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ABSTRACT
M o d e l i n g  S t u d i e s  o f  A n t a r c t i c  K r i l l  ( Euphausia
superba) SURVIVAL DURING TRANSPORT ACROSS THE

S c o t i a  S e a  a n d  E n v i r o n s

Bettina Andrea Fach 

Old Dominion University, 2003 
Director: Dr. Eileen E. Hofmann

The Antarctic krill (Euphausia superba) populations at South Georgia, which is 

in the eastern Scotia Sea, are hypothesized to be sustained by import of individuals 
from upstream regions, such as the western Antarctic Peninsula. To test this hy
pothesis a modeling framework consisting of the Harvard Ocean Prediction System 

(HOPS) and a time-dependent, size-structured, physiologically-based krill growth 

model was developed. The simulated circulation fields obtained from HOPS were 
used with drifter studies to determine regions and pathways that allow transport 
of Antarctic krill to South Georgia. Pelagic phytoplankton concentrations along 

the simulated drifter trajectories were extracted from historical Coastal Zone Color 
Scanner measurements and sea ice algae concentrations were calculated from sea 
ice concentration and extent extracted along particle trajectories from Special Sen
sor Microwave/Imager measurements. As additional food sources, a time series of 
heterotrophic food was constructed from historical data, and time series of detri

tus concentrations along simulated drifter trajectories were calculated using phyto
plankton concentrations extracted from Coastal Zone Color Scanner measurements 

together with measured particulate organic carbon to chlorophyll a ratios. These 
food resources, along specified drifter trajectories were then input to the krill growth 

model to determine the size and viability of krill during transport from the source 
region to South Georgia.

The drifter simulations showed that krill spawned along the mid to northern 

portion of the west Antarctic Peninsula continental shelf, coinciding with known 
krill spawning areas, can be entrained into the Southern Antarctic Circumpolar 
Current Front and be transported across the Scotia Sea to South Georgia in 10 

months or less. Drifters originating on the continental shelf of the Weddell Sea can 
reach South Georgia as well; however, transport from this region averages about 20
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months.
The krill growth model simulations showed that no single food source, such as 

pelagic phytoplankton, detritus, sea ice algae, or zooplankton, can support con

tinuous growth of Antarctic krill during the 168 to 225 days needed for transport 

from the western Antarctic Peninsula to South Georgia. However, combinations of 

the food sources during the transport time enhanced krill survival, with zooplankton 

(heterotrophic food) and detritus being particularly important during periods of low 

pelagic phytoplankton concentrations. The growth model simulations also showed 
that larval and juvenile krill originating along the western Antarctic Peninsula can 
grow to the 1+ (14 mm to 36 mm) and 2+ (26 mm to 45 mm) sizes observed at 

South Georgia during the time needed for transport to this region. The additional 
transport time needed by krill originating in the Weddell Sea allows retention in a 

potentially high food environment, provided by sea ice, for almost one year. The 
krill then complete transport to South Georgia in the following year and larval and 

juvenile krill grow to 2+ (26 mm to 45 mm) and 3+ (35 mm to 60 mm) sizes during 
transport.

Additional simulations examined the effects of variability in wind stress, the 
transport through Drake Passage, and changes in the location of the Southern 
Antarctic Circumpolar Current Front on the transport and growth of Antarctic 

krill. Sensitivity studies of the simulated circulation showed that the surface wind 
stress has a minor influence on the overall simulated circulation pattern, but strongly 
affects the exchange between the continental shelf region of the Antarctic Peninsula 
and the Antarctic Circumpolar Current through changes in Ekman transport. A 
20% decrease in wind stress or a 12% decrease in transport of the Antarctic Cir
cumpolar Current decreases the ability of krill to reach South Georgia, potentially 
endangering the survival of the local population. A 10 km northward shift in the 

location of the SACCF also reduces the delivery of krill to South Georgia, especially 
from the main spawning area along the Western Antarctic Peninsula and in the 

Bransfield Strait, thereby reducing the potential recruits to the krill populations at 
South Georgia. A 20% increase in wind stress or a 12% increase in transport through 
Drake Passage enhances krill transport to South Georgia as long as the SACCF does 
not change position and can still function as main transport mechanism for krill.

The results of this study show that the krill populations along the Antarctic 

Peninsula and the Weddell Sea are likely the source populations that provide krill to
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the population in South Georgia. However, the successful transport of krill to South 
Georgia is shown to depend on a multitude of factors, such as the location of the 

spawning area and timing of spawning, food concentrations during transport, preda

tion, and variations in the location of the SACCF and in sea ice extent. Therefore, 

this study provides insight into which biological and environmental factors control 

the successful transport of krill across the Scotia Sea and their survival during that 

time, and with it insight into krill distribution and production in the Scotia Sea.
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1 INTRODUCTION

Antarctic krill, Euphausia superba, has long been recognized as an important compo

nent of the Antarctic marine food web. Many of the top predator populations that 

are part of the Antarctic marine food web, such as whales, seals, seabirds, penguins 

and fish, are dependent on krill as a food source (Fraser, 1936; Marr, 1962; Knox, 

1970). Therefore, much research has been conducted to better understand the life 
history, physiology, behavior and distribution of this species (e.g. Nicol et al., 1992; 

El-Sayed, 1994; Siegel and Loeb, 1994). However, critical information about the be
havior, distribution and reproduction of this very abundant and important species 

in the Southern Ocean is still missing, due in part to the wide distribution of this 

species in a habitat that spans a vast area (up to 36 x 106 km2) and includes the 
continental shelf and open ocean. Thus, much of the research on this organism is 
still restricted to limited studies aboard ship (Nicol and de la Mare, 1993).

Information adequate to determine whether Antarctic krill represent a single or 

multiple breeding population, which has considerable implications for understanding 

the distribution and management of this species (Everson and Miller, 1994), is still 
lacking. Length-frequency distribution (Fevolden and George, 1984) or morphome- 

tric measurements (Siegel, 1986) are unable to distinguish between different stocks 
of krill. However, enzyme structure analysis suggests that there is only a single 
krill breeding population (Fevolden, 1988; Miller and Hampton, 1989a). This result 
argues for a source region for Antarctic krill that, with the aid of ocean currents, 
supplies different areas thereby maintaining a homogeneous population.

The waters around South Georgia (Fig. 1), in the east of the Scotia Sea, contain 
a persistent population of krill, which provides the primary food for many of the 
marine mammals, and seabirds that inhabit this region (Croxall et al., 1988). This 
area is also the site of a commercial krill fishery (Murphy et al., 1997). Early analyses 

of the length-frequency distribution of Antarctic krill populations around South 
Georgia led to the conclusion that the local population is not self-sustaining (Marr, 
1962; Mackintosh, 1972). The apparent lack of a local population that undergoes 

reproduction with subsequent recruitment is surprising considering the large top 
predator populations that depend on Antarctic krill (Everson, 1984). More recent 

analyses of length-frequency distributions suggest that the youngest dominant year 
class around South Georgia in mid-summer is the 2+ (3 years old) year class (Murphy

The Journal Deep-Sea Research was used as a model for this dissertation
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Fig. 1. Base map showing the study region, the locations of the Subantarctic Front 
(SAF), the Polar Front (PF), the Southern Antarctic Circumpolar Current Front 
(SACCF), and the southern boundary of the Antarctic Circumpolar Current (dashed 
line; Bndry). The front locations were determined from historical hydrographic data 
given in Orsi et al. (1995). The thin line represents the 2000-m isobath. Geographic 
names are abbreviated as Falkland Islands (FI), Burdwood Bank (BB), Malvinas 
Chasm (Malvinas Ch.), Maurice Ewing Bank (MEB), South Orkney Islands (SOI), 
Elephant Island (El), Anvers Island (Al), and Bransfield Strait (Brans. St.).

et al., 1998; Watkins et al., 1999). Also, Watkins et al. (1999) showed that the krill 

population at the eastern end of South Georgia tend to be smaller and lack larger 
year classes relative to the krill populations at the western end of the Island.

Because there is a persistent krill population at South Georgia in spite of no ob
vious local recruitment, the inference is that this is a sink population which depends 
on a source population elsewhere. However, direct observations that support krill 
transport from another region to South Georgia are few. Distributions of various 
Antarctic krill life stages between the Antarctic Peninsula and South Georgia sug
gest a spatial separation of stages, with older stages being further eastward from 

the Antarctic Peninsula, suggesting that this area is a source region for krill popu
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lations observed downstream in the Scotia Sea (Marr, 1962). Brinton (1985) used 

length-frequency analyses of krill collected from net samples at locations across the 

Scotia Sea to show that krill size increases towards South Georgia. This has been 
supported by Siegel (1992), who found evidence that krill are exported from the 

Antarctic Peninsula region. Transport of krill from this region to South Georgia 

is accomplished by the large-scale ocean currents (Priddle et al., 1988; Witek et 

al., 1988). Another potential krill source region is the Weddell Sea (Marr, 1962; 

Maslennikov and Solyankin, 1988; review by Atkinson et al., 2001). Thus, these 

observations of potential krill source populations provide the basis for the first re
search question in this study: W hat origination areas and transport pathways 
provide a sustained recruitm ent for the A ntarctic krill population found 
around South Georgia, and how do different spawning tim es at the source 
affect the transport and survival o f krill?

More recently, the issue of krill transport to South Georgia from an upstream 
source was tested with modeling studies (Hofmann et al., 1998; Murphy et al., 

1998). These studies show that the currents associated with the Antarctic Circum

polar Current (ACC) can transport particles from the Antarctic Peninsula to South 
Georgia in 140 to 160 days. The currents associated with the Southern ACC Front 
(SACCF) and southern boundary of the ACC, which flow along the outer continental 
shelf of the west Antarctic Peninsula, appear to be the primary transport pathways 
(Hofmann et al., 1998).

Krill of all sizes can potentially be transported by ocean currents. However, 
passive transport of larval and juvenile krill is most likely because older krill are 
strong swimmers, with swimming speeds up to 8 times its body length per second 

(Kils, 1982). For 40 mm krill, this swimming speed is similar to the average speed 
(30 cm s_1) of the SACCF (Orsi et al., 1995). Modeling studies (Hofmann et al., 
1998; Hofmann and Lascara, 2000) suggest that krill with initial sizes of 2 mm and 
10 mm can develop to 10-12 mm and 20-30 mm sizes, respectively, in 140 to 160 

days, which is the time required for transport between the Antarctic Peninsula and 
South Georgia by the mean circulation.

Most krill spawning in the Antarctic Peninsula region occurs between December 
and February (Ross and Quetin, 1986). Chlorophyll concentrations in the Scotia 

Sea are typically low (<0.6 mg m-3, Comiso et al., 1993) and transport during and 
subsequent to the spawning season will place larval and juvenile krill in a low food
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environment during a time when their potential food supply is declining even further. 
Thus, while transport of krill across the Scotia Sea to South Georgia is feasible, 

sufficient food supply during transport or delivery of viable krill to South Georgia is 

not guaranteed. However, krill are omnivores and exploitation of food sources other 

than pelagic phytoplankton, such as zooplankton, is possible (Kawaguchi et al., 

1986; Daly, 1990; Nordhausen et al., 1992), as is feeding on sea ice algae (Marshall, 

1988; Daly and Macaulay, 1991), which has been observed for larval and juvenile 

krill, and detritus feeding (Holm-Hansen and Huntley, 1984; Kawaguchi et al., 1986; 
Daly, 1990; Nordhausen et al., 1992). Also, the temperature gradient that krill 

experience while moving across the Scotia Sea may affect metabolic processes and 
thus growth (Quetin et al., 1994).

The processes that allow krill to survive transport to South Georgia underlie the 

second research question: How are krill growth dynamics influenced by the  
varying environm ental conditions, especially food availability, encoun

tered during transport, and how do krill respond to  and use variable 
food and sea ice environm ents encountered during transport to  enhance 
survival? Related to this research question is the third research question: Do envi
ronm ental and biological factors com bine to select a particular age group 

o f krill that successfully com pletes transport?
Surveys of several regions throughout the Southern Ocean have shown strong 

spatial and temporal variations in krill standing stock (Everson, 1983; Hampton, 
1985; Priddle et al., 1988; Miller and Hampton, 1989b; Everson and Miller, 1994). 
Numerous studies have shown that krill abundance around South Georgia were much 
reduced in at least four years during the last 20 years (Priddle et al., 1988; Brier- 
ley et al., 1997), which affected many krill predators. These variations have been 
related to key physical-biological interactions such as variations in sea-ice extent fur

ther upstream and fluctuations of recruitment in the potential source population on 

the west Antarctic Peninsula (Murphy et al., 1998). Therefore, the fourth research 
question addressed in this study is directed at understanding the factors producing 
this variability: Are observed episodic variations in krill biomass at South  

Georgia the result o f variations in the upstream  source population, varia
tions produced during transport, variations produced by local population  
processes, or a com bination of these factors?

To answer these research questions, a modeling framework that couples physi
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cal and biological processes was developed to investigate the transport and survival 

of larval, juvenile and adult stages of Antarctic krill under different environmental 

conditions (Fig. 2). A primitive equations model, the Harvard Ocean Prediction 

System (HOPS), developed by the Ocean Dynamics Group at Harvard University 
(Lozano et al., 1994), is used to simulate the flow field, and temperature and salin

ity distributions of the Scotia Sea, which provide the environmental structure and 

characteristics. Drifters are released in the circulation model and are tracked over 

time, providing transport pathways along which time series of food concentrations 

can be determined. A time-dependent, size-structured, physiologically-based krill 
growth model (Hofmann and Lascara, 2000) is used to examine the growth dynam
ics of Antarctic krill from 2 mm (Calyptopis I) to 60 mm (adults) presented with 
the time series of food concentration. Because the model is size structured, it incor
porates ontogenic changes in physiology that occur as the animal ages. For certain 

aspects of the research questions to be investigated, an individual-based model of 

krill growth is more appropriate, which is also developed. The circulation model re

sults are combined with the krill growth model to provide simulations of krill growth 
and development during transport across the Scotia Sea (Fig. 2).

The goal of this research is to understand different environmental and biological 
factors that influence the successful transport of krill across the Scotia Sea and their 
survival during this transport. Ultimately, the interpretation of transport mecha
nisms will lead to a better understanding of the factors controlling krill distribution 
and production, which is needed for management of this commercially fished species.

The next chapter presents background information on the circulation pattern in 
the study area, krill distribution and variability, and the feeding behavior of krill. 

The numerical model used to model the circulation in the study area and the krill- 
growth model are described in Chapter 3. This chapter also provides a description 
of the various food time series developed for input to the growth model, details 
of the simulations, and a description of the data sets used for verification of the 

model results. Chapter 4 provides a description of the reference simulation and 
additional simulations undertaken to address the research questions. Seasonal and 

mesoscale variations observed in the simulated environmental and krill distributions 
are discussed in Chapter 5 and are placed within the context of observations. The 

final chapter provides a summary of the key findings from this study.
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Fig. 2. Schematic of the modeling framework used to address the four research 
questions of interest. The solid-line boxes indicate the two models used and the 
dashed-line box indicates the data types used with the model. The solid arrows 
indicate the inputs and outputs of the models and the dashed arrow indicates the 
data sets input into the krill growth model.
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2 BACKGROUND

This chapter provides a review of topics needed to provide context and validity for 

the models used in this study. In the following section, an overview of the general 

oceanic circulation in the region of research is given. The current knowledge of krill 
distribution and variability around the Antarctic Peninsula and in the Scotia Sea is 
next outlined, and is followed by a description of known feeding behavior of krill.

2.1 Circulation Characteristics

2.1.1 Large Scale Circulation Characteristics

The Scotia Sea is bounded by the North Scotia Ridge along the north, by the South 
Sandwich Arc to the east and by the South Scotia Ridge to the south (Fig. 1). It 

connects to the South Pacific Ocean via Drake Passage to the west. The large scale 
flow of the Scotia Sea consists of northeastward flow in which high speed frontal 

regions are embedded (Orsi et ah, 1995). It is in the Scotia Sea where the ACC and 
the Weddell Gyre, two major circulation features in the Southern Ocean, meet.

Three deep reaching, distinctly circumpolar fronts are seen within the ACC. In 
the southern Drake Passage, the SACCF and the southern boundary of the ACC 
(Bndry) flow close to the edge of the continental shelf west of the Antarctic Peninsula 
(Fig. 1). The Bndry is found over the continental slope and the SACCF is located 
approximately 100 km north of the slope (Orsi et ah, 1995). The fronts of the

ACC meander and lateral frontal shifts of as much as 100 km over 10 days have
been observed (Hofmann and Whitworth, 1985; Nowlin and Klinck, 1986). To the 
north of the SACCF, flows the Polar Front (PF) and further north the Subantarctic 
Front (SAF). The SACCF and the Bndry flow across the entire Scotia Sea (Fig. 
1). The SACCF then leaves the Scotia Sea to flow along the eastern and northern 
continental slope of South Georgia after which it turns clockwise, due to interactions 
with bottom topography, to continue its circumpolar path (Orsi et ah, 1995).

The fronts are clearly indicated by large scale horizontal property gradients

(Nowlin and Clifford, 1982) and pronounced isopycnal tilt through the deep wa
ter column (Orsi et ah, 1995). They separate different water mass regimes and 

the SAF is characterized in particular by a rapid northward sinking of the salinity 
minimum associated with Antarctic Intermediate Water (AAIW) from near the sur

face (<34.0) to depths greater than 400 m (<34.3) (Orsi et al., 1995). The PF is
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characterized by a large temperature gradient along the potential temperature (9) 
minimum (9 <2°C) of the Antarctic Surface Water (AASW) that starts to descend 

northwards, while the SACCF is indicated by a distinct temperature gradient along 

the potential temperature maximum (9 >1.8°C) of the Upper Circumpolar Deep 

Water (UCDW) as it shoals southward to 500 m (Orsi et al., 1995).
The widths of the fronts in Drake Passage have been measured (Sciremammano 

et al., 1980; Nowlin and Clifford, 1982) and all three fronts are associated with 

strong baroclinic currents (Nowlin and Clifford, 1982; Hofmann, 1985) and large 
geostrophic volume transport (Nowlin and Clifford, 1982; Orsi et al., 1995). The 
approximate width, speed and the geostrophic volume transport relative to 1000 m 

of the three fronts are given in Table 1.

Table 1. Characteristics of the three ACC fronts, the Subantarctic Front (SAF), the 
Polar Front (PF) and the Southern Antarctic Circumpolar Current Front (SACCF).

Characteristic SAF PF SACCF Source

W idth (km) 44±8 60±18 37±12 Nowlin and Clifford (1982)

Transport (Sv) 27 22 14.5 Nowlin and Clifford (1982)

Speed (cm s_1) 43 40 30 Nowlin and Clifford (1982);
Hofmann (1985)

For the setup of the circulation model discussed in Section 3, the baroclinic 
transport of the ACC is important. Early measurements of the baroclinic transport 

of the ACC flow through Drake Passage gave estimates of 110-138 x 106 m3 s-1 
[1 x 106 m3 s-1 =  1 Sverdrup (Sv)] (Nowlin et al., 1977), 139±36 Sv (Bryden and 
Pillsbury, 1977), and 127±14 Sv (Fandry and Pillsbury, 1979). Subsequent measure
ments gave a mean net transport estimate above 2500 m of 125±10 Sv (Whitworth, 
1983; Whitworth and Peterson 1985). Whitworth et al. (1982) showed that during 
seven crossings of Drake Passage the geostrophic transport relative to 3000 dbar 
averaged 103 Sv, and gave three estimates of net transport, determined by refer

encing shipboard data with mooring data, of 117, 144 and 134 Sv. For a detailed 
summary of the measurements of volume transport of the ACC through Drake Pas
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sage see Peterson (1988, Table 1) and Orsi et al. (1995, Table 2). In addition, Orsi 

et al. (1995) calculated the total baroclinic transport to be 100 Sv relative to 3000 
m. Other baroclinic transport values of importance for the setup of the circulation 

model are the transport of the Weddell Sea Gyre and the Brazil Current, which have 
been calculated to be approximately 29.5 Sv (Fahrbach et al., 1994), and 9.6-10.2 

Sv (Stramma, 1989), respectively.

East of the Antarctic Peninsula, where the ACC and the Weddell Gyre meet, 
cold water (<0°C) originating on the western continental shelf and slope of the 

Weddell Sea is injected into the Scotia Sea and follows the flow eastward (Whitworth 

et al., 1994). Weddell Sea water is also transported westward at the tip of the 

Antarctic Peninsula. There the circulation is characterized by dense, cold (<0°C), 
fresh (<34.6) and oxygenated (>6 ml I-1) water flowing westward over the outer 
shelf down to depths of 800 m (Nowlin and Zenk, 1988), which is thought to be 
part of the Antarctic Slope Current (Nowlin and Zenk, 1988; Jacobs, 1991). North 

of the South Shetland Islands (Fig. 1) the Antarctic Slope Current carries water of 
Weddell Sea origin to the west (Nowlin and Zenk, 1988; Capella et al., 1990).

2.1.2 M esoscale Circulation Characteristics

Recent studies have shown mesoscale variability associated with the flow on the 
continental shelf west of the Antarctic Peninsula (Stein, 1992), in Bransfield Strait 

(Niiler et al., 1991) and in Drake Passage (Joyce and Patterson, 1977; Peterson et al., 
1982; Bryden, 1983; Hofmann and Whitworth, 1985; Klinck, 1985; Gille and Kelly, 

1996; Moore et al., 1999). Such changes may have an influence on krill transport. 
The frontal structure of the ACC causes the relative vorticity between bands of flow 
with different velocity to give rise to numerous eddies (Joyce and Patterson, 1977; 
Peterson et al., 1982; Bryden, 1983). The current cores migrate laterally (Nowlin et 

al., 1977; Hofmann and Whitworth, 1985; Klinck, 1985) and can meander as much 
as 100 km with time scales of 10 days. These meanders can develop into closed 
current rings, which were first reported by Joyce and Patterson (1977). Since this 
first report of current rings, observations of warm and cold core rings have been 
numerous (Gordon et al., 1977; Joyce et al., 1981; Peterson et al., 1982; Pillsbury 
and Bottero, 1984; Hofmann and Whitworth, 1985).

Satellite altimeter measurements provide additional evidence of mesoscale vari
ability in the flow of the ACC and show increased levels of eddy variability along the
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axis of the ACC (Shum et al., 1990; Chelton et al., 1990; Gille, 1994), particularly 
in the Scotia Sea (Fu and Chelton, 1984, 1985). Cheney et al. (1983) showed that 

mesoscale variability associated with the ACC is nearly continuous around Antarc

tica and that the largest variability is associated with regions of major topographic 

features, such as are found in the Scotia Sea (Fig. 1). Strong topographic influence 

on the flow of the ACC and the PF has been described in many other studies in

volving the analysis of hydrographic data from ship surveys (Gordon et al. 1978; 

Lutjeharms and Baker, 1980; Orsi et al., 1995), moorings (Inoue, 1985), drifting 
buoys (Hofmann, 1985; Patterson, 1985), and satellite altimeters (Chelton et al., 
1990; Gille, 1994, Moore et al., 1999).

In the Scotia Sea to the south of South Georgia, the flow shifts sharply north

ward because of interacting with the South Sandwich Arc (Orsi et al., 1995). The 

relatively clear frontal structure from the Drake Passage region may be affected by 
the bathymetry in the South Georgia region, as currents pass through the North 

Scotia Ridge (Mackintosh, 1946; Deacon, 1982). In addition, a series of eddy-like 
structures have been observed near South Georgia, that seem to be linked to water 
from the Weddell Sea and the ACC meeting east of the Antarctic Peninsula (Foster 
and Middleton, 1984). The energy of these eddies increases downstream of the South 

Orkney Islands (Fig. 1 ) as the region over which the eddies occur expands (Foster 
and Middleton, 1984). These eddies are found in the waters to the east and west of 
South Georgia (Foster and Middleton, 1984).

Bryden (1983) summarized the characteristics of eddy variability in the Southern 
Ocean and showed that eddy variability has been found everywhere measurements 
were made. The spatial scales of mesoscale eddies vary from 30 km to 100 km and 
their surface velocities are typically 30 cm s_1  or greater, and the eddies are vertically 
coherent from surface to bottom. Bryden and Heath (1985) reported eddies from the 

southwestern Pacific Ocean north of the SAF, that varied over horizontal scales of 

60 km and temporal scales of 2 0  days, and moved southeastward at ca. 1 2  cm s-1.
Mesoscale eddies are known to retain and concentrate planktonic organisms (An

gel and Fasham, 1983; Heywood and Priddle, 1987; Perissinotto and Duncombe Rae, 
1990; Niiler et al., 1991), an important food source for krill. Therefore, mesoscale 

eddies could play a major role in the transport and retention of krill and their food 
supply.
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2.2 Krill Life History, Distribution and Variability

2.2.1 Krill Life H istory

Antarctic krill are believed to have a life span of 6  years (Siegel, 1987) and so the 
life history is divided into 6  age groups (0 to 5+) that correspond to different length 

krill (Fig. 3). The growth curve illustrated in Fig. 3 is the seasonal von Bertalanffy 

growth curve derived by Siegel (1987), which uses a simple sinusoidal change in the 
seasonal growth rate to reproduce change of krill length as

L, =  M l  -  e<-t<‘-W “ ',[g ‘- ll>], (1)

where Lt is krill length (mm) at time t, expressed in days, and L 00 is the maximum 
size of krill (mm). Values of the equation constants are: L 00 =  61 mm, k =  0.4728 

d_1, t0 =  0.1418 d, c =  0.9598, and t s =  -0.0272 d. Time is then transformed into the 
age of krill in years. This type of growth curve assumes that krill grow constantly 

throughout their lives at various rates.

After spawning the embryonal and early larval stages of krill undergo a descent- 

ascent cycle in which embryos sink rapidly through the water column to depths of 
200 m to 500 m and after hatching, larvae ascend to the surface where they begin 
feeding (Marr, 1962; Hempel and Hempel, 1986; Hofmann et al., 1992). While 

ascending, the larvae develop through two non-feeding (Nauplius, Metanauplius) 
and several feeding (Calyptopis 1-3) developmental stages. Larvae develop through 
3 Calyptopis stages and 6  Furcilia stages before reaching the juvenile stage at about 
15 mm during their first winter (Fig. 3). The size range corresponding to the juvenile 
stage is 14-36 mm (Siegel, 1987). Krill then develop into subadult (26-45 mm) and 

adult stages (35-60 mm) in the second and third years of their life (Siegel, 1987). 
From age group 3+ onwards, all krill are sexually mature adult stages (Fig. 3). This 
can result in three or more spawns in this part of their life history (Siegel, 1987). 
Denys et al. (1981) showed that adult krill can molt into an earlier subadult stage 
after spawning. In addition, krill have been observed to shrink by molting if starved 
(Ikeda and Dixon, 1982; Nicol et al., 1992), which is not incorporated in the krill 

growth model given by equation (1). Thus, a given age group of krill can include 
krill that may have shrunk to that size, thereby overlapping separate age groups. 
As a result, krill age cannot be predicted solely from length.

The measurement of temporal increases in quantities of fluorescent age-pigments,
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Fig. 3. Relationship between size and age of krill obtained from a modified von 
Bertalanffy growth model (equation 1) fitted to seasonally oscillating length-at-age 
krill data given by Siegel (1987). Horizontal lines denote the range of sizes associ
ated with different krill ages for krill from the western Antarctic Peninsula and the 
Weddell Sea (Siegel, 1987). Age group 3+ and older are considered adults.

such as lipofuscin, has been suggested as a method which obviates the problems 
associated with size-related measures of age (Ettershank, 1983; 1984; 1985; Nicol et 
al., 1991). Lipofuscin accumulates as a function of metabolic rate, not the passage 

of clock time (Ettershank, 1983), and Ettershank (1984) showed that it can be used 
to discriminate three age classes of mature female krill from a single haul whose 

bodily dimensions largely overlapped.
In addition, it has been suggested that the relationship between the number of 

crystalline cones in the krill eye or the diameter of the krill eye and the body length 
may indicate whether krill experienced shrinkage (Sun et al.; 1995, Sun, 1997). This 

was confirmed by Shin and Nicol (2002), who demonstrated that fed and starved krill 
are distinguishable by the relationship between the eye diameter and body length. 

Krill eye diameter does not decrease in starving animals even when they shrink in
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size, while it continues to increase for well-fed krill. This provides an approach for 

distinguishing starved and well-fed krill. However, any imprints caused by starving 

in winter will be blurred by summer as the starved krill start active growth (Shin 

and Nicol, 2002).

2.2.2 Krill D istribution

The first large-scale descriptions of krill distributions were based on net samples 

obtained during the Discovery cruises (Marr, 1962), which show that krill inhabit 

the broad, circumpolar region between the Antarctic continent and the Antarctic 
PF (Fig. 4). However, most krill aggregations are confined to areas affected by 
the seasonal change of annual pack ice (Marr, 1962; Mackintosh, 1972) such as the 
Antarctic Peninsula region (Comiso et al. 1993).

Krill Biom ass

During the Biological Investigations of Marine Antarctic Systems and Stocks 

(BIOMASS) program, the mesoscale distribution of krill around the Antarctic Penin
sula was examined using hydro-acoustic techniques, which showed that this region 
contains high concentrations of krill (Everson and Miller, 1994). Within the western 
Antarctic Peninsula region, especially large (up to 15.49 g m - 2  in summer 1985/86 
or even 165.7 g m -2) concentrations of krill have been observed in the Bransfield 
Strait-South Shetland Island area (e.g. Kalinowski et al., 1985; Siegel, 1988).

Biomass estimates for krill in the Bransfield Strait, Elephant Island and Drake 
Passage from net samples and from hydro-acoustic data prior to 1987 are summarized 

by Godlewska and Rakusa-Suszczewski (1988, Table 1). They include estimates 
from BIOMASS cruises showing mean density values from 0.075 to 44.607 g m-2. 
Comparison between these data sets is difficult because different methods (hydro
acoustic and net sampling) were used and different subareas were analyzed (Siegel, 
1992).

In addition, other studies also found that high krill population densities, with 
a mean summer biomass ranging from 6.1 g m ~ 2 (1987/88) to less than 4.5 g m - 2  

(1989/90) (Siegel, 1992) exist in the Antarctic Peninsula region. A more recent net 

sampling study of krill distribution around Elephant Island (cf. Fig. 1) measured a 
mean krill density of 13.3 g m - 2  (Siegel et al., 2002).

Hydro-acoustic observations of krill density during the Palmer Long-Term Eco
logical Research (LTER) program at the western Antarctic Peninsula showed that
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Fig. 4. Circum-Antarctic map showing the distribution of regions of highest krill 
concentration as developed by Lubimova et al. (1982), and the climatological loca
tions of the Southern Antarctic Circumpolar Current Front (dashed line) and the 
southern boundary of the Antarctic Circumpolar Current (dash-dotted line) as given 
by Orsi et al. (1995).

summer biomass was associated with aggregations of high mean biomass (>150 g 
m~2) (Lascara et al., 1999).

D evelopm ental M igration and Passive Transport

Analyses of krill spatial distributions suggest that developmental migration from 
the inshore regions of Bransfield Strait to the outer shelf break regions of the South 
Shetland Islands occurs (Siegel, 1988; Brinton, 1991). Siegel (1992) used results 
from a net sampling survey to show such a migration from inshore to the outer shelf 
regions and back for the continental shelf west of the Antarctic Peninsula. Gravid 

females were mostly found on the outer shelf, while spent females tended to be found 
in inshore regions, a pattern confirmed by later studies (Lascara et al., 1999; Siegel,
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2002). This suggested that spawning occurs in the outer shelf regions west of the 

Antarctic Peninsula. Consequently, surface currents, like those associated with the 

ACC, that flow and meander close to the edge of the continental shelf in this area, 

can potentially entrain larval krill spawned at the shelf edge. Once entrained in high 

speed surface currents, krill can be transported downstream.
A similar transport mechanism has been suggested for krill in the King George 

Island region (South Shetland Islands, cf. Fig. 1). Passively drifting krill patches 

could potentially pass through an area the size of Bransfield Strait in one to two 

weeks (Everson and Murphy, 1987). In addition, the suggestion that krill larvae 

found across the Scotia Sea are not produced locally, but are advected into the 
region by currents is supported by different developmental stages collected in the 
Scotia Sea north of the South Orkney Islands and east of Elephant Island (Brinton 

and Townsend, 1984).

2.2.3 Variability

Strong spatial and temporal variations in krill standing stock have been detected in 

surveys of several regions throughout the Southern Ocean (Everson, 1983; Hampton, 
1985; Priddle et al., 1988; Miller and Hampton, 1989b; Everson and Miller, 1994). 
An extensive hydro-acoustic mapping of the seasonal and regional variability in 
krill stocks west of the Antarctic Peninsula show a seasonal reduction of krill stock, 

with a winter minimum, and across-shelf differences in length-frequency distribution, 
with small adults (<40 mm) generally located in inshore regions (Lascara et al., 

1999). Summer biomass was associated with aggregations of small cross-sectional 
area (<2000 m2) and high mean biomass (>150 g m~2) in the upper 50 m of the water 
column, while winter observations were characterized mostly by large cross-sectional 
area (>10000 m2) and low mean biomass (<10 g m-2) below 100 m depth. Moreover, 
a correlation between Circumpolar Deep Water (CDW) and the spatial aggregation 
of reproducing krill was found (Lascara et al., 1999). This is in agreement with Siegel 
(1992), who showed that the mean biomass in a winter survey was 0.55 g m-2, only 
2.8% of the maximum observed summer stock. Seasonal variation thereby exceeded 
a factor of 35, while the krill summer stock varied only a factor of 1.6 interannually. 

The krill biomass data summarized by Godlewska and Rakusa-Suszczewski (1988, 
Table 1 ) changed by a factor of at least 21 from summer to winter (Siegel, 1992) 
and maximum interannual differences fluctuated by a factor of 8.9 (Siegel, 1992).
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Interannual variability of krill around South Georgia is a well recognized phe
nomenon and was first documented in the period of commercial whaling when year- 

to-year fluctuations in the abundance of whales close to the island were evident 

from catch statistics (Harmer, 1931; Kemp and Bennet, 1932). During the Dis

covery Investigations, interannual differences in sizes of scientific catches of krill 

were correlated to sea surface temperatures (Mackintosh, 1972), with substantially 

greater krill catches in colder years. Later analysis of historical data sets suggested 

that the variability within the South Georgia ecosystem may be the manifestation 
of periodic variations across the Scotia Sea and indeed the whole Southern Ocean 
(Priddle et al., 1988; Sahrhage, 1988; Murphy et al., 1995; Fedoulov et al., 1996; 
Whitehouse et al., 1996). During the last 20 years, krill abundance around South 
Georgia was much reduced in at least four years (Priddle et al., 1988; Brierley et 

al., 1997), which affected many krill predators. A closer look at the variability of 

krill at South Georgia was taken by Brierley et al. (1999), who showed through 

hydro-acoustic estimates of krill density, that the magnitude of krill densities and 
between-year gradients of density between Elephant Island (cf. Fig. 1) and South 
Georgia mirrored each other for seven austral summers. They concluded that krill 
densities at both locations are linked, and subject to the same gross physical and 
biological factors acting over the same temporal and spatial scales. These factors 

included key physical-biological interactions like variations in sea-ice extent further 
upstream and fluctuations of recruitment in the potential source population on the 
west Antarctic Peninsula (Murphy et al., 1998).

2.3 Food Sources and Feeding Behavior of Krill

During austral spring and summer, Antarctic krill have been observed to feed on 
many different sizes and types of phytoplankton, as shown by feeding studies (Quetin 

and Ross, 1985; Schnack, 1985) and growth rate studies (Holm-Hansen and Huntley, 
1984). Phytoplankton biomass is extremely low (less than 0.1 mg m-3) in the months 
March to October (austral winter), which has led to a variety of hypotheses that try 
to explain how krill survive this season. The exploitation of a food source other than 
pelagic phytoplankton as a winter food source seems to be a strategy for overwinter 
survival of krill (Kawaguchi et al., 1986; Daly, 1990; Nordhausen et al., 1992), since 

krill do not seem to have substantial reserve lipids (Clarke, 1984).

Phytoplankton concentrated in surface waters as well as phytoplankton concen
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trations at depths can provide a food source for krill. Krill are known to migrate 

vertically (Marr, 1962; Nast, 1979; Kalinowski and Witek, 1980; Everson and Ward, 

1980; Godlewska, 1996) and are therefore able to use phytoplankton present at 

greater depths within and just beneath the photic zone.
Subsurface phytoplankton concentrations cannot be detected in Coastal Zone 

Color Scanner (CZCS) satellite images because satellites represent depth-weighted 

averages of pigments in near-surface waters, i.e., they are limited by the optical 

attenuation depth (Smith, 1981). Chlorophyll a has been detected at depth in 

higher concentrations during summer/fall than in winter/spring (El-Sayed and We

ber, 1982), and below the photic zone in various parts of the Southern Ocean during 

summer (Smith and Nelson, 1986; Bianchi et al., 1992; Treguer and Jacques, 1992; 
W. O. Smith et al., 1996; Smith et al., 1996). Smith et al. (1996) used historical 
chlorophyll data obtained since the 1960s and found that during the growing sea
son (November to March) mean chlorophyll a concentrations west of the Antarctic 
Peninsula, down to a depth of 100 m, are relatively high (>1.0 mg m~3) with levels 
of chlorophyll a increasing below 50 m. This shows that deep chlorophyll a maxima 

do occur in this region, which provide a potential food source for krill. During other 

studies, like the European Polarstern Study (EPOS), increased chlorophyll a con
centrations at depth in the Elephant Island and South Orkney Island region were 
found during the months of October and November of 1988 (Bianchi et al., 1992; 
Treguer and Jacques, 1992). Phytoplankton blooms that extend to 100 m are also 
often associated with ice edge blooms (Smith and Nelson, 1986) which may extend 
to about 250 km from the ice edge (Smith and Nelson, 1985).

Krill have been observed feeding on sea ice algae underneath fast ice (Marschall, 
1988; Daly and Macaulay, 1991). However, it appears that mostly larvae and ju
veniles use this food source. In addition, this habitat seems to provide young krill 
with protection from predators, because small animals are able to retreat into holes 
and crevices (Daly, 1990). Not all sea ice is necessarily associated with sea ice algae 
though, and during times of low light during winter, krill may need an alternative 
food source.

An alternative food source has been suggested by Nordhausen et al. (1992), who 
observed various copepod species in the stomachs and guts of Antarctic krill, and 
were able to show in laboratory experiments that krill actively feed on copepods. 
Additional studies (e.g. Hopkins et al., 1993; Pakhomov et al., 1997) show that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

Antarctic krill can feed on zooplankton outside of phytoplankton bloom periods.
Kawaguchi et al. (1986) observed that krill in the Liitzow-Holm Bay, near the 

Japanese Antarctic Station Syowa (69°S, 39°E), were found underneath fast ice 

close to the sea floor (38-40 m) feeding mainly on detritus. Also Holm-Hansen and 

Huntley (1984) suggest that detritus may be an important food source for krill, 

since little is known about the ability of krill to distinguish between living and 

non-living organic carbon particles. Daly (1990) found evidence in gut contents of 
krill larvae caught in the marginal ice zone of the Scotia and Weddell Seas during 
austral winter, that larvae ingested detrital material in addition to phytoplankton 
and heterotrophic organisms. Calculations of metabolic demands showed that sea 
ice algae and phytoplankton alone are not enough to sustain krill and that detritus 

and heterotrophic organisms seem to be additional food sources (Daly, 1990).

Actual shrinking in size due to starvation has also been suggested as mechanism 

by which krill survive low food concentrations during winter (Ikeda and Dixon, 1982; 
Nicol et al., 1992). This may be an additional survival strategy for krill, although 
the studies discussed above suggest that krill have omnivorous feeding behavior.

2.4 M odeling Studies

2.4.1 Krill M odels

Mathematical models provide one approach for exploring the downstream transport 

of krill by currents, and the effect of physical and biological factors on transport 
patterns and residence times. To date, only a small number of numerical models have 
been developed for krill. Astheimer et al. (1985) and Astheimer (1986) developed a 
phenomenological model of individual krill growth, which did not explicitly include 
metabolic processes and the calculation of net production, and therefore cannot be 

applied to a wide range of environments. Hofmann et al. (1992) developed a model 

for the embryos and early larval stages of Antarctic krill that was embedded in a 
limited-area circulation model to investigate transport and pathways of early life 
stages of krill (Capella et al., 1992). These models only consider the early life stages 
and do not include feeding, and as a result are not applicable to the older stages 
of krill. In addition, krill population dynamics have been modeled by Murphy and 

Reid (2001) who combined a krill population size model with a size-based selection 

function to generate length-frequency distributions observed in predator diets at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

South Georgia in summer.

A time-dependent, size-structured, physiological krill growth model was devel

oped by Hofmann and Lascara (2000) to examine the growth dynamics of krill from 

Calyptopis I to adult stages (2-60 mm). They found that the model produces spring 

and summer growth rates for different size classes that are consistent with observa
tions when krill is feeding on phytoplankton. However, the simulated annual growth 

cycle, especially for larval and subadult krill, best matches observations when winter 

respiration rates are reduced and an additional winter food source (sea ice algae) 

is available. Later modeling studies used an improved version of the above krill 
growth model to assess the food sources needed to sustain Antarctic krill during 

transport across the Scotia Sea to South Georgia (Fach et al., 2002), using initial 
drifter paths from a Lagrangian model presented in Hofmann et al. (1998). Their 
simulation results show that phytoplankton concentrations across the Scotia Sea are 
not sufficient to support krill during transport, and that the inclusion of sea ice 

algae as winter food does significantly not alter this result. Given these results, the 
importance of other food sources such as heterotrophic food becomes apparent, as 

well as a possible survival strategy for krill that invalues overwintering under sea 
ice, resulting in a longer, interrupted transport (Fach et al., 2002).

2.4.2 Circulation M odels

An early attem pt at running an eddy-resolving model of the Southern Ocean, be
tween 24°S and 79°S, was the Fine Resolution Antarctic Model, FRAM (FRAM 
Group, 1991; Webb et al., 1991), which is a primitive equation numerical model 
based on the model of Semtner (1974) and Cox (1984). FRAM is configured with a 

horizontal grid spacing of 0.5° in the east-west and 0.25° in the north-south direction, 
using 32 vertical layers. However, representation of the circulation through Drake 
passage obtained by FRAM differed from observations, because it showed two fronts 
instead of three (Gross et al., 1995), and the SACCF formed from a bifurcation of 
the PF as it entered Drake Passage (Gross et al., 1995).

There are numerous modeling studies of Southern Ocean dynamics, however 

none of them have focused on the connection between the Antarctic Peninsula and 
the eastern Scotia Sea. Barnier et al. (1998) modified the Semi-spectral Primitive 

Equation Model (SPEM) from Rutgers University (Haidvogel et al., 1991) to study 
the circulation of the South Atlantic. The model domain extended from 16°S to the
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Antarctic continent and longitudinally from 6 8 °W to 20°E. The resolution of the 
model was 1.375° in longitude and 1.375 x cos(latitude) in latitude, which does not 

resolve mesoscale eddies (Barnier et al., 1998). Drake Passage was located on one of 

the open boundaries and was parameterized to allow inflow of 130 Sv into the South 

Atlantic. No fronts appear in the simulation results. Similar results were obtained in 

a companion study using the same model (Marchesiello et al., 1998). The simulated 

circulation patterns showed good agreement with known climatological circulation 
features in the South Atlantic, especially in the confluence region between the Brazil 

Current and the Malvinas Current. Sensitivity studies show the detailed features of 
the circulation to be influenced by the bottom topography.

Another study focusing on the circulation dynamics of the South Atlantic Ocean 

used the Ocean Parallel model discussed in detail by Penduff et al. (2001). This 

model is based on the primitive equations Ocean Parallel model version 8.1 (Madec 

et al., 1998) and uses the same configuration as the 1/3° Atlantic model developed 
for the CLIPPER (high resolution modeling of the Atlantic) project (Treguier et 
al., 1999). In contrast to the circulation study of Barnier et al. (1998) described 
above, this model allows a larger part of the ACC to flow into the Scotia Sea. The 
simulated circulation shows a smaller Malvinas Current, but tends to distort the 

complex dynamics of the confluence region of this current with the Brazil Current.
Beckmann et al. (1999) developed the Bremerhaven Regional Ice Ocean Simula

tions (BRIOS) model, to investigate the large scale circulation and water mass distri
bution in the Weddell Sea. Ice-ocean dynamics were subsequently added to BRIOS 
(Timmermann et al., 2002a; 2002b). The original, circumpolar model which was 
forced with climatological data from a sea ice-mixed layer model, included shallow 
shelf areas as well as the major sub-ice shelf areas. The simulated circulation fields 
obtained with BRIOS showed a pronounced and persistent double-cell structure of 

the Weddell Gyre with a maximum transport of 60 Sv. Beckmann et al. (1999) 
show that the water masses from sub-ice shelf cavities contribute significantly to 

the water mass formation along the continental slope, and affect water mass char
acteristics throughout the Weddell Sea by increasing the stability of near-surface 
stratification, preventing deep ocean convection. With the coupling of BRIOS to 
a sea ice model, BRIOS-2 was created and forced with 6 -hourly wind data of the 

European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis. Cir

culation simulations with this model underestimate summer sea ice coverage, but
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winter sea ice extent, thickness and drift are well reproduced (Timmermann et al., 

2 0 0 2 a). Simulations of ice-ocean dynamics revealed a strong correlation between at

mospheric forcing and sea ice formation (Timmermann et al., 2002b) and show that 

interannual atmospheric variability propagates into the deep ocean and the sub-ice 

shelf cavities.

Matano et al. (2002) used the Modular Ocean Model (MOM) to study the north

western Weddell Sea and its interaction with the Scotia Sea, focusing on circulation 
pathways, associated stratification, and volume transports. They find that the main 

route for inter-basin exchange of Weddell Sea Deep Water is into the Scotia Sea 

through the South Scotia Ridge and the Bransfield Strait, while no advective trans

port along the eastern side of the South Sandwich Arc was found. Analysis of 

Lagrangian drifters indicated that fluxes in this region are more likely to be related 
to eddy-driven mixing than to mean flow advection. A south-flowing jet formed in 
the simulated circulation fields at the outer shelf off the Antarctic Peninsula.

Apart from regional models there are many global models available, some of 
which are mentioned here briefly. These models will not be discussed in detail, since 

their resolution is too coarse to address the research questions of interest to this 
study. From the FRAM effort discussed above, the Ocean Circulation and Climate 

Advanced Modeling Project (OCCAM) was developed and two high resolution (1/4° 
and 1/8°) models of the World Ocean, including the Arctic Ocean and marginal 
seas such as the Mediterranean, are available (Webb et al., 1998). The Max-Planck- 
Institut fur Meteorologie, in Hamburg, Germany is running the Hamburg Ocean 

Primitive Equation Model (HOPE), a global general circulation model of the ocean 

based on the primitive equations (Wolff et al., 1997). Other global models include 

Estimating the Circulation and Climate of the Ocean (ECCO) (Stammer et al., 
1999), the Naval Research Laboratory Ocean Prediction System (Wallcraft, 1991), 
the Hybrid Coordinate Ocean Model (HYCOM) (Bleck, 2002), and the Parallel 
Ocean Program (POP) developed at the Naval Postgraduate School and Los Alamos 
National Laboratory (Smith et al., 1992).
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3 METHODS

Described below are the two models which are used to investigate and quantify the 

relative importance of physical and biological processes determining krill survival 

and transport across the Scotia Sea to South Georgia. Following this, four potential 

food sources for krill and their implementation in the simulations of krill growth 

and development are discussed. The last section describes observational programs 
that provide data sets adequate for validating results from the circulation and krill 

growth models.

3.1 Circulation M odel

The proposed research requires a realistic representation of the circulation along the 

Antarctic Peninsula, in the Scotia Sea, and around South Georgia. In particular, the 
ACC with its frontal structure, needs to be resolved properly, since this is the largest 

current in this region and is thought to be the primary krill transport mechanism. 
The circulation model also needs to be able to resolve mesoscale variability such as 
eddies, because of the possible importance of these features in retaining krill and 
providing food sources for extended periods. The circulation model also needs the 

capability of tracking drifters over time and space to investigate transport mecha

nisms of krill. From the discussion in the previous section, it is apparent that such 
a circulation model is currently not available for the study region.

The circulation model that is used in this study is the Harvard Ocean Predic
tion System (HOPS) Primitive Equation Model for coastal and deep water, which 
is applicable to any oceanic region that may have an arbitrary coastline and open 
boundary segments (Lozano et al., 1994). A primitive equation (PE) model was 
chosen, because quasi-geostrophic models do not allow inclusion of the steep bottom 

topography that is present in the study region. Also, the flow in quasigeostrophic 

models is assumed to be geostrophic with small departures dependent only on plan
etary vorticity (Rossby waves), which limits the ability to resolve rapid changes in 
the flow associated with fronts.

3.1.1 M odel Physics

The PE model is based on the Navier-Stokes equations in a rotating coordinate 
system, assuming the hydrostatic and the Boussinesq approximations (Spall, 1988;
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Spall and Robinson, 1989). As described in Lozano et al. (1994), further assump

tions include geopotentials lying on concentric spheres, a constant gravitational field 

throughout the domain, and a rigid surface. The basic structure of the model is based 
on an early version of the Modular Ocean Model (MOM) (Bryan, 1969; Cox, 1984) 

and uses a double sigma stretched vertical coordinate system based on a piecewise 

linear sigma coordinate system (Simmons and Burridge, 1981). Only the vertical 
component of the Earth’s rotation vector is retained, solid boundaries are rigid and 
impermeable, and heat and salt fluxes normal to those boundaries are zero. The 

basic state variables for the HOPS model are temperature, salinity and velocity. The 

model is solved numerically using a B-grid in space, and steps in time using leap-frog 

with lagged friction, as described in Bryan (1969). The primitive equations under 
all those above assumptions are written as can be found in Pedlosky (1987).

The mass conservation equation (incompressibility condition) is

du dv dw n
& M ^ + f c = 0’ (2)

where u and v are the horizontal velocities, and w is the vertical velocity. The 
momentum equation is written as

Du
—  +  f e z x u =  -V p  +  Div t  +  Fm, (3)

where ^  is the change of the horizontal velocity vector u over time, /  is the Coriolis 
parameter, and ez is a unit vector in the vertical direction. The horizontal pressure 
gradient is given by Vp, Div  is the three dimensional divergence operator, and r  is 

the shear stress. The final term, Fm, is a parameterization for additional subgrid 
scale physics such as shear instability, bottom stress, horizontal lateral diffusivity 
and mixing, and internal waves.

The hydrostatic equation is

dp , .
Tz =  ~9P, (4)

with g being the gravitational acceleration, and p being the water density. The 

conservation equations for temperature (T) and salt (S) are of the form

D T
Dt

D S
Dt

— Div qx +  Ft , (5)

Div qs + Fs , (6)
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where <fr and qs are the heat and salinity flux vectors. The subgrid scale parameter- 
izations involving salt and temperature are given by Ft  and Fs, respectively. The 
equation of state for seawater is written as

p = p(T,S,p).  (7)

This particular circulation model was chosen because it has useful features, such 

as terrain-following coordinates which allow a smooth transition from the coast to 

deep sea in areas where the topography is steeply sloping. In the vertical dimension, 
the model structure consists of flat upper layers, in order to support higher accuracy 
in the upper ocean and the main thermocline (Lozano et al., 1994). This is necessary 
because the study region includes shallow, coastal areas with depths of 1 0 0 s of 

meters, and the open ocean with depths of up to 7000 m near South Georgia. For 

krill advection, the upper 500 m are important and therefore need to be represented 

accurately. However, bottom topography has a large impact on the speed and the 
path of the ACC in the region of interest (Gordon et al., 1978; Klinck, 1985) and 
influences the locations of the circumpolar fronts (Orsi et al., 1993; 1995), which 
makes it necessary to include the whole water column in the model. Frontal eddies 
found in the Drake Passage region are usually found to be 30-40 km in horizontal 
scale (Joyce and Patterson, 1977) and need an average time of 14 days to move 

through a region (Bryden and Pillsbury, 1977). Depending on the grid spacing 
chosen for the model, HOPS is eddy admitting, but only small grid spacing (i.e. 10 
km and less) allows the resolution of mesoscale eddies.

3.1.2 M odel Structure

The model domain includes the Antarctic and Subantarctic regions of the South 

Atlantic and South Pacific Oceans between the longitudes 85°W and 25°W and the 

latitudes 43°S and 73°S and is rotated counterclockwise by 2 2 ° from the horizontal 
plane (Fig. 5). The rotation of the model domain enables the ACC to enter Drake 
Passage in the east and exit into the South Atlantic without encountering model 
boundaries.

A uniform 10-km grid with 311 grid points of longitude by 221 grid points of 
latitude is used to represent the model domain. The choice of the appropriate grid 
spacing is influenced by the need for high resolution of the flow while maintaining 

realistic simulation times. Therefore, this grid spacing is chosen in order to resolve
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Fig. 5. Study area with the model domain indicated as a rotated rectangular. Con
tours are bottom topography in meters. Heavy lines indicate the locations of the 
Melville II (across Drake Passage) and WOCE A23 (near South Georgia) hydrogra
phy sections used to validate circulation model results.

mesoscale eddies. In the vertical direction 21 layers are defined, with flat upper layers 
in order to support higher accuracy in the upper ocean. Since the model uses terrain- 
following coordinates, the layers increase in thickness with depth so that depths of 
4000 m can be resolved. A summary of the model setup is given in Table 2.

B ottom  Topography

Correct representation and input of the bottom topography is crucial to the 
successful implementation of the HOPS model because the discrete form of the 
pressure gradient terms may produce large systematic errors over steep topography 
(Messinger, 1982), such as is present in the study area. Such errors may be reduced 
by systematic smoothing of the bathymetry. The digital earth topography database 
of land and sea floor elevations ETO P05 (NOAA, 1988) is used to specify the bot

tom topography and is smoothed according to the hydrostatic consistency criterion, 
which involves the bottom slope and the horizontal and vertical resolution of the grid 

to reduce pressure gradient errors and to avoid hydrostatic inconsistency (Messinger, 
1982; Haney, 1991). For this implementation of HOPS, this criterion means that
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Table 2. Configuration of the HOPS model, values of parameters, and forcing func
tions used in the simulations. Abbreviations are used as follows: temperature (T), 
salinity (£), National Centers for Environmental Prediction (NCEP), Sverdrup (Sv).

Model parameters Values

Horizontal resolution 1 0  x 1 0  km, grid rotated counterclockwise by 2 2 ° 

311 x 211 grid points (Longitude x Latitude)

Vertical resolution 2 1  levels (finer at surface, coarser at bottom)
Time step 36 minutes
Initialization Antonov et al. (1998) and Boyer et al. (1998) 

climatological T  and S  fields with feature model 
of frontal jets

Continental boundaries represented by landmask with three islands 

(Falkland Islands, South Georgia,

South Shetland Islands)
Ocean bathymetry E T 0 P 0 5  data, with 2 slightly enhanced features, 

smoothed to respect pressure gradient error 
criterion

Eddy viscosity coefficient background =  5 cm2 s- 1  

wind-mixed surface layer =  1 0 3 cm2 s- 1

Bottom drag coefficient CD = 2.5 x 10“ 3

Shapiro Filter fourth order for momentum, tracers and transport 
second order filter for vorticity

Ekman factor ekfac  — 0.7
Dynamical surface forcing monthly wind stress from NCEP reanalysis
Baroclinic transport Drake Passage: 140 Sv 

Weddell Gyre: 30 Sv 
Brazil Current: 5 Sv

Model spin up time 2  months
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the continental slope off the Antarctic Peninsula, South America, and around South 

Georgia is approximately 10% gentler in the simulations than in reality. The po

sition of the shelf break is similar to the actual shelf break, but the slope extends 

at the most one grid point (10 km) further into the deep ocean. In addition, two 

channels east of Burdwood Bank (south of the Falkland Islands) in the North Scotia 
Ridge near 54.5°S, 54°W and 53°S, 48.5°W (Fig. 5) are deepened by approximately 

150 m and widened by one grid point (10 km) to connect the deep waters south 
of the North Scotia Ridge with the Malvinas Chasm (cf. Fig. 1). This is necessary 

due to the flow constraints resulting from these topographic features, which reduce 

flow through these channels and result in high flow speeds near the features, thereby 

making the flow unstable. At 64°W a ridge across the western Antarctic shelf near 
Anvers Island (cf. Fig. 1 ) is raised to a depth of 100 m to better simulate the flow 
dynamics in the Bransfield Strait. Overall the bottom topography is defined to be 
as close as possible to the real conditions and includes all topographic features in 
this region (Fig. 5).

Boundary Conditions

The land masses, including three major islands, the Falkland Islands, South Geor

gia and the South Shetland Islands, are defined as closed boundaries in the model 
domain, which are rigid and impermeable. The baroclinic transport of the flow is 
imposed on all open boundaries by the choice of the streamfunction at the boundary, 
including the transport of the ACC, the Brazil Current, and the Weddell Gyre. The 

transport of the ACC in the Drake Passage is defined to be 140 Sv, the Weddell 
Sea Gyre 30 Sv, and Brazil Current is defined to be 5 Sv. These transport values 

correspond to observations made of the ACC, Weddell Gyre and the Brazil current 
as described in Section 2.1. In this setup, the Brazil Current affects the retroflection 
of the Malvinas Current as discussed later in section 4.1.2, but the details of this 
deflection are not important for the Scotia Sea flow. The resolution of the Weddell 

Gyre is more important to the circulation simulations, as it determines the exchange 
of water across the southern boundary of the Scotia Sea.

Initialization

Objectively analyzed fields of temperature and salinity obtained from the National 
Oceanographic Data Center (NODC) World Ocean Atlas (WOA) 1998 (Antonov et 

al., 1998; Boyer et al., 1998) are used to initialize the model. This data set is an
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interpolation of existing observations onto a worldwide grid with a spacing of one 

degree in latitude and longitude and standard depth levels. The structure of the 

temperature and salinity distributions used to initialize the model are taken from 

the annual mean fields available from this data set and are interpolated onto the 

uniform model grid.

Frontal Jets

Another important element of simulating the Scotia Sea circulation is the use of a 

feature model to realistically resolve the observed fronts in the ACC (cf. Fig. 1 ). Us
ing the WOA 1998 climatologies by Antonov et al. (1998) and Boyer et al. (1998) as 

initial conditions produced unrealistic slow flow through Drake Passage, because the 

climatological temperature and salinity data distributions are a smoothed represen

tation of the meandering fronts. Feature models (e.g., Gangopadhyay et al., 1997) 
provide an approach to create dynamically consistent features such as mesoscale 

rings, or frontal jets which are not resolved in climatological distributions. For the 
region of interest in this study, the frontal locations are well known (Orsi et al., 

1995).
Frontal jets are an important part of the ACC, as they provide flow speeds 

approaching 0.5 m s- 1  that contrasts with flow between the jets which can be half 
to a quarter of these speeds (Nowlin and Clifford, 1982; Hofmann, 1985; Orsi et 
al., 1995). The original gridded climatology on a one-degree grid is too coarse 
to represent such narrow features. Therefore, the fronts are restored by creating 

additional data points at a 50-km spacing and creating fronts along the locations 
taken from Orsi et al. (1995). At each line segment defining a front, additional values 
of temperature and salinity are added at 2-km intervals along a line that extends 150 

km to each side and is perpendicular to the front. The standard depth, temperature 
values from the Levitus et al. (1994) and salinity values from the Levitus and Boyer 
(1994) climatologies are interpolated to these locations, as well as the temperature 

and salinity anomaly determined by equation 8  below. These additional points, 
along with the original climatology, are interpolated onto the model grid using an 
optimal analysis procedure (Bretherton et al., 1976).

A temperature front is defined by an anomaly (T a ) which is assumed to decay 

exponentially with depth, 2  in m, and horizontal distance from the front location, 
yr in m (positive to the left, facing downstream) as
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Ta — A T  yre e zd m m ( l , y ) ,  (8 )

where AT is the temperature gradient across the front, W  and Z& are the width 

and depth scales of the front in m, respectively, and Zs is the surface layer depth 

in m defined for each front. The temperature anomaly has the horizontal shape 

(Ta shape) of the derivative of the Gaussian

Ta shape =  yre~^™^. (9)

A minimum function keeps the frontal structure from intruding into the surface 

mixed layer, thereby defining the front for the depths between Zs and Zd- Equations 

similar to equations (8 , 9) are used to define the salinity anomaly of a front. The 

five parameters that are used to define each front, derived from the observations 
discussed in section 2.1.1 (Table 1), are given in Table 3.

Once the fronts are initialized by the feature model they are maintained during 
the full year of the simulation, despite meanders and eddy formation. This occurs 
because either certain processes for front formation are included in the model, or 
simply that the potential energy of the initial density distribution dissipates slowly.

Table 3. Characteristics of the Subantarctic Front (SAF), the Polar Front (PF) and 
the Southern Antarctic Circumpolar Current Front (SACCF) used to determine the 
temperature and salinity anomalies for the feature model.

Front W (km) Zd (m) (m) AT  (°C)/100 km AS'/100 km

SAF 40 1 2 0 0 150 0.96 -0.15
PF 40 1 2 0 0 150 1 .2 -0.15
SACCF 30 1 2 0 0 300 1 . 0 -0.09

D ynam ical Surface Forcing

Local winds are strong over the region included in the model domain, with the time- 

averaged zonal wind stress through Drake Passage being a factor of three larger 

than mid-latitude winds (Trenberth et al., 1989). The wind is an important forcing 
for the circulation, which means it must be included as an external forcing to the
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Fig. 6 . Wind stress (N m 2) for December 1992 from the NCEP climatology on a 
2.5° x 2.5° grid.

model. The NCEP monthly wind stress data set, available over 13 years (1982 to 
1994, Kalany et al., 1996) on a 2.5° x 2.5° latitude and longitude grid is used to 
provide dynamical surface forcing to the model. The monthly data, chosen for three 
consecutive years (1992-1994) of the available 13 years, are interpolated onto the 
model grid and the wind fields (Fig. 6 ) are used to force the circulation model.

Shapiro Filter

Waves shorter than two grid intervals are created by finite differencing schemes and 
are falsely interpreted as belonging to the longer wave components due to aliasing. 
Therefore, a Shapiro filter is used to dampen the two- to three-grid-interval waves, 

leaving middle and long waves relatively unaffected (Shapiro, 1971). The Shapiro 
filter used in the model is a fourth-order filter for momentum, tracers and transport, 

and a second-order filter for vorticity. The model is sensitive to changes in the 
choice of Shapiro filter for vorticity, because choosing a fourth-order filter removes
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less variability over time and makes the flow too smooth, which slightly inhibits 

mesoscale eddy formation.

Circulation M odel Spin-up

The model is started on 1 October, 1992 and a spin-up of two months is sufficient to 

develop a realistic flow field that reproduces observed flow features in the area, in

cluding mesoscale variability as described in detail in section 4.1. The length of time 
allowed for spin-up was determined to be two months by assessing the appearance 

of mesoscale variability versus the desire to keep the simulation time to a minimum. 
The circulation model is then run for 10 months from 1 December, 1992 until 30 

September, 1993. The resultant simulation is used to provide the flow, temperature 

and salinity fields of the Scotia Sea and environs.

Circulation M odel Sim ulations and Sensitivity Studies

The model setup described above was used to provide a reference simulation to be 
used for comparison to other simulations. The influence of changes in environmental 
forcing such as the wind, the transport through Drake Passage, and the location of 
the fronts on the transport of krill to South Georgia are also of interest. Therefore, 
the effect of changes in wind stress on the circulation in the study area are explored 
by increasing and decreasing the wind stress by an amount which is chosen according 

to the variability of the NCEP wind data set. Ten years of the NCEP wind time series 
(1985-1994) were statistically analyzed by calculating variances to determine the 

variability of wind in the study region. The maximum variability observed is 11.45%, 
and the minimum variability is 1.78%. Therefore, sensitivity of the circulation to a 
2 0 % increase and decrease in winds was tested, to simulate the influence of observed 
variability and to include possible changes in wind stress due to climate change.

The Ekman factor (ekfac), a factor that controls the Ekman depth (from Large 
et ah, 1994; Eq. 24), which translates into the mixed layer depth calculated in the 

model is used to implement this change in wind stress as

hE =  ekfac u*/f, (10)

where

u* = V(T/p), (11)

and hE is the Ekman depth in m, u* is the frictional velocity in m s -1, /  is the
Coriolis parameter in s-1, r is the wind stress in dynes cm-2, and p is the density
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in kg m-3. Large et al. (1994) suggest setting ekfac  to 0.7; however, the value is 

somewhat arbitrary. Therefore the ability to increase or decrease this value, if the 
Ekman depth estimate appears too shallow or too deep in the simulated circulation 

distribution, is allowed in HOPS. An increase in the wind by 20% translates into a 

decrease in the Ekman factor to 0.626; a 20% decrease in wind translates into an 

increase of the Ekman factor to 0.767.

The wind-induced surface Ekman flow is towards the east-northeast and vari

ations in wind speed may affect the exchange between the continental shelf of the 

Antarctic Peninsula and the open ACC. This is of importance because Antarctic krill 
are mainly found on and close to the continental shelf of the Antarctic Peninsula, 
migrating offshore for spawning (Siegel, 1988; Brinton, 1991).

The transport through Drake Passage in the reference simulation was set to 140 

Sv. Whitworth et al. (1982) calculated a mean geostrophic transport of 103±12.6 Sv 
through Drake Passage, and Nowlin and Klinck (1986) review transport estimates 

for Drake Passage and arrive at an average transport of 134±14 Sv. According to 
these transport estimates, variations in the transport through Drake Passage of 12% 

were chosen to simulate possible interannual changes in the transport and its effect 
on krill transport.

Since the SACCF is the main transport mechanism of krill to South Georgia 
(Hofmann et al., 1998; Thorpe et al., 2002), it is also of interest to assess the 
influence of a change in location of this front. The SACCF meanders naturally 

(Nowlin and Klinck, 1986), but changes in environmental factors due to climate 
change may shift the fronts of the ACC from their present location. Therefore, 
the last set of sensitivity simulations considered the flow that would develop with 
the SACCF shifted 10 km to the north. A summary of all circulation sensitivity 

simulations is given in Table 4 and the results of each are discussed in section 4.

Drifter Initialization and Im plem entation

Drifters are released into the simulated surface flow field at 50 m depth in a wide 
range of initial positions and starting times and tracked over space and time. A 
depth of 50 m is chosen because krill are found at average depths of 50 m to 70 m 
(Godlewska, 1996). The trajectories provide particle locations across the Scotia Sea 
which are then matched with other data sets to obtain time series of available food 

along specific transport pathways. These time series are then input into the time 
dependent krill growth model to determine growth and development of Antarctic
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Table 4. Summary of the circulation sensitivity simulations showing the change made 
from the reference simulation and the figures displaying the results. The reference 
simulation used three years of NCEP winds (1992-1994), a 140 Sv transport through 
Drake Passage, and frontal locations taken from Orsi et al. (1995).

Simulation Parameter changed Results

Reference Table 12, Figs. 25-35, Fig. 36
Wind up 2 0 % increased winds Table 12, Fig. 38

Wind down 2 0 % decreased winds Table 12, Fig. 39
Transport up 1 2 % increased transport Fig. 40

Transport down 1 2 % increased transport Fig. 41
Fronts SACCF moved 10 km to the north Fig. 42

krill along specific pathways. In addition, drifter trajectories are used for simulated 
circulation field validation. Drifter locations in the simulated circulation field are 
calculated using a 16-point cubic Bessel interpolation of the velocity fields at the 
x  and y grid locations of the regular model grid (grid spacing 1 0  km), and the 
solution is advanced forward in time with fourth-order Runge-Kutta method with a 
36-minute time step.

3.2 Krill Growth M odel

The biological model that is used to simulate the growth and development of Antarc
tic krill is based on the model described in Hofmann and Lascara (2000). This 
time-dependent, size-structured, physiologically-based model is based on a govern

ing equation for the time-dependent (t) change in the number of krill individuals 
(TV) in a given size class, j ,  of the form

dN-
= —ajNj -  fyNj  -I- +  (3j+iNj+1, (12)

where each size class is defined by a length and carbon weight, as determined by the 
relationships in Table 5. The rate of transfer between size classes is given by the
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coefficients a  and /3, which are determined by changes in net production based on 
carbon weight. Net production of any given size class, NPj,  is assumed to be the 

difference between assimilated ingestion (Alj)  and respiration (Rj) as

NPj  =  Alj  -  Rj,  (13)

When NPj  > 0, the gain in krill biomass (growth) effects a transfer to the 

next larger size class {o/.j > 0 and fij =  0). For NPj  < 0, the loss in krill biomass 

(shrinkage) is represented by the transfer of individuals to the next smaller size class 
(oij =  0 and (3j < 0). These transfers can be expressed in length or biomass by using 

the conversions given in Table 5.
The model given by equation 12 is configured with 232 size classes to describe the 

life history of krill from 2  mm (Calyptopis I, first feeding stage) to 60 mm (maximum 

adult size), with a resolution of 0.25 mm. The size class model is solved numerically 
using a third-order Adams-Bashforth method (Canuto et al., 1988) with a time step 
of 0 . 1  day, which ensures that krill mass and individuals are conserved over the 
duration of the simulation.

3.2.1 M odel Processes and Param eterizations

Observations from field and experimental studies are used to derive functional re
lationships of the processes affecting krill net production. All of these parameteri
zations are size-dependent, and in some cases the form of the relationship changes 
with the size of krill.

Filtration

The primary mode by which krill feed is filtering the water column for available 
food, such as pelagic phytoplankton or heterotrophic food (Marr, 1962; Schnack, 

1985; Quetin and Ross, 1985). Filtration rates for krill have been estimated in 
numerous laboratory experiments and seem to be dependent on the size of krill 
(review by Morris, 1984; Quetin and Ross, 1985; Daly, 1990). Observations from 
those experimental studies were used to derive a relationship between krill dry weight 
and compression filtration rate F°f  (Table 6 ).
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Table 5. Length (L , mm) to wet weight (IT, mg), wet weight to dry weight ( D W , 
mg), and dry weight to carbon (C, mg) relationships used in the krill growth model. 
The krill size range over which the relationships apply and the source for each is 
indicated.

Equation Size Range 
(mm)

Source

W  = 0.0470 L2121 2-5
W  = 0.0072 L3021 10-40
W  = 0.0016 L3-423 40-60
D W  = 0.216 IT 2-60

C  =  0.366 D W im7 2-60

Ikeda (1984b)
Hofmann and Lascara (2000)

Hofmann and Lascara (2000)
Ikeda & Mitchell (1982)

Ikeda & Dixon (1982); Ikeda & Mitchell (1982); 

Ikeda (1984b); Ikeda & Bruce (1986);

Ishii et al. (1987); Ikeda & Kirkwood (1989)

Table 6 . Compression filtration (F°f , m3 d-1), ice biota grazing (Fig, m3 d-1), 
the standard respiration rate (R s, /r 1 hr-1), total ingestion (I tot, mg C d-1), net 
production of any size (NPj,  mg C d-1) and assimilation efficiency A  (80%) as used 
in the krill growth model. The krill size range over which the relationships apply 
and the source for each is indicated.

Equation Size Range 
(mm)

Source

F°f = 0.00085 D IE 0-825 2-25 Morris (1984); Daly (1990)
F c* = 0.00343 DW°-nu > 36 Morris (1984); Quetin & Ross (1985);

Schnack (1985); Quetin et al. (1994)
F ig =  0.05 F cf 2-60 Hofmann and Lascara (2000)
R s = 0.686 D IE 1031 < 1 0 Ikeda (1981); Quetin and Ross (1989)
R s =  0.847 D IE 0850 > 16 Ikeda (1984b)
Al j  = I tot * A 2-60 Hofmann and Lascara (2000)
NPj  =  Al j  — Rj 2-60 Hofmann and Lascara (2000)
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Ingestion

Ingestion ( i f )  of pelagic phytoplankton is formulated in this model using compres
sion filtration as

i f  =  - y j f f m  (14)

where F f  is the filtration rate for size class j  and 77 is the time krill of size class j  
spend feeding. The time varying phytoplankton concentration is given by P(t). The 

constant 7  was given the value 0.90 for larval krill (< 12 mm) and 0.75 for larger 

krill ( > 1 2  mm). This takes into account observations that show krill to alternate 

between area-intensive feeding and long-distance foraging (Hamner, 1984).
Krill have also been observed feeding on biota associated with sea ice (Marschall, 

1988; Daly, 1990) by scraping sea ice algae from the sea ice undersurface using 
their endopodites (Hamner et al., 1983). Ingestion by grazing of ice biota ( I f )  is 
formulated as

f f  =  I j F f S m ,  (15)

where F f  is the grazing rate for size class j  and SI(t)  is the time varying sea ice algae 
concentration. Sea ice biota is here defined to include phytoplankton and protozoa 
associated with the ice, as it has been observed that krill feed on Mesodinium spp., a 
phototrophic ciliate, overwintering in brine channels (US Southern Ocean GLOBEC,

2003). Due to absence of appropriate data on grazing of sea ice biota, F f  is assumed 
to be 5% of F f . This specification of F f  results in I f  rates for maximum values 
of sea ice biota which are similar to i f  for average values of phytoplankton.

In addition, it has been observed that krill actively feed on various copepod 

species (Nordhausen et al., 1992; Hopkins et al., 1993; Pakhomov et al., 1997). 
Ingestion of copepods ( i f )  by use of compression filtration is defined as

I f  = l i F j t HF(t),  (16)

with F f  being the filtration rate for size class j  and the time varying copepod 
concentration given by HF(t).

Several studies have shown that krill may feed on detritus as an additional food 
source (Holm-Hansen and Huntley, 1984; Kawaguchi et al., 1986; Daly, 1990). To 

include detritus feeding in the model, ingestion of detritus ( i f )  filtered from the 
water column is formulated as
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I f  = 7jFfD(t), (17)

with the time varying detritus concentration defined as D(t).
Krill is simultaneously presented with a variety of the four food sources phyto

plankton, sea ice biota, zooplankton and detritus in the simulations, and the food 

chosen is dependent on the life stage of krill (i.e. sea ice algae versus heterotrophic 

food). As sea ice biota become available, small krill (<18 mm) choose to feed on 

this food source and on detritus entrained in the sea ice as their only food source, 
as suggested by observations given in Daly (1990). Feeding on the heterotrophic 

food source is only possible for krill larger than 18 mm, as shown by observations 
reported by Graneli et al. (1993) and Huntley et al. (1994a). Therefore, all potential 

food sources are available to only the older krill.

At the same time the availability of food is dependent on the position of krill along 
the simulated drifter trajectories (i.e. entrainment in an eddy, or presence/absence 
of sea ice), and in addition the choice of food is dependent on the availability of food 
sources to krill. Krill prefers feeding on phytoplankton, sea ice algae or heterotrophic 

food over feeding on detritus and switches to detritus feeding only when all other 
food sources are scarce. When presented with multiple food sources, feeding on each 

is done proportionally with equal weighting for each food source. The total ingestion 
is then defined as

Depending on which food sources are present, total ingestion is defined as the 
sum of the ingestion terms associated with each available food source. Finally the 
assimilated ingestion, Alj ,  is defined as the total ingestion, times the assimilation 

efficiency, A. Kato et al. (1982) observed assimilation rates for krill from 72% to 

90% when feeding on phytoplankton. Schnack (1985) found ranges of assimilation 

efficiency of 42.2% to 80.1% in krill (30-55 mm in size) feeding on centric diatoms. 
The assimilation efficiency in the model is taken to be 80% for all size classes of krill 
feeding on phytoplankton, sea ice algae or heterotrophic food. This lies in the range 

of values observed by Kato et al. (1982) for krill feeding on a variety of food types. 
Unassimilated ingestion is lost as fecal pellets.

Providing detritus as a food source to krill requires a different assimilation rate 

(A) to be used in the krill growth model, because detrital m atter is a food source

T =  T̂ ° 4 -  Tia - l-  -l-j ”r j ' j ' j ' (18)
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with less metabolic value to krill than living matter. Therefore, the assimilation rate 

for detritus feeding is set to 50%, which is at the lower end of the range reported 

by Schnack (1985). All size classes of krill are allowed to feed on detritus in the 
simulations because larvae (Daly, 1990), juvenile and adult krill (Kawaguchi et ah, 

1986) have been observed feeding on this food source.

Respiration

Metabolic losses due to respiration for each size class ( R j )  are assumed to result 

from three components, standard metabolism ( R j ) ,  cost due to feeding ( R j )  and 
costs associated with overall feeding activity level ( R j )  (Torres et ah, 1994; Quetin 

et al., 1994), which are expressed as

R j  =  R Sj ( l  +  R j  +  R j ) ,  (19)

The relationships used for Rj  are given in Table 6 . Observations from laboratory 
experiments were used to express standard metabolism as a function of krill size. The 

metabolic cost of feeding and digestion ( R j )  is related to the daily ration ingested 

by krill such that it increases linearly to a value of 1 for rations up to 1 0 %, then 
remains constant for higher daily rations. The respiration activity factor, ( R j ) ,  is 
assumed to depend on seasonal variations in krill activity (Ikeda and Dixon, 1982; 

Quetin and Ross, 1991). From May to August activity is low, so the minimum 
standard respiration rate is reduced by 50% and coincides with the minimum day 
length. During austral summer, when krill are swimming, overall respiration is 
doubled, taking into account increased metabolic costs associated with swimming 

(Clarke and Morris, 1983).

A dditional Features o f Krill Feeding

Another important aspect of krill ingestion is the response of krill to very high 

concentrations of food. Ishii et al. (1987) found that the ingestion rate of large krill 
increases with increasing food concentrations. However, it has been suggested that 
maximum clearance rates for copepods, and therefore ingestion rates, prevail at food 

concentrations less than the critical concentration and above a feeding threshold 
(Frost, 1972; Mullin, 1963). Quetin and Ross (1985) showed that the clearance 
rate of krill first increases linearly with increasing phytoplankton concentration, 
then levels out at a critical concentration of phytoplankton and decreases once the 
critical concentration is exceeded, independent of which phytoplankton species was
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used as a food source. However, values for the critical concentration and maximum 
clearing rate changed with species size (30-45 cells ml- 1  for larger phytoplankton). 

Hamner (1988), who describes the feeding mechanisms of krill in detail, states that 

the number of cells captured with every sweep of the legs increases proportionally 

to the phytoplankton abundance until feeding becomes limited by mastication rate.

Therefore, the simulated krill growth rate is limited to 0.25 mm per time step, 
thereby limiting the maximum total ingestion of krill to ensure that krill do not 

grow more than one size class per day. This maximum rate is in excess of observed 

summer krill growth rates, which range between 0.105 and 0.179 mm d - 1  (Rosenberg 
et al., 1986), as well as overall krill growth rates (Siegel and Kalinowski, 1994) and 

maximum summer growth rates (Ross et al., 2000). However, it is less than the krill 
growth rate of 0.33 mm d~x estimated by Clarke and Morris (1983).

Krill shrink when they do not encounter enough food to meet their metabolic 
needs and are starving (Ikeda and Dixon, 1982; Nicol et al., 1992). Ikeda and Dixon 
(1982) show that the decrease in body wet weight of krill starved over 211 days 
ranged from 32.1% to 52.2% with a mean decrease of 45%. Thus, for the krill 
growth model, a loss of krill body wet weight of 45% is assumed to be equivalent 

to the death of the animal and the simulations are ended at this point. Larval krill 

of the Calyptopis I stage have less tolerance to starvation (Ikeda, 1984a; 1984b). 
Therefore, Calyptopis I krill are assumed to die after 6  days without feeding. Addi
tional mortality due to predation is not included in the krill growth model because 
the model is designed to represent individual animals.

Temperature Effect

The range in temperature (-1.8°C to 4°C) that Antarctic krill encounter across the 

Scotia Sea is large enough to potentially affect metabolic processes associated with 
growth (Clarke and Morris, 1983; Quetin et al., 1994). Therefore, the influence of 

temperature on krill growth rate was included through a Qi0 relationship. Labora
tory measurements of temperature effects on the metabolic processes of euphausi- 
ids provide Qi0 values of 2  (Torres and Childress, 1983) and values calculated for 
Antarctic krill are as high as 3.5 (Quetin et al., 1994). Experimental observations 

from which a temperature-dependent growth rate for Antarctic krill can be derived 

are few (e.g. Poleck and Denys, 1982; Morris and Keck, 1984; Buchholz, 1985; 1991; 
Ikeda et al., 1985) and the limited data represent different experimental designs, 
different sized krill, and different feeding frequencies, which are not compatible.
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Therefore, the maximum value reported, Qio of 3.5, was used with the model since 

this represents the maximum effect that can be expected from temperature.

Temperature values along the drifter trajectories, which represent the upper 20 

m, were obtained from the WOA 1998 climatology (Antonov et al., 1998; Boyer et 
al., 1998). These values and the Qio of 3.5 were used to scale the Antarctic krill 

growth rates obtained from the model, as was done in Fach et al. (2002).

3.3 Specification of Food Source

3.3.1 Phytoplankton

The main environmental forcing used with the krill growth model is the food time 

series available to krill. Ship-based observations sufficient to construct pelagic phyto
plankton distributions across the Scotia Sea do not exist. Therefore, phytoplankton 

concentrations along particle trajectories were extracted from monthly chlorophyll 
distributions that were constructed from eight-year composites (1978 to 1986) of 

Coastal Zone Color Scanner (CZCS) observations from the Scotia Sea (Feldman et 
al., 1989), which are the only large-scale view of chlorophyll concentration for this 
region. Ocean color measurements from the Sea-viewing Wide Field-of-view Sensor 
(SeaWiFS) are not adequate for describing the chlorophyll distribution of this re

gion because the extensive cloud cover, long periods of darkness and seasonal sea 
ice cover result in considerable gaps in the spatial and temporal coverage. The Sea

WiFS composites that extend to the present time do not cover the whole extent of 
the study area during winter months (June to August) and only cover it marginally 
in May and September.

The CZCS composite for January (Fig. 7) shows regions of high chlorophyll con
centration (10 mg m~3) along the coast of South America, at isolated locations 
across the Scotia Sea, and along the west Antarctic Peninsula. The minimum con

centrations for CZCS-derived chlorophyll is 0.039 mg m-3, which is the threshold 

concentration for the sensor. This value is used in low chlorophyll periods and 
provides a low-level background chlorophyll value.

Ninety percent of the signal detected by the satellite originates from the top 

optical depth of the euphotice zone (Gordon and McCluney, 1975). The euphotic 
zone is the layer extending from the sea surface to where the light level decays to 1 % 

and is defined to be 4.6 optical depths deep. Thus, most of the phytoplankton present
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Fig. 7. CZCS-derived eight-year (1978-1986) composite of pigment concentration 
(mg m-3) for January. Lines indicate the trajectories of three drifters released along 
the western Antarctic Paninsula.

in the euphotic zone cannot be detected by the CZCS. Standard pigment retrieval 

algorithms for the CZCS sensor underestimate chlorophyll concentrations below 1.5 

mg m - 3  by a factor of 2.4 (Mitchell and Holm-Hansen, 1991; Sullivan et al., 1993). 

Therefore, a regional algorithm was developed for the Southern Ocean (Sullivan et 
al., 1993). Also Dierssen and Smith (2000) calculated that both SeaWiFS and CZCS 
standard algorithms underestimate the chlorophyll concentration by roughly a factor 
of 2 . More precisely, CZCS underestimates concentrations below 1.5 mg m - 3  by a 

factor of 2.2 and above 1.5 mg m “ 3 by

c  =  i 0 (°-45+°-53*)? (2 0 )

where the chlorophyll concentration, c in mg m-3, is calculated with the chlorophyll 
concentration, x  in mg m~3, obtained from the standard chlorophyll algorithm. 
However, the mean summer pigment (chlorophyll a and phaeopigment) concentra
tion computed with the Southern Ocean algorithm, which was used to construct the 
chlorophyll distributions used in this study, is within 5% of the in situ data (Sullivan
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et al., 1993).

The contribution of transient features to the overall food supply is difficult to 

include in the chlorophyll time series derived from the CZCS observations because 

the eight-year average that was used to obtain the monthly composites, provides 

only a static picture. The Scotia Sea region, however, has considerable mesoscale 

variability in physical and biological distributions (Murphy et al., 1998), which will 

not be seen in eight-year averages. However, this mesoscale variability is experienced 
by drifters during transport as they get entrained in circulation features as they move 

across the Scotia Sea.

Phytoplankton Tim e Series

The phytoplankton concentration along three particle trajectories (Fig. 7), starting 

in December (Year Day 335), January (Year Day 1) and February (Year Day 32) (Fig. 
8 ) are first input into the krill growth model. These three drifters were chosen from 
all drifters originating at the western Antarctic Peninsula because their trajectories 
show the prominent transport pathways (Fach et al., 2002). It should be noted that 
the drifter trajectories stop once the drifters reached South Georgia. Therefore, 
some drifter paths are recorded for a longer time than others.

The chlorophyll concentrations that are encountered along the three drifter tra
jectories released on the first day of December (Year Day 335), which assumes a 
November spawning, are between 1 and 12 mg m~ 3 with a one time maximum value 
of 22 mg m - 3  (Fig. 8 A). The chlorophyll time series for particles released on the first 
day of January (Year Day 1), which assumes December spawning, show persistent 
but lower concentrations (Fig. 8 B). The chlorophyll time series for particles released 
on the first day of February (Year Day 32), which assumes January spawning, show 
similar concentrations as the January release (Fig. 8 C). In all three release scenarios, 

phytoplankton concentrations decrease significantly after the end of April (Year Day 
120) since phytoplankton concentrations in the Southern Ocean decrease with the 
onset of winter as light becomes limiting.

The extracted phytoplankton time series illustrate the large mesoscale variability 

in food supply that is encountered along trajectories which are not largely separated 
in space (Fig. 7). The time particles spend in different concentrations of phyto

plankton coincides with entrainment of the drifter in eddies, and is a measure of 
the eddy variability. These entrainments last from five to 20 days. Also, consid
erable temporal variability in phytoplankton availability occurs depending on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

25
drifter 1 
drifter 2 
drifter 3

20

25

10Q.

25

20

335 1 30 60 90 120 150 180 210 240 270
Time (Year Day)

Fig. 8 . CZCS-derived time series of pigment concentration (mg m~3) along trajecto
ries of three drifters originating at the western Antarctic Peninsula in: A) December 
(Year Day 335), B) January (Year Day 1), C) February (Year Day 32).

time a particle leaves the Antarctic Peninsula. Drifters released in December have 
the chance to encounter high concentrations of phytoplankton food until the end 

of April, approximately 5 months. A drifter released in February at the same lo

cation has only 3 months of potentially high phytoplankton concentrations. These 
general observations are true for drifters originating at the western and southwest
ern Antarctic Peninsula, the Bransfield Strait area, the Elephant Island/Scotia Sea 
region and the Weddell Sea, as shown in Section 4.3.4.
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3.3.2 Sea Ice Algae

A large but variable fraction of the Southern Ocean is covered by annually form

ing sea ice, which covers an area ranging from 4 x 106 km2 at the end of austral 

summer to 20 x 106 km2 in late winter (Zwally et al., 1979). Algal communities 
are known to inhabit distinct micro-habitats which are created when pack ice is 
formed and ages (Garrison et al., 1986; Smetacek et al., 1992; Ackley and Sullivan, 

1994). Modeling studies of Antarctic sea ice productivity show that of the 35.7 Tg 

C produced annually in the Antarctic pack ice, 75% is associated with first-year ice 

and 50% is associated with the Weddell Sea (Arrigo et al., 1997; 1998). Also the 

productivity of sea ice algae varies over the year, with the productivity per unit sea 
ice being greatest in January, but with total production peaking in November due 
to the more extensive sea ice cover (Arrigo et al., 1998) that exists at the time.

Sea ice algae provides an additional food source for krill especially in austral win
ter (Marschall, 1988; Daly and Macaulay, 1991). Therefore, sea ice concentrations 
along the particle trajectories were extracted from Special Sensor Microwave/Imager 

(SSM/I) measurements during a high-ice year, 1988 (Fig. 9). The June 1988 im
age is shown (Fig. 9), because this is the time when sea ice coverage is potentially 

important in krill development (Siegel and Loeb, 1995). The sea ice concentration 
is stored in pixels representing a 25 km x 25 km area for which one data value is 
recorded. The percent of sea ice coverage is then used as a proxy for sea ice biota 

concentrations and was scaled to a sea ice algae concentration using the sea ice algae 
time series given in Hofmann and Lascara (2000). Because algae concentrations may 
vary depending on when the sea ice formed, the scaling was done according to the 

formation time of sea ice in each pixel.
Sea ice concentrations are generated using brightness temperatures derived from 

passive microwave data. Comparisons of sea ice concentrations and sea ice edges 
obtained from the satellite sensors with in situ and other satellite data show good 
agreement (Comiso and Sullivan, 1986). In areas of polynya and lead formation 

and at the sea ice edge, large errors can occur because the emissivity of new sea ice 
varies continuously with thickness up to several centimeters (Comiso et al., 1989). 

However, these errors do not affect this analysis because the satellite-derived sea ice 
distributions are used only to obtain general patterns and trends.

Sea ice-derived food is assumed to be an alternative food source that krill can 
exploit if they encounter sea ice during transport. This is implemented in the model
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Fig. 9. SSM/I-derived sea ice concentration (% coverage) for June 1988. Lines 
indicate the trajectories of three drifters released at the western Antarctic Peninsula.

by allowing small krill (<18 mm) to feed only on sea ice-derived food and detritus 

when sea ice is encountered along a trajectory, while larger krill can feed on sea ice 
algae and additional food sources, as discussed in section 3.2.1.

Sea Ice-derived Food Tim e Series

The sea ice algae concentration along the same three drifters released at the western 
Antarctic Peninsula starting in December (Year Day 335), January (Year Day 1) 

and February (Year Day 32) (Fig. 10) is input to the krill growth model as an ad

ditional winter food source. The sea ice algae concentrations that are encountered 
along the three drifter trajectories released on the first day of December (Year Day 
335), are mostly zero and only one of the drifters encounters sea ice at all (Fig. 10A). 

The maximum amount of sea ice algae chlorophyll encountered over the complete 
time of transport is 15 mg m~3. The time series for particles released on the first 
day on January (Year Day 1) show lower concentrations (Fig. 10B) and the time 
series for particles released on the first day of February (Year Day 32) shows even
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Fig. 10. SSM/I-derived time series of sea ice algae concentration (mg m~3) along 
trajectories of three drifters originating at the western Antarctic Peninsula in A) 
December (Year Day 335), B) January (Year Day 1), C) February (Year Day 32).

smaller concentrations of sea ice algae (Fig. IOC). Particles originating at the west

ern Antarctic Peninsula are not likely to encounter sea ice and its associated sea 
ice algae on their way through the open Scotia Sea, similar to drifters originating 

in the southwestern Antarctic Peninsula and the Scotia Sea/Elephant Island area. 
Particles originating in the Bransfield Strait generally pass by pack ice forming off 
the Antarctic Peninsula during winter, and drifters originating in the Weddell Sea 
spend most of their transport time under sea ice (see Appendix A).
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3.3.3 Heterotrophic Food

Studies (e.g. Hopkins et al., 1993; Pakhomov et al., 1997) show that Antarctic krill 

can feed on zooplankton outside of phytoplankton bloom periods. Thus, another ad

dition to the food time series available to krill consists of a heterotrophic food source. 

There are no continuous measurements of copepod concentrations across the Scotia 

Sea from which a times series of copepod concentrations along drifter paths could 

be extracted. Therefore, a time series (Fig. 11) was constructed using estimates of 

mean mesozooplankton biomass in the greater South Georgia region (Atkinson and 
Snyder, 1997). This time series assumes that krill encounters occasional patches 

of high zooplankton concentrations as well as low background concentrations. The 
low background concentration of copepods was calculated using estimates of low 
mesozooplankton biomass (Atkinson et al., 2001) and carbon content of mesozoo
plankton (Atkinson and Snyder, 1997). Larval krill are not capable of feeding on the 

large copepods on which the heterotrophic food source is based, due to their small 
body size. Thus, feeding on the heterotrophic food source is possible only for krill 
greater than 18 mm in size. Juvenile krill of this size have been observed feeding 

on copepods (Graneli et al., 1993; Huntley et al., 1994a). The heterotrophic food 
source as described above (Fig. 11) is used for all drifters independent of origination 
site.

60
COe so
E 40 
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o
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Time (Year Day)

Fig. 11. Time series of heterotrophic food input to the krill growth model.
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3.3.4 Detritus

A last addition to the food available to krill is detritus, on which krill have been 

observed to feed (e.g. Kawaguchi et al., 1986; Holm-Hansen and Huntley, 1984; Daly, 

1990). Again, no large scale or temporal data sets of detritus concentration in the 

area of interest are available. Therefore this food source was constructed using the 

eight-year composites of CZCS observations described in section 3.3.1 to obtain a 

conservative estimate of how much chlorophyll a is in the area from which detrital 
material can be estimated.

Particulate organic carbon (POC) is generally considered to be part of the non
living component of sea water and is used in this analysis as a measure of detritus. 

A direct relationship between detritus and chlorophyll a has been reported in the 
form of POC:Chla ratios (Fabiano et al., 1993; 1995). The POC concentrations 

are dependent on species composition and physiological state of the phytoplankton 
(Cota et al., 1992), factors that change over time with specific phytoplankton bloom 
and season. Therefore, a conversion from chlorophyll a concentrations to POC is a 
somewhat crude and problematic approach for defining POC concentrations. This 
problem is well understood, but due to the lack of other conversion factors and more 

specific data on POC concentrations, this method is used in this study.

In general POC:Chla ratios >50 are considered high and may be expected in areas 
of nutrient deficiency, low temperatures, low light and/or self shading (Fabiano et al., 
1993). In the area of interest, several measurements of POC:Chla ratios have been 
made (Table 7). In the Bellingshausen Sea, Kennedy and Robertson (1995) report 
the variation of POC and chlorophyll a with latitude along 8 8 °W for December 1993. 

Overall the POC:Chla ratios ranged from 60-739 (Table 7). However, these values 
are calculated for austral summer, and there are likely to be different ratios in fall 
and winter.

Brichta and Bathmann (pers. comm.) report average POC:Chla ratios of 29-597 
for the continental shelf area of the western Antarctic Peninsula in April, with an 
average value of 233. Cota et al. (1992) report a mean POC:Chla ratio of 530 in win
ter that is considerably higher than reported for other areas of the Southern Ocean 

(Smith and Sakshaug, 1990). Cota et al. (1992) calculated a regression between 
POC and chlorophyll a for the Weddell Sea as

POC =  57.1(±28.9) +  47.2(±30.1) Chla, (21)
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Table 7. Summary of POC:Chla ratios measured for Antarctic waters. For each, the season and location where the measurement was 
made is given, as well as the relevant reference.__________________________________________________________________________

POC:Chla Season Location Reference
56-259 Nov-Dee 1980 Elephant Island v. Bodungen et al. (1986)
260 ±  140 (euphotic zone) Jan-Feb 1985 Weddell Sea Nothig (1988)

>300 (below 100 m) Jan-Feb 1985 Weddell Sea Nothig (1988)

219 Oct-Dec 1986 55°S, 5°E Scharek (1991)

189 Oct-Dec 1986 58°S, 2°E Scharek (1991)
138 Jan-Feb 1983 Ross Sea Cota et al. (1992)
32 Nov 1983 Weddell-Scotia Sea Cota et al. (1992)
114 March 1986 Weddell Sea Cota et al. (1992)

530 July-Aug 1988 Weddell-Scotia Sea Cota et al. (1992)
60-739 Dec 1993 Bellinghausen Sea, 8 8 °W Kennedy & Robertson (1995)

40-171 Nov-Dee 1992 6 °W Dehairs et al. (1997)

242 (SD=120) (< 1 .0  mg chi m "3) Oct-Nov 1992 46-56°S, 6 °W Bathmann et al. (1997)

123 (SD=53) (> 1.0 mg chi m-3) Oct-Nov 1992 46-56°S, 6 °W Bathmann et al. (1997)

29 - 597 April 2000 western Antarctic Peninsula shelf Brichta & Bathmann (pers. comm.)
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Fig. 12. Measurements of POC and chlorophyll a concentrations (*) from several 
locations during the ANT-X / 6  cruise (Dehairs et al., 1997). The linear regression 
between POC and chlorophyll a fit to these data (solid line) is shown. The units in 
the linear regression equation are mg C m ~ 3 for POC and the intercept, mg Chla 
m - 3  for Chla, and mg C (mg Chla) - 1  for the ratio 38.38.

with POC and the intercept (57.1±28.9) given in mg C m-3, the ratio (47.2±30.1) 
having units of mg C (mg Chi a)-1, and Chi a given in mg Chi a m-3. It is assumed 
that the slope of the regression gives an accurate representation of carbon in intact 
phytoplankton cells.

The chlorophyll a and POC concentrations measured during the ANT X / 6  cruise 
(Table 7) along 6 °W in October/November 1992 (Dehairs et al., 1997) are used to 
calculate a linear regression (Fig. 1 2 ) that can be used to estimate POC in the Scotia 
Sea. The pigment concentrations along simulated drifter paths were extracted from 

the CZCS data set and converted to summer POC values (October to March) with 
the ratio of 38, the slope factor of the linear regression (Fig. 12). This value is 

chosen as a representation of carbon in intact phytoplankton cells as suggested by 
Cota et al. (1992), and is a conservative estimate for a ratio in high chlorophyll
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environments. Bathmann et al. (1997) reported a ratio of 123 (SD=53) for the same 

area. The calculated ratio of 38 is at the lower end of the previously reported values 

(Bathmann et al., 1997), but agrees with the slope of 47.2(±30.1) in equation (21) 

calculated by Cota et al. (1992).

For the winter months (April to September) the average value of 233, which was 

calculated for the continental shelf area of the western Antarctic Peninsula (Brichta 

and Bathmann, pers. comm.), is used to convert chlorophyll values extracted along 
simulated drifter paths to POC, although most of the simulated drifter paths moved 

through open ocean and processes there vary widely from the continental shelf. Nev
ertheless, this average value is similar to the average POC:Chla ratio 242 (SD=120) 
calculated for regimes with less than 1 .0  mg chi m - 3  in the open ocean in summer
time (Bathmann et al., 1997). The value of 233 is close to this average value and 

therefore provides a useful estimate of the ratio in wintertime, when chlorophyll a 
values are likely to be below 1 . 0  mg chi m-3.

D etritus Tim e Series

The detritus concentrations that are encountered along the same three drifter trajec
tories (not all shown here) released on the first day of December (Year Day 335), are 
between 10-200 mg C m ” 3 during the first three months of transport, then increase 
to 1000 g C m - 3  in regions characterized by mesoscale patches of high chlorophyll. 
After April (Year Day 120) the values decrease to between 5 and 15 mg C m - 3  for 
the remaining time (Fig. 13A). The time series for particles released on the first 

day of January (Year Day 1) begin with concentrations up to 200 mg C m - 3  dur

ing austral summer and decrease to values between 5 and 15 mg C m - 3  in austral 
winter, decreasing slightly after the beginning of September (Year Day 240) (Fig. 
13B). The time series for particles released on the first day on February (Year Day 
32) shows similar concentrations as the January release (Fig. 13C), with periods of 
high detritus concentrations after day 240.

3.4 Simulation Characteristics

3.4.1 Circulation Sim ulations

The circulation model, with the setup described in section 3.1.2 (Table 2) was started 
on 1 October 1992 and was used to provide a reference circulation simulation for 
comparisons to other simulations. Following the reference circulation simulation, a
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Fig. 13. CZCS chlorophyll data-derived time series of detritus concentration (mg C 
m-3) along trajectories of three drifters originating at the western Antarctic Penin
sula in A) December (Year Day 335), B) January (Year Day 1), C) February (Year 
Day 32).

set of numerical simulations with the circulation model were done to evaluate the 
influence of variability in the magnitude of wind, transport through Drake Passage 

and changes in the location of the SACCF on simulated flow fields (see Table 4 for 
summary). The results from these simulations are analyzed to help answer research 
question 2 .

3.4.2 D rifter Trajectories

To address the first research question (given on page 3), the transport pathways of 

drifters released throughout Drake Passage and the Scotia Sea (Fig. 14) at different
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Fig. 14. Locations of drifters (o) released in the circulation model to simulate krill 
transport. The drifter release locations used to verify circulation simulations are 
indicated by (♦).

times of the austral summer (on 1 December 1992, 1 January, and 1 February 1993) 
were simulated using the reference simulation circulation fields. Particle locations 
were recorded until the end of the simulation on 30 September 1993.

Using the different simulated circulation fields from the set of numerical simula
tions described above (Table 4), drifter trajectories from drifters released in those 

circulation fields (Fig. 14) provide the location of krill over time and are used to 

extract concentrations of different food types in space and time.

3.4.3 Krill Growth M odel

To provide a reference for comparison with other krill growth simulations as well as 
to address the second research question (given on page 4), food time series extracted 

along the transport pathways of drifters released at different locations throughout 
the study area (Fig. 14) in the reference circulation at different times of the austral
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Table 8 . Summary of the simulations done with different combinations of the food 
time series. The figure showing each food time series is given in column two, and 
the tables and figures showing the results of the simulations are given in the third 
column. The different food types are: PP - pelagic phytoplankton, SIF - sea ice- 
derived food, DF - detritus food, and HF - heterotrophic food.

Food assumption Food time series Results

PP Fig. 8 Table 16-20, Fig. 44-48A

PP +  SIF +  DF Fig. 8 , Fig. 10, Fig. 13 Table 16-20, Fig. 44-48B
PP +  SIF +  DF +  HF Fig. 8 , Fig. 10, Fig. 13, Fig. 11 Table 16-20, Fig. 44-48C
DF Fig. 13 Table 16-20, Fig. 44-48D

summer were input into the krill growth model described in section 3.2. Growth 
and development of krill were recorded until the end of the simulation.

Different food time series extracted from the simulated drifter trajectories pro
duced by the set of numerical simulations described above (Table 4), were input 
into the krill growth model. Krill growth model simulations produced simulated 
length-frequency distributions of krill, which are then used to test the effect of the 
physical environment and biological factors on survival of particular age groups of 
krill during transport (research question 3). Those simulations are summarized in 

Table 8  and the results of each are discussed in section 4. The same set of numerical 
simulations are used to explain episodic variations in krill biomass at South Georgia 
(research question 4).

3.5 D ata Sets for Calibration and Verification of Models

3.5.1 Validation o f circulation m odel

Hydrographic data sets are needed to validate the simulated circulation distribu
tions. Observed temperature, salinity, and velocity distributions are compared to 
distributions of the same properties as derived by the circulation model. In addition, 
drifter data from the Drake Passage and Scotia Sea region are compared to passive 

drifter simulations obtained from the circulation model. Mesoscale variability of
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the simulated flow is quantified calculating the eddy kinetic energy distribution and 

comparing it to observations.

Hydrographic D ata

Circulation model results are compared to hydrographic data from the Scotia Sea, 

e.g. the World Ocean Circulation Experiment (WOCE) Section A23 (Heywood and 

King, 1996). During the A23 cruise eighteen vertical conductivity-temperature- 

depth (CTD) profiles, 73 stations with expandable bathythermograph (XBT) and 
chlorophyll a data on one specific transect (cf. Fig. 5) across the Scotia Sea close to 

South Georgia were obtained (Heywood and King, 1996) (Fig. 15).
Other hydrographic data sets are available from several cruises across the Drake 

Passage, generally from Cape Horn to Livingston Island (Table 9). To assess the 

accuracy of the simulated temperature and salinity distributions, comparisons are 

made with the vertical property distributions for WOCE A23 (Fig. 15) and Melville 
section III (Fig. 16).

Table 9. Summary of conductivity-temperature-depth recorder (CTD), and expand
able bathythermograph (XBT) data sets that can be used to validate the simulated 
circulation distributions.

Source Data Type Coverage Duration

WOCE Hydrography CTD, XBT Scotia Sea 03-05/1995
WOCE/TOGA Drifter Scotia Sea 1991, 1996
FGGE Drifter Scotia Sea 1978-1979
Meteor cruise Hydrography CTD, XBT Drake Passage 01/1990

Thompson cruises Hydrography CTD, XBT Drake Passage 02/1976
Melville cruises Hydrography CTD, XBT Drake Passage 02-03/1975

Conrad cruise Hydrography CTD ,X BT Drake Passage 02/1975

References: WOCE A23 (Heywood and King, 1996), FGGE (Patterson, 1985), Meteor cruise 
(Rother et al., 1993), Thompson cruises (Sievers and Nowlin, 1984), Melville cruises (Sievers and 
Nowlin, 1984), Conrad cruise (Gordon et al., 1977)

Drifter D ata

In addition, data from the World Ocean Circulation Experiment/Tropical Ocean 

Global Atmosphere (WOCE/TOGA) drifters are available (Table 10). In the time
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Table 10. Name, drifter type, latitude and longitude of release locations for WOCE 
drifters used in this study.

Drifter Drifter Type Latitude (°S) Longitude (°W)

WOCE22045 surface 57.839 59.877

WOCE22046 surface 62.216 56.717

WOCE22047 surface 61.471 57.005

WOCE22048 surface 59.417 57.533

WOCE22049 surface 60.417 57.002

WOCE22050 surface 56.245 63.014
WOCE22108 surface 53.279 46.362

WOCE22591 surface 53.445 40.118
WOCE22594 surface 49.704 40.003
ALACE 11 subsurface 56.937 68.245
ALACE 17 subsurface 57.372 68.240
ALACE 18 subsurface 58.168 68.243
ALACE 19 subsurface 57.372 68.240
ALACE 20 subsurface 58.485 68.250
ALACE 21 subsurface 57.868 68.208
ALACE 22 subsurface 58.825 68.253
ALACE 26 subsurface 59.155 68.257
ALACE 204 subsurface 58.268 68.818
ALACE 205 subsurface 56.961 76.330
ALACE 209 subsurface 59.213 78.782
ALACE 211 subsurface 57.702 76.247
ALACE 217 subsurface 57.422 76.177
ALACE 250 subsurface 59.680 78.756
ALACE 290 subsurface 56.984 77.771
ALACE 297 subsurface 55.849 78.714
ALACE 298 subsurface 60.028 78.857
ALACE 299 subsurface 57.459 76.777
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from 1991 to 1996, 388 surface and subsurface drifters were released in the Southern 
Ocean and their position tracked over time (WOCE, 1996) and a select number of 

these drifters (Table 10, Fig. 17) are used in this study to validate the simulated 

drifter results. The results of the simulated drifters are then compared with the 

observed drifter paths and speeds available from the WOCE database (WOCE, 

1996). A total of nine surface (50 m) and 18 subsurface (1000 m) drifters were 

chosen (Table 10) for comparison with the simulated drifter results because of the 
spatial coverage across the Drake Passage and along the western Antarctic Peninsula 

(Fig. 17) that they provide. In 1978/1979, 316 satellite-tracked drifting buoys were 
successfully deployed in the Southern Ocean as part of the First GARP (Global 

Atmospheric Research Program) Global Experiment (FGGE). Results from these 
drifter studies, as discussed in Patterson (1985) are also used to validate simulated 
drifter results.

45°S

50°S

55°S

60°S

65°S

70°S
80°W 70°W 60°W 50°W 40°W 30°W 20°W

Fig. 17. Drifter trajectories from 27 W OCE/TOGA surface and subsurface drifters 
used in this study.

Eddy K inetic Energy

The eddy kinetic energy distribution of the simulated flow at 50 m depth on model
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day 180 was calculated and compared to the surface eddy kinetic energy calculated 

from observations made during FGGE (Patterson, 1985). The 50 m depth corre

sponds to the depth at which the drifters are released in the circulation model and 

day 180 (30 March) corresponds to the time when the model has finished spinning 

up. Kinetic energy (K E ) is calculated as

K E  =  — ±— , (22)

where u and v are the time-averaged simulated horizontal velocities (m s_1). The 

kinetic energy field is the mean distribution of kinetic energy over a total of 300 days 

of the model run. The first two months of spin-up time are excluded in the time
averaging so that changes in the velocity associated with the model spin-up do not
affect the kinetic energy calculation. The eddy kinetic energy ( EKE)  is calculated 
as follows

I yl2 1
E K E  = — ± —  (23)

where u' and v' are the difference between the simulated velocity at model day 180 

and the mean simulated velocity (u1 = u — u, v' =  v — v ).

3.5.2 Validation of krill growth m odel

Krill length-frequency distribution and estimates of krill biomass are two quanti
ties that can be compared to results from krill growth simulations along simulated 
drifter paths. Krill distribution data from the Scotia Sea and South Georgia regions 

are needed to compare krill growth model results, and to determine whether krill 
distributions derived from the simulated drifter results and the krill growth model, 
match observations.

Data sets from the Discovery expeditions (Marr, 1962), the BIOMASS program 
(Thorley and Trathan, 1994), the LTER program (Lascara, 1996a, 1996b; Lascara, 
1999), German expeditions to the Antarctic Peninsula (Siegel, 1985; 1988; 1989; 
1992), and the British Antarctic Survey (BAS) krill surveys around South Georgia 

from hydro-acoustic measurements, net hauls and predator data (Reid et al., 1996; 
Hill et al., 1996; Croxall et al., 1999; Reid et al., 1999a, 1999b; Watkins, 1999; 
Watkins et al., 1999) are adequate for initialization and validation of drifter simula
tions with the circulation model and krill growth model simulations. These data sets
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Table 11. Source, type, collection method, and space and time coverage of krill data 
sets available for this study. Western Antarctic Peninsula and South Georgia are 
abbreviated as WAP and SG, respectively.

Source Data Type Method Spatial Coverage Time Coverage
BIOMASS Biomass hydro-acoustics Southern Ocean 1980-1985

Length-frequency net tows (WAP, SG) 1980-1985
Chlorophyll a 1980-1985

Discovery Length-frequency net tows Southern Ocean 1926-1940
Report
LTER Biomass hydro-acoustics WAP 1991, 1993

Length-frequency net tows WAP 1991, 1993
Chlorophyll a BOPS WAP 1991, 1993

German Biomass net tows WAP 1977-1990
cruises Length-frequency net tows WAP 1977-1990
BAS Length-frequency net tows, hydro-acoustic SG 1981-1997

Length-frequency predator data SG 1986, 1991-1997

References: BIOMASS (Thorley and Trathan, 1994), Discovery Report (Marr, 1962), LTER (Las
cara, 1996; Lascara et al., 1999), German cruises (Siegel, 1985; 1988; 1989; 1992), BAS (Reid et 
al., 1996; Hill et al., 1996; Croxall et al., 1999; Reid et al., 1999a; 1999b; Watkins, 1999; Watkins 
et al. 1999)

include length-frequency distributions and krill biomass estimates in the Antarctic 
Peninsula, Scotia Sea, and South Georgia regions (Table 11).

D iscovery  D ata

The earliest and most comprehensive studies on krill distributions are discussed 
in the Discovery Reports, especially that by Marr (1962). Over the course of 14 
years, beginning in 1926, extensive data were obtained on krill behavior, life cycle, 
and length-frequency distribution at 12,461 stations from 7339 vertical and 5122 

horizontal and oblique net tows, respectively. The data cover the whole Southern 
Ocean, and include a concentration of stations in the South Georgia and Bransfield 

Strait regions. This data set provides length-frequency distributions throughout the 
study area (Fig. 18). The length-frequency data were extracted from Marr (1962) 
by scanning the relevant figures into a computer and digitizing the location of each 

data point. The resultant data set was then quality controlled to ensure accuracy.
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Biom ass D ata

The objective of the BIOMASS program was to understand the structure and dy

namics of the Antarctic marine ecosystem as a basis for the exploitation of potential 

living resources (El-Sayed, 1977). This was done by conducting three large, inter

national field studies focused on the Antarctic Peninsula and Prydz Bay regions of 

the Southern Ocean (First International BIOMASS Experiment - FIBEX, Second 
International BIOMASS Experiment - SIBEX1 and SIBEX2). These studies were 

designed to quantify the standing stock and productivity of krill populations (El- 
Sayed, 1994). Field experiments were conducted from 1980-1985 (Table 11), and 

most data were collected during the summer months. Sampling in the area of in
terest for this study covered the region extending from Anvers Island northeast to 

South Georgia and encompassing Bransfield Strait, the South Shetland Islands, Ele
phant Island and the Weddell/Scotia Confluence (Thorley and Trathan, 1994). The 
BIOMASS data set contains hydro-acoustic survey data, net haul data comprising 
krill length-frequency data, bird observation data, and oceanographic data includ

ing CTD and chlorophyll a data. Although 1093 stations were sampled, equivalent 
data sets were not obtained at all locations, due to various circumstances during the 

different cruises. It is the length-frequency data of krill that is most important for 
comparison with results from this study (Fig. 19).

The three international field studies that were part of BIOMASS were under
taken throughout the 1980s. FIBEX took place from January to March 1981, while 
SIBEX1 took place in November to December 1983, and SIBEX2 from January 
to March 1985, with the exception of one cruise on the research vessel Polarstern 

(PSS2) which took place from October to December 1984, earlier than the rest of the 

SIBEX2 cruises. The length-frequency data is analyzed separately for each of the 

three field studies, with the exception of the length-frequency data from the PSS2 
cruise, which is analyzed together with the SIBEX1 cruises. The sampling locations 
occupied during the three field studies (Fig. 20) were sub-divided into seven regions 
for analysis and comparison with the krill growth simulations. The krill length- 
frequency distribution from each sub-region (Figs. 21-23) provides the comparison 
with the simulated length-frequency results described in section 4.

Long Term Ecological Research D ata

The LTER program was established in 1990 to document interannual and seasonal 
variations in the pelagic marine ecosystem within continental shelf waters west of the
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Fig. 18. Distribution of Antarctic krill A) surface larvae and B) older krill (>20 
mm) in summer (January to March) across the study region extracted from net haul 
observations obtained during the Discovery Investigations, 1926-1940 (Marr, 1962). 
The heavy line shows the southern Antarctic Circumpolar Front (SACCF) as given 
in Orsi et al. (1995). The small dots in the upper panel indicate the distribution of 
the sampling locations.
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Fig. 19. Locations of the length-frequency measurements of Antarctic krill, acquired 
during BIOMASS, in the study region (Thorley and Trathan, 1994). The thin line 
represents the 2 0 0 0 -m isobath.

Antarctic Peninsula (Smith et al., 1995). The LTER cruises spanned all seasons and 

provided multidisciplinary observations, thus constituting a unique Antarctic data 

set for that region. Hydro-acoustic measurements and net collections examined the 
seasonal variability of krill distributions, abundances and population structure west 
of the Antarctic Peninsula (Lascara et al., 1999). Research cruises are still ongoing 

and portions of the data sets are available. Hydro-acoustic measurements of krill 
biomass and net tows were made at 161 stations (Table 11), where the echo sounder 
was towed below the surface along short transects (1 - 2  km) in conjunction with net 
tows (Lascara et al., 1999). For the purpose of this study, the length-frequency 
distribution of krill as given in Lascara (1996) and Lascara et al., (1999) are used 
for comparison with model results.
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Fig. 20. Locations of Antarctic krill length-frequency measurements from A) FIBEX 
cruises (January - March 1981), B) SIBEX1 cruises (November - December 1984), C) 
SIBEX2 cruises (January - March 1985). The measurements in the seven sub-regions 
used for comparison with the results of the krill growth simulations are designated 
as: region 1 - west Antarctic Peninsula (•); region 2 - Bransfield Strait (▼); region 
3 - Scotia Sea/Elephant Island (▲); region 4 - southwest Antarctic Peninsula (■); 
and region 5 - Weddell Sea (♦); open Scotia Sea (o) ; and) South Georgia (★). Note 
that the locations of PSS2 stations are shown in panel C by (o).
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Fig. 21. Summarized length-frequency distributions for Antarctic krill from measure
ments made during the FIBEX cruises (January - March 1981) for A) west Antarctic 
Peninsula, B) Bransfield Strait, C) Weddell Sea, D) Elephant Island/Scotia Sea re
gion, E) open Scotia Sea, and F) South Georgia regions. The regions are designated 
in Figure 20A. The total number of krill individuals, N, sampled in each area is 
shown.
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Fig. 22. Summarized length-frequency distribution of Antarctic krill from measure
ments made during the SIBEX1 cruises (October - December 1983) for A) west 
Antarctic Peninsula, B) Bransfield Strait, C) Elephant Island/Scotia Sea region, 
and D) PPS2 (November-December 1984) regions. The regions are designated in 
Figure 20B. The total number of krill individuals, N, sampled in each area is shown.
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Fig. 23. Length-frequency distribution of Antarctic krill during the SIBEX2 cruises 
(January - March 1985) compiled for A) southwestern Antarctic Peninsula, B) west 
Antarctic Peninsula, C) Bransfield Strait, D) Elephant Island/Scotia Sea region. 
The regions are designated in Figure 20C. The total number of krill individuals, N, 
sampled in each area is shown.
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German Cruise D ata

From 1977 to 1990 the Federal Republic of Germany undertook ten expeditions in the 

months from October to June along the Antarctic Peninsula, which included net tows 

for krill sampling that covers almost all seasons (Siegel, 1988). Detailed descriptions 

of these cruises can be found in Siegel (1985; 1988; 1989; 1992), and they are summa

rized in Table 11. An important advantage of this data set is that standard fishing 

gear and standardized methods were used throughout (Siegel, 1988). Overall 700 
stations were sampled during these cruises, but three cruises (February/March 1981, 

October/November 1983, March/April 1985) were part of the BIOMASS cruises and 

are therefore already included in the above data set. The results from the most re

cent sampling of krill in this area are given in Siegel et al. (2 0 0 2 ). These studies 

provide valuable data on the length-frequency distribution of krill and are used for 
model validation.

British A ntarctic Survey Cruise D ata

The British Antarctic Survey carried out 11 surveys at South Georgia between 1981- 

1997 as part of their Core Programme (Table 11, Watkins et al., 1999), sampling 
locations mostly inside defined survey boxes: East Core Box located to the east of 

the Island, and West Core Box located to the north of the Island (Fig. 24). The 
cruises were mainly carried out in the months of January and February of different 
years, and the results of net hauls from seven of these cruises are described in detail 
in Watkins (1999) and Watkins et al. (1999).

In addition net haul data and krill length-frequency data from macaroni penguins 
(Eupdyptes chrysolophus) during the month of February (Hill et al., 1996), fur seal 
(Arctocephalus gazella) and macaroni penguin data of krill length-frequency from 

December to March 1997/1998 (Reid et al., 1999a; 1999b), predator data and net 
haul data from February 1986 (Reid et al., 1996), and predator data during the 

breeding seasons 1986 and 1994 (Croxall et al., 1999) are available (Table 11) for 
comparison with the simulated length-frequency distribution of Antarctic krill.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52°S 

53°S 

54°S 

55°S 

56°S
42 °W 40 °W 38°W 36°W 34°W 32°W

Fig. 24. Location of the British Antarctic Survey Core Programme survey boxes near 
South Georgia after Watkins (1999). The thin line represents the 2000-m isobath.
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4 RESULTS

The circulation model and the krill growth model together with the different food 

time series described in the previous section, are used to test factors that permit 

survival of krill during transport across the Scotia Sea to South Georgia. Therefore, 

the first effort consists of developing simulations of the circulation in the Scotia Sea 

and comparing the simulated circulation distributions to available data to determine 

the validity of the fields. Following this, drifter trajectories obtained using the 

simulated circulation fields are described and are used to determine krill transport 
patterns across the Scotia Sea. The food supply along the drifter trajectories is next 

used to determine the fate of Antarctic krill as they are moved across the Scotia Sea 
by the prevailing circulation.

4.1 Reference Simulation  

Basic Circulation Structure

The circulation model with the configuration discussed in section 3, was run from 1 

October 1992 to 30 September of the following year. The initial barotropic stream 
function (Fig. 25A) shows general northeastward flow through Drake Passage and 

across the Scotia Sea. The transport through Drake Passage is approximately 150 
Sv and is separated into three bands, designated by the closely spaced streamlines, 
which indicate strong flow. These are the three frontal regions, the SAF, PF, and 
SACCF, of the ACC. The SAF is defined by the closely spaced of streamlines, 
indicating transport of about 50 Sv, in the north of Drake Passage close to the tip 
of South America. The SAF turns north just after Burdwood Bank to flow north 

through a channel between Burdwood Bank and the North Scotia Ridge (cf. Fig. 1) 
towards the Falkland Islands. At the northern boundary of the model domain, the 

SAF makes a sharp right turn and flows along 48° S to exit the domain to the east 
(Fig. 25A). The PF flows parallel to the SAF and turns northeast to flow through 
a channel in the North Scotia Ridge (53°S, 48.5°W) east of the SAF. The PF has a 
transport of approximately 30 Sv as shown by the three closely spaced streamlines 

defining the front. The front diverges and part of it joins flow with the SAF further 
north, while the rest of the flow is to the east, passing South Georgia to the south, 

exiting the model domain. Some flow from the SAF diverts north through the same 
channel as the PF (Fig. 25A).
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Fig. 25. Barotropic streamfunction (Sv) A) at the start of the simulation (1 October) 
and B) after 180 days of simulation (30 March). Contour interval is 10 Sv. The 
direction of the flow is indicated by the arrows. Locations of the Subantarctic Front 
(SAF), the Polar Front (PF), and the Southern ACC Front (SACCF) are indicated 
by the large arrows, and the rotated rectangle shows the extent of the model domain. 
The numbers 1 to 6  mark eddies, which are discussed in the text.
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The streamline spacing shows the least number of streamlines associated with 
the SACCF compared to the other fronts, indicating that it has a transport of 

approximately 10 Sv (Fig. 25A). The SACCF flows close to the west Antarctic 

Peninsula continental shelf, parallel to the other two fronts. This front continues 

its path to the northeast across the Scotia Sea turning north to flow along the east 

coast of South Georgia and turning east after passing South Georgia. The northern 
limb of the Weddell Gyre intrudes into the model domain at the southern model 
boundary at 51°W.

After 180 days of simulation (30 March) considerable mesoscale variability has 
developed in the simulated circulation distribution (Fig. 25B). The SAF shows closer 

spaced streamlines through the channel east of Burdwood Bank (cf. Fig. 1) indicat

ing stronger flow through the channel than at the start of the simulation (Fig. 25A). 

Part of the flow is still diverging and flowing through the channel further east, to
gether with the PF. The PF shows considerable meandering throughout its whole 
path, with a few visible eddy formations, and accelerated flow through the channel 
connecting the Scotia Sea with the Malvinas Chasm. The SACCF shows consid
erable meandering as well. The streamlines move northeast across the Scotia Sea 
and exit the model domain to the east without turning northward to flow along the 
east side of South Georgia. In addition, a small fraction of the SACCF combined 

with flow from the PF, moves east across the Scotia Sea and before reaching South 
Georgia turns to flow north and then eastward, exiting the model domain to the 
east of South Georgia.

Overall, the simulated surface circulation matches observations well, with north
eastward flow through Drake Passage that is characterized by the banded structure 

of high speed frontal locations. The locations of the three fronts match observa

tions (cf. Fig. 1 ), and the locations of the Weddell Gyre and the Weddell Scotia 
Confluence, where Weddell Sea waters meet Scotia Sea waters, also match observed 
locations. The transport through Drake Passage, the Weddell Gyre and the Brazil 
Current are close to the observed transport discussed in section 2.1.1 (Table 1). In 
addition mesoscale variability that has been observed as described in section 2 .1 .2 , 
is found in the simulated surface circulation.

Eddy K inetic Energy D istribution

To quantify the mesoscale variability of the flow in the circulation model, the 
eddy kinetic energy distribution of the flow at 50 m after 180 days of simulation
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Fig. 26. Eddy kinetic energy (cm- 2  s-2) on day 180 of the reference simulation 
(March 30). Contours are shown for 50-250 cm - 2  s- 2  (light shading), 250-500 cm- 2  

s~ 2 (medium shading), and >500 cm - 2  s~ 2 (dark shading).

(Fig. 26) was calculated and compared to the surface eddy kinetic energy calculated 
from observations made during FGGE (Patterson, 1985) to assess the realism of the 
simulated surface variability. The simulated circulation after 180 days (30 March) 
shows that the eddy kinetic energy is especially high in the flow associated with the 

PF and SACCF (Fig. 26), which meander and create a strong eddy kinetic energy 

field throughout Drake Passage and the Scotia Sea. The PF produces a strong eddy 
kinetic energy field over and to the north of the channel connecting the Scotia Sea 
and the Malvinas Chasm. The pattern of eddy kinetic energy across the Scotia 
Sea shows an increase that extends northward prior to reaching South Georgia that 
then moves eastward around the Island. This pattern arises mainly from variability 
associated with the PF. The variability associated with the SACCF accounts for the 
band of enhanced eddy kinetic energy that occurs south of South Georgia. Close 

to the Island, eddy kinetic energy is small, but increases to the north where strong
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topographic features are encountered (cf. Fig. 5). Increased eddy kinetic energy 
occurs where the SAF flows close to the continental shelf of South America, as well 

as where it flows over the channel between Burdwood Bank and the North Scotia 

Ridge (cf. Fig. 1) and to the north of this channel.

The eddy kinetic energy in the Scotia Sea shows an eastward extent, with values 

larger than 500 cm - 2  s~2. The analysis of the FGGE drifters given in Patterson 

(1985) show a region of eddy kinetic energy of >500 cm - 2  s- 2  in central Drake Pas
sage, which extended to the east into the Scotia Sea, continued northward into the 

South Atlantic Ocean and followed the continental shelf of South America. Central 
Drake Passage is also where the eddy kinetic energy is concentrated in the simulated 
flow (Fig. 26). The simulated eddy kinetic energy values are lower than those given 
in Patterson (1985) and show only patches of kinetic energy >500 cm - 2  s- 2  in the 

Drake Passage and Scotia Sea. In the eastern Scotia Sea and around South Georgia, 

Patterson (1985) calculated values of 200-500 cm - 2  s-2. This is consistent with the 

simulated values which show lower eddy kinetic energy in this area as compared to 

Drake Passage.
Thus, the eddy kinetic energy field calculated from the simulated flow (Fig. 26) 

agrees in distribution and magnitude with the eddy kinetic energy field of the surface 
flow calculated from the FGGE drifting buoys (Patterson, 1985, Fig. 11a).

4.1.1 Com parison w ith  Hydrography

The reliability of the simulated circulation patterns was determined by comparisons 
with the Melville section III and the WOCE A23 section described in section 3.5.1. 
The primary comparisons used in this study are the locations and strengths of the 
three fronts, the southward extent of the 2.0°C isotherm, and the position of the 
2.0°C isotherm or the 34.4, 34.6 or 34.7 isohalines in the water column according to 

their association with different water masses. The 34.4 isohaline marks the extent of 

the AASW that is fresher than 34.4, and UCDW is defined by water saltier than 34.4 
up to 34.7 (Orsi et al., 1995). Lower Circumpolar Deep Water (LCDW) is defined 
by salinities above 34.7 (Orsi et al., 1995).

The Melville cruise section III took place in February 1975. The vertical temper
ature and salinity distributions from this cruise (Fig. 16A,B) are compared to the 
equivalent simulated vertical distributions (Fig. 27A,B), which are obtained from the 

average property distributions for model days 130-150, which is equivalent to the
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month of February. In general, the observed and simulated temperature and salinity 

vertical distributions compare well and have similar structures. The 2°C isotherm 

starts out at about 2400 m in the north of the simulated temperature section (Fig. 

27A), which was observed in the Melville III section (Fig. 16A). It rises steeply, and 
intrudes into the colder water in the south about 550 km south of the north end 

of the simulated temperature section (Fig. 27A), which is 50 km less than in the 
observed temperature distribution (Fig. 16A). The 2°C isotherm then reaches the 

surface of the simulated temperature field (Fig. 27A) about 100 km north of where it 

is observed to shoal in the Melville III section (Fig. 16A). This is because the surface 
cold layer, with temperatures less than -0.5°C, seen in the Melville III section (Fig. 

16A), is misrepresented in the simulated temperature field (Fig. 27A), indicating 
that processes necessary for the formation of this layer are missing in the model, as 
is discussed in detail in section 5.1.3. The observed cold tongue extends about 200 
km to the north in the section and has its minimum temperature at 100 m (Fig. 

16A). The simulated temperature distribution shows a similar cold tongue feature 

with the same temperatures and northward extent (Fig. 27A), but the minimum 
temperatures are found at the surface. The remaining isotherms in the simulated 
field match observations in starting depths and vertical distribution.

The 34.6 and 34.7 isohalines start at 2300 m and 2900 m at the northern part 
of the simulated salinity section (Fig. 27B), whereas the observations show these 

isohalines to start at 1800 m and 2600 m, respectively (Fig. 16B). The simulated 
isohalines rise towards the surface in the south of the section (Fig. 27B), consistent 

with the observations (Fig. 16B).
The locations of the three fronts in the ACC are clearly indicated by large hor

izontal property gradients (Nowlin and Clifford, 1982) and pronounced isopycnal 
tilt throughout the deep water column (Orsi et al., 1995). The simulated vertical 
temperature and salinity distributions (Fig. 27, see arrows) show locations of all 
three fronts that match observed front locations (Fig. 16, see arrows). The tilt in 

the simulated temperature and salinity distributions at the frontal locations is pro
nounced (Fig. 27) and matches the observed property gradients in the Melville III 

section (Fig. 16). For example, the 1.5°C isotherm rises 750 m in the SACCF in 
the Melville III section (Fig. 16A) and rises 700 m in the SACCF in the simulated 
temperature distribution (Fig. 27A).

The above comparisons show that for this region of the model domain the sim-
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Fig. 27. Simulated A) temperature and B) salinity along the Melville III section 
obtained by averaging the model-derived distributions for days 130 to 150, which 
correspond to February. Contour intervals are 0.5°C and 0.05 for temperature and 
salinity, respectively. The thick lines mark A) the 2°C isotherm  and B) the 34.6 and 
34.7 isohalines. The dashed lines indicate negative temperatures. Arrows indicate 
the locations of the three fronts, the SAF, the PF, and the SACCF, and a cold 
tongue. The northern and southern ends of the section are indicated by N and S, 
respectively.
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ulated water column structure matches observations with the exception of the cold 

tongue and the depth of the isohalines in the northern part of the section. The 

fronts are also well resolved in the simulated property fields and their positions 
match observations.

The WOCE A23 section, located in the eastern Scotia Sea near South Georgia, 

was obtained between March and May 1995. The vertical temperature and salin

ity distributions along this section (Figs. 15A,B) are compared to the equivalent 

simulated vertical distributions from the same time of the year (Figs. 28A,B). The 

WOCE A23 cruise track changed direction near South Georgia (cf. Fig 5), which 

makes direct comparison with the model results difficult. However, equivalent sim

ulated vertical sections were derived by combining two sections to represent the 
WOCE A23 cruise track.

The 2°C isotherm starts out at 2300 m in the northern part of the simulated tem
perature distribution (Fig. 28A), which agrees with observations from the WOCE 

A23 cruise (Fig. 15A). It then rises steeply at the position of the PF, then slowly 

shoals and reaches the surface about 500 km south of where it shoals in the observa
tions (Fig. 15A). The 1.0°C isotherm starts at 3000 m in the north of the simulated 
temperature section (Fig. 28A), which is also observed (Fig. 15A), and rises steeply 

to the PF and reaches 2000 m depth to the north of the topographic rise, at 800 km 
distance from the northern part of the section (Fig. 28A). In the WOCE A23 section 
the 1.0°C isotherm was observed to shoal to 1500 m (Fig. 15A). This isotherm then 
shoals to above 600 m at the location of the SACCF in the simulated temperature 

section (Fig. 28A) similar to observations (Fig. 15A).
The simulated location of the SACCF (Fig. 28, see arrows) is approximately 80 

km further north than observed (Fig. 15, see arrows). The location of the PF in 
the simulated property fields (Fig. 28, see arrows) is moved about 100 km to the 
south of the observed location (Fig. 15, see arrows). The isotherms in the simulated 
temperature distribution (Fig. 28A) level out in the southern part of the section and 

even slightly decline, indicating a reversal in flow. This flow reversal results from 
an eddy spinning off the SACCF in this region and remaining south of the SACCF 
(Fig. 25). The observations show a strong feature with cold water centered around 

station 45 (Fig. 15). This is a cold core eddy, which is not seen in the simulated 

circulation fields. The weak tilt of the isotherms and isohalines in the simulated 
property fields (Fig. 28, see arrows) do not show the strong shear north of the PF
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Fig. 28. Simulated A) temperature and B) salinity along the WOCE A23 section 
obtained by averaging the model-derived distributions for days 190 to 210, which 
correspond to April. Contour intervals are 0.5°C and 0.05 for temperature and 
salinity, respectively. The thick lines mark the 2°C isotherm (A) and the 34.6 and 
34.7 isohalines (B). Arrows indicate the locations of two fronts, the PF and the 
SACCF. The northern and southern end of the section are indicated by N and S, 
respectively. Pairs of lines ( / / )  indicate where the cruise tracks changed direction.
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seen in the WOCE A23 section (Fig. 15A), and the simulated PF has a weaker 

temperature gradient than does the observed PF.

The 34.6 and 34.7 isohalines start at 1400 m and 1900 m in the simulated salinity 

field (Fig. 28B), respectively, and then rise in the PF, which matches the WOCE 

A23 section observations (Fig. 15B). The 34.6 isohaline shoals to 400 m at the 
southern end of the simulated salinity distribution (Fig. 28B), which is also observed. 

The tongue of water marked by the 34.7 isohaline rises across the whole section of 

simulated salinity and shoals as expected to approximately 1 0 0 0  m, but protrudes 

100 km further to the south than seen in the observations (Fig. 15B).
The above comparisons show that the simulated isotherms and isohalines are 

smoother than the observations because they have been averaged over the month of 
April. Also, the simulated vertical temperature structure shows isotherms that are 
deeper than observed and the PF is about 100 km further south and the SACCF is 
about 80 km to the north of observed positions.

4.1.2 Com parison w ith C lim atology

In addition to comparing the simulated circulation patterns with observations of 
the Melville section III and the WOCE A23 section as described in section 4.1.1, 
the reliability of the simulated circulation patterns was determined by comparison 
with the climatology used to initialize the model, which is described in section 3.1.2. 
Again, the primary comparisons used are the southward extent of the 2.0°C isotherm, 
and the positions of the 2.CPC isotherm and the 34.4, 34.6 or 34.7 isohalines.

The temperature distribution of the annual climatology along the section that 
corresponds to the Melville II section shows that the 2°C isotherm starts at 2400 m 
in the north of the section (Fig. 29A), as observed in the Melville II section (Fig. 

16A) and in the simulated temperature field (Fig. 27k). However, the representation 
of the cold tongue in the climatology differs from observations (Fig. 16A) because 
the climatology is constructed from an annual mean with a 1° resolution. The cold 
tongue appears in the climatology (Fig. 29A), but the northern extent is 300 km 
south of that seen in the observations (Fig. 16A), and the observed cold temperature 

of -0.5°C (Fig. 16A) is not present. In the simulated temperature field (Fig. 27A), the 
cold tongue extends to about 400 km from the north of the section and temperatures 

of -0.5°C are present.
The 34.6 isohaline starts at 1800 m in the northern part of the climatology section
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Fig. 29. Climatological observations of A) potential temperature and B) salinity 
along the Melville II section obtained from the WOA 1998 climatology. Contour 
intervals are 0.5°C and 0.1 for temperature and salinity, respectively. The thick lines 
mark the 2°C isotherm (A) and the 34.6 and 34.7 isohalines (B). Arrow indicates 
the location of the cold tongue.
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(Fig. 29B), which agrees with the observations (Fig. 16B), while the simulated salin

ity field shows this isohaline to be at 2300 m (Fig. 27B). At the northern part of the 

climatology section the 34.7 isohaline starts at 2750 m (Fig. 29B), which is lower 

than the 2600 m that is observed (Fig. 16B). The simulated salinity distribution 

shows the isohaline starting at 2900 m in the north (Fig. 27B).
Comparison of the climatology temperature distribution from the section that 

corresponds to the WOCE A23 section to the simulated temperature field shows 

that the simulated 2°C isotherm (Fig. 28A) matches the location of this isotherm in 

the climatology (Fig. 30A). However, the simulated 2°C isotherm (Fig. 28A) shoals 

500 km to the north of where this isotherm appears in the climatology. The 1°C 
isotherm starts at 3000 m in the simulated temperature field (Fig. 28A) and moves 
across the section similar to the 1°C isotherm in the climatology (Fig. 30A). However, 

the 1°C isotherm in the climatology shoals to about 1000 m in the southern part of 
the section (Fig. 30A) and part of it reaches the surface 75 km from the southern 

end, which matches observations (Fig. 15A). The simulated 1°C isotherm shoals to 

the same depth, but reaches the surface 500 km to the north of where this isotherm 
shoals in the climatology (Fig. 28A).

The location of the 34.6 isohaline in the simulated salinity field (Fig. 28B) agrees 
with the climatology (Fig. 30B). The simulated salinity field also shows a tongue of 
34.7 water moving southward and up across the section (Fig. 28B), which is observed 
in the observations (Fig. 15B) and is seen in the climatology (Fig. 30B). In the 
climatological salinity section, the tongue starts at 1600 m and 3800 m respectively 
(Fig. 30B) and extends across the section. In the simulated salinity field the same 

isohaline starts at 1850 m and 3400 m in the north and extends across the section, 
although it stops 200 km from the south of the section (Fig. 15B).

The above comparisons show that there is a good agreement between the sim
ulated temperature and salinity distributions and the climatology, except for the 
representation of the cold tongue in the Melville II section from Drake Passage. A 
comparison of the frontal locations is not done here because the fronts in the simu
lated flow field are initialized with a feature model in addition to this climatology.

4.2 M odel Sensitivity

As discussed in section 3, the simulated circulation fields respond strongly to vari
ations in wind forcing. To test this, the wind was changed ±20% (Table 12) by
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Fig. 30. Climatological observations of A) potential temperature and B) salinity 
along the WOCE A23 section obtained from the WOA 1998 climatology. Contour 
intervals are 0.5°C and 0.1 for temperature and salinity, respectively. The thick lines 
mark the 2°C isotherm (A) and the 34.6 and 34.7 isohalines (B).
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changing the Ekman factor, and the resultant sensitivity of the circulation to the 

change was determined.

4.2.1 General Circulation

The influence of wind on the overall circulation can be seen by comparing the baro- 

clinic streamfunction after 180 days of simulation with increased wind (Fig. 31A) 
or decreased wind (Fig. 31B) to the reference baroclinic streamfunction after 180 

days (Fig. 25B). Considerable mesoscale variability is seen in the surface barotropic 

streamfunction in both simulations (Fig. 31 A,B). Overall the barotropic streamfunc

tion from the decreased and increased wind simulations shows the same flow features 
as the reference simulation (Fig. 25B). In the increased wind simulation, the SAF 
shows close streamline spacing indicating an accelerated flow through the channel 

east of Burdwood Bank (cf. Fig. 1) with a small part of this front diverging and 
flowing through the channel further east together with the PF. A similar flow is 

seen in the reference simulation (Fig. 25B). The PF and SACCF show considerable 

meandering along their paths with a few visible eddies, and the flow of the PF is 
accelerated over the channel in the North Scotia Ridge connecting the Scotia Sea 
with the Malvinas Chasm (cf. Fig. 1). The only difference between this simulation 
and the reference simulation is that the barotropic stream function now shows more 
pronounced eddies associated with the fronts (Fig. 31 A, numbers 1-6). The eddies 
are visible at the same locations as in the reference simulation, but now are defined 
by more streamlines or are better defined in shape, indicating they are more strongly 

developed than in the reference simulation. At the northern boundary near 51°W, 
two observed eddies changed their form to be slightly more round in shape (Fig. 
31 A, numbers 1,2). In addition, a more pronounced eddy which developed from the 
SACCF is seen to the east of South Georgia (Fig. 31 A, number 3).

The barotropic streamfunction of the decreased wind simulation (Fig. 31B) shows 
fewer developed eddies, and the two eddies observed at the northern model domain 
boundary in the increased wind simulation have formed a large and a small forma
tion. There is no eddy present to the east of South Georgia in the reduced wind 
simulation (Fig. 31B).
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Fig. 31. Barotropic streamfunction (Sv) after 180 days of simulation (30 March) 
with A) 20% increased wind stress and B) 20% decreased wind stress. Contour 
interval is 10 Sv. The direction of the flow is indicated by the arrows. Locations of 
the Subantarctic Front (SAF), the Polar Front (PF), and the Southern ACC Front 
(SACCF) are indicated by large arrows, and the rotated rectangle shows the extent 
of the model domain. The numbers 1 to 6  mark eddies, discussed in the text.
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4.2.2 Regional Circulation

To further test the influence of wind on the regional circulation, especially along the 

western Antarctic Peninsula, the flow speed and direction of ten simulated surface 

drifters are used to examine the model sensitivity to wind. The starting positions of 

the drifters were chosen to cover different environments in the study area. Drifter 
1 is located on the western Antarctic Peninsula shelf in the Bransfield Strait, 2 is 

located in the vicinity of the SAF, 3 in the vicinity of the PF, 4 and 5 at two different 

locations on the western Antarctic Peninsula shelf, 6  at the edge of the SACCF, 7 

on the Weddell Sea shelf edge, 8  in the middle of the Scotia Sea, 9 close to South 

Georgia and 10 off the tip of the Antarctic Peninsula.
Decreasing the wind stress over the total study region by 20% changes the surface 

flow speeds of the drifters over a large range from -6 8 % to 36% (Table 12). Five 
of the drifters react with increased surface speeds and changed flow direction, while 
the other five drifters show decreased surface speeds with a change in direction. The 

smallest change in drifter behavior occurs (drifter 6 ) at the edge of the SACCF, 

with a 1% decrease in speed and a 2° change in direction. The largest change occurs 
(drifter 5) at the southwestern Antarctic Peninsula, with a 6 8 % decrease of surface 
speed and a 6 ° change in direction (Table 12).

Increasing the wind stress by 20% changes the surface speed and direction of the 
ten drifters (Table 12), but the range is less than that observed for decreased wind 

stress, being between -18% to 23%. Again drifters at the edge of the SACCF (drifter 
6 ) experience the least change, with a 2% decrease in speed and a 15° change in 
direction. The drifters that show changes in speed and direction are not necessarily 
the same drifters as those in the decreased wind simulations. For example drifter 2, 
located in the SAF, experiences decreased speeds in both cases, while drifter 1, in 
the Bransfield Strait, experiences increased surface speed with decreased winds and 
decreased surface speed with increased wind. In contrast, drifter 5, at the southwest 

Antarctic Peninsula, experiences strongly decreased surface flow speeds (6 8 %) with 
decreased winds and slightly increased flow speed (3%) with increased wind.

Changes in the wind stress distribution used to force the model have different 
effects on the surface flow speed and direction in different areas in the model domain. 

A 20% decrease in the wind changes the surface flow speeds and direction of the 
surface flow more than a 20% increase in wind stress. The increase or decrease of 
the wind has an almost uniform influence on the Ekman flow, which increases by
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Table 12. Average simulated surface layer flow speed and direction, and Ekman 
flow speed and direction over the upper 100 m for 10 drifters defined in Table 10, 
subjected to ±20% variation in the NCEP wind fields used to force the circulation 
model. The simulated speed and direction values are 30-day averages for December. 
The percent change in surface and Ekman flow speeds is computed relative to the 
winds used for the reference simulation.

Initial location Surface flow Ekman flow
Wind longitude latitude speed change direction speed change direction
Forcing (°W) (°S) (cm s_1) (%) (“true) (cm s-1) (%) (“true)
NCEP 1 59.0 63.0 0.57 312 0.7 58

2 60.5 56.0 6.94 167 0.57 6 6

3 56.0 58.0 2.60 300 0.5 67
4 63.5 64.0 3.85 138 0 . 6 8 60
5 69.5 6 6 . 0 3.07 140 0.56 82
6 59.0 61.0 11.33 73 0.58 67
7 53.0 65.0 3.08 63 0.93 49
8 44.0 58.0 13.16 330 0.3 67
9 39.0 56.0 8.69 124 0 . 2 2 333

1 0 53.0 63.0 6.35 1 0.65 53
NCEP 1 59.0 63.0 0.89 36 263 0.56 -25 58
-2 0 % 2 60.5 56.0 4.79 -44 248 0.46 -24 6 6

3 56.0 58.0 3.59 28 336 0.4 -25 67
4 63.5 64.0 3.23 -19 161 0.54 -26 60
5 69.5 6 6 . 0 1.83 - 6 8 146 0.45 -24 82
6 59.0 61.0 1 1 . 2 0 -1 75 0.47 -23 67
7 53.0 65.0 3.34 8 30 0.74 -26 49
8 44.0 58.0 11.99 - 1 0 348 0.24 -25 67
9 39.0 56.0 1 1 . 8 8 30 1 2 2 0.18 -26 333

1 0 53.0 63.0 7.82 19 350 0.52 -25 53
NCEP 1 59.0 63.0 0.54 -5 162 0.84 17 58
± 2 0 % 2 60.5 56.0 5.85 -18 173 0.69 17 6 6

3 56.0 58.0 2.58 -0.7 252 0 . 6 17 67
4 63.5 64.0 5.00 23 141 0.82 17 60
5 69.5 6 6 . 0 3.14 3 141 0.67 16 82
6 59.0 61.0 11.04 - 2 87 0.7 17 67
7 53.0 65.0 3.63 15 64 1 .1 1 16 49
8 44.0 58.0 12.52 -5 333 0.36 17 67
9 39.0 56.0 9.52 9 125 0.27 18 333

1 0 53.0 63.0 5.37 -18 2 0.78 17 53
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approximately 17% with increased flow and decreases by approximately 25% with 

decreased wind stress (Table 12).

4.2.3 Sim ulated Drifter Trajectories

The drifter trajectories resulting from variable wind conditions (Figs. 32, 33) indicate 

the extent to which the simulated circulation is modified by increases or decreases in 

the wind field. For normal wind conditions, drifter 1 (Fig. 32A, solid line) flows south 

in Bransfield Strait and then turns west, exits the Strait, and becomes entrained 

in the SACCF. Increased winds produce and enhance northward Ekman transport, 

which moves drifter 1 into the ACC sooner (dashed line). The simulated trajectories 
for this drifter for normal and increased winds are similar (Fig. 32A, solid and dashed 
line), except for a northward shift during increased wind conditions.

A 20% reduction in the wind results in the drifter remaining longer in Bransfield 
Strait before becoming entrained into the ACC (Fig. 32A, dotted line). Under de

creased winds, eight months of the total transport time is spent in or near Bransfield 
Strait. As a consequence, this drifter is transported only as far as 59°W, while the 

original drifter and the drifter experiencing increased winds are transported halfway 
across the Scotia Sea in the same time. Clearly, increased wind enhances transport 

towards South Georgia by accelerating offshore transport and entrainment into the 
ACC, and moves the drifters on a more northward trajectory. Decreased wind speeds 
slow and retain particles along the northern Antarctic Peninsula.

Drifter 2 was released in the SAF (Fig. 32A, solid line) and its trajectory follows 
the SAF as it flows east and then turns north between Burdwood Bank and the North 
Scotia Ridge (cf. Fig. 1 ) to flow along the continental shelf east of South America. 
The trajectories of these drifters do not differ until passing 50°S. After that, the 

drifter experiencing decreased winds turns north at 47°W and becomes entrained in 
an eddy. The drifter experiencing increased winds turns north at 42°W, continues 
to flow northeast and exits the model domain. The original drifter continues on an 
eastward path turning north at 36°W.

Drifter 3 was released in the central Scotia Sea near the PF (Fig. 32B, solid line) 

from where it moved northeastward with many meanders, and passed to the north of 
South Georgia. Increased wind stress produces a similar trajectory that is displaced 
northward (Fig. 32B, solid line). Decreasing the wind stress produces a simulated 
drifter trajectory (Fig. 32B, dotted line) that is south of the original drifter path.
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Fig. 32. Simulated surface drifter trajectories for drifters A) 1 and 2, B) 3 and 4, 
and C) 5, 7, and 9, released in December that experience NCEP winds (solid line), 
NCEP winds with a 20% increase in wind speed (dashed line), and NCEP winds 
with a 20% decrease in wind speed (dotted line). Numbers indicate the release point 
of each drifter as given in Table 12. The choices for specified drifters are described 
in section 3.5.1.
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Fig. 33. Simulated surface drifter trajectories for drifters A) 6 , B) 8 , and C) 10, 
released in December that experience NCEP winds (sold line), NCEP winds with a 
20% increase in wind speed (dashed line), and NCEP winds with a 20% decrease in 
wind speed (dotted line). Numbers indicate the release point of each drifter as given 
in Table 12. The choices for specified drifters are described in section 3.5.1.
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This drifter moves across the Scotia Sea and is delivered directly to South Georgia.
The simulated trajectory of drifter 4, released on the continental shelf of the 

western Antarctic Peninsula (Fig. 32B, solid line), moves north until it is entrained 

into the SACCF and transported across the Scotia Sea, passing South Georgia a 

considerable distance to the south. Increased winds produce a similar simulated 

trajectory (Fig. 32B, dashed line) but the drifter ends further to the northeast. De

creased winds also result in a similar simulated trajectory, but the distance covered 
is less (Fig. 32B, dotted line), with the drifter ending just south of South Georgia. 

Simulated trajectories from drifters released in other locations, such as drifter 6  (Fig. 
33A), drifter 8  (Fig. 33B), drifter 9 (Fig. 32C), and drifter 10 (Fig. 33C) show this 
same behavior. W ith increased winds the simulated drifters move faster and cover 
more distance over the total transport time compared to the simulated drifters that 

experienced decreased winds.
Drifters released on the southwestern shelf of the Antarctic Peninsula (drifter 

5, Fig. 32C) experience changes in the wind differently. After entrainment in an 
eddy the simulated drifter experiencing NCEP winds is transported northeast along 
the Antarctic Peninsula and across the Scotia Sea by the SACCF. Decreased wind 
allows entrainment of the drifter in the eddy for almost ten months and as a result 

the drifter does not leave the continental shelf. Increased wind speeds transport 
the drifter first southwest before it turns north and is entrained in the SACCF, and 
results in decreased northeast transport along the continental shelf.

Drifters originating in the Weddell Sea (drifter 7, Fig. 32C) have almost identi
cal trajectories for NCEP winds and decreased winds. Increasing the wind speeds 
results in the drifter being entrained in more eddies, and eastward displacement of 
the trajectory. The drifter is not transported to South Georgia in a decreased wind 
condition either (Fig. 32C, dotted line). During early spring (October - Novem

ber) the climatological winds shift from northwesterly to westerly, creating a more 

offshore component to the Ekman flux. During this time, which slightly precedes 

the December to February krill spawning season (Ross and Quetin, 1986), this near 
surface flow will transport particles closer to the fast flowing ACC.

The above analysis shows that the surface wind stress has a minor influence on 
the overall circulation pattern, indicating that the simulated circulation is largely 
controlled by the initial density distribution, the frontal features and the bottom 
topography. However, wind stress does have a strong effect on the exchange between
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the continental shelf region of the Antarctic Peninsula and the ACC due to the 

contribution of the Ekman transport to the overall large-scale surface flow.

4.3 M odel Drifters

The simulated circulation patterns are used primarily to track surface drifters over 

time. Therefore, verification of the simulated flow speeds and directions is needed. 

This is done by releasing surface and subsurface drifters in the model domain at 
locations that correspond to release sites of WOCE surface and subsurface drifters 

(Table 10). The mesoscale variability of the Scotia Sea and the equivalent variability 

in the simulated circulation fields will preclude exact matching of the simulated and 
observed drifters. However the general transport direction and average speeds of the 
observed and simulated paths should match.

4.3.1 Surface Drifters

WOCE drifter 22047 (Fig. 34A), which was released in southern Drake Passage in 
January 1995, follows the SACCF. The observed trajectory of this drifter is east- 
northeastward from the tip of the Antarctic Peninsula across the Scotia Sea, passing 
South Georgia to the south. Eight meanders occur in the path of the drifter and 
its average speed is 0.234 m s-1. The simulated drifters, with various release times, 
flow along the same trajectory until 48°W, where drifters move north and some 
move south of the WOCE surface drifter. The drifters released after 60 and 120 

days of simulation turn northward, following the path of the SACCF northward for 

30 more days, while the observed drifter moved eastward. The overall agreement 
of surface drifter paths is good, with all simulated drifter trajectories following the 

observed drifter trajectory closely. The WOCE drifter took 208 days to complete 
the trajectory shown in Fig. 34A, while the simulated surface drifters took 216 to 
336 days to cover the same distance. This difference in transport time arises because 
the simulated drifters are entrained in eddies at the beginning of their paths, which 
results in lagging the observed drifter time. Overall the simulated surface drifters 
are slower than the WOCE surface drifters (Table 13).

WOCE drifter 22050 (Fig. 34B) starts in March 1995, near the northern side 
of Drake Passage in the vicinity of the high speed flow of the SAF. The average 

speed of this drifter is 0.322 m s- 1  and the observed trajectory is eastward to the 
edge of the shallow continental shelf of South America, where it turns northward
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Fig. 34. Trajectories followed by A) WOCE surface drifter 22047 (+), and B) WOCE 
surface drifter 22050 (+), and those followed by simulated surface drifters released 
at day 30 (*), day 60 (□), day 90 (A), day 120 (V), day 150 (o). Symbols mark the 
position of the simulated and WOCE drifters at 30-day intervals.
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Table 13. Comparison of the average speed of WOCE surface drifters with the 
average surface speed (m s-1) calculated for the simulated surface drifters released at 
different times. The average simulated drifter speed is based on all drifters released 
in the simulated circulation fields. The error is the calculated fractional error of 
average speed to observed average speed.

Observed

WOCE
Drifter

Simulated Drifters WOCE

Drifter
Avg ErrorDay 30 Day 60 Day 90 Day 120 Day 150 Avg

WOCE22045 0.296 0.282 0.285 0.293 0.186 0.268 0.374 0.283

WOCE22046 0 . 1 0 0 0.109 0.082 0.088 0.115 0.099 0.156 0.369

WOCE22047 0.080 0.066 0.116 0.142 0.159 0.113 0.234 0.517

WOCE22048 0.160 0.184 0.151 0 . 2 0 2 0.228 0.185 0.339 0.455

WOCE22049 0.133 0.197 0.132 0.152 0.148 0.152 0 . 2 1 2 0.281

WOCE22050 0.127 0.085 0.145 0.157 0.171 0.137 0.322 0.574

WOCE22108 0.157 0.157 0.306 0 . 2 2 0 0.306 0.229 0.458 0.499

WOCE22591 0.191 0.260 0.171 0.193 0.176 0.198 0.299 0.338
WOCE22594 0.199 0.253 0.196 0.314 0.365 0.265 0.321 0.173

between Burdwood Bank and South Georgia (cf. Fig. 1). Near 54°S it is captured 
by an eddy in which it stays for approximately five months. The WOCE drifter 
22050 then moves north and turns east near 48°S where it stays in another eddy-like 
feature for three months. Near 30°W the drifter turns once again northward. It 
took 428 days to cover the distance shown in Fig. 34B, with about eight months of 
this time spent in eddies, which reduced the overall transport distance.

The simulated surface drifters follow the same eastward path taken by WOCE 
drifter 22050 and turn north along the continental shelf east of Burdwood Bank. 

However, they are not transported as far north as WOCE drifter 22050, but rather 
turn east near 50°S and then follow a northeastward path. The simulated drifters 

move this distance in 216-336 days, because they are not trapped in eddies, as was 

WOCE drifter 22050. Only the simulated drifter released on day 60 is entrained 
into a large eddy near its release point and does not move as far northeast as the 
others. The simulated drifter paths match the observed drifter paths in the first part
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of the trajectory, but diverge from the path of WOCE drifter 22050 after passing 

the Falkland Islands and move northeastward. Again the average speeds of the 

simulated drifters are slower than that of WOCE drifter 22050 (Table 13).

The best agreement of simulated and observed drifter speeds is with WOCE 

drifter 22594, with the model-derived speeds being only 17% slower than the ob

served drifter speeds. The worst agreement is with WOCE drifter 22050, which is 

57% faster than the equivalent simulated drifters. On average the model drifters are 
38.5% slower than the observed drifters. Possible reasons for this speed difference 

are discussed in section 5.

4.3.2 Subsurface Drifters

Most of the eighteen Autonomous Lagrangian Circulation Explorer (ALACE) sub

surface drifters available from the WOCE study, located at 1000 m depth, passed 

through the northern side of Drake Passage, an area which is not the focus of the 

drifter simulations in this study (Table 10, Fig. 17). Two of these WOCE sub
surface drifters however, passed further south through Drake Passage and are used 
for comparison with simulated drifter paths in this region (Fig. 35). The rest of 
the subsurface drifters are used for a general comparison of the circulation at the 
northern side of Drake Passage and the South Atlantic.

The ALACE float 204 (Fig. 35A) started at the northern side of Drake Passage 

in the Pacific Ocean near the high speed flow of the SAF and traveled at an average 
speed of 0.253 m s - 1  to the east-northeast. The drifter turned north from the Scotia 

Sea into the south Atlantic between Burdwood Bank and South Georgia (cf. Fig. 
1), and near 49°S the drifter turned again and moved to the east. The subsurface 
drifter took 354 days to complete this trajectory. The simulated subsurface drifter 
trajectories follow the same general northeastward path but remain north of the ob

served trajectory, and also turn north to exit the Scotia Sea into the South Atlantic. 
However, after moving out of the Scotia Sea, the simulated drifter trajectories turn 
east-northeast, thereby diverging from the observed northward path. The simulated 
drifter released on day 30 meets the observed subsurface drifter trajectory at the end 
of the path. The simulated subsurface drifters released on day 60 and 150 turn south 
again after entering the South Atlantic and actually get transported back across the 

North Scotia Ridge into the Scotia Sea before once again moving into the South 

Atlantic. The simulated drifters need 216 to 336 days to move this distance and are
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Fig. 35. Trajectories followed by A) WOCE ALACE subsurface float 204 (+), and 
B) WOCE ALACE subsurface float 250 (+), and those followed by simulated drifters 
released at day 30 (*), day 60 (□), day 90 (A), day 120 (v), day 150 (o) intervals. 
Symbols mark the position of the simulated and WOCE subsurface drifters at 30-day 
intervals.
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overall slower than the observed drifter (Table 14).

The ALACE float 250 (Fig. 35B) started west of Drake Passage in the South 

Pacific and moved with an average speed of 0.319 m s- 1  to the northeast along 

the continental slope east of South America. It then turned north from the Scotia 

Sea into the South Atlantic where it moved past the Falkland Islands (cf. Fig. 1) 

to the north. It took 288 days to complete this trajectory. The simulated drifter 

trajectories follow the observed drifter path exactly and turn into the South Atlantic, 

but then move into a more northeastward direction.

The simulated drifter released on day 150 turns south again after entering the 
South Atlantic and is transported back across the North Scotia Ridge into the Scotia 

Sea where it remains in an eddy. Only the simulated drifter released on day 30 follows 
a similar northward trajectory along the shelf of South America in the Malvinas 

(Falkland) Current before turning east at 48°S. The model domain ends at this 
latitude (cf. Fig. 5) and the incoming flow of the Brazil Current joins the Malvinas 

Current at this location, turning part of it southward instead of letting the whole 
current exit to the north. Again, the simulated drifter trajectories require 216 to 
336 days to move this distance and are 59.5% slower in speed than the observed 
drifter (Table 14).

Comparison of the average speed (m s-1) of each simulated drifter with the 
average speed of the observed subsurface drifter trajectories shows that all of the 

simulated subsurface drifters are slower than the WOCE ALACE drifters (Table 14). 

The best agreement between simulated and observed drifter speeds are for drifters 
ALACE 18 and 19, where the simulated drifters are 44% slower than the observed 
drifter. The worst agreement is found for drifter ALACE 217, which is 78% faster 
than the simulated drifter. On average the ALACE subsurface drifters are 59.5% 
faster than the simulated drifters, which means that the subsurface drifters are even 
slower in respect to the observed subsurface drifters than the surface drifters in 
respect to the observed surface drifters. This difference in simulated and observed 
speeds is explained in detail in section 5.

4.3.3 Reference Sim ulation Transport Pattern

The simulated drifter pattern resulting from a December release (Fig. 36A) shows a 

broad area along the western Antarctic Peninsula extending into the Scotia Sea,
that extends from the continental shelf of the Peninsula into Drake Passage,
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Table 14. Comparison of the average speed of WOCE ALACE subsurface drifters 
with the average subsurface speed (m s_1) calculated for the simulated surface 
drifters released at different times. The average simulated drifter speed is based 
on all drifters released in the simulated circulation fields. The error is the calculated 
fractional error of average speed to observed average speed.

Observed

WOCE
Drifter

Simulated Drifters WOCE
Drifter

Avg ErrorDay 30 Day 60 Day 90 Day 120 Day 150 Avg

ALACE 11 0.119 0.180 0.154 0.172 0.094 0.144 0.303 0.525

ALACE 17 0.148 0.143 0 . 1 1 2 0.161 0 . 2 0 2 0.153 0.287 0.465

ALACE 18 0 . 1 2 1 0.152 0.123 0.109 0.171 0.135 0.242 0.442

ALACE 19 0.148 0.143 0 . 1 1 2 0.161 0 . 2 0 2 0.153 0.275 0.442

ALACE 20 0.123 0.106 0.151 0.104 0.116 0 . 1 2 0 0.245 0.51
ALACE 21 0.078 0.172 0.158 0.131 0.183 0.144 0.473 0.695
ALACE 22 0.064 0.130 0.051 0.057 0.104 0.081 0.283 0.712

ALACE 26 0.071 0.113 0.099 0.154 0 . 1 2 1 0 . 1 1 2 0.311 0.641

ALACE 204 0.127 0.125 0.103 0.116 0.118 0.118 0.253 0.534
ALACE 205 0.094 0.086 0.157 0.130 0 . 1 1 2 0.116 0.291 0.602

ALACE 209 0.050 0.084 0 . 1 1 2 0.160 0 . 1 2 1 0.105 0.234 0.549
ALACE 211 0.148 0.137 0.043 0.082 0.051 0.092 0.246 0.626
ALACE 217 0.124 0.043 0.017 0.084 0 . 1 1 2 0.076 0.350 0.783
ALACE 250 0.167 0.127 0.159 0.113 0.147 0.143 0.319 0.552

ALACE 290 0.079 0.018 0 . 1 2 0 0.098 0.058 0.074 0.279 0.733
ALACE 297 0.097 0.123 0.129 0.104 0 . 1 1 1 0.113 0.278 0.595
ALACE 298 0.114 0.131 0.117 0.130 0.151 0.128 0.312 0.588
ALACE 299 0 . 1 0 0 0.014 0.064 0 . 1 0 1 0.093 0.074 0.294 0.747

from which particles can reach South Georgia in the 1 0  months of the simulation. 
This region includes a total of 81 drifter release points and roughly coincides with 
the path of the SACCF. North of this area, in the center of the Drake Passage, is 

a narrow band of locations from which drifters can reach South Georgia from the 

north. In addition,drifters from four locations south of South Georgia approach the
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Fig. 36. Initial positions at which surface drifters were released in the simulated 
circulation fields on A) 1 December, B) 1 January, and C) 1 February. The drifter 
release points are separated into groups that correspond to drifters that reach South 
Georgia (•), those that approach South Georgia from the north (■), those that 
arrive to within 600 km of South Georgia ( A) ,  and those that do not reach South 
Georgia (o). The areas of consistent Antarctic krill spawning, as identified in Marr 
(1962), are shown in grey. The thick grey line shows the position of the SACCF and 
the thin black lines indicate the 2 0 0 0 -m isobath.
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Island from the north. North of this narrow band are several locations from which 
drifters are transported to within 600 km of South Georgia. Six locations along the 

Weddell Sea continental shelf break, east of the Antarctic Peninsula close to the 

2 0 0 0 -m isobath, and several locations east of the tip of the Antarctic Peninsula are 

sites that allow drifters to be transported to within 600 km of South Georgia in ten 

months. Drifters originating in the east of the Scotia Sea do not reach South Georgia 
directly, but rather move within 600 km of the Island. Drifters originating from the 
spawning area between 35°W and 25°W (Fig. 36A) are not transported near South 

Georgia but are transported to the east, away from the Island. Five release points 

in Bransfield Strait, close to the Antarctic Peninsula coastline, result in particle 

trajectories that do not reach the vicinity of South Georgia, because of transport 
times longer than ten months. Drifters originating along the southwestern shelf of 

the Antarctic Peninsula west of 65°W, where another spawning area is located, do 
not reach South Georgia. Instead, they are transported only small distances to the 
northeast along the continental shelf. Overall, 108 of the 332 released drifters reach 
South Georgia and 44 come within 600 km of the Island (Table 15). of the Antarctic 

Peninsula west of 65°W where another spawning area is located, do not reach South 
Georgia. Instead, they are transported only small distances to the northeast along 
the continental shelf. Overall, 108 of the 332 released drifters reach South Georgia 
and 44 come within 600 km of the Island (Table 15).

The simulated transport pattern for a January release (Fig. 36B) shows that 
drifters with initial locations at the northern tip of the Antarctic Peninsula and in 
the eastern Bransfield Strait no longer reach South Georgia. Again a broad area of 
release locations along the Antarctic Peninsula from which particles can reach South 
Georgia is present, which coincides with the location of the SACCF. However, a 

January release results in a reduction in the number of drifters that approach South 
Georgia from the south (Table 15). To the north of this band there are again a 
number of locations from which particles can reach South Georgia from the north, 
but the number of locations has declined from 27 to 23 (Table 15). Only one location 
in the Weddell Sea and seven locations east of the tip of the Antarctic Peninsula 
result in drifters that are transported to within 600 km of South Georgia (Table 15). 

Overall 93 drifters of the 332 released reach South Georgia, while 57 are transported 

to within 600 km of the Island (Table 15).
The simulated transport pattern for a February release (Fig. 36C) shows even
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Table 15. Summary of the total number of simulated drifters reaching South Georgia 
(SG), reaching South Georgia from the north (north SG), reaching South Georgia 
from the south (south SG), reaching within 600 km of South Georgia (600 km 
SG), and not reaching South Georgia (not reach) obtained for different circulation 
scenarios and release times. The circulation scenarios are discussed in section 3.1.2 
and summarized in Table 4. Drake Passage is abbreviated as DP. Drifter release 
times are 1 December (Dec), 1 January (Jan), and 1 February (Feb).

Total number of drifters

Simulation Release at north south 600 km not

Type Time SG SG SG SG reach

Dec 108 27 81 44 180
Reference Jan 93 23 70 57 182

Feb 87 23 64 60 185

2 0 % increased Dec 105 2 1 84 51 176
winds Jan 96 13 83 54 182

Feb 84 24 60 58 190

2 0 % decreased Dec 93 19 74 54 185
winds Jan 90 23 67 61 181

Feb 84 16 6 8 56 192

1 2 % increase Dec 108 2 2 8 6 40 184
in DP Jan 91 26 65 58 183
transport Feb 83 2 0 63 58 191
1 2 % decrease Dec 99 28 71 56 177
in DP Jan 90 18 72 60 182
transport Feb 83 2 2 61 69 180
SACCF moved Dec 97 25 72 48 187
1 0  km north Jan 1 0 0 21 79 55 177

Feb 89 25 64 62 181

fewer locations at the western Antarctic Peninsula shelf that allow drifters to reach 
South Georgia. The total number of drifters reaching South Georgia decreased from 
108 in December, 93 in January to 87 in February (Table 15). Drifters released at 
three additional sites in the western Bransfield Strait do not reach South Georgia,
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as well as those released at three sites west of Bransfield Strait and two sites in the 
Scotia Sea near 50°W. In this simulation, drifters starting west of 63°W mostly reach 

South Georgia from the north or are transported to within 600 km of South Georgia, 

while only four drifters released west of 63°W reach the Island. Drifters originating 

in the Weddell Sea are transported into the vicinity of the Island. Overall, 87 drifters 
reach South Georgia and 60 are transported to within 600 km of this island (Table 

15),
The simulations show that the earlier the release time of particles along the 

Antarctic Peninsula, the better the chance of reaching South Georgia, especially 

those originating in the main spawning area off the west Antarctic Peninsula and 

the Bransfield Strait, which are areas with a large krill population. Late release 

times also negatively affect the chances of krill survival from the Weddell Sea that 
are otherwise transported to within 600 km of South Georgia.

The simulated drifters can reach South Georgia from the south or the north 
of the Island, depending on their release locations. Of these simulated drifters, 
60% approach South Georgia from the southern side of the Island (Fig. 37, solid 

lines). Some of these particles then move on in a northeastward direction away from 
the Island, while some particles that move closer to the Island follow the flow of 
the SACCF and wrap around the western side of the Island before moving further 
northeast. Particles approaching South Georgia northward of 56°S (Fig. 37, dashed 

lines) turn northward when reaching the eastern continental shelf of South Georgia 
and are then transported around the northern side of the Island, after which they 
join particles coming from the south and move off in a northeastwardly direction. 
Many of the simulated particle trajectories pass near South Georgia, but only two 

are transported onto the continental shelf of the Island (Fig. 37). These particles 
reach the 500-m isobath and do not get closer. This is the result of the resolution 

of the simulated circulation near South Georgia as discussed in section 5.1.1.

4.4 Effect of Environmental Changes

The simulated drifter trajectories show that it is possible for krill originating in 

known spawning areas along the western Antarctic Peninsula plus the Weddell Sea 

to be transported to South Georgia. Thus, the influence of variable environmental 
conditions such as wind, the transport through Drake Passage and the location of 
the fronts on this basic transport pattern is next assessed.
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Fig. 37. Simulated surface drifter trajectories of a January release in the reference 
simulation that reach South Georgia from the north (dashed lines) and from the 
south (solid lines). Thin black lines indicate the bottom topography, and depth is 
given in meters.

4.4.1 Effect o f Changes in W ind Stress

The simulated transport pattern (Fig. 38A) for drifters released in December in 
a circulation field obtained using increased wind speed conditions, as discussed in 
section 3.1.2 (Table 4), shows a pattern similar to the reference simulation (Fig. 
36A). A broad area along the western Antarctic Peninsula extending into the Scotia 

Sea occurs from which particles can reach South Georgia in the 10 months of the 
simulation. There are only three locations in the Bransfield Strait and one offshore 
from the Bransfield Strait (61°S, 59°W), from which drifters cannot reach South 
Georgia. The most notable difference between this simulation and the reference 
December release simulation (Fig. 36A), is that drifters originating at only three 
sites along the shelf break in the Weddell Sea are transported to within 600 km 

of South Georgia. Overall 51 drifters reach the vicinity of South Georgia, with 84
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drifters approaching from the south, and 2 1  drifters approaching from the north. 
This represents six drifters less than in the reference simulation (Table 15).

The drifter pattern from the January release simulation (Fig. 38B) is similar to 

that from the January release reference simulation (Fig. 36B). The drifters originat

ing at sites in Bransfield Strait that did not reach South Georgia in the reference 
simulation remain the same. However, drifters from two additional release sites 

did not reach South Georgia, because the drifters were retained in the Bransfield 

Strait for several months before being advected into the fast-moving currents of 

the SACCF. The increased Ekman transport increased the entrainment of drifters 
originating in Bransfield Strait into the ACC, as seen in section 4.2 (drifter 1 ), but 

this advection into the ACC is not significant enough to transport drifters to South 
Georgia in the nine months of the simulation. Overall drifters originating at 13 more 
sites than in the reference January release simulation reached South Georgia from 
the south, but only 13 reached the Island from the north, which is 10 less than in 

the reference simulation (Table 15).
The simulated transport pattern for a February release with increased winds 

(Fig. 38C) shows a pattern similar to that obtained for the reference simulation for 

a February release (Fig. 36C, Table 15).
The simulated drifter transport patterns obtained for the three release times 

and a 20% reduction in wind speed (Figs. 39A-C) is similar to that obtained from 
the reference simulation (Fig. 36A). The primary difference is that fewer sites in 
Bransfield Strait allow drifters to reach South Georgia (Figs. 39A-C). Another effect 
of reduced wind is that fewer drifters reach the South Georgia from the north side 
(Table 15), because many drifters first approach the Island from the south, turn 
northward and are transported along the western side of the Island (Fig. 37). With 
reduced winds these drifters do not move far enough to be transported along the 

northern side of South Georgia.

Increased wind stress over the study area does not facilitate transport of more 
drifters from Bransfield Strait towards the South Georgia and it has a negative 
influence on transport times from the Weddell Sea. Decreased wind stress affects 

drifters from the Bransfield Strait and the Weddell Sea negatively.
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Fig. 38. Initial positions at which surface drifters were released in the simulated 
circulation fields obtained using 20% increased wind speeds on A) 1 December, B) 
1 January, and C) 1 February. The drifter release points are separated into groups 
that correspond to drifters that reach South Georgia (•), those that approach South 
Georgia from the north (■), those that arrive to within 600 km of South Georgia (a ), 
and those that do not reach South Georgia (o). The areas of consistent Antarctic 
krill spawning, as identified in Marr (1962), are shown in grey. The thick grey 
line shows the position of the SACCF and the thin black lines indicate the 2000-m 
isobath.
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Fig. 39. Initial positions at which surface drifters were released in the simulated 
circulation fields obtained using 20% decreased wind speeds on A) 1 December, B) 
1 January, and C) 1 February. The drifter release points are separated into groups 
that correspond to drifters that reach South Georgia (•), those that approach South 
Georgia from the north (■), those that arrive to within 600 km of South Georgia ( a ),  
and those that do not reach South Georgia (o). The areas of consistent Antarctic 
krill spawning, as identified in Marr (1962), are shown in grey. Thick grey lines 
shows the position of the SACCF and thin black lines indicate the 2000-m isobath.
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4.4.2 Effect o f Changes in the Transport through Drake Passage

The simulated drifter transport pattern for the three release times with a circulation 

field produced by a 12% increase in transport through Drake Passage (Figs. 40A- 
C), described in section 3.1.2 (Table 4), shows that drifters originating in Bransfield 

Strait do not reach South Georgia. The currents in Bransfield Strait are not strongly 

influenced by the transport through Drake Passage. In fact the result of this sim

ulation is quite similar to the simulation with 20% increased winds (Figs. 38A-C). 

The number of drifters reaching South Georgia for the different release times is sum

marized in Table 15. For a 12% decrease in transport through Drake Passage the 

simulated drifter transport patterns produced for all three release times (Figs. 41A- 
C) are similar to those obtained in the reference simulation (Figs. 36A-C). These 
simulations also show that earlier release times favor transport to South Georgia 

(Table 15).

4.4.3 Effect o f Changes in the Location of the Southern ACC Front

When the SACCF is moved 10 km north of its climatological location, the simulated 
drifter transport pattern produced by a December and January release (Figs. 42A,B) 
shows that drifters originating on the western Antarctic Peninsula continental shelf 
are not transported to South Georgia. Drifters originating at sites on the outer part 

of the west Antarctic Peninsula continental shelf, are transported only to within 
600 km of South Georgia. Many of the drifters reach South Georgia from the south 

(Table 15). However, this is not beneficial in terms of krill transport, because these 
drifters originate in the open ocean, rather than in the krill spawning areas. For a 
February release the simulated drifter transport pattern (Fig. 42C) shows an even 
wider range of locations on the western Antarctic Peninsula shelf from which drifters 
cannot reach South Georgia. As a result, the entire southwestern part of the main 
krill spawning area does not provide krill to South Georgia.

Thus, moving the SACCF 10 km to the north has a negative influence on trans
port of krill from the main spawning area along the western Antarctic Peninsula. 
The SACCF influences transport from the west Antarctic Peninsula continental shelf 
so much that a move to the north (even of only 1 0  km) leaves only a fraction of the 
spawning areas that can potentially supply krill to South Georgia. The simulations 
also show that earlier release times favor transport to South Georgia (Table 15).
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Fig. 40. Initial positions at which surface drifters were released in the simulated 
circulation fields obtained using 12% increased transport through Drake Passage 
on A) 1 December, B) 1 January, and C) 1 February. The drifter release points 
are separated into groups that correspond to drifters that reach South Georgia (•), 
those that approach South Georgia from the north (■), those that arrive to within 
600 km of South Georgia (a ), and those that do not reach South Georgia (o). The 
areas of consistent Antarctic krill spawning, as identified in Marr (1962), are shown 
in grey. The thick grey line shows the position of the SACCF and the thin black 
lines indicate the 2 0 0 0 -m isobath.
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Fig. 41. Initial positions at which surface drifters were released in the simulated 
circulation fields obtained using 12% decreased transport through Drake Passage 
on A) 1 December, B) 1 January, and C) 1 February. The drifter release points 
are separated into groups that correspond to drifters that reach South Georgia (•), 
those that approach South Georgia from the north (■), those that arrive to within 
600 km of South Georgia ( a ), and those that do not reach South Georgia (o). The 
areas of consistent Antarctic krill spawning, as identified in Marr (1962), are shown 
in grey. The thick grey line shows the position of the SACCF and the thin black 
lines indicate the 2 0 0 0 -m isobath.
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Fig. 42. Initial positions at which surface drifters were released in the simulated 
circulation fields obtained with the SACCF moved 10 km to the north on A) 1 
December, B) 1 January, and C) 1 February. The drifter release points are separated 
into groups that correspond to drifters that reach South Georgia (•), those that 
approach South Georgia from the north (■), those that arrive to within 600 km of 
South Georgia ( a ),  and those that do not reach South Georgia ( o ) .  The areas of 
consistent Antarctic krill spawning, as identified in Marr (1962), are shown in grey. 
The thick grey line shows the moved position of the SACCF and the thin black lines 
indicate the 2 0 0 0 -m isobath.
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4.5 Krill Growth Dynam ics

Food time series along simulated drifter trajectories obtained from the reference 

simulation for release sites in the five regions discussed in section 4.3.3 were input 

to the krill growth model. The results of these simulations are next discussed.

4.5.1 Effect o f Different Food Types

Larval krill, with an initial size of 2 mm represent the current season’s spawn. Krill 

of this size are exposed to different phytoplankton time series (Appendix A, Fig. 

AlA, see also Fig. 8 A) extracted along simulated drifter trajectories from region 1 . 

The krill begin feeding in December (Year Day 335) and grow over time to different 
sizes (Fig. 43), because of the different amounts of food available to them along a 
given trajectory. Of the larval krill, 38% survive until the end of the simulation and 
62% die due to insufficient food (Table 16). The maximum size reached by survivors 
at the end of the simulation is 13.13 mm and the smallest size when reaching South 
Georgia is 2 .8 8  mm (note that different drifters have different length simulations 

depending on when a drifter reaches South Georgia). The 2.88 mm krill never 

encountered sufficient food to grow in size, but had just enough food to fulfill its 
relatively low energy demand (Appendix A, Fig. AlA, thick solid line). The other 
surviving krill managed to grow over the time of transport (Table 16). Krill that 
grow fast during the first days of the simulation often die when less food is provided, 
because their energy demand increases with increasing size. Therefore, 62% of the 
krill die during the simulation, the smallest being 6.13 mm, the largest being 14.38 
mm at the time of death.

The simulated growth of 22 mm krill, which corresponds to the 1+ age class 
(juveniles) (cf. Fig. 3), develops differently than 2 mm krill, reaching a wide range 

of sizes at the end of the simulation. The smallest surviving krill is 21.88 mm, the 
largest is 31.63 mm at the end of the simulation (Table 16). Of the juvenile krill, 
38% die during the time of the simulation and their sizes at death are between
17.88 and 30.63 mm. Juvenile krill grow slightly faster to bigger sizes than do larval 

krill, because they can feed on higher daily rations. At the same time, their energy 
demand is higher. Therefore, juvenile krill shrink more rapidly than larval krill, but 
can also survive longer periods of shrinking. Death of krill is defined as losing more 
than 45% of the body wet weight, so larger krill can survive longer than smaller 

krill, as they have higher initial wet weight (Hofmann and Lascara, 2000).
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Fig. 43. Simulated growth of 2 mm krill (lower curves), 22 mm krill (middle curves), 
and 45 mm krill (upper curves) starting in December (Year Day 335) using phy
toplankton food only. Krill that survive the time needed for transport to South 
Georgia are shown by black lines. Krill that die before reaching South Georgia are 
indicated by grey lines.

The pattern of growing and shrinking for 45 mm krill, which represents adult 

krill, is similar to that of the juvenile krill, except that shrinking periods are more 
pronounced and the 45 mm krill survive shrinking longer due to higher initial wet 

weight. Of the adult krill, 77% survive the entire time of the simulations and are 
between 41.63 and 51.88 mm in size at the end of the simulation when the simulated 
drifter reaches South Georgia. The implication is that the food encountered during 
transport was not sufficient for krill to grow much in size. Krill that died were 
between 35.88 and 46.63 mm at the time of death.

The effect of temperature on the simulated krill growth is implemented in these 
simulations by rescaling simulated daily growth rates of krill, which are calculated 
relative to 0°C, and rescaling them using temperature values extracted along drifter 
paths and a Qxo value of 3.5. Temperature affects growth rates of larval, juvenile, and 
adult krill noticeably only when krill encounter maxima or minima in the food that 

is available to them. When increased food concentrations coincide with elevated 
temperatures, they can increase the growth rate of krill by up to 4%, while the
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coincidence of low food concentrations with decreased temperatures may decrease 

krill growth rates slightly. At the same time these increased growth rates of krill are 

of short duration and have only a small impact on the final size of krill at the end 

of the simulation.

W estern A ntarctic Peninsula

The drifters released in December along the western Antarctic Peninsula (region
1) need between 141 and 306 days to reach South Georgia (see section 4.3.3). As 

discussed above, phytoplankton food alone (Appendix A, Fig. AlA) is not sufficient 

to sustain krill originating at the western Antarctic Peninsula and many of these 

krill, especially larval krill die during the time needed to reach South Georgia (Fig. 
44A, Table 16).

Including sea ice algae (Appendix A, Fig. A6 A) and detritus (Appendix A, Fig. 
AHA) as additional food sources results in a significant improvement in krill growth 

and survival (Fig. 44B). Larval krill survival is more than doubled with additional 
food. The maximum size of krill at the time that coincides with arriving at South 

Georgia is 17.38 mm, which is a significant increase in size. Juvenile krill also show 
enhanced survival with this type of food than with phytoplankton only and all krill 
survive transport. Similarly the maximum size of survivors increases to 38.38 mm, 
but the minimum size decreases to 18.63. Adult krill profit from the additional food 
as well with 100% of the adults surviving the transport time. The maximum size of 
survivors at the end of the simulation increases to 55.88 mm during the last days of 
the simulation. This improvement in krill growth and survival is mainly an effect of 

detritus being available to krill, as most krill from this region do not encounter sea 
ice algae (Appendix A, Fig. A6 A).

Adding heterotrophic food (Fig. 11) to the above food supply improves the 

growth and survival of juvenile and adult krill (Fig. 44C, Table 16). Larval krill 
cannot feed on copepods, so initially they do not profit from this additional food 
source, but as some of them reach a size larger than 18 mm, they start feeding on 
copepods. Therefore, although the number of survivors stays the same, the max

imum size increases to 21.88 mm at the time that coincides with arrival at South 
Georgia. Juvenile and adult krill can use the additional food supply and the effect 
is that krill are now growing to sizes between 29.66 mm and 45.13 mm for juvenile 

krill and 49.13 mm and 59.88 mm for adult krill. In the simulations, all krill manage 
to grow above their starting size over the time of the simulation.
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Table 16. Summary of krill growth simulations for different food types, initial sizes, 
and release times. The percent (%) and length of krill surviving and dying, respec
tively, at the end of each simulation is shown. The results are based on the food 
available along the trajectories of 13 drifters released in region 1 , the west Antarctic 
Peninsula. Abbreviations used in the Table are: P (phytoplankton), PID (phyto-
plankton, sea ice algae, and detritus), PIDC (phytoplankton, sea ice algae, detritus,
and copepods), D (detritus), NA (not applicable).

Food Initial Release % Final % Length at
type size (mm) time (month) surviving length (mm) dying death (mm)

Dec 38 2.88 - 13.13 62 6.13 - 14.38
2 Jan 31 2.38 - 6 .8 8 69 2.38 - 14.38

Feb 31 2.38 - 5.13 69 1 .8 8  - 8 .8 8

P Dec 62 21.88 - 31.63 38 17.88 - 30.63
2 2 Jan 31 21.88 - 27.88 69 17.13 - 31.63

Feb 23 17.88 - 24.63 77 17.13 - 24.38
Dec 77 41.63 - 51.88 23 35.88 - 46.63

45 Jan 77 36.63 - 48.13 23 35.13 - 35.88
Feb 77 36.88 - 44.88 23 35.13 - 42.38
Dec 85 5.13 - 17.38 15 10.13 - 13.38

2 Jan 85 2.88 - 14.88 15 2 .8 8  - 1 0 .8 8

Feb 77 2.13 - 8.63 23 6.38 - 8 .8 8

PID Dec 1 0 0 18.63 - 38.38 0 NA
2 2 Jan 69 19.13 - 36.38 31 17.13 - 18.13

Feb 92 17.88 - 18.13 8 17.38
Dec 1 0 0 38.13 - 55.88 0 NA

45 Jan 1 0 0 35.88 - 54.13 0 NA
Feb 1 0 0 38.63 - 47.88 0 NA
Dec 85 5.13 - 21.88 15 10.13- 13.13

2 Jan 77 2.88 - 22.38 23 2 .8 8  - 1 0 .8 8

Feb 77 2.13 - 6.38 23 6.38 - 8 .8 8

PIDC Dec 1 0 0 29.66 - 45.13 0 NA
2 2 Jan 1 0 0 23.63 - 44.13 0 NA

Feb 1 0 0 24.88 - 38.13 0 NA
Dec 1 0 0 49.13 - 59.88 0 NA

45 Jan 1 0 0 44.13 - 59.88 0 NA
Feb 1 0 0 44.63 - 55.13 0 NA
Dec 69 2.13 - 4.38 31 1.88 - 5.63

2 Jan 38 2.38 - 6.63 62 1.63 - 5.63
Feb 8 2.38 92 1.63 - 3.38

D Dec 46 18.13 - 21.65 54 17.13 - 21.88
2 2 Jan 15 17.63 - 26.13 85 17.13 - 23.38

Feb 8 20.63 92 17.13 - 19.63
Dec 69 36.13 - 42.38 31 35.13 - 36.38

45 Jan 54 35.38 - 44.63 46 35.13 - 35.38
Feb 31 37.13 - 40.63 69 35.13 - 37.38
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Fig. 44. Range of simulated growth of 2 mm krill (lower curves), 22 mm krill (middle curves), and 45 mm krill (upper curves) 
released in the west Antarctic Peninsula region in December (medium shading), January (dark shading), and February (light 
shading) obtained for Antarctic krill feeding on A) phytoplankton only, B) phytoplankton and sea ice algae with detritus, C) 
phytoplankton, copepods and sea ice algae with detritus, and D) detritus only.
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Feeding on detritus (Appendix A, Fig. A11A) as the only food source is not 

beneficial for krill originating from region 1 (Fig. 44D). Food concentrations are 
highest during the first five months of the simulation but are still too low for krill 

to grow much in size. Detritus concentrations decrease during winter (Fig. 13A), 

so that all krill shrink from then on. Therefore, although 69% of the adult krill 

survive transport, they only grow to final sizes of 36.13 mm to 42.38 mm. Larval 

krill, with their lower energy needs, grow slightly more during the first months of the 

simulation and 69% of the larvae survive transport times. They grow to sizes of 3.13 

mm to 4.38 mm by the end of the simulation. All three krill sizes grow to smaller 
sizes when feeding on detritus only than when feeding on phytoplankton only.

Although the above discussion focuses on December release only, the same can be 
said for all other release times (Fig. 44, dark and light shading). For krill originating 

at the western Antarctic Peninsula the combined food of phytoplankton, sea ice 

algae, detritus and heterotrophic food is the most favorable food supply. In these 
simulations the phytoplankton food encountered is sufficient for some krill to survive 
(Appendix A, Fig. AlA), but the detritus encountered (Appendix A, Fig. AHA) 
provides sufficient food to improve the survival of all krill sizes. The consistent 
supply of detritus (Appendix A, Fig. A11A) and heterotrophic food (Fig. 1 1 ) are 
the primary food sources that allow survival during times of low food supply in these 
simulations.

Bransfield Strait

The drifter results presented in section 4.3.3, show that krill originating in Bransfield 
Strait (region 2) need between 184 and 306 days to reach South Georgia, when 
released in December. Phytoplankton food alone (Appendix A, Fig. A2A) is not 
sufficient for krill to survive, with only 33% of the larval krill originating in this 
region surviving the transport to South Georgia (Fig. 45A, Table 17). The survivors 

grow to sizes between 4.38 mm and 16.13 mm, which is overall bigger than larval 

krill from region 1. Only 22% of the juvenile krill survive, growing to 22.13 mm to 
35.13 mm in size, while 78% of adult krill survive, reaching sizes of 35.88 mm to

59.88 mm.
The addition of sea ice algae (Appendix A, Fig. A7A) combined with detritus 

(Appendix A, Fig. A12A) as additional food sources, improves the growth and sur
vival of krill (Fig. 45B) by more than doubling the number of survivors of larval 

and juvenile krill, similar to what was found for krill originating in region 1. The
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Fig. 45. Range of simulated growth of 2 mm krill (lower curves), 22 mm krill (middle curves), and 45 mm krill (upper curves) 
released in the Bransfield Strait region in December (medium shading), January (dark shading), and February (light shading) 
obtained for feeding on A) phytoplankton only, B) phytoplankton and sea ice algae with detritus, C) phytoplankton, copepods 
and sea ice algae with detritus, and D) detritus only.
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Table 17. Summary of krill growth simulations for different food types, initial sizes, 
and release times. The percent (%) and length of krill surviving and dying, re
spectively, at the end of each simulation is shown. The results are based on the 
food available along the trajectories of nine drifters released in region 2, the Brans
field Strait. Abbreviations are: P (phytoplankton), PID (phytoplankton, sea ice 
algae, and detritus), PIDC (phytoplankton, sea ice algae, detritus, and copepods), 
D (detritus), NA (not applicable).

Food Initial Release % Final % Length at
type size (mm) time (month) surviving length (mm) dying death (mm)

Dec 33 4.38 - 16.13 67 7.88 - 13.38
2 Jan 11 17.38 89 8 .8 8  - 1 1 .6 8

Feb 11 1 0 .8 8 89 6.38 - 9.88
P Dec 2 2 22.13 - 35.13 78 17.38 - 28.63

2 2 Jan 2 2 25.13 - 40.63 78 22.13 - 28.63
Feb 2 2 27.13 - 30.38 78 22.38 - 27.13
Dec 78 35.88 - 59.88 2 2 40.88 - 41.63

45 Jan 44 41.63 - 59.88 56 40.63 - 46.63
Feb 44 42.88 - 50.38 56 39.63 - 43.88
Dec 89 6.13 - 18.13 11 8.38

2 Jan 33 12.13 - 17.38 67 6 .8 8  - 11.38
Feb 44 8.63 - 11.13 56 7.62 - 9.88

PID Dec 1 0 0 21.13 - 39.63 0 NA
2 2 Jan 1 0 0 23.88 - 40.63 0 NA

Feb 1 0 0 23.88 - 32.13 0 NA
Dec 1 0 0 41.63 - 59.88 0 NA

45 Jan 1 0 0 43.13 - 59.88 0 NA
Feb 1 0 0 44.13 - 52.13 0 NA
Dec 89 6.13 - 16.38 11 8.38

2 Jan 33 12.88 - 12.13 67 6 .8 8  - 11.38
Feb 44 7.63 - 11.13 56 7.63 - 9.88

PIDC Dec 1 0 0 33.38 - 46.13 0 NA
2 2 Jan 1 0 0 33.63 - 43.38 0 NA

Feb 1 0 0 32.63 - 40.38 0 NA
Dec 1 0 0 48.63 - 59.88 0 NA

45 Jan 1 0 0 51.88 - 59.88 0 NA
Feb 1 0 0 50.88 - 59.88 0 NA
Dec 34 2.88 - 3.13 6 6 1.88-6.13

2 Jan 34 3.63 - 7.13 6 6 2.63 - 4.63
Feb 34 2.63 - 3.88 6 6 2.63 - 3.88

D Dec 23 17.13 - 18.13 77 17.13 - 18.13
2 2 Jan 34 19.88 - 20.88 6 6 17.13 - 26.13

Feb 23 20.63 - 23.63 77 17.38 - 21.63
Dec 78 35.38 - 46.13 2 2 35.13

45 Jan 45 37.13 - 51.13 55 35.13 - 43.13
Feb 56 37.13 - 44.63 44 35.13 - 38.13
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survival rate for juvenile and adult krill is now 100%. Again this is due mainly to 

the availability of detritus to krill. Growth and survival of krill further improves 

when heterotrophic food is added as an additional food source (Fig. 45C), with 89% 

larval krill surviving a time that coincides with arrival at South Georgia, growing 

up to 16.38 mm. In the juvenile and adult krill simulations, all krill survive to reach 

South Georgia, and their sizes increase to between 33.38 mm to 46.13 mm and 48.63 

mm to 59.88 mm, respectively.
For juvenile and adult krill originating in region 2, detritus as the only food source 

is not beneficial (Fig. 45D, Table 17) and the simulated growth patterns are similar to 

those obtained for region 1. Surviving krill of all sizes do not grow significantly in the 

total simulation time. Thus, for juvenile and adult krill originating in the Bransfield 

Strait region the combined phytoplankton, sea ice algae, detritus and heterotrophic 
food is the most favorable food supply. Few krill have access to enough sea ice 
algae that could supply an additional food source (Appendix A, Fig. A7A), but the 
consistent supply of detritus (Appendix A, Fig. A12A) and heterotrophic food (Fig.
1 1 ) is the main reason for them to survive times of low food supply.

Elephant Islan d /S cotia  Sea

The simulated drifters originating in the Elephant Island/Scotia Sea area need be
tween 58 and 277 days to reach South Georgia when released in December (see 

section 4.3.3). This is considerably less time than that needed by drifters released 
in other regions. Phytoplankton as the only food source (Appendix A, Fig. A3) is 
sufficient, as evidenced by 43% of the larvae, 62% of the juvenile, and 8 6 % of the 
adult krill surviving long enough to reach South Georgia (Fig. 46A, Table 18).

The addition of sea ice algae (Appendix A, Fig. A8 A) and detritus (Appendix A, 
Fig. A13A) improves the growth and survival of krill (Fig. 46B, Table 18) although no 

sea ice is encountered by krill (Appendix A, Fig. A8 A). The addition of heterotrophic 

food improves the growth and survival of krill (Fig. 46C) because more food is 
available during the simulation (Fig. 11, Appendix A, Fig. A13A). Most larval krill 
cannot utilize this food source during the simulation and 8 6 % of the larval krill 
survive, relative to feeding on phytoplankton only. Juvenile krill survival, however, 

reaches 95%, and all adult krill survive the time of the simulation.
Detritus concentrations are high along the simulated drifter trajectories originat

ing in this region in the first five months of the simulation (Appendix A, Fig. A13A) 

compared to other origination areas. As a result, all three sizes of krill grow slightly
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Fig. 46. Range of simulated growth of 2 mm krill (lower curves), 22 mm krill (middle curves), and 45 mm krill (upper curves) 
released in the Elephant Island/Scotia Sea region in December (medium shading), January (dark shading), and February (light 
shading) obtained for feeding on A) phytoplankton only, B) phytoplankton and sea ice algae with detritus, C) phytoplankton, 
copepods and sea ice algae with detritus, and D) detritus only.
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Table 18. Summary of krill growth simulations for different food types, initial sizes, 
and release times. The percent (%) and length of krill surviving and dying, re
spectively, at the end of each simulation is shown. The results are based on the 
food available along the trajectories of 21 drifters released in region 3, the Elephant 
Island/Scotia Sea area. Abbreviations are: P (phytoplankton), PID (phytoplank
ton, sea ice algae, and detritus), PIDC (phytoplankton, sea ice algae, detritus, and
copepods), D (detritus), NA (not applicable).

Food Initial Release % Final % Length at
type size (mm) time (month) surviving length (mm) dying death (mm)

Dec 43 3.13 - 10.63 57 1.88 - 13.38
2 Jan 33 3.13 - 6.63 67 2.88 - 9.88

Feb 33 17.88 - 36.63 67 1 .8 8  - 1 0 .8 8

P Dec 62 19.13-31.88 38 17.13 - 23.63
2 2 Jan 43 18.88 - 24.38 57 17.13 - 24.88

Feb 38 17.88 - 26.63 62 17.13 - 26.63
Dec 8 6 35.63 - 52.88 14 35.13 - 39.63

45 Jan 57 37.38 - 45.38 43 35.13 - 40.38
Feb 67 35.13 - 47.88 33 35.13 - 45.63
Dec 8 6 2.13 - 14.13 14 1.63 - 10.13

2 Jan 67 3.13 - 10.13 33 4.88 - 9.88
Feb 71 2.38 - 9.13 29 1.63 - 10.88

PID Dec 8 6 19.88 - 34.38 14 17.13
2 2 Jan 8 6 17.88 - 27.63 14 17.13 - 20.88

Feb 62 19.38 - 33.13 38 17.13 - 20.88
Dec 95 37.38 - 55.38 5 35.13

45 Jan 1 0 0 36.63 - 47.38 0 NA
Feb 1 0 0 35.13 - 48.63 0 NA
Dec 8 6 2.13 - 12.13 14 1.63 - 10.13

2 Jan 67 3.13 - 10.13 33 4.88 - 9.88
Feb 71 2.38 - 9.13 29 1.63 - 10.63

PIDC Dec 95 20.88 - 40.63 5 17.13
2 2 Jan 1 0 0 23.88 - 37.63 0 NA

Feb 1 0 0 19.88 - 33.88 0 NA
Dec 1 0 0 40.37 - 59.88 0 NA

45 Jan 1 0 0 40.13 - 54.13 0 NA
Feb 1 0 0 41.66 - 57.63 0 NA
Dec 48 2.13 - 4.13 52 1.63 - 5.63

2 Jan 24 1.88 - 2.38 76 1.63 - 3.38
Feb 1 0 1.88 - 2.38 90 1.63 - 3.88

D Dec 29 18.38 - 25.38 71 17.13 - 21.63
2 2 Jan 1 0 17.13 - 17.63 90 17.13 - 20.63

Feb 14 20.38 - 20.88 8 6 17.13 - 21.63
Dec 67 35.88 - 43.88 33 35.13 - 36.13

45 Jan 43 35.88 - 39.13 57 35.13 - 38.13
Feb 52 35.13 - 45.13 48 35.13 - 39.13
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more in the first months (Fig. 46D). But detritus concentrations decrease so drasti
cally that only 29% juvenile krill survive, while 48% of the larval krill and 67% of the 

adult krill survive the time of the simulation. However, again all krill do not grow 
significantly over the transport time compared to krill feeding on phytoplankton 

only.
Krill originating in this area are able to survive transport with phytoplankton as 

the sole food source. Adding detritus and heterotrophic food sources improves the 

growth and survival of krill, while no sea ice-derived food is encountered (Appendix 

A, Fig. A8 A) because the drifter paths are away from the advancing sea ice in winter. 
Again, the continuous supply of detritus and heterotrophic food allow survival of 
krill during times of low food supply. However, detritus concentrations along the 
drifter trajectories are so low after the first five months of the simulation (Appendix 

A, Fig. A13A), that it alone is not an adequate food source.

Southwestern A ntarctic Peninsula

Drifters originating at the southwestern Antarctic Peninsula (region 4) need between 
2 1 1  and 306 days to reach South Georgia (see section 4.3.3) because this region is the 
farthest away from South Georgia. Feeding on phytoplankton food only is deleterious 

to krill (Fig. 47A, Table 19). Although sufficient food is available in the first four 
months to support growth (Appendix A, Fig. A4A), none of the krill survive the 
time needed to reach South Georgia from this region. The long time required to 

reach South Georgia and the low food values from April onward, result in essentially 

no survival.
Providing sea ice algae combined with detritus as an additional food source 

provides a great improvement (Fig. 47B, Table 19), enabeling 83% of all sizes of 
krill to survive the time necessary for transport. This is mostly due to the inclusion 
of detritus, as sea ice algae concentrations are low (Appendix A, Fig. A9A). The 
growth and survival of krill improves more with the addition of heterotrophic food 

(Fig. 47C, Table 19). All juvenile and adult krill survive the simulation time and 
develop to sizes of 26.63 mm to 42.13 mm and 46.38 mm to 57.88 mm for juvenile 

and adult krill, respectively. Detritus concentrations along trajectories originating 
from this region (Appendix A, Fig. A14A) are so low during the first months of the 
simulation that all krill, independent of size feeding on this sole food source, die 
before the end of the simulation (Fig. 47D, Table 19).

For all sizes of krill originating at the southwestern Antarctic Peninsula the
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Fig. 47. Range of simulated growth of 2 mm krill (lower curves), 22 mm krill (middle curves), and 45 mm krill (upper 
curves) released in the southwest Antarctic Peninsula region in December (medium shading), January (dark shading), and 
February (light shading) obtained for feeding on A) phytoplankton only, B) phytoplankton and sea ice algae with detritus, C) 
phytoplankton, copepods and sea ice algae with detritus, and D) detritus only.
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Table 19. Summary of krill growth simulations for different food types, initial sizes, 
and release times. The percent (%) and length of krill surviving and dying, respec
tively, at the end of each simulation is shown. The results are based on the food 
available along the trajectories of six drifters released in region 4, the southwest 
Antarctic Peninsula. Abbreviations are: P (phytoplankton), PID (phytoplankton, 
sea ice algae, and detritus), PIDC (phytoplankton, sea ice algae, detritus, and cope- 
pods), D (detritus), NA (not applicable).____________________________________

Food Initial Release % Final % Length at
type size (mm) time (month) surviving length (mm) dying death (mm)

Dec 0 NA 1 0 0 3.13 - 13.38
2 Jan 0 NA 1 0 0 1.88 - 5.88

Feb 0 NA 1 0 0 3.63 - 5.13
P Dec 0 NA 1 0 0 17.38 - 28.88

2 2 Jan 0 NA 1 0 0 17.13 - 20.63
Feb 0 NA 1 0 0 17.13-21.13
Dec 0 NA 1 0 0 35.13 - 46.63

45 Jan 17 37.63 83 35.13 - 36.13
Feb 17 35.38 83 35.13 - 39.13
Dec 83 4.13 - 13.38 17 8.38

2 Jan 1 0 0 2.38 - 6.38 0 NA
Feb 67 3.88 - 6.13 33 4.13 - 4.88

PID Dec 83 19.38 - 31.88 17 24.88
2 2 Jan 83 17.13 - 23.63 17 17.13

Feb 83 17.88 - 22.88 17 20.13
Dec 83 38.88 - 49.38 17 42.88

45 Jan 1 0 0 35.38 - 43.13 0 NA
Feb 1 0 0 37.88 - 43.13 0 NA
Dec 83 4.13 - 13.38 17 8 .8 8

2 Jan 1 0 0 2.38 - 6 .6 8 0 NA
Feb 67 3.88 - 6.13 33 4.13 - 4.88

PIDC Dec 1 0 0 26.63 - 42.13 0 NA
2 2 Jan 1 0 0 23.13 - 35.13 0 NA

Feb 1 0 0 27.88 - 33.88 0 NA
Dec 1 0 0 46.38 - 57.88 0 NA

45 Jan 1 0 0 44.38 - 51.63 0 NA
Feb 1 0 0 47.13 - 52.13 0 NA
Dec 0 NA 1 0 0 1.63 - 4.63

2 Jan 0 NA 1 0 0 1.63 - 2.13
Feb 0 NA 1 0 0 1.63 - 2.38

D Dec 0 NA 1 0 0 17.13 - 13.13
2 2 Jan 0 NA 1 0 0 17.13

Feb 0 NA 1 0 0 17.13 - 18.38
Dec 0 NA 1 0 0 35.13 - 41.83

45 Jan 0 NA 1 0 0 35.13
Feb 0 NA 1 0 0 35.13 - 36.63
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combined food of phytoplankton, sea ice algae, detritus and heterotrophic food is 
the most favorable food supply. Krill do not encounter much sea ice (Appendix 

A, Fig. A9A), but detritus and the addition of heterotrophic food increases their 

chances of survival during times of low food supply. Detritus feeding alone is not 

beneficial for krill released in this region.

W eddell Sea

Simulations of krill growth for krill originating in region 5, the Weddell Sea conti

nental shelf break area, are different from the above simulations because few of the 
drifters originating in this region are transported to within 600 km of South Georgia. 
Most are transported to the Weddell-Scotia Confluence. Phytoplankton food alone 
is not sufficient to sustain krill (Fig. 48A, Table 20). This is expected because most 

of the origination sites are underneath sea ice and little pelagic phytoplankton is 

available (Appendix A, Fig. A5A).
Adding sea ice algae (Appendix A, Fig. A10A) and detritus (Appendix A, Fig. 

A15A) as additional food sources improves the growth and survival of krill (Fig. 
48B, Table 20) because so much sea ice algae is present that krill of all sizes have 
sufficient food (Appendix A, Fig. A10). All larval krill that survive the simulation 
time (65%), as well as all juvenile and adult survivors (71% and 100% respectively) 
grow to large sizes. This growth is within the limit set in the model (maximum 
daily growth rate of 0.25 mm d-1) but is not realistic. Not all krill from this region 
survive transport because they leave the sea ice covered area of the Weddell Scotia 

Confluence at a time of low phytoplankton concentrations.
The addition of heterotrophic food (Fig. 11) improves the survival of juvenile and 

adult krill (Fig. 48C, Table 20), with more juvenile and adult krill surviving. Again, 
this growth is not realistic. This food source provides the needed food when krill 
leave the ice-covered area. Detritus-only feeding is not beneficial for krill originating 

from region 5 (Fig. 48D). Detritus concentrations along the drifter trajectories are 
high compared to trajectories from region 4 (Appendix A, Fig. A15), but lower than 
in all other areas. However, similar to results from other simulations, 12% larval 
krill, 18% juvenile krill, and 24% adult krill survive the simulation.

Due to the release location in an area largely covered with sea ice, sea ice algae is 

the dominant food source in this simulation and adding heterotrophic food increases 
the chances of survival for larger krill. Drifters from this region are not likely to 

reach South Georgia in the 306 days of this simulation, but instead, most reach
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Fig. 48. Range of simulated growth of 2 mm krill (lower curves), 22 mm krill (middle curves), and 45 mm krill (upper curves) 
released in the Weddell Sea region in December (medium shading), January (dark shading), and February (light shading) 
obtained for feeding on A) phytoplankton only, B) phytoplankton and sea ice algae with detritus, C) phytoplankton, copepods 
and sea ice algae with detritus, and D) detritus only. to
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Table 20. Summary of krill growth simulations for different food types, initial sizes, 
and release times. The percent (%) and length of krill surviving and dying, respec
tively, at the end of each simulation is shown. The results are based on the food 
available along the trajectories of 17 drifters released in region 5, the Weddell Sea. 
Abbreviations are: P (phytoplankton), PID (phytoplankton, sea ice algae, and de
tritus), PIDC (phytoplankton, sea ice algae, detritus, and copepods), D (detritus), 
NA (not applicable).

Food Initial Release % Final % Length at
type size (mm) time (month) surviving length (mm) dying death (mm)

Dec 0 NA 1 0 0 1.63 - 14.38
2 Jan 0 NA 1 0 0 1.63 - 10.88

Feb 0 NA 1 0 0 1.63 - 8.83
P Dec 1 2 24.88 - 32.63 8 8 17.13-24.13

2 2 Jan 0 NA 1 0 0 17.13- 24.13
Feb 6 22.13 94 17.13 - 24.88
Dec 18 43.88 - 50.63 82 35.13-41.63

45 Jan 0 NA 1 0 0 35.13 - 42.13
Feb 6 43.13 94 35.13 - 42.38
Dec 65 5.38 - 59.88 35 6.13 - 15.13

2 Jan 47 8.13 - 59.88 53 1.88-8.13
Feb 59 2.63 - 53.38 41 1.63 - 8.63

PID Dec 71 29.38 - 59.88 29 17.38 - 27.63
2 2 Jan 65 18.13 - 59.88 35 17.13 - 21.63

Feb 59 25.88 - 59.88 41 17.13
Dec 1 0 0 40.13 - 59.88 0 NA

45 Jan 82 42.13 - 59.88 18 36.38 - 40.63
Feb 82 36.88 - 59.88 18 35.13
Dec 65 5.38 - 59.88 35 6.13 - 15.13

2 Jan 47 8.13 - 59.88 53 1.88 - 8.38
Feb 59 2.63 - 53.13 41 1.63 - 8.63

PIDC Dec 94 25.13 - 59.88 6 27.88
2 2 Jan 82 23.13 - 59.88 18 18.38 - 21.88

Feb 94 22.38 - 59.88 6 17.63
Dec 1 0 0 45.38 - 59.88 0 NA

45 Jan 1 0 0 45.38 - 59.88 0 NA
Feb 1 0 0 43.63 - 59.88 0 NA
Dec 1 2 3.63 - 4.88 8 8 1.63 - 5.38

2 Jan 0 NA 1 0 0 1.63 - 3.38
Feb 6 2 .8 8 94 1.63 - 3.13

D Dec 18 10.13 - 26.13 82 17.13 - 19.88
2 2 Jan 0 NA 1 0 0 17.13 - 23.13

Feb 6 19.86 94 17.13 - 21.63
Dec 24 35.13 - 45.38 76 35.13 - 37.38

45 Jan 6 38.63 94 35.13 - 40.88
Feb 18 37.13 - 40.63 82 35.13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



127

the Weddell-Scotia Confluence. Krill are in good condition at that time. Drifters 
would then need an additional ten months of transport to reach South Georgia, as 

discussed in section 5.2.2. This would place them at South Georgia in October to 

December of the following year.

4.5.2 Effect o f Different Spawning Tim es

The range of krill growth rates obtained for the January simulations of drifters 
originating in region 1 is larger for the different food time series, with the exception of 

detritus, than those obtained for the December and February simulations (Fig. 44A- 

C). However, the important results from the simulations are how many krill survive 

and what size they grow to in the time needed for the simulated drifter to reach South 
Georgia. As discussed in section 3.3, the length of time when high phytoplankton 

concentrations are encountered decreases significantly with later spawning times 
(Fig. 8 ). This is mirrored in the results for all three initial krill sizes and the first 
three feeding simulations (Figs. 44A-C) and the numbers of how many krill survive, 
as well as the maximum size of survivors decrease from the December to the February 
release. When detritus is the primary food source (Fig. 44D), this is true also and 

the survival rate or all krill is highest when released in December.

Overall it can be concluded that a December release is the most beneficial time 
for the survival and growth of krill transported to South Georgia from the western 

Antarctic Peninsula. Earlier spawning is best, especially for larval krill, which is the 
most likely size class to get transported to South Georgia. For juveniles and adults, 
the difference in growth and survival for the different spawning times is small when 
krill exploit a combination of all food sources.

The effects of different spawning times for krill originating in region 2 (Fig. 

45, Table 17) are similar to those for krill originating in region 1. Again Decem

ber is the most beneficial release time for krill from region 2 , when feeding on 
all food types except detritus. The simulated results for krill feeding on detri
tus only is also similar to those obtained for krill released in region 1 , however, 
January is the most beneficial start time for detritus only feeding in this simula

tion (Fig. 45D, Table 17). For krill originating in the Elephant Island/Scotia Sea 
area (region 3), the southwest Antarctic Peninsula (region 4), and the Weddell Sea 
(region 5), a December release is most favorable for krill feeding on all four food 
sources, although differences between release times are small.
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4.5.3 Krill Growth Rates

To assess the effect of different food sources on krill growth and survival daily growth 

rates of krill originating at the west Antarctic Peninsula released in January are 
examined. Daily growth rates associated with 2 mm krill feeding on all four food 

sources combined (Fig. 49) range between -0.09 to 0.25 mm d-1. Daily growth rates 
of 22 mm and 45 mm krill range between -0.125 to 0.25 mm d _1 and -0.15 to 0.25 

mm d_1, respectively. Periods of shrinking occur in all sizes of krill, but more so 

for 45 mm krill because larger krill have a higher energy demand than smaller krill. 

The maximum growth rate for all sizes is 0.25 mm d - 1  because this is the maximum 

growth rate allowed in the model to keep growth realistic. Shrinking rates for 45 mm 
krill are higher than those for 2 2  mm krill, which are higher than those for 2  mm 
krill. This reflects the higher metabolic rates of the larger animals. The simulated 

growth rates are within the range of observed growth rates, 0.105 to 0.179 mm d - 1  

(Rosenberg et al., 1986) and 0.33 mm d_1  (Clarke and Morris, 1983).
Different food sources have different effects on the daily growth rates of krill 

(Fig. 49). At the beginning of transport phytoplankton concentrations are low, 

but increase rapidly after 10 days. This causes an increase in the growth rate of 
larval krill over the time of high phytoplankton supply. The growth rate does not 
increase more rapidly, because the food uptake of krill is limited depending on krill 
size. The growth rate of juvenile and adult krill increases more rapidly. This is 
caused by older krill being able to feed on heterotrophic food available at the same 

time, as well as the fact that larger krill can feed on larger portions of food. A 
sudden decrease in phytoplankton food causes negative growth rates (shrinking) in 
all sizes of krill. Until day 90 krill growth rates are closely tied to the phytoplankton 
concentrations available as food. Constantly high phytoplankton concentrations, 
such as seen between day 40 and day 50, indicate that krill encountered an eddy 
with high food concentrations for a period of time.

After day 90 however, other food sources gain more importance. The combination 

of heterotrophic food and phytoplankton increases growth rates of all krill sizes 
around day 1 0 0 , but afterward a period of shrinking starts because of insufficient 
food. Larval krill has reached sizes of larger than 18 mm at this time and is therefore 

able to utilize the heterotrophic food as well. Detritus is available as the only food 
source after day 1 1 0 , but because of its low metabolic value the amount of detritus 
available is not enough to sustain growth. Krill encounter four patches of sea ice
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Fig. 49. Simulated daily growth rates of 2 mm, 22 mm, and 45 mm krill feeding on 
all food sources combined when starting transport from the west Antarctic Peninsula 
in January. The time series of phytoplankton, sea ice algae, heterotrophic food and 
detritus are shown.

algae in this simulation after day 200. Larval krill have shrunk below 18 mm by this 
time and show a decreased growth rate, indicating that low concentrations of sea ice 
algae alone as a food source have a negative effect on krill growth. This is because 

the energy needed to feed on this food source is higher than the energy available 
from the food. Older krill switch between feeding on heterotrophic food and sea ice 
algae during this time and similar effects on the growth rate of these are observed.

4.5.4 Length-frequency D istribution  of Krill across the Scotia Sea 

Comparison w ith  D iscovery  D ata

The results from the krill growth simulations can be verified by comparing with 

observed krill length-frequency distributions discussed in section 3.5.2. In these 
comparisons, time in the simulation is used as a proxy for distance across the Scotia
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Fig. 50. Simulated distribution of larval krill across the study area for individuals 
that were released in December (•), January (a ), and February (♦). The climato- 
logical location of the SACCF is shown for reference.

Sea. The distribution of larval krill at the end of the reference simulation for krill 

feeding on phytoplankton, sea ice algae, detritus and heterotrophic food combined 
(Fig. 50), shows that larval krill are distributed along the path of the SACCF from 

the Antarctic Peninsula to South Georgia, with most larvae found in the southeastern 
Scotia Sea. Large numbers of larval krill are found at the eastern and northern side 
of South Georgia. This distribution compares well to the length-frequency values 
from Discovery observations (cf. Fig. 18A), which show abundant larvae around 

South Georgia, distributed along the western Antarctic Peninsula, and across the 

Scotia Sea south of the SACCF. The simulated distributions, however, show larval 
krill north of the SACCF west of 43°W, which is not seen in the observations.

The simulated length-frequency distributions obtained for older krill (>20 mm) 

feeding on all four food sources combined (Fig. 51) can be compared to the dis
tribution of the same size krill in summer (January to March) extracted from the 
Discovery data (Fig. 18B). These comparisons show that the earlier the start of the 
simulation, the further the krill can spread throughout the Scotia Sea by the end of
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Fig. 51. Simulated distribution of older krill (>20 mm) across the study area for 
individuals that were released in A) December, B) January, and C) February. Within 
each set of simulations, the location of the older krill at the end of January (•), 
February ( a ), and March (♦) is shown. The climatological location of the SACCF 
is shown for reference.
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January, February or March. The distribution of older krill is similar to that seen 
in the Discovery data, with older krill being distributed across the whole Scotia Sea 

along the path of the SACCF. The Discovery data (Fig. 18A,B) show larval and 

older krill in regions around the South Sandwich Islands and near the eastern end 

of the South Scotia Ridge, which are areas the simulated drifters do not reach. This 

suggests that krill found in these areas most likely do not originate from the western 

Antarctic Peninsula or along the continental shelf break of the Weddell Sea. The 

simulated krill distributions also show larval and older krill located in the western 
Weddell Sea, which is an area not sampled during the Discovery cruises (cf. Fig. 

18A).

Comparison w ith  BIO M ASS D ata

The simulated length-frequency distributions of krill from January to March (Fig. 

52), summarized to correspond to the FIBEX geographical regions (Fig. 21), show 
three dominant sizes of krill which arise from 2 mm, 22 mm and 45 mm krill used 
to initialize the simulations. These length-frequency distributions are compared to 
FIBEX data (Fig. 21) and SIBEX2 data (Fig. 23) that took place over the time from 

January to March.
The simulated length-frequency distribution from the southwestern Antarctic 

Peninsula region (Fig. 52A) includes a total number of nine krill. Thus, the sim
ulated length-frequency distribution is very different from the SIBEX2 data from 
the same region (Fig. 23A), the only field study covering this region, due to the 
small number of krill in the simulated distribution. However, the simulated length- 
frequency distribution does show krill of 54 mm to 56 mm in size, which are sizes 
that were common in the SIBEX2 data (Fig. 23A).

The simulated length-frequency distribution for krill found in the western Antarc

tic Peninsula region (Fig. 52B) can be compared to both FIBEX (Fig. 21A) and 

SIBEX2 data (Fig. 23B) from the same region. The BIOMASS data from different 
years show different krill size distributions, with the SIBEX2 data being composed of 
krill greater than 32 mm with a modal length of 50 mm, while the FIBEX data has 
a modal length of 55 mm. However, the range of krill in the FIBEX data includes 

sizes of 25 mm and higher, and in addition the distribution is almost bimodal. The 
simulated length-frequency distribution shows three main sizes of krill, the smallest 

of which (<18 mm) was not found in the BIOMASS data, while sizes of 23 mm to 37 
mm and again sizes of 42 mm to 60 mm were found during the FIBEX cruises. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

_  25 
£  20 
o  15 
§ 10

N =216

10 20 30 40 50 600 10 20 30 40 50 60
Total Length (mm) Total Length (mm)

_  10 
8

£ •
$ 4
_ 2 

0

N =102

N= 54

U.

10 20 30 40 50 600 10 20 30 40 50 60
Total Length (mm) Total Length (mm)

10
N= 66

U.

10 20 30 40 50 600

><o
V
CTa>

Total Length (mm)

10
8
6
4
2
0

N= 45

10 20 30 40 50 600
Total Length (mm)

N = 102

>  10

0 10 20 30 40 50 60
Total Length (mm)

Fig. 52. Simulated length-frequency distribution of Antarctic krill (January - March) 
for individuals released in December for the regions: A) southwestern Antarctic 
Peninsula, B) western Antarctic Peninsula, C) Bransfield Strait, D) Weddell Sea, 
E) Elephant Island/Scotia Sea region, F) open Scotia Sea, and G) South Georgia. 
Regions are shown in Fig. 20A. Total number of individuals, N, found in each area 
in the simulations is shown.
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smallest size class of krill is produced by using 2  mm krill to initialize the model. 
However, the fact that no larval krill were found in the BIOMASS data does not 

mean that there are no larval krill in this area. Rather, this may be due to a sam

pling bias during the cruises. The net sampling of larval krill is difficult because they 

are located mostly at the surface. If the net used to capture krill is closed below the 

surface, larval krill concentrations will be missed.

The FIBEX data (Fig. 21B) and SIBEX2 data (Fig. 23C) for the Bransfield 

Strait from different years show different krill size distributions. The SIBEX2 data 
are composed mainly of krill greater than 28 mm with a modal length of 45 mm, 
while the FIBEX data has a modal length of 50 mm but the range of krill found 
includes sizes of 16 mm and higher. The simulated length-frequency distribution 

(Fig. 52C) shows that most krill sizes from 6  mm to 60 mm are found in this region. 

There is no structure to the length-frequency distribution of the simulations except 
that 15 mm krill, 29 mm, 38 mm, 50 mm, 54 mm and 60 mm krill are present at 

higher frequency than other sizes. Again the smallest sizes <15 mm found in the 
simulated distributions are not found in the BIOMASS data.

In the Weddell Sea region the FIBEX data (Fig. 21C) shows two dominant size 
groups with modal sizes of 14 mm and 50 mm length krill, and another size group 
around 35 mm. The simulated length-frequency distribution (Fig. 52D) of krill in 

the same region shows the same range of krill size but also includes krill smaller 
than 10 mm. Furthermore, 60 mm krill are present in the simulated distribution, 
but are absent in the observations.

Observations of krill in the Elephant Island/Scotia Sea region (Fig. 21D, Fig. 
23D), show a modal size of krill around 50 mm but the FIBEX data (Fig. 21D) 
includes additional sizes of smaller krill in its distribution as noted in the previous 

regions. The simulated length-frequency distribution for this area shows three co

horts of krill with modal sizes of 7 mm, 29 mm, and 50 mm (Fig. 52E). Aside from 
the cohort of krill sizes under 15 mm, which is not found in the BIOMASS data, 

the simulated length-frequency distribution is similar to the FIBEX distribution, 
although the medium size class is composed of smaller krill than in the FIBEX data, 
which has a modal size of 50 mm plus a smaller peak around 40 mm, and large krill 
are not as dominant as in the FIBEX data.

The simulated length-frequency distribution of krill found in the open Scotia 

Sea region is best compared to the FIBEX cruise data from the research vessel
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Odissey (ODFX) which covers a similar area (Fig. 21E). In this region the simulated 

distributions show good agreement with the data, especially the larger krill (Fig. 

52F). Three cohorts of krill are centered around 7 mm, 30 mm, and 52 mm, while 
the ODFX data shows two modal sizes of 38 mm and 52 mm. The simulated larval 

krill size frequency is not seen in observations.
The comparison of simulated length-frequency distributions for the South Geor

gia region (Fig. 52G) with ODFX data collected near the Island (Fig. 21F) shows 
one cohort of krill with a modal size of 35 mm krill in the observed data, while 

the simulations show a smaller size groups of 24 mm to 32 mm krill in that area. 

In addition, krill sizes below 10 mm are not found in the observations and in the 

simulations more krill above 46 mm are found.
Larval sizes of krill are not represented in the BIOMASS length-frequency distri

butions but these sizes do occur in the simulated length-frequency distributions. The 
cohorts of large krill in the simulated krill distributions are better compared with 
the observed data, while the simulated medium-sized krill are on average smaller 

than in the observed data. This is in part due to the structure of the simulations, 
with krill being released as 2 mm, 22 mm and 45 mm krill at the beginning of 
December. By March, all sizes of krill have not had appropriate time to develop 

and travel large distances across the Scotia Sea. The distribution of krill across the 
Scotia Sea is more spaced out over the whole study area at the end of the simula
tion (Fig. 50). Earlier start times may show more appropriate sizes of medium and 
large krill during the January to March time frame. Also, the BIOMASS data set 

itself has problems with the comparability of data from different cruises (Thorley 
and Trathan, 1994). Exact latitude/longitude locations of stations were missing and 
had to be interpolated, and different ships used different nets for krill collection and 
also had different methods for determining krill length.

The reference simulation ends at the beginning of October and most krill have 
moved to South Georgia. Therefore, there are not enough krill at the west Antarc

tic Peninsula, the Bransfield Strait, and Elephant Island/Scotia Sea region at this 
time to conduct a meaningful analysis of length-frequency distributions that can be 
compared to the SIBEX1 data (Fig. 22).

Com parison w ith  South G eorgia D ata

A comparison between the simulated krill length-frequency distribution at South 

Georgia with observations is an important validation for the model result. Observa
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tions that can be used for comparison with the simulated results are numerous, but 
the majority of these observations are in summer or spring. Therefore, the simulated 

length-frequency data of krill arriving at South Georgia at the end of the reference 
simulation (October) is extrapolated to obtain krill sizes in the following January by 

using a summer growth rate for krill of 0.13 mm d-1, which translates into a mean 

annual growth rate of 0.032 mm d - 1  (Mauchline, 1980). This is an average value 

calculated for the growth rate of krill (see review by Siegel and Kalinowski, 1994). 
The simulation with a December release was chosen because, as shown in the pre
vious section, this is the most beneficial release time for drifters originating in most 

regions. The resultant krill sizes can be compared to length-frequency distributions 
from surveys at South Georgia that took place in January-February over 11 years, 

as described in section 3.

The simulated length-frequency distribution (Fig. 53A) shows that krill of 10 
mm to 25 mm reach the western side of South Georgia (defined as west of 36°W) 
as well as a smaller number of medium-sized krill (45 mm and 46 mm), and large 
krill (63 mm). Of all the krill that reach South Georgia in the reference simulation, 
only 5% are transported to the western side of the Island. The simulated length- 
frequency distribution may be compared with the length-frequency distribution of 
krill in the West Core Box (cf. Fig. 24) which shows two cohorts (Watkins, 1999; 

Fig. 3 - cruises JR06, JB10). These cohorts were centered around 38 mm and 49 mm 
in the JB10 cruise and around 39 mm and 53 mm in the JR06 cruise. The simulated 
length-frequency distribution shows a small number of krill of larger sizes arriving 

on the west side of the Island and their length is larger than the modal sizes of the 
observations, but within the observed range. Krill transported to the western side 
of South Georgia arrive south of 54° S on the southwest side of the Island, not at the 
same location as the West Core Box.

The remainder of the simulated krill reach the east side of South Georgia. The 
corresponding simulated length-frequency distribution (Fig. 53B) shows three co

horts with small krill (5 mm to 28 mm) centered about the modal size 15 mm and 
two main cohorts of larger krill. The second cohort has a modal size of 43 mm, 
spanning krill sizes from 33 mm to 48 mm, and the cohort of large krill has modal 
sizes of 59 mm and 61 mm.

This simulated distribution compares well with the length-frequency distribution 

of krill in the East Core Box (cf. Fig. 24), which shows krill larger than 25 mm found
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Fig. 53. Simulated length-frequency distribution of Antarctic krill at South Georgia 
extrapolated to the potential length of krill in January for individuals arriving at 
A) the west side of the Island, B) the east side of the Island, and C) all of South 
Georgia. Total number of individuals, N, found in each area in the simulations is 
shown.
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in this area (Watkins, 1999; Fig. 3 - cruise JR03). Observations show that 47 mm 
krill are the most frequent size of krill and that other size classes, centered at 34 

mm, 40 mm, and 52 mm, are present. However, the observations do not show krill 
smaller than 24 mm present in this area and have considerably less large krill around 

60 mm than do the simulated results.

The simulated length-frequency distribution obtained for all simulated krill ar

riving at South Georgia (Fig. 53C) is similar to the distribution for the east side of 

the Island (Fig. 53B). Three cohorts are seen, with the smallest from 5 mm to 28 

mm centered around the modal size 15 mm, and two main cohorts of larger krill. 
The medium size cohort and large krill cohort have two modal sizes of 43 mm and 
45 mm, while the large cohort is the same as obtained for the east side of South 
Georgia, 59 mm and 61 mm (Fig. 53B).

The cruises to which this simulated length-frequency distribution can be com

pared to are the JR17 and JR28 cruises (Watkins, 1999; Fig. 3). The 1996/97 

(JR17) cruise shows three different size classes of krill around South Georgia, which 
are centered around 23 mm, 38 mm, and 48 mm. The main cohort is the one cen
tered around 38 mm, which is also present in the simulated length-frequency data. 
The 1997/98 (JR28) cruise shows two main cohorts, with modal sizes of 34 mm and 
54 mm. These match the two cohorts of larger sized krill in the simulation well (Fig. 
53C). Again, krill below 24 mm are not seen in the observations.

Net haul data and length-frequency data collected at the northeast of the Island 
at the beginning of February (Hill et al., 1996; Fig. 2) showed a mean krill length of
53.1 mm, and a modal size of 55 m, with krill ranging from 28 mm to 65 mm in size. 
Krill length-frequency data from stomach contents of macaroni penguins (Eupdyptes 

chrysolophus) collected at the same place showed a mean krill size of 55.4 mm (Hill 
et al., 1996; Fig. 2), a modal size of 59 mm, and a range of krill size from 39 mm to 

64 mm. Predator length-frequency data from fur seals (Arctocephalus gazella) and 
macaroni penguins (Eupdyptes chrysolophus) in general match those found in net 

hauls once spatial and temporal bias has been accounted for (Reid et al, 1999). It 
is known that modal sizes of krill in predator samples are generally slightly greater 
than the comparable mode in net haul samples, which might suggest a selection of 
predators for larger krill. At the same time larger krill may be under-represented 
in nets, so the differences between the two are essentially compensatory (Reid et al, 
1999).
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Since these data were collected at the northwest coast of South Georgia they are 

best compared to the simulated length-frequency distributions at the west coast of 

South Georgia. However, because the simulated length-frequency distribution shows 

only 5% of the krill are found there and the locations of those krill do not match the 

locations of the data presented in Hill et al. (1996), the data are compared to the 

simulated distribution of krill all around South Georgia (Fig. 53C). The simulated 

length-frequency distribution matches the data in that it shows a similar modal size 
of 54 mm to 56 mm for the largest cohort that matches the net sample modal size. 

The simulated krill length-frequency distributions also show a range of 45 mm to 64 
mm in length, which matches observations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



140

5 DISCUSSION

The modeling approach used in this study provides a framework for the investiga

tion of exchanges between krill populations, the food resources necessary for krill 

survival, and possible responses of krill populations to environmental change. In 

this chapter the performance of the circulation model is discussed as well as the 
results of the drifter and krill growth simulations that are described in section 4. 

Specifically, the discussion focuses on a) the circulation model, b) krill origination 

areas and transport pathways, c) food supply available to krill, and d) the effect 

of environmental variability on the transport of krill to South Georgia and their 
chances of survival.

5.1 Circulation model

5.1.1 Frontal Structure

The HOPS framework is used to simulate the circulation to provide the environ
mental structure and flow characteristics in Drake Passage and the Scotia Sea. The 
simulated circulation fields reproduced features of the observed circulation in Drake 
Passage and in the Scotia Sea (cf. Fig. 25), especially the frontal structure of the flow 
and the mesoscale variability. The frontal structure of the ACC flow was included 
in the model through a feature model, because the climatological data used for ini
tialization of the temperature and salinity fields do not resolve the fronts. Once the 

fronts were initialized in the circulation fields, they did not dissipate over the time 
of the simulations. This indicates that either frontal dynamics are included in the 

model, which are too weak to produce the fronts but are strong enough to keep an 
existing front from dissipating, or that the dissipation of the potential energy of the 
initial density structure is slow.

The locations of the SACCF and the PF are moved about 100 km from the 
observed locations of the fronts in the WOCE A23 section in the eastern Scotia 
Sea. The location of the fronts in the HOPS model, as implemented in this study, 
is dependent on the bottom topography. The smoothing of the bottom topography 

(section 3.1.2) makes the continental slopes about 10% gentler and smoothes topo
graphic features, such as deep channels or sea mounts. This influences the location 
of the fronts. However, it has been shown that all fronts of the ACC meander, and 

lateral shifts of as much as 100 km over 10 days have been observed in the Drake
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Passage (Nowlin et al., 1977; Hofmann and Whitworth, 1985; Klinck, 1985; Nowlin 
and Klinck, 1986). In fact, during the WOCE A23 cruise a shift of the PF of more 

than 100 km in one week was observed (Heywood and King, 1996). Therefore, the 

simulated frontal locations are within the range of observed variability.

5.1.2 Eddy K inetic Energy

Comparison of the simulated eddy kinetic energy field with the eddy kinetic energy 

field of the surface flow calculated from FGGE drifting buoys (Patterson, 1985, Fig. 

1 1 a) showed that the simulated eddy kinetic energy field is overall lower than that 
obtained from observations as discussed in section 4.1, but agrees in distribution and 

magnitude with the eddy kinetic energy field calculated from the FGGE drifters. The 
simulated eddy kinetic energy values are lower than those given in Patterson (1985) 

because the surface eddy field obtained from the FGGE drifters included a stronger 
influence of wind stress than does the equivalent field at 50 m. Also, the eddy kinetic 
energy fields given in Patterson (1985) are based on a 5° resolution compared to the 
1 0  km resolution of the simulated field, which tends to smooth the kinetic energy 

field obtained from FGGE drifters.
McClain et al. (1991) presented a similar calculation of surface eddy kinetic en

ergy from the FGGE drifter data that showed bands of eddy kinetic energy greater 
than 700 cm2 s~ 2 in Drake Passage and the Scotia Sea, with occasional patches 
of energy >1000 cm - 2  s-2 . Eddy kinetic energy calculated from Geodetic Satellite 
(Geosat) data, however, showed lower energies in the study area, between 100 - 500 
cm2 s~ 2 (McClain et al., 1991). This energy is correlated with the bottom topogra
phy (Chelton et al., 1990). The eddy kinetic energy calculated from the simulated 

circulation distributions show similar patters that follow topographic features (cf. 

Fig. 26).

The simulated eddy kinetic energy levels are within the range of those calcu
lated from observations, thereby showing that the circulation model resolves the 
characteristics of the eddy field in Drake Passage and the Scotia Sea.

5.1.3 Hydrography

Comparison of simulated vertical temperature and salinity distributions with ob
servations (section 4.1.1) showed that the vertical structure of the different water 

masses present in the Scotia Sea is not correctly resolved. This mismatch is due to
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factors related to implementation of the HOPS model. A primary factor is that, 

the circulation model is initialized with the WOA 1998 climatological temperature 

and salinity fields (Antonov et al., 1998; Boyer et al., 1998), which is a smoothed 
representation of the hydrography in the study region. The data density used to 

construct this climatology is sparse in some parts of the study region and is is also 

sparse over the entire region during the austral winter.
Comparison of the simulated vertical temperature and salinity fields with the 

climatology (section 4.1.2) showed that there is a good agreement between the sim

ulated temperature and salinity distributions and the climatology. This indicates 

that the simulated property fields are closely related to the initialization of the model 

and that discrepancies with observations are in part due to the insufficient represen
tation of features in the climatology which then continue over time. One exception 

of this is the representation of the cold tongue in the Melville II section across Drake 
Passage. The simulated temperature field shows a cold tongue that does not match 

the observations and the initial climatology.
The model therefore is initialized with only an approximate representation of the 

observed hydrography that may not accurately represent the vertical water mass 
structure. In addition, the model relaxes to the climatological values at the model 
domain boundaries, which results in water flowing into or out of the model being 
set to climatological values. If there are any inconsistencies in the temperature 

and salinity values at the boundaries, then the water masses advected into the 
model are misrepresented. Therefore, data sets used for initialization of circulation 

models are of major importance and should be chosen carefully. In the study region, 
the availability of high quality hydrographic data with good spatial and temporal 

resolution is lacking, which points to the need for further hydrographic observations 
and subsequent inclusion into available climatologies.

Further, no surface heating or cooling processes are included in this implemen
tation of HOPS and, therefore, surface waters cannot undergo seasonal heating or 

cooling. At the same time sea ice cover is not included in this model implementa
tion, and the dynamics associated with sea ice-ocean interactions are consequently 

missing (see section 5.1.4). Therefore, features such as the cold tongue observed in 

the Melville III section (cf. Fig. 16) are included in the model simulations through 
the inadequate initial climatological temperature distribution, which then evolve 
over time due to wind mixing. The lack of sufficient vertical mixing as a restorative
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mechanism may also be one reason why vertical temperature and salinity structures 
deteriorate over time. For a more accurate representation of the water masses, the 

inclusion of heat exchange with the atmosphere and sea ice dynamics is needed.

5.1.4 Surface and Subsurface Drifters

The comparison of simulated drifter trajectories with WOCE surface and subsurface 

drifters (section 4.3) showed that the surface drifters in the model were on average 
38% slower than the WOCE drifters and that the subsurface drifters were on average 
60% slower than the observed drifters. Part of this disagreement arises from the 

time variability of the front locations and the probability that a simulated drifter 

is entrained in a front. The observed convergence at the fronts may be missing 
because fronts are initialized in the model, so that drifters do not accumulate in 

fronts. The discrepancy between observed and simulated drifters also arises because 
the currents associated with the fronts in the simulated circulation fields are slower 

than observed.
The thermal wind equation

T  = <24>O Z  pf dy

shows that the velocity gradient over depth ( | | )  is determined by the density gradi
ent (|^), the gravitational acceleration (g) in m s~2, the water density (p) in kg m-3, 

and the Coriolis force ( /)  in s-1 . Equation (24) is used to calculate the geostrophic 
flow speeds at 1000 m across the SAF at day 180 of the simulation, using the pa
rameter values in Table 21 and assuming zero flow at 2500 m.

This calculation gives geostrophic flow speeds at 1000 m depth that are 28% 

higher than the flow speeds produced in the simulated flow fields, which indicates 
that the density gradient across the SAF should produce higher geostrophic current 
velocities.

Comparison of geostrophic flow speeds calculated from directly measured current 
velocity from current meters deployed along the Melville section II (Nowlin et al. 
1977) with the simulated current velocity at the same time and location obtained 

from the circulation simulations show discrepancies of the same order. The calcu

lated 30-day average current velocity produced by the simulated density gradient
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Table 21. Parameters, their associated values, and units as used in equation (24).

Parameter Value Units

9 9.81 9 —1m s

P 1028 kg m - 3

f  (at 57°S) - 1 . 2 2  x 1 0 ~ 4 s_1

dz 1500 m

across the SAF (Fig. 54) can be compared to the calculated current velocity across 
the SAF at the same station locations (between station 21 and 24) from the Melville 

II cruise (Nowlin et al., 1977, Fig. 10). The simulated current velocity agrees with 
the directly measured velocity in that the high flow velocities at the surface decrease 
with depth (Fig. 54). However, when simulated and observed current speeds at dif

ferent depth levels are compared, it can be seen that the simulated current velocity 
at 1000 m is 15.8 cm s-1, while the observed velocity across the same distance (be
tween Station 21 and 24) is 17.5 cm s-1, which is 11% less than the observed speeds. 

At 500 m depth this difference between simulated and observed current velocity is 
13% and at the surface it is 5%. However, the error bars of the directly measured 
velocities (Nowlin et al., 1977, Fig. 10) show a standard deviation of about ±10 cm 
s- 1  and the simulated current velocities are within the range of this deviation.

There are two main reasons for the noted differences in frontal speeds. The grid 
spacing of this model is 1 0  km and is therefore too coarse to define the sharp property 
gradients that are observed at the fronts. As a result, the weaker density gradients 
produce smaller current velocities. A higher resolution model would counteract this 
problem. At the same time the fronts are implemented in this model by using a 
feature model and are defined by property gradients which may be too weak.

A second reason may be that the horizontal dissipation of energy is so strong that 
it is extracting kinetic energy, slowing the flow down. At the same time the choice 
of the horizontal smoothing mechanism, the Shapiro filter, used to dampen the two- 

to three-grid-interval waves, reduces the steep frontal gradient, which causes slower 

current speeds.
As discussed previously (section 3.1.2), the bottom topography has a major in-
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Fig. 54. Thirty-day average of the simulated current velocity (cm s-1) across the 
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fluence on the current flow in this area, especially of the fronts. The closing of 
deep channels by the smoothing routine is a problem with the smoothed bottom 
topography used in this model implementation and required changes in some areas 

after smoothing (section 3.1.2). When deep, narrow channels are altered as in this 
implementation of HOPS, this will not only change the current flow, but also has 
the potential to increase frictional forces that slow currents down.

The simulated subsurface drifters are 60% too slow compared to the WOCE 
subsurface drifters, which cannot be explained solely by the currents associated with 

the fronts. All of the eighteen observed WOCE subsurface drifters started in the 
northern Drake Passage and followed the path of the SAF into the South Atlantic. As 
described previously (section 4.3.2), the flow in the South Atlantic is not properly 
represented in the simulated circulation fields because of the model boundaries. 
The Brazil Current enters from the north along the coast of South America and 
deflects the northward-flowing Malvinas Current to the northeast, away from its 

usual path, and reducing its speed. This affects the speed of the simulated drifters 

in the South Atlantic and also their drifter paths. The simulated subsurface drifters 
are transported back into the north Scotia Sea and return to the South Atlantic
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(cf. Fig. 35), which is not observed in the WOCE subsurface drifter trajectories. 

However, the flow in the South Atlantic does not influence the flow through Drake 

Passage and thus does not affect the transport of drifters across the Scotia Sea.

The noted discrepancies between the simulated circulation fields and observations 
indicate issues with the circulation dynamics included in the HOPS model and with 

the implementation of this model. However, the surface circulation, particularly 

through the Drake Passage and across the Scotia Sea, matches observations, with 
its northeastward flow characterized by three high speed fronts. The location of 

the SAF, PF, and SACCF match observations. Also, the Weddell Sea and the 

Brazil Current, and their associated transports match observations. In addition, 
mesoscale variability, an important component of the flow in this region, is found in 
the simulated circulation. The sizes of eddies produced by the simulated circulation 
field are within the range of observed spatial scales of 30 km to 100 km (Bryden, 
1983) and the eddy kinetic energy produced by these mesoscale flow features is in 
agreement with values calculated from satellite and drifter observations.

5.1.5 Effect o f Sea Ice Cover

The simulated circulation fields are produced without including the potential effects 
of sea ice cover. However, large areas of the Weddell Sea and areas along the west 
Antarctic Peninsula may be covered by sea ice for some part or all of the year. 
Sea ice and its associated snow cover reflect radiation and isolate the ocean from 
the atmosphere for a large part of the year. This affects ocean-atmosphere gas 

exchange and heat fluxes, and by modifying the kinetic energy input from wind, 
also influences the circulation of surface waters (Murphy et al., 1995). Wind stress 
drives sea ice motion and the frictional drag of the sea ice upon water itself sets the 
surface water in motion. This stress is transmitted downward through the layers 
of the water column in the form of an Ekman spiral and changes the direction of 
the flow (Wadhams, 2000). In addition, sea ice melting produces cold fresh water 
that tends to stabilize the surface waters and the formation of sea ice results in 
brine rejection, which may cause buoyancy driven circulation. These dynamics are 

not included in the HOPS model as it is implemented in this study. Thus, flow 
dynamics underneath the sea ice cover may therefore be altered and not calculated 
correctly in the simulated circulation fields.
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5.1.6 Flow Dynam ics around South Georgia

A shallow continental shelf of less than 200 m, across which deep canyons cut, 

extends around South Georgia to a distance of 50 to 150 km from the coast, after 

which the water depths rapidly increase to over 3000 m (cf. Fig. 37). General flow 

around South Georgia is mainly influenced by two of the circumpolar fronts, the PF 
and SACCF. The PF passes between Maurice Ewing Bank (cf. Fig. 1 ) and South 

Georgia (Trathan et al., 1997) ensuring there are always polar waters around the 

Island and resulting in the Island being heavily glaciated (>50%) (Brandon et al., 

1999). The SACCF transports cold waters from the Antarctic Peninsula and north 
of the Weddell Sea towards South Georgia, approaching the Island’s shelf break from 

the south and southeast (Meredith et al., submitted).
The local on-shelf waters around South Georgia are influenced by shallow water 

processes such as the addition of fresh-water, and heating and mixing processes due 
to friction and tidal stirring (Brandon et al., 1999), and, as a result, are warmer and 

fresher than the off-shelf waters. The off-shelf waters lack some of this forcing which 
results in inherent density differences between on-shelf and off-shelf waters that give 
rise to a baroclinic front between the two (Brandon et al., 1999). This shelf break 
front has been observed to the east and north of South Georgia (Brandon et al., 

1999, 2000). Such fronts are common in shelf edge regions (eg. Pingree and Mardell, 
1981; Marra et al., 1990) and are critical for determining the exchange of salt and 

heat between on- and off-shelf regions (Dever and Lentz, 1994), as well as sediments 
and nutrients (Falkowski et al., 1988).

Reasons for the formation of warmer, fresher on-shelf water on the eastern shelf of 
South Georgia are rather complex due to South Georgia having two heavily glaciated 
mountain ranges running along its length with mountains up to a maximum of 2934 
m and 12 peaks over 2000 m (Headland, 1984). While the mean climatological winds 
in the southwest Atlantic are from the west (Mayes, 1985) and reach South Georgia 

on the west coast, Richards and Tickell (1968) show a strong lee effect on the east side 
of the Island, due to the mountains. The lee effect creates a microclimate and causes 
low humidities, a low amount of cloud formation and as a consequence more sunshine 

and higher air temperatures (Brandon et al., 1999). This microclimate drives greater 
local melting and provides a strong local fresh-water runoff from South Georgia, 
which coupled with shelter from prevailing westerly winds, creates the observed 
warm fresh water pool.
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This microclimate cannot be reproduced in the simulated circulation fields around 

South Georgia, because there is no freshwater input and the average wind used to 

force the model does not include local geographic effects, which are the environmen

tal conditions that produce the local circulation around the Island. Therefore, no 

local shelf front can develop in the simulated circulation fields around South Geor

gia. In addition, the model resolution is too coarse (10-km grid spacing) to resolve 
shelf fronts. The across-shelf circulation is important in determining how particles 

reach the shelf waters that surround South Georgia. Thus, the specific dynamics of 
krill transport onto shelf waters around South Georgia cannot be investigated with 

the HOPS model as it was implemented in this study. A high resolution model for 

the local South Georgia area, that includes the relevant environmental forcing and 

dynamics is needed.

5.2 Krill Origination Areas and Transport Pathways

The population structure of many species can be considered as an array of local pop
ulations linked by variable degrees of gene flow (Wade and McCauley, 1988). In this 

metapopulation concept, migrants are not only an integral part of the structure, but 

are indeed necessary for the survival, persistence, and expansion of the metapopu
lation (McQuinn, 1997). The migrants abandon their local population and cannot 
be selected for at the local population level, as they are lost to the local population. 
However, these migrants can be selected for in the population they migrated to and 
are therefore advantageous at the metapopulation level by ensuring survival of the 
distant population. This is the case for krill transported from the Antarctic Penin
sula and the Weddell Sea to South Georgia. The krill population at South Georgia 

is assumed to be a sink population within the krill metapopulation of the Antarctic 

Peninsula/Scotia Sea region. The populations of krill found at the Antarctic Penin

sula and in the Weddell Sea are assumed to be the source populations for the South 
Georgia population. For the survival of the local South Georgia krill population, 
therefore, input of viable krill from areas along the western Antarctic Peninsula and 

the Weddell Sea is needed.

The simulated transport patterns discussed in section 4.3.3 can be grouped into 
five areas from which particles can reach South Georgia (Fig. 55). Of these five 

regions there are four regions from which krill can be transported to South Geor

gia in a period of 10 months: the west Antarctic Peninsula, Bransfield Strait, the
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Elephant Island/Scotia Sea area, and the southwest Antarctic Peninsula (Fig. 55). 

These locations coincide with known krill spawning areas (Marr, 1962; Siegel, 1992). 

Simulated drifters originating in the Bransfield Strait region need about 263 days 
to reach South Georgia, while those originating along the west Antarctic Peninsula 

need about 211 days. The difference in transport times reflects the time needed to 

move out of the Bransfield Strait and become entrained in the SACCF. Drifters orig

inating near Elephant Island, however, are transported to South Georgia on average 

in 168 days, the shortest transit time, while drifters originating at the southwest 

Antarctic Peninsula have the longest transport pathways and need on average of 

276 days.
In section 5.1.3 it was shown that the simulated current speeds in the SAF are 

about 10% slower than the average observed current speeds. However, the simulated 
current speeds are within the variability reported for the measurements of current 
speeds. Therefore, the simulated transport times of krill reported here can be seen as 

maximum time scenarios and indeed krill may be able to reach South Georgia 10% 
faster than suggested by the simulations. A shorter transport time would benefit 
krill and result in higher numbers of krill surviving transport than reported in this 
study.

Larval krill released at the west Antarctic Peninsula, in the Bransfield Strait, the 

Elephant Island/Scotia Sea area, and the southwest Antarctic Peninsula grow to 1+ 
sizes during the average time needed for drifters being transported to South Georgia, 

while juvenile krill grow to 2+ sizes. However, krill originating at the southwest 
Antarctic Peninsula grow to overall smaller sizes than krill from other areas due to 
long transport times with low food supply. Thus, krill spawned in the main spawning 
area along the Antarctic Peninsula can be transported to South Georgia, and will 
arrive with a size that is observed for local krill populations. However, spawning 
further south along the western Antarctic Peninsula is not likely to produce krill 
that reach South Georgia at an observed size in 10 months. The same is true for 

the spawning area in the far east of the Scotia Sea which does not contribute to the 
South Georgia population, because krill originating there are transported eastward, 
never reaching South Georgia. Krill located further north in Drake Passage can be 

transported to South Georgia, but krill are not typically found at this location (Fig. 
18, Marr, 1962). In addition any krill that are positioned in the Scotia Sea along 
the path of the SACCF are transported to South Georgia.
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Fig. 55. Distribution of five areas around the Antarctic Peninsula that can poten
tially provide Antarctic krill to South Georgia. The areas are designated as: 1 ) 
western Antarctic Peninsula (•), 2) Bransfield Strait (y), 3) Scotia Sea/Elephant 
Island (A), 4) southwestern Antarctic Peninsula (■), and 5) Weddell Sea (♦). Boxes 
indicate the areas of krill spawning identified in Marr (1962). Thin lines show the 
2 0 0 0 -m isobath.

5.2.1 W eddell Sea

Krill originating near the continental shelf break of the Weddell Sea may reach South 

Georgia. An average transport time of 263 days places krill near the Weddell Scotia 

Confluence from where transport to South Georgia is possible. During transport 
from the shelf break of the Weddell Sea to the Weddell-Scotia Confluence, larval 
and juvenile krill do not encounter significant periods of low food supply (Appendix 
A, Fig. A5, Fig. A10, Fig. A15). As a result, when reaching the Weddell-Scotia 
Confluence, larval and juvenile krill have reached 2+ to 4+ sizes, respectively, and 
can continue transport from there.

Additional simulations starting in the Weddell-Scotia Confluence in November 

(after krill arrive there in October) show that krill require on average 10 additional 

months from different areas in the Weddell-Scotia Confluence to reach South Georgia 

(Fig. 56). Thus, krill arrive at South Georgia after a transport time of approximately
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Fig. 56. Transport pathways over 10 months for drifters released at different points 
in the Weddell-Scotia Confluence in November.
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Fig. 57. Simulated growth of 22 mm krill (lower curves), 33 mm krill (middle curves), 
and 45 mm krill (upper curves) released in November (Year Day 305) in the Weddell- 
Scotia Confluence.
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20 months. Concentrations of all four food sources along the simulated drifter paths 

that start in the Weddell-Scotia Confluence are sufficient to sustain krill during this 

additional transport. Simulations using the krill size-class model suggest that all 
krill starting from the Weddell-Scotia Confluence survive and grow during the time 

required for transport to South Georgia (Fig. 57). Juvenile krill (22 mm) grow to 

between 28 mm and 39 mm, larger subadult krill (33 mm) grow to between 39 

and 46 mm, while adult krill (45 mm) reach 45 mm and 55 mm. Therefore, krill 

originating in the Weddell Sea can be transported to South Georgia in a time frame 

of approximately 20 months, thereby contributing 2+, 3+ and larger krill to the 

local krill population.
This potential transport of krill from the Weddell Sea to South Georgia agrees 

with studies that found cold water of Weddell Sea origin to the north and east 

of South Georgia (Deacon, 1977; Hardy and Gunther, 1935). This water has been 
suggested to be a main source of krill (Marr, 1962; Maslennikov and Solyankin, 1988). 

In addition, recorded tracks of giant icebergs showed that material of Weddell Sea 
origin can leave the Weddell Sea region and can be transported along the east side 
of South Georgia, following the general path of the SACCF (Trathan et al., 1997). 
The drifter and krill growth simulations done in this study support Watkins et al. 
(1999) who suggest that krill from the Antarctic Peninsula and the Weddell Sea may 

reach South Georgia and may explain the different age structures of the local krill 
populations.

5.2.2 Im portance of the Southern ACC Front

The simulated drifter results (section 4.3) show that the currents associated with the 
SACCF are the main transport mechanism for krill, because the simulated distri
butions of larval and older krill (>20 mm) that may reach South Georgia, coincide 
with the path of the SACCF (Figs. 51 and 50). The simulated distributions of krill 

stages agree with historical krill distributions in the Scotia Sea (Fig. 18, Marr, 1962), 
pointing to the importance of the SACCF as a transport mechanism. Previous stud
ies also suggest the importance of the SACCF for krill transport (Hofmann et al., 
1998; Murphy et al., 1998). Observations during summer suggest that 1+ krill and, 
in much higher numbers 2+ krill enter the South Georgia region mainly from the 

east (Murphy et al., 1998; Watkins et al., 1999). The SACCF bounds the east side 
of South Georgia, and it was shown in this study that most krill (91%) indeed are
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transported to the east side of the Island. It also agrees with the expectation that 
1+ and 2+ krill reach South Georgia from the three main origination areas and are 

delivered there at the end of spring.
The ACC in the Drake Passage is known to shift its location during the year 

(Hofmann and Whitworth, 1985) or possibly over longer time scales (Klinck and 
Smith, 1993). A shift of the SACCF north, even of only 10 km, leaves only a 

fraction of the large spawning area at the Antarctic Peninsula in the path of the 
SACCF. This greatly reduces the possibility for transport of krill from the Antarctic 

Peninsula and the Weddell Sea to South Georgia as was shown in section 4.4.3. 
Thus, such a change in the location of the SACCF endangers the delivery of krill to 

South Georgia, especially from the main spawning area along the Western Antarctic 

Peninsula and in the Bransfield Strait. This may have a devastating effect on the 

krill population at South Georgia, which depends on the krill supply from further 
upstream. Such shifts in the SACCF may occur during the year (Hofmann and 

Whitworth, 1985; Hofmann and Klinck, 1998) and indicates that the transport of 
krill to South Georgia is not necessarily continuous throughout the year, but may 
be interrupted. If such a shift in the SACCF occurs about a month after spawning 
time, the effect may be that only very few krill are transported to South Georgia and 

the abundance of krill at the Island declines. This agrees with studies that report 
strong fluctuations in krill abundance around South Georgia (Heywood et al., 1985; 

Priddle et al., 1988).

An increase in winds by 70% and a northward shift of the winds, as thought to 
have occurred during the last glacial maximum (Crowley and Parkinson, 1988), has 
been shown to increase the transport of the ACC and shift its location northward 
by 2° latitude. Therefore, climate change processes that result in wind conditions 
that differ from present conditions, may shift the SACCF location northward, en
dangering the survival of the local South Georgia population by removing the main 

transport mechanism.

5.2.3 Local Effects around South Georgia

Watkins et al. (1999) noted that the krill population at the eastern end of South 
Georgia tends to be smaller sized and to lack the larger year classes relative to the 

krill population at the western end of the Island. A potential explanation for these 

observations is that krill are delivered to the east side of the Island by the currents
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associated with the SACCF. However, the simulated length-frequency distributions 
at South Georgia show the opposite (Fig. 53), with only 9% of the krill arriving 

on the western side of the Island. Those krill that do arrive on the western side of 
South Georgia are not within the West Core Box, but rather are found south of 54° S 

on the southwest side of the Island. It has been proposed that krill are transported 
from the east side of South Georgia to the northwest and grow during the transport 

to bigger sizes (Watkins, 1999). However, none of the simulated drifters arriving on 

the east side of South Georgia is transported to the northwest of the Island because 

the circulation on the South Georgia continental shelf is not simulated correctly, 

as discussed in section 5.1.5. Thus, the processes that allow arrival, retention and 
transport of krill in local waters around South Georgia cannot be fully tested. What 

has been shown however, is that krill originating in areas further north in the Drake 

Passage (Fig. 36) may reach the western side of South Georgia, if krill were found 
in this area (see section 5.2).

5.2.4 Effect o f Different Spawning Tim es on Transport

The timing of the drifter release, which simulates different spawning times, shows 
that early release enhances the possibility of krill reaching South Georgia, especially 

from the main spawning area off the western Antarctic Peninsula. In Bransfield 
Strait, an area with a large krill population and active reproduction (Siegel, 1992), 

there are regions from which the circulation does not favor transport to South Geor
gia and this area increases with later spawning. The change in the size of this region 
is due to the wind conditions, which shift from westerly winds during early spring to 
northwesterly winds at the beginning of summer (Fig. 6 ), creating less of an offshore 
component to the Ekman flux. Later spawning times also decrease chances for krill 
originating in the Weddell Sea to reach the vicinity of South Georgia. In contrast, 

later spawning increases the possibility for krill originating further north in Drake 

Passage to reach South Georgia.

Krill are believed to spawn during three or more years of their life span (Siegel, 
1987; Nicol et al., 1995). It has been suggested that krill spawn multiple times 
during one year (Ross and Quetin, 1983), but laboratory studies were only able 
to demonstrate a single spawning event (Harrington and Ikeda, 1986). Nicol et al. 

(1995) argued that multiple spawning of krill in a season would require above average 
phytoplankton concentrations and krill filtration rates in order for krill to fulfill the
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necessary energy input, and may not be likely. Spiridonov (1995) showed that there 

is considerable variation in the start, maxima, and duration of krill spawning along 

the Antarctic Peninsula. Spawning may start early (late November) and last long 

(3-3.5 months) or start early and last for a short time. Areas with variable starting 

times have been observed as well.
The simulations of krill growth suggest that early spawning is more beneficial for 

krill to survive transport to South Georgia. Thus, a single spawn at the beginning of 
the season, rather than multiple spawns, may result in more krill arriving at South 

Georgia. However, the timing of this single spawn is crucial, because of variability in 

food supply and circulation characteristics. The timing of spawning relative to the 

environmental characteristics may be part of the explanation for the year-to-year 

fluctuations in krill biomass at South Georgia.

5.2.5 Effect o f Environm ental Changes

The Antarctic Circumpolar Wave (ACW) causes anomalous sea surface tempera
tures (SST) and sea ice anomalies to propagate eastward around Antarctica (White 

and Peterson, 1996). The atmospheric response to changes in SST then produces 
a positive feedback to the ocean, which is the displacement of the anomalous SST 
to the east and thereby the eastward propagation of the ACW. Although Antarctic 
sea ice is predominantly annual, interannual variability has been demonstrated by 
satellite data (Murphy et ah, 1995). Zwally et al. (1983) showed that the position 
of anomalies in the maximum sea ice extent fields proceeds around the Antarctic 
Continent with a period of approximately seven to nine years.

The timing of the advance and retreat of the sea ice edge determines the irra- 
diance and hence the potential light available for photosynthesis in the biologically 

active marginal ice zone. The total irradiance may vary by as much as 50% depend
ing on the timing of the seasonal track of the ice edge (Murphy et al., 1995) affecting 
primary production and higher trophic levels.

The propagation of high sea ice extent around the Antarctic imposes interannual 
changes in sea ice extent on the Southern Ocean ecosystem. A high concentration 

and long duration of sea ice is important for the overwintering of krill, especially 

larvae (Daly, 1990) and also provides sufficient food to krill to promote early spawn

ing in spring. Two consecutive years of high sea ice concentration are necessary for 
successful recruitment of krill (Siegel and Loeb, 1995; Loeb et al., 1997). Due to the
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periodic dynamics of the ACW, the extent of sea ice is shifted around Antarctic and 
low sea ice years follow the high sea ice years. Years of low sea ice result in less krill 

recruitment and a decline in krill biomass that occurs with an observed periodicity. 
At the same time juvenile krill originating along the west Antarctic Peninsula con

tinental shelf are selected for by biological and environmental factors to successfully 

complete transport to South Georgia. The variability of sea ice extent due to the 

ACW therefore has a potentially large effect on the supply of krill from this source 

population and years of low sea ice concentrations may substantially reduce success

ful transport from this source population. However, due to the distance between the 
Antarctic Peninsula and South Georgia and the dynamics of the progressing ACW, 
a winter of low sea ice concentration at the Peninsula might not necessarily be a 
winter of low sea ice concentration at South Georgia. This may explain why in some 

years krill biomass is low at the Antarctic Peninsula and not at South Georgia.
The effects of the ACW on krill populations is only now being recognized. Ad

ditional, multi-year observational studies are needed in order to investigate the tele
connections between periodic changes in sea ice extent and concentration and krill 
abundance at the Antarctic Peninsula and South Georgia.

5.3 Food Supply

Spawning between December to February places krill in an environment in the Scotia 

Sea, in which chlorophyll concentrations are not always sufficient to support growth 
over the 168 to 276 days needed for transport to South Georgia from the four main 
origination areas along the Antarctic Peninsula. Sea ice algae does not provide a 
viable alternative food source because sea ice extent and concentration tends to 
be low in the Scotia Sea. Spawning in December, and therefore an early start to 
transport, results in a more successful krill growth than does later spawning because 

of higher food availability in the Scotia Sea during austral summer before the rapid 

decline in phytoplankton concentration during fall. The inclusion of an additional 
food source, such as heterotrophic food, is available only to krill larger than 18 mm 
(Graneli et al., 1993; Huntley et al., 1994a).

The implication of these simulations is that krill of all sizes, but mainly larval 
krill, rely on additional food sources during transport across the Scotia Sea, espe
cially in winter, as has been suggested by Fach et al. (2002). This food source may 

be detritus (Kawaguchi et al., 1986; Holm-Hansen and Huntley, 1984; Daly, 1990)
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which has been observed to be the only food fed on by krill in times of low food 

conditions (Daly, pers. com.). The inclusion of detritus as an additional food source 

has a positive influence on the growth and survival of krill, especially larvae, and is 
most needed during winter. Growth and survival of krill from the origination area 

along the Antarctic Peninsula during transport to South Georgia is most success
ful when krill feeds on a combination of phytoplankton, sea ice algae, detritus and 
copepods.

The growth rate of krill has been shown to be influenced by temperature (Poleck 

and Denys, 1982) in that the intermoult periods decrease with increasing temper

ature, indicating that increased temperature might result in a higher growth rate. 

Krill in the Scotia Sea experience temperatures from -1.8°C in winter up to 4°C in 
summer and are therefore exposed to a wide range of temperatures. The simulated 

krill growth rates increase in response to increased temperature only when these 
coincide with high food concentrations. However, the changes in krill growth rate 
due to temperature alone are small relative to those produced by changes in con
centration of food supply (see Fach et al. 2002). Therefore, enhancements of growth 

rate due to increased temperature are not sufficient to compensate for a low food 
environment.

The krill growth simulation results (section 4.5) are based on food availabil
ity time series derived from composite CZCS and SSM/I images, which are then 
combined with idealized representations of heterotrophic food and detritus concen
trations derived from POC:Chla relationships. Thus, these time series represent 
specific assumptions about how food is distributed across the Scotia Sea and once 
defined, the food availability and food type does not evolve along a given trajectory. 

However, all food is linked in the existing ecosystem and environmental changes 
translate into the whole food web. Therefore, such translations of environmental 
changes cannot be resolved in the modeling approach used here and events that 
increase or decrease local food concentrations are missed. However, such events may 

be strong enough to determine krill survival or death and should be included into 
the modeling approach.

Polar phytoplankton growth is mainly influenced by low temperatures, the pres

ence or absence of sea ice, nutrient supply, and seasonal variations in available light 

(Smith and Sakshaug, 1990). Therefore changes in water temperature, changes in 
sea ice cover, and changes in wind stress that may result in increased or decreased
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mixing of the water column, will have a strong effect on the growth of phytoplankton 

and also on the species composition. Also, POC concentrations are dependent on 

species composition and physiological state of the phytoplankton (Cota et al., 1992). 
The modeling approach used here cannot resolve such dynamics.

The life cycle of zooplankton in polar regions is also governed by the low temper

atures, but in addition depends on the cycles associated with primary production 

(Smith and Schnack-Schiel, 1990). Thus, changes in the species composition and 

concentration of the phytoplankton community will change zooplankton growth and 

species composition, which in return affect higher predators that depend on different 
zooplankton species as a food source.

Environmental changes can, thus, propagate throughout the food web and are 
important factors determining the food supply available to krill during transport. 

The inclusion of the effects of environmental changes on the food supply of krill 

requires the development of lower trophic level models that allow autotrophic and 

heterotrophic food distributions to evolve over time in response to environmental 
conditions. Such a model will then be able to translate the repercussions of climate 
change discussed in section 5.2.5 into the overall food web and allow testing of these 
effects on food availability and on krill.

5.3.1 D eep Chlorophyll M axim um

High phytoplankton concentrations are found at depth, below 60 m, in the study 
area (El-Sayed and Weber, 1982; Bianchi et al., 1992; Smith et al., 1996; Treguer 

and Jacques, 1992; Whitehouse et al., 1996), in the deep chlorophyll maxima. Deep 
chlorophyll maxima have been observed mostly in the summer/fall in the Scotia Sea 
(El-Sayed and Weber, 1982), at the western Antarctic Peninsula (Bianchi et al., 1992; 

Treguer and Jacques, 1992; Smith et al., 1996), and near South Georgia (Whitehouse 
et al., 1996) and not during winter/spring (El-Sayed and Weber, 1982; Smith et al., 

1996). Krill wanting to exploit this food source need to be able to reach depths of 
80-100 m by vertically migrating. Krill have been observed to exhibit a diel vertical 
migration pattern (Marr, 1962; Nast, 1979; Kalinowski and Witek, 1980; Everson 

and Ward, 1980; Godlewska, 1996) and no difference was observed between female 
and male krill migration (Nast, 1979). However, it has been observed that there is 

a connection between the size of krill and the amplitude and period of migration 
(Nast, 1979; Godlewska, 1996; Everson and Ward, 1980), with a 24-hour period and
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larger vertical migration distance (up to 1 0 0  m) associated with older krill and a 
1 2 -hour period and a smaller range of vertical migration associated with younger 

krill (Everson and Ward, 1980; Godlewska, 1996). This difference is believed to 
result from passive krill sinking in swarms following feeding (Pavlov, 1969; Everson 

and Ward, 1980). After digestion, krill actively ascend to the surface with high 
chlorophyll a concentrations and a segregation of krill sizes occurs because small 

and large krill need different periods of time for feeding and digestion, which may 

let larger krill be positioned above smaller krill or below (Everson and Ward, 1980). 

Godlewska (1996) shows that the amount of phytoplankton available for feeding 

is a main factor in influencing krill migration. High abundance of phytoplankton 

will cause krill to migrate with a maximum amplitude and longer period, while 
low food supply will cause krill to migrate less and in a shorter period. Krill are 
therefore found at average depths of 50 m to 70 m (Godlewska, 1996). There are 
seasonal changes in the vertical migration patterns of krill due to the availability of 
phytoplankton as food (Godlewska, 1996), with the depth range of migration being 
greatest in January.

Such krill migration and feeding behavior is not included in the modeling frame

work used in this study. The drifters in the simulated circulation fields remain at 

a fixed depth of 50 m and the HOPS model, as it was implemented in this study, 
does not allow for the vertical migration of drifters. Inclusion of vertical migration 
is needed in future studies, because concentrations of chlorophyll at depth may be 
an important additional food source for krill. Also, vertical migration positions krill 
at levels with different flow speeds (Fig. 54), which may influence overall transport 
times. The inclusion of behavior requires parameterization of the corresponding 
energy requirements in the krill growth model, linking the energy demand of krill 
to its current behavior. However, data on the energy expenditures associated with 

swimming activity is very limited (Kils, 1982) and not sufficient to parametrize this 
process. Thus, additional measurements of energy expenditure during swimming 
and vertical migration are needed.

5.3.2 Selection of A ge Group?

The simulated drifter results (section 4.3) show that there are four regions from 

which krill can be transported to South Georgia in 10 months or less. To survive 
this transport, the krill need a combination of all four food sources and an early
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transport start in December is more beneficial than later start times. For krill 
originating in region 1 this means that 85% of the larval krill starting transport in 

December (Table 16), and all juvenile krill survive. This is similar for krill originating 

in region 2 (Table 17), where 89% juveniles and 100% adults survive, as well as region 

3 (Table 18) and region 4 (Table 19). The pattern of more juvenile krill than larval 

krill surviving transport when feeding on all four food sources is also observed for 

different release times.

These results show that it is possible for larval krill to be transported from specific 
regions to South Georgia and grow to 1+ sizes during transport. The survivors that 
only grow slightly during transport (e.g. 3.13 mm) are not viable when reaching 

South Georgia, although they survive transport in the simulation. Men’shenia and 
Spiridonov (1991) showed that krill development through one developmental stage 

takes from eight to 30 days. They calculated a relationship between temperature 

and developmental time that shows that if krill do not develop into the next stage 

within this time, development will not continue and the animal dies. Therefore, 
krill that remain at the same size throughout a given simulation will not survive. 
However, juvenile krill survive transport to South Georgia from all four regions and 
can grow to sizes of 2+ and 3+ krill.

Larval and juvenile krill from region 4, the southwestern Antarctic Peninsula, 
survive transport to South Georgia, however, krill that arrive at South Georgia are 
relatively small (4.13 - 13.38 mm and 26.63 - 42.13 mm) compared to those originat
ing from the other three regions. The transport pathways of drifters originating in 

the southwestern Antarctic Peninsula show that drifters spend up to 4-5 months in 
transport toward the tip of the Antarctic Peninsula. Thus, larval and juvenile krill 
originating in this region may not be the primary source for krill at South Georgia. 

More likely, these krill supply 1+ and 2+ animals to regions 1 to 3, which are located 
along their transport paths.

All sizes of krill originating in the Weddell Sea are likely to survive transport to 

South Georgia due to their access to large amounts of sea ice algae and detrital food 
during the first 10 months of transport. No selection of a size class was observed 
for krill originating in this region. Krill arriving at South Georgia after 20 months 
reach sizes of 2+, 3+ and even larger size classes.

Therefore, the availability of food together with the length of time needed for 

transport combine to select for juvenile krill being the most able to survive the time
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required for transport to South Georgia for krill originating in regions 1-4. This 

implies that regions 1-4 supply mainly 2+ animals. From the Weddell Sea, 2+ and 

3+ animals can be delivered to South Georgia. These results agree with studies 

that show that usually the youngest dominant size class found at South Georgia is 

the 2+ class and only some years show a dominant 1+ size class (Mackintosh, 1972; 

Murphy et al., 1998)

5.3.3 Estim ates o f Krill Food D em and

Krill density estimates at South Georgia encompass a wide range of values, from 

11.7 g m - 2  for a November/December 1981 survey (Murphy et al., 1991) to 95 g 
m - 2  for a January 1992 survey (Goss and Everson, 1996). Brierley et al. (1997) 
estimated a krill density of 40.57 g m - 2  for the East Core Box (cf. Fig. 24) and 
26.48 g m ~ 2 for the West Core Box. At the Elephant Island region, Siegel et al., 
(2002) measured a krill abundance of 13.04 g m-2, which is just slightly below the 
long-term running mean 13.9 g m - 2  for this region (Siegel et al. 2002). Along the 

west Antarctic Peninsula values of 95 g m ~ 2 were measured during the LTER study 

in summer, compared to 32 g m ~ 2 in spring, 12 g m ~ 2 in fall, and 8  g m - 2  in winter 
(Lascara et al., 1999).

To estimate the amount of food that is necessary to sustain such large krill 
densities at South Georgia, Elephant Island, and the west Antarctic Peninsula during 
summer, a calculation of metabolic needs of different-sized krill was made. The 
maximum allowed krill growth rate in the growth model simulations is 0.25 mm 
d-1. From the parameterizations for ingestion and respiration in the krill growth 
model (cf. Table 5) it can be estimated that larval krill (2 mm) need to gain 0.004558 

mg C d - 1  to achieve 0.25 mm d_1 growth, which in return requires a total of 312.0 
mg C d - 1  food intake. The required food intake reflects what is needed to cover 
the high respirational costs of larval krill and to provide energy for positive growth. 
These high rates may be due to the feeding parameterization for small, 2 mm, krill 
which is extrapolated from observations for larger krill (Hofmann and Lascara, 2000) 
and may overestimate metabolic needs of larval krill.

Food sources that krill may use in summer are phytoplankton, detritus and het- 
erotrophic food. Feeding on sea ice algae in summer is unlikely because of reduced 
or no sea ice at the specified locations. Also, the krill density estimates are from 
measurements made in ice-free waters. If phytoplankton, heterotrophic food, and
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detritus are fed on in equal quantities, a single larval krill would need a phytoplank

ton supply of 1.73 mg d-1, 86.67 mg C d_1 carbon from heterotrophic food sources 

and 138.67 mg C d - 1  from detritus.

A juvenile krill ( 2 2  mm) needs to gain 0.2637 mg C d_1 to achieve a growth 

of 0.25 mm d_1, which translates into a total of 110.1 mg C d_1  food intake per 

individual because of lower respiration rates. This amount of carbon can be supplied 

by 0.612 mg d - 1  of phytoplankton, 30.58 mg C d - 1  of heterotrophic food and 48.93 
mg C d - 1  of detritus.

An adult krill (45 mm) needs to gain 1.42 mg C d - 1  to achieve a growth of 0.25 

mm d_1. This requires a total of 119.21 mg C d - 1  food intake which can be supplied 

by phytoplankton, heterotrophic, and detritus food of 0.663 mg d-1, 33.13 mg C 
d_1, and 52.96 mg C d-1, respectively.

Using the krill density estimates for South Georgia, Elephant Island and the west 

Antarctic Peninsula and assuming that larval, juvenile and adult krill are present 
in equal numbers in each of the areas, the amount of food necessary to sustain this 
biomass can be calculated. The weight of the different sizes of krill can be calculated 
from the equations used in the growth model (Table 5), which is 0.2325 mg for a 
larval krill, 83.22 mg for a juvenile krill, and 162.01 mg for an adult krill. Therefore, 
89.29 g C m - 2  d - 1  are needed to sustain krill in the East Core and 58.28 g C m - 2  

d~x in the West Core Box. The Elephant Island area would need to supply 30.59 g 

C m - 2  d_1  to feed 13.9 g m - 2  of krill and at the west Antarctic Peninsula 95 g m~ 2 

krill demand 209.08 g C m - 2  d-1.
These values seem realistic for summer conditions at South Georgia, where high 

average phytoplankton concentrations of 5.1 mg chi a m - 3  have been measured and 
SeaWiFS images show intense phytoplankton blooms on the South Georgia shelf of 
>10 mg chla m - 3  (for review see Atkinson et al., 2001). Other studies estimate a 

mean phytoplankton biomass of 132 mg m - 2  (6 . 6  g C m~2) (Ward et al., 1995) or 
even 625 mg m - 3  (31.25 g C m“2) (Atkinson et al., 1996) for the surface mixed layer 

on the South Georgia shelf in summer. In addition, Ward et al. (1995) calculated 
a mean mesozooplankton biomass of 5.85 g C m ~ 2 and an average of 5.54 g C m - 2  

was calculated by Atkinson et al. (1996). This would provide an average range of 
12.45 to 36.47 mg C m - 2  for both food sources and when detritus concentrations 
are included (POC:Chla ratio of 38 in summer), a total of 17.47 to 60.54 g C m~ 2 

may be available for krill to meet the demand of 58.28 g C m - 2  d_1. It should be
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noted that these observed values are average values and individual patches may have 

a higher or lower biomass. In addition estimates of biomass vary largely between 

studies (Atkinson and Snyder, 1997). At the same time the growth rate assumed 

here is a rather large growth rate that cannot be sustained very long.

Phytoplankton abundance data for January in the west Antarctic Peninsula re
gion from BIOMASS cruise data is summarized by Priddle et al. (1994) and shows 

variations from 0.45 to 1334.5 mg chla m-2, integrated over the upper 50 m. In this 

region areas of high phytoplankton concentrations exist, as was also observed by 

Holm-Hansen and Mitchell (1991), who observed phytoplankton biomass exceeding 

700 mg chla m - 2  at some stations on the west Antarctic Peninsula continental shelf. 
Mean phytoplankton biomass in the upper 50 m during December 1986 was 291 mg 
chla m ~ 2 and 176 mg chla m - 2  in January 1987 (Mitchell and Holm-Hansen, 1991a; 
1991b). This phytoplankton biomass is more than that needed to sustain the high 
krill densities observed in this region. Including detritus concentrations derived from 

POC:Chla ratios, a total of 52.02 g C m ~ 2 may be available to krill.

Few data on copepod distributions at the west Antarctic Peninsula are available. 

Schnack-Schiel and Mujica (1994) show an abundance of 2,700 copepods of the 
species Calanoides acutus per 1 0 0 0  m3 and 20,000 Metridia gerlachi per 1 0 0 0  m3 

at the Antarctic Peninsula in January 1984, which are two dominant species of 
copepods. Huntley et al. (1994b) report numbers of 1,086 Calnoides acutus per m2 

at the end of October 1989 in the Gerlache Strait, which declined to 244 numbers 
m - 2  by the end of November 1989. Again, these calculations show that it may be 
the patches of high food concentrations that krill depend on for their growth and 
survival.

5.4 Effect of Variability

5.4.1 Variability o f Food Sources

The Scotia Sea is a variable environment and phytoplankton concentrations ex
tracted from the CZCS images along drifter trajectories that are not widely sep

arated in space and time show marked differences (Fig. 8 ). Similarly the sea ice 
time series (Fig. 10) and detritus time series extracted from the blended CZCS data 
(Fig. 13) suggest environmental variability occurring at a large number of scales. 

The circulation across the Scotia Sea is affected by the variability in the location
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of the ACC fronts and is characterized by mesoscale eddies (Brandon et al., 1999). 
This mesoscale variability is evident in the simulated circulation fields as well, and 

the formation of mesoscale eddies is observed in the circulation distribution (Fig. 

25). Peaks and troughs in the food time series extracted along drifter trajectories 

correlate with the trajectories moving through mesoscale eddies which may be lo

cated in high or low food environments. Fach et al. (2002) imposed this kind of 

variability with a time series of chlorophyll concentrations based on characteristics 
of mesoscale features seen in WOCE drifter trajectories, since the composite circu

lation field used did not include such features. The simulations in this study, which 
do include mesoscale flow variability, show that more krill survive and grow to larger 

sizes when feeding on phytoplankton only (Figs. 44-48A) when compared to growth 
of krill feeding on phytoplankton in the study including variability in an ad hoc 

manner (Fach et al., Fig. 8 ). This shows that the variability in food supply due to 
the use of a simulated circulation field that includes mesoscale variability plays a 
major role in the survival of krill during transport.

5.4.2 Variations in Krill Biom ass at South Georgia

The results from this study show a strong connection between the krill population at 

South Georgia and those along the western Antarctic Peninsula, which represent the 

sink and the source population within the metapopulation, respectively. Transport 
times between these regions are relatively short, with 163 to 225 days required to 
cover the 1500 km distance between the two regions. Thus, changes in krill biomass 
at the western Antarctic Peninsula may influence the biomass at South Georgia in 
the same year with a relatively short lag time.

Krill abundance around South Georgia is known to fluctuate markedly (Heywood 
et al., 1985; Priddle et al., 1988). Studies of hydro-acoustic surveys of krill at South 

Georgia (Priddle et al., 1988; Brierley et al., 1997) together with data on avian and 

mammalian populations (Croxall et al., 1988; Croxall and Rothery, 1995; Croxall et 

al., 1998) show that there were four times in the last 20 years when the availability 
of krill at South Georgia was much reduced. These years of low krill biomass appear 
to reflect generally low abundance of krill throughout the South Georgia area and 
possibly the whole Scotia Sea (Priddle et al., 1988; Kock et al., 1994). In addition, 

recent studies have shown that there are major interannual changes in the krill 
density at South Georgia, with low concentrations of krill found during October and
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much higher concentrations of krill found during December/January, and that the 

timing of a survey significantly effects krill estimates (Brierley et al., 2002)

Oscillations in krill biomass at Elephant Island (cf. Fig 1) have been shown 

to coincide with oscillations in biomass at South Georgia (Brierley et al., 1999). 

Changes in krill density apparent at Elephant Island in any particular year (of a 
total of six years) also seemed to be manifested at South Georgia in the same season, 
with no apparent time lag between locations (Brierley et al., 1999). The results from 

that study support the idea that environmental influences, recruitment success, and 

sea ice extent may have the same effect on both populations and that teleconnection 

processes between locations may transmit possible environmental-mediated changes 

in density across the Scotia Sea.
The variations in krill biomass seen at South Georgia can be attributed to vari

ations in krill populations at the upstream source in the Antarctic Peninsula, in the 

Weddell Sea, and local populations at South Georgia, which are discussed below.

Variation U pstream

As suggested above, changes in the krill population along the western Antarctic 
Peninsula have an influence on the krill population at South Georgia. Thus, changes 
in the recruitment success of krill along the western Antarctic Peninsula may result 
in more or less krill being transported to South Georgia. Such recruitment success 
depends, for example, on the timing of spawning within the spawning season relative 
to environmental conditions, such as changes in the location of the SACCF and sea 

ice extent. It is also linked to the food supply available during krill spawning season, 
influencing the timing and size of the spawn.

A key feature of the physical environment that is of major importance for krill 
is the annual formation and retreat of sea ice (Mackintosh, 1972). The recruitment 

of juvenile krill in the Antarctic Peninsula region has been linked to the extent and 
duration of sea ice in the previous season (Siegel and Loeb, 1995; Loeb et al., 1997). 
The environment beneath the winter sea ice provides a favorable habitat for larval 
krill development (Daly, 1990) and also provides sufficient food supply for krill to 
promote early spawning in spring (Siegel and Loeb, 1995). A year with low sea 

ice concentration and short duration promotes late spawning of krill, while a year 
with high sea ice concentration and long duration promotes early spawning, which 
increases krill survival during transport (section 5.2.4). For successful recruitment 
of the spawned krill, a second year of high sea ice concentrations and long duration
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is necessary. A minimum of two consecutive years of high sea ice concentration are 
needed for successful krill recruitment. The krill growth simulations suggest that 

juvenile krill are most likely to survive transport. Thus, seasons characterized by 

increased sea ice and therefore enhanced recruitment of krill can potentially provide 

a large source of krill for transport to South Georgia and other downstream locations.

However, a high abundance of krill at the Antarctic Peninsula may not always 

propagate toward South Georgia. Variability in the location of the SACCF relative 

to the shelf break may place it further offshore along the Peninsula (Hofmann and 

Klinck, 1998). Therefore, fewer krill will be entrained and transported from the 
region, with the result that more krill are retained along the Antarctic Peninsula 
(see section 5.2.2).

Although years of low krill biomass at South Georgia in general occurred during 

periods of low sea ice extent, there are periods of low sea ice cover (e.g. 1984/85, 
1985/86) when the biomass of krill in the South Georgia area did not appear to be 

particularly low (Murphy et al., 1998). A possible explanation for this may be the 
influence of the propagating ACW, which provides more sea ice for krill survival 
at South Georgia after it has already passed the Antarctic Peninsula. Another 
explanation may be that krill originating from the Weddell Sea, which need 20 
months to reach South Georgia, may have compensated in these particular years for 
the absence of krill from the Antarctic Peninsula.

Variation During Transport

During transport from the west Antarctic Peninsula to South Georgia krill is de
pendent on the food resources across the Scotia Sea. Therefore, a particularly low 
food year, may result in a reduction in krill survival; whereas, a high food envi
ronment will result in increased survival and potentially more krill reaching South 

Georgia. Timing of the transport is important with respect to food conditions, as 
early spawning releases krill into a potentially higher food environment.

Although hydro-acoustic estimates of krill vary considerably between years, these 
observations show that the krill biomass at Elephant Island is greater than that at 
South Georgia (Brierley et al., 1999). If this is indeed a representative observation 
and not due to differences in measuring krill biomass (Brierley et al., 1999), then this 

might be due to the dispersal of krill during transport, as suggested in Brierley et al. 
(1999). Or, as suggested in this study, the different survival chances of krill during 

transport depend on the timing of spawning in relation to the position of the SACCF
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and the spawning area. Different transport pathways lead through different food 

concentrations (section 4.3.3) and release time and location is crucial to encountering 

sufficient food supply. At the same time predation of krill by predators, such as for 

example sea birds, whales, seals, and penguins, is an issue during transport, which 

is not included in the model setup used in this study.

Variation Locally

The local environment at South Georgia may also exert a large influence on the krill 

population. Once krill arrive at South Georgia, survival success is determined by 

sea ice extent, food supply, and predation. Predation on krill is an important factor 
at South Georgia, given the large biomass and diversity of predator species (Croxall 

et al., 1984; Croxall and Prince, 1987; Croxall et al., 1988; Hunt et al., 1992; Boyd 
et al., 1994) that depend on krill as a food source.

A shift in the SACCF may transport krill further offshore from the Island in some 
years or transport krill to locations even further downstream, thereby reducing the 
amount of krill being delivered directly to South Georgia. Also, local variability in 

mesoscale processes may change krill retention mechanisms ( Murphy, 1995; Mur
phy et al., 1998; Brandon et al., 1999). For example, if the location of the shelf 
front found at South Georgia (section 5.1.5) moves further offshore, krill that are 
usually retained in the continental shelf area may be transported further offshore, 
and through interactions with the fast-flowing currents associated with the SACCF, 
may get transported further downstream and exported from the local population.

5.4.3 Estim ates o f Predation

Given the long transport time necessary to deliver krill to South Georgia from differ
ent source regions, it is likely that krill encounter predators along the way. Estimates 
of predation rates on krill are few. Boyd and Croxall (1996) calculated the demand 
for krill of Antarctic fur seals and macaroni penguins at South Georgia, from a com

bination of physiological data and diet samples, to be 32000 tons fresh mass d-1. 
These two predators together consume >75% of the total for land-based predators 

(Croxall et al., 1985). Atkinson et al. (2001) calculate a total food removal for the 
same two species for an area off the west coast of South Georgia of 0.94 g fresh 

mass m~2 d-1, compared with a mean biomass of 30 g fresh mass m~2. This area 
includes breeding and non-breeding populations of Antarctic fur seals and macaroni
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penguins. They conclude that the total removal of krill by land-based predators is 

on average approximately 3% d-1.
These estimates, however, are calculated for the productive waters around South 

Georgia which have a large predator biomass and diversity of predator species (Crox

all et ah, 1984; Croxall and Prince, 1987; Croxall et al., 1988; Hunt et al., 1992; Boyd 

et al., 1994) and are not representative for other areas with predator colonies or the 

open ocean, which is where most of the transport time is spent. Therefore, 3% 
d - 1  removal of krill (Atkinson et al., 2001) is considered a maximum estimate for 

predation, which cannot be applied to krill being transported across the Scotia Sea 
to South Georgia.

Murphy (1995) estimated the total land-based predator demand at South Georgia 
as a function of distance from the Island. Close to the Island the annual impact is up 

to 250 t km - 2  year-1, while at a distance of 350 km away from the Island the impact 

vanished. Assuming the predator demand at South Georgia is 3% d - 1  as estimated 

by Atkinson et al. (2001), predator impact decreases to 2.4% d - 1  at 75 to 130 km 
from the Island and diminishes to 0.45% d - 1  at 200 km. Krill being transported 
to South Georgia spend most of this transport time more than 350 km away from 
South Georgia, which means predation is negligible. However, krill originating at 
the western Antarctic Peninsula spend part of their transport close to the Peninsula 
and in proximity to the predator colonies located there. Also, during the remainder 
of the transport krill are still subject to predation by whales, fish and sea birds 
not included in the land-based predators. Thus, a predation rate of 0.3% d - 1  is 

assumed to be representative for the time of transport. This value is within the 
available predator estimates of 0 and 0.45% given by Murphy (1995).

The effect of predation on krill during transport to South Georgia was estimated
as

K(t)  =  K 0e~d\  (25)

where K(t)  is the number of krill at a certain time t during transport, K q is the 
initial number of krill at the time of release assumed to be 5000, and d is the rate 
of predation (0.3%). The number of krill chosen as K 0 is arbitrary and is intended 

to represent a small school of krill. The predation estimates are in terms of a non- 
dimensional ratio (K(t) /Ko)  that is between 0 and 1 , and therefore does not change 

with different K 0 values.
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Fig. 58. Estimates of krill loss due to different rates of predation. The vertical 
lines indicate the average simulated transport times from the different source re
gions: Elephant Island (El), west Antarctic Peninsula (WAP), Bransfield Strait 
(BS), southwest Antarctic Peninsula (SWAP), and Weddell Sea (Wed).

Depending on origination area, or total transport time, predation effects on krill 
survival differ (Fig. 58). Krill originating in the Elephant Island/Scotia Sea region 

have a better chance of surviving transport to South Georgia than do krill from the 

Weddell Sea because of the different transport times. However, krill from the Wed
dell Sea spend most of the transport time away from land and land-based predators 
and for these individuals a predation rate of 0.3% d - 1  may be too high.

Calculations of the total time needed to remove 50% of the krill transported to 

South Georgia (K ( t ) / K 0 = 0.5) show a wide range for different predation rates (Fig. 
58, Table 2 2 ). Krill originating at the Elephant Island/Scotia Sea region and the 

west Antarctic Peninsula are able to reach South Georgia before 50% are removed 
with a 0.3% d _1 predation rate. Krill originating in the Bransfield Strait region and
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Table 22. Summary of the total times (days) necessary for different percent (%) of 
krill to be removed by different rates of predation.

Predation Rate (%)

Krill Removal (%) 0 .2 0.3 1 2

1 5 3.4 1 0.5

10 53 35 1 0 5

50 347 231 69 35

90 1157 767 230 115

the southwest Antarctic Peninsula take longer to reach South Georgia, which allows 
>50% of the population to be removed by predation. At the same time, 82% of the 
Weddell Sea krill are removed before reaching South Georgia.

The above analysis indicates that predation can have a considerable effect on 
the successful transport of krill to South Georgia and that the potential impact 
on the variability of krill biomass at South Georgia cannot be neglected. Thus, the 
effect of predation needs to be explicitly included in future studies on krill transport. 

However, this will require detailed estimates of predation rates on krill as a function 

of the different predators and geographical regions.
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6 SUMMARY

This study used a modeling frame work that couples physical and biological pro

cesses to characterize the transport and survival of larval, juvenile, and adult krill 

under different environmental conditions. The analysis of the results from circula
tion simulations, drifter simulations, and simulations of krill growth and how they 

answer the research questions posed for this study are summarized below.
This study defined four origination regions along the west Antarctic Peninsula 

that coincide with known spawning areas, and one origination area in the Weddell 

Sea, from which krill can potentially recruit into the local krill population at South 

Georgia. The main transport pathway for krill is found to be the currents associated 
with the SACCF and it was found that the timing of spawning is crucial for krill 

survival, with early spawning resulting in the highest numbers of krill reaching South 
Georgia, as well as providing the highest food concentrations along simulated drifter 
paths. However, timing of spawning is also crucial in respect to the position of the 
SACCF and changes in the front location may result in reduced numbers of krill 

reaching South Georgia. This implies that the krill population along the Antarctic 

Peninsula and the Weddell Sea are likely the source populations that provide krill 
to the sink population at South Georgia.

Krill survival during transport is dependent on the food availability along trans
port paths and the krill growth model simulations showed that no single food source, 
such as pelagic phytoplankton, detritus, sea ice algae, or zooplankton, can sup
port continuous growth of Antarctic krill during the time needed for transport to 
South Georgia. However, combinations of the food sources during transport time 

enhanced krill survival, with heterotrophic food and detritus being particularly im
portant during periods of low pelagic phytoplankton concentrations. It was shown 

that mesoscale patches of high food concentrations may be important to sustain krill 
in a variable food environment.

At the west Antarctic Peninsula, environmental and biological factors combine 
to select for juvenile krill being the age group that successfully completes transport. 
For krill originating in the Weddell Sea no such selection could be observed. The 
implication of this is that for best transport success the source population along the 

Antarctic Peninsula needs to provide large numbers of juvenile krill. However, it has 

been shown in previous studies that the recruitment success of juvenile krill depends 

on the occurrence of two consecutive high sea ice concentration years (Siegel and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



172

Loeb, 1995; Loeb et al., 1997). This implies that interannual changes in the sea ice 

extent, such as from the ACW, potentially has a large effect on the supply of krill 
from this source population and years of low sea ice concentrations may substantially 

reduce successful transport from this source population.
The observed episodic variations in krill biomass at South Georgia result from a 

combination of variations at the source population, during transport, and at the local 

population. It has been shown in this study, that the successful transport of krill to 

South Georgia depends on multiple factors, such as the location of the spawning area 

and timing of spawning, food concentrations during transport, the variations in the 

location of the SACCF, and predation. It also depends on the recruitment success 
of the source population that may result in more or less krill being transported to 

South Georgia. This implies that Antarctic krill are well adapted to the variable 
environment in which they live. However, the many factors that need to converge to 

produce successful supply of krill to the sink population at South Georgia, makes the 
krill population at South Georgia susceptible to changes caused by climate variations 
or human impact.

The fact that populations at South Georgia, the west Antarctic Peninsula, and 
the Weddell Sea belong to the same krill metapopulation has wide reaching im

plications for the management strategies of this commercially exploited fisheries. 
Catch limits need to be revised taking into account that the separate fisheries at 

South Georgia and at the Antarctic Peninsula are fishing on the same population, 

not as previously thought on separately contained populations (Mackintosh, 1973; 
Makarov, 1973; Lubimova et al. 1982). This may ensure the survival of the metapop
ulation while sustaining the existing fishery.

This study has provided insight into which biological and environmental factors 
control the successful transport of krill across the Scotia Sea and their survival during 
that time, and with it insight into krill distribution and production in the Scotia Sea. 

Future modeling efforts of krill growth and survival will require inclusion of vertical 

migration behavior of krill with the corresponding energy dynamics. In addition, the 
inclusion of a lower trophic level ecosystem model is necessary to better account for 
dynamically changing food sources for krill and to allow for the possibility of testing 
the influence of environmental changes on krill growth and survival. Further, the 
inclusion of estimates of predation on krill is of importance because predation can 
account for a major source of krill mortality during transport.
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Though this study has provided insight into the factors influencing krill popu

lation dynamics, many questions are still open. The effects of the ACW on krill 

populations is only now starting to be considered, for example. Additional, multi

year observational studies are needed in order to investigate the teleconnections 

between periodic changes in sea ice extent and concentration, and krill abundance 
at the Antarctic Peninsula and South Georgia. It is necessary to investigate the 
transport and retention mechanisms for krill around South Georgia more closely, 
to asses their importance for the local krill population and to understand krill dis

tributions around the Island. Further studies are needed to investigate the fate of 

krill that are transported further downstream from South Georgia, looking at the 

teleconnections of krill populations all around Antarctica. It is only with such a 

holistic approach that the dynamics of these krill populations can be understood.
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APPENDIX A

A l. CZCS-derived phytoplankton concentration along drifter 

trajectories

Figures A l to A5 show the CZCS-derived range of phytoplankton concentrations 

extracted along trajectories of drifters originating in five regions: the west Antarctic 

Peninsula, Bransfield Strait, the Scotia Sea/Elephant Island area, the southwestern 
Antarctic Peninsula, and the Weddell Sea.
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Fig. A l. Range of CZCS-derived tim e series of pigment concentration (mg m-3) 
along trajectories of drifters originating at the west Antarctic Peninsula (region 1) 
starting in A) December (Year Day 335), B) January (Year Day 1), C) February 
(Year Day 32). The heavy solid line and dashed line indicate concentrations along 

two different particle trajectories within the range of concentrations, which is de
noted by the grey shading.
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Fig. A2 . Range of CZCS-derived time series of pigment concentration (mg m~3) 
along trajectories of drifters originating in the Bransfield Strait area (region 2 ) start

ing in A) December (Year Day 335), B) January (Year Day 1), C) February (Year 
Day 32). The heavy solid line and dashed line indicate concentrations along two 
different particle trajectories within the range of concentrations, which is denoted 
by the grey shading.
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Fig. A3. Range of CZCS-derived time series of pigment concentration (mg m-3) 
along trajectories of drifters originating in the Scotia Sea/Elephant Island area (re
gion 3) starting in A) December (Year Day 335), B) January (Year Day 1), C) 

February (Year Day 32). The heavy solid line and dashed line indicate concentra
tions along two different particle trajectories within the range of concentrations, 
which is denoted by the grey shading.
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Fig. A4. Range of CZCS-derived time series of pigment concentration (mg m-3) 

along trajectories of drifters originating in the southwestern Antarctic Peninsula area 
(region 4) starting in A) December (Year Day 335), B) January (Year Day 1), C) 
February (Year Day 32). The heavy solid line and dashed line indicate concentrations 
along two different particle trajectories within the range of concentrations, which is 
denoted by the grey shading.
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Fig. A5. Range of CZCS-derived time series of pigment concentration (mg m~3) 
along trajectories of drifters originating in the Weddell Sea area (region 5) starting 
in A) December (Year Day 335), B) January (Year Day 1), C) February (Year Day 

32). The heavy solid line and dashed line indicate concentrations along two different 

particle trajectories within the range of concentrations, which is denoted by the grey 
shading.
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A2. SSM /I-derived sea ice algae concentration along drifter 

trajectories

Figures A6  to A10 show the SSM/I-derived range of sea-ice algae concentrations 

extracted along trajectories of drifters originating in five regions: the west Antarctic 

Peninsula, Bransfield Strait, the Scotia Sea/Elephant Island area, the southwestern 

Antarctic Peninsula, and the Weddell Sea.
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Fig. A6 . Range of SSM/I-derived time series of sea ice algae concentration (mg m~3) 
along trajectories of drifters originating at the west Antarctic Peninsula (region 1 ) 

starting in A) December (Year Day 335), B) January (Year Day 1), C) February 
(Year Day 32). The heavy solid line and dashed line indicate concentrations along 

two different particle trajectories within the range of concentrations, which is de
noted by the grey shading.
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Fig. A7. Range of SSM/I-derived time series of sea ice algae concentration (mg 

m-3) along trajectories of drifters originating in the Bransfield Strait area (region 
2) starting in A) December (Year Day 335), B) January (Year Day 1), C) Febru

ary (Year Day 32). The heavy solid line and dashed line indicate concentrations 

along two different particle trajectories within the range of concentrations, which is 
denoted by the grey shading.
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Fig. A8 . Range of SSM/I-derived time series of sea ice algae concentration (mg 

m-3) along trajectories of drifters originating in the Scotia Sea/Elephant Island area 
(region 3) starting in A) December (Year Day 335), B) January (Year Day 1), C) 
February (Year Day 32). The heavy solid line and dashed line indicate concentrations 
along two different particle trajectories within the range of concentrations, which is 
denoted by the grey shading.
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Fig. A9. Range of SSM/I-derived time series of sea ice algae concentration (mg m-3) 
along trajectories of drifters originating in the southwestern Antarctic Peninsula area 
(region 4) starting in A) December (Year Day 335), B) January (Year Day 1), C) 

February (Year Day 32). The heavy solid line and dashed line indicate concentrations 
along two different particle trajectories within the range of concentrations, which is 
denoted by the grey shading.
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Fig. A10. Range of SSM/I-derived time series of sea ice algae concentration (mg m-3) 
along trajectories of drifters originating in the Weddell Sea area (region 5) starting 
in A) December (Year Day 335), B) January (Year Day 1), C) February (Year Day 

32). The heavy solid line and dashed line indicate concentrations along two different 
particle trajectories within the range of concentrations, which is denoted by the grey 
shading.
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A3. D etritus concentration along drifter trajectories

Figures A ll to A15 show the CZCS chlorophyll data-derived range of sea-ice algae 

concentrations extracted along trajectories of drifters originating in five regions: the 

west Antarctic Peninsula, Bransfield Strait, the Scotia Sea/Elephant Island area, 

the southwestern Antarctic Peninsula, and the Weddell Sea.
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Fig. A ll. Range of CZCS chlorophyll data-derived time series of detritus concen

tration (mg C m”3) along trajectories of drifters originating at the west Antarctic 

Peninsula (region 1) starting in A) December (Year Day 335), B) January (Year Day
1), C) February (Year Day 32). The heavy solid line and dashed line indicate concen
trations along two different particle trajectories within the range of concentrations, 
which is denoted by the grey shading.

in

30 60 90 120 150 180 210 240 2701
Time (Year Day)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



211

1000
800

600

400

200

_  1000

”£ 800 
O
O)
E,
w 400
4—»

200

600

—it
4—*
CDQ

1000

800

600

400

200

335 1 30 60 90 120 150 180 210 240 270
Time (Year Day)

Fig. A12. Range of CZCS chlorophyll data-derived time series of detritus concen

tration (mg C m~3) along trajectories of drifters originating in the Bransfield Strait 
area (region 2) starting in A) December (Year Day 335), B) January (Year Day 1), 

C) February (Year Day 32). The heavy solid line and dashed line indicate concen
trations along two different particle trajectories within the range of concentrations, 
which is denoted by the grey shading.
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Fig. A13. Range of CZCS chlorophyll data-derived time series of detritus concentra
tion (mg C m~3) along trajectories of drifters originating in the Scotia Sea/Elephant 
Island area (region 3) starting in A) December (Year Day 335), B) January (Year 

Day 1), C) February (Year Day 32). The heavy solid line and dashed line indicate 
concentrations along two different particle trajectories within the range of concen
trations, which is denoted by the grey shading.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



213

1000
800

600

400

200
0 —rAthYnl ,

_  1000 

”e  800
O
D)
E,
m 400

4—»

■S 200  
O

600

1000

800

600

400

200
n  m .  . .

30 60 90 120 150 180 210 240 270335 1
Time (Year Day)

Fig. A14. Range of CZCS chlorophyll data-derived time series of detritus concen

tration (mg C m~3) along trajectories of drifters originating in the southwestern 
Antarctic Peninsula area (region 4) starting in A) December (Year Day 335), B) 
January (Year Day 1), C) February (Year Day 32). The heavy solid line and dashed 
line indicate concentrations along two different particle trajectories within the range 
of concentrations, which is denoted by the grey shading.
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Fig. A15. Range of CZCS chlorophyll data-derived time series of detritus concen
tration (mg C m~3) along trajectories of drifters originating in the Weddell Sea area 
(region 5) starting in A) December (Year Day 335), B) January (Year Day 1), C) 

February (Year Day 32). The heavy solid line and dashed line indicate concentra
tions along two different particle trajectories within the range of concentrations, 
which is denoted by the grey shading.
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