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ABSTRACT

NITRATE REDUCTASE ACTIVITY, NITRATE UPTAKE AND IODINE 
SPECIATION IN THE MARINE ENVIRONMENT

Chin-Chang Hung 
Old Dominion University, 1999 
Director: Dr. George T. F. Wong

The present method for the determination o f new production (NP) by measuring the 

uptake o f added ISN 0 3' suffers from a number o f  limitations. In an attempt to improve this 

situation, this research examined the possibility o f estimating I5N 0 3' uptake by measuring 

the activity o f nitrate reductase (NRA). In addition, because it has long been suspected that 

the biological reduction o f I0 3‘ to T may be mediated by nitrate reductase (NR), this 

research investigated the ability of NR to catalyze the reduction o f iodate to iodide.

An improved method for the determination ofNRA was developed. The sensitivity 

of this method is about five times higher than methods used in previous studies. NRA and 

isN0 3- uptake (NU) were determined over a wide range of nitrate concentrations in the East 

China Sea and in the adjoining Kuroshio Current in May, 1996. In light- and nitrate- replete 

waters ([N 03']> 1 pM, %PAR > 10%, PAR: photosynthetically active radiance), NRA was 

linearly related to NP so that NRA may be used for estimating NP. A high ratio of 

NU/NRA was found in nitrate-depleted ([N 03*]<1 pM) and light-replete (%PAR >10%) 

conditions. The high ratio o f NU/NRA data might have been caused by an overestimation 

ofNU due to the stimulation o f the addition of l5N 0 3* to nitrate-deficient water. This result 

revealed that NRA may be a reliable index for estimating new production in oligotrophic 

waters. In comparing NU in the literature with our NU values in different hydrographic 

realms, the NU values estimated from NRA fall well with recently reported values in 

similar types of waters.
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NRA and iodine speciation were measured in the East China Sea in May, 1996. The 

results suggest that the reduction of iodate to iodide in the upwelling areas is caused by the 

enzyme NR. In the process of iodate reduction, the depletion of iodate and the enrichment 

o f iodide relative to the composition of the source water o f a surface water mass represent 

an integration of NRA through the residence time o f the water mass.

A method for estimating the reduction of iodate to iodide by NR by using I25I0 3' was 

developed. The reduction o f I0 3‘ to I' by NR was observed in the cultures o f S. costatum 

and in natural phytoplankton assemblages. The rates were 0.008 to 0.019 n mol I" txg chi aA 

h '1 in natural samples. The iodate reduction rate was linearly related to NRA, suggesting 

that iodate reduction may be coupled to nitrate reduction.
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1

CHAPTER I 

INTRODUCTION

Introduction

New production (NP) is the fraction o f primary production that is supported by 

allochtonous nutrients (primarily nitrate) (Dugdale and Goering,1967), and it should be 

equal to the export o f particulate organic matter out o f the euphotic zone under steady state 

conditions (Eppley and Peterson, 1979). This sinking flux of organic particles into the deep 

ocean is an important component in the global carbon cycle. Knowing the governing 

processes o f new production and having an accurate estimation of new production is 

essential for a more accurate evaluation of the fate o f anthropogenic C 0 2 and its impact on 

global climatic changes (Platt et al., 1992; Siegenthaler and Sarmiento, 1993; Sarmiento and 

LeQuere, 1996).

NP is frequently estimated by the 15N-labelled nitrate incubation technique (Dugdale 

and Wilkerson, 1986). However, this method suffers from several limitations. First, this 

method is inappropriate in oligotrophic waters where the nitrate concentration is too low 

to be accurately measured by conventional nitrate measurement (Eppley and Koeve, 1990). 

If  the ambient concentration of nitrate is not known accurately, the added amount of l5N- 

labelled nitrate may be excessive and stimulate nitrate uptake. As a result, high and variable 

uptake rates may be observed (Dugdale and Wilkerson, 1986; McCarthy et al., 1992,1996; 

Allen et al., 1996). Second, the rate of nitrate uptake can be underestimated if nitrate is 

formed by nitrification during the incubation period (Ward et al. 1989; Eppley and Koeve,

The journal model for this dissertation was Deep-Sea Research.
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1990). Third, the determination of l5N 0 3' uptake requires extensive sample manipulation 

and the use o f a mass spectrometer. The cost and time for the analysis limit the number of 

samples that can be handled readily.

The uptake of nitrate involves three steps: nitrate reduction, nitrite reduction, and 

ammonia incorporation (Wada and Hattori, 1991). The first step is mediated by the enzyme 

nitrate reductase. If this is the rate determining step, then, nitrate reductase activity (NRA) 

will be proportional to the rate of nitrate uptake or NP. Thus, if a simple method can be 

developed for the determination of NRA, and a relationship between NRA and NP can be 

established. New production may be conveniently estimated from NRA. However, a 

consistent relationship between NRA and the rate o f nitrate uptake has not been found in 

previous studies (Eppley et al., 1970; Collos and Slawyk, 1977; Dortch etal., l979;Blasco 

etal., 1984). Possibly as a result of analytical difficulties (Berges and Harrison. 1995a) and 

a lack of appreciation of the effects of environmental factors such as light, nutrient 

conditions, and hydrographic conditions on NRA. By controlling the experimental 

conditions carefully, a strong correlation between the rate of nitrate incorporation and NRA 

was found in several more recent laboratory studies (Berges and Harrison, 1995a, 1995b; 

Berges et al., 1995). Thus, the first objective of this research is to evaluate the relationship 

between NRA and NR by using a modified NRA assay, and to try to apply the relationship 

between NP and NRA to estimate new production quantitatively.

Dissolved inorganic iodine in seawater exists primarily as iodate (I0 3') and iodide 

(T) (Tsunogai and Henmi, 1971; Trusdale, 1978; Wong, 1991), although the latter is 

thermodynamically unstable relative to the former in oxygenated seawater (Sillen, 1961;
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3

Wong, 1980). Due to the chemical similarities between I0 3' and N 0 3', it has long been 

suspected that iodide is produced by the reduction of I0 3' and the reaction is mediated by 

nitrate reduction. In this study, I have attempted to further investigate the relationship 

between NRA and NP as well as NRA and the speciation of iodine in the oceans.

Hypothesis

The following two hypothesis are tested in this study:

1. Nitrate reductase activity is related to NP so that NRA may be used for estimating NP.

2. The reduction of iodate to iodide can be catalyzed by nitrate reductase in phytoplankton.

Objectives

The specific objective in this study are:

1. To design an improved method for the determination o f NRA.

2. To determine the relationship between NRA and NP in the field.

3. To measure the spatial variation of NRA in the field.

4. To determine the relationship between NRA and iodine speciation in the field.

5. To test whether nitrate reductase extracted from phytoplankton can catalyze the reduction 

of iodate to iodide.
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4

Literature review

New production in the ocean

The basic definition o f new production (NP) was initially given by Dugdale and 

Goering (1967) who defined NP as phytoplankton production that is supported by nutrients 

supplied from outside a system. On the other hand, regenerated production (RP) is based 

upon recycling nutrients in a system. The sources of new nitrogen include nitrogen 

transported into the euphotic zone from upwelling, input of different nitrogen compounds 

from river runoff, and combined nitrogen formed by nitrogen fixation (Fig. 1-1). In other 

words, the nutrient sources for new production include nitrate, ammonium, dissolved 

organic nitrogen (DON) as well as N2, with nitrate generally considered to be the dominate 

source in ocean waters. The major forms of regenerated nitrogen are ammonium, urea and 

DON, although there is some debate on the possible significance of nitrate and nitrate as 

represented nutrients. Generally, a stable l5N is chosen as a tracer for estimating biological 

production because it can easily be used to distinguish new (nitrate, N2) and regenerated 

(ammonium, DON) forms of nitrogen (this is usually considered as operational definition). 

However, the operational definitions o f new and regenerated production are sometimes 

confused with the basic definition. For example, when ammonium is transported to an 

estuary or a coastal area from an outside source, the rate of 15NH4* uptake should be 

regarded as new production rather than regenerated production since the ammonium is also 

a new source of nitrogen in this system. Thus, it should be noted that the “true” definition 

o f new production is primarily based on a new source o f nitrogen being transported to a 

system rather than based on nitrogen species.
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The supply of new nitrogen (primary nitrate) for the surface ocean from upwelling 

was estimated to be about 1.2 xlO15 g-N y '1 by Codispoti (1983) according to total nitrogen 

assimilation rate o f -  5 x 1015 g-N y 1 (Liu, 1979) and an average/ratio ~ 0.25 (Eppley and 

Peterson, 1979). More recently, Chavez and Toggweiler (1995) have summarized relevant 

new nitrogen source from wind-driven upwelling and vertical mixing, and they estimated 

the amount o f nitrate transported to the surface ocean to be 1.2 xlO15 g-N y '1. Thus, the 

magnitude o f new nitrogen is roughly about 1.2 xlO15 g-N y 1. Garside et al. (1976) 

reported that the input of different N compounds (ammonium, urea, DON, nitrate and 

nitrite) in sewage discharges to the ocean was about 10 g-N per person per day. If  the world 

population is 5.5 xlO9 people, the input rate of total N will be about 2 xlO13 (10 x 365 x 5.5 

xlO9 ) g-N y 1. Recently, the flux of DON from river has been estimated to be 3.4 xlO13 

(Gruber and Sarmiento, 1997). The input of nitrogen fixation was estimated about 2.8 

xlOlj g-N y '1 (Delwiche, 1981). The nitrogen fixation (fixed by Trichodesmium) was 

estimated about 5 to 100 xlO12 g-N y l (Carpenter, 1983; Gruber and Sarmiento, 1997). 

Thus, the magnitude of nitrogen fixation is roughly about 1.0 xlO14 g-N y 1. Comparing 

the new nitrogen source from upwelling to human activity and nitrogen fixation, the 

nitrogen source of human activity and nitrogen fixation is one order magnitude lower than 

that o f upwelling even though considering the analytical uncertainty of these estimations. 

Because new production in the surface ocean is primarily supported by input o f nitrate from 

deep ocean, the concept of new production is usually referred as the rate of nitrate uptake. 

As a consequence, the rate of ISN 03' uptake is often regarded as a new production (NP).

The sum of NP and RP are referred to as primary production (PP). The ratio of NP
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to PP is called the y'1 ratio and is an important index o f  trophic status (Eppley and Peterson. 

1979). Eppley and Peterson (1979) further indicated that NP should be equal to the export 

production o f particulate organic matter out o f euphotic zone over a sufficient time scale. 

As a consequence, NP may play a crucial role in the transfer o f anthropogenic C 02 into the 

deep oceans. An accurate estimation o f NP flux and an understanding of the regulating 

processes o f NP are necessary for deciphering the imbalance of anthropogenic C 02. NP 

has been studied and computed in different marine environments for almost three decades, 

but the recent estimations o f global NP still vary by up to a factor o f four (5 to 22 Gt C y ', 

Table 1-1) with an average o f 9 Gt C y ‘. The principal discrepancy among these 

independent approaches might result from complicated factors, such as different methods, 

temporal and spatial variations o f NP. Strictly speaking, the study of global NP estimation 

to date suggests there is not get a consensus on the global NP value. Thus, it is necessary 

to put in more effort on the estimation of global NP.
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Table I-I. Estimates o f  global new production in the recent literature

8

Reference Global new production (Gt C y '1)

Eppley & Peterson (1979) 3 .4 -4 .7

Chavez and Barber (1987) 8.2

Martin et al. (1987) 7.4

Packard et al. (1988) 22

Berger (1989) 6.0

Bienfang 8c Zimann (1992) 7.7

Karl (1992) 5.5

Najjar et al. (1992) 1 2 - 1 5

Post et al. (1992) 1 5 - 2 2

Sarmiento et al. (1993) 8 - 1 2

Chavez & Toggweiler (1995) 7.2

Shaffer (1996) 5.0

Average (from 1979 to 1996) 9.0
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Measurement o f  new production

A number of methods have been used for estimating new production: (a) the 

determination of the sinking particle flux from the euphotic zone by using sediment traps 

(b) the determination o f the rate of nitrate uptake by using ISN-Iabelled tracer in bottle 

incubations, (c) the determination of sinking particle flux from the disequilibrium between 

Th and its parent nuclide U, (d) the estimation o f nutrient or dissolved oxygen utilization 

and oxygen production (Eppley, 1989) and (e) the estimation of ocean color by using 

remote sensing (Sathyendranath et al., 1991). Of the above approaches, the uptake of stable 

1SN 03- is most widely used for estimating NP because its unique chemical nature can 

effectively distinguish between NP (based on nitrate and N:) and RP (based on ammonium 

and DON) (Dugdale and Goering, 1967, Dugdale and Wilkerson. 1986). Nevertheless, the 

l5N technique has some confounding problems such as (1) isotope dilution of the substrate 

due to recycling of substrate with the background isotope ratio (Glibert et al., 1982; 

Harrison, 1983); (2) difficulty in determining the extremely low concentration o f nitrate in 

surface waters o f oligotrophic oceans (Eppley et al., 1977); (3) bottle limitation including 

return o f I5N-labelled back to the substrate pool (Laws et al., 1985) and depletion of 

substrate (nitrate or ammonium) under long-term incubations (Goldman et al., 1981); (4) 

stimulation from the addition of l5N-labelled substrate at low ambient nitrate concentrations 

(Glibert and Goldman, 1981; Eppley and Koeve, 1990); and (5) ,5N-labelled disappearance 

during the incubation period (Laws, 1984; Ward et al., 1989). Among these problems, 

some have been overcome or at least circumvented with advanced instruments or improved 

techniques (Bronk et al., 1994; Ditullio and Laws, 1983; Fitzwater et al., 1982; Garside,
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1982), but some problems still exist, particularly substrate stimulation in extremely low 

nitrate environments. In oligotrophic waters, the ambient nitrate concentration is too low 

to be accurately measured by the traditional nitrate analysis (Eppley and Koeve, 1990) so 

that the amount o f added 15N-labelled nitrate in incubation experiments may result in a 

severe stimulation o f nitrate uptake ( Dugdale and Wilkerson, 1986; McCarthy et al., 1992, 

1996; Allen et al., 1996). Although Garside (1982) proposed a chemiluminescence 

technique to measure extremely low nitrate concentrations, down to nanomolar 

concentration, the I5N method may still underestimate new production because the 

formation o f nitrate via nitrification during the incubation periods (Ward et al., 1989; 

Eppley and Koeve, 1990). Furthermore, the upward flux of nitrate via upwelling is often 

regarded as a proxy for new production but this transported nitrate is not totally sequestered 

by phytoplankton since other factors such as iron deficiency (Martin, 1990), grazer 

regulation (Walsh, 1976), silicate limitation (Dugdale et al., 1995) and lack of seed of 

bloom-forming species (Chavez, 1989) may inhibit phytoplankton growth. Therefore, it is 

not surprising that estimates o f the amount o f global NP show large variations.

Nitrate assimilation and nitrate reductase

To assimilate nitrate, phytoplankton cells use an active transport system, ATP 

(adenosine triphosphate), to transport external nitrate through the cell membrane. Then the 

cells utilize a series o f enzymes to reduce nitrate via nitrite to ammonium. The conversion 

process o f nitrate to ammonium primarily includes three fundamental stages (Fig. 1-2) 

(Dortch etal. 1979; Solomonson and Barber, 1990; Wada and Hatiori, 1991). The first step
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ATP: adenosine triphosphate. (Referred from Dortch et al. 1979; 
Solomonson and Barber, 1990; Wada and Hattori, 1991)
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is the reduction o f nitrate to nitrite catalyzed by the enzyme nitrate reductase (EC 1.6.6.1, 

NADH nitrate oxidoreductase). NAD(P)H is used as the physiological electron donor for 

this reaction.
NR

NCy + NADPH ----------------^ N O , -  + NADP .................................. (1-1)

The second step is the reduction o f nitrite to ammonia catalyzed by enzyme nitrite reductase 

(NiR, EC 1.7.7.1). This step is coupled to photosynthetic electron transport in algae via 

reduced ferredoxin which serves as the physiological electron donor for nitrite reductae.

NiR
NO,' +- reduced ferredoxin------------------>- NH4* + ferredoxin........... (1-2)

The third step is the assimilation of ammonia by glutamate dehydrogenase (GDH) and 

glutamine synthetase (GS) to amino acids. NR is a complex enzyme containing several 

different redox-active prosthetic groups and encompasses flavin, heme (cytochrome bS57) 

and Mo-pterin prosthetic groups in a 1:1:1 stoichiometry per subunit (Solomonson et al., 

1975; Giri and Ramadoss, 1979). The molecular weights o f the NR enzyme have a reported 

range 230,000 to 500,000 (Aparicio and Maldonado, 1978; Beavers and Hageman, 1980). 

Nitrate reduction is generally considered as the rate-limiting step in nitrate assimilation 

(Beevers and Hageman, 1969; Solomonson and Barber, 1990). Therefore, the characteristics 

o f the activity of NR have been widely investigated in order to gain insights in nitrogen 

assimilation (references). About thirty years ago, NR enzyme was first used as an index of 

nitrogen source for the phytoplankton by Eppley and Coastworth (1968). Eppley et al. 

(1969) reported that NRA in the cells is significantly suppressed when phytoplankton are 

grown under nitrate-deplete and ammonium-replete conditions. Eppley et al. (1970), 

Packard et al. (1971) proposed that the activity o f NR may be used to estimate the in situ
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rate o f nitrate uptake. Numerous investigations have been conducted in studying the 

relationship between nitrate reductase activity and the rate of nitrate uptake under different 

environmental conditions such as the concentration o f nitrate, ammonium, and light 

irradiance (Eppley et al.. 1970; Packard and Blasco, 1974; Collos and Slawyk, 1976; Dortch 

et al., 1979; Blasco et al. 1984). However, the relationship between NP and NRA is more 

perplexing than expected because many facets are still poorly understood. The 

discrepancies between NRA and NP may arise from several causes: (1) NRA is a property 

o f phytoplankton at or before sampling time while new production is an integration of 

nitrate uptake after sampling time (Blasco et al., 1984); (2) NRA has a diel periodicity 

which may somewhat affect the comparison of the two parameters (Eppley et al., 1970; 

Blasco and Packard, 1974); (3) previous NRA assays were poorly optimized resulting in 

NRA that does not totally reflect the original enzyme activity (Berges and Harrison, 1995a; 

Berges, 1997); (4) the incubation time for I5N-Iabel techniques in previous surveys was 

variable (4 ~ 24 hours) (Eppley et al., 1970; Blasco and Packard, 1974; Collos and 

Slawyk, 1976; Dortch et al., 1979; Blasco et al. 1984); and (5) the influence of light, nutrient 

concentration and hydrographic variability on NRA and NP measurements were not been 

taken into appropriate consideration. Recently, Hochman et al. (1986) developed an 

improved NRA assay and obtained higher NR signals for application in both phytoplankton 

cultures and field observations, compared to the methods o f Eppley et al. (1969) and 

Packard et al. (1978). However, the NRA method of Hochman et al (1986) was not carried 

out in conjunction with I5N 0 3‘ uptake rate estimates in a field investigation. More recently, 

Berges and his co-workers (1995a,b,c) used a modified NR method to compare the
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calculated rate of nitrate uptake with NRA in phytoplankton cultures and field samples 

under light and nutrient controlled conditions. They found a good relationship between the 

two variables. Thus, these promising results suggest that NRA is a potential candidate to 

estimate NP as long as an improved NRA assay can be developed and other interference 

factors can be appropriately eliminated.

Iodine speciation in the ocean

Dissolved iodine is a biointermediate element and its total concentration in seawater 

is about 450-500 nM (Bruland, 1983; Wong, 1991; Truesdale, 1994). Dissolved iodine in 

the surface layer (0-200 m) primarily exists in two forms: iodate (I0 3') and iodide (T), 

whose depth distributions are more variable than the distribution o f total dissolved iodine. 

(Tsunogai and Henmi, 1971; Truesdale, 1978; Luther and Cole, 1988). Low iodate 

concentrations (300 to 500 nM) are often observed in the surface oceans. The concentration 

gradually increases to a maximum level o f 450 to 500 nM at depth. On the other hand, 

higher iodide concentrations (30 to 200 nM) are frequently found in the surface oceans. The 

concentration decreases with depth to an undetectable level (<10 nM) below the euphotic 

zone. Recently, dissolved organic iodine (DOI) may also be found in the estuaries, lagoon 

and high productive coastal waters (Wong and Cheng, 1997; Cheng, 1998).

According to thermodynamics, iodate should be the only detectable form of 

dissolved iodine in oxic seawater. At pH = 8.1 and pE = 12.5,103' / 1*should be equal to 

10lj-5 (Sillen, 1961; Wong, 1980). In other words, iodate is a more stable form than iodide 

in oxic seawater. However, the prediction is inconsistent with field investigations
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suggesting that chemical kinetics may significantly influence iodine speciation in surface 

ocean. Although the distributions of iodate and iodide in different marine environments 

have been relatively well known, the mechanism for the formation of iodine speciation is 

still unclear (Wong, 1991). According to the literature, some redox couples of bioactive 

elements, sulfide, nitrite, ammonia, methane, and methanol, may have potential to drive the 

oxidation state o f iodate (Wong, 1991). Zhang and Whitfield (1986) reported that iodate 

can be reduced by bisulfide in seawater. Luther and Cole (1988) also indicated that bisulfide 

plays an important role regulating the iodine speciation in suboxic/anoxic waters in the 

Chesapeake Bay. In addition, a biochemical redox couple involving, NADPH (reduced 

nicotinamide-adenine-dinucleotide phosphate) and NADP" , is considered as likely to 

promote the reduction o f iodate to iodide. Thus, Tsunogai and Sase (1969) suggested that 

the reduction o f iodate to iodide may also be catalyzed by NR. Besides chemical 

influences, photochemical reaction is also a possible factor to induce the reduction of iodate 

to iodide (Jickells et al., 1988). However, recent surveys suggest that iodide production 

arising from sunlight irradiance is supported by iodine speciation rather than from iodate 

(Brandao et al., 1994; Spokes and Liss, 1966; Cheng, 1998). These abiological sources 

explain certain circumstances of iodide formation, but it is difficult to expand these 

concepts to the global ocean scale because the above chemical redox-couples are deficient 

in oxic seawater. Thus, the question of dissolved iodine speciation conversion is still exiting 

"Where does the detectable iodide come from?"
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Biological control o f  iodine speciation

Tsunogai and Sase (1969) first proposed that the formation o f iodide is from the 

reduction of iodate mediated by bacterial nitrate reductase, but they did not quantitatively 

estimate the iodide production rate by bacterial NR and demonstrate NR produced by 

phytoplankton with the reducing ability for iodate reduction. Butler et al. (1981) indicated 

that Skeletonema costatum can incorporate iodate but other phytoplankton (D. ter dole eta, 

A.japonica etc.) can not. Wong and Zhang (1992) suggested that the reduction of iodate to 

iodide might be associated with nitrate reduction. Moisan et al. (1994) indicated that some 

marine phytoplankton can take up iodate and might release iodide during the process of 

iodate uptake. Udomkit (1994) also observed that the production o f iodide in several species 

o f phytoplankton in iodate batch phytoplankton cultures. Although Moisan et al. (1994) 

and Udomkit (1994) have determined the rate o f I 0 3‘ uptake or production rate o f I' by 

phytoplankton, they did not determine that the reduction of iodate to iodide is caused by 

phytoplankton nitrate reductase. However, neither cultural experiment results nor field 

investigations were demonstrated that NRA is involved in the reduction of iodate to 

iodide. By consolidating previous studies: NR catalyzing the reduction of iodate to iodide 

is a possible avenue to interpret the detectable iodide in the surface oceans because o f the 

formula o f iodate similar to nitrate and nitrate uptake acting a predominate role within the 

microorganism food web (Fig. 1-3).
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Fig. 1-3. A possible role o f nitrate reductase in iodate reduction. 
NP: particular nitrogen. NR: nitrate reductase.
Solid arrow represent nitrate uptake.
Blank arrow represents possible reaction.
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CHAPTER II

AN IMPROVED METHOD FOR THE DETERMINATION OF NITRATE 
REDUCTASE ACTIVITY IN THE MARINE ENVIRONMENT

Introduction

Attempts to utilize nitrate reductase activity (NRA) as an index of nitrate uptake in 

field observations in the marine environment have met with little success (Collos and 

Salwyk, 1977; Dortch et al., 1979; Blasco et al., 1984). Two possible reasons for these 

failures are: (1) the effects of variability o f environmental factors, such as the concentration 

of nitrate, light conditions and hydrographic conditions have not been taken consideration 

adequately (Packard and Blasco, 1974; Collos, 1982; Blasco and Conway, 1982; Blasco et 

al.. 1984) and (2) the method for the determination of NRA has not been optimized (Berges 

and Harrison, 1995a; Berges 1997). An improved method for the determination o f NRA 

in marine samples is described in this chapter.

Nitrate reductase (NR) is the enzyme that mediates the reaction between NOj'and 

NADH so that

NR
NO-/ + NADH + H* ------------- >  NO,' + NAD* + H20 ....................(2-1)

The activity of NR (nitrate reductase activity, NRA) is most commonly estimated by 

measuring the rate of production of N 0 2' in the presence of excess N 03' added and NADH 

in a NR extraction from a known biomass o f  phytoplankton cells. The analytical scheme 

includes three main components: (1) the extraction of the enzyme from phytoplankton cells; 

(2) the reduction of added nitrate to nitrite by NADH in the presence of nitrate reductase as 

well as other added regents at a given pH in a given time interval; (3) the determination o f
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the nitrite formed. Since the observed NRA results from operatively defined experimental 

conditions, such as the pH. substrate concentration, incubation time and incubation 

temperature (Table 2-1), it represents a relative rather than an absolute nature rate. Thus, 

the primary objectives in an analytical scheme for the determination of NRA are to provide: 

(1) highly precise results and (2) the highest possible sensitivity in order to minimize the 

required sample volume. Eppley et al. (1969) first proposed a method for the determination 

o f NRA in marine phytoplankton. Later, this method was widely used to study the 

relationship between NRA and new production (Collos and Salwyk, 1977; Packard et al., 

1978; Dortch etal., 1979; Blasco et al., 1984). However, the precision in Eppley's method 

is about 20 % and the sensitivity is very low due to dilution (it required about 10 jug 

chlorophyll a per sample) or the influence of other reagents. Berges and Harrison (1995a), 

and Berges (1997) pointed out that the Eppley et al. method (1969) is not optimized because 

the efficiency o f extraction of NR was low and M gS04 might affect the regulation of NR 

during incubation. Furthermore, Hochman et al. (1986) encountered great difficulty in 

measuring reasonable NRA in natural samples by using the Eppley et al. method (1969) 

even under nitrate-replete and ammonium-deplete conditions. Thus, they developed an 

improved method for measuring NRA. Hochman et al. (1986) reported that their method 

can obtain higher NRA and higher precision (8 -11 %) in both fresh and marine 

phytoplankton samples than other NR approaches (Eppley, 1978; Packard et al., 1978). 

However, this method has not yet been tested under field conditions in the marine 

environment. When considering the distinct analytical conditions o f current NRA assays 

(Table 2-1), it becomes apparent that the enzyme incubation time, pH and nitrite detection

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 0

methods are quite inconsistent. Therefore, the tasks of this chapter are focused on 

developing improved reaction conditions for NRA in terms o f pH value, incubation mode 

and/or time, and nitrite detection method with an axenic algal culture (Skeletomma 

costatum) and natural marine phytoplankton from the Chesapeake Bay.
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Table 2-1. The nitrate reductase assay list from  1969 to 1995

Reference Rupturing Grinding 
of cells Temp.1, 

Time

Ext.- pH n o 3-
(mM)

NADH
(mM)

Incubated 
I Time (min) 

Temp.

Stop
Reaction

Eppley et al. GT3 
(1969 & 1978)

4 °C. 2 min YES 7.9 10 0.089 30, RT ZnOAC’ ethanol

Harrison
(1973)

GT 4 °C, 5 min YES 8.1 11 0.047 45. 20 °C ZnOAC ethanol 
(in darkness)

Packard et al. 
(1978)

GT 4 °C. 2 min NO 7.9 3.5 0.106 20, 15 °C ZnOAC ethanol

Hochman
(1986)

Toluene 25 °C, I min NO 7.6 10.5 0.68 20, at 25 °C ZnS04 at 97 °C

Gao et al. I-propanal 
(1992, 1993)

16 °C 
no mixing

NO 7.6 10 0.05 30, 15°C 
(in darkness)

no reagent

Timmermans 
et ai. (1994)

Toluene RT 
no mixing

NO 7.8 100 6.5 10, 20 at RT boiling distilled 
water

Berges and
Harrison
(1995)

GT 4 °C, 5 min YES 7.9 10 0.2 10, 15 at RT ZnOAC ethanol

This study Toluene RT
continue mixing

NO 7.8 10.5 0.68 5, 10 at RT ZnSOj at 97 °C

1-Ext.: extraction; 2-Temp.: temperature; GT3: Glass-Teflon; RT: room temperature (20 to 26 °C).

* ZnOAC: zinc acetate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 2

Materials and methods

Reagents

Phosphate buffer solution fl50 mM. pH 7.8): Dissolve 39.19 g of K,HP04 in a small 

volume o f distilled deionized water (DDW) in a 1000-ml o f volumetric flask. 

Dilute the solution to volume and adjust its pH to 7.8 with phosphoric acid and 

NaOH.

Potassium nitrate solution fO.l MD: Dissolve 8.088 g o f K N 03 in a small volume of DDW 

and dilute to volume in a 1000-ml of DDW.

Sodium nitrite standard flO Dissolve 0.1724 g o f N aN 02 w in a small volume of 

DDW and dilute to volume in a 1000-ml o f volumetric flask to form a 2.5 mM stock 

standard. Dilute this stock solution to 100 fuM o f second standard by pipetting 4 ml 

of stock standard in a 100-ml o f volumetric flask. Then dilute this second standard 

to 10 /jM  by pipetting 10 ml o f second standard in a 100-ml of volumetric flask.

NADH solution (6.5 mMl: Dissolved 0.215 g Nicotinamide Adenine Dincieotide (NADH, 

reduced form, Sigma Co., N-6005) in a small volume of DDW in a 50-ml of flask 

and dilute the solution to volume. Keep this solution refrigerated ( 4 °C) and fresh.

Toluene: A. C. S. grade toluene (MCB) is used without further purification.

ZnSOj solution fO.l 1 M in 15% HCD: Dissolve 20.18 g of ZnS04 in a small volume of 

DDW in a 1000-ml of flask and dilute the solution to volume.

NaOH solution (2 M l: Dissolve 8 g o f NaOH in a small volume o f DDW in a 100-ml of 

flask and dilute the solution to volume.

Sulfanilamide solution fSUL. 2%): Dissolve 2 g o f sulfanilamide in a small volume of 15%
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(v/v) hydrochloric acid and dilute it to volume in a 100-ml of volumetric flask with 

15% hydrochloric acid.

N -1 -naphthvlethvlenediamine hydrochloride solution (NED. Q.3%): Dissolve 0.3 g ofN -1 - 

naphthylethylenediamine hydrochloride in a small volume of DDW in a 100-ml o f 

flask and dilute it to volume.

Apparatus

A Brinkmann Dipping Probe Colorimeter (Model PC-800) equipped with a probe 

tip of 2-cm light path (Pyrex-backed front surface mirrors) was used for all nitrite 

measurements without transfer of test solution to a cuvette. A narrow pass filter o f 545 

nm wavelength was the exact wavelength used for the detection of nitrite absorbance. The 

signal was then recorded by a digital readout. A Vortex mixer was used to agitate the 

phytoplankton cell solution.

Phvtoplankton culture

Skeletonema costatum (Greville) Cleve (SKEL) were obtained from the Provasoli- 

Guillard Center for the Culture of Marine Phytoplankton. S. costatum were cultured in 

1000-mI borosilicate Erlenmeyer flasks in f/2 culture medium (Guillard and Ryther, 1962). 

Cultures were grown in the log phase at 20± 1 °C on a 12:12 h light-dark cycle at an 

irradiance of 65 yumol photons m'2s*‘. The recipe for f/2 is shown in Appendix A.

Procedures

Nitrate reductase activity assay
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Sufficient phytoplankton cells are filtered through a Gelman Type A/E glass fiber 

filter which is first washed with 10 ml of deionized distilled water. (For oligotrophic waters, 

about 20 liters of the sample is filtered. In mesotrophic coastal water, use about 2-8 liters). 

Place the filter, with the cells facing upward, in a 50-ml beaker. Add I ml o f the 

phosphate buffer and 50 txL o f toluene to the beaker. Agitate the mixture by placing into 

a slurry the beaker on a vortex mixer for 1 minute. Add 0.2 ml of the NADH solution and 

0.2 ml o f the potassium nitrate solution to the beaker. Agitate the mixture at room 

temperature (~ 20 to 25 °C) for 5 minutes by again placing the beaker on vortex mixer. 

Terminate the reaction by pipetting 1 ml of the mixture into a centrifuge tube containing 2 

ml o f ZnS04 , which has been equilibrated in a water bath heated to 97 °C. Allow the 

centrifuge tube to stand in the water bath for 20 seconds. After the centrifuge tube has been 

removed from the water bath and cooled to room temperature, add 0.1 ml of NaOH to the 

centrifuge tube and centrifuge it for 20 minutes at 4000 rpm. Decant the clear supernatant 

liquid into a clean test tube. Add 0.1 ml o f sulfanilamide solution, stir it for 10 seconds, and 

allow the solution to stand for 2 minutes. Then add 0.1 ml of NED solution and stir it for 

10 seconds. The final volume o f the solution in the test tube is about 2.2 ml. Allow the 

solution to stand for 10 minutes. Measure the absorbance of the pink azo dye formed by 

using a Brinkman Model PC-800 Probe colorimeter. As a blank, another subsample is 

processed in parallel identically without the addition NADH. Prepare a nitrite standard 

curve by substituting nitrite solution of known concentrations (0.1,0.2,0.3,0.4,0.5 and 0.6 

ml o f 10 fu.M) in the place of the enzyme extract in the analytical scheme. A flow chart o f 

the analytical scheme is shown in Figure 2-1.
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(1) Enzvme extraction

[ 1 ml of P04 buffer 
I (pH = 7.8)
[ 50 pL  toluene

Sample of seawater or cultures

Filtration

I
Phytoplankton cells F iltra te '^ )

*
Agitation \

Discard
•: 0.2 ml 0.1 nitrate 
I 0.2 ml 6.5 mM NADH

(2) Nitrate reduction

NO," +NADH
NR

NO,-

Incubation and, agitation, then 
pipet I ml to ZnSOj solution

NR inactivation in 
0.2 ml ZnS04 at 97 °C

Inactivation o f enzyme. 
Cool to room temperature

0.1 ml NaOH NO-,'

V

SUL
NED.

I

(3) Nitrite determination

supernatant liquid
precipitate

Discard

N 0 2' analysis by dipping 
probe colormeter

Fig. 2-1. The analytical procedure of NRA measurement.
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Calculation o f  nitrate reductase activity

The activity o f NR is calculated as follows:

NRA (nM-NCV h '1) =
absorbance xV,mixture

ŝtandard X Tstandard X  T . .  v V I nitrite T sample

Asampie — represents the absorbance o f the sample 

Abiank — represents the absorbance o f the blank.

ŝtandard — is the slope of the calibration curve for nitrite standard.

T — is the incubation time.

âbsorbance — is the final volume for nitrite absorbance measurement.

^m ix tu re is the volume of the phytoplankton extract.

n̂itrite — is the volume of extract analyzed for nitrite.

Vsample — is the volume of sample filtration. An example o f the calculation procedure is 

given in Appendix B.

Results and discussions

The effect o f  pH  on nitrate reductase activity

The pH used in the extraction o f NR in the different NRA analytical scheme ranges 

from 7.6 to 8.1 (Table 2-1). Because of this, the optimal pH for this step was further 

evaluated. NR was extracted from a culture o f S. costatum at pH of 7.6, 7.7, 7.8, 7.9, 8.0 

and 8.1. The NRA in these sub-samples were then determined. Two series o f experiments 

were conducted, one using 30 ml of the cultures (chlorophyll a > 70 Mg/L) and the other 

using 20 ml o f the culture in each sub-sample.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

The effect o f pH on the nitrate reductase activity is shown in Fig. 2-3. Curves A and 

B represent the results using 30-ml and 20-ml subsamples o f the culture S', costatum 

respectively. In curve A, the concentration o f nitrite stayed approximately the same 

between pH 7.6 and 7.9. At higher pH, the concentration o f nitrite decreased steadily with 

increasing pH, reaching a minimum at the highest pH o f 8.1. In curve B, the concentration 

of nitrite was stable at pH 7.6 and 7.7, and then increased steadily with pH, reaching a 

maximum between pH 7.8 and 7.9. The lowest concentration o f nitrite was found at the 

higher pH o f 8.1, similar to curve A. The results in curves A and B suggest that this 

optimal pH o f NRA analysis ranges from 7.8 to 7.9 while NR does not function well at 

higher pH values (> pH 8). Comparing the results (7.8 to 7.9) to other reports (Table 2-1), 

it was found that the pH range is quite acceptable.
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Fig. 2-2. The effect o f pH on nitrate reductase activity in 5. costatum. 
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The effect o f  the mode o f  mixing on nitrate reduction by NR

NR was extracted from natural phytoplankton assemblages collected along the 

shore o f Chesapeake Bay (36°58’ N, 76° 16' W). Water samples were first filtered through 

a 200 /um mesh-size net to remove large particles. They were then separated into two 1600 

ml subsamples for the NRA analysis. During the incubation step in the nitrate reduction 

step, one subsample was continuously agitated by using a vortex mixer. For the other 

subsample, the mixing scheme o f Hochman (1986) was employed. It was agitated for I 

minute with a vortex mixer and then gently shaken on a shaker. Aliquots were then drawn 

from these subsamples for the determination o f the nitrite formed at known time intervals.

The relationships between the concentration o f nitrite formed and the time for 

agitation using these two modes o f mixing are shown in Fig. 2-3. At a given incubation 

time, the concentration of nitrite formed was higher in all cases when continuous agitation 

o f the sample with a vortex mixer was used. Thus, this mode of continuous mixing has 

been adopted in the proposed improved method. The linear relationship between the 

concentration of nitrite formed and reaction time in the first 10 minutes suggests that during 

this phase, the rate o f this reaction might have been controlled by the availability o f NR. 

Thus, it represents the real NRA. In the second phase, at a reaction time exceeding 15 

minutes, the slower rate of formation o f nitrite might have been caused by (1) an exhaustion 

o f the added nitrate; (2) an exhaustion of the added NADH; (3) the deactivation of the 

added NADH; (4) deactivation of NR or a result o f  self-decomposition. The first and 

second explanations are unlikely since a large excess o f nitrate and NADH have been added 

to the reaction mixture relative to enzyme activity. Both o f the latter two explanations are
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possible. NADH is an unstable compound which must be stored at low temperature (4°C). 

The self-decomposition rates o f NADH and NR are not known exactly. Berges and 

Hamson (1995a) reported that NRA obtained from Thalassiosira pseudonana drops in 

activity by about 20 % after it is stored for 20 minutes, even at liquid nitrogen temperature 

(<-100 °C).
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Fig. 2-3. Comparison of continuous incubation (open) and one minute 
agitation incubation (solid) for nitrite formed in marine 
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Effect o f  incubation time on enzyme activity

In the continuous mixing mode, the concentration o f nitrite formed was almost 

linear with time for the first 10 minutes at an average rate of 10 nM-N h '1. The 

concentration o f nitrite formed increased approximately linear between 15 to 100 minutes 

at an average rate o f 0.9 nM-N h '1 (Fig. 2-3). In comparing the rate of nitrite production 

between the two different stages, the average rate of nitrite production in the former (10 nM 

h'1) is almost one order magnitude higher than in the latter (0.9 nM h‘‘). This suggests that 

NRA significantly mediated the reduction of nitrate to nitrite during the first 10 minutes 

after incubation, while NRA seemed to cease catalyzing the nitrate reduction from 15 to 100 

minutes, due to deactivation of NR or self-decomposition. With the mixing scheme of 

Hochman (1986), the variation of concentration of nitrite formed with time was similar to 

that during continuous mixing with an average rate of 8.1 and 0.6 nM-N h '1 for the first 10 

minutes and from 15 to 100 minutes, respectively (Fig. 2-3). Although the mixing modes 

are different, the trends o f the two cases are similar in that the highest rate of formation is 

during the first 10 minutes of incubation time with a subsequent lower rate during 15 to 100 

minutes of incubation.

Fig. 2-4 shows the NRA calculated by using the data obtained at each incubation 

time. In the continuous mixing mode (curve A), NRA remained at a maximum rate (—20 

nM h*1) when an incubation time of up to 5 minutes was used . At a longer incubation 

time, the rate decreased exponentially with time. The rate dropped to 10 nM h '1 and 7 nM 

h'1 at incubation times o f 10 and 20 minutes respectively. With the mixing scheme (curve 

B) of Hochman et al. (1986), NRA shows an analogous distribution. The maximum rate
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(13.5 nM h '1) also occurred at 3 - 5 minutes and the rate decreased exponentially with time. 

The rate dropped to 8 nM h '1 and 5 nM h'1 at incubation times of 10 and 20 minutes 

respectively. These results reveal that NRA is time independent at incubation times o f 3 

to 5 minutes, while NRA is strongly dependent on incubation time at 5 to 30 minutes. In 

other words, any inexact control o f  the incubation time will result in large error. In the 

proposed analytical scheme o f NRA assay, an incubation time of 5 minutes has been 

adopted.

The ratio o f NRA at each incubation time to NRA at incubation time o f < 5 minutes 

in the mode of continue mixing is shown in Fig. 2-5 (open symbol). The percentages of 

NRA at incubation time o f  10 and 20 minutes were 50 % and 34 % relative to initial rate, 

respectively. In comparison, the previous investigations frequently used longer incubation 

time (> 20 minutes) than this study (5 minutes). The results suggest the sensitivity of the 

previous NRA assays was low. In addition, the previous NRA assays also showed large 

variability because of the strong dependence on exact incubation time. Although there was 

no direct evidence in past reports to quantify the life time o f NR after it was extracted from 

cells, the incubation time o f  the method developed in this study seems to be shorter than in 

previous methods (Table 2-1). Incubation time in previous methods varied from 30 minutes 

(Eppley et al., 1969; Gao et al., 1992) to 20 minutes (Packard et al., 1978; Hochman et al., 

1986) to 10 minutes (Timmermans etal., 1994; Berges and Harrison, 1995).

The ratio o f NRA at various incubation times using the mixing scheme o f Hochman 

to incubation times o f < 5 minutes in the mode of continue mixing is also presented in Fig. 

2-5. NRA using the mixing scheme o f Hochman was lower than in this study (60 % o f NRA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

22
20

14

Sc
<ccz

0 20 8040 60 100 120
Incubation time (mins)

Fig. 2-4. Comparison o f continuous incubation (open) and one minute agitation 
incubation (solid) for NRA in marine phytoplankton.

100 -

£z 80
<0
o
<0>

40  -m<D
20  -

0 20 40 80 12060 100
Incubation time (mins)

Fig. 2-5. Ratio of NRA at incubation time t to time of < 5 min (open). Ratio of 
NRA at incubation time t in curve B to NRA at incubation time < 5 min 
in curve A (solid).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

from the new method) at times < 5 minutes. If the incubation time of 20 minutes in the 

Hochman assay is adopted, the ratio o f NRA in the proposed assay to the Hochman assay 

is a ratio of 5. In other words, the sensitivity o f the proposed assay is much higher than the 

scheme o f Hochman et al. (1986).

Nitrite quantification by using the method proposed here and a dipping probe colorimeter 

spectrophotometer

The general scheme of the NRA assay includes three stages: (1) filtering and 

enzyme extraction; (2) nitrate reduction; and (3) nitrite detection. NRA is concentrated 

from filtration and dilution by reagent additions. For example, under the practical proposal 

here, the volume of phytoplankton extract is 1.5 ml and the volume of extract analyzed for 

nitrite is 1.0 ml. The final volume for absorbance measurement is 2.2 ml. If  the size o f the 

sample that is filtered is 1000 ml, then the concentration factor would be 303.

1000ml 1.0 ml
Concentration factor = ---------— x ----------= 303

15ml 2.2 ml

In Eppley’s et al. (1969) method, the volume of phytoplankton extract, the volume of 

extract analyzed for nitrite and the final volume for absorbance measurement are 4.4, 1.5 

and 3.0 ml, respectively. For the method of Hochman et al. (1986), the volumes are 1.9, 

1.0 and 2.8 ml, respectively if all the volumes are 1000 ml. The concentration factors for 

Eppley’s et al. (1969) and in Hochman’s et al. method (1986) are 114 and 188 (Table 2-2). 

The final volume absorbance measurement in the methods o f Eppley and Hochman are 3
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ml and 2.8 ml because of the need to fill a 1-cm path length cuvette cell. In this study, 

using a dipping probe colorimeter provides a 2-cm path length with a smaller final volume. 

Therefore, the final ratio of absorbance in the Eppley et al and Hochman et al. method to 

the absorbance in the study is 0.2:1 and 0.3:1 .(114x1: 188x1: 303x2). In other words, the 

sensitivity o f the improved method is about five times higher than that in Eppley's method. 

Eppley et al. (1969) suggested that a successful measurement o f NRA needs about 10 

o f chlorophyll a. Assuming the chlorophyll a concentration in coastal area is 2 wg/L, one 

needs five liters o f seawater to satisfy the NRA analysis using Eppley’s et al. method while 

one just needs 1 liter of seawater using the improved NRA assay. Similarly, if  the 

chlorophyll a in oligotrophic ocean is 0.1 Mg/L, one must collect 100 liter o f seawater using 

the Eppley’s et al. method, while one only needs 20 liters of seawater using the improved 

NRA assay.
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Table 2-2. The comparison o f  sensitivity in three different NRA assays 
(Eppley et al., 1969 ; Hochman et al., 1986; and this study)

Eppley et al. 
(1969)

Hochman et al. 
(1986)

This study

Sample Volume 
(m l): VI

1000 1000 1000

Volume o f phytoplankton extract 
(ml): V2

4.4 1.9 1.5

Volume o f extract analyzed for nitrite 
(ml): V3

1.5 1.0 1.0

Final volume for absorbance measurement 
(ml): V4

3.0 2.8 2.2

Concentration factor 114 188 303

Path length (cm) 1 1 2

Ratio o f absorbance 0.2 0.3 I

VI = the volume o f filtration
V2 = the volume of phosphate buffer +- NADH + Nitrate 
V3 = volume used from V2
V4 = the volume of supernatant liquid (V3 + ZnS04 + NaOH) after centrifuge 

+ NED + SUL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

Precision and detection limit

The NRA in a culture o f S. costatum and a sample of surface seawater collected 

from Chesapeake Bay were determined repeatedly in order to establish the precision o f the 

proposed method. In each case, the sample was analyzed four times. The NRA formed 

were 555 ± 28 (or ± 5 %, la) and 7.2 ± 0.3 (or ± 5 %, la) respectively (Table 2-3). In 

comparison, Eppley et al. (1969) and Hochman et al. (1986) reported NRA uncertainties of 

± 2 0 %  and ±  8 % respectively. Thus, the precision of the proposed method is much better 

than that o f Eppley et al. (1969) and is comparable to that o f Hochman et al. (1986). The 

detection limits for NRA can be estimated from the detection limit for the determination of 

nitrite, about 0.1 ^M. If 5 liters o f a sample is processed, the detection limit is about 0.4 

nM h '1 (equation 2-1). If 20 liters of a sample is processed, it can be decreased to 0.1 nM 

h"1 (e.g. oligotrophic ocean).
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Table 2-3. The precision o f  NRA in S. costatum and natural phytoplankton assemblages 
(from Chesapeake Bay)

S. costatum Natural phytoplankton

Volume of subsample 20 ml 2000 ml

chlorophyll a > 70 mg m'3 4.2 mg m'3

Subsample 1 561 7.6

Subsample 2 583 7.4

Subsample 3 561 7.0

Subsample 4 516 7.0

Average 555 7.23

Std. 28 0.34

RSD 5 5

The unit of NRA is nM hr'1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

Conclusions

An improved method for the determination o f NRA was developed in this research. 

The sensitivity o f  this NRA assay is about three and five times higher than that used in 

Hochman et al. (1986) and in Eppley et al. (1969), respectively. In other words, the volume 

of sample can be largely reduced by using the modified NRA assay. Furthermore, the 

improved NRA assay in this study showed a superior reproducibility (RSD = 5 %) than did 

previous research (RSD = 20 % and 8 % for Eppley et al. (1969) and Hochman et al. 

(1986)). In addition, this improved NRA assay is less time consuming than that o f Eppley 

et al. (1969) and Hochman et al. (1986), and it can be finished within 1 hour after sampling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

CHAPTER III

NITRATE REDUCTASE ACTIVITY IN THE EAST CHINA SEA 

Introduction

Nitrate reductase activity (NRA) has been widely used for investigating the 

physiological mechanisms of nitrate uptake and determining the status o f eutrophic 

conditions since Eppley and Coatsworth (1968) first proposed to utilize NRA to study 

phytoplankton ecology. NRA was suggested to study the rate o f nitrate assimilation by 

Eppely et al. (1969) and Packard et al. (1971), but the successful cases to date are few 

because the physiological characteristics o f NRA are still unclear (Blasco et al., 1984: 

Berges and Harrison, 1995a). Although it has been suggested that NRA can be used to 

estimate nitrate uptake under light- and nitrate-replete conditions (Berges and Harriosn, 

1995; Chapter IV), knowledge about NRA is still poorly understood, particularly the 

effects of NRA from ambient nutrient concentrations, hydrographic characteristics and 

changes of light intensity. In order to sufficiently utilize NRA to study nitrate uptake and 

estimate new production, it is first necessary to understand the influence o f environmental 

factors on NRA.

The East China Sea is a suitable place where the nutrient supply is plentiful (one 

upwelling system) and variable (from oligotrophic to eutrophic). Thus, the purpose of this 

chapter is to study how NRA is affected by environmental factors such as light, nutrient 

concentrations and hydrographic conditions. In addition, the turnover time of nitrate in the 

upwelling water is also estimated in this region.
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Review of the East China Sea

The East China Sea (ECS) is one o f the larger and more productive marginal seas 

of the world (Fig. 3-1). It is located to the north of Taiwan and bounded on the west by 

continental China and bounded on the east by the Kuroshio Current. When the Kuroshio 

Current passes the ECS along the northeast coast of Taiwan, the warm, saline, nutrient- 

impoverished Kuroshio Surface Water sometimes intrudes onto the shelf due to the 

topographical effect. The abrupt topographical variations also induce the cold and nutrient- 

rich Kuroshio Subsurface Water to upwell onto the shelf edge (Chem and Wang, 1990; 

Chem et al., 1990; Su et al., 1990; Wong et al., 1991; Hsueh et al., 1992; Liu et al., 1992a,b; 

Chen et al., 1995; Gong and Liu, 1995; Chen, 1996). As a result, a dome-shaped plume 

o f upwelled Kuroshio Subsurface Water has been found at the shelf break northeast of 

Taiwan (Gong, 1992; Liu et al., 1992a; Gong et al., 1995). However, the phenomenon of 

upwelling is sometimes suppressed by either shelf water outflow under the southwest 

monsoon (Gong, 1992) or intrusion of Kuroshio Surface Water (Sun, 1987; Linetal., 1992; 

Tang and Yang, 1993; Chuang and Liang, 1994). The East China Sea also receives outflow 

water from the Changjiang, one of the larger rivers of the world, with a flow rate of 979 

km3 yr'1 (Milliman and Jin, 1985; Zhang, 1996), and Minjiang (Zhang, 1996; Chen, 1997). 

The outflow o f river waters results in the presence of the fresh, cold and nutrient-rich 

Changjiang Diluted Water along the Chinese coast (Wong et al., 1998). Another source of 

surface water to the Sea is the Taiwan Current Warm Water which enters the East China Sea 

through the Taiwan Strait from the south. This water is nutrient poor while its temperature 

and salinity are slightly lower than those of the Kuroshio Surface Water. Thus, the major
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surface water masses in the East China Sea are the Changjiang Diluted Water (CDW), the 

Taiwan Current Warm Water (TCWW), the Kuroshio Surface Water and the upwelled 

Kuroshio Subsurface Water (Liu et al.. 1992a; Chen et al., 1995).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



La
titu

de
 

(N
)

44

32

31 -
200 m

30- 1000 m

2 9-
China

28 -
East China Sea

452 7 -

49 •38
26 - 50

53
Taiwa

25 -

24
120 121 122 123 124 128 129 130125 126 127

Longitude (E)

Fig. 3-1. Sampling locations for NRA stations. Sta. 38 is a 
hydrographic station.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

Materials and methods

Eleven stations were occupied in a transect across the southern East China Sea 

between May 2 and 15, 1996 aboard the R/V Ocean Research I during Cruise ORI-449 of 

the Kuroshio Edge Exchange Processes (KEEP) Study. The cruise track and the locations 

of the stations are shown in Figure 3 -1. At each station, the profiles o f temperature, salinity 

and fluorescence were recorded with a SeaBird model SBE9/11 conductivity-temperature- 

depth (CTD) recorder. Photosynthetically active radiance (P/vR) was recorded with a PAR 

sensor (QSP200L; Biospherical). Discrete water samples were collected with GO-FLO 

bottles mounted onto a Rosette sampling assembly (General Oceanic). Sub-samples were 

then obtained for the determination of salinity, nitrite and (nitrate plus nitrite).

Sub-samples were transported to the shore based laboratory for the determination 

of salinity with an Autosal salinometer with a precision of ±0.003. Nitrite and (nitrate plus 

nitrite) were determined on board a ship by the standard pink azo dye method which has 

been adapted for use with a flow injection analyzer (Morris and Riley, 1963; Strickland and 

Parsons, 1972; Gardner etal., 1976; Pai etal., 1990; Gong, 1992; Liu etal., 1992a,b). The 

precision for the determination of nitrate and nitrite was 1% at 10 to 20 pM levels. The 

detection limits for nitrite and nitrate were 0.05 and 0.1 pM, respectively.

Sub-samples were obtained at 11 stations for the determination o f chlorophyll a (chi 

a) and NRA. Chi a was determined by the method of Strickland and Parsons (1972) and 

Gong et al. (1993). The detailed procedures were similar to the previous analysis of chi a 

in Chapter VI.
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Nitrate reductase activity was determined on board a ship by a slight modification 

of the method o f Hochman et al. (1986). Seawater (20 liters at Sta. 55 and 4 to 8 liters at 

the other stations) was collected at Stations 11, 15,26, 30,45,49, 52, 53 and 55 during the 

day, and at Sta. 50 and 51 after sunset. The samples collected during the day were 

immediately filtered through 47 mm Gelman Type A/E glass fiber filters. The samples 

collected after sunset were stored in a polyethylene bottle on the deck and then determined 

the next morning. The filter was transferred to a beaker together with 1 ml o f a phosphate 

buffer (150 mM o f K2H P04 adjusted to a pH of 7.6), 50 pM o f toluene, 0.2 ml o f 6.5 mM 

NADH (Sigma Chemical Co.) and 0.2 mi o f 0.1 M potassium nitrate. The beaker was 

placed on a vortex mixer and mixed for 5 min at room temperature (~ 20 °C). Then, the 

reaction was terminated by pipetting 1 ml of the slurry from the beaker into a centrifuge 

tube containing 1.7 ml of 0.13 M ZnS04 at 97 °C. After the solution was allowed to cool, 

0.2 ml o f 1 N NaOH was added and the mixture was centrifuged for 20 min at 4000 rpm. 

Two ml of the supernatant liquid was removed for the determination of nitrite by adding 0.1 

ml o f a 2 % (w/v) N-l -naphthylethylenediamine hydrochloride solution to the supernatant 

liquid and measuring the absorbance of the azo dye formed at 545 nM (Strickland and 

Parsons, 1972) with a Brinkman PC-800 Probe Colorimeter equipped with a probe tip with 

a 2-cm light path. The precision in repeated determination o f NRA in a sample was ±5%. 

Since nitrite could be detected down to about 0.1 pM, the corresponding detection limits 

for the determination of NRA would be 0.4 and 0.1 nM-N hr'1 when 5 and 20 liters of 

sample were processed respectively. The procedural blank o f the method included the 

reagent blank and the blank due to the presence of intra-cellular nitrite. The reagent blank
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corresponded to 0.03 and <0.01 nM-N hr'1 when sample volumes o f 5 and 20 liters were 

used. The presence o f intra-cellular nitrite gave rise to a blank that corresponded to NRA 

of 0.2 nM-N mg chl-a'1 m3. The results reported here have been corrected for these blanks.

Results and discussions

Distributions o f  water masses in the East China Sea

The properties o f temperature and salinity at all study stations are shown in Fig. 3-2. 

Sta. 38 represents typical Kuroshio water with its highest temperature and highest-salinity. 

About five major surface water masses were clearly identified in this study area. The 

coldest, freshest and nutrient-rich Changjing Diluted Water (CDW: Gong, 1992; Liu et al., 

1992b; Gong et al., 1995; Wong et al., 1998) was observed at Sta. 30. The cold, high 

salinity and nutrient rich upwelled Kuroshio Subsurface Water (UKS W) was found at the 

shelf edge near the northeastern tip of Taiwan (Stations 51, 52 and 53, Wong, et al., 1991; 

Liu et al., 1992a, 1992b); the warm and nutrient-poor Kuroshio Surface Water (KS W) with 

highest salinity was observed at Sta. 55. A cold Coastal water (CW) with intermediate 

salinity was found at Sta. 49. Warm nutrient deplete Taiwan Current Warm Water 

(TCWW) with high salinity might be presented at Sta. 50. The characteristics of Stations 

11,15,26 and 45 were different from the above water masses. Stations 11,26 and 45 were 

located at the seaward frontal region between the CDW and Kuroshio water, while Sta. 15 

was located at the shelf-ward frontal zone of the Kuroshio.
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Depth distributions o f  NRA in the East China Sea

The depth distributions ofNRA and relevant hydrographic data in the study area are 

shown in Figures 3-2 to 3-7. The detailed data ofNRA and relevant hydrographic data are 

shown in Appendix C. The mixed layer depth (MLD) is the depth at which the density 

gradient increased by a factor of 2 or higher. The photic zone depth (PZD) represents the 

depth o f %PAR (photosynthetically active radiance) from surface layer to 1% of PAR%. 

Both MLD and PZD are indicated in the figures. The hydrographic properties and NRA in 

the mixed layer at different water masses are summarized in Table 3-1. The detailed data 

are shown in Appendix C. NRA in the coastal area (Stations 15 and 30) showed the 

shallow subsurface maximum, and their activities decreased with depth to background level 

below the PZD. NRA in the upwelling zone (Stations 51, 52 and 53), in coastal water (Sta. 

49) and at Stations 11, 50 and 51 exhibited a surface maximum, and NRA gradually 

decreased to background level below the PZD excluding Sta. 49. NRA gradually decreased 

to a low level at a depth of 25 m above the PZD.

Low NRA was found in the surface layer in the oligotrophic ocean (Stations 55-3 

and 55-5) and its activity increased with increasing depth to a subsurface maximum between 

70 and 90 m. The distribution ofNRA roughly parallels that o f chi a. Similarly, observable 

NRA was found at a depth below the PZD mirroring the behavior o f chi a.

The vertical distribution ofNRA within the mixed layer was roughly uniform in the 

frontal area between the coastal plume and Kuroshio water (Sta. 26). The distribution of 

NRA above the PZD was similar to that of chi a. Although the observable NRA was still 

observed below the PZD, it quickly dropped to background levels at slightly greater depths.
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Fig. 3-4. The depth profiles of hydrographic data and NRA at Sta. 51 
(upper panel) and Sta. 53 (lower panel).
Horizontal dotted line represents the MLD.
Horizontal broken line represents the PZD.
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Fig. 3-5. The depth profiles of hydrographic data and NRA at Sta. 52-1 
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Table 3-1. Properties o f  the waters in the mixed layer o f  the different hydrographic 
regimes o f  the East China Sea

Hydrographic
Regimes

Sta MLD
m

PZD
1%

S T
°C

NO,-
mM

Chl-a 
mg nvJ

NRA 

nM h-'
I-chl a 

1%
I-NRA

1%
In coastal plume 30 13 20 30.1 15.4 6.0 0.96 4.7 21.9 103

Shelf/Kuroshio 
frontal region

15 52 50 34.4 17.5 1.8 0.43 3.7 21.3 196

Upwelling 51 5 nd 34.4 20.6 1.3 0.81 4.6 22.5 HI
53 10 40 34.5 22.1 2.4 0.98 6.8 22.2 141

52-1 15 40 34.5 18.5 4.8 0.77 5.3 26.7 168
52-3 15 55 34.5 18.9 4.3 0.90 10.0 29.6 243

Coastal plume/ 11 12 29 33.4 16.3 0.4 0.83 10.6 18.1 261
shelf front region 49 5 45 33.9 20.9 0.0 0.70 5.1 23.6 78
TCWW 50 30 nd 34.2 23.8 0.0 0.55 4.6 16.4 56

Shelf 26 J 19 34.1 17.7 0.1 2.44 15.4 37.3 308
45 15 40 34.2 21.5 0.1 0.90 4.9 26.0 105

Kuroshio 55-3 33 78 34.6 23.9 0.0 0.07 0.17 9.2 25
55-3 35 100 34.6 24.0 0.0 0.06 0.13 10.3 35

MLD - Mixed layer depth;
PZD 1%: photic zone depth to 1% of %PAR; I-NRA 1%: integrated NRA to 1% of PAR; 
nd - no data; TCWW: Taiwan current warm water.
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The NRA distributions in these different hydrographic regimes can be roughly 

divided into four types: (1) type A: NRA shows a shallow subsurface maximum (10 to 15 

m) at Stations 15 and 30; (2) type B: NRA shows a surface maximum in the upwelling zone 

(Stationsl 1,45,49,50, 51, 52-1, 52-3 and 53); (3) type C: NRA shows an almost uniform 

distribution within the mixed layer at the Station 26 while NRA was still detectable below 

the PZD (4) type D: NRA shows a deep subsurface maximum (60 to 90 m) in the 

oligotrophic ocean (Stations 55-3 and 55-5);

With respect to type A, it is difficult to explain the shallow subsurface maximum 

at Stations 15 and 30. Theoretically, maximum NRA should occur in the surface layer 

because light and nitrate (4-8 /uM) are not limiting while the maximum NRA was found at 

depths of 10 to 15 m rather than in the surface layer. Three possibilities may be used to 

explain this result: (1) high biomass in the shallow subsurface layer; (2) phytoplankton 

uptake of other nitrogen sources (NH4~); and (3) deficiency of phosphoric acid in the surface 

layer. The appearance of NH4" will suppress the formation o f NRA. Neither NH4'  nor 

DON was measured in this study, but a plume of high NH4~ is often observed in Changjing 

Diluted water (Edmond, 1985). Consequently, higher N H / in the surface layer higher than 

in the subsurface layer could help to explain the maximum NRA in the subsurface layer. 

Another possibility may be from phosphorous deficiency in the surface layer (N 03YP04 =  

120 to 180) because phytoplankton need ATP to transport external N 0 3‘ to internal N 0 3" 

passing through cell membranes (Solomonson and Barber, 1990; Wada and Hattori, 1991). 

Once the phosphate becomes limiting, the transport of N 0 3' from outside to inside o f cell 

will be reduced. As a consequence, NRA may be inhibited due to interior nitrate deficiency
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in cells. Collos and Slawyk (1977) and Dortch et al. (1979) suggested that NR is induced 

by internal nitrate concentration rather than external concentrations. Thus, low NRA could 

be found in the surface layer under high-nitrate and low- phosphoric conditions. 

Conversely, the ratio of N 0 3'/P 04 decreased from 20 to 60 in shallow subsurface layer (10 

to 15 m). This suggests that phosphoric acid is a significant factor affecting the production 

ofNRA. Below the subsurface layer, the ratio o f N 0 3YP04 decreased to 16, but the light 

became a limiting factor.

For type B, the surface maximum NRA in upwelling water and at Sta. 45 can be 

interpreted as follows: When a cold and nitrate rich water was introduced into the surface 

layer by an upwelling event, originally, the use o f nitrate by phytoplankton is low due to the 

low autotrophic biomass and unstable conditions (cold and light-deplete). When the 

phytoplankton are kept transporting to the surface layer, the upwelled water is gradually 

stabilized under a well-lit environment which results in the nitrate being readily assimilated 

by phytoplankton. Thus, NRA is readily induced in the upper layer more than in the deep 

layer. However, the concentration o f nitrate in the surface layer at Stations 11, 49 and 50 

was almost exhausted, but the surface maximum NRA were found at these stations. One 

possibility which might explain this phenomenon is that NRA is induced by the internal 

nitrate from cells (Collos and Slawyk, 1977; Dortch et al., 1979). Thus, NRA still can be 

induced even though the concentration o f ambient nitrate is low.

For type C, NRA showed an approximate uniform distribution within the mixed 

layer at Sta. 26. The uniform distribution ofNRA in this frontal region could be explained 

by the vertical mixing of water masses or the vertical migration o f phytoplankton. In
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addition, the higher NRA around the PZD could be a memory of a previous sunny 

conditions. With respect to type D, it occurs where the PZD is deepest in the study area. 

In addition, nitrate in the surface layer at the oligotrophic site is almost exhausted and little 

nitrate diffuses to the subsurface layer from the deep ocean. NRA is low in surface layer 

due to nitrate limitation, and maximum NRA is found in the subsurface when appropriate 

light and nutrient support co-exist. In the upwelling system, the level o f NRA in the 

oligotrophic area is one order o f magnitude lower than that in the upwelling. With respect 

to the observable NRA below the PZD, the distribution ofNRA is similar to that of chi a 

in the subsurface water (70 to 120 m) because the penetration depth of light is dependent 

on the intensity of surface light and the characteristics of water.

Distribution ofNRA in the transect

The section ofNRA in the transect is shown in Fig. 3-10a. The isolines ofNRA 

rose steadily from the inner shelf to the upwelling region and then rose to the maximum 

level near the area between the upwelling region (Sta. 53) and the oligotrophic ocean (Sta. 

54). For example, at inner shelf Sta. 50, the isoline of 2 nM-N h '1 was found at a depth of 

40 m, while at upwelling Sta. 53 it was found at 25 m and at Sta. 54 at a depth o f about 20 

m. However, this upward trend of the NRA isolines was different from the isolines of 

nitrate (Fig. 3-11), but was similar to the trend o f chi a isolines (Fig. 3-12). Furthermore, 

the isoline o f highest NRA (> 6 nM-N h'1) was found in the surface water of the upwelling 

region (Stations 51, 52 and 53), and the intermediate NRA (~ 3 nM-N h '1) was spread 

throughout the surface water in the shelf (Stations 49 and 50). The lowest NRA (< 0.3 nM-
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N h*1) was found at the surface and the maximum NRA (0.5 nM-N hr*1) appeared in the 

subsurface in the Kuroshio Current (Sta. 55). The spatial distribution of NRA seemed 

related to the trend o f chi a suggesting that higher nitrate uptake occurred in adjacent waters 

o f the upwelling center rather than in the upweiling center.

The section of S-NRA is shown in Fig. 3-1 Ob. The high S-NRA clusters occurred 

in the surface layers of Stations 51 and 53, while the S-NRA in the surface layer at Sta. 52. 

was much lower than that at Stations 51 and 53. The discrepancy between these waters may 

reflect a “shift-up” hypothesis that the phytoplankton assemblage undergoes an acceleration 

from low specific rates of nitrate utilization up to higher rates (Maclsaac et al., 1985; 

Zimmerman et al., 1987; Garside, 1991). The results suggest that S-NRA may be a 

potential tool for studying the physiological mechanism of nitrate uptake (Blasco et al., 

1984).
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Fig. 3-10. (a) The distribution o f NRA in the Stations 48-55 transect (upper panel).

(b) The distribution o f S-NRA in the Stations 48-55 transect (lower panel).
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Turnover time o f  nitrate in the transect

In order to accurately estimate the nitrate transport into the East China Sea by the 

upwelling water o f Kuroshio, the turnover time of the upwelling water must be determined. 

Assuming nitrate uptake (expressed as NRA) is the principle process controlling ambient 

nitrate concentration in the upwelling waters, at a steady state, the turnover time of nitrate 

(t-NCV) in ^  upwelling waters can be calculated by following equation:

where [N 03‘] is the nitrate concentration and d N 0 3'/dt (or NRA) is the rate of nitrate 

uptake by phytoplankton within the PZDI0. x N 0 3" is the turnover time o f nitrate which is 

controlled by nitrate input and nitrate consumption in the upwelling system. The contour 

o f estimated z N 0 3' in the transect is shown in Fig. 3-13. In general, the turnover time 

increased with depth with 30 days in the surface layer and quickly increased to several 

hundred days in the subsurface. A short turnover time was found in the upwelling area of 

about 30 days and the shortest turnover time (<10 days) was found in the coastal region 

(Sta. 49 and 50). The short x N 0 3' in the former was caused by high productivity while the 

shortest x N 0 3' in the latter was caused by little supply of nitrate. The longer x N 0 3' was 

always found in the deepest depth suggesting that the consumption of nitrate is very little 

due to low phytoplankton biomass, low light and a high concentration of nitrate.

The estimates o f x N 0 3' within PZD10 in the upwelling water are shown in Table 3- 

2. The shortest x N 0 3' (37 and 28 days) occurred at the edge of the upwelling water 

(Stations 51 and 53) while the longest x N 0 3‘ (83 and 43 days) were observed near the

T
so>' dNO.;  NRA

dt
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center o f upwelling waters (Stations 52-1 and 52-3). These results suggest that 

phvtoplankton can take up nutrients more effectively in aged upwelled waters than in newly 

upwelled waters because aged upwelled waters contain more autotrophic biomass than 

newly upwelled waters. In addition, the water in aged upwelled waters was more stable 

than in newly upwelled waters. Analogous results have been described from numerous 

upwelling systems (Maclsaac et al., 1985; Dugdale and Wilkerson, 1989; Wilkerson and 

Dugdaie, 1987; Dugdale etal., 1990).

The turnover time o f upwelling water was estimated at 20±10 days using the 

dissolved oxygen mass balance approach (Liu et al., 1992b). In addition, the turnover time 

was also estimated to be one month from an examination o f the dissolved inorganic iodine 

system (see Chapter V). Thus, the turnover time calculated in this work for the upwelling 

system compares well with previous estimates.
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Table 3-2. The turnover time o f  nitrate in the upwelling water o f  southern East China Sea

Station PZDI0
(m)

*n o 3-
O M )

*NRA 
(nM-N h-‘)

Turnover Time 
(day)

51 17 1.7 3.8 37

52-1 18 5.0 5.0 83

52-3 25 4.5 8.8 43

53 19 2.4 7.1 28
*- average amount within PZDl0.
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The relationship between specific NRA and PAR

The relationship between PAR and chi a specific MRA (S-NRA) is shown in Fig. 

3-14 where S-NRA was almost linear with PAR for weak light intensities, and S-NRA then 

increased to a maximum value when PAR was higher than 80 fiE m'2 s '1 at stations 11 and 

45, excluding Sta. 52-3 in which the saturated PAR was about 300 fiE  m'2 s '1. The result 

demonstrates that light is a limiting factor for nitrate reduction under low light intensity. 

There was no photoinhibition in the relationship between S-NRA and PAR under high 

intensity o f light. The maximum value o f S-NRA ranged from 5.8 to 12.9 mmol-N mg chi 

a'1 h '1. However, in Fig. 3-15, S-NRA at low PAR conditions seemed to have higher value 

than high PAR conditions suggesting that nitrate is a limiting factor under high light 

intensity. The relationship between S-NRA and PAR at Fig. 3-14 was similar to a P-I curve 

(photosynthesis verse irradiance) so that it can be expressed as following equation:

-SxP A R /
S - N R A  = NRAmax x ( l - e  /NRA™ )

where NRAmax represents the highest specific NRA when PAR is high; S is the initial slope 

o f specific NRA and PAR; PAR is the intensity o f light. The curve fitting was conducted 

using a non-linear regression program (Sigma Plot) to calculate the NRAmax and S. The 

derived curves fitted with the observed data well suggesting that specific NRA can be a tool 

to estimate new production in the same way as a P-I curve was utilized to estimate primary 

production (Platt et al., 1980, 1988, 1992; Harrison et al., 1985; Sathyendranath et al., 

1995). However, additional work is required to understand the relationship between 

specific NRA and PAR.
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The relationship between nitrate concentration and specific NRA

The relationships between the concentration o f nitrate and chlorophyll specific NRA 

(S-NRA) in upwelling areas (Stations 51, 52 and 53) are shown in Fig. 3-16. In the Fig. 

3-16, the S-NRA was almost reversely proportional to nitrate concentration in upwelling 

regions with high S-NRA at low nitrate concentration and low S-NRA at high nitrate 

concentrations. The result indicates that S-NRA was high under well-lit and nitrate-replete 

conditions while S-NRA was low even though the concentration o f nitrate reached 8 to 12 

where phytoplankton was little due to the lack o f light. The result also suggested that 

light is a limiting factor for NRA at deep depth where nitrate is replete. This coupling 

relationship between nitrate concentration and specific NRA can be used in estimating NRA 

by measuring chi a and nitrate in upwelling regions. However, as shown in Fig. 3-17, the 

relationship between the concentration of nitrate and S-NRA shows a random distribution, 

suggesting that phytoplankton utilize other nitrogen sources other than nitrate.
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The relationship between NRA and chlorophyll a

The relationship between integrated NRA (I-NRA) and integrated chlorophyll a 

(I-chl a) within the photic zone where % PAR exceeded 1% at all the stations is shown in 

Fig. 3-18. In the Fig. 3-18, I-NRA is roughly proportional to the I-NRA so that 

NRA = - 49(±56) + 8.7(±2.4)chl a, r2 = 0.53.

The intercept is close to zero according to statistical uncertainty, and the slope of the line 

is about 8.7. This result demonstrates that the production o f NRA is totally from 

phytoplankton cells although some data points escaped from the best regression line. In 

other words, the higher the phytoplankton biomass, the higher the NRA. Once the 

relationship between NRA and chi a can be established. NRA can be readily estimated by 

measuring the chlorophyll a, multiplying the relationship between them. This approach is 

better used in dark conditions because NRA is difficult or impossible to measure at night. 

Thus, more research is required to understand the relationship between NRA and 

chlorophyll a.
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Conclusions

NRA showed a surface maximum in the upwelling area when the concentration of 

nitrate was high in the surface layer and light was abundant. NRA showed a sub-surface 

maximum level in coastal areas where NRA in the surface layer may be inhibited by other 

nitrogen sources (ammonium or DON). NRA in the strong vertical mixing area showed 

a uniform distribution above the mixed layer. NRA may be significantly underestimated 

or over estimated when water masses are well mixed and the intensity of light is weak 

during the sampling time. NRA in the oligotrophic oceans showed a deep sub-surface 

maximum suggesting that nutrient is a limiting factor at this depth.

NRA in the upwelling system can be used to study the physiology of phytoplankton 

for nitrate uptake because it can quickly reflect the rate of nitrate uptake. In addition, a 

good relationship between S-NRA and PAR was found in this study, suggesting that NRA 

can be estimated by chlorophyll a and light intensity. The turnover time (3 to 57 days, the 

average being 29 days) in the surface layer in upwelling regions estimated by the NRA 

system suggests that this estimation is similar to other approaches.
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CHAPTER IV

THE EFFECTS OF LIGHT AND NITRATE LEVELS ON THE 
RELATIONSHIP BETWEEN NRA AND I5N 0 3 UPTAKE:

FIELD OBSERVATIONS IN THE EAST CHINA SEA

Introduction

The determination o f new production using the I5N 0 3'-Iabeling technique suffers 

from a variety of limitations. Although nitrate reductase activity (NRA) has been suggested 

to be a promising tool for measuring new production, the successful cases are few. The 

reasons for failure are complicated, may arise from two major factors: (1) the previous NRA 

assays respond inadequately the real NRA; and (2) the effects o f environmental variations 

in nutrients, light and hydrography on NRA and new production were not taken into 

appropriate consideration. However, it is very difficult to distinguish between these 

possibilities because they are intertwined with each other. In chapter two, an improved 

NRA assay has been developed for the determination of NRA. The goal o f this chapter is 

to examine the possibility of estimating nitrate uptake by using an improved NRA 

approach.

Because major investigations concerning the relationship between NRA and ISN 0 3' 

uptake (NU) were conducted in upwelling areas (Eppley et al., 1970; Collos and Slawyk, 

1977; Blasco et al.. 1984; Slawyk et al., 1997), the relationship between NU and NRA in 

other oceanic sub-environments, such as coastal, shelf and oligotrophic waters, has not yet 

been fully examined. The East China Sea is a suitable site for this study due to waters with 

a wide range of nutrients, from oligotrophic ocean to upwelling water, to highly productive 

coastal water. Thus, the effects of light and nutrient (nitrate) concentration on the
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relationship between nitrate reductase activity and I5N 0 3' uptake in the East China Sea 

were examined. In addition, primary production in the East China Sea was also measured 

to acquire more insight about the relationship between NRA and primary production.

Materials and methods

Sampling

40 stations were occupied in five transects across the East China Sea between May 

2 and 15, 1996 aboard the R/V Ocean Research I during Cruise ORI-449 of the Kuroshio 

Edge Exchange Processes (KEEP) Study. The cruise track and the locations of the stations 

are shown in Figure 4-1. Small black circles represents the hydrographic stations and large 

black circles (Stations 11, 15, 26, 30, 52 and 55) represent the stations o f nitrate reductase 

activity and 15N 0 3' uptake.
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Hydrographic and nutrient measurements

At each station, the distributions of temperature, salinity and fluorescence were 

recorded with a SeaBird model SBE9/11 conductivity-temperature-depth (CTD) recorder. 

Photo synthetically active radiance (PAR) was recorded with a PAR sensor (QSP200L; 

Biospherical), while the depth of the euphoric zone was defined as 1% o f the surface light 

level. Discrete water samples were collected with GO-FLO bottles mounted on a Rosette 

sampling assembly (General Oceanics). Sub-samples were then obtained for the 

determination of salinity, nitrite and (nitrate+nitrite).

Sub-samples were returned to the shore based laboratory for the determination of 

salinity with an Autosal salinometer. The precision for this measurement was ±0.003. 

Nitrite and (nitrate+nitrite) were determined on board ship by the standard pink azo dye 

method which has been adapted for use with a flow injection analyzer (Morris and Riley, 

1963; Strickland and Parsons, 1972; Gardner etal., 1976; Pai et al., 1990; Gong, 1992; Liu 

et al., 1992a, b). The precision for the determination of nitrate and nitrite was 1% at 10 to 

20 pM levels. The detection limits for nitrite and nitrate were 0.1 and 0.05 pM, 

respectively.

Chlorophyll a, primary production, l3N O f uptake and NRA assay

Sub-samples were obtained at 6 stations: Stations 11, 15, 26, 30, 52 and 55 for the 

determination o f chlorophyll a  (chi a), 15N 0 3‘ uptake and NRA. Stations 52 and 55 were 

occupied twice to study the temporal changes in these parameters. Chi a, was determined 

by the method of Strickland and Parsons (1972) and Gong et al. (1993). Seawater (100 ml)
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was filtered through 47 mm Whatman GF/F glass fiber filters on board ship, then stored 

immediately at -20 °C and returned to the laboratory for further processing. In the 

laboratory, the filters were ground in and extracted with 10 ml o f 90% acetone at 4 °C for 

2 hours. Then, the mixture was centrifuged for 10 min at 3000 rpm. The concentration of 

Chi-a in the supernatant liquid was measured fluorimetrically with a Turner model 10-AU- 

005 fluorometer. The fluorometer was calibrated against a standard prepared from pure chi 

a  (Sigma chemical Co.) The precision in the determination of chi a was about 1 % at 200 

mg/m3.

Primary productivity (PP) was measured by the I4C assimilation method (Parsons 

et al., 1984; Shiah et al., 1995). Acid-cleaned polycarbonate bottles (250 mL, Nalgene) were 

filled with seawater pre-screened through 200 pm mesh to remove large organisms and 

particles, and then inoculated with 10 pCi NaH14C 0 3. Samples were incubated in situ 

conditions for 6 hours. Following retrieval, the samples were filtered through 25 mm 

Whatman GF/F glass fiber filters under low vacuum (< 100 mm Hg). The filters were 

placed in scintillation vials and stored in the dark. The filters were returned to the shore- 

based laboratory and analyzed for their I4C content by a liquid scintillation counter (Packard 

2700TR). The precision in the counting statistics was approximate 1 %.

The uptake o f  nitrate was determined by the method of Dugdale and Wilkerson 

(1986) by measuring the uptake of added ISN 0 3\  On shipboard, seawater was filtered 

through a 200 pm mesh-size net. The concentration of nitrate in the sample was determined 

on shipboard. An amount o f 15N 0 3" equivalent to 10% o f the nitrate present in the sample 

was added to the filtrate in a I -liter polycarbonate bottle. (If the concentration of nitrate was
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below detection limit, 100 nM of 1SN 0 3' was added to the sample.) The mixture was 

incubated under in situ conditions for 6 hours. Upon the termination of the incubation, the 

samples were filtered through 25 mm Whatman GF/F glass fiber filters which were stored 

in a freezer at -20 °C. The filters were returned to the shore-based laboratory and analyzed 

for their l5N content by mass spectrometry with a Carlo-Erba NA1400 elemental analyzer 

which fed into a VG 622 Micromass mass spectrometer. The precision on the mass 

spectrometer for measuring N-15/N-14 atomic ratio was about 0.006 %.

Nitrate reductase activity was determined on board ship by the slightly modified 

version of the method of Hochman et al. (1986). The detailed procedure of NRA was the 

same as previous NRA assay in Chapter III. The use of Gelman A/E filters (nominal pore 

size 1.0 pm) for the determination of NRA and Whatman GF/F filters (nominal pore size 

0.7 pm) for the determination of primary production, l5N 0 3* uptake and chi a may lead to 

an undersampling of the picoplankton. However, the difference in the retention efficiency 

between these two types of filters should be minimal since the difference in efficiency to 

retain total chlorophyll between filters with even larger difference in nominal pore size 

(between 0.45 pm and 1.2 pm) has been reported to be < 9% (Venrick et al., 1987). 

Furthermore, the dominant types of phytoplankton in the study area are the larger 

phytoplankton, such as Skeletonema costatum, Thalassiosira spp.. Thalassionema 

nitzschiodies and Trichodesmium spp. (Chen, 1995). They should be retained by both kinds 

of filters effectively.
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Results and discussions

Hydrography, light, nutrient and chlorophyll a

The surface distributions of temperature, salinity, nitrate and chlorophyll a (chi a) 

are shown in Figures 4-2a, 4-2b, 4-2c and 4-2d. The four major surface water masses were 

distinctly identifiable. The Changjiang Diluted Water, salinity <33, temperature <17°C, 

nitrate concentrations >1 pM, and chi a > 0.75 mg m '\ was found along the Chinese coast. 

It spread seaward most extensively around the mouth o f the Changjiang in the northwestern 

comer of the study area. Sta. 30 was located within this plume of fresher water while 

Stations 11 and 26 were located at the seaward frontal region of this plume. The highest 

concentration of chi a in the study area, 2.44 mg m'3, was found at Sta. 26. The Kuroshio 

Surface Water was found along the shelf edge, salinity > 34.5, temperature > 22 °C and 

chi a < 0.25 mg m'J. Sta. 55 was located in the Kuroshio while Sta. 15 was located at the 

shelf-ward frontal zone of the Kuroshio. The upwelling Kuroshio Subsurface Water 

manifested itself as a patch of cold, <21 °C, nutrient-rich, nitrate concentration >1 pM, 

water with intermediate chi a > 0.75 mg m'3. It was located northeast of Taiwan and Sta. 

52 was located around the center of this upwelling dome. A small patch of warm (>22 °C) 

water was found northwest of Taiwan in the Taiwan Strait and it was probably the Taiwan 

Current Warm Water.
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Fig. 4-2a. The surface distribution o f temperature (°C) in the East China Sea.
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The vertical distributions of temperature, salinity, sigma-8, nitrate, chi a and %P AR 

(% of the photosynthetically active radiance at the sea surface) at Stations 11, 15, 26, 30, 

52 and 55 are shown in Figures 4-3 to 4-8. The detailed NRA and relevant data are shown 

in appendix D. The MLD (mixed layer depth) represents the depth at which in the density 

gradient increased by a factor o f 2 or higher and PZD01 represents the photic zone depth 

from surface to 1% PAR. MLD and PZD0I are indicated in the Figures 4-3 to 4-8. The 

characteristics of the water within the MLD at these stations are summarized in Table 4-1. 

Shallow MLD (<15 m), PZDI0 (<20 m), strong pycnoclines and high chi a (0.8 to 2.4 mg 

m J) were found in the coastal fresh water plume (Sta. 30) and at the frontal region o f the 

plume (Sta. 11 and 26). However, high concentrations o f nitrate (~ 6 pM) were found only 

at Sta. 30. The concentrations of nitrate at the other two stations were < 0.5 pM. At Sta. 

26, the MLD (3 m) was particularly shallow and the concentration of chl-a was 

exceptionally high (2.4 mg m'3). A temperature inversion layer was found at Sta. 30 below 

13 m, resulting from instrusion o f more saline and warmer Taiwan Warm Current Water 

underneath the Changjiang Diluted Water (Beardsley et al., 1985). In the upwelling region 

at Sta. 52, as in the coastal plume, similarly shallow MLD (15 m) and PZD10 (24 m), and 

high chi a (0.8 mg m'3) together with high nitrate (5 pM) were found. In contrast, in the 

oligotrophic Kuroshio at Sta. 55, the MLD (33 m) and PZD10 (41 m) were much deeper 

while the concentrations o f nitrate (<0.5 pM) and chi a (<0.1 mg m°) were low. At the 

frontal region between the Kuroshio and the shelf water, at Sta. 15, the MLD (52 m) was 

the deepest among these six stations and it exceeded the PZDI0 (34 m). They were 

accompanied by intermediate levels of nitrate (2 pM) and chi a (0.4 mg m'3).
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Table 4-1. Properties o f  the waters in the mixed layer o f  the different hydrographic regimes 
o f  the East China Sea

Hydrographic Sta MLD S T NOj- Chi a NU NRA NU/NRA

Regimes m °C mM mg m'5 nM-N hr'1 nM-N hr'1
Coastal plume/ shelf 
front region

11 12 33.4 16.3 0.4 0.83 11.8 10.6 1.11

ShelfTKuroshio frontal 
region

15 52 34.4 17.5 1.8 0.43 3.6 3.7 0.98

Coastal plume/ 
shelf frontal region 26 3 34.1 17.7 0.1 2.44 36.5 15.4 2.38

In coastal plume 30 13 30.1 15.4 6.0 0.96 3.3 4.7 0.71

Upwelling center 52-1 15 34.5 18.5 5.0 0.77 nd 5.3 nd

Upwelling center 52-3 15 34.5 18.9 4.3 0.90 13.5 10.0 1.35

Kuroshio 55-3 33 34.6 23.9 <0.1 0.07 1.4 0.17 8.65

Kuroshio 55-5 35 34.6 24.0 <0.1 0.06 nd 0.13 nd

ad - no data
MLD-Mixed layer depth
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Fig. 4-3. The vertical distribution of (a) temperature, salinity and ae, (b) 
nitrate, chlorophyll a and %PAR, (c) NRA and NU at Sta. 11. 
Horizontal dashed line denotes PZD10. Horizontal thin solid line 
denotes MLD.
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NRA and '5N O f uptake (NU)

As a first approximation, the vertical distributions of NRA and 15N 0 3‘ uptake (NU), 

which is designated as new production or NU in this discussion, were usually similar to 

each other and to chi a. Significant levels of NRA and NU were confined primarily to 

within the MLD and/or the PZD10. At greater depths, they dropped abruptly with depth to 

background levels. In the mixed layer, high NRA and NU were found at the frontal zone 

of the coastal plume at Sta. 11 (NRA = 11 nM h*1, NU = 12 nM h '1) and at Sta. 26 (NRA 

= 15 nM h '1, NU = 30 nM h '1) (Table 4-1). The values at Sta. 26 were exceptionally high. 

Within the plume, at Sta 30, NRA (4 nM h '1) and NU (3 nM h'1) were considerably lower. 

These values were similar to those observed at the frontal zone between the Kuroshio and 

the shelf water at Sta. 15 (NRA = 4 nM h*‘, NU = 4 nM h '1). High NRA (10 nM h’1) and 

NU (14 nM h '1) were also found in the upwelling zone at Sta. 52. The lowest NRA (0.2 nM 

h"1) and NU (1.4 nM h '1) were found in the oligotrophic Kuroshio at Sta. 55. Below the 

MLD, NRA sometimes did not decrease with depth in step with NU. NRA seemed to 

decrease less abruptly with depth. This phenomenon was clearly evident at Sta. 26 where 

high NRA persisted down to about 30 m while NU had decreased to residual level below 

15 m.

Temporal variations

Stations 52 and 55 were sampled twice over several hours at two different days and 

the results are shown in Fig. 4-9. At Sta. 55, the hydrography did not change significantly 

between the casts as indicated by their similar temperature profiles. The corresponding
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distributions o f  NRA at Sta. 55 were also approximately the same. The high degree of 

reproducibility o f these profiles gives credence to the reliability of our modified method of 

Hochman et al. (1986) for the determination of NRA. However, the two NRA profiles at 

Sta. 52 were inconsistent with each other. According to the temperature profiles, there was 

a water mass shift between the two casts at Sta. 52. Therefore, the discrepancy may result 

from the changes o f  water masses. It might also result from vertical migration and/or diet 

periodicity o f NRA. It is difficult to distinguish between these possibilities with the 

available data.
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The influence o f  environmental conditions on NU/NRA

Light is one of the primary environmental factors that can affect nitrate assimilation 

(Packard and Blasco, 1974; Gao et al., 1992; Smith et al., 1992; Berges et al., 1995). The 

depth at which PAR drops to 1% o f the surface value (photic zone depth at 1% PAR or 

PZD01) is usually referred as the euphotic zone (Parsons and Takahashi, 1977). When the 

incident irradiance is below 1 % PAR, light becomes a limiting factor for photosynthesis by 

phytoplankton. The relationship between NU/NRA and nutrient at depths where %PAR 

exceeded 10 % is shown in Fig. 4-10. At these depths, the availability o f light should no 

longer be a limiting factor for nitrate assimilation. At nitrate concentrations above about 

1 pM, all the data points coalesced around a ratio of about 1. The average was 1.0±0.3. 

Thus, there was an almost quantitative relationship between NRA and NU under light- and 

nutrient-replete conditions. Below a nitrate concentration of 1 pM, there was much larger 

scatter. Some exceedingly high values of NU/NRA, up to 15.4, were found and the average 

was 4±4. These excess NU values relative to NRA in light-replete but nutrient-deficient 

waters could have been an artifact which was caused by the ISN 0 3‘ added for the 

determination of NU (Eppley et al., 1977; Dugdale and Wilkerson, 1986; McCarthy et al.,

1996). In nitrate-impoverishment waters, it is very difficult to measure very low nitrate 

concentrations (< 0.1 pM) by the conventional nitrate method. Therefore, the amount of 

isN 0 3' added (50 to 100 nM) for the measurement of 15N 0 3' uptake is often higher than 10% 

of the ambient concentration. As a consequence, the excess nitrate may easily induce 

nitrate uptake of phytoplankton. If there was a stimulative effect, NU would have been 

over-estimated by measuring l5N 0 3' uptake. NRA does not suffer from this source of error.
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Thus, in oligotrophic waters, NRA may be a more reliable indicator of NP.

The relationship between NU/NRA and %PAR at PAR >1% in waters with nitrate 

exceeding 1 pM is shown in Fig. 4-11. In these waters, the availability of nitrate should no 

longer be a limiting factor for nitrate assimilation. At PARs above 10%, the ratio of 

NU/NRA is close to 1. Between PAR of 10% and 1%, there was much greater scatter. 

NU/NRA tended to be lower than those in the light-replete waters. The average NU/NRA 

was 0.7±0.7. These low and highly variable NU/NRA may reflect the fact that NU and 

NRA measure slightly different facets of nitrate assimilation. NRA represents an 

instantaneous nitrate reducing potential at the sampling time, and it reflects the recent past 

nitrate uptake rate (Blasco et al., 1984) while NU represents a 6 hours l5N 0 3' uptake 

integration following sampling (Blasco etal., 1984; McCarthy et al., 1996; Slawyk et al..

1997). Under light-deficient and possibly light-limiting conditions, the history of the light 

conditions experienced by phytoplankton can be variable due to weather changes, vertical 

mixing of water masses and/or vertical migration o f phytoplankton. Thus, it is not 

impossible that algal cells have experienced light-abundant conditions and contained higher 

enzyme activities at that light-deficient conditions just before sampling. Eppley et al. 

(1970), Goa etal. (1992) andBerges etal. (1995) reported that the cycling of phytoplankton 

cells between light and dark periods can affect the NRA of the cells. On the other hand, in 

the determination o f NU, the light condition is fixed at the light-deficient condition during 

the incubation period. As a result, the nitrate reducing potential represented by NRA may 

be higher than the nitrate assimilation represented by 1SN 0 3" uptake so that the latter may 

be a better indicator o f new production under light-deficient condition. A number of the
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samples that fell under this category ([N03']>1 pM; 1%< %PAR <10%) were found in or 

close to the nitraclines. Ward et al. (1989) and Eppley and Koeve (1990) suggested that 

nitrate may be formed in these waters by nitrification. The nitrate formed may dilute the 

15N 0 3' added and cause an underestimation in nitrate uptake. If this were true, it would also 

contribute to the low values o f NU/NRA in these waters.
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Relationship between NRA and NU

By considering the influences o f low nitrate (NU may be overestimated) and of 

light-depietion(NRA may be overestimated), four types o f water may be classified: (A) 

nitrate- and light-replete waters ([N 03'J > 1 pM, %PAR > 10%), (B) nitrate-deficient and 

light-replete water ([N 03‘] < 1 pM, %PAR > 10%), (C) nitrate-replete and light-deficient 

water ([N03‘] > 1 pM, %PAR < 10%), and (D) nitrate- and light-deficient water ([N 03'J < 

1 pM. %PAR < 10%). The linear regression relationships (Model II) with no intercept 

between NU and NRA in these four types of water are shown in Fig. 4 -12a, b, and c, and 

they are summarized in Table 4-2. As expected from the previous discussion. NU was 

strongly correlated with NRA under nitrate- and light-replete conditions (Fig. 4 -12a). The 

uncertainty of NU/NRA was about ±6% according to the variation of coefficient. Thus, in 

this type of water, both NU and NRA may be used for estimating the rate o f nitrate 

assimilation. This results demonstrated that NU may also be estimated from NRA once a 

relationship between the two rates can be established empirically by measuring both 

parameters simultaneously in a small number o f samples. In type (B) water (Fig. 4-12b), 

although a slope similar to that in type (A) water was found, the correlation was 

significantly poorer. The uncertainty o f the slope was ±13%. If the poor correlation 

between NU and NRA in type (B) is indeed caused by the addition of l5N 0 3‘ during the 

determination of NU, NRA may be more reliable than NP for measuring nitrate 

assimilation. In type (C) water (Fig. 4 -12c), the slope was about half o f that in type (A) 

water while the correlation was even poorer than in type (B) water. The slope o f the linear 

relationship had an uncertainty o f ±33%. Thus, NRA does not represent NU well and
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cannot be used readily for estimating the rate o f  nitrate assimilation in this type of water. 

A relationship between NU and NRA cannot be estimated for type (D) water since there 

were only two data points from this type o f water.

In previous field investigations, the relationships between NU and NRA were 

chaotic (Eppley et al., 1970; Collos and Slawyk, 1977; Blasco et al., 1984) and it is 

difficult to distinguish the failure possibilities which are from environment factors 

(variations o f  light, nutrients and hydrographic data) or the method of NRA. Similarly, it 

is not easy to demonstrate why the relationship between two variables in this study is better 

than before. The possible reasons may result from the different NRA assay used and 

appropriate eliminating the questionable data from hydrographic-based editing process.
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Fig. 4-12. The relationship between NU and NRA in waters with (a) nitrate>l^M 
and %PAR>10%, (b) nitrate <1 and %PAR>10% and (c) nitrate > 
\(jM. and 1%<%PAR<10%. The Model II regression line is shown as 
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the regression relationship in (a).
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Table 4-2. Relationship between NU  and NRA under different combinations o f  light- and 
nitrate- conditions

Type Light
%PAR

NO,'
(mM)

Average
NU/NRA

Regression Analyses Characteristic of water type 
- NU vs NRA*
Slope r  n

A >10% >1 l.0±0.3 1,08±0.07 0.79 12 NRA and NP are indicative of nitrate assimilation

B >10% <1 4 ± 4 l.5±0.2 0.65 10 NRA may be more indicative of nitrate assimilation

C <10% >1 0.7±0.7 0.6±0.2 0.19 7 NP may be more indicative of nitrate assimilation

D <10% <1 0.9±0.7 Insufficient data 2

*- Model II linear regression through the origin. NU and NRA in nM-N h r1, 
n - Number of data points, 
r - correlation coefficient.
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Relationship between NRA and chlorophyll a

The average ratios ofNRA/chl a within the photic zone where %P AR exceeded 10% 

at all the stations are also listed in Table 4-3. Among the three major surface water masses: 

the oligotrophic Kuroshio Surface Water at Sta. 55, the upwelling Kuroshio Sub-surface 

Water at Sta. 52 and the Changjiang Diluted Water at Sta. 30, the highest NRA/chl a, 8.8 

nM-N h '1 m g'1 m3 (the average of Stations 52-1 and 52-3), was found in the upwelling 

water. In the other two water masses, NRA/chl a were less than half of this value. The 

average ratios of NRAchl a at the other three stations (Stations 11,15 and 26) were also 

similar or higher than that in the upwelling zone. One possible explanation may be linked 

to the potentially different nutrient conditions in the different zones (Rhees, 1979). In a 

natural marine environment, a variety of combined nitrogen, nitrate, nitrite, ammonia and 

dissolved organic nitrogen (DON), may be taken up by phytoplankton simultaneously, 

while NRA only reflects nitrate utilization. Thus, in an area where new production relative 

to primary production ( / ratio) is high, the NRA/chl a will be high. On the other hand, 

when other forms of combined nitrogen are used to maintain the algal biomass, the 

NRA/chl a and /ra tio  will be low (Harrison et al., 1987). The f  ratios in upwelling waters 

are expected to be higher than in the oligotrophic ocean where new production is limited 

by the availability of nitrate (Eppley, 1989). In the coastal waters, the presence of ammonia 

and DON may restrict the assimilation of nitrate and result in lower NRA/chl a (Eppley et 

al., 1969; Parkard and Blasco, 1974; Dortch etal., 1979; Eppley, 1989; Berges etal., 1995).
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Table 4-3. Characteristics o f  the photic zone to PZDW in different hydrographic regimes 
o f  the East China Sea

Sta. PZD.o
Depth(m)

NRA/chl a NUI0 
(mg-N m'2 hr'1)

NU’10 
(mg-N m'2 hr'1)

NUI07NUI0

11 13 12.8 2.09 2.06 0.99

15 34 10.2 2.25 2.35 1.04

26 12 7.3 3.67 2.77 0.75

30 20 4.1 1.05 1.36 1.30

52-1 24 7.2 nd 1.85 nd

52-3 25 10.4 3.32 3.21 0.97

55-3 41 2.6 0.80 0.11 0.14

55-5 63 4.1 nd 0.23 nd

nd- No data
PZDjq- Photic zone depth to 10% of surface photosynthetically active radiance (PAR). 
NUI0, NU10’- Depth integrated NU and NU estimated from NRA to PZDl0.
NRA/chl a in nM-N hr'1 mg'1 m3; NU,0 and NUI0’in mg-N m'2 h r '1.
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A similar tendency of/  ratio was found in this study (Table 4-4) and its value was 

low (0.08) in the oligotrophic water and increased to intermediate level (0.16 to 0.24) in the 

coastal Changjiang Diluted Water and upwelling water, and to highest level (0.46) in the 

frontal zones in the shelf. (Due to the stimulation problem of l5N 0 3' uptake in oligotrophic 

ocean, the estimation of NP is derived from the equation of NU = 1.08 NRA rather than 

using the rate o f  l5N 0 3' uptake). These values agree well with those reported in similar 

types o f marine sub-environments (Eppley, 1989). The suppression of nitrate uptake in the 

coastal Changjiang Diluted Water is a distinct possibility. Neither was DON nor ammonia 

measured in this study, but the eminent ammonium concentration, up to 14.6 pM, has 

usually been found in the Changjiang estuary (Edmond et al., 1985; Zhang, 1996). This 

may explain the lower NRA/chl a at Sta. 30 relative to Sta. 52. The relationship between 

the /ra tio  and the averages of NRA/chl a within PZD,0 is shown in Fig. 4-13. The NRA/chl 

a seems to be proportional to /ra tio  if the Sta. 26 (a peculiar hydrographic properties) is 

excluded. The best linear correlation between two variables are shown as below: 

NRA/chl a  (nM-N hr*1 mg'1 m3) = 36(±4)/ ;  r =  0.83 

The result suggests that NRA/chl a  may potentially be used as supplement for measuring 

the/ratio  because the measurements o f NRA and chi a are much easier than those of new 

production and primary production. Furthermore, chi a can be estimated by an empirical 

equation o f chi a and fluorescence obtained from fluorescence sensor (Gong et al., 1993).
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Table 4-4. Properties o f  the photic zone to PZD0, in different hydrographic regimes o f  the 
East China Sea

Sta. Depth
(m)

NU0, NRA01 NUq, ’ 
(mg-N m'2 h '1)

NU017N U 0I NU0I PP0, 
(mg-C m'2 d '1)

/ratio

11 29 2.61 3.59 3.90 1.50 178 556 0.32

15 36 2.31 2.25 2.44 1.06 157 645 0.24

26 19 4.06 4.09 4.43 1.09 276 604 0.46

30 29 1.17 1.43 1.55 1.32 80 489 0.16

52-1 40 nd 2.35 2.55 nd nd nd nd

52-3 45 4.02 3.41 3.70 0.92 274 115 5 0.24

55-3 78 1.16 0.34 0.36 0.32 25* 294 0.08

55-5 100 nd 0.49 0.55 nd nd nd nd

nd - no data
PZD01 - Photic zone depth to 1 % o f surface photosynthetically active radiance (PAR). 
NU0[, NU0I’, NRA^, PP01" - Depth integrated NU, NU estimated from NRA,

NRA and primary production to PZD01.
/ ratio - NU0I/PP0I, both in mg-C m'2 d 
# - estimated from NRAq,.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

20

cn

52-3

30

55-3

0.0 0.1 0.2 0.3 0.4 0.60.5

/"ratio

Fig. 4-13. The relationship between NRA/chl a and the f  ratio within PZD10.
The station number is indicated next to each data point. Solid line 
represents the Model II regression line when the data point from 
Sta. 26 is excluded.
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Depth-integrated NRA and NU

The depth-integrated NRA and NU down to PZD0l at each station are also listed in 

Table 4-4. Higher values were found in the frontal zones at Stations 26,11 and 15 (NRA0I 

= 2.25 to 4.09 mg N m'2 h '1, NU0I = 2.31 to 4.06 mg N m-2 h"1) and in the upwelling 

Kuroshio Subsurface Water at Stations 52-1 and 52-3 (NRAq, =2.35 to 3.41 mg N m'2 h '1, 

NU0i = 4.02 mg N m‘2 h '1). In contrast, even though the Changjiang Diluted Water is 

nitrate-rich, the depth-integrated NRA and NU in these waters at Station 30 (NRAo, = 1.43 

mg N m'2 h '1, NU0I = 1.17 mg N m'2 h '1) were significantly lower. These suppressed levels 

ofNRA and NU are consistent with the possibility that nitrate assimilation in coastal waters 

may be suppressed by the presence o f other nitrogen forms (ammonia and/or DON) 

(Harrison et al., 1987). The lowest depth-integrated NRA and NU were found in the 

oligotrophic Kuroshio at Station 55-3 and 55-5 (NRA = 0.34 - 0.49 mg N m'2 h '1, NU =1.16 

mg N m'2 h '1). The lower NU and NRA in the Kuroshio relative to those in the upwelling 

region are consistent with the expected decrease in the f  ratio from the upwelling region to 

open ocean waters (Eppley, 1989).

The depth-integrated of NU01 can be estimated from NRA01 by using the 

relationship between NU and NRA (NU = 1.08 NRA) in Table 4-4, and these estimated 

values, NU01 are summarized in Table 4-4. The estimated NU01 ’ in the oligotrophic water 

(Sta. 55), the coastal plume (Sta. 30), the upwelling water (Sta. 52) and the shelf waters (the 

average of Stations 11,15 and 26) were 0.4, 1.5, 3.3 and 3.6 mg-N m‘2 h '1, respectively. In 

comparing with 15N 0 3’ uptake (NU0i), the NU0,’ is slightly higher than NU01 (except Sta. 

55) while they are analogous to each other. The ratio ofNU0! ’ to NU0I at these five stations
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ranged from 0.92 to 1.5. The little high values (NU0I’) were probably caused by the de­

coupling between NRA and NP in waters with %PAR between 1% and 10%. When the 

estimated NU (NUI0’) and the measured NU (NU10) were integrated only down to PZDI0, 

the average ratio o f the two rates dropped to 1.01±0.17 (Table 4-3). However, the 

contribution of this type o f water (1 %PAR to 10%PAR) relative to the total NU0| was 

usually small, the effect was minimal in terms of other uncertainties from the 

determinations ofNRA and NU. In addition, it should be mentioned that the estimated 

NU (from NRA) from oligotrophic ocean (Sta. 55) may be more or less underestimated if 

some small phytoplankton, Prochlorococcus marinus and Synechococcus sp., exist in the 

subsurface layer (Shimada et al. 1996). The relevant investigations about phytoplankton 

species are from Shimada et al. (1993; 1996) who indicated that the total fluorescence 

intensity o f the prochlorophytes accounted for 32 to 63% o f the sum of the total 

fluorescence intensity o f all fluorescing phytoplankton detected at subsurface chlorophyll 

maxima in the West Pacific. In other words, the small phytoplankton (< 1 pm) consist of 

32 to 63 percent o f total biomass. According to the reports of Shimada (1993 and 1996), 

the small phytoplankton in the subsurface are Prochlorococcus marinus and Synechococcus 

sp.. The diameter size in Prochlorococcus marinus ranges from 0.54 to 0.67 p.m and 

Synechococcus sp. ranges from 0.81 to 1.07 pm  (Morel etal., 1993). Theoretically, both 

GF/F and Gelman A/E would undersample Prochlorococcus marinus and Gelman A/E 

would partially undersample Synechococcus sp. relative to GF/F. However, Chavez et al.

(1995) demonstrated that both glass-fiber GF/F and 0.2 pm  membrane filters can retain 

equivalent amounts o f chi a in the open ocean waters o f the Pacific Ocean. Further,
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Venrick et al. (1987) indicated that 1.2 /am GF/C filter passed an average of 4.4 to 8.9 % 

o f the total chlorophyll, compared to 0.45 /a m Millipore filters in the Pacific Ocean. Cells 

smaller than the filter pore sizes can be retained on the filter because particles may clog the 

filter pores, particularly for large volume filtrations. Furthermore, the pore size of Gelman 

A/E filter (1.0 /am) is between GF/F (0.7 p.m) and GF/C (1.2 ^m) filters. Therefore, it is 

not likely that Gelman A/E would significantly undersample small phytoplankton. 

Assuming that the maximum missing rate o f a Gelman A/E filter is 30 % for small 

phytoplankton, the missing chlorophyll will be 10 to 19 % (32 to 63 % multiplied by 30 %) 

o f  the total biomass obtained by using a Gelman Type A/E filter. In other words, NRA may 

be underestimated 10 to 19 % using the filter employed in this study.

Comparison o fN U  estimatedfrom NRA and previous NU data

In this section, we compare our NU based on NRA estimates with Eppley’s data 

(Table 4-5). Eppley (1989) has compiled the recent estimates from five upwelling areas and 

reported that the NU is from 1.6 to 8.1 mg-N m'2 h '1 (average 3.9±3.1 mg-N m'2 h '1). Allen 

et al. (1996) found NU to be 3.7 mg-N m'2 h"1 in the nutrient-rich water in the center of a 

cyclonic mesoscale eddy. Our value o f 4.0 mg-N m'2 h '1 falls well within this general range 

o f reported values. In coastal regions, Eppley (1989) reported a range of 0.8 to 8 mg-N m'2 

h '1. Our values of 2.3 to 4.1 mg-N m'2 h '1 (average 3.2 mg-N m'2 h '1) in the shelf waters 

outside o f the plume of Diluted Changjiang Water also fall quite nicely within these 

reported values. Eppley (1989) also summarized the NU in oligotrophic oceans and 

reported that NU values range from 0.13 to 0.73 mg-N m'2 h '1. With the method o f Garside
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Table 4-5. Review o f  previous comparison o f  '5N O f new production' vs new production 
via nitrate reductase activity from different hydrographic realms

Author
ocean

Method Upwelling Coastal regions Oligotrophic

Eppley (1989) 15n o 3- 1.6 -  8.1

o00\00o

0 .13-0 .73

Allen et al. 
(1996)

i5N 0 3' -Chem. 3.7 0.42 -  0.63

Eppley and 
Koeve (1990)

Chem.2 0.55 ± 0.50 (day) 
0.43 ± 0.28 (night)

This study3 15n o 3--n r a 4.0 2.3 -4 .1 0.36 and 0.53

1. NP (new production): unit is mg-N m'2 h'1.
2. Chem.: Chemiluminescent nitrate analysis.
3. NP (0.36 and 0.53) in this study represent different casts.
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(1982) to measure nitrate concentration and avoid the artifact of added I5N 0 3\  Allen et al.

(1996) found that the NU in the oligotrophic North Pacific was 0.42 mg-N m"2 hr'1. In 

addition, Eppley and Koeve (1990) determined the uptake of nitrate by directly measuring 

the disappearance of ambient nitrate by using a chemiluminescent nitrate analysis at nM 

level (Garside, 1982). They reported that the NU values are 0.55±0.5 mg-N m'2 h '1 during 

the day and 0.43±0.28 mg-N m'2 h '1 at night in the eastern subtropical Atlantic Ocean. Our 

values o f NU estimated from NRA in the oligotrophic Kuroshio (0.36 and 0.53 mg-N m'2 

h '1) are quite comparable to these values. On the other hand, our measured value o f NU 

(1.14 mg-N m'2 h '1) is significantly higher than these reported values. Thus. NRA may be 

a more reliable tool for estimating NP in oligotrophic waters than the traditional procedure 

of i5N 0 3' uptake without the simultaneous determination of the ambient concentration of 

nitrate by using an analytical method with a detection limit in the nanomolar level.
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Conclusions

NRA is almost equivalent to NU under light- and nitrate-replete conditions. 

Previous field studies failed to find a consistent relationship between NRA and NU 

probably because earlier NRA assay was inadequate and/or the light, nutrient, and 

hydrographic effects were not separated suitably. Thus, once the relationship between NRA 

and NU is established with some determinations of NRA and NU in a study area, the rate 

of nitrate uptake (NU) can be directly estimated by using NRA data alone. This NRA 

approach is particularly useful in oligotrophic oceans where the determination o f NU by 

measuring l5N 0 3' uptake is difficult and suffers a number of limitations.

A positive relationship between NRA and chi a was found in this study with the 

highest ratio o f NRA/chl a in shelf water and upwelling area while the lowest one was in 

the oligotrophic ocean. The NRA, NU and NRA/chl a in the upwelling water exceeded 

those in the oligotrophic Kuroshio surface water and in the fresher coastal plume by more 

than a factor o f two. Productivity in the upwelling water was probably supported to a great 

extent by the utilization of plentiful nitrate. While the coastal plume was also nitrate- 

replete, the possible presence of other reduced combined nitrogen could have inhibited the 

uptake o f nitrate. In the oligotrophic water, nitrate uptake was limited by the availability 

o f nitrate so that recycled production was made necessary by this nitrate-deficient condition.
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CHAPTER V

THE RELATIONSHIP BETWEEN NRA AND IODINE SPECIATION 
IN THE SOUTHERN EAST CHINA SEA

Introduction

Dissolved inorganic iodine is a biophilic element which exists in seawater primarily 

as iodate and iodide (Tsunogai and Henmi, 1971; Trusdale, 1978; Wong, 1991). Iodide is 

thermodynamically unstable relative to iodate in oxygenated seawater (Sillen, 1961; Wong, 

1991). Theoretically, iodide should be undetectable in the oxic environment however, it is 

frequently found with iodate in the surface oceans (Tsunogai and Henmi, 1971; Tsunogai, 

1971; Wong and Brewer, 1974, 1977; Elderfield and Trusdale. 1980; Wong and Zhang, 

1992a; Wong, 1995; Campos etal., 1996; Tianetal., 1996). Tsunogai and Sase( 1969) first 

suggested that the formation o f iodide in the surface ocean is mediated by the enzyme of 

bacterial nitrate reductase. Tsunogai and Henmi (1969) suggested that the reduction of 

iodate may be intertwined with nitrate uptake by phytoplankton. Kuenzler (1969) suggested 

that zooplankton can excrete iodide under natural conditions. Butler et al. (1981) reported 

that Skeletonema costatum can incorporate iodate during incubation process but other 

phytoplankton (Z). tertiolecta, A.japonica etc.) do not. Udomkit and Dunstan (1991), 

Moisan et al. (1994) and Udomkit (1994) found that iodate can be sequestered by marine 

phytoplankton and that iodide is released in the process simultaneously. Although the 

presence of iodide in surface waters has long been considered to be biologically mediated, 

the detailed mechanism is still unknown (Wong, 1991).

Knowledge of the formation o f iodide in the surface ocean is still poorly understood, 

although dissolved iodine in surface oceans does show remarkable evidence o f being linked
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with biological activity. Wong and Zhang (1992) suggested that the rate of iodide 

production may be related to nitrate reduction rate since they found that the ratio o f iodate 

to iodide was high (<0.5) when the concentration o f nitrate plus nitrite was above 0.5 //M, 

e.g. nitrate reduction was active. Campos et al. (1996) found that iodate is reduced to 

iodide in surface waters by biological processes and proposed that variations o f dissolved 

iodine in surface waters is associated with primary production. Tian et al. (1996) observed 

that the monthly variations o f dissolved iodine in the Mediterranean Sea and pointed out 

that iodide concentrations in surface waters increased from 40 nM (May) to 80 nM 

(November). In that period of iodide increase, the production in surface waters is mainly 

supported by recycled nutrients, i.e. regenerated production. Thus, they proposed that the 

transformation of iodate to iodide in surface waters is associated with the regenerated 

production.

When considering these different postulations, the nitrate reductase (NR) hypothesis 

of Tsunogai and Sase (1969) seems to be the most reasonable of those listed since the 

chemical structures o f iodate (I03‘) is similar to nitrate (N 03'), and since nitrate uptake is 

a ubiquitous biological activity. In addition, Balch (1985, 1987) and Balch et al. (1987) 

have successfully used 36CI-labelled chlorate to study nitrate transport and the rate of 

transport o f chlorate into the cells has been shown to be linearly related to the rate of nitrate 

uptake in both laboratory cultures o f marine phytoplankton and in field investigations. If 

this NR hypothesis is proven, iodate reduction may be used as an analogue for studying 

nitrate uptake and thus new production similar to the approach of using 36C1-Iabelled 

chlorate (Wong, 1991, Wong and Zhang, 1992). However, there is presently no NR field
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data that has been related to the variations o f  dissolved iodine in the oceans.

This study reports pioneering evidence to support the NR hypothesis that the 

reduction o f iodate to iodide is caused by NR produced by phytoplankton. In addition, the 

global new production can be estimated by applying a conceptual model of the cycling of 

dissolved iodine.

Materials and methods

Eight stations were occupied in a transect across the southern East China Sea 

between May 2 and 15, 1996 aboard the R/V Ocean Research I during Cruise ORI-449 of 

the Kuroshio Edge Exchange Processes (KEEP) Study. The locations of the station are 

shown in Fig.5-1. At each station, the measurements of temperature and salinity were the 

same as the description of Chapter III. Sub-samples were then acquired for the 

determination of the dissolved iodine species and nitrate reductase activity (NRA).

The sub-samples for the determination o f dissolved iodine species were drawn, 

stored frozen in polyethylene bottles (Wong, 1973), and then returned to the shore-based 

laboratory for analyses. Both iodate and iodide were determined by using a EG&G-PAR 

Model 384B-4 polarographic analyzer system with a Model 303A static mercury drop 

electrode. Iodate was determined directly by differential pulse polarography (DPP) 

according to the method o f Herring and Liss (1974) as modified by Wong and Zhang 

(1992b). The precision for the determination o f iodate was ±1 % (RSD) at 100 nM of 

iodate and the detection limit of iodate was about 20 nM. Iodide was determined directly 

by cathodic stripping square wave voltammetry by the method o f Luther et al. (1988) as
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modified by Wong and Zhang (1992b). The precision for the determination of iodide was 

± 3 %  (RSD) at 100 nM of iodide and the detection limit o f iodide was approximately 5 nM.

Sub-samples for the determination o f NRA and the dissolved iodine species were 

obtained from the same samples at Stations 49, 50, 51, 52 and 53. At Sta. 55, they were 

drawn from different casts. NRA was determined on board ship by a slightly modified 

version o f the method of Hochman et al. (1986) and its detailed procedures were described 

in Chapter III.
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Fig. 5-1. The study area of iodine species in the southern East China Sea.
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Results and discussions

Hydrography

The hydrographic characteristics in the southern East China Sea are described in 

Chapter III and IV. The contours o f temperature and salinity in this transect are shown in 

Figures 5-2 and 5-3, respectively. Briefly, at least four distinct water masses were clearly 

shown in this transect. The colder and fresher Costal Water (CW) with low nitrate 

concentration (see Chapter III) was found at Stations 48 and 49. The warm, intermediate 

salinity and nitrate-depleted Taiwan Current Warm Water (TC WW) was occasionally found 

at Sta. 50. The nitrate-rich, more saline, and cold Kuroshio Subsurface Water (KS W) was 

present at Stations 51, 52 and 53. The center of upwelling seemed to be located at Sta. 52 

as indicated by the lowest temperature and highest nitrate concentration observed on the 

transect. The highest temperature, highest salinity and nitrate impoverished Kuroshio 

Surface Water was found at Sta. 55. Sta 54 was located at the boundary between Kuroshio 

Surface Water and Kuroshio Subsurface Water.
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Fig. 5-2. Contours of temperature in the transect along the southern East China Sea.
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Depth profiles o f  hydrography, NRA, N-IOf, and N -t

The vertical distribution of sigma-0. nitrate, NRA, N-iodate (N -I03*) and N-iodide 

(N-T) at Stations 49, 53 and 55 are shown in Figs 5-4 to 5-6. N -I03' and N-T represent the 

concentrations of iodate and iodide which were normalized to a salinity o f 35, which 

corrects any effects of salinity on iodine distribution. The detailed data of NRA, iodine 

speciation at stations 48, 49, 50, 51, 52, 53, 54 and 55 are shown in appendix E. In the 

coastal water (Sta. 49), the water column was well mixed (down to — 30 m), whereas nitrate 

was exhausted within the upper 20 m (Fig. 5-4). High NRA was found in the surface layer 

and values decreased with depth to a low level (20 nM). The concentrations of N -I03' 

within the mixed layer in coastal area did not show significant variations and the 

concentration remained at a low level below 310 nM. Similarly, the distribution of N-T 

within the mixed layer had the same structure as the N -I03' distribution. However, slightly 

higher levels o f N -I03' (< 330 nM) and N-T (140 —150 nM) were found below the mixed 

layer at this station. Simultaneously, the gradient o f sigma-0 and nitrate below the mixed 

layer (20 m) dramatically increased with depth suggesting that another water mass was 

present in this water column.
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Fig. 5-4. The vertical distribution of N -I03\  N-I", N 0 3\  sigma-0, NRA at Sta. 49.
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At Sta. 53, in the upwelling region, cold, nutrient-rich waters were upwelled onto 

the surface layer and spurred high biological productivity (Fig. 5-5). The highest NRA was 

found in the surface layer and gradually decreased to below detection levels under the 

photic zone. Interestingly, the distribution of N-T above the photic zone closely followed 

the pattern of NRA. Conversely, the variation of N -I03‘ above the photic zone seemed to 

show the reverse trend o f distribution of NR. High N -I03‘ was found at the base of the 

photic zone and rapidly decreased towards the surface. Essentially, the depletion ofN -I03' 

and increase of N-T were mutually coupled together and appeared to be mirror-images in 

the photic zone. Additionally, a tongue of the highest N-I03‘ (390 — 420 nM) and lowest 

N-T (20- 40 nM) waters were found below the photic zone in the upwelling area where high 

sigma-© (24.6 - 25.6) and nitrate-rich (8-12 ^M) waters were also present. This suggested 

that the bottom waters at Stations 51, 52 and 53 are mostly from the Kuroshio Subsurface 

Water. According to the investigation of Lin (1995), the characteristics o f water in the 

Okinawa Trough were nitrate-rich (11 tuM), high N -I03* (450 nM) and low N -I03' (8 nM). 

Thus, the characteristics o f dissolved iodine from upwelling origin is iodate-replete and 

iodide-depleted.
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Fig. 5-5. The vertical distribution of N -I03% N-I', N 0 3', sigma-9, NRA at Sta. 53.
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The surface water in the oligotrophic area (Sta.55) was well mixed (0-40 m) and 

almost devoid of nitrate above the photic zone (70 to 100 m) (Fig. 5-6). The concentrations 

of N -I03' (245 to 257 nM) and N-I* (154 to 176) within the mixed layer did not vary 

significantly. N -I03" below the mixed layer began to increase from 257 nM to a maximum 

value (410 nM) at a depth o f 200 m, while N-T began to decrease from 176 nM to a 

minimum value (11 nM). Overall, the distributions o f N -I03" and N-T below the mixed 

layer at Sta. 55 were similar to those o f N -I03* and N -I03' at upwelling region. They 

appeared as mirror-images, however, the largely uniform N -I03* and N-T in the surface 

layer might have resulted from the physical transport o f Equatorial Pacific Ocean waters 

rather than from in situ iodate reduction. According to previous investigations, the 

concentrations of iodide in the surface oceans at the equator of the Pacific Ocean and its 

adjacent seas ranged from 80 to 220 nM with an average of 150 nM (Cheng et al., 1993; 

Rueetal., 1997). The Kuroshio originates from the North Equatorial Current and its speed 

ranges from 1 to 3 knots (equal 44 to 133 km per day) from east of Luzon Island toward 

Japan along the continental slope of the East China Sea (Nitani, 1972). Assuming that the 

average speed of Kuroshio is 90 km d'1 and the distance from the East China Sea to the 

Equator o f Pacific Ocean is 15,000 km so that the turnover time of Kuroshio near the East 

China Sea is about 170 days. The residence time (10 years) o f the surface ocean in the 

Pacific Ocean is much longer than the residence time of Kuroshio. Thus, the result 

suggests that the high iodide in the oligotrophic ocean (Sta. 55) may result from the North 

Equatorial Current.
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Fig 5-6 The vertical distribution of N -I03\  N-T, N 0 3', sigma-9, NRA at Sta.55.
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Reduction o f  iodate to iodide

The relationship between N -I03' and N-T in this study transect is shown in Fig. 5-7. 

For ail sampling locations, N-I03' and N-T seemed to follow a negative linear band and the 

strong relationship between two variables yields a linear correlation:

[N-ICV] = -0.97(±0.05) [N-T] + 416(±6) r  = 0.87, n =54-----(5-1)

where [N-I03'] and [N-T] are in nM and n is the number of observations. The slope o f the 

line is about - 1 considering statistical uncertainties. Equation 5-1 clearly demonstrates that 

the production of iodide in surface water seems to be equal to the reduction of iodate. The 

coupling relationship suggests that the interconversion between iodate and iodide is the 

main process regulating the speciation of iodine in these waters because the concentrations 

of total iodine (iodate + iodide) seemed to be constant. In other words, when iodate was 

taken up or reduced by marine organisms, most of iodate was not accumulated in particulate 

phase but exuded to the ambient seawater. This situation is sharply contrast with nitrate 

uptake in which nitrate is incorporated into the particulate phase. Analogous negative 

relationships between iodate and iodide have been reported by Wong and Zhang (1992a) 

and Wong (1995) in the South Atlantic Bight. However, Wong and co-worker also found 

that the relationships between iodate and iodide did not follow the -1:1 linear band when 

iodate was below 50 nM because some dissolved iodine may be converted to particulate 

form.
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Fig. 5-7. The relationship between N-I03* and N-T at all stations. 
Solid line represents the best fit regression line.
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A conceptual model fo r  the cycling o f  dissolved inorganic iodine

Undoubtedly, iodate and iodide play reciprocal roles in terms of the strong negative 

relationship between iodate and iodide in surface oceans. Thus, a conceptual model for the 

cycling of dissolved inorganic iodine is proposed (Fig. 5-8). (1) The iodate-rich (as well as 

nitrate-rich) and iodide-free deep water is transported to the surface oceans through 

upwelling. (2) Nitrate and iodate are simultaneously taken up by phytoplankton in the 

surface layer. (3) Iodate is quantitatively exuded as iodide rather than retained in the 

particulate form. Once formed, iodide is not oxidized back to iodate readily because iodide 

is metastable relative to iodate (Wong, 1980; Luther et al., 1995). Thus, the average 

concentration of iodate and iodide in surface water may represent the result of iodate 

reduction over the residence time o f oceanic surface waters. If the reduction of iodate is 

coupled to nitrate uptake (new production), the changes in the speciation of dissolved 

inorganic iodine in the surface oceans will be an integrator of new production over time. 

However, the conceptual model is only suitable for upwelling system because the 

concentration of iodate and iodide in other marine environments may include two 

components: pre-existing concentration and in situ production through either iodate 

reduction or iodide oxidation.

It should be noted that N-T and N -I03' in the coastal waters ( Stations 48,49 and 50) 

did not follow the above linear relationship. Similar uncoupled behaviors ofN-T and N -I03‘ 

were also reported in the South Atlantic Bight (Wong and Zhang 1992c, Wong, 1995). This 

may be caused by the transformation o f dissolved iodine to particulate organic iodine 

because iodine is an essential element for marine organisms (Wong, 1991).
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In addition, some iodine may be converted to dissolved organic iodine. Cheng (1998) and 

Wong and Cheng (1998) have found that a significant quantity of DOI exist in coastal 

waters.

The estimation o f  new production using the production rate o f  iodate to iodide

The relationships between N -I03* and NRA, and N-I" and NRA in the upwelling 

water are shown in Fig. 5-9. Both [N-I03'] and [N-I*] were strongly correlated to NRA so 

that

[N-I*] = 8.0(±1.3) NRA + 33(±5) r  = 0 .7 1 ,n = 1 8 -----------(5-2)

[N-I03*] = -9.2(±1.1) NRA + 389(±4) r  = 0.82, n = 18-------- (5-3)

where the units of [N-I03'] and [N-I*] are nM. NRA unit is in nM-N h'1 and n is the number 

of samples. The intercepts in the two equations represent the composition of the source 

water. The slopes in the two equations have opposite signs but their absolute values were 

indistinguishable according to statistical uncertainties. The strong correlations among N- 

I0 3\  N-I* and NRA provide evidence that the formation of iodide in surface water is 

mediated by phytoplankton NR. Alternately, the results also clearly illustrate that the 

reduction of iodate by NR in the upwelling zone is almost identical to the production of 

iodide.
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Furthermore, according to the conceptual model,

5 [N-I03*] =  a [ N - I - ]  = IRA x  t ------------------- (5- 4)

where 8 [N-I03*] is the deficit in [N-I03'] and a [N-I*] is the enrichment in [N-I*] in the 

upwelling water relative !to its source water. IRA is the iodate reduction activity and r  is 

the residence time of the upwelling water which is controlled by the physical dynamics of 

the upwelling system. If

IRA = NRA x (IRR / N R R ) (5-5)

where IRR is iodate reduction rate and NRR is nitrate reduction rate, therefore, IRR/NRR 

is the biological discrimination factor of the enzyme nitrate reductase for selecting between 

I0 3*and N 0 3*. Then, equations (5-4) and (5-5) can be combined and rewritten as follows.

(5 [N-I03*] / NRA) = (IRR /  NRR) x x  (5-6)

Where 8 [N-I03*]/NRA is the slope of the relationship between 5 [N-I03*] and NRA or 

9.2(±1.0) nM-I03* nM*'-N03* h*1 in this case. The value of (IRR/NRR) is still unknown to 

date. Moisan et al., 1994 reported that iodate uptake rates ranged between 0.003 and 0.24 

n mol-I03* f j .g chi a  h'1 in laboratory cultures, and 0.08 and 0.26 n m ol-I03* p i g  chi a  h'1 in 

two field experiments. Assuming that the average IRR is about 0.10 (±0.01) n moI-I03* 

Mg-chl a  h*1. The NRA was determined twice at Sta. 52 by measuring l5N-labelIed nitrate 

uptake and the average value was 8 nmol N 03* y u g  chi a  h*‘ (Chapter IV). If the average 

values of the reported iodate uptake rates (0.10±0.01) and nitrate uptake rates (8) at Sta. 52 

are used, then (IRR/NRR) can be estimated to be about 0.0125 (1/80) and x may be 

estimated to be 31 ±3 days. Thus, the residence time in this upwelling system was about 

one month. By using the nitrate uptake approach (Chapter IV), the residence time of
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upwelling water in the southern East China Sea is 30 days. The new production in the 

upwelling zone (Sta. 51, 52 and 53) can be estimated as following equation.

NP = a [ N - T  ] fx x (NRR / IRR) (5-7)

Where NP represents the new production in the upwelling zone and a [N -T ]  represents the 

enrichment in [N-I' ] the photic zone, x and NRR/IRR are assumed to be 30 days and 80. 

The background of N-P in the upwelling water is 16 nM (from the deepest sample). The 

enrichments of iodide at Stations 51, 52 and 53 are 1166, 1860, and 1787 yumol m'2, 

respectively. The production rates of iodide at these three stations are 39, 62, 60 yumol m'2 

d '1. Thus, the nitrate uptake or NP will be 1.8,2.9, and 2.8 mg-N m'2 h*1 at Sta. 51, 52 and 

53, and the average NP is 2.5 mg-Nm'2h'‘. Comparison of the NP obtained from iodine 

approach with other two approaches (NRA and 15N 0 3' uptake incubation), suggests that the 

NP values from iodine approach agree well with these two distinct methods (Table 5-1).

By using the nitrate uptake approach (NRA and 15N 03' uptake), the residence time 

of upwelling water in the southern East China Sea is 30 days. By using the mass balance 

of oxygen, the upwelled rate of subsurface water in East China Sea was estimated to be 5 

m d'1 (Liu et al. 1992b). Since the water depth at the shelf edge in the upwelling zone is 

about 100—130 m, the residence time of the upwelling water will be 20 to 26 d. 

Comparison of the data obtained from the iodine approach with two different means, 

suggests that the iodine approach seems to be reasonable.

The relationships between N -I03' and NRA, and N-T and NRA outside o f the 

upwelling zone at Sta. 49, 50, 55 (the data at Sta. 55 from different casts) are shown in Fig. 

5-10. These data points of N -I03' and N-T are far from the linear regression line in the
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upwelling area and the sources o f N-I03' and N-I* not only came from pre-existing 

concentrations but also contained in situ input or output of dissolved iodine. Thus, the 

conceptual model o f dissolved iodine can not be used in the marine environment with high 

pre-existing dissolved iodine speciation.
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Table 5-1. NU and turnover time o f  upwelled water in the southern East China Sea

Station Iodine system 
NU

15N 0 3" incubation 
NU

NRA & NU Oxygen system

51 1.8 nd 1.7 nd

52 2.9 3.9 2.9 nd

53 2.8 nd 1.9 nd

turnover time 
( t ,  day)

30 27 35 20-26

The unit of NP is mg-N m"2 h '1 and nd is no data.
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Estimating global new production from global iodate depletion in the surface oceans

Because the N 0 3' uptake rate and NRA were strongly correlated to each other under 

illuminated and nitrate-rich environments, with an average ratio of 1 (Chapter III), the NRA 

may represent the rate of N 0 3' uptake or new production in this environment. If the 

conceptual model of dissolved iodine is expanded to a global scale, the deficit of iodate or 

the production of iodide in surface oceans relative to the deep oceans may be equal to the 

accumulation of global new production over the residence time o f surface oceans. The 

global new production can be estimated by the following equation.

NP = 5 [N-I03-] /t x (NRR / IRR) (5-8)

Where NP represents the global new production. 5 [N-I03‘] fx represents the deficient rate 

of iodate per year in the surface ocean and NRR/IRR is assumed to be 80. The average 

deficit of iodate in the surface oceans relative to the deep oceans is about 0.15 fj. M (Wong, 

1991, 1995). The average thickness of the surface mixed layer is 200 m. Then, the iodate 

deficit in the mixed layer is 3 x 104 ^mol m'2. Assuming the residence time of the surface 

waters in the oceans is about 30 ±10 years, the deficient rate of iodate by its reduction to 

iodide in the surface ocean is 1000 ±300 ^mol m'2 y T h u s ,  the nitrate uptake or NP will 

be 8 ±3 xlO4 yumol-N m'2 y’1 or 6.4 ±2.4 g-C m'2 y*1. The global primary production is 

estimated to be from 44 to 50 Gt-C y~l (average 47 Gt-C y '1, 1 Gt = 10IS g) using different 

productivity algorithms (Antoine et al., 1996; Longhurst et al., 1995; Behrenfeld and 

Falkowski, 1997). The global oceanic primary production can be expressed as 122 to 139 

g-C m*2 y 1 with an average value 130 g-C m'2 y '1 (the area o f the ocean is about 3.6 x 1014 

m2). Then, the / ratio will be about 0.03 to 0.07. The global new production has been
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estimated to be 3.4 to 22 Gt C y '1 with an average 9 Gt C y*1 in previous literature (Chapter 

I) and /r a t io  should be estimated to be 0.07 to 0.47 (the global primary production is 

assumed 47 Gt-C y '1). The agreement between the values estimated from the dissolved 

iodine species and the reported values is actually rather remarkable in view o f the 

preliminary nature in the approach taken here. For example, the value of (IRR/NRR) is 

poorly known. Furthermore, if there is any oxidation of iodate to iodide during the 

residence time of the surface oceans, then the reduction of iodate, the global new 

production, and the/ ratio, will be underestimated.
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Conclusions

The results from this study provide field evidence that supports the idea that the 

depletion of iodate in the surface oceans is caused by a biological mediated reduction of 

iodate to iodide through the activity of the enzyme nitrate reductase. In the process, the 

iodate reappears in the dissolved phase as iodide almost quantitatively so that little of the 

iodate processed by the organisms is sequestered in the particulate phase. Thus, the 

depletion of iodate and the enrichment of iodide relative to the composition of the source 

water of a surface water mass represent an integration of NRA through the life time o f the 

water mass. Global new production may be estimated from the global depletion of iodate 

or enrichment of iodide in the surface oceans.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



148

CHAPTER VI

THE REDUCTION OF IODATE TO IODIDE BY NITRATE 
REDUCTASE IN MARINE PHYTOPLANKTON

Introduction

Earlier investigations on the reduction of I0 3' to I' by phytoplankton yielded 

inconsistent results. Butler et al. (1981) indicated that Skeletonema costatum can 

incorporate iodate but other phytoplankton (D. tertiolecta, A.japonica etc.) do not. In recent 

studies, when the experimental conditions were stringently controlled, consistent results 

were observed. Moisan et al. (1994) demonstrated that several species of phytoplankton 

(Thalassiosira oceanica Hasle, Skeletonema costatum, Emiliania huxleyi, and Dunaliella 

tertiolecta) and natural marine phytoplankton can assimilate iodate. Udomkit (1994) 

reported that the uptake of iodate and the production of iodide were observed in certain 

phytoplankton cultures simultaneously. Tsunogai and Sase (1969) suggested that the 

reduction of iodate to iodide in the surface ocean may be mediated by the enzyme nitrate 

reductase. These results support the hypothesis that iodide formation in the surface ocean 

may be caused by the biologically mediated reduction of iodate through the activity of the 

enzyme nitrate reductase (NR). It is well documented that nitrate reductase involves nitrate 

reduction so that the reduction of nitrate to nitrite can be expressed as below.

N O {  + N A D H — — N 0 2~ + N A D '

Although the NR hypothesis has long been suspected, the direct evidence that NR 

catalyzes the reduction of iodate to iodide (as below) has seldom been reported.
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[ O f  + N A D H  — — r  + N A D +{1)

Furthermore, direct measurement of iodate to iodide catalyzed by NR is very difficult. The 

objectives of this study were to develop a method for measuring iodate reduction by NR. 

to demonstrate that NR also reduces iodate to iodide, and to relate the rate o f nitrate 

reduction to the rate of iodate reduction. In this research, a method based on the I25I0 3‘ 

technique of Woittiez et al. (1991) was used for estimating the reduction of iodate to iodide 

in both phytoplankton cultures and in field collected marine phytoplankton.

Materials and methods

Reagents

All chemicals used were ACS reagent-grade.

Iodate ( l2SI ( V ) radiotracer preparation: 125I0 3' solution was prepared by the method of 

Wong and coworkers (Takayanagi and Wong, 1986; Wong and Zhang, 1992). In 

this method. I25I‘ stock (from New England Nuclear) was oxidized to I25I0 3‘ with 

sodium hypochlorite under slightly basic conditions. The excess oxidizing agent 

was then destroyed with sodium sulfite. The high activity of 125T (1 mCi) was 

diluted to 1 ^Ci/ml with a 0.1 M Na2C 0 3 solution containing - 1 mM KBr. Five 

ml of 1 ,uCi /ml l25I' was pipetted into a 100 ml polyethylene bottle containing 10 

ml of 0.5 MNaCI, 0.1 ml of 0.25 M KBr. and 0.1 ml of 50 /uM iodide (T). Then, 

0.2 ml of 0.2% ofNaOCl was added to the solution. The solution was left standing 

for 1 hr before the addition of 0.1 ml of 0.4 M Na2S 0 3 solution. The resulting 

,2SI0 3- solution was loaded into an AGlx8 column (i.d. 1 cm, length 14-15 cm.
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nitrate form, flow rate about 2 ml/min)(Wong and Brewer, 1974). The first 5 ml of 

eluate was discarded. The rest of the 125I0 3' eluate was collected in a 100 ml 

polypropylene bottle. The final solution was 0.22 /zCi/ml in l2SI 0 3‘ and 0.22 azM in 

I0 3\  At the beginning of the experiment, the concentration of I0 3‘ and the activity 

o f 12SIO 3' were adjusted to 5.1 /zM and 0.18 /zC i/ml by using a working standard of 

iodate (20 azM ).

Iodate standard solution (20 zzM): Dry potassium iodate at 80°C for over night. Cool it in 

a desiccator. Add a 2.14 g o f potassium iodate to a 1000-mi volumetric flask. 

Dissolve to the mark and its concentration of iodate is 10 mM. Store in a 

refrigerator. This solution is stable at least for 12 months. Pipet I ml o f 10 mM of 

primary standard to a 50-ml flask and dilute to mark to make the secondary standard 

(200 mM). Pipet 10 ml of 200 yuM of secondary standard to a 100-ml flask and 

dilute to mark and its concentration is 20 /zM.

Phosphate buffer solution (150 mM. pH 7.8): Dissolve 39.19 g o f K2H P04 in a small 

volume of distilled deionized water (DDW) in a 1000-ml of volumetric flask. 

Dilute the solution to volume and adjust its pH to 7.8 with phosphoric acid and 

NaOH.

NADH solution (6.5 mM): Dissolve 0.215 g Nicotinamide Adenine Dincieotide (NADH, 

reduced form, Sigma Co., N-6005) in a small volume of DDW in a 50-ml of flask 

and dilute the solution to volume. Store this solution in refrigeration (4°C) and keep 

it fresh.

Nitrate reductase (NR): Nitrate reductase (7.1 units/ml. Sigma Co.) is stored at -70 °C
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without further purification.

Toluene: A.C.S. grade toluene (MCB) is used without further purification.

Solution of Pd~2 (from PdChi: Dissolved 0.1 g o f PdCl2 in a small volume of DDW (with 

little 1 M HC1) and dilute the solution to 100 ml. The concentration of Pd~2 is 1000 

A^g/ml solution. Then dilute the stock solution (1000 ,ug/ml) to 500 Pd~2. The

pH o f both solutions is adjusted to 1.0 before experiment with HC1 and NaOH. 

Solution of Hvdrazin: Dissolve 20 g ofhydrazin in a small volume of DDW in a 100-ml of 

flask and dilute the solution to volume.

Charcoal: A.C. S. charcoal (DARCO, activated carbon) is used without further purification. 

Artificial Seawater: Make a 5 liters of artificial seawater according to the method of 

Strickland and Parsons (1972).

Apparatus

A Bicron, EG & G / Ortec, Model M l27 / N gamma counting system was used. The 

counting system includes a high voltage power supply (0 ~ 3 KV), a 7.6 cm x 7.6 cm well- 

type Nal-Tl crystal detector, and a signal processor. When a sample is detected in the 

detector, the signal is first pre-amplified and then processed in a single channel analyzer 

with another amplifier (Ortec 490B). Finally, the signal o f radiation is counted by a counter 

(Ortec 772) connected to a timer (Ortec 719). The precision of this counting system was 

about 1 % for 1 /^Ci/ml of l25I.

Phvtoplankton cultures

Skeletonema costatum cultures (Greville) Cleve (SKEL) were obtained from the 

Provasoli-Guillard Center for The Culture o f Marine Phytoplankton. S. costatum were
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cultured in 1000-ml borosilicate Erlenmeyer flasks o f f/2 culture medium (Guillard and 

Ryther, 1962). Cultures grew in log phase at 21 ± 1 °C on a 13:11 h light-dark cycle at an 

irradiance of 65 //mol photons n r2 s '1 prior to the experiments on iodide production rate and 

the reduction of iodate to iodide with NR.

A volume of 30 ml o f S. costatum culture was filtered for determining the rate of 

iodide production by NR. The analytical procedures for iodate reduction were the same as 

described in determination o f iodate reduction by NR. NRA and chi a were measured with 

the same methods employed in the field investigation.

Natural phvtoplankton assemblages

Water samples were collected at a depth of 0.3 m at Ocean View Beach in Norfolk, 

VA (36°58* N, 76°16' W) on 10 and 14 July 1998 (at high tidel0:00 and 13:30), 

respectively. Other samples were collected at Lynnhaven Inlet in Virginia Beach, VA 

(36°55’ N, 76°06’ W) on 16 July 1998, at low (10:10) and high tide (15:50). They were 

transported back to the laboratory, and then processed within I hr of sample collection.

Other sub-samples were obtained for the determination o f chlorophyll a and nitrate 

reductase activity. Chi a was determined by the method of Strickland and Parsons (1972) 

and NRA was determined by a modified version of Hochman et al. (1986) method (see 

Chapter II).

Procedures

Determination of iodate reduction bv NR

The analytical scheme for measuring iodate reduction by NR is shown in Fig. 6-1. 

One liter of seawater or 30 ml o f the phytoplankton culture was filtered through a 47 mm
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GF/C glass fiber filter. After filtration, the filtrate was discarded and the filter was 

transferred to a 50 ml pyrex beaker containing 1 ml of phosphate buffer, 50 /ul of toluene.

0.2 mi of NADH. and 0.1 ml solution of I25I0 3" (0.18 //Ci/ml) and I0 3' (5.1 mM). The 

beaker was agitated for 10 minutes at room temperature to turn the mixtures into a slurry. 

A 0.5 ml aliquot of the slurry was transferred with an Eppendorff pipette to a beaker 

containing 50 mg of charcoal, 0.5 ml of 500 /uM o f Pd"2 solution and 10 ml of artificial 

seawater. The mixture was then stirred for 10 minutes on a stirrer and then filtered through 

a 25 mm GF/C glass fiber filter. The filter was placed in a 5 ml polyethylene vial and the 

activity of iodine on the filter was determined by a gamma counter. This fraction was called 

charcoal-adsorbable-palladium iodide (PdCl2). It contains primarily iodide while iodate was 

excluded. Another 0.5 ml aliquot of the slurry was transferred to a  50 ml beaker containing 

20 mg of hydrazin, 100 jug Pd"2, 50 mg charcoal and 10 ml of artificial seawater. The 

solution was stirred for 10 minutes and filtered through a 25 mm GF/C glass fiber filter. 

After filtration, the filtrate was discarded and the filter was again placed in a 5 ml 

polyethylene vial and the activity on the filter was determined by a gamma counter. This 

fraction was called charcoal-adsorbable total iodine including both iodate and iodide. In 

a control experiment, the same experiment was run without the enzyme extract.

Data processing

It is assumed that the ratio between radioactive 125 103' and non-radioactive I0 3' 

is constant throughout the iodate reduction and the radioactive 125 I0 3' is reduced to l25I' at 

an analogous rate as the non-radioactive I0 3* reduced to P . The iodate reduction rate can 

be calculated as following equation:
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Assuming [A-IO3-]0 = [A-I03‘]t +- [A-I'],

[A-I03‘]t = [A-I03"]q - [A-I']t 

[A-IQ3-]t = [A-IQ3-]q

i o , - r  " i i 'o3-]o“

where [A-IO3']0 represents the initial radioactivity of iodate. [A-I03']t and [A-I']t 

represent the radioactivity of iodate and iodide at a given time, respectively. [IO3"]0 

represents the initial concentration of non-radioactivity iodate, and [I03']t is the non­

radioactivity iodate concentration at a given time. These three values o f [A-IOf]0, [I03']o, 

and [I03']t are known, thus

, . _ . [A-IO3-]0
the iodate reduction rate (IRR) = [I03']t /1 = ( ---------------x [KV]t ) /1

PO3 ]o
the iodide production rate (IPR) = p-]t / 1 = (PO3’]0 - P 0 3*]t ) / 1 

t is the reaction time which is equal to 10 minutes in this experiment.
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(1) Enzyme extraction

1 ml of POj buffer 
0.2 ml of NADH 
50 mL toluene 
0.1 ml (180 nCi l2SICV 
and 5.1 mM iodate

Filter at ion

Filtrate

Mix 10 mins, then 
separate solution into 
.two.0.5 mj slurries

Discard(2) Iodate reduction

500 /uM Pd*2
50 mg AC
10 ml artificial SW

20 mg hydrazin 
100 Mg Pd*2 
50 mg AC 
10 ml artificial SW

(3) Iodine species 
determination

Stir 10 mins. filtrating 
on GF/C filter Stir 10 mins, filtrating 

on GF/C filter

Filtrate

Discard
Discard

Iodide 
Pdl, —AC

Pd*2 +21 -— ^  Pdl,-AC

Counting by y counter

Iodate +■ iodide 
Pdl, —AC

Sample of seawater or cultures

Phytoplankton cells 
IO,-, T, ,25I03- , ,zslO{

iodate -+- hydrazin ^  iodide
Pd*2 -21' Pdl,-AC

V

Fig. 6-1. The analytical scheme of reduction of iodate to iodide mediated 
by nitrate reductaes. AC: activated charcoal.
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Results and discussions

Experimental blank

Because iodide absorption by activated charcoal is variable, an iodide blank 

correction is necessary for calculating the rate o f iodate reduction by NR. Thus, iodide 

blank experiments were conducted. The results are shown in Fig. 6-2. Treatment A 

contains reagents, but no NADH and NRA. Treatment B contains reagents and NADH, but 

no NRA. Treatment C contains reagents, and both NADH and NRA (NRA=42,000 nM h '1, 

from Sigma Co.). In Fig. 6-2, the fractions o f iodide gradually increased from treatment A 

(8%) to treatment B (19%), and to treatment C (25%). Simultaneously, the fractions of 

iodate gently decreased from treatment A (92%) to treatment B (81 %) to treatment C (75%). 

In treatment A, this result demonstrates that iodide is indeed absorbed by activated charcoal 

even though there was no any iodate reduction. In treatment B, this result indicates that 

some of iodate was reduced to iodide even without the catalyzer, nitrate reductase. In other 

words,

I0 3" + N A D H ---------->- I' (spontaneous reaction)

the reaction of the reduction of iodate to iodide reacting with NADH may be spontaneous. 

This result supports the idea that the redox couple of NADPH/NADP" (reduced 

nicotinamide-adenine-dinucleotide phosphate) is a dominate route for electron transfer in 

biochemical processes (Morel, 1983; Weast et al., 1988; Wong, 1991; Tian et al., 1996). 

Thus, the combination of Type B (containing reagents and NADH but without NRA) is 

chosen as the controlling experiment. The reduction of iodate to iodide mediated by NR 

was found in treatment C while its rate of iodate reduction, 1 nM h '1, was very low relative
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to the activity of NR (42,000 nM h '1).

Comparison o f  commercial NR and marine NR

It has been reported that iodate can be taken up effectively by cultures of S. 

costatum (Butler et al.. 1981; Moisan et al. 1994). Therefore. NR extracted by S', costatum 

was used to determine the rate o f iodate reduction. The result is shown in Fig. 6-3 where 

the fraction of iodide gradually increased from treatment A (8%) to treatment B (10%) and 

dramatically increased to treatment C (73%). Concomitantly, the fractions of iodate gently 

decreased from treatment A (92%) to treatment B (90%) and dramatically dropped to 

treatment C (27%). The variations of iodide fractions for treatments A and B were similar 

to the previous results while there was a big difference for treatment C. In other words, 

about 73% of iodate was reduced to iodide mediated by NR extracted from S. costatum.

The rate of iodate reduction by marine NR (73 % or 33 nM h'1) was much higher 

than that from Sigma NR (25% or 1 nM h '1). The total iodate concentration in the initial 

stage was different, but it indicated that marine NR was more effectively catalyzed by the 

iodate reduction than terrestrial NR. Furthermore, the activity in Sigma NR (42,000 nM 

h'1) was two orders of magnitude higher than marine NR extracted from S. costatum (400 

nM h '1), while the rate of iodate reduction in the former was much lower than in the latter. 

Thus, S. costatum NR was used to replace the NR (from Sigma Co.) in this study.
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Fig. 6-2. The concentration of iodide and iodate in
iodate reduction experiment (NR from Sigma Co.).
(A): reagent only
(B): reagent + NADH
(C): reagent + NADH + NR
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Fig. 6-3. The concentration of iodide and iodate in iodate
reduction experiment (NR from S. costatum).
(A): reagent only
(B): reagent + NADH
(C): reagent + NADH + NR
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Effect o f  reaction time

In order to gain the optimum reaction time of iodate reduction by NR, reaction time 

was varied while the other parameters such as pH, NADH. iodate concentration and 

phosphate buffer were fixed. The relationship between concentrations of dissolved 

inorganic iodine and reaction time are presented in Fig. 6-4. The concentration of iodide 

increased rapidly and almost linearly with time up to about 10 minutes of reaction time. At 

longer reaction times, no further increase in the concentration of iodide was found. 

Concomitantly, the concentration of iodate decreased rapidly and approximately linearly 

decreased up to a stable level about 10 minutes o f reaction time. At longer reaction times, 

no further decrease in the concentration of iodate was found. Thus, a reaction time of 10 

minutes was chosen in the analytical scheme.

The change in the concentration of iodide and iodate with reaction time suggests that 

the reduction of iodate to iodide was controlled by the enzyme activity in the first 10 

minutes o f reaction. At longer reaction times, there was no further reduction. This may 

suggest a result of the exhaustion of NADH through its reaction with iodate, and auto­

degradation of NADH and/or the auto-degradation of NR. The exhaustion of iodate was 

unlikely since > 80% of the added iodate by the reaction was still present when its reduction 

ceased. Eppley (1978) reported that the incubation time for NR was 30 minutes, but the 

current incubation time is getting shorter and become 20 minutes (Hochman et al., 1986) 

and 10 minutes (Berges and Harrison, 1995). These results support that the activity of NR 

may be degraded quickly when NR was extracted from phytoplankton cells without 

appropriate storage.
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Fig. 6-4. The reduction of iodate to iodide by S. costatum NR at 
different reaction times.
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Effect o f  the concentration o f  lO{

The optimum iodate concentration for iodate reduction by NR was determined by 

using a culture of S. costatum. The concentration of added iodate was between 0.02 and

0.43 //M (final concentration) while the other parameters were held constant. The rates of 

production of iodide at the different iodate concentrations are shown in Fig.6-5. The rate 

increased lineariy with the concentration o f added iodate from 0.02 to 0.17 (the slope 

between the rate of production of iodide and ambient iodate concentration = 22.4(±2.6) (nM 

Ir'y^uM), r^O.97). The maximum rate of about 7 nM h'1 (Vmax) was reached at a 

concentrations of added iodate of about 0.32 juM. Above 0.32 ,uM o f added iodate, there 

was no detectable change in the rate o f iodide production with further increase in the 

concentration of added iodate. Thus, the reaction rate was limited only at the concentration 

of added iodate below 0.32 ffM.. The Kra (Michaelis constant) can be calculated from both 

slope and Vmax and its value is about 0.16 (= 7/22.4) ffM.. In order to assure that iodate is 

present in excess in the reaction scheme, a concentration of added 0.4 /jM  iodate was used. 

The shape of the curve relating the rate o f the production of iodide to the concentration of 

iodate was consistent with that o f a reaction controlled by enzyme activities (Voet and Voet, 

1995). However, the data set was too limited to be treated rigorously by using the 

Michaelies-Menten equation.
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Fig. 6-5. The production of iodate and iodide catalyzed by NR 
at different iodate concentrations.
(Error bars represent 1 standard deviation, dotted line 
is the best fit line.)
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Iodate reduction by NR extracted from ettxenic cultures o f S. costatum and from natural 

phytoplankton assemblages

The reduction of iodate to iodide was observed in the NR extracted from an euxenic 

culture of S. costatum and from four natural phytoplankton assemblages (Table 6-1). The 

iodate reduction activity (IRA) in this investigation ranged from 0.008 to 0.064 nmol-I' y.g 

chi a"1 h"‘. Higher IRA (0.064 nmol-I" ixg chi a'1 h '1) was found in an euxenic culture of S. 

costatum. For four natural phytoplankton assemblages IRA ranged from0.008 to 0.019 and 

averaged 0.014 nmol-I" fu.g chi a'1 h"1. NR extracted from S. costatum seems to have higher 

ability to catalyze the reduction of iodate to iodide than natural marine phytoplankton. 

Moisan et ai., (1994) indicated that the uptake rate of iodate by euxenic culture of 

Thalassiosira oceanica, S. costatum, Emiliania huxleyi and Dunaliella ranged from 0.003 

to 0.24 nmol-I" fu.g chi a'1 h"1 and field phytoplankton assemblages ranged from 0.08 to 0.26 

nmol-I" /ug chi a '1 h '1. Udomkit (1994) reported that the removal rate by S. costatum ranged 

from 0.004 to 0.023 nmol-I03" fj. g chi aA h"‘ and the rate of iodide production in this species 

ranged from 0.0004 to 0.003 nmol-I" ij.g chi aA h '1. Assuming uptake o f iodate and 

production of iodide represent reduction of iodate to iodide, the values in this study are 

similar to these reports.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



165

Table 6-1. The reduction rate o f  iodate to iodide by nitrate reductase from  natural 
phytoplankton that were collected in Chespeake Bay, VA and from one 
phytoplankton culture (S. costatum)

Taxa Chl-a
(Mg/L)

IRA SIRA 
(nM h 1) (nmol yug-chl-a'1 h-I)

NRA 
(nM h'1)

SNRA 
(nmol Mg-chl-a'1 h-1)

NRA/IRA

£  costatum 176±2 11.2±0.3 0.064±0.002 494±25 2.81 ±0.14 44±3

Natural phytoplankton assemblages

Lynnhaven 
(July 10)

8.6±0.3 0.12±0.05 0.0143±0.005 4.8±0.2 0.56±0.03 39±15

Lynnhaven 
(July 14)

72±0.2 0.058±0.038 0.008±0.005 4.8±0.2 0.67± 0.04 83±55

Ocean View 9.6±0.3 
(low tide, July 16)

0.181±0.054 0.019± 0.006 17.9±0.9 I.86± 0.11 99±30

Ocean View 6.0±0.2 
(high tide, July 16)

0.093±0.042 0.015±0.007 8.0±0.4 1.33±0.08 86±39

Average NRA/IRA in natural phytoplankton assemblages 77±19

IRA: iodate reduction rate
SIRA: chlorophyll a specific iodate reduction rate (IRA/chI a) 
NRA: nitrate reductase activity
SNRA: chlorophyll a specific nitrate reductase activity (NRA/chl a)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



166

The relationship between IRA and NRA

The rate of reduction o f iodate in the four field samples was linearly related with 

NRA (Fig. 6-6) such that

NRA = 101 (±45) IR A + 3 (±6), r  = 0.71 

The strong correlation between iodate reduction and NRA is consistent with a coupling 

between iodate reduction and nitrate reduction as suggested by Tsunogai and Sase (1969). 

The ratio of NRA/IRA in the four field samples is about 100 which is agreement well with 

the previous estimation (NRA/IRA = 80, Chapter V). If new production can be represented 

by NRA, then, it can also be estimated by the depletion of iodate in the residence time of 

the surface ocean and the ratio of NRA/IRA (Chapter V). While the former is known 

moderately well, the latter was still somewhat uncertain. In this study, the value varies near 

50 %. It is likely to vary with species composition and with geographical location. Thus, 

further work is needed to obtain a more reliable global average NRA/IRA.
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Fig. 6-6. The relationship between iodide production activity (IRA) 
and nitrate reductase activity (NRA) in four field samples.
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Conclusions

A method for estimating the reduction o f iodate to iodide by nitrate reductase 

extracted from an euxenic culture of S. costatum by using I25I0 3' was established. The 

reduction of I0 3' to I" catalyzed by NR was observed in an euxenic culture of S. costatum 

and four natural phytoplankton assemblages. The rates were 0.064 n mol I* jug chi aA h‘l 

in the former and 0.008 to 0.019 n mol I' jug chi aA h '1 in the latter. These results strongly 

support that the reduction of iodate to iodide is catalyzed by nitrate reductase. Iodate 

reduction rate was linearly related to nitrate reductase activity. The slope (ratio) between 

NRA and IRA was 100, which agreed well with the previous estimation (NRA/IRA = 80).

In addition, the result also indicates that iodate reduction may be coupled to nitrate 

reduction.
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CHAPTER VII

SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH

Summary

An improved NRA assay was established for measuring nitrate reductase activity 

demonstrating that the sensitivity of this method is about five times higher than that used 

in previous studies. While the measurements o f NRA and ISN 0 3' uptake (NU)tn a field 

sampling program may be affected differently under different light- and nitrate-conditions. 

NRA and NU are strongly, quantitatively and linearly related to each other under light- and 

nitrate-replete conditions. Previous field studies suffered because they had little success in 

finding a consistent relationship between NRA and NU. This was probably due to the fact 

that these environmental effects were overlooked, and the method used for the 

determination o f NRA was inadequate. The relationship between NRA and NU may be 

established with a relatively small number of simultaneous determinations ofNRA and NU. 

Once the relationship is found for a study area, it may be used for estimating NP from the 

determination ofNRA alone. Since NRA may be determined readily on board ship with 

relative simplicity, it is a powerful, time-saving and economical supplementary tool for 

expanding the present data base on NU in the marine environment. This experimental 

approach is especially helpful in estimating NU in the oligotrophic oceans where the 

determination o f NU by measuring l5N 0 3" uptake is difficult to be performed.

For the reduction of iodate to iodide catalyzed by NR from phytoplankton, both 

laboratory experiments and field investigations strongly support the idea that NR 

significantly involves the reduction of iodate to iodide. Additionally, the preliminary result
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suggests that iodate reduction is coupled to nitrate reduction so that the rate of iodate 

reduction can be used to estimate the rate of nitrate uptake, new production.

Directions for future research

If most NU (l5N 0 3* incubation technique) estimates are misleading due to 

stimulation by the addition of excess substrates, is the estimate of NU and f  ratio in the 

oligotrophic ocean still reliable? Preliminary NRA data demonstrated that NRA may be a 

suitable candidate to estimate new production, but some important questions regarding the 

relationship between NRA and NU have not been answered. For example, although a good 

correlation between NRA and NU was found in the East China Sea, further work is needed 

to test whether this correlation may be applied to the marine environment in general. In 

addition, the ratio o f the rate o f iodate reduction to the rate of nitrate uptake is still 

somewhat uncertain. Therefore, I propose to do the following studies for the future 

research:

1. Test whether the ratio of nitrate reductase activity (NRA) to 1SN 0 3' uptake (NU) can be 

applied to the marine environment.

2. Study the relationship between NRA and NU in oligotrophic waters by using a sensitive 

chemiluminescence technique to determine low nitrate concentration.

3. Study the ratio o f the rate of iodate reduction to NRA in different marine environments.

4. Re-evaluate the oceanic global new production with the new ratio of the rate of iodate 

reduction to NRA.

Future research will provide a further understanding of the nitrate uptake processes,
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an accurate estimation of new production in the oligotrophic oceans, and the relationship 

between iodate reduction and nitrate reduction in different marine environments.
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APPENDICES 

APPENDIX A 

RECIPE OF F/2 SOLUTION

The recipe of culture medium is prepared as follows: the seawater was enriched 

with nutrients based on the medium " f1 devised by Guillard and Ryther (1962) but the 

concentration s o f nutrients were diluted to half the strength of ht original recipe, f/2. 

The fundamental compounds for 1 liter o f f!2 are:

Major nutrients:

NaNOj 883 fjM
NaH2P 0 4 H ,0 36.3 mM
Na2Si03 9H20  54

Trace metals:

Na2 EDTA* 
FeCl3 6H2CT 
CuS04 5H20  
ZnS04 7H20  
CoCI2 6H20  
MnCI2 4H20  
Na2M o04 2H20

Vitamins:

Thiamin HC1 
Biotin
BI2

11.7 uM
11.7 mM 
0.04 //M 
0.08 /uM 
0.05 ,uM 
0.9 juM 
0.03 mM

0.1 mg
0.5 /j.g
0.5 ^g
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APPENDIX B

CALCULATION OF NRA

The activity of nitrate reductase is calculated as below:

mixture

NRA (nM-NO;f h’1) =• x
S,'standard x T V x Vv mtntr A v «nitrite v  sample

Asamplc and Abiank represent the absorbance of the sample and the blank.

Sstandard is the slope of the calibration curve for nitrite standard.

ŝtandard is the final volume of nitrite standard in nitrite absorbance measurement.

T is the incubation time.

^mixture represents the total volume in the solution of nitrate reductase.

Vnitritc is the volume of the nitrite determination.

ŝample is the filtration volume o f seawater or phytoplankton culture.

For example, the filtration volume (V^p,,. )of seawater is 4 liters. Asamplt. and Ablank are

to 0.050 and 0.010. The Vstandard, Vmixture, and Vnjtnte are 2.2 ml. 1.7 ml and 1 ml. T is 5 

minutes and Sstandard is 0.096 A bs/uM . NRA is calculated as follows.

equal

(0.050-0.010) (2.2 x 1.7)
NRA (nM-N02- h’1) = x = 4.68

(0.096 x 5 min) (1x4)
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APPENDIX C

NRA, HYDROGRAPHY AND RELEVANT DATA IN THE EAST CHINA SEA

NRA, hydrography and relevant data in the East China Sea.

Sta. Depth T S n o 3- PAR Chi a NRA Spe. NRA
(m) (°C) OuM) % (mg n r3) (nM h '1) (nM h '1 mg''m3)

11 2 16.34 33.434 0.3 100.0 0.856 10.58 12.36
5 16.32 33.436 0.3 36.1 0.849 11.50 13.55

10 16.31 33.453 0.5 15.1 0.769 9.60 12.48
15 16.01 33.645 1.8 7.4 0.758 9.33 12.31
20 15.13 33.833 3.5 3.5 0.399 8.71 21.83
30 14.61 33.788 4.1 0.1 0.211 3.47 16.45
35 14.53 33.791 4.4 0.0 0.173 2.66 15.38
40 14.50 33.770 4.5 0.0 0.206 2.28 11.07
50 14.45 33.769 5.5 0.0 0.199 2.00 10.05
55 14.45 33.773 5.4 0.0 0.273 1.82 6.67

15 2 17.54 34.485 2.1 nd 0.496 4.46 11.18
5 17.54 34.595 1.4 100.0 0.572 4.19 7.33

10 17.55 34.485 1.6 65.0 0.432 4.83 11.18
20 17.55 34.482 2.1 25.6 0.392 5.38 13.72
30 17.54 34.525 1.8 13.3 0.386 3.75 9.72
40 17.54 34.474 1.7 5.3 0.437 2.12 4.85
50 17.54 34.484 1.9 1.7 0.357 1.12 3.14
60 17.14 34.412 2.1 0.0 0.403 0.85 2.11
70 16.79 34.423 4.3 0.0 0.306 0.49 1.60
80 16.41 34.347 4.6 0.0 0.197 0.46 2.34
90 15.43 34.227 5.2 0.0 0.341 0.41 1.20

26 2 17.70 34.181 0.1 100.0 2.438 15.35 6.30
5 17.65 34.235 0.1 45.5 1.951 15.20 7.79

10 17.40 34.171 0.1 14.3 1.951 15.05 7.71
15 17.28 34.203 0.5 4.4 1.744 15.40 8.83
20 17.27 34.182 0.4 0.6 1.201 16.59 13.81
25 17.25 34.189 1.5 0.0 0.891 16.75 18.80
30 17.23 34.202 nd 0.0 0.825 13.47 16.33
50 16.91 34.234 nd 0.0 0.244 1.84 7.54
60 16.74 34.269 5.5 0.0 0.248 1.83 7.38
75 14.75 34.223 5.4 0.0 0.211 1.78 8.44

nd: no data
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APPENDIX C (Continued)

NRA, hydrography and relevant data in the East China Sea.

Sta. Depth T S n o 3- PAR Chi a NRA Spe. NRA
(m) (°C) (mM) % (mg n r3) (nM h’1) (nM h'1 mg''m3)

30 2 15.44 30.124 5.9 100.0 0.851 4.55 5.35
5 15.44 30.442 6.0 70.6 0.890 4.16 4.67

10 15.28 30.313 6.0 50.3 1.139 5.34 4.69
15 13.62 32.544 7.2 22.6 1.197 5.35 4.47
20 15.52 33.663 6.1 9.9 nd 1.53 nd
25 15.73 33.672 5.4 4.0 0.357 1.27 3.56
30 15.80 33.795 6.4 0.9 0.250 1.23 4.92
35 15.87 33.795 nd 0.0 0.246 1.24 5.04
40 16.30 nd nd 0.0 nd 1.80 nd
45 16.94 nd nd 0.0 nd 1.80 nd

45 2 21.59 34.273 0.1 100.0 0.971 6.43 6.62
5 21.59 34.324 0.1 71.6 0.962 4.93 5.16

10 21.58 34.266 0.1 40.8 0.822 4.63 5.63
15 21.54 34.268 0.1 22.7 0.818 3.43 4.16
20 21.49 34.252 0.2 12.6 0.862 2.63 3.05
25 21.39 34.238 0.0 7.1 0.603 nd nd
30 21.17 34.236 0.2 4.1 0.319 0.93 2.92
40 21.22 34.277 0.5 1.1 0.173 0.73 4.22
50 21.24 34.313 0.6 0.0 0.120 0.63 5.25
60 21.22 34.345 1.0 0.0 0.095 nd nd
75 19.70 34.439 6.3 0.0 0.124 nd nd
90 16.92 34.447 7.3 0.0 0.191 nd nd

49 2 nd nd 0.0 100.0 0.700 5.67 8.10
5 20.95 33.867 0.0 48.6 0.694 4.64 6.68

10 20.95 33.908 0.0 41.4 0.649 2.05 3.16
20 21.00 33.902 0.0 17.3 0.700 1.17 1.68
25 20.44 33.954 0.3 11.0 0.694 0.44 0.63
30 20.32 33.897 0.9 7.0 0.649 0.25 0.38
35 19.97 33.918 1.7 4.4 0.140 0.60 4.29
40 19.88 34.098 2.4 2.9 0.117 1.30 11.11
45 18.93 33.885 2.7 1.2 0.124 1.28 10.32
50 17.84 33.847 2.5 0.1 0.120 0.99 8.25
60 17.73 33.960 nd 0.0 nd 1.59 nd

nd: no data
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APPENDIX C (Continued)

NRA, hydrography and relevant data in the East China Sea.

Sta. Depth T S n o 3- PAR Chi a NRA Spe. NRA
(m) (°C) (^M) % (mg n r3) (nM h*1) (nM h '1 mg''m3)

50 2 nd 34.238 0.0 nd 0.543 4.56 8.40
5 23.78 34.240 0.0 nd 0.572 nd nd

10 23.77 34.240 0.0 nd 0.545 5.00 9.17
15 23.78 34.241 0.0 nd 0.523 nd nd
20 23.79 34.242 0.0 nd 0.554 3.93 7.09
25 23.79 34.238 0.2 nd 0.556 nd nd
30 23.78 34.240 0.0 nd 0.512 nd nd
35 23.72 34.266 0.1 nd 0.410 nd nd
40 23.56 34.257 0.3 nd 0.434 1.83 4.22
45 23.49 34.268 0.4 nd 0.299 nd nd
50 23.46 34.269 1.3 nd 0.279 nd nd
60 23.44 34.269 0.7 nd 0.293 1.46 4.98

51 2 20.58 34.435 1.6 nd 0.809 5.25 6.49
5 20.56 34.455 2.0 nd 0.813 3.90 4.80

10 20.59 34.434 1.5 nd 0.707 2.06 2.91
20 20.61 34.427 1.7 nd 0.751 2.85 3.80
30 20.39 34.439 3.4 nd 0.720 3.07 4.26
40 20.38 34.429 3.7 nd 0.528 0.70 1.33
50 19.55 34.437 4.3 nd 0.550 0.34 0.62
60 19.32 34.571 6.3 nd 0.412 0.83 2.02
70 18.99 34.455 7.2 nd 0.290 nd nd
80 18.49 34.484 10.4 nd 0.129 nd nd
90 17.53 34.538 12.0 nd 0.106 nd nd

52-1 2 18.46 34.449 4.2 100.0 0.887 6.11 6.89
5 18.45 34.449 5.1 61.7 0.769 5.80 7.54

10 18.45 34.458 5.1 35.5 0.652 5.04 7.73
15 18.43 34.484 5.7 13.4 0.710 4.14 5.82
20 18.27 34.470 6.0 5.5 0.612 5.04 8.20
30 18.05 34.502 7.1 2.1 0.583 3.56 5.28
40 17.51 34.584 9.4 0.7 0.691 0.79 4.14
50 16.33 34.605 11.1 0.0 0.091 0.78 7.88
60 16.00 34.613 12.5 0.0 0.099 0.75 7.58
75 15.27 34.610 11.7 0.0 0.056 0.55 9.82

100 15.23 34.605 11.1 0.0 0.098 0.45 4.59
nd: no data
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APPENDIX C (Continued)

NRA, hydrography and relevant data in the East China Sea.

Sta. Depth T S n o 3- PAR Chi a NRA Spe. NRA
(m) (°C) CuM) % (mg m'3) (nM h'1) (nM h '1 mg'lm3)

52-3 2 18.95 34.632 3.8 100.0 0.949 10.36 10.92
10 18.93 34.477 4.7 37.0 0.867 9.61 11.08
15 18.74 34.476 4.4 nd 0.882 nd nd

20 18.31 34.486 5.0 13.8 0.747 6.91 9.25
25 18.11 nd 4.8 nd 0.829 nd nd
30 17.68 34.504 5.4 6.1 0.700 2.07 2.96
40 16.59 34.582 8.2 2.9 0.335 1.02 3.04
50 15.83 34.627 9.4 1.6 0.180 nd nd
60 15.68 34.628 11.1 0.7 0.062 nd nd
75 15.59 34.626 11.6 0.2 0.055 nd nd

100 15.32 34.620 11.8 0.0 0.039 nd nd
53 2 22.11 34.111 0.1 100.0 2.438 7.85 9.20

5 22.10 34.148 0.1 45.5 1.951 6.83 6.67
10 22.13 34.155 0.1 14.3 1.951 5.78 5.34
20 20.25 34.152 0.5 4.4 1.744 2.56 4.55
30 19.71 34.152 0.4 0.6 1.201 1.39 5.70
40 18.87 34.154 1.5 0.0 0.891 0.85 5.25
50 18.66 34.151 nd 0.0 0.825 0.40 4.00
75 17.72 34.232 nd 0.0 0.244 0.33 5.00

100 16.47 34.205 5.5 0.0 0.248 0.40 10.89
150 nd 34.204 5.4 0.0 0.211 nd nd

55-3 2 23.93 34.624 0.2 100.0 0.065 0.12 1.85
5 23.94 nd 0.2 nd nd nd nd

10 23.94 34.617 0.0 40.4 0.067 0.21 3.13
20 23.94 34.622 0.0 25.5 0.071 0.20 2.82
30 23.94 34.642 0.0 16.3 0.074 0.13 1.76
40 23.83 34.824 0.8 10.4 0.082 0.27 3.29
50 23.63 34.778 0.0 6.4 0.087 0.36 4.14
65 23.22 34.803 0.0 2.5 0.223 0.46 2.06
80 22.78 34.830 0.5 0.4 0.202 0.58 2.87
95 22.42 34.853 0.7 0.0 0.142 0.26 1.83

111 22.03 nd 0.9 0.0 0.033 nd nd
nd: no data
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APPENDIX C (Continued)

NRA, hydrography and relevant data in the East China Sea.

Sta. Depth T S n o 3- PAR Chi a NRA Spe. NRA
(m) (°C) (mM) % (mg m'5) (nM h '1) (nM h'1 mg'‘m3)

55-5 2 24.06 34.618 0.1 100.0 0.055 0.11 2.00
10 24.04 34.618 0.1 nd nd nd nd
15 23.99 34.615 0.0 nd nd nd nd
20 23.97 34.614 0.0 nd nd nd nd
30 23.94 34.615 0.0 33.7 0.055 0.14 2.55
40 23.91 34.689 0.0 22.6 0.055 0.29 5.27
50 23.41 34.771 2.4 14.2 0.058 0.39 6.72
75 22.52 34.850 2.6 5.4 0.229 0.65 2.84

100 21.73 34.888 3.7 1.4 0.095 0.38 4.00
151 19.13 34.905 4.7 nd nd nd nd
203 18.38 34.862 3.3 nd nd nd nd

nd: no data
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APPENDIX D

NRA, NU AND HYDROGRAPHIC DATA IN THE EAST CHINA SEA

NRA, NU and hydrographic data in the East China Sea.

Sta. Depth T S n o 3- PAR Chi a NRA NU NU/NRA
(m) (°C) OM) % (mg n r3) (nM h-‘) (nM h '1)

11 2 16.34 33.434 0.3 100.0 0.856 10.58 11.03 1.04
5 16.32 33.436 0.3 36.1 0.849 11.50 11.58 1.01

10 16.31 33.453 0.5 15.1 0.769 9.60 12.70 1.32

15 16.01 33.645 1.8 7.4 0.758 9.33 6.36 0.68
20 15.13 *>*> o *) *■* 3.5 3.5 0.399 8.71 0.61 0.07
30 14.61 33.788 4.1 0.1 0.211 3.47 0.35 0.10
35 14.53 33.791 4.4 0.0 0.173 2.66 0.33 0.12
40 14.50 33.770 4.5 0.0 0.206 2.28 0.44 0.19
50 14.45 33.769 5.5 0.0 0.199 2.00 0.28 0.14
55 14.45 33.773 5.4 0.0 0.273 1.82 0.38 0.21

15 2 17.54 34.485 2.1 nd 0.496 4.46 5.03 1.28
5 17.54 34.595 1.4 100.0 0.572 4.19 4.57 1.09

10 17.55 34.485 1.6 65.0 0.432 4.83 6.03 1.25
20 17.55 34.482 2.1 25.6 0.392 5.38 5.27 0.98
30 17.54 34.525 1.8 13.3 0.386 3.75 3.19 0.85
40 17.54 34.474 1.7 5.3 0.437 2.12 1.00 0.47
50 17.54 34.484 1.9 1.7 0.357 1.12 0.21 0.19
60 17.14 34.412 2.1 0.0 0.403 0.85 nd nd
70 16.79 34.423 4.3 0.0 0.306 0.49 nd nd
80 16.41 34.347 4.6 0.0 0.197 0.46 nd nd
90 15.43 34.227 5.2 0.0 0.341 0.41 0.45 1.10

26 2 17.70 34.181 0.1 100.0 2.438 15.35 36.52 2.38
5 17.65 34.235 0.1 45.5 1.951 15.20 24.36 1.60

10 17.40 34.171 0.1 14.3 1.951 15.05 8.70 0.58
15 17.28 34.203 0.5 4.4 1.744 15.40 3.70 0.24
20 17.27 34.182 0.4 0.6 1.201 16.59 1.72 0.10
25 17.25 34.189 1.5 0.0 0.891 16.75 1.13 0.07
30 17.23 34.202 nd 0.0 0.825 13.47 0.62 0.05
50 16.91 34.234 nd 0.0 0.244 1.84 0.42 0.23
60 16.74 34.269 5.5 0.0 0.248 1.83 1.47 0.80
75 14.75 34.223 5.4 0.0 0.211 1.78 0.82 0.46

nd: no data
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APPENDIX D (Continued)

NRA, NU and hydrographic data in the East China Sea.

Sta. Depth T S n o 3- PAR Chi a NRA NU NU/NRA
(m) (°C) OuM) % (mg m'3) (nM h-') (nM h‘‘ )

30 2 15.44 30.124 5.9 100.0 0.851 4.55 1.34 0.30

5 15.44 30.442 6.0 70.6 0.890 4.16 3.26 0.78
10 15.28 30.313 6.0 50.3 1.139 5.34 5.38 1.01
15 13.62 32.544 7.2 22.6 1.197 5.35 5.37 1.00
20 15.52 33.663 6.1 9.9 nd 1.53 1.44 0.94
25 15.73 33.672 5.4 4.0 0.357 1.27 0.77 0.61
30 15.80 33.795 6.4 0.9 0.250 1.23 0.75 0.61
35 15.87 33.795 nd 0.0 0.246 1.24 0.61 0.49
40 16.30 nd nd 0.0 nd 1.80 1.45 0.81
45 16.94 nd nd 0.0 nd 1.80 1.06 0.59

52-1 2 18.46 34.449 4.2 100.0 0.887 6.11 nd nd
5 18.45 34.449 5.1 61.7 0.769 5.80 nd nd

10 18.45 34.458 5.1 35.5 0.652 5.04 nd nd
15 18.43 34.484 5.7 13.4 0.710 4.14 nd nd
20 18.27 34.470 6.0 5.5 0.612 5.04 nd nd
30 18.05 34.502 7.1 2.1 0.583 3.56 nd nd
40 17.51 34.584 9.4 0.7 0.691 0.79 nd nd
50 16.33 34.605 11.1 0.0 0.091 0.78 nd nd
60 16.00 34.613 12.5 0.0 0.099 0.75 nd nd
75 15.27 34.610 11.7 0.0 0.056 0.55 nd nd

100 15.23 34.605 11.1 0.0 0.098 0.45 nd nd
52-3 2 18.95 34.632 3.8 100.0 0.949 10.36 13.50 1.30

10 18.93 34.477 4.7 37.0 0.867 9.61 nd nd
15 18.74 34.476 4.4 nd 0.882 nd nd nd
20 18.31 34.486 5.0 13.8 0.747 6.91 6.51 0.94
25 18.11 nd 4.8 nd 0.829 nd nd nd
30 17.68 34.504 5.4 6.1 0.700 2.07 4.51 2.18
40 16.59 34.582 8.2 2.9 0.335 1.02 0.42 0.41
50 15.83 34.627 9.4 1.6 0.180 nd nd nd
60 15.68 34.628 11.1 0.7 0.062 nd nd nd
75 15.59 34.626 11.6 0.2 0.055 nd nd nd

100 15.32 34.620 11.8 0.0 0.039 nd nd nd
nd: no data
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APPENDIX D (Continued)

NRA, NU and hydrographic data in the East China Sea.

Sta. Depth T S n o 3- PAR Chi a NRA NU NU/NRA
(m) (°C) (mM) % (mg n r3) (nM h '1) (nM h*1)

55-3 2 23.93 34.624 0.2 100.0 0.065 0.12 1.88 15.67
5 23.94 nd 0.2 nd nd nd nd nd

10 23.94 34.617 0.0 40.4 0.067 0.21 nd nd
20 23.94 34.622 0.0 25.5 0.071 0.20 1.40 7.00
30 23.94 34.642 0.0 16.3 0.074 0.13 1.00 7.69
40 23.83 34.824 0.8 10.4 0.082 0.27 1.15 4.26
50 23.63 34.778 0.0 6.4 0.087 0.36 0.56 1.56
65 23.22 34.803 0.0 2.5 0.223 0.46 nd nd
80 22.78 34.830 0.5 0.4 0.202 0.58 nd nd
95 22.42 34.853 0.7 0.0 0.142 0.26 0.84 3.23

111 22.03 nd 0.9 0.0 0.033 nd nd nd
55-5 2 24.06 34.618 0.1 100.0 0.055 0.11 nd nd

10 24.04 34.618 0.1 nd nd nd nd nd
15 23.99 34.615 0.0 nd nd nd nd nd

20 23.97 34.614 0.0 nd nd nd nd nd

30 23.94 34.615 0.0 33.7 0.055 0.14 nd nd
40 23.91 34.689 0.0 22.6 0.055 0.29 nd nd
50 23.41 34.771 2.4 14.2 0.058 0.39 nd nd
75 22.52 34.850 2.6 5.4 0.229 0.65 nd nd

100 21.73 34.888 3.7 1.4 0.095 0.38 nd nd
151 19.13 34.905 4.7 nd nd nd nd nd
203 18.38 34.862 3.3 nd nd nd nd nd

nd: no data
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APPENDIX E

IODATE, IODIDE, AND RELEVANT DATA IN THE SOUTHERN
EAST CHINA SEA

Iodate, iodide, and relevant data in the southern East China Sea.

Sta. Depth T S n o 3- Chi a NRA N -I03- N-I-
(m) (°C) OM) (mg n r3) (nM h '1) (nM) (nM)

48 2 19.08 32.496 0.0 0.623 nd nd nd
5 19.31 32.815 0.0 0.858 nd 303 128

10 20.13 33.562 0.6 0.465 nd 269 137
15 20.92 34.183 0.5 0.743 nd 292 117
20 20.31 34.191 0.9 0.335 nd 298 133
25 19.27 34.128 0.8 0.346 nd 272 134
30 18.13 33.960 1.0 0.213 nd 276 131
35 17.31 33.920 1.6 0.140 nd nd nd
40 16.77 33.847 1.2 0.099 nd nd nd

49 2 nd nd 0.0 0.700 5.67 nd nd
5 20.95 33.867 0.0 0.694 4.64 282 150

10 20.95 33.908 0.0 0.649 2.05 279 113
20 21.00 33.902 0.0 0.700 1.17 nd nd
25 20.44 33.954 0.3 0.694 0.44 nd nd
30 20.32 33.897 0.9 0.649 0.25 nd nd
35 19.97 33.918 1.7 0.140 0.60 319 129
40 19.88 34.098 2.4 0.117 1.30 315 103
45 18.93 33.885 2.7 0.124 1.28 252 149
50 17.84 33.847 2.5 0.120 0.99 295 132

50 2 nd 34.238 0.0 0.543 4.56 289 148
5 23.78 34.240 0.0 0.572 nd nd nd

10 23.77 34.240 0.0 0.545 5.00 302 155
15 23.78 34.241 0.0 0.523 nd 294 119
20 23.79 34.242 0.0 0.554 3.93 nd nd
25 23.79 34.238 0.2 0.556 nd nd nd
30 23.78 34.240 0.0 0.512 nd nd nd
35 23.72 34.266 0.1 0.410 nd 283 157
40 23.56 34.257 0.3 0.434 1.83 313 155
45 23.49 34.268 0.4 0.299 nd nd nd
50 23.46 34.269 1.3 0.279 nd 297 124
60 23.44 34.269 0.7 0.293 1.46 295 157
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APPENDIX E (Continued)

Iodate, iodide, and relevant data in the southern East China Sea.

Sta. Depth T S n o 3- Chi a NRA N-I03- N-I-
(m) (°C) OuM) (mg m'3) (nM h'1) (nM) (nM)

51 2 20.58 34.435 1.6 0.809 5.25 342 91
5 20.56 34.455 2.0 0.813 3.90 349 76

10 20.59 34.434 1.5 0.707 2.06 373 64
20 20.61 34.427 1.7 0.751 2.85 nd nd
30 20.39 34.439 3.4 0.720 3.07 367 51
40 20.38 34.429 3.7 0.528 0.70 378 50
50 19.55 34.437 4.3 0.550 0.34 383 39
60 19.32 34.571 6.3 0.412 0.83 378 30
70 18.99 34.455 7.2 0.290 nd nd nd
80 18.49 34.484 10.4 0.129 nd nd nd
90 17.53 34.538 12.0 0.106 nd nd nd

52-1 2 18.46 34.449 4.2 0.887 6.11 340 83
5 18.45 34.449 5.1 0.769 5.80 339 62

10 18.45 34.458 5.1 0.652 5.04 350 66
15 18.43 34.484 5.7 0.710 4.14 nd nd
20 18.27 34.470 6.0 0.612 5.04 368 67
30 18.05 34.502 7.1 0.583 3.56 367 47
40 17.51 34.584 9.4 0.691 0.79 nd nd
50 16.33 34.605 11.1 0.091 0.78 379 29
60 16.00 34.613 12.5 0.099 0.75 411 18
75 15.27 34.610 11.7 0.056 0.55 415 18

100 15.23 34.605 11.1 0.098 0.45 420 10
53 2 22.11 34.111 0.1 2.438 7.85 289 117

5 22.10 34.148 0.1 1.951 6.83 nd nd
10 22.13 34.155 0.1 1.951 5.78 321 70
20 20.25 34.152 0.5 1.744 2.56 367 59
30 19.71 34.152 0.4 1.201 1.39 384 35
40 18.87 34.154 1.5 0.891 0.85 nd nd
50 18.66 34.151 nd 0.825 0.40 388 18
75 17.72 34.232 nd 0.244 0.33 nd nd

100 16.47 34.205 5.5 0.248 0.40 nd nd
150 nd 34.204 5.4 0.211 nd nd nd
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APPENDIX E (Continued)

Iodate, iodide, and relevant data in the southern East China Sea.

Sta. Depth T S n o 3- Chi a NRA N-IOf N-I" Depth

(m) (°C) OuM) (mg m'3) (nM h '1) (nM) (nM) (m)
54 2 24.45 nd nd nd nd nd nd

10 24.45 nd nd nd nd 281 126
20 23.90 nd nd nd nd 274 147
30 21.87 nd nd nd nd 262 143
50 21.16 nd nd nd nd 295 88
70 19.89 nd nd nd nd 310 104

55-3 2 23.93 34.624 0.2 0.065 0.12 256 154 2*
5 23.94 nd 0.2 nd nd

10 23.94 34.617 0.0 0.067 0.21 257 169 10*
20 23.94 34.622 0.0 0.071 0.20
30 23.94 34.642 0.0 0.074 0.13 245 154 20*
40 23.83 34.824 0.8 0.082 0.27
50 23.63 34.778 0.0 0.087 0.36 257 176 40*
65 23.22 34.803 0.0 0.223 0.46
80 22.78 34.830 0.5 0.202 0.58 285 136 75*
95 22.42 34.853 0.7 0.142 0.26

111 22.03 nd 0.9 0.033 nd 358 56
150*

410 11
200*
nd: no data; * denotes the depth of iodate and iodide at Sta.55.
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