992 0.996 0.998
0.990 0.984 0978 0.976 0.979 0986 0.991 0.996 0.998
Hampton Roads, VA 0.997 0995 0.992 0.990 0.991 0995 0.997 0.998 0.997
0.995 0.992 0989 0.988 0.990 0.993 0.996 0.998 0.999
CBBT, VA 0.995 0990 0.985 0.983 0.985 0.991 0.995 0.998 0.999
0.992 0.987 0982 0.980 0.983 0989 0.994 0.997 0.999

Betterton, MD 0976 0.978 0.981 0.986 0.990 0.990 0983 0.976 0.970
0.992 0.990 0.988 0.988 0.989 0.988 0.986 0.984 0.983
Matapeake, MD 0.970 0.966 0962 0.962 0.970 0979 0.981 0.980 0.977
0.993 0.991 0989 0.987 0.986 0990 0.994 0995 0.995
Avalon, MD 0.988 0.977 0963 0.955 0.958 0.969 0.981 0.990 0.994

0.994 0.984 0971 0.964 0.965 0971 0.982 0.991 0.996
Chesapeake Bch, MD 0.977 0.974 0.971 0972 0.979 0.987 0991 0.990 0.987
0.993 0.990 0986 0.984 0.984 0.987 0.992 0995 0.996
Colonial Bch, VA 0.961 0.967 0973 0976 0.976 0.973 0.967 0.960 0.954
0.949 0.956 0.963 0.967 0.968 0.966 0.960 0.952 0.945
Holland Bar Lt, MD 0984 0977 0970 0.966 0.968 0973 0.979 0.984 0.987
0.994 0.988 0980 0.974 0.974 0979 0.985 0.990 0.993
Guardshore, VA 0973 0971 0.968 0.967 0.969 0973 0979 0.985 0.989
0973 0975 0.979 0.980 0.982 0.986 0.989 0.991 0.991
Rappahannock, VA 0.967 0.958 0.950 0.950 0.957 0.968 0977 0.984 0.988
0.973 0.964 0958 0.958 0.965 0.974 0984 0.990 0.994
New Pt Comf Sh, VA 0996 0994 0992 0.993 0994 099 0.996 0.995 0.994
0.993 0.980 0.988 0.990 0.993 0.995 0.996 0.996 0.996

Table 11: Correlation coefficient at ten permanent and nine comparison tide gauge
stations for November 11 to November 19, 1983. The first number corresponds to
the experiment with c¢p = 0.002 and the second number corresponds to the recovery
experiment.
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