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ABSTRACT

THE OBSERVATION, MODELING, AND RETRIEVAL OF BIO-OPTICAL 
PROPERTIES FOR COASTAL WATERS OF THE SOUTHERN CHESAPEAKE BAY

Xiaoju Pan 
Old Dominion University, 2007 

Director: Dr. Richard C. Zimmerman

The primary purpose o f this study was to develop an inverse method to retrieve 

the inherent optical properties (IOPs) and biogeochemical parameters (e.g. chlorophyll a 

concentration and salinity) appropriate to monitor the water quality and biogeochemical 

processes from remote sensing o f the coastal waters in the southern Chesapeake Bay and 

coastal Mid-Atlantic Bight region (MAB) dominated by Case 2 waters. For this purpose, 

knowledge o f the relationship between remote sensing reflectance (Rrs) and IOPs and the 

effect from bottom reflectance on Rrs, is required.

A substantial investigation o f IOPs has been conducted for the coastal waters of 

the southern Chesapeake Bay. Although phytoplankton are the dominant contributors to 

IOPs o f oceanic Case 1 waters, colored dissolved organic matter (CDOM) derived from 

non-phytoplankton sources and sedimentary particles also play very important roles in 

coastal Case 2 waters. Strongly influenced by riverine discharge, the shallow coastal 

waters o f the southern Chesapeake Bay provide challenges and opportunities to develop 

regionally specific IOP retrieval methods from remotely sensed ocean color imagery.

A semi-analytical radiative transfer model (PZ06_EJ), based on the analysis o f the 

simulated results o f an exact radiative transfer model, Hydrolight® [Mobley, 1994], was 

developed to estimate the vertical distribution o f downwelling plane irradiance [E(i(z)\
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from IOPs and sky conditions (e.g. cloud coverage and solar zenith angle). Compared to 

the significant overestimation o f the simple Gordon [1989] model for particle-rich 

environments, PZ06_£rf agreed with Hydrolight®  with < 6% o f the root-mean-square 

(RMS) error. Field observations from the coastal waters o f the southern Chesapeake Bay 

validated the predictions o f PZ06_£rf with RMS error from 10% to 14%. The SeaWiFS 

imagery o f  the diffuse attenuation coefficient (Kd) estimated from PZO6_Ed is 

significantly improved from the Mueller [2000] model and displays obviously the coastal 

processes in the lower MAB, including the riverine outflow from the Chesapeake Bay 

and the mixing o f the Gulf Stream with the local waters.

The quadratic model (e.g. GSM01) describing Rrs and IOPs has been widely used 

in bio-optics to retrieve inherent optical properties (IOPs). In this study, the derived 

coefficients (// and 12) by Gordon et al. [1988] were re-evaluated from Hydrolight®  

simulations and incorporated into a semi-analytical radiative transfer model (PZ06_R„) 

that included bottom effects for optically shallow waters. Compared with Hydrolight® 

simulations and field observations in the Chesapeake Light Tower (CLT), Rrs calculated 

from PZ06_R„ typically agreed within 5% and about 7% to 13% o f RMS, respectively. 

Hydrolight® simulations and field observations also confirmed that PZ06_R„ improved 

the retrieval o f biogeochemical-related parameters, including [Chi], adg(443), and 

bbP{442>), compared to global ocean color algorithms (e.g. OC3M) and semi-analytic 

models without considering the bottom effects (e.g. GSM01-CLT).

Finally, the relatively successful inverse modeling provides a promising method 

to study ecosystem-level biogeochemical and physical parameters from remote sensing 

for coastal waters o f  southern Chesapeake Bay and even lower MAB.
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1

CHAPTER 1 

INTRODUCTION

Since the launch of the Coastal Zone Color Scanner (CZCS) in 1978, satellites 

such as Sea-viewing Wide-Field-of-view Sensor (SeaWiFS), MODerate-resolution 

Imaging Spectrometer (MODIS), and Global Imager (GLI), have revolutionized our 

ability to exploit ocean color in the study o f water quality and biogeochemical processes 

[IOCCG, 1999, 2000]. Compared to the traditional shipboard investigations, space-borne 

remote sensing provides synoptic data and excellent spatial coverage, even for remote 

sites (e.g. the Arctic) [IOCCG, 1999, 2000; Kirk, 1994; Martin, 2004; Robinson, 2004]. 

This technology, however, is limited by accuracy level o f the retrieved products and poor 

knowledge o f the derived in-water properties [IOCCG, 1999, 2000; Kirk, 1994; Martin, 

2004].1

Instead o f recording the in-water properties directly, space-bome sensors estimate 

spectral radiometric quantities, such as total upward radiance [Lt(X)\ and downwelling 

plane irradiance [Ed{X)} (notations used in this study are also shown on Table 1.1; for 

simplicity, the wavelength symbol, X, will be omitted), from which important 

biogeochemical properties (e.g. chlorophyll a concentration and suspended particulate 

matter concentration) can be retrieved through empirical or semi-analytic (SA) models 

[Albert and Gege, 2006; Garver and Siegel, 1997; Gordon, 1989; Gordon et al., 1988; 

IOCCG, 1999, 2000; Kirk, 1994; Lee et al., 1998, 1999; Maritonera et al., 2002; Martin, 

2004; Mobley, 1994; O ’Reilly et al., 1998, 2000; Robinson, 2004; Siegel et al., 2000].

This dissertation follows the style of Journal of Geophysical Research (Ocean).
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Downwelling plane irradiance (Ed) is derived simply from direct solar beam and 

diffuse sky radiation [Martin, 2004; Mobley, 1994; Robinson, 2004]. Total upward 

radiance (Lt), however, consists o f water-leaving radiance (Lw), in addition to the 

atmospheric components contributed from Rayleigh scattering (Lr), aerosol scattering 

(La), Rayleigh-aerosol interaction (Lra), Sun glint (Lg), and white caps from ocean waves 

(Lwc) [Gordon, 1997; Gordon and Wang, 1994a, 1994b; Martin, 2004; Robinson, 2004; 

Siegel et al., 2000; Wang, 1999, 2006; Wang and Bailey, 2001; Wang et al., 2001]:

Lt — L Z “h L + tL *4“ tL tL (1.11l  r  a  ra w c g  w  V A • A /

where t represents the atmospheric diffuse transmittance factor accounting for the 

radiance propagation from the sea surface to the sensors. Except for Lw, the other terms in 

the right side o f Eq. (1.1) represent atmospheric contamination o f the oceanic signal from 

aerosol scattering that produces over 90% of L, at the top o f the atmosphere (TOA) 

[Martin, 2004; Robinson, 2004]. The processes o f atmospheric correction by theoretical 

and statistical estimates are not the focus o f this study, but can be found in many sources 

[Gordon, 1997, 1999, 2003, 2005; Gordon and Wang, 1994a, 1994b; Siegel et al., 2000; 

Wang, 1999, 2006; Wang and Bailey, 2001; Wang et al., 2001] or NASA Ocean Color 

website ('http://oceancolor.gsfc.nasa.gov/VALIDATION/atm.html).

The relationship between remotely sensed ocean color and water quality is 

complicated by a number o f issues, including the fact that Lw represents < 10% of L, 

observed from space. A beam of light propagating through the water is altered by 

absorption (a) and scattering (b) from four components: water molecules, phytoplankton, 

colored dissolved organic matter (CDOM), and suspended non-pigmented particles 

[Mobley, 1994]. Knowledge of these inherent optical properties (IOPs) forms the basis
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3

for understanding the geometric and spectral distribution o f light within the water column 

and its impact on Lw. Except for pure water, whose absorption (aw) and scattering (bw) 

spectra are well defined functions o f temperature and salinity [Pope and Fry, 1997; Smith 

and Baker, 1981], the absorption and scattering from phytoplankton, CDOM, and non- 

pigmented particles are highly variable in time and space, especially in coastal waters 

where they often result from riverine discharge and sedimentary resuspension [Babin et 

al., 2003a, 2003b; Bricaud et al., 1995, 1998; DeGrandpre et al., 1996; Gordon and 

Morel, 1983; Harding et al., 2005; Johnson et al., 2001; Kirk, 1994; Kowalczuk, 1999; 

Mobley, 1994; O ’Reilly and Zetlin, 1998; Rochelle-Newall and Fisher, 2002]. There are 

two kinds o f scattering: density fluctuation scattering and particle scattering [Kirk, 1994]. 

In general, CDOM does not occur in high enough concentration to affect the density 

fluctuation o f water and is too small to contribute to particle scattering.

This study focused on the relationships between ocean color and the optical 

properties o f coastal waters o f the southern Chesapeake Bay. Unlike oceanic Case 1 

waters in which phytoplankton and their degradation products, in addition to pure water, 

are primarily responsible for light absorption and scattering, this coastal area is 

characterized by Case 2 waters in which terrestrially derived and/or resuspended CDOM 

and sediment typically have stronger effects on absorption and scattering than 

phytoplankton [Babin et al., 2003a, 2003b; Boss et a l ,  2001a, 2001b, 2004; Bricaud et 

al., 1995, 1998; Carder et al., 1989; Gordon and Morel, 1983; Harding et a l ,  2005; 

IOCCG, 2000; Johnson et al., 2001; Kirk, 1994; Kowalczuk, 1999; Loisel and Morel, 

1998; Mobley, 1994; Magnuson et al., 2004; Rochelle-Newall and Fisher, 2002]. 

Therefore, the first purpose o f this study was to investigate the inherent optical properties

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .
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(IOPs) and develop regionally specific algorithms to retrieve IOPs from ocean color for 

this coastal region (Chapter 2).

The Case 2 environments characterized by estuarine and coastal waters represent 

only 8% o f ocean surface, but they support more than 60% o f human population, produce 

~ 90% o f world fish catch, and receive 75 to 90% o f global suspended river load [IOCCG, 

2000; Martin, 2004]. The Chesapeake Bay, the largest estuary in the United States, is 

over 190 miles long and 15 miles wide (average), and drains a heavily populated region 

o f ~ 16 million people living in the states o f New York, Pennsylvania, Delaware, 

Maryland, Virginia, and West Virginia, and also the District o f Columbia 

(http://www.chesapeakebav.netf The Chesapeake Bay is also one o f the most productive 

and diverse estuaries in the world, supporting over 2700 species o f plants and animals 

(http://www.cbl.umces.edu/Education/BavInfo.htmlf However, estuaries like the 

Chesapeake Bay are also vulnerable to human activity, including resource extraction (e.g. 

fishing) nutrient and sediment loading from agriculture development, and natural 

disasters (e.g. hurricanes and global warming) [Bush, 2000; Harding, 1994; Martin, 2004; 

Robinson, 2004]. The creation o f tools that improve the ability o f remote sensing 

technology to monitor the water quality and biogeochemical processes throughout the 

Chesapeake Bay and its nearby continental margin will help protect and improve human 

life and environmental sustainability, and help provide insights into long-term global 

change [Martin, 2004; Robinson, 2004].

Unlike oceanic Case 1 waters in which empirical and semi-analytic (SA) models 

have proven relatively successful in retrieving the biogeochemical parameters (e.g. 

concentrations o f chlorophyll, CDOM, and sediments), the remote sensing algorithms are
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much less reliable in Case 2 waters [Garver and Siegel, 1997; Harding et al., 2005; 

IOCCG, 2000; Lee et al., 1998, 1999; Magnuson et al., 2004; Maritorena et al., 2002; 

O ’Reilly et al., 1998, 2000]. In addition to complex IOP conditions, many coastal regions 

also contain important optically shallow areas that support benthic vegetation, reef 

building organisms, and other habitat features. Compared to optically deep waters (which 

are, in practice, defined as those sites in which < 10% o f surface Ed reaches the bottom 

and thus makes an insignificant contribution to Lw), optically shallow waters are these in 

which bottom reflectance has a significant effect on Lw [Dierssen et al., 2003; IOCCG, 

2000; Mobley, 1994; Voss et a l, 2003; Wittlinger, 2002; Zimmerman, 2003], If  the effect 

o f bottom reflectance is not accounted for in optically shallow environments, the 

retrievals o f IOPs and biogeochemical parameters by the empirical or semi-analytic 

models can be seriously overestimated. Figure 1.1 shows an example o f the spatial 

distribution o f chlorophyll a concentration ([Chi]) derived from OC4V4 global ocean 

color algorithm [O ’Reilly et al., 1998, 2000] from SeaWiFS imagery for tropical waters, 

in which the seagrass meadows and reef-like structures are mis-interpreted as high 

phytoplankton chlorophyll concentration by very high bottom reflectance (Rb) from 

carbonate sediments. Thus, the second purpose o f this study was to develop relatively 

simple radiative transfer approaches that would be valid for both oceanic Case 1 waters 

and complex Case 2 waters, as well as optically shallow environments that can be 

inverted to retrieve the important IOPs and biogeochemical parameters from remotely 

sensed ocean color (Chapters 3 and 4).
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Figure 1.1. SeaWiFS spatial distribution o f [Chi] for tropical waters. This monthly 
(January 2006) average image using the OC4V4 algorithm for the tropical waters 
surrounding Florida, the Bahamas, and Cuba was obtained from NASA Goddard Space 
Flight Center (GSFC) based on the GES-DISC Interactive Online Visualization and 
ANalysis Infrastructure (Giovanni; http ://reason. gsfc.nasa. gov/OPS/Giovannil.

Although exact radiative transfer models (RTMs), that calculate the fate of 

photons traveling through natural waters using statistical model (e.g. Monte Carlo 

simulations) or employ mathematically sophisticated invariant imbedding techniques 

based on the Racciti matrix equation (e.g. Hydrolight®; Mobley, 1994) to provide exact 

solutions o f radiative transfer equations, are powerful for forward modeling to predict the 

above and submarine light field including remote sensing reflectance (Rrs) and diffuse 

attenuation coefficient (Kd) from IOPs, they can not be inverted to determine IOPs from
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Rrs and Lw [Kirk, 1994; Mobley, 1994]. One approach to overcome this deficiency has 

been to build complete look-up-tables (LUTs) that relate the parameters such as Rrs and 

Kd to IOPs and atmospheric parameters (e.g. solar zenith angle, wind speed, and cloud 

coverage) [Lee et al., 2005; Liu et al., 2002; Mobley et al., 2005]. This approach, 

however, is not without its drawbacks. The tables are extremely tedious to compile, but 

more importantly, they are vulnerable to the non-unique solutions. Radiative transfer 

approaches, based on the analysis o f the results o f Hydrolight® [Mobley, 1994] 

simulations and adopting two-flow model and asymptotic theory, provide more 

approximate solutions that are less exact than the analytical approach o f the exact RTMs, 

but they are amenable to inversion to solve for water quality parameters (e.g. [Chi] and 

IOPs). The problem is to develop radiative transfer approaches that are sufficiently 

accurate and robust, yet remain amenable to inversion.

Chapter 2 discusses the variation o f IOPs and the bio-optical algorithms for the 

coastal waters o f  the southern Chesapeake Bay. The application o f these regionally 

specific relationships to retrieve satellite remote sensing products was also assessed. 

Chapter 3 discusses a radiative transfer approach (PZ06_Ed) that predicts the vertical 

distribution o f downwelling plane irradiance [E^z)] from IOPs and atmospheric 

conditions, which is important to estimate Ed reaching the sea-floor and being reflected to 

contribute to Lw and Rrs- Chapter 4 discusses another radiative transfer approach 

(PZ06_Rrs) that predicts Rrs from IOPs in both optically deep and shallow water 

conditions, and assesses its inversion ability to retrieve important water quality and 

biogeochemical parameters. Finally, a conclusion and future work adoptable from this 

study are presented in Chapter 5.
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Table 1.1. Definitions, symbols, and units o f notations used in this study
Definitions_______________________________________ Symbols Units
Radiometric quantities

Plane irradiance E
downwelling plane irradiance Ed
upwelling plane irradiance Eu
fraction o f directly solar beam fdirect

Upwelling radiance Lu
water-leaving radiance Lw
upwelling radiance from bottom reflectance L„b

Totally upward radiance leaving from the water L,
Sky radiance LSky

Rayleigh scattering Lr
aerosol scattering La
Rayleigh-aerosol interaction Lm
sun glint Lg
white capping effect Lwc
fraction o f LSkylLt p

W m '2 nm"1 
W m"2 nm '1 
W m '2 nm '1 
dimensionless 
W m '2 nm '1 sr' 
W m '2 nm '1 sr 
W m '2 nm '1 sr' 
W m '2 nm '1 sr' 
W m '2 nm '1 sr' 
W m '2 nm '1 sr'9 1W m’ nm' sr' 
W m '2 nm '1 sr' 
W m '2 nm '1 sr' 
W m '2 nm '1 sr' 
dimensionless

Absorption coefficient a m '1
water dw m '1
phytoplankton @ph m '1
colored dissolved organic matter (CDOM) ag m '1
non-pigmented particles ad m '1
particles dp m '1
CDOM + particle dpg m '1
CDOM + non-pigmented particles ddgjf m '1

m2 m g'1chlorophyll-specific phytoplankton absorption &ph
Scattering coefficient b m '1

water bw m '1
particles bp m '1

Backscattering coefficient bb m '1
water bbw m '1
particles bbp m '1

Beam attenuation coefficient c m '1
Beam optical depth (= cz) € dimensionless
Single scattering albedo (b/c) COo dimensionless

Apparent Optical Properties (AOPs)
Average cosine M dimensionless

downwelling plane irradiance Md dimensionless

upwelling plane irradiance dimensionless

incident solar light below the surface Mw dimensionless
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Table 1.1. continued.
Definitions Symbols Units

Irradiance reflectance R dimensionless
bottom reflectance R b dimensionless

Remote sensing reflectance Rrs sr'1
Diffuse attenuation coefficient K m '1

downwelling plane irradiance Kd m '1
upwelling plane irradiance Ku m '1
upwelling radiance KLu m '1

Transmittance factor across from water to air T dimensionless
Atmospheric diffuse transmittance factor t dimensionless
Bidirectional function Q sr

Fundamental quantities
Chlorophyll a concentration [Chi] mg m'
Wavelength in vacuum X nm
Water depth z m

maximum water depth H m
asymptotic depth 00 m

Zenith angle e degree
solar zenith angle in air es degree
solar zenith angle below the surface 6W degree
sensor zenith angle in air ev degree
sensor zenith angle below the surface dr degree

Regression coefficients
Coefficient concerned with ^diffuse Ao, Ai dimensionless
Coefficient concerned with P Bo, Bi dimensionless
Coefficient concerned with Kn(<x>) Do, Dj dimensionless
Coefficient concerned with /diffuse go, gl dimensionless
Quadratic equation for Rrs vs. b y  (a + b y h ,h -isr
Exponential slope describing vertical change o f K d P dimensionless

nm '1
nm '1

Exponential decay factor S
CDOM Ss
non-pigmented particles Sd nm '1

nm '1CDOM + non-pigmented particles Sdg
Power slope describing scattering or backscattering y dimensionless
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CHAPTER 2 

INHERENT OPTICAL PROPERTIES FOR COASTAL WATERS OF THE 

SOUTHERN CHESAPEAKE BAY

2.1. Background

The knowledge o f in-water inherent optical properties (IOPs) is essential for 

making biogeochemical inferences from ocean color [Garver and Siegel, 1997; Gordon 

et al, 1988; Kirk, 1994; Lee et al., 1998, 1999; Maritorena et al., 2002; Martin, 2004; 

Mobley, 1994; Morel and Maritorena, 2001; Reynolds et al., 2001; Robinson, 2004]. The 

relevant IOPs include absorption (a) and scattering (b) from four basic components: pure 

water, pigmented phytoplankton, non-pigmented particles, and colored dissolved organic 

matter (CDOM) [Mobley, 1994]. IOPs co-vary with chlorophyll a concentration ([Chi]) 

strongly in oceanic Case 1 waters, but relatively weakly in Case 2 waters due to strong 

contributions o f CDOM and sedimentary particles from riverine discharge and/or 

sedimentary resuspension [Babin et al., 2003a, 2003b; Boss et al., 2001a, 2001b, 2003; 

Bricaud et al., 1995, 1998; Carder et al., 1989; Gordon and Morel, 1983; Gould et al., 

1999; Harding et al., 2005; IOCCG, 2000; Johnson et al., 2001; Kirk, 1994; Kowalczuk, 

1999; Loisel and Morel, 1998; Magnuson et al., 2004; Mobley, 1994; Morel and 

Maritorena, 2001; Rochelle-Newall and Fisher, 2002].

The IOPs o f Case 2 waters are poorly documented compared to the data sets for 

Case 1 waters. We do not know, for example, how differences in the taxonomic 

composition o f phytoplankton populations contribute to the observed difference in 

phytoplankton absorption between Case 1 and Case 2 waters, or among different regions
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characterized by Case 2 waters. Also we do not know whether the general exponential 

trends for absorption by CDOM or non-pigmented particles derived from Case 1 waters 

are valid in Case 2 waters. Further, the general decay trends for scattering and 

backscattering have not been extensively investigated in Case 2 environments, and the 

backscattering ratio (b jb ) has been largely neglected. A predictive understanding o f these 

relationships will be critical to the development o f reliable algorithms for Case 2 waters, 

and for understanding the optical bases for regional and temporal differences.

Clearly, a global understanding o f the optical properties o f Case 2 waters cannot 

be achieved from a single regional study. However, the development o f  robust regional 

algorithms will be required before a global synthesis can be attempted. The Chesapeake 

Bay represents the largest estuary in North America, and its riverine discharge impacts 

the coastal environment o f the entire Middle Atlantic Bight (MAB) [Mann and Lazier, 

1996; O ’Reilly and Zetlin, 1998]. Consequently, understanding the optical properties o f 

the coastal region o f the southern Chesapeake Bay is important to exploit remote sensing 

tools in the analysis o f coastal waters. The main objective o f this chapter was to develop 

regional algorithms appropriate to retrieve biogeochemical characteristics o f the southern 

Chesapeake Bay from remotely sensed imagery.

2.2. Methods

2.2.1 Study region and experience cruises

Bio-optical observations were conducted along Virginia/North Carolina coast and 

the southern Chesapeake Bay (Figure 2.1). The shallow waters o f this largest estuary in 

North America are characterized by periodic freshwater outflow plumes and strong
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sedimentary resuspension [Acker et al., 2005; Harding, 1994; Johnson et al., 2001; 

O ’Reilly and Zetlin, 1998]. The volume o f riverine outflow from Chesapeake Bay sets up 

a seaward surface flow and a landward subsurface flow that accounts for much o f the 

inter-annual salinity variation in the Middle Atlantic Bight [Acker et al., 2005; Boucourt, 

1981; Harding, 1994; Johnson, 2001; Mann and Lazier, 1996; O ’Reilly and Zetlin, 1998; 

Rennie et al., 1999]. Historical records confirmed that the Chesapeake Bay outflow 

plume frequently extends beyond the Chesapeake Light Tower (CLT, Figure 2.1) during 

wet seasons (e.g. February and September) but rarely in dry seasons (e.g. July and August) 

[Arnone and Gallacher, 1996; Austin, 2002]. The forces o f freshwater run-off and 

semidiurnal tidal mixing combine with shallow bathymetric features to create a primary 

frontal zone from inside the estuary along the Chesapeake Channel to Cape Henry and 

along the coastal margins o f Virginia and North Carolina [Acker et al., 2005; Chang and 

Dickey, 2001; Chang et al., 2002; Harding, 1994; Harding et al., 2005; Mann and Lazier, 

1996; Sletten et a l ,  1999]. Thus, water types (Case 1 vs. Case 2) vary in their degree of 

freshwater domination depending upon season (wet vs. dry) and proximity to the rivers 

that drain into the Bay [Acker et al., 2005; Chang and Dickey, 2001; Chang et a l ,  2002]. 

The resulting complex environment presents significant challenges to understand optical 

observations that span both Case 1 and Case 2 water types.

Four surveys were included in this study (Table 2.1 and Fig. 2.1): (1) Chesapeake 

Outflow Plume Experiment during September 15th- 26th, 1996 (COPE-1), including 71 

main stations (complete optical characterization and multi-depth water sampling) along 

the northern and southern Transects and 153 surface stations (surface water sampling 

only); (2) time-series observations at the Chesapeake Light Tower (CLT); (3)
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Chesapeake Bay Mouth Surveys (CBMS); (4) CLT Transects along the southern transect 

(CLT-T) from Cape Henry to ~6.5 km east o f the CLT. O f the 71 main optical stations 

occupied during COPE-1, three eastern-most stations (Station 69: 74.973 W, 35.729 N; 

Station 70: 74.718 W, 35.411 N; and Station 71: 75.000 W, 36.030 N) were located in 

Case 1 waters near the Gulf Stream (Fig. 2.1). The bottom depths o f this study area were 

usually less than 20 m, and the mean depth around CLT was ~ 11 m.

northern transecto o
39

CLT
a »<

oao v iOoq0 ^

i ^southern transect

36.6
-76.2 -76.0 -75.8 -75

o COPE-1 (surface) 
□ COPE-1 (main)
* CBMS
•  CLT-T

/ ■ r

-76 -74 -73-75
Longitude

Figure 2.1. Locations o f all sampled stations.
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Table 2.1. Survey descriptions
Survey Period Station # Measurements*

Chesapeake Outflow Plume 
Experiment (COPE-1)

09/1996 71 (main) & 
153 (surface)

a, b, c, bb, [Chi], 
salinity

Chesapeake Light Tower 
Time-series (CLT)

02/2000-09/2005 77 (surface) a, bb, [Chi], 
salinity, Rrs

Chesapeake Bay Mouth 
Survey (CBMS)

09/2004 -  05/2005 20 a, [Chi], salinity

Chesapeake Light Tower 
Transect (CLT-T)

04/2005 -  09/2005 15 a, b, c, bb, [Chi], 
Kd, salinity

* list only those measurements analyzed in this study.

Water temperature and salinity data were obtained from 267 CTD records during 

COPE-1, 27 records during CLT surveys, and 15 records from CLT-T. The monthly 

freshwater discharge record o f the Susquehanna River measured at U. S. Geological 

Survey (USGS) Conowingo Station (http://waterdata.usgs.gov/nwis/discharge). which 

accounts for ~ 60% of total freshwater inputs into Chesapeake Bay, was used as a proxy 

for the total fresh water discharge into the Chesapeake Bay [O ’Reilly and Zeltin, 1998].

2.2.2. Discrete measurements of [Chi] and absorption

Water was collected at two or three depths (surface and bottom, plus an 

intermediate depth) using Niskin bottles and/or plastic buckets. Particles were collected 

by filtering 100 to 400 ml o f seawater through 25mm Whatman® GF/F filters. 

Chlorophyll a and phaeopigment concentrations were determined fluorometrically from 

the particle samples extracted in 90% acetone at -20°C for ~24 hours [Parsons et al., 

1984],

Determining and processing o f spectral absorption followed the recommendations 

of NASA’s ocean optics protocols [Mitchell et al., 2002, and references therein]. The
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pure water absorption spectrum [aw(A)] o f Pope and Fry [1997] was used for all 

calculations performed here. Absorption o f total particles [ap(A)\ and non-pigmented 

particles [a^A)] was determined by the filter pad technique, before and after methanol 

extraction, using a Shimadzu UV2401 scanning spectrophotometer fitted with an 

integrating sphere or a UV160 scanning spectrophotometer using an opal glass diffuser 

[Kishino et al., 1985; Mitchell et al., 2002]. Phytoplankton absorption [aph(/1)] was 

calculated as [ap(A) -  a(i(A)]. CDOM absorption [ag(/1)] was determined in a 10 cm quartz 

cuvette referenced to a Milli-Q pure water blank after water samples had been filtered 

through a 0.2 pm Nucleopore® membrane. Null corrections were made by subtracting 

the means at 790 to 800 nm and 690 to 700 nm for particulate and CDOM absorbance, 

respectively. Chlorophyll-specific phytoplankton absorption [aph(A)] was calculated by 

normalizing aph(/1) to [Chi]. The total absorption [a(/1)] was calculated as [ap(/1) + ag(A) + 

aw(A)].

Non-pigmented particulate and CDOM absorption spectra typically obey an 

exponential decay function [Babin et al., 2003b; Kirk, 1994; Mobley, 1994; Rochelle- 

Newall and Fisher, 2002] o f the form:

a x W  = a x (4>) x QXP i ~ S x 0* ~  K )] (2-!)

where x  represents CDOM (g), non-pigment particles (d), or their sum (dg). The 

exponential decay factor (S) was derived from non-linear regression. The reference 

wavelength (Ao) was set to 442 nm in this case. Sg and Sdg were calculated between 350- 

500 nm to eliminate the influence o f noise at longer wavelengths, while S j was calculated 

over specific wavelength regions (350-400, 480-620, plus 710-750 nm) to avoid errors
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associated with incomplete pigment extraction prior to the measurement o f absorption 

spectra [Babin et al., 2003b]. The calculation o f did not exclude the pigment band 

(400 -  480 nm) due to the limited wavelength number and the general CDOM 

domination in this range.

2.2.3. Continuous Vertical profiles for scattering and backscattering

In-water profiles o f total absorption [a{X)\ and total attenuation coefficient [c(A)] 

were made with a WETLabs ac-9 submersible spectrophotometer at nine wavelengths 

(412, 440, 488, 510, 555, 630, 650, 676, and 715 nm) at the main optical stations during 

COPE-1 and at all CLT-T stations. Temperature and salinity correction was applied to the 

ac-9 data and the absorption was corrected for scattering effect [Pegau et al., 2003; 

Zanveld et al.; 1994]. The scattering coefficient o f pure seawater [bw(X)] was taken from 

Smith and Baker [1981]. The total scattering coefficient [b{X)\ was determined by [c{X) -  

a{/1)], and the particulate scattering coefficient [bp(X)] was determined as the difference 

[b(X )-bw(X)].

The total backscattering coefficient [h&(2,)] was determined from a bbc-4 

Maffione sensor at four wavelengths (440, 510, 590, and 665 nm) during COPE-1 and a 

HOBI Labs HydroScat- 6  backscattering meter (HS-6 ) at six wavelengths (442, 490, 510, 

555, 676 and 852 nm) at CLT and CLT-T stations by following manufacturers’ protocols 

[Zaneveld et al., 2003; http://www.hobilabs.eom/l. The backscattering coefficient o f pure 

seawater [bbW(X)\ was assumed to be isotopic, and therefore half o f bw{X). The particulate 

backscattering coefficient [bbP(/1)] was determined as the difference [bb{X) -  bbwQI)].
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Measurements from continuous vertical profiles were binned to 1 m intervals. The 

linear and non-linear regressions were evaluated from TableCurve 2D v5.01 software 

(SYSTAT Software Inc.).

2.2.4. SeaWiFS imagery

SeaWiFS images o f the lower Middle Atlantic Bight (MAB) (longitude ranging 

from 79° W to 73° W, and latitude ranging from 34° N to 40° N degrees) were obtained 

from NASA Goddard Space Flight Center (GSFC) through the Ocean Color Web 

(http://oceancolor.gsfc.nasa.gOv/l. A relatively clear day (June 2nd, 2003) was selected for 

the detailed processing. The SeaWiFS Data Analysis System software (SeaDAS v4.7) 

was used to process the Level-IA image (‘S2003153165817.LlA_MLAC.x.hdf) to 

Level-2 and Level-3 mapped images, including the following products: water-leaving 

radiance (Lw), remote sensing reflectance (Rrs), [Chi] calculated from the OC4V4 

algorithm (chl_oc4) [O ’Reilly et al., 1998, 2000], and diffuse attenuation coefficient at 

490 nm (Â 49o_Muller) [Muller, 2000]. A semi-analytic (SA) inverse model, called 

GSM01 [Garver and Siegel, 1997; Maritorena et al., 2002], based on the quadratic 

relationship between Rrs and the ratio o f biJ(a+bb), was modified with the regionally 

specific IOP relationships (GSM01 was then renamed as GSM01-CLT and detailed in 

Chapter 4) to retrieve the direct products including [Chi], a^(443), and 6^(443) for 

SeaWiFS Level-3 mapped image. Other products, such as %(443), the average diffuse 

attenuation coefficient o f the downwelling irradiance at 490 nm from surface down to 

one beam optical depth (£ = cz) [^(490)], and salinity, were also retrieved, as discussed 

in next section and Chapter 3.
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2.3. Results and discussion

2.3.1. Experimental conditions

The Chesapeake Bay undergoes a seasonal cycle o f freshwater discharge that 

peaks in winter-spring, with occasional sub-peaks in summer-fall (Fig. 2.2). Freshwater 

discharge plays a critical role in setting up the physical and biological environments of 

the southern Chesapeake Bay coastal waters [Acker et a l ,  2005; Arnone and Gallacher, 

1996; Austin, 2002; Harding et a l, 2005; Johnson et a l ,  2001; Magnuson et a l ,  2004; 

Mann and Lazier, 1996]. The monthly discharge rate for this selected image (June 2nd, 

2003) is only about 1/3 o f that at winter-spring season (Fig. 2.2) and, therefore, represents 

a dry season example.

Susquehanna River (USGS Conowingo Station)

"E, 3000

2000

£ 1000

05 06 0702 03 0498 99 00 0196 97
Year/Month

Figure 2.2. Monthly freshwater discharge rate o f Susquehanna River. Data were recorded 
at USGS’s Conowingo (Maryland) Station during 1996 -  2006. Annual winter-spring 
peaks and occasional summer-fall sub-peaks were evident. Data points after September 
2005 are provisional and subject to revision as o f the accession on August 3, 2006.
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2.3.2. Absorption

Phytoplankton absorption— Phytoplankton absorption at 442 nm [aPh(442)] was 

significantly (r2 = 0.71, P < 0.001) related to [Chi] by a power function (Fig. 2.3) similar 

to that o f Bricaud et a l  [1995, 1998]:

a ph (442) = 0.053 x [Chi]0107 (2.2)

However, the observations o f aph{442) in this study region were significantly higher (*2,579 

= 15.5, P < 0.001) than those predicted from Bricaud et al. [1998] for Case 1 waters, 

especially at higher phytoplankton concentration condition (Fig. 2.3). Higher aPh(442) 

values can be explained by the difference in taxonomic composition and/or package 

effects between phytoplankton populations o f Case 1 and Case 2 waters [Babin et al., 

2003b; Bricaud et al., 1995, 1998; Trees et al., 2000]. The dominant phytoplankton in 

lower Chesapeake Bay are typically cyanophyceans and chlorophyceans in March, with 

diatoms increasing in abundance during the summer and fall [Marshall, 1981].

•  CLT 
o COPE-1 
▼ CBMS 
v CLT-T

Figure 2.3. Relationship between phytoplankton absorption and [Chi]. Solid line: log- 
transformed linear regression; dashed lines: prediction intervals o f 90% confidence; 
dotted line: Bricaud et al. [1998] prediction.
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The chlorophyll-specific phytoplankton absorption at 676 nm [ap/(676)] 

decreased significantly (r2 = 0.78, P < 0.001) with [Chi]:

aph* (676) = 0.0216 x [CM]-0,172 (2.3)

Equation (2.3) may be useful to show pigment package effect, a consequence o f the fact 

that in the natural waters pigment molecules are not uniformly distributed but contained 

within discrete packages (e.g. chloroplasts, cells, and cell colonies), which causes a 

flattening o f phytoplankton absorption peak due to self-shading wherever pigments are 

localized within cell membranes [Duysens, 1956; Kirk, 1994]. Bricaud et al. [1995] 

suggested that the package effect should increase from oligotrophic waters dominated by 

small-cell organisms to eutrophic waters dominated by large-cell species (Fig. 2.4). 

O ’Reilly andZetlin  [1998] also reported that high chlorophyll areas were often dominated 

by large cells (net plankton) accounting 40% to 80% o f [Chi] in near-shore areas o f the 

Middle Atlantic Bight. The data set in this study showed that the package effect for the 

coastal waters o f the Chesapeake Bay was medium strong with the mean effect close to 

Bricaud et al. [1995] model for [Chi] = 1.0 mg m'3 (Fig. 2.4).

The predictability o f the spectral phytoplankton absorption [aPh(X)\ from [Chi] is 

important for semi-analytic inverse models (e.g. GSM01). Instead o f expressing aPh(A) as

individual power functions similar to Eq. (2.2), or as a ph* (A)x.[Chl], a linear regression

between aph(X) and aph{442) was applied [Barnard et al., 1998] and expressed aPh{X) as: 

a oh(A)
aph (A) = aph (442) x — --------- . The linear regression between aPh(k) and aph{442) was

flpA(442)

significant (r2 > 0.9 for 400 to 690 nm), and the spectrum o f regression slopes 

[aph{X)laph(A4Zj\ were shown on Fig. 2.5.
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0.20
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mean +/- SD 
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Figure 2.4. Mean spectrum of chlorophyll-specific phytoplankton absorption (aPh ). Solid 
line: mean spectrum; dotted lines: the upper and lower limits o f one standard deviation 
(SD) away from the mean spectrum; dashed lines: predictions from Bricaud et al. [1995] 
(B95) for [Chi] = 0.1,1, mid 10 mg m '3.

aph{A)/aph{442)

500 550 600
Wavelength (nm)

700

Figure 2.5. Spectrum o f normalized phytoplankton absorption to 442 nm.
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Absorption by CDOM and non-pigmented particles— The exponential decay 

factor (S) in Eq. (2.1) is very useful in predicting ag{X) and aci{X) from Rrs [Mobley, 1994; 

Garver and Siegel, 1997; Maritorena et al., 2002]. The coefficients o f determination for 

Eq. (2.1) in this dataset were very high (most r2 > 0.95). The mean ± SE o f decay factors 

o f ag{X), a„(X), and adg(X) were Sg = 0.0169 ± 0.0001 (n = 625), Sd= 0.0101 ± 0.0001 (n = 

593), and Sdg = 0.0151 ± 0.0001 (n = 570) nm '1, respectively. The values were 4% and 

18% lower 625 = 8.0, P < 0.001, and h y 592 = 38.8, P < 0.001) for Sg and Sd, respectively, 

than the means reported by Babin et al. [2003b] for European coasts o f the Wadden, 

Adriatic, Mediterranean, Baltic, and North Seas with Sg = 0.0176 ± 0.0001 and Sd = 

0.0123 ± 0.0001. The Sdg value was 27% lower than the slope (0.0206) typically used in 

GSM01 [Martitorene et al., 2002]. These differences highlight the potential need to 

develop regional algorithms for coastal environments. For example, the application o f the 

standard GSM01 value o f 0.0206 for Sdg yields an 18% increase in the value o f adg(4\2) 

calculated from adg{442) than from this regionally specific mean value o f 0.0151, which 

usually causes higher bbP{442) retrieved from GSM01 than the observations in the lower 

Chesapeake Bay in the same beam attenuation coefficient (c) level.

Fraction o f  absorption by components— In coastal waters, CDOM often 

dominates the absorption spectrum, particularly at short wavelengths (i.e. <500 nm). In 

this study, CDOM absorption (ag) represented about 66% o f total absorption without 

water (agp=aph + ad + ag) at 400 nm and decreased to about 48% at 556 nm (Table 2.2) as 

particulate (phytoplankton and non-pigmented particles) absorption became more 

important at longer wavelengths. The fraction o f ad{X) and api,(X) varied from 18% to 24% 

and 16% to 28% between 400 and 556 nm, respectively (Table 2.2). If  we define Case 1
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waters as those where aph(442) represents most (> 60%) o f 442) [IOCCG, 2000], 

almost all o f the data used here became classified as Case 2 water (Figure 2.6).

•  CLT 
o COPE-1 
▼ CBMS 
v CLT-T

0 10 20 30 40 50 60 70 80 90 100
ad(442) (%)

Figure 2.6. Relative percentage o f absorption. The considered absorption included non- 
pigmented particles (ad), phytoplankton (apt,), and CDOM (ag) at 442 nm. Case 1 water is 
defined as the upper part o f  the triangle where ap/,(442)% > 60%  o f <2^(442). The bottom 
part of the triangle represents Case 2 water.

Table 2.2. Relative percentages o f absorption. The considered absorption included non- 
pigmented particles (ad), phytoplankton (apd), and CDOM (ag). Total data points n = 509. 
Standard errors (SE) are in parentheses____________________________________________

IOPs Wavelength (nm)
Cm'1) 400 412 442 490 510 556
@ph 15.9 (0.3) 19.9 (0.4) 28.8 (0.5) 33.3 (0.6) 32.4 (0.6) 28.2 (0.7)
ad 17.9 (0.5) 18.3 (0.5) 18.1 (0.5) 18.7 (0.5) 20.3 (0.5) 24.3 (0.7)
ag 66.2 (0.7) 61.8 (0.7) 53.2 (0.7) 48.0 (0.8) 47.3 (0.8) 47.5 (0.9)
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2.3.3. Scattering and Backscattering

Although accurate knowledge o f scattering (b) and backscattering (bb) is required 

to apply radiative transfer theory to natural waters [Mobley, 1994], they are seldom 

measured directly. At present, total scattering (b) is usually calculated as b = c - a ,  while 

backscattering (bb) is estimated from measurements at a single oblique angle (e.g. 120°) 

by assuming a constant scattering phase function [Zaneveld et al., 2003, and references 

therein]. These measurements are difficult and highly dependent on nature o f the particles, 

especially in highly variable coastal waters.

Scattering and backscattering spectra are typically expressed as a power function 

[Gordon and Morel, 1983; Mobley, 1994]:

byW  = b , { X , ) x ( M ’ (2.4)
o

where y is a derived coefficient describing the wavelength-dependence o f scattering or 

backscattering, and the referenced wavelength (X0) is individually defined as 510 nm in 

this study. The log-transformed least-square linear regression o f the data set in this study 

yielded a mean y ± SE o f 0.503 ± 0.008 (n -  995) for particulate scattering (bp) and 0.929 

± 0.008 (n = 846) for backscattering (bbP). These y values were both significantly 

different (tj, 994  = 66.9, P < 0.001, and K  g45 = 8.68, P < 0.001 for scattering and 

backscattering, respectively) from the typically assigned value o f 1, but well within the 

range from 0 to 4 for wide classes o f marine particles [Gordon and Morel, 1983; Gould et 

al., 1999; Kirk, 1994; Mobley, 1994; Stramski and Mobley, 1997]. The difference o f y 

values for bp and bbP implies that the particulate backscattering ratio (bbp/bp) varies with 

wavelength, which increases the difficulty for the measuring and modeling scattering and
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backscattering. However, the Rayleigh-like effects, which are defined as the increase o f 

scattering caused by the fluctuations in molecular density (e.g. various ions including Cl' 

and Na+, and CDOM), will increase the difficulty to separate absorption by CDOM and 

other molecules from scattering in field measurements [Kirk, 1994; Mobley, 1994; Morel 

et al., 2002].

The scattering and backscattering coefficients were less correlated to [Chi] (e.g. r2 

= 0.38, P < 0.001 for bp, and r2 = 0.42, P < 0.001 for bbP at 510 nm) in this coastal region, 

indicating that non-phytoplankton particles, either from freshwater discharge or from 

sedimentary resuspension, contribute more to scattering than algal cells. Such weak 

relationships are commonly found in typical Case 2 waters [Gordon and Morel, 1983]. 

Babin et al. [2003a] applied Mie theory to calculate bp from the apparent density of 

particles. For such calculations, the correct selections o f the slope o f the Junge-type size 

distribution and refractive index o f particles, in addition to the assumption o f the ideal 

spherical particle shape, were required [Babin et al., 2003a; Mobley, 1994; Morel et al., 

2002]. Although the Laser In-Situ Scattering and Transmissometry (LISST) instruments 

(Sequoia, Inc.) and other laser-based tools may help to resolve these issues, they have not 

been commonly investigated in bio-optics [Mueller et al., 2002]. The analyses o f the data 

set in this study found that particulate scattering and backscattering were significantly (r2 

= 0.65 and 0.74, and both P < 0.001) related to ad (Fig. 2.7):

6^(510) = 17.13x[arf(510)]°'763 (2.5)

bbp (510) = 0.509 x [ad (510)]1007 (2.6)

Inversion o f Eqs. (2.5) and (2.6) provides a potential method to calculate a^(2) 

from remote sensing from which bbP(X) can be retrieved (e.g. from GSM01-CLT). For
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example, a d 443) can be significantly (r2 = 0.70, P < 0.001) expressed as a power 

function o f 6&p(443) (Fig. 2.8):

a d (443) = 1.533 x [bbp (443)]0'782 (2.7)

3 ® J °

o

10°

•  CLT 
o COPE-1 
t CLT-T

10-1

ad(510) ad(510)

Figure 2.7. Variations o f particulate scattering and backscattering with non-pigmented 
particulate absorption, (a) Particulate scattering (bp). (b) Backscattering (bbp). The data 
were log-transformed and the selected wavelength was 510 nm.
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Figure 2.8. Variation o f non-pigmented particulate absorption with particulate 
backscattering. The data were log-transformed and the selected wavelength was 443 nm.
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In addition to another direct product o f GSM01-CLT, a(ig(A), the remotely sensed 

retrieval o f ag(A) is possible by subtracting a<t(A) estimated from bbP(A) similar as Eq. (2.7). 

The salinity distribution in a riverine-dominant coastal region is often thought to be 

mixed conservatively between outflowing freshwater and the local oceanic water [Austin, 

2002], which often causes a linear relationship between CDOM absorption and salinity 

(Kowalczuk, 1999; Rochell-Newall and Fisher, 2002). The validity o f this relationship 

may allow us to monitor the salinity gradient in this southern Chesapeake Bay coastal 

region from remote sensing.

510 nm0.20
•  COPE-1 
o CLT-T

o
S  0.10

0.05

0.00
60 1 2 3 4

*p(510) (nT1)
5

Figure 2.9. Particulate backscattering ratio to scattering at 510 nm. Solid line: the 
regression slope = 0.0184; dashed lines: prediction intervals o f 90% confidence.

The particulate backscattering ratio (bbPlbp) at 510 nm had the regression mean ± 

SE (n = 674) o f 0.0184 ± 0.0003 (Fig. 2.9), which was very close to Petzold 's  [1972] 

value o f 0.01833 [Mobley, 1994]. There are two groups o f particles: phytoplankton and 

non-pigmented particles. Due to the complicated conditions o f coastal waters, the size 

and concentration o f both particle sources vary seasonally and spatially in this coastal
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region. For example, riverine outflow tends to increase the phytoplankton number and 

cell size, while increase the concentration o f non-pigmented particles from sedimentary 

resuspension in combining with wind forcing and tidal mixing [.Harding et a l,  2005; 

O ’Reilly and Zetlin, 1998]. Consequently, the average size o f the particles in this coastal 

region is highly variable with bbplbp ranging from 0.005 (phytoplankton-dominant-like 

environment) to 0.030 (mineral-particle-dominant-like environment) [Babin et a l ,  2003a; 

Ulloa et a l ,  1994].

•79 -78 -77 -78 -78 -74 -73 -79 -71 -77 -78 -78 -74 -73
Longitude Longitude

Figure 2.10. SeaWiFS spatial distribution o f [Chi]. The data were derived from (a) 
GSM01-CLT, and (b) OC4V4 algorithm, for lower Middle Atlantic Bight region. The 
selected date is June 2nd, 2003. Circle symbol: the Chesapeake Light Tower (CLT).

2.3.4. Remote sensing monitoring from SeaWiFS

Compared to the global OC4V4 [Chi] algorithm [O ’Reilly et a l ,  1998, 2000], 

which often significantly overestimates [Chi] in coastal waters, locally parameterized 

GSM01-CLT model clearly shows the effect o f riverine discharge on the phytoplankton
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distribution (Fig. 2.10). As nutrient-rich riverine water flows out o f the Bay mouth, the 

Coriolis effect directs the stream southward along the Virginia/Carolina coast to mix with 

local oceanic water and causes the upwelling o f oceanic water [Mann & Lazier, 1996]. 

The resulting phytoplankton bloom is clearly shown from [Chi] distribution retrieved 

from GSM01-CLT, especially along the Virginia coast south o f the Chesapeake Bay 

mouth (Fig. 2.10a). The riverine outflow effect is controlled by freshwater discharge rate 

in upper Chesapeake Bay, which is often low in summer (Fig. 2.2). From the historical 

record, riverine outflow seldom reaches the Chesapeake Light Tower (CLT) in summer 

dry season [Arnone and Gallacher, 1996]. The GSM01-CLT retrieved [Chi] agrees with 

this assumption and the imagery o f  this selected summer date (June 2nd, 2003) clearly 

shows the front o f the estuarine zone and the Atlantic Ocean at the site near the CLT (Fig. 

2.10a). The retrieved [Chi] from GSM01-CLT is also reasonable and comparable to the 

field observations, for example, the field transect conducted on May 18th, 2005 from near 

Cape Henry to east o f the CLT showed the surface [Chi] decreasing from 5.0 to < 1.0 mg 

m '3. In contrast, [Chi] estimates derived from OC4V4 (Fig. 2.10b) were considerably 

high and extended further offshore. The GSM01-CLT retrieval suggests that [Chi] in the 

oceanic waters for this date was limited to 0.5 mg m ' (Fig. 2.10a).

Unlike phytoplankton, whose concentrations are controlled by nutrients, grazing, 

and light, suspended particle concentrations (as expressed by bbP) are typically controlled 

by riverine outflow and other physical factors like wind forcing and tidal mixing. Figure 

2.11a shows the front o f the particle-rich estuarine zone, the particle-poor open Gulf 

Stream, and mixing in the continental margin between them. The absorption o f CDOM 

plus non-pigmented particles (u^; Fig. 2.1 lb), one o f three direct products retrieved from
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GSM01-CLT, provides similar information as [Chi] and bbP. After subtracting the 

absorption o f non-pigmented particles (ad) estimated from b^p by the inverse form o f Eq. 

(2.7), the CDOM absorption (ag; Fig. 2.11c) was derived. Since riverine discharge is the 

major contributor to CDOM in coastal waters [Kowalczuk, 1999; Rochelle-Newall and 

Fisher, 2002], the distribution o f ag also shows the spatial gradient o f the freshwater 

outflow plume from the Bay mouth. Again, the Gulf Stream is recognized to cause the 

significant decrease o f ag by mixing with the local water (Fig. 2.1 lc).

Rather than calculating salinity from empirical equations based on band ratios of 

Lw or Rrs [Binding and Bowers, 2003], salinity was derived from a linear relationship 

with CDOM absorption (ag). The salinity limits o f the freshwater and the oceanic waters 

was set to 0.0 psu and 36.5 psu, respectively. Since CDOM absorption (ag) o f the oceanic 

waters is much lower (e.g. < 5%) than that o f freshwater water (Fig. 2.1 l c ) , , salinity can 

be expressed as:

a „(443)
salinity « 36.5 -  36.5----------------------  (2.8)

[ag (443)] freshwaler

The ug(443) value o f freshwater [tfg(443)fresh w a t e r ]  was assumed to the maximum value 

framed within the longitude from 76.5° W to 76° W and latitude from 37° N to 37.5° N. 

The derived salinity distribution also appears reasonable. Due to low freshwater 

discharge rate in the summer, salinity near the mouth was about 20 psu (Fig. 2.1 Id). Field 

observations by the Center for Coastal Physical Oceanography, Old Dominion University 

(htto://www.ccpo.odu.edu/~mwott/bavmouth/cheshome.html) on June 2003, from which 

salinity ranged from - 1 8  psu to ~ 24 psu, agree with Fig. 2.1 Id. The salinity gradient is 

also obvious from Fig. 2.1 Id, from which freshwater outflows the Bay mouth and is
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mixed with the local Atlantic Ocean and the Gulf Stream. However, the remotely sensed 

salinity distribution is based on the accurate estimation o f CDOM absorption of the 

freshwater that starts to mix with the local salty waters, which varies daily with the 

discharge rate and nutrient load from the upper Bay. Thus, selecting the initial ag for the 

freshwater remains a challenge. Moreover, the inverse form o f Eq. (2.7) does not 

incorporate CDOM photooxidation, which also may reduce CDOM absorption (ag) along 

the salinity gradient. In practice, an accurate image o f salinity distribution may be 

resolved by deploying a series o f buoys equipped with CTD and instruments to measure 

spectral absorption along the salinity gradient line (e.g. from Cape Henry to CLT), from 

which daily empirical relationships (either linear or non-linear) between salinity and ag 

can be applied to remotely sensed imagery.

The retrieved products described above depend on good performance and high 

capability o f the semi-analytic model for various water conditions. However, there are at 

least two limitations on the application o f GSM01 or the modified GSM01-CLT model 

for coastal waters. First, semi-analytic models like GSM01 require Rn in all wavebands 

to be retrieved equally accurately, or the products like IOPs and [Chi] retrieved from the 

inverse modeling via a least-square matching can not work well. Coastal conditions, such 

as strong CDOM absorption in blue bands, higher concentration o f atmospheric aerosols, 

and non-zero water-leaving radiance (Lw) in infrared bands, often restrict the accurate 

estimation of Rrs from above-water sensors, especially for short wavelengths like 412 and 

443 nm. Second, the model needs to be tuned to a regional data set, which, o f course, 

often restricts its application to other regions. For example, the IOP relationships in this 

study were derived from the data set mostly from the Bay mouth region. When applied
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them to upper or middle Bay regions, GSM01-CLT often fails (Figs. 10 and 11). On the 

other hand, the regionally tuned GSM01 model from the data set observed inside the Bay 

works for the retrievals o f the waters inside the Chesapeake Bay [Harding et al., 2005; 

Magnuson et al., 2004].

i l t a i l y  i p t u )
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Figure 2.11. SeaWiFS spatial distribution o f oceanic parameters for lower Middle 
Atlantic Bight region, (a) 6^(443)]. (b) a</g(443). (c) ag(443). (d) Salinity. The bbP{443) 
and arfg(443) data were direct products o f GSM01-CLT, while ag(443) was from <2</g(443) 
by subtracting a<*(443) from Eq. (2.7), and salinity was estimated from Eq. (2.8). The 
selected date is June 2nd, 2003. Circle symbol: the Chesapeake Light Tower (CLT).
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In summary, these analyses o f absorption, scattering, and backscattering provided 

the basis for the required knowledge to inversely retrieve the IOPs and biogeochemical 

parameters from remote sensing. However, shallow topography o f the southern 

Chesapeake Bay coastal region means that many sites are optically shallow in which 

bottom reflectance contributes significantly to the water-leaving radiance. The following 

two chapters will discuss modeling approaches to estimate the vertical distribution o f 

downwelling plane irradiance (EJ) and eventually the remote sensing reflectance (R r s ) .
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CHAPTER 3 

MODELING THE VERTICAL DISTRIBUTION OF DOWNWELLING PLANE 

IRRADIANCE IN OPTICALLY DEEP WATERS

3.1. Background

According to the Lambert-Beer Law, downwelling plane irradiance [E^z)] 

decreases exponentially with depth (z):

Ei (z) = E 4{Q ~)ex$[-K d{z)xz\ (3.1)

Typically, K d(z) is defined as the average value o f the diffuse attenuation coefficient 

[Kd(z)] from the surface down to depth z. Thus, the relationship between Ed(z) and Kd{z) 

is critical to study above- and in-water variations in the solar radiative field caused by 

optical properties o f the water and to retrieve bio-optical properties from measurements 

(including remote sensing) o f the radiation field [Gordon, 1989; Kirk, 1991, 1994; 

Mobley, 1994]. Exact radiative transfer models (RTMs), such as Hydrolight® [Mobley, 

1994], that provide “exact” solution o f the radiative transfer equations, are extremely 

useful in calculating the submarine light field for a given set o f inherent optical properties 

(IOPs). They can not, however, be inverted directly to retrieve important biogeochemical 

properties, such as the concentrations o f chlorophyll a ([Chi]), suspended particulate 

matter, and colored dissolved organic matter (CDOM). Look-up tables (LUTs) generated 

by compiling the output o f multiple simulations over a range o f input values have been 

used to retrieve IOPs from above-water radiance measurements [Lee et al., 2005; Liu et 

al., 2004; Mobley et al., 2005], but they are vulnerable to the production o f non-unique
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solutions from the selections o f multiple combinations o f [Chi], IOPs, and/or solar zenith 

angle (ds).

Although measuring Kd(z) is relatively simple, the relationship between K ^z)  and 

the IOPs is much more complicated. Kj(z) is an apparent optical property (AOP) which is 

influenced by the angular structure o f the submarine light field (e.g. the incident solar 

direction) in addition to the characteristics o f the medium [Kirk, 1994; Mobley, 1994]. 

The development o f a simple, robust relationship between Kd and the IOPs o f absorption 

(a), scattering (b), and/or backscattering (bb) has been a “holy grail” o f environmental 

bio-optics [Gordon, 1989; Kirk, 1994; Mobley, 1994]. The simplest form, provided by 

Gordon [1989] and valid only for limited sky and oceanic conditions (e.g. medium solar 

zenith angle and absorption-dominant water), is often presented as:

Here, is defined as the average cosine o f the incident angle o f direct solar beam just

Kirk [1991, 1994] derived a slightly more complicated relationship from a series of 

Monte Carlo simulations:

(3.2)

below the surface (6W) after accounting for refraction from the solar zenith angle (9S) by

Snell’s Law [Kirk, 1994; Mobley, 1994]:

(3.3)

(a2 + Gab)05 (3.4)
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Here, G is a coefficient related to juw and the shape o f scattering phase function. 

Unfortunately, constraining the latter is so complicated as to make G extremely difficult 

to parameterize, especially when the sun is not directly overhead. Neither the Gordon 

[1989] nor the Kirk [1991] models account for the fact that scattering typically causes K j 

to increase asymptotically with depth in most natural waters, which often causes them to 

overestimate £rf(z) [Mobley, 1994].

More recently, Mobley [1994] summarize a two-flow model and presented a 

tantalizingly simple relationship between K({z) and the IOPs:

K d(z) = i ^ - - R ( z ) J y -  (3.5)
Md(z ) Mu(z)

Here, jud(z) and /utl(z) represent the average cosines o f downward and upward plane

irradiances at depth (z) respectively, and R{z) [= Eu(z)/E(t(z)] is the plane irradiance 

reflectance at depth (z). The IOPs are assumed to be vertically homogeneous for 

simplicity. Since R(z) is typically small in optically deep water, the second term

[ i?(z)-=—-— ] is often ignored, leading to the common expression:
Mu(z )

K t ( z ) » L (3.6)
Md(z)

Unfortunately, estimating jud( z ) is more difficult than fdwbecause it includes the angular

distribution o f sky radiance as diffracted by air-borne molecules and aerosols and water

borne molecules and particles, in addition to the direct solar beam. It is also explicitly 

variable with depth (z). This simple relationship offers a potential solution to relate the
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vertical variation o f Kd{z) and Ed(z) to the IOPs, but the vertical distribution of fj.d (z)

and the method to estimate it are not well established.

An asymptotic closure theory has been developed that describes the angular 

distribution o f plane irradiance as a function o f depth (z) [.Bannister, 1992; Berwald et a l, 

1995; Lee et al., 2005; Liu et al., 2004; McCormick, 1995; Zaneveld, 1989]. Based on this 

theory, the vertical distribution o f Kd(z) at relatively high solar position (e.g. 6S -  0°) can 

be expressed as:

K d{6s = 0 °,z) = K d( ^ )  + [KAOs -  0°,0)- K d(oo)]exp(-Pcz) (3.7)

Here, the exponential slope (P) represents the vertical decay rate o f Kd(ds=0°, z) towards 

its asymptotic value in infinitely deep water [A^(°o)] along with the beam optical depth (£ 

= cz). However, Hydrolight®  simulations showed that this asymptotic closure model 

becomes invalid when solar elevation is low (e.g. Qs > 40°). A more complicated model, 

such as a five-parameter asymptotic closure model expressed as the sum o f two 

exponential functions [McCormick, 1995], can describe Kd(z) more accurately, but 

explaining the derived parameters and estimating them from the IOPs and 0S are 

extremely difficult.

This chapter developed a semi-analytic radiative transfer approach (named as 

PZ06_Ed) based on the analysis o f Hydrolight® simulations, along with two-flow 

modeling and asymptotic closure theory to provide approximate solutions o f Kd(z) and 

Ed(z) for various in-water and above-water conditions. The calculations were verified 

against Hydrolight®  simulations and validated against field observations from the 

southern Chesapeake Bay. PZ06_Ed was also compared to the much simpler Gordon 

[1989] model, which has been widely applied to bio-optics in Case 1 situations.
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3.2. Theory

Since the absolute value o f Ed(0+) need not be specified (in fact, ocean color 

remote sensing is concerned with its relative value, e.g. remote sensing reflectance), it is 

considered known throughout the whole study. Therefore, the objective o f this model will 

focus on the vertical distribution o f the ratio o f E(Xz)IEd{9'), where Ej(0~) is assumed to 

obey a constant transmission factor across the air-sea interface as [Harding et al., 2005]:

Equation (3.8) will not consider variation in air-sea transmission caused by surface waves 

and atmospheric cloud cover. This model is implicitly spectral although the symbolic 

term X has been omitted from the equations for simplicity.

The incident downwelling plane irradiance (Ed) entering the water column is 

composed o f two sources: the direct solar beam [(indirect] and the diffuse sky irradiance 

[(^diffuse] [Gordon, 1989; Kirk, 1994; Mobley, 1994]:

If  the fraction o f the direct solar beam is defined as fdirect, then the fraction o f diffuse sky 

irradiance becomes (1 - f direct)-

The direct solar beam, (indirect, originating from the solar zenith angle (6S) is 

diffracted to 0W by Snell’s Law as it crosses the air-water interface [Mobley, 1994]. As 

with the Gordon [1989] model, the diffuse attenuation coefficient from the direct solar

beam, [KJz)]d\rect, is assumed to vary inversely with juw as:

E d(0-) = 0.98Ed(0+) (3.8)

^ d  )  direct ( f i d  )  diffuse (3.9)

I direct (3.10)
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Here, [Arf/(6,w=0o,z)]direct represents the diffuse attenuation coefficient o f (indirect when the

sun is directly overhead (6W= 0°, cos6W = 1, juw = 1), and closely approximates (a + bb)

at the surface (see Eq. 3.6). [K^J9W=0°,z)]direct increases with depth as the direct solar 

beam is scattered by water molecules and suspended particles. Application of the 

asymptotic theory shown in Eq. (3.7) to describe the vertical distribution of 

\Kd(6W=0°,z)]direct through integration, along with Eq. (3.10), creates the average diffuse 

attenuation coefficient from direct solar beam:

”  —  { K „ ( « )  + l “  +  b ‘ - K ‘ <">][ i _ e x p (-P c z ) ]}  (3 .11)
f t ,  Pcz

Thus, the relative vertical distribution o f (EJ)direct is calculated as:

-  / -  exp -  -[a + b‘- ~ KA ^  [1 -  exp(-/*cz)]} (3.12)
Ed(°  ) Mwp c

The average cosine o f the diffuse sky downwelling irradiance above the water,

[/dd (0+ )]diffuse, is highly variable from 0.25 when the sun is nearly horizontal (6S = 89°) to

0.54 when the sun is directly overhead {6S = 0°) (Fig. 3.1). Snell’s Law, however,

constrains that the value below the water, [/^ (O ”) ] ^ ^ ,  to 0.69 when 9S = 89° and 0.78

when 6S = 0° (Fig. 3.1). Exact radiative transfer modeling has shown that the asymptotic

value o f the average cosine o f downwelling irradiance [ / / d(oo)] in natural waters is

relatively constant at about 0.7 [Kirk, 1994; Mobley, 1994]. Thus, the vertical variation o f

[//rf(z)]dlyUJe is relatively small from ~ 0.78 to ~ 0.7, which in turn implies that the

vertical variation o f K i for diffuse sky irradiance is also small, regardless the solar zenith 

angle (6S). Thus, it is reasonable to make the diffuse attenuation coefficient for diffuse
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sky irradiance (^diffuse) independent o f depth and solar zenith angle (8S) when describing 

the vertical distribution o f [.Erf(z)]diffuse:

T  = (1 ~ / * ~ > e x p H W )  (3.13)

Combining Eqs (3.12) and (3.13) provides the basis to calculate the relative 

vertical distribution o f Eti(z):

“  / * «  « P  ( -  K A - ) X Z  -  ta + i l - ^ (” )1[ 1 -  exp(-Pcz)]} + (1 -  ) exp ( , - K ^ z )

(3.14)
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Figure 3.1. Variations o f the average cosines o f downwelling irradiance along with the 
solar zenith angle. [Ed (0+ )]direct and [Ed (0" )]direcl: direct solar beam above and below the

surface; [Ed (0+ )}diffme and [Ed(Q~)]diffuse: diffuse sky irradiance above and below the
surface. Calculations were based on Hydrolight® simulations for clear sky.
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The complete analysis o f the vertical distribution o f Ed(z) from two-flow model 

theory requires the assessment o f the contribution o f upwelling irradiance [Eu(z)} to Ed(z), 

which obviously increases the complexity o f Eq. (3.14). Instead o f adding second-order 

terms from Eu(z) on Ed(z), simulation results from the exact radiative transfer model 

(Hydrolight®), which have included the contribution from upwelling irradiance, were 

analyzed to generate an approximate model hereafter identified as PZO6_Ed.

3.3. Application

3.3.1. Hydrolight® simulations

Provided with the knowledge o f IOPs (a, b, bb, and c) and 6S (also juw), the

unparameterized variables in Eq.(3.14) include f direct, Kd(^ ), P, and K diffUSe- Hydrolight®  

v4.2 was used here to derive the relationships between these parameters and measurable 

or derivable water and atmospheric properties (e.g. a, b, c, bb, 0S, cloud coverage, and so 

on). The default models and the input parameters used to calculate the atmospheric and 

water conditions are provided in Table 3.1. Values for the unparameterized variables in 

Eq. (3.14) were derived from Hydrolight® simulation results using single scattering 

albedos (wo = b/c) ranging from 0.1 to 0.9 in 0.1 intervals and various scattering phase 

functions including Petzold’s [1972] average (biJb = 0.01833) and the Foumier-Forand 

function (bb/b = 0.005 to 0.5) [Mobley et al., 2002].

A special set o f runs were calculated with 0S = 89° (near horizontally), under 

which (indirect approached zero. Thus, ^diffuse, which is almost independent o f depth and 

Bs, was directly calculated from the simulated results o f E ^z)  at 6S -  89° by the non-linear 

least square match method of TableCurve 2D v5.01 (SYSTAT Software Inc.). The water
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column beneath the euphotic zone, defined as Ed(z) < 1% of E<j(O'), was not considered in 

these simulations.

T able 3.1. Default models and the inputs for Hydrolight®  runs
Quality Range or Models
Atmospheric conditions 

Sky model (RADTRAN) Gregg and Carder [1990] and Harrison and

Atmospheric pressure
Coombes [1988] 
1.013x 105 Pa

Horizontal visibility 15 km
Relative humidity 80%
Precipitable water content 2.5 cm
Total ozone concentration 300 Dobson
Wind speed (WS) 5 m s'1
Solar zenith angle (6S) 0, 10, 20, 30, 40, 50, 60, 70, 89°
Wavelength (X) 350 -  700 nm in 5 nm intervals
Air-mass type Marine
Cloud coverage 0, 5 ,10 ,15 , 20,25, 30,40, 60, 80,100%

Water conditions (vertically homogeneous)
(1). Single scattering albedo (coo) 0.1 -  0.9, in 0.1 intervals

Backscattering ratio (b /b ) 0.005, 0.01, 0.014, 0.01833, 0.02, 0.025, 0.03,

Scattering phase function

0.035, 0.04, 0.045, 0.05, 0.06, 0.08, 0.1, 0.15, 
0.2, 0.3, 0.4, 0.5
Petzold [1972] and Fourier-Forand function
[Mobley et al., 2002] 

(2) Hydrolight®  default classic Case 1 IOP model
Water absorption (aw) Pope and Fry [1997]
[Chi] 0, 0.01, 0.03, 0.1, 0.3, 1, 3, 10 mg rn 3
Particulate absorption (ap) Prieur and Sathyendranath [1981]
CDOM absorption (ag) Morel and Gentili [ 1991 ]
Scattering by pure seawater (bw) Smith and Baker [1981]
Particulate scattering (bp) Gordon and Morel [1983]
Backscattering ratio (bbplbp) 0.01833
Scattering phase function Petzold [1972]

Parameterizations o f /direct and Ad(co) were calculated directly by Hydrolight®. 

KJoo) depends only on water IOPs, while /direct varies only with the above conditions 

(here 6S and cloud coverage), [^(z)]direct was calculated from Eq. (3.14) by subtracting 

the fraction o f the diffuse source. The exponential slope (P) was calculated from Eq.
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(3.11) by non-linear least square method from TableCurve 2D v5.01 (SYSTAT Software 

Inc.).

PZO6_Ea was also compared to Hydrolight®  simulations and the Gordon [1989] 

model using typical Case 1 IOP conditions (Table 3.1). Fidelity to Hydrolight®  

simulations o f PZ06_£^ or the Gordon [1989] model were evaluated by calculating the 

percent root-mean-square (RMS) difference between their results:

(CLT-T cruise, Table 2.1 and Fig. 2.1) were used to validate the prediction o f PZ06_Ed- 

The bio-optical characteristics o f this region are described in Chapter 2. The selected 

stations were located near Cape Henry (Station 2; 75.88° W, 36.91° N) and ~ 6.5 km east 

o f the Chesapeake Light Tower (Station 6; 75.64° W, 36.92° N). Profiles o f Eci(z) were 

collected with a HyperPro II hyperspectral radiometric system (Satlantic, Inc.) at 5 nm 

intervals from 350 to 800 nm. Vertical profiles o f absorption (a) and beam attenuation (c) 

were measured with an ac-9 spectrophotometer (WET Labs, Inc.). Backscattering (bb) 

profiles were measured with a Hydroscat-6 (HOBI Labs, Inc.). All measurements were 

averaged to 0.5 m depth bins except the HyperPro radiometer for which the records at the 

exact depth points were used. To remove uncertain boundary effects caused by high 

turbidity close to the sea floor or by touching the sea floor with some instruments, all 

measurements used in this chapter were at least 3 m above the sea floor. All data below 

the euphotic zone, where Ed(z)/Ed(O') < 1, were excluded. Both stations were optically

PZ  06 E.
I)2 x l00%

Hydrolight
(3.15)

3.3.2. Field observations

Bio-optical observations made in the southern Chesapeake Bay on May 18th, 2005
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deep as < 10% of E^O') reached the sea floor, even though their geometric bottom depths 

were 10 m and 21 m for Stations 2 and 6, respectively. Station 2 was more estuarine in 

character (surface salinity ~ 22 psu, Fig. 3.2a) and more turbid ([Chi] = 4.5 and 1.6 mg m'

•i i
at surface and bottom; c(440) up to 3 m‘ , Fig. 3.2b). Station 6 was more marine in 

character (surface salinity ~ 28 psu, Fig. 3.3a) and less turbid ([Chi] = 0.8, 0.5, and 0.9 

mg m'3 at surface, middle, and bottom; c(440) < 1 . 2  m '1, Fig. 3.3b). The solar zenith 

angles (9S) o f Stations 2 and 6 calculated from Hydrolight® simulations based on local 

date, time, longitude, and latitude were 40.9° and 23.1°, respectively. Five common 

wavelengths (440, 488, 510, 555, and 676 nm) measured by the ac-9 and Hydroscat-6 

spanning almost the entire range o f photosynthetically active radiation (PAR = 400 to 

700 nm) were selected for analysis. As before, model performance was evaluated by the 

percent root-mean-square (RMS) error.

a(440) or c(440) (m'1)
10 15 20 25 30 0 1 2 3

Station 2 

Salinity (psu)

j=
9- 6 c(440)

a(440)

water(°C) Sigma-T (kg m'3)

0.012 0.014 0.016 0.018 0.020 
^ (4 4 2 ) ( in 1)

Figure 3.2. Vertical conditions o f Station 2. (a) Hydrographic properties, (b) IOPs.
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a(440) or c(440) (m'1)

v Station 6

c(440) bb(A42)
Sigma-T (kg’rrf3)

Salinity (psu]water

0.006 0.007 0.008 0.009
^ (442) (nr1)

Figure 3.3. Vertical conditions o f Station 6. (a) Hydrographic properties, (b) IOPs.

3.3.3. SeaWiFS imagery

SeaWiFS products retrieved from the modified GSM01 semi-analytic inverse

model (GSM01-CLT), including the absorption o f CDOM plus non-pigmented particles 

(adg), particulate backscattering (bbP), and chlorophyll a concentration ([Chi]) and 

therefore phytoplankton absorption (aph), were used to calculate IOPs o f absorption (a) 

and backscattering (bb). Particulate scattering (bp) was estimated from bbp by adopting a 

constant particulate backscattering ratio (bbP!bp) o f 0.0184 (Chapter 2). Again, the 

selected date was June 2nd, 2003, a relatively clear day. PZ06_Ed was used to calculate 

the average A^(490) from the surface to one beam optical depth (£ = cz), which provides 

most o f the water-leaving radiance (Lw) to the remote sensing detector [Kirk, 1994; 

Mobley, 1994]. The diffuse attenuation coefficient at 490 (iG90_Muller) from the derived 

empirical equation based on the ratio o f three bands o f L w [Mueller, 2000] was processed 

from the SeaWiFS Data Analysis System (SeaDAS v4.7) software. Solar zenith angle (6S) 

information was derived from the SeaDAS processing, too. The digital elevation map for
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the lower Middle Atlantic Bight (one minute grid resolution) was obtained from National 

Oceanic and Atmospheric Administration (NOAA) General Bathymetric Chart o f the 

Oceans (GEBCO) (http://www.ngdc.noaa.gov/mgg/gebcoh The fraction o f Ed(0~) 

reaching the sea floor was then calculated by P Z 0 6 _ E d.

3.4. Results

3.4.1 The derived coefficients

0.7
clear sky 

•  •  •>
/

cloudy sky
0.6 _/

0.5 ®

0.2

-14
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 30 40 50 60 70 80 90 100

COs(#v) cloud coverage (%)

Figure 3.4. Variation o f the fraction o f direct solar irradiance. (a) The relationships 
between the derived coefficients (go and gi) and solar zenith angle (8S) at clear sky 
condition, (b) The fraction o f direct solar beam, /direct, as a function o f cloud coverage. 
Data points are connected by regression lines.

The fraction o f  direct solar irradiance, /direct—For clear sky conditions (e.g. 

cloud coverage < 30%),/direct was described by an exponential function (r2 > 0.99):

/direct c l e a r )  =  S o  + Si exp(-O.OU) (3.16)

where go and gi were significantly (r2 > 0.99) related to the solar zenith angle (8S) (Fig. 

3.4a):
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g 0 =1 .147-O.363(cos0s)-°-5 (3.17)

g } = -1 9 .2 5 (1 -cos 0 ,)-7 .2 6 (co s  9S) 2 (3.18)

When cloud coverage was over 30%,fdirect became independent o f wavelength (2) and 0S, 

but was significantly (r2 > 0.99) related to the cloud coverage (Fig. 3.4b):

fdirea (cloudy) = 0.7 x (1 -  % cloud2) (3.19)

The asymptotic diffuse attenuation coefficient, K<t(co)—Kd(oo) was described by a 

polynomial fimction (r2 > 0.99 except when btJb > 0.3 in which r2 > 0.97):

K d( ^ )  = ( \ - D 0o)0 - D xcq02) x c  (3.20)

where Do and Di were significantly (r2 > 0.99) related to the backscattering ratio (biJb) 

(Fig. 3.5):

fh h
D0 = 0.959 -  2 .346J—  + 0 .747-^  (3.21)

V b b

fh h
D x =0.046 + 1 .8 0 7 ^ - 0 .8 8 8 - ^ -  (3.22)

V b b

The diffuse attenuation coefficient o f  the diffuse incident beam, Ksffuse— Similar 

to K fy °), diffuse was described by another polynomial fimction (r2 > 0.99):

K dmse = (1-317- A Qo)0 - A la}02) x c  (3.23)

where Ao and A/  were significantly (r2 > 0.99, P < 0.001) related to the backscattering 

ratio (bblb) (Fig. 3.6):

A0 = 1 .3 9 9 - 1 .0 1 2 ^ - 0 .9 3 9 ^ -  (3.24)

fh h
A  = -0.047 + 0.244-1—  + 1.120—  (3.25)

1 \ b  b
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« 0-8
v>

I  ° '6'55
C n  Ao 0.4 

^ 0.2Y»
Q
o©
Q

- 0.2

-0.4
0.0 0.1 0.2 0.3 0.4 0.5

bjb  (dimensionless)

Figure 3.5. Variation o f the derived coefficients (D 0 and Di). D 0 and D; described the 
asymptotic diffuse attenuation coefficient [ATrf(c°)] as functions o f the backscattering ratio 
(bblb). Data points are connected by regression lines.

1.4

1.2

1.0

0.8

0.6

0.0

0.4 0.50.2 0.30.0 0.1
bblb (dimensionless)

Figure 3.6. Variation o f the derived coefficients (Ao and A/). Ao and Aj  described the 
diffuse attenuation coefficient for sky diffuse downwelling plane irradiance (Kdi/fuse) as 
functions o f the backscattering ratio (bblb). Data points are connected by regression lines.
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The exponential slope (P) o f  Kd fo r  the direct solar beam— The exponential 

slope (P) describing the vertical variation o f Kd(0w=O°, z) was significantly (r2 > 0.95, P < 

0.001) related to the backscattering ratio (bblb):

P = B0 + B , x J K  (3.26)

where the coefficients Bo and Bj  were significantly (r2 > 0.99, P < 0.001) related to the 

single scattering albedo (coo) (Fig. 3.7):

B0 = 0.817 -  0 . 8 7 7 ^  (3.27)

Bt = 0.193 + 0.421<y0 +0.741<»o2 (3.28)

1.2

1  10 

I  0.8
c0)
. i  0.6 
2 ,

oq" 0.4k_
o
s f  0.2

0.0

1.00.6 0.80.0 0.2 0.4
COQ (dim ensionless)

Figure 3.7. Variation o f the derived coefficients (Bo and Bf). Bo and B\ described the P  
coefficient as functions o f the single scattering albedo (coo). Data points are connected by 
regression lines.

3.4.2. Verification against Hydrolight®  simulations

The parameter values derived from Hydrolight® simulations were applied to Eq. 

(3.14) to calculate Efz)IEd((y). In general, PZ06_EV/ yielded estimates that were with 2 to
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4% RMS errors o f the Hydrolight® simulations for a wide range o f [Chi] and solar zenith 

angles (6S) (Fig. 3.8a). Model accuracy decreased as the water column optical density 

increased (e.g. more particles and [Chi]) (Fig. 3.8a). There was no consistent relationship 

with solar zenith angle (Fig. 3.8a). The Gordon [1989] model predicted Ed(z)/Ed(0~) with 

an RMS accuracy just below 10% for clearer waters (e.g. [Chi] < 1 mg m '3), and rose to 

nearly 80% as optical density increased (e.g. [Chi] = 10 mg m '3) (Fig. 3.8b). Under 

particle-rich conditions, the Gordon [1989] model performed better at higher solar zenith 

angle (Fig. 3.8b) because increasing 6S increased the fraction o f the diffuse incident solar 

beam whose diffuse attenuation coefficient (Kdiffuse) was less sensitive to the depth, as 

assumed by the simple Gordon [1989] model.

3.4.3. Validation against field observations

Field observations o f the vertical distributions o f E(i(z)/Ed(0~) measured by the 

HyperPro radiometer were used to validate PZ06_Ed (Figs. 3.9 and 3.10). Both 

Hydrolight®  and PZ06_EV/ reproduced the field observations better than the Gordon 

[1989] model, based on RMS calculations at both Station 2 (Figs. 3.9a-b) and Station 6 

(Figs. 3.10a-b). After considering the relative difference between the HyperPro profiles 

(e.g. 5% and 6% o f standard deviation at 676 nm for 3 profiles in Stations 2 and 4 

profiles in Station 6), and the relative error caused by the sampling processes (e.g. 

HyperPro was at least 20 m away from the ship while ac-9 and HS-6 were profiled just 

beside the ship), the RMS error o f 10 to 15% may be reasonable. RMS errors between 

PZ06_Ed and Hydrolight®  simulations were 6.4% and 2.8% for Station 2 and Station 6, 

respectively (Fig. 3.9d and Fig. 3.10d). The RMS errors from the Gordon [1989] model 

were 33.4% at Station 2 (Fig. 3.9c) and 40.3% at Station 6 (Fig. 3.10c).
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Figure 3.8. The percent root-mean-square (RMS) error o f EJz)/E(^0') against 
Hydrolight® simulations, (a) PZ06_Ed. (b) The Gordon [1989] model. Solar zenith angle 
(i9S): 0 to 70°. Water IOPs were Case 1 with [Chi] = 0 to 10 mg m '3 for a 10 m water 
column. Wavelength: 350 to 650 nm in 5 nm intervals. Solid lines: average RMS error 
for all solar zenith angles and all wavelengths.
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Figure 3.9. Comparisons o f E(j(z)/Ed(Q') for Station 2. Plots (a) -  (c) were HyperPro 
observation compared with (a) Hydrolight®, (b) PZ06_£rf, and (c) the Gordon [1989] 
model, (d) Comparison between Hydrolight® simulations and PZ06_Ed.
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Figure 3.10. Comparisons o f Ed(z)/Eti(Q~) for Station 6. Plots (a) -  (c) were HyperPro 
observation compared with (a) Hydrolight®, (b) PZ06_Ed, and (c) the Gordon [1989] 
model, (d) Comparison between Hydrolight® simulations and PZ06_Ed.

3.4.4. The spatial distribution of Kd derived from SeaWiFS imagery

Figure 3.11a shows an example o f SeaWiFS image o f K(̂ A9Q) calculated from 

PZ06_Ed based on the retrieved IOP products by GSM01-CLT (Chapter 2). This map 

shows Kd(490) to decrease from the Chesapeake Bay mouth out toward the Atlantic 

Ocean (Fig. 3.11a). Due to the Coriolis effect, the southern area outside o f the 

Chesapeake Bay mouth is more turbid than the northern area (Fig. 3.11a). The primary 

frontal zone along Virginia/Carolina coast [Sletten et al., 1999] and the mixing o f clear 

Gulf Stream waters with relatively turbid local waters are also clearly shown (Fig. 3.11a). 

The derived values Arf(490) for this image are also reasonable, except for the inside area
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o f the Chesapeake Bay where GSM01-CLT failed to accurately retrieve the IOPs

tli(Chapter 2). The field measurements conducted on a similar season (May 18 , 2005) 

showed surface 490) decreasing from ~ 0.5 m '1 at near Cape Henry to ~ 0.15 m ' 1 at 

the east o f the Chesapeake Bay, similar to the values displayed in Fig. 3.11a. The values 

calculated from the water-leaving (Lw) band ratio by an empirical equation [Mueller, 

2 0 0 0 ] overestimated K&q (e.g. > 0 .1  m '1 for the open seas), and could not clearly define 

the frontal zone (Fig. 3.11b). The significant overestimation (e.g. 20 -  30%) o f AT490 by 

the Mueller [2000] empirical equation for clear water has been observed previously 

(http://oceancolor.gsfc.nasa.gOv/REPRQCESSING/SeaWiFS/R5.l/k490 update.html). 

Meanwhile, the empirical equation does not perform well in water masses where K&q > 

0.25 m ' 1 [Mueller, 2000], which limits its application in coastal waters.

iKft&Kra'*)

Longitude Longitude

Figure 3.11. SeaWiFS spatial distribution o f A^(490). The data were derived from (a) 
PZ06_Ed, and (b) the Mueller [2000] model, for lower Middle Atlantic Bight. The 
selected clear date was June 2 , 2003. Circle symbol: the Chesapeake Light Tower 
(CLT).
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Since Kd determines the depth distribution o f light, it can be used to assess 

whether or not the coastal region is optically shallow. Many sites in the southern 

Chesapeake Bay are shallower than 20 m (Fig. 3.12a). When the water column is 

relatively clear (e.g. Kd < 0.1 m '1), about 10 -  30% of Ed(O') is expected to reach the 

bottom (Fig. 3.12b). For this selected image, it is estimated that > 60% o f estuarine area 

(e.g. the maximum depth < 200 m) is defined as optically shallow at 490 nm (Fig. 3.12b). 

The water leaving radiance (Lw) in these areas are likely to be significantly affected by 

bottom reflectance (Chapter 4).

-79 -78 -77 -78 -78 -74 -73 -79 -71 -77 -76 -78 -74 -73
Longitude Longitude

Figure 3.12. Bathymetric condition and light penetration through water column, (a) The 
bathymetric condition of lower Middle Atlantic Bight, (b) The SeaWiFS spatial 
distribution o f the fraction of downwelling irradiance at 490 nm reaching the sea floor 
[Ed(490)/Ed(0~)] calculated from PZ06_£<*. Circle symbol: the Chesapeake Light Tower 
(CLT).

3.5. Discussion

The Monte Carlo approach, an exact radiative transfer method (RTM), computes 

the radiometric quantities (e.g. Lw and Rrs) by statistically assessing the individual 

simulation from large numbers o f randomly oriented photons [Mobley, 1994]. Monte
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Carlo models suffer from statistical noise, and the radiometric quantities are not 

computed in equal accuracy (e.g. more statistical noise for radiance than irradiance since 

simulated photons must be partitioned into more directions in calculating radiance 

quantity) [Mobley, 1994]. Hydrolight®, based on the invariant imbedding theory by using 

Riccati Matrix equations, computes all radiometric quantities in equal accuracy without 

statistical noise in the results [Mobley, 1994]. Both o f the exact RTMs provide good 

enough results in simulating above or in-water radiometric quantities by providing the 

knowledge like medium characteristics (e.g. IOPs). However, the complex processes in 

simulating the radiometric quantities limit the ability o f these exact RTMs to be inverted 

for solution o f IOPs and biogeochemical properties (e.g. [Chi]).

PZ06_Ed, based on the division o f the incident solar beam into direct solar beam 

and the diffuse sky beam and the separate analyses o f their vertical characteristics along 

with the water depth, appears very successful in reproducing both results o f Hydrolight®  

simulations and field observations in describing the vertical distribution o f downwelling 

plane irradiance [Ed(z)\. However, an accurate estimate o f the amount o f diffuse sky 

irradiance scattered by the atmospheric aerosol is required for this approach. 

Parameterization o f VZQ6_Ed was totally based on the simulation results o f Hydrolight®, 

from which a globally tuned sky model [Gregg and Carder, 1990] was applied. The 

aerosol o f coastal areas, however, is more complicated than that in open seas. In general, 

it is reasonable to think that aerosol concentration in coastal areas is higher than that 

predicted by Hydrolight®  simulations for defaulted marine airmass type. In the other 

words, the “reaT  fdirect value in coastal areas is typically lower than that simulated here by 

Hydrolight®. Since the average cosine { f id ) o f the direct solar beam is typically (e.g. for
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6S < 70°) larger than that o f the diffuse sky irradiance (Fig. 3.1), which generally means 

lower diffuse attenuation coefficient (Kd) for the former, the vertical distribution o f 

[7sd(z)]direct decays more slowly than [-Erf(z)]diffuse- Therefore, Hydrolight® simulations or 

PZO6_Ed based on the analysis o f Hydrolight®  simulations probably slightly 

overestimate the vertical distribution o f E(i(z)IE,i(§~) in coastal waters (Figs 3.9a-b and 

3.10a-b).

PZO6 Ed presented in this chapter assumes the water is optically deep. When the 

water column is optically shallow, the upwelling irradiance (Eu) originating from bottom 

reflectance and its second-order contribution to Ed(z) need to be assessed. Although such 

a contribution is relatively small (usually < 1% based on Hydrolight®  simulations), it is 

not negligible in some extreme conditions (e.g. very bright floor and very strong 

backscattering coefficient o f the Bahamas Banks; Fig. 1.1) in which > 10% may be 

contributed from bottom reflectance, especially near the sea floor. In the southern 

Chesapeake Bay coastal waters, in which the bottom reflectance is relatively low (e.g. in 

general Rb <0.1),  the second-order contribution from the bottom reflectance on Ed(z) is 

reasonably ignored. Thus, PZO6_Ed can be applied to photosynthetic models for 

estimating water-column primary productivity [Behrenfeld et al., 2005] and benthic 

optical environment from which seagrass primary productivity and distribution can be 

estimated [Dierssen et al., 2003; Zimmerman, 2006].
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CH APTER 4

FORW ARD M ODELING O F REM OTE SENSING REFLECTA N CE AND ITS 

INVERSION TO RETRIEV E TH E INHERENT O PTICAL PRO PERTIES

4.1. Background

Ocean color images, provided from space (e.g. SeaWiFS and MODIS), are useful 

for investigating the spatial and seasonal distribution o f water quantity and 

biogeochemical process in the ocean (e.g. phytoplankton biomass, primary production, 

colored dissolved organic matter, and sediment concentration) [Garver & Siegel, 1997; 

IOCCG, 1999, 2000; Kirk, 1994; Maritorena et al., 2002; Mobley, 1994; O ’Reilly et al., 

1998, 2000]. The spectral characteristics o f ocean color images are often expressed by the 

remote sensing reflectance (Rn), which is defined as the ratio o f water-leaving radiance 

(Lw) at the viewing zenith angle (0V) and azimuth angle ( <p) to downwelling plane 

irradiance (Ed) just above the sea surface (z = 0+) [Mobley, 1994]:

(4 -l)Ed(z = 0 ,X)

Algorithms for retrieving chlorophyll a concentration ([Chi]) from satellite ocean 

color data in oceanic Case 1 waters routinely produce images with accuracy within the 

NASA mission target o f ±35% of the in situ observation [Garver & Siegel, 1997; 

O ’Reilly et al., 1998, 2000]. Since phytoplankton often dominate the bio-optical 

characteristics in open oceans (Case 1 waters), Rrs can be related to [Chi] through 

empirical algorithms based on band ratios (e.g. OC4V4 and OC3M) [Garver & Siegel, 

1997; Kirk, 1994; Maritorena et al., 2002; Mobley, 1994; O ’Reilly et al., 1998, 2000].
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Coastal Case 2 waters, however, have been shown to be much more complicated in terms 

o f retrieving [Chi] from Rrs, since CDOM and suspended particles do not co-vary 

robustly with [Chi] [Albert and Gege, 2006; Chang et al., 2003; Harding et al., 2005; Lee 

et al., 1998,1999]. In addition, many coastal sites (e.g. Bahamas Banks and the southern 

Chesapeake Bay coastal waters) are shallow enough that light reflection from the sea 

floor contributes significantly to the water-leaving radiance (Lw) and remote sensing 

reflectance (Rrs) [Dierssen et al., 2003; Maritorena et al., 1994; Werdell and Roesler, 

2003; Wittlinger, 2002; Zaneveld and Boss, 2003; Zimmerman, 2003, 2006].

Provided with the in-water IOPs and above-water atmospheric and solar 

conditions, exact radiative transfer models (RTMs) such as Hydrolight®  provide state-of- 

the-art estimates o f the photon distribution above and beneath the water, which results in 

the water-leaving radiance (Lw) and remote sensing reflectance (Rrs)- However, exact- 

solution RTMs cannot be inverted to calculate the water IOPs from Rrs. Consequently, 

Mobley et al. [2005] developed a spectrum-matching look-up-table (LUT) to retrieve 

IOPs for ocean color images o f Rrs spectra. This method required the complete evaluation 

o f various water conditions. However, the limited spectra o f bottom reflectance and 

regionally specific IOP characteristics in coastal waters often limit the LUT approach. 

Moreover, it can be different, if  not impossible, to eliminate multiple non-unique matches 

to specific Rrs spectra.

Rather than a single regression o f band ratios against biogeochemical properties 

(e.g. [Chi]; O R eilly  et a l ,  1998, 2000), the inverse semi-analytic (SA) model (e.g. 

GSM01 model) assumes that Rrs can be directly related to inherent optical properties 

(IOPs) o f backscattering (bb) and absorption (a) in optically deep water that is readily
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amendable to inversion and solution for the IOPs [Gordon et a l ,  1988; Garver & Siegel, 

1997; Maritorena et al., 2002]:

(4.2)
M h  + a

Here, T  accounts for the upward transmittance o f radiance (£„) across the sea-air interface, 

and is relatively constant (0.54) for natural waters [Mobley, 1999]. Gordon et al. [1988] 

derived the coefficients U = 0.0949 and h  = 0.0794 from the analyses for oceanic Case 1 

water with relatively low particle loads. We do not know, however, if  the coefficients (// 

and 12) derived by Gordon et al. [1988] are valid for high particle conditions typified by 

Case 2 coastal and inland waters. We also do not know how Eq. (4.2) varies with the 

solar position as Rrs is an AOP which depends on light structure in addition to IOPs. 

Furthermore, Eq. (4.2) excludes the contribution o f bottom reflectance to Lw in optically 

shallow waters, which occurs commonly in coastal environments.

In this study, a semi-analytical model (PZ06_7?ra) based on the analysis o f 

Hydrolight® simulation results was developed to link the remote sensing reflectance (Rrs) 

and IOPs, that would be valid for various water conditions from low to high particulate 

load, and for various topography conditions from optically deep to optically shallow 

waters. The purpose o f this chapter was to assess the validity o f such an inverse approach 

in retrieving three important biogeochemical parameters, [Chi], absorption by CDOM 

plus detritus (adg), and particulate backscattering (bbp), from remote sensing reflectance 

(Rrs) within a reasonable order o f accuracy (e.g. < 35% of the mean in situ observation) 

for the coastal waters o f the southern Chesapeake Bay.
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4.2. Theory of PZ06 /?„ radiom etric model

The downwelling plane irradiance just above the water surface [£’f/(0+)] can be

easily measured in the field or calculated from radiative transfer models, and is assumed 

to obey a constant transmission factor through the air-sea interface [.Harding et al., 2005] 

as: Ed ( 0 " ) »  0.98E d (0+), without considering the effects from waves and cloud

coverage on air-sea transmission. The constitution (e.g. IOPs and [Chi]) in the water 

column from the surface to maximum depth at z = H  is considered as vertically 

homogeneous for the purpose o f equation simplicity. Under optically deep conditions, Eq. 

(4.2) applies, but the coefficients (1/ and 12) require re-analysis for various water and solar 

conditions. When the water column is optically shallow, the upwelling radiance (Lu) 

includes the contribution from bottom reflectance [ ( L „ ) b ]  in addition to that from water 

column [( Iu)c]:

Lu =(Lu)c +(Lu) b (4.3)

Defining the diffuse attenuation coefficient o f upward radiance at the corresponding 

sensor’s underwater zenith angle (6V which obey Snell’s Law with 8V) as KLu{0v ’) and 

assuming the sea floor is a Lambertian reflector with the bidirectional reflectance 

distribution function (QUb) o f upwelling irradiance reflectance by the floor (EUb) equal to 

n in all direction (6, <p), (Lu)b  can be expressed as [Voss et a l ,  2003]:

(£ .)»  ” ( ^ W f O e x p I - A ^ / ) * H] (4.4)n

K lu(8v ’) in optically shallow layer is reasonable to be expressed as [Mobley, 1994; Voss et 

a l,  2003]:
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Thus, the contribution to remote sensing reflectance from the bottom reflectance, (Rrs)b, 

can be expressed as:

( * , ) .  = f ^ ” r ( ~ ) r  m -(v n T O gcp[~~f^ T ’< g ] (4 '7)) n  )/0 .98  cos(0v')

Following Maritorena et al. [1994], the water column contribution to Rrs is derived and 

expressed as:

( * „ ) c  ( 4 .8 )

In Eqs. (4.7) and (4.8), the calculation o f the fraction o f downwelling irradiance reaching 

the bottom [Ed(H)/Ed(0')] was based on the method described in Chapter 3.

Rrs can then be expressed by the sum o f Eqs. (4.7) and (4.8):

R n * ( ^ ) t o 0 - £ ^ ^ exp[- a + t>b H ]} + T ( ~ ) — — exp[ -  a + bb H ]
rs )d e e p \ E d ( Q ~ )  C O S ( ^ ')  7T ^  ( O ' ) / 0 .9 8  COS(6>y ' )

(4.9)

4.3. Applications

4.3.1. Hydrolight®  simulations

This study employed the radiative transfer model, Hydrolight®  v4.2, to provide 

exact solutions o f radiance distribution above and below the surface. The set o f inputs 

used to create the simulated above-water and in-water environment were described in 

Table 3.1. The coefficients (// and 12) were then determined by analysis o f the Rrs outputs 

in the optically deep waters conditions with the same inputs described in Section 3.3.1.
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Such derived // and I2 coefficients were compared with the Hydrolight®  simulations for 

water condition with classical Case 1 IOPs as described in Table 3.1.

Station 5 (CLT)0.12

Station 2

Station 1

0.04

700600400 500
Wavelength (nm)

Figure 4.1. Variation of the bottom reflectance (Rb). The selected stations varied from 
relatively dark sediment at near Bay mouth station (Station 1; 36.91° N, 75.97° W), to 
brighter sediment at Station 2 (36.90° N, 75.87° W), and offshore brightest sediment at 
Station 5 (CLT; 36.91° N, 75.71° W).

In this study, the bottom reflectance (Rb) spectra were measured from box corer 

samples using a FieldSpec® spectrophotometer (Analytical Spectra Devices, Inc.) during 

CLT-Transect cruise (Fig. 2.1 and Table 2.1) on May 18th, 2005. Rb o f lower Chesapeake 

Bay sediments increased away from the mouth. Rb was relatively dark at Station 1 

(36.91° N, 75.97° W), brighter at Station 2 (36.90° N, 75.87° W), and brightest at Station 

5 (the Chesapeake Light Tower; 36.91° N, 75.71° W) (Fig. 4.1). Restricted to the 

available data set o f bottom reflectance for this lower Chesapeake Bay coastal region, 

Stations 1 and 5 were assume to represent the lower and upper limits, respectively, of 

bottom reflectance for optically shallow waters in this study region. The Rrs results
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calculated from PZ06_i?„ for the optically shallow water conditions (Hydrolight®  default 

classic Case 1 IOP conditions as shown in Table 3.1, and sea floor at 11 m; including 

three bottom reflectance from Fig. 4.1) were compared to the results generated by 

Hydrolight® using the percent root-mean-square (RMS) error as described before.

Since knowledge o f spectral Rb and the water column depth (H) is required to 

include optically shallow effects, the unknown parameters in Eq. (4.9) are [Chi], 

cidg(443), and 6^(443) after applying IOP relationships as described in Chapter 2 and the 

selected parameters shown in Table 4.1 [Garver and Seigel, 1997; Maritorena et al., 

2002]. At least three Rrs values were required to solve three unknown parameters from 

the inverse modeling. In this study, six wavebands at 412, 443, 490, 532, 555, and 665 

nm corresponding to the visible bands o f SeaWiFS/MODIS sensor were selected. The 

retrievals o f [Chi], adg{442), and 6^(442) were computed by Excel®  Solver by 

minimizing the mean square difference (MSD) between Rrs calculations from this 

PZ06_Rrs model and Hydrolight®  simulation [Maritorena et al., 2002]:

MSD  = - i - 2 X  ( • * - > „ « . „ , ( 4 . 1 0 )  
n - 1

The initial guesses o f [Chi], adg{442), and bbP(442) were set to 0.01, 0.002, and 0.002, 

respectively, while the lower limits o f them were all set to 0.00001.

T able 4.1. The inputs and outputs for inverse modeling__________________________
Parameter Value Unit
aph(443) 0.053[Chl]u/u/ -Tm
aph(412)/ap/,(443) 0.876 dimensionless
aph(490)/aph(443) 0.560 dimensionless
aPh(532)/aPh(443) 0.336 dimensionless
aph(555)/aph(443) 0.229 dimensionless
aph(665)/aph(443) 0.414 dimensionless
sd8 0.0151 nm '1
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bbplbp 0.0184 dimensionless
bbP_y______________________ 0.929___________________ dimensionless_______

4.3.2. Field observations

Rrs spectra were measured using a series o f SAS III multi-spectral sensors

(Satlantic, Inc.) mounted on the Chesapeake Light Tower (CLT; 36.91° N, 75.71° W) 

about 38 m above the sea surface. The SAS sensors measured the downwelling plane 

irradiance above the water [£,./( 0+); exactly, 38 m above the water], the downwelling sky 

radiance (LSky), and the total upwelling radiance above the water surface (Lt) at ~ 90° 

azimuth angle and 40° nadir/zenith angle (the corresponding sensor zenith angle under 

water 0V’ was about 28.67°) at 13 wavelengths (380, 400, 412, 443, 490, 510, 532, 555, 

665, 683, 700, 780, and 865 nm). The raw remote sensing reflectance [ ( 7 ? r a ) r a w ]  was 

calculated as [Mobley, 1994,1999]:

L A X ) - p L  MX)
[ * „ a ) U =  (4.11)

E M )

The p  value corresponding to the downwelling sky radiance reflected back into the 

upwelling radiance from the surface o f the water was calculated from Hydrolight® 

simulations based on wind speed, cloud cover, and local time (to compute solar zenith 

angle) [Mobley, 1994, 1999]. Wind speed was recorded from about 43.3 m above the 

surface o f the water at the CLT by NOAA National Data Buoy Center (NDBC) 

(httn ://www.ndbc .noaa. gov/station historv.pho?station=chlv2L and was approximately 

1.16 times its value at 10 m above the water [<Sm et al., 2002]. Atmospheric correction of 

Rrs was made by assuming that all photons at 865 nm entering the L, sensor were 

scattered by the atmosphere between the water surface and the sensor position and 

propagated through the other visible bands [Mueller et al., 2002]:
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Rrs W  = [RrM ) l a W -[i?„(865)]raw (4.12)

In addition, Rrs was calculated from an under-water free falling HyperPro II 

hyperspectral radiometric system (Satlantic, Inc.), during the CLT-Transect cruises 

(Chapter 2). The HyperPro recorded the downwelling irradiance above the water surface 

[ii</(0+)], as well as the in-water downwelling irradiance [£V/(z)] and the up welling 

radiance throughout the water column [Zu(z)]. Rrs was calculated from the ProSoft v7.6 

software (Satlantic, Inc.) by propagating Lu to the surface from profile estimates o f K iu. 

The values o f [Chi] and IOPs of absorption (a), scattering (b), and backscattering (bb) 

were also measured at the CLT, as described in Chapter 2.

The Rrs spectra calculated from this modeling approach (PZ06_i?rs) based on 

water and atmospheric conditions were compared to field measurements. The inversely

retrieving [Chi], <2^(443), and 6^(443) obeyed the same method in Section 4.3.1 except

using the derived IOP relationships described in Chapter 2.

In addition, the field measurements o f [Chi] were compared to those estimated 

from the OC3M algorithm [O ’Reilly et al., 2000] and from an empirical log-transformed 

linear equation:

log(C6/)oclog^ (max) (4.13)
&R J 555)

where i?ra(max) represents the maximum Rrs among 442,490, and 510 nm.

4.4. Results

4.4.1. The derived li and h  coefficients
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The coefficient U was found to be relatively independent o f Qs, while h  varied 

significantly (r2 = 0.99) with 6S, especially when 6S > 30° (Fig. 4.2):

/, * 0.0833 (4.14)

l2 *0.0659 + 0.0541 cosds + O.1464(cos0s)2 -O.2727(cos0s)3 +O.1172(cos0s)4 (4.15)

The first term in Eq. (4.2) might be explained by assuming that the incident photons were 

scattered once, from which the two-flow theory resulted in the relatively constant 

coefficient (//). The second term in Eq. (4.2) accounted for the second scattering event, 

which thus depended on the incident solar angle.

0.110

^  0.105

0.100

0.095

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
cos(0.v)

Figure 4.2. Variation o f the derived U coefficients with the solar zenith angle (ds). Data 
points are connected by regression line (solid) o f Eq. (4.15).

4.4.2. Verification against Hydrolight®  simulations

Forward modeling—In optically deep water conditions, both 1/ and h  coefficients

derived from the Gordon et al. [1988] model and from this study performed similarly
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(RMS = 9.1% and 5.2%, respectively) in predicting Rrs from IOPs (Figs. 4.3a-b), except 

that the Gordon et al. [1988] model agreed better in clearer waters but worse in particle- 

rich waters than PZ06_i?„ (Fig. 4.3f). Since the coastal waters are usually rich in particles 

from sedimentary resuspension and riverine outflow, the new U and h  coefficients are 

expected to work better in coastal waters than those derived from the Gordon et al. [1988] 

model.
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Figure 4.3. Comparison o f Rrs spectrum. The Hydrolight® simulations were compared to 
the results from (a) PZ06_Rrs, (b) the Gordon et al. [1988] model in optically deep waters, 
and PZ06_Rrs in optically shallow waters with the bottom conditions as (c) Station 1, (d) 
Station 2, and (e) Station 5 (CLT). (f) Root-mean-square (RMS) errors for each [Chl] 
condition.

Station 2 bottomStation 1 bottom
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Wavelength (nm) W avelength (nm)

CLT bottom
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VD

vt> # \

1 10
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o> 
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0.11
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Rrj(443>490>510)IRJ555)

Figure 4.4. Rrs o f optically shallow waters normalized to those in optically deep waters. 
The bottom conditions were those at (a) Station 1, (b) Station 2, and Station 5 (CLT). (d) 
The Rrs band ratio to i?„(555) from the maximum value at 443, 490, and 510 nm, 
compared to the OC4V4 algorithm.

PZ06_i?„ also agreed with Hydrolight®  simulated Rrs spectra in optically shallow 

waters with the RMS error < 6% for all three selected bottom conditions in various water 

conditions ([Chl] = 0.01 to 10.0 mg m '3) (Figs. 4.3c-e). The RMS errors for optically 

shallow waters (e.g. ~ 4% for [Chl] = 0.1 mg m '3) were consistent with those in optically 

deep waters (e.g. 2.3% for [Chl] = 0.1 mg m '3) (Fig. 4.3f), indicating that little extra error
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was introduced from the bottom reflectance compared to the quadratic equation for 

optically deep waters. The bottom reflectance significantly increased Rrs compared to 

optically deep waters, particularly between 500 and 600 nm (Figs. 4.4a-c). Since ocean 

color algorithms (e.g. OC4V4 and OC3M) usually calculate [Chl] from the maximum 

band ratio Rrs at 440 to 510 nm vs. Rrs(555), [Chl] is often significantly overestimated in 

optically shallow waters unless the bottom effects are removed (Fig. 4.4d). For example, 

the [Chl] distribution from SeaWiFS OC4V4 retrievals in Bahamas Banks where the 

waters are relatively clear and the sea floor is relatively bright often appears as a dense 

phytoplankton bloom (Fig. 1.1).
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Figure 4.5. Analyses o f the inversion from Hydrolight® simulations, (a) [Chl] from 
OC3M algorithm. The retrieved products from PZ06_i?ri were shown on (b) [Chl], (c) 
adg(443), and (d) 6^(443). Solid lines: 1:1; dotted lines: 65% to 135% accuracy target; 
dashed lines: log-transformed linear regression.
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Figure 4.6. Accuracy analysis o f the inversion from Hydrolight®  simulations. The 
percentages o f the retrieved products o f (a) [Chl] from OC3M, and (b) [Chl], (c) <2^(443), 
and (d) bbP(443) from PZ06_Rrs, were counted within the accuracy o f 65% to 135%, 50% 
to 200%, and 30% to 300% o f the true values.

Inverse modeling— OC3M retrieved [Chl] < 3 mg m relatively accurately for 

optically deep Case 1 waters, but tended to be underestimated [Chl] at higher 

concentrations (Fig. 4.5a). However, OC3M did not retrieve [Chl] accurately in the 

optically shallow conditions, especially when the waters were relatively clear (e.g. [Chl] 

< 0.3 mg m '3) (Fig. 4.5a). About 40%, 80%, and 90% o f [Chl] were predicted by OC3M 

within the accuracy o f 65% to 135%, 50% to 200%, and 30% to 300%, for the optically 

deep waters, respectively (Fig. 4.6a). The agreements decreased significantly for the
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optically shallow waters where only 20% to 30% of [Chl] could be retrieved within the 

accuracy o f 65% to 135%, while < 60% and <70% within the accuracy o f 50% to 200% 

and 30% to 300%, respectively (Fig. 4.6a).
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Figure 4.7. Analyses o f the inversion from Hydrolight®  simulations without considering 
bottom effects, (a) [Chl] from OC3M algorithm. The retrieved products from PZ06_Rrs 
were shown on (b) [Chl], (c) ^ (4 4 3 ) ,  and (d) bbP{443). Solid lines: 1:1; dotted lines: 
65% to 135% accuracy target; dashed lines: log-transformed linear regression.
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The inversion o f PZ06_i?„ produced better retrievals o f [Chl] than OC3M (Fig. 

4.5b). All o f [Chl] were predicted within the accuracy o f 65% to 135%, regardless 

optically deep or optically shallow conditions (Fig. 4.6b). In addition, PZO6_Rrs also 

retrieved a</g(443), and 6^(443) accurately, except in clear, optically shallow conditions 

(e.g. [Chl] <0.1 mg m '3) when the bottom reflectance effect overwhelmed backscattering 

from the water column (Figs. 4.5c-d). More than 90% of ddg(443) and 6^(443) were 

predicted within the accuracy o f 65% to 135% for optically deep water conditions, and 

-60%  of a</g(443) and -70%  o f bbP{443) were predicted within this accuracy for optically 

shallow water conditions (Figs. 4.6c-d).

If  the bottom effect was ignored in optically shallow waters, the S A models would 

overestimate the retrieved products o f [Chl], ajg(443) and 6^(443) as the bottom 

reflectance was treated as the “extra” contribution from the constitutes o f the water 

column (Fig. 4.7). In relatively clear waters (e.g. [Chl] < 0.3 mg m '1), the SA models 

retrieved [Chl], a(ig(443) and bbP{443) with about the same accuracy as OC3M (Fig. 4.7).

4.4.3. Validation against the field observations

Figure 4.8 showed total Rrs spectra measured at the CLT when water IOPs were

also available. The Rrs spectra usually had a peak at 490 -  532 nm and in some cases the 

Rrs at green wavelengths was relatively high implying relatively rich particulate matter 

(Fig. 4.8).

Forward modeling—Three samples o f Rrs from SAS at the CLT representing 

relatively clear water ([Chl] = 0.36 mg m '3; 16 July 2001), moderately turbid water ([Chl] 

= 1.38 mg m '3; 17 July 2001), and highly turbid ([Chl] = 3.40 mg m‘3; 25 July 2001), 

were selected for comparisons. Even in the relatively turbid sample (25 July 2001), the
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bottom reflectance contributed ~ 20% to Rrs(555), and about 70% in the relatively clear 

sample (16 July 2001) (Fig. 4.9a-c). The RMS errors between the Hydrolight® 

simulations and field observations were 8.5%, 12.9%, and 8.5% for the clear, moderately 

turbid, and highly turbid stations, respectively, while PZ06_i?rs introduced RMS errors o f 

10.0%, 13.0%, 7.0% for these three samples (Fig. 4.9). PZ06_Rrs agreed better (RMS 

errors o f 3.8%, 2.9%, and 4.2% for the clear, moderately turbid, and highly turbid 

samples, respectively) with Hydrolight®  simulations with the same inputs o f IOPs as 

measured just from the surface water. Since both Hydrolight®  and PZ06_i?„ required 

complete knowledge of the vertical distribution o f IOPs, which was often lacking, the 

application o f the IOPs from the surface to represent the whole column would cause Rrs 

predicted from models to deviate from the field measurements.
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Figure 4.8. Remote sensing reflectance (Rrs) measured at the Chesapeake Light Tower 
(CLT). Stations were those from which IOPs were also available.
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Figure 4.9. Comparisons o f spectral Rrs from simulations and measurements. The 
radiative transfer models included Hydrolight®  and PZ06_i?„. Three selected samples 
were (a) relatively clear, (b) moderately turbid, and (c) highly turbid water conditions at 
the Chesapeake Light Tower (CLT).

Inverse modeling— Similar to the results o f the sensitivity tests in Section 4.4.2, 

[Chl] retrieved from OC3M algorithm was significantly overestimated, especially at 

lower [Chl] (Fig. 4.10a). Less than 5% and < 20% o f [Chl] was able to be predicted from 

OC3M within the accuracy o f 65% to 135% and 50% to 200% o f the observations, 

respectively (Figs. 4.10a and 4.11). Instead, the relationship between [Chl] and Rrs in this 

data set was better expressed by an empirical regression (n = 44, r2 = 0.70) (Fig. 4.12):

About 30% and 90% o f [Chl] was predicted from the above equation within the accuracy 

o f 65% to 135% and 50% to 200% o f the observations, respectively.

log[CW] = -0.1045 -  4.2869 log[^ (^ - (4.16)
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The retrieved products o f [Chl], adg(443), and 6^(443) from PZ06_Rrs were more 

scattered (r2 = 0.16, 0.37, and 0.74, respectively) due to the sensitivity o f  semi-analytic 

(SA) inverse models on the accurate estimation o f Rrs spectrum (Figs. 4.10b-c). 

Compared to the field observations, however, PZ06_i?re predicted about 30%, 55%, and 

70% o f the retrieved products o f [Chl], <2^(443), and 6^(443) within the accuracy o f 65% 

to 135%, while about 60%, 90%, and 90% within the accuracy o f 50% - 200% (Fig. 4.11).
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Figure 4.10. Analyses o f the inversion from field measurements, (a) [Chl] from OC3M 
algorithm. The retrieved products from PZ06_i?„ were shown on (b) [Chl], (c) a<fg(443), 
and (d) 6^(443). Solid lines: 1:1; dotted lines: 65% to 135% accuracy target; dashed lines: 
log-transformed linear regression.
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Figure 4.11. Accuracy analysis o f the inversion from field measurements. The 
percentages o f  the retrieved products o f (a) [Chl] from OC3M, and (b) [Chl], (c) a</g(443), 
and (d) 6^(443) from PZ06_7?„, were counted within the accuracy o f 65% to 135%, 50% 
to 200%, and 30% to 300% o f the true values.
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Figure 4.12. The empirical regression o f [Chl] from Rrs band ratio. The data from the 
measurements at the Chesapeake Light Tower (CLT) were log-transformed. The OC3M 
equation is also shown for comparison.
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If  the bottom effect was ignored, the SA models were less effective (e.g. ~ 14% of 

total data set) in retrieving [Chl] than in retrieving 0^(443) and 6^(443) (Fig. 4.13b) 

since the latter two constitutes were generally the major contributions to absorption and 

backscattering in this coastal region (Chapter 2). Similar to the results o f the sensitivity 

tests in Section 4.4.2, [Chl] and bbP(443) were significantly overestimated but the 

overestimation o f <2^(443) retrieval was not obvious (Figs. 4.13b-d).
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Figure 4.13. Analyses o f the inversion from field measurements without considering the 
bottom effects, (a) [Chl] from OC3M algorithm. The retrieved products from PZ06_Rrs 
were shown on (b) [Chl], (c) <2^(443), and (d) bbp(443). Solid lines: 1:1; dotted lines: 
65% to 135% accuracy target; dashed lines: log-transformed linear regression.
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4.5. Discussion

Compared to the empirical ocean color equations (e.g. OC3M and the log- 

transformed linear regression) based on the Rrs band ratio to calculate [Chl], the semi- 

analytic models (e.g. GSM01, GSM01-CLT, and PZ06_Rrs models) have at least two 

advantages. First, more products, including [Chl], aag, and bbP, were retrieved. Based on 

the empirical relationships, such as the power function between bbp and ad, CDOM 

absorption (ag) could also be estimated, which provides further retrieval o f salinity 

gradient for the riverine coastal region (Chapter 2). Such products provide potential and 

promising methods to monitor the water quality (e.g. CDOM concentration), to study the 

biogeochemical process (e.g. freshwater outflow track by the salinity distribution), to 

investigate the benthic optical environment (e.g. Kd to be represented as the water 

turbidity degree), and to study the ecosystem level processes (e.g. primary productivity 

and carbon cycling) from space-borne remote sensing. Second, SA modeling with its 

basic IOP characters is less influenced by the selected data set concerned with the 

sampling seasons. Empirical ocean color equations derived for the winter-spring bloom 

season could be very different from that in summer season due to the possible shift of 

particle size from dominant large-cell phytoplankton in spring to the mixture o f small-cell 

phytoplankton and mineral in summer in this coastal region. If  the water column is 

optically shallow, the empirically derived ocean color equations will be totally different 

from those derived in the seasons characterized by optically deep water conditions.

Although the mean water column was 11m  and the bottom reflectance (Rb) was 

as low as 0.04 to 0.12 between 400 and 700 nm in CLT, the bottom effect on Rrs should 

not be ignored, especially for low [Chl] clear conditions. The contribution to Rrs from the
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bottom reflectance might be higher than that from the water column. Since the lower 

Chesapeake Bay coastal waters often include optically shallow conditions, especially in 

summer when the freshwater outflow is limited (Chapter 3), the inclusion o f bottom 

reflectance effect in the semi-analytic inverse retrievals from remote sensing is necessary, 

or the optical properties from particles (e.g. bbP) will be significantly overestimated (Figs. 

4.7 and 4.13). In fact, the retrieved products such as [Chl] and 6^(443) from the 

SeaWiFS image (Figs. 2.9 and 2.10) seemed to be overestimated in some degree for the 

waters nearby the CLT by applying GSM01-CLT without considering the bottom effect. 

However, the knowledge of bottom conditions including the measurements o f bottom 

reflectance is limited [Ackleson, 2003]. In processing with remote sensing imagery, it 

may be practically applicable to assume that R/, increases linearly or quadratic along with 

the wavelengths from 400 to 600 nm, while it is less variable between 600 and 700 nm 

(e.g. Fig. 4.1). Such an assumption will add two more variable parameters [7?6(400) and 

i?i,(600)] to PZ06_Rrs but make it more amendable even without detailed knowledge of 

the bottom condition.

PZ06_i?„ assumes the bottom is a flat Lambertian reflector from which the 

radiation is scattered equally in all directions. Compared to a sloped floor (less than 20°) 

and non-Lambertian bottom, radiative transfer simulations showed the effects o f non

isotopic bidirectional reflectance distribution function (BRDF) on the upwelling radiance 

and water-leaving radiance typically caused errors less than 10% [Mobley and Sundman, 

2003; Mobley et al., 2003]. However, due to the sensitivity o f SA modeling, such an 

order o f error may also introduce significant deviation in inversely retrieving the products 

like [Chl], adg, and bbp.
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PZ06_Rrs is based on the assumption that IOPs o f the water column is vertically 

homogeneous, and can be applied to the stratified waters. The oceanic open seas may 

have their mixed layer relatively constant o f IOPs and make it possible to use the surface 

condition to represent the whole water column. In coastal waters, however, the 

geometrically shallow condition often causes more error to represent the whole column 

condition with the surface condition. The bottom substrates have been found to have 

effects on the vertical distribution o f IOPs and radiative transfer modeling [Boss and 

Zaneveld, 2003]. The retrieved products from above-water remote sensing are in fact the 

integrated values for the whole column, not only from the surface layer.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



81

CH APTER 5 

CONCLUSION AND FUTURE W O RK

5.1. Conclusion

In this dissertation, a substantial investigation of bio-optical properties for the 

coastal waters o f the southern Chesapeake Bay was conducted. The relationships o f the 

inherent optical properties (IOPs) in this coastal region were found to be regionally 

specific relative to the Case 1 waters and other coastal waters. Such regionally specific 

relationships appears to be necessary for remote sensing analysis o f the coastal waters o f 

the southern Chesapeake Bay, in which riverine outflow often plays a critical role in 

controlling the biogeochemical processes and the spatial and temporal distributions of 

salinity, [Chl], CDOM, and sedimentary concentration. The SeaWiFS products, such as 

[Chl], adg{443), bbp(AA2>), ag(443), and salinity, retrieved from GSM01-CLT by applying 

the regionally specific IOP relationships, produce reasonable images for the lower Middle 

Atlantic Bight (MAB), from which riverine outflow and the Gulf Stream mixing are 

relatively clear.

PZO6_Ed was relatively successful in describing the vertical distribution o f Ed and 

Kd from IOPs and sky conditions and significantly improved from the simple Gordon 

[1989] model. The application o f PZ06_E,/ to SeaWiFS imagery for monitoring the water 

turbidity [e.g 490)] for the lower MAB is also reasonable and significantly improved 

relative to the empirical equation based on Lw band ratio [Mueller, 2000],

PZO6_Rrs successfully described the relationship between remote sensing 

reflectance (Rrs) and IOPs for both optically deep and optically shallow waters relatively
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successful. Its application in inverse modeling can produce more data points within the 

reasonable accuracy o f 65% to 135% of the “true” values. In contrast, the global ocean 

color algorithms (e.g. OC3M) or the semi-analytic models (e.g. GSM01 and GSM01- 

CLT) without considering the bottom effects introduced extra errors in inversely 

retrieving in coastal waters.

Above all, the processing and results shown in this paper proved that water 

quality and biogeochemical parameters can be retrieved from remote sensing o f coastal 

regions, providing accurate regional algorithms are available to analyze the image data. 

This study provided a set o f coherent data from which such regional algorithms were 

constructed for the lower Chesapeake Bay.

5.2. Future work

The relationships between IOPs and biogeochemical parameters (e.g. [Chl], 

CDOM concentration, and sedimentary concentration) will continue to be investigated. 

More focus should be paid to the variation o f wavelength-depended exponential slope of 

the CDOM spectra: Does it vary along with the distance leaving from the Bay mouth? 

How does it co-vary with CDOM absorption, [Chl], or particulate backscattering? How 

does the Sg variation affect the water-leaving signal? The community structure o f 

phytoplankton, its seasonal and spatial variation, and its variation to the net primary 

production, on the other hand, may be o f interest in the future [Hoge, 2006; Hoge et a l,  

1999; Trees et al., 2000].

PZO6_Ed and PZ06_Rrs in predicting Ed and Rrs will require further development 

after analyzing the effects from a more complete environment (including water column,
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bottom reflectance, atmosphere, and solar positions at least). For example, the approaches 

in this study were based on the simulations under the oceanic airmass environment, 

which might consist o f lower particulate concentrations in the air compared to the real 

coastal zones. The inversion of satellite remote sensing and its application to study the 

short-term and long-term environment change, e.g. phytoplankton blooming and carbon 

cycle in the coastal regions, will be the focus in the future.
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