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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the Manufacturing Engineering Society International Conference 
2017. 
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract 

The one-dimensional cutting stock problem describes the problem of cutting standard length stock material into various specified 
sizes while minimizing the material wasted (the remnant or drop as manufacturing terms). This computationally complex 
optimization problem has many manufacturing applications. One-dimensional cutting stock problems arise in many domains such 
as metal, paper, textile, and wood. To solve it, the problem is formulated as an integer linear model first, and then solved using a 
common optimizer software. This paper revisits the stochastic version of the problem and proposes a priority-based goal 
programming approach. Monte Carlo simulation is used to simulate several likely inventory order policies to minimize the total 
number of shortages, overages, and the number of stocks carried in inventory. 
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1. Introduction 

The one-dimensional cutting stock problem appears in many industrial applications. This classic problem was first 
proposed by Gilmore and Gomory [1, 2]. Due to its high applicability in manufacturing, this problem is discussed 
frequently in the literature. Dikili and Barlas [3] encounter it in a small shipyard, Stadtler [4] in the aluminum industry, 
Lefrancois and Gascon [5] in a small manufacturing company, Atkin and Ozdemir [6] in coronary stent manufacturing, 
Benjaoran and Bhokha [7] in construction steel bar manufacturing, Zanarini [8] in the rubber mold industry, Sculli [9] 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Procedia Manufacturing 00 (2018) 000–000  
www.elsevier.com/locate/procedia 

 

2351-9789 © 2018 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the scientific committee of the 28th Flexible Automation and Intelligent Manufacturing (FAIM2018) 
Conference.  

28th International Conference on Flexible Automation and Intelligent Manufacturing 
(FAIM2018), June 11-14, 2018, Columbus, OH, USA 

Evaluation of procurement scenarios in one-dimensional cutting 
stock problem with a random demand mix 

Hüseyin Sarpera and Nebojsa I. Jaksicb,* 

aBatten College of Engineering & Technology, Old Dominion University, Norfolk, VA 23529, USA 
bDepartment of Engineering, Colorado State University – Pueblo, Pueblo, CO 81001, USA 

Abstract 

The one-dimensional cutting stock problem describes the problem of cutting standard length stock material into various specified 
sizes while minimizing the material wasted (the remnant or drop as manufacturing terms). This computationally complex 
optimization problem has many manufacturing applications. One-dimensional cutting stock problems arise in many domains such 
as metal, paper, textile, and wood. To solve it, the problem is formulated as an integer linear model first, and then solved using a 
common optimizer software. This paper revisits the stochastic version of the problem and proposes a priority-based goal 
programming approach. Monte Carlo simulation is used to simulate several likely inventory order policies to minimize the total 
number of shortages, overages, and the number of stocks carried in inventory. 
 
© 2018 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the scientific committee of the 28th Flexible Automation and Intelligent Manufacturing 
(FAIM2018) Conference. 

Keywords: one-dimensional cutting stock problem, random demand mix, goal programming  

1. Introduction 

The one-dimensional cutting stock problem appears in many industrial applications. This classic problem was first 
proposed by Gilmore and Gomory [1, 2]. Due to its high applicability in manufacturing, this problem is discussed 
frequently in the literature. Dikili and Barlas [3] encounter it in a small shipyard, Stadtler [4] in the aluminum industry, 
Lefrancois and Gascon [5] in a small manufacturing company, Atkin and Ozdemir [6] in coronary stent manufacturing, 
Benjaoran and Bhokha [7] in construction steel bar manufacturing, Zanarini [8] in the rubber mold industry, Sculli [9] 

CrossMark 
Procedia 
MANUFACTURING 

ELSEVIER 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2018.10.134&domain=pdf


828 Hüseyin Sarper  et al. / Procedia Manufacturing 17 (2018) 827–834
2 Sarper and Jaksic/ Procedia Manufacturing  00 (2018) 000–000 

in manufacturing of isolation tapes, etc. While the majority of the published applications use known or deterministic 
demand, there are many notable cases where the demand is random or stochastic. The problem is often modified with 
additional objectives/constraints. For example, Filho et al [10] and Sinuany-Stern and Weiner [11] use two objectives, 
while Zanarini [8], Alem et al [12], and Beraldi et al [13] work with stochastic demands. Also, Scheithauer and Terno 
[14] proved that the problem possesses the modified integer round-up property while Wongprakornkul and 
Charnsethiku [15] solved the problem with discrete demands and the capacitated planning objective. 

Figure 1 below shows the simplest version of the one-dimensional cutting stock model using m cuts and n patterns. 
Input column vector Di represents the demand for each cut size i. Input matrix aij represents number of cuts size of 
type i that can be obtained from pattern j. Output variables Xj represent the number of stocks that should be cut 
according to pattern j. 
Nomenclature 

aij input matrix representing number of cuts size of type i that can be obtained from pattern j  
Di  demand for each cut size i  
Xj number of stocks that should be cut according to pattern j 

 

Minimize ∑ Xj

n

J=1
 

∑ aij ∗ Xj ≥  Di, ∀ i = 1, … , m
n

j=1
 

Xj ∈ integer ∀ j = 1, … , n 
[a] is a non − negative matrix 

Fig. 1. One-dimensional cutting stock model 

The model in Fig. 1 is linear with integer decision variables (X’s). The objective function expresses the obvious 
fact that minimizing the total number of stocks used is analogous to minimizing the total waste. The constraint set 
ensures that demand is met for each cut size. This model can be written out manually for a small problem and submitted 
to an optimizer software such as LINGO, but this quickly becomes impractical as the problem dimensions grow.  

A case study is discussed next using frog manufacturing for railroads. A frog is a device by which the rail at the 
turnout curve crosses the rail of the main track. Frog is a junction, but not a switch for changing tracks on rails. Frogs 
are manufactured by bending, drilling, grinding of rails various lengths (cuts) and then connecting these cuts by 
welding and/or bolting together into a final product. Fig. 2 shows a picture of an actual frog on a railroad. 

Fig. 2. A Railroad frog 
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Fig. 3 shows inventory of 80′ long rail stocks at the rail frog manufacturing facility in Pueblo, CO. At about $16/ft, 
steel rail is expensive and minimizing total remnant will result in lower frog manufacturing cost. Fig. 4 shows cutting 
of a rail to yield desired cut lengths. The facility was interested in minimizing total remnant and the associated 
inventory costs such as holding of excess incoming inventory, shortage, and overage of cuts needed for frog 
manufacturing. 

Fig. 3.  80′ Long rail stocks at the frog manufacturing facility yard 

2. Sample deterministic problem 

The five rail cut lengths the plant needs to construct frogs are 24' 0" (A), 29' 10 ½" (B), 36' 6 5/8" (C), 38' 3" (D), 
and 54' 7" (E). The plant buys 80′ long steel rails from a steel mill. The demand levels for each cut length are as 
follows: A: 64, B: 38, C: 61, D: 54, E: 42. 

Fig. 4. A Rail being cut into required lengths for use in frog manufacturing 

Sawing off operation results in a loss of about 0.40" of length due to the blade thickness. Table 1 below shows all 
11 possible and feasible patterns that yield the number of cuts of each type. Of course, many other possible patterns 
are not feasible and, therefore, are not considered. 
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Table 1. Feasible cutting pattern for the sample deterministic problem 

Patterns/ Cuts 24.04′ 
A 

29.91′ 
B 

36.59′ 
C 

38.28′ 
D 

54.61′ 
E 

Remnant 

1 0 0 0 2 0 3.44′ 

2 0 0 1 1 0 5.13′ 

3 0 0 2 0 0 6.82′ 

4 0 1 0 1 0 11.81′ 

5 0 1 1 0 0 13.50′ 

6 0 2 0 0 0 20.18′ 

7 1 0 0 0 1 1.35′ 

8 1 0 0 1 0 17.68′ 

9 1 0 1 0 0 19.37′ 

10 2 1 0 0 0 2.01′ 

11 3 0 0 0 0 7.88′ 

Demand (259 Total) 64 38 61 54 42  

  

Any pattern that results in a remnant that equals or exceeds the smallest cut size is not feasible. This problem is a 
simplified version of typical real problem that may have up to 24 cut lengths. Fig. 5 shows the LINGO version of the 
associated optimization model for the data in Table 1. The LINGO solution which implements the most elements of 
the column generation algorithm, is as follows: X1 = 13, X2 = 1, X3 = 30, X4 = 27, X7 =42, X10 = 11. X1 + X2 + 
X3 + X4 + X7 + X10 = 124 eighty foot long rails are needed to meet the demand with the total minimum waste or the 
remnant. The solution took 0.05 seconds. 
 

 
MODEL:  
Min = (X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10 + X11); 
0*X1 + 0*X2 + 0*X3 + 0*X4 + 0*X5 + 0*X6 + 1*X7 + 1*X8 + 1*X9 + 2*X10 + 3*X11 > 64; 
0*X1 + 0*X2 + 0*X3 + 1*X4 + 1*X5 + 2*X6 + 0*X7 + 0*X8 + 0*X9 + 1*X10 + 0*X11 > 38; 
0*X1 + 1*X2 + 2*X3 + 0*X4 + 1*X5 + 0*X6 + 0*X7 + 0*X8 + 1*X9 + 0*X10 + 0*X11 > 61; 
2*X1 + 1*X2 + 0*X3 + 1*X4 + 0*X5 + 0*X6 + 0*X7 + 1*X8 + 0*X9 + 0*X10 + 0*X11 > 54; 
0*X1 + 0*X2 + 0*X3 + 0*X4 + 0*X5 + 0*X6 + 1*X7 + 0*X8 + 0*X9 + 0*X10 + 0*X11 > 42; 
@GIN (X1);@GIN (X2);@GIN (X3);@GIN (X4);@GIN (X5);@GIN (X6);@GIN (X7); 
@GIN (X8);@GIN (X9);@GIN (X10);@GIN(X11); 
END 

 

Fig. 5.  Mathematical model for sample problem 1 (LINGO version) 

The rails are to be cut according to patterns 1, 2, 3, 4, 7, and 10 shown in Table 1. Demands for each of the 5 sizes 
are met as follows: 

 Number of 24.04′ long (A) cuts = 42 x 1 + 11 x 2 = 64;  
 Number of 29.91′ long (B) cuts = 27 x 1 + 11 x 1 = 38;  
 Number of 36.59′ long (C) cuts =   1 x 1 + 30 x 2 = 61 
 Number of 38.28′ long (D) cuts =   13 x 2 + 1 x 1 + 27 x 1 = 54 
 Number of 54.61′ long (E) cuts =   42 x 1 = 42. 

124 rails have a total length of 9920 feet. The actual length of the total number of frogs produced is 24.04 x 64 + 
29.91 x 38 + 36.59 x 61 + 38.28 x 54 + 54.61 x 42 = 9267.87″. The model in Fig. 5 has achieved a 93.4 % utilization.  
Utilization tends to approach 99% if more cut sizes are considered in the demand mix. The demand mix was met 
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exactly with no shortages or overages. The deterministic model can, at times, result in few extras of certain cuts. If 
the plant operates on fixed long term contract with its customers that need frogs for regular railroad maintenance, the 
deterministic model is adequate. However, this is often not the case. 

3. Stochastic extension 

Demand is not always known in advance with certainty in many realistic manufacturing situations. Instead, a 
manufacturer has an idea what the demand for each item can be based on historical evidence and other experience as 
is the case in this actual application. For example, the demand for the next planning period may be a normal random 
variable for each of the five cuts with the mean values shown in Table 1. For illustration purposes, a standard deviation 
is added to each demand: A(64,7), B(38, 5), C(61,6), D(54,8) and E(42,6). Table 2 shows a sample of many possible 
ways the actual demand may be realized as the manufacturing period starts. These values were randomly drawn using 
independent normal random variate generator formula of Excel. Ordering of the stock is an inventory problem with a 
lead time. In other words, the manufacturer cannot wait to find out the exact demand mix before placing the order. 
Ordering exactly 124 units of 80′ rail stock as in the deterministic case above may have two main consequences: 

1) The actual demand may not be met resulting in shortages that cause loss of revenue and customer goodwill, 
2) The demand mix may turn out lower than expected causing overages and excess stock inventory being 

carried. This results in additional inventory and storage costs. 
The total number of cuts in Table 2 is the sum of the five normal variables and is itself a normal variable with a 

mean of 259 and standard deviation of 14.5. This information, however, is not helpful because each cut size is a 
distinct product albeit being cut from the same stock. If the demand mix is random, it is not possible to be certain that 
demand will always be met. Instead, the decision maker may consider probability that demand for each cut type will 
be met as follows: 

P (X7 + X8 + X9 + 2X10 + 3X11 ≥ 64) ≥ PA;   P (X4 + X5 + X6 + X10 ≥ 38) ≥ PB 
P (X2 + 2X3 + X5 + X9 ≥ 61) ≥   PC; P (X1 + X2 +X4 + X8 ≥ 54) ≥ PD ; P (X7 ≥ 42) ≥ PE 
Where the right side probabilities (PA, PB, PC, PD, and PE) are around 0.95 or higher in typical production 

planning processes with random demands. In addition, there may be an overall probability of meeting all five cut size 
demands simultaneously: P  ≥  0.90 where P = PA  * PB *  PC *  PD   *  PE.  Given these requirements, one can 
consider the chance-constrained approach of stochastic programming, but the structure of the model in Fig. 1 does not 
fit well to the chance-constrained approach. Instead, an approach akin to more formal two-stage stochastic 
programming is proposed as a part of a prioritized goal programming methodology. 

4. Goal programming (GP) 

GP is an extension to more common linear programming. GP permits multiple objectives (goals) and soft (goal) 
constraints that allow for tradeoffs. Typically, goals set by management can be achieved only at the expense of other 
goals. A hierarchy of importance needs to be established so that higher-priority goals are satisfied before lower-priority 
goals are addressed. It is not always possible to satisfy every goal so GP attempts to reach a satisfactory level of 
multiple objectives. GP tries to minimize the deviations between goals and what we can actually achieve within the 
given constraints. GP may be used to solve linear programs with multiple objectives, with each objective viewed as a 
"goal". In GP, di

+ and di
- , deviation variables, are the amounts a targeted goal i is overachieved or underachieved, 

respectively. The goals themselves are added to the constraint set with di
+ and di

- acting as the surplus and slack 
variables. One approach to goal programming is to satisfy goals in a priority sequence. Second-priority goals are 
pursued without reducing the first-priority goals. 

The GP model in Fig. 6 expands the original model in Fig. 1 for the second demand iteration in Table 2 using the 
scenario of ordering 124 rails. The GP model minimizes the overall shortage across all cut types as the priority 1. 
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. Model; 
Title FIVE CUT PROBLEM AFTER DEMAND LEVELS REALIZED; 
; 
Min = Shortage_POS_DEVIATION ; 
; 
! PRIOR SOLUTION OF THE DETERMINISTIC EQUIVALENT MODEL RESULTS IN THE NUMBER OF STOCKS 
TO ORDER; 
STOCKS_ORDERED = 124; 
! 
! DEMAND for each cut type is now realized; 
Demand_A =73; 
Demand_B = 42; 
Demand_C = 56; 
Demand_D = 58; 
Demand_E = 51; 
! 
! PRIOR PATTERN CONSTRAINTS ARE NOW GOAL PROGRAMMING LIKE EQUALITIES; 
0*X1 + 0*X2 + 0*X3 + 0*X4 + 0*X5 + 0*X6 + 1*X7 + 1*X8 + 1*X9 + 2*X10 + 3* X11 + Type_A_Shortage - 
Type_A_Overage - Demand_A = 0; 
0*X1 + 0*X2 + 0*X3 + 1*X4 + 1*X5 + 2*X6 + 0*X7 + 0*X8 + 0*X9 + 1*X10 + 0* X11 + Type_B_Shortage - 
Type_B_Overage - Demand_B = 0; 
0*X1 + 1*X2 + 2*X3 + 0*X4 + 1*X5 + 0*X6 + 0*X7 + 0*X8 + 1*X9 + 0*X10 + 0* X11 + Type_C_Shortage - 
Type_C_Overage - Demand_C = 0; 
2*X1 + 1*X2 + 0*X3 + 1*X4 + 0*X5 + 0*X6 + 0*X7 + 1*X8 + 0*X9 + 0*X10 + 0* X11 + Type_D_Shortage - 
Type_D_Overage - Demand_D = 0; 
0*X1 + 0*X2 + 0*X3 + 0*X4 + 0*X5 + 0*X6 + 1*X7 + 0*X8 + 0*X9 + 0*X10 + 0* X11 + Type_E_Shortage - 
Type_E_Overage - Demand_E = 0; 
! Calculate the number of cuts produced; 
0*X1 + 0*X2 + 0*X3 + 0*X4 + 0*X5 + 0*X6 + 1*X7 + 1*X8 + 1*X9 + 2*X10 + 3* X11 - Type_A_Produced = 0; 
0*X1 + 0*X2 + 0*X3 + 1*X4 + 1*X5 + 2*X6 + 0*X7 + 0*X8 + 0*X9 + 1*X10 + 0* X11 - Type_B_Produced = 0; 
0*X1 + 1*X2 + 2*X3 + 0*X4 + 1*X5 + 0*X6 + 0*X7 + 0*X8 + 1*X9 + 0*X10 + 0* X11 - Type_C_Produced = 0; 
2*X1 + 1*X2 + 0*X3 + 1*X4 + 0*X5 + 0*X6 + 0*X7 + 1*X8 + 0*X9 + 0*X10 + 0* X11 - Type_D_Produced = 0; 
0*X1 + 0*X2 + 0*X3 + 0*X4 + 0*X5 + 0*X6 + 1*X7 + 0*X8 + 0*X9 + 0*X10 + 0* X11 - Type_E_Produced = 0; 
! 
Calculate total number of shortages and overages; 
Type_A_Shortage + Type_B_Shortage + Type_C_Shortage + Type_D_Shortage + Type_E_Shortage - Total_Shortage = 0; 
Total_Shortage + Shortage_NEG_DEVIATION - Shortage_POS_DEVIATION = 0;  
Type_A_Overage + Type_B_Overage + Type_C_Overage + Type_D_Overage + Type_E_Overage - Total_Overage = 0;  
Total_Overage + Overage_NEG_DEVIATION - Overage_POS_DEVIATION = 0;  
! 
! Not all stocks should be used if the realized demand is less, but no additional stocks are available; 
STOCKS_USED - STOCKS_ORDERED < = 0; 
! Calculate the actual number of stocks used; 
X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10 + X11 - STOCKS_USED = 0; 
! Calculate the number of unused stocks, if any; 
STOCKS_USED + STOCKS_CARRIED - STOCKS_ORDERED = 0; 
! Decision variables must be integers; 
@GIN(x1);@GIN(x2); @GIN(x3); @GIN(x4); @GIN(x5);@GIN(x6);@GIN(x7);@GIN(X8); @GIN(X9); @GIN(X10); 
@GIN(X11); 
END; 

Fig. 6.  Priority 1 goal programming model to minimize total shortage 

If the overall shortage is achieved as zero by having Shortage_POS_DEVIATION = 0 as an output, priority 2 
model is formulated with a new objective function expression of “Min=Overage_POS_DEVIATION”. 
“Shortage_POS_DEVIATION = 0” becomes a new constraint. If the minimum possible shortage is non-zero, priority 
2 model is not applied because there will be no overage to minimize. Tables 2 and 3 use the same random demand 
mixes and show several iterations using GP for two stock order scenarios. In each simulation iteration with a randomly 
drawn demand mix, the one-dimensional cutting stock GP model is first solved to minimize positive deviation of 
shortage from the goal of zero shortage.   
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Table 2. Monte-Carlo simulation of the model using goal programming (order = 124) 
Iteration A B C D E Total 

Demand 
Total 

Shortage 
Total 

Overage 
Stocks 
Carried 

1 68 37 57 53 40 255 0 7 then 0 0 then 2 

2 73 42 56 58 51 280 14 0 0 

3 50 32 71 59 59 212 19 0 0 

. . . . . . .    

26 67 39 59 61 40 266 3 0 0 

27 60 34 59 66 46 265 7 0 0 

. . . . . . .    

60 52 40 66 55 49 262 9 0 0 

. . . . . . .    

99 64 35 51 56 45 251 0 7 then 0 0 then 3 

100 73 33 69 47 38 260 0 6 then 0 0 then 2 

Table 3. Monte-Carlo simulation of the model using goal programming (order = 137) 

Iteration A B C D E Total 
Demand 

Total 
Shortage 

Total 
Overage 

Stocks 
Carried 

1 68 37 57 53 40 255 0 22 then 0 0 then 15 

2 73 42 56 58 51 280 0 5 then 0 0 then 2 

3 50 32 71 59 59 212 3 0 0 

. . . . . . .    

26 67 39 59 61 40 266 0 22 then 0 0 then 10 

27 60 34 59 66 46 265 0 32 then 0 0 then 8 

. . . . . . .    

60 52 40 66 55 49 262 0 13 then 0 0 then 6 

. . . . . . .    

99 64 35 51 56 45 251 0 23 then 0 0 then 16 

100 73 33 69 47 38 260 0 41 then 0 0 then 15 

 
Iteration 1 in Table 2 has achieved zero total shortage and produced 7 extra cuts by using all 124 rails. Priority 2 

model reduces overage to zero with a new Xj decision vector and carries on two rails for future use. Iteration 2 with a 
higher total demand already results in a total shortage of 14 cuts and the priority 2 model is not used. Table 3 shows 
only one shortage event because of larger order size of 137 rails. More stocks become unneeded and are carried on 
for future use increasing inventory-holding costs. Figure 7 shows the distribution of shortages for two scenarios, (a) 
124 and (b) 128 rails. The decision maker(s) would weigh the likelihood of shortages and the number of stocks carried 
in making an order decision. 
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a b 
Fig. 7.  Simulated shortage distribution for ordering of (a) 124 rails and (b) 128 rails 

5. Conclusions and recommendations  

This paper has proposed an easy to implement GP based methodology to solve the one-dimensional cutting stock 
problem with a random demand mix. The methodology can evaluate effects of various raw material order levels to 
account for demand randomness at the time of order. This is done by first minimizing shortage and then minimizing 
overage. The procedure favors carrying uncut stock over having unneeded cuts. The procedure was accepted by the 
management and used at the facility. 
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