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ABSTRACT
NUTRIENT AND CARBON DYNAMICS IN THE CHESAPEAKE BAY

OUTFLOW PLUME AND THEIR EFFECT ON THE COASTAL OCEAN
ENVIRONMENT

Katherine C. Filippino
Old Dominion University, 2008
Director: Dr. Margaret Mulholland

Seasonally resolved nutrient and carbon fluxes from estuaries to the coastal ocean
are poorly constrained. Nutrient and carbon cycling in highly productive regions like the
Chesapeake Bay outflow plume and surrounding coastal environments greatly affect our
global understanding of carbon cycling. The overall questions for the research described
in this dissertation stem from the need to close global carbon budgets, and obtain a
fundamental understanding of nutrient dynamics in a coastal region heavily influenced by
seasonality and human impacts.

Within the framework of physical characteristics of the outflow plume and
through the characterization of nutrient concentrations, primary productivity rates, and
the uptake of nitrogen using stable isotopes, I identified three different plume types that
differentially provided nutrients and created conditions either suitable or unsuitable for
primary productivity in the coastal zone. A jet-like plume, where there were winds
consistently from the north accompanied by high freshwater flow from the Bay, delivered
high amounts of chlorophyll from the Bay. In contrast, two types of diffusive plumes
occurred when winds came from the south accompanied with low freshwater discharge
and were either influenced by estuarine or oceanic processes. The diffusive-estuarine

plume delivered dissolved nutrients creating conditions suitable for high primary



productivity rates in the coastal zone while the diffusive-oceanic plume generally had low
primary productivity and nitrogen uptake rates.

A secondary study compared and contrasted hydrography, nutrient availability,
primary productivity rates and nitrogen uptake rates in three distinct regions of the Mid-
Atlantic Bight: the plume regions influenced by the Delaware and Chesapeake Bays, the
mid-shelf region between the Delaware and Chesapeake Bays influenced by both coastal
and oceanic processes, and the southern shelf region below the Chesapeake Bay
influenced by the Gulf Stream. Areal rates of carbon uptake were not significantly
different among regions, and were higher than most published values of annual areal rates
for the Mid-Atlantic bight. Annual areal nitrogen uptake rates were also calculated,
providing carbon to nitrogen uptake ratios which were lower than the canonical Redfield
ratio. These findings have implications regarding modeled estimates of carbon uptake

based on nitrogen uptake and vice versa.
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CHAPTER1
THE COASTAL ZONE
INTRODUCTION
Estuaries are an important interface between the terrestrial and oceanic
environment with bay mouths and outflow plumes acting as mixing zones to provide
nutrients, dissolved inorganic carbon (DIC) for primary productivity and dissolved organic
carbon (DOC) for heterotrophic production in the coastal zone. Although research has
been undertaken to understand the sources, cycling, and biogeochemistry of nutrients
within the main-stem of estuaries, nutrient import and export studies through the estuarine-
oceanic interface are rare. Nutrients that enter most aquatic systems are processed within
estuaries as they are transported to the coastal ocean. In this dissertation, I will examine
the delivery of nutrients to the coastal zone via the estuarine plume of the Chesapeake Bay
versus oceanic sources with respect to physical parameters using temperature, salinity, and
terrestrial freshwater inputs to characterize different physical regimes. By approaching
nutrient dynamics in a physical context, I will address how different physical regimes
affect nitrogen uptake and primary productivity in the coastal zone surrounding the mouth
of the Chesapeake Bay. I also will compare these findings with N uptake and primary
productivity to the north, south, and east of the plume region in order to assess the spatial
extent of the Bay’s effect on the coastal zone.
BACKGROUND
The quality and quantity of terrestrial nutrient inputs heavily impacts estuarine

processes, fueling primary productivity, microbial activity, fish production and fisheries

This dissertation follows the journal style of Limnology and Oceanography.



yield. Although estuarine material is altered by internal biogeochemical cycling and
recycling, estuaries are ultimately sources of nutrients and C to the coastal ocean.
Currently, Chesapeake Bay tributaries and part of the main stem suffer from
eutrophication. In semi-enclosed water bodies and coastal bays, too much nitrogen (N) and
phosphorous (P) leads to the development of excess biomass which degrades the overall
health and well-being of marine life (Fisher et al. 1988; Harding and Perry 1997). Both
point sources (e.g. industry and wastewater treatment plants) and non-point sources (e.g.
urban and agricultural runoff, and atmospheric deposition) of nutrient pollution contribute
to the eutrophication of the Bay (Kemp et al. 2005). However, non-point source pollution
is the dominant source of nutrients to the Bay (Kemp et al. 2005).

The northeast coast of the United States is considered to be the most populated
coastal region in the U.S., according to a recent NOAA coastal population trends report
(Crossett et al. 2004). As of 2003, 77% of the northeast region and 37% of the southeast
region reside on the coast (Crossett et al. 2004). An increase in population translates to
more development, fewer buffer zones, and even more nutrient runoff into the Bay and into
the coastal ocean. Population increases correlate directly to total N (TN) loads in coastal
zones (Howarth et al, 1996). If this trend continues, eutrophication-induced anoxia will
only increase, further affecting the processing of nutrients within the Bay and the coastal
ocean beyond the mouth of the Bay.

Nitrogen has a complicated cycle in aquatic systems (Fig. 1.1) and is thought to
limit production in a variety of coastal regions including the MAB (Ryther and Dunstan
1971). The amount of N introduced into coastal systems, particularly to the North

Atlantic, has increased dramatically over the years, and can be directly related to



population growth (Howarth et al. 1996; Howarth et al. 2002). Anthropogenic sources of
N to the coastal zone along the U.S. eastern seaboard, in order of decreasing magnitude
are: 1) agricultural run-off, from both fertilizers and N fixation in soils, 2) atmospheric
deposition of NOy from fossil-fuel combustion, 3) point sources from industrial and
wastewater treatment plants (Howarth et al. 2002). Sinks of N in the coastal zone are
denitrification and storage within either terrestrial, estuarine, or coastal sediments
(Howarth et al. 2002). N is an essential nutrient for growth and the amount and form of
dissolved N are important drivers for determining the dominant algal species (Mulholland
and Lomas 2008). Too much dissolved inorganic N (DIN) can cause excessive algal
growth and even algal blooms. Research has shown that in addition to DIN, dissolved
organic N (DON) can be important in fueling harmful algal blooms (Paerl 1988; Nixon
1995; Glibert et al. 2001; Mulholland et al. 2004). In coastal systems, ‘new’ or
allochthonous N (Eppley and Peterson 1979) can include diverse forms of N including
nitrate (NO3"), nitrite (NO;"), ammonium (NH;"), urea, and other DON (Paerl 1997).
Coastal upwelling can also introduce NO3” from deep oceanic sources, and water column
and sediment N fixation can supply reactive N to the surface water (Boynton et al. 1995;
Paerl 1997). N is also recycled within the water column and sediments, via microbial
processes that produce NOs', NO', NH,", and DON that is available for autotrophs and

heterotrophs (Fig. 1.1).
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Fig. 1.1. Schematic diagram of the N cycle. N oxidation states are shown on the vertical
axis, and major biological transformations between compounds and organisms are shown
with arrows. Nitrification, mediated by bacteria, shows ammonia oxidation: NH;3 + 1%
0, — NOy + H" + H,0 and nitrite oxidation: NO, + 1% O, — NOs". Denitrification is
mediated by bacteria with the following chemical equation: NO3 + 6H" + 5¢” — %N, +
3H,0. Nitrogen fixation is performed by cyanobacteria, bacteria and archaea: N, + 8H"
+ 8¢ + 16ATP — 2NHs + H, + 16 ADP + 16P; (biological). Assimilation of inorganic N
is performed by phytoplankton. Production/reduction of N,O is dependent on
concentrations of O,, NO5, etc. Anaerobic ammonium oxidation (Anammox) is also
shown (Montoya 2008).

Total annual nutrient loads to coastal systems are highly dependent upon seasonal

discharge events (Boynton et al. 1995). In the eastern coastal U.S., nutrient inputs are



tied to freshwater discharge. During spring when precipitation is typically higher, there
is high freshwater flow entering the Bay and coasts, carrying high concentrations of new
nutrients (Malone et al. 1988). In contrast, during summer, when there is less rainfall
there is lower freshwater flow into the Bay and therefore lower nutrient delivery to the
Bay and coastal waters, but at this time nutrient recycling rates are high (Malone et al.
1988). Nutrient limitation is also tied to the seasonal freshwater flow cycle. Algal
growth in the Bay can be limited by N, P or silicon (Si) or co-limitation can occur by two
or more of these nutrients (Fisher et al. 1999). In the lower Bay, N and P are thought to
co-limit algal growth in the winter and spring, followed by a small period of time where
P-limitation may occur. The lower Bay is generally N-limited during summer and fall
mainly due to recycling processes which regenerate P faster than N and due to the low N
to P ratio in the oceanic influenced end-member (Fisher et al. 1992; Fisher et al. 1999;
Kemp et al. 2005). Variations in the pattern of nutrient limitation may also occur along
the mouth of the Bay, where there exists a north-south salinity gradient due to bathymetry
and estuarine circulation (Valle-Levinson et al. 1998; Whitford 1999). There is higher
freshwater discharge along the western side of the Bay and at the southern entrance to the
Bay mouth and therefore potential for higher nutrient delivery at these boundaries (Valle-
Levinson et al. 1998; Whitford 1999).

The seasonal shift in nutrient availability in the lower Bay and Bay mouth may
also extend into the coastal waters as nutrients and materials are delivered through the
Bay mouth. The flux of N and P into and out of the Bay at the estuarine-coastal interface
is important for determining nutrient budgets and primary productivity but difficult to

estimate. Although flow rates can be estimated, nutrient fluxes over even a diurnal cycle



are difficult to estimate in a region where both biological and physical interactions occur
on short timescales.

In addition to freshwater flow, tidal fluctuation at the estuarine-coastal interface is
important for nutrient availability and algal growth. Mixing and salinity gradients within
the water column are affected by the tidal cycle, and that can either facilitate or hinder
nutrient delivery to coastal waters from estuarine and oceanic sources (Guo and Valle-
Levinson 2007). For example, tidal currents outside of the Bay mouth can weaken
stratification by increasing mixing (Guo and Valle-Levinson 2007) and therefore create a
well-mixed physical regime bringing nutrients to surface waters where it is optimal for
phytoplankton growth. However, increased mixing can result in high turbidity and low
light penetration, which is not optimal for growth (Pennock and Sharp 1994).

Coupled with large inputs of nutrients via freshwater discharge to the
Chesapeake Bay and its tributaries are seasonal phytoplankton blooms and microbial
activity that biologically influence nutrient cycling en route to the coastal ocean.
Complex nutrient biogeochemistry tied to biological processes confounds our ability to
extrapolate C productivity and C fluxes from within the estuary to the coastal ocean.
Also, current global ocean and atmospheric C cycle models are poorly constrained in the
coastal ocean environment despite the observations that these are areas where C (and .
nutrient) cycling is intense (Hoffman et al. 2008). Further, increasing anthropogenic
impacts, such as increased carbon dioxide (CO,) emissions and increased atmospheric
temperatures, are affecting CO, exchange between the ocean and atmosphere. Although
the global continental shelf (the shallow (<200 m) area surrounding land margins)

represents only a small fraction of the ocean’s surface area (< 10%), these areas play a



large role in global C cycling by accounting for more than 21% of total oceanic
productivity (Gattuso et al. 1998; Jahnke 2007). They are also areas where biology and
vertical water column movements interact to affect C exchange with the atmosphere
(Gattuso et al. 1998; Jahnke 2007).

The two largest biologically reactive C pools in the ocean are the DIC pool and
the DOC pool. DIC fuels primary productivity via photosynthetic C fixation and its
concentrations are also controlled by air-sea exchange due to temperature-dependent
solubility (Sarmiento and Gruber 2006). In contrast, the DOC pool is a complex mixture
of components released from autotrophs, heterotrophs, inputs from rivers, and fuels
heterotrophic microbial growth. The Amazon River basin is just one example of a well-
studied coastal system influenced by large riverine discharge, and although vastly
different from the Chesapeake Bay system, extensive research conducted there provides
insights regarding C dynamics in coastal systems. The Amazon River is responsible for
20% of the world’s river discharge and the export of total organic carbon (TOC) and DIC
from the entire basin to the ocean has been estimated at 3 x 10> mol C y™' each (Richey
et al. 1980; Degens et al. 1990; Richey et al. 2002). This estimate is only 5 - 10% of
global TOC and 10% of global DIC entering coastal zones, but is important regarding the
ability of the oceans to take up anthropogenic atmospheric CO,, as the main function of
riverine discharge in the global C budget is the export of C to the ocean (Degens et al.
1990; Richey et al. 2002). Without budgeting for riverine TOC and DIC export in C
cycle models, the estimation for the oceans ability to take up anthropogenic CO, may be

overestimated (Sarmiento and Sundquist 1992).



In addition to bulk C export, coastal C research is focused on obtaining estimates
of chromophoric dissolved organic matter (CDOM) and DOC concentrations in the MAB
via satellite remote sensing to better understand net ecosystem productivity (Del Vecchio
and Blough 2004; Mannino et al. 2008). However, these models are in need of continued
field campaigns to aid in algorithm validation and may not predict coastal regional
productivity with much certainty at the coastal/land interface (Mannino et al. 2008). The
difficulties surrounding remote sensing and algorithm validation are due to discrepancies
between the timing of field observations and satellite observations, and the complexity of
the optical properties within coastal water columns (Mannino et al. 2008). Therefore
further in situ examination of N and C productivity in many coastal systems, including
the Chesapeake Bay outlflow plume is necessary (Werdell and Bailey 2005; Mannino et
al. 2008).

We know from multiple biogeochemical process studies conducted in regions
affected by plumes (see Table 1.1 and references therein) that estuarine and riverine
plumes can be areas of high productivity and can exert profound effects on the coastal
ocean environment. Despite their high productivity, coastal zones are under-sampled in
regards to other environments (Richardson and Poloczanska 2008). Further, most
previous studies of coastal biogeochemistry represent only one or two seasons (Table
1.1). In arecent Intergovernmental Panel on Climate Change (IPCC) report, only 30 data
series were included in their evaluation of climate change in the marine (both biological
and physical) environment, due to the lack of time series measurements (Richardson and
Poloczanska 2008). Unlike the Chesapeake Bay proper, the Chesapeake Bay plume has

not been intensely studied, specifically with respect to the very dynamic N and C cycles.



Other river plumes that are vastly different from the Chesapeake Bay plume, such as the
Amazon and Mississippi Rivers, have been sites for more extensive biogeochemical and
physical studies (Table 1.1). As the largest estuarine system in North America, and a
coastal plain estuary discharging into the MAB, it is important to investigate the impact
that the Chesapeake Bay system has on the biogeochemical cycling in the highly
productive MAB, and how climatological factors influence the penetration of the plume

into coastal waters.
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STUDY SITE

The Chesapeake Bay plume is a buoyant jet that results from subtidal outflow
entering the shelf region, turning anticyclonically, and being trapped against the coast due
to the earth’s rotation (Valle-Levinson and Lwiza 1997; Valle-Levinson et al. 1998) (Fig.
1.2). The circulation pattern at the mouth of the Chesapeake Bay, as it enters the coastal
zone, has been described as a two-way exchange with seawater flowing in at depth at the
northern side and lower salinity water flowing out at the surface primarily along the south
side of the mouth of the Bay (Valle-Levinson et al. 1998). This pattern is a combination
of circulation due to density gradients, wind-induced flow, and bathymetry (Valle-
Levinson and Lwiza 1997; Valle-Levinson et al. 1998; Valle-Levinson et al. 2001). In
addition, tidal currents are important when observing vertical and horizontal plume
structure, as tides create a plume that can extend all the way to the bottom of the water
column and tides tend to inhibit the expansion of the plume northward (Guo and Valle-

Levinson 2007).
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Fig.1.2. Chesapeake Bay outflow plume and coastal zone. Arrows are indicative of the
general circulation pattern with oceanic waters entering at depth on the north end of the
Bay mouth, and estuarine waters exiting at the surface at the south end of the Bay mouth.
Wind stress and freshwater flow play major roles in the extent of the low salinity
waters as they move through the Bay mouth and out into the coastal Atlantic (Johnson et
al. 2001; Valle-Levinson et al. 2001). Just south of the Bay mouth, alongshore winds
from the north, common between late summer and spring, can result in coastal
downwelling which serves to strengthen the outflow jet and confine the southward flow

of water near the coast to the south of the Bay mouth (Valle-Levinson et al. 1998;

Johnson et al. 2001). Under this condition, nutrients and C inputs to the coastal ocean
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from the Chesapeake Bay are restricted to a narrow band along the southern coast of VA.
In the summer, weaker winds blow from the south resulting in offshore Ekman transport
and broadening of the plume, potentially distributing material containing nutrients and C
further offshore, and causing coastal upwelling near the Bay mouth (Johnson et al. 2001).
In addition to wind-driven seasonal upwelling and downwelling, evidence has shown that
fronts can form along the Virginia coast, similar to those occurring in the Delaware Bay
(Sanders and Garvine 1996; Marmorino et al. 2000). These fronts typically occur near
Cape Henry and are more typical during high tide and under high flow conditions (e.g.,
spring). During these events, denser water is trapped along the coast and can downwell.
Associated dissolved and particulate material with the downwelled surface water can then
become entrained in the northward flow potentially moving back into the estuary
(Marmorino et al. 2000). The complex circulation that characterizes coastal
environments is influenced by and modifies the effects of the estuary on coastal nutrient
and C dynamics.
RESEARCH QUESTIONS

In order to examine the fate and transport of N and C through the Bay mouth and
in the plume, the following research questions were addressed: What role does seasonal
variability of freshwater outflow and meteorology play in nutrient and carbon
dynamics and primary productivity in a coastal region and how does freshwater flow
and meteorology affect the exchange of carbon and nutrients at the coastal interface?
How does primary productivity and nutrient and C cycling along the north-south axis

of the Chesapeake Bay outflow plume (when the plume is a distinct jet running from
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north to south) compare to the west-east axis (when the plume is more dispersed in a
west to east direction)?

In Chapter 2, these questions are addressed via ship-based studies of bulk water
column measurements and process studies (i.e. stable isotope tracer experiments)
examining biological activity during low and high freshwater discharge events and at
stations both inside and outside of the Chesapeake Bay outflow plume’s influence.
Preliminary research along a Chesapeake Bay mouth transect showed seasonal trends in
nutrient concentrations (Fig. 1.3; Filippino unpublished data). Overall, 2003 and 2004
were considered wet years, based on USGS stream flow data, where wet years were
defined as flow greater than the 75™ percentile of annual river flow since the beginning of
data collection in 1937 (http://md.water.usgs.gov/monthly/bay.html#wymean). Monthly
and seasonal river discharge into the Chesapeake Bay from the major tributaries,
including the James River, was highest in the spring of 2003. Chlorophyll a (Chl a)
concentrations increased following the large freshwater discharge in the spring, and
decreased as flow decreased during summer of 2003 (Fig. 1.3A). However, there were
no significant relationships (p > 0.05) between nutrient and Chl a concentrations and
freshwater flow from the James River in either 2003 or 2004 (Figs. 1.3A - D). These data
suggest that seasonality and freshwater flow alone are not good predictors of changes in
nutrient and Chl a concentrations, as localized and large-scale freshwater flow events can
alter nutrient concentrations significantly during multiple seasons. Further, biological
activity along the length of the estuary and the hydrodynamics of the outflow plume and
surrounding coastal waters can complicate the interpretation of bulk water column

measurements.
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Fig. 1.3. Monthly nutrient concentrations and freshwater flow from the James River at the
mouth of the Chesapeake Bay during 2003 and 2004. The top panels show average NO;™ +
NO;’, PO,”, and Chl a concentrations (umol L and pg chl L™'; bars) and monthly
averaged freshwater flow from the James River (m® s™'; shaded area) at the Bay mouth for
2003 (A) and 2004 (B), error bars are standard deviations for surface and near-bottom
depths at four stations across the Bay mouth. The bottom panels show linear regressions
between James River discharge and NO;™ + NO,™ (2003: R = 0.33; 2004: R = 0.41), PO,*
(2003: R = 0.50; 2004: R = 0.10), and Chl a (2003: R =0.10; 2004: R = 0.30) in 2003 (C)
and 2004 (D) (Filippino unpublished data).

In order to assess the productivity in the coastal ocean in the context of coupled N
and C cycling, Chapter 3 describes the influence and importance of the outflow plume to
N and C dynamics in the receiving waters and the MAB as a whole. Specifically, the
following question was examined: What effect do terrestrial influences have on the
quality and quantity of nutrients and carbon available for uptake in the coastal region?

Similar to the study of the plume region, process cruises were conducted examining on-

shore versus off-shore N and C dynamics in the MAB. This research was aimed at
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comparing current N and C budgets in the MAB with past research and place current
productivity estimates in a historical and hydrographic context.

Chapter 4 provides a discussion of the research results described in Chapters 2 and
3. The goal in Chapter 4 is to synthesize this research in the context of our current
understanding of N and C cycling in coastal systems, regional models of productivity, and

to highlight future directions.



18

CHAPTER II
NUTRIENT DYNAMICS AND PRIMARY PRODUCTIVITY IN THE
CHESAPEAKE BAY OUTFLOW PLUME; 2005 - 2007

INTRODUCTION

Estuaries are an important and productive interface between the terrestrial and
oceanic environments. The bulk of terrestrial material transported to the coastal ocean is
delivered through rivers and estuaries that also act as reactors, transforming material and
nutrients en route. Both the quantity and quality of nutrients delivered to the coastal zone
depend on their residence time in the estuary and reactions within the estuary.

Relationships between nutrient loading from the watershed and subsequent export
to the coastal ocean are complex. Evaluations of the total nutrient load, particularly N, to
the Chesapeake Bay have been undertaken, and present and past literature has shown that
N inputs to the Bay are increasing over time leading to eutrophication and overall Bay
degradation (Boynton et al. 1995; Kemp et al. 2005). There is typically high N demand
in the mesohaline section of the Bay during the summer and low demand in winter (Baird
and Ulanowicz 1989; Baird et al. 1995). This is primarily due to the large supply of
nutrients during the spring that support a spring bloom and recycling of algal N during
summer (Baird et al. 1995). Phytoplankton growth was found to be P-limited in the
lower salinity regions of the Bay and N-limited in the higher salinity regions (Fisher et al.
1999). Temporally, phytoplankton growth is typically limited by P in the spring followed
by N-limitation in the summer (Fisher et al. 1999).

Large-scale budgets of N and C in the coastal MAB have been estimated and

estuarine and riverine discharge represents between 10 — 30 % of total N inputs to the
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western North Atlantic continental shelf (Nixon et al. 1996; Verity et al. 2002; Fennel et
al. 2006). However, studies examining total N inputs to the coastal ocean from the
Chesapeake Bay and the impact of this estuary on the mid-Atlantic shelf are scarce
(Malone and Ducklow 1990; Glibert et al. 1991; Acker et al. 2005). Of the few studies
conducted in the Chesapeake Bay plume in the late 1980’s, it was found that turnover of
particulate organic C (POC) and release of DON have been shown to increase with
temperature due to an increase in the abundance of bacterioplankton relative to
phytoplankton (Malone and Ducklow 1990; Glibert et al. 1991). Also, seasonality was
observed in N uptake, with higher uptake rates observed in the spring and a shift from
inorganic to organic N uptake from spring to summer (Glibert et al. 1991). More
recently, satellite remote sensing has been utilized to show that high turbidity, nutrients,
and Chl a are associated with high freshwater flow (Acker et al. 2005). However, no
specific studies relating to N uptake and primary productivity within the plume have been
conducted since the 1980’s, and understanding the relationships between productivity and
N cycling are crucial for determining how the coastal ocean, impacted by the Chesapeake
Bay at present, will respond to various climate change scenarios (Gruber and Galloway
2008).

Estuarine and riverine plumes act as mixing zones where nutrients enter the
coastal zone and potentially fuel coastal productivity. The Chesapeake Bay system is the
largest estuary in North America and its influence on nutrient cycling and primary
productivity has a potentially large impact on the coastal ocean (Boynton et al. 1995;
Nixon et al. 1996). Productivity in the mid-Atlantic coastal zone is thought to be limited

primarily by N (Dugdale 1967; Ryther and Dunstan 1971; Nixon et al. 1986) although
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such limitation may be alleviated due to anthropogenic increases in N, thus increasing
primary productivity (Duce et al. 2008; Galloway et al. 2008). In contrast to the coastal
zone, the Chesapeake Bay is considered eutrophic and its outflow plume discharges into
this otherwise nutrient-depleted coastal area. While many processes influence N
dynamics and C productivity in the coastal ocean, seasonally variable nutrient inputs
through estuarine and riverine plumes can play a large role in coastal systems where they
discharge (Nixon et al. 1996). The timing and location of high and low flow events, the
residence time of material in the Bay with respect to timescales of biogeochemical
processing, the prevailing oceanographic conditions, and seasonally variable ecosystem
dynamics may be important for determining the impacts of plume-derived nutrients on
primary productivity in the coastal zone. Because of tidal and other physical influences,
the two end members do not exhibit simple steady state mixing and therefore the flux
rates of available nutrients at the interface between estuarine and oceanic systems are
poorly understood (Malone and Ducklow 1990).

The location and strength of the plume can determine the extent of its effect on N
and C cycling in the coastal waters, e.g., where and how much primary productivity
occurs in the adjacent coastal zone versus further offshore. Typically, during high to
moderate flow (e.g., in the spring months), material passing through the Bay mouth into
the coastal ocean remains entrained in a plume or jet that extends from the Bay mouth out
into the Atlantic Ocean. Prior research has shown that the Chesapeake Bay outflow
plume can extend 10 - 100 km seaward during high flow periods, particularly in the
winter and spring months when freshwater discharge is often high (Boicourt et al. 1987,

Valle-Levinson et al. 1998; Valle-Levinson et al. 2001). In contrast, during low flow
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periods (e.g., in the summer months), the circulation pattern of the plume can be confined
to an area near the mouth of the Bay (Valle-Levinson et al. 1998; Valle-Levinson et al.
2001). However, hurricanes and intense precipitation events during otherwise low flow
periods can have dramatic effects, providing larger total N loads and resulting in long-
term ecosystem changes (Paerl et al. 2001).

While it is tempting to consider freshwater discharge alone, the direction,
intensity and location of the estuarine plume is a result of the combination of many
physical forces (Valle-Levinson et al. 2001) including prevailiﬁg wind direction and
speed, the strength of the coastal current, bathymetry, and tidal currents (Valle-Levinson
et al. 1998; Guo and Valle-Levinson 2007). For example, near the Chesapeake Bay
mouth and its plume, the dominant wind direction can result in both upwelling and
downwelling-favorable conditions and these in turn affect the impact of the plume on the
coastal system (Rennie et al. 1999; Johnson et al. 2001). Downwelling-favorable
conditions can result in a deep and narrow plume, while upwelling favorable conditions
can result in a shallow and wide plume. If upwelling favorable winds persist, this can
result in the detachment of the plume, moving and dispersing it further offshore (Rennie
et al. 1999).

While there is a general understanding of how the physical location of the
estuarine plume varies in space and time (Valle-Levinson et al. 1998; Valle-Levinson et
al. 2001; Guo and Valle-Levinson 2007), these assessments lack a biogeochemical
framework to link spatial and temporal plume dynamics with nutrient cycling and
primary production. For example, under conditions of high flow and short residence

time, one might expect more dissolved and particulate material to move through the
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estuary less altered before it is exported to the coastal ocean, resulting in a higher
availability of inorganic nutrients compared to organic nutrients, fueling autotrophic
productivity. In contrast, during low flow periods when residence times in the estuary are
longer, recycling processes may dominate resulting in delivery of highly altered nutrients
(primarily in organic form) to the coastal ocean, fueling heterotrophy. Elucidating the
nutrient variability (e.g. inorganic versus organic) and subsequent uptake and
transformation into primary production would provide a better understanding of the
processes occurring. Therefore, quantifying nutrient concentrations and uptake rates of
inorganic and organic N sources in addition to estimating primary productivity in the
context of different hydrographic regimes will allow for a broader understanding of the
effect the terrestrial nutrients from the Bay have on the coastal region. Estimates of N
uptake and primary productivity have been employed in numerous studies using '°N and
B¢ (or '*C) tracers (Harrison 1983; Dugdale and Wilkerson 1986; Lipschultz 2008) and
can provide a processed-based evaluation of the biogeochemistry of a particular system,
like the Chesapeake Bay outflow plume (Lipschultz 2008).

Given forecasted changes in the dominant physical forces likely to result from
climate change (e.g., sea level rise, temperature increase, and increased freshwater flow
etc.), it is particularly important to understand the current range of expected values and
the range of variability in biological processes under present day conditions (Nicholls et
al. 2007). It is the intent of this research, therefore, to provide a current evaluation of the
nutrient and primary productivity regime utilizing '°N and *C stable isotope tracer
techniques in the context of the physical and hydrological environment, to not only assess

current conditions, but to provide a baseline for future predictions.
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DESCRIPTION OF PLUME REGION

The general circulation pattern at the mouth of the Chesapeake Bay as it enters the
coastal ocean has been described as a two-way exchange; with seawater flowing in at
depth at the southern side and lower salinity water flowing out at the surface along the
entire mouth of the Bay (Valle-Levinson et al. 1998). This flow is a combination of
circulation due to density gradients, wind-induced flow, bathymetry, and tides (Valle-
Levinson and Lwiza 1997, Valle-Levinson et al. 1998; Guo and Valle-Levinson 2007).
The Chesapeake Bay plume has been described as a buoyancy jet resulting from the
Chesapeake Bay subtidal outflow entering the shelf region, turning anticyclonically, and
being trapped against the coast due to the Coriolis force (Valle-Levinson and Lwiza
1997; Valle-Levinson et al. 1998). Wind stress and freshwater flow play major roles in
the temporal and spatial distribution of the low salinity (< 30) waters as they move from
the Bay mouth (Johnson et al. 2001; Valle-Levinson et al. 2001). Just south of the Bay
mouth, alongshore winds from the north, common between fall and spring, can result in
coastal downwelling which serves to strengthen the outflow jet and confine the
southward flow of water near the southern Virginia coast. Under this condition, inputs to
the coastal ocean from the Chesapeake Bay may be limited in the horizontal (west to
east) extent. In the summer, winds blowing from the south result in offshore Ekman
transport, thus broadening the plume, allowing for nutrients to penetrate west to east
exiting the mouth of the Bay, and providing conditions favorable for coastal upwelling
near the Bay mouth (Johnson et al. 2001).

In addition to wind-driven seasonal upwelling and downwelling-favorable events,

evidence has shown that density fronts driven by differences in temperature and salinity
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can form along the Virginia coast, similar to those occurring in the Delaware Bay
(Sanders and Garvine 1996; Marmorino et al. 2000). These fronts typically occur near
Cape Henry and are more typical during high tide and under high flow conditions (e.g.,
spring). During these events, dense oceanic water is trapped between the coast and the
plume and subducts underneath the surface water within timescales of a tidal cycle
(Marmorino et al. 2000). Associated dissolved and particulate material from dense
inshore water can then become entrained in the northward flow, potentially moving back
into the estuary (Marmorino et al. 2000). The complex circulation that characterizes
coastal environments is influenced by and modifies the effects of the estuary on coastal

nutrient and C dynamics.

METHODS

In order to place nutrient concentrations, N cycling, and primary productivity into
the context of the physical environment of the Chesapeake Bay outflow plume, and to
better understand how the Bay impacts the surrounding coastal zone, we measured
nutrient concentrations, N uptake rates, and primary productivity rates in north-south and
west-east transects exiting the mouth of the Chesapeake Bay during both high and low
freshwater flow conditions, over 4 seasons and 3 years. We measured these at two
biologically relevant depths, near the surface and at the chlorophyll fluorescence
maximum. Five stations were sampled, one within the Bay mouth area (BM), three along
the VA coast designated as plume stations (PL1, PL2, and PL3) and one station,
depending upon physical factors, that was either inside or outside the influence of the

outflow plume at the Chesapeake Light Tower (CLT) (Fig. 2.1).
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Freshwater discharge was calculated as the sum of freshwater flow from the
Susquehanna, Potomac, and James Rivers and multiplied by a factor of 1.22 to account
for the influence of the remaining tributaries, this is a similar calculation as put forth by
Austin (2002). The Susquehanna, Potomac, and James Rivers account for approximately
50%, 18%, and 14%, respectively of the total freshwater flux entering the Chesapeake
Bay (Hargis 1981) and therefore, the factor of 1.22 was devised by dividing 100 by the
total percentage for the three major rivers (Eq. 2.1). Daily flow rates were then estimated
based on the sum of the daily flow rates for each river, multiplied by 1.22 (Eq. 2.2).

100/ (50% + 18% + 14%) = 1.22 2.1)
(Susquehanna + Potomac + James) x 1.22 = Daily flow rate into Bay 2.2)
Daily flow rates from the three rivers were obtained at three USGS monitoring stations
near Conowingo, MD for the Susquehanna, Washington DC for the Potomac, and
Cartersville, VA for the James (http://va.water.usgs.gov/chesbay/RIMP/). Freshwater
flow rates prior to each cruise are reported as the 10-day average of the flow as derived

above, prior to each cruise date.


http://va.water.usgs.gov/chesbay/RIMP/
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Fig. 2.1. Chesapeake Bay outflow plume stations. Bay mouth (BM), Chesapeake Light
Tower (CLT), Plume 1 (PL1), Plume 2 (PL2), and Plume 3 (PL3) are shown.

Research cruises were conducted aboard Old Dominion University’s R/V Fay
Slover in May, June, November 2005, April, August, September, November 2006, and
March, April, July, and August 2007. Cruises were conducted aboard the University of
Delaware’s R/V Cape Henlopen during March and July 2005, and aboard the R/V Hugh
R. Sharp in May, July, and October 2006. Hydrography was measured using the ships’
conductivity, temperature, and depth (CTD) sensors (SeaBird electronics). Depth

profiles of temperature, salinity, density, light attenuation, dissolved oxygen, and Chl a
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fluorescence were collected at each station. At each station, water samples were
collected from the near surface (0 — 2 m) and at the fluorescence maximum (4.5 — 18 m)
when the water column was stratified and at the surface and 1 m above the bottom when
the water column was well mixed, using Niskin bottles mounted on the CTD rosette.
Nutrient samples were pumped from Niskin bottles using a peristaltic pump, acid-
washed Tygon tubing, and a 0.2 um polysulfone cartridge filter conditioned by pumping
for 5 minutes with sample water prior to collection of filtered water for nutrient analyses.
Filtered samples were collected directly into duplicate acid-washed high density |
polyethylene (HDPE) bottles and frozen until analysis. NOs+ NO,’, NO;', urea, PO43',
and silicate (Si04*) were analyzed on an Astoria Pacific nutrient auto-analyzer according
to manufacturer specifications using standard colorimetric methods (Parsons et al. 1984;
Price and Harrison 1987). NOj;” was calculated as the difference between NO3 + NOy
(measured on the auto-analyzer after reduction by a cadmium coil) and NO,". The
detection limits for each analysis were: NO3™ + NO; ™ : 0.02 pmol L'l, NO;": 0.02 umol
L, PO, 0.02 pmol L™: Si04*: 0.05 umol L™': urea N: 0.05 pmol L™, The manual
phenol-hypochlorite method coupled with spectrophotometric detection at a wavelength
of 640 nm using a 10 cm cell was used to measure NH4" concentrations; the detection
limit was 0.01 umol L™ (Solorzano 1969). Total dissolved nitrogen (TDN) was analyzed
as NO3™+ NO;" using the colorimetric methods described above on the Astoria Pacific
auto-analyzer after persulfate oxidation and had a detection limit of 0.5 pmol L™
(Valderrama 1981). DON was calculated as the difference between TDN and DIN
concentrations and standard error propagation was used to calculate standard deviations

in DON concentrations. Dissolved free amino acid’s (DFAA’s) were analyzed via high
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performance liquid chromatography (HPLC) and a detection limit of 0.01 pumol Lt
(modified from Cowie and Hedges 1992). DFAA N was calculated based on the N
content of the free amino acids quantified by HPLC. For all of these nutrients, triplicate
analyses were conducted for the duplicate water samples, and results were accepted if
they had a relative standard deviation less than 10%. Averages and standard deviations
were reported for the original duplicate samples (Appendix tables A.1 — A.5).

DIC and alkalinity samples were collected unfiltered in combusted glass vials
with 2% mercuric chloride and sealed without headspace and refrigerated at 4 °C until
analysis for all 2005 and 2006 research cruises. Collection and sample analysis were
based on the protocols set forth by Johnson et al. (1985). DIC measurements were made
on an UIC Inc. 5014 CO, coulometer, and measured against a seawater standard with an
accuracy of 1 pmol L™, and a precision of 0.5 pfnol L' and DIC concentrations were
used as the ambient concentrations for primary productivity uptake calculations.
Alkalinity was measured on the same samples using a Brinkmann Titrino titrator
(Dickson 1981).

Between 50 mL and 250 mL of whole water, depending upon biomass, was
collected and filtered in duplicate onto pre-combusted (2 hours at 450°C) GF/F filters for
analysis of particulate C and N (PC and PN), and Chl a. Filters were folded and placed
into cryovials and frozen. PN and PC samples were analyzed within three months of
acquisition by placing them in a drying oven (40 °C) for 48 hours, and pelletizing them
into tin discs for analysis on a Europa 20/20 mass spectrometer equipped with an
automated N and C analyzer (ANCA) preparation module. The limit of detection for N is

3 pg and for C is 37.5 pg. Routine measurements for atom % N and C were made
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against a standard, sucrose for C and ammonium sulfate for N. These standards were
periodically checked against DL-asparagine, a standard from the National Institute of
Standards and Technology, with accepted values within 0.1% of the measured

standard. Chl a samples were analyzed within 48 hours of sample collection by
extracting the filter in 90% acetone for 24 hours and measuring fluorescence in the
extract on a Turner fluorometer. This method measures Chl a in the presence of Chl b
and phaeophytin, but is only sensitive to Chl a concentrations (Welschmeyer 1994). The
fluorometer was calibrated daily using a solid standard and the detection limit was 0.003
pgchl L.

Rates of net N and C uptake and primary productivity were made in whole water
samples using single or dually labeled highly enriched (96-99%) '°N and '*C-labeled
compounds (Glibert and Capone 1993; Mulholland et al. 2002). To initiate uptake
experiments, "°N and/or '*C was added to 250 or 500 mL whole water samples in
polyethylene terephthalate (PETG) bottles at approximately 10% of the ambient nutrient
concentration for the following substrates: NO;, °'NO;, PNH,', urea (dually labeled
®N and "*C) and glutamate (dually labeled N and *C). Primary productivity was
measured using *C-labeled bicarbonate in both light and dark bottles (Mulholland and
Capone 2001). Bottles were then placed into incubators supplied with flow-through
seawater to keep the bottles at or near ambient temperature. Neutral density screens were
placed over each incubator to simulate in situ light levels. A hand held PAR sensor was
used to measure the incident light level in the incubators. Measurements suggest that
each layer of screen is capable of reducing incoming radiation by about 50%. Based on

preliminary results, '°N incubations were terminated after 4 hours. A 4-hour incubation
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period was short enough to avoid nutrient depletion or isotopic equilibrium but long
enough to allow for detection of isotopic enrichment of the particulate pool. In the case
of *C-labeled bicarbonate experiments, incubations were conducted for 4 and 24 hours.
In a few cases, 24-hour incubations were not feasible so only 4 hour incubations were
reported. For 4-hour incubations, daily rates were calculated by multiplying by 12 h, and
for 24-hour incubations, daily rates were calculated by multiplying by 24 h. Daily rates
of photosynthetic C uptake estimated from 4- and 24-hour incubations were generally
within good agreement (< 10 % difference). Limitations to incubations, particularly on
the R/V Fay Slover, included shading from the ship that occurred with no consistency.
Incubations were terminated by gentle filtration onto GF/F filters. The filters were frozen
and brought back to the lab where they were analyzed within three months of ¢ ollection.
Prior to analysis, filters were dried at 40 °C for two days in a drying oven. The filters
were then pelletized in tin discs and analyzed using a Europa 20/20 mass spectrometer
equipped with an automated N and C analyzer (ANCA) preparation module.

Uptake rate calculations for both 5N (Eq. 2.3) and B¢ (Bq. 2.4) tracer
experiments are shown below and were based on a mixing model and equations from
Montoya et al. (1996) and Orcutt (2001).

N uptake = (atom % PN)final — (atom % PN)initial__ X [PN] (2.3)
(atom% enrichment N source pool) — (atom% PN )initia X time

C uptake = (atom % PC)fina — (atom % PC)initial x [PC] (2.4)

(atom% enrichment C source pool) — (atom% PC)jnitia X time

In these equations, atom % PN (PC) represents the atom % ratio of '’N:"*N or *C:'*C in

the initial or ambient and final (post-incubation) sample and [PN] and [PC] are the
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concentrations of PN and PC in pmol L™, respectively. Atom % enrichment is the
enrichment of the source nutrient pool at the beginning of the experiment and is
calculated as shown in Eq. 2.5.

Atom% enrichment (%) = ([tracer] x atom%tracer)+([ambient N or C] x atom%initial)
[tracer] x [ambient N or C] (2.5)

All samples were collected in duplicate and averages and standard deviations for
all parameters were reported in Appendix Tables A.1 — A.5. In order to compare
concentrations and rates across depth, season, station, or plume type, one way ANOVA
tests were run on the averages and standard deviations considering a sample size of n
(Table 2.1). If there were significant differences among averages, a Tukey test was run to
determine which averages were significantly different from one another. P values less
than 0.05 were significant. Relationships between two parameters were analyzed using
linear regression and Pearson’s product moment correlation, correlations for all pooled
data are shown in Appendix table A.6. Significant differences had p values less than
0.05.

Table 2.1. Sample size (n) used to average across season, station, or plume type.

Significant differences were distinguished with biomass, nutrient concentrations, and
uptake rates.

Season n Station n Plume type n
Spring 30 BM 32 Jet-like 48
Summer 58 PL1 32 Diffuse- 50
estuarine
Fall 26 PL2 28 Oceanic- 32
influenced
Winter 16 PL3 8

CLT 28
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RESULTS
HYDROGRAPHIC REGIME

This study spanned three normal flow years which, as defined by the USGS, are
within the 25™ and 75" percentile for annual flow rates since measurements began in

1937 (http://md.water.usgs.gov/monthly/bay.html#wymean). The average freshwater

flow entering the Bay, calculated as mentioned above (Egs. 2.1 and 2.2) in 2005 was 68 x
10" m? y'l, in 2006 it was 69 x 10" m’ y'l, and in 2007 it was 54 x 10"’ m’ yl Although
2007 had similar total flows to 2005 and 2006 and was still considered a normal flow
year, there was a summer drought and the distribution of rainfall events over the year was
sporadic (Fig. 2.2). During 2005, there were very high to above average flows during
spring months, but the rest of the year freshwater flow was below the normal average
(Fig. 2.2). March 2006 had the lowest flow for that month since 1937 when
measurements were first made, while January, June, July, and September 2006 ranked
among the ten highest months on record, according to the USGS

(http://md.water.usgs.gov/monthly/bay.html#wymean). In 2007, there was high

freshwater flow during January and February; however there was a sustained drought

during the remaining part of the year (Fig. 2.2).


http://md.water.usgs.gov/monthly/bay.html%23wymean'
http://md.water.usgs.gOv/monthlv/bav.html%23wymean
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Fig. 2.2. Freshwater outflow entering the Chesapeake Bay from the Susquehanna,
Potomac, and James Rivers for 2005 to 2007. A multiplication factor of 1.22 accounts
for the remaining tributaries, including 10-day averaged flow for each sampling date, the
average annual flow for 2005, the average annual flow for 2006, and the average annual
flow for 2007.

Surface salinity and satellite imagery (when available) of temperature were used
to locate the outflow plume during each cruise. Large-scale discharge events and the
predominant meteorological conditions (upwelling versus downwelling-favorable winds)
rather than seasonality were most important in determining the type and position of the
outflow plume. Based on surface salinity, freshwater discharge, wind direction, and
surface temperature at each station, three plume morphotypes were defined: jet-like (Jet),

diffuse with an estuarine influence (DE), or diffuse with an oceanic influence (OI) (Table
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2.2). There was no significant relationship between freshwater flow and salinity for all
stations at both depths. However, sampling occurred during different tidal stages, and no

one plume type could be attributed to a particular tidal cycle.

A jet-like plume, when water exited the Bay to the south and remained confined
to the VA coastline, was characterized by high salinity at the CLT station (28 — 31),
lower salinity at the BM, PL1, PL2, and PL3 stations (15 — 25), and the 10-day averaged
flow rate into the Bay, as calculated from Eqgs. 2.1 and 2.2, ranged between 559 and 5498
m® s (Table 2.2). When the plume was jet-like, winds were almost always from the
north, with one exception in March 2007, when winds were coming from the south
(Table 2.2). Remote sensing of sea surface temperature shows a jet-like plume, defined
by warm temperatures exiting the mouth of the Bay and hugging the southern VA
coastline (Fig. 2.3). The jet-like plume scenario was observed during late winter/early

spring and fall in 6 out of the 16 research cruises (Table 2.2).



10 Aroyinos CIFLE V¢ FS0¢€ LTFS9C LITT ¥ 7681 4

3d Apayinos €TFOS L'EF89Z Y'EFLET 1¥8C F 998C 9
E]y Apeypou I'TFES STFY0¢ 6'€FEIT T81T ¥ 790€ 9

Y e e - v o - N $9SINIO

adKy owngg N PSFsm3ay PSF[ESTAY PSFTeSSAY p's Fmof 8Ay 10 15qEMY]
34a Ap1oymmos O 19 0€ 1€ - 4T (¥6) €LE L0 8ny
LTy Apsamyuou  (8°7) 99 0¢ ST—TC (821) s¥§ L0 AInf
3a Ap191529Y)IN0S W9 Te 17 17—81 (€£50D) LOLS L0 Tudy
19( A1aoyinos (8906 43 YT L1 Lyse) zoLy  LOUYIIRN
1or Aoypiou (1) oy 1£3 07— LI (1vv2) 616¥ 90 AON
10 AJ10)sEOYINOS aars 0¢ 1€ —¥C (zeL) 96LT 90 190
3a Apaoyinos Caalay (1]3 ST—¢€T (€9€1) 99¥¢ 90 1dog
10 Apoyinos ®D1€ 6C ST—¥T (€11) LEY 90 3uy
3d Aayinos Lnesg 97 LT—TT (8279) LEOL 90 A
o[ AJ1ayyou €Dvy pu 67— €T (911) T8¥1 90 AeIN
IO Apaoyinos SDvT 6¢ 9T —$T (6L1) 09v1 90 [udy
10 A[19)seayLIou Caakay 143 0€—LT (1011) ¥.8T SO AON
aa Aayinos (€1noe LT 97— T (880 L16 0 Anf
aa A11oynos ®1Dve pu YT—0T (981) €69 0 ouny
LTy Aayyou wnoeg 8T TT—61 (€61) 9921 S0 Ae N
1of A119)samypiou 6'1) 8¢ £3 TT-0T (6¥9%) 99¢S SO YoIey
S S
UOT}I9IIp o3eioAe Aep I'1Dre ¢'1d pue 7'ld a8e1oA® ABp-(Q]

ad£3 swnyg ‘17d ‘INg :93uel

Aynuifes 9oeJINS

e

PUIM -01‘poads purpy  Ayurfes adejing ‘MO[J I9)eMmUSaL]

‘stsoyuared ul oIe SUONBIADD pIepuel§ ‘suornje)s sumjd (eord4) oy) uo Surpnyul siojem d1uedsoo ‘odA) swnjd poousnjur o1uedd()

10, :1'TID a3 Ised no pouspeolq s1ojem suwren)sd ‘adK) sumid surrenyss-osnyji : 4, ‘yinow Aeg Sunixa Iojem SuLen)sa jo
suo| moweu ‘adK) ownyd oYI[-)or :,19[, IuA9 Surjdwes yoes 10J paaresqo awm(d Jo 2d4) pue (SJO-0D VVON) [Puun], a3pug
Aeg axeadesay)) oy} woy uonoaIIp pue paads puim pageiose Aep-(1 ‘uoneis I oY) 18 AJIuifes 9oeJIns ‘suonels ¢IJ pue ‘zid
‘1714 ‘INg 23 e saSuel Ajuifes 90BJaNS ‘7'z pue [ ‘subg wox paje[nojed se Moy I19)emisay paferoae Aep-([ 9 7’7 21981

Gt



36

20061843‘(5“]!' i

F

O e o

BEF
BIF
56°F

51 1

e

aF

L3 U N 2 R

I!l wF
e e

|
S0 SRR <7600 75030 W7SN0 W74P30 <740 0 W79

Fig. 2.3 May 2006 satellite imagery of sea surface temperature. This is an example of a
jet-like plume with warm waters exiting the Bay mouth, turning south and hugging the
VA coastline. Satellite imagery was downloaded from Rutgers University, RUCOOL
website (http://marine.rutgers.edu/cool/sat _data/?nothumbs=0).

Diffuse plumes with a distinct estuarine influence occurred when plume waters
exited the mouth of the Bay and then dispersed to the east. When the plume was diffuse,
salinity at the CLT was 21 — 30, lower than that observed when the plume was jet-like.
Similar salinity ranges were observed at the BM, PL1, PL2, and PL3 stations (18 —31)
(Table 2.2). Low salinities were observed at all stations when the plume was diffuse,
although during August 2007, after the prolonged drought, the PL3 station had higher
salinity suggesting it was out of the influence of the plume. In the diffuse-estuarine

plume type, the extent of the low salinity waters extended further to the east in


http://marine.rutgers.edu/cool/sat_data/?nothumbs=0
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comparison to the jet-like plume. The 10-day averaged flow rates during diffuse-
estuarine plume conditions ranged between 382 and 7210 m’ s™', not significantly
different than those observed for the jet-like plume, however winds were always coming
from the south, creating upwelling favorable conditions that counteracted the influence of
the high freshwater flow (Table 2.2). Satellite imagery of sea surface temperature
demonstrating the diffuse-estuarine plume scenario in July 2006 is shown in Fig. 2.4.

The diffuse-estuarine plume was defined by the warm temperatures exiting the mouth of
the Bay extending south along the coast but also penetrating to the east (Fig. 2.4). The
diffuse-estuarine plume scenario was observed during late spring, summer, and early fall

in 6 out of the 16 research cruises (Table 2.2).



Fig. 2.4. July 20006 satellite imagery of sea surface temperature. This is an example of a
diffuse plume with an estuarine influence with warm waters exiting the Bay mouth from
west to east. Satellite imagery was downloaded from Rutgers University RUCOOL
website (http://marine.rutgers.edu/cool/sat_data/?nothumbs=0).

A third plume type was observed, wherein there was a pronounced oceanic
influence. Low salinity water was not observed near the Bay mouth, rather high salinity,
oceanic water was prominent along both the north-south and the west-east axes. This
was observed when salinity at the CLT (29 — 34) was higher than that observed during
the jet-like plume and the diffuse-estuarine plume, and ranges at the BM, PL1, P12, and
PL3 (24 — 31) were also higher (Table 2.2). The 10-day averaged freshwater flow rates
ranged between 448 and 2944 m® s, lower than those observed for the jet-like and

diffuse-estuarine plume types, and winds were almost always coming from the south,


http://marine.rutgers.edu/cool/sat_data/?nothumbs=0

39

promoting upwelling favorable conditions, with one exception during November 2005
when winds were coming from the northeast. However, during November 2005,
freshwater flow from the James River was extremely low (50 = 10 m’ s'l) 10 days prior
to sampling, therefore although the wind direction was not upwelling favorable,
freshwater flow was low so that low salinity waters were not penetrating the coastal
region to the extent that a jet-like or diffuse-estuarine plume type would (Table 2.2).
Satellite imagery of sea surface temperature of the oceanic influenced plume type in
April 2006 is shown in Fig. 2.5. The oceanic-influenced plume was characterized by
cooler temperatures surrounding the mouth of the Bay and the southern VA coastline
(Fig. 2.5), upwelling favorable conditions, and minimal influence of low salinity water.
The oceanic influenced plume type was observed during spring, summer, and fall in 4 out

of the 16 research cruises (Table 2.2).
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Fig. 2.5. April 2006 satellite imagery of sea surface temperature. It is an example of a
diffuse plume with an oceanic influence. Cooler waters appear to be surrounding the
mouth of the Bay and the southern coastline of VA. Satellite imagery was downloaded
from Rutgers University RUCOOL website
(http://marine.rutgers.edu/cool/sat_data/’nothumbs=0).

Conservative mixing between estuarine and oceanic waters was observed in the
relationship between alkalinity and salinity in pooled data from 2005 and 2006 (Fig. 2.6).
A significant positive linear relationship between salinity and alkalinity was observed for
both depths (R = 0.638; p < 0.05; Fig. 2.6), suggesting conservative mixing between the
oceanic and estuarine end members. These results were consistent with previous results
demonstrating conservative mixing between inflowing Atlantic waters and outflowing

James River and Chesapeake Bay waters when flows were moderate (Wong 1979).


http://marine.rutgers.edu/coo
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Fig. 2.6. Alkalinity versus salinity for all stations and both depths. Conservative mixing
(R =10.638; p <0.05) is apparent for 2005 — 2006 data.

In order to assess the wide variability observed in measurements of physical
parameters and nutrient and biological parameters, results for biomass, nutrients, and C
and N uptake rates were divided into seasonal comparisons, station location comparisons,
and plume type comparisons. The cruises used to average across seasons were as
follows: Spring — 5/05, 4/06, 5/06, 4/07; Summer — 6/05, 7/05, 7/06, 8/06, 7/07, 8/07; Fall
—11/05, 9/06, 10/06; Winter — 3/05, 11/06, 3/07. Station locations were CLT, BM, PL1,
PL2, and PL3, however PL3 had fewer data points than the other stations and was often
outside the plume influence so results should be interpreted with caution. Plume types
were the jet-like plume, the diffuse-estuarine plume, and the oceanic influenced plume.

NUTRIENT REGIME

Dissolved inorganic nitrogen (DIN = NH," + NO, + NO5’) concentrations were
significantly greater during the fall compared to the spring, summer and winter, mainly

due to NO3” and NO; (ANOVA,; Tukey test; p < 0.05; Fig. 2.7). The highest DIN
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concentrations were observed in the late fall 2006 (1.8 — 7.5 pmol L"; Appendix table
A.1). During the spring, NO3" was positively correlated with temperature (R = 0.431; p <
0.05) and Chl @ (R = 0.513; p < 0.05), and negatively correlated with salinity (R =-0.568;
p <0.05). No significant relationships were observed between NH;" or NO,” and
temperature, salinity, or Chl a concentrations during spring (p > 0.05). No significant
relationships were observed between DIN and temperature, salinity, or Chl a
concentrations (p > 0.05) during summer. During fall, NOs” was negatively correlated
with temperature (R = -0.738; p < 0.05) and salinity (R =-0.747; p < 0.05) and positively
correlated with Chl a (R = 0.491; p < 0.05). Also during fall there was a significant
positive linear relationship between NO," and Chl a (R =0.701; p < 0.05), but not with
temperature or salinity (p > 0.05). No significant linear relationships were observed
between NH," and temperature, salinity, or Chl ¢ during fall (p > 0.05). During winter,
the only significant relationships (negative) observed were between salinity and urea (R =

-0.576; p < 0.05) and salinity and SiO,* (R =-0.568; p < 0.05).
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DIN (smol L)

Spring  Summer  Fall Winter

Fig. 2.7. DIN concentrations (NH4"; NO,"; NO5") averaged for all seasons. Error bars
represent standard deviations. Fall DIN concentrations were significantly greater than
spring, summer, and winter DIN concentrations.

Total DIN concentrations as well as concentrations of individual compounds
(NH4+, NO;, or NOy'), were averaged for each station and there were no significant
differences among stations (Fig. 2.8). At the BM and PL2 stations, average NH,"
concentrations were significantly greater than average NO, concentrations (ANOVA;
Tukey test; p < 0.05). No significant differences were observed between average NH,",
NO;, and NOj;" concentrations at the PL1 station (ANOVA; p > 0.05). At the CLT
station, average NH," concentrations were significantly greater than average NO, and
NOj” concentrations, and average NOs” concentrations were significantly greater than
average NO, concentrations (ANOVA; Tukey test; p < 0.05). When relating freshwater
flow to DIN concentrations at the BM station, and salinity and temperature to DIN

concentrations at the stations outside the Bay mouth, there were no significant linear
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relationships. There was a significant negative linear relationship between salinity and
DIN concentrations when all the station data from all the cruises was pooled, although it
was a weak correlation (R =-0.239; Fig. 2.9; Appendix table A.6). Of the three DIN
compounds, only NO;™ had a significant negative linear relationship with salinity for all
stations at both depths, but again, the correlation was weak (R = -0.350; Fig. 2.9;
Appendix table A.6). A significant positive linear relationship was also found between

DIN (R =0.402) (specifically NO3’; R = 0.413) and Chl a concentrations (Fig. 2.10).

DIN (umol L)

BM PL1 PL2 PL3 CLT

Fig. 2.8. Average DIN concentrations (NH;"; NO,"; NO;") for each station. Error bars
represent standard deviations. There were no significant differences between mean DIN

concentrations amongst stations.
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Fig. 2.9. Total DIN and NO;™ concentrations versus salinity for all stations at both depths.
There were significant negative linear relationships between salinity and DIN (dashed
line; R =-0.239) and salinity and NO;™ (solid line; R = -0.350).
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Fig. 2.10. Chl a concentrations versus DIN and NOs™ concentrations for all stations at
both depths. There were significant positive linear relationships between DIN (dashed
line; R = 0.402) and Chl ¢ and NO; (solid line; R = 0.413) and Chl a.



46

There was no significant difference in DIN concentrations between plume types
(ANOVA; p > 0.05; Fig. 2.11). Of the individual DIN compounds, NO; concentrations
were significantly greater when there was an oceanic influenced plume compared to the
jet-like and diffuse-estuarine plume type (ANOV A; Tukey test; p < 0.05; Fig. 2.11). In
contrast, NO;” concentrations were significantly greater when the plume was jet-like
(ANOVA; Tukey test; Fig. 2.11). There were no significant differences in NH,"
concentrations with respect to plume type (ANOVA; p > 0.05; Fig. 2.11). DIN
concentrations versus salinity plots had a significant negative linear relationship when the
plume was jet-like (R = -0.472; Fig. 2.12) but not for other plume types. No significant
relationships were observed between temperature and DIN concentrations with respect to

plume types (p > 0.05).

DIN (umol L-1)

Jet DE CI

Fig. 2.11. Average DIN concentrations (NH,"; NO,"; NOj3") for each plume type. Error
bars represent the standard deviations. DIN and NH," concentrations were not
significantly different among plume types but NO;™ concentrations during the oceanic
influenced scenario were significantly greater than during the jet-like and diffuse-
estuarine plume type, and NO;™ concentrations were significantly greater during the jet-
like plume compared to the diffuse-estuarine plume.
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Fig. 2.12. DIN concentrations versus salinity for the jet-like plume, diffuse-estuarine
plume, and oceanic influenced plume. Linear regression showed a significant negative
relationship between salinity and DIN concentrations for the jet-like plume (dashed line;
R =-0.472) but not for the DE (solid line) or OI (dot-dashed line) plume types.

PO,> concentrations ranged from below the limit of detection (0.02 pmol L) to
about 0.8 pmol L™ with no significant differences among seasons (Appendix table A.2).
Si04* concentrations ranged from below the limit of detection (0.05 pmol L) to almost
25 umol L' with highest concentrations observed in the summer and fall (Appendix table
A.2). Ratios of DIN to dissolved inorganic phosphorus (DIP) concentrations were less
than 16:1 during all seasons except for late fall 2006, and late winter 2007 (Fig 2.13).
Ratios of DIN to SiO,* concentrations were less than 1 during all seasons except for

spring 2005 and early spring 2007, fall 2006, and winter 2005 (Fig. 2.14). These two

relationships suggested that the coastal region was N limited most of the time.
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Fig. 2.13. DIN concentrations versus PO4> concentrations for spring, summer, fall, and
winter for all stations and all depths. The solid line indicates the 16:1 ratio for DIN to

PO,
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Fig. 2.14. DIN concentrations versus SiO,4* concentrations for spring, summer, fall, and
Wintir for all stations and all depths. The solid line indicates the 1:1 ratio for DIN to
SiO4 .
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DON concentrations were found to be significantly lower in the summer than
during other seasons (ANOVA; Tukey test; p < 0.05; Fig. 2.15). This was different than
what was observed for DIN concentrations, where fall concentrations were significantly
greater than the other seasons (Fig. 2.7). The sum of urea N and DFAA N ranged from
0.12to 1.5 umol N L! (Appendix table A.1) and represented, on average, 5 % of the
DON pool. Urea N concentrations were significantly greater in the summer compared to
the spring and DFAA N concentrations were significantly greater in the winter compared
to the other seasons (Fig. 2.15). There were no significant relationships between DON
(or urea N and DFAA N) concentrations and salinity or temperature for the pooled data

(p > 0.05; Appendix table A.6).
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Fig. 2.15. Urea, DFAA N (left axis) and DON concentrations (right axis) averaged for
each season. Error bars represent standard deviations. Urea was significantly greater in
the summer compared to the spring. DFAA N was significantly greater in the winter
compared to other seasons, and bulk DON concentrations were significantly lower in the
summer compared to all other seasons.
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When total DON, urea N, and DFAA N were averaged for all stations, there were
no significant differences between stations (ANOVA; p > 0.05; Fig. 2.16). There were
no correlations between freshwater flow, temperature, and salinity at any station to urea,

DFAA N, and DON concentrations (p > 0.05).
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Fig 2.16. Urea, DFAA N (left axis) and DON concentrations (right axis) averaged for
each station. Error bars represent standard deviations. There were no significant
differences between Urea, DFAA N, or DON means among stations.

Urea N, DFAA N, and DON concentrations were averaged for each plume type,
and no significant differences were observed between plume types for urea or DFAA N
means (ANOVA; p > 0.05; Fig. 2.17). However, bulk DON means were greater during
the jet-like and oceanic influenced plume types compared to the diffuse-estuarine plume
type (ANOV A; Tukey test; p < 0.05; Fig. 2.17). When the plume was jet-like, freshwater
flow, and Chl a had significant positive linear relationships with DON concentrations (R

=0.425; R = 0.410, respectively). There was a significant negative linear relationship
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between temperature and DON concentrations when the plume was jet-like (R =-0.477).
No significant relationships were observed between urea or DFAA N concentrations and
freshwater flow, temperature, salinity or Chl a concentrations when the plume was jet-
like (p > 0.05). When the plume was diffuse with an estuarine, no significant linear
relationships were observed between urea, DFAA N, or DON concentrations and
freshwater flow, temperature, salinity, or Chl a concentrations (p > 0.05). When the
plume was diffuse with an oceanic influence, only DFAA N concentrations showed a
significant positive linear relationship with Chl a concentrations (R = 0.546; p < 0.05)
and urea concentrations showed a significant positive linear relationship with temperature

(R =0.604; p <0.05).
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Fig 2.17. Urea, DFAA N (left axis) and DON concentrations (right axis) averaged for
each plume type. Error bars represent standard deviations. There were no significant
differences between Urea N or DFAA N means among plume type. Bulk DON means
were significantly greater during the jet-like and oceanic influenced plume types
compared to the diffuse-estuarine plume type.
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BIOLOGICAL REGIME

Chl a concentrations were averaged at all stations and at both depths for each
season, and the highest concentrations were observed during fall and winter (ANOVA,
Tukey test, p < 0.05; Fig. 2.18). During spring, there was a significant negative linear
relationship between Chl a concentrations and salinity (R = -0.458; Fig. 2.19) but not
between Chl a concentrations and temperature (p > 0.05). No significant relationships
were observed during summer between Chl a concentrations and salinity (Fig. 2.19) or
temperature (p > 0.05). Temperature and salinity were negatively correlated with Chl a
(R =-0.421, R =-0.404, respectively) in the fall months. During winter, a significant
negative linear relationship was observed between Chl a concentrations and salinity (R =
-0.673; Fig. 2.19) and a positive linear relationship was observed between Chl a and

temperature (R = 0.570; p <0.05).

ul

Spring  Summer Winter

Chla (ug chl L)

Fig. 2.18. Chl a concentrations averaged for each season. Error bars represent standard
deviations. Fall and winter concentrations were significantly greater than spring and
summer concentrations.
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Chla (g chl L)

Fig. 2.19. Chl a concentrations versus salinity for spring, summer, fall, and winter at all
stations and both depths. Significant linear relationships were observed for spring
(dashed line; R = 0.458), fall (dot-dashed line; R = 0.404), and winter (small dashed line;
R =0.673) but not for summer (solid line).

Chl a concentrations were lowest at the CLT and PL3 stations, stations often
outside the plume influence, in comparison to the BM, PL1, and PL2 stations, when
averaged for all cruises at both depths (Fig. 2.20). This was different than what was
observed for DIN (Fig. 2.9) where there were significant differences between the more
“oceanic” CLT station and the other coastal stations. It was determined that mean
concentrations at the BM, PL1, and PL2 stations were significantly greater than mean
concentrations at the CLT and PL3 stations (ANOVA, Tukey test, p <0.05). The CLT
station was considered the more “oceanic” station therefore it was expected to have low
Chl a concentrations. Few measurements were made at the PL3 station, so it was

difficult to determine if Chl a concentrations were low because it was outside of the

influence of the plume, or if it was anomalous due to the lack of sufficient measurements



54

for comparisons. The BM station almost always had Chl a concentrations greater than
those at the CLT station. There were only four instances when concentrations at the Bay
mouth fell below 1.5 pg chl L™, and three were when there was an oceanic influence and
one was when there was a diffuse-estuarine plume (Appendix table A.3). Chla
concentrations at the BM, PL1, and PL2 stations were not significantly different from

each other (BM: 4.3 +2.2 pg chl L'; PL1: 4.3 £ 2.6 pg chl L''; PL2: 4.1 £ 2.5 ug chl L';
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Fig. 2.20. Chl a concentrations averaged for all stations. Error bars are the standard
deviations. Chl a concentrations were greatest at the BM, PL1, and PL2 stations
compared to the PL3 and CLT stations.

Fig. 2.9).

Relationships with freshwater flow were limited to the BM station only, due to the
proximity of the BM station to the James River. Salinity and temperature were used as
proxies when observing relationships between freshwater flow and, biomass, nutrients, or

uptake rates at other stations. A significant positive linear relationship was observed
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between freshwater flow and Chl a concentrations at the BM station for all seasons and
both depths (R = 0.516; Fig. 2.21). A significant negative linear relationship was
observed between salinity and Chl a concentrations at the BM station (R = -0.398) as
well as for the pooled station data (R =-0.429; Appendix table A.6) for all seasons and
both depths (Fig. 2.22). Also, a significant negative linear relationship, was observed
between temperature and Chl a concentrations at the BM station (R = -0.452) as well as

for the pooled station data (R = -0.353; Appendix table A.6) for all seasons and both

depths (Fig. 2.23).

Chla (ug chl LN

0 2000 4000 6000 8000

Freshwater flow (m3 5'1)

Fig. 2.21. Chl a concentrations versus freshwater flow for both depths at BM stations. A
significant linear relationship (R = 0.516) is shown.
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Fig. 2.22. Chl a concentrations versus salinity for all stations with the BM station shown
separately at both depths. A significant negative linear relationship is shown for the
pooled data (dashed line; R = -0.429) and for the BM station only (solid line; R =-0.398).
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Fig. 2.23. Chl a concentrations versus yemperature for all stations and the BM station
only at both depths. A significant negative linear relationship is shown for the pooled
data (dashed line; R =-0.353) and for the BM station only (solid line; R = -0.452).
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There was no significant difference between Chl a concentrations among plume
types (ANOVA; p > 0.05; Fig. 2.24). The largest range of Chl a concentrations between
stations and at both depths (0.8 — 12 pg chl L") was observed when the plume was jet-
like during March 2005 (Appendix table A.3). When the estuarine plume was diffuse, Chl
a concentrations were less than 7.7 pg chl L™, and the oceanic influenced plume had Chi
a concentrations less than 8.6 pg chi L at all stations and both depths (Appendix table
A.3). When the plume was jet-like, there was a significant negative linear relationship at
all stations and both depths between salinity and Chl a (R = -0.668; Fig. 2.25), similar to
what was found between salinity and DIN concentrations (Fig. 2.12). There was also a
significant negative linear relationship but weaker correlation between temperature and
Chl a concentrations (R =-0.352; p < 0.05). When the plume was diffusive with an
estuarine influence, there was no significant relationship between salinity and Chl a (Fig
2.25) but there was a significant negative linear relationship between temperature and Chl
a, and the correlation coefficient was weak (R = -0.348; p < 0.05). When there was an
oceanic influence, there was no significant relationship between salinity and Chl a (Fig.

2.25) or between temperature and Chl a (R =0.262; p > 0.05).



58

Chla (ug chl
NS

Jet DE Ol

Fig. 2.24. Chl a concentrations averaged for each plume type. Error bars represent the
standard deviations. No significant differences in mean Chl a concentrations were

observed among plume type.
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Fig. 2.25. Chl a concentrations versus salinity for the jet-like plume, diffuse-estuarine
plume, and oceanic influenced plume. Linear regression showed a significant
relationship between salinity and Chl a for the jet-like plume (dashed line; R = 0.668) but
not for the DE (solid line) or OI (dot-dashed line) plume types.
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Unlike Chl a results, there was no significant difference between the mean PN
and PC concentrations among seasons (ANOVA; p > 0.05; Fig. 2.26). During spring and
summer, there were significant negative linear relationships between salinity and PN
concentrations (R =-0.459 and -0.595, respectively; Fig. 2.27) but not between
temperature and PN or PC concentrations (p > 0.05). During summer, PC was negatively
significantly linearly related with salinity (R = -0.464) but not during spring (Fig. 2.28).
During fall, there were no significant relationships between PN or PC and salinity (Figs.
2.27 and 2.28) or temperature (p > 0.05). And during winter, significant negative linear
relationships were observed between salinity and PN concentrations (R = -0.586; Fig.
2.27) and salinity and PC concentrations (R = 0.461; Fig. 2.28). Also, during winter,
positive linear relationships were observed between temperature and PN (R = 0.506) and

PC (R = 0.523).
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Fig. 2.26. Average PN and PC concentrations for each season. Error bars represent
standard deviations. There were no significant differences among season for PN or PC
concentrations.
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Fig. 2.27. PN concentrations versus salinity for spring, summer, fall, and winter. There
were significant negative linear relationships during spring (dashed line; R = -0.459),
summer (solid line; R = -0.595), and winter (small dashed line; R = -0.586), but not for
fall (dot-dashed line).
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Fig. 2.28. PC concentrations versus salinity for spring, summer, fall, and winter. There
were significant linear relationships during summer (solid line; R = 0.464) and winter
(small dashed line; R = 0.461), but not during spring (dashed line), and fall (dot-dashed
line).
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Similar to Chl a, average PN and PC concentrations were significantly greater at
the BM, PL1, and PL2 stations compared to the CLT station (ANOVA; Tukey test; p <
0.05; Fig. 2.29). This was different than what was observed for DIN concentrations,
where there was no significant difference among stations (Fig. 2.9). The average PN
concentrations at the BM station were significantly greater than the average PN
concentrations at the PL3 station, however, there were fewer samples taken at the PL3
station in comparison with the other stations, therefore results should be interpreted

cautiously.
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Fig. 2.29. Average PN and PC concentrations at each station. Error bars are the standard
deviations. Significant differences in PN and PC concentrations were observed between
the CLT station and the BM, PL1, and PL2 stations.

In contrast to Chl a results, PN and PC concentrations did not have a significant
linear relationship with freshwater flow at the BM station (PN: R = 0.167; p > 0.05; PC:

R =0.070; p > 0.05). There was a significant negative linear relationship between

salinity and PN and PC concentrations at the CLT station and when all data were pooled
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across seasons, stations, depths, and plume types (Figs. 2.30 and 2.31; Appendix table
A.6). For each individual station and for pooled station data, no significant relationships
were found between temperature and PN or PC concentrations (p > 0.05; Appendix table

A.6).

)

1

PN (umeol I

4 4 O All stations O

2 & CLT only

0 T T T
0 5 10 15

Fig. 2.30. PN concentrations versus salinity pooled for all stations and the CLT station is
depicted separately at both depths. A significant negative linear relationship is shown for
the pooled data (dashed line; R = -0.447) and for the CLT station only (solid line; R = -
0.464).
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Fig. 2.31. PC concentrations versus salinity pooled for all stations and the CLT station is
depicted separately at both depths. A significant negative linear relationship is shown for
the pooled data (dashed line; R =-0.319) and at the CLT station only (solid line; R = -

0.425).

When comparisons were made between PN and PC concentrations and plume
type, it was determined that there was no significant difference in average PN and PC
concentrations and plume type (ANOVA; p > 0.05; Fig. 2.32). However, salinity and PN
or PC concentrations were significantly linearly related (Figs. 2.33 and 2.34) when the
plume was jet-like or diffuse with estuarine influences. No significant relationships were
found between temperature and PN or PC concentrations (p > 0.05) for any of the three
plume types. During all three plume types, there were significant positive linear
relationships between Chl @ and PN and PC concentrations (Jet: PN R = 0.804; PCR =
0.700; DE: PN R = 0.624; PC R =0.581; OI: PN R = 0.821; PC:R = 0.744; p < 0.05;

Figs. 2.35 and 2.36).
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Fig. 2.32. Average PN and PC concentrations by plume type. Error bars represent the
standard deviations. PN and PC concentrations during the diffuse-estuarine plume were
significantly different than when there was an oceanic influence.
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Fig. 2.33. PN concentrations versus salinity for the jet-like plume, diffuse-estuarine
plume, and oceanic influenced plume. Linear regression shows a significant negative
linear relationship between salinity and PN for the jet-like (dashed line; R = -0.534) and
DE (solid line; R = -0.522) plume types but not for the OI (dot-dashed line) plume type.
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Fig. 2.34. PC concentrations versus salinity for the jet-like plume, diffuse-estuarine
plume, and oceanic influenced plume. Linear regression shows a significant negative
linear relationship between salinity and PC for the jet-like (dashed line; R = -0.366) and
DE (solid line; R = -0.390) plume types but not for the OI (dot-dashed line) plume type.

Chla (pgchlL™)

Fig. 2.35. PN concentrations versus Chl a concentrations for the jet-like plume, diffuse-
estuarine plume, and oceanic influenced plume. Linear regression shows a significant
negative linear relationship between salinity and PN for the jet-like (dashed line; R =
-0.804), DE (solid line; R = -0.624) and the OI plume types (dot-dashed line; R = -0.821).
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Fig. 2.36. PN concentrations versus Chl a concentrations for the jet-like plume, diffuse-
estuarine plume, and oceanic influenced plume. Linear regression shows a significant
negative linear relationship between salinity and PN for the jet-like (dashed line; R =
-0.700), DE (solid line; R =-0.581) and the OI plume types (dot-dashed line; R = 0.744).

The PC to PN ratio was calculated and comparisons were made among seasons,
station locations, and with respect to plume morphotypes. The average ratios were not
different from (t-test) the Redfield ratio (6.6) for each season (spring = 7.6 + 1.3; summer
=7.6 £ 1.6; fall = 6.9 £ 0.6; winter = 6.6 + 0.7), station (BM =6.9+ 1.0; PL1 =7.0+ 1.1;
PL2=7.4+13;PL3=9.4+2.0; CLT=7.7 £ 1.2), and plume type (Jet=7.3 £ 1.3; DE
=73+1.5;0l=7.5%1.1),
C AND N UPTAKE

Volumetric bicarbonate uptake rates were significantly higher in the fall
compared to the other seasons (ANOVA; Tukey test; p < 0.05; Fig. 2.37). The highest

rates were observed specifically during November 2005 during downwelling-favorable

conditions and an oceanic influenced hydrographic regime (Appendix table A.4).
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However, when normalized to Chl a, primary productivity rates were significantly greater
in the summer compared to the spring and winter, and rates in the fall were significantly
greater than rates in the winter (ANOVA; Tukey test; p < 0.05; Fig. 2.37). When
correlating primary productivity to Chl a concentrations, there was a significant positive
linear relationship for the pooled data (p < 0.05; Fig. 2.38) but the R value was weak
(0.442). When looking at individual seasons, primary productivity and Chl a were best
correlated (positively) in the fall (R = 0.723; Fig. 2.39) and volumetric primary
productivity rates correlated significantly (p < 0.05) with NO, (R = 0.753; positive
relationship), and DFAA N (R = 0.628; positive relationship). Similarly, during the fall,
Chl a normalized primary productivity rates correlated significantly (p < 0.05) with NOy’
(R =0.628; positive relationship), and DFAA N (R = 0.582; positive relationship).
During spring, when primary productivity rates correlated with Chl @ but had a low R
value (R = 0.487; Fig. 2.39), there were significant linear relationships (p < 0.05)
between volumetric primary productivity rates and temperature (R = 0.479; positive
relationship), salinity (R = -0.467), and NO;" concentrations (R = 0.678). Also during
spring, Chl a normalized primary productivity rates correlated significantly with DON
concentrations (R = 0.435; positive relationship) and PO, concentrations (R = -0.481).
During summer, when primary productivity rates correlated with Chl a but had a low R
value (R = 0.475; Fig. 2.39) volumetric primary productivity rates correlated significantly
(p < 0.05) with salinity (R =-0.475), urea (R = -0.322), and DON (R = 0.455; positive
relationship). Also during summer, Chl @ normalized primary productivity rates
correlated significantly with urea (R =-0.403), DON (R = 0.517). During winter, there

was no significant relationship between Chl a and primary productivity rates, only
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volumetric primary productivity rates were correlated with salinity (R = -0.605; p < 0.05)

and urea (R = 0.534; p < 0.05) and there were no other significant relationships between

primary productivity rates and other parameters.

B Volumetric
O Chl normalized

ﬁﬁﬁ%laa%

Spring Summer

Fig. 2.37. Daily volumetric and Chl a normalized primary productivity rates averaged for

all seasons. Error bars represent standard deviations. Fall volumetric rates were
significantly higher rates during other seasons and summer Chl a normalized rates were
significantly higher than spring and winter rates.
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Fig. 2.38. Daily volumetric primary productivity rates versus Chl a concentrations for all
pooled data. A significant linear relationship (p < 0.05) with a weak R value (0.442) is
shown.
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Fig. 2.39. Volumetric primary productivity rates versus Chl a concentrations for spring,
summer, fall, and winter. A significant linear relationship was observed for spring
(dashed line; R = 0.487), summer (solid line; R = 0.475), and fall (dot-dashed line; R =
0.723), but not for winter (small dashed line).
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Spatially, volumetric rates, when averaged for each station, were significantly
greater at the BM and PL1 stations in comparison to the CLT station (ANOVA; Tukey
test; p < 0.05; Fig. 2.40). No significant differences were found for Chl a normalized
primary productivity rates among stations (ANOV A; p > 0.05; Fig. 2.40). There were
significant positive linear relationships with weak correlation coefficients between
primary productivity rates and Chl a concentrations at the PL1 station (R = 0.553) and
CLT station (R = 0.481), but no significant relationships were found at the BM, PL2, and
PL3 stations (Fig. 2.41). At the BM and CLT stations, there were no significant linear
relationships between freshwater flow (in the case of the BM station only), temperature,
salinity or nutrients and volumetric primary productivity rates or Chl a normalized
primary productivity rates (p > 0.05). At the PL1 station there were no significant
relationships between temperature, or salinity and volumetric primary productivity rates
or Chl a normalized primary productivity rates (p > 0.05), but there were significant
relationships with Chl a normalized primary productivity and DFAA N (R = 0.456;
positive relationship). Also, at the PL1 station, there was a significant linear positive
relationship between volumetric primary productivity and NO,” concentrations (R =
0.823). At the PL2 station, Chl a normalized primary productivity correlated
significantly with temperature (R = -0.412) but no other relationships were observed for

salinity, or nutrients and primary productivity rates at the PL2 station.
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Fig. 2.40. Volumetric and Chl a normalized primary productivity rates averaged for each
station. Error bars represent standard deviations. There was a significant difference
between volumetric rates at the BM station compared to the CLT station and there was no
significant differences between stations for Chl @ normalized primary productivity rates.
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Fig. 2.41. Volumetric primary productivity rates versus Chl a concentrations for the BM,
PL1, PL2, PL3, and CLT stations. There were no significant linear relationships
observed.
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The oceanic influenced plume type had significantly greater volumetric and Chl a
normalized primary productivity rates compared to the jet-like plume type (ANOVA;
Tukey test; p < 0.05; Fig. 2.42), and Chl @ normalized primary productivity rates were
significantly greater for the diffuse-estuarine influenced plume type compared to the jet-
like plume type (ANOVA; Tukey test; p < 0.05; Fig. 2.42). When correlating volumetric
primary productivity rates with Chl a concentrations for each plume type, it was
determined that no significant linear relationship existed for the jet-like or diffuse-
estuarine plume types (p > 0.05; Fig. 2.43) but there was a significant positive linear
relationship during the oceanic influenced plume type (R = 0.881; Fig. 2.43). During the
oceanic influenced plume type, volumetric primary productivity rates had significant
positive linear relationships (p < 0.05) with PN (R =0.779), PC (R =0.782), NO," (R =
0.737), DFAA N (R = 0.637), and Si04* (R = 0.621). When correlating volumetric
primary productivity rates with salinity for each plume type, a significant negative linear
relationship was observed for the jet-like plume type (R =-0.558), but not for the diffuse-
estuarine and oceanic influenced plume types (Fig. 2.44). When correlating Chl a
normalized primary productivity rates with salinity, no significant linear relationships
were determined for each plume type (p > 0.05). During the diffuse-estuarine plume
type, there were significant linear relationships between Chl @ normalized primary
productivity and freshwater flow (R = -0.483), and temperature (R = 0.415). During the
jet-like plume type, there were no significant linear relationships between primary

productivity rates (volumetric or Chl a normalized) and physical parameters or nutrients.
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Fig. 2.42. Volumetric and Chl @ normalized primary productivity rates averaged over
plume type. Error bars represent the standard deviations. Rates were not significantly
different among plume types.
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Fig. 2.43. Volumetric primary productivity rates versus Chl a concentrations for each
plume type. Linear regression showed a significant positive relationship between
volumetric primary productivity rates and Chl a concentrations for the OI plume type
(dot-dashed line; R = 0.881) but not for the jet-like (dashed line) or DE (solid line) plume
types.
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Fig. 2.44. Salinity versus volumetric primary productivity rates for the jet-like plume,
diffuse-estuarine plume, and oceanic influenced plume. Linear regression showed a
significant negative relationship between salinity and volumetric primary productivity
rates for the jet-like plume type (dashed line; R = -0.558) but not for the jet-like (dashed
line) or DE (solid line) plume types.

Volumetric rates of total N uptake ranged from 0.04 to 0.69 pmol N L h™!
(Appendix table A.4). Volumetric rates did not have a significant linear correlation with
Chl a or PN concentrations (p > 0.05; Appendix table A.6) for all data combined,
therefore when discussing significant differences in uptake rates between seasons,
stations, or plume types, volumetric uptake rates were used. When rates for each N
compound were averaged for each season, total N, NH,", urea N, and DFAA N uptake
rates were significantly greater in the summer compared to the fall (ANOVA; Tukey test;
p < 0.05; Table 2.45). Total N and NH," uptake rates were also greater in the summer

compared to the winter, and TN uptake rates were greater in the summer compared to the

spring. (ANOVA; Tukey test; p < 0.05; Fig. 2.45). DFAA N uptake rates were
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significantly greater in the summer compared to the fall (ANOVA,; Tukey test; p <0.05;
Fig. 2.45). There were no significant differences in NO3™ uptake rates between seasons
(ANOVA; p > 0.05; Fig. 2.45). Overall, NH;" uptake rates were highest of all individual
N compound uptake rates during most of the year for all sampling years at all stations

(Fig. 2.45).
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Fig. 2.45. Hourly volumetric NH,4", NO;, NOy, Urea N, and DFAA N rates averaged for
all seasons. Error bars represent standard deviations. See text for significant differences.
There were no significant relationships with R values greater than 0.5 between
salinity or temperature and volumetric uptake rates, or uptake rates normalized to Chl a
for all N compounds, for all pooled data (p > 0.05; Appendix table A.6). There was a
significant positive linear relationship between total N volumetric uptake rates and Chl a
concentrations (R = 0.690; p < 0.05) in the fall, and this was not found for any other

SCason.
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When volumetric N uptake rates were compared between stations, there were no
significant differences found between total N uptake rates or individual N compound
uptake rates and station location (ANOVA; p > 0.05; Fig. 2.46). No significant
relationships were observed at the BM station between individual volumetric N uptake
rates and freshwater flow or salinity (p > 0.05). However, total N and NH," volumetric
uptake rates were correlated positively with temperature at the BM station, with R values
less than 0.5 (TN: R = 0.496; p < 0.05; NH,: R = 0.440; p < 0.05). A significant
negative linear relationship was found between freshwater flow and total N uptake rates
normalized to Chl a (R = -0.594; p < 0.05; Fig. 2.47) and a significant positive linear
relationship was found between temperature and NH," uptake rates normalized to Chl a
at the BM station (R = 0.448; p < 0.05; Fig. 2.48). At the CLT station, there were no
significant relationships between volumetric N uptake rates or N uptake rates normalized
to Chl a and salinity or temperature (p > 0.05). At the PL1 station, no significant
relationships were observed between volumetric N uptake rates or N uptake rates
normalized to Chl a and salinity (p > 0.05). However, there were significant positive
linear relationships between temperature and total N uptake rates (R = 0.435) and total N
uptake rates normalized to Chl ¢ at the PL1 station (R = 0.473). At the PL2 station, no
significant relationships were observed with volumetric N uptake rates or Chl a
normalized uptake rates and salinity (p > 0.05), however, there was a significant positive
linear relationship between temperature and total N uptake rates normalized to Chl a with
an R value less than 0.5 (R = 0.435, p < 0.05). Uptake rate measurements were made at
the PL3 station only 8 times and statistical analyses could not be interpreted with much

confidence.
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Fig. 2.46. Hourly volumetric NH,", NO,", NO3", Urea N, and DFAA N rates averaged for
each station. Error bars represent standard deviations. There were no significant
differences between volumetric rates at any station.
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Fig. 2.47. Freshwater flow versus total N uptake rates normalized to Chl a at the BM
station for all seasons and all depths. A significant linear relationship is shown (R =

0.594).
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Fig, 2.48. Temperature versus NH," uptake rates normalized to Chl a at the BM station
for all seasons and all depths. A significant linear relationship is shown (R = 0.448).

There were significant differences when averaging volumetric N uptake rates over
each plume type (Fig. 2.49). NH;" volumetric uptake rates were significantly greater
when the plume was diffuse with an estuarine influence compared to when the plume was
jet-like or had an oceanic influence (ANOVA; Tukey test; p < 0.05; Fig. 2.49). NO;’
volumetric uptake rates were significantly greater when the plume was diffuse with an
estuarine influence compared to when the plume was jet-like (ANOVA; Tukey test; p <
0.05; Fig. 2.49). DFAA N volumetric uptake rates were significantly greater when the
plume was diffuse with an estuarine influence compared to when there was an oceanic
influence (ANOVA; Tukey test; p < 0.05; Fig. 2.49). There were no significant
differences between NO;™ and Urea N volumetric uptake rates amongst plume types
(ANOVA; p > 0.05; Fig. 2.49). The diffuse-estuarine plume type had the greatest total N

uptake rates compared to the jet-like plume and the oceanic influenced plume type
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(ANOVA; Tukey test; p < 0.05). At all plume types, NH;" was the dominant N

compound being taken up (Fig. 2.49).
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Fig. 2.49. Volumetric N uptake rates averaged over plume type. Error bars represent the
standard deviations. Rates were significantly different for NH;" uptake rates during the
diffuse-estuarine plume type compared to the jet-like and oceanic influenced plume
types, for NO;™ uptake rates during the diffuse-estuarine plume type compared to the jet-
like plume type, and for DFAA N uptake rates during the diffuse-estuarine plume type
and the oceanic influenced plume type.

When the plume was jet-like, no significant relationships were observed for N
uptake rates (volumetric or Chl a normalized) and salinity, or temperature (p > 0.05).
When the plume was diffuse with an estuarine influence, there was a weak significant
negative linear relationship between total N volumetric uptake rates and salinity (R =
-0.453; p < 0.05) and in particular between NO," (R = -0.469; p <0.05), urea N (R =
-0.614; p < 0.05), and DFAA N (R =-0.557; p < 0.05) volumetric uptake rates and

salinity. There were also weak significant positive linear relationships between
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temperature and total N uptake rates normalized to Chl a (R = 0.445; p <0.05), NOy’
uptake rates normalized to Chl a (R = 0.441; p <0.05), Urea N uptake rates normalized
to Chl a (R =0.467; p < 0.05), and DFAA N uptake rates normalized to Chl a (R = 0.476;
p < 0.05) when the plume was diffuse with an estuarine influence. When there was an
oceanic influence, volumetric N uptake rates were not significantly correlated with
salinity or temperature, except for urea N volumetric uptake rates, which had a significant
positive linear relationship with temperature (R = 0.698; p < 0.05). Total N uptake rates
normalized to Chl a did not have a significant relationship with salinity, but did have a
weak significant positive linear relationship with temperature when there was an oceanic
influence (R = 0.478; p <0.05). In particular, NO, (R =0.521; p <0.05), NO; (R=
0.441; p <0.05), and urea N (R = 0.662; p < 0.05) uptake rates normalized to Chl a had
significant positive linear relationships with temperature.

Volumetric NH4" uptake rates, NH," uptake rates normalized to PN
concentrations, and Chl a normalized NH," uptake rates were not significantly correlated
with NH," concentrations for all pooled data (p > 0.05; Appendix table A.6). However,
when observing NH," concentrations less than 1.2 pmol L™, there was a significant linear
relationship observed between NH;" concentrations and NH," volumetric uptake rates (R
=(.525), and a significant linear relationship but lower R value (0.343) observed between
NH," concentrations and NH," uptake rates normalized to PN concentrations (Fig. 2.50).
No relationship was observed between NH," concentrations less than 1.2 umol L' and
NH," uptake rates normalized to Chl a (Fig. 2.50). NH," concentrations were not
correlated with volumetric NH," uptake rates, or NH, " uptake rates normalized to Chl a

or PN concentrations at any station location or for all three plume types (p > 0.05).
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Fig. 2.50. NH4" uptake rates versus NH4" concentrations less than 1.2 umol L' for all
pooled data. Significant linear relationships were found for volumetric uptake rates
(dashed line; R = 0.525) and uptake rates normalized to PN concentrations (solid line: R
= (.343) but not for uptake rates normalized to chl a (dot-dashed line).

Uptake rates for NO,” were correlated with NO;™ concentrations for all pooled
data (Appendix table A.6) and a significant positive linear relationship was found for
volumetric uptake rates (R = 0.568; p < 0.05; Fig. 2.51) and NO;" concentrations and
uptake rates normalized to PN concentrations (R = 0.420; p < 0.05; Fig. 2.51) but not
when normalized to Chl a concentrations (p > 0.05; Fig. 2.52) Fig. 2.51). Although Fig.
2.51 appeared to show that at NO,™ concentrations less than 0.2 pmol L' there may have
been a stronger linear relationship with uptake rates, the R values were lower for both
volumetric uptake rates (R = 0.302; p < 0.05) and rates normalized to PN (R = 0.382; p <
0.05) at concentrations less than 0.2 pmol L™, even though the relationships were

significant. When observing the relationship between NO,™ concentrations and NO,

uptake rates on a seasonal basis, a significant positive linear relationship was observed
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during the fall months between NO,™ concentrations (when NO,™ concentrations were as
high as 1.86 pmol L") and NO,” volumetric uptake rates (R = 0.820; p < 0.05; Fig. 2.52),
rates normalized to PN (R = 0.793; p < 0.05; Fig. 2.52), and rates normalized to Chl a
concentrations (R = 0.756; p < 0.05; Fig. 2.52). No significant relationships were
observed between NO;  concentrations and NO;™ uptake rates for spring, summer, or
winter (p > 0.05). NO;™ volumetric uptake rates were correlated positively with NO,’
concentrations at all stations (BM: R = 0.639; PL1: R =0.633; PL2: R =0.447; p < 0.05)
except for the CLT and PL3 (p > 0.05), where NO;" concentrations were less than 0.2
umol L. NO, concentrations did not have a significant linear relationship with NO,
uptake rates normalized to PN or Chl a at any station (p > 0.05). When observing the
relationship between NO,™ concentrations and NO,™ uptake rates for all three plume types,
significant linear relationships were found during the oceanic influenced plume type,
particularly between NO;" concentrations and volumetric uptake rates (R = 0.765; p <
0.05; Fig. 2.53) and rates normalized to PN (R = 0.585; p < 0.05; Fig. 2.53). No
significant relationships were observed between NO; concentrations and NO, uptake

rates for the diffuse-estuarine plume or the jet-like plume (p > 0.05).
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Figure 2.51. NO; uptake rates versus NO,  concentrations for pooled data. Significant
linear relationships were found for volumetric uptake rates (dashed line; R = 0.568) and
rates normalized to PN concentrations (solid line; R = 0.420) but not for uptake rates
normalized to chl a (dot-dashed line).
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Fig. 2.52. NO; uptake rates versus NO;  concentrations for fall months. Significant
positive linear relationships were found for volumetric uptake rates (dashed line; R =
0.737), uptake rates normalized to PN (solid line; R = 0.549), and uptake rates
normalized to Chl a concentrations (dot-dashed line; R = 0.703).
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Figure 2.53. NO, uptake rates versus NO; concentrations for the oceanic influenced
plume type. Significant linear relationships were found for volumetric rates (dashed line;
R = 0.765) and rates normalized to PN concentrations (solid line; R = 0.585) but not for
uptake rates normalized to chl a (dot-dashed line).

NOs uptake rates were correlated with NOs™ concentrations and no significant
relationships were observed for all pooled data (p > 0.05; Fig. 2.54; Appendix table A.6).
On closer inspection of individual seasons however, it was found that there were
significant positive linear relationships between NO;™ concentrations and NOs” uptake
rates for spring and summer months (Figs. 2.55 and 2.56). For the spring, when
concentrations were as high as 2.5 pmol L, significant relationships were found between
NOs concentrations and volumetric NO;™ uptake rates (R = 0.752; p < 0.05; Fig. 2.55)
and NOj uptake rates normalized to PN concentrations (R = 0.553; p < 0.05; Fig. 2.55),
but the relationships appeared to be skewed by the higher NO3™ concentrations. For the

summer, when concentrations were as high as 0.7 pmol L, significant relationships were
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found between NOj™ concentrations and volumetric NO;™ uptake rates (R = 0.452; p <
0.05; Fig. 2.56), NO; uptake rates normalized to PN (R = 0.490; p < 0.05; Fig. 2.56), and
NO; uptake rates normalized to Chl a concentrations (R = 0.431; p < 0.05; Fig. 2.56).
Regarding station location and plume types, no significant relationships were observed

between NO;™ concentrations and NOj;™ uptake rates for individual stations or plume types

(p > 0.05).

NO3™ uptake rate

NO5™ (umol L)

Fig 2.54. NO; uptake rates versus NO;™ concentrations for all pooled data. No significant
linear relationships were found.
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Figure 2.55. NOs uptake rates versus NOs™ concentrations for the spring. Significant

linear relationships were found between NO;™ concentrations

and volumetric NOs3™ uptake

rates (dashed line; R = 0.752) and NO;  uptake rates normalized to PN concentrations
(solid line; R = 0.553) but not for uptake rates normalized to chl a (dot-dashed line).
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Fig. 2.56. NOs uptake rates versus NO3™ concentrations for the summer. Significant
linear relationships were found between NOj;™ concentrations and volumetric NO;™ uptake
rates (dashed line; R = 0.452), NOs uptake rates normalized to PN (solid line; R = 0.490),
and NOj; uptake rates normalized to Chl a concentrations (dot-dashed line; R = 0.431).
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Similar to NO;3™ uptake rates, urea concentrations were not correlated with urea
uptake rates for all pooled data (p > 0.05; Fig. 2.57; Appendix table A.6). No significant
relationships were found during individual seasons, at individual station locations, or for
individual plume types. Urea uptake rates were not reliant on urea concentrations during
any time. Overall, volumetric urea uptake rates, and urea uptake rates normalized to Chl

a weakly correlated with temperature (R = 0.332, 0.335, respectively; p <0.05).
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Fig. 2.57. Urea N uptake rates versus urea N concentrations for all pooled data. No
significant linear relationships were found.

DFAA N concentrations had significant relationships but weak correlations with
DFAA N uptake rates for all pooled data (Fig. 2.58; Appendix table A.6). On a seasonal
basis, significant positive linear relationships were observed during the summer between
DFAA N concentrations and DFAA N uptake rates normalized to Chl a (R =0.507; p <
0.05) and DFAA N uptake rates normalized to PN concentrations (R = 0.680; p <0.05).

Significant positive linear relationships at individual station locations were only observed
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at the CLT between DFAA N concentrations and DFAA N uptake rates normalized to
Chla (R =0.580; p <0.05) and DFAA N uptake rates normalized to PN concentrations
(R =0.666; p < 0.05). There were no significant relationships between DFAA N

concentrations and DFAA N uptake rates for individual plume types.
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Fig. 2.58. DFAA N uptake rates versus DFAA N concentrations for all pooled data.
Significant linear relationships were found for volumetric uptake rates (dashed line; R =
0.284), uptake rates normalized to PN (solid line; R = 0.475), and rates normalized to Chl
a (dot-dashed line; R = 0.416).

C to N uptake ratios were calculated by dividing hourly bicarbonate uptake by
hourly total N uptake, as C uptake by DFAA’s and urea were a negligible percent (on
average < 5%) of C uptake compared to inorganic C uptake. Hourly C to N uptake ratios
were averaged for each season (Fig. 2.59). Fall uptake ratios were significantly greater

than ratios during the spring, summer, and winter and averaged below the Redfield ratio

(6.6) (Fall: 4.6 + 2.4) (ANOVA; Tukey test; p < 0.05; Fig. 2.59). When ratios were
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averaged for each station, the BM station was found to have significantly greater C:N
uptake ratios than at the CLT station (ANOVA; Tukey test; p < 0.05; Fig. 2.60). Ratios
at the BM were much lower than the Redfield ratio, with an average and standard
deviation of 3.5 + 2.7. When ratios were averaged for each plume type, the oceanic-
influenced and jet-like plume types were found to have significantly greater C:N uptake
ratios compared to the diffuse-estuarine plume type (ANOVA; Tukey test; p <0.05; Fig.
2.61). The average ratio during the oceanic influenced scenario was 3.5 + 3.0, and during

the jet-like it was 2.7 + 2.1, lower than the canonical Redfield ratio.
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Fig. 2.59. Seasonally averaged C to N uptake ratios based on hourly uptake rates. Ratios
in the fall were significantly greater than ratios in the spring, summer, and winter.
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Fig. 2.60. C to N uptake ratios averaged over for each station. Ratios at the BM station
were significantly greater than ratios at the CLT station.
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Fig. 2.61. C to N uptake ratios averaged for each plume type. Ratios during the oceanic-
influenced and jet-like plumes type were significantly greater than ratios during the
diffuse-estuarine plume type.
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DISCUSSION

Three main findings resulted from this study:

e Primary productivity did not correlate with Chl a concentrations most of

the time and were best described by differences in plume morphotype.

e Plume morphotypes were important in determining biomass versus
productivity relationships; low flow conditions promoted in situ
productivity while high flow, or ‘wash out’ conditions promoted

highbiomass exported from the Bay.
¢ N concentration was a poor predictor of N uptake.

Primary productivity did not always correlate well with Chl a concentrations, and
there was only a weak significant linear relationship for the pooled data (Fig. 2.38;
Appendix table A.6). Primary productivity and Chl a concentrations were not
significantly related during the jet-like plume, were significantly related during the
oceanic-influenced plume, and were significantly related (with a weaker R value) for the
oceanic-influenced and diffuse-estuarine plume types combined. Nutrient availability
was very similar for all three plume types, and PN, PC and Chl a concentrations were not
different for the jet-like plume type compared to the oceanic-influenced plume type, but
the jet-like plume had significantly lower primary productivity rates compared to the
oceanic-influenced plume type. The lower rates during the jet-like plume were possibly
due to increased mixing below the euphotic zone, creating conditions unsuitable for
productivity and instead the biomass observed was transported from the Bay (‘wash

out’), thus skewing the relationship between primary productivity and Chl a.



92

The differences in solely physical parameters (e.g. wind direction and freshwater
flow) among different plume types can have implications on biomass, particulate, and
nutrient delivery, as well as primary productivity, and N uptake rates. During jet-like
plumes, freshwater flow was as high as 10,000 m® s which equates to 0.01 Sv, 1% of the
global freshwater flux from rivers. When discharge was this high and winds were
predominantly from the north, there was a significant linear relationship between salinity
and Chl a concentrations (Fig. 2.44), implying Chl a from the Bay was exported, or
‘washed out’, into the adjacent receiving waters. Using a simple flux calculation, a high
freshwater flow estimate, and average Chl a concenrations during jet-like plumes,
biomass from the Bay could exceed 3.5 x 10° g chl d”'. When the plume was diffuse with
an estuarine or oceanic influence, there was no correlation between salinity and Chl a
concentrations (Fig. 2.44) suggesting that ‘wash out’ from the Bay was not significant
during these times and in situ processes dominated. However, if Chl a was being
delivered from the Bay, and the diffuse-estuarine plume type had freshwater flow as low
as 300 m® 5!, there would only be 9 x 10* g chl d”!, two orders of magnitude lower than
the jet-like plume situation. Similarly, since there was no difference in DIN
concentrations among plume type, the jet-like plume would provide 2 orders of
magnitude more DIN than the diffuse plume, simply due to freshwater flux. However,
the oceanic-influenced plume type had almost 3 times more primary productivity on
average than the jet-like plume type, and thus the turnover of nutrients would be much
greater during the oceanic-influenced plume type. Although a greater flux of DIN is
coming from the Bay during the jet-like plume, these nutrients are not being utilized in

primary production nearly as much as they are during the oceanic-influenced plume type.
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Plume morphotypes were not the only reasons behind the discrepancy between
primary productivity rates and Chl a concentrations, nor was it the only indicator of
‘wash out’ from the Bay. Rather, proximity to the source of freshwater flow (i.e. James
River) played a large role in skewing relationships. Spatially, the Bay mouth region was
expected to be influenced more from nutrient-rich Bay waters due to its proximity to the
major tributaries, specifically the James River (Acker et al. 2005), thus leading to higher
productivity, however this was not the case. The BM station had greater productivity
than the CLT station, but did not have greater productivity compared to the plume
stations. Furthermore, freshwater flow at the BM correlated with Chl a concentrations,
but not particulate matter, inorganic N, N uptake or primary productivity. This is
contrary to findings suggesting turbidity and particulate matter can be related to the
amount of freshwater flow entering a region as well as the amount of biomass being
delivered or produced in situ (Berner and Berner 1996; Acker et al. 2005). The
implications are that the Chl a concentrations were linearly related to high flow but
primary productivity was not at the BM station, and the former relationship was a result
of Chl a ‘washed out’ from the Bay, and not indicative of higher productivity fueled by
nutrients brought in from the estuarine outflow. Furthermore, salinity and Chl a were
linearly related at the BM station, but salinity was not linearly related with DIN, N
uptake, or primary productivity at the BM station. These results were similar to what was
observed by Acker et al (2005), however they suggested that the high Chl a
concentrations were due in part to in situ production stimulated by N derived from the
Bay proper. Here, I showed that DIN concentrations and N uptake rates were not

significantly greater at the BM station compared to the other stations (Figs. 2.25 and
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2.44) suggesting that productivity was not differentially stimulated by N from the Bay at

the BM station.

The significance of the discrepancy between primary productivity and Chl a
concentrations, and the potential for ‘wash out’ of Chl a, through the Bay mouth during
times of high freshwater flow, and northerly winds, has potential impacts on
interpretation of satellite remote sensing of coastal waters. Distinguishing between Chl a
being produced in situ versus that being delivered from an external source, such as the
Bayj, is crucial for truthing primary productivity algorithms using remotely sensed Chl a
data in coastal waters. My data suggest that Chl g and primary productivity are poorly
coupled in estuarine and plume waters during times of high freshwater flow and
downwelling-favorable wind conditions. Currently, primary productivity algorithms
using remotely sensed Chl a in turbid waters in the near-shore Northeastern Atlantic have
error estimates between 50 and 100 % (Hoepffner et al. 1999). It has long been known
that primary productivity estimates from remotely sensed Chl a concentrations have
limitations (Behrenfeld and Falkowski 1997). These limitations stem from a lack of
knowledge on the physiological state of the algae and their nutrient pre-history, both of
which must be understood in order to estimate rates of primary productivity accurately
from Chl a and both of which are very difficult to examine in the field (Behrenfeld and

Falkowski 1997).

N uptake rates were not always a function of N concentration and correlations
were sporadic when they did occur with no overlying condition (e.g. plume type, season,
or station) dominating the relationships. Early N uptake studies were based on the tenet

that N uptake rates were controlled by N availability (kinetics), either in the environment
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or intracellularly (Goldman and Glibert 1983). However, similar to primary productivity
estimates from Chl a, kinetic parameters are themselves variable and are a function of
phytoplankton physiological status, phytoplankton species, and nutrient pre-history,
which again are difficult to ascertain during field sampling (Mulholland and Lomas
2008). Because ambient N concentrations in coastal systems are generally too high, it is
often difficult to accurately assess kinetic parameters at lower ranges of nutrient
concentrations (Mulholland and Lomas 2008). Furthermore, correlations between in situ
nutrient concentrations and uptake rates do not signify kinetic relationships. The results
presented here suggest some relationship between concentrations of particular N
compounds and their uptake, which may signify nutrient preference, and can be

indicative of availability.

An important function of N uptake studies however is to understand the relative
importance of the various N compounds in fueling primary productivity in the
environment. NOj;", whether coming from estuarine or oceanic sources, were utilized
consistently in the plume region, under varying seasons, station locations, and plume
types, while NH,", NO;’, urea, and DFAA N had highest uptake rates during the summer
and when the plume was diffusive with an estuarine influence. This could suggest that
nutrient availability and/or preference during diffusive plumes is dependant upon reduced
forms of N, or forms of N that have been biogeochemically altered within the Bay and
delivered to the coastal zone. Currently, although agricultural run-off in the forms of
NH," or organic N is the greatest contributor of N to the Bay, the oxidized forms of N are

mainly delivered to the Bay. Therefore, for reduced forms of N to have the highest
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uptake rates in the plume region beyond the Bay, profound N cycling occurred within the

Bay (Fig. 1.1) providing altered N forms to the coastal zone for uptake by phytoplankton.

Rate measurements for N uptake are few and data collection in this area has been
sporadic and temporally and spatially limited. N uptake rates reported here were
consistent with those observed in other coastal systems (Mulholland and Lomas 2008)
but are only the second set of uptake rates reported for the Chesapeake Bay plume
(Glibert et al. 1991, Glibert and Garside 1992). Glibert et al. (1991) reported that
between 60 and 80 % of the total N taken up in the Chesapeake Bay plume region was in
the form of urea. During this study, between 9 and 90% of the total N taken up was in
the form of NH,", for all seasons, with percentages highest in the spring, even though
total N uptake rates were greatest overall in the summer. Differences in N uptake rates
between this study and the 1985 — 1986 study may simply reflect interannual variability,
the timing of seasonal transitions from year to year (e.g., spring freshet), or changes in
nutrient availability and N processing. Despite similar annual average flows during
2005, 2006, and 2007, timing of flow within those years varied substantially. Past
research within the Bay proper and in other estuarine systems suggested that the timing of
rainfall events during an overall low discharge period is important because it can control
the amount of nutrients available for primary productivity and also the delivery of
nutrients to the coastal zone (Fisher et al. 1988; Malone et al. 1988; Fisher et al. 1992).
Therefore, the timing of rainfall events in the upper Bay, will determine the
biogeochemical impact, in terms of the net N flux, of the plume on the coastal ocean.
Coastal eutrophication and N loading in the United States has increased approximately

six-fold since the 1960°s (Howarth et al. 2002; Howarth 2004) and so differences
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between this study and the one performed in the 1980°s may also be due to accelerated

anthropogenic forcing and changes in the timing of the spring blooms.

C productivity and N uptake are highly variable, both temporally and spatially in
the region of the Chesapeake Bay outflow plume and seasonal variability may be less
important than freshwater discharge (which affects flow through the Bay mouth) and
oceanographic conditions (e.g., upwelling or downwelling-favorable winds) at the time of
the discharge, thus affecting plume morphotype. We found that the predominant wind
direction, which influences local upwelling and downwelling conditions, is extremely
important in determining the extent of the plume’s intrusion into coastal waters.
Seemingly, when the plume is a jet, as it is during downwelling-favorable conditions, its
influence is restricted to a narrow coastal area where material is processed and likely
consumed, and primary productivity does not correlate with biomass, suggesting that the
biomass present during a jet-like plume is ‘wash out’ from the Bay. Productivity is not
stimulated during this time. In contrast, when the plume is diffusive, e.g., during
upwelling favorable conditions, or has an oceanic influence, the effect of the plume on
the coastal ocean is stronger in the sense that N uptake rates were greater, and primary
productivity correlated with nutrient availability, and this may have more profound
impacts on ecosystem productivity. Superimpose on this the predominant flow patterns
and we see that high flow during the summer, when there is higher likelihood of
upwelling favorable conditions, can have an enormous impact on the coastal ocean,
particularly during high discharge events. It has been shown that up to half of the annual
N load can be delivered to a coastal system (specifically Pamlico Sound, south of the

Chesapeake Bay mouth) during large stochastic events such as hurricanes (Paerl et al.
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2001). Future climate change scenarios suggest that low frequency, high intensity events
may become the norm. If this indeed is the case, the timing of these events and the
period in between these events, with respect to the dominant wind direction and
consequent wind-induced upwelling or downwelling, will play a crucial role in

determining the impact of estuarine plumes on the coastal ocean.

This data provides current estimates of natural processes and suggests substantial
variability in productivity and N dynamics in an estuarine plume. While high-intensity
and long-term data is needed to truly understand processes and controls of primary
productivity in highly variable coastal regions influenced by estuarine plumes, these
snapshots provide important insights regarding the dominant physical and
biogeochemical forcing behind productivity. In addition, primary productivity was not
simply related to Chl a concentrations, and understanding plume morphotype is crucial to
determining productivity relative to Chl biomass. Further, N uptake was not always
related to nutrient concentration in the environment, suggesting nutrient preferences were

significant.
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CHAPTER III
NITROGEN AND CARBON PRODUCTIVITY IN THE MID-ATLANTIC

BIGHT: TEMPORAL AND REGIONAL COMPARISONS

INTRODUCTION

While the global coastal ocean (< 200 m) represents less than 10% of the world’s
ocean, these highly productive regions are thought to account for more than 21% of total
oceanic productivity (Gattuso et al. 1998; Jahnke 2007). Primary production in most
coastal and shelf systems is thought to be limited by nitrogen (N) (Dugdale and Goering
1967; Ryther and Dunstan 1971), however these areas are impacted by adjacent
landmasses and receive anthropogenic N inputs that can potentially alleviate this
limitation. Consequently, in addition to upwelled N from oceanic waters, productivity in
these areas is often controlled by “new” N inputs (sensu Eppley and Peterson 1979) from
terrestrial sources such as rivers and groundwater discharge, and from atmospheric
deposition. It has been determined that denitrification in freshwater, terrestrial, and
estuarine sediments removes a substantial (between 80 and 90%) amount of reactive N
before entering the coastal zone (Fennel et al. 2006; Galloway et al. 2008) and that
another 15% is denitrified in continental shelf sediments (Galloway et al. 2008). Due to
such high denitrification rates, and the loss of N to the sediments, it would appear that
riverine and terrestrial run-off may not deliver N necessary to fuel primary productivity
in the coastal zone (Seitzinger et al. 2006). Alternatively, riverine N loading to the
coastal U.S. has almost doubled over the past forty years and it is projected that these

inputs will increase by another 30 % over the next 30 years (Howarth et al. 1996;
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Howarth et al. 2002), thus there is the possibility that the normally denitrifying sediments
could become saturated with reactive N. If the sediments become saturated with N, they
could become a source of N to an N-limited system (Galloway et al. 2008).

The N budget in the MAB is an important driver of primary production in this N-
limited area, and therefore is tightly tied to the carbon (C) budget (Howarth 2004; Gruber
and Galloway 2008). Increases in primary productivity have been related to increases in
anthropogenic N inputs into the coastal zone (Howarth et al. 2002, Paerl and Piehler in
press, Seitzinger and Harrison in press ) and the Redfield ratio is often used to estimate
primary productivity from N uptake and vice versa. However, this estimate may not be
useful in an increasingly eutrophic environment, specifically due to the shifts in the
absolute amount and dominant source or form of N delivered to the coastal ocean that can
have major impacts on primary productivity and the dominant primary producers (Gruber
and Galloway 2008). How N availability will affect the ocean’s ability to continue to
take up C is centered on understanding ‘nitrogen-carbon-climate interactions’ (Gruber
and Galloway 2008). Quantifying current regional N dynamics will not only help resolve
N budgets and primary productivity in coastal regions, but will allow us to begin to
project what the future might hold under evolving climate change scenarios (Howarth
2004).

Large-scale shifts in the physical environment and nutrient delivery to coastal
regions can have great consequences for coastal productivity. Physical processes within
the coastal zone regulating temperature and stratification are important controls on N
availability and primary productivity, and those water movements dominate the annual

cycle of productivity in the MAB (Flagg et al. 2002; Lentz 2003; Rasmussen et al. 2005).
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Specifically, the flow of the cold Labrador current from the north interacts with the warm
oligotrophic Gulf Stream current from the south creating a complicated pattern of
seasonal stratification and destratification that is highly dependent on wind speed,
direction, duration, and eddy development (Flagg et al. 2002). In the summer months,
along the North American Mid-Atlantic coast, stratification occurs, thus limiting vertical
transport of nutrients, and primary productivity within the water column (Flagg et al.
2002). Salty intrusions of slope water increase during the summer in the along-shelf
direction (from north to south), thus leading to higher salinity waters on the shelf in the
summer (Flagg et al. 2002; Lentz 2003). This is followed by an overturning of waters
and higher productivity in the fall due to wind-driven mixing and cooling, leading to
well-mixed conditions in the winter (Wright and Parker 1976; Rasmussen et al. 2005).
Increased light and nutrient availability leads to high productivity in the spring.

In addition to anthropogenic N inputs and physical forcing, primary productivity
in the MAB and other coastal areas may be affected by increasing atmospheric carbon
dioxide (CO;) concentrations and/or projected temperature rises in the future, as has been
observed in the oligotrophic North Atlantic and in mesocosm experiments (Hein and
Sand-Jensen 1997; Riebesell et al. 2007). The sensitivity of coastal regions to increasing
CO; and water temperature are largely unknown and so the future of these systems as
sources or sinks of atmospheric CO; is in question (Riebesell et al. 2007). While ocean
margins, including the MAB, are thought to be sinks for atmospheric CO,, there is no
current consensus regarding the MAB as a net source or sink of atmospheric CO,

(Chavez et al. 2007).
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The MAB has a complicated physical regime and receives N from a variety of
sources; as a result, there are contrasting views of the N budget for this region. Past
experimental results and recent modeled biogeochemical results for the pelagic MAB
suggested that denitrification in the sediments removed 90% of all DIN and PON
entering the region from the north and from riverine sources (Seitzinger and Giblin 1996;
Fennel et al. 2006). However, the modeled inputs for N uptake utilized half-saturation
constants for NO;” and NH4" uptake only (Fennel et al. 2006) when N uptake is not based
solely on nutrient concentration. There can also be significant uptake of N sources not
normally measured, such as NO;', urea, and DFAA N particularly in coastal regions
where recycled nutrients can dominate (Lipschultz 2008) (see Ch. 2). Other imbalances
in the N budget stem from undersampling of N, fixation. Estimates of denitrification for
the MAB (2.3 x 10> mol N y™') are an order of magnitude greater than N, fixation
estimates for the region, suggesting either underestimates of N, fixation or overestimates
of denitrification (Fennel et al. 2006). Research in the Naragansett Bay and surrounding
coastal areas suggest that sedimentary N losses due to denitrification may be balanced or
even exceeded by sedimentary N fixation, thus creating a source of N to the coastal
ocean (Fulweiler et al. 2007). Further, climate change, superimposed on eutrophication,
may alter the balance between N retention and losses due to changes in primary
production and the amount of organic material available for dentrification in the
sediments (Fulweiler et al. 2007).

Uncertainties regarding a balanced N budget in the MAB stem from a lack of
knowledge of current N requirements for primary production during times when N is

increasing in an N-limited coastal system. Multiple N forms are available for uptake at
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any given time, and importance needs to be placed on understanding differences between
inorganic N uptake versus organic N uptake, as phytoplankton may be competing with
bacteria in taking up organic N (Mulholland and Lomas 2008). Furthermore, knowing
how much and what forms of N are taken up in different hydrographic regimes and on a
seasonal scale will further broaden our view of the region as a net source or sink of
atmospheric CO,. It is the intent of this research to quantify N uptake rates for inorganic
and organic compounds as well as primary productivity estimates over 4 seasons in the
coastal zone of the MAB between Delaware and Virginia. From these measurements, a
comparison of primary productivity and N utilization can be made across regions and
over an annual timescale and will be useful in assessing the region’s ability to take up C
and N over time by comparing to literature values. This analysis will provide essential
and current information useful for modeling, algorithm development, and assessment of
the region in regards to its ability to take up atmospheric CO;.
METHODS

Five cruises were undertaken over two years during late winter/early spring,
spring, summer, and fall (30 March — 2 April 2005; 26 — 30 July 2005; 9 - 12 May 2006;
2 — 5 July 2006; 30 October — 2 November 2006). Primary productivity rates, N uptake
rates, and nutrient concentrations were measured during 3-5 day sampling excursions.
Stations included locations in the Chesapeake Bay mouth and its outflow plume, the
Delaware Bay outflow plume, waters influenced by the Gulf Stream, and the non-
estuarine influenced continental shelf between the Delaware Bay and Chesapeake Bay

(Fig. 3.1). Cruises were aboard the R/V Cape Henlopen or R/V Hugh R. Sharp and were
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generally comprised of on-shore to off-shore or off-shore to on-shore sampling transects

each day.
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Fig. 3.1. Station map for all MAB cruises.

Measurements were made at each station using a rosette-mounted CTD (SeaBird
electronics) similar to what was described in Chapter 2. Water samples were collected

using rosette-mounted Niskin bottles at both the surface (D1: 0 - 2 m) and fluorescence
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maximum (D2: 4.5 — 18 m in the plume region; 10 — 50 m in the southern shelf; 5 - 53 m
in the mid-shelf). When the water column was well-mixed or shallow, samples were
collected from the upper 2 m and 1 m above the bottom to facilitate calculation of depth
integrated areal productivity. Water collection and analyses for nutrients and particulates
were described in detail in Chapter 2 and protocols and methods were adhered to during
these cruises. Nutrients (NO,’, NO5', urea, PO43 ", and SiO44') were analyzed on an
Astoria Pacific nutrient auto-analyzer according to manufacturer specifications using
standard colorimetric methods (Parsons et al. 1984; Price and Harrison 1987). The
manual phenol-hypochlorite method was used for NH, " analyses (Solorzano 1969). Total
dissolved nitrogen (TDN) was analyzed as NO;™ after persulfate oxidation (Valderrama
1981). DON was calculated as the difference between TDN and dissolved inorganic N
(DIN). DFAA N was analyzed via high performance liquid chromatography (HPLC)
(modified from Cowie and Hedges 1992). Chl a samples were analyzed fluorometrically
within 5 days of collection (Welschmeyer 1994). Calculations, detection limits, accuracy,
and precision were the same as described in the methods for Chapter 2.

Water samples were fixed with mercuric chloride and sealed in gas tight glass
vials for dissolved inorganic carbon (DIC) analysis using an UIC Inc. CO, coulometer
(Johnson et al. 1985). Alkalinity was measured on the same samples using a Brinkman
Titrino titrator (Dickson 1981). Surface water CO, concentrations (pCO,) were
calculated based on alkalinity, DIC concentrations, temperature, and salinity based on
calculations in Sarmiento and Gruber (2006) (Eq. 3.1).

pCO,=__ Ky  *(2*DIC - Alk) Eq. 3.1
Ko * K Alk - DIC
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The equilibrium constants are calculated in Eq.3.2 (Weiss 1974), and in Egs. 3.3 and 3.4

(Mehrbach et al. 1973; Dickson and Millero 1987).

In Ko =-60.2409 + 93.4517 x (100/T) + 23.3585 x In(T/100) + S x (0.023517 — 0.023656
x (T/100) + 0.0047036 x (T/100)) Eq. 3.2

-log K; = -62.008 + 3670.7/T + 9.7944 x In(T) — 0.0118 x S + 0.000116 x S* Eq. 3.3

-log K;=4.777 + 1394.7/T — 0.0184 x S + 0.000118 x S* Eq. 3.4

N and C uptake and primary productivity experiments were conducted aboard the
ship in either 250 mL or 500 mL acid-washed incubation bottles (PETG), similar to what
was described in Chapter 2. For bicarbonate uptake, four or 24-hour incubations were
done to measure integrated daily net bicarbonate uptake. Reported rates of daily
photosynthesis were calculated by multiplying by 12 hours for the 4-hour incubations,
and 24 hours for the 24-hour incubations.

Areal rate calculations were conducted by converting daily rates of either total N
uptake rates or primary productivity rates, made over four seasons and two years, to
annual areal rate estimates for each region. First, primary productivity and N uptake rates
were averaged over the two sampling depths, justified by the fact that rates at both depths
in each region were not significantly different, and this is discussed further in the Results
section. These averaged rates were then multiplied by the euphotic depth. The euphotic
depth, typically defined as 1% of photosynthetic active radiation (PAR), was determined
based on several different measurements, as PAR sensor data were not reliable for all
cruises. In some cases, in situ radiometry measurements of the water leaving irradiance
at 490 and 555 nm (nLw490/nLw555) were provided by scientists from NASA (Stan

Hooker, unpublished data). The euphotic depth was also obtained from the diffuse
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attenuation coefficient at 490 nm (K490) from either SeaWifs or MODIS and converting
it to the euphotic depth using NASA’s algorithm (Eq. 3.5) where In(surface light —

In(light at compensation depth) is equal to In(100):

Euphotic depth = In(surface light) — In(light at compensation depth) Eq.3.5
K490

Since the euphotic depth was determined by different means depending on the cruise,
decision criteria were developed to be able to choose the appropriate depth for the extent
of the euphotic zone. First, if the measured or modeled (i.e. 1% PAR, radiometry, or
K490) depths were greater than the actual depth of the water column, the depth of the
water column was used as the euphotic depth. If no measured or modeled parameters
were available, and the fluorescence maximum was equal to the depth of the water
column, the depth of the water column was used as the euphotic depth. If only 1% PAR
measurements were available, then the depth of 1% PAR was used as the euphotic depth.
Finally, if no modeled or measured data was available, and the fluorescence maximum
was less than the depth of the water column, the fluorescence maximum depth was used
as the euphotic depth and this assumption was only made at 8 of 61 total stations for all
five cruises. The variability between the fluorescence maximum being equal to the
euphotic depth and the 1% PAR measurement when available ranged from 2 m to 10 m.
Results of the euphotic depths used for these calculations and the method used to
determine the euphotic depth at each station are depicted in Appendix Table B.6. Once
the averaged rates were multiplied by the euphotic depth (units: mol C (N) m™ d™') annual

averages were calculated by integrating these values across seasons: Winter (March
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2005), Spring (May 2006), Summer (averaged July 2005 and 2006), and Fall (Oct/Nov.
2006). Once daily rates were calculated for each season they were each multiplied by
91.25 d (365 days divided by 4) and then added together to get a seasonally integrated
annual rate for each region. Finally, annual rates were calculated for each region by
multiplying of the surface area of the PL, MS, and SS regions. These surface areas were
obtained from the sampling boundaries put forth by each cruise: PL: 37 — 36.4N; 76 —
coastal land boundary along the eastern border; SS: 36.4 — 37N; 75.5 — 74. 4W; MS: 37 —
38.5N; coastal land boundary along eastern border — 74W.

All surface maps were constructed using Golden Software Surfer 8 using data
from NOAA'’s coastline extractor. Statistical analyses, such as one-way ANOVA’s and
correlations, were performed using SigmaStat and are similar to those reported in Chapter
2.

RESULTS
HYDROGRAPHIC REGIME

The hydrographic regime of the sampling region varied greatly between cruises
(Fig. 3.2). Based on temperature and salinity, the study region was separated into three
major hydrographic regions: 1) plume regions (PL), where biological processes were
largely influenced by terrestrial inputs from the Chesapeake Bay and Delaware Bay; 2)
the mid-shelf region (MS) north of the Chesapeake Bay mouth, where oceanic and
coastal process converged; and 3) the southern shelf region (SS) where the Gulf Stream
influence often intruded with warm, salty water and oceanic processes such as advection
influenced the biological framework. Temperature-salinity diagrams show that the range

in surface salinity was the greatest (between 22 and 31) for the PL region, as might be
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expected due to the influence of freshwater and tidal fluctuations (Fig. 3.2; see Ch. 2). It
was difficult to differentiate the MS and the SS regions in the temperature-salinity
diagrams; however the density anomalies for the SS were primarily between 22 and 28 kg
m and for the MS they were between 20 and 28 kg m™ (Fig. 3.2). Surface salinity in the
SS and MS did not vary greatly, with the SS always between 32 and 36 and the MS
between 33 and 36. A wide range of temperatures were observed in the region, with
lowest temperatures (6 °C) observed during spring 2005 and highest temperatures (27 °C)

observed during summer 2005 in all three regions.
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During late winter (March 2005), surface salinity in the plume ranged between 22
and 33, and the water column was stratified primarily due to salinity differences between
surface and deeper waters while the water column at SS and MS stations was well-mixed
(Fig. 3.2A). At this time downwelling-favorable winds from the north created a strong
estuarine outflow plume exiting the Chesapeake Bay, and low salinity waters hugged the
coast to the south of the Bay mouth (see Ch.2 Table 2.2). Surface temperatures ranged
between 6 and 10 °C throughout the study region and there was no apparent influence of
warmer Gulf Stream water (Fig. 3.2A).

Surface salinity in summer (July 2005) was similar to surface salinity in March
2005 throughout the study area, ranging between 24 and 32. The water column was
stratified in plume influenced areas as well as outside of the plume influenced areas (Fig.
3.2B), but due to upwelling-favorable winds, the plume was diffuse (see Ch. 2 Table 2.2).
Surface water temperature throughout the region ranged from 25 to 27 °C (Fig. 3.2B).

In spring (May 2006), a period of strong and sustained winds from the north
preceded the field campaign causing off-shore transport of surface water and a large
salinity range in the surface waters throughout the study area (24 — 36). A jet-like
outflow plume was observed exiting the Chesapeake Bay, and there was a low salinity
patch surrounding the mouth of the Chesapeake Bay (see Ch.2 Table 2.2). Surface water
temperatures in the SS and MS regions ranged between 10 and 16 °C. Similar to the
previous spring cruise, the PL stations were stratified and the SS and MS stations were
well-mixed (Fig. 3.2C). Satellite imagery of sea surface temperature, obtained from

Rutgers University Coastal Ocean Observation Lab, suggests there was no Gulf Stream
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influence along the SS (Fig. 3.3), however warm water (>16 °C) was observed along the

600 ft isobath.

Fig. 3.3. Satellite imagery map of MAB sea surface temperature for 10 May 2006. Warm
surface waters (> 16 °C) are depicted along the 600 ft isobath. Satellite imagery was
downloaded from Rutgers University, RUCOOL website
(http://marine.rutgers.edu/cool/sat_data/?nothumbs=0).

Just before the July 2006 cruise, there was a large and protracted rainfall event
and associated high winds from the south along the east coast of the U.S. (see Fig. 2.2).
The freshwater input resulted in a highly stratified water column in the plume (Fig. 3.2D)

and a slightly larger range in surface salinities (23 - 35) in the plume relative to those
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observed during the summer 2005 (24 - 32). The outflow plume from the Chesapeake
Bay was diffusive, as low salinity waters were observed east of the Bay mouth and winds
were from the south (see Ch.2 Table 2.2). Temperatures were slightly lower in July 2006
relative to July 2005, ranging between 21 and 25 “C. However, higher temperature and
salinity at offshore stations suggest more Gulf Stream influence at the offshore stations
during 2006 (Fig. 3.2D). Relative to 2005, water temperatures were lower and salinity
was high in the MS region along the eastern shore of Virginia (north of the Chesapeake
Bay mouth) suggesting upwelling of nutrient-rich waters. Upwelling-favorable winds
coming out of the south were observed prior to the cruise supporting this idea.

During Oct/Nov 2006, surface water salinity ranged between 24 and 35 and
surface water temperatures ranged between 15 and 22 °C during the cruise (Fig. 3.2E).
Lower salinity water was observed along the coast to the south of and near the Bay
mouth, however southeasterly winds preceded the sampling event and colder water was
observed along the coastline, both indicative of upwelling-favorable conditions. Sea
surface temperature satellite imagery, obtained from Rutgers University Coastal Ocean
Observation Lab showed cold waters surrounding the Bay mouth and then interacting
with meanders of warm water, likely from the Gulf Stream, at the offshore stations
coming from the south (Fig. 3.4). Stations in the plume were stratified and MS and SS
were weakly mixed with warm low salinity water at the surface and cool salty water at

depth (Fig. 3.2E).
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Fig. 3.4. Satellite imagery map of MAB sea surface temperature for 01 November 2006.
Cold surface waters are depicted exiting the Bay and interacting with warm Gulf Stream
meanders. Satellite imagery was downloaded from Rutgers University, RUCOOL
website (http://marine.rutgers.edu/cool/sat_data/?nothumbs=0).
NUTRIENT REGIME

The range of DIN (DIN = NH,;" + NO;™ + NO;") concentrations, for every cruise
and at every station, was not significantly different between surface waters (0.1 — 4.3
pmol L; mean = 1.0 £ 0.9 pmol L") and at depth (0.2 — 4.2 pmol L'; mean =1.2 £ 0.9
pmol L) (Appendix Tables A.1 and B.1). DIN concentrations at the PL stations were

not significantly different between depths (D1: 0.5 — 1.5 pmol L; D2: 0.5 — 1.3 pmol L

!, Appendix Table A.1) even though the water column was mostly stratified. At the SS
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stations, DIN concentrations were not significantly different between depths (D1: 0.3 —
1.2 umol L'; D2: 0.3 = 2.4 umol L; Appendix Table B.1) except for at the offshore
stations, where surface DIN concentrations during summer and fall 2006 ranged from 0.4
to 0.6 umol L™ and at depth they ranged from 2.4 to 3.9 umol L™ (Appendix table B.1).
Similar results were found at the MS stations, where DIN concentrations were not
significantly different among depths (D1: 0.1 — 2.6 umol L; D2: 0.2 — 3.9 ymol L™';
Appendix Table B.1). Average DIN concentrations were not significantly different
among regions (Fig. 3.5). However, NO;™ concentrations were significantly greater in the
SS region compared to the PL region (Fig. 3.5).

Seasonally, the greatest DIN concentrations were observed during March 2005 at
the deepest offshore stations in the SS region (4.2 umol L™ at both depths) primarily due
to high concentrations of NO3™ and likely a result of upwelling at the slope/shelf interface
as that region was well-mixed at the time (Fig. 3.2A). Also, high DIN concentrations
were observed in the Bay mouth during Oct. 2006 (4.8 pmol L) (Appendix Table B.1).
When samples were averaged for each season, DIN concentrations (specifically NO;3)
were greater in the fall and winter compared to the spring and summer (ANOVA; Tukey
test; p < 0.05; Fig. 3.6). NH," concentrations were significantly greater in the winter
compared to the spring, summer, and fall, and the fall and summer concentrations were
greater than the spring concentrations (ANOVA; Tukey test; p < 0.05; Fig. 3.6). NOy
concentrations in the fall were significantly greater than in the winter, spring, and
summer (ANOV A; Tukey test; p <0.05; Fig. 3.6).

There were no significant relationships between DIN concentrations and physical

parameters among regions, except for in the SS region, where there were significant
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negative linear relationships between temperature and NH," concentrations (R = -0.788; p
<0.05), and salinity and NH," concentrations (R = 0.564; p < 0.05). Furthermore, in the
fall, there were significant negative linear relationships between NH4" concentrations and
temperature (R = -0.608; p < 0.05) and salinity (R =-0.601; p < 0.05). During the fall,
cool waters were exiting the mouth of the Chesapeake Bay (Fig. 3.4), and therefore
inferring from the negative linear relationship with temperature and salinity, bringing

nutrients, specifically NH,", into the coastal zone.

1.6 - T
1.4 - W NH,

124 ONO
S 1.0 - NO;5’

PL

Fig. 3.5. NH;', NO,", NO;3  concentrations averaged for each region. There were no
significant differences among regions for NH," or NO,™ concentrations but NO3”
concentrations were significantly greater at the SS stations compared to the PL stations.
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Fig. 3.6. NH,4*, NO,, NO;™ concentrations averaged for each season. NH, " concentrations
were significantly greater in the winter compared to the spring, summer, and fall. NO,’
concentrations were greater in the fall compared to the spring, summer, and winter. NO3’
concentrations were greater in the winter and fall compared to the spring and summer.

The largest proportion of total measured dissolved N (NH,", NO,", NOs’, urea,
and DFAA) at PL and MS stations was generally NH;" (39% and 34% of measured
dissolved N, at surface and at depth, respectively). However, NO3™ was often the
dominant N form at the SS stations at depth (as high as 80% of measured dissolved N)
particularly at the offshore stations, suggesting possible upwelling of NO3™ at the
shelf/slope interface (Appendix Table B.1).

Urea N concentrations averaged 0.2 0.2 pmol N L™ at both sampling depths and
therefore there was no significant difference in urea concentrations between depths. Urea

concentrations ranged from below the limit of detection to 1.2 pmol N L™ for all regions

(Appendix Table B.1). For DFAA N, there were no significant differences between
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depths for all regions combined (D1: 0.27 £ 0.24 umol N L™'; D2: 0.39 + 0.39 pmol N
L'1). Serine, alanine and glycine were the most abundant amino acids quantified (11 -
18%, 6 — 8%, and 12 — 18% of the total measured DFAA N pool, respectively; data not
shown). DON concentrations were not significantly different between surface waters
(D1: 12.1 £ 6.3 umol N L'1) and at depth (D2: 11.7 £ 6.6 pmol NL™). The lowest
concentrations of DON for the whole study area were observed in July 2006 (D1: 2.2 —
10 umol N L'; D2: 3.3 — 8.3 umol N L), excluding one outlier at the Bay mouth
(Appendix table B.1). There were no significant differences among regions for averaged
urea and DFAA N concentrations, but DON concentrations were significantly greater at
the PL and MS regions compared to the SS region (ANOVA; Tukey test; p < 0.05; Fig.
3.7).

Seasonally, when urea concentrations were averaged, concentrations in the winter
were significantly greater than in the spring and summer, and concentrations in the fall
were significantly greater in the summer (ANOVA; Tukey test; p < 0.05; Fig. 3.8).
DFAA N concentrations were significantly greater in the winter compared to the spring,
summer, and fall (ANOVA; Tukey test; p <0.05; Fig. 3.8). DON concentrations were
significantly greater in the winter and spring compared to the summer and fall, and

greater in the fall compared to the summer (ANOVA; Tukey test; p < 0.05; Fig. 3.8).
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Fig. 3.7. Urea, DFAA N, and DON concentrations averaged for each region. There were
no significant differences a regions for urea and DFAA N, but DON concentrations were
significantly greater in the PL and MS regions compared to the SS region.

Urea and DFAA gmolN L")

Spring

M Urea
ODFAAN

25
- 20
15 2
g
3
10 Z
o
()
-5
0

Summer Fall

Winter

Fig. 3.8. Urea, DFAA N, and DON concentrations averaged for each season. Urea was
significantly greater in the winter compared to the spring and summer, and greater in the
fall compared to the summer. DFAA N concentrations were greater in the winter
compared to the spring, summer, and fall. DON concentrations were significantly greater
in winter and spring compared to the summer and fall, and significantly greater in the fall
compared to the summer.
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Concentrations of PO, ranged from below the limit of detection (0.02 pmol L)
to 0.5 pmol L™ for all pooled data (Appendix Table B.2). Concentrations of SiO4*
ranged from 0.06 to 15 pmol L™ for all pooled data (Appendix Table B.2). There was no
significant difference between regions for averaged PO4” concentrations (p > 0.05; Fig.
3.9) but Si04* concentrations were greatest in the PL region compared to the SS and MS
regions (ANOVA; Tukey test; p <0.05; Fig. 3.9). When concentrations were averaged
for each season, PO43' concentrations were significantly greater in the winter compared to
the spring, summer, and fall (ANOV A; Tukey test; p < 0.05; Fig. 3.10). Si04*
concentrations were significantly greater in the fall compared to the spring, summer, and
winter (ANOVA; Tukey test; p <0.05; Fig. 3.10). DIN:DIP ratios were most often less
than 16, suggesting greater PO, concentraions than DIN in regards to the Redfield ratio,
therefore suggestion N limitation. Some exceptions were the SS and PL stations during
the summer cruises when ratios were greater than 16 (Fig. 3.11). SiO4* did not appear to
be limiting to diatom growth (DIN:SiO4* <1), and again N limitation, based on Redfield

standards were observed, except in March 2005 (Fig. 3.12).
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Fig. 3.9. PO4> and SiO4* concentrations averaged for each region. There were no
significant differences among regions for PO, ", but SiO44' concentrations were
significantly greater in the PL region compared to the SS and MS regions.
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Fig. 3.10. PO43' and Si044' concentrations averaged for each season. PO43'
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concentrations were significantly greater in the winter compared to the spring, summer,
and fall. SiO4* concentrations were greater in the fall compared to the spring, summer,

and winter.
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Fig. 3.11. DIN versus PO,> concentrations for the PL, SS, and MS regions. The solid
line indicates the 16:1 Redfield ratio for DIN to PO,>".
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Fig. 3.12. DIN versus SiO4* concentrations for the PL, SS, and MS regions. The solid
line indicates the 1:1 Redfield ratio for DIN to SiO4*.
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PO, and SiO4* concentrations did not have strong significant linear relationships
between temperature and salinity for the pooled data, however during the fall, like NH,",
significant negative linear relationships were observed. PO, concentrations showed
significant negative linear relationships with temperature (R = -0.806; p < 0.05) and
salinity (R = -0.735; p < 0.05). Similarly, SiO4*" concentrations had significant negative
linear relationships with temperature (R = -0.764; p < 0.05) and salinity (R =-0.923; p <
0.05).

BIOLOGICAL REGIME

The greatest differences in Chl a concentrations between D1 and D2 (12.1 and 3.1
pg chl LY respectively) were observed in the plume in March 2005 when there was
strong, fresh, surface outflow, and the water column was highly stratified (see Ch. 2;
Appendix Table A.3). Aside from this one anomaly, average Chl a concentrations in the
PL region between D1 and D2 were not significantly different (p > 0.05). Chla
concentrations overlapped between the surface and at depth in the MS region (D1: 0.2 —
2.1 pgchl L7; D2:0.4 to 2.8 ug chl L'; Appendix Table B.3) and SS region (D1: 0.1 —
2.0 pgchl LY D2: 0.3 to 2.2 pg chl L'l), but the overall averages at D2 were significantly
greater than the averages at D1 in both the MS and SS regions (ANOVA; Tukey test; p <
0.05). Chl a concentrations, when averaged for both depths among regions, were
significantly greater at the PL stations, in comparison to the SS and MS stations, ranging
from 0.8 to 12 pg chl L' (ANOVA; Tukey test; p < 0.05; Fig. 3.13). No significant
relationships were observed between temperature or salinity and Chl a concentrations in
either the SS or MS regions (p > 0.05) and only a weak negative linear relationship was

observed between temperature and Chl a (R =-0.359; p < 0.05) in the PL region. When
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Chl a concentrations were averaged over region and depth for each season, winter
concentrations were significantly greater than spring, summer, and fall concentrations
(ANOVA; Tukey test; p <0.05; Fig. 3.14). Only significant negative linear relationships
were observed during the fall between temperature and Chl a (R = -0.781) and salinity

and Chl a (R =-0.818).

(o)

(%]
I

LN
|

Chla (ug chl L")
[\ w

[un—y
i

PL SS MS

Fig. 3.13. Chl a concentrations averaged for each region. Chl a concentrations in the PL
region were significantly greater than the SS and MS stations.
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Fig. 3.14. Chl a concentrations averaged for each season. Chl a concentrations were
significantly greater during winter compared to spring, summer, and fall.

Average PN and PC concentrations were not significantly different between D1
and D2 for any region (p > 0.05; Appendix Table B.3). Similar to Chl a concentrations,
PN and PC concentrations were significantly greater in the PL stations compared to the
SS and MS stations (ANOVA; Tukey tést; p <0.05; Fig. 3.15). When PN and PC
concentrations were averaged for each season, there was no significant difference among
seasons for PN concentrations, but PC concentrations were significantly greater in the
spring compared to the fall (ANOVA; Tukey test; p < 0.05; Fig. 3.16). PN and PC
concentrations showed significant negative linear relationships with temperature (PN: R
=-0.817; PC: R = -0.824) and salinity (PN: R =-0.841; PC: R = -0.812) only during the
fall. Also, however significant relationships did exist with Chl a concentrations for all

combined data (Fig. 3.17; Appendix table B.7). The strongest relationships were
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observed in the MS stations, where R = 0.818 for Chl a versus PN and R = 0.616 for Chl
a versus PC, followed by the PL stations where R = 0.718 for Chl a versus PN and R =
0.641 for Chl a versus PC, and in the SS stations where R = 0.639 for Chl a versus PN

and R = 0.467 for Chl g versus PC.
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Fig. 3.15. PN and PC concentrations averaged for each region. PN and PC
concentrations in the PL region were significantly greater than the SS and MS stations.
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Fig. 3.16. PN and PC concentrations averaged for each season. PN concentrations were
not significantly different between seasons, but PC concentrations were significantly
greater in the spring compared to the fall.
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Fig. 3.17. PN and PC concentrations versus Chl a concentrations for all pooled data at
both depths. A significant linear relationship was observed between Chl @ and PN (R =
0.824) and PC (R = 0.761) concentrations.



128

C AND N UPTAKE

Primary productivity rates, both volumetric and Chl a normalized, are reported
here as averages of both depths, as rates were not significantly different between depths
for each region (p > 0.05; Figs. 3.18 — 3.23). Volumetric bicarbonate uptake rates were
significantly greater in the PL region compared to the SS and MS regions for all
combined data (ANOVA; Tukey test; p < 0.05), but no significant differences were
observed for Chl a normalized primary productivity rates among regions for all data
combined (p > 0.05). During March 2005, volumetric primary productivity rates ranged

between 0.8 and 10.7 pmol C L7 d’! (Fig. 3.18A) and Chl g normalized rates ranged

between 0.2 and 3.4 pmol C pg chl” d? (Fig. 3.18B).
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Fig. 3.18. Volumetric primary productivity rates (umol C Ltdl; A) and Chl a
normalized primary productivity rates (umol C pg chl” d"!; B) during March 30 — April
1,2005. Rates are averaged over surface and near bottom.
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During the first summer cruise, July 2005, volumetric and Chl a normalized rates
had the largest ranges (Volumetric: 3.5 — 27.2 pmol C L™ d'; Chl a normalized: 5.0 —
36.2 umol C pg chl™ d'; Fig. 3.19A and B). Volumetric rates were significantly greater
in the plume and coastal regions of the mid-shelf (Fig. 3.19A) while Chl a normalized

rates were greatest along the coast and off-shore (Fig. 3.19B).
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Fig. 3.19. Volumetric primary productivity rates (umol C L'd"; A) and Chl @
normalized primary productivity rates (pmol C pg chl d'!; B) during July 27 - 30, 2005.
Rates are averaged over surface and near bottom.

During spring 2006, volumetric primary productivity rates ranged between 0.7
and 15.8 pmol C L' d”! and Chl a normalized rates ranged between 0.4 and 7.6 pmol C
pg chl d! (Fig. 3.20A and B). Rates were uniform throughout the study area, with only

slightly higher volumetric rates observed in the two plume regions (Fig. 3.20).
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Fig. 3.20. Volumetric primary productivity rates (umol C L' d!; A) and Chl a
normalized primary productivity rates (umol C pg chl” d'; B) during May 8 —12, 2006.
Rates are averaged over surface and near bottom.

During July 2006, volumetric primary productivity rates were lower than the first
summer cruise and ranged between 0.7 and 9.3 pmol C L'd" (Fig. 3.21A). Similarly,
Chl @ normalized rates ranged between 1.4 and 13.8 pmol C pg chl' d! (Fig. 3.21B).

There were no significant differences among regions for both volumetric and Chl a

normalized primary productivity rates.
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Fig. 3.21. Volumetric primary productivity rates (pmol C L™ d'; A) and Chl a

normalized primary productivity rates (pmol C pg chi” d'; B) during July 2 — July 5,

2006. Rates are averaged over surface and near bottom.

131

During October 2006, volumetric primary productivity rates were as low as those

observed in March 2005 and ranged from 1.4 to 10.5 pmol C L™ d™! (Fig. 3.21A).

Similarly, Chl @ normalized rates were also as low as those observed in March and

ranged between 0.9 to 4.7 umol C pg chi d? (Fig. 3.22B).
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2006. Rates are averaged over surface and near bottom.
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When volumetric primary productivity rates were averaged for each season there

were no significant differences among seasons (ANOVA; p > 0.05; Fig. 3.23). However,

Chl a normalized primary productivity rates were significantly greater in the summer

compared to the fall and winter average rates (ANOVA; Tukey test; p < 0.05; Fig. 3.23).
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Fig. 3.23. Volumetric (solid bars) and Chl a normalized (white bars) primary productivity
rates averaged for each season. Error bars represent standard deviations. No significant
differences were observed among season for volumetric primary productivity rates, but
Chl @ normalized primary productivity rates were significantly greater in the summer
compared to the fall and winter averages.

A significant positive linear relationship (p < 0.05) but low R value (R =0.367)
was observed between primary productivity rates and Chl a concentrations for all of the
pooled data (Fig. 3.24; Appendix table B.7), similar to what was observed in the
Chesapeake Bay outflow plume (Ch. 2; Fig. 2.36). When data were averaged over
region, no significant linear relationships were observed between volumetric primary
productivity rates and Chl a concentrations (p > 0.05). When data were averaged over
season, there was a significant positive linear relationship between volumetric primary

productivity rates and Chl a concentrations during spring (R = 0.659; p < 0.05) and the

relationship was most pronounced in fall (R = 0.882; p <0.05; Fig. 3.24).
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Fig. 3.24. Volumetric primary productivity rates versus Chl a concentrations for all
pooled data and for fall only. A significant positive linear relationship was observed with
a low R value for the pooled data (dashed line; R = 0.367) and a significant positive
linear relationship with a high R value for the fall only data (solid line; R = 0.882).
Pooled data for volumetric primary productivity rates versus salinity showed a
weak negative linear relationship (R =-0.467; p < 0.05; Appendix table B.7). The
dominant signal for this relationship was found in the MS region, where there were
significant negative linear relationships between salinity and volumetric primary
productivity rates (R = -0.474; p < 0.05) and between salinity and Chl a normalized
primary productivity rates (R =-0.492; p <0.05). There was a weak positive linear
relationship (R = 0.462; p <0.05; Appendix table B.7) between Chl a normalized primary
productivity rates and temperature for the pooled data. Similar to salinity, the dominant

signal appeared in the MS region, where there were significant positive linear

relationships between temperature and volumetric primary productivity rates (R = 0.466;
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p < 0.05) and temperature and Chl ¢ normalized primary productivity rates (R = 0.629; p
<0.05).

During fall, when there was a significant positive linear relationship between
volumetric primary productivity rates and Chl a concentrations, there was a significant
negative linear relationship between salinity and volumetric primary productivity rates (R
=-0.794; p <0.05). Furthermore, there was a significant negative linear relationship
between temperature and volumetric primary productivity rates in the fall (R =-0.728; p
< 0.05; Fig. 3.25), however in this case, it was a negative linear relationship. During the
fall, negative linear relationships between salinity and temperature, and volumetric
primary productivity rates signified that in cool (15°C), fresher (24) waters, volumetric
primary productivity rates were high and in warm (24°C), salty (36) waters, volumetric
primary productivity rates were low (Fig. 3.25). Also in the fall, significant negative
linear relationships were observed between temperature and Chl g, PN, PC, NH,", PO43',
and SiO4*. The physical regime is consistent with fall satellite imagery (Fig. 3.4)
depicting cool water exiting the Bay mouth, presumably providing nutrient-rich
freshwater available for uptake by primary producers into the coastal zone. The
relationship between primary productivity and nutrient availability was further
demonstrated by the significant positive linear relationships observed between volumetric
primary productivity rates and TDN concentrations (R = 0.634; p < 0.05), PO,*
concentrations (R = 0.649; p < 0.05), and SiO4* concentrations (R = 0.759; p < 0.05) in

the fall.
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Fig. 3.25. Volumetric primary productivity versus temperature and salinity for the fall.
Volumetric C uptake was significantly related to temperature (dashed line; R = 0.728)
and salinity (solid line; R = 0.794).

Similar to primary productivity results, there were no significant differences
between total N uptake rates at either depth, therefore rates reported here are averages of
both depths. Also similar to primary productivity results, total measured volumetric N
uptake rates were significantly greater at the PL region (0.01 — 0.63 pmol N L1n',
Appendix table A.5). Specifically, NH;" volumetric uptake rates were significantly
greater in the PL region compared to the SS and MS regions, and NOs', urea, and DFAA
N volumetric uptake rates were significantly greater in the PL region compared to the SS
region (Fig. 3.26). At the MS stations, total N uptake rates ranged from 0.01 — 0.54 umol

N L' n'! (Fig. 3.26; Appendix table B.5). The lowest N uptake rates were observed at SS

stations (0.01 — 0.23 pmol N L™ h''; Fig. 3.26; Appendix table B.5).
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Although total N uptake rates were greatest in the PL region, where Chl a
biomass was also highest (Fig. 3.13) compared to the MS and SS regions (Fig. 3.26), total
N uptake rates did not significantly correlate to Chl a concentrations in the PL region (p >
0.05). There was no significant linear relationship between Chl a and total N uptake or
between Chl g and individual N compound uptake rates (R = 0.056; p > 0.05; Fig. 3.27)
for the pooled data. N uptake was fairly constant over a range of Chl a concentrations,

for example, NH, " uptake rates were nearly identical (0.34 and 0.35 pmol N L' h!)atPL

stations within Chl a concentrations of 2.2 and 9.1 pg chl L™, respectively.
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Fig. 3.26. N uptake rates averaged for each region. Total N uptake rates were
significantly greater in the PL region compared to the SS or MS regions.
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Fig. 3.27. Total N uptake rates versus Chl a concentrations for all pooled data. No
significant relationship was observed.

Total N uptake rates were significantly greater in the summer compared to the
fall, specifically for NH;" and urea uptake rates (Fig. 3.28). DFAA N uptake rates were
significantly greater during winter compared to spring, summer, and fall (Fig. 3.28). No
significant differences were observed among seasons for NO;™ and NO;™ volumetric

uptake rates (ANOVA; p > 0.05).
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Fig. 3.28. N uptake rates averaged for each season. Error bars represent standard
deviation. Total N uptake rates were significantly greater in the summer compared to the
fall.

NH," uptake rates on average were significantly greater (ANOVA; Tukey test; p
< 0.05) than uptake of the other N compounds measured and often represented over 50%
of the total measured N uptake. In a few instances, however, in offshore stations in the
SS region, uptake rates of NO5™ (0.013 — 0.029 umol L™ h™") were greater than uptake
rates of NH," (0.002 — 0.007 pmol L™ h™),

Relationships between individual nutrient concentrations and '°N uptake rates
(volumetric, Chl @ normalized, and PN normalized), results were inconsistent. Although
NH," was taken up at higher rates than any other N compound, there was no significant

relationship between NH,4" concentrations and volumetric (R = 0.213; p > 0.05; Appendix
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table B.7), Chl a normalized (R = 0.124; p > 0.05; Appendix table B.7), or PN
normalized (R = 0.169; p > 0.05; Appendix table B.7) NH," uptake rates for the pooled
data. Similarly, no significant relationships were found when correlating nutrient
concentrations versus volumetric, Chl @ normalized, or PN normalized uptake rates of
NO;", NO5', and urea for the pooled data (Appendix table B.7). Volumetric DFAA N
uptake rates did show a weak, but significant positive linear correlation with DFAA N
concentrations for the pooled data (R = 0.469; p < 0.05; Appendix table B.7).

Either no significant relationships or only weak significant relationships between
nutrient concentration and '°N uptake rates were also observed regionally. For NH," in
the SS region, a weak but significant positive linear relationship between NH,"
concentrations and volumetric NH," uptake rates (R = 0.417; p < 0.05) was observed.
The only significant relationship with an R value greater than 0.5 in the PL region was
observed for DFAA N concentrations versus DFAA N volumetric uptake rates (R =
0.575; p <0.05). In the MS region, either no significant relationships, or only weak
significant relationships were observed for NH,4", NO,", and NO;™ concentrations versus
volumetric, Chl a and PN normalized uptake rates. There were significant positive
correlations in the MS region for urea and DFAA N, however. Urea concentrations
versus volumetric (R = 804; p <0.05), Chl @ normalized (R = 0.598; p < 0.05), and PN
normalized (R = 0.759; p < 0.05) urea uptake rates and DFAA N concentrations versus
DFAA N volumetric (R = 0.857; p < 0.05), Chl a normalized (R = 689; p < 0.05), and PN
normalized (R = 0.777; p <0.05) DFAA N uptake rates had significant positive linear

relationships.
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Seasonally, relationships between nutrient concentrations and nutrient uptake
rates were also inconsistent and weak. During spring, either no significant relationships
or weak significant relationships were observed between nutrient concentrations and their
respective uptake rates (volumetric, Chl @ normalized, or PN normalized) for all
nutrients. During summer, NH," concentrations versus volumetric NH," uptake rates
showed a significant positive linear relationship (R = 0.636; p < 0.05). Also during
summer, significant positive linear relationships between urea concentrations and urea
volumetric (R = 0.840; p <0.05), Chl a normalized (R = 0.691; p < 0.05), and PN
normalized (R = 0.822; p < 0.05) uptake rates. Similarly, significant positive linear
relationships were observed for DFAA N concentrations and volumetric (R = 0.580; p <
0.05), Chl a normalized (R = 0.627; p < 0.05), and PN normalized (R = 0.754; p < 0.05)
DFAA N uptake rates in the summer. During the fall, only urea concentrations had a
significant linear correlation with volumetric urea uptake rates (R = 0.625; p < 0.05).
During winter, no significant relationships were observed between nutrient
concentrations and nutrient uptake rates (volumetric, Chl a normalized, or PN
normalized).

DISCUSSION

The hydrographic regions identified in this study differentially impact C and N
pools and primary productivity rates in the MAB. The Chesapeake Bay plume region is
highly productive, but the delivery of nutrients and particulate material is extremely
sensitive to time varying flow and periodic storm events (see Ch.2). In addition, the
plume region and nearby shelf regions can be influenced by oceanic inputs of upwelled

nutrients and warm oligotrophic Gulf Stream waters. Because the MAB is thought to be
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N-limited (Dugdale 1967; Ryther and Dunstan 1971), inputs of bioavailable N to coastal
waters and the continental shelf can alleviate N limitation and stimulate primary
productivity resulting in greater fisheries yields, however too much N can lead to coastal
eutrophication and water quality degradation.

In Chapter 2, I demonstrated that the extent to which the plume interacts with
coastal waters can depend on winds, freshwater discharge, and local upwelling 6r
downwelling events and that the type of plume can be a factor influencing productivity
(see Ch. 2). Here, I observed that the near shore regions north of the Chesapeake Bay
plume, were also influenced by oceanic upwelling as well as terrestrial inputs, and in the
mid-shelf region nutrient concentrations and Chl a normalized primary productivity rates
could be equal to or greater than concentrations and rates in the plume region. Primary
productivity in the MAB was supported by a diverse array of N compounds and the
importance of any one form of N varied by location. For example, although NH," was
the dominant form taken up, there were instances where NO;™ uptake dominated,
presumably due to upwelling at offshore stations. In oligotrophic, oceanic systems,
upwelled NO;™ and N, fixation are considered the primary N sources supporting new
production (Dugdale and Goering 1967), and in the MAB region, upwelled N was
observed primarily at offshore stations located near the shelf break. Also, it appeared for
the most part, that N uptake rates were not dependant on nutrient concentrations, in this
environment, similar to what was observed for the plume region (see Ch. 2).

This study provides seasonally resolved primary productivity and N uptake rates
over a two year period in the context of the physical and nutrient environment and a

regional overview of N and C dynamics and budgets for the MAB. To put these results
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into a broader context, I calculated areal rates of primary productivity and N uptake by
converting daily rates, made over three seasons, and two years, to annual estimates for
each region. Average areal C and N uptake rates were not significantly different among
regions presumably due to the shallow water column at highly productive plume stations
(Table 3.1). These annual areal primary productivity rates at the Gulf Stream-influenced
SS stations were lower than published estimates of primary productivity in Gulf Stream
intrusions (54 + 20 mol C m? y' spring and summer; Tables 3.1 and 3.2) (Mouw and
Yoder 2005). The overall average annual primary productivity for the study region was
34 +3.8 mol Cm™y" and areal N uptake was 11 + 2.1 mol N m’> y'l. There were no
significant differences among seasonal averages for areal primary productivity for the
pooled data, however rates in the summer were as high as 0.38 mol C m? d!and0.25
mol C m? d”' in the spring when fall and winter rates were only as high as 0.12 mol C m’>
d" and 0.19 mol C m™ d”, respectively. Summer areal N uptake rates were significantly
greater than the spring and fall rates. When applying areal rates (mol m’> y'l) over the
surface area of each respective region, annual primary productivity and total N uptake
rates (mol y™') were 3.4 and 4.2 times greater, respectively, in the MS area than in the PL

and SS regions, combined (Table 3.1).
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Areal C uptake rates in the MAB calculated here and including three distinct
hydrographic regions were similar to but often exceeded those reported in the literature from a
variety of field programs implemented between the early 1970’s and the early 1990°s (Table
3.2) suggesting that primary productivity in the MAB may have increased over the last 10 to
40 years. This could be due to the fact that primary productivity is actually increasing over
time due to increased nutrient inputs (Fig. 3.29). There is a trend upward from measurements
made over the past 20 years (Fig. 3.29; Table 3.2). The outliers aren’t shown as they come
from the South Atlantic Bight where productivity is known to be higher than the MAB (O’
Reilly and Busch 1984; Lohrenz et al. 2002; Verity et al. 2002). Alternatively, estimates
presented here are better resolved than previous estimates, as they are in situ estimates from 4
seasons and three hydrographic regions. Annual areal rates of productivity reported here for
all three regions were significantly greater than areal estuarine productivity rates estimated
from estuaries around the world (Boynton et al. 1982), and areal rates for all three regions were
greater than modeled estimates for the MAB (Kemp et al. 1994; Fennel et al. 2006). Past
research endeavors, like those documented in Table 3.2, have extrapolated rates based upon
one or two seasons of high productivity, whereas the annual rates reported from this study
included multiple seasons and regions over two years (see Table 3.2), providing for a more
robust analysis of productivity, especially since the highest rates for both C and N were
observed in the spring and summer. Averaged spring and summer areal estimates, extrapolated
to annual estimates, were 19% greater than averaged annual estimates from all dates from this
study. Higher productivity rates were observed by Lohrenz et al. (2002) in the South Atlantic
Bight, again based on modeled results, where annual rates were extrapolated from only spring

and summer, thus potentially overestimating annual rates (Table 3.2).
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One could argue that there are very few actual measurements of productivity made in
this region, so many estimates are modeled or inferred from satellite data and predicted
relationships between nutrients and productivity. For example, primary productivity rates
reported by Mouw and Yoder (2005) were slightly lower than what was observed in this study,
but multiple sources of data over different time periods were used to obtain these estimates.
Temperature data was collected to obtain the mixed layer depth during the 5-year period in
question, phytoplankton community and Chl a data were obtained from a previous 12-year
study (1977 — 1988), and nitrate concentrations were obtained from the World Ocean Atlas
2001 to implement into their productivity model (Mouw and Yoder 2005). This modeled,
water-column-derived, productivity data was then compared to productivity obtained from
algorithms derived from PAR and Chl a using SeaWiFS satellite imagery for the 5-year study
period and it was determined that the satellite-derived photosynthesis rates were 30% less than
water column-derived photosynthesis rates (Mouw and Yoder 2005). A daily average was
multiplied by 365 d and did not take into account seasonal variations. Multiple assumptions
were made, one in particular stated that nutrient availability and therefore the quantum yield of
photosynthesis, was a function of nitrate concentration (Mouw and Yoder 2005). Data
presented here demonstrate that nutrient availability and uptake is not a function of only nitrate
concentrations in the MAB, and furthermore, primary productivity was significantly related to
TDN concentrations only during the fall months. Combined, these results suggest we need
more observations and direct measurement of C and N productivity to validate models and
make them realistic for the region. Specifically, productive coastal regions like the
Chesapeake Bay outflow plume, may be areas that can be easily targeted for further

incubations studies to assess the short-term variability of N uptake, as little is known in this
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regard and meteorological conditions on a short timescale appear to be the driver for nutrient
delivery and subsequent C and N uptake (See Ch.2). The First State of the Carbon Cycle
Report (SOCCR), a recent study headed by international scientists, concluded that there is little
known regarding the C budget in the coastal regions of North America and that scientists are
encouraged to study the region experimentally with processed-based studies such as the one

provided here (Chavez et al. 2007).
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Fig. 3.29. Primary productivity rate estimates in the MAB over time. The estimates are
obtained from Table 3.2 and include only rates from the MAB. The most recent rates are
from this study, an increasing trend is shown.

The ratio of areal annual primary production to total N uptake ranged from 2.7:1
to 3.5:1, much lower than that expected using the Redfield ratio of 6.6 (Table 3.1). This
low ratio suggests that C productivity and N uptake were not tightly coupled on short
timescales. This could be due to imbalanced growth, underestimates of C uptake, or
overestimates of autotrophic N uptake on GF/F filters. If only DIN uptake was
considered, C:N uptake ratios increased slightly to 3.6 — 4.7:1, but still below 6.6. The
canonical Redfield ratio has been used to calculate either C or N uptake, one from the
other, and removal for model simulations and in generic interpretations for large scale
studies of C and N budgets (Seitzinger and Giblin 1996; Fennel et al. 2006). This study
suggests that using Redfield assumptions for short timescales of variability may
underestimate N uptake based on primary productivity measurements or overestimate C

drawdown based on measured N uptake rates, but Redfield is still an adequate

assumption when extrapolating to global scenarios and long timescales. However, N
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uptake rates from previous studies, and model simulations use only DIN uptake,
specifically NOs", to infer net C uptake (Mouw and Yoder 2005; Fennel et al. 2006). For
this study, the average ratio of hourly primary productivity to NO;™ uptake was much
greater than 6.6 (PL: 34 + 50, SS: 12.5 + 8.2, MS: 42 + 84). Prior research in the plume
reported hourly primary productivity rates to NO;™ uptake rates ranging from 0.9 — 276,
again showing a wide range in variability for short-term C:N uptake studies (Malone and
Ducklow 1990; Glibert and Garside 1992). In the northeastern Atlantic, during a diatom
bloom, C:N ratios were close to Redfield (6-8) during low productivity, dropped below 5
when productivity increased, and rose to 17 when N became limited and the authors
suggested that utilizing Redfield on timescales shorter than a month may not be
approrpriate(Bury et al. 2001). The above assumptions, using only DIN or NO;™ uptake
rates or concentrations, may have biased estimates of C uptake rates from N uptake rates
upwards. We now know that phytoplankton and bacteria compete for both inorganic and
organic N sources in nature (Mulholland and Lomas 2008). With increasing
anthropogenic N, these relationships are only going to continue to change and great care
must be taken in determining primary production from N when there is no clear defining
relationship, particularly in the coastal waters of the MAB.

Although not the main focus of this research, pCO, concentrations were
calculated (see Eqns. 3.1 — 3.4) at stations occupied during this study and they showed an
undersaturation of CO; relative to the atmosphere in surface waters throughout the study
area (Table 3.3). Surface water concentrations were lower but not significantly different
than previously published values for the MAB, where the middle shelf ranged between

150 to 620 patm, the inner shelf ranged between 220 and 480 patm, and the outer shelf
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ranged between 300 and 430 patm (De Grandpre et al. 2002). pCO; concentrations from
this study were not significantly different between the PL, SS, and MS. Undersaturation
of the MAB with respect to CO; is consistent with the most recent C research done for the
MAB, showing that this region is a sink for atmospheric CO, (De Grandpre et al. 2002).
However, there is a general consensus that the North American coastal systems are
neither a sink or a source of atmospheric CO;, on average, but not enough data is
available to track historical trends (Chavez et al. 2007). Although not apparent from the
low C:N uptake ratios, taken on small timescales, anthropogenic N inputs may fuel
excess productivity allowing additional drawdown of atmospheric CO, in this region, and
possible removal of anthropogenic C to coastal sediments where it can fuel
denitrification, export to the coastal ocean, or export to the deep ocean, all important C
sinks (De Grandpre et al. 2002).

Table 3.3. pCO; estimates from DIC, alkalinity, salinity and temperature as calculated
from Eqns. 3.1 - 3.4,

pCO,

Region (natm) +-
PL 204 154
SS 65 46
MS 139 69

It is not known whether the coastal MAB is a source or sink for anthropogenic C
and N (Chavez et al. 2007). Ifincreased total N loads or increased atmospheric CO,
cause an increase in net primary productivity, as was potentially observed from this data
set (Table 3.2; Fig. 3.29) (although the reason for the increase is not clear), and daily
sedimentary denitrification rates remain 2% of primary productivity rates (e.g. Seitzinger

and Giblin 1996) then N might accumulate in the MAB sediments or thereby alleviating
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N limitation or resulting in the accumulation of organic material leading to coastal anoxia
such as has been observed north on the MAB shelf of NJ (Glenn et al. 2004; Frazer et al.
2006). Alleviating N limitation might shift the system toward limitation by another
element in short supply. However, if denitrification rates increase commensurable with
increased productivity thereby maintaining an N-limited coastal system, then
anthropogenic N inputs can be counterbalanced with N losses through denitrification. If
primary productivity decreases in the future (something that was not observed in this data
set) due to global climate change, denitrification might decrease due to C limitation of
denitrifying microbes as less organic material is delivered to the sediments (Fulweiler et
al. 2007).

Based on a 2 % removal rate (Seitzinger and Giblin 1996), I calculate that the
total N losses through denitrification for these three hydrographic regimes was 1.1 x 10'°
mol Ny, which is 11 times lower than rates estimated from the region extending from
Cape Hatteras to South Florida (11.7 x 10" mol N y!) and represents < 1% of the
denitrification estimated for the entire North Atlantic Shelf (143 x 10"’ mol N y';
Seitzinger and Giblin 1996). N removal from the MAB via denitrification is an important
process and recent modeled estimates determined that 90% of DIN and PN entering the
North Atlantic is ultimately lost from the sediments via denitrification (Fennel et al.
2006). A decrease in denitrification rates would result in retention of N in the system,
where it could stimulate additional primary productivity, providing a positive feedback
scenario (Fulweiler et al. 2007).

N and C dynamics are affected by not only the physical and biological

environments, but also human impacts on both short and long timescales. Although
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satellite imagery is becoming a widely used tool to relate surface productivity with
remotely sensed parameters, present and past results suggest that satellite data should be
interpreted carefully and validation with measurements is necessary, as productivity rates
do not always correlate well with Chl a biomass and there are differences in productivity
with depth that may not be related in a predictable way to biomass estimates (Hoffman et
al. 2008). Further, nutrient concentrations (e.g. NOj’) are not good predictors of
productivity. The results from this study suggest that primary productivity in the MAB
may be increasing or that rates reported here are more robust relative to rates reported
directly or modeled using data collected 20 to 40 years ago. Long-term trends in
productivity due to coastal eutrophication and large scale indices of climate change
variables, such as the North Atlantic Oscillation and El Nifio Southern Oscillation, are
only beginning to be observed in data records and our short satellite record is not yet
sufficient to observe the full extent of these trends. Additionally, coastal algorithms
relating primary productivity and ocean color are not yet good enough to evaluate
productivity in marine coastal waters due to instrumentation interferences, the lack of
robust validation, and direct measurements (Hoffman et al. 2008). Our observations have
shown that coastal productivity is important and is higher than previously estimated or is
increasing at these interfaces. Equally important, better relationships between primary
productivity and N uptake rates need to be elucidated to reconcile global C and N
budgets, and to offer better ways to extrapolate one from the other. Resolving these
issues in the coastal zone is crucial for validation of biogeochemical models that are
necessary for a whole ecosystem approach to understanding the N and C dynamics and a

region strongly affected by climate change.
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CHAPTER 1V
SUMMARY AND FUTURE DIRECTIONS

SUMMARY

In this dissertation, I present data that can provide seasonally resolved snapshots
of nutrient concentrations, biomass concentrations, N uptake rates, and primary
productivity rates in the plume and receiving waters for the largest estuary in North
America, and spanning a three year period. Rates of N uptake and primary productivity
in the Chesapeake Bay plume were compared with rates measured in the adjacent coastal
ocean, including the shelf area north of the Chesapeake Bay mouth and an area of the
shelf often impacted by the Gulf Stream. All concentrations as well as rate
measurements were reviewed in the context of freshwater flow, water column mixing,
and wind dynamics. This research was motivated by prior modeling efforts and will
advise future efforts, such as that proposed by the U.S. east coast continental shelf project
team, to model the regional and global C budgets (Hoffman et al. 2008). Further, the
results presented in this dissertation were used by NASA scientists to reconcile satellite
imagery and ocean color with C pools and cycling in the coastal ocean.

The major findings of this research are:

e Primary productivity does not correlate with Chl a concentrations in a

coastal system dominated by physical processes.

¢ Plume morphotypes were important in determining biomass versus
productivity relationships; low flow conditions promoted in situ
productivity while high flow, or ‘wash out’ conditions promoted high

biomass exported from the Bay.
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¢ N concentration was a poor predictor of N uptake, and inorganic and
organic forms of N are important for understanding total N uptake

demands.

¢ Primary productivity rates may be increasing over time in the MAB, or
our analyses may simply be more robust, incorporating direct

measurements and season variability.

o The Redfield ratio can not be used to interpret regional N demand from C

uptake and vice versa.

The ocean is the largest planetary C sink and so how the oceanic environment will
respond to higher C concentrations is a subject of intense debate. Further, the coastal
ocean is an area increasingly impacted by anthropogenic N inputs. The combined
impacts to marine systems from climate change superimposed on eutrophication are
unknown (see Galloway et al. 2008). Characterizing the impact of the Chesapeake Bay
on coastal productivity is an important step in our understanding of C dynamics in a
region dominated by anthropogenic influences. Because there are productivity estimates
from almost 40 years ago, we can speculate as to long term trends in productivity in this
area (see Fig. 3.29). This project was a large undertaking, and although the temporal
resolution was robust, it was clear from the beginning that a complete understanding of
the MAB and the Chesapeake Bay outflow plume in terms of N and C was not going to
be achieved in a three-year study even with monthly or seasonally allocated field

measurements. This study however was an improvement over many previous studies in
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the fact that it spanned 3 years, 4 seasons, and 3 types of hydrographic regimes, allowing
for a more robust analysis of areal N uptake and primary productivity.

Seasonal variations in nutrient cycling and carbon biogeochemistry that occur
today could be amplified in the future as sea level rises, water temperature increases, pH
decreases, storm events increase in intensity, and rainfall is increasingly delivered in
sporadic but high intensity events interspersed with dry periods. Knowing how the
region reacts during high flow periods is essential to our understanding of what will
happen if those high flow periods become more frequent and/or prolonged. For example,
in the plume region alone, I showed that high intensity freshwater flow events could
result in large discharges of nutrients, and particulate matter, but not necessarily high
productivity. However, it is possible that if a drought situation were to occur following a
high discharge event, those nutrients could be made available for productivity in the
vicinity of the plume or further downstream, moving the effects of the Chesapeake Bay
plume further into the coastal ocean.

FUTURE DIRECTIONS

This study was limited to the water column and there are significant
sediment/water interactions, atmosphere/surface water interactions, and small-scale
physical processes occurring that were not addressed in this study.

Based on results from this study, future research might be focused on the
following questions:

1. What will be the overall N budget balance given current and projected

scenarios? Will oversaturation of N in sediments occur, thus releasing
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N into the water column? Or, will primary productivity increase
organic rain to the sediments thereby stimulating denitrification?

2. Can the MAB be maintained as a C sink if N inputs continue to
escalate; can denitrirfication keep up? Or, could the MAB become
more of a C sink if primary productivity increases due to eutrophication
and denitrification rates are maintained?

It is an unfortunate reality that everything cannot be sampled everywhere, all the

time. Based on our data limitations, it is still important to ascertain as best we can a
range of plausible scenarios so that we can understand all aligned processes and project
into the future. Satellite remote sensing efforts require ground-truthing and it is clear that
the relationships between primary productivity and remotely sensed parameters are not
always related in a predictable fashion. The body of research presented in this
dissertation substantially advances our current understanding of N and C cycling in the
MAB and 3 hydrographic provinces therein; areas heavily impacted by climate change,

global warming, and human interactions.
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Appendix Table A.6. Pearon’s product moment correlation for all parameters in the plume. R = regression
coefficient, p < 0.05 is significant, and n = sample number.
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Appendix Table 6. Continued.
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Appendix table B.7. Pearson’s product moment correlation for all parameters in the MAB. R = regression
coefficient, p < 0.05 is significant, and n = sample number.
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