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ABSTRACT 

NUTRIENT AND CARBON DYNAMICS IN THE CHESAPEAKE BAY 
OUTFLOW PLUME AND THEIR EFFECT ON THE COASTAL OCEAN 

ENVIRONMENT 

Katherine C. Filippino 
Old Dominion University, 2008 

Director: Dr. Margaret Mulholland 

Seasonally resolved nutrient and carbon fluxes from estuaries to the coastal ocean 

are poorly constrained. Nutrient and carbon cycling in highly productive regions like the 

Chesapeake Bay outflow plume and surrounding coastal environments greatly affect our 

global understanding of carbon cycling. The overall questions for the research described 

in this dissertation stem from the need to close global carbon budgets, and obtain a 

fundamental understanding of nutrient dynamics in a coastal region heavily influenced by 

seasonality and human impacts. 

Within the framework of physical characteristics of the outflow plume and 

through the characterization of nutrient concentrations, primary productivity rates, and 

the uptake of nitrogen using stable isotopes, I identified three different plume types that 

differentially provided nutrients and created conditions either suitable or unsuitable for 

primary productivity in the coastal zone. A jet-like plume, where there were winds 

consistently from the north accompanied by high freshwater flow from the Bay, delivered 

high amounts of chlorophyll from the Bay. In contrast, two types of diffusive plumes 

occurred when winds came from the south accompanied with low freshwater discharge 

and were either influenced by estuarine or oceanic processes. The diffusive-estuarine 

plume delivered dissolved nutrients creating conditions suitable for high primary 



productivity rates in the coastal zone while the diffusive-oceanic plume generally had low 

primary productivity and nitrogen uptake rates. 

A secondary study compared and contrasted hydrography, nutrient availability, 

primary productivity rates and nitrogen uptake rates in three distinct regions of the Mid-

Atlantic Bight: the plume regions influenced by the Delaware and Chesapeake Bays, the 

mid-shelf region between the Delaware and Chesapeake Bays influenced by both coastal 

and oceanic processes, and the southern shelf region below the Chesapeake Bay 

influenced by the Gulf Stream. Areal rates of carbon uptake were not significantly 

different among regions, and were higher than most published values of annual areal rates 

for the Mid-Atlantic bight. Annual areal nitrogen uptake rates were also calculated, 

providing carbon to nitrogen uptake ratios which were lower than the canonical Redfield 

ratio. These findings have implications regarding modeled estimates of carbon uptake 

based on nitrogen uptake and vice versa. 
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CHAPTER I 

THE COASTAL ZONE 

INTRODUCTION 

Estuaries are an important interface between the terrestrial and oceanic 

environment with bay mouths and outflow plumes acting as mixing zones to provide 

nutrients, dissolved inorganic carbon (DIC) for primary productivity and dissolved organic 

carbon (DOC) for heterotrophic production in the coastal zone. Although research has 

been undertaken to understand the sources, cycling, and biogeochemistry of nutrients 

within the main-stem of estuaries, nutrient import and export studies through the estuarine-

oceanic interface are rare. Nutrients that enter most aquatic systems are processed within 

estuaries as they are transported to the coastal ocean. In this dissertation, I will examine 

the delivery of nutrients to the coastal zone via the estuarine plume of the Chesapeake Bay 

versus oceanic sources with respect to physical parameters using temperature, salinity, and 

terrestrial freshwater inputs to characterize different physical regimes. By approaching 

nutrient dynamics in a physical context, I will address how different physical regimes 

affect nitrogen uptake and primary productivity in the coastal zone surrounding the mouth 

of the Chesapeake Bay. I also will compare these findings with N uptake and primary 

productivity to the north, south, and east of the plume region in order to assess the spatial 

extent of the Bay's effect on the coastal zone. 

BACKGROUND 

The quality and quantity of terrestrial nutrient inputs heavily impacts estuarine 

processes, fueling primary productivity, microbial activity, fish production and fisheries 

This dissertation follows the journal style of Limnology and Oceanography. 
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yield. Although estuarine material is altered by internal biogeochemical cycling and 

recycling, estuaries are ultimately sources of nutrients and C to the coastal ocean. 

Currently, Chesapeake Bay tributaries and part of the main stem suffer from 

eutrophication. In semi-enclosed water bodies and coastal bays, too much nitrogen (N) and 

phosphorous (P) leads to the development of excess biomass which degrades the overall 

health and well-being of marine life (Fisher et al. 1988; Harding and Perry 1997). Both 

point sources (e.g. industry and wastewater treatment plants) and non-point sources (e.g. 

urban and agricultural runoff, and atmospheric deposition) of nutrient pollution contribute 

to the eutrophication of the Bay (Kemp et al. 2005). However, non-point source pollution 

is the dominant source of nutrients to the Bay (Kemp et al. 2005). 

The northeast coast of the United States is considered to be the most populated 

coastal region in the U.S., according to a recent NOAA coastal population trends report 

(Crossett et al. 2004). As of 2003, 77% of the northeast region and 37% of the southeast 

region reside on the coast (Crossett et al. 2004). An increase in population translates to 

more development, fewer buffer zones, and even more nutrient runoff into the Bay and into 

the coastal ocean. Population increases correlate directly to total N (TN) loads in coastal 

zones (Howarth et al. 1996). If this trend continues, eutrophication-induced anoxia will 

only increase, further affecting the processing of nutrients within the Bay and the coastal 

ocean beyond the mouth of the Bay. 

Nitrogen has a complicated cycle in aquatic systems (Fig. 1.1) and is thought to 

limit production in a variety of coastal regions including the MAB (Ryther and Dunstan 

1971). The amount of N introduced into coastal systems, particularly to the North 

Atlantic, has increased dramatically over the years, and can be directly related to 
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population growth (Howarth et al. 1996; Howarth et al. 2002). Anthropogenic sources of 

N to the coastal zone along the U.S. eastern seaboard, in order of decreasing magnitude 

are: 1) agricultural run-off, from both fertilizers and N fixation in soils, 2) atmospheric 

deposition of NOx from fossil-fuel combustion, 3) point sources from industrial and 

wastewater treatment plants (Howarth et al. 2002). Sinks of N in the coastal zone are 

denitrification and storage within either terrestrial, estuarine, or coastal sediments 

(Howarth et al. 2002). N is an essential nutrient for growth and the amount and form of 

dissolved N are important drivers for determining the dominant algal species (Mulholland 

and Lomas 2008). Too much dissolved inorganic N (DIN) can cause excessive algal 

growth and even algal blooms. Research has shown that in addition to DIN, dissolved 

organic N (DON) can be important in fueling harmful algal blooms (Paerl 1988; Nixon 

1995; Glibert et al. 2001; Mulholland et al. 2004). In coastal systems, 'new' or 

allochthonous N (Eppley and Peterson 1979) can include diverse forms of N including 

nitrate (NO3"), nitrite (NO2")) ammonium (NH/), urea, and other DON (Paerl 1997). 

Coastal upwelling can also introduce NO3" from deep oceanic sources, and water column 

and sediment N2 fixation can supply reactive N to the surface water (Boynton et al. 1995; 

Paerl 1997). N is also recycled within the water column and sediments, via microbial 

processes that produce NO3", NO2", NH/ , and DON that is available for autotrophs and 

heterotrophs (Fig. 1.1). 
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Assimilation Bxcrttkw 

Fig. 1.1. Schematic diagram of the N cycle. N oxidation states are shown on the vertical 
axis, and major biological transformations between compounds and organisms are shown 
with arrows. Nitrification, mediated by bacteria, shows ammonia oxidation: NH3 + 1 Vi 
0 2 -> N02" + H+ + H20 and nitrite oxidation: N02" + P/2 0 2 -> N03". Denitrification is 
mediated by bacteria with the following chemical equation: NO3" + 6H+ + 5e~ —> V2N2 + 
3H2O. Nitrogen fixation is performed by cyanobacteria, bacteria and archaea: N2 + 8H+ 

+ 8e" + 16 ATP -> 2NH3 + H2 + 16ADP + 16Pi (biological). Assimilation of inorganic N 
is performed by phytoplankton. Production/reduction of N2O is dependent on 
concentrations of O2, NO2", etc. Anaerobic ammonium oxidation (Anammox) is also 
shown (Montoya 2008). 

Total annual nutrient loads to coastal systems are highly dependent upon seasonal 

discharge events (Boynton et al. 1995). In the eastern coastal U.S., nutrient inputs are 
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tied to freshwater discharge. During spring when precipitation is typically higher, there 

is high freshwater flow entering the Bay and coasts, carrying high concentrations of new 

nutrients (Malone et al. 1988). In contrast, during summer, when there is less rainfall 

there is lower freshwater flow into the Bay and therefore lower nutrient delivery to the 

Bay and coastal waters, but at this time nutrient recycling rates are high (Malone et al. 

1988). Nutrient limitation is also tied to the seasonal freshwater flow cycle. Algal 

growth in the Bay can be limited by N, P or silicon (Si) or co-limitation can occur by two 

or more of these nutrients (Fisher et al. 1999). In the lower Bay, N and P are thought to 

co-limit algal growth in the winter and spring, followed by a small period of time where 

P-limitation may occur. The lower Bay is generally N-limited during summer and fall 

mainly due to recycling processes which regenerate P faster than N and due to the low N 

to P ratio in the oceanic influenced end-member (Fisher et al. 1992; Fisher et al. 1999; 

Kemp et al. 2005). Variations in the pattern of nutrient limitation may also occur along 

the mouth of the Bay, where there exists a north-south salinity gradient due to bathymetry 

and estuarine circulation (Valle-Levinson et al. 1998; Whitford 1999). There is higher 

freshwater discharge along the western side of the Bay and at the southern entrance to the 

Bay mouth and therefore potential for higher nutrient delivery at these boundaries (Valle-

Levinson et al. 1998; Whitford 1999). 

The seasonal shift in nutrient availability in the lower Bay and Bay mouth may 

also extend into the coastal waters as nutrients and materials are delivered through the 

Bay mouth. The flux of N and P into and out of the Bay at the estuarine-coastal interface 

is important for determining nutrient budgets and primary productivity but difficult to 

estimate. Although flow rates can be estimated, nutrient fluxes over even a diurnal cycle 
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are difficult to estimate in a region where both biological and physical interactions occur 

on short timescales. 

In addition to freshwater flow, tidal fluctuation at the estuarine-coastal interface is 

important for nutrient availability and algal growth. Mixing and salinity gradients within 

the water column are affected by the tidal cycle, and that can either facilitate or hinder 

nutrient delivery to coastal waters from estuarine and oceanic sources (Guo and Valle-

Levinson 2007). For example, tidal currents outside of the Bay mouth can weaken 

stratification by increasing mixing (Guo and Valle-Levinson 2007) and therefore create a 

well-mixed physical regime bringing nutrients to surface waters where it is optimal for 

phytoplankton growth. However, increased mixing can result in high turbidity and low 

light penetration, which is not optimal for growth (Pennock and Sharp 1994). 

Coupled with large inputs of nutrients via freshwater discharge to the 

Chesapeake Bay and its tributaries are seasonal phytoplankton blooms and microbial 

activity that biologically influence nutrient cycling en route to the coastal ocean. 

Complex nutrient biogeochemistry tied to biological processes confounds our ability to 

extrapolate C productivity and C fluxes from within the estuary to the coastal ocean. 

Also, current global ocean and atmospheric C cycle models are poorly constrained in the 

coastal ocean environment despite the observations that these are areas where C (and 

nutrient) cycling is intense (Hoffman et al. 2008). Further, increasing anthropogenic 

impacts, such as increased carbon dioxide (CO2) emissions and increased atmospheric 

temperatures, are affecting CO2 exchange between the ocean and atmosphere. Although 

the global continental shelf (the shallow (<200 m) area surrounding land margins) 

represents only a small fraction of the ocean's surface area (< 10%), these areas play a 
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large role in global C cycling by accounting for more than 21% of total oceanic 

productivity (Gattuso et al. 1998; Jahnke 2007). They are also areas where biology and 

vertical water column movements interact to affect C exchange with the atmosphere 

(Gattuso et al. 1998; Jahnke 2007). 

The two largest biologically reactive C pools in the ocean are the DIC pool and 

the DOC pool. DIC fuels primary productivity via photosynthetic C fixation and its 

concentrations are also controlled by air-sea exchange due to temperature-dependent 

solubility (Sarmiento and Gruber 2006). In contrast, the DOC pool is a complex mixture 

of components released from autotrophs, heterotrophs, inputs from rivers, and fuels 

heterotrophic microbial growth. The Amazon River basin is just one example of a well-

studied coastal system influenced by large riverine discharge, and although vastly 

different from the Chesapeake Bay system, extensive research conducted there provides 

insights regarding C dynamics in coastal systems. The Amazon River is responsible for 

20% of the world's river discharge and the export of total organic carbon (TOC) and DIC 

from the entire basin to the ocean has been estimated at 3 x 1012 mol C y"1 each (Richey 

et al. 1980; Degens et al. 1990; Richey et al. 2002). This estimate is only 5 -10% of 

global TOC and 10% of global DIC entering coastal zones, but is important regarding the 

ability of the oceans to take up anthropogenic atmospheric CO2, as the main function of 

riverine discharge in the global C budget is the export of C to the ocean (Degens et al. 

1990; Richey et al. 2002). Without budgeting for riverine TOC and DIC export in C 

cycle models, the estimation for the oceans ability to take up anthropogenic CO2 may be 

overestimated (Sarmiento and Sundquist 1992). 



In addition to bulk C export, coastal C research is focused on obtaining estimates 

of chromophoric dissolved organic matter (CDOM) and DOC concentrations in the MAB 

via satellite remote sensing to better understand net ecosystem productivity (Del Vecchio 

and Blough 2004; Mannino et al. 2008). However, these models are in need of continued 

field campaigns to aid in algorithm validation and may not predict coastal regional 

productivity with much certainty at the coastal/land interface (Mannino et al. 2008). The 

difficulties surrounding remote sensing and algorithm validation are due to discrepancies 

between the timing of field observations and satellite observations, and the complexity of 

the optical properties within coastal water columns (Mannino et al. 2008). Therefore 

further in situ examination of N and C productivity in many coastal systems, including 

the Chesapeake Bay outlflow plume is necessary (Werdell and Bailey 2005; Mannino et 

al. 2008). 

We know from multiple biogeochemical process studies conducted in regions 

affected by plumes (see Table 1.1 and references therein) that estuarine and riverine 

plumes can be areas of high productivity and can exert profound effects on the coastal 

ocean environment. Despite their high productivity, coastal zones are under-sampled in 

regards to other environments (Richardson and Poloczanska 2008). Further, most 

previous studies of coastal biogeochemistry represent only one or two seasons (Table 

1.1). In a recent Intergovernmental Panel on Climate Change (IPCC) report, only 30 data 

series were included in their evaluation of climate change in the marine (both biological 

and physical) environment, due to the lack of time series measurements (Richardson and 

Poloczanska 2008). Unlike the Chesapeake Bay proper, the Chesapeake Bay plume has 

not been intensely studied, specifically with respect to the very dynamic N and C cycles. 
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Other river plumes that are vastly different from the Chesapeake Bay plume, such as the 

Amazon and Mississippi Rivers, have been sites for more extensive biogeochemical and 

physical studies (Table 1.1). As the largest estuarine system in North America, and a 

coastal plain estuary discharging into the MAB, it is important to investigate the impact 

that the Chesapeake Bay system has on the biogeochemical cycling in the highly 

productive MAB, and how climatological factors influence the penetration of the plume 

into coastal waters. 
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STUDY SITE 

The Chesapeake Bay plume is a buoyant jet that results from subtidal outflow 

entering the shelf region, turning anticyclonically, and being trapped against the coast due 

to the earth's rotation (Valle-Levinson and Lwiza 1997; Valle-Levinson et al. 1998) (Fig. 

1.2). The circulation pattern at the mouth of the Chesapeake Bay, as it enters the coastal 

zone, has been described as a two-way exchange with seawater flowing in at depth at the 

northern side and lower salinity water flowing out at the surface primarily along the south 

side of the mouth of the Bay (Valle-Levinson et al. 1998). This pattern is a combination 

of circulation due to density gradients, wind-induced flow, and bathymetry (Valle-

Levinson and Lwiza 1997; Valle-Levinson et al. 1998; Valle-Levinson et al. 2001). In 

addition, tidal currents are important when observing vertical and horizontal plume 

structure, as tides create a plume that can extend all the way to the bottom of the water 

column and tides tend to inhibit the expansion of the plume northward (Guo and Valle-

Levinson 2007). 
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Fig. 1.2. Chesapeake Bay outflow plume and coastal zone. Arrows are indicative of the 
general circulation pattern with oceanic waters entering at depth on the north end of the 
Bay mouth, and estuarine waters exiting at the surface at the south end of the Bay mouth. 

Wind stress and freshwater flow play major roles in the extent of the low salinity 

waters as they move through the Bay mouth and out into the coastal Atlantic (Johnson et 

al. 2001; Valle-Levinson et al. 2001). Just south of the Bay mouth, alongshore winds 

from the north, common between late summer and spring, can result in coastal 

downwelling which serves to strengthen the outflow jet and confine the southward flow 

of water near the coast to the south of the Bay mouth (Valle-Levinson et al. 1998; 

Johnson et al. 2001). Under this condition, nutrients and C inputs to the coastal ocean 
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from the Chesapeake Bay are restricted to a narrow band along the southern coast of VA. 

In the summer, weaker winds blow from the south resulting in offshore Ekman transport 

and broadening of the plume, potentially distributing material containing nutrients and C 

further offshore, and causing coastal upwelling near the Bay mouth (Johnson et al. 2001). 

In addition to wind-driven seasonal upwelling and downwelling, evidence has shown that 

fronts can form along the Virginia coast, similar to those occurring in the Delaware Bay 

(Sanders and Garvine 1996; Marmorino et al. 2000). These fronts typically occur near 

Cape Henry and are more typical during high tide and under high flow conditions (e.g., 

spring). During these events, denser water is trapped along the coast and can downwell. 

Associated dissolved and particulate material with the downwelled surface water can then 

become entrained in the northward flow potentially moving back into the estuary 

(Marmorino et al. 2000). The complex circulation that characterizes coastal 

environments is influenced by and modifies the effects of the estuary on coastal nutrient 

and C dynamics. 

RESEARCH QUESTIONS 

In order to examine the fate and transport of N and C through the Bay mouth and 

in the plume, the following research questions were addressed: What role does seasonal 

variability of freshwater outflow and meteorology play in nutrient and carbon 

dynamics and primary productivity in a coastal region and how does freshwater flow 

and meteorology affect the exchange of carbon and nutrients at the coastal interface? 

How does primary productivity and nutrient and C cycling along the north-south axis 

of the Chesapeake Bay outflow plume (when the plume is a distinct jet running from 
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north to south) compare to the west-east axis (when the plume is more dispersed in a 

west to east direction)? 

In Chapter 2, these questions are addressed via ship-based studies of bulk water 

column measurements and process studies (i.e. stable isotope tracer experiments) 

examining biological activity during low and high freshwater discharge events and at 

stations both inside and outside of the Chesapeake Bay outflow plume's influence. 

Preliminary research along a Chesapeake Bay mouth transect showed seasonal trends in 

nutrient concentrations (Fig. 1.3; Filippino unpublished data). Overall, 2003 and 2004 

were considered wet years, based on USGS stream flow data, where wet years were 

defined as flow greater than the 75th percentile of annual river flow since the beginning of 

data collection in 1937 (http://md.water.usgs.gOv/monthly/bay.html#wymean). Monthly 

and seasonal river discharge into the Chesapeake Bay from the major tributaries, 

including the James River, was highest in the spring of 2003. Chlorophyll a (Chi a) 

concentrations increased following the large freshwater discharge in the spring, and 

decreased as flow decreased during summer of 2003 (Fig. 1.3A). However, there were 

no significant relationships (p > 0.05) between nutrient and Chi a concentrations and 

freshwater flow from the James River in either 2003 or 2004 (Figs. 1.3A - D). These data 

suggest that seasonality and freshwater flow alone are not good predictors of changes in 

nutrient and Chi a concentrations, as localized and large-scale freshwater flow events can 

alter nutrient concentrations significantly during multiple seasons. Further, biological 

activity along the length of the estuary and the hydrodynamics of the outflow plume and 

surrounding coastal waters can complicate the interpretation of bulk water column 

measurements. 

http://md.water.usgs.gOv/monthly/bay.html%23wymean
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Fig. 1.3. Monthly nutrient concentrations and freshwater flow from the James River at the 
mouth of the Chesapeake Bay during 2003 and 2004. The top panels show average NO3" + 
NO2*, PO4 , and Chi a concentrations (umol L" and (ig chl L" ; bars) and monthly 
averaged freshwater flow from the James River (m3 s"1; shaded area) at the Bay mouth for 
2003 (A) and 2004 (B), error bars are standard deviations for surface and near-bottom 
depths at four stations across the Bay mouth. The bottom panels show linear regressions 
between James River discharge and N03" + N02" (2003: R = 0.33; 2004: R = 0.41), P04

3" 
(2003: R = 0.50; 2004: R = 0.10), and Chl a (2003: R = 0.10; 2004: R = 0.30) in 2003 (C) 
and 2004 (D) (Filippino unpublished data). 

In order to assess the productivity in the coastal ocean in the context of coupled N 

and C cycling, Chapter 3 describes the influence and importance of the outflow plume to 

N and C dynamics in the receiving waters and the MAB as a whole. Specifically, the 

following question was examined: What effect do terrestrial influences have on the 

quality and quantity of nutrients and carbon available for uptake in the coastal region? 

Similar to the study of the plume region, process cruises were conducted examining on

shore versus off-shore N and C dynamics in the MAB. This research was aimed at 
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comparing current N and C budgets in the MAB with past research and place current 

productivity estimates in a historical and hydrographic context. 

Chapter 4 provides a discussion of the research results described in Chapters 2 and 

3. The goal in Chapter 4 is to synthesize this research in the context of our current 

understanding of N and C cycling in coastal systems, regional models of productivity, and 

to highlight future directions. 
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CHAPTER II 

NUTRIENT DYNAMICS AND PRIMARY PRODUCTIVITY IN THE 

CHESAPEAKE BAY OUTFLOW PLUME; 2005 - 2007 

INTRODUCTION 

Estuaries are an important and productive interface between the terrestrial and 

oceanic environments. The bulk of terrestrial material transported to the coastal ocean is 

delivered through rivers and estuaries that also act as reactors, transforming material and 

nutrients en route. Both the quantity and quality of nutrients delivered to the coastal zone 

depend on their residence time in the estuary and reactions within the estuary. 

Relationships between nutrient loading from the watershed and subsequent export 

to the coastal ocean are complex. Evaluations of the total nutrient load, particularly N, to 

the Chesapeake Bay have been undertaken, and present and past literature has shown that 

N inputs to the Bay are increasing over time leading to eutrophication and overall Bay 

degradation (Boynton et al. 1995; Kemp et al. 2005). There is typically high N demand 

in the mesohaline section of the Bay during the summer and low demand in winter (Baird 

and Ulanowicz 1989; Baird et al. 1995). This is primarily due to the large supply of 

nutrients during the spring that support a spring bloom and recycling of algal N during 

summer (Baird et al. 1995). Phytoplankton growth was found to be P-limited in the 

lower salinity regions of the Bay and N-limited in the higher salinity regions (Fisher et al. 

1999). Temporally, phytoplankton growth is typically limited by P in the spring followed 

by N-limitation in the summer (Fisher et al. 1999). 

Large-scale budgets of N and C in the coastal MAB have been estimated and 

estuarine and riverine discharge represents between 10 - 30 % of total N inputs to the 



19 

western North Atlantic continental shelf (Nixon et al. 1996; Verity et al. 2002; Fennel et 

al. 2006). However, studies examining total N inputs to the coastal ocean from the 

Chesapeake Bay and the impact of this estuary on the mid-Atlantic shelf are scarce 

(Malone and Ducklow 1990; Glibert et al. 1991; Acker et al. 2005). Of the few studies 

conducted in the Chesapeake Bay plume in the late 1980's, it was found that turnover of 

particulate organic C (POC) and release of DON have been shown to increase with 

temperature due to an increase in the abundance of bacterioplankton relative to 

phytoplankton (Malone and Ducklow 1990; Glibert et al. 1991). Also, seasonality was 

observed in N uptake, with higher uptake rates observed in the spring and a shift from 

inorganic to organic N uptake from spring to summer (Glibert et al. 1991). More 

recently, satellite remote sensing has been utilized to show that high turbidity, nutrients, 

and Chi a are associated with high freshwater flow (Acker et al. 2005). However, no 

specific studies relating to N uptake and primary productivity within the plume have been 

conducted since the 1980's, and understanding the relationships between productivity and 

N cycling are crucial for determining how the coastal ocean, impacted by the Chesapeake 

Bay at present, will respond to various climate change scenarios (Gruber and Galloway 

2008). 

Estuarine and riverine plumes act as mixing zones where nutrients enter the 

coastal zone and potentially fuel coastal productivity. The Chesapeake Bay system is the 

largest estuary in North America and its influence on nutrient cycling and primary 

productivity has a potentially large impact on the coastal ocean (Boynton et al. 1995; 

Nixon et al. 1996). Productivity in the mid-Atlantic coastal zone is thought to be limited 

primarily by N (Dugdale 1967; Ryther and Dunstan 1971; Nixon et al. 1986) although 
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such limitation may be alleviated due to anthropogenic increases in N, thus increasing 

primary productivity (Duce et al. 2008; Galloway et al. 2008). In contrast to the coastal 

zone, the Chesapeake Bay is considered eutrophic and its outflow plume discharges into 

this otherwise nutrient-depleted coastal area. While many processes influence N 

dynamics and C productivity in the coastal ocean, seasonally variable nutrient inputs 

through estuarine and riverine plumes can play a large role in coastal systems where they 

discharge (Nixon et al. 1996). The timing and location of high and low flow events, the 

residence time of material in the Bay with respect to timescales of biogeochemical 

processing, the prevailing oceanographic conditions, and seasonally variable ecosystem 

dynamics may be important for determining the impacts of plume-derived nutrients on 

primary productivity in the coastal zone. Because of tidal and other physical influences, 

the two end members do not exhibit simple steady state mixing and therefore the flux 

rates of available nutrients at the interface between estuarine and oceanic systems are 

poorly understood (Malone and Ducklow 1990). 

The location and strength of the plume can determine the extent of its effect on N 

and C cycling in the coastal waters, e.g., where and how much primary productivity 

occurs in the adjacent coastal zone versus further offshore. Typically, during high to 

moderate flow (e.g., in the spring months), material passing through the Bay mouth into 

the coastal ocean remains entrained in a plume or jet that extends from the Bay mouth out 

into the Atlantic Ocean. Prior research has shown that the Chesapeake Bay outflow 

plume can extend 10-100 km seaward during high flow periods, particularly in the 

winter and spring months when freshwater discharge is often high (Boicourt et al. 1987; 

Valle-Levinson et al. 1998; Valle-Levinson et al. 2001). In contrast, during low flow 
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periods (e.g., in the summer months), the circulation pattern of the plume can be confined 

to an area near the mouth of the Bay (Valle-Levinson et al. 1998; Valle-Levinson et al. 

2001). However, hurricanes and intense precipitation events during otherwise low flow 

periods can have dramatic effects, providing larger total N loads and resulting in long-

term ecosystem changes (Paerl et al. 2001). 

While it is tempting to consider freshwater discharge alone, the direction, 

intensity and location of the estuarine plume is a result of the combination of many 

physical forces (Valle-Levinson et al. 2001) including prevailing wind direction and 

speed, the strength of the coastal current, bathymetry, and tidal currents (Valle-Levinson 

et al. 1998; Guo and Valle-Levinson 2007). For example, near the Chesapeake Bay 

mouth and its plume, the dominant wind direction can result in both upwelling and 

downwelling-favorable conditions and these in turn affect the impact of the plume on the 

coastal system (Rennie et al. 1999; Johnson et al. 2001). Downwelling-favorable 

conditions can result in a deep and narrow plume, while upwelling favorable conditions 

can result in a shallow and wide plume. If upwelling favorable winds persist, this can 

result in the detachment of the plume, moving and dispersing it further offshore (Rennie 

et al. 1999). 

While there is a general understanding of how the physical location of the 

estuarine plume varies in space and time (Valle-Levinson et al. 1998; Valle-Levinson et 

al. 2001; Guo and Valle-Levinson 2007), these assessments lack a biogeochemical 

framework to link spatial and temporal plume dynamics with nutrient cycling and 

primary production. For example, under conditions of high flow and short residence 

time, one might expect more dissolved and particulate material to move through the 
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estuary less altered before it is exported to the coastal ocean, resulting in a higher 

availability of inorganic nutrients compared to organic nutrients, fueling autotrophic 

productivity. In contrast, during low flow periods when residence times in the estuary are 

longer, recycling processes may dominate resulting in delivery of highly altered nutrients 

(primarily in organic form) to the coastal ocean, fueling heterotrophy. Elucidating the 

nutrient variability (e.g. inorganic versus organic) and subsequent uptake and 

transformation into primary production would provide a better understanding of the 

processes occurring. Therefore, quantifying nutrient concentrations and uptake rates of 

inorganic and organic N sources in addition to estimating primary productivity in the 

context of different hydrographic regimes will allow for a broader understanding of the 

effect the terrestrial nutrients from the Bay have on the coastal region. Estimates of N 

uptake and primary productivity have been employed in numerous studies using 15N and 

13C (or 14C) tracers (Harrison 1983; Dugdale and Wilkerson 1986; Lipschultz 2008) and 

can provide a processed-based evaluation of the biogeochemistry of a particular system, 

like the Chesapeake Bay outflow plume (Lipschultz 2008). 

Given forecasted changes in the dominant physical forces likely to result from 

climate change (e.g., sea level rise, temperature increase, and increased freshwater flow 

etc.), it is particularly important to understand the current range of expected values and 

the range of variability in biological processes under present day conditions (Nicholls et 

al. 2007). It is the intent of this research, therefore, to provide a current evaluation of the 

nutrient and primary productivity regime utilizing 15N and 13C stable isotope tracer 

techniques in the context of the physical and hydrological environment, to not only assess 

current conditions, but to provide a baseline for future predictions. 
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DESCRIPTION OF PLUME REGION 

The general circulation pattern at the mouth of the Chesapeake Bay as it enters the 

coastal ocean has been described as a two-way exchange; with seawater flowing in at 

depth at the southern side and lower salinity water flowing out at the surface along the 

entire mouth of the Bay (Valle-Levinson et al. 1998). This flow is a combination of 

circulation due to density gradients, wind-induced flow, bathymetry, and tides (Valle-

Levinson and Lwiza 1997; Valle-Levinson et al. 1998; Guo and Valle-Levinson 2007). 

The Chesapeake Bay plume has been described as a buoyancy jet resulting from the 

Chesapeake Bay subtidal outflow entering the shelf region, turning anticyclonically, and 

being trapped against the coast due to the Coriolis force (Valle-Levinson and Lwiza 

1997; Valle-Levinson et al. 1998). Wind stress and freshwater flow play major roles in 

the temporal and spatial distribution of the low salinity (< 30) waters as they move from 

the Bay mouth (Johnson et al. 2001; Valle-Levinson et al. 2001). Just south of the Bay 

mouth, alongshore winds from the north, common between fall and spring, can result in 

coastal downwelling which serves to strengthen the outflow jet and confine the 

southward flow of water near the southern Virginia coast. Under this condition, inputs to 

the coastal ocean from the Chesapeake Bay may be limited in the horizontal (west to 

east) extent. In the summer, winds blowing from the south result in offshore Ekman 

transport, thus broadening the plume, allowing for nutrients to penetrate west to east 

exiting the mouth of the Bay, and providing conditions favorable for coastal upwelling 

near the Bay mouth (Johnson et al. 2001). 

In addition to wind-driven seasonal upwelling and downwelling-favorable events, 

evidence has shown that density fronts driven by differences in temperature and salinity 
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can form along the Virginia coast, similar to those occurring in the Delaware Bay 

(Sanders and Garvine 1996; Marmorino et al. 2000). These fronts typically occur near 

Cape Henry and are more typical during high tide and under high flow conditions (e.g., 

spring). During these events, dense oceanic water is trapped between the coast and the 

plume and subducts underneath the surface water within timescales of a tidal cycle 

(Marmorino et al. 2000). Associated dissolved and particulate material from dense 

inshore water can then become entrained in the northward flow, potentially moving back 

into the estuary (Marmorino et al. 2000). The complex circulation that characterizes 

coastal environments is influenced by and modifies the effects of the estuary on coastal 

nutrient and C dynamics. 

METHODS 

In order to place nutrient concentrations, N cycling, and primary productivity into 

the context of the physical environment of the Chesapeake Bay outflow plume, and to 

better understand how the Bay impacts the surrounding coastal zone, we measured 

nutrient concentrations, N uptake rates, and primary productivity rates in north-south and 

west-east transects exiting the mouth of the Chesapeake Bay during both high and low 

freshwater flow conditions, over 4 seasons and 3 years. We measured these at two 

biologically relevant depths, near the surface and at the chlorophyll fluorescence 

maximum. Five stations were sampled, one within the Bay mouth area (BM), three along 

the VA coast designated as plume stations (PL1, PL2, and PL3) and one station, 

depending upon physical factors, that was either inside or outside the influence of the 

outflow plume at the Chesapeake Light Tower (CLT) (Fig. 2.1). 
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Freshwater discharge was calculated as the sum of freshwater flow from the 

Susquehanna, Potomac, and James Rivers and multiplied by a factor of 1.22 to account 

for the influence of the remaining tributaries, this is a similar calculation as put forth by 

Austin (2002). The Susquehanna, Potomac, and James Rivers account for approximately 

50%, 18%, and 14%, respectively of the total freshwater flux entering the Chesapeake 

Bay (Hargis 1981) and therefore, the factor of 1.22 was devised by dividing 100 by the 

total percentage for the three major rivers (Eq. 2.1). Daily flow rates were then estimated 

based on the sum of the daily flow rates for each river, multiplied by 1.22 (Eq. 2.2). 

100/ (50% + 18% + 14%) = 1.22 (2.1) 

(Susquehanna + Potomac + James) x 1.22 = Daily flow rate into Bay (2.2) 

Daily flow rates from the three rivers were obtained at three USGS monitoring stations 

near Conowingo, MD for the Susquehanna, Washington DC for the Potomac, and 

Cartersville, VA for the James (http://va.water.usgs.gov/chesbay/RIMP/). Freshwater 

flow rates prior to each cruise are reported as the 10-day average of the flow as derived 

above, prior to each cruise date. 

http://va.water.usgs.gov/chesbay/RIMP/
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Fig. 2.1. Chesapeake Bay outflow plume stations. Bay mouth (BM), Chesapeake Light 
Tower (CLT), Plume 1 (PL1), Plume 2 (PL2), and Plume 3 (PL3) are shown. 

Research cruises were conducted aboard Old Dominion University's R/VFay 

Slover in May, June, November 2005, April, August, September, November 2006, and 

March, April, July, and August 2007. Cruises were conducted aboard the University of 

Delaware's R/V Cape Henlopen during March and July 2005, and aboard the R/VHugh 

R. Sharp in May, July, and October 2006. Hydrography was measured using the ships' 

conductivity, temperature, and depth (CTD) sensors (SeaBird electronics). Depth 

profiles of temperature, salinity, density, light attenuation, dissolved oxygen, and Chi a 
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fluorescence were collected at each station. At each station, water samples were 

collected from the near surface (0 - 2 m) and at the fluorescence maximum (4.5 - 1 8 m) 

when the water column was stratified and at the surface and 1 m above the bottom when 

the water column was well mixed, using Niskin bottles mounted on the CTD rosette. 

Nutrient samples were pumped from Niskin bottles using a peristaltic pump, acid-

washed Tygon tubing, and a 0.2 urn polysulfone cartridge filter conditioned by pumping 

for 5 minutes with sample water prior to collection of filtered water for nutrient analyses. 

Filtered samples were collected directly into duplicate acid-washed high density 

polyethylene (HDPE) bottles and frozen until analysis. NCV+ NO2", NO2", urea, PO43", 

and silicate (SiOA) were analyzed on an Astoria Pacific nutrient auto-analyzer according 

to manufacturer specifications using standard colorimetric methods (Parsons et al. 1984; 

Price and Harrison 1987). NO3" was calculated as the difference between NO3 + NO2" 

(measured on the auto-analyzer after reduction by a cadmium coil) and NO2". The 

detection limits for each analysis were: NO3" + NO2": 0.02 umol L"1, NO2": 0.02 umol 

L"1, P04
3": 0.02 umol L"1: Si04

4": 0.05 umol L"1: urea N: 0.05 umol L"1. The manual 

phenol-hypochlorite method coupled with spectrophotometric detection at a wavelength 

of 640 nm using a 10 cm cell was used to measure NH4
+ concentrations; the detection 

limit was 0.01 umol L"1 (Solorzano 1969). Total dissolved nitrogen (TDN) was analyzed 

as NO3" + NO2" using the colorimetric methods described above on the Astoria Pacific 

auto-analyzer after persulfate oxidation and had a detection limit of 0.5 umol L"1 

(Valderrama 1981). DON was calculated as the difference between TDN and DIN 

concentrations and standard error propagation was used to calculate standard deviations 

in DON concentrations. Dissolved free amino acid's (DFAA's) were analyzed via high 
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performance liquid chromatography (HPLC) and a detection limit of 0.01 umol L"1 

(modified from Cowie and Hedges 1992). DFAA N was calculated based on the N 

content of the free amino acids quantified by HPLC. For all of these nutrients, triplicate 

analyses were conducted for the duplicate water samples, and results were accepted if 

they had a relative standard deviation less than 10%. Averages and standard deviations 

were reported for the original duplicate samples (Appendix tables A.l - A.5). 

DIC and alkalinity samples were collected unfiltered in combusted glass vials 

with 2% mercuric chloride and sealed without headspace and refrigerated at 4 °C until 

analysis for all 2005 and 2006 research cruises. Collection and sample analysis were 

based on the protocols set forth by Johnson et al. (1985). DIC measurements were made 

on an UIC Inc. 5014 CO2 coulometer, and measured against a seawater standard with an 

accuracy of 1 |j,mol L"1, and a precision of 0.5 umol L"1 and DIC concentrations were 

used as the ambient concentrations for primary productivity uptake calculations. 

Alkalinity was measured on the same samples using a Brinkmann Titrino titrator 

(Dickson 1981). 

Between 50 mL and 250 mL of whole water, depending upon biomass, was 

collected and filtered in duplicate onto pre-combusted (2 hours at 450°C) GF/F filters for 

analysis of particulate C and N (PC and PN), and Chi a. Filters were folded and placed 

into cryovials and frozen. PN and PC samples were analyzed within three months of 

acquisition by placing them in a drying oven (40 °C) for 48 hours, and pelletizing them 

into tin discs for analysis on a Europa 20/20 mass spectrometer equipped with an 

automated N and C analyzer (ANCA) preparation module. The limit of detection for N is 

3 |ag and for C is 37.5 ug. Routine measurements for atom % N and C were made 
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against a standard, sucrose for C and ammonium sulfate for N. These standards were 

periodically checked against DL-asparagine, a standard from the National Institute of 

Standards and Technology, with accepted values within 0.1% of the measured 

standard. Chi a samples were analyzed within 48 hours of sample collection by 

extracting the filter in 90% acetone for 24 hours and measuring fluorescence in the 

extract on a Turner fluorometer. This method measures Chi a in the presence of Chi b 

and phaeophytin, but is only sensitive to Chi a concentrations (Welschmeyer 1994). The 

fluorometer was calibrated daily using a solid standard and the detection limit was 0.003 

ugchlL"1. 

Rates of net N and C uptake and primary productivity were made in whole water 

1 C 1 •J 

samples using single or dually labeled highly enriched (96-99%) N and C-labeled 

compounds (Gilbert and Capone 1993; Mulholland et al. 2002). To initiate uptake 
1 C 1 -] 

experiments, N and/or C was added to 250 or 500 mL whole water samples m 

polyethylene terephthalate (PETG) bottles at approximately 10% of the ambient nutrient 

concentration for the following substrates: 15N03_, 15N02_, 15NH4+, urea (dually labeled 

N and C) and glutamate (dually labeled N and C). Primary productivity was 

measured using 13C-labeled bicarbonate in both light and dark bottles (Mulholland and 

Capone 2001). Bottles were then placed into incubators supplied with flow-through 

seawater to keep the bottles at or near ambient temperature. Neutral density screens were 

placed over each incubator to simulate in situ light levels. A hand held PAR sensor was 

used to measure the incident light level in the incubators. Measurements suggest that 

each layer of screen is capable of reducing incoming radiation by about 50%. Based on 

preliminary results, 15N incubations were terminated after 4 hours. A 4-hour incubation 



30 

period was short enough to avoid nutrient depletion or isotopic equilibrium but long 

enough to allow for detection of isotopic enrichment of the particulate pool. In the case 

of C-labeled bicarbonate experiments, incubations were conducted for 4 and 24 hours. 

In a few cases, 24-hour incubations were not feasible so only 4 hour incubations were 

reported. For 4-hour incubations, daily rates were calculated by multiplying by 12 h, and 

for 24-hour incubations, daily rates were calculated by multiplying by 24 h. Daily rates 

of photosynthetic C uptake estimated from 4- and 24-hour incubations were generally 

within good agreement (< 10 % difference). Limitations to incubations, particularly on 

the R/V Fay Slover, included shading from the ship that occurred with no consistency. 

Incubations were terminated by gentle filtration onto GF/F filters. The filters were frozen 

and brought back to the lab where they were analyzed within three months of c ollection. 

Prior to analysis, filters were dried at 40 °C for two days in a drying oven. The filters 

were then pelletized in tin discs and analyzed using a Europa 20/20 mass spectrometer 

equipped with an automated N and C analyzer (ANCA) preparation module. 

I C 1-2 

Uptake rate calculations for both N (Eq. 2.3) and C (Eq. 2.4) tracer 

experiments are shown below and were based on a mixing model and equations from 

Montoya et al. (1996) and Orcutt (2001). 

N uptake = (atom % PNknai - (atom % PNkitiai x [PN] (2.3) 
(atom% enrichment N source pool) - (atom% PN)initiai x time 

C uptake = (atom % PC)finai - (atom % PCL^i x [PC] (2.4) 
(atom% enrichment C source pool) — (atom% PC)jnjtjai x time 

In these equations, atom % PN (PC) represents the atom % ratio of 15N:14N or 13C:12C in 

the initial or ambient and final (post-incubation) sample and [PN] and [PC] are the 
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concentrations of PN and PC in umol L"1, respectively. Atom % enrichment is the 

enrichment of the source nutrient pool at the beginning of the experiment and is 

calculated as shown in Eq. 2.5. 

Atom% enrichment (%) = ([tracer] x atom%tracer)+(Tambient N or C] x atom%initial) 
[tracer] x [ambient N or C] (2.5) 

All samples were collected in duplicate and averages and standard deviations for 

all parameters were reported in Appendix Tables A.l - A.5. In order to compare 

concentrations and rates across depth, season, station, or plume type, one way ANOVA 

tests were run on the averages and standard deviations considering a sample size of n 

(Table 2.1). If there were significant differences among averages, a Tukey test was run to 

determine which averages were significantly different from one another. P values less 

than 0.05 were significant. Relationships between two parameters were analyzed using 

linear regression and Pearson's product moment correlation, correlations for all pooled 

data are shown in Appendix table A.6. Significant differences had p values less than 

0.05. 

Table 2.1. Sample size (n) used to average across season, station, or plume type. 
Significant differences were distinguished with biomass, nutrient concentrations, and 
uptake rates. 

Season 

Spring 

Summer 

Fall 

Winter 

n 

30 

58 

26 

16 

Station 

BM 

PL1 

PL2 

PL3 

n 

32 

32 

28 

8 

Plume type 

Jet-like 

Diffuse-
estuarine 
Oceanic-

influenced 

n 

48 

50 

32 

CLT 28 
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RESULTS 

HYDROGRAPHIC REGIME 

This study spanned three normal flow years which, as defined by the USGS, are 

within the 25 and 75 percentile for annual flow rates since measurements began in 

1937 (http://md.water.usgs.gov/monthly/bay.html#wymean'). The average freshwater 

flow entering the Bay, calculated as mentioned above (Eqs. 2.1 and 2.2) in 2005 was 68 x 

1010 m3 y1, in 2006 it was 69 x 1010 m3 y"1, and in 2007 it was 54 x 1010 m3 y"1. Although 

2007 had similar total flows to 2005 and 2006 and was still considered a normal flow 

year, there was a summer drought and the distribution of rainfall events over the year was 

sporadic (Fig. 2.2). During 2005, there were very high to above average flows during 

spring months, but the rest of the year freshwater flow was below the normal average 

(Fig. 2.2). March 2006 had the lowest flow for that month since 1937 when 

measurements were first made, while January, June, July, and September 2006 ranked 

among the ten highest months on record, according to the USGS 

(http://md.water.usgs.gOv/monthlv/bav.html#wymean). In 2007, there was high 

freshwater flow during January and February; however there was a sustained drought 

during the remaining part of the year (Fig. 2.2). 

http://md.water.usgs.gov/monthly/bay.html%23wymean'
http://md.water.usgs.gOv/monthlv/bav.html%23wymean
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Fig. 2.2. Freshwater outflow entering the Chesapeake Bay from the Susquehanna, 
Potomac, and James Rivers for 2005 to 2007. A multiplication factor of 1.22 accounts 
for the remaining tributaries, including 10-day averaged flow for each sampling date, the 
average annual flow for 2005, the average annual flow for 2006, and the average annual 
flow for 2007. 

Surface salinity and satellite imagery (when available) of temperature were used 

to locate the outflow plume during each cruise. Large-scale discharge events and the 

predominant meteorological conditions (upwelling versus downwelling-favorable winds) 

rather than seasonality were most important in determining the type and position of the 

outflow plume. Based on surface salinity, freshwater discharge, wind direction, and 

surface temperature at each station, three plume morphotypes were defined: jet-like (Jet), 

diffuse with an estuarine influence (DE), or diffuse with an oceanic influence (OI) (Table 
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2.2). There was no significant relationship between freshwater flow and salinity for all 

stations at both depths. However, sampling occurred during different tidal stages, and no 

one plume type could be attributed to a particular tidal cycle. 

A jet-like plume, when water exited the Bay to the south and remained confined 

to the VA coastline, was characterized by high salinity at the CLT station (28 - 31), 

lower salinity at the BM, PL1, PL2, and PL3 stations (15 - 25), and the 10-day averaged 

flow rate into the Bay, as calculated from Eqs. 2.1 and 2.2, ranged between 559 and 5498 

Q 1 

m s" (Table 2.2). When the plume was jet-like, winds were almost always from the 

north, with one exception in March 2007, when winds were coming from the south 

(Table 2.2). Remote sensing of sea surface temperature shows a jet-like plume, defined 

by warm temperatures exiting the mouth of the Bay and hugging the southern VA 

coastline (Fig. 2.3). The jet-like plume scenario was observed during late winter/early 

spring and fall in 6 out of the 16 research cruises (Table 2.2). 



35
 

T
ab

le
 2

.2
. D

at
e,

 1
0-

da
y 

av
er

ag
ed

 f
re

sh
w

at
er

 f
lo

w
 a

s 
ca

lc
ul

at
ed

 f
ro

m
 E

qn
s.

 2
.1

 a
nd

 2
.2

, s
ur

fa
ce

 s
al

in
it

y 
ra

ng
es

 a
t t

he
 B

M
, P

L
1,

 
PL

2,
 a

nd
 P

L
3 

st
at

io
ns

, s
ur

fa
ce

 s
al

in
ity

 a
t t

he
 C

L
T

 s
ta

tio
n,

 1
0-

da
y 

av
er

ag
ed

 w
in

d 
sp

ee
d 

an
d 

di
re

ct
io

n 
fr

om
 t

he
 C

he
sa

pe
ak

e 
B

ay
 

B
ri

dg
e 

T
un

ne
l 

(N
O

A
A

 C
O

-O
PS

),
 a

nd
 ty

pe
 o

f 
pl

um
e 

ob
se

rv
ed

 f
or

 e
ac

h 
sa

m
pl

in
g 

ev
en

t. 
'J

et
': 

Je
t-

li
ke

 p
lu

m
e 

ty
pe

, n
ar

ro
w

 l
en

s 
of

 e
st

ua
ri

ne
 w

at
er

 e
xi

tin
g 

B
ay

 m
ou

th
: 

'D
E

': 
D

if
fu

se
-e

st
ua

ri
ne

 p
lu

m
e 

ty
pe

, e
st

ua
ri

ne
 w

at
er

s 
br

oa
de

ne
d 

ou
t 

pa
st

 th
e 

C
L

T
: 

'O
F

: 
O

ce
an

ic
 in

fl
ue

nc
ed

 p
lu

m
e 

ty
pe

, o
ce

an
ic

 w
at

er
s 

in
tr

ud
in

g 
on

 th
e 

ty
pi

ca
l p

lu
m

e 
st

at
io

ns
. 

St
an

da
rd

 d
ev

ia
ti

on
s 

ar
e 

in
 p

ar
en

th
es

is
. 

D
at

e 
Fr

es
hw

at
er

 f
lo

w
, 

10
-d

ay
 a

ve
ra

ge
 

Su
rf

ac
e 

sa
lin

ity
 

„  
c 

.. 
. x

 
„

,.
 

„ T
 ,

 
Su

rf
ac

e 
sa

lin
ity

 
ra

ng
e:

 B
M

,P
L

1,
 

_
t

r
T

T
 

P
L

2,
an

dP
L

3 
a 

^L
l 

W
in

d 
sp

ee
d,

 1
0-

da
y 

av
er

ag
e 

W
in

d 
di

re
ct

io
n 

N
um

be
r 

of
 

cr
ui

se
s 

A
vg

 f
lo

w
 ±

 s
.d

. 
A

vg
 s

al
. ±

 s
.d

. 
A

vg
 s

al
. ±

 s
.d

. 
A

vg
 w

.s
. ±

 s
.d

. 
D

om
in

an
t 

w
.d

. 

Pl
um

e 
ty

pe
 

M
ar

ch
 0

5 
M

ay
 0

5 
Ju

ne
 0

5 
Ju

ly
 0

5 
N

ov
 0

5 
A

pr
il 

06
 

M
ay

 0
6 

Ju
ly

 0
6 

A
ug

 0
6 

Se
pt

 0
6 

O
ct

 0
6 

N
ov

 0
6 

M
ar

ch
 0

7 
A

pr
il 

07
 

Ju
ly

 0
7 

A
ug

 0
7 

m
V

 
53

66
(4

64
9)

 
12

66
 (

19
3)

 
69

3(
18

6)
 

91
7(

28
8)

 
28

74
(1

10
1)

 
14

60
(1

79
) 

14
82

(4
16

) 
70

37
(6

22
8)

 
43

7(
11

3)
 

24
66

 (
13

63
) 

27
96

(7
32

) 
49

19
 (

24
41

) 
47

92
 (

35
47

) 
57

07
 (

20
53

) 
54

5 
(1

28
) 

37
3 

(9
4)

 

2
0

-2
2 

1
5

-2
2 

2
0

-2
4 

2
4

-2
6 

2
7

-3
0 

2
5

-2
6 

2
3

-2
9 

2
2

-2
7 

2
4

-2
5 

2
3

-2
5 

2
4

-3
1 

1
7

-2
0 

1
7

-2
4 

1
8

-2
1 

2
2

-2
5 

2
4

-3
1 

31
 

28
 

n.
d.

 
27

 
34

 
29

 
n.

d.
 

26
 

29
 

30
 

30
 

31
 

32
 

21
 

30
 

30
 

m
 s

"1 

3.
8(

1.
9)

 
3.

6(
1.

7)
 

3.
4(

1.
8)

 
3.

0(
1.

3)
 

4.
2 

(2
.4

) 
2.

4(
1.

5)
 

4.
4 

(2
.3

) 
3.

9(
1.

7)
 

3.
1 

(1
.8

) 
4.

4 
(2

.4
) 

5.
1 

(2
.1

) 
4.

6(
3.

1)
 

9.
0 

(3
.8

) 
9.

2 
(5

.4
) 

6.
6 

(2
.8

) 
6.

1 
(2

.6
) 

no
rt

hw
es

te
rl

y 
no

rt
he

rl
y 

so
ut

he
rl

y 
so

ut
he

rl
y 

no
rt

he
as

te
rl

y 
so

ut
he

rl
y 

no
rt

he
rl

y 
so

ut
he

rl
y 

so
ut

he
rl

y 
so

ut
he

rl
y 

so
ut

he
as

te
rl

y 
no

rt
he

rl
y 

so
ut

he
rl

y 
so

ut
he

as
te

rl
y 

no
rt

hw
es

te
rl

y 
so

ut
he

rl
y 

Je
t 

Je
t 

D
E

 
D

E
 

O
I 

O
I 

Je
t 

D
E

 
O

I 
D

E
 

O
I 

Je
t 

Je
t 

D
E

 
Je

t 
D

E
 

Pl
um

e 
ty

pe
 

6 6 4 

30
62

 ±
21

82
 

28
66

 ±
28

41
 

18
92

 ±
11

67
 

21
.3

 ±
3.

9 
23

.7
 ±

3
.4

 
26

.5
 ±

2.
7 

30
.4

 ±
1

.5
 

26
.8

 ±
3

.7
 

30
.5

 ±
 2

.4
 

5.
3 

±
2

.1
 

5.
0 

±
2

.3
 

3
.7

±
1

.2
 

no
rt

he
rl

y 
so

ut
he

rl
y 

so
ut

he
rl

y 

Je
t 

D
E

 
O

I 



36 

Fig. 2.3 May 2006 satellite imagery of sea surface temperature. This is an example of a 
jet-like plume with warm waters exiting the Bay mouth, turning south and hugging the 
VA coastline. Satellite imagery was downloaded from Rutgers University, RUCOOL 
website (http://marine.rutgers.edu/cool/sat_data/?nothumbs=0). 

Diffuse plumes with a distinct estuarine influence occurred when plume waters 

exited the mouth of the Bay and then dispersed to the east. When the plume was diffuse, 

salinity at the CLT was 21-30 , lower than that observed when the plume was jet-like. 

Similar salinity ranges were observed at the BM, PL1, PL2, and PL3 stations (18-31) 

(Table 2.2). Low salinities were observed at all stations when the plume was diffuse, 

although during August 2007, after the prolonged drought, the PL3 station had higher 

salinity suggesting it was out of the influence of the plume. In the diffuse-estuarine 

plume type, the extent of the low salinity waters extended further to the east in 

http://marine.rutgers.edu/cool/sat_data/?nothumbs=0
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comparison to the jet-like plume. The 10-day averaged flow rates during diffuse-

estuarine plume conditions ranged between 382 and 7210 m3 s"1, not significantly 

different than those observed for the jet-like plume, however winds were always coming 

from the south, creating upwelling favorable conditions that counteracted the influence of 

the high freshwater flow (Table 2.2). Satellite imagery of sea surface temperature 

demonstrating the diffuse-estuarine plume scenario in July 2006 is shown in Fig. 2.4. 

The diffuse-estuarine plume was defined by the warm temperatures exiting the mouth of 

the Bay extending south along the coast but also penetrating to the east (Fig. 2.4). The 

diffuse-estuarine plume scenario was observed during late spring, summer, and early fall 

in 6 out of the 16 research cruises (Table 2.2). 
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Fig. 2.4. July 2006 satellite imagery of sea surface temperature. This is an example of a 
diffuse plume with an estuarine influence with warm waters exiting the Bay mouth from 
west to east. Satellite imagery was downloaded from Rutgers University RUCOOL 
website (http://marine.rutgers.edu/cool/sat_data/?nothumbs=0). 

A third plume type was observed, wherein there was a pronounced oceanic 

influence. Low salinity water was not observed near the Bay mouth, rather high salinity, 

oceanic water was prominent along both the north-south and the west-east axes. This 

was observed when salinity at the CLT (29 - 34) was higher than that observed during 

the jet-like plume and the diffuse-estuarine plume, and ranges at the BM, PL1, PL2, and 

PL3 (24 — 31) were also higher (Table 2.2). The 10-day averaged freshwater flow rates 

ranged between 448 and 2944 m3 s"1, lower than those observed for the jet-like and 

diffuse-estuarine plume types, and winds were almost always coming from the south, 

http://marine.rutgers.edu/cool/sat_data/?nothumbs=0
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promoting upwelling favorable conditions, with one exception during November 2005 

when winds were coming from the northeast. However, during November 2005, 

freshwater flow from the James River was extremely low (50 ± 10 m3 s"1) 10 days prior 

to sampling, therefore although the wind direction was not upwelling favorable, 

freshwater flow was low so that low salinity waters were not penetrating the coastal 

region to the extent that a jet-like or diffuse-estuarine plume type would (Table 2.2). 

Satellite imagery of sea surface temperature of the oceanic influenced plume type in 

April 2006 is shown in Fig. 2.5. The oceanic-influenced plume was characterized by 

cooler temperatures surrounding the mouth of the Bay and the southern VA coastline 

(Fig. 2.5), upwelling favorable conditions, and minimal influence of low salinity water. 

The oceanic influenced plume type was observed during spring, summer, and fall in 4 out 

of the 16 research cruises (Table 2.2). 
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Fig. 2.5. April 2006 satellite imagery of sea surface temperature. It is an example of a 
diffuse plume with an oceanic influence. Cooler waters appear to be surrounding the 
mouth of the Bay and the southern coastline of VA. Satellite imagery was downloaded 
from Rutgers University RUCOOL website 
(http://marine.rutgers.edu/coo l/sat_data/?nothumbs=0). 

Conservative mixing between estuarine and oceanic waters was observed in the 

relationship between alkalinity and salinity in pooled data from 2005 and 2006 (Fig. 2.6). 

A significant positive linear relationship between salinity and alkalinity was observed for 

both depths (R = 0.638; p < 0.05; Fig. 2.6), suggesting conservative mixing between the 

oceanic and estuarine end members. These results were consistent with previous results 

demonstrating conservative mixing between inflowing Atlantic waters and outflowing 

James River and Chesapeake Bay waters when flows were moderate (Wong 1979). 

http://marine.rutgers.edu/coo
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Fig. 2.6. Alkalinity versus salinity for all stations and both depths. Conservative mixing 
(R = 0.638; p < 0.05) is apparent for 2005 - 2006 data. 

In order to assess the wide variability observed in measurements of physical 

parameters and nutrient and biological parameters, results for biomass, nutrients, and C 

and N uptake rates were divided into seasonal comparisons, station location comparisons, 

and plume type comparisons. The cruises used to average across seasons were as 

follows: Spring- 5/05, 4/06, 5/06, 4/07; Summer- 6/05, 7/05, 7/06, 8/06, 7/07, 8/07; Fall 

- 11/05, 9/06,10/06; Winter - 3/05,11/06, 3/07. Station locations were CLT, BM, PL1, 

PL2, and PL3, however PL3 had fewer data points than the other stations and was often 

outside the plume influence so results should be interpreted with caution. Plume types 

were the jet-like plume, the diffuse-estuarine plume, and the oceanic influenced plume. 

NUTRIENT REGIME 

Dissolved inorganic nitrogen (DIN = NH4+ + NO2" + NO3") concentrations were 

significantly greater during the fall compared to the spring, summer and winter, mainly 

due to N03" and N02" (ANOVA; Tukey test; p < 0.05; Fig. 2.7). The highest DIN 
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concentrations were observed in the late fall 2006 (1.8 - 7.5 umol L"1; Appendix table 

A. 1). During the spring, NO3" was positively correlated with temperature (R = 0.431; p < 

0.05) and Chi a (R = 0.513; p < 0.05), and negatively correlated with salinity (R = -0.568; 

p < 0.05). No significant relationships were observed between N H / or NO2" and 

temperature, salinity, or Chi a concentrations during spring (p > 0.05). No significant 

relationships were observed between DIN and temperature, salinity, or Chi a 

concentrations (p > 0.05) during summer. During fall, NO3" was negatively correlated 

with temperature (R = -0.738; p < 0.05) and salinity (R = -0.747; p < 0.05) and positively 

correlated with Chi a (R = 0.491; p < 0.05). Also during fall there was a significant 

positive linear relationship between NO2" and Chi a (R = 0.701; p < 0.05), but not with 

temperature or salinity (p > 0.05). No significant linear relationships were observed 

between NH4 and temperature, salinity, or Chi a during fall (p > 0.05). During winter, 

the only significant relationships (negative) observed were between salinity and urea (R = 

-0.576; p < 0.05) and salinity and Si04
4" (R = -0.568; p < 0.05). 
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Fig. 2.7. DIN concentrations (NH/; M V ; NO3") averaged for all seasons. Error bars 
represent standard deviations. Fall DIN concentrations were significantly greater than 
spring, summer, and winter DIN concentrations. 

Total DIN concentrations as well as concentrations of individual compounds 

(NH4
+, NO2", or N03"), were averaged for each station and there were no significant 

differences among stations (Fig. 2.8). At the BM and PL2 stations, average N H / 

concentrations were significantly greater than average NO2" concentrations (ANOVA; 

Tukey test; p < 0.05). No significant differences were observed between average NH/ , 

N02", and N03" concentrations at the PL1 station (ANOVA; p > 0.05). At the CLT 

station, average NH4
+ concentrations were significantly greater than average NO2" and 

NO3" concentrations, and average NO3" concentrations were significantly greater than 

average NO2" concentrations (ANOVA; Tukey test; p < 0.05). When relating freshwater 

flow to DIN concentrations at the BM station, and salinity and temperature to DIN 

concentrations at the stations outside the Bay mouth, there were no significant linear 



44 

relationships. There was a significant negative linear relationship between salinity and 

DIN concentrations when all the station data from all the cruises was pooled, although it 

was a weak correlation (R = -0.239; Fig. 2.9; Appendix table A.6). Of the three DIN 

compounds, only NO3" had a significant negative linear relationship with salinity for all 

stations at both depths, but again, the correlation was weak (R = -0.350; Fig. 2.9; 

Appendix table A.6). A significant positive linear relationship was also found between 

DIN (R = 0.402) (specifically N03"; R = 0.413) and Chi a concentrations (Fig. 2.10). 

BM PL1 PL2 PL3 CLT 

Fig. 2.8. Average DIN concentrations (NH/; NO2"; NO3") for each station. Error bars 
represent standard deviations. There were no significant differences between mean DIN 
concentrations amongst stations. 
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Fig. 2.10. Chi a concentrations versus DIN and NO3" concentrations for all stations at 
both depths. There were significant positive linear relationships between DIN (dashed 
line; R = 0.402) and Chi a and N03" (solid line; R = 0.413) and Chi a. 
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There was no significant difference in DIN concentrations between plume types 

(ANOVA; p > 0.05; Fig. 2.11). Of the individual DIN compounds, NO2" concentrations 

were significantly greater when there was an oceanic influenced plume compared to the 

jet-like and diffuse-estuarine plume type (ANOVA; Tukey test; p < 0.05; Fig. 2.11). In 

contrast, NO3" concentrations were significantly greater when the plume was jet-like 

(ANOVA; Tukey test; Fig. 2.11). There were no significant differences in N H / 

concentrations with respect to plume type (ANOVA; p > 0.05; Fig. 2.11). DIN 

concentrations versus salinity plots had a significant negative linear relationship when the 

plume was jet-like (R = -0.472; Fig. 2.12) but not for other plume types. No significant 

relationships were observed between temperature and DIN concentrations with respect to 

plume types (p > 0.05). 

24 
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Fig. 2.11. Average DIN concentrations (NH4+; NO2"; NO3") for each plume type. Error 
bars represent the standard deviations. DIN and N H / concentrations were not 
significantly different among plume types but NO2" concentrations during the oceanic 
influenced scenario were significantly greater than during the jet-like and diffuse-
estuarine plume type, and NO3" concentrations were significantly greater during the jet
like plume compared to the diffuse-estuarine plume. 
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Fig. 2.12. DIN concentrations versus salinity for the jet-like plume, diffuse-estuarine 
plume, and oceanic influenced plume. Linear regression showed a significant negative 
relationship between salinity and DIN concentrations for the jet-like plume (dashed line; 
R = -0.472) but not for the DE (solid line) or OI (dot-dashed line) plume types. 

PO4 " concentrations ranged from below the limit of detection (0.02 |imol L") to 

about 0.8 umol L"1 with no significant differences among seasons (Appendix table A.2). 

S1O44" concentrations ranged from below the limit of detection (0.05 umol L"1) to almost 

25 |j,mol L"1 with highest concentrations observed in the summer and fall (Appendix table 

A.2). Ratios of DIN to dissolved inorganic phosphorus (DIP) concentrations were less 

than 16:1 during all seasons except for late fall 2006, and late winter 2007 (Fig 2.13). 

Ratios of DIN to SiC>4 " concentrations were less than 1 during all seasons except for 

spring 2005 and early spring 2007, fall 2006, and winter 2005 (Fig. 2.14). These two 

relationships suggested that the coastal region was N limited most of the time. 
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DON concentrations were found to be significantly lower in the summer than 

during other seasons (ANOVA; Tukey test; p < 0.05; Fig. 2.15). This was different than 

what was observed for DIN concentrations, where fall concentrations were significantly 

greater than the other seasons (Fig. 2.7). The sum of urea N and DFAA N ranged from 

0.12 to 1.5 |a.mol N L"1 (Appendix table A.l) and represented, on average, 5 % of the 

DON pool. Urea N concentrations were significantly greater in the summer compared to 

the spring and DFAA N concentrations were significantly greater in the winter compared 

to the other seasons (Fig. 2.15). There were no significant relationships between DON 

(or urea N and DFAA N) concentrations and salinity or temperature for the pooled data 

(p > 0.05; Appendix table A.6). 
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Fig. 2.15. Urea, DFAA N (left axis) and DON concentrations (right axis) averaged for 
each season. Error bars represent standard deviations. Urea was significantly greater in 
the summer compared to the spring. DFAA N was significantly greater in the winter 
compared to other seasons, and bulk DON concentrations were significantly lower in the 
summer compared to all other seasons. 



50 

When total DON, urea N, and DFAA N were averaged for all stations, there were 

no significant differences between stations (ANOVA; p > 0.05; Fig. 2.16). There were 

no correlations between freshwater flow, temperature, and salinity at any station to urea, 

DFAA N, and DON concentrations (p > 0.05). 
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Fig 2.16. Urea, DFAA N (left axis) and DON concentrations (right axis) averaged for 
each station. Error bars represent standard deviations. There were no significant 
differences between Urea, DFAA N, or DON means among stations. 

Urea N, DFAA N, and DON concentrations were averaged for each plume type, 

and no significant differences were observed between plume types for urea or DFAA N 

means (ANOVA; p > 0.05; Fig. 2.17). However, bulk DON means were greater during 

the jet-like and oceanic influenced plume types compared to the diffuse-estuarine plume 

type (ANOVA; Tukey test; p < 0.05; Fig. 2.17). When the plume was jet-like, freshwater 

flow, and Chi a had significant positive linear relationships with DON concentrations (R 

= 0.425; R = 0.410, respectively). There was a significant negative linear relationship 
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between temperature and DON concentrations when the plume was jet-like (R = -0.477). 

No significant relationships were observed between urea or DFAA N concentrations and 

freshwater flow, temperature, salinity or Chi a concentrations when the plume was jet

like (p > 0.05). When the plume was diffuse with an estuarine, no significant linear 

relationships were observed between urea, DFAA N, or DON concentrations and 

freshwater flow, temperature, salinity, or Chi a concentrations (p > 0.05). When the 

plume was diffuse with an oceanic influence, only DFAA N concentrations showed a 

significant positive linear relationship with Chi a concentrations (R = 0.546; p < 0.05) 

and urea concentrations showed a significant positive linear relationship with temperature 

(R = 0.604; p < 0.05). 
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Fig 2.17. Urea, DFAA N (left axis) and DON concentrations (right axis) averaged for 
each plume type. Error bars represent standard deviations. There were no significant 
differences between Urea N or DFAA N means among plume type. Bulk DON means 
were significantly greater during the jet-like and oceanic influenced plume types 
compared to the diffuse-estuarine plume type. 
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BIOLOGICAL REGIME 

Chi a concentrations were averaged at all stations and at both depths for each 

season, and the highest concentrations were observed during fall and winter (ANOVA, 

Tukey test, p < 0.05; Fig. 2.18). During spring, there was a significant negative linear 

relationship between Chi a concentrations and salinity (R = -0.458; Fig. 2.19) but not 

between Chi a concentrations and temperature (p > 0.05). No significant relationships 

were observed during summer between Chi a concentrations and salinity (Fig. 2.19) or 

temperature (p > 0.05). Temperature and salinity were negatively correlated with Chi a 

(R = -0.421, R = -0.404, respectively) in the fall months. During winter, a significant 

negative linear relationship was observed between Chi a concentrations and salinity (R = 

-0.673; Fig. 2.19) and a positive linear relationship was observed between Chi a and 

temperature (R = 0.570; p < 0.05). 

Spring Summer Fall Winter 

Fig. 2.18. Chi a concentrations averaged for each season. Error bars represent standard 
deviations. Fall and winter concentrations were significantly greater than spring and 
summer concentrations. 
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Fig. 2.19. Chl a concentrations versus salinity for spring, summer, fall, and winter at all 
stations and both depths. Significant linear relationships were observed for spring 
(dashed line; R = 0.458), fall (dot-dashed line; R = 0.404), and winter (small dashed line; 
R = 0.673) but not for summer (solid line). 

Chl a concentrations were lowest at the CLT and PL3 stations, stations often 

outside the plume influence, in comparison to the BM, PL1, and PL2 stations, when 

averaged for all cruises at both depths (Fig. 2.20). This was different than what was 

observed for DIN (Fig. 2.9) where there were significant differences between the more 

"oceanic" CLT station and the other coastal stations. It was determined that mean 

concentrations at the BM, PL1, and PL2 stations were significantly greater than mean 

concentrations at the CLT and PL3 stations (ANOVA, Tukey test, p < 0.05). The CLT 

station was considered the more "oceanic" station therefore it was expected to have low 

Chl a concentrations. Few measurements were made at the PL3 station, so it was 

difficult to determine if Chl a concentrations were low because it was outside of the 

influence of the plume, or if it was anomalous due to the lack of sufficient measurements 
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for comparisons. The BM station almost always had Chi a concentrations greater than 

those at the CLT station. There were only four instances when concentrations at the Bay 

mouth fell below 1.5 ja.g chl L"1, and three were when there was an oceanic influence and 

one was when there was a diffuse-estuarine plume (Appendix table A.3). Chl a 

concentrations at the BM, PL1, and PL2 stations were not significantly different from 

each other (BM: 4.3 ± 2.2 ug chl L"1; PL1: 4.3 ± 2.6 ug chl L"1; PL2: 4.1 ± 2.5 \ig chl L"1; 

Fig. 2.9). 

BM PL1 PL2 PL3 CLT 

Fig. 2.20. Chl a concentrations averaged for all stations. Error bars are the standard 
deviations. Chl a concentrations were greatest at the BM, PL1, and PL2 stations 
compared to the PL3 and CLT stations. 

Relationships with freshwater flow were limited to the BM station only, due to the 

proximity of the BM station to the James River. Salinity and temperature were used as 

proxies when observing relationships between freshwater flow and, biomass, nutrients, or 

uptake rates at other stations. A significant positive linear relationship was observed 
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between freshwater flow and Chi a concentrations at the BM station for all seasons and 

both depths (R = 0.516; Fig. 2.21). A significant negative linear relationship was 

observed between salinity and Chi a concentrations at the BM station (R = -0.398) as 

well as for the pooled station data (R = -0.429; Appendix table A.6) for all seasons and 

both depths (Fig. 2.22). Also, a significant negative linear relationship, was observed 

between temperature and Chi a concentrations at the BM station (R = -0.452) as well as 

for the pooled station data (R = -0.353; Appendix table A.6) for all seasons and both 

depths (Fig. 2.23). 
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Fig. 2.21. Chi a concentrations versus freshwater flow for both depths at BM stations. A 
significant linear relationship (R = 0.516) is shown. 
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Fig. 2.22. Chi a concentrations versus salinity for all stations with the BM station shown 
separately at both depths. A significant negative linear relationship is shown for the 
pooled data (dashed line; R = -0.429) and for the BM station only (solid line; R = -0.398). 
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Fig. 2.23. Chi a concentrations versus yemperature for all stations and the BM station 
only at both depths. A significant negative linear relationship is shown for the pooled 
data (dashed line; R = -0.353) and for the BM station only (solid line; R = -0.452). 
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There was no significant difference between Chi a concentrations among plume 

types (ANOVA; p > 0.05; Fig. 2.24). The largest range of Chi a concentrations between 

stations and at both depths (0.8 - 12 \xg chl L"1) was observed when the plume was jet

like during March 2005 (Appendix table A.3). When the estuarine plume was diffuse, Chl 

a concentrations were less than 7.7 ug chl L"1, and the oceanic influenced plume had Chl 

a concentrations less than 8.6 ug chl L"1 at all stations and both depths (Appendix table 

A.3). When the plume was jet-like, there was a significant negative linear relationship at 

all stations and both depths between salinity and Chl a (R = -0.668; Fig. 2.25), similar to 

what was found between salinity and DIN concentrations (Fig. 2.12). There was also a 

significant negative linear relationship but weaker correlation between temperature and 

Chl a concentrations (R = -0.352; p < 0.05). When the plume was diffusive with an 

estuarine influence, there was no significant relationship between salinity and Chl a (Fig 

2.25) but there was a significant negative linear relationship between temperature and Chl 

a, and the correlation coefficient was weak (R = -0.348; p < 0.05). When there was an 

oceanic influence, there was no significant relationship between salinity and Chl a (Fig. 

2.25) or between temperature and Chl a (R = 0.262; p > 0.05). 
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Jet DE 01 

Fig. 2.24. Chi a concentrations averaged for each plume type. Error bars represent the 
standard deviations. No significant differences in mean Chi a concentrations were 
observed among plume type. 
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Fig. 2.25. Chi a concentrations versus salinity for the jet-like plume, diffuse-estuarine 
plume, and oceanic influenced plume. Linear regression showed a significant 
relationship between salinity and Chi a for the jet-like plume (dashed line; R = 0.668) but 
not for the DE (solid line) or OI (dot-dashed line) plume types. 
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Unlike Chi a results, there was no significant difference between the mean PN 

and PC concentrations among seasons (ANOVA; p > 0.05; Fig. 2.26). During spring and 

summer, there were significant negative linear relationships between salinity and PN 

concentrations (R = -0.459 and -0.595, respectively; Fig. 2.27) but not between 

temperature and PN or PC concentrations (p > 0.05). During summer, PC was negatively 

significantly linearly related with salinity (R = -0.464) but not during spring (Fig. 2.28). 

During fall, there were no significant relationships between PN or PC and salinity (Figs. 

2.27 and 2.28) or temperature (p > 0.05). And during winter, significant negative linear 

relationships were observed between salinity and PN concentrations (R = -0.586; Fig. 

2.27) and salinity and PC concentrations (R = 0.461; Fig. 2.28). Also, during winter, 

positive linear relationships were observed between temperature and PN (R = 0.506) and 

PC (R = 0.523). 
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Fig. 2.26. Average PN and PC concentrations for each season. Error bars represent 
standard deviations. There were no significant differences among season for PN or PC 
concentrations. 
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Fig. 2.27. PN concentrations versus salinity for spring, summer, fall, and winter. There 
were significant negative linear relationships during spring (dashed line; R - -0.459), 
summer (solid line; R = -0.595), and winter (small dashed line; R = -0.586), but not for 
fall (dot-dashed line). 
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Fig. 2.28. PC concentrations versus salinity for spring, summer, fall, and winter. There 
were significant linear relationships during summer (solid line; R = 0.464) and winter 
(small dashed line; R = 0.461), but not during spring (dashed line), and fall (dot-dashed 
line). 
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Similar to Chi a, average PN and PC concentrations were significantly greater at 

the BM, PL1, and PL2 stations compared to the CLT station (ANOVA; Tukey test; p < 

0.05; Fig. 2.29). This was different than what was observed for DIN concentrations, 

where there was no significant difference among stations (Fig. 2.9). The average PN 

concentrations at the BM station were significantly greater than the average PN 

concentrations at the PL3 station, however, there were fewer samples taken at the PL3 

station in comparison with the other stations, therefore results should be interpreted 

cautiously. 
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Fig. 2.29. Average PN and PC concentrations at each station. Error bars are the standard 
deviations. Significant differences in PN and PC concentrations were observed between 
the CLT station and the BM, PL1, and PL2 stations. 

In contrast to Chi a results, PN and PC concentrations did not have a significant 

linear relationship with freshwater flow at the BM station (PN: R = 0.167; p > 0.05; PC: 

R = 0.070; p > 0.05). There was a significant negative linear relationship between 

salinity and PN and PC concentrations at the CLT station and when all data were pooled 
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across seasons, stations, depths, and plume types (Figs. 2.30 and 2.31; Appendix table 

A.6). For each individual station and for pooled station data, no significant relationships 

were found between temperature and PN or PC concentrations (p > 0.05; Appendix table 

A.6). 
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Fig. 2.30. PN concentrations versus salinity pooled for all stations and the CLT station is 
depicted separately at both depths. A significant negative linear relationship is shown for 
the pooled data (dashed line; R = -0.447) and for the CLT station only (solid line; R = -
0.464). 
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Fig. 2.31. PC concentrations versus salinity pooled for all stations and the CLT station is 
depicted separately at both depths. A significant negative linear relationship is shown for 
the pooled data (dashed line; R = -0.319) and at the CLT station only (solid line; R = -
0.425). 

When comparisons were made between PN and PC concentrations and plume 

type, it was determined that there was no significant difference in average PN and PC 

concentrations and plume type (ANOVA; p > 0.05; Fig. 2.32). However, salinity and PN 

or PC concentrations were significantly linearly related (Figs. 2.33 and 2.34) when the 

plume was jet-like or diffuse with estuarine influences. No significant relationships were 

found between temperature and PN or PC concentrations (p > 0.05) for any of the three 

plume types. During all three plume types, there were significant positive linear 

relationships between Chi a and PN and PC concentrations (Jet: PN R = 0.804; PC R = 

0.700; DE: PNR = 0.624; PCR = 0.581; OI: PNR = 0.821; PC:R = 0.744; p < 0.05; 

Figs. 2.35 and 2.36). 
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Fig. 2.32. Average PN and PC concentrations by plume type. Error bars represent the 
standard deviations. PN and PC concentrations during the diffuse-estuarine plume were 
significantly different than when there was an oceanic influence. 

Salinity 

Fig. 2.33. PN concentrations versus salinity for the jet-like plume, diffuse-estuarine 
plume, and oceanic influenced plume. Linear regression shows a significant negative 
linear relationship between salinity and PN for the jet-like (dashed line; R = -0.534) and 
DE (solid line; R = -0.522) plume types but not for the OI (dot-dashed line) plume type. 
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Salinity 

Fig. 2.34. PC concentrations versus salinity for the jet-like plume, diffuse-estuarine 
plume, and oceanic influenced plume. Linear regression shows a significant negative 
linear relationship between salinity and PC for the jet-like (dashed line; R = -0.366) and 
DE (solid line; R = -0.390) plume types but not for the 01 (dot-dashed line) plume type. 
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Fig. 2.35. PN concentrations versus Chi a concentrations for the jet-like plume, diffuse-
estuarine plume, and oceanic influenced plume. Linear regression shows a significant 
negative linear relationship between salinity and PN for the jet-like (dashed line; R = 
-0.804), DE (solid line; R = -0.624) and the OI plume types (dot-dashed line; R = -0.821). 



66 

120 --

100 -

U 80 -
o 
a 60 -

U 40 -

2 0 "I 
0 -

0 

Fig. 2.36. PN concentrations versus Chi a concentrations for the jet-like plume, diffuse-
estuarine plume, and oceanic influenced plume. Linear regression shows a significant 
negative linear relationship between salinity and PN for the jet-like (dashed line; R = 
-0.700), DE (solid line; R = -0.581) and the OI plume types (dot-dashed line; R = 0.744). 

The PC to PN ratio was calculated and comparisons were made among seasons, 

station locations, and with respect to plume morphotypes. The average ratios were not 

different from (t-test) the Redfield ratio (6.6) for each season (spring = 7.6 ± 1.3; summer 

= 7.6 ± 1.6; fall = 6.9 ± 0.6; winter = 6.6 ± 0.7), station (BM = 6.9 ± 1.0; PL1 = 7.0 ± 1.1; 

PL2 = 7.4 ± 1.3; PL3 = 9.4 ± 2.0; CLT = 7.7 ± 1.2), and plume type (Jet = 7.3 ± 1.3; DE 

= 7.3 ±1.5; 01 = 7.5 ±1.1). 

C AND N UPTAKE 

Volumetric bicarbonate uptake rates were significantly higher in the fall 

compared to the other seasons (ANOVA; Tukey test; p < 0.05; Fig. 2.37). The highest 

rates were observed specifically during November 2005 during downwelling-favorable 

conditions and an oceanic influenced hydrographic regime (Appendix table A.4). 
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However, when normalized to Chi a, primary productivity rates were significantly greater 

in the summer compared to the spring and winter, and rates in the fall were significantly 

greater than rates in the winter (ANOVA; Tukey test; p < 0.05; Fig. 2.37). When 

correlating primary productivity to Chi a concentrations, there was a significant positive 

linear relationship for the pooled data (p < 0.05; Fig. 2.38) but the R value was weak 

(0.442). When looking at individual seasons, primary productivity and Chi a were best 

correlated (positively) in the fall (R = 0.723; Fig. 2.39) and volumetric primary 

productivity rates correlated significantly (p < 0.05) with NCV (R = 0.753; positive 

relationship), and DFAA N (R = 0.628; positive relationship). Similarly, during the fall, 

Chi a normalized primary productivity rates correlated significantly (p < 0.05) with NO2" 

(R = 0.628; positive relationship), and DFAA N (R = 0.582; positive relationship). 

During spring, when primary productivity rates correlated with Chi a but had a low R 

value (R = 0.487; Fig. 2.39), there were significant linear relationships (p < 0.05) 

between volumetric primary productivity rates and temperature (R = 0.479; positive 

relationship), salinity (R = -0.467), and NO3" concentrations (R = 0.678). Also during 

spring, Chi a normalized primary productivity rates correlated significantly with DON 

concentrations (R = 0.435; positive relationship) and PO43" concentrations (R = -0.481). 

During summer, when primary productivity rates correlated with Chi a but had a low R 

value (R = 0.475; Fig. 2.39) volumetric primary productivity rates correlated significantly 

(p < 0.05) with salinity (R = -0.475), urea(R = -0.322), and DON(R = 0.455; positive 

relationship). Also during summer, Chi a normalized primary productivity rates 

correlated significantly with urea (R = -0.403), DON (R = 0.517). During winter, there 

was no significant relationship between Chi a and primary productivity rates, only 
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volumetric primary productivity rates were correlated with salinity (R = -0.605; p < 0.05) 

and urea (R = 0.534; p < 0.05) and there were no other significant relationships between 

primary productivity rates and other parameters. 
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Fig. 2.37. Daily volumetric and Chi a normalized primary productivity rates averaged for 
all seasons. Error bars represent standard deviations. Fall volumetric rates were 
significantly higher rates during other seasons and summer Chi a normalized rates were 
significantly higher than spring and winter rates. 
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Fig. 2.38. Daily volumetric primary productivity rates versus Chi a concentrations for all 
pooled data. A significant linear relationship (p < 0.05) with a weak R value (0.442) is 
shown. 
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Fig. 2.39. Volumetric primary productivity rates versus Chi a concentrations for spring, 
summer, fall, and winter. A significant linear relationship was observed for spring 
(dashed line; R = 0.487), summer (solid line; R = 0.475), and fall (dot-dashed line; R = 
0.723), but not for winter (small dashed line). 
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Spatially, volumetric rates, when averaged for each station, were significantly 

greater at the BM and PL1 stations in comparison to the CLT station (ANOVA; Tukey 

test; p < 0.05; Fig. 2.40). No significant differences were found for Chi a normalized 

primary productivity rates among stations (ANOVA; p > 0.05; Fig. 2.40). There were 

significant positive linear relationships with weak correlation coefficients between 

primary productivity rates and Chi a concentrations at the PL1 station (R = 0.553) and 

CLT station (R = 0.481), but no significant relationships were found at the BM, PL2, and 

PL3 stations (Fig. 2.41). At the BM and CLT stations, there were no significant linear 

relationships between freshwater flow (in the case of the BM station only), temperature, 

salinity or nutrients and volumetric primary productivity rates or Chi a normalized 

primary productivity rates (p > 0.05). At the PL1 station there were no significant 

relationships between temperature, or salinity and volumetric primary productivity rates 

or Chi a normalized primary productivity rates (p > 0.05), but there were significant 

relationships with Chi a normalized primary productivity and DFAA N (R = 0.456; 

positive relationship). Also, at the PL1 station, there was a significant linear positive 

relationship between volumetric primary productivity and NO2" concentrations (R = 

0.823). At the PL2 station, Chi a normalized primary productivity correlated 

significantly with temperature (R = -0.412) but no other relationships were observed for 

salinity, or nutrients and primary productivity rates at the PL2 station. 
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Fig. 2.40. Volumetric and Chi a normalized primary productivity rates averaged for each 
station. Error bars represent standard deviations. There was a significant difference 
between volumetric rates at the BM station compared to the CLT station and there was no 
significant differences between stations for Chi a normalized primary productivity rates. 
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Fig. 2.41. Volumetric primary productivity rates versus Chi a concentrations for the BM, 
PL1, PL2, PL3, and CLT stations. There were no significant linear relationships 
observed. 
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The oceanic influenced plume type had significantly greater volumetric and Chi a 

normalized primary productivity rates compared to the jet-like plume type (ANOVA; 

Tukey test; p < 0.05; Fig. 2.42), and Chi a normalized primary productivity rates were 

significantly greater for the diffuse-estuarine influenced plume type compared to the jet

like plume type (ANOVA; Tukey test; p < 0.05; Fig. 2.42). When correlating volumetric 

primary productivity rates with Chi a concentrations for each plume type, it was 

determined that no significant linear relationship existed for the jet-like or diffuse-

estuarine plume types (p > 0.05; Fig. 2.43) but there was a significant positive linear 

relationship during the oceanic influenced plume type (R = 0.881; Fig. 2.43). During the 

oceanic influenced plume type, volumetric primary productivity rates had significant 

positive linear relationships (p < 0.05) with PN (R = 0.779), PC (R = 0.782), N02" (R = 

0.737), DFAA N (R = 0.637), and Si04
4" (R = 0.621). When correlating volumetric 

primary productivity rates with salinity for each plume type, a significant negative linear 

relationship was observed for the jet-like plume type (R = -0.558), but not for the diffuse-

estuarine and oceanic influenced plume types (Fig. 2.44). When correlating Chi a 

normalized primary productivity rates with salinity, no significant linear relationships 

were determined for each plume type (p > 0.05). During the diffuse-estuarine plume 

type, there were significant linear relationships between Chi a normalized primary 

productivity and freshwater flow (R = -0.483), and temperature (R = 0.415). During the 

jet-like plume type, there were no significant linear relationships between primary 

productivity rates (volumetric or Chi a normalized) and physical parameters or nutrients. 
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Fig. 2.42. Volumetric and Chi a normalized primary productivity rates averaged over 
plume type. Error bars represent the standard deviations. Rates were not significantly 
different among plume types. 
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Fig. 2.43. Volumetric primary productivity rates versus Chi a concentrations for each 
plume type. Linear regression showed a significant positive relationship between 
volumetric primary productivity rates and Chi a concentrations for the 01 plume type 
(dot-dashed line; R = 0.881) but not for the jet-like (dashed line) or DE (solid line) plume 
types. 
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Fig. 2.44. Salinity versus volumetric primary productivity rates for the jet-like plume, 
diffuse-estuarine plume, and oceanic influenced plume. Linear regression showed a 
significant negative relationship between salinity and volumetric primary productivity 
rates for the jet-like plume type (dashed line; R = -0.558) but not for the jet-like (dashed 
line) or DE (solid line) plume types. 

Volumetric rates of total N uptake ranged from 0.04 to 0.69 umol N L"1 h"1 

(Appendix table A.4). Volumetric rates did not have a significant linear correlation with 

Chi a or PN concentrations (p > 0.05; Appendix table A.6) for all data combined, 

therefore when discussing significant differences in uptake rates between seasons, 

stations, or plume types, volumetric uptake rates were used. When rates for each N 

compound were averaged for each season, total N, NH/ , urea N, and DFAA N uptake 

rates were significantly greater in the summer compared to the fall (ANOVA; Tukey test; 

p < 0.05; Table 2.45). Total N and NH4 uptake rates were also greater in the summer 

compared to the winter, and TN uptake rates were greater in the summer compared to the 

spring. (ANOVA; Tukey test; p < 0.05; Fig. 2.45). DFAA N uptake rates were 
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significantly greater in the summer compared to the fall (ANOVA; Tukey test; p < 0.05; 

Fig. 2.45). There were no significant differences in NO3" uptake rates between seasons 

(ANOVA; p > 0.05; Fig. 2.45). Overall, NH4
+ uptake rates were highest of all individual 

N compound uptake rates during most of the year for all sampling years at all stations 

(Fig. 2.45). 
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Fig. 2.45. Hourly volumetric NFf/, NO2", NO3", Urea N, and DFAA N rates averaged for 
all seasons. Error bars represent standard deviations. See text for significant differences. 

There were no significant relationships with R values greater than 0.5 between 

salinity or temperature and volumetric uptake rates, or uptake rates normalized to Chi a 

for all N compounds, for all pooled data (p > 0.05; Appendix table A.6). There was a 

significant positive linear relationship between total N volumetric uptake rates and Chi a 

concentrations (R = 0.690; p < 0.05) in the fall, and this was not found for any other 

season. 
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When volumetric N uptake rates were compared between stations, there were no 

significant differences found between total N uptake rates or individual N compound 

uptake rates and station location (ANOVA; p > 0.05; Fig. 2.46). No significant 

relationships were observed at the BM station between individual volumetric N uptake 

rates and freshwater flow or salinity (p > 0.05). However, total N and N H / volumetric 

uptake rates were correlated positively with temperature at the BM station, with R values 

less than 0.5 (TN: R = 0.496; p < 0.05; NH4
+: R = 0.440; p < 0.05). A significant 

negative linear relationship was found between freshwater flow and total N uptake rates 

normalized to Chi a (R = -0.594; p < 0.05; Fig. 2.47) and a significant positive linear 

relationship was found between temperature and NFLt+ uptake rates normalized to Chi a 

at the BM station (R = 0.448; p < 0.05; Fig. 2.48). At the CLT station, there were no 

significant relationships between volumetric N uptake rates or N uptake rates normalized 

to Chi a and salinity or temperature (p > 0.05). At the PL1 station, no significant 

relationships were observed between volumetric N uptake rates or N uptake rates 

normalized to Chi a and salinity (p > 0.05). However, there were significant positive 

linear relationships between temperature and total N uptake rates (R = 0.435) and total N 

uptake rates normalized to Chi a at the PL1 station (R = 0.473). At the PL2 station, no 

significant relationships were observed with volumetric N uptake rates or Chi a 

normalized uptake rates and salinity (p > 0.05), however, there was a significant positive 

linear relationship between temperature and total N uptake rates normalized to Chi a with 

an R value less than 0.5 (R = 0.435, p < 0.05). Uptake rate measurements were made at 

the PL3 station only 8 times and statistical analyses could not be interpreted with much 

confidence. 
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Fig. 2.46. Hourly volumetric NH4
+, NO2", NO3", Urea N, and DFAA N rates averaged for 

each station. Error bars represent standard deviations. There were no significant 
differences between volumetric rates at any station. 
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Fig. 2.47. Freshwater flow versus total N uptake rates normalized to Chi a at the BM 
station for all seasons and all depths. A significant linear relationship is shown (R = 
0.594). 
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Fig. 2.48. Temperature versus NH4
+ uptake rates normalized to Chi a at the BM station 

for all seasons and all depths. A significant linear relationship is shown (R = 0.448). 

There were significant differences when averaging volumetric N uptake rates over 

each plume type (Fig. 2.49). N H / volumetric uptake rates were significantly greater 

when the plume was diffuse with an estuarine influence compared to when the plume was 

jet-like or had an oceanic influence (ANOVA; Tukey test; p < 0.05; Fig. 2.49). NO2" 

volumetric uptake rates were significantly greater when the plume was diffuse with an 

estuarine influence compared to when the plume was jet-like (ANOVA; Tukey test; p < 

0.05; Fig. 2.49). DFAA N volumetric uptake rates were significantly greater when the 

plume was diffuse with an estuarine influence compared to when there was an oceanic 

influence (ANOVA; Tukey test; p < 0.05; Fig. 2.49). There were no significant 

differences between NO3" and Urea N volumetric uptake rates amongst plume types 

(ANOVA; p > 0.05; Fig. 2.49). The diffuse-estuarine plume type had the greatest total N 

uptake rates compared to the jet-like plume and the oceanic influenced plume type 
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(ANOVA; Tukey test; p < 0.05). At all plume types, NH4
+ was the dominant N 

compound being taken up (Fig. 2.49). 

Jet DE 01 

Fig. 2.49. Volumetric N uptake rates averaged over plume type. Error bars represent the 
standard deviations. Rates were significantly different for NFU+ uptake rates during the 
diffuse-estuarine plume type compared to the jet-like and oceanic influenced plume 
types, for NO2" uptake rates during the diffuse-estuarine plume type compared to the jet
like plume type, and for DFAA N uptake rates during the diffuse-estuarine plume type 
and the oceanic influenced plume type. 

When the plume was jet-like, no significant relationships were observed for N 

uptake rates (volumetric or Chi a normalized) and salinity, or temperature (p > 0.05). 

When the plume was diffuse with an estuarine influence, there was a weak significant 

negative linear relationship between total N volumetric uptake rates and salinity (R = 

-0.453; p < 0.05) and in particular between N02" (R = -0.469; p < 0.05), urea N (R = 

-0.614; p < 0.05), and DFAA N (R - -0.557; p < 0.05) volumetric uptake rates and 

salinity. There were also weak significant positive linear relationships between 
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temperature and total N uptake rates normalized to Chi a (R = 0.445; p < 0.05), NCV 

uptake rates normalized to Chi a (R = 0.441; p < 0.05), Urea N uptake rates normalized 

to Chi a (R = 0.467; p < 0.05), and DFAA N uptake rates normalized to Chi a (R - 0.476; 

p < 0.05) when the plume was diffuse with an estuarine influence. When there was an 

oceanic influence, volumetric N uptake rates were not significantly correlated with 

salinity or temperature, except for urea N volumetric uptake rates, which had a significant 

positive linear relationship with temperature (R = 0.698; p < 0.05). Total N uptake rates 

normalized to Chi a did not have a significant relationship with salinity, but did have a 

weak significant positive linear relationship with temperature when there was an oceanic 

influence (R = 0.478; p < 0.05). In particular, N02" (R = 0.521; p < 0.05), N03" (R = 

0.441; p < 0.05), and urea N (R = 0.662; p < 0.05) uptake rates normalized to Chi a had 

significant positive linear relationships with temperature. 

Volumetric NH4
+ uptake rates, NH4

+ uptake rates normalized to PN 

concentrations, and Chi a normalized NH4+ uptake rates were not significantly correlated 

with N H / concentrations for all pooled data (p > 0.05; Appendix table A.6). However, 

when observing NH4+ concentrations less than 1.2 urnol L"1, there was a significant linear 

relationship observed between NH4
+ concentrations and NH4

+ volumetric uptake rates (R 

= 0.525), and a significant linear relationship but lower R value (0.343) observed between 

NH4
+ concentrations and NH4

+ uptake rates normalized to PN concentrations (Fig. 2.50). 

No relationship was observed between NH4
+ concentrations less than 1.2 nmol L"1 and 

NH4
+ uptake rates normalized to Chi a (Fig. 2.50). NH4

+ concentrations were not 

correlated with volumetric NH4
+ uptake rates, or NH4

+ uptake rates normalized to Chi a 

or PN concentrations at any station location or for all three plume types (p > 0.05). 
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Fig. 2.50. N H / uptake rates versus NEU+ concentrations less than 1.2 umol L"1 for all 
pooled data. Significant linear relationships were found for volumetric uptake rates 
(dashed line; R = 0.525) and uptake rates normalized to PN concentrations (solid line: R 
= 0.343) but not for uptake rates normalized to chl a (dot-dashed line). 

Uptake rates for NO2" were correlated with NO2" concentrations for all pooled 

data (Appendix table A.6) and a significant positive linear relationship was found for 

volumetric uptake rates (R = 0.568; p < 0.05; Fig. 2.51) and NO2" concentrations and 

uptake rates normalized to PN concentrations (R = 0.420; p < 0.05; Fig. 2.51) but not 

when normalized to Chl a concentrations (p > 0.05; Fig. 2.52) Fig. 2.51). Although Fig. 

2.51 appeared to show that at NO2" concentrations less than 0.2 umol L"1 there may have 

been a stronger linear relationship with uptake rates, the R values were lower for both 

volumetric uptake rates (R = 0.302; p < 0.05) and rates normalized to PN (R = 0.382; p < 

0.05) at concentrations less than 0.2 îmol L"1, even though the relationships were 

significant. When observing the relationship between NO2" concentrations and NO2" 

uptake rates on a seasonal basis, a significant positive linear relationship was observed 
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during the fall months between NO2" concentrations (when NO2" concentrations were as 

high as 1.86 umol L"1) and NO2" volumetric uptake rates (R = 0.820; p < 0.05; Fig. 2.52), 

rates normalized to PN (R = 0.793; p < 0.05; Fig. 2.52), and rates normalized to Chi a 

concentrations (R = 0.756; p < 0.05; Fig. 2.52). No significant relationships were 

observed between NO2" concentrations and NO2" uptake rates for spring, summer, or 

winter (p > 0.05). NO2" volumetric uptake rates were correlated positively with NO2" 

concentrations at all stations (BM: R = 0.639; PL1: R = 0.633; PL2: R = 0.447; p < 0.05) 

except for the CLT and PL3 (p > 0.05), where NO2" concentrations were less than 0.2 

umol L"1. NO2" concentrations did not have a significant linear relationship with NO2" 

uptake rates normalized to PN or Chi a at any station (p > 0.05). When observing the 

relationship between NO2" concentrations and NO2" uptake rates for all three plume types, 

significant linear relationships were found during the oceanic influenced plume type, 

particularly between NO2" concentrations and volumetric uptake rates (R - 0.765; p < 

0.05; Fig. 2.53) and rates normalized to PN (R - 0.585; p < 0.05; Fig. 2.53). No 

significant relationships were observed between NO2" concentrations and NO2" uptake 

rates for the diffuse-estuarine plume or the jet-like plume (p > 0.05). 
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Figure 2.51. NO2" uptake rates versus NO2" concentrations for pooled data. Significant 
linear relationships were found for volumetric uptake rates (dashed line; R = 0.568) and 
rates normalized to PN concentrations (solid line; R = 0.420) but not for uptake rates 
normalized to chl a (dot-dashed line). 
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Fig. 2.52. NO2" uptake rates versus NO2" concentrations for fall months. Significant 
positive linear relationships were found for volumetric uptake rates (dashed line; R = 
0.737), uptake rates normalized to PN (solid line; R = 0.549), and uptake rates 
normalized to Chl a concentrations (dot-dashed line; R = 0.703). 
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Figure 2.53. NO2" uptake rates versus NO2" concentrations for the oceanic influenced 
plume type. Significant linear relationships were found for volumetric rates (dashed line; 
R = 0.765) and rates normalized to PN concentrations (solid line; R = 0.585) but not for 
uptake rates normalized to chl a (dot-dashed line). 

NO3" uptake rates were correlated with NO3" concentrations and no significant 

relationships were observed for all pooled data (p > 0.05; Fig. 2.54; Appendix table A.6). 

On closer inspection of individual seasons however, it was found that there were 

significant positive linear relationships between NO3" concentrations and NO3" uptake 

rates for spring and summer months (Figs. 2.55 and 2.56). For the spring, when 

concentrations were as high as 2.5 jamol L"1, significant relationships were found between 

NO3" concentrations and volumetric NO3" uptake rates (R = 0.752; p < 0.05; Fig. 2.55) 

and NO3"uptake rates normalized to PN concentrations (R = 0.553; p < 0.05; Fig. 2.55), 

but the relationships appeared to be skewed by the higher NO3" concentrations. For the 

summer, when concentrations were as high as 0.7 umol L" , significant relationships were 
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found between NO3" concentrations and volumetric NO3" uptake rates (R = 0.452; p < 

0.05; Fig. 2.56), N03"uptake rates normalized to PN (R = 0.490; p < 0.05; Fig. 2.56), and 

NCVuptake rates normalized to Chi a concentrations (R = 0.431; p < 0.05; Fig. 2.56). 

Regarding station location and plume types, no significant relationships were observed 

between NO3" concentrations and NO3" uptake rates for individual stations or plume types 

(p>0.05). 
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Fig 2.54. NO3" uptake rates versus NO3" concentrations for all pooled data. No significant 
linear relationships were found. 
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Figure 2.55. NO3" uptake rates versus NO3" concentrations for the spring. Significant 
linear relationships were found between NO3" concentrations and volumetric NO3" uptake 
rates (dashed line; R = 0.752) and NO3" uptake rates normalized to PN concentrations 
(solid line; R - 0.553) but not for uptake rates normalized to chl a (dot-dashed line). 
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Fig. 2.56. NO3" uptake rates versus NO3" concentrations for the summer. Significant 
linear relationships were found between NO3" concentrations and volumetric NO3" uptake 
rates (dashed line; R = 0.452), NO3" uptake rates normalized to PN (solid line; R = 0.490), 
and NO3" uptake rates normalized to Chl a concentrations (dot-dashed line; R = 0.431). 
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Similar to NO3" uptake rates, urea concentrations were not correlated with urea 

uptake rates for all pooled data (p > 0.05; Fig. 2.57; Appendix table A.6). No significant 

relationships were found during individual seasons, at individual station locations, or for 

individual plume types. Urea uptake rates were not reliant on urea concentrations during 

any time. Overall, volumetric urea uptake rates, and urea uptake rates normalized to Chi 

a weakly correlated with temperature (R = 0.332, 0.335, respectively; p < 0.05). 
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Fig. 2.57. Urea N uptake rates versus urea N concentrations for all pooled data. No 
significant linear relationships were found. 

DFAA N concentrations had significant relationships but weak correlations with 

DFAA N uptake rates for all pooled data (Fig. 2.58; Appendix table A.6). On a seasonal 

basis, significant positive linear relationships were observed during the summer between 

DFAA N concentrations and DFAA N uptake rates normalized to Chl a (R = 0.507; p < 

0.05) and DFAA N uptake rates normalized to PN concentrations (R = 0.680; p < 0.05). 

Significant positive linear relationships at individual station locations were only observed 



at the CLT between DFAA N concentrations and DFAA N uptake rates normalized to 

Chi a (R = 0.580; p < 0.05) and DFAA N uptake rates normalized to PN concentrations 

(R = 0.666; p < 0.05). There were no significant relationships between DFAA N 

concentrations and DFAA N uptake rates for individual plume types. 
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Fig. 2.58. DFAA Nuptake rates versus DFAA N concentrations for all pooled data. 
Significant linear relationships were found for volumetric uptake rates (dashed line; R = 
0.284), uptake rates normalized to PN (solid line; R = 0.475), and rates normalized to Chl 
a (dot-dashed line; R = 0.416). 

C to N uptake ratios were calculated by dividing hourly bicarbonate uptake by 

hourly total N uptake, as C uptake by DFAA's and urea were a negligible percent (on 

average < 5%) of C uptake compared to inorganic C uptake. Hourly C to N uptake ratios 

were averaged for each season (Fig. 2.59). Fall uptake ratios were significantly greater 

than ratios during the spring, summer, and winter and averaged below the Redfield ratio 

(6.6) (Fall: 4.6 ± 2.4) (ANOVA; Tukey test; p < 0.05; Fig. 2.59). When ratios were 
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averaged for each station, the BM station was found to have significantly greater C:N 

uptake ratios than at the CLT station (ANOVA; Tukey test; p < 0.05; Fig. 2.60). Ratios 

at the BM were much lower than the Redfield ratio, with an average and standard 

deviation of 3.5 ± 2.7. When ratios were averaged for each plume type, the oceanic-

influenced and jet-like plume types were found to have significantly greater C:N uptake 

ratios compared to the diffuse-estuarine plume type (ANOVA; Tukey test; p < 0.05; Fig. 

2.61). The average ratio during the oceanic influenced scenario was 3.5 ± 3.0, and during 

the jet-like it was 2.7 ± 2.1, lower than the canonical Redfield ratio. 
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Fig. 2.59. Seasonally averaged C to N uptake ratios based on hourly uptake rates. Ratios 
in the fall were significantly greater than ratios in the spring, summer, and winter. 
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Fig. 2.60. C to N uptake ratios averaged over for each station. Ratios at the BM station 
were significantly greater than ratios at the CLT station. 
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Fig. 2.61. C to N uptake ratios averaged for each plume type. Ratios during the oceanic-
influenced and jet-like plumes type were significantly greater than ratios during the 
diffuse-estuarine plume type. 
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DISCUSSION 

Three main findings resulted from this study: 

• Primary productivity did not correlate with Chi a concentrations most of 

the time and were best described by differences in plume morphotype. 

• Plume morphotypes were important in determining biomass versus 

productivity relationships; low flow conditions promoted in situ 

productivity while high flow, or 'wash out' conditions promoted 

highbiomass exported from the Bay. 

• N concentration was a poor predictor of N uptake. 

Primary productivity did not always correlate well with Chi a concentrations, and 

there was only a weak significant linear relationship for the pooled data (Fig. 2.38; 

Appendix table A.6). Primary productivity and Chi a concentrations were not 

significantly related during the jet-like plume, were significantly related during the 

oceanic-influenced plume, and were significantly related (with a weaker R value) for the 

oceanic-influenced and diffuse-estuarine plume types combined. Nutrient availability 

was very similar for all three plume types, and PN, PC and Chi a concentrations were not 

different for the jet-like plume type compared to the oceanic-influenced plume type, but 

the jet-like plume had significantly lower primary productivity rates compared to the 

oceanic-influenced plume type. The lower rates during the jet-like plume were possibly 

due to increased mixing below the euphotic zone, creating conditions unsuitable for 

productivity and instead the biomass observed was transported from the Bay ('wash 

out'), thus skewing the relationship between primary productivity and Chi a. 
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The differences in solely physical parameters (e.g. wind direction and freshwater 

flow) among different plume types can have implications on biomass, particulate, and 

nutrient delivery, as well as primary productivity, and N uptake rates. During jet-like 

plumes, freshwater flow was as high as 10,000 m3 s"1 which equates to 0.01 Sv, 1% of the 

global freshwater flux from rivers. When discharge was this high and winds were 

predominantly from the north, there was a significant linear relationship between salinity 

and Chi a concentrations (Fig. 2.44), implying Chi a from the Bay was exported, or 

'washed out', into the adjacent receiving waters. Using a simple flux calculation, a high 

freshwater flow estimate, and average Chi a concenrations during jet-like plumes, 

biomass from the Bay could exceed 3.5 x 106 g chl d"1. When the plume was diffuse with 

an estuarine or oceanic influence, there was no correlation between salinity and Chl a 

concentrations (Fig. 2.44) suggesting that 'wash out' from the Bay was not significant 

during these times and in situ processes dominated. However, if Chl a was being 

delivered from the Bay, and the diffuse-estuarine plume type had freshwater flow as low 

as 300 m3 s"1, there would only be 9 x 104 g chl d"1, two orders of magnitude lower than 

the jet-like plume situation. Similarly, since there was no difference in DIN 

concentrations among plume type, the jet-like plume would provide 2 orders of 

magnitude more DIN than the diffuse plume, simply due to freshwater flux. However, 

the oceanic-influenced plume type had almost 3 times more primary productivity on 

average than the jet-like plume type, and thus the turnover of nutrients would be much 

greater during the oceanic-influenced plume type. Although a greater flux of DIN is 

coming from the Bay during the jet-like plume, these nutrients are not being utilized in 

primary production nearly as much as they are during the oceanic-influenced plume type. 
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Plume morphotypes were not the only reasons behind the discrepancy between 

primary productivity rates and Chi a concentrations, nor was it the only indicator of 

'wash out' from the Bay. Rather, proximity to the source of freshwater flow (i.e. James 

River) played a large role in skewing relationships. Spatially, the Bay mouth region was 

expected to be influenced more from nutrient-rich Bay waters due to its proximity to the 

major tributaries, specifically the James River (Acker et al. 2005), thus leading to higher 

productivity, however this was not the case. The BM station had greater productivity 

than the CLT station, but did not have greater productivity compared to the plume 

stations. Furthermore, freshwater flow at the BM correlated with Chi a concentrations, 

but not particulate matter, inorganic N, N uptake or primary productivity. This is 

contrary to findings suggesting turbidity and particulate matter can be related to the 

amount of freshwater flow entering a region as well as the amount of biomass being 

delivered or produced in situ (Berner and Berner 1996; Acker et al. 2005). The 

implications are that the Chi a concentrations were linearly related to high flow but 

primary productivity was not at the BM station, and the former relationship was a result 

of Chi a 'washed out' from the Bay, and not indicative of higher productivity fueled by 

nutrients brought in from the estuarine outflow. Furthermore, salinity and Chi a were 

linearly related at the BM station, but salinity was not linearly related with DIN, N 

uptake, or primary productivity at the BM station. These results were similar to what was 

observed by Acker et al (2005), however they suggested that the high Chi a 

concentrations were due in part to in situ production stimulated by N derived from the 

Bay proper. Here, I showed that DIN concentrations and N uptake rates were not 

significantly greater at the BM station compared to the other stations (Figs. 2.25 and 
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2.44) suggesting that productivity was not differentially stimulated by N from the Bay at 

the BM station. 

The significance of the discrepancy between primary productivity and Chi a 

concentrations, and the potential for 'wash out' of Chi a, through the Bay mouth during 

times of high freshwater flow, and northerly winds, has potential impacts on 

interpretation of satellite remote sensing of coastal waters. Distinguishing between Chi a 

being produced in situ versus that being delivered from an external source, such as the 

Bay, is crucial for truthing primary productivity algorithms using remotely sensed Chi a 

data in coastal waters. My data suggest that Chi a and primary productivity are poorly 

coupled in estuarine and plume waters during times of high freshwater flow and 

downwelling-favorable wind conditions. Currently, primary productivity algorithms 

using remotely sensed Chi a in turbid waters in the near-shore Northeastern Atlantic have 

error estimates between 50 and 100 % (Hoepffner et al. 1999). It has long been known 

that primary productivity estimates from remotely sensed Chi a concentrations have 

limitations (Behrenfeld and Falkowski 1997). These limitations stem from a lack of 

knowledge on the physiological state of the algae and their nutrient pre-history, both of 

which must be understood in order to estimate rates of primary productivity accurately 

from Chi a and both of which are very difficult to examine in the field (Behrenfeld and 

Falkowski 1997). 

N uptake rates were not always a function of N concentration and correlations 

were sporadic when they did occur with no overlying condition (e.g. plume type, season, 

or station) dominating the relationships. Early N uptake studies were based on the tenet 

that N uptake rates were controlled by N availability (kinetics), either in the environment 
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or intracellularly (Goldman and Gilbert 1983). However, similar to primary productivity 

estimates from Chi a, kinetic parameters are themselves variable and are a function of 

phytoplankton physiological status, phytoplankton species, and nutrient pre-history, 

which again are difficult to ascertain during field sampling (Mulholland and Lomas 

2008). Because ambient N concentrations in coastal systems are generally too high, it is 

often difficult to accurately assess kinetic parameters at lower ranges of nutrient 

concentrations (Mulholland and Lomas 2008). Furthermore, correlations between in situ 

nutrient concentrations and uptake rates do not signify kinetic relationships. The results 

presented here suggest some relationship between concentrations of particular N 

compounds and their uptake, which may signify nutrient preference, and can be 

indicative of availability. 

An important function of N uptake studies however is to understand the relative 

importance of the various N compounds in fueling primary productivity in the 

environment. NO3", whether coming from estuarine or oceanic sources, were utilized 

consistently in the plume region, under varying seasons, station locations, and plume 

types, while NH/ , NO2", urea, and DFAA N had highest uptake rates during the summer 

and when the plume was diffusive with an estuarine influence. This could suggest that 

nutrient availability and/or preference during diffusive plumes is dependant upon reduced 

forms of N, or forms of N that have been biogeochemically altered within the Bay and 

delivered to the coastal zone. Currently, although agricultural run-off in the forms of 

NH4+ or organic N is the greatest contributor of N to the Bay, the oxidized forms of N are 

mainly delivered to the Bay. Therefore, for reduced forms of N to have the highest 
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uptake rates in the plume region beyond the Bay, profound N cycling occurred within the 

Bay (Fig. 1.1) providing altered N forms to the coastal zone for uptake by phytoplankton. 

Rate measurements for N uptake are few and data collection in this area has been 

sporadic and temporally and spatially limited. N uptake rates reported here were 

consistent with those observed in other coastal systems (Mulholland and Lomas 2008) 

but are only the second set of uptake rates reported for the Chesapeake Bay plume 

(Glibert et al. 1991; Glibert and Garside 1992). Glibert et al. (1991) reported that 

between 60 and 80 % of the total N taken up in the Chesapeake Bay plume region was in 

the form of urea. During this study, between 9 and 90% of the total N taken up was in 

the form of NH4
+, for all seasons, with percentages highest in the spring, even though 

total N uptake rates were greatest overall in the summer. Differences in N uptake rates 

between this study and the 1985 - 1986 study may simply reflect interannual variability, 

the timing of seasonal transitions from year to year (e.g., spring freshet), or changes in 

nutrient availability and N processing. Despite similar annual average flows during 

2005, 2006, and 2007, timing of flow within those years varied substantially. Past 

research within the Bay proper and in other estuarine systems suggested that the timing of 

rainfall events during an overall low discharge period is important because it can control 

the amount of nutrients available for primary productivity and also the delivery of 

nutrients to the coastal zone (Fisher et al. 1988; Malone et al. 1988; Fisher et al. 1992). 

Therefore, the timing of rainfall events in the upper Bay, will determine the 

biogeochemical impact, in terms of the net N flux, of the plume on the coastal ocean. 

Coastal eutrophication and N loading in the United States has increased approximately 

six-fold since the 1960's (Howarth et al. 2002; Howarth 2004) and so differences 
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between this study and the one performed in the 1980's may also be due to accelerated 

anthropogenic forcing and changes in the timing of the spring blooms. 

C productivity and N uptake are highly variable, both temporally and spatially in 

the region of the Chesapeake Bay outflow plume and seasonal variability may be less 

important than freshwater discharge (which affects flow through the Bay mouth) and 

oceanographic conditions (e.g., upwelling or downwelling-favorable winds) at the time of 

the discharge, thus affecting plume morphotype. We found that the predominant wind 

direction, which influences local upwelling and downwelling conditions, is extremely 

important in determining the extent of the plume's intrusion into coastal waters. 

Seemingly, when the plume is a jet, as it is during downwelling-favorable conditions, its 

influence is restricted to a narrow coastal area where material is processed and likely 

consumed, and primary productivity does not correlate with biomass, suggesting that the 

biomass present during a jet-like plume is 'wash out' from the Bay. Productivity is not 

stimulated during this time. In contrast, when the plume is diffusive, e.g., during 

upwelling favorable conditions, or has an oceanic influence, the effect of the plume on 

the coastal ocean is stronger in the sense that N uptake rates were greater, and primary 

productivity correlated with nutrient availability, and this may have more profound 

impacts on ecosystem productivity. Superimpose on this the predominant flow patterns 

and we see that high flow during the summer, when there is higher likelihood of 

upwelling favorable conditions, can have an enormous impact on the coastal ocean, 

particularly during high discharge events. It has been shown that up to half of the annual 

N load can be delivered to a coastal system (specifically Pamlico Sound, south of the 

Chesapeake Bay mouth) during large stochastic events such as hurricanes (Paerl et al. 
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2001). Future climate change scenarios suggest that low frequency, high intensity events 

may become the norm. If this indeed is the case, the timing of these events and the 

period in between these events, with respect to the dominant wind direction and 

consequent wind-induced upwelling or downwelling, will play a crucial role in 

determining the impact of estuarine plumes on the coastal ocean. 

This data provides current estimates of natural processes and suggests substantial 

variability in productivity and N dynamics in an estuarine plume. While high-intensity 

and long-term data is needed to truly understand processes and controls of primary 

productivity in highly variable coastal regions influenced by estuarine plumes, these 

snapshots provide important insights regarding the dominant physical and 

biogeochemical forcing behind productivity. In addition, primary productivity was not 

simply related to Chi a concentrations, and understanding plume morphotype is crucial to 

determining productivity relative to Chi biomass. Further, N uptake was not always 

related to nutrient concentration in the environment, suggesting nutrient preferences were 

significant. 
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CHAPTER III 

NITROGEN AND CARBON PRODUCTIVITY IN THE MID-ATLANTIC 

BIGHT: TEMPORAL AND REGIONAL COMPARISONS 

INTRODUCTION 

While the global coastal ocean (< 200 m) represents less than 10% of the world's 

ocean, these highly productive regions are thought to account for more than 21% of total 

oceanic productivity (Gattuso et al. 1998; Jahnke 2007). Primary production in most 

coastal and shelf systems is thought to be limited by nitrogen (N) (Dugdale and Goering 

1967; Ryther and Dunstan 1971), however these areas are impacted by adjacent 

landmasses and receive anthropogenic N inputs that can potentially alleviate this 

limitation. Consequently, in addition to upwelled N from oceanic waters, productivity in 

these areas is often controlled by "new" N inputs (sensu Eppley and Peterson 1979) from 

terrestrial sources such as rivers and groundwater discharge, and from atmospheric 

deposition. It has been determined that denitrification in freshwater, terrestrial, and 

estuarine sediments removes a substantial (between 80 and 90%) amount of reactive N 

before entering the coastal zone (Fennel et al. 2006; Galloway et al. 2008) and that 

another 15% is denitrified in continental shelf sediments (Galloway et al. 2008). Due to 

such high denitrification rates, and the loss of N to the sediments, it would appear that 

riverine and terrestrial run-off may not deliver N necessary to fuel primary productivity 

in the coastal zone (Seitzinger et al. 2006). Alternatively, riverine N loading to the 

coastal U.S. has almost doubled over the past forty years and it is projected that these 

inputs will increase by another 30 % over the next 30 years (Howarth et al. 1996; 
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Howarth et al. 2002), thus there is the possibility that the normally denitrifying sediments 

could become saturated with reactive N. If the sediments become saturated with N, they 

could become a source of N to an N-limited system (Galloway et al. 2008). 

The N budget in the MAB is an important driver of primary production in this N-

limited area, and therefore is tightly tied to the carbon (C) budget (Howarth 2004; Gruber 

and Galloway 2008). Increases in primary productivity have been related to increases in 

anthropogenic N inputs into the coastal zone (Howarth et al. 2002, Paerl and Piehler in 

press, Seitzinger and Harrison in press) and the Redfield ratio is often used to estimate 

primary productivity from N uptake and vice versa. However, this estimate may not be 

useful in an increasingly eutrophic environment, specifically due to the shifts in the 

absolute amount and dominant source or form of N delivered to the coastal ocean that can 

have major impacts on primary productivity and the dominant primary producers (Gruber 

and Galloway 2008). How N availability will affect the ocean's ability to continue to 

take up C is centered on understanding 'nitrogen-carbon-climate interactions' (Gruber 

and Galloway 2008). Quantifying current regional N dynamics will not only help resolve 

N budgets and primary productivity in coastal regions, but will allow us to begin to 

project what the future might hold under evolving climate change scenarios (Howarth 

2004). 

Large-scale shifts in the physical environment and nutrient delivery to coastal 

regions can have great consequences for coastal productivity. Physical processes within 

the coastal zone regulating temperature and stratification are important controls on N 

availability and primary productivity, and those water movements dominate the annual 

cycle of productivity in the MAB (Flagg et al. 2002; Lentz 2003; Rasmussen et al. 2005). 
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Specifically, the flow of the cold Labrador current from the north interacts with the warm 

oligotrophic Gulf Stream current from the south creating a complicated pattern of 

seasonal stratification and destratification that is highly dependent on wind speed, 

direction, duration, and eddy development (Flagg et al. 2002). In the summer months, 

along the North American Mid-Atlantic coast, stratification occurs, thus limiting vertical 

transport of nutrients, and primary productivity within the water column (Flagg et al. 

2002). Salty intrusions of slope water increase during the summer in the along-shelf 

direction (from north to south), thus leading to higher salinity waters on the shelf in the 

summer (Flagg et al. 2002; Lentz 2003). This is followed by an overturning of waters 

and higher productivity in the fall due to wind-driven mixing and cooling, leading to 

well-mixed conditions in the winter (Wright and Parker 1976; Rasmussen et al. 2005). 

Increased light and nutrient availability leads to high productivity in the spring. 

In addition to anthropogenic N inputs and physical forcing, primary productivity 

in the MAB and other coastal areas may be affected by increasing atmospheric carbon 

dioxide (CO2) concentrations and/or projected temperature rises in the future, as has been 

observed in the oligotrophic North Atlantic and in mesocosm experiments (Hein and 

Sand-Jensen 1997; Riebesell et al. 2007). The sensitivity of coastal regions to increasing 

CO2 and water temperature are largely unknown and so the future of these systems as 

sources or sinks of atmospheric CO2 is in question (Riebesell et al. 2007). While ocean 

margins, including the MAB, are thought to be sinks for atmospheric CO2, there is no 

current consensus regarding the MAB as a net source or sink of atmospheric CO2 

(Chavez et al. 2007). 



The MAB has a complicated physical regime and receives N from a variety of 

sources; as a result, there are contrasting views of the N budget for this region. Past 

experimental results and recent modeled biogeochemical results for the pelagic MAB 

suggested that denitrification in the sediments removed 90% of all DIN and PON 

entering the region from the north and from riverine sources (Seitzinger and Giblin 1996; 

Fennel et al. 2006). However, the modeled inputs for N uptake utilized half-saturation 

constants for NO3" and NELj* uptake only (Fennel et al. 2006) when N uptake is not based 

solely on nutrient concentration. There can also be significant uptake of N sources not 

normally measured, such as NO2", urea, and DFAA N particularly in coastal regions 

where recycled nutrients can dominate (Lipschultz 2008) (see Ch. 2). Other imbalances 

in the N budget stem from undersampling of N2 fixation. Estimates of denitrification for 

the MAB (2.3 x 101Z mol N y"1) are an order of magnitude greater than N2 fixation 

estimates for the region, suggesting either underestimates of N2 fixation or overestimates 

of denitrification (Fennel et al. 2006). Research in the Naragansett Bay and surrounding 

coastal areas suggest that sedimentary N losses due to denitrification may be balanced or 

even exceeded by sedimentary N2 fixation, thus creating a source of N to the coastal 

ocean (Fulweiler et al. 2007). Further, climate change, superimposed on eutrophication, 

may alter the balance between N retention and losses due to changes in primary 

production and the amount of organic material available for dentrification in the 

sediments (Fulweiler et al. 2007). 

Uncertainties regarding a balanced N budget in the MAB stem from a lack of 

knowledge of current N requirements for primary production during times when N is 

increasing in an N-limited coastal system. Multiple N forms are available for uptake at 



any given time, and importance needs to be placed on understanding differences between 

inorganic N uptake versus organic N uptake, as phytoplankton may be competing with 

bacteria in taking up organic N (Mulholland and Lomas 2008). Furthermore, knowing 

how much and what forms of N are taken up in different hydrographic regimes and on a 

seasonal scale will further broaden our view of the region as a net source or sink of 

atmospheric CO2. It is the intent of this research to quantify N uptake rates for inorganic 

and organic compounds as well as primary productivity estimates over 4 seasons in the 

coastal zone of the MAB between Delaware and Virginia. From these measurements, a 

comparison of primary productivity and N utilization can be made across regions and 

over an annual timescale and will be useful in assessing the region's ability to take up C 

and N over time by comparing to literature values. This analysis will provide essential 

and current information useful for modeling, algorithm development, and assessment of 

the region in regards to its ability to take up atmospheric CO2. 

METHODS 

Five cruises were undertaken over two years during late winter/early spring, 

spring, summer, and fall (30 March - 2 April 2005; 26 - 30 July 2005; 9 - 12 May 2006; 

2 - 5 July 2006; 30 October - 2 November 2006). Primary productivity rates, N uptake 

rates, and nutrient concentrations were measured during 3-5 day sampling excursions. 

Stations included locations in the Chesapeake Bay mouth and its outflow plume, the 

Delaware Bay outflow plume, waters influenced by the Gulf Stream, and the non-

estuarine influenced continental shelf between the Delaware Bay and Chesapeake Bay 

(Fig. 3.1). Cruises were aboard the R/V Cape Henlopen or R/VHugh R. Sharp and were 



generally comprised of on-shore to off-shore or off-shore to on-shore sampling transects 

each day. 

40-

39.5H 

38.5 

37.5 H 

36.5 H 

-76.5 -76 75 -74.5 

Fig. 3.1. Station map for all MAB cruises. 

Measurements were made at each station using a rosette-mounted CTD (SeaBird 

electronics) similar to what was described in Chapter 2. Water samples were collected 

using rosette-mounted Niskin bottles at both the surface (Dl: 0 - 2 m) and fluorescence 
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maximum (D2: 4.5 - 18 m in the plume region; 10 - 50 m in the southern shelf; 5 - 53 m 

in the mid-shelf). When the water column was well-mixed or shallow, samples were 

collected from the upper 2 m and 1 m above the bottom to facilitate calculation of depth 

integrated areal productivity. Water collection and analyses for nutrients and particulates 

were described in detail in Chapter 2 and protocols and methods were adhered to during 

these cruises. Nutrients (N(V, NO3", urea, PO43", and SiQ*4") were analyzed on an 

Astoria Pacific nutrient auto-analyzer according to manufacturer specifications using 

standard colorimetric methods (Parsons et al. 1984; Price and Harrison 1987). The 

manual phenol-hypochlorite method was used for N H / analyses (Solorzano 1969). Total 

dissolved nitrogen (TDN) was analyzed as NO3" after persulfate oxidation (Valderrama 

1981). DON was calculated as the difference between TDN and dissolved inorganic N 

(DIN). DFAA N was analyzed via high performance liquid chromatography (HPLC) 

(modified from Cowie and Hedges 1992). Chi a samples were analyzed fluorometrically 

within 5 days of collection (Welschmeyer 1994). Calculations, detection limits, accuracy, 

and precision were the same as described in the methods for Chapter 2. 

Water samples were fixed with mercuric chloride and sealed in gas tight glass 

vials for dissolved inorganic carbon (DIC) analysis using an UIC Inc. CO2 coulometer 

(Johnson et al. 1985). Alkalinity was measured on the same samples using a Brinkman 

Titrino titrator (Dickson 1981). Surface water CO2 concentrations (pCCh) were 

calculated based on alkalinity, DIC concentrations, temperature, and salinity based on 

calculations in Sarmiento and Gruber (2006) (Eq. 3.1). 

pC02 = K2 * (2 * DIC - Alk)2 Eq. 3.1 
Ko * Ki Alk - DIC 
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The equilibrium constants are calculated in Eq.3.2 (Weiss 1974), and in Eqs. 3.3 and 3.4 

(Mehrbach et al. 1973; Dickson and Millero 1987). 

In Ko = -60.2409 + 93.4517 x (100/T) + 23.3585 x ln(T/100) + S x (0.023517 - 0.023656 

x (T/100) + 0.0047036 x (T/100)2) Eq. 3.2 

-log Ki = -62.008 + 3670.7/T + 9.7944 x ln(T) - 0.0118 x S + 0.000116 x S2 Eq. 3.3 

-log K2 = 4.777 + 1394.7/T - 0.0184 x S + 0.000118 x S2 Eq. 3.4 

N and C uptake and primary productivity experiments were conducted aboard the 

ship in either 250 mL or 500 mL acid-washed incubation bottles (PETG), similar to what 

was described in Chapter 2. For bicarbonate uptake, four or 24-hour incubations were 

done to measure integrated daily net bicarbonate uptake. Reported rates of daily 

photosynthesis were calculated by multiplying by 12 hours for the 4-hour incubations, 

and 24 hours for the 24-hour incubations. 

Areal rate calculations were conducted by converting daily rates of either total N 

uptake rates or primary productivity rates, made over four seasons and two years, to 

annual areal rate estimates for each region. First, primary productivity and N uptake rates 

were averaged over the two sampling depths, justified by the fact that rates at both depths 

in each region were not significantly different, and this is discussed further in the Results 

section. These averaged rates were then multiplied by the euphotic depth. The euphotic 

depth, typically defined as 1% of photosynthetic active radiation (PAR), was determined 

based on several different measurements, as PAR sensor data were not reliable for all 

cruises. In some cases, in situ radiometry measurements of the water leaving irradiance 

at 490 and 555 ran (nLw490/nLw555) were provided by scientists from NASA (Stan 

Hooker, unpublished data). The euphotic depth was also obtained from the diffuse 
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attenuation coefficient at 490 nm (K490) from either SeaWifs or MODIS and converting 

it to the euphotic depth using NASA's algorithm (Eq. 3.5) where ln(surface light -

ln(light at compensation depth) is equal to ln(100): 

Euphotic depth - ln(surface light) - Inflight at compensation depth) Eq.3.5 
K490 

Since the euphotic depth was determined by different means depending on the cruise, 

decision criteria were developed to be able to choose the appropriate depth for the extent 

of the euphotic zone. First, if the measured or modeled (i.e. 1% PAR, radiometry, or 

K490) depths were greater than the actual depth of the water column, the depth of the 

water column was used as the euphotic depth. If no measured or modeled parameters 

were available, and the fluorescence maximum was equal to the depth of the water 

column, the depth of the water column was used as the euphotic depth. If only 1% PAR 

measurements were available, then the depth of 1% PAR was used as the euphotic depth. 

Finally, if no modeled or measured data was available, and the fluorescence maximum 

was less than the depth of the water column, the fluorescence maximum depth was used 

as the euphotic depth and this assumption was only made at 8 of 61 total stations for all 

five cruises. The variability between the fluorescence maximum being equal to the 

euphotic depth and the 1% PAR measurement when available ranged from 2 m to 10 m. 

Results of the euphotic depths used for these calculations and the method used to 

determine the euphotic depth at each station are depicted in Appendix Table B.6. Once 

the averaged rates were multiplied by the euphotic depth (units: mol C (N) m" d" ) annual 

averages were calculated by integrating these values across seasons: Winter (March 
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2005), Spring (May 2006), Summer (averaged July 2005 and 2006), and Fall (Oct/Nov. 

2006). Once daily rates were calculated for each season they were each multiplied by 

91.25 d (365 days divided by 4) and then added together to get a seasonally integrated 

annual rate for each region. Finally, annual rates were calculated for each region by 

multiplying of the surface area of the PL, MS, and SS regions. These surface areas were 

obtained from the sampling boundaries put forth by each cruise: PL: 37 - 36.4N; 76 -

coastal land boundary along the eastern border; SS: 36.4 - 37N; 75.5 - 74. 4W; MS: 37 -

38.5N; coastal land boundary along eastern border - 74W. 

All surface maps were constructed using Golden Software Surfer 8 using data 

from NOAA's coastline extractor. Statistical analyses, such as one-way ANOVA's and 

correlations, were performed using SigmaStat and are similar to those reported in Chapter 

2. 

RESULTS 

HYDROGRAPHIC REGIME 

The hydrographic regime of the sampling region varied greatly between cruises 

(Fig. 3.2). Based on temperature and salinity, the study region was separated into three 

major hydrographic regions: 1) plume regions (PL), where biological processes were 

largely influenced by terrestrial inputs from the Chesapeake Bay and Delaware Bay; 2) 

the mid-shelf region (MS) north of the Chesapeake Bay mouth, where oceanic and 

coastal process converged; and 3) the southern shelf region (SS) where the Gulf Stream 

influence often intruded with warm, salty water and oceanic processes such as advection 

influenced the biological framework. Temperature-salinity diagrams show that the range 

in surface salinity was the greatest (between 22 and 31) for the PL region, as might be 
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expected due to the influence of freshwater and tidal fluctuations (Fig. 3.2; see Ch. 2). It 

was difficult to differentiate the MS and the SS regions in the temperature-salinity 

diagrams; however the density anomalies for the SS were primarily between 22 and 28 kg 

m" and for the MS they were between 20 and 28 kg m" (Fig. 3.2). Surface salinity in the 

SS and MS did not vary greatly, with the SS always between 32 and 36 and the MS 

between 33 and 36. A wide range of temperatures were observed in the region, with 

lowest temperatures (6 °C) observed during spring 2005 and highest temperatures (27 °C) 

observed during summer 2005 in all three regions. 
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During late winter (March 2005), surface salinity in the plume ranged between 22 

and 33, and the water column was stratified primarily due to salinity differences between 

surface and deeper waters while the water column at SS and MS stations was well-mixed 

(Fig. 3.2A). At this time downwelling-favorable winds from the north created a strong 

estuarine outflow plume exiting the Chesapeake Bay, and low salinity waters hugged the 

coast to the south of the Bay mouth (see Ch.2 Table 2.2). Surface temperatures ranged 

between 6 and 10 °C throughout the study region and there was no apparent influence of 

warmer Gulf Stream water (Fig. 3.2A). 

Surface salinity in summer (July 2005) was similar to surface salinity in March 

2005 throughout the study area, ranging between 24 and 32. The water column was 

stratified in plume influenced areas as well as outside of the plume influenced areas (Fig. 

3.2B), but due to upwelling-favorable winds, the plume was diffuse (see Ch. 2 Table 2.2). 

Surface water temperature throughout the region ranged from 25 to 27 °C (Fig. 3.2B). 

In spring (May 2006), a period of strong and sustained winds from the north 

preceded the field campaign causing off-shore transport of surface water and a large 

salinity range in the surface waters throughout the study area (24 - 36). A jet-like 

outflow plume was observed exiting the Chesapeake Bay, and there was a low salinity 

patch surrounding the mouth of the Chesapeake Bay (see Ch.2 Table 2.2). Surface water 

temperatures in the SS and MS regions ranged between 10 and 16 °C. Similar to the 

previous spring cruise, the PL stations were stratified and the SS and MS stations were 

well-mixed (Fig. 3.2C). Satellite imagery of sea surface temperature, obtained from 

Rutgers University Coastal Ocean Observation Lab, suggests there was no Gulf Stream 
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influence along the SS (Fig. 3.3), however warm water (>16 °C) was observed along the 

600 ft isobath. 
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Fig. 3.3. Satellite imagery map of MAB sea surface temperature for 10 May 2006. Warm 
surface waters (> 16 °C) are depicted along the 600 ft isobath. Satellite imagery was 
downloaded from Rutgers University, RUCOOL website 
(http://marine.rutgers.edu/cool/sat_data/?nothumbs::::-0). 

Just before the July 2006 cruise, there was a large and protracted rainfall event 

and associated high winds from the south along the east coast of the U.S. (see Fig. 2.2). 

The freshwater input resulted in a highly stratified water column in the plume (Fig. 3.2D) 

and a slightly larger range in surface salinities (23 - 35) in the plume relative to those 

http://marine.rutgers.edu/cool/sat_data/?nothumbs::::-0


observed during the summer 2005 (24 - 32). The outflow plume from the Chesapeake 

Bay was diffusive, as low salinity waters were observed east of the Bay mouth and winds 

were from the south (see Ch.2 Table 2.2). Temperatures were slightly lower in July 2006 

relative to July 2005, ranging between 21 and 25 °C. However, higher temperature and 

salinity at offshore stations suggest more Gulf Stream influence at the offshore stations 

during 2006 (Fig. 3.2D). Relative to 2005, water temperatures were lower and salinity 

was high in the MS region along the eastern shore of Virginia (north of the Chesapeake 

Bay mouth) suggesting upwelling of nutrient-rich waters. Upwelling-favorable winds 

coming out of the south were observed prior to the cruise supporting this idea. 

During Oct/Nov 2006, surface water salinity ranged between 24 and 35 and 

surface water temperatures ranged between 15 and 22 °C during the cruise (Fig. 3.2E). 

Lower salinity water was observed along the coast to the south of and near the Bay 

mouth, however southeasterly winds preceded the sampling event and colder water was 

observed along the coastline, both indicative of upwelling-favorable conditions. Sea 

surface temperature satellite imagery, obtained from Rutgers University Coastal Ocean 

Observation Lab showed cold waters surrounding the Bay mouth and then interacting 

with meanders of warm water, likely from the Gulf Stream, at the offshore stations 

coming from the south (Fig. 3.4). Stations in the plume were stratified and MS and SS 

were weakly mixed with warm low salinity water at the surface and cool salty water at 

depth (Fig. 3.2E). 
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Fig. 3.4. Satellite imagery map of MAB sea surface temperature for 01 November 2006. 
Cold surface waters are depicted exiting the Bay and interacting with warm Gulf Stream 
meanders. Satellite imagery was downloaded from Rutgers University, RUCOOL 
website (http://marine.rutgers.edu/cool/sat_data/?nothumbs=0). 

NUTRIENT REGIME 

The range of DIN (DIN = N H / + NO3" + NO2") concentrations, for every cruise 

and at every station, was not significantly different between surface waters (0.1 - 4.3 

nmol L"1; mean = 1.0 ± 0.9 nmol L"1) and at depth (0.2 - 4.2 |j,mol L"1; mean = 1.2 ± 0.9 

|j,mol L"1) (Appendix Tables A.l and B.l). DIN concentrations at the PL stations were 

not significantly different between depths (Dl: 0.5 -1 .5 |imol L"1; D2: 0.5 - 1.3 umol L" 

*; Appendix Table A.l) even though the water column was mostly stratified. At the SS 

http://marine.rutgers.edu/cool/sat_data/?nothumbs=0
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stations, DIN concentrations were not significantly different between depths (Dl: 0.3 -

1.2 umol L"1; D2:0.3 - 2.4 umol L"1; Appendix Table B.l) except for at the offshore 

stations, where surface DIN concentrations during summer and fall 2006 ranged from 0.4 

to 0.6 umol L"1 and at depth they ranged from 2.4 to 3.9 umol L"1 (Appendix table B.l). 

Similar results were found at the MS stations, where DIN concentrations were not 

significantly different among depths (Dl: 0.1 - 2.6 umol L"1; D2: 0.2 - 3.9 umol L"1; 

Appendix Table B.l). Average DIN concentrations were not significantly different 

among regions (Fig. 3.5). However, NO3" concentrations were significantly greater in the 

SS region compared to the PL region (Fig. 3.5). 

Seasonally, the greatest DIN concentrations were observed during March 2005 at 

the deepest offshore stations in the SS region (4.2 umol L"1 at both depths) primarily due 

to high concentrations of M V and likely a result of upwelling at the slope/shelf interface 

as that region was well-mixed at the time (Fig. 3.2A). Also, high DIN concentrations 

were observed in the Bay mouth during Oct. 2006 (4.8 umol L"1) (Appendix Table B.l). 

When samples were averaged for each season, DIN concentrations (specifically NO3") 

were greater in the fall and winter compared to the spring and summer (ANOVA; Tukey 

test; p < 0.05; Fig. 3.6). NH4
+ concentrations were significantly greater in the winter 

compared to the spring, summer, and fall, and the fall and summer concentrations were 

greater than the spring concentrations (ANOVA; Tukey test; p < 0.05; Fig. 3.6). NO2" 

concentrations in the fall were significantly greater than in the winter, spring, and 

summer (ANOVA; Tukey test; p < 0.05; Fig. 3.6). 

There were no significant relationships between DIN concentrations and physical 

parameters among regions, except for in the SS region, where there were significant 
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negative linear relationships between temperature and NH44" concentrations (R = -0.788; p 

< 0.05), and salinity and N£L;+ concentrations (R = 0.564; p < 0.05). Furthermore, in the 

fall, there were significant negative linear relationships between NH44" concentrations and 

temperature (R = -0.608; p < 0.05) and salinity (R = -0.601; p < 0.05). During the fall, 

cool waters were exiting the mouth of the Chesapeake Bay (Fig. 3.4), and therefore 

inferring from the negative linear relationship with temperature and salinity, bringing 

nutrients, specifically NH/ , into the coastal zone. 
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Fig. 3.5. NH4+, NO2", NO3" concentrations averaged for each region. There were no 
significant differences among regions for NFLj+ or NO2" concentrations but NO3" 
concentrations were significantly greater at the SS stations compared to the PL stations. 
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Spring Suraraer Fall Winter 

Fig. 3.6. NFL,+, NO2", NO3" concentrations averaged for each season. NH4
+concentrations 

were significantly greater in the winter compared to the spring, summer, and fall. NO2" 
concentrations were greater in the fall compared to the spring, summer, and winter. NO3" 
concentrations were greater in the winter and fall compared to the spring and summer. 

The largest proportion of total measured dissolved N (NH4
+, NO2", NO3", urea, 

and DFAA) at PL and MS stations was generally NH4
+ (39% and 34% of measured 

dissolved N, at surface and at depth, respectively). However, NO3" was often the 

dominant N form at the SS stations at depth (as high as 80% of measured dissolved N) 

particularly at the offshore stations, suggesting possible upwelling of NO3" at the 

shelf/slope interface (Appendix Table B.l). 

Urea N concentrations averaged 0.2 ± 0.2 p.mol N L"1 at both sampling depths and 

therefore there was no significant difference in urea concentrations between depths. Urea 

concentrations ranged from below the limit of detection to 1.2 umol N L"1 for all regions 

(Appendix Table B.l). For DFAA N, there were no significant differences between 



depths for all regions combined (Dl: 0.27 ± 0.24 îmol N L"1; D2: 0.39 ± 0.39 umol N 

L"l). Serine, alanine and glycine were the most abundant amino acids quantified (11-

18%, 6 - 8%, and 12 - 18% of the total measured DFAA N pool, respectively; data not 

shown). DON concentrations were not significantly different between surface waters 

(Dl: 12.1 ± 6.3 nmolN 1/1) and at depth (D2: 11.7 ± 6.6 ^molN L"1). The lowest 

concentrations of DON for the whole study area were observed in July 2006 (Dl: 2.2 -

10 nmol N L"1; D2: 3.3 - 8.3 umol N L"1), excluding one outlier at the Bay mouth 

(Appendix table B.l). There were no significant differences among regions for averaged 

urea and DFAA N concentrations, but DON concentrations were significantly greater at 

the PL and MS regions compared to the SS region (ANOVA; Tukey test; p < 0.05; Fig. 

3.7). 

Seasonally, when urea concentrations were averaged, concentrations in the winter 

were significantly greater than in the spring and summer, and concentrations in the fall 

were significantly greater in the summer (ANOVA; Tukey test; p < 0.05; Fig. 3.8). 

DFAA N concentrations were significantly greater in the winter compared to the spring, 

summer, and fall (ANOVA; Tukey test; p < 0.05; Fig. 3.8). DON concentrations were 

significantly greater in the winter and spring compared to the summer and fall, and 

greater in the fall compared to the summer (ANOVA; Tukey test; p < 0.05; Fig. 3.8). 
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Fig. 3.7. Urea, DFAA N, and DON concentrations averaged for each region. There were 
no significant differences a regions for urea and DFAA N, but DON concentrations were 
significantly greater in the PL and MS regions compared to the SS region. 
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Fig. 3.8. Urea, DFAA N, and DON concentrations averaged for each season. Urea was 
significantly greater in the winter compared to the spring and summer, and greater in the 
fall compared to the summer. DFAA N concentrations were greater in the winter 
compared to the spring, summer, and fall. DON concentrations were significantly greater 
in winter and spring compared to the summer and fall, and significantly greater in the fall 
compared to the summer. 
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Concentrations of PO4 " ranged from below the limit of detection (0.02 umol L") 

to 0.5 umol L"1 for all pooled data (Appendix Table B.2). Concentrations of SiO/" 

ranged from 0.06 to 15 umol L'1 for all pooled data (Appendix Table B.2). There was no 

significant difference between regions for averaged PO43'concentrations (p > 0.05; Fig. 

3.9) but SiO/" concentrations were greatest in the PL region compared to the SS and MS 

regions (ANOVA; Tukey test; p < 0.05; Fig. 3.9). When concentrations were averaged 

for each season, PO4 " concentrations were significantly greater in the winter compared to 

the spring, summer, and fall (ANOVA; Tukey test; p < 0.05; Fig. 3.10). Si04
4" 

concentrations were significantly greater in the fall compared to the spring, summer, and 

winter (ANOVA; Tukey test; p < 0.05; Fig. 3.10). DIN:DIP ratios were most often less 

than 16, suggesting greater PO43" concentraions than DIN in regards to the Redfield ratio, 

therefore suggestion N limitation. Some exceptions were the SS and PL stations during 

the summer cruises when ratios were greater than 16 (Fig. 3.11). Si044" did not appear to 

be limiting to diatom growth (DIN:Si044~ <1), and again N limitation, based on Redfield 

standards were observed, except in March 2005 (Fig. 3.12). 
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Fig. 3.9. PO43" and SiO/" concentrations averaged for each region. There were no 
significant differences among regions for PO43", but SiC>44' concentrations were 
significantly greater in the PL region compared to the SS and MS regions. 
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Fig. 3.10. PO4 " and SiC>4 " concentrations averaged for each season. PO4 ' 
concentrations were significantly greater in the winter compared to the spring, summer, 
and fall. Si044" concentrations were greater in the fall compared to the spring, summer, 
and winter. 
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Fig. 3.11. DIN versus PO4 " concentrations for the PL, SS, and MS regions. The solid 
line indicates the 16:1 Redfield ratio for DIN to P04

3". 

0J^* • 
& • • • < • • 

• 
D 

A 

PL 

SS 

MS 

-1:1 

10 15 20 25 

SiO/QjrnolL"1) 

Fig. 3.12. DIN versus SiO/" concentrations for the PL, SS, and MS regions. The solid 
line indicates the 1:1 Redfield ratio for DIN to SiO/". 
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PO43* and Si(V" concentrations did not have strong significant linear relationships 

between temperature and salinity for the pooled data, however during the fall, like NH/ , 

significant negative linear relationships were observed. PO43" concentrations showed 

significant negative linear relationships with temperature (R = -0.806; p < 0.05) and 

salinity (R = -0.735; p < 0.05). Similarly, SiO/" concentrations had significant negative 

linear relationships with temperature (R = -0.764; p < 0.05) and salinity (R = -0.923; p < 

0.05). 

BIOLOGICAL REGIME 

The greatest differences in Chi a concentrations between Dl and D2 (12.1 and 3.1 

\xg chl L"1, respectively) were observed in the plume in March 2005 when there was 

strong, fresh, surface outflow, and the water column was highly stratified (see Ch. 2; 

Appendix Table A.3). Aside from this one anomaly, average Chl a concentrations in the 

PL region between Dl and D2 were not significantly different (p > 0.05). Chl a 

concentrations overlapped between the surface and at depth in the MS region (Dl: 0.2 -

2.1 jag chl L"1; D2:0.4 to 2.8 ug chl L"1; Appendix Table B.3) and SS region (Dl: 0.1 -

2.0 ug chl L"1; D2: 0.3 to 2.2 (ag chl L"1), but the overall averages at D2 were significantly 

greater than the averages at Dl in both the MS and SS regions (ANOVA; Tukey test; p < 

0.05). Chl a concentrations, when averaged for both depths among regions, were 

significantly greater at the PL stations, in comparison to the SS and MS stations, ranging 

from 0.8 to 12 |ag chl L"1 (ANOVA; Tukey test; p < 0.05; Fig. 3.13). No significant 

relationships were observed between temperature or salinity and Chl a concentrations in 

either the SS or MS regions (p > 0.05) and only a weak negative linear relationship was 

observed between temperature and Chl a (R = -0.359; p < 0.05) in the PL region. When 



124 

Chi a concentrations were averaged over region and depth for each season, winter 

concentrations were significantly greater than spring, summer, and fall concentrations 

(ANOVA; Tukey test; p < 0.05; Fig. 3.14). Only significant negative linear relationships 

were observed during the fall between temperature and Chi a (R = -0.781) and salinity 

and Chi a (R = -0.818). 

PL SS MS 

Fig. 3.13. Chi a concentrations averaged for each region. Chi a concentrations in the PL 
region were significantly greater than the SS and MS stations. 
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Fig. 3.14. Chi a concentrations averaged for each season. Chi a concentrations were 
significantly greater during winter compared to spring, summer, and fall. 

Average PN and PC concentrations were not significantly different between Dl 

and D2 for any region (p > 0.05; Appendix Table B.3). Similar to Chi a concentrations, 

PN and PC concentrations were significantly greater in the PL stations compared to the 

SS and MS stations (ANOVA; Tukey test; p < 0.05; Fig. 3.15). When PN and PC 

concentrations were averaged for each season, there was no significant difference among 

seasons for PN concentrations, but PC concentrations were significantly greater in the 

spring compared to the fall (ANOVA; Tukey test; p < 0.05; Fig. 3.16). PN and PC 

concentrations showed significant negative linear relationships with temperature (PN: R 

= -0.817; PC: R = -0.824) and salinity (PN: R = -0.841; PC: R = -0.812) only during the 

fall. Also, however significant relationships did exist with Chi a concentrations for all 

combined data (Fig. 3.17; Appendix table B.7). The strongest relationships were 



observed in the MS stations, where R = 0.818 for Chi a versus PN and R = 0.616 for Chi 

a versus PC, followed by the PL stations where R = 0.718 for Chi a versus PN and R = 

0.641 for Chi a versus PC, and in the SS stations where R = 0.639 for Chi a versus PN 

and R = 0.467 for Chi a versus PC. 
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Fig. 3.15. PN and PC concentrations averaged for each region. PN and PC 
concentrations in the PL region were significantly greater than the SS and MS stations. 



127 

70 

^ 60 

'd 50 

1 40 
o 
Pw 

1 
PL, 

30 

20 

10 

-

1 

• PN 

• PC 

^^^ 

Spring Summer Fall Winter 

Fig. 3.16. PN and PC concentrations averaged for each season. PN concentrations were 
not significantly different between seasons, but PC concentrations were significantly 
greater in the spring compared to the fall. 
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Fig. 3.17. PN and PC concentrations versus Chi a concentrations for all pooled data at 
both depths. A significant linear relationship was observed between Chi a and PN (R = 
0.824) and PC (R = 0.761) concentrations. 
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C AND N UPTAKE 

Primary productivity rates, both volumetric and Chi a normalized, are reported 

here as averages of both depths, as rates were not significantly different between depths 

for each region (p > 0.05; Figs. 3.18 - 3.23). Volumetric bicarbonate uptake rates were 

significantly greater in the PL region compared to the SS and MS regions for all 

combined data (ANOVA; Tukey test; p < 0.05), but no significant differences were 

observed for Chi a normalized primary productivity rates among regions for all data 

combined (p > 0.05). During March 2005, volumetric primary productivity rates ranged 

between 0.8 and 10.7 umol C L"1 d"1 (Fig. 3.18A) and Chi a normalized rates ranged 

between 0.2 and 3.4 umol C ug chl"1 d"1 (Fig. 3.18B). 
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A 27 to 36 
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-77W -76.5W -76W -75.5W -75W 77W -76.5W -76W -75.5W -73W -74.5W 

Fig. 3.18. Volumetric primary productivity rates (umol C L"1 d"1; A) and Chl a 
normalized primary productivity rates (umol C (j,g chl"1 d"1; B) during March 30 - April 
1, 2005. Rates are averaged over surface and near bottom. 
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During the first summer cruise, July 2005, volumetric and Chi a normalized rates 

had the largest ranges (Volumetric: 3.5 - 27.2 umol C L"1 d"1; Chi a normalized: 5.0 -

36.2 umol C ug chl"1 d"1; Fig. 3.19A and B). Volumetric rates were significantly greater 

in the plume and coastal regions of the mid-shelf (Fig. 3.19 A) while Chl a normalized 

rates were greatest along the coast and off-shore (Fig. 3.19B). 

Fig. 3.19. Volumetric primary productivity rates (umol C L"1 d"1; A) and Chl a 
normalized primary productivity rates (umol C jag chl"1 d"1; B) during July 27 - 30, 2005. 
Rates are averaged over surface and near bottom. 

During spring 2006, volumetric primary productivity rates ranged between 0.7 

and 15.8 umol C L"1 d"1 and Chl a normalized rates ranged between 0.4 and 7.6 umol C 

ug chl"1 d"1 (Fig. 3.20A and B). Rates were uniform throughout the study area, with only 

slightly higher volumetric rates observed in the two plume regions (Fig. 3.20). 
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Fig. 3.20. Volumetric primary productivity rates (umol C L"1 d"1; A) and Chi a 
normalized primary productivity rates (umol C jag chl"1 d"1; B) during May 8 -12, 2006. 
Rates are averaged over surface and near bottom. 

During July 2006, volumetric primary productivity rates were lower than the first 

summer cruise and ranged between 0.7 and 9.3 umol C L"1 d"1 (Fig. 3.21A). Similarly, 

Chl a normalized rates ranged between 1.4 and 13.8 |omol C |ag chl"1 d"1 (Fig. 3.21B). 

There were no significant differences among regions for both volumetric and Chl a 

normalized primary productivity rates. 
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Fig. 3.21. Volumetric primary productivity rates (nmol C L"1 d"1; A) and Chi a 
normalized primary productivity rates (umol C |xg chl"1 d"1; B) during July 2 - July 5, 
2006. Rates are averaged over surface and near bottom. 

During October 2006, volumetric primary productivity rates were as low as those 

observed in March 2005 and ranged from 1.4 to 10.5 \imo\ C I/1 d"1 (Fig. 3.21A). 

Similarly, Chl a normalized rates were also as low as those observed in March and 

ranged between 0.9 to 4.7 umol C (j,g chl"1 d"1 (Fig. 3.22B). 
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Fig. 3.22. Volumetric primary productivity rates (umol C L"1 d"1; A) and Chi a 
normalized primary productivity rates (fxmol C \xg chl"1 d"1; B) during Oct. 30 - Nov. 2, 
2006. Rates are averaged over surface and near bottom. 

When volumetric primary productivity rates were averaged for each season there 

were no significant differences among seasons (ANOVA; p > 0.05; Fig. 3.23). However, 

Chl a normalized primary productivity rates were significantly greater in the summer 

compared to the fall and winter average rates (ANOVA; Tukey test; p < 0.05; Fig. 3.23). 
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Fig. 3.23. Volumetric (solid bars) and Chi a normalized (white bars) primary productivity 
rates averaged for each season. Error bars represent standard deviations. No significant 
differences were observed among season for volumetric primary productivity rates, but 
Chi a normalized primary productivity rates were significantly greater in the summer 
compared to the fall and winter averages. 

A significant positive linear relationship (p < 0.05) but low R value (R = 0.367) 

was observed between primary productivity rates and Chi a concentrations for all of the 

pooled data (Fig. 3.24; Appendix table B.7), similar to what was observed in the 

Chesapeake Bay outflow plume (Ch. 2; Fig. 2.36). When data were averaged over 

region, no significant linear relationships were observed between volumetric primary 

productivity rates and Chi a concentrations (p > 0.05). When data were averaged over 

season, there was a significant positive linear relationship between volumetric primary 

productivity rates and Chi a concentrations during spring (R = 0.659; p < 0.05) and the 

relationship was most pronounced in fall (R = 0.882; p < 0.05; Fig. 3.24). 
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Fig. 3.24. Volumetric primary productivity rates versus Chi a concentrations for all 
pooled data and for fall only. A significant positive linear relationship was observed with 
a low R value for the pooled data (dashed line; R = 0.367) and a significant positive 
linear relationship with a high R value for the fall only data (solid line; R = 0.882). 

Pooled data for volumetric primary productivity rates versus salinity showed a 

weak negative linear relationship (R = -0.467; p < 0.05; Appendix table B.7). The 

dominant signal for this relationship was found in the MS region, where there were 

significant negative linear relationships between salinity and volumetric primary 

productivity rates (R = -0.474; p < 0.05) and between salinity and Chi a normalized 

primary productivity rates (R = -0.492; p < 0.05). There was a weak positive linear 

relationship (R = 0.462; p < 0.05; Appendix table B.7) between Chi a normalized primary 

productivity rates and temperature for the pooled data. Similar to salinity, the dominant 

signal appeared in the MS region, where there were significant positive linear 

relationships between temperature and volumetric primary productivity rates (R = 0.466; 
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p < 0.05) and temperature and Chi a normalized primary productivity rates (R = 0.629; p 

< 0.05). 

During fall, when there was a significant positive linear relationship between 

volumetric primary productivity rates and Chi a concentrations, there was a significant 

negative linear relationship between salinity and volumetric primary productivity rates (R 

= -0.794; p < 0.05). Furthermore, there was a significant negative linear relationship 

between temperature and volumetric primary productivity rates in the fall (R = -0.728; p 

< 0.05; Fig. 3.25), however in this case, it was a negative linear relationship. During the 

fall, negative linear relationships between salinity and temperature, and volumetric 

primary productivity rates signified that in cool (15°C), fresher (24) waters, volumetric 

primary productivity rates were high and in warm (24°C), salty (36) waters, volumetric 

primary productivity rates were low (Fig. 3.25). Also in the fall, significant negative 

linear relationships were observed between temperature and Chi a, PN, PC, NH4 , PO4 ", 

and SiO/". The physical regime is consistent with fall satellite imagery (Fig. 3.4) 

depicting cool water exiting the Bay mouth, presumably providing nutrient-rich 

freshwater available for uptake by primary producers into the coastal zone. The 

relationship between primary productivity and nutrient availability was further 

demonstrated by the significant positive linear relationships observed between volumetric 

primary productivity rates and TDN concentrations (R = 0.634; p < 0.05), PO43" 

concentrations (R = 0.649; p < 0.05), and Si04
4" concentrations (R = 0.759; p < 0.05) in 

the fall. 
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Fig. 3.25. Volumetric primary productivity versus temperature and salinity for the fall. 
Volumetric C uptake was significantly related to temperature (dashed line; R = 0.728) 
and salinity (solid line; R = 0.794). 

Similar to primary productivity results, there were no significant differences 

between total N uptake rates at either depth, therefore rates reported here are averages of 

both depths. Also similar to primary productivity results, total measured volumetric N 

uptake rates were significantly greater at the PL region (0.01 - 0.63 umol N L" h" ; 

Appendix table A.5). Specifically, N H / volumetric uptake rates were significantly 

greater in the PL region compared to the SS and MS regions, and NO3", urea, and DFAA 

N volumetric uptake rates were significantly greater in the PL region compared to the SS 

region (Fig. 3.26). At the MS stations, total N uptake rates ranged from 0.01 - 0.54 umol 

N L"1 h"1 (Fig. 3.26; Appendix table B.5). The lowest N uptake rates were observed at SS 

stations (0.01 - 0.23 umol N L"1 h"1; Fig. 3.26; Appendix table B.5). 
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Although total N uptake rates were greatest in the PL region, where Chi a 

biomass was also highest (Fig. 3.13) compared to the MS and SS regions (Fig. 3.26), total 

N uptake rates did not significantly correlate to Chi a concentrations in the PL region (p > 

0.05). There was no significant linear relationship between Chi a and total N uptake or 

between Chi a and individual N compound uptake rates (R = 0.056; p > 0.05; Fig. 3.27) 

for the pooled data. N uptake was fairly constant over a range of Chi a concentrations, 

for example, NFL;+ uptake rates were nearly identical (0.34 and 0.35 umol N L"1 h"1) at PL 

stations within Chi a concentrations of 2.2 and 9.1 jag chl L"1, respectively. 

PL SS MS 

Fig. 3.26. N uptake rates averaged for each region. Total N uptake rates were 
significantly greater in the PL region compared to the SS or MS regions. 
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Fig. 3.27. Total N uptake rates versus Chi a concentrations for all pooled data. No 
significant relationship was observed. 

Total N uptake rates were significantly greater in the summer compared to the 

fall, specifically for N H / and urea uptake rates (Fig. 3.28). DFAA N uptake rates were 

significantly greater during winter compared to spring, summer, and fall (Fig. 3.28). No 

significant differences were observed among seasons for NO3" and NO2" volumetric 

uptake rates (ANOVA; p > 0.05). 
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Fig. 3.28. N uptake rates averaged for each season. Error bars represent standard 
deviation. Total N uptake rates were significantly greater in the summer compared to the 
fall. 

NH4+ uptake rates on average were significantly greater (ANOVA; Tukey test; p 

< 0.05) than uptake of the other N compounds measured and often represented over 50% 

of the total measured N uptake. In a few instances, however, in offshore stations in the 

SS region, uptake rates of NO3" (0.013 - 0.029 umol L"1 h"1) were greater than uptake 

rates of NH4
+ (0.002 - 0.007 umol I/1 h"1). 

Relationships between individual nutrient concentrations and 15N uptake rates 

(volumetric, Chi a normalized, and PN normalized), results were inconsistent. Although 

N H / was taken up at higher rates than any other N compound, there was no significant 

relationship between N H / concentrations and volumetric (R = 0.213; p > 0.05; Appendix 



table B.7), Chi a normalized (R = 0.124; p > 0.05; Appendix table B.7), or PN 

normalized (R = 0.169; p > 0.05; Appendix table B.7) NH/uptake rates for the pooled 

data. Similarly, no significant relationships were found when correlating nutrient 

concentrations versus volumetric, Chi a normalized, or PN normalized uptake rates of 

NO2", NO3", and urea for the pooled data (Appendix table B.7). Volumetric DFAA N 

uptake rates did show a weak, but significant positive linear correlation with DFAA N 

concentrations for the pooled data (R = 0.469; p < 0.05; Appendix table B.7). 

Either no significant relationships or only weak significant relationships between 

nutrient concentration and 15N uptake rates were also observed regionally. For NFLt+ in 

the SS region, a weak but significant positive linear relationship between N H / 

concentrations and volumetric NH44" uptake rates (R = 0.417; p < 0.05) was observed. 

The only significant relationship with an R value greater than 0.5 in the PL region was 

observed for DFAA N concentrations versus DFAA N volumetric uptake rates (R = 

0.575; p < 0.05). In the MS region, either no significant relationships, or only weak 

significant relationships were observed for NH/ , NO2", and NO3" concentrations versus 

volumetric, Chi a and PN normalized uptake rates. There were significant positive 

correlations in the MS region for urea and DFAA N, however. Urea concentrations 

versus volumetric (R = 804; p < 0.05), Chi a normalized (R = 0.598; p < 0.05), and PN 

normalized (R = 0.759; p < 0.05) urea uptake rates and DFAA N concentrations versus 

DFAA N volumetric (R = 0.857; p < 0.05), Chi a normalized (R - 689; p < 0.05), and PN 

normalized (R = 0.777; p < 0.05) DFAA N uptake rates had significant positive linear 

relationships. 



141 

Seasonally, relationships between nutrient concentrations and nutrient uptake 

rates were also inconsistent and weak. During spring, either no significant relationships 

or weak significant relationships were observed between nutrient concentrations and their 

respective uptake rates (volumetric, Chi a normalized, or PN normalized) for all 

nutrients. During summer, N H / concentrations versus volumetric N H / uptake rates 

showed a significant positive linear relationship (R = 0.636; p < 0.05). Also during 

summer, significant positive linear relationships between urea concentrations and urea 

volumetric (R = 0.840; p < 0.05), Chi a normalized (R = 0.691; p < 0.05), and PN 

normalized (R = 0.822; p < 0.05) uptake rates. Similarly, significant positive linear 

relationships were observed for DFAA N concentrations and volumetric (R = 0.580; p < 

0.05), Chi a normalized (R = 0.627; p < 0.05), and PN normalized (R = 0.754; p < 0.05) 

DFAA N uptake rates in the summer. During the fall, only urea concentrations had a 

significant linear correlation with volumetric urea uptake rates (R = 0.625; p < 0.05). 

During winter, no significant relationships were observed between nutrient 

concentrations and nutrient uptake rates (volumetric, Chi a normalized, or PN 

normalized). 

DISCUSSION 

The hydrographic regions identified in this study differentially impact C and N 

pools and primary productivity rates in the MAB. The Chesapeake Bay plume region is 

highly productive, but the delivery of nutrients and particulate material is extremely 

sensitive to time varying flow and periodic storm events (see Ch.2). In addition, the 

plume region and nearby shelf regions can be influenced by oceanic inputs of upwelled 

nutrients and warm oligotrophic Gulf Stream waters. Because the MAB is thought to be 
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N-limited (Dugdale 1967; Ryther and Dunstan 1971), inputs of bioavailable N to coastal 

waters and the continental shelf can alleviate N limitation and stimulate primary 

productivity resulting in greater fisheries yields, however too much N can lead to coastal 

eutrophication and water quality degradation. 

In Chapter 2,1 demonstrated that the extent to which the plume interacts with 

coastal waters can depend on winds, freshwater discharge, and local upwelling or 

downwelling events and that the type of plume can be a factor influencing productivity 

(see Ch. 2). Here, I observed that the near shore regions north of the Chesapeake Bay 

plume, were also influenced by oceanic upwelling as well as terrestrial inputs, and in the 

mid-shelf region nutrient concentrations and Chi a normalized primary productivity rates 

could be equal to or greater than concentrations and rates in the plume region. Primary 

productivity in the MAB was supported by a diverse array of N compounds and the 

importance of any one form of N varied by location. For example, although N H / was 

the dominant form taken up, there were instances where NO3" uptake dominated, 

presumably due to upwelling at offshore stations. In oligotrophic, oceanic systems, 

upwelled NO3" and N2 fixation are considered the primary N sources supporting new 

production (Dugdale and Goering 1967), and in the MAB region, upwelled N was 

observed primarily at offshore stations located near the shelf break. Also, it appeared for 

the most part, that N uptake rates were not dependant on nutrient concentrations, in this 

environment, similar to what was observed for the plume region (see Ch. 2). 

This study provides seasonally resolved primary productivity and N uptake rates 

over a two year period in the context of the physical and nutrient environment and a 

regional overview of N and C dynamics and budgets for the MAB. To put these results 
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into a broader context, I calculated areal rates of primary productivity and N uptake by 

converting daily rates, made over three seasons, and two years, to annual estimates for 

each region. Average areal C and N uptake rates were not significantly different among 

regions presumably due to the shallow water column at highly productive plume stations 

(Table 3.1). These annual areal primary productivity rates at the Gulf Stream-influenced 

SS stations were lower than published estimates of primary productivity in Gulf Stream 

intrusions (54 ± 20 mol C m" y" spring and summer; Tables 3.1 and 3.2) (Mouw and 

Yoder 2005). The overall average annual primary productivity for the study region was 

9 1 9 1 

34 ± 3.8 mol C m" y" and areal N uptake was 11 ±2.1 mol N m" y" . There were no 

significant differences among seasonal averages for areal primary productivity for the 
9 1 

pooled data, however rates in the summer were as high as 0.38 mol C m" d" and 0.25 
9 1 9 

mol C m" d" in the spring when fall and winter rates were only as high as 0.12 mol C m" 

d"1 and 0.19 mol C m"2 d"1, respectively. Summer areal N uptake rates were significantly 
9 1 

greater than the spring and fall rates. When applying areal rates (mol m" y") over the 

surface area of each respective region, annual primary productivity and total N uptake 

rates (mol y"1) were 3.4 and 4.2 times greater, respectively, in the MS area than in the PL 

and SS regions, combined (Table 3.1). 
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Areal C uptake rates in the MAB calculated here and including three distinct 

hydrographic regions were similar to but often exceeded those reported in the literature from a 

variety of field programs implemented between the early 1970's and the early 1990's (Table 

3.2) suggesting that primary productivity in the MAB may have increased over the last 10 to 

40 years. This could be due to the fact that primary productivity is actually increasing over 

time due to increased nutrient inputs (Fig. 3.29). There is a trend upward from measurements 

made over the past 20 years (Fig. 3.29; Table 3.2). The outliers aren't shown as they come 

from the South Atlantic Bight where productivity is known to be higher than the MAB (O' 

Reilly and Busch 1984; Lohrenz et al. 2002; Verity et al. 2002). Alternatively, estimates 

presented here are better resolved than previous estimates, as they are in situ estimates from 4 

seasons and three hydrographic regions. Annual areal rates of productivity reported here for 

all three regions were significantly greater than areal estuarine productivity rates estimated 

from estuaries around the world (Boynton et al. 1982), and areal rates for all three regions were 

greater than modeled estimates for the MAB (Kemp et al. 1994; Fennel et al. 2006). Past 

research endeavors, like those documented in Table 3.2, have extrapolated rates based upon 

one or two seasons of high productivity, whereas the annual rates reported from this study 

included multiple seasons and regions over two years (see Table 3.2), providing for a more 

robust analysis of productivity, especially since the highest rates for both C and N were 

observed in the spring and summer. Averaged spring and summer areal estimates, extrapolated 

to annual estimates, were 19% greater than averaged annual estimates from all dates from this 

study. Higher productivity rates were observed by Lohrenz et al. (2002) in the South Atlantic 

Bight, again based on modeled results, where annual rates were extrapolated from only spring 

and summer, thus potentially overestimating annual rates (Table 3.2). 
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One could argue that there are very few actual measurements of productivity made in 

this region, so many estimates are modeled or inferred from satellite data and predicted 

relationships between nutrients and productivity. For example, primary productivity rates 

reported by Mouw and Yoder (2005) were slightly lower than what was observed in this study, 

but multiple sources of data over different time periods were used to obtain these estimates. 

Temperature data was collected to obtain the mixed layer depth during the 5-year period in 

question, phytoplankton community and Chi a data were obtained from a previous 12-year 

study (1977 - 1988), and nitrate concentrations were obtained from the World Ocean Atlas 

2001 to implement into their productivity model (Mouw and Yoder 2005). This modeled, 

water-column-derived, productivity data was then compared to productivity obtained from 

algorithms derived from PAR and Chi a using SeaWiFS satellite imagery for the 5-year study 

period and it was determined that the satellite-derived photosynthesis rates were 30% less than 

water column-derived photosynthesis rates (Mouw and Yoder 2005). A daily average was 

multiplied by 365 d and did not take into account seasonal variations. Multiple assumptions 

were made, one in particular stated that nutrient availability and therefore the quantum yield of 

photosynthesis, was a function of nitrate concentration (Mouw and Yoder 2005). Data 

presented here demonstrate that nutrient availability and uptake is not a function of only nitrate 

concentrations in the MAB, and furthermore, primary productivity was significantly related to 

TDN concentrations only during the fall months. Combined, these results suggest we need 

more observations and direct measurement of C and N productivity to validate models and 

make them realistic for the region. Specifically, productive coastal regions like the 

Chesapeake Bay outflow plume, may be areas that can be easily targeted for further 

incubations studies to assess the short-term variability of N uptake, as little is known in this 
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regard and meteorological conditions on a short timescale appear to be the driver for nutrient 

delivery and subsequent C and N uptake (See Ch.2). The First State of the Carbon Cycle 

Report (SOCCR), a recent study headed by international scientists, concluded that there is little 

known regarding the C budget in the coastal regions of North America and that scientists are 

encouraged to study the region experimentally with processed-based studies such as the one 

provided here (Chavez et al. 2007). 



14
8 

T
ab

le
 3

.2
. S

um
m

ar
y 

ta
bl

e 
of

 a
re

al
 r

at
es

 o
f 

pr
im

ar
y 

pr
od

uc
ti

vi
ty

 f
ro

m
 t

he
 li

te
ra

tu
re

 i
nc

lu
di

ng
 a

 d
es

cr
ip

ti
on

 o
f 

th
e 

st
ud

y 
ar

ea
, a

re
al

 r
at

e,
 

an
d 

m
et

ho
d 

an
d 

so
ur

ce
 fo

r 
ea

ch
 e

st
im

at
e.

 
St

ud
y 

ar
ea

 
A

re
al

 r
at

es
 o

f 
pr

im
ar

y 
pr

od
uc

ti
vi

ty
 

M
et

ho
ds

 
R

ef
er

en
ce

 
m

ol
 C

 m
'2 y

'1 

T
J 

PL
 

SS
 

M
S 

E
st

ua
ri

ne
 

(4
5 

es
tu

ar
in

e 
sy

st
em

s)
 

M
A

B
 

N
ew

 J
er

se
y 

co
as

t t
o 

B
er

m
ud

a:
 

Sh
el

f 
Sh

el
f 

br
ea

k 
Sl

op
e 

G
ul

f 
St

re
am

 
(5

-y
ea

r 
m

od
el

 w
ith

 m
on

th
ly

 
av

er
ag

es
) 

37
.4

 ±
11

.9
 

30
.0

 ±
4

.7
 

35
.4

 ±
1

2
.1

 
15

.8
 ±

4
.2

 

17
 

18
.9

 ±
0

.7
 

15
.9

 ±
2

.8
 

16
.9

 ±
0

.6
 

25
.2

 ±
2

.0
 

M
A

B
 

Sp
ri

ng
 a

nd
 s

um
m

er
 

C
ap

e 
H

at
te

ra
s 

Sh
el

f 
(s

pr
in

g 
an

d 
su

m
m

er
 e

st
im

at
es

, 
ex

tr
ap

ol
at

ed
 f

or
 th

e 
ye

ar
, 

an
d 

th
e 

w
ho

le
 r

eg
io

n)
 

C
ap

e 
H

at
te

ra
s 

Sh
el

f 
(s

pr
in

g 
an

d 
su

m
m

er
 e

st
im

at
es

, 
ex

tr
ap

ol
at

ed
 f

or
 th

e 
ye

ar
, 

an
d 

th
e 

w
ho

le
 r

eg
io

n)
 

12
 

28
 

54
 

±
2

0 

30
 

±
2

2 

C
 b

ic
ar

bo
na

te
 i

nc
ub

at
io

ns
 

M
ul

ti
pl

e 
m

et
ho

ds
 

3-
di

m
en

si
on

al
 b

io
ge

oc
he

m
ic

al
 

m
od

el
 

Pr
od

uc
ti

vi
ty

 m
od

el
 u

si
ng

 i
n 

si
tu

 
da

ta
, s

at
el

lit
e 

im
ag

er
y,

 
pr

ev
io

us
ly

 p
ub

lis
he

d 
da

ta
, 

an
d 

ph
ot

os
yn

th
es

is
/i

rr
ad

ia
nc

e 
re

la
tio

ns
hi

p 
ov

er
 3

3.
4 

km
2 s

tu
dy

 
ar

ea
s,

 d
ep

th
 i

nt
eg

ra
te

d.
 D

at
a 

sh
ow

n 
is

 a
 r

an
ge

 f
or

 t
he

 5
-y

ea
r 

st
ud

y 
pe

ri
od

 o
f 

a 
hy

br
id

 o
f 

w
at

er
 

co
lu

m
n/

sa
te

lli
te

 -
de

ri
ve

d 
pr

od
uc

ti
vi

ty
. 

M
od

el
 

14
 C

 b
ic

ar
bo

na
te

 i
nc

ub
at

io
ns

, 
de

pt
h 

in
te

gr
at

ed
 

W
av

el
en

gt
h 

re
so

lv
ed

 
ph

ot
os

yn
th

es
is

-i
rr

ad
ia

nc
e 

m
od

el
 

In
 s

it
u 

es
tim

at
es

 (
n=

7)
 

T
hi

s 
st

ud
y 

(B
oy

nt
on

 e
t a

l. 
19

82
) 

(F
en

ne
l 

et
 a

l. 
20

06
) 

(M
ou

w
 a

nd
 Y

od
er

 2
00

5)
 

(K
em

p 
et

 a
l. 

19
94

) 

(R
ed

al
je

 e
t a

l. 
20

02
) 

(L
oh

re
nz

 e
t a

l. 
20

02
) 



T
ab

le
 3

.2
. 

C
on

tin
ue

d.
 

14
9 

St
ud

y 
ar

ea
 

C
he

sa
pe

ak
e 

B
ay

 to
 C

ap
e 

H
at

te
ra

s,
 o

ff
sh

or
e-

on
sh

or
e 

So
ut

h 
A

tla
nt

ic
 B

ig
ht

 
(3

-y
r 

st
ud

y 
ov

er
 s

um
m

er
 a

nd
 

w
in

te
r)

 
N

or
th

w
es

te
rn

 A
tla

nt
ic

 S
he

lf
 

A
tla

nt
ic

 O
ce

an
 (

as
su

m
e 

su
rf

ac
e 

ar
ea

o
f7

7
*

1
0

1
2 

m
2) 

N
or

th
ea

st
 P

ac
if

ic
 -

 c
oa

st
al

 
es

tim
at

e 
N

or
th

ea
st

 P
ac

if
ic

 -
 o

ce
an

ic
 

es
tim

at
e 

G
lo

ba
l c

on
tin

en
ta

l s
he

lf
 (

40
 

di
ff

er
en

t 
re

gi
on

s;
 7

0%
 o

f 
gl

ob
al

 
co

nt
in

en
ta

l 
sh

el
f)

 

G
lo

ba
l 

co
nt

in
en

ta
l 

sh
el

f 

A
re

al
 r

at
es

 o
f p

ri
m

ar
y 

pr
od

uc
ti

vi
ty

 
m

ol
 C

 m
-2

 y
-1

 
<2

2 
- 

42
 

5
0

-5
8 

26
 

12
.6

 

20
.8

 

10
.8

+
2.

9 

18
 

1
6

.7
-1

8
.3

 

M
et

ho
ds

 

C
oa

st
al

 Z
on

e 
C

ol
or

 S
ca

nn
er

 
im

ag
er

y 
D

il
ut

io
n 

ex
pe

ri
m

en
ts

, 
es

tim
at

io
n 

vi
a 

C
hi

 a
 

Pr
od

uc
ti

vi
ty

 m
od

el
 

G
en

er
al

 C
ir

cu
la

tio
n 

M
od

el
 

fr
om

 s
at

el
lit

e 
im

ag
er

y 
14

C
 b

ic
ar

bo
na

te
 i

nc
ub

at
io

ns
 

14
C

 b
ic

ar
bo

na
te

 i
nc

ub
at

io
ns

 

A
ve

ra
ge

 o
f 

40
 d

if
fe

re
nt

 
st

ud
ie

s 

A
ve

ra
ge

 e
st

im
at

es
 

R
ef

er
en

ce
 

(O
' R

ei
ll

y 
et

 a
l. 

19
87

) 

(V
er

it
y 

et
 a

l. 
19

93
) 

(O
' R

ei
ll

y 
an

d 
B

us
ch

 1
98

4)
 

(C
ar

r 
et

 a
l. 

20
06

) 

(M
ar

tin
 e

t a
l. 

19
87

) 

(M
ar

tin
 e

t a
l. 

19
87

) 

(W
al

sh
 1

98
8)

 

(W
ol

la
st

 a
nd

 B
il

le
n 

19
81

; 
W

ol
la

st
 1

99
1)

 



I—1 
1 ^ > > l 

<?B 
u 
o 
fci 
fr 
> 
-PI 
o 

-3 
u 
a 

& 
a G 

PH 

£n -
OU 

50 -

40 -

30 -

20 -

10 -

0 -

Fig. 3.29. Primary productivity rate estimates in the MAB over time. The estimates are 
obtained from Table 3.2 and include only rates from the MAB. The most recent rates are 
from this study, an increasing trend is shown. 

The ratio of areal annual primary production to total N uptake ranged from 2.7:1 

to 3.5:1, much lower than that expected using the Redfield ratio of 6.6 (Table 3.1). This 

low ratio suggests that C productivity and N uptake were not tightly coupled on short 

timescales. This could be due to unbalanced growth, underestimates of C uptake, or 

overestimates of autotrophic N uptake on GF/F filters. If only DIN uptake was 

considered, C:N uptake ratios increased slightly to 3.6 - 4.7:1, but still below 6.6. The 

canonical Redfield ratio has been used to calculate either C or N uptake, one from the 

other, and removal for model simulations and in generic interpretations for large scale 

studies of C and N budgets (Seitzinger and Giblin 1996; Fennel et al. 2006). This study 

suggests that using Redfield assumptions for short timescales of variability may 

underestimate N uptake based on primary productivity measurements or overestimate C 

drawdown based on measured N uptake rates, but Redfield is still an adequate 

assumption when extrapolating to global scenarios and long timescales. However, N 
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uptake rates from previous studies, and model simulations use only DIN uptake, 

specifically NO3", to infer net C uptake (Mouw and Yoder 2005; Fennel et al. 2006). For 

this study, the average ratio of hourly primary productivity to NO3" uptake was much 

greater than 6.6 (PL: 34 ± 50, SS: 12.5 ± 8.2, MS: 42 ± 84). Prior research in the plume 

reported hourly primary productivity rates to NO3" uptake rates ranging from 0.9 - 276, 

again showing a wide range in variability for short-term C:N uptake studies (Malone and 

Ducklow 1990; Glibert and Garside 1992). In the northeastern Atlantic, during a diatom 

bloom, C:N ratios were close to Redfield (6-8) during low productivity, dropped below 5 

when productivity increased, and rose to 17 when N became limited and the authors 

suggested that utilizing Redfield on timescales shorter than a month may not be 

approrpriate(Bury et al. 2001). The above assumptions, using only DIN or NO3" uptake 

rates or concentrations, may have biased estimates of C uptake rates from N uptake rates 

upwards. We now know that phytoplankton and bacteria compete for both inorganic and 

organic N sources in nature (Mulholland and Lomas 2008). With increasing 

anthropogenic N, these relationships are only going to continue to change and great care 

must be taken in determining primary production from N when there is no clear defining 

relationship, particularly in the coastal waters of the MAB. 

Although not the main focus of this research, pCC>2 concentrations were 

calculated (see Eqns. 3.1 - 3.4) at stations occupied during this study and they showed an 

undersaturation of CO2 relative to the atmosphere in surface waters throughout the study 

area (Table 3.3). Surface water concentrations were lower but not significantly different 

than previously published values for the MAB, where the middle shelf ranged between 

150 to 620 (aatm, the inner shelf ranged between 220 and 480 uatm, and the outer shelf 
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ranged between 300 and 430 uatm (De Grandpre et al. 2002). pCC>2 concentrations from 

this study were not significantly different between the PL, SS, and MS. Undersaturation 

of the MAB with respect to CO2 is consistent with the most recent C research done for the 

MAB, showing that this region is a sink for atmospheric CO2 (De Grandpre et al. 2002). 

However, there is a general consensus that the North American coastal systems are 

neither a sink or a source of atmospheric CO2 on average, but not enough data is 

available to track historical trends (Chavez et al. 2007). Although not apparent from the 

low C:N uptake ratios, taken on small timescales, anthropogenic N inputs may fuel 

excess productivity allowing additional drawdown of atmospheric CO2 in this region, and 

possible removal of anthropogenic C to coastal sediments where it can fuel 

denitrification, export to the coastal ocean, or export to the deep ocean, all important C 

sinks (De Grandpre et al. 2002). 

Table 3.3. pCC"2 estimates from DIC, alkalinity, salinity and temperature as calculated 
fromEqns. 3.1-3.4. 

Region 
PL 
SS 
MS 

pC02 

(|iatm) 
204 
65 
139 

+/-
154 
46 
69 

It is not known whether the coastal MAB is a source or sink for anthropogenic C 

and N (Chavez et al. 2007). If increased total N loads or increased atmospheric CO2 

cause an increase in net primary productivity, as was potentially observed from this data 

set (Table 3.2; Fig. 3.29) (although the reason for the increase is not clear), and daily 

sedimentary denitrification rates remain 2% of primary productivity rates (e.g. Seitzinger 

and Giblin 1996) then N might accumulate in the MAB sediments or thereby alleviating 
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N limitation or resulting in the accumulation of organic material leading to coastal anoxia 

such as has been observed north on the MAB shelf of NJ (Glenn et al. 2004; Frazer et al. 

2006). Alleviating N limitation might shift the system toward limitation by another 

element in short supply. However, if denitrification rates increase commensurable with 

increased productivity thereby maintaining an N-limited coastal system, then 

anthropogenic N inputs can be counterbalanced with N losses through denitrification. If 

primary productivity decreases in the future (something that was not observed in this data 

set) due to global climate change, denitrification might decrease due to C limitation of 

denitrifying microbes as less organic material is delivered to the sediments (Fulweiler et 

al. 2007). 

Based on a 2 % removal rate (Seitzinger and Giblin 1996), I calculate that the 

total N losses through denitrification for these three hydrographic regimes was 1.1 x 1010 

mol N y"1, which is 11 times lower than rates estimated from the region extending from 

Cape Hatteras to South Florida (11.7 x 1010 mol N y"1) and represents < 1% of the 

denitrification estimated for the entire North Atlantic Shelf (143 x 1010 mol N y"1; 

Seitzinger and Giblin 1996). N removal from the MAB via denitrification is an important 

process and recent modeled estimates determined that 90% of DIN and PN entering the 

North Atlantic is ultimately lost from the sediments via denitrification (Fennel et al. 

2006). A decrease in denitrification rates would result in retention of N in the system, 

where it could stimulate additional primary productivity, providing a positive feedback 

scenario (Fulweiler et al. 2007). 

N and C dynamics are affected by not only the physical and biological 

environments, but also human impacts on both short and long timescales. Although 
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satellite imagery is becoming a widely used tool to relate surface productivity with 

remotely sensed parameters, present and past results suggest that satellite data should be 

interpreted carefully and validation with measurements is necessary, as productivity rates 

do not always correlate well with Chi a biomass and there are differences in productivity 

with depth that may not be related in a predictable way to biomass estimates (Hoffman et 

al. 2008). Further, nutrient concentrations (e.g. NO3") are not good predictors of 

productivity. The results from this study suggest that primary productivity in the MAB 

may be increasing or that rates reported here are more robust relative to rates reported 

directly or modeled using data collected 20 to 40 years ago. Long-term trends in 

productivity due to coastal eutrophication and large scale indices of climate change 

variables, such as the North Atlantic Oscillation and El Nino Southern Oscillation, are 

only beginning to be observed in data records and our short satellite record is not yet 

sufficient to observe the full extent of these trends. Additionally, coastal algorithms 

relating primary productivity and ocean color are not yet good enough to evaluate 

productivity in marine coastal waters due to instrumentation interferences, the lack of 

robust validation, and direct measurements (Hoffman et al. 2008). Our observations have 

shown that coastal productivity is important and is higher than previously estimated or is 

increasing at these interfaces. Equally important, better relationships between primary 

productivity and N uptake rates need to be elucidated to reconcile global C and N 

budgets, and to offer better ways to extrapolate one from the other. Resolving these 

issues in the coastal zone is crucial for validation of biogeochemical models that are 

necessary for a whole ecosystem approach to understanding the N and C dynamics and a 

region strongly affected by climate change. 
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CHAPTER IV 

SUMMARY AND FUTURE DIRECTIONS 

SUMMARY 

In this dissertation, I present data that can provide seasonally resolved snapshots 

of nutrient concentrations, biomass concentrations, N uptake rates, and primary 

productivity rates in the plume and receiving waters for the largest estuary in North 

America, and spanning a three year period. Rates of N uptake and primary productivity 

in the Chesapeake Bay plume were compared with rates measured in the adjacent coastal 

ocean, including the shelf area north of the Chesapeake Bay mouth and an area of the 

shelf often impacted by the Gulf Stream. All concentrations as well as rate 

measurements were reviewed in the context of freshwater flow, water column mixing, 

and wind dynamics. This research was motivated by prior modeling efforts and will 

advise future efforts, such as that proposed by the U.S. east coast continental shelf project 

team, to model the regional and global C budgets (Hoffman et al. 2008). Further, the 

results presented in this dissertation were used by NASA scientists to reconcile satellite 

imagery and ocean color with C pools and cycling in the coastal ocean. 

The major findings of this research are: 

• Primary productivity does not correlate with Chi a concentrations in a 

coastal system dominated by physical processes. 

• Plume morphotypes were important in determining biomass versus 

productivity relationships; low flow conditions promoted in situ 

productivity while high flow, or 'wash out' conditions promoted high 

biomass exported from the Bay. 



• N concentration was a poor predictor of N uptake, and inorganic and 

organic forms of N are important for understanding total N uptake 

demands. 

• Primary productivity rates may be increasing over time in the MAB, or 

our analyses may simply be more robust, incorporating direct 

measurements and season variability. 

• The Redfield ratio can not be used to interpret regional N demand from C 

uptake and vice versa. 

The ocean is the largest planetary C sink and so how the oceanic environment will 

respond to higher C concentrations is a subject of intense debate. Further, the coastal 

ocean is an area increasingly impacted by anthropogenic N inputs. The combined 

impacts to marine systems from climate change superimposed on eutrophication are 

unknown (see Galloway et al. 2008). Characterizing the impact of the Chesapeake Bay 

on coastal productivity is an important step in our understanding of C dynamics in a 

region dominated by anthropogenic influences. Because there are productivity estimates 

from almost 40 years ago, we can speculate as to long term trends in productivity in this 

area (see Fig. 3.29). This project was a large undertaking, and although the temporal 

resolution was robust, it was clear from the beginning that a complete understanding of 

the MAB and the Chesapeake Bay outflow plume in terms of N and C was not going to 

be achieved in a three-year study even with monthly or seasonally allocated field 

measurements. This study however was an improvement over many previous studies in 
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the fact that it spanned 3 years, 4 seasons, and 3 types of hydrographic regimes, allowing 

for a more robust analysis of areal N uptake and primary productivity. 

Seasonal variations in nutrient cycling and carbon biogeochemistry that occur 

today could be amplified in the future as sea level rises, water temperature increases, pH 

decreases, storm events increase in intensity, and rainfall is increasingly delivered in 

sporadic but high intensity events interspersed with dry periods. Knowing how the 

region reacts during high flow periods is essential to our understanding of what will 

happen if those high flow periods become more frequent and/or prolonged. For example, 

in the plume region alone, I showed that high intensity freshwater flow events could 

result in large discharges of nutrients, and particulate matter, but not necessarily high 

productivity. However, it is possible that if a drought situation were to occur following a 

high discharge event, those nutrients could be made available for productivity in the 

vicinity of the plume or further downstream, moving the effects of the Chesapeake Bay 

plume further into the coastal ocean. 

FUTURE DIRECTIONS 

This study was limited to the water column and there are significant 

sediment/water interactions, atmosphere/surface water interactions, and small-scale 

physical processes occurring that were not addressed in this study. 

Based on results from this study, future research might be focused on the 

following questions: 

1. What will be the overall N budget balance given current and projected 

scenarios? Will oversaturation of N in sediments occur, thus releasing 
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N into the water column? Or, will primary productivity increase 

organic rain to the sediments thereby stimulating denitrification? 

2. Can the MAB be maintained as a C sink if N inputs continue to 

escalate; can denitrirfication keep up? Or, could the MAB become 

more of a C sink if primary productivity increases due to eutrophication 

and denitrification rates are maintained? 

It is an unfortunate reality that everything cannot be sampled everywhere, all the 

time. Based on our data limitations, it is still important to ascertain as best we can a 

range of plausible scenarios so that we can understand all aligned processes and project 

into the future. Satellite remote sensing efforts require ground-truthing and it is clear that 

the relationships between primary productivity and remotely sensed parameters are not 

always related in a predictable fashion. The body of research presented in this 

dissertation substantially advances our current understanding of N and C cycling in the 

MAB and 3 hydrographic provinces therein; areas heavily impacted by climate change, 

global warming, and human interactions. 
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Appendix Table A.6. Pearon's product moment correlation for all parameters in the plume. R = regression 
coefficient, p < 0.05 is significant, and n = sample number. 
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Appendix Table 6. Continued. 

214 

HCOVdsi ty HCO3 C h l a o o r o n l a s d 

0»i>iL"'<rSi ^moijtechr1<rL) 
WH4+ YotlflKliic i NO;" Yolunul i ie : WOi'yolunwtiic i U n a v a h u n i l r i c : D F A A N • t C b l a n c n n i l i u d D F A A N Chi s n o n M f a t d ; TN CI 

(pn.mi'lt. j (/tmnll.'h'') : (fimol^g rM^h'1) : frmfllftgchf'h'^ i QMHalftgchr'h'1) Qrma\fl£chr1til) ^aol^gchf'h'^) ; fltmolftgchr'h'1) 

9-33S. 

O.O0007S3 

0 3 5 4 

aoaaios 

-0363 

p : M M J 7 

0331 

1 0100123 

11} 

Q.Q9M 

0 3 8 9 

115 

41.396 

0.00001 id 

: . . . u s . . . 

-0.36 

0.000076 

113 

-0.333 

} 0000347 

0 3 3 8 

0.000086 

115 

0.0732 

115 

-D.Q369 

0.S46 

.. Hi 

BOSH 

0 5 3 8 

111 

D.0617 

o^i: 

0 2 5 4 

0.00612 

115 

-0.0334 

0.733 

113 

-0113 

0.228 

..M.? . . .j 

-0.141 

0.131 

115 

-D 103 

0.274 

...41.371 

0.00353 

-0.243 

0.00933 

. . . 4 U « 5 . . . . 

0.0355 

41377 

0DC273 

. . .00721. 

0444 

0 3 4 ? 

0.000138 

JIJ07 

OHOOOIM 

41.561 

6O0E11 

-0373 

00100407 

...4)11533 

0.571 

-0 455 

0.000000233 

.41.282 

0.00223 

-0258 

000531 

4 3 J H 

....fl-l*7..... 

00458 

4 U 1 2 

0.00000428 

4?" 

41.343 

0.000177 

. . -0397 

pnoiir 

4)0312. 

0.763 

-0.103 

0.278 

-0JM05 

0 J 9 2 0.J44 

-0356 

0.0QM3 

-0.133 

0.133 

....41.232 

D 00213 

410332 

0.708 

-0.146 

0.12 

l » 

-Q.I 13 

0.172 

111. 

-0.173 

0Q661 

115 

0.123 

0 3 0 8 

0.418 

000000327 

115 

-0328 

0.0143 

113 

•0.098S 

0 3 9 4 

Hi 

11.0801 

0.413 

OJK59 

0.3*1 

115 

0.1 M 

0,179 

" ? . . X 

-0.209 

0.D24B 

115 

-0.00091S • 

0 3 9 3 

41.118 

0.212 

. . . i w . 

413 

0.0328 
114... 

fllTl" 

0MW 
114 

0.0912 

0.352 

0JK89 

0.532 

-0331 
0.0132 

-0137 

D.0I0B 

-0352 

0.00639 

.....4204.... 

PJE8J.. 

4UM17 

OHiS 

-0319 

0000482 

-0.115 

0 1 8 1 

-POOT7 

0.J18 

....J-.'.l... 

-0.193 

0D3OT 

0.0228 

0.814 

-0.218 

0D185 

•0.276 

000271 

-0305 

000087 

-0.223 

0 0 1 4 3 

DDC34 

DJ1J 

...ppaM . 
0.374 

...PPM... 
0.334... 

0.191 

Q.Q397 

.-0.196 

QP354 

4J.111 

-0O56 

0.551 

•0.317 

DO00364 

115 

0.167 

0.0738 

115 

0 3 7 3 

00100425 

41.0976 

0.299 

115 

-00474 

0.615 

m 

Q342 

0.00905 

-0.133 

0.158 

114 

4] 131 

0.166 

114 

- 0 . 0 0 5 3 

0.936 

41.0876 

0.352 

0.314 

DOQ0432 

0 292 

0.00134 

0.583 

7.73E.12 

. 0 2 4 9 

0.00749 

0.38R 

DO000203 

0.3E3 

0.0000256 

0.313 

.0.000708. 

. . . 0 .236 . . 

0.011 

0.394 

DO000131 

0.569 

3.24E-11 

0547 

.3.055.10 

0.507 

2.26E-12 

•0.186 

0O437 

•0 267 

0O0376 

O S S 

1.58E-34 

0 3 5 3 

000636 

-PB137 

0.8S4 

0 , 7 6 3 . . . 

4 3 6 E 3 3 

0 3 4 3 

... 0-000171 

41.179 

0.0545 

O.I« 

4)236 

0ODJ61 

•0313 

0.0216 

41.0761 

0.417 

116 

0 3 4 8 

0.00731 

116 

0 3 8 7 

0DOOO191 

115 

0 3 9 5 

000137 

115 

0 3 3 8 

0.0141 

0.OD369 

0.P6B 

0471 

9.37E4B 

116 

D.4S9 

1.922JS 
ii5 

0.231 

0.0129 

>\> 
0.244 

D.00S64 

41.0181 

0.847 

fl.4» 

1.17E-08 . 

0.766 

10013 

0 3 4 2 

. .3-82E-.1Q..., 

0.622 

].43JL-?a 

0.155 

00913 

0 S 4 J 

1.85E-32 

0 3 6 8 

0 0 X 0 3 3 2 

0.444 

l.OOOOOOSg 

115 

0 1 3 7 

5.95E-10 

115 

0.S94 

159E-12 

116. 

ou 
4.53E.10 

113 

0.738 

3.48E-21 

116 

0 3 0 6 

6.92E4P 

116 

0.377 

000272 

113 

064S 

3.63E-13 

116 

0 6 6 7 

287E-16 

116 

0.423 

000000238 

116 

0 4 1 7 

O.0D0GO35S 

113 

0 6 1 4 

235E-13 

116 . 

0341 

3.5E.10 
116 

0431 

0000000383 
116 

0398 

o.pawpnss 

0498 
LmOS 

113 

0938 

103E-63 
116 

0.733 

835E.21 
116 

0.773 

1.74E-24 
lie 

0.795 

1.741.26 



a 
o 

13 
i -

Q 
in" 
o 
d 

<U 

• f i T . 

.S3 ° 

^ • • • 

l o 
rS <N" 

^ q 
fi .. 
.2 '" 
ooO 

of in" 

!§ 
in j * 

"c3 z 

o 
9 u 

o § 
<-> — 

-a J 

•< .2 
PH -9 
Q -2 

O o 
Z fi 

Z A 

i 2? 
o u 
CN «* 

Si 
S is " i 

a- *EG 
<C S o 

5 
Q 

Z 
o 
Q 

z 
3 
PH 

Q 

z 
uS 
U 

5 

m 

O 
z 

' <N 

o 
z 

+ 
K 
£H 

£ 
& 
Q 

+/
-

r ^ 

1 i w 

+/
-

^\ 
•7 
hJ 

"3 1 
w 

• 

>* + 
/ ^v 

• - i 

10
IL

 

S 
3 . 

^ 

"/+ 

^ 

ll 
,__, O 

e 
3. 

"/+ 

."—N 

LJ 

"3 
e 3 

+/
-

^^ 

ii 
*o 

i 3 . 

^̂  

+/
-

/-_̂  
J 

2 
6 3 

w 

a 
o 
5b <U 

oi 

/"••s 

£ 

<L> 
+ J 

m 
Q 

O O O O O ^ H O r o O O O O O ^ H — ' O O O O O O ^ O ^ O O 
© © © © © © d o d o d o d o d o d © © © © © © fi © © 

© tN in r^ oo oo o 
M H N H C\l i f 

{ N O o o O N f O i n c - i i n v o m i n i n c N v o o o c N i n r -

• * T T 

< s v o i n o \ v o © T j - T t t ~ 
0 © 0 © 0 - M © r o © 

© © O ^ ^ H © 0 © t > — i <N m o ^ q rt 
(S ^H m © 

t ^ c « - > { N r O 0 O i n o 0 { N r ~ > n 
- < f r © 0 0 t ^ © f N t - - O \ < ^ t ^ r < " > t ^ © © 0 0 c o 
t - ~ r ^ c < i i n © t - - ^ 0 { N i n o \ i n o \ C T \ r f ' a \ o o CT\tNr<->in"si-r<"}©''1-in^Ororo<Nror<->Os^Oint--©'-'-*aNinfN(N 

o o ^ O i o ^ H i n t - ~ - ^ o - H V O r n - ^ f ' - H © ( N m ' - i v O © r r ( N c S t N ' ^ l - r t - © ' - i 
O O O O O O 0 0 O » - < C > O O O © C N ^ © © © © © © © © © © 

^ 0\ in ^r vo 
cs m -^ ^r wi 
© © © © © 

© © © o \ m > - i m > r i ' n © o \ o © ( N r ~ © r - T r \ o c N r o 
r ~ r - ^ O f N c s ' ^ - T r ' - < ' - i v o < s c s < s r n - H t S ' - H c s — g t s - H 
© r t © d © d © © © © © © © © © © © © © © © 

© © © © © © ^ © ^ © © © ^ © ^ J O ^ J © © © C O © © © © 
© © 0 © d © 0 © 3 © © © . £ . © . £ i © r j © © © © © © © © © 

^ £ ) 0 \ r - t N » - i ^ i - r O ' - i © o \ o o © ' a o \ ' a l o ' T 3 © v o v c > o © t ^ © ' ^ r © 

© © © d d © d © d © © © ^ j © 4 3 © ^ © © © © © © © © © 

© © 0 © 0 © © © © © C ) © © © © © © © © © © ^ © ^ 3 © © 
o d d © © © © © © © © © © © © © © © © © © © © fid© 

v£>©Tt-Tj-ooooooiri©t^oot--o>©r-->no\(Ninr-ir-H'^-ooa\r<-)io 

' f N c N ' - H c s d d d o d d d d d d d d 

© © © © © © © © J J J J © 0 © © J J © © J J © © © © © ^ 3 © © 
c>c5d>did>c5c>c5ji^(5ciod>x,z5ojio<DOGd> fid© 

o o o o u - i t ^ \ O ^ O V O O O i 3 T 3 0 0 f ^ > r ) m i 3 f N O O T 3 V O \ 0 ( ~ - C T \ © v O t S r -
T - H T - H T - H T — < 0 0 0 0 • ^ O C ^ O * " H ' Q © ' © I - H T — I T - H T — I T — I © © 

> — i — i c S ' ^ - i n ^ ( N r o v o n - < 5 v o r < - i t s o > r O ' — H N P I H N ^ i r o c s - n 
© © © © © O O m © © © © © © © © © © © © © © © © © © 
d d d © © d © d © d © d © d d d d d d © d © d d d d 

* O M , « ^ f t ' « a o o m M O O o o i ) o « N T t i n » * N o O H i f l 
t ^ ( ^ r ~ - o o o o o o © o \ © o m - H r o c ~ - o o o o o o © r ~ r - ~ © o o o o r ~ o o o o 
d d d d d d — J d — I ^ ^ ^ - H ' ^ d d d ^ d d ^ d d d d d 

00 
r̂ © q _ © q c q c q c q © 0 ^ © ^ © © © © © VO 

^ S N ^ N ^ N ^ N O O N ^ 

© o o © © © © © © © © 
© © © © © © o o © © © 

© © © © O O © ^ ^ ^ ^ 

in u-i ui ir> 
© O O O 
O O O © 
N N N M 

© 
© 

© © 

^ t ^ * t ^ 

in 
© 
© 

f -

in in 
© © 
JN JS 

<N JN 
r~ r~ r- r-



t—I 

T> 
u 
a 
.9 
- 4 — 1 

o 
O 

,__; 
oa 
JH 

3 a 
H 
S 
-3 
a 4) 
P. P-

<: 

-/+ 

^̂  

D
IN

 
m

ol
 L

" 
a 

w 

. 1 

+ 
/—•* 

fc ^ 
O -3 
Q S 

i S*~"/ 
1 

. / " " S 

Z T . 

A
A

 
io

lL
 

ft. S 
Q 3 

+ 
• — • . 

Z T J 
CS t - j 
<u o 

* l ̂
~̂  
1 

/_N 

• r , ^ > 

2 "3 
£ a 

a 
" • — ' 

^ 
^̂  

• ^ 

9 "3 
fc a 

a 
~-^ 

i 

^̂  
+ * * - > 

§ 1 
3 

o 

'§> 
(2 

£ ^ 
&a 
Q w 

ca 
Q 

O O p O O ^ ^ O O O O X J o — O - H O O O O - H O 

0 0 0 0 0 0 0 0 0 0 0 ^ o o o o o o o o ' d o o 
O -3" O <N <S 

o ^ o o o o o o o 

o vo vo t-» w-i m 
>-• o >-i cs m <-i 

H 00 h Tf « 
t-i <r> — i ,-H — < 

© • 3 " © f t c ^ f t m - * o o f N r r v © t ^ , o © f t o o 

rtoooo'o'o'o'oooofsoooo 

• H « rt M r - i V D f t - ^ - f ^ t 3 - © _ ; © r ^ o O f t T f 
o o * o — < < N i o f t m ^ o o o o , < * ™ r < - ) ' - H O O - H O O 
C S c S r n o O > 0 < S — n r o r n r n C © © ^H © -H 

< N o o r > - ) © f t i O " * o o © T t - c s 
© t - i O f S O O O m t - i O O 
o d o ' ^ d o ' o o o o ' d 

ft M -< 
/> ft in 

t-H 00 Tf 
ft <—i r-

lO N H ^ tf | O 
^H ^H -H « , - , (N 

ft vo ir> ts r- <~, 
o <N rn vq q 2 

00 ^ OO « « N t> 
^H ° ° ^ ^ M (N (N <* 2 

ft ft 
00 O » | ; g " M I O Ifl N 

t « 00 O 
i—I t—I t—I CS] ̂ f m • * ^t 

o o 
ft m 
00 ft 

_,: oo —i 
' H n 

0 < - < < - i ( S ^ t ' r o O C S i - < ( S ' - i ( S ^ t ' - i O r o < - i ' ^ ' ' - < ^ > 0 ( S ( S < - | O V O m ' 4 ' 
o o o o ^ t - o o o o o o o o o o c s o o o o o o o o o o o o 

• < r m ' - i ' n ' - - i t s o m ^ t m T j - r O ' - i , O T r ' - i T t ' - H m i O ' — o o o t ~ ~ t - ~ o o o T j -

• r t r o m o f t O — ' ' o O m - ^ t ^ - H ^ H C S O ' - i - - C N r r i 0 0 t M P - ) O f N \ 0 - H O 
J j O O O O — I O O O O O O O O O O O O O O O O O O O O O O 

T ) O t »1 " l O f t O O O O O O O 
> _ j ^ H ^ - < r n ( N ^ H ^ H > - l ' - H ^ H ' - l O < — I 

_o d © d —I 

< - H < r > v o f t r - . ^ - o \ i - 4 v o f t ' - i > o t s v o > r > 
' - i ' — i f S O t N ' - i f N r - i T - < o m ^ ^ r o m ' - i 

d d d d d d d d d d d d d d d d d d d o d d © 

o o o o o - - < ^ o o o o ^ ! o ^ ~ ~ " " ~ CN P- U~i Tf •<*• (S 

o o o o o o o o o o o 
, j ^ j q j 

S00,£J,£J,£J0-£5 

.._.— ,. . N m N H o o o o o o o o o 
o o o o o o o o o 

o|otNoor~'-ir~-(N^j-r^o>oftoox)T3i3tv|i3,:i" r o r o m m r o r o f S t ^ f < i ( S m ' - ; O O ^ j ^ ; _ j O ^ O 
m m > t f t » i O f t N 
m t N O O O O O ' - i 

(N © © O © 

O O O O ^ O O O O O O O O ^ H O - - < O O O O O O O O O O O O 

O O N f t f t ' r i f t l O l f l f t H M T t N N ^ N M H N m t S o O r t i o i f l O f t m 
o o o o o o o o o " — ' O O ' — i ' — i i — i t — i i — i r - < > — i > — " » - i t S ' — i c s O ' — i o q 
d d d d j i d d o o d o d d d d d d d d d d d d d d d d d 

tSTj-^Hro-H<S^-<^Ht-ifSr^rtv£)'S-TrrnmCNrOCS ,^-tNCSCN'=tOOt-i 
O O O O O O O O O O O O O O O O O O O O O O O O O ^ O O 

<STtu-iO«5roooOTfvoOftroO ln'^-vO'-iftt-ir~--^-'-icNin^-t-.-5j-
r^vOt^00ftr--r^00r^t^00t-i^Trr^rorn-^-rorocororo-^-r<i'5frnrt _) 

d o d d d d d d d d d « d d d d d d d d d d d d d d d d 

p vo © 
N h N 

O 00 O (N 

<s £ <N ~ fs jq d t—i t—i ^^ t—i ^ t—i CN * ^ t—i 

ft « O P 
O f j (O 
I S ^ fS 

^ K i i n v ) i f i i f i » i i n i ( i i ^ ^ « ^ « i i o « ^ i o « « i f i « i o i o < i i < ! * O O O O 
O O O O 

O © O Q 
O O O O © © © © © © 

© O O © © O 8 o o o © © o © o 
© © o © 

t ^ f ^ O ^ M f t f t f t f t f t f t o S ^ ^ i t - l ^ i ^ H ^ H ^ H ^ H © © © © © © ^ ^ 
^ Q ^ ^ ^ ^ ^ ^ ^ M ^ ^ ^ ^ ^ ^ ^ ^ H ^ I ^ - ^ H ^ I ^ H ^ I ^ I ^ - ^ I ^ I 



tN 

•d 
m a 
.a el o 
U 
^ 

3 CO 
H 
X 
•3 
« o. 
a << 

-/+ 

/—s 

D
IN

 
m

ol
 L

" 
a 
^ 

+ 

s 

* ^ 
O "o 
Q S 

a 
1 • 

^ 

£ " , 

5i fc S 
Q 3 

i 

+ 

.̂̂  

zL tS —1 
<D O 

5 | 
"""̂  
, 1 

+ 
/—S 

• m " i j 
9 "3 
* a 

a s—' 
i 

+: 
^̂  

• N t j 
2 "3 
£ § 

zl 
'^-' 

^ 

^ 
+ / ^ 

§1 
a 

c o 
•5b 

Pi 

Q ^ 

-t-» 
03 

Q 

o o ^ o o o p o o o o o o o p p o p p p p p p p p p p - H 
o o o o o o o o o o o o o o o o o o o o o o o o o o o o 

o\ oo in o\ <-< o r-
t t m vi t m t 

oo CT\ t— •—i y—i in \© _ . - _ O in —i ^o o> oo Tf m -̂ l- oo ^H o "O vo 
i n ^ ^ i n i n v o ^ ^ i n i n ^ ^ T t v q ^ O i n i n i n o \ > n r o 

o o o o o o o o o o o o o o o o o o o o o o o o o o o o 

t ~ ~ v o i n i n O ' ^ - m r s o \ o o — i o \ o o ^ H t ^ i n - ! f o o > o > o — i ^ o o o o o o c s f S ^ o 

> - < o o o ' o o ' o ' o o ' o o d ^ ^ H ' ' - ^ ^ o o ' o ^ o ' ^ o o — < o o o 

\o - N 't >0 -i N 

n ci i; oo H q ^ 
ol « * S m fi s 
H H tS H N M l 

«. a 
,_ >n ,_ 
t-- °1 ro 
<* 2 oo 

m tN 
<N t~; o 

t - ON t-- • - < - H f S 0 \ - H 0 0 0 N T t P - O 
o j » o o o o q o j o \ q > p H t « . H \ q 
i n t ^ i n o d r ^ T t - T t i n ' i n ^ d i n t N f o 

o o m o i n c N ^ t N o r - ^ - ^ r ^ o ^ ^ o 
o o o o o o ^ o o o t s o o o 
o o d o d d d d d d d o o o o o ' o d o ' o o o o o o 

r r v o t ^ < N m c N t s o r - ~ 
© - n r o . - ' - H C N O v O O 

O A 'O H 

d d d 

r - ^ H V o i n - ' d - r - ~ < N ^ © a \ c s a - \ t ^ c N ^ o m ^ o ^ © \o TJ-

d d o o o d o o o d o 

- < v © • * • * 
»-H t N I-* I-* 

m to tN 
-H ^H fN 

0 ^ * 0 0 0 0 0 0 0 0 
d d d d d d d d o d o 

~ — _ P P - J P P P P P . - 4 P P P -J P -J P P P 
d ^ j d o d o d ^ d o d ^ i d ^ d o d 

t^aNmo\vDo\t^csoo(Nioom-doso\m ,^-mn3ts^om'do >>'dO TJ' Ti' 
« H N H N ' t H N H H H H r j O N N N H _ ; H H N j O H ' O H « 
< 6 < d S c i S o d > & c > S o o ^ o o d > o d > ^ d > o & j £ o £ c i o o 

o o j ^ o o o o o o o o o o o o o o o o j j o o o o o o o ^ -
d d , d d d d d d d d d d d d d d d d d , £ i d d d d d d d d 

> — ' 0 \ > a o o o o t s r < i > n ^ - c s c ~ " s r « S t s o o o o > n ^ - c < ) > r t - H > n o o o \ 0 0 | 0 ^ ' 
— i o j j o p o p o p o p p ^ p p p p p p j j ^ ^ o o » - ! c s ^ o o 
d d ^ d d d d d d d d d d d d d d d d O O O O O O O - H 

O m C T N C N O " — i O O ' - , O C N r O O O O t N ' — I > - H > — i r O ' - i t N C S - H r - . ^ ^ O - H 
o o p o p o p o p p p p p p p p p p p p p p p p p p p p 
d d d d d d d d d d d d d d d d d d d d d d d d d d d d 

o o o o o \ ' * t o O f < i r o c n r O ' - ' r - i n r o v O f N f N i n f N o o i n ^ o O N f N o o i n i n . - ' 
O T - H C N » — l O l - * * — I t — 1 » — I T — I ^ H T — I *—I T—I »-H ,—I —H »—I —H ^H •—I ^H , O *—' O C I O tN 

d d d d d d d d d d d d d d d d d d d d d d d d d d d d 

- H t s r o m " — i m i n t s t s o o r o f S C M t s m p ^ m ' - i ^ t ^ H O m f N 
O O O O O O O O O O O O O O O O O O O O 

_ . . - . m tN <-< >-i 
o o o o o o o o 

o o o o o o o o o o o o o o o o o o o o o o o o o o o o 

00\'*fS<^CJ\'-iO\fSm'^-OootN ,>Oin'^-oino\r~rooor~roinin-H 

d d d d d d d d d d d d d d d d d d d d d d d d d d d d 

S S S 2 S S ^ P H P H P H P H P H P H P H P H P H P H P H P H P H ^ C « & 0 O 0 C « V 3 & O O O 

o o 
tN ON 

p p p p 
tN i n CN i n 

i n X p i n p o p p p p p 1 - ; p " - ; 
^ - 4 < ^ ( s i i n ' t N V O r v J i n r s i ^ r i r N J < ^ r s i ' 5 t tN in tN VO tN S ^ 

P o 

N0 N© ^O V© SO NO 
o o o o o o 
o o o o o o o o o o o o o o o o o o o o o o o o o o o o 

o o o o o o o o o o o o o o o o o o o o o o 

in in in in in m inininmc^t^c~~t^c^t^r^t^t~'C~~f^t~~r~-r-r~~t--r~-r~-



to to 
O Q 
O © 
ON ON 

to to 
o o o o ON ON 

© © 

to to 
o o 
© © 
ON as 

to 

b 

to 

© 

to 

b 

© © 

to" to 
o o 
o © 
ON ON 

ui to 

b b 

5 o 

to to 
© © 
© © 
ON ON 

Ul tO 

b © 

© © 

to to 
© o 
© © 
ON ON 

ON to 

b © 

© ©_ 

to~ to 
© o 
© © 
ON ON 

ON to 

b b 

©_ 5 
H-1 I—* 

to to 
© © 
© © 
ON ON 

totototototototototototo 

888 
o o 
© © 8888 ONONONONONONONONONONONON 

ON to 

b b 
to 
© ^ u ^ SI^SN 

<=> b ° b ° "© ° 
to (3 to 

NO 

© H- © 
U> ^ Ui 
00 00 >-» tO 

©0©©p©©H-© 
<tvOlfe.tOtOON4i.lfibo 

© © to i— -~1 Ul i-» ON O ~J 

*- © pppppppppppp© 
^U)'towwL»jL<ol(JOjU>U)i>jL>j 

re 

5' 

I r 
PPP©0©00©©©0©©©©©©©©©©©©©©©© 

bbbbbbbbbbbb'H-bbbbbbbbbbbbbbb 

© 

to 
© 

to 
p 

© p © 
a i*i ^ 
Ul W Ul 

© p © p p p p 
to i-t >-i OJ !u to '.u 
O U> H- ON 00 ON NO 

P P © P © 
w * b H ui H I- btopb 
WJi«tJVOv)«tOOOO* 

0©©©0©0©©© 

©'>--© •*- © 
0O vl 4i W vl 

©©©©©©©©pppppppppppppppppppp 

© © © 

U) OJ Ji. 

©^©©©©OOOPPPPPOPOPPOPPPPP 
tOtOUlH-'h-^VOONW^ONO^OJJi.H-'H-OH-pf— K-H-H^H-© 

?"©©©© © © © © © o © 

>r © to 
O-. oo N© 

©©©©©©•—ptopppppp'p' 

WMi>l-wwiklouiiouil)ui»i-bri!'b>-
,

bbbb'o 
>-Jk0ON00UJI!0UiftlO(!09ii-'UWJip.ftU)MO\JivJ0\W 

p*©©©©©©©©©©©©©©©©©©?*?*©©©©©©© 

iTboobbb© 
&MkJkJMMKJl-

r-p©H-H-©p^-i— too^pto©©©©©-"" 
^lOJVOONONONOOVOl-'Ujp. 

© © o © ppppppppppp"ppp 
OJtO~JUlH-©NO©ONONUiH-tOONQ--OUlUl 

©cr'©p'p*p*©a*©(X 

©©©©©©©©©© 

©©©©©©©©© © >— 

©©©©p"©©©©?"© 
© © b 
ON tO Ul 

cr a* 
©©©•©©©©•©••• ^ • — • 
© NO to 

p" p p" p 

© b* b 

© © © © © © © 
OJ to -p». ~ 
•-» H-. tO NO 

©ppppppopo OPPPOPOPPOO 
© b !-» I— •— 

4k \0 -J OJ UJ 
U>H— NOtOUlLOtOCNi-'00--J 

© I—* h-•* I—* 
^J W 00 -J oo >— ON 

PPOPPPy P P (3 PPPPPPPPPPPPPPPPP© 
©'H-Q.©b©b©©

-
>->bbbbbwb^-bi— b 

J*.©-©-0U>tOpl>J|O-4N0-fe.N00JNONOtO00©4*. 

O O 4i O O O a 
oo NO •- ON UI -J • 

© P 

Ul p 

00 
1—* 

-o. 
to to 

- £ 
3 o-

I—* 

Ul 
~4 

t—* 
-tk, -J 

b 
Ul 

NO 

to 

I—* 

ON 
P 

00 P 
Ui U> 

© © OJ © © 

^^.UipNUiUiUiUlUJOOtO 

•uIoui!oiob\k)wb' 
^OOUvJIOJkWOOjivl 

*. »— to 
bo to bo to 
tO ON H- Ji. 

©©©©©0©0©©i-'Oi->©PP I—* H- I—* p p 

NO ON NO ON 
to -J NO ^J 

•|kQ,lOMHUi(OUlWM(Oi-'H-JiiUit«OOlfiH 
^•0<k-J*OWWM\OWMJkl/UlJi«WWOlO 

Ul Ui Ul 
OJ -O U) 

© © tO I—» >—'•—*©© 1—* 
ON

:
-j^.L)bN>-'4i.

:
-ji>J 

tOON-t^ONPUlONP 

H-tOtOU>;|i.>-'_H-'>-'PPpP©p©P©p© 
itkbiiobHOH'-j'uil/ilkOi'jkiiiiUiJiuiii 

0\NWHMM»Ui»s)WOJksl0\«4ivlSS« 

PPPPPOPOP© ©©©©©©pppppppppppp 
bbb'-'kii-'bi-'M to b u> i-> to ©>-'i->b'pbbbbbbbbb 
0\00>OJkJkOMJilA(»\OOsl(»*O^ON4kW^NW^^wNW 

3.-8 

I 
I H p 
a* 

CO 

18 

IS 0 ft 

rp a 

la ~2 

to 

oo 



SgOOOOOOOOOOOO 
Q^ Q^ 0\ Q\ 0\ 0\ &\ G\ Q\ 0\ 0\ &\ G\ 0\ 

^^^^o^o^o^w!
0
^^ 

oo0o0o0o0o0o^,o 

s s s 
(fl M Cfl 

2 S S 
VI V) VI 

CO » Wl W W M 
GO 00 do 00 00 GO 

00 &0 
00 00 

CD 
era 
o' 
3 

p o p o 
\© bo o © 
« ON ^1 ^1 

©00000000 

iToo*-©oo^j LO H-> 

©O©©?'©©©©©©©©© 
O^-OO 57* OOO OOOO OO 
0\0>-'i-ip«Oi-'S>U)i-«i-'~J^U> 

OOOOOOOOOOOOOO 

OOOO3 OOOOOOOOO 
00000,000000000 O -J O O i-'OOOJNJNJOOS> 

©©©©OP*U>000>->p* 

o ui ui o r 
Ikl Ji iO B. 

j^ _- i-» o 
Lfi CT> Oi 00 o ft ^ a 

© © © © p P*©©©©©?"©?* 
© © K) © CL 
V0 VO © VO • a. 

© © © H- -
-j vj o\ a ft 

pppppppppppp 
io io !u i io io k) k) w k) io ' 
O vl A N) >C M N)Os^4^SJ 

P* O 
b Jr* >— ji. p. ~j 

000000 
© © © b © b o b © 

000000 
bob 
•H- 4*. W 

P* o 
x* b P- 4^ 

OOOOOOOOOOOOOO 
M !-• !(k M M io k) U k) IO W H Hi H 
oowjiHai«ONffiW*ouiMi» 

OOOOOOOOOOOOOO 
bbbbbbb^'H-c>H-ooH^ 
OJH-'OVOOUIOJI-'NJH-4^H-'^-S> 

VO -~l O 
k. lO U W U 

ffi * -J 4̂ a 

-
1
 © 

UlN«5g;S)«WH 

H- o p o p 
b w w u a 
<l OS 00 s© • 

(OH-OOOOH-OO 

b\bu)0J^jwH-LnH^ 
OOSO-t*.<>)CS--JSOOs^ 

NJH-popou>opo>— os>o 
Hvobovikji-'boiiiukjbobobJi OJH--jOJ4^(>Joo>-'U>oo^U)0<-n 

00003 ppppppppp 
H-H-KJOQ^OOOOOOH-© 

•a 

H 

w 

1* 2. O 

3 x £• O 
1-1 -, 

O <T> 
H- p 

1§ 

"P 

B ° 
£. O 

Co 



o 
CN 
CN 

M 

en 

'© 

ia
tio

n 
A

A
:C

 

£ to 
•s?. T3 in" 
S ® 

•a © 

C/3 14 

• D 
•£3 CN" 

&s -6 ° 
"2 ''« 
go 
rfZ 
£ «N 
•3 P 

„ O 

a-v, .2 O 
£?Z 
|H • •> 

r. *T) 

1§ 
' * + • • 
5 * 
w ffi »—i ^ 

cj O 
fa 0 

»o o 
OT O 
d ta 
o « 
S;8 
^ o 

o a u <o 

fr& 
;i * 73 5 

d
al

k 
=

 b
e 

d TS 
«a j 

o-6 
M .-f Q ^ 

"•2 
+ a) 
O '3 
w g 

J , <3 

O T3 
o* o 
VO 13 

Si CN T 3 

I d 
m 

8 N 
<N II 

eB
.2

. 
so

fn
 

,—i D 
-Q oo 
03 c3 

X >• 
^ «s 
d O 

A
pp

ei
 

ne
xt

t 

^ i 

+ 

1" 
J cd 

< 

• 

^ 

u h-1 

Q 

+ 

+ - H-l 

9 "3 
w S 

**•»*' 

I 

+• 

rrj H—1 
* * •—1 

OH g 
3. 

d 

'5b 
<L> 

Qi 

•3 ^ 

Q 

5 C3 

Q 

« - I O ! - I « S O \ < - ! V O ^ I ^ C S ) O O 

o o o o o o o o o o o 
d d d o d d d d d o o 

c N e n T | - c N i n e N e n r ^ c N © C ~ -

O ' - H ' - H O ' — i C S O r o 
o o o o o o o o 
d d d d d d d d 

* - H r — i O O © * — ' © © » — < 

o o o o o o o o o 

r- I-H t~- oo (N in © 
<-H CN O O T-I *-i O 

<N 00 t~- ON T(-

« oo o, a oo 
N r t r H r t N r t ( S N ( S M N N ( N N ( S ( S M ( N M 

• * r-~ m \o r-
oo p ON © © 
*-< CN I-H CS CN 

p p p p p p p p p p p 
d © d © © © © © © © © 

* - * N © r N r ^ N © C N V O C N © i n © 
O N ' T l t - ^ l ' - l O O N O O N O O O N O N 

CN CN —i ^ O »-H <-< >-H O >-" © •**• -*t —H - H © © 
© © © o o o o o o o o o o o o o o 
© d d © d d d d © d d d d d d d d 

• ^ • e n o v o t ^ O N C N o o i n ^ i n i n t n e N e n - H r -

O N O N O N o o o N O N O o o N r - o o o o f - ^ t - ^ o r ^ O N O o CN 

© 

o 

ON 

o 
o 

© 

© 

© 

© 

CN 
CN 

© 

© 

© 

O N 
© 

© 

*—1 

© 

© 
© 
© 

© 

© 

r--

© 

^ 
© 

ON in oo vo in O 
r- >o in en r-- ON 
d o d o d d d © © 

en o en >o >-> 
CN ON ON CN en 

H ^ \ O M N M » l H ( ( l ( f ) O T J m i n N C l N 
- H O O O O r - H O O O O O J j O O O O O 

O O N ( N O C S O N O N < - i V 0 0 0 i n - r ) 0 0 U - i © < N O N 

^ ^ © © © © © © N O - ^ ' c O r j o d © © © © 

© - H ( N © © © © © - H © ^ H 
© © © © © © © O O O O 
© © © © © © © © © © © © © © 

• H O O O O ^ i f l O j 
© O O O O O j j © ^ 

d d d d d d d d d d d f i d d 

* — H ^ H i — < © I - H T — I T — I © 

O O O O O O O O 

o o ~ H r o o o c N o o c N ( N < 5 r ~ o o 

d d d d d d d d d d d 
N H r t O l O i n M N O O N t i O N V O O B O N 

© d d d d d d d d d d d © © ^ © © 

^ ^ ^ ^ ^ ^ ^ ^ ^—A ^ ^ r * ^ ^ ^ r - ^ ^ ^ p 1 ^ ̂ ^ r ^ ^ ^"^ ^ ^ ^*^ 

o -* o © 
CN 

© © © © © 

^S^^^ri'^'^^^^-Q^'^ 
© NO © 

CN 

v~i in in 
© © © 
~ © ~ © © 

ID 
© 
© 
CN 
O 00 — -, -. — 
w m m m M m m 

in in in in ̂ i in m 
© © © © © © © 
- - © © - - -

in 
© 

C N C N C N C N C N C N C N C S C N C N C N C N C N C N C N C N C N 
O O O O O O O ' - i ' — i * - i ' - i ^ ; ^ 3 ^ 3 ^ 3 ^ ; ^ 3 

© © © 
in in m in m 
o o o © o 
" " © " " 

c n r o c c i r n r n c o c n c < i c n r < i c o 
en <ri rn co en 

•>t • * • * T f T f Tj-

i n i n i n i n i n i n i n i n i n i n i n © o o © o o o o o o o o o o o o o o o o o o 
C ^ C N C N C N J ^ C N C N C N C N C N C N 

C N C N C N C N C N J N C N C N C N C N C N 



UlUlUiUlUUlUiUiWUiUllAUlUlUlWU\UlUlWUi^^^s)^Nlvlsl-J 

to 

9003/
 

2.
0 

to 

9003/
 

29
.0
 

to 

9003/
 

2.
0 

to 

9003/
 

9.
0 

to '2
00
6
 

2.
0 

to 

9003/
 

23
.0
 

(si 

9003/
 

2.
0 

o '2
00
6
 

26
.6
 

o 

9003/
 

NO 

o 

9003/
 

17
.7
 

o 

9003/
 

2.
0 

o 

9003/
 

20
.2
 

o 

9003/
 

>—* 

9003/
 

17
.0
 

9003/
 

2.
0 

9003/
 

14
.0
 

9003/
 

2.
0 

'2
00
6
 

16
.0
 

9003/
 

>—* 

9003/
 

12
.0
 

9003/
 

2.
0 

o '2
00
5
 

23
.0
 

o '2
00
5
 

2.
0 

2 2 
00 00 

2 2 
00 00 

2 2 
00 00 

2 2 2 2 
00 00 00 00 

2 2 
oo oo 

2 ^ §5 r 
*0 •TS 

r r 
3 3 3 2 2 r

1
 r r

1
 oo oo 

to to 
NO NO 
to to 
o o o o 

© o 

2 2 
oo oo 

to to to 
NO NO NO 
to to to 
o o o o o o 
Ul Ui Ui 

£ to -j 
ki b bo 

2 2 2 00 00 00 

to to 
NO oo 
to" to 
o o 
o o 

2 M 
00 CO 

oooooooooooooooooooooop*o?*ooooo 
O H- !— O 

w to u\ w 
o •— 
v© H-» 

to>— H-©H^©©©h-©>— ©<-> o *. J" to 
-U H- P- ON 

tO O tO H- H-
O 1>J h-' 00 H-

ooooooooop'op'ooooo ooooooooooooo 
©©©©©©p©©©©©©©©©©©©©©©^© 
OtOtO^-*H-.H-K)OOH-H-H^K)000^00>--^^P-0 C~ o o o © o 

& M W i-i h- W 

ooooooo>— o 00>—*00»—»*-*•*>—»i—> © .[^ >—» to p *-* •—»©•—» oo 
oo Os ON 00 
tO Ji. ON O 

0\*«W10O-J'O^(!lll0UiOWHO'J^UWW\0Ji00WH 

oopooopppopps p 
— — — — — — •-«•••— —Di 

s> o ~ "> •-
N
 -' •- — -~ • - •- -

(3 OOpoOpOpopoppppppp 
poooo-ooooQ,^ooooboooooboooooo 
S\ « N vl « K © K- Ui r" to H- •— OONOOJH-H-tOOtOtOOO^P*. 

ppppppppppppp 
p. p. pi. pi. p. p. p. p. p. p. pi p. p. 

H W W tO to 
H- VO v© OJ O O 
Ui 0\ » U IO vl V© 

00\©000000>©OONOV©VO 

13 P P 3 [3 P P P P P P 0 OpOOpppOpppOppppO 
h. rv rv rv rv rv rv rv rv rv rv ?-i. H^ O to O O O •—* OJ O O O O O Q O O O 

^h"^^t-"i-
u
r'!-

u
^"!-

u
y-"!-"ooi-^--au)<iui(j1ONOPOooo^OH-

appppoppepppp 
p. p. p. p p. p. p. p. p. p. p. p. p. 

ton-toi— to>-*totototo(oboto<otototo 
H-\D»-VO^-VO!— H-oboo"*— O O O '•- dN0©00U>-0©©-0©tO©<_>i00<_*U>00 

p p p p p p p p a p P p p popopppppooppoopo 
i^Q.h-b'Q-f^'^&iii^ixb.Q^bbb'oobowbpppppop© 

i—*>--l>>tOH-tOtOH— ©H-OPOPWK-* H^ 

rD 

5' 
p 

to 
to 



o '5
/2

00
6
 

2.
0 

~j 

9Q
0ZIZI 

16
.0

 

-j '2
/2

00
6

 
2.

0 

-j '2
/2

00
6 

19
.0

 

-j '2
/2

00
6 

2.
0 

--a '2
/2

00
6 

19
.9

 

-j 

900Z
/Z

J 

2.
0 

--a '3
/2

00
6

 
50

.7
 

-j '3
/2

00
6 

2.
0 

-a '3
/2

00
6

 
31

.0
 

-j '3
/2

00
6 

3.
0 

-j '3
/2

00
6 

21
.0

 

-j '3
/2

00
6 

2.
0 

-a '3
/2

00
6 

24
.0

 

-o '3
/2

00
6 

2.
0 

-4 '4
/2

00
6 

10
.0

 

-j '4
/2

00
6 

2.
0 

^i '4
/2

00
6 

6.
0 

-j '4
/2

00
6 

2.
0 

~j '4
/2

00
6 

5.
0 

<i '4
/2

00
6 

2.
0 

>i '4
/2

00
6 

6.
0 

-o '4
/2

00
6 

2.
0 

^i '4
/2

00
6 

5.
5 

-j '4
/2

00
6 

2.
0 

L» <_/! <J\ <J\ U\ 

M N M M N 
to 
O 
O 
OS 

to to 
o o 

o r 
<~h JO 

<Jl © © 

VI VI Vi CO VI 
S 2 vi &o vt 00 VI 00 

www 
VI V> 
V> 00 

h3 ""G *"d 

r
1
 r> r 

13 ^ ^ ^0 

r-
1
 r< r t-

1 i-
1
 r

1 hd hd •tl U 1j 
t-

1
 r t-i 

oooP*oooooooooooooooooooooooooo 
O OJ to r~ 
OJ OS i-» p-

OOOH-OH-OO O H- O >— 
vl l« U M 

o o 
1>J -J 

<Jl I—> 
OKJOOO>--H-H-H-0 
L/l>— OOt-/lOsUJl>J.fcj.L>J^J 

5" P 

1* 

pppfppppp p © © © © 
ooOiT'oooob-O 
©.fc.toO.©^Oto-

oooooooooooooooo 
wbbbobbo'obb'obooboboob 

H-tOtO©H-p^p©pp P'^ppOHMHgwe^po^sippHpp 
^^©I^^U)boto;.1lis«toto©so;-.

-
.£.^-to

:
o.s© 

o f ooooooooo 
'©'*-©©©©©©'©©£*•-

P © B poppopoopoooooooo 
Q,bb^oobMHb\toi-'ubobbbbb 

BBBBBBBBBBBBBB3^.
h-

'!
SJ

.
>
"

-
.

NJ
r"*h

,
^r'r'3B3BB 

(iftjl^jlp.^^^jip.il^p.jljOMOgO^OMjOMiip.p.p.p, 

BBBBBBBBBBBBBBBPPPPPPPP 
o-p-h.b-b.h.&Q.&b-h.fci.h.o.o.bbbb^birprtp 

P P 3 3 3 3 B 
("V pi. pi. Q„, pi • 

BBBBBBBPBBBBBBB t0^tO;--t0^to>-'>-'p^B B 
M!eMOo'M8obM*oba'o, 

BBBBPBBBB3BBB 
p. p. p>. pi. pi p. p. p. p. p. p. p> pi. 

j3 y Oppppppppp 
a.QjH-obobb 
••OOOI-'OI-' 

F
3
 P © © © © Q, Q* 

O l-> >-» H-" • • 

&.&.&. 

a. a. a-

8-

n> 
B 
8* 
X

-

H 
s: 
of 
W 

2. b 

I 

to 
to 
to 



MK:MMMHMMMMK
UWWWWWUIWWWWU 

to ^ 
to SJ 
© o 
o o Os OS 

o o o o o 
w w u w w 

© © © © © © ~J -J ~J -J ~J 
Ul Ul Ul Ul Ul 

to bo 

88 
©s Os 

to to 
o © o o os o\ 

Kl M M M 
O O O O 
o o o o Os Os Os Os 

to to 
O O 
o o 
Os Os 

M N) M K) K) 
O O O O O 
O O O O O 
Os OS 0\ Os Os 

to 

o o •— 
N) Ui W Hi M 

© © © b © 

to to 
o o o o OS Os 

Os to 

b © 

to to 
o o o o Os Os 

OS to 

b b 

to to 
o o o o Os Os 

to to to 
o o o ~ o o 

to to 
o o o o 
Os Os 

Os to 
b b 

tO KJ tO 

o r° u> 
o ° o 

2 » oo v> 
r/i 
i/j 

r/i 
oo 

r/i 
oo 

r/i 
oo 

r/i 
oo 

r/i 
00 

r/i 
oo 

oo 
oo 

c/> 
00 

•fl 

r 
hd 

r 
ns 
r 

hS 

r 
T) 
r 

*X) 

r 
|
-a 
t-

1 
hS 

r 
>v 
r 

*d 
r 

T3 
r 

*d 
r 

-a 
f 

>TS 
t-

1 s s s s g 00 00 00 00 00 

pppppppppppppppppppppppppppppp 
4i©<JlU>tO>-'©i-'>O>-'H-^V0sO*OOit-»itOS0Oi — -JOstOU).fc.OOIO©>—' 

oopoooooopopppppoppppopopopopo 
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 
i—i— OtOh-'tOi-'tOi-'i-'OH-OOIOtOtOtOtOtOi—Ji.tOi-'IOWH-K-H-O 

o' 
13 

I. o 

OWOOOf-"OtOi—'H-WUJ 
Innwaiw^lobtsibo'h-b 
tO0\O00i—-J\0OtO<^<IUlO 

•^£t.^U)U>lyi9s-o; 
ijjk^Hvibwb 

-t- O to o Os oo oo 

00[3^.0JtO^H-tO — 
^LO^UlUliobw 
oJTJvo-uooioooo 

pppppppppp 
'© 'H- — b © '•&• b i>J b — 
vio>ouiooo\jitJa-J 

p © © © © 
to © to i— LJ jik)is)iopltl'vlbpHMMOH 
0\WHUIO\UIUIWWWWWO\0(»I)OUIN\OW 

SPPC3t30pyi3S0C!S rv n. n n. n. n. n. IS. n n. n. n fs. QO 0O SC QO QQ O0 vl -J 00 NJ Q0 00 

H-rrrrrr^r^rrr^sj^woooiviovii- - -
Os SO 

p p p p p 
0^ Q* £L Q* D* 

PPPPPPPPP 
Q* Q• i*v pi- pi. ps. pi. pi. 

0 3 y S3 P> p> <^ p> p? p> C> p5 p5 Os ©5 Os »̂ £ 13 p (3 
rv r>. rs. rs. r*. © Q O © O O © © O © O O ri ri. rs. n. rv 

P3P0t30PI3PPPp3ptotof
J

J
o

to^to^|
—

' ^
-

ab-app*(^p.p-b-PMP-p.p>obbbb^b' 
to to 

00 so 00 b b 
00 00 0\ 1- 00 

P » » S B 
pi pi pi. ps pi 

PP|3f3!3f3PE3PPPBE3pF' ? P !—' F' P* P P F
1
 F'P3 00BS3 

iih.h.b.h.bibib.Q.DiD.tiiioooobobobobob.aQ.Q.h. 
H

u
H'H'H'i-

u
H-!-

u
!

J
'!-

u
!-

u
i-

u
H'!-

u
tvjooh-' — ©Us—'WMOOOO'''-' 

R-i 

g 00 
2. O 

> 

I 

1 

to to 



22
4 

A
pp

en
di

x 
T

ab
le

 B
.2

, C
on

tin
ue

d.
 

D
at

e 
11

/2
/2

00
6 

11
/2

/2
00

6 
11

/2
/2

00
6 

10
/3

0/
20

06
 

10
/3

0/
20

06
 

D
ep

th
 

(m
) 

30
.0

 
2.

0 
27

.0
 

2.
0 

9.
0 

R
eg

io
n 

M
S 

M
S 

M
S 

M
S 

M
S 

P
0 4

3-
(u

m
ol

 L
"1) 

0.
06

 
0.

13
 

0.
11

 
0.

22
 

0.
20

 

+/
-

0.
01

 
0.

00
 

0.
00

 
0.

02
 

0.
02

 

S
iO

/ 
(u

m
ol

 L
"1) 

0.
69

 
1.

90
 

1.
29

 
6.

38
 

4.
18

 

+/
-

0.
03

 
0.

43
 

0.
13

 
0.

26
 

0.
23

 

D
IC

 
n.

d.
 

n.
d.

 
n.

d.
 

n.
d.

 
n.

d.
 

+-
/-

n.
d.

 
n.

d.
 

n.
d.

 
n.

d.
 

n.
d.

 

A
lk

al
in

it
y 

n.
d.

 
n.

d.
 

n.
d.

 
n.

d.
 

n.
d.

 

+
/-

n.
d.

 
n.

d.
 

n.
d.

 
n.

d.
 

n.
d.

 



in 
CN 
CN 

V 

ID > 
03 

M 
§ 

d 
o 

••P 

S 
'> 
T3 

1 
00 

O H 

T3 ^ 

S CN 
w r j 

•O ^ 

rt o o .. 
'5b £ 

§8 

2g 
a-B 
o o 

'•0 £ 

2 -i! 
•g - o 
S "-* 
8 o 
a .-a o a ° S 
S l 

. ii 

S2 

II 
s I 
© ?3 
CN s 
^ o 
« a 
43 T3 

1 3 CN 

U II 

§.£ 
< o 

l - l 

s 

13 
U Od 

a 
'So 

3 ^ 

ro 
© 

Os 
oo 

CN 

o 

oo o 

• J 
O H 

<=> <=> 2 3 
in O . H 
© <o 2 O 

r -
r o 

d 
CN 

r- r-» <N vo r- o 
CN •-! Os O ro oo 
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Ĥ O T- O 

© © © © 
© © ©' © 

. •—' © . O N H O H O 
- t 3 ^ 3 C N ^ ^ - r ) ' r ) 0 © © 0 © 0 
j J © © J j © © © © © © 

© o © o © © © © 

• r t - r t ' — i © * — 1 © © © 0 0 © © © 
^ j © © © © © © « © © © © 

© ' © ' © ' © © © © © ' © ' o ' © 

CN r-~ tN -^t . . 
</"> T—i CN CN -rt -rt 

9 9 <=>. <=>. d d 
© © © © 

VO 00 CN •"" 0 \ 00 ON CN . . _ . . . . 
c n ^ ^ - r t - r t © © © © 
O © _ _ © © © © d d © © © © © © 

_. . - o o v o o o o \ o > - i c o o s o o T t - r ~ 

© o 2 2 © © © © ^ ' - ^ ' - ; © © © © 
© © ' © © ' © © © © _ > © ' © 

i-H i—i CN CN . . "-1 "-1 

© © © © • r t ' r t © © ' - ' ^ 

0 0 0 0 ^ 0 0 d d 
© ' © ' © ' © ' H H © ' © ' R G 

'd ^_ • _ ^_ o © 
—i —i H H © © 
x i x> x i x i © © 

r - l © ^ H © r O ' — I " — ' C I O " — I >—C 

^ ^ © © © © © o © © © © © 
d d 

© © © © o o © © © © © 
© ' © ' © © © © ' © ' © © © © ' 

00 t~- _) t~~ 
4—i © © © *rt -rt 

9 9 9 9 d 1 
© © © © 

cn CN 

© © " " 

_ 13 _ T3 o O „ 
—< H -H H o © 
X> £> Xi Xi © © d d 

. • * j - © o \ c N i r > T r ^ ' - < a N r « i r ~ 
v o o © o o o o o o o o 
© © © © o o © © © © © 

>—i C~- 0 0 _> . . T f CN , , - ^ 
m © © L O ' r t ' T 3 ' ^ t - © - r 3 ' T 3 © 

9 9 9 9 d d c ! ^ d d ^ © © © © M oo w " o 

. ON iO © CN . . © 

o o o o 
© © © © d d 

i n r ^ o ^ c N O c ^ o o v o r ^ 
N N H ^ N r f - i O O O 

o o o o o o o o o o o 
o o o © o © © o o o © 

(N I H io - H 
> ifl « W 
-H © © © 
© ' © © ' © ' 

. . o 
•a T3 ' t 
d d 2 

_> r-
£> -a T3 © •_ 

o o c n r ~ - o i n i n m / i o n i n c j o o r t i n 
h H O r t » j f l O M i n r t o o m ( s r > i w i n i s 
© ^ H © © ^ j c i N m M N N m m ' H H H 
© © ' © ' © ' © © © © © ' © " © ' © © © © 

H l j H l H U H l J j i a M a n o a S S S S S S S J h l h l J h l i - l i - l i - l i J h l w 

"* 2 
<N © -J• © 

CN •*' ^ 
© 
CN 

-i © 

^ ^ 
© 
CN m 

IT) 
© 
CN 

© © © © © © 
CN 

^D © 
r^ CN 

< y - i " n i n i n i n w - > i r > i n i n w - ) i o i o © © 
© © 

in in io in u~i in 
© © © © © © 
© © © © © © 

i n v > « n i n < o < n < n > n > n < o 
© © © © © © © © © © 
© o o o © o © o © © 

CN 
© © © © O O O O 

r o m m m r o m c q c n m r o m m 
• * TJ - TT T f T ) - - * 

C N C N C N C N C N C N C N C N C N C N 

r - r ~ r ~ t ~ « r - r - - r - ~ r ~ t - ~ t - - r ~ 



T3 
V 
3 
.g 
-a s o 
U 
iri 
CQ 
D 

3 cj 
H 
X 

•3 
rt 
B. 
<; 

+/
-

^ 43 

^ 
fri -5 Q § 

H 
S—• 

F̂ 

/ ^ • S 

j=i 
nt 7 „ 

M ^ t3 "3 
S 
3 

, 
^ 

_̂, 
js 

i — < 

d^ 
£ o 

s i 

i 

^ 

J3 
1 ^~ 

£ -3 
a i 
-̂̂  

• 

^ 
J3 

+ 7 

z "3 
6 
a. w 

c o '5b i> 
Pi 

£ 
&? Q w 

£ 03 
Q 

O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 
o o o o o o — j o o o o o o — ; ^ o o p p o o o o o o p o o p o 
o o o o o o ^ o o o o o o ^ ^ o o o o o o o o o o o o o o o 

0 < r i ' - i O O ' - H ~ O O r < - ) ' - < ^ f f N n 3 ^ : i v O U - i O O O O O O r n O O O O O ' - H 
p p p p p p — . p p p p p o - - ^ o o o o o o o © o o o o o o © 
o o o o o o ^ o o o o o o ^ - O o d o o o o o o o o o o o o o 

O ^ - O O O O O < N O O O ^ ^ H 0 
p p p p p o p p q o p p o - -
o o o o o o o o o o o o o ^ ^ o o o o o o o o o o o o o o o 

^ O O O O O O O O O O O O O O O 

o o o o o o o o o o o o o o o 

O t N O O p o O O O O O ^ > - H - H ^ H O O O O O O O O O O O O O O O 
O O ' O O O O O O O O O O O - O J S O ' O O O O O O O O O O O O O ' O 

oo f- »-H ro o h-
—* •* ro ro <N m 

o o o o o o o o o o o o o O O o o o o o o o o o o o o o o © p p o p p o o o o o o o o - i ^ . o o o o o o o o o o o o o o o 
o ' o o o o o o o ' o o ' o o o ' ^ ' ^ o o o ' o o ' o o o o o o o o o ' o 

t ^ 0 0 \ O — < - - i r O O \ 0 \ f N O » - H O \ 0 0 _ ; 
«-<r"»i/ ->'-i<-iV>rSOOr'1CS'-«t-iO 
p p p p p p p p o p p p p —< —j 
o o o o o o o ' o o ' o o o ' o ^ ^ o ' o o o o o o ' o o o o o ' o o o 

• v o r - - f - - O O N O \ C T \ t N O s O \ 0 \ t N a \ 0 < N 
T ^ T - H * — i © 0 © » — ' © * — ' * — ' * — < (N CN © *~' <N 
H o o o o o o o o o o o o o o o 

r O T - H O O O O f S C - J O t S C N ^ O ' - i t - i O v o t S O ' - ' ^ f O ' - i ' - i ' - i ' - ' ^ f N r ^ O ' - H 
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 
p p p p p p p p p p p p p p p p p p p p p p p p p p p p p © 
o o ' o o o o ' o ' o o ' o ' o o ' o ' o o o ' o ' o o ' o o ' o ' o ' o ' o o o o o o 

o o t r i T r r o f - o o r - ~ r t r - r f i r i v o i n ' > o o \ i o T r o o o o f n a \ < N o o ^ < r O ' - i T t i O ' ^ -
i-'CN'-iOO'-ii-iOOr'ltN^'CI'-iOr'irOOO'-iOO'-i'-i'-'CNeNCN'-i'-i p p p p p p p p o p p p p p p p p p p p p p p p p p p p p p 
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 

0'*r~-o^om<N'*'^-Tr'*omroo^Hr^fNOio^D<N'vooror--(No^m 
O O - ^ - O O O r n ' - ' O O O - H O O O O O O O O O O — l O O O O O O t S 
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 
o o o o ' o o ' o o o ' o o o o ' o o o o o o o o o ' o o o o o o o o 

TtO'*^D'r)vo-n-ooinu-ir--fs^o>ri^oooo\omm'*'^^oooooo\t^OTf 
^ ^ H < N p p r o c N p O O p p o p p o p p p p p - _ ~ ~ - ~ " " 
o ' o o o o ' o o o o o o ' o o ' o o o o o 

p p p p p p p p p 
o ' o o o o o ' o o o o o ' o 

N V N ^ ( N - N ? J ( S 2 - S N 2 ; N C rvi P- rt ^O 
(N ^ r-< rt <s 

/ i i n u i i n i n / i v i i n » « « v o » w « » « * o e v o « » « , c ' 0 « w w v o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o © © © © © © o o o o o o 
N N N N N N N N N N N N N N N N N t S N ( N N f S ( S ( S N ( N ( S ( S ( S 
O S O N O N O N O N ^ V O O 
N N N N N N c n n 

0 0 0 0 0 0 ( N C S « N f S f S ( N ( S 

r ^ r ~ - t ~ ~ t - ^ t ^ c - ^ i > r - t ^ - ' r ) > o i o > r ) > r i i o i n > r ) i n i o i r ) i r ) i o > r i i r ) i n i o i r ) i n i n i n 



U\ io 
io to 
o o 
o o 
o\ ON 

-O vj v) 
to to to 
to to to 
o o o 
o o o 

to to 
o © 
© o 
ON o\ 

to to 
O O 
o o 
ON ON 

-J jj 

to to 
O O 
o o 
ON ON 

5] 5J 5J 
OJ C3 OJ 

1~ ON 

2 2 co on 

o 

tO IO 
o o 
o o 

to to 
o o 
o © 
ON ON 

to S) 
O © 
© © 
ON ON 

to ON 
b © 

to to 
© © 
© © 
ON ON 

tO Ul 

b © 

to to 
© © 
© © 
ON ON 

to ON 
© b 

to to 
© o 
© © 
ON ON is 

fj\ (Jl IS\ KS\ 

to 
to 
© 

to 
to 
© 

to 
to 
© 

to 
to 
© 

0 
n © © o © 

ON ON ON ON 

to u\ 
b i-t\ 

M ui si yi 
l»i © b b 

2 2 2 00 00 00 2 2 
co co 

co co co co co 
CO CO CO CO CO 

CO CO CO 13 
CO CO CO t

-1 T) 

r 
<v 
r 

HO hQ 

r r 
*d 

r 
13 

r 
hd 

r 
13 

r 
13 

r 
T) 

r 
HO 

r 
Hfl HO 

r r 2 
CO 

0©00©0©©©©©0©©0©©000©0 

'<z> o 'o o '1-^ o '^ o o 'a> o '<=> 'a 'a> o o '^ 'a> o 'a> 'a> 'o 
o©©o©ooo 
;-UI— bbbb'o 
©H- N>ON^J4*ONON 
OHUiOOWOOHa 

CD 

5' 
3 

1 r; 

©©©p©©pp©p©©©p©©p©©©p©o 
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 
©©OIOOtO©©©©©©©©©00©0~~~~~~~ 
H-tOO\OONOOJJi.tOJi.OJNOtOtOOOJi.tO 

© o © © © © © 

__0©OOOOOH-OH-© 

ppppp©pp©©p©pp©pp©©©po©ppo©o©© 
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 
IOtJHUH.MWO^OHOHi-HUUlU*WUiMJislUiWMHMM 
Mh-'^H'Ik^NMO^^C^^WOlUlOClUlOO^VOUiW^WW^WUi 

I* 

ppppppppppppppppppppp©© 
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb ©©©©©©©©©©o©oo©o©©©o -____ ___ 
WNHUIH»ONOH'H>4^H-H->->©H-H-.|S>.(— © 

o © © © © © © 

— ©©©©OH-OOO 
WKW-00\OH'MS) 

©0©0©0©©0©©00© ©0©©0©0©©00©©©0© 

o 'o o 'a 'o a> o 'a> 'o o 'a '<zi 'a> 'a 'o 'o 'o c> 'c> 'c> <D a c> c> <o 0 'c> o '10 o ©©©O0©0©0©0©0©©0©©©0©00©©0 
I— WH-l-'tOH-'H-' *->->OH-'©K-i->©l--tOtOtOtOOJH-OJl>).|i.>-»^-^^^ 
UlOJi0\^»^WI!0l»00slUffi00U~Ji-.lOUi«UUJi^W*.ML«(o 

©©oo©©o©o©©©©© 
bbbbbbbbbb_______ _ _ 
©0©0©©0©©©0©©©©©©©©___________ 

~
—

 H-bOfOtOtOl>jH-ljJONi—'OH-'©©H-H-O© 

©0©00©000©00©©00 
o kD <o <G o 'G G o o 'o c> o o o 'G o o o c> 0 ____©©©©©©©©©©©©©©©©©©©© 

Js. N Ui O O . . - - -- _ _ tO tO K- 1—' ISi to 

©©©©©©©©©©©©©©©©ooo©©©©©©©©©©© 
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 
MHi-Wi-UMOH'OOHi-Ui-M(OS)WUJiKOUJiK)K)MMO\ 

©©©©©©©©©©©©©©©©©©©©©pop©©©©©© 
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb ©©©•-»©©©©©©©©©©©©©©©©©©©©©©©©©© 
MHHtOUWOHlOOH'HHWHOHWOOUlOOHWHiOOUW 

©©©©©©©©©©©©©©_ 
©©©©©©©©©©©©©©©©©©©wwwww^www^w 
©©©©>—©>—©©©©©©©©,-..&.>— UIH'^OMO\UWHOOH 
Ui^^aH0\N)H'WK)MJi0\aUiOHi0\MMO0\WW0\0\WI)0UiN 

©©©©©©©©© 
b © © © © © 

© © © 
bob 

©©pp©©p©pp©ppp©©©©o©©©o©©o©o©© 
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 
00©0©0000©0©©0©00©00©0©©©©©0©© 

tOO©tO©H-^tOtO©ON©OtOH-tOUJ©0\H-
0©0H-©©0©©0 

I ft 
I H 
I: 

Is 

3 M 

to 
00 



llllllllllllllllllllllllll 
to 

o 

—] —1 ̂J ^ 

<s\ U\ U\ <-r< 
to to to to 
o o © © © © © © 
G\ G\ ON 0\ 

to 
© 
© 

N K 
° © 

^ ~ 
<=> In 

.
w
 © 

° © 
h* G 
° © 

to 
© 

Ln 
© 

to 
© 

<_fl 

© 
to 
© 

ON 
© 

to 
© 

ON 
© 

to 
© 

0\ 
© 

to a N VO 

r/i 

oo 
r/i 

oo 
r/i 
00 

OOOOOOGOOOOOOOnd 
MMMMMWMr

1 >fl 
r 

*d 
r 

>T3 

r 
Tl 

r 
TI 

r 
hd 

r 
hd 

r 
hj 

r 
hd 

r 
TJ 

r 
hd 

r 
Md 

r 
•T3J 

r 00 2 S S 2 
00 00 00 00 

oooooooooooooooooooooooooooooo 
bbbbbbbbbbbbbbbbbbbb^bbbbbbbbb 
OON^^O--ltJN*^MJiMi-MW(/o1mw4ivJMWi-'4iNUiW 
IOMUOO\UIOOUI^UI«UIO^M'O^OWOWI»MS)UI^V1UO>0 

©©©©©©©©©©©©©©©©©©©©©©©©©©©©©© 
©©©©©©©©©©©©©©©©©©©©©©©©©boob© 
©©©0©©H-©©0©©©00©©©©©©©©>-*©©©©©© 

0©©©©©©©©©0©©0©©©0©©©©©©©©©©0© 

bbbbbbbbbbbbbbbbbbbbbbbbbbbbob 
©©H-©H-©H-0^^h-©©©©h-.H-©©©©©0©0©tO©>-© 

©©©©©©©0©0©0©©©©©00©000O©000©© 
o o o o o G <o o '(O o 'c> o o o o o 'a> o o 'a> 'a> '<^ 'a> 'a> 'c> 'a> 'c> 'a> 'c> o 0©©©0©©0000©©©©©©©©©©0©000©000 
(sJOH-H-tO©H-K-tOK-4i.>-.0©H-©©©H-©©©©©©©U)tOtO© 

©©©©OOOOOOOOOo'OOOOOOOOOOOOOOOO 
'C> O 'O 'CD '<D 'C '(D 'C2 O G 'Ci O '<^ ^ '(^ O O O O 'C> O '<^ <^ 'C> 'C^ '(^ O '<Z> '<0 'C> 
- - - - ~ © O © © Q, ~ • - - _.-_____..___ 

"IS. S' 
a 

1 r 
(3* 

1, 

© P— © H- H-
OJ OJ -~J © (— 

© I— © _ _ _ _ 
Ui OO ̂ Ol M W OO 

© H-
w 1-. 

© >-» © 
4^ © Ĵ 
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Appendix table B.7. Pearson's product moment correlation for all parameters in the MAB. R = regression 
coefficient, p < 0.05 is significant, and n = sample number. 
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