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ABSTRACT 

BIOGENIC TRACERS THROUGH THE HOLOCENE ON THE ALASKAN 
SHELF 

Carie A. Curry 
Old Dominion University, 2009 
Director: Dr. Gregory A. Cutter 

Dramatic environmental changes in the Arctic Ocean have been observed for the 

last two decades including changing the amount of sea ice thickness and extent, and 

increased river discharge. In order to put these and other current day observations into 

historical context and perhaps reveal mechanisms controlling them, a suite of paleo-

proxies were used to analyze two high resolution cores collected on the 2005 HOTRAX 

expedition. The goals of this research were: (1) develop an analytical method for 

determining biogenic calcite, (2) identify the major sources of biogenic matter into the 

system over the Holocene, and (3) assemble the history of depositional events that have 

occurred in the Alaskan shelf over the Holocene. 

The C/N and 5,3C in the very earliest record at Station 5, 12,000 ybp, suggest 

marine conditions prior to the inundation of glacial outwash and terrestrial organic 

matter. From 12,000 to 9600 ybp abundant amounts of terrestrially-derived materials 

were delivered to the Alaskan shelf, confirmed by dolomite, high C/N ratios, heavy 

513C signatures, and low sulfur. Immediately following these terrestrial inputs, a 

thousand year transition period re-established marine conditions like those found in the 

late Holocene. In the mid-Holocene, 6000 -1000 ybp, increased concentrations of 

pyrite occurred at this time because enough labile organic matter was deposited for 

anoxic conditions to occur, and sufficient amounts of sulfate and iron were available. 



The most recent record, 1000 ybp to present, shows much different biogeochemical 

conditions than in the mid to early Holocene, organic carbon concentrations are 50% 

higher, but anoxic conditions do not appear to be present likely due to high amounts of 

bioturbation, enhancing oxygen penetration into the upper sediments. 

In terms of the marine sources of organic matter in the mid and late Holocene, 

their origin appears to be diatoms or other siliceous organisms. The recent observations 

of cocolithophores in the Bering Sea suggest that other phytoplankton species could be 

present in high latitude waters, but they were not found in the Holocene records 

examined here. With respect to other environmental changes occurring in the Arctic at 

present, it will interesting to see if increased river discharges shift the Alaskan shelf to a 

more terrestrially-dominated system as seen in the earliest Holocene. 
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CHAPTER 1 

CHANGES IN THE ARCTIC 

1.1. Introduction 

Dramatic changes in the Arctic Ocean have been observed for the last two 

decades [Overland et ah, 2008]. Warming global temperatures are changing the amount 

of sea ice thickness and ice extent. Rapid changes in sea ice have been intensely 

monitored and most recently the lowest ice extent was recorded in September 2007 

with 4.2 million km , approximately 23% less ice than the last record low in September 

2005 [Strove et ah, 2008; Comiso et ah, 2008; Perovich andRichter-Menge, 2007]. The 

loss of sea ice changes the planet's albedo and allows more heating in the Arctic Ocean 

and increases sea surface temperature. A 4% per year increase of solar heating has 

occurred in the past decades in the Chukchi and adjacent seas [Pervioch et ah, 2007] 

and sea surface temperatures as high as 5°C during the 2007 record ice minimum 

[Steele etah, 2008]. 

Melting sea ice and increased river discharges to the Arctic Ocean lower its 

salinity. The Pan-Arctic drainage basin covers 22.4 million km2 and contributes 

approximately 128 km3 (0.004 Sv) of freshwater from six major Eurasian rivers 

[Peterson et ah, 2002]. Increasing global temperature and intensification of positive 

North Atlantic Oscillation (+NAO) has been linked with increased river discharge 

which suggests that river discharge is responding to large-scale climatic changes 

[Peterson et ah, 2002; Serrez et ah, 2000]. The Labrador and Norwegian Seas are 

The model journal for this thesis is Paleoceanography. 
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sources of cold water that are major contributors to North Atlantic Deep Water 

(NADW) [Swift et al, 1980; Aagaardet al, 1991]. The formation of North Atlantic 

Deep Water is best known for its role as the key link that drives global thermohaline 

circulation, transferring heat from low to high latitudes and moderating the climate in 

northern Europe [Seager et al, 2002]. An increase of Pan-Arctic drainage and 

increased meltwater from glaciers could sufficiently freshen the Labrador and 

Norwegian Seas that the formation of NADW is disrupted [Teller et al., 2002]. 

In addition to increasing sea surface temperature and changes in salinity, a 

decrease in sea ice abundance, more open water, and wave activity have increased the 

depth of the euphotic zone and increased ventilation that transports nutrients from 

below the mixed layer. With more nutrients and light available in the surface of the 

Arctic, the depth at which primary production occurs deepens below the stratified 

surface layer and into the thermocline [Hill et al, 2005]. Increasing amounts of primary 

production during the summer months amplifies the amount of biogenic material 

deposited in the coastal and shelf sediments. Additionally, inputs of terrestrial organic 

matter from meltwater runoff and coastal erosion are increasing [Belicka et al, 2004]. 

Events recorded in these coastal sediments can show the dynamic changes that the 

Arctic Ocean has undergone. 

The goal of this research was to establish a Holocene record of biogenic sources 

in the western Alaskan shelf. Proxies for biogenic sources were used to measure 

climatic and environmental changes. This research helps elucidate the biogeochemical 

processes on the Alaskan shelf that have occurred as a function of climate change in the 

Holocene. 
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1.2. Background 

Biogeochemical processes in the Arctic Ocean have only recently begun to be 

examined. The Shelf-Basin Interaction (SBI) program was initiated to improve the 

understanding of the impacts of global change on the physical and biogeochemical 

interactions among the Arctic shelf, slope, and basins [Grebmeier et ah, 1998, 2001; 

Grebmeier, 2003]. The SBI program focused on the Chukchi and Beaufort Seas from 

1998 to 2008. The key efforts of the SBI program were centered on water mass 

exchange, material fluxes, biogeochemical cycling, and monitoring the responses to 

rapid climate changes that are anticipated to occur. 

The historical work from Phase I of SBI, and surveying and mooring data from 

Phase II, has provided an extensive data set. Codispoti et al. [2005] evaluated physical 

shelf-basin mixing processes and the impact on nutrients in the upper halocline. The 

advection of nutrients from the Bering Strait was identified as the source of high rates 

of productivity on the shelf and limited production within the basin. A report on 

plankton distribution within the water column [Ashjian et al, 2005] supported the 

conclusions of Codispoti et al. [2005] that both nutrients and particulate material are 

transported along the shelf rather than basin-ward. Primary production rates were 

measured by Hill et al. [2005] over the shelf, slope, and deeper basin waters. The 

average annual production was 80g C m"2 yr"1 on the shelf and declined to <20 g C m"2 

yr"1 in the Canada Basin. Very high rates of production were observed in Barrow 

Canyon (>400 g C m"2 yr"1) and the Bering Sea (>800 g C m'2 yr"1). The estimate of 

surface primary production in the Chukchi shelf by 234Th/238U disequilibrium was 940 g 
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C m"2 yr"1, with an export flux of 17 g C m"2 yr"1, approximately 18% of total surface 

production [Moran et al, 1997]. Notably, this area of the Arctic is the most biologically 

active region of any ocean [Springer andMcRoy, 1993]. 

Other work that has been completed in the Arctic Ocean near the Chukchi Sea 

gives a better understanding of the changes in biogeochemical and physical processes 

as climate has altered. Changes in overall circulation affect the Arctic Ocean on 

different time scales. Arctic circulation is mainly driven by inflowing waters from the 

Atlantic and prevailing winds which drive the Trans Polar Drift System [Mysak, 2001; 

Rigor et al., 2006]. The observed changes in sea-ice in the past 50 years reveal 

seasonal changes in circulation on decadal and multi-decadal scales. The circulation of 

the Arctic Ocean is a complex interaction between the amount of sea ice cover, 

prevailing winds, and large-scale atmospheric circulation patterns [Myask, 2001]. The 

Chukchi shelf has undergone significant change as an extensive system of 

paleochannels have been cut and subsequently buried with sediment [Hill et al, 2006; 

Kegwin et al., 2006]. High amounts of outwash from the last glacial maximum have 

filled paleochannels with a complex stratigraphy of large meltwater events and cyclic 

changes in sea level. Interestingly, radiometrically-dated peats and storm deposits from 

northwest Alaska have recorded only a 1.5 m rise in sea level during the past 6000 yrs 

due to isostatic rebound which is considerably slower compared to other passive 

margins in North America [Mason and Jordan, 2001]. 

During the Holocene there have been many events that have been recorded in the 

marine sediment records in the Arctic Ocean. Large inputs of freshwater have had a 

major impact on the salinity, nutrients, and eustatic sea level in the Arctic Ocean 
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[Kegwin et ah, 2006]. The initial outburst and draining of Lake Agassiz have been 

suggested as the major cause of the dramatic cold event, the Younger Dryas, ca. 12.9 

kybp [Hillarie-Marcel et ah, 2007]. Approximately 9500 km of fresh water was 

discharged through the Great Lakes and St. Lawrence River into the Arctic Ocean 

during a transitional mode from glacial to interglacial circulation, disrupting 

thermohaline circulation [Teller et ah, 2002]. The final collapse of Lake Agassiz, ca. 

8200 ybp, contributed an additional 163,000 km of freshwater [Teller et ah, 2002] and 

carbonate-rich turbidite layers [Hillarie-Marcel et ah, 2007]. During this time the North 

Atlantic had stabilized into a strong interglacial circulation pattern and the North 

Atlantic Deep Water formation did not suffer significant changes [Teller et ah, 2002] 

Climate change in the Arctic has also been determined to occur in cyclic patterns 

of warming and cooling. Using Arctic sediments, Bondet ah [1997] found that a 

millennial pacing of climate change, approximately 1470 ± 532 years, occurs 

independent of the glacial-interglacial climate state. This periodic warming and cooling 

of the Arctic Ocean is reflected in the timing of major climate events such as the 

Younger Dryas (12,900 ybp), the 8200 ybp cooling event, the Medieval Warm Period 

(1300 ybp), and the Little Ice Age (300 ybp). 

The timing and effects of the opening of Bering Strait during glacial and 

interglacial cycles have also imprinted their changes to the Arctic Ocean and are 

reflected in the sediments. Deep channels have been cut through the Barrow Canyon by 

scouring flood waters [Phillips et ah, 1988]. Increases of 8180 in planktonic 

foraminifera and 8 C in carbonaceous mollusc shells are consistent with increase in 

salinity and transition from estuarine to more open ocean conditions approximately 
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12,000 ybp [Kegwin et al, 2006]. Variations in chlorite and muscovite minerals 

deposited in the sediments reflect the inflow of Pacific water through the Bering Strait 

[Ortiz et al, 2009]. Recent observations (1990-1991) show the overall salinity and 

ventilation in the Arctic Ocean is set by the inflow of waters through the Bering Strait 

[Woodgate et al, 2008]. 

1.3. Station PI 

In 1992, the United States Geological Survey (USGS) obtained sediment cores in 

effort to complete a paleo-environmental profile for the changing climatic conditions in 

the Chukchi Basin during the Holocene [Polyak et al, 2007]. A core was obtained at 

Station PI during Cruise P1-92-AR (hereafter called PI), located on the Chukchi Slope 

(73.42° N, 162.45° W, 201 m water depth; Figure 1) and subsequently analyzed as part 

of the SBI Phase I program [Darby et al, 2001]. Core PI was approximately 429 cm in 

length, but only 220 cm encompassed the Holocene record. Radiocarbon dating was 

performed on carbonate shells found in the core. The sedimentation rates at Station PI 

were somewhat variable, about 22 cm ky'1 [Darby et al, 2001]. 

Organic carbon (Org. C) in the core recovered at Station PI varied between 1 to 

2% through the Holocene (Figure 2). A minimum of 1.0% organic carbon occurred at 

9600 ybp and a steady increase of organic carbon reached a maximum of 2% by 7500 

ybp. Little variation occurred between 7500 to 1100 ybp with an average of 1.6%. 

Another maximum occurs near the surface, around 700 ybp. Although not much is 

known about the concentration of organic carbon, burial rates, and rates of 

remineralization on the Alaskan shelf, these values are typical of other Arctic shelf 

sediments [Naidu et al, 2004]. In comparison, the organic carbon in the Alaskan shelf 
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is similar to that found in the Mackenzie shelf and the Laptev Sea, ca. 0.5 to 2.0%, and 

somewhat similar to slightly higher organic carbon concentration in the Kara Sea and 

Barents Sea [Stein and Fahl, 2004, Stein and Fahl, 2004a, Vertov and Romankevich, 

2004, Macdonald et al., 2004]. 

Organic nitrogen (Org. N) parallels the trends in organic carbon over the 

Holocene (Figure 2) and varied between 0.08 to 0.24%. In the early Holocene, Org. N 

values reached their minimum around 9600 ybp. A steady increase of nitrogen to 0.16% 

occurred, and then constant concentrations were maintained until 1100 ybp. The surface 

maximum occurred near 600 ybp, with a value of 0.24% nitrogen. The sources of 

nitrogen and organic carbon can be partially identified by the atomic Org. C:Org. N 

ratios and compared to that of the Redfield ratio which defines the marine end-member 

as 6.6 [Redfield et al., 1963]. During the early Holocene C:N values were relatively 

high, from 15 to 20 (Figure 2). A higher C:N ratio, typically > 15, indicates 

terrestrially-derived organic matter [Bordovskiy, 1965]. An increase of organic carbon 

and nitrogen occurred in the last 1000 years, with a lower C:N ratio of 10. This 

suggests an increase in marine primary production in overlying surface waters. 

Total sulfur in PI also parallels Org. C and Org. N, but with slightly more 

fluctuations. It has a maximum of 0.4% at 7700 ybp and a minimum of 0.06% at 9600 

ybp (Figure 2). An additional sulfur minimum is shown near the surface. This low 

sulfur event occurs at the same time as an increase of carbon and nitrogen. Preservation 

of sulfur and organic carbon in sediments is strongly affected by microbial respiration 

via sulfate reduction [Howarth, 1983]. As bacteria use sulfate as the terminal electron 

acceptor to anaerobically oxidize organic carbon, sulfate is metabolically reduced to 
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Station P1 

Organic C (%) IN (%) ZS (%) Atomic C/N 
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Figure 2. Organic carbon, organic nitrogen, total sulfur, and atomic C:N [Darby et al., 2001] for Station 
PI. 

hydrogen sulfide (and many other intermediate sulfur species), and reacts with iron 

oxides to form mackinawite (FeS) and eventually pyrite (FeS2) [Goldhaber, 1974]. The 

samples from PI were not analyzed for reduced sulfur constituents, though a 

considerable amount of sulfur may actually be in these reduced forms. To this end, the 

organic carbon to pyrite (Org.C:Pyrite) ratio is a useful paleo-environmental indicator 

of anoxic remineralization of organic carbon [Berner and Raiswell, 1983]. The organic 

carbon to total sulfur (Org.C:S) ratios for PI (Figure 3) show values around 10 to 15 

for most of the Holocene. This is typical of a marine environment where seawater-

sulfate is 'recorded' in the sediments as pyrite. A maximum Org.C:S value of 45 

indicates a fresher, less marine environment [Berner and Raiswell, 1983]. This 

freshwater input parallels other changes seen in carbon and nitrogen profiles (Figure 3). 
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Station P1 

Organic C (%) Biogenic Si (%) 

0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 

Atomic C/S Cd/Ca (x 10'7; atomic) 

25 50 75 0 2 4 6 8 10121416 
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Figure 3. Organic carbon, biogenic silica, atomic C:S ratio and atomic Cd:Ca (x 10'7) for Station PI 
[Darby etal, 2001]. 

This is an important indication of potential climate change where freshwater discharges 

accompanied the warming temperatures. If a large input of freshwater into the Arctic 

Ocean could sufficiently dilute seawater-sulfate, would be preserved in the sediment 

record as a low sulfur event similar to that occurring ca. 9600 years ago (Figure 3). 

Although the Org.C:S ratios in Figure 3 seem to show a major event in the 

Alaskan shelf, total sulfur is not the best indicator of seawater-sulfate. Total sulfur 

represents many other forms of sulfur such as elemental and organic sulfur. The timing 

of a freshening event in the Alaskan shelf could be better supported if organic carbon to 

pyrite-sulfur (Org.C:Pyrite) ratios were generated from a new sediment core from the 

same region as Station PI. A freshening of the Alaskan shelf would bring waters with 

low concentrations of sulfate and would not support the formation of pyrite and other 

reduced forms of sulfur within the sediments. Alternatively, the elevated Org. C:S 
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ratios (Figure 3) could be attributed to terrestrial/freshwater organic matter that have 

high Org. C:S ratios. To better support either case, pyrite sulfur values are needed. 

Therefore, the record observed in PI indicates either a freshening of the Arctic or 

freshwater-derived organic material. The Org. C:Pyrite values are needed to determine 

which occured. 

The biogenic silica records at Station PI (Figure 3) show several during the 

Holocene. A considerable input of biogenic silica is found at Station PI over the last 

1600 years (Figure 3). Though biogenic silica suffers digenetic loss after burial 

[McManus et al, 1995], a modest amount is preserved. Though the diagenetic loss of 

silica has attenuated the record, significant inputs also occur at 3700 and 7600 ybp. 

These events of increased biogenic silica concentrations correspond with elevated 

levels of carbon and nitrogen as well as minima in Org.C:N ratios. If the diagenetic loss 

of biogenic silica has occurred at a constant rate, then these apparent maxima are likely 

underestimating the true inputs and clearly show that siliceous organisms have played 

an important, but varying, role in primary productivity in the Alaskan shelf. If the rate 

of diagenetic loss has not been constant, then these observed changes may simply 

reflect changes in processes that preserve biogenic silica. Additional cores on the 

Alaskan shelf may help resolve this ambiguity. 

Cadmium:Calcium (Cd:Ca) ratios in benthic foraminifera can be used as a proxy 

for phosphate in the overlying waters [Hester and Boyle, 1982]. Since phosphate is a 

limiting nutrient for primary productivity, this proxy can help estimate the amounts of 

nutrients available to drive primary production and resulting biogenic fluxes from 

surface waters over large time scales. Because of the limited abundance and species of 
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foraminifera at PI, well-known and well-calibrated foraminifera such as N. 

pachyderma or C. wuellerstorfl were not present. Therefore the Cd:Ca record cannot be 

relied upon to quantify but only estimate amounts of phosphate in the Alaskan shelf 

during the Holocene. The small quantities of foraminifera, mainly I. norcrossi, that 

were available in core PI show variable phosphate concentrations in the Alaskan shelf 

over the Holocene (Figure 3). At 1200 ybp, the increases of biogenic silica, carbon, and 

nitrogen correlate with large inputs of phosphate (Figure 3). For the middle Holocene, 

there is a fairly constant input of nutrients, which maintains the fluxes of carbon, 

nitrogen, and biogenic silica to the sediments. During the mid-Holocene, 8000 to 

5500ybp, fluctuations in nutrients again occurred (Figure 3) which correlate with 

increases of organic carbon and biogenic silica. 

Unfortunately, the PI core was stored at room temperature for several years 

before analysis. This storage compromised the geochemical composition of labile 

phases such iron sulfides and even biogenic carbonate. Thus, properly stored cores 

would yield more data for such constituents. However, the findings from PI were one 

catalyst for obtaining more cores in this region with higher sedimentation rates, and 

proper handling and storage. 

There are many things that we do not know about changes in biogeochemical 

processes in the Arctic Ocean that can be answered using properly-acquired, high 

resolution cores. The timing of biological productivity and other related events that 

have occurred in the Holocene, via the PI core, can be more clearly defined. 

Comparisons between the PI core and the Healy Oden Trans Arctic Expedition 

(HOTRAX) from other sites on the Alaskan shelf could extend the environmental and 
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climatic records during the Holocene for this region. Finally, a comparison of paleo-

productivity records in shelf/slope sediments to the most recently observed surface 

productivity from the SBI program offer valuable insight to the relative magnitude of 

the modern fluxes and places them in context with the past. 

1.4. Research Objectives 

In order to establish the sources and fluxes of biogenic material in the Alaskan 

shelf through the Holocene, I utilized a suite of paleo-proxies to analyze cores collected 

recently on the 2005 HOTRAX expedition. The objectives of this research were: (1) 

Develop an analytical method for determining biogenic carbonate; (2) Identify the 

major sources of biogenic matter into the system over the Holocene; (3) Assemble the 

history of depositional events that have occurred on the Alaskan shelf over the 

Holocene. My research hopefully will help to elucidate the biogeochemical processes 

on the Alaskan shelf that have occurred as a function of climate change in the 

Holocene. 
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CHAPTER 2 

SAMPLING AND ANALYTICAL METHODS 

2.1. Sampling 

The 2005 HOTRAX expedition was a collaborative effort funded by the National 

Science Foundation and Swedish Polar Secretariate that collected sediment cores for 

the development of a pan-Arctic stratigraphy and paleoclimate record [Darby et al., 

2009]. Leg 1 of the expedition was conducted from 13-26 June 2005 and recovered 

eight multi-cores (MC), trigger cores (TC), and jumbo piston cores (JPC) along the 

shelf and continental slope near Barrow, Alaska (Figure 1). The trigger cores and the 

jumbo piston cores were stored at 4°C and sampled at Ohio State University within 5 

months, while the multicores were processed on board ship. Of the eight core locations, 

two (Stations 5 and 8) were chosen for their high sedimentation rates and detailed 

record of the Holocene. Core HLY0501-5JPC (hereafter called Station 5) was located 

on the Alaskan slope (72.69° N, 157.52° W, 410 m water depth), and was the longest 

core recovered on Leg 1, 16.7 m. Core HLY0501-8JPC (hereafter called Station 8) was 

located on the edge of the Barrow Canyon (71.63° N, 156.88° W, 89 m water depth) 

and was 15.2 m in length. 

An individual multi-core tube was used for porewater collection via a whole core 

squeezer [Bender et al, 1987]. A 5 cm (o.d.) acrylic tube was inserted into the 

sediments of the multicore tube and pistons placed on each end of the tube. The top 

piston was outfitted with a 70 urn polyethylene frit for filtering the porewater, and 3-

way valve to allow the porewater to be collected hermetically using acid-cleaned, gas-
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tight syringes. The prepared sub-core was placed in an aluminum rack, that held the 

core in place as a 1.5 ton hydraulic jack pushed against the bottom piston until the 

sediment surface reached the top piston, and dewatered the core from the top down 

[Bender et ah, 1987]. Porewater samples were collected in 8-10 mL aliquots. Porewater 

was then filtered through a 0.4 um polycarbonate filter into polyethylene vials and 

stored at < 20° C. 

The multi-cores were anaerobically sectioned in a nitrogen-filled glove bag on 

board in 1cm intervals from the sediment-water interface to 10 cm and then 2 cm 

intervals from 10 cm to ca. 60 cm. These sections were immediately frozen to preserve 

the sediment redox conditions. The TC and JPC cores were analyzed using 1cm thick 

samples at 20 cm intervals from the core top to bottom. All core samples were prepared 

for bulk biogenic analyses by first obtaining a wet to dry ratio drying a 2 cm3 sub-

sample at 50° C. From this ratio porosity was calculated (1): 

(p = ((wet weight g - dry weight g) * pw) -*- volume cm'3 (1) 

where pw is the density of water. Next, approximately 5 g wet sediment was freeze-

dried and delicately crushed and sieved with a <200 um mesh, collecting ca. 1 gram for 

biogenic silica determinations. The remaining dried sediment was ground with an agate 

mortar and pestle and homogenized to <200 um. A portion of frozen sediment was 

retained for the analysis of sedimentary sulfur speciation. 

2.2. Analytical Methods 

The concentration of total carbon, nitrogen and sulfur were determined by 

oxidative pyrolysis using a Carlo Erba NA1500 analyzer [Cutter and Radford-Knoery, 

1991]. All determinations for each sediment interval were made in triplicate and the 
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analytical precision was maintained at 5% relative standard deviation (RSD) or better. 

To ensure accuracy National Institute of Standards and Technology (NIST) Estuarine 

Sediment (Standard Reference Material 1646) was analyzed. 

Total inorganic carbon (TIC) was determined by warm (50°C) 1M perchloric 

acidification with a UIC CM5420 TIC analyzer. The difference between the total 

carbon (by oxidative pyrolysis) and inorganic carbon (by TIC) gave the amount of 

organic carbon in each sample. 

Organic carbon and nitrogen isotope samples were prepared at Old Dominion 

University as described in Cutter and Radford-Knoery [1991], but the tin weighing 

cups were layered inside silver cups (11x8 mm). The prepared samples were sent to the 

University of California at Davis - Stable Isotope Facility and analyzed by isotope ratio 

mass spectrometry. 

Acid volatile sulfur (AVS or FeS), greigite, and pyrite were determined using 

selective generation of H2S, cryotrapping, and gas chromotography-photoionization 

detection [Cutter and Oatts, 1987]. In order to measure AVS, 0.5mg of frozen 

sediment was placed in a gas stripping vessel, acidified to 0.5M HC1 to generate 

hydrogen sulfide from iron monosulfide (FeS) minerals, cryotrapped to preconcentrate 

it, and then determined with gas chromatography-photoionization detection. Potassium 

iodide and sodium borohydride solutions were then added to the gas stripping vessel for 

the analysis of greigite; the generated H2S was determined as above. To accurately 

determine pyrite, ca. 100 mg sample of dried, ground and sieved sediment were 

extracted using carbon tetrachloride to remove elemental sulfur. A very small (0.1 mg) 

subsample of the extracted sediment was subjected to the methods above to liberate any 
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residual AVS and greigite. A reduced chromium (II) reagent was then added to 

quantitatively generate hydrogen sulfide from pyrite. AVS, gregite, and pyrite 

concentrations were determined only in the multi-cores because the trigger core and 

jumbo piston cores were not preserved for their redox conditions as the multicores 

were. However, pyrite was determined in the trigger and piston cores to give better 

resolution and timing of reducing conditions throughout the Holocene. 

Biogenic silica was determined in all sediment samples that were carefully 

prepared (as described in Sampling) from 0 to ca.1000 cm. The determination of 

biogenic silica utilized a timed sodium carbonate leach technique [DeMaster, 1991] and 

the resulting silicate was determined colorimetrically using a rapid-flow analyzer. 

2.3. Age Models 

Age models from radiocarbon dating by Accelerator Mass Spectrometry (AMS) 

and paleomagnetic intensities have previously been determined (HY0501-8JPC and 

HY0501-5JPC) [Darby et al, 2009A; Lise-Pronovost et al, 2009]. Data for 210Pb in 

the most recent sediments (MC6) are also available [McKay et al., 2008]. 

2.4. Diagenetic Calculations 

The amounts of biogenic matter obtained in these cores do not represent all the 

primary production occurring in surface waters. An appreciable amount, ca. 18%, of 

total biogenic material produced at the surface is lost due to export fluxes and water 

column regeneration [Moran et al., 1997]. Once buried, more is lost to diagenetic 

remineralization. Calculations used sedimentary organic carbon data to study the 

diagenesis of organic matter (2): 

G = Gnr + (G0-Gn r)*e- a z (2) 
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where Gnr is the refractory or non-reactive organic carbon at depth, G0 is the total 

amount of organic carbon at the surface, (G0 - Gnr) is the concentration of reactive 

organic carbon at the sediment surface, and a is (3): 

a = k / co (3) 

with k being the rate constant for organic carbon attenuation, co is the sedimentation 

rate, and z is depth in centimeters [Burdige, 2006]. The percent of organic matter 

remineralization within the sediments was calculated by (4): 

Gremin = ( G 0 - Goo) / G 0 (4 ) 

where G0 is the total amount of organic matter at the sediment surface and Goo is the 

amount of organic matter at depth. Using Jjn from organic matter flux to sediment 

surface via sediment trap data from other investigations [e.g., Baskaran and Naidu, 

1995; Moran et ah, 1997], the carbon burial efficiency (BE) was calculated as (5): 

BE = (Jbur)/(Jin) (5) 

where Jbur is sedimentation rate (co) times amount of organic matter at depth (Goo) times 

dry sediment density (p). Obtaining estimates of organic matter remineralization and 

carbon burial efficiency is important to understanding how the biogeochemical 

processes on the Alaskan shelf contribute to the overall budget of the Arctic Ocean. 

Burial rates of organic carbon in the Arctic Ocean are typically high when compared to 

other oceans, accounting for 7-11% of global carbon budget [Stein and Macdonald, 

2004]. 
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CHAPTER 3 

DETERMINATION OF BIOGENIC CARBONATE 

3.1. Background 

Carbonate is the most widely found major biogenic component of sediments in 

the ocean [Kennett, 1982]. Marine sediments contain a wide range of biogenic 

carbonate depending on their location, water column depth, and surface water 

conditions that promote primary production from organisms such as coccolithophores 

and foraminifera. Carbonate-rich sediments (>80% biogenic carbonate) are mainly 

found in shallow tropical waters, while the continental shelf and slope can contain a 

variety of biogenic carbonate and terrestrially-derived carbonates (e.g. refractory 

dolomite) [Morse and Mackenzie, 1990]. The preservation of biogenic carbonate in 

marine sediments is affected by dissolution in calcium carbonate-undersaturated waters 

and early diagenetic processes within the sediments [Burdige, 2006]. The accumulation 

of biogenic carbonate in the sediments has a major role in the complex carbonate 

system, affecting alkalinity, XCO2 of the ocean, and ultimately the CO2 content of the 

atmosphere [Emerson and Hedges, 2003]. The oceanic carbonate system is modified on 

ocean-circulation time scales (ca. 1,000 yrs) by biological processes [Emerson and 

Hedges, 2003]. Thus, biogenic carbonate preservation in sediments is important since it 

provides a record of past ocean conditions. 

The determination of sedimentary calcium carbonate (CaCOs) has evolved from 

simple phosphoric acidification [Presley, 1975] and vacuum gasometric technique 

[Jones and Kaiteris, 1983] to modern automated systems using coulometric detection. 

All these methods utilize the production of carbon dioxide from the acidification of a 
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known weight of sediment that contains carbonate. The detection of carbonate using 

phosphoric acidification and vacuum gasometric methods only measures sediment 

containing at least 5% CaCC>3, and have 0.1% and 0.25% accuracy respectively 

[Presley, 1975; Jones and Kaiteris, 1983]. Though these two methods have been 

proven to be reliable at determining CaCC>3, they are laborious and time consuming, 

requiring careful monitoring of pressure, temperature, and the vacuum apparatus. In 

addition, neither of these methods discriminates between biogenic carbonate and 

refractory carbonate such as dolomite. 

The coulometric determination of CaC03 has decreased detection limits and 

increased accuracy, while reducing analysis time from hours to minutes (UIC Operation 

Manual, Version 3). The coulometric determination of CaCCb is based on the titration 

of a monoethanolamine and indicator solution with carbon dioxide (CO2). Acidification 

of CaC03-containing sediments produces CO2 that is carried in an inert nitrogen gas 

stream. The nitrogen and CO2 gas are then bubbled through monoethanolamine 

indicator solution, which readily absorbs carbon dioxide and forms a strong acid that 

causes the indicator color to fade. An electrical current, conducted through a pure silver 

anode and platinum cathode, automatically increases upon loss of indicator color, and 

titrates the strong base to return the indicator solution to its original color. The detection 

limit of coulometric determination of CaCC>3 is <1 ug and has 0.2% accuracy (UIC 

Operation Manual, Version 3). 

Because the standard operating procedures for the coulometric detection of 

CaC03 in sediments (e.g. UIC Operation Manual, Version 3) do not discriminate 

between biogenic carbonate and refractory dolomites, a modification to these 
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procedures for the selective analysis of biogenic carbonate was developed. Since 

temperature and pH can control the dissolution kinetics of different carbonate minerals 

[Morse and Arvidson, 2002], modifications to the existing coulometric method that 

include manipulating these two parameters can be used to selectively determine 

biogenic carbonate. 

3.2. Experimental Section 

3.2.1. Apparatus 

The Total Inorganic Carbon (TIC) coulometric detector (CM5014) is used in 

conjunction with the auto-acidification module (CM5240) from UIC The coulometric 

detector and acidification module are used as described in the instrument literature for 

standard operating procedures for TIC analysis (UIC Operation Manual, Version 3 and 

Table 1). A constant-temperature refrigeration-circulator is used with the CM5240's 

jacketed acidification/condenser column. High purity nitrogen is the carrier gas. 

3.2.2. Standards and Reagents 

A calcium carbonate standard (Baker Analyzed) and different types of calcium 

carbonate minerals such as dolomite (Geology Lab, Old Dominion University), and 

chalk (Wards Scientific), as well as sediment from the Black Sea known to contain 

biogenic carbonate were used to develop the method. Mineral specimens were finely 

ground and sieved through a <200 urn mesh screen. In addition to these standards and 

reagents, several mixtures of dolomite and Black Sea sediments were combined at 

different concentrations (1%, 5.4%, and 10.9% Black Sea sediment) and used to test the 

recovery of biogenic carbonate in a refractory carbonate matrix. 
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Table 1. CM 5014 Settings for Standard Operating Procedure for Total Carbonate Method 

Analysis Type = Carbon 

Calculation Based On = Weight 

Units = Milligrams 

Difference Criteria = 0.10% (Default Setting) 

Factor = 1.0 (Default Setting) 

Number of Readings = 30 

Interval in Minutes = 1.0 

Timing Method = Fixed Number of Runs Method 

Sampling Method = Auto; CM5014 Runs Autosampler Without Pausing 

Autosampler = 5240 TIC 

Write To Disk Turned ON 

Reagent solutions were prepared with doubly deionized water and purged with 

helium to remove atmospheric carbon dioxide contamination. Perchloric acid (2M) was 

prepared in 5L batches and purged with helium for 2 hours. The sodium acetate buffer 

solution was prepared in 1L polyethylene cubitainer whose cap was modified with a 

swagelock fitting to easily connect to the acid supply line on the CM5240 acidification 

module. Approximately 750 ml of 1M acetic acid were placed inside of the 1L 

cubitainer and purged with helium for one hour. Then, while continually being purged, 

the pH was adjusted to 5 using approximately 75 mL of 10M sodium hydroxide. The 

cubitainer was then capped and all the helium head space was pushed out of the 

container. Each resulting cubitainer of sodium acetate/acetic acid buffer was stored at 

6°C until use. The weakly acidic buffer solution was found to contain a considerable 

amount of CO2 contamination if not prepared and handled carefully. The CO2 

contamination was significant enough to be detrimental to accurate sample analysis. 

C02-free reagent was found to be consistently low over 36 hours of continuous use, 

with only ca. 2 mg CO2 per milliliter of sodium acetate solution. 
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3.2.3. Procedure for Total Carbonate 

Using the standard operating procedures for total inorganic carbon (TIC) analysis 

(Table 1), the reagents and samples were loaded into the autosampler tray in a sequence 

(Table 2) such that two blanks (empty sample cups) were included at the beginning of 

each run to determine reagent CO2 contamination. Next, three Baker CaC03 standards 

(10 ± 0.5mg) were positioned, and one additional Baker CaCC<3 sample was included in 

the middle of the tray and at the end of every set of analyses to ensure accuracy 

throughout the run. Samples were weighed out in triplicate (50 ± 0.5mg). Using 2M 

perchloric acid, the samples were acidified and heated to 50°C for 30 minutes. The 

constant-temperature refrigeration circulator was cooled to 15°C to limit water vapor 

from collecting in the gas lines. The complete analysis time is 30 minutes for 

acidification plus an additional 6 minutes for the rinse/dump cycle between samples, 

totaling 36 minutes per sample. This TIC method was used to obtain the total amount of 

carbonate, including biogenic and refractory forms. 

3.2.4. Procedure for Biogenic Carbonate 

Several modifications were made to the standard operating procedures for total 

carbonate for the selective determination of biogenic carbonate (Table 3). Sample size 

was reduced from 50mg to lOmg to limit the amount of refractory dolomite 

contamination. The pH buffered 1M sodium acetate solution was used in place of the 

2M perchloric acid. The constant-temperature refrigeration circulator was set at 9.5°C 

to cool the acidification chamber and slow the acidification reaction to limit the 

evolution of CO2 from refractory dolomite. Using the buffered acetic acid solution and 
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Table 2. Autosampler Tray Format 
Position 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

Sample ID 

Blank 

Blank 

Baker CaC03 

Baker CaC03 

Baker CaC03 

Sample 

Sample Dup. 

Sample Trip. 

Sample 

Sample Dup. 

Sample Trip. 

Sample 

Sample Dup. 

Sample Trip. 

Sample 

Sample Dup. 

Sample Trip. 

Sample 

Sample Dup. 

Sample Trip. 

Sample 

Sample Dup. 

Sample Trip. 

Weight (mg) 

Empty 

Empty 

50 ± 0.9 
50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ±0.9 

50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ±0.9 

50 ± 0.9 

50 ±0.9 

50 ±0.9 

50 ±0.9 

50 ±0.9 

50 ± 0.9 

Position 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

Sample ID 

Baker CaC03 

Sample 

Sample Dup. 

Sample Trip. 

Sample 

Sample Dup. 

Sample Trip. 

Sample 

Sample Dup. 

Sample Trip. 

Sample 

Sample Dup. 

Sample Trip. 

Sample 

Sample Dup. 

Sample Trip. 

Sample 

Sample Dup. 

Sample Trip. 

Baker CaC03 

Weight (mj 

50 ± 0.9 
50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

50 ±0.9 

50 ±0.9 

50 ±0.9 

50 ±0.9 

50 ±0.9 

50 ± 0.9 

50 ± 0.9 

50 ± 0.9 

cooler temperatures, samples were run for 60 minutes with a total analysis time of 66 

minutes per sample. 

3.2.5. Calculations 

The coulometric determination of TIC from CO2 generated from sediments is 

automatically calculated and reported by the coulometric detector software. The 

coulometric response is converted to concentration by (6): 

(coulometric response - blank) / (sample weight) * 0.1 = % carbonate (6) 
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Table 3. CM 5014 Settings for Standard Operating Procedures for Biogenic Carbonate Method 

Analysis Type = Carbon 

Calculation Based On = Weight 

Units = Milligrams 

Difference Criteria = 0.10% (Default Setting) 

Factor = 1.0 (Default Setting) 

Number of Readings = 60 

Interval in Minutes = 1.0 

Timing Method = Fixed Number of Runs Method 

Sampling Method = Auto; CM5014Runs Autosampler Without Pausing 

Autosampler = 5240 TIC 

Write To Disk Turned ON 

3.2.6. Regressions to Calculate Biogenic Carbonate 

To separate the labile biogenic carbonate from refractory dolomite, a linear 

regression was used to identify the slow CO2 production from dolomite compared to the 

exponential evolution of CO2 from biogenic carbonate. The many different types of 

carbonate minerals required a wide range of time to dissolve. To determine the amount 

of biogenic carbonate in any sediment, the analysis time has to be long enough to 

recover the labile portion but limit the amount of refractory carbonate contamination. In 

order to do this, linear regressions were applied to all the different phases of carbonates 

and carbonate sediments and it was found that the inflection point, where the 

exponential growth decays to a linear increase, typically falls around 40 minutes, when 

the change in slope is less than 1% (Figure 4). 

As samples are being analyzed the data generated is recorded (printed) at 1 

minute intervals (Table 3). The 60 data points generated for each sample were entered 

into a spreadsheet, graphed (time vs. coulometric response), and data from 40 to 60 min 

were linearly regressed. The y-intercept from this linear regression was used as the 
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Figure 4. Evolution of C 0 2 from two carbonate minerals using a pH 5 buffer and 10°C. 

"coulometric response" and placed in equation (1) to determine the concentration of 

biogenic carbonate. The slope of the line indicates the amount of CO2 being slowly 

generated by refractory carbonates. 
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Table 4. Linear Regression Results for Black Sea Sediment Analyzed Using the Optimized 

Conditions ofpH5 1M Sodium Acetate Solution and 10°C 
Calculated 

Time 

0-60 

5-60 

10-60 

15-60 

20-60 

25-60 

30-60 

35-60 

40-60 

45-60 

50-60 

55-60 

Y-Intercept 

504 

695 

757 

772 

780 

786 

790 

793 

795 

796 

798 

799 

Slope 

8.8 

4.16 

2.7 

2.37 

2.2 

2.07 

1.99 

1.93 

1.89 

1.89 

1.83 

1.82 

R2 

0.48 

0.63 

0.95 

0.98 

0.99 

0.99 

0.99 

0.99 

0.99 

0.99 

0.99 

0.99 

Concentration % Reco 

4.7 

6.5 

7.1 

7.2 

7.3 

7.4 

7.4 

7.4 

7.5 

7.5 

7.5 

7.5 

61 

84 

91 

93 

94 

94 

95 

95 

96 

96 

96 

96 

3.3. Discussion 

3.3.1. Optimization of Biogenic Carbonate Recovery 

The temporal trend of CO2 evolution from CaC03-containing sediments is very 

different due to several factors, including how strongly the carbonate is mineralized, or 

pH of the solution in which it dissolves, and the temperature. In Figure 4, chalk shows a 

rapid exponential growth of CO2 production and then begins to plateau as the carbonate 

minerals are exhausted. The well-crystalline dolomite does not show a rapid response to 

mild acidification (Figure 4). Dolomite slowly evolves CO2 over time at a consistent 

and nearly linear rate. 

Altering the ambient conditions of the chemical reaction, such as the pH and 

temperature, shows a dramatic effect on the rate of production of CO2. Increasing the 

strength of acid and temperature more quickly liberates CO2 from mineral chalk and 
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dolomite (Figure 5). Increasing pH and decreasing temperature slows down the 

evolution of CO2 (Figure 5) A weak acid-buffer solution was the best reagent as it is 

mild enough to minimize the dissolution of dolomite to a slow, consistent (linear) 

production of CO2, but still rigorous enough to produce a rapid and complete 

dissolution of weakly-mineralized carbonates like biogenic carbonate (Figure 5). Many 

samples were run under a variety of pH and temperatures and, it was found that 10°C 

and pH 5 suit the type of standards and samples being analyzed with good recovery and 

precision (Table 4). 

3.3.2. Separating Biogenic from Refractory Carbonate 

The evolution of CO2 from weakly-mineralized carbonates and refractory 

carbonates cannot be clearly and fully separated by only optimizing reaction conditions 

(e.g., Figure 5). The determination of biogenic silicate using a sodium carbonate buffer 

has essentially the same problem of separating it from aluminosilicates. For the 

DeMaster [1991] method to detect biogenic silica, sediments are leached in a warm 

alkaline solution, subsamples are taken at 1, 2, 3 and 5 hrs, and then analyzed for their 

silicate concentrations using standard colorimertic techniques. Typically biogenic silica 

dissolves quickly under the optimized conditions, 1% sodium carbonate at 85°C. The 

silicate data is then plotted as a function of time and regressed through the slow linear 

growth region, excluding the initial exponential increase of biogenic silica, to correct 

for the simultaneous dissolution of aluminosilicates. Though this technique is not a 

direct measurement of biogenic silica, it serves as a useful tool to indirectly estimate 

biogenic silica abundance within 2 to 3% accuracy [Mortlock and Froelich, 1989] 

Data from the weakly acidic buffered solution for biogenic carbonate were 
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(a) Evolution of Carbon Dioxide from Dolomite 
at Varying Temperature and pH 
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(b) Evolution of Carbon Dioxide from Carbonate Reagent 
at Varying Temperature and pH 
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Figure 5. Varying combinations of temperature and pH used to: (a) minimize recovery of dolomite, (b) 
optimize the recovery of calcium carbonate. 



CD 
CO c o 
Q. 
CO 
<D 
01 
u. 
& 
<D 

E .0 
^ 
o O 

1500 

1400 

1300 

1200 

1100 

1000 

900 

800 

700 

600 

500 
400 

300 

200 

100 

0 10 20 30 40 50 60 

Time (min) 
Figure 6. Linear regressions for the C02 evolution from a 10% mixture of Black Sea sediment and pure 
dolomite to determine analysis time and the time over which the regression is carried out (0-60 min., 10-
60 min., 30-60 min., etc.). 

similarly analyzed. To determine the time in which the fast, asymptotic growth of 

biogenic carbonate smoothes out to the slow, linear evolution of refractory dolomite, a 

sample containing biogenic carbonate (Black Sea) was analyzed and a series of linear 

regressions were performed starting from 0-60min, and then decreasing by 5min; 5-60 

min, 10-60 min, etc. (Figure 6, Table 4). The slopes of each of the linear regressions 

after 30 min. converge to 1.85 ± 0.04, and the y-intercepts converge to 797.7 ± 1.23 at 

time 45-60 min. The calculated recovery for this sediment is 96 ± 0.2% (n = 5), using 

TIC and total carbon (via CNS analysis) as the 100% value since there is 
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Table 5. Sample Regression Data Using Biogenic Carbonate Procedures and Linear Regression From40-60 Minutes 

Dolomite 

1% Black Sea 

5% Black Sea 

10% Black Sea 

100% Black Sea 

Sample 
Weight 

12.71 

12.80 

12.14 

12.05 

13.13 

12.87 

11.55 

11.59 

12.20 

12.75 

13.66 

13.62 

13.89 

13.24 

13.50 

13.95 

12.20 

12.80 

12.84 

10.57 

10.64 

11.27 

11.13 

11.29 

Y-Intercept 

1.3 

1.5 

1.5 

1.5 

1.1 

1.4 

1.1 

1.3 
1.4 

1.3 

1.3 

1.3 

1.5 

1.5 

1.3 

1.3 

1.1 

1.2 

1.2 

0.4 

0.5 
0.4 

0.2 

0.3 

Slope 

29.0 

30.9 

26.1 

24.7 

26.6 

22.5 

26.6 

40.1 

39.0 

75.9 

65.0 

75.9 

54.1 

59.1 

64.1 

136.7 

95.9 

113.3 

105.2 

942.4 

936.4 

942.0 

961.9 

970.7 

R2 

0.998 

0.998 

0.999 

0.998 

0.999 

0.997 

0.999 

0.997 

0.996 

0.993 

0.99 

0.993 

0.995 

0.995 

0.995 

0.991 

0.993 

0.993 

0.993 

0.963 

0.995 

0.964 

0.997 

0.997 

Calculated 
Concentration 

0.228 

0.241 

0.215 

0.205 

0.203 

0.175 

0.230 

0.346 

0.320 

0.595 

0.476 

0.557 

0.389 

0.446 

0.475 

0.980 

0.786 

0.885 

0.819 

8.916 

8.801 

8.358 

8.642 

8.598 

Average 

0.222 

0.268 

0.467 

0.868 

8.663 

STD 

0.016 

0.075 

0.075 

0.086 

0.212 

Theoretical 
Value 

12.010 

0.103 

0.461 

0.870 

8.700 

no dolomite in this sample. 

3.3.3. Recoveries of Carbonate Under Optimized Conditions 

Using these optimized conditions, a buffered solution at pH 5 and 10°C 

temperature, a variety of pure carbonate mineral phases and mixtures of refractory and 

labile carbonates were analyzed. Since natural sediments often contain a mixture of 

biogenic carbonate and other refractory carbonates, it is important that the method work 

for a variety of both carbonate and non-carbonate materials. Figure 7 shows a 
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compilation of data for all types of mineral carbonates and natural samples. Well-

crystallized dolomite slowly evolves CO2 at a linear rate when analyzed under these 

optimized conditions. Other phases of carbonates that were analyzed, CaCC>3 reagent 

and mineral chalk, show complete recovery within a relatively short amount of time 

(Figure 7). 

Natural biogenic-containing samples that were analyzed show a variety of 

responses (Figure 7). The light and dark Black Sea sediments show exponential growth 

of CO2 from biogenic carbonate, reach a maximum value, and do not continually 

increase CO2 production. Surface sediment from the Alaskan shelf (MC6) showed no 

biogenic carbonate as it has the same coulometric response as the reagent blank (Figure 

7). Well-crystalline minerals (e.g., dolomite) generate CO2 much more slowly and 

create a general increasing trend over a long period of time (Figure 5). This "dolomite 

drift" is essentially creating an increasing baseline over the analysis time. 

The evolution of CO2 from the calcium carbonate reagent was quickly completed 

in approximately 15 minutes (Figure 8). A linear regression of 20 data points (40 to 

60min) has a slope, 1.2, and calculated recovery of carbon, using the y-intercept as 

described above and in equation (6), full carbon recovery based on chemical formula 

weight, 12.0 ± 0.3% was achieved with precision of 2.3% RSD. 

Knowing the time evolution of CO2 from dolomite is important for the accurate 

determination of biogenic carbonate as it potentially can be a major interference. Using 

the recommended pH 5solution and cold temperature, the partial dissolution of 

dolomite produces a remarkably small, but consistent amount of CO2 over the long 

analysis time (Figure 9). Using a linear regression to separate the linear CO2 
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Figure 8. Calcium carbonate (reagent grade) response to pH 5 and 10°C treatment. A linear regression of 
data from 40 to 60 min. and equation are shown. 

production from refractory carbonate from non-linear CO2 production from biogenic 

carbonate is an elegantly simple solution for resolving the refractory and labile phases. 

Chalk is a sedimentary rock that is typically formed in marine conditions from the 

accumulation of biogenic carbonate produced by cocolithophores and other calcifying 

phytoplankton. Once ground and sieved, mineral chalk is potentially as reactive as 

biogenic carbonate. The analysis of chalk over 60 minutes shows that CO2 produced 
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Figure 9. Dolomite response to pH 5 and 10°C treatment. A linear regression of data from 40 to 60 min. 
and equation are shown. 

is nearly complete in ca. 30 min (Figure 10). A linear regression of 20 data points, 40 to 

60min has a slightly higher slope than calcium carbonate and dolomite, 2.0, as the 

labile minerals are still generating some CO2 for the entire time of analysis. The 

calculated concentration of chalk is 11.5 ± 0.2% (2.3% RSD) biogenic carbonate or 

96% recovery based on chemical formula weight, assuming it is 100% calcium 

carbonate. 
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Three different samples of sediment from the Black Sea were used in optimizing 

the recovery of biogenic carbonate. Natural variations in the sediment of the Black Sea 

show lighter and darker layers corresponding to annual summer blooms of the 

cocolithoforid E. huxleyi (light layers) and a minimum of blooms during the winter, 

darker organic layers, [Hey etal., 1991]. The different layers of Black Sea sediment 

thus show similar trends in the time evolution of CO2 (Figure 11). At approximately 40 

minutes the recovery of biogenic carbonate is complete. Linear regressions for both 

samples from 40 to 60 minutes (20 data points) show different y-intercepts since they 
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Figure 11. Responses of two Black Sea sediments (light and dark; see text) to pH 5 and 10°C treatment. 
Sample weights were also varied. A linear regression of data from 40 to 60 min. and equations are 
shown. 

have differing amounts of biogenic carbonate. The lighter layer has 5.4 ± 0.3% 

biogenic carbonate (2.3% RSD) and darker layer has 1.9 ± 0.1% (2.8% RSD) biogenic 

carbonate. The detection of trace amounts of biogenic carbonate in a refractory 

carbonate matrix is probably the "worst-case scenario" for analysis. Since the time 

evolution of dolomite and biogenic carbonate-containing sediments has been 

individually identified (as above), a series of dolomite samples with Black Sea 

additions were analyzed. Three mixtures were made gravimetrically with 10.0%, 5.4% 
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Figure 12. Responses of three Black Sea/dolomite mixtures, pure dolomite, and "pure" Black Sea 
sediment used in the mixtures to pH 5 and 10°C treatment. Linear regression of data from 40 to 60 min. 
are shown. 

and 1.2% Black Sea sediment. Figure 12 shows the time evolution of CO2 from these 

biogenic and refractory carbonate mixtures, with a rapid production of CO2 for 

approximately 20 min and then the slowly increasing "dolomite drift" baseline for the 

remaining analysis time. 
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The Black Sea sediment used for the mixtures contains 8.7 ± 0.2% biogenic 

carbonate as determined using the total carbonate method. Analyzing the 10.0% Black 

Sea/ 90.0% dolomite for 60 min. and regressing the last 20 data points (from 40 to 

60min.) yielded 0.87 ± 0.09% biogenic carbonate (Figure 13) compared to the 

computed value of 0.87%. The same data analysis routine was performed for the other 

Black Sea/dolomite mixtures. Theoretical values of the sediments and the observed 

recoveries based on varying analysis times are shown in Table 4. Analyzing the 5.4% 

Black Sea/ 94.6% dolomite mixture yielded 0.47 ± 0.08% biogenic carbonate compared 

to the computed value of 0.47%. The 1.2% Black Sea and 98.8% dolomite mixture 

yielded 0.27 ± 0.75%) biogenic carbonate; which is more than double the computed 

value of 0.12%. However, the concentration of the 1.2% Black Sea/dolomite mixture is 

below the method detection limit of 0.2% (discussed in the next section). 

3.3.4. Analytical Figures of Merit 

The analytical figures of merit were evaluated using a minimum of four 

determinations of the 1.2% 5.4% and 10.0% Black Sea/dolomite mixtures. Analysis 

time for an individual sample is 60 minutes plus an additional 6 minutes for a 

"dump/rinse" cycle for the CM5240 autosampler, totaling 66 minutes per sample. 

Accuracy for this method is 100% ± 0.1% at the 0.10% and 0.47% concentration (as 

above for BlackSea/dolomite mixtures). The precision is 10% (RSD) at 0.87% 

concentration and 16% (RSD) at the 0.47% level. Using the variability at the low 

0.47%) Black Sea mixture, the detection limit is computed to be 0.2% (3a, n = 5). 
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Figure 13. Analyses of three Black Sea sediment-dolomite mixtures under optimized conditions 
(including linear regressions of the "dolomite drift" to determine the concentration of biogenic 
carbonate) at pH 5 and 10°C. 

3.4. Conclusions 

This analytical method developed for determining biogenic carbonate in 

sediments has proven to be reliable and has good detection limits. The method has a 

wide application for a variety of sediment types and biogenic concentrations. This new 

analytical method will prove to be invaluable in the future for assessing contributions of 

calcareous organisms in regions like the Arctic Ocean and Southern Ocean where their 

presence in these regions are connected to climate change. 
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CHAPTER 4 

BIOGENIC MATTER SOURCES THROUGH THE HOLOCENE 

4.1. Introduction 

Recent observations of the dramatic changes that are occurring in the Arctic 

Ocean are receiving great attention due to the effects these changes have on this 

ecosystem. In order to put these current day observations into historical context and 

perhaps reveal mechanisms controlling them, many parameters must be constrained, 

such as surface water primary production, sources of biogenic and detrital materials, 

amounts of river discharge, surface water circulation, and amounts of carbon burial and 

rates of remineralization. These parameters are directly or indirectly preserved in the 

sediment record and thus show temporal changes in environmental conditions [cf. 

Burdige, 2006]. Nevertheless, an individual sediment record also reflects its unique 

environmental setting, including water depth, sedimentation rate, and proximity to 

external sources such as rivers. When several locations' environmental records are 

compared, regional trends can be established. In this case, records of the oceanographic 

conditions, amounts of ice cover, river inputs to the region, and changes in salinity on 

the Alaskan shelf during the Holocene were sought. 

The sources of organic matter can help establish climatic and environmental 

conditions by the presence, absence, or differences in types of material. For example, 

recently observed climate changes have increased the ventilation of deep water with 

surface water, transporting nutrients from below the mixed layer to the surface layer 

[Hill and Stockwell, 2005]. With more nutrients and light available in the surface ocean 

of the Arctic, primary production has deepened below the stratified surface layer into 
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the thermocline [Hill and Stockwell, 2005]. Of the primary producers present in the 

Arctic Ocean today, typically it is dominated by diatoms [Hill and Stockwell, 2005]. 

However, recent observations in the nearby Bering Sea document blooms of 

cocolithophores in place of diatoms [Iida, 2002]. Sediment records of biogenic silica or 

carbonate document whether ecological shifts such as this have occurred before on the 

Alaskan shelf. 

Inputs of organic matter from terrestrial sources are preserved in the Alaskan shelf 

and slope sediments [Belicka et ah, 2004]. Geochemical clues about terrestrial organic 

materials, such as those from carbon and nitrogen isotopes and biomarkers differentiate 

these sources from marine ones. Carbon and nitrogen isotopic end members have been 

identified in the North Bering-Chukchi Sea as -21.2%o for marine and -27%o for 

terrestrial sources [Naidu et al., 2000]. Refractory carbonates eroded from the dolomite 

bedrock of the Canadian Shield and delivered through river discharge have a relatively 

short distance between source and deposition when compared to trans-Arctic transport 

[Ortiz et al., 2009]. Source material typical of the Bering Sea and North Pacific show 

transport through the Bering Strait and into the Barrow Canyon at different times 

during the Holocene [Ortiz et al., 2009]. 

The diagenetic loss of organic matter is an important aspect to understanding 

post-depositional changes that affect the sediment record. Undoubtedly, the signals 

from organic matter that has been buried for 12,000 years or longer will be 

compromised. Dissolution of biogenic silica, remineralization of carbon, and authigenic 

production of iron sulfides are all examples of diagenetic reactions that alter the 

sediment record. In the Chukchi Sea, there is a close association between the amount of 
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diagenesis that occurs and the sources of organic matter [Naidu et al., 2004]. Increases 

in sulfate reduction and remineralization occur when greater amounts of labile organic 

matter are present. The intensity of sulfate reduction and organic mineralization across 

the shelf increase farther offshore, away from terrestrial sources and with increasing 

marine organic matter [Naidu et al., 2004]. Rates of remineralization in the Chukchi 

Sea have been categorized into low productivity and high productivity zones, with 

approximately 44% and 52% of organic matter being remineralized within the 

sediments [Naidu et al., 2004]. The remaining organic carbon is subsequently buried at 

estimated rates of 0.67 mg cm"2 yr"1 and 1.0 mg cm"2 yr"1, respectively. Thus, there is 

ample evidence to support that Arctic sediments document numerous relevant processes 

in spite of diagenetic losses; this chapter will examine these records. 

4.2. Results 

4.2.1. Age Model 

Age models for JPC05 and JPC08 were constructed using radiocarbon dating on 

calcareous shells along with paleomagnetic intensities [Darby et al., 2009a; Lise-

Pronovost et al., 2009]. Using these age models, all the biogenic and environmental 

parameters were plotted by relative age to resolve the timing of the major events that 

have taken place in the Alaskan shelf. The approximate timing of events in cores 

obtained at Stations 5, 8 and PI were also compared for broader, regional trends. 

Multi-Core 6 (MC 6) that is adjacent to Station 5 was found to be highly 

bioturbated, to about 10 cm depth, and sedimentation rate using 210Pb is roughly 0.2cm 

yr"1 [McKay et al., 2008]. Sediments obtained by the trigger core (TC) and jumbo piston 

core (JPC) at Station 5 had a combined length of 16.3 m, which covers the entire 
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Figure 14. Organic carbon, organic nitrogen, and total sulfur versus age at Station 5. 

Holocene and may extend into the late Pleistocene. The sedimentation rate at Station 5 

was 1.6 m kyr"1 or 0.16 cm yr"1. The JPC and TC obtained at Station 8 had a combined 

length of 13 m, which covers the Holocene record to ca. 8000 ybp. At 89 m water 

depth, this station was above sea level during the last glacial interval, 12,000 ybp. The 

sedimentation rate at Station 8 was 3.5 m kyr"1 or 0.35 cm yr"1. 
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4.2.2. Carbon, Nitrogen, and Sulfur 

In the earliest record obtained at Station 5, 10-12,000 ybp, organic carbon was at 

low concentrations, but varied between 0.5 to 2.5% (Figure 14). The organic carbon at 

Station 5 steadily increases from 0.5 to 1.5% from 10,000 to 7800 ybp (Figure 14). A 

similar transition is seen in organic carbon at Station 8 between 8400 ybp and 7600 ybp 

(Figure 15). Throughout most of the Holocene, 7800 to 1000 ybp, the amount of 

organic carbon is relatively constant at both Stations 5 and 8, ca. 1.5% (Figures 14 and 

15), and increases slightly to 2% in the most recent sediments. The concentration of 

organic carbon on the Alaskan shelf compare well to those in sediments of the Chukchi 

and Bering Seas (0.1 to 2.8%), and are similar to those in most continental shelves 

[Naiduetal, 2004]. 

Organic nitrogen at Stations 5 and 8 vary more than organic carbon, but have the 

same general features: two transitional times at the beginning of, and in the most recent 

Holocene and a somewhat consistent input/preservation interval spanning the mid-

Holocene (Figure 14 and 15). At Station 5, from the earliest record obtained until 

10,000 ybp, organic nitrogen shows some variability at lower concentrations, 0.8% 

(Figure 14). Over the majority of the Holocene, 10,000 ybp until 4800 ybp, 

concentrations of organic nitrogen slowly increase to approximately 0.21%. Between 

4800 and 1000 ybp organic nitrogen concentrations slightly decrease, to 0.18%. In the 

most recent sediments at Station 5, 1000 ybp to present, organic nitrogen increases up 

to 0.25% (Figure 14). Similar trends in organic nitrogen are seen at Station 8 (Figure 

15). Increasing amounts of organic nitrogen, from 0.05 to 0.17%, are seen at Station 8 
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Figure 15. Organic carbon, organic nitrogen, and total sulfur versus age at Station 8. 

from 8400 to 7800 ybp, followed by a relatively constant supply of organic nitrogen, 

ca. 0.16%, from 7800 to 1000 ybp. Surface sediments at Station 8 show a 

similar increase in organic nitrogen to 0.23%, slightly lower than surface concentrations 

at Station 5. Organic nitrogen concentrations in the Chukchi shelf have similar ranges, 

from 0.01% to 0.28% [Grebmeier, 1993, Feder et ah, 1991]. 

Total sulfur in the Alaskan shelf displays a wide range of variability over 

relatively short time intervals of about 100-600 years (Figures 14 and 15). At Station 5, 
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the earliest records obtained show a decrease in total sulfur, 0.5% to 0, from 12,000 to 

10,000 ybp. Between 10,000 to 9000 ybp, total sulfur is variable at generally low 

concentration (Figure 14). For the majority of the Holocene, 9000 to 1200 ybp, the 

concentration of total sulfur is quite variable, with an average value of 0.3%. A 0.2% 

decrease in total sulfur occurs between 1200 and 800 ybp at Station 5 (Figure 14). Most 

recent sediments, 800 ybp to present, increase in concentration to ca. 0.2%. Station 8 

has a similar total sulfur record as Station 5 (Figure 15). A minimum in total sulfur 

concentration at Station 8 occurs at 8400 ybp and then total sulfur generally increases 

to 0.3% at 5000 ybp. Average total sulfur concentrations at Station 8 slightly decrease 

to 0.25% from 5000 to 600 ybp (Figure 15). Most recent sediments, 600 ybp to present, 

show a minimum in total sulfur concentrations, varying from 0.2 to 0.01%. No data 

sets for total sulfur are available for any sediments in the Chukchi Sea or the entire 

Arctic Ocean. 

4.2.3. Biogenic Silica 

Biogenic silica concentrations over the Alaskan shelf are relatively low, less than 

1% by weight. When examining profiles of biogenic silica two factors must be 

considered: the preservation of biogenic silica and the apparent supply [McManus et 

ah, 1995]. The diagenetic loss of silica from dissolution [DeMaster, 1991] has 

attenuated its abundance in the mid- to early Holocene. Additionally, the high 

sedimentation rates in this region have diluted the biogenic silica to just a fraction of a 

percent. However, there are several events during the late Holocene that illustrate 

changes in the importance of biogenic sources. 
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Figure 16. Biogenic silica versus age at Stations 5 and 8. 

At Stations 5 and 8 (Figure 16) the earliest records obtained until 8000 ybp do not 

show any biogenic silica has been preserved. From 8000 to 5000 ybp, slightly 

increasing amounts, up to 0.1%, of biogenic silica are present at both stations. Maxima 

in biogenic silica then occur from 5000 to 3300 ybp to 0.22%. Second maxima in 

biogenic silica, 0.3%, occur between 3300 and 2000 ybp at Stations 5 and 8. In the 

most recent sediments, 2000 ybp to present, maxima in biogenic silica are recorded, 

though somewhat higher at Station 5, 0.6%, than at Station 8, 0.4% (Figure 16). 

Though these events have been attenuated over time due to biogenic silica dissolution 
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[McManus et ah, 1995; Emerson and Hedges, 2003], the mere presence of biogenic 

silica documents periods of higher productivity from siliceous organisms. 

4.2.4. Biogenic Carbonate 

No biogenic carbonate was detected at either Stations 5 or 8, but the presence of 

calcareous phytoplankton on the Alaskan shelf cannot be ruled out. For example, 

coccolithophores and other calcifying plankton have been observed in the Bering Sea 

[Napp and Hunt, 2001; Iida et al., 2002]. Observations of cocolithophores and other 

calcifying organisms in these regions are indicators of climate change since the 

calcareous organism typically do not populate cold, high latitude waters [Gradinger, 

1995]. In addition, it is possible that there are calcifying organisms prolific in this area 

of the Arctic, but due to the high sedimentation rates at these locations biogenic 

carbonate has been diluted to undetectable concentrations. The former can be 

confirmed by the analysis of sediments from a location with very slow sedimentation 

rates, such as those at Station PI. Moreover, preservation factors must be considered, 

and in particular, shells and tests of calcareous organisms were absent or highly 

corroded at both Stations 5 and 8 (Polyak, 2008 personal communication). It seems that 

post depositional dissolution is prevalent in these cores compared to Station PI. 

4.2.5. Total Carbonate 

Total Inorganic Carbonate (TIC) profiles (Figure 17) from the Alaskan shelf show 

a low, continuous supply of carbonate-rich detrital material, approximately 0.2%, 

during most of the Holocene. Although the records at Stations 5 and 8 are slightly 

offset in the timing of events, they are very similar in shape (Figure 17). Early 

Holocene records at Station 5 show variability, but increasing amounts of total 
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Figure 17. Total carbonate versus age at Stations 5 and 8. 

carbonate, 0 to 1.5%, from 12,000 to 9500 ybp. An abrupt decrease in total carbonate 

occurs at 9600 ybp to low concentrations, 0.2%. From 9600 ybp to present, total 

carbonate remains quite low and slowly declines to 0.1%. Station 8 shows a rapid 

decrease in total carbonate, 1 to 0.2% from 8400 to 7700 ybp. Total carbonate 

concentrations at Station 8 remain constant over the majority of the Holocene, 0.2% 

(Figure 17). Reflectance and X-ray diffraction analyses of these sediments [Ortiz et al., 

2009] identify dolomite weathered from the Canadian Shield as the source of carbonate 
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Figure 18. Organic carbon and nitrogen isotopes versus age at Station 5. 

to the Alaskan shelf. The sediments deposited onto the Alaskan shelf are from nearby 

sources, rather than transported from great distances. 

4.2.6. Carbon and Nitrogen Isotopes 

Carbon and nitrogen isotope data are used to better identify sources of organic matter 

because marine and terrestrial organic matter have distinct isotopic signatures [Stein 

and Macdonald, 2004a]. C data from Station 5 show a transition of isotopic 

composition over the Holocene, ranging from -26%o in the early Holocene to -22%o in 

the most recent sediments (Figure 18). This broad range encompasses both terrestrial 
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and marine isotopic signatures and highly degraded terrestrial matter such as soils 

[Burdige, 2006]. Typically, -27%o is used as the terrestrial end member for the Beaufort 

Sea [Naidu et ah, 2000]. The marine isotopic end member is less straightforward, 

ranging from -15%o to -22%o [Stein and Macdonald, 2004a]. 

15N data show a wide range of isotopic signatures, 2%o to 10%o (Figure 18). In the 

early Holocene, 12,000 ybp, 15N is 5%o and quickly decreases to < 2%o. From 11,500 to 

8,000 ybp, the 15N signature shows an increase from <2%o to 8%o. From 8,000 to 1,000 

ybp 15N is constant at 8%o. From 1,000 ybp to the most recent surface sediments 

obtained at Station 5, there is a minimum in 15N at 5%o (Figure 18).The isotopic marine 

and terrestrial "end members" for 15N are not as clearly defined as 13C. Typically 15N 

from terrestrial sources are generally >10%o and marine sources are < 5%o [Fogel and 

Cifuentes, 1993; Schubert and Calvert, 2001]. 

4.2.7. Total Sulfur and Sulfur Speciation 

Sedimentary sulfur can be derived from different pools of organic, inorganic, and 

elemental forms and is highly affected by biogeochemical cycling in anoxic 

environments [cf. Cutter and Velinsky, 1987]. As organic matter is diagenetically 

altered by anaerobic respiration, the formation of iron sulfide compounds such as acid-

volatile sulfide (AVS), greigite, and pyrite occur [cf. Cutter and Velinsky, 1987]. AVS, 

primarily FeS, is unstable and typically found in early stages of anoxic diagenesis 

[Goldhaber andKaplin, 1974]. These amorphous, weakly crystalline iron monosulfides 

are soluble in weak hydrochloric acid (hence the name) and may be lost due to 

oxidation or transformed to greigite and/or pyrite [Sweeny andKaplin, 1973; Berner, 

1970]. 
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Figure 19. Acid volatile sulfide (AVS, primarily FeS), greigite (Fe3S4), and pyrite (FeS2) versus age in 
Multicore 6 that is adjacent to Station 5. 

Very little AVS is present in the surface sediments of the Alaskan shelf; at 1,000 

ybp a small amount of AVS was detected (Figure 19). Griegite (Fe3S2), also an unstable 

intermediate mineral in the formation of pyrite, has very low concentration and 
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Figure 20. Total sulfur and pyrite versus age at Station 5. 

generally decreases from 1,000 ypb to present (Figure 19). Pyrite (FeS2), the 

thermodynamically stable iron sulfide mineral, shows a maximum of 5umol g'1 at 1000 

ybp. From 1000 to 850 ybp pyrite concentrations are ca. 2umol g"1. From 850 ybp to 

present, pyrite concentrations decrease to undetectable level (Figure 19). Sulfur 

speciation in the most recent sediments in the Alaskan shelf shows that 94-99% of the 

total sulfur is not identified by these three constituents. This may in part be due to the 

well oxygenated and bioturbated sediments (Hillaire-Marcel, personal communication) 

that do not support sulfate reduction. Other phases, elemental sulfur and more likely 

organic sulfur make up the majority of sulfur delivered to the sediment surface [Matrai 

and Eppley, 1989; Cutter and Velinsky, 1987]. 
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Due to storage issues with the trigger and piston cores, only pyrite was 

determined in these samples. Pyrite abundance at Station 5 show the highest 

concentrations, ca. 50 umol g"1, in the earliest records (Figure 20). A rapid decrease 

occurs to concentrations near or below detection limits from 9800 to 7000 ybp. Wide 

variation in pyrite concentrations occur from 7000 to 2000 ybp, ranging from 1 to 11 

umol g"1 with average values around 3 umol g"1. Concentrations of pyrite again 

decrease to near detection limit (0.1 umol S g"1) in the most recent sediments (Figure 

20). Other stable phases of sulfur, elemental sulfur and more likely organic sulfur make 

up the difference in sulfur concentrations not accounted for by pyrite concentrations 

[Matrai andEpply, 1989; Cutter and Velinsky, 1987]. Currently, no known data sets are 

available for sulfur speciation in the Chukchi Sea or Arctic Ocean with which to 

compare. 

4.3. Discussion 

4.3.1. Temporal and Regional Trends 

The organic carbon to nitrogen ratio can be used to roughly elucidate the sources 

of organic matter. Based on the Redfield ratio, pure marine organic matter has an 

atomic C/N ratio of 6.6 [Redfield et ah, 1963]. Terrestrial organic matter is enriched in 

carbon, which elevates the C/N to values of 15 or higher [Naidu et ah, 1993]. In North 

Bering-Chukchi Sea sediments, C/N ratios range from 7.5 to 12 [Naidu et ah, 2004]. 

The earliest record obtained at Station 5 has low C/N values, ca. 6 (Figure 21). 

Directly after these two data points, C/N values generally increase until 9800 ybp. The 

elevated C/N values during this time are suggestive of a decline in marine organic 

matter supply and an increase in terrestrial materials. For the majority of the Holocene, 
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Figure 21. Atomic organic carbon:organic nitrogen ratios versus age at Stations 5, 8, and PI. 

9800 ybp to present, Stations 5 shows only small variations in C/N and are constant, ca. 

10 (Figure 21). Most of the fluctuations in the C/N values can be attributed to the 

variability in nitrogen supply/preservation as the profile of organic carbon is quite 

constant during this time (Figure 14 and 15). The record at Station 8 is abbreviated due 

to its depth, but closely resembles the general trends observed at Station 5. Station PI 

also shows the same trends as Station 5 and 8 (Figure 21). At 8000 ypb, Station PI 

shows a small decrease in C/N that is not observed in the other profiles. 
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The low level of refractory dolomite over the Holocene shows a constant, but 

weak, background source of terrestrially-derived material (Figure 17). The source of 

dolomite in this region of the Arctic Ocean is weathered from the Canadian Shield 

[Ortiz et ah, 2009] and delivered to the shelf via river input, sea ice, and surface 

currents. In the early Holocene, 12,000 to 9500 ybp, Station 5 shows an increase in 

refractory carbonate which also occurs simultaneously with low sulfur and organic 

carbon abundances. The increase of terrestrially-derived material and decrease in sulfur 

and organic carbon indicates terrestrial sources of material to the Alaskan shelf 

delivered via river and glacial outwash during this time. From 9500 ybp to present, the 

low level of refractory dolomite over the majority of the Holocene is consistent with a 

constant, but weak, background source of terrestrially-derived material (Figure 17). 

Station 8 shows a slightly higher amount of dolomite than Station 5 during this time, ca. 

0.2%. The increase of dolomite at Station 8 over Station 5 (Figure 17) is consistent with 

its closer proximity to land, indicating the source of dolomite is delivered via terrestrial 

sources, and not surface currents. 

Combining what was previously known from Station PI (Figure 2) and the new 

data from Stations 5 and 8 (Figure 14 and 15), similar trends in biogenic matter are seen 

over the Alaskan shelf (Figure 22). Though the sediment record is of a much lower 

resolution at Station PI (only 2 m in length), it has remarkable similarities to the other 

stations (Figure 22) For the majority of the Holocene, there are almost identical trends 

in three of the four components, including the variability in sulfur, the abundance of 

organic carbon, and increase in nitrogen into the early Holocene. 



58 

o 
c\i 

(0 
o 

' E 
a> 
O) 
o 
m 

(0 

d 

© I 
d 

in 
d 

d 
CO 

o 
CM 

o 

o 
d 

oo m Q. 

I l l 
tH 

•a c 
c3 

a. 
a 

(73 

I 
1 

1X1 

CM 

o 
CM I 

d 
m 
•v— 

d I 
o I 
d 
in 
o 
d 
in 
c\i 

o 

O 

' E 
re 
E» « 
O '" 

"7 1 o o o o o o o 
T - CM 

o o o 
CO 

o o o 
o o o 
in 

o o o o o o 
CD f -

o o o o o o o o o 
CO O) O 

o o o o o o 
t - CM 

3 
o 

So 
o 
b 

•a 
SO 

£ 

•a 
00 

o 
ri 

CD 

(dax) sBv 



59 

Several events at Station 8, including a decrease in total carbonate at 8400 ybp 

(Figure 17), sulfur minimum at 8,000 ybp, organic carbon and nitrogen maximum at 

7,700ybp (Figure 22), are equally observed at Station 5 and, PI but separated by ca. 

1000 years. The offset in the timing of these events seen at Station 8 from 5 and PI 

(Figure 22) could be from a delay at Station 8 due to its location (currently 89 m) being 

above sea level at the beginning of the Holocene [Kegwin, et al., 2006]. Thus, the 

environmental conditions at Station 8 went from terrestrial to very shallow, near shore 

conditions, to those of today. Alternatively, the age models used for these cores are 

incorrect after ca. 7000 ybp due to a lack of calcareous shells for 14C dating. Ages 

beyond 7000 ybp at both Stations 5 and 8 should be considered estimates only. 

The profile of pyrite is a reliable indicator of sulfate reduction under anoxic 

conditions [Berner and Raiswell, 1984]. Contributions of pyrite from external or coastal 

sources are discussed as part of the lithological studies by Ortiz et al. [2009] using 

reflectance and x-ray diffraction analysis. This work shows only trace amounts, ca. 0.5 

%, of detrital pyrite in these and other sediment cores obtained in the Alaskan shelf. 

During the early Holocene, 12,000 - 9000 ybp, the total sulfur profile is equally 

reflected in the abundance of pyrite (Figure 20). The early Holocene has strong 

characteristics of terrestrially-derived materials supported by increased amounts of 

dolomite (Figure 17), C/N ratios (Figure 21), and isotope data (Figure 18). Therefore, it 

is possible that the pyrite delivered to the Alaskan shelf in the earliest Holocene is from 

detrital sources. The variations in total sulfur between 9000-7000 ybp can be attributed 

to a supply or the preservation of elemental sulfur or more likely organic sulfur [Matrai 

andEppley, 1989; Cutter and Velinsky, 1987] as pyrite values are minimal (Figure 20). 
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The majority of total sulfur between 7000 to 1000 ybp can be attributed to pyrite during 

this time (Figure 20). Pyritization in marine sediments, support by both C/N and isotope 

data, is indicative of anoxic conditions during these times. 

To further evaluate the paleo-environmental record of the Alaskan shelf, the 

degree of pyritization (DOP) can be used as a unique tool. The carbon-sulfur-iron 

system has been used to differentiate between marine and non-marine conditions, and 

estimates of burial for these elements [Lyons, 1997; Berner and Raiswell, 1984]. 

Typically pyrite iron vs. total reactive iron is used to calculate DOP [Lyons, 1997]. 

However, DOP can also be calculated using pyrite sulfur vs. total sulfur (i.e., the degree 

of sulfur pyritization) since both are ingredients of pyrite. Though the input of organic 

carbon seems uniform throughout the Holocene (Figure 22), changes in the sediment 

biogeochemistry have occurred. Several periods during the Holocene show reducing or 

aerobic conditions within the sediments as documented by pyrite and DOP. In the 

earliest Holocene, 12,000-9500 ybp, DOP (Figure 23) and pyrite (Figure 20) values are 

at their highest values. However, as noted above, this period, has strong characteristics 

of terrestrially-derived materials; therefore it is possible that the pyrite delivered to the 

Alaskan shelf during this time is from detrital sources. 

Subsequently, very low concentrations of total sulfur and very little pyritization 

(ca. 20% DOP; Figure 23) were occurring ca. 9500 to 7700ybp. The C/N and isotope 

data (discussed next) show that during this time organic carbon sources are highly-

degraded terrestrial soils. Given these biogeochemical parameters at Station 5, it is 

likely that the paleo-environmental conditions in the early Holocene had strong inputs 
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Figure 23. Degree of pyritization (calculated at the ratio of pyrite sulfur to total sulfur) as a function of 
age at Station 5. 

of terrestrial materials and low sulfate, and therefore minimized pyrite formation. One 

could argue a large freshwater inputs may have occurred (low Org C/pyrite S), but it is 

difficult to resolve this from simple delivery of terrestrial organic matter input with low 

total S. Pyrite abundance and DOP values are variable and then generally increase from 

7700 to 6000 ybp. 

During the mid-Holocene, 6000 to 3800 ybp, the total sulfur is variable and 

ranges between 0.2 to 0.3%. At this time the DOP is relatively high; supporting 60-

100% of total sulfur as pyrite (Figure 23). Increased DOP shows that sufficient amounts 

of labile organic matter were supplied to the sediments of the Alaskan shelf to support 
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Figure 24. Known isotopic source materials (boxes) overlying organic carbon and nitrogen isotope data 
from Station 5 

anoxic respiration and enough iron and sulfate were present to allow pyritization 

(Figure 22). Thus, carbon remineralization within the sediments from 6000 - 3800 ybp 

was driven by sulfate reduction and not oxic respiration. Between 3800 to 1000 ybp 

DOP slowly decreases to zero. The most recent sediments show ca. 0.2 to 0.3% total 

sulfur, but no pyritization has occurred due to strong bioturbation and oxygen 

penetration into the sediments. 

4.3.2. Sources of Organic Matter 

Isotopic signatures for marine/estuarine phytoplankton and highly-degraded 

terrestrial organic matter and soils can be separated by 8 C and 5 N [Cloern et al., 

2002]. Organic matter delivered into the Alaskan shelf from the early Holocene, 12,000 

to 10,000 ybp, show a marine-like 815N isotopic signature (< 2%o), but it is not 
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supported by the depleted 813C values indicating soil organic matter. The increase in 

both 513C and 815N from 10,000 to 8000 ybp show a transition, or mixing, of organic 

matter sources from highly-degraded, terrestrial soils to more marine-like source 

(Figure 24). From 8000 ybp to the present, isotope data fall within the range of 

estuarine and marine phytoplankton (Figure 24). 

Together, changes in C/N and 513C can better elucidate the sources of organic 

matter [Stein and Macdonald, 2004a]. The variability shown in elevated C/N values 

and a range of 513C from -25 to -26%o (Figures 5 and 25) in the early Holocene, 12,000 

to 9000 ybp, is consistent with terrestrial organic matter (Figures 5, 22, and 25). Low 

C/N values are constant for most of the Holocene (Figure 21), implying the invariant 

supply of organic C and N, but increasing C (Figure 19) shows a shift from degraded 

terrestrial organic matter to modern marine organic materials from 9000 to 1000 ybp 

(Figure 25). In the last 1000 years the source of organic matter to this area of the 

Alaskan shelf is consistent with marine phytoplankton, similar to what is currently 

found in the Chukchi shelf today [Naidu et ah, 1997]. 

Throughout the Holocene, the sources of biogenic matter transitioned between 

marine and terrestrial inputs. Of the marine inputs, approximately 0.2% of the bulk 

sediment was comprised of biogenic silica, directly confirming the importance of 

diatoms and other siliceous organisms as primary producers in the mid- to late 

Holocene (Figure 22). Small differences in biogenic silica abundances between stations 

indicate slightly different environmental conditions at each station over the Holocene 

(assuming similar preservation). PI clearly show a maximum at 7800 ybp that is not 

present at the other locations (Figure 22). This additional supply/preservation of 
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Figure 25. Plots of (a) organic carbon versus age at Station 5 and (b) Atomic C/N versus 813C from 
Station 5, with known organic matter sources identified. 

biogenic silica could quite possibly be a sustained increase of primary production equal 

or greater than what is observed today in the Alaskan shelf given the known diagenetic 

loss of biogenic silica. Additionally, surface and subsurface biogenic silica maxima at 

Station PI highlight important events in primary production that are not as pronounced 

at Stations 5 and 8 (Figure 22). The high sedimentation rates at Station 5 and 8, 0.15 

and 0.35 m kyr"1 respectively, might have diluted the amount of biogenic silica to a 

fraction of what was preserved at Station PI. Station 5 and 8 are also closer to land and 

possibly subject to higher inputs of terrestrial and glacial matter. The use of biomarkers 

could help determine specific contributions of organic matter from diatoms from other 

marine sources. 
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4.3.3. Integrity of the Sediment Records 

Biogeochemical properties of sediments are subject to reworking from oxic or 

anoxic metabolism. To quantify the amount of organic carbon lost due to 

remineralization occurring in these shelf sediments, equations (2) and (3) following the 

multi "G" model (Berner, 1980; Martens and Klump, 1984) were used. Fitting the 

organic carbon data from the piston core at Station 5 to equation (2), using measured 

sedimentation rates, etc, a rate constant for remineralization, k= 0.0027 yr"1, was 

calculated. The MC data at the top of Figure 14 show more rapid remineralization, as 

organic carbon concentrations decrease 0.5% in less than 1,000 years. Fitting the 

organic carbon data from the multicore to equation (2), and using estimated 

sedimentation rate of roughly 0.2 cm yr"1 [McKay et al, 2008], a rate constant for 

remineralization, k= 0.006 yr"1, was calculated. In comparison, coastal remineralization 

rate constants for the "Gl" or more labile fraction are 1-8 yr'1 [Burdige, 2006]. These 

low rates of remineralization on the Alaskan shelf, both in the surface sediments and 

over the entire Holocene record, are comparable to rates modeled by Tromp et al. 

[1995] as the less reactive, more refractory "G2" fraction (10"1 to 10"5 yr"1). Though the 

comparison of coastal rates is difficult because sedimentation rates, sources, and 

amounts of organic carbon vary widely, little carbon is being remineralized at Station 5 

after deposition. 

According to Naidu et al. [2004], between 3-60% of organic carbon flux 

accumulates on the sea floor and of that portion, 40-97% is remineralized by benthic 

organisms or lost to resuspension and advection. Very little organic matter is actually 

retained below the mixed or bioturbated layer. The low rate of remineralization 
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calculated here implies two points: whatever carbon that was getting deposited is 

slowly remineralized over a long time scale (5000 yrs) much like deep sea sediments, 

and the "Gl" organic material was rapidly lost before it was buried. 

The fraction of organic matter that is buried at Station 5 can be quantified using 

equation (4). Sediment trap data from other investigators [Naidu et al., 2004] show that 

the particulate organic carbon flux to these sediments is ca. 76 to 2 mg cm^yr"1 

(productive vs. non-productive regions) [Stein and MacDonald, 2004]. Using these 

estimates and organic carbon data in Figure 14 to calculate carbon burial efficiency, 

Station 5 has a 1.5% burial efficiency. Similarly, regions of the Chukchi Sea have 

burial efficiencies of 1.0 to 0.67% [Naidu et al., 2004]. Estimates of burial efficiency 

for shelf and upper slope sediments of mid- to low latitudes are 42% [Burdige, 2006]. 

Thus, Station 5 has similar burial efficiency as other regions of the Alaskan shelf and 

Chukchi Sea, but only a fraction of burial compared to other shelf and slope systems. 

4.4. Summary 

The many biogeochemical parameters used in this study can be used to place the 

observed modern day changes occurring in the Alaskan shelf in context with past 

events (Figure 26). The C/N and C in the very earliest record at Station 5, 12,000 ybp, 

suggest marine conditions prior to the inundation of glacial outwash and terrestrial 

organic matter (Figures 18 and 21). From 12,000 to 9600 ybp abundant amounts of 

terrestrially-derived materials were delivered to the Alaskan shelf (Figure 26). These 

terrestrial sources are confirmed by the abundance of dolomite, high C/N ratios, heavy 

13C signatures, and low sulfur (Figures 17, 18, 21, and 22). Immediately following 

these terrestrial inputs, a thousand year transition in the Alaskan shelf established 
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marine conditions like those found in the late Holocene (Figure 25). A decrease in 

dolomite supply, deceasing C/N ratio, lighter 13C signature, and a return of sulfur into 

the system support marine sources of organic matter and a decrease of terrestrial inputs 

(Figures 17, 21, 22, and 25). 

In the mid-Holocene, 6000 - 1000 ybp, increased concentrations of pyrite 

occurred at this time because enough labile organic matter was deposited for anoxic 

conditions to occur, and sufficient amounts of sulfate and iron were available for 

efficient pyritization, 60-80% (Figure 23) of the sulfur and iron available. These anoxic, 

sulfate-reducing conditions were present for many thousands of years during the mid-

Holocene (Figure 26). The most recent record, 1000 to present (Figure 14), shows 

much different biogeochemical conditions than in the mid- to early Holocene. Organic 

carbon concentrations are 50% higher, but anoxic conditions do not appear to be 

present (Figure 19). This is likely the result of high amounts of bioturbation, enhancing 

oxygen penetration into the upper sediments of the Alaskan shelf. 

In terms of the marine sources of organic matter in the mid- and late Holocene, 

their origin appears to be diatoms or other siliceous organisms that could be further 

identified by biomarkers (Figure 16). The recent observations of cocolithophores in the 

Bering Sea suggest that other phytoplankton species could be present in high latitude 

waters, but they were not found in the Holocene records examined here. With respect to 

other environmental changes occurring in the Arctic at present, it will be interesting to 

see if increased river discharges [Peterson et al., 2002] shift the Alaskan shelf to a more 

terrestrially-dominated system as seen in the earliest Holocene (Figure 26). 
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re 26. Sources of organic matter (OM) through the Holocene on the Alaskan shelf. 
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1.296 

1.236 

1.18 

1.136 

1.043 

1.097 

1.094 

1.061 

1.085 

0.98 

1.046 

1.155 

1.162 

1.227 

1.194 

1.266 

1.184 

1.116 

1.219 

1.216 

1.237 

1.259 

1.301 

1.137 

1.33 

1.447 

1.261 

1.319 

1.472 

% Total 

S 

0.185 

0.168 

0.143 

0.123 

0.124 

0.118 

0.093 

0.102 

0.107 

0.08 

0.14 

0.067 

0.065 

0.098 

0.158 

0.19 

0.155 

0.242 

0.308 

0.219 

0.222 

0.285 

0.33 

0.334 

0.203 

0.231 

0.229 

0.284 

0.214 

0.274 

0.205 

0.212 

0.218 

i 

OrgC/N 

11 
11 
11 
11 
12 
12 
12 
11 
11 
12 
11 
13 
14 
11 
11 
14 
16 
17 
17 
18 
16 
16 
18 
18 
17 
18 
17 
14 
17 
19 
17 
18 
21 

% Biogenic 
Sica 

0.1 
0.05 

0.05 

0.03 

0.05 

0.07 

0.04 

0.04 

0.03 

0.03 

0.03 

0.03 

0.05 

0.04 

0.03 

0.03 

0.03 

0.03 

0.03 

0.05 

0.04 

0.03 

0.03 

0.02 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

0.01 

c/s 

20 
21 
24 
25 
28 
28 
34 
30 
26 
37 
21 
42 
45 
27 
18 
16 
20 
12 
15 
14 
10 
15 
14 
10 
10 
10 
16 
15 
15 
11 
17 
14 
16 

Cd:Ca 

(xlO"7) 



STATION PI DATA CONTINUED 

78 

Age %Org. %Org. % Total % Biogenic C/S CdCa 

Depth (ybp) N C S OrgC/N s i c a (xlO"7) 

280 11360 0.084 1.312 0.203 18 17 
282.5 11440 0.083 1.271 0.248 18 18 
285.5 11530 0.085 1.335 0.313 18 17 
290 11670 0.092 1.217 0.173 15 0.01 14 
295 11820 0.091 1.212 0.161 16 11 
300 11970 0.09 1.269 0.209 16 19 
305 12120 0.088 1.348 0.361 18 20 
310 12280 0.09 1.269 0.454 16 16 
315 12430 0.088 1.343 0.37 18 0.01 10 
320 12580 0.088 1.272 0.34 17 10 
325 12740 0.086 1.367 0.313 19 12 
330 12890 0.09 1.262 0.319 16 0.01 11 
335 13040 0.096 1.307 0.346 16 10 
340 13190 0.088 1.276 0.346 17 10 
345 13350 0.086 1.281 0.451 17 8 
350 13500 0.084 1.192 0.407 17 8 
355 13650 0.082 1.303 0.436 19 0.01 8 
360 13810 0.082 1.272 0.214 18 16 
365 13960 0.08 1.246 0.237 18 14 
370 14110 0.081 1.245 0.276 18 12 
375 14260 0.08 1.267 0.372 18 9 
380 14420 0.084 1.073 0.286 15 0.01 10 
385 14570 0.078 1.223 0.276 18 12 
390 14720 0.085 1.304 0.251 18 14 
395 14870 0.087 1.206 0.232 16 14 
400 15030 0.088 1.131 0.246 15 12 
405 15180 0.01 
410 15330 0.01 
415 15490 0.01 
420 15640 0.089 1.22 0.214 16 0.01 15 
429 15910 0.087 1.264 0.191 17 0.01 18 



79 

APPENDIX B 
MULTICORE 6 DATA 

Depth 

0.5 
1.5 
2.5 
3.5 
4.5 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
54 

55.5 

Age 
(ybp) 

0 
0 
1 
1 
1 
1 
2 
2 
2 
3 
3 
4 
4 
4 
5 
5 
6 
6 
6 
7 
7 
8 
8 
8 
9 
9 
10 
10 
10 
11 
11 

% Org. 
N 

0.201 
0.209 
0.212 
0.216 
0.244 
0.227 
0.229 
0.230 
0.215 
0.217 
0.213 
0.212 
0.209 
0.217 
0.213 
0.214 
0.204 
0.204 
0.201 
0.203 
0.203 
0.195 
0.197 
0.205 
0.197 
0.202 
0.204 
0.199 
0.223 
0.224 
0.226 

% Org. 
C 

1.813 
1.842 
1.900 
1.990 
1.990 
1.872 
1.879 
1.868 
1.839 
1.805 
1.751 
1.748 
1.710 
1.791 
1.746 
1.740 
1.706 
1.667 
1.663 
1.625 
1.591 
1.626 
1.690 
1.658 
1.623 
1.638 
1.638 
1.631 
1.642 
1.605 
1.627 

% Total 
S 

0.243 
0.205 
0.242 
0.223 
0.265 
0.220 
0.240 
0.217 
0.184 
0.244 
0.170 
0.185 
0.190 
0.164 
0.129 
0.171 
0.110 
0.178 
0.160 
0.167 
0.155 
0.152 
0.177 
0.146 
0.169 
0.106 
0.174 
0.215 
0.292 
0.258 
0.223 

OrgC/N 

9 
9 
9 
9 
8 
8 
8 
8 
9 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
9 
8 
8 
8 
8 
8 
7 
7 
7 

% Biogenic 
Sica 

0.22 
0.25 
0.29 
0.45 
0.29 
0.17 
0.19 
0.23 
0.26 
0.17 
0.28 
0.32 
0.39 
0.20 
0.19 
0.09 
0.17 
0.20 
0.16 
0.23 
0.17 
0.26 
0.20 
0.20 
0.14 
0.08 
0.14 
0.18 
0.13 
0.12 
0.14 

% 

Carbonate 

0.108 
0.109 
0.097 
0.101 
0.097 
0.097 
0.093 
0.094 
0.103 
0.102 
0.101 
0.093 
0.092 
0.081 
0.097 
0.089 
0.088 
0.091 
0.089 
0.090 
0.087 
0.081 
0.088 
0.090 
0.088 
0.094 
0.089 
0.092 
0.092 
0.095 
0.093 



MULTICORE 6 DATA CONTINUED 

Depth 

0.5 
1.5 
2.5 
3.5 
4.5 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
54 

55.5 

AVS Gregite Pyrite 
(nmol S / g) (nmol S / g) (^mol S / g) 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.240 
0.104 
0.095 
0.000 

0.038 
0.043 
0.063 
0.070 
0.050 
0.053 
0.125 
0.089 
0.091 
0.066 
0.058 
0.068 
0.075 
0.077 
0.099 
0.057 
0.179 
0.090 
0.316 
0.122 
0.113 
0.091 
0.135 
0.112 
0.148 
0.250 
0.249 
0.190 
0.332 
0.199 
0.194 

0.069 
0.064 
0.108 
0.088 
0.093 
0.115 
0.111 
0.124 
0.261 
0.152 
0.256 
0.335 
0.393 
0.475 
0.537 
0.392 
2.618 
1.929 
2.459 
1.521 
1.368 
1.265 
1.591 
2.253 
1.503 
2.405 
4.142 
2.435 
4.254 
2.489 
3.821 

Org.C / 
PyriteS 

20 
24 
21 
24 
20 
23 
21 
23 
27 
20 
27 
25 
24 
29 
36 
27 
41 
25 
28 
26 
27 
29 
25 
30 
26 
41 
25 
20 
15 
17 
19 

DOP 

0.001 
0.001 
0.001 
0.001 
0.001 
0.002 
0.001 
0.002 
0.005 
0.002 
0.005 
0.006 
0.007 
0.009 
0.013 
0.007 
0.076 
0.035 
0.049 
0.029 
0.028 
0.027 
0.029 
0.049 
0.028 
0.073 
0.076 
0.036 
0.047 
0.031 
0.055 

15 N(%o) 

9.38 

8.46 

6.63 

5.32 

8.43 

8.47 

8.62 

8.31 

8.15 

8 

7.93 

7.99 

7.38 

7.96 

7.87 

7.98 

1 3C (%o) 

-22.03 

-22.09 

-22.19 

-22.02 

-22.3 

-22.23 

-22.12 

-22.19 

-22.17 

-22.16 

-22.27 

-22.27 

-22.17 

-22.21 

-22.19 

-22.27 
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APPENDIX C 
MULUCORE 8 DATA 

Depth 

0.5 
1.5 
2.5 
3.5 
4.5 
6 
8 
10 
12 
14 
16 
18 
20 
22 
23.5 

Age (ybp) 

622.58 

622.84 

623.1 

623.36 

623.62 

624.01 

624.53 

625.05 

625.57 

626.09 

626.61 

627.13 

627.65 

628.56 

628.97 

% Org. N 

0.227 

0.225 

0.190 

0.203 

0.205 

0.185 

0.191 

0.185 

0.190 

0.180 

0.184 

0.187 

0.187 

0.175 

0.177 

% Org. C 

1.958 

1.956 

1.887 

1.946 

1.964 

1.825 

1.798 

1.805 

1.842 

1.856 

1.761 

1.832 

1.792 

1.733 

1.750 

% TotalS 

0.149 

0.097 

0.086 

0.098 

0.099 

0.061 

0.051 

0.040 

0.116 

0.111 

0.188 

0.092 

0.112 

0.119 

0.125 

OrgC/N 

10 
10 
12 
11 
11 
12 
11 
11 
11 
12 
11 
11 
11 
12 
12 

Silica 

0.17 

0.17 

0.21 

0.24 

0.30 

0.28 

0.27 

0.20 

0.31 

0.28 

0.37 

0.36 

0.35 

0.30 

0.44 

Carbonate 

0.240 

0.220 

0.220 

0.220 

0.220 

0.210 

0.220 

0.220 

0.220 

0.230 

0.250 

0.220 

0.220 

0.220 

0.200 



82 

TC05 DATA 

Depth 
1.5 
19.5 
40.5 
60.5 
82.5 
100.5 
120.5 
140.5 

Depth 
1.5 

19.5 
40.5 
60.5 
82.5 
100.5 
120.5 
140.5 

Age (ybp) 
817.4 
939.8 
1082.6 
1082.6 
1198.2 
1320.6 
1470.2 
1592.6 

Pyrite 
((jtnol S/g ) 

0.04 
0.03 
0.37 

2.37 
3.31 
3.96 
3.52 

APPENDIX D 

% Org. N 
0.198 
0.19 

0.178 
0.174 
0.182 
0.172 
0.175 
0.167 

Org.C / 
PyriteS 

3403 
4221 
364 

58 
42 
34 
37 

% Org. 
C 

1.751 
1.621 
1.605 
1.549 
1.638 
1.652 
1.594 
1.579 

DOP 
0.012 
0.013 
0.111 

0.946 
1.277 
2.345 
2.447 

% Total 
S 

0.112 
0.08 

0.106 
0.115 
0.08 
0.083 
0.054 
0.046 

15N (%o) 
7.92 
7.86 
7.78 
7.78 
7.96 
7.67 

7.88 

% 
OrgC/N Biogenic 

10 
10 
11 
10 
10 
11 
11 
11 

13C (%o) 
-22.3 

-22.12 
-22.14 
-22.2 
-22.27 
-22.27 

-21.17 

0.36 
0.42 
0.55 
0.32 
0.24 
0.33 

% 
Carbonate 

0.093 
0.082 
0.073 
0.086 
0.106 
0.066 
0.109 
0.099 



TC08 DATA 
APPENDIX E 

83 

Depth 

10.5 
20.5 
30.5 
40.5 
50.5 
59.5 
69.5 
79.5 
89.5 
99.5 

Age (ybp) 

680 
800 
1069 
1338 
1408 
1677 
1946 
2189 
2458 
2727 

% Org. N 

0.133 
0.171 
0.181 
0.191 
0.177 
0.176 
0.172 
0.172 
0.186 
0.171 

% Org. C 

1.278 
1.595 
1.569 
1.625 
1.582 
1.610 
1.569 
1.577 
1.660 
1.570 

% Total S 

0.186 
0.295 
0.332 
0.276 
0.231 
0.243 
0.289 
0.362 
0.291 
0.174 

OrgC/N 

11 
11 
10 
10 
10 
11 
11 
11 
10 
11 

% Biogenic 
Silica 

0.26 
0.29 
0.24 

0.40 
0.57 
0.55 
0.30 
0.31 
0.25 

% 

Carbonate 

0.17 
0.21 
0.21 
0.19 
0.20 
0.19 
0.20 
0.21 
0.22 
0.24 



JPC05 DATA 
APPENDIX F 
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Depth 

2.5 
20.5 
42.5 
60.5 
82.5 
101.5 
110.5 
140.5 
162.5 
180.5 
200.5 
220.5 
242.5 
260.5 
280.5 
300.5 
320.5 
340.5 
360.5 
380.5 
401.5 
420.5 
440.5 
460.5 
481.5 
500.5 
520.5 
540.5 
560.5 
580.5 
600.5 
620.5 
640.5 
660.5 
680.5 
700.5 
720.5 
740.5 

Age (ybp) 

1082.6 
1198.2 
1320.6 
1470.2 
1592.6 
1742.2 
1871.4 
1932.6 
2136.6 
2286.2 
2408.6 
2544.6 
2680.6 
2830.2 
2952.6 
3088.6 
3224.6 
3360.6 
3496.6 
3632.6 
3768.6 
3911.4 
4040.6 
4176.6 
4312.6 
4455.4 
4584.6 
4720.6 
4856.6 
4992.6 
5128.6 
5264.6 
5400.6 
5536.6 
5672.6 
5808.6 
5944.6 
6080.6 

% Org. N 

0.172 
0.187 
0.192 
0.193 
0.185 
0.192 
0.19 

0.199 
0.206 
0.205 
0.204 
0.195 
0.198 
0.206 
0.208 
0.195 
0.198 
0.185 
0.187 
0.193 
0.187 
0.183 
0.181 
0.18 
0.181 

0.2 
0.212 
0.216 
0.198 
0.193 
0.194 
0.196 
0.191 

0.2 
0.188 
0.181 
0.182 
0.193 

% Org. C 

1.631 
1.587 
1.596 
1.613 
1.560 
1.602 
1.520 
1.569 
1.555 
1.546 
1.474 
1.515 
1.509 
1.580 
1.560 
1.486 
1.517 
1.505 
1.507 
1.536 
1.529 
1.526 
1.496 
1.499 
1.524 
1.506 
1.518 
1.553 
1.515 
1.530 
1.487 
1.497 
1.508 
1.547 
1.500 
1.479 
1.471 
1.523 

% Total S 

0.031 
0.306 
0.298 
0.335 
0.248 
0.203 
0.244 
0.232 
0.203 
0.214 
0.166 
0.224 
0.273 
0.247 
0.162 
0.217 
0.167 
0.325 
0.236 
0.325 
0.16 
0.296 
0.292 
0.278 
0.246 
0.237 
0.257 
0.275 
0.289 
0.126 
0.23 

0.168 
0.243 
0.206 
0.29 

0.215 
0.328 
0.228 

OrgC/N 

11 
10 
10 
10 
10 
10 
9 
9 
9 
9 
8 
9 
9 
9 
9 
9 
9 
9 
9 
9 
10 
10 
10 
10 
10 
9 
8 
8 
9 
9 
9 
9 
9 
9 
9 
10 
9 
9 

% Biogenic 
Silica 

0.36 
0.23 
0.25 
0.15 
0.13 
0.10 
0.04 
0.13 
0.10 
0.27 
0.24 
0.28 
0.35 
0.18 
0.30 
0.30 
0.19 
0.09 
0.11 
0.07 
0.20 
0.24 
0.17 
0.11 
0.13 
0.08 
0.06 
0.12 
0.13 
0.15 
0.22 
0.13 
0.09 
0.09 
0.11 
0.13 
0.11 
0.12 

% Carbonate 

0.097 
0.098 
0.113 
0.111 
0.115 
0.087 
0.103 
0.081 
0.099 
0.106 
0.111 
0.110 
0.118 
0.117 
0.112 
0.114 
0.111 
0.126 
0.119 
0.134 
0.133 
0.135 
0.134 
0.131 
0.138 
0.139 
0.143 
0.141 
0.138 
0.167 
0.143 
0.147 
0.140 
0.124 
0.131 
0.135 
0.143 
0.151 



JPC05 DATA CONTINUED 

Depth Age(ybp) %Org.N %Org. C 

760.5 
780.5 
800.5 
820.5 
840.5 
860.5 
880.5 
900.5 
920.5 
940.5 
960.5 
980.5 
1000.5 
1020.5 
1040.5 
1060.5 
1080.5 
1100.5 
1120.5 
1140.5 
1160.5 
1180.5 
1200.5 
1220.5 
1240.5 
1260.5 
1290 
1306 
1330 
1346 
1370 
1394 
1417 
1447 
1471 
1495 
1519 
1535 
1568 
1605 
1631 

6216.6 
6352.6 
6488.6 
6624.6 
6760.6 
6896.6 
7032.6 
7168.6 
7304.6 
7440.6 
7576.6 
7712.6 
7848.6 
7984.6 
8120.6 
8256.6 
8392.6 
8528.6 
8664.6 
8800.6 
8936.6 
9072.6 
9208.6 
9344.6 
9480.6 
9616.6 
9752.6 
9953.2 
10062 

10225.2 
10334 

10497.2 
10660.4 
10816.8 
11020.8 
11184 

11347.2 
11510.4 
11619.2 
11843.6 
12095.2 

0.186 
0.179 
0.17 
0.17 
0.161 
0.16 
0.16 
0.145 
0.159 
0.154 
0.162 
0.162 
0.154 
0.167 
0.158 
0.166 
0.149 
0.135 
0.132 
0.126 
0.128 
0.119 
0.116 
0.112 
0.092 
0.088 
0.104 
0.09 

0.083 
0.078 
0.073 
0.086 
0.088 
0.089 
0.082 
0.08 

0.082 
0.142 
0.132 
0.128 
0.137 

1.479 
1.503 
1.421 
1.410 
1.414 
1.417 
1.402 
1.454 
1.392 
1.381 
1.399 
1.438 
1.414 
1.435 
1.343 
1.398 
1.233 
1.116 
1.087 
1.016 
0.990 
0.934 
0.849 
0.893 
0.739 
0.712 
1.140 
1.005 
1.106 
0.607 
1.056 
1.383 
1.055 
1.133 
1.441 
1.375 
2.381 
1.130 
0.935 
0.926 
1.113 

% Biogenic 
% Totals OrgC/N Silica % Carbonate 

0.282 
0.559 
0.241 
0.206 
0.329 
0.134 
0.306 
0.275 
0.118 
0.224 
0.29 

0.337 
0.324 
0.251 
0.182 
0.16 
0.224 
0.014 
0.011 
0.09 
0.129 
0.06 
0.059 
0.029 
0.008 
0.018 
0.086 
0.025 
0.21 
0.001 
0.001 
0.144 
0.087 
0.183 
0.341 
0.305 
0.383 
0.413 
1.388 
0.737 
0.738 

9 
10 
10 
10 
10 
10 
10 
12 
10 
10 
10 
10 
11 
10 
10 
10 
10 
10 
10 
9 
9 
9 
9 
9 
9 
9 
13 
13 
16 
9 
17 
19 
14 
15 
21 
20 
34 
9 
8 
8 
9 

0.16 
0.19 
0.12 
0.13 
0.16 
0.12 
0.05 
0.09 
0.12 
0.10 
0.10 
0.12 
0.08 
0.07 
0.03 

0.155 
0.144 
0.155 
0.140 
0.131 
0.131 
0.162 
0.158 
0.147 
0.132 
0.166 
0.134 
0.152 
0.137 
0.161 
0.148 
0.171 
0.180 
0.189 
0.188 
0.169 
0.186 
0.156 
0.187 
1.243 
0.760 
0.410 
0.910 
0.330 
0.107 
0.660 
0.110 
0.089 
0.124 
0.310 
0.360 
0.240 
0.016 
0.010 
0.020 
0.016 
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Pyrite Org.C / 
Depth (ymol S/g) Pyrite S 

2.5 
20.5 
42.5 
60.5 
82.5 
101.5 
110.5 
140.5 
162.5 
180.5 
200.5 
220.5 
242.5 
260.5 
280.5 
300.5 
320.5 
340.5 
360.5 
380.5 
401.5 
420.5 
440.5 
460.5 
481.5 
500.5 
520.5 
540.5 
560.5 
580.5 
600.5 
620.5 
640.5 
660.5 
680.5 
700.5 
720.5 
740.5 

3.56 

3.25 

5.29 

2.94 

3.90 

4.44 

2.98 

6.09 

9.19 
1.47 
6.57 

7.96 

5.12 

2.43 

10.64 

6.58 

33 

28 

12 

19 

DOP 

0.615 

0.634 

1.401 

0.979 

15 

7.61 

13, 
N (%o) , JC (%o) 

38 
41 

25 

45 

3.672 

0.340 

0.505 

0.463 

8.13 

8.42 

8.29 

8.27 

7.98 

7.94 

7.94 

7.71 

-22.66 

-22.54 

-22.59 

-22.67 

-22.88 

-22.8 

-22.8 

-22.8 

-22.91 

44 

21 

14 
87 
19 

16 

24 

52 

0.589 

0.600 

0.905 

0.293 

0.710 

0.916 

0.692 

0.617 

7.75 

7.57 

7.62 

7.94 

7.48 

7.57 

7.76 

7.57 

7.76 

7.69 

7.8 
7.62 

-22.87 

-22.87 

-23.04 

-22.98 

-23.1 

-23.13 

-23.21 

-23.28 

-23.29 

-23.32 

-23.29 

-23.53 

7.51 

7.71 

7.66 

7.56 

-23.34 

-23.48 

-23.6 

-23.63 
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Pyrite Org.C / 
Depth (jjmolS/g) Pyrite S DOP 15N (%o) 13C (%o) 

760.5 

780.5 

800.5 

820.5 

840.5 

860.5 

880.5 

900.5 

920.5 

940.5 

960.5 

980.5 

1000.5 

1020.5 

1040.5 

1060.5 

1080.5 

1100.5 

1120.5 

1140.5 

1160.5 

1180.5 

1200.5 

1220.5 

1240.5 

1260.5 

1290 

1306 

1330 

1346 

1370 

1394 

1417 

1447 

1471 

1495 

1519 

1535 

1568 

1605 

1631 

6.34 

6.55 

0.90 

2.71 

2.53 

1.17 

0.81 

0.18 

0.81 

0.61 

0.07 

0.15 

0.42 

0.89 

0.26 

0.43 

0.17 

0.40 

0.18 

2.27 

2.16 

3.66 

1.08 

2.14 

6.58 

2.71 

5.97 

8.46 

8.21 

11.83 

9.24 

34.49 

14.24 

26.67 

19 

18 

132 

45 
46 

100 

148 
613 
144 
169 
1370 

595 
201 
93 
299 
164 
432 
156 
330 
42 
39 
25 
47 
41 
18 
32 
16 
14 
14 
17 
10 
2 
5 
3 

0.719 

1.017 

0.214 

0.316 

0.685 

0.129 

0.103 

0.032 

0.162 

0.087 

0.155 

0.443 

0.150 

0.220 

0.139 

0.234 

0.190 

1.581 

0.319 

0.845 

2.767 

0.558 

34.468 

68.462 

1.462 

0.996 

1.044 

0.794 

0.861 

0.988 

0.716 

0.795 

0.618 

1.156 

7.62 

7.38 

7.25 

7.44 

7.51 

7.32 

7.05 

6.51 

6.08 

5.55 

5.71 

5.2 
5.05 

4.72 

3.47 

3.51 

3.05 

4.69 

3.4 
1.89 

3.25 

3.15 

2.27 

2.02 

2.01 

6.09 

5.89 

5.81 

5.89 

-23.69 

-23.64 

-23.87 

-24.08 

-24.08 

-24.37 

-24.45 

-24.89 

-24.97 

-24.97 

-25.04 

-25.1 

-19.62 

-25.32 

-25.88 

-25.16 

-25.59 

-25.01 

-25.44 

-25.68 

-25.48 

-25.69 

-25.92 

-26.02 

-25.69 

-24.88 

-24.81 

-24.95 

-24.68 
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Depth 

9.5 
19.5 
29.5 
39.5 
49.5 
59.5 
69.5 
80.5 
89.5 
99.5 
115.5 
134.5 
150.5 
167.5 
185.5 
203.5 
220.5 
237.5 
254.5 
271.5 
288.5 
307.5 
323.5 
340.5 
358.5 
375.5 
393.5 
410.5 
427.5 
444.5 
462.5 
480.5 
496.5 
515.5 
540.5 
565.5 
591.5 
615.5 

Age (ybp) 

1676.913 
1946.213 
2215.513 
2484.813 
2754.113 
3023.413 
3292.713 
3588.943 
3831.313 
4100.613 
4531.493 
5043.163 
4808.85 
4858.15 
4910.35 
4962.55 
5011.85 
5061.15 
5110.45 
5159.75 
5209.05 
5264.15 
5310.55 
5359.85 
5412.05 
5461.35 
5513.55 
5562.85 
5612.15 
5661.45 
5713.65 
5765.85 
5812.25 
5867.35 
5939.85 
6012.35 
6087.75 

% Org. N 

0.169 
0.170 
0.177 
0.184 
0.170 
0.158 
0.167 
0.161 
0.161 
0.159 
0.176 
0.178 
0.168 
0.179 
0.179 
0.174 
0.164 
0.174 
0.174 
0.155 
0.175 
0.177 
0.179 
0.168 
0.183 
0.183 
0.188 
0.196 
0.188 
0.191 
0.174 
0.187 
0.186 
0.183 
0.188 
0.181 
0.172 
0.185 

% Org. C 

1.593 
1.623 
1.682 
1.749 
1.634 
1.539 
1.627 
1.647 
1.641 
1.637 
1.617 
1.638 
1.638 
1.655 
1.673 
1.622 
1.695 
1.638 
1.688 
1.619 
1.583 
1.693 
1.816 
1.733 
1.712 
1.489 
1.505 
1.585 
1.513 
1.551 
1.598 
1.534 
1.532 
1.655 
1.684 
1.606 
1.569 
1.634 

% Total S 

0.258 
0.300 
0.250 
0.277 
0.367 
0.261 
0.239 
0.216 
0.267 
0.236 
0.337 
0.892 
0.730 
0.314 
0.350 
0.277 
0.214 
0.456 
0.328 
0.387 
0.539 
0.198 
0.177 
0.261 
0.549 
0.262 
0.302 
0.249 
0.255 
0.416 
0.366 
0.241 
0.202 
0.378 
0.526 
0.178 
0.134 
0.295 

OrgC/N 

11 
11 
11 
11 
11 
11 
11 
12 
12 
12 
11 
11 
11 
11 
11 
11 
12 
11 
11 
12 
11 
11 
12 
12 
11 
9 
9 
9 
9 
9 
11 
10 
10 
11 
10 
10 
11 
10 

% Biogenic 
Silica 

0.336 
0.236 
0.220 
0.274 
0.248 
0.284 
0.184 
0.165 
0.289 
0.289 
0.280 
0.401 
0.360 
0.400 
0.295 
0.235 
0.245 
0.248 
0.264 
0.298 
0.288 
0.190 
0.263 
0.256 
0.309 
0.258 
0.241 
0.158 
0.175 
0.195 
0.350 
0.277 
0.195 
0.164 
0.198 
0.287 
0.244 
0.316 

% 

Carbonate 

0.220 
0.210 
0.210 
0.200 
0.190 
0.210 
0.220 
0.230 
0.210 
0.190 
0.230 
0.260 
0.230 
0.230 
0.260 
0.220 
0.220 
0.230 
0.250 
0.260 
0.220 
0.250 
0.230 
0.330 
0.190 
0.240 
0.210 
0.230 
0.250 
0.150 
0.180 
0.200 
0.230 
0.230 
0.210 
0.240 
0.300 
0.250 
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Depth 

641.5 

666.5 

691.5 

717.5 

741.5 

766.5 

791.5 

816.5 

842.5 

866.5 

891.5 

916.5 

941.5 

967.5 

991.5 

1016.5 

1041.5 

1066.5 

1092.5 

1116.5 

1141.5 

1167.5 

1199.5 

1241 

1281 

1321 

1361 

1395 

Age (ybp) 

6157.35 

6232.75 

6305.25 

6377.75 

6453.15 

6522.75 

6595.25 

6667.75 

6740.25 

6815.65 

6885.25 

6957.75 

7030.25 

7102.75 

7178.15 

7247.75 

7320.25 

7392.75 

7465.25 

7540.65 

7610.25 

7682.75 

7758.15 

7850.95 

7971.3 

8087.3 

8203.3 

8319.3 

% Org. N 

0.168 

0.177 

0.171 

0.163 

0.178 

0.184 

0.167 

0.172 

0.183 

0.172 

0.168 

0.161 

0.161 

0.159 

0.153 

0.154 

0.152 

0.169 

0.149 

0.135 

0.168 

0.141 

0.120 

0.084 

0.086 

0.093 

0.050 

0.072 

% Org. C 

1.508 

1.588 

1.573 

1.45 

1.594 

1.654 

1.521 

1.534 

1.676 

1.596 

1.585 

1.577 

1.607 

1.57 

1.589 

1.609 

1.555 

1.7383 

1.651 

1.53 

1.638 

1.408 

1.218 

0.904 

0.945 

0.969 

0.733 

0.822 

% Totals 

0.340 

0.214 

0.182 

0.353 

0.200 

0.294 

0.229 

0.218 

0.185 

0.245 

0.167 

0.075 

0.124 

0.156 

0.237 

0.052 

0.045 

0.091 

0.050 

0.054 

0.196 

0.187 

0.163 

0.001 

0.001 

0.001 

0.001 

0.069 

OrgC/N 

10 
10 
11 
10 
10 
10 
11 
10 
11 
11 
11 
11 
12 
12 
12 
12 
12 
12 
13 
13 
11 
12 
12 
13 
13 
12 
17 
13 

% Biogenic 

Silica 

0.384 

0.309 

0.345 

0.289 

0.260 

0.353 

0.355 

0.170 

0.183 

0.249 

0.236 

0.275 

0.217 

0.168 

0.222 

0.168 

0.122 

0.215 

0.113 

0.178 

0.185 

0.111 

0.081 

% 

Carbonate 

0.290 

0.290 

0.300 

0.270 

0.260 

0.240 

0.270 

0.290 

0.260 

0.300 

0.270 

0.260 

0.300 

0.310 

0.300 

0.300 

0.310 

0.143 

0.310 

0.330 

0.260 

0.430 

0.470 

0.56 

0.57 

0.65 

0.82 

0.57 
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