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ABSTRACT 

MICROTEXTURES OF CYANOBACTERIAL MATS IN 
SILICICLASTIC SEDIMENTARY 

ENVIRONMENTS (MODERN AND ANCIENT): APPLICATIONS TO 
NASA'S SEARCH FOR LIFE ON MARS 

Dina M. Bower 
Old Dominion University, 2008 

Director: Dr. Nora Noffke 

The current Mars Exploration Rover Program (MER) is one of NASA's most successful 

missions. The aim of the MER is to explore for possible life on the surface of Mars. My 

thesis developed new methods of how to detect and to identify microbial mats in 

siliciclastic sediments (modern and ancient), and to make recommendations on the 

applicability of MISS as biosignatures. Predominantly, I employed instrumentation 

portable by future rovers. To search for life on other planets, we need to have information 

on how this life might look. Most astrobiological studies therefore focus on Earthly 

analogues of life and its habitats. 'Microbially induced sedimentary structures (MISS)' 

are formed by benthic cyanobacteria in shallow-marine settings by the interaction of the 

microbiota with physical sediment dynamics. MISS are found exclusively in siliciclastic 

sedimentary environments, setting them apart from stromatolites that form in chemically 

controlled settings. Because the MISS occur since the earliest Archean, the structures 

constitute important biosignatures. It is noteworthy that we can study both modern as 

well as fossil examples. In order to compare fossil and modern MISS, I used rock 

material from the 2.9 Ga old Archean Pongola and Witwatersrand Supergroups, South 

Africa, that record former tidal and shelf settings. I also investigated modern examples on 



Fishermans Island, located on the coast of Virginia at the mouth of the Chesapeake Bay. 

To describe and to quantify various microtextures such as bacterial filaments, 

extracellular polymeric substances, mat fabrics, etc., I coupled morphometric and 

geochemical analyses. Optical microscopy and confocal scanning laser microscopy 

(CSLM) revealed that the morphology and structure of the microtextures of both Archean 

and modern material are very similar. Raman spectroscopy and electron microprobe 

analyses on the fossil material indicate their mineralogical and elemental composition. I 

distinguished alternating bands of iron hydroxides, titanium oxides, and carbon, as well 

as mica with striae of titanium oxides and carbon, that reflect the mineralization of the 

organic components of ancient microbial mat fabrics. These microfossils are the result of 

in situ biomineralization of organic material right after burial during diagenesis and also 

possibly during recrystallization in the course of post-diagenetic and tectonic overprinting 

of the host rock. Carbon isotope analyses on the fossil filament-like textures show 813C 

values between -22.0-24.2+/-0.5%, typical for preserved organic matter. The 

morphological and geochemical results, support the presence of cyanobacteria in rocks of 

at least 2.9 Ga age, and provide Earthly analogs for use on Mars. 



V 

This thesis is dedicated to my amazing family for always encouraging me to be who I am 
and for supporting me through all of my many transformations. This is also dedicated to 
all the teachers along the way that pushed and inspired me. I want to dedicate this 
especially to two special undergraduate professors and mentors, Dr. Michael J. Hozik and 
Dr. Gordan Grguric. Dr. Hozik introduced me to the world of geology with such 
enthusiasm - 1 hope I will one day be able to inspire my students in the same way. Dr. 
Grguric recognized and nurtured the inquistive scientist in me and opened my eyes to the 
amazing world of chemistry. And to whoever/whatever is beyond human reason or 
imagination, be it the Source, the Universe, or G-d, I am eternally grateful to have been 
born into this life with such a wonderful family, friends, and opportunities to grow as a 
human being on this one planet of many. 



VI 

ACKNOWLEDGMENTS 

I would like to thank the faculty and staff of the Department of Ocean, Earth, and 
Atmospheric Sciences for their continued support throughout my studies and work. This 
work would also not have been possible without the support of several esteemed 
colleagues and faculty of the Geophysical Laboratory, Carnegie Institution of Science, 
Washington, D.C. I would especially like to thank Andrew Steele, Marilyn Fogel, Chris 
Hadidiacos, and Robert Hazen. Most of all, I would like to thank Marc Fries, who spent 
countless hours training me, going over data, and hosting me at the Geophysical 
Laboratory. This work also could not have been accomplished without the funding from 
the NASA Exobiology Program and the NASA Mars Fundamental Research Program. 
Thank you, finally, to Nora Noffke for giving me this exciting opportunity. 



TABLE OF CONTENTS 

VI! 

Page 

LIST OF TABLES ix 

LIST OF FIGURES x 

Chapter 

I. INTRODUCTION 1 
SIGNIFICANCE AND AIMS 1 
BENTHIC CYANOBACTERIA : PHOTOAUTOTROPHIC AND 
MOBILE PROKARYOTES 3 
BIOFILMS: SINGLE CELLED ORGANISMS AND 
EXTRACELLULAR POLYMERIC SUBSTANCES 10 
MICROBIAL MATS: STRATIFIED ECOSYSTEMS IN 
SHALLOW-MARINE SETTINGS 13 
MICROBIALLY INDUCED SEDIMENTARY STRUCTURES: 
MICROBIAL TRACE FOSSILS 16 
THE INTERACTION OF MICROBES WITH MINERALS: A 
COMPLEX RELATIONSHIP 19 
THE FOSSIL RECORD OF MICROBIOTA: THE 
BIOGENICITY OF MICROFOSSILS 21 
THE ARCHEAN: EARLY EARTH AND THE DAWN OF LIFE 23 
MARS: PLANETARY HISTORY, MISSIONS, AND THE 
SEARCH FOR LIFE 27 

II. STUDY AREAS 33 
MODERN TIDAL SETTINGS: FISHERMANS ISLAND, VIRGINIA 33 
ANCIENT TIDAL SETTINGS: WIT MFOLOZI RIVER 
GORGE, SOUTH AFRICA 35 

III. METHODS 39 
FIELD WORK: DESCRIPTIVE OBSERVATIONS AND 
QUANTITATIVE MEASUREMENTS 39 

SURVEY ON MODERN MICROBIAL MATS, SAMPLING 
OF SEDIMENT CORES 39 
GEOLOGICAL SURVEY ON ANCIENT MICROBIAL MATS, 
COLLECTION OF ROCK SAMPLES 41 

ANALYTICAL LABORATORY METHODS 45 
RELIEF CASTS 45 
IDENTIFICATION OF MACROSTRUCTURES 45 
OPTICAL MICROSCOPY 47 
CONFOCAL SCANNING LASER MICROSCOPY (CSLM) 51 



Vlll 

ELECTRON MICROPROBE ANALYSIS 53 
MICRO RAMAN SPECTROSCOPY (RAMAN) 55 
CARBON ISOTOPE ANALYSIS 58 

IV. RESULTS 60 
DISTRIBUTION OF MICROBIAL MATS ON FISHERMANS ISLAND 60 
BIOFACIES ZONES IN THE WIT MFOLOZI RIVER GORGE 64 
CYANOBACTERIA AND MAT TEXTURES (MODERN AND 
ANCIENT)-OPTICAL MICROSCOPY 68 
TEXTURES OF MICROBIAL MATS (MODERN AND ANCIENT) 
INCSLM 82 
CARBON ISOTOPES OF FOSSIL FILAMENT-LIKE TEXTURES 86 
MICRO RAMAN SPECTROSCOPY OF FOSSIL 
FILAMENT-LIKE TEXTURES 87 
ELECTRON MICROPROBE ANALYSIS OF FOSSIL 
FILAMENT-LIKE TEXTURES 101 

V. DISCUSSION 105 

REFERENCES 109 

VITA 123 



ix 

LIST OF TABLES 

Table Page 

1. Reference list of minerals and compounds with Raman spectra 57 

2. Thin sections used for micro Raman analyses 88 



LIST OF FIGURES 

Page 

Phylogenetic tree of life showing branches of unicellular Bacteria and 

Archea, and the multicellular Eukarya 3 

Prokaryotic vs eukaryotic cells 4 

The two main morphologies of cyanobacteria 7 

Optical microscopic image of EPS and cyanobacteria 10 

Biofilms are not the same as microbial mats. 12 

Stratified microbial mat where layers are divided based on metabolisms 13 

Microbial mat typical of a modern siliciclastic tidal flat 14 

Microbially induced sedimentary structures (MISS) 17 

Mineral and microbial structures 20 

Geologic time scale of Earth and Mars 24 

The Mars Exploration Rover (MER) 30 

PanCam images taken by the Mars rover Spirit 31 

Close-up of image of the Martian surface taken through a microscopic 

imager by the rover Spirit 32 

Modern study area 34 

Study area in South Africa 36 

Stratigraphic column of the 2.9 Ga Mozaan Group 37 

Transect from low water line to high water line on Fishermans Island 

tidal flat 39 

Steps for taking box cores 41 

Sketches and photographs of MISS in sandstones from the Brixton 
Formation, South Africa 42 



xi 

20. Bedding surfaces displaying MISS in the Wit Mfolozi River Gorge 43 

21. Collecting samples in the Wit Mfolozi River Gorge 44 

22. Experiments with light to enhance the visibility of MISS 46 

23. Preparation of rock samples 49 

24. Relief casts record intrasedimentary microbial mat structures in a 
transgressive tidal flat 62 

25. MISS in 46m of rock successions in the Wit Mfolozi River Gorge 

record an ancient tidal flat 65 

26. Visibility of MISS on sandstone surfaces, Wit Mfolozi River Gorge 67 

27. Microbial mat samples from Fishermans Island, Virginia 68 

28. Comparison of mineral grains in modern microbial mats and 
Mesoarchean microtextures 69 

29. Light microscopy images of cyanobacterial species in microbial 
mats of Fishermans Island, Virginia 70 

30. Percent composition of a typical microbial mat from the tidal flats 
of Fishermans Island, Virginia using optical analyses 71 

31. Optical microscopic images showing morphological similarities 

between modern microbial mat textures and ancient microtextures 72 

32. Thin sections from Ntombe Formation samples 73 

33. Morphological comparisons of laminae in the Mesoarchean samples 74 

34. Thin sections from Sinqueni Formation samples 76 

35. Intrasedimentary mat layers 77 

36. Cyanobacterial segments within filaments and filamentous textures 80 

37. CSLM images of microbial mats from Fishermans Island 83 

38. CSLM images of samples from the Ntombe Formation 84 

39. CSLM images of microbial mat fabrics 85 



xii 

40. Raman analysis of laminae, Ntombe Formation (P2) 89 

41. Raman analysis of laminae, Ntombe Formation (P4) 90 

42. Raman analysis of laminae, Ntombe Formation (P5) 92 

43. Raman scan of laminae, Sinqueni Formation (RCH2) 94 

44. Raman scan of laminae, Sinqueni Formation (RCH11) 95 

45. Raman scan of dark laminae, Sinqueni Formation (RCH12) 96 

46. Raman analysis of heavy mineral, Sinqueni Formation (RCH2) 97 

47. Raman scan of micaceous laminae, Sinqueni Formation (RCH18) 98 

48. Raman scan of dark laminae, Sinqueni Formation (RCH13) 100 

49. Elemental maps of electron microprobe, Ntombe Formation 101 

50. Elemental maps of electron microprobe, Ntombe Formation 102 

51. Elemental maps of electron microprobe, Sinqueni Formation 103 

52. Elemental maps of electron microprobe, Sinqueni Formation 104 



1 

CHAPTER I 

INTRODUCTION 

/ . Significance and Aims 

The aim of my doctoral research is to contribute 'microbially induced sedimentary 

structures (MISS) to the catalogue ofbiosignaturesfor the search for early life on Earth 

and other planets, such as Mars. 

Modern and fossil MISS including microbial textures are important biosignatures 

potentially proving the existence of prokaryotic life in early Earth's history, or on other, 

Earthlike planets such as Mars. In order to provide NASA with helpful recommendations 

for life detection using MISS as biosignatures, I tested a great variety of petrological and 

geochemical methods. I established morphological and geochemical characteristics of 

modern microbial mats and used those criteria to determine the biogenicity of fossil 

MISS including microscopic textures. The morphological characteristics include shape, 

length, and thickness of microbial cells (filaments), their orientation within the mat 

fabrics, and the distribution of extracellular polymeric substances (EPS). Chemical 

characteristics include the presence of carbon, carbon isotopic signatures, and hydrous 

iron oxides with special focus on the fossil textures. The instrumentation I employed can 

be used by a rover to detect biosignatures on the surface of Mars. 

The journal model for this dissertation is Precambrian Research. 
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While Mars and Earth may have shared a similar early planetary history, the chemical 

equilibria in the atmosphere and lithosphere on Mars did not evolve as it did on Earth. 

One such difference is the possible instability of carbonates on the Martian surface from 

UV degradation (Cordoba-Jabonero, 2003). As such, it is unlikely that carbonate 

environments conducive to stromatolite formation existed on Mars. It is more likely that 

biogenic sedimentary structures on Mars would have been formed through the physical 

interaction between microbes and the sediment, such as the MISS formed in siliciclastic 

(sandy) substrates on Earth. 

Modern siliciclastic tidal flats are often covered by microbial mats constructed by benthic 

cyanobacteria. These microbial mats cause 'Microbially Induced Sedimentary Structures' 

('MISS'). MISS are also preserved in Archean sandstones formed in ancient shallow 

marine shelf or intertidal environments. Eventhough 1/3 of Archean rocks are sandstones, 

most paleontological studies on early life have been conducted on precipitated 

lithologies, such as cherts and carbonates. Carbonates contain stromatolites, which are 

well known biosedimentary structures that occur throughout geologic history. Thus, 

MISS are unique. Therefore, my research has filled in an important gap of information 

that can be applied to understanding not only early life on Earth, but life on Mars as well. 



2. Benthic Cyanobacteria : Photoautotrophic and Mobile Prokaryotes 

Cyanobacteria are photoautotrophic, and many species can move actively through the 

sand (Whitton, 1992). What is the taxanomic position of cyanobacteria? The 

phylogenetic tree of life is divided into three domains, the bacteria and archea (both 

classified as prokaryotes), and eukaryotes (Fig. 1). Cyanobacteria are prokaryotes. 

Prokaryotes are single celled microorganisms that lack a membrane bound nucleus (Fig. 

2). The genetic information in prokaryotes is contained on single DNA threads that float 

freely in the cell. In contrast, in eukaryotes, the chromosomes and strands of DNA are 

surrounded by a membrane in the nucleus. Prokaryotes also lack organelles, such as the 

mitochondria and endoplasmic reticulum typical for the eukaryotes. Another major 

difference between prokaryotes and eukaryotes is cell size. The larger eukaryotic cells 

have an average size of 25 urn, whereas prokaryotic cells have an average size of around 

2.5 urn. 

Bacteria ^ Bukarya 

filraeiitflus lime 
Spirochete) bacteria A r c h a e a Mai iedae mold* Animals 

Mttlwwmma \ I / /Fungi 
„ , , MMttrnktlmtm 
Proteotatttra\ r,„,„ .,., 

\ ui*m Memommtm 
Cyanobacicria v \ ^positives T«to 

VitrmspMttm 
i\r«iutmm BeetemMm TritboiraijA 

Mi< rosfxiridia 

Dipkiniimids 

Fig. 1. Phylogenetic tree of life showing branches of unicellular Bacteria and Archea, and the multicellular 
Eukarya. The Bacteria and Archea are both considered prokaryotes. (image taken from www.bact.wisc.edu) 

http://www.bact.wisc.edu
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As a result of their smaller size, prokaryotic cells have a higher surface to volume ratio, 

which facilitates the transfer of nutrients across the cell membrane. This allows 

prokaryotic cells to serve as biocatalysts for many chemical reactions and makes them 

more adaptable to a wide variety of environments. In contrast, eukaryotes must rely on 

the breakdown of glucose through respiration, and are limited to oxygenic environments. 

Fig. 2. Prokaryotic vs. eukaryotic cells. Prokaryotes lack a membrane bound nucleus and organelles, such 
as mitochondria and the endoplasmic reticulum. Those organelles are found in eukaryotes. Prokaryotes are 
also much smaller than eukaryotes. 
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The prokaryotes include millions of genetically distinct taxa and are divided into two 

groups based on sequences of ribosomal RNA: the bacteria (including cyanobacteria) and 

the archea (Fig. 1). The archea are separated into three groups that use different energy 

sources: the methanogens, halophiles, and hyperthermophiles. Methanogens are 

anaerobes (do not require oxygen) that use hydrogen or carbon dioxide in oxygen-poor 

environments to produce methane. Halophiles are aerobes (require oxygen) that can only 

exist in salt-rich environments, such as the Dead Sea or evaporite deposits. 

Hyperthermophiles live in extreme high temperature environments, such as hot springs or 

hydrothermal vents, and usually utilize elemental sulfur for respiration. 

The second category of prokaryotes is the bacteria. Bacteria are divided into several main 

groups based on DNA sequences (Fig. 1) These groups include spirochetes, green sulfur 

bacteria, green non-sulfur bacteria, gram positive bacteria, purple bacteria, flavobacteria, 

bacterioides, thermatogales, and cyanobacteria. Just as in the Archea, each bacterial 

group differs by metabolic abilities. One of the characteristics that distinguishes bacteria 

from archea is bacteria have cell walls that consist of either peptidoglycan (polymers of 

sugars and polypeptides), while the cell walls of the archea contain a variety of proteins, 

glycoproteins, and polysaccharides, but no peptidoglycan. 

Based on genetic sequencing, prokaryotes are believed to be the ancestors of eukaryotes. 

Eukaryotes likely evolved from a symbiotic relationship between prokaryotes. Although 

eukaryotes are higher on the evolutionary ladder, prokaryotes are more widespread and 
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are found in every niche and habitat on Earth. Prokaryotes can be divided into 

primary producers and consumers (Ormerod, 1992). Primary producers use sunlight 

(photoautotrophs), chemical energy (chemotrophs) or inorganic matter (lithotrophs) 

to produce energy and organic matter. Consumers break down organic matter to gain 

energy, because they cannot produce energy of their own. Cyanobacteria are 

photoautotrophs. 

Cyanobacteria are among the earliest life forms on Earth (Horneck, 2000; Canfield, 2005; 

Olson, 2006). The name is cyanobacteria is derived from the Greek word "kyanos", 

meaning "blue". Cyanobacteria are often mistakenly called blue-green algae because of 

this blue-green pigmentation, as well as because of their large size. Cyanobacteria are a 

morphologically diverse group of microorganisms that can occur as solitary forms or in 

colonies. There are two main morphotypes: coccoid and filamentous (Fig. 3). Coccoid 

species generally consist of round cells ranging from 0.4um to over 40um in diameter, 

and often occur in clusters (Whitton and Potts, 2000). Filamentous species consist of 

trichomes that occur individually or in bundles, with cell diameters often up to lOOum 

(Whitton and Potts, 2000). 



Fig. 3. The two main morphologies of cyanobacteria. They include coccoid and filamentous taxa, 
scale = lOOum. 

Cyanobacteria thrive in a wide variety of aquatic habitats as benthos or plankton 

(Dvornyk and Nevo, 2003). In benthic environments, such as hypersaline lagoons, hot 

springs, deserts, and tidal flats, cyanobacteria construct microbial mats. (The 

characteristics that make cyanobacteria adaptable will be discussed here. However, a 

discussion of microbial mats can be found in a section below). Cyanobacteria can be 

found in deserts and tidal flats due to their unique ability to tolerate periods of 

dessication. Cyanobacteria produce organic solutes during periods of low moisture or 

enter a dormant state during periods of no moisture. Planktonic and benthic cyanobacteria 

also produce organic solutes within the cell to tolerate extreme changes in salinity. This 
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ability to regulate salts within the cell allows many cyanobacteria to live in brines and 

sabkhas. Cyanobacteria also have the ability to withstand higher levels of solar radiation 

by producing amino acid derivatives that serve as sunscreens or by having pigmented 

sheaths to shield the cells from damaging radiation. One example is the UV shielding 

pigment scytonemin, which is found in the sheaths of benthic cyanobacteria. 

Nitrogen fixation is the reduction of atmospheric dinitrogen to a useable form of nitrogen, 

such as ammonia. Most nitrogen fixation occurs in environments that are oxygen 

deficient, because the enzyme (nitrogenase) is inhibited by oxygen. However, many 

species of cyanobacteria are adapted to fix nitrogen in oxygen-rich environments as well 

(Lundgren and Falkowski, 2003). Heterocystous species of cyanobacteria have 

specialized, oxygen-free cells called heterocysts that contain the enzyme nitrogenase. It 

is within these anoxic heterocysts that nitrogen fixation takes place even if the 

surrounding environment is oxygen-rich. An example of a heterocystous cyanobacterium 

is the planktonic filamentous species Anabaena, which is commonly found in the open 

ocean. Non-heterocystous cyanobacteria do not have heterocysts, but many can still fix 

nitrogen in oxic environments in the presence of light. Examples include Microcoleus 

chtonoplastes, a filamentous species commonly found in microbial mats and 

Trichodesmium sp., a filamentous species found in the open ocean (Sroga, 1997). 

Photoautotrophic prokaryotes, such as cyanobacteria use solar energy for growth and the 

production of chemical energy (Bryant and Frigaard, 2006). This important process of the 

conversion of carbon dioxide into energy using sunlight is termed photosynthesis. There 
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are two types of photosynthesis, anoxygenic and oxygenic. Anoxygenic photosynthesis is 

carried out by purple and green bacteria, as well as some cyanobacteria. Sources such as 

dihydrogen or hydrogen sulfide are used in this process to produce energy without the 

production of oxygen. During oxygenic photosynthesis microbes use carbon dioxide and 

water to produce energy along with oxygen. Cyanobacteria need high energetic UV light 

to use oxygenic photosynthesis. 

Prokaryotic cells are surrounded by a bilipid membrane that consists of fatty acids, with a 

hydrophobic (water repelling) inner lining and hydrophilic (water attracting) outer lining 

(Fig. 9). The bilipid membrane of phototrophic cells contains antenna-like structures that 

harvest solar energy. This energy is then directed to complex protein-rich molecules 

called bacteriochlorophylls (Bchl) that serve as reaction centers for photosynthesis. Each 

bacteriochlorophyll has the same basic molecular structure. However, slight differences 

in bonding result in different absorption ranges. For example, Bchl a absorbs light in the 

375, 590, 800-810, and 830-890 ranges, whereas Bchl b absorbs light in the 400, 605, 

835-850, and 1015-1035 ranges. The main structural difference between the two is the 

methyl group of Bchl a is replaced by CHO in Bchl b. The blue-green color characteristic 

of many cyanobacteria is from the green and blue photosynthetic pigments, BChl a and 

phycocyanin. These pigments allow cyanobacteria absorb a wider range of wavelengths 

than other phototrophs (Quesada et al., 1999). 
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3. Biofilms: Single Celled Organisms and Extracellular Polymeric Substances 

Under the light microscope, cyanobacteria are surrounded by a clear, slimey substance 

termed extracellular polymeric substances (EPS) (Fig. 4). Extracellular polymeric 

substances are adhesive mucilages secreted by microorganisms as a byproduct of cellular 

growth (Starkey et al., 2004). As carbon is metabolized during the growth of a microbial 

cell, EPS is produced. Some microbes also produce EPS in response to stress, such as 

starvation, changes in temperature, or oxygen availability. EPS can occur as structured 

capsules around microbial cells or as an expansive slime surrounding many cells. 

Fig. 4. Optical microscopic image of EPS and cyanobacteria. This clear glue-like substance is secreted 
by the microbial cells, forming a protective buffer from the surrounding environment, scale = 500um. 
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EPS consist mainly of high molecular weight polysaccharides, as well as amino acids, 

phosphates, lipids and glycoproteins. The composition and amount of EPS produced can 

vary depending on microbial species. EPS secreted by cyanobacteria are mainly 

composed of proteins, uronic acids, and pyruvic acids (Kawaguchi and Decho, 2002). 

EPS also function as a barrier between the microbial cells and the surrounding 

environment (Decho, 1990). This can be as a physical or chemical barrier. As a physical 

barrier, the EPS protect microbes from grazing, since eukaryotes are not able to graze on 

microorganisms surrounded by mucilage. EPS act as a sponge, creating a chemical 

barrier. As a chemical barrier, the EPS protect the microbes from environmental 

fluctuations that could interfere with normal cellular growth and metabolism. This is 

especially important in marine environments where changes in pH, salinity, nutrient 

availability, UV intensity, or periods of dessication can occur. This chemical barrier can 

facilitate the transfer of nutrients or organic matter in from the surrounding environment. 

Microbes secrete enzymes along with the EPS that break down chemical compounds into 

useable nutrient forms that are integrated into the microenvironment. The reactive EPS 

surfaces also keep harmful chemical species out of the microenvironment by binding 

metals and toxins. 

A biofilm is a collection of microbial cells and EPS that accumulate together on a solid 

surface (Fig. 5). Microorganisms living within a biofilm are protected from 

environmental changes in the same way that microbes surrounded by EPS are protected. 
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However, unlike EPS that are usually associated with a specific microorganism, the 

biofilm forms a micro-layered ecosystem in which many different types of prokaryotic 

and eukaryotic microorganisms coexist (Decho, 2000a). 

Fig. 5. Biofilms are not the same as microbial mats. (A) A collection of cells colonizes a solid substrate. 
(B) The cells in the colony secrete EPS, resulting in a biofilm that surrounds the cells. (C) A microbial 
mat develops from the continued growth of the colonies and continued secretion of EPS. Note the 
difference in size between the biofilm and microbial mat. 

Biofilms can occur on a variety of surfaces, such as rocks, pipes, teeth, intestines, and 

sand grains (Puredorj-Gage and Stoodley, 2004). The structure of a biofilm can vary 

between single layers of randomly dispersed cells to multiple layers of organized cell 

associations. Single film, or planar, biofilm structures are the simplest. These biofilms are 

typical of those found on teeth or in controlled laboratory settings. Another type is made 

up of stacks of colonies within columns of EPS. This type is typical in water pipes. 
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4. Microbial Mats: Stratified Ecosystems in Shallow-Marine Settings 

Microbial mats are dense, laterally continuous layers of microbial cells and EPS that form 

on a solid surface (Stal, 1994). Microbial mats function as a complex bio film, but are 

vertically stratified on a millimeter or higher scale (Fig.5) This is in contrast to biofilms, 

which are vertically stratified on a scale less than a millimeter. The vertical stratification 

in microbial mats is dictated by the structure of the microbial community and can be 

divided into layers based on metabolism (Fig.6). The uppermost layers are dominated by 

oxygenic phototrophs (Wimpenny et al., 2000). Oxygen rich upper layers are also 

colonized by aerobic heterotrophs. Since oxygen is removed from the sediments during 

respiration, the lower layers become anoxic. These layers are colonized by anaerobic 

sulfate reducing and sulfide oxidizing bacteria, such as purple sulfur bacteria. 

Fig. 6. Stratified microbial mat where layers are divided based on metabolisms. The colors are indicative 
of microbial pigments: orange = carotenoids, green = photosynthetic pigments of oxygenic phototrophic 
microbes, pink = photosynthetic pigments of anoxygenic phototrophic microbes, and black is from the 
production of sulfides. Scale is in centimeters. (Image from www.bact.wisc.edu) 

http://www.bact.wisc.edu
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Microbial mats can be found in a wide variety of environments, such as hydrothermal 

vents, hot springs, Antarctic lakes, and tidal flats. My work focuses on microbial mats in 

tidal flat environments (Fig. 7). These environments are characterized by constant 

reworking of sediments from wave action and tidal floods. Tidal flats are divided into 

zones based on topography and tidal influence. The lower intertidal zone is between the 

low water line and the high water line and is characterized by a steady reworking of 

sediments. The upper intertidal is characterized by periodic reworking by flood currents. 

The lower supratidal is characterized by periods of subaerial exposure. (Fig. 17). 
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Cyanobacteria are the main constructors of microbial mats in tidal flat environments 

(Noffke et al., 1997; Stal, 1994). The most common mat building cyanobacteria are the 

filamentous species Microcoleus chthonplastes and Oscillatoria limosa, as well as the 

coccoid species Merismopediapunctata (Fig. 29). The cells of M. chthonoplastes are 

thin trichomes ensheathed in glycoprotein and are usually bundled. The cells of O. limosa 

are singular thick trichomes that are not ensheathed. The cells M. punctata are often 

found in pillow-like clusters. 

The cyanobacteria colonize the tidal flat surface and secrete large amounts of EPS. Once 

a biofilm is established, the cyanobacteria trap and entrain sand grains. Species such as 

M. chthonoplastes orient themselves upright to baffle and trap sediments. The result is a 

microbial mat of interwoven trichomes and sand grains, along with communities of 

heterotrophic bacteria, fungi, and diatoms within an EPS matrix. 

A lateral succession of different cyanobacterial populations develops in response to the 

changes in hydrodynamic conditions with topography. This is termed a biofilm catena 

(Noffke et al., 2001b). For example, the lower intertidal zone is typically dominated by 

M. punctata. As the water is stirred up, clusters of M. punctata attach to sand grains with 

EPS and remain in suspension in the water above the sandy surface. The clusters then 

settle back down to the surface once the agitation stops. The upper intertidal is dominated 

by O. limosa, which forms thin temporary mat layers. This cyanobacterium can move 

rapidly and therefore is well adapted to those intertidal sites of frequent reworking. The 
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lower supratidal is dominated by M. chthonoplastes, which (because of its ubiquitous 

amounts of EPS) is able to withstand longer periods of desiccation. 

5. Microbially Induced Sedimentary Structures: Microbial Trace Fossils 

In the shallow marine siliciclastic environments of moderate climate zones, the 

interaction between the physical dynamics and benthic cyanobacterial populations results 

in the formation of Microbially Induced Sedimentary Structures (MISS) (Noffke et al., 

1997; Noffke, 1998,1999, 2003). In moderate climate zones, little to no chemical 

precipitation takes place. Instead, physical sedimentary dynamics, such as tidal erosion 

and deposition, predominates. This is contrary to the more well-studied stromatolites in 

shallow marine carbonate environments of tropical climate zones. In carbonate 

environments, the metabolic activities of cyanobacteria result in the precipitation of 

minerals and the formation of laminae and stromatolites (Stolz, 2003; Dupraz and 

Visscher, 2005). 

There are 16 main types of MISS specific to siliciclastic sedimentary environments. For 

example, 'erosional remnants and pockets' result from the partial erosion of a mat 

covered sedimentary surface (Fig. 8) (Noffke, 1999)."Remnants" are raised areas of 

sediment that are covered by dense, erosion resistant microbial mats. "Pockets" are 

deeper surface portions that are not overgrown by protective mats, so erosion takes place. 
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"Multi-directed ripple marks" result from patchy coverage of ripple marks by microbial 

mats at different stages of maturity (Fig. 8). The ripple marks covered by mat layers are 

protected against reworking, while the surrounding area is eroded. Subsequent ripple 

marks form in the eroded areas with different orientations (Noffke, 1998). 

Fig. 8. Microbially induced sedimentary structures (MISS). (A) An "erosional remnant (R) and "pocket" 
(P) from a modern tidal flat, scale = 4 cm. (B) An "erosional remnant (R) and "pocket" (P) from the 2.9 Ga 
Pongola Supergroup, South Africa, scale = 10 cm. (C) "Multidirected ripple marks" (RM) on a modern 
tidal flat, scale = 10 cm. (D) "Multidirected ripple marks" (RM) from the 2.9 Ga Pongola Supergroup, 
South Africa, scale = 45 cm. 

Wrinkle structures ("elephant skin") form in the lower supratidal zone from tufts, 

pinnacles, and bulges in a microbial mat (Gerdes and Klenke, 2003). These features occur 
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when bundles of filamentous cyanobacteria stand above the microbial mat to be closer to 

the sunlight (Gerdes and Klenke, 2003). 

Polygons are MISS that result from fluctuating periods of desiccation in the upper 

supratidal zone (Fig. 25). During times of tidal inundation, a thin microbial mat layer 

forms on the sediment surface. During times of dryness, when the water does not cover 

the upper supratidal zone, these mats shrink and form polygonal patterns with crack-like 

margins. Once the mats become flooded again, they grow and extend over the margins. 

This pattern continues as the seasonal conditions fluctuate. 

Similar abiogenic macrostructures are also common in modern shallow marine 

environments, as well as preserved in the rock record. Ripple marks and wrinkle 

structures can be formed through strictly physical processes without any biotic 

interaction. Ripple marks occur in sandy environments that are affected by the continual 

movement of waves one the surface. This consistent movement results in the formation of 

ridges and troughs. 

A diagnostic characteristic to delineate MISS from abiogenic sedimentary structures are 

the filamentous textures associated with MISS (Draganits and Noffke, 2004;Noffke et al., 

2006a, b, 2008). Modern MISS contain living material, and below this living mat 

material are the remnants of recently buried microbial mats. These recent and sub-recent 

mats are recorded in relief casts (Fig. 24). Relief casts are made from box cores through 

tidal flat sediments. 
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Just as they are preserved in recent sediments, MISS are also well preserved in ancient 

rocks (Noffke et al., 2001a, b, 2002,2006a,b, 2008; Bouougri and Porada, 2002; 

Banerjee and Jeevankumar, 2005). Fossil MISS contain filamentous textures, 

representing fossilized bacterial filaments that underwent lithogenic diagenesis (Fig. 31) 

(Kazmierczak and Kremer, 2002; Noffke et al., 2002, 2003b, 2006a,b, 2008). As such, 

the association between MISS and fossil textures can be important in proving the 

existence of microbes on ancient Earth and on Mars. 

6. The Interaction of Microbes with Minerals: A Complex Relationship 

Throughout geologic history, microbes have had an intricate relationship with rocks and 

minerals (Banfield and Hamers, 1997). In aquatic environments, rocks provide substrates 

for microbial communities to anchor on to, protecting them from currents. Many rocks 

contain extensive networks of microscopic pores and fissure cracks, providing sites for 

microbes to grow and flourish. Communities of microbes even exist within the fractures 

and cracks of rocks deep within the Earth's lithosphere. 

The building blocks of rocks are minerals (Nesse, 2000). Minerals are inorganic 

crystalline solids composed of atoms arranged in a three dimensional lattice (Fig.9). The 

atoms that make up these lattices are commonly made up of elements most abundant in 



the earth's crust, such as silica, oxygen, aluminum, iron, calcium, magnesium, potassium, 

and sodium. 

The crystal lattices that make up all of these minerals are made up of charged chemical 

species that can readily exchange with ions in solution (Banfield and Hamers, 1997). This 

makes mineral surfaces highly reactive with their surroundings. Ions in solution can react 

with the charged mineral surfaces by removing and adding ions to initiate precipitation or 

induce secondary mineralization. This characteristic is important in the interactions 

between minerals and microbes. 

Fig. 9. Mineral and microbial structures. (A) Lattice structure of muscovite, made up of Al, OH, Si, O, and 
K atoms. (B) Bilipid membrane and photosystems of a photo synthetic microbe. (C) Outer portion of bilipid 
membrane is negatively charged to react with positively charged ions to precipitate clays on the surface of 
the cell. 
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Since microbial cells are also highly reactive, ionic exchange between cell surfaces, 

ambient fluids, and mineral surfaces occurs readily (Ehrlich, 1990). In the process of 

removing rock or mineral constituents, microbes also induce the precipitation of minerals 

(Fortin et al., 1997). The production of minerals by microorganisms is termed 

biomineralization. Biomineralization can occur within the cell, intracellulary, or outside 

the cell, extracellularly (Konhauser, 1998). Biomineralization can also either be direct or 

indirect. Direct biomineralization involves the precipitation of minerals resulting from the 

direct influence of microorganisms during life processes or during the death of a cell. 

Life processes include the breakdown of organic matter in respiration. During respiration 

in aqueous systems, bacteria pump protons into the microenvironment. These protons 

activate the cellular surfaces, creating binding sites for ions. Indirect biomineralization is 

the result of mineral precipitation on cellular or extracellular material without the direct 

influence of a living organism. 

7. The Fossil Record of Microbiota: The Biogenicity of 
Microfossils 

The biogenicity of microfossils means the degree of certainity we can identify a feature in 

the rock as fossil of a microorganisms. Fossils of complete cells are rarely ever found, so 

it is necessary to gather many lines of evidences to make conclusions on biologic origins. 

Following the death and burial of microbes, that same matrix-like structure of EPS that 
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facilitates chemical reactions and the binding of metals serves as a template for mineral 

precipitation by creating a large surface area where chemical reactions can take place. 

These materials act much like rock or crystallized mineral surfaces by providing charged 

species for ionic exchange with fluids (Strevett and Chen, 2003). Cell walls and EPS 

buried in the sediment can act as sites of mineral nucleation and mineral replacement of 

organic material (Schultze-Lam et al., 1996; Hofmann and Farmer, 2000; Al-Hanbali et 

al., 2001; Westall et al., 2001). 

Despite the phenomenom of biomineralization, microfossils of mat forming organisms 

from the early Archaean and Proterozoic are rare. The compelling morphological 

evidence for the existence of ancient microbial mats as mineralized cellular and 

extracellular structures and fossil textures is still under debate (Golubic and Seong-Joo, 

1999; Westall et al., 2001; Brasier et al., 2002; 2005; 2006; Schopf et al., 2002; 

Altermann and Kazmierczak, 2003; Whitfield, 2004). One problem is the nature of 

carbon, which constitutes the bulk of organic matter. Carbon is highly reactive, so over 

geologic time scales most of the original carbon associated with bacterial textures will 

not remain in a host rock. Another problem is the loss of distinctive cellular features as a 

result of diagenesis, such as loss of segments or cell walls. 

With such a low preservation potential and high degree of controversy with the issue of 

fossil origin, it is necessary to obtain as many lines of evidence as possible to prove 

biogenicity. A feature preserved in a rock is biogenic if it is of biological origin. This is 

in contrast to 'something' that is abiogenic, or of an abiological origin. The difficulty in 
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proving biogenicity is that often abiogenic signatures mimic biogenic ones. For example, 

in modern geothermal sinters, filamentous microbes become encrusted in silica and the 

general morphological features are preserved (Jones et al., 2001). However, the 

taxonomic features are obliterated during the silification process. To make matters more 

difficult, abiogenic filamentous silicified structures that look like biogenic filaments have 

been synthesized in laboratory settings (Garcia-Ruiz et al., 2003). In another example, 

isotopic carbon signatures or kerogen can be derived from microbes (Schidlowski, 2001). 

Isotopic carbon signatures indicative of life can also be similar to those produced by 

volcanic activity, which can commonly be observed in hydrothermally produced veins 

(Gee, 2002). These abiogenic veins look like biogenic fossil textures in chert, but the 

difference is not apparent based on morphology alone. Kerogen, an organic end product, 

can transform into graphite under high pressure and temperature. However, it is often 

difficult to distinguish graphitic kerogen from disordered graphite (De Gregorio and 

Sharp, 2003). Therefore, to prove biogenicity, several lines of evidence that include 

carbon isotopes, geochemical signatures, and morphological characteristics of 

sedimentary structures and textures are used. 

8. The Archean: Early Earth and the Dawn of Life 

The Archean Eon spanned 1.5 billion years, from 3.8 Ga to 2.3 Ga, and is divided into the 

Eoarchean (3.8 Ga to 3.6 Ga), Paleoarchean (3.6 Ga to 3.2 Ga), Mesoarchean (3.2 Ga to 

2.8 Ga) and Neoarchean (2.8 Ga to 2.5 Ga) (Fig. 10). The Archean was a time in 

planetary history when the Earth's geosphere, atmosphere, and hydrosphere were each 
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still developing into an integrated system conducive to life (Bleeker, 2002). Yet, despite 

inhospitable conditions, early life forms such as cyanobacteria began to appear (Canfield 

et al, 2000; Ericksson et al., 2004; Ohmoto, 2004). 
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Fig. 10. Geologic time scale of Earth and Mars. Both Earth and Mars shared early 
geologic histories, but probably diverged sometime during the Precambrian. 
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During much of the early Archean, the Earth was subjected to destructive impacts, 

radiogenic heat production, active volcanism, and the growth of continents resulting in a 

highly dynamic regime much different than that of post-Archean Earth (Bleeker, 2002). 

Before 3.2 Ga, only 5% to 10% of the Earth's crust was continental, resulting in the 

predominance of oceanic and island arc sedimentation (Lowe, 1992). The ocean basins 

were still forming, and seas were predominantly shallow. The concentrations of oxygen, 

carbon, hydrogen, sulfur, and iron species in the Earth's early atmosphere and oceans are 

still under debate. (Holland, 2002; Ohmoto, 2004; Canfield, 2005). Where possible, I will 

present both sides. 

According to one group of scientists, the Eoarchean into the early Mesoarchean (3.8-2.8) 

was characterized by atmospheric O2 concentrations of about 10" ppm, CO2 

concentrations greater than lOOOppm, and H2 and CH4 concentrations of close to 

lOOOppm (Catling et al., 2001; Ohmoto, 2004). In the ocean, free Fe2+ oceanic 

concentrations were about 0.1 nM, sulfide concentrations (from volcanic H2S) were about 

O.OlnM, and S04 concentrations were about 0.4nM (Holland, 2002;Canfield, 2005; 

Kasting, 2005). In these models, only the photic zone (first 100-200 m) of the ocean was 

oxic, and everything below was an anoxic, reducing environment (Habicht et al., 2002; 

Huston and Logan, 2004; Strauss, 2004). Also, the reducing nature of the atmosphere 

would have allowed biologically detrimental UV-B and UV-C solar radiation to reach the 

Earth's surface (Canfield, 1999; Ronto et al , 2003). Earth's atmosphere remained 

unchanged until around 3.0 Ga, when oxygen levels started to increase, and it wasn't 
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until about 2 Ga that the composition of the Earth's atmosphere began to mimic modern 

conditions (Holland, 2002; Canfield, 2005; Kasting, 2005). Similarly, oceanic 

concentrations of S04, H2S, and Fe+2 did not reach modern levels until close to 700 Ma 

(Habicht et al., 2002; Canfield, 2005). Much of the rise in atmospheric oxygen levels 

during the Mesoarchean is attributed to the evolution of oxygenic photosynthesis 

(Canfield et al , 2000). 

In contrast, other studies indicate that as early as the Eoarchean, the atmosphere had 

about lppm of CH4 and H2, close to 10% oxygen, and a range of CO2 concentrations 

between 5% and 1000%, while the ocean had only about 0.00InM Fe and H2S 

concentrations, and a range of 1 OmM to about 30mM of SO4 (Dimroth and Lichtblau, 

1978; Lasaga and Ohmoto, 2002; Ohmoto, 2004). These values are the same as those for 

the modern Earth, with the exception of modern CO2, which is closer to 300ppm. These 

models suggest a completely oxic ocean with the exception of a few semi-enclosed 

anoxic basins with little to no change throughout the Archean (Ohmoto, 2004). 

At the start of the Mesoarchean (3.2 Ga), shallow marine environments began developing 

on the edges of stable continents (De Wit et al., 1992; Eriksson, 1994). With the 

weathering of continental rocks providing nutrients, such as phosphate, and plenty of 

solar energy, these quiet aquatic environments would have been advantageous for 

lifeforms, such as photosynthetic cyanobacteria to begin their evolution (Olson, 2006). If 

the "low to no atmospheric oxygen" group is correct, it is possible that anoxygenic 

photosynthetic or facultative aerobic cyanobacteria were the first to colonize the early 
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Earth. If the "oxygen-rich atmosphere" group is correct, than the conditions would have 

been right for the oxygenic photosynthesizers to flourish. In either case, newly forming 

microcommunities would have benefited from the establishment of microbial mats, and 

microbes, such as filamentous cyanobacteria would have thrived during the Mesoarchean 

(Horneck, 2000; Olson, 2006). 

Virtually all traces of early Archean rocks have been erased through tectonism and 

recycling (Bleeker, 2002). What remains are several small exposures of cratons. These 

include the Pilbara craton of northwestern Australia, the Nain craton of western 

Greenland, the Slave craton of Canada, and the Kaapvaal craton of southern Africa (De 

Wit et al., 1992; Bleeker, 2002). These cratons and overlying sedimentary rocks provide 

limited clues to the environmental conditions and life forms that existed throughout the 

Archean (Ericksson et al., 1998). This thesis focuses on the siliciclastic sedimentary 

rocks of the 2.9 Ga Pongola Supergroup, South Africa (Fig. 15). 

10. Mars: Planetary History, Missions, and the Search for Life 

Martian geologic history is divided into three main subdivisions, the Noachian from 4.5 

Ga - 3.5 Ga, the Hesperian from 3.5 Ga - 1.8 Ga, and the Amazonian from 1.8 Ga -

present (Fig. 10). Mars formed the same time as Earth, and the early geologic history of 
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Mars may have been similar to Earth's (Brack, 1996; Malin and Edgett, 2000). 

Morphologic features and geochemical signatures indicate similar geologic processes, 

such as plate tectonics and volcanism (Cabrol et al., 2001; Lindsay and Brasier, 2002; 

Cordoba-Jabonero et al, 2003). Erosional features, such as fluvial networks, on the 

Martian surface suggest that prior to 3.5 Ga ago, the martian climate was probably warm 

and temperate, making it conducive to the existence of water (Horneck, 2000; Cabrol et 

al., 2001; Morrison, 2001; Ronto et al., 2003; Doran et al., 2004). Studies of Martian 

craters show there may have been a shallow global ocean during the Late Hesperian/Earl 

Amazonian (Boyce et al., 2005). There is further evidence supporting a warmer Martian 

paleoclimate based on models using solar luminosity, silicate weathering rates, global 

energy balance, CO2 partial pressures, mean global surface temperatures, and biological 

productivity (Franck et al., 2000). 

While there is evidence of initial similarities between early Mars and Earth, the 

enivronment was probably still different in some respects. The early Proterozoic Earth 

experienced and increase in ozone levels, decreasing exposure to harmful UV radiation. 

On Mars, however, UV fluxes continued to increase (Cockell, 2000). Detailed CO2 

models have indicated polar ice caps that are too large and low partial pressures of CO2 

that reflect hazardous UV conditions and an environment inhospitable for life (Cordoba-

Jabonero et al., 2003). However, the prevalence of volcanic landforms suggests the 

possiblity of the release of SO2 gases from eruptions. SO2 is one of the main volatile 

volcanic gases and could absorb radiation in the same wavelength range that ozone does. 

There is also the possibility that just a few millimeters of martian dust could provide a 
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shield against damaging wavelengths, allowing some forms of life to exist (Cockell and 

Raven, 2004). 

So, while it is unlikely any forms of life exist on Mars at the present time, conditions 3.5 

- 1.7Ga could have supported microbes (McKay, 1998; Horneck, 2000). Cyanobacteria 

are good candidates as inhabitants on early Mars for several reasons. They are known as 

the main primary producers of organic matter on early Earth, and were probably directly 

responsible for the oxygenation of early Earth's anoxic atmosphere (Golubic et al., 2000) 

Cyanobacteria have a ubiquitous distribution on Earth and can be found in a wide range 

of environments, including the open ocean, tidal flats, hydrothermal vents, hot springs, 

and polar environments (Canfield, 1999; Hofmann and Farmer, 2000; Pierson and 

Parenteau, 2000; Noffke, 2003; De los Rios et al., 2004). 

Why do we search for MISS on Mars? MISS on Earth are macroscopic indicators of life 

that are found throughout the geologic record (Noffke et al., 2003b,2006a, 2008; Noffke, 

2007). The assumption is that similar structures could be on Mars as well. On the surface 

of Mars, geological surveys are conducted by a rover equipped with panoramic and 

multi-spectral imagers to detect sedimentary structures and textures of potential 

biological origin (Bell et al., 2004; Cook, 2005; Griffiths et al., 2005; Erickson et al , 

2007) (Fig 11). Recent images taken by the rover Spirit show sedimentary features such 

as ripple marks that can be recognized from a distance (Fig 12a). A closer view of the 

ripple marked region indeed reveal well-developed ripple marks next to a crust-like 
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material (Fig 12b). Upon locating a ripple marked region, a rover equipped with a 

microscopic imager got an even closer view of the features (Fig 13). 

Fig. 11. The Mars Exploration Rover (MER). It is a remote, mobile laboratory 
equipped with cameras, microscopic imagers, and spectroscopic analyzers to 
detect signs of life on the surface of Mars, (taken from http://marsrover.jpl.nasa.gov/gallery/) 

The Mars rover can also be equipped with instruments such as a miniaturized Raman 

spectrometer coupled with a confocal microscope for upcoming missons (Edwards et al., 

2003; Bishop et al., 2004; Sharma et al., 2006; Sharma, 2007). With such equipment the 

rover can obtain mineralogical and molecular information to compare with Earthly 

analogs of biogenic minerals or compounds (Edwards et al., 2003, 2005; Sharma et al., 

2006). V 

http://marsrover.jpl.nasa.gov/gallery/
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Fig. 12. PanCam images taken by the Mars rover Spirit. (A) Overview image of the 
Martian surface where ripple marks can be seen (arrows). (B) Arrow points to a 
ripple marked surface (C) Arrow points to a closer view of a ripple marked surface, 
(taken from http://marsrover.nasa.gov/gallery/press/spirit/) 

http://marsrover.nasa.gov/gallery/press/spirit/
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Fig. 13. Close-up image of the Martian surface taken through a microscopic imager by the rover 
Spirit. Note the laminae that are similar to what is seen in the rocks from the 2.9 Ga Pongola 
Supergroup, South Africa, Earth, (taken from http://marsrover.nasa.gov/gallery/press/spirit/) 

http://marsrover.nasa.gov/gallery/press/spirit/
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CHAPTER II 

STUDY AREAS 

1. Modern Tidal Settings: Fishermans Island, Virginia 

Geologists are often faced with the challenge of explaining the origin of structures 

preserved in rocks. This becomes even more difficult, if we find fossils of tiny bacterial 

cells. These fossils are difficult to detect, often distorted by diagenetic processes, altered 

by tectonics or metamorphosis, or simply nearly dissolved. Especially the very old rocks 

of Archean age experienced many changes, and for any texture or structure resembling a 

"microfossil" the question of its biogenicity, its true biological origin, rises. In order to 

provide a more complete explanation of the origin of possible biogenic structures, such as 

MISS, it is necessary to compile a catalogue of criteria of identification from similar 

structures formed by living microbiota. The reason is that today, in the modern 

environment, we can study processes, and observe their manifestation as structures or 

textures. This information allows us to determine the origin of similar features that we 

can observe in the fossil sediment. To investigate modern analogues of microbial mats 

and MISS, I studied the tidal flats of Fishermans Island every few months from 

September 2003 to September 2004. 

Fishermans Island is a barrier island located off the coast of Virginia, USA (Fig. 14). It 

comprises a siliciclastic tidal flat. The island is situated in the moderate to subtropical 

climate zone with average seasonal temperatures ranging between 1 degree C in the 
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winter and 24 degrees C in the summer. Average annual wind speed is close to 1 lmph 

generally out of the ENE. The average regional rainfall is approximately 45.7" per year, 

and the mean tidal range is around 1 m. The tidal flats are overgrown by microbial mats 

during the summer months (May to September). 

Fig. 14. Modern study area. (A)Location of Fishermans Island, Virginia at southernmost tip of the 
peninsula at the mouth of the Chesapeake Bay. (B) Close-up of study site location relative to Rte 13. (C) 
Overview photo of tidal flats on Fishermans Island. 
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2. Ancient Tidal Settings: Wit Mfolozi River Gorge, South Africa 

The Pongola Supergroup is part of the late Archean Witwatersrand Basin in South Africa. 

It unconformably rests on the pre-3.0 Ga Ancient Gneiss complex and granite-greenstone 

basement of the Kaapvaal craton (De Beer and Eglington, 1991). The Witwatersrand 

Basin is part of a retroarc foreland system that formed in response to crustal thickening 

along the Kaapvaal Craton (Catuneanu, 2001; Ericksson et al., 2005b). 

The sediments of the Pongola Supergroup were deposited in the back-bulge basin, 

starting with a short period of volcanism that produced the mainly igneous Nsuze Group 

around 3.0 Ga (Ericksson et al., 2005a). Following the uplift and peneplaning of Nsuze 

rocks between 2.8 and 2.9 Ma, the predominantly sedimentary Mozaan Group was 

deposited. The Witwatersrand Basin underwent periods of low-grade regional 

metamorphism as a result of continued tectonism and the collision of the Zimbabwe and 

Kaapvaal Cratons towards the end of the Archean and into the Paleoproterozoic. 

The Mozaan Group reflects deposition on a stable cratonic setting and a shallow-marine 

shelf (Gold and Von Veh, 1995). These deposits underwent lower greenschist facies 

metamorphism. Several formations make up the Mozaan Group. For the purpose of my 

work, two units in the Mozaan Group are of importance: the Sinqueni Formation at the 

base, overlain by the 1500 m thick Ntombe Formation (Fig. 16). Outcrops of these 

successions are found in the southeastern margin of the Kaapvaal craton (Fig. 15). 
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Fig. 15. Study area in South Africa. (A) Wit Mfolozi River Gorge. (B) Main roads and location of study 
site. (C) Location of study site and relationship between the Pongola and Witwatersrand Supergroups. 

The Sinqueni Formation 

The 600 m thick Sinqueni Formation is divided into three units, the 330m thick basal 

quartzite Dipka member, overlain by the 80 m thick shale Ijzermijn member, and the 

quartzite Kwaaimam member at the top (Fig. 16). The Ijzermijn member also contains a 

5m thick banded iron formation. The Dipka member reflects a current-dominated marine 

shelf facies. The Ijzermijn member reflects a muddy shelf environment. The Kwaaimam 

member reflects a current-dominated marine shelf, as well as a tide-dominated shelf. 



37 

The Ntombe Formation 

The 1500 m thick Ntombe Formation consists of alternating siltstone and shale with fine

grained quartzites (Fig. 16). This formation reflects a storm-dominated shelf sand facies. 

The Ntombe Formation also contains the Mhlathuze member, a laminated shale and iron 

stone unit at the base, and is capped by the Scotts Hill member, an iron formation. 
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Fig. 16. Stratigraphic column of 2.9 Ga Mozaan Group. The 600 m thick Sinqueni Formation consists of 
quartzites interbedded with shales and siltstones and contains one banded iron formation units and 
unconformably lies on the volcanic rocks of the Ozwana Formation. The 1500 m thick Ntombe Formation 
consists of quartzites interbedded with shales and siltstones and has two banded iron formation units. 
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The Brixton Formation 

The Witwatersrand Supergroup is a correlative of the Pongola Supergroup, and is likely 

the other half of the orginal Pongola-Witwatersrand ocean basin (Gutzmer et al., 

1999)(Fig. 15). The 800 m thick 2.98 Ga Brixton Formation of the Witwatersrand 

Supergroup is composed of alternating sandstones, siltstones, quartzites, and shales. This 

formation reflects a storm-dominated shelf sand facies. Previously collected and analyzed 

samples from the Brixton Formation were also used for comparison. 

The Pongola Supergroup outcrop is located in the White Umfolozi River Gorge at 31°15' 

E and 28°10' S, in Kwazulu-Natal, about 70 km south of Vryheid (Fig. 15). Here, the 

Sinqueni Formation is exposed. It is a succession that records an ancient siliciclastic tidal 

flat comparable to that of the modern Fishermans Island. As part of a party conducting a 

geological survey, along a 46m stratigraphic section, I identified and numbered rock beds 

that contained MISS (Fig. 25) (Noffke et al, 2008). I identified quartz-rich sandstones 

with ripple marks, desiccation cracks, current lineation, and flaser bedding - all 

indicative for tidal settings. Abundant cross-stratification is caused by strong currents in 

the always subaquateous subtidal. Mud- and siltstone are present, but do not make more 

than 15 to 20 % of the overall rock succession. The dominating fine sandstones are 

composed of 65 % quartz, 10% mica (muscovite and chlorite), 20 % feldspar, as well as 

associatory minerals such as heavy minerals (rutile, etc). 
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CHAPTER III 

METHODS 

1. Field Work: Descriptive Observations and Quantitative Measurements 

1.1 Survey on Modern Microbial Mats, Sampling of Sediment Cores 

To understand the distribution of microbial mats across the intertidal zone, I took a 24 

meter transect from the low water line to the high water line of the tidal flats (Fig. 17). 

The lower supratidal zone extends about 12 meters from the low water line and is 

characterized by biweekly inundation of water. The upper supratidal zone spans from 

about 12 meters up to the high water line and is not influenced by marine water except 

during severe storms. 

Fig. 17. Transect from low water line to high water line on Fishermans Island tidal flat. Inset photos 
show locations of erosional remnants and pockets in the lower supratidal zone and multidirected ripple 
marks in the upper intertidal zone, scales = 5 cm. Petri dish sampling locations indicated by numbered 
sections. 
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I investigated the distribution of the microbial mats on the tidal flats, as well as the types 

of MISS. I also documented the types of plants and invertebrates associated with the 

mats. The occurrences of the microbial mats are documented on a map (Fig. 17). 

In order to examine the general characteristics of microbial mats and mat fabrics in the 

laboratory, I collected samples of mat-overgrown sediments by pressing 150 xl 5 

millimeter petri dishes into the mat surfaces. The petri dishes held samples of mat layers 

with about 2 cm of the underlying sediment, making grain size analysis possible within 

and directly below the mat layer (Fig #). To maintain live specimens, I kept mat samples 

in an incubator under a 12 hour light cycle and a temperature close to 20°C to achieve 

near ambient night/day conditions comparable to those on Fishermans Island. 

The depositional surfaces of a tidal flat do not reveal intrasedimentary structures or 

textures. Therefore it is necessary to apply a technique called relief casting to make the 

internal structures visible. Relief casts are artificially hardened sediment cores that 

display intrasedimentary structures in three dimensions. To document internal MISS in 

three dimensions and to see recently buried microbial mat layers in relief casts, I first 

took box cores along the same 24 meter transect, from the water line to the upper 

supratidal zone (Fig. 17). I employed 25 x 18 x 7 cm metal boxes that are made up of a 

bottom and top piece. First, the bottom piece was pressed into the sediments until 

uppermost edge was level with the surface (Fig. 18). The top piece was then attached. 
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Using a shovel, the core was pried out of the sand (Fig. 18). Then the core was closed, 

and the box was transported to the laboratory to make a relief cast (see laboratory 

methods) (Fig. 18). 

Fig. 18. Steps for taking box cores. (A) Empty core. (B) Core pressed into the sediment. (C) Core 
pried out with shovel. (D) Lid removed from core. (E) Core after first drying before hardening. Araldit 
hardener poured onto core (F) End product is a relief cast. 

1.2. Geological Survey on Ancient Microbial Mats, Collection of Rock Samples 

In preparation for my field studies in South Africa, it was necessary to learn how to 

recognize MISS in rocks. To train my eye to see the MISS, I made detailed sketches of 

several samples of sandstones previously collected from the Brixton Formation (Fig. 19). 
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Fig. 19. Sketches and photographs of MISS in sandstones from the Brixton Formation, South Africa. 
(Al) Sketch of erosional remnants and pockets and (A2) corresponding photo, scale = 6 cm. (Bl) 
Sketch of a microbial mat layer and (B2) corresponding photo, scale = 4 cm. (CI) Sketch of wrinkle 
structures and (C2) corresponding photo, scale = 8 cm. 

In order to compare the fossil MISS with microbial mats and their structures in modern 

tidal flat environments, I photographed each rock bed to document the various types of 

MISS (Fig. 20). Our survey showed that the ancient microbial mat facies correlated with 

the ancient tidal zones: thin microbial mats occur in the intertidal areas, whereas thick, 

carpet-like microbial mats developed in the supratidal area. This distribution we find 

today in the modern tidal flats as well. 
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Fig. 20. Bedding surfaces displaying MISS in the Wit Mfolozi River Gorge. (A) Overview 
of ripple marked sandstone surface, scale = 1 m. (B) Close-up of the edge of an outcrop with 
erosional remnants (R) and pockets (P), scale = 4 cm. (C) Outcrop of polygons (Py), scale = 5 cm. 

Whereas on Earth, we can walk either on modern tidal flats or on ancient bedding planes 

and search for microbial mats or MISS, on Mars and other planets we have to employ 

remote sensing techniques. However, microbial mats and MISS cannot be detected easily, 

and can appear completely different with the change of the sediment or sedimentary rock. 

Similarly, varying illumination on the rock's surface can affect the visibility of MISS. 

This may sound insignificant, but indeed it was our indication on this problem, which 

assisted JPL to gain better images of surface structures from Mars using the rover 

cameras. To record the effects of light angle and intensity on the visibility of MISS, I 

took photographs of MISS at different times of the day, and in different weather 

conditions (sunshine, overcast, etc.). 
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In order to sample, I carefully removed MISS-containing rock slabs by chisel and 

hammer (Fig. 21). Each rock sample was marked with a number corresponding to the 

rock bed from which it came. The surfaces of the samples were indicated by arrows to 

show which way was up (Fig. 21). After our return to Johannesburg, the samples were all 

shipped in large metal canisters from South Africa to the United States for laboratory 

analysis. 

Fig. 21. Collecting samples in the Wit 
Mfolozi River Gorge. (A) Rocks were taken 
by hammer and chisel from rock beds 
containing MISS. (B) Arrows point to pieces 
of an ancient microbial mat chipped from an 
outcrop containing erosional remnants (R) 
and pockets (P), scale = 5 cm. (C) Individual 
pieces were labeled with arrows indicating 
the uppermost surface where the MISS are 
preserved. 
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2. Analytical Laboratory Methods 

2.1. Relief Casts 

To examine the internal sedimentary structures of microbial mats in the tidal flat 

sediments, I made relief casts from the box cores taken from Fishermans Island. The box 

cores were left out to dry at room temperature for 24 hours. Once the cores were dried, I 

cut them to form a planar surface with the edges slightly higher than the middle (Fig. 18). 

I then dried the samples further in an oven for 24 hours at 105 degrees Celsius. Before 

removing the samples from the oven I made a 1:1 mixture of Araldite F epoxy resin and 

hardener. While the samples were still hot, I poured a total of about 250 grams of the 

mixture on each box core sample. The saturated samples were then dried in the oven for 

2-3 hours at 80 degrees Celsius to remove any gas bubbles in the resin. Once this was 

done, the samples were baked for 24 hours at 120 degrees Celsius. After 24 hours, the 

samples were taken out to cool. Once cooled, samples were rinsed with tap water and 

then left to dry at room temperature (Reineck, 1970). 

2. 2. Identification of Macrostructures 

With the possibility of the occurrence of MISS in Martian rocks, it is necessary to 

establish a method for the visual detection of macroscopic MISS. MISS, such as multi-

directed ripple marks and erosional remants and pockets can be found in both modern and 

ancient sandy tidal flats. On the surface of Mars, geological surveys are conducted by a 

rover equipped with panoramic and multi-spectral imagers to detect sedimentary 

structures and textures of potential biological origin (Bell et al., 2004; Griffiths et al, 
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2005). With this in mind, I set up experiments in the laboratory based on my field 

observations to enhance the detection of MISS using a light source. 

I used a Canon ZR200 and a Sony DSC-F707 Cyber-shot digital camera to photograph 

the MISS samples. The rock samples were placed on a white background. The surfaces 

were illuminated with a focused beam of light from a Nikon MKII150 Watt fiber optic 

lamp (Fig. 22). I conducted the experiments in a totally dark room. 

Fig. 22. Experiments with light to enhance the visibility of MISS. (A) Samples were set up on a 
white background, and the lamp positioned to illuminate the MISS. (B) Lamp positioned to directly 
illuminate sample surface from above (B). (C) Lamp positioned to illuminate the sample surface at 
an angle. (D) Lamp positioned to illuminate parallel to sample surface. 
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I manipulated the angle of lamp and took photographs of the MISS with the camera at a 

fixed position. The first lamp placement was set perpendicular to the rock surface (Fig. 

22). Subsequent placements were set at 15 degree increments, with the final lamp 

position placed parallel to the rock surface (Fig. 22). 

2. 3. Optical Microscopy 

To establish a set of criteria for the identification of mat textures in the Archean rock 

material, I examined the internal textures of modern microbial mats with optical 

microscopy. General characteristics of the microbial mats and mat fabrics were 

determined by looking at the petri dish samples under an Olympus SZX12 

stereomicroscope (Fig. 27). I focused on filaments, mat fabrics ("networks" composed of 

filaments), thickness of mat layers, EPS content, and sand grains incorporated in the mat 

fabrics. (Table #). Ten sets of subsamples from each petri dish were examined. First, 

pieces of microbial mats were removed from the petri dishes and placed on separate 

watch glasses. This provided a view into relatively undisturbed mat fabrics, so that the 

physical characteristics of the microbial filaments could be observed under low 

magnifications. Sand grains from within the mat layer and at five 1 cm increments 

directly below the mat layer were measured using standard sedimentological techniques 

for measuring sorting, grain size, and roundness (Tucker, 1988). 
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In order to investigate the textures under higher magnification, I made slides of modern 

microbial mats. The petri dish samples were sliced vertically to obtain a lxl cm piece of 

mat. The slices were placed with a few drops of water to retain moisture on glass slides 

with a cover slip. None of the mat samples were chemically fixed or preserved. The 

benefit of using unfixed thin sections, is that the specific details of microbial species in 

the microbial mat are not obscured by dehydration, baking, and oxidation during fixation. 

The slides were examined using an Olympus BX51 microscope. 

In order to closely examine the microtextures associated with the fossil MISS it was 

necessary to make thin-sections of the rocks. The arrows on each rock sample indicated 

the upper bedding plane, so I was able to make vertical cuts through the rocks, and the 

ancient mat layers. Thin and thick sections were made (Fig. 23). 

Large rock pieces up to 10 cm in thickness were cut using a Target Portasaw fitted with a 

13.5" diamond blade (Fig.23) Medium pieces up to 5 cm in thickness were cut using a 

Craftool saw fitted with a 6.5" Raytech Green Blazer blade. Smaller pieces less than 5 cm 

in thickness were cut using a Raytech ALP 1 OS saw fitted with a 10.5" Raytech Green 

Blazer blade. No oil was used to clean or lubricate the blades to avoid contamination of 

the samples. The reason is that oil contains hydrocarbons that can interfere with 

geochemical analyses on ancient organic matter (carbon). 
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Fig. 23. Preparation of rock samples. (A) Area of interest on rock that contains laminations (indicated 
by arrow) and MISS, scale =1.5 cm. (B) Rocks were cut using diamond blade rock saws. (C) 45um 
thin section from Sinqueni Formation sandstone, scale = .75cm. (D) 30um thin section from Ntombe 
Formation sandstone, scale = 2 cm (D). (E) Thick section from Sinqueni Formation sandstone, 
scale = 3 cm. 

I prepared rock slices of about size 1cm in thickness and 3cm2 in surface area to make 

thin and thick sections for microscope analysis (Fig. 23). Optimal light penetration of the 

thin section occurs within the thickness range of 5(j,m to 45)j,m. To make my thin sections 

within this precise range, some of the cut samples were sent out to Spectrum 

Petrographies, Inc, in Vancouver, BC, a company that performs sectioning and 

petrographic analytical services. 
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I also prepared thick sections by polishing some of the cut samples on a Buehler Ltd 

polisher with a slurry of alumina powder and water (Fig. 23). I used sandpaper grits from 

hardest to lightest, 240, 320, 400, and 600 until the saw marks were no longer visible on 

the polished surface. Thick sections are generally from 1mm to 2cm in thickness and 

used for surficial analyses that do not involve light transmission through the sample. 

Previously prepared thin sections from the 2.9 Ga Mesoarchean Ntombe Formation, 

Pongola Supergroup and Brixton Formation, Witwatersrand Supergroup, South Africa, 

were also used in this study. Using optical microscopy, I documented the dimensions, 

orientations and morphological characteristics of the fossil textures in the Sinqueni, 

Ntombe, and Brixton Formations for comparisons with modern cyanobacteria and 

microbial mat fabrics. To do this, thin sections of the Mesoarchean samples were 

examined using an Olympus BX51 system microscope and Olympus SZX12 

stereomicroscope. Photographs of the microtextures were taken with an Olympus Q-color 

3 digital camera, and images were edited using Olympus Microsuite software. 

The Olympus BX51 was also used to examine the mineralogy of the Mesoarchean 

samples. Point counts of the minerals in the thin sections determined the basic mineral 

compositions for comparison to the modern samples. 
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2. 4. Confocal Scanning Laser Microscopy (CSLM) 

Confocal scanning laser microscopy (CSLM) is a non-destructive imaging technique that 

takes serial sections of a sample and reconstructs textures in three dimensions (Petford, et 

al., 1999). Optical sections of a sample are obtained at different depths where only a 

pinhole of laser light penetrates the sample (Menendez et al., 2001). Reflected or 

fluorescent light is collected by the objective lens where it is refracted to a second 

pinhole aperture, rejecting any out of focus light (Aplin et al., 1999). To acquire three 

dimensional images, scans are made through the z-plane in serial sections. With CSLM, 

samples can be imaged in three dimensions, as opposed to conventional two dimensional 

microscopy. CSLM techniques provide a way to observe the internal textures of living 

microbial mats without disturbing the original microstructure (Pierson and Parenteau, 

2000). 

As discussed in the introduction, microbial mat textures are replaced by minerals during 

the fossilization process. Mineral replacement creates textures of similar size and shape 

to the original biogenic microstructures, such as microbial filaments, rods, or coccoids 

(Ferris et al., 1986; Schultze-Lam et al, 1996; Hofmann and Farmer, 2000; Noffke, 2000; 

Noffke et al., 2003a). Two dimensional morphologies of microtextures can be 

investigated through basic microscopy, but three-dimensional views of microtextures 

provide more conclusive information on filaments, mat fabrics, situations of EPS, etc. 

These characteristics are important for the evaluation of biogenicity of textures. For 
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example, fossilized filamentous microbes are preserved with tubular filaments of a 

constant diameter, in contrast to abiogenic tubular microstructures of inconstant 

diameters (Hofmann and Farmer, 2000). 

I cut 1-2 mm thick cross-sectional pieces through living microbial mats collected from 

the tidal flats of Fishermans Island, Virginia to make slides. Each piece was placed on a 

glass slide with one or two drops of water. Pillars of petroleum jelly were placed at 

corners surrounding the mat piece, and a cover slip was pressed down until touching the 

sample (Pierson and Parenteau, 2000). To investigate the microtextures in the 

Mesoarchean samples, I used thin sections from the Ntombe Formation. 

To make comparisons between the modern and Mesoarchean samples, the fabrics of 

microbial mats, filaments, EPS, and void spaces were described and quantified in three 

dimensions by CSLM. The filaments were defined by their tubular shapes. The void 

spaces were assigned to empty pockets within the mat fabrics that did not contain 

filaments, sand grains, or EPS. The EPS encompassed the dense, organic rich areas 

within the mat fabrics. Using a grid system of 1 mm x 1 mm that I moved systematically 

across a sample, I quantified the percentage of filaments, void spaces, and EPS for both 

the modern and Mesoarchean samples. 

I examined the modern and ancient samples using Olympus BX51 and BX61 

epifluorescent microscopes equipped with a krypton-argon laser with excitation 
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wavelength of 488 nm and emission filter >515 nm. I used 20x, 40x, 60x LucPlan FL, 

and lOOx LM Plan FL objective lenses and observed the samples under BF transmitted 

light and FITC or TRITC (rhodamine dye) cubes. I used Fluoview3.3 CSLM software to 

obtain images and make measurements of textures. Fluorescent stains were not applied to 

the samples, because in situ staining of rock samples on the surface of Mars would likely 

not be possible (Decho and Kawaguchi, 1999; Bower and Noffke, 2004). 

2. 5. Electron Microprobe Analysis 

Since a great debate exists over proving the biogenicity of microtextures, it is necessary 

to use as many lines of evidence as possible. I did Electron Microprobe analyses on thin 

sections of the Mesoarchean samples to compare the results with those obtained through 

Raman spectroscopic analysis. This way, the composition of the microtextures could be 

confirmed by a second test. Electron microprobe uses a focused electron beam to 

irradiate fixed spots of a sample within the range of 0.2 and 20.0um. This excites the 

electrons in the sample to produce fluorescent x-rays that are specific to a given element. 

A detector captures the x-rays to identify the components (Reed, 2005). 

Following the procedures of Boyce et al. (2001), I coated the thin sections from the 

Sinqueni and Ntombe Formations with aluminum. Aluminum is a good conductor and 

does not easily absorb electrons. Carbon coatings, which are typically used for electron 
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microprobe samples were not used. The carbon would mask any original and possible 

biological carbon in the samples, or even lead to wrong interpretations of presence of 

carbon. 

Under the guidance of Chris Hadidiacos at the Geophysical Laboratory of the Carnegie 

Institution, Washington, D.C., I used a JEOL 8900 electron microprobe with five 

wavelength-dispersive spectrometers and an energy-dispersive spectrometer. Scans were 

done at 15 kV with a beam current of 300 nA. For the Ntombe Formation sample I did 

overnight scans for elements C, O, Fe, Ca, Si, S, Cr, and Mg on laminae at 

magnifications between 850x and 1500x. C, O, Fe, Si, and Mg were chosen, because the 

Raman analyses showed that the micotextures are made up of compounds containing 

these elements. Ca, S, and Cr were chosen, because these elements are commonly used in 

biological processes (Fenchel et al., 2000). For the Sinqueni Formation samples I did 

overnight scans for elements C, O, Ti, Fe, S, Zn, K, Si, P, Mg, Cr, Mn, and Ba on 

laminae at magnifications between 750x and lOOOx. C, O, Fe, Ti, Si, K, Ba, and Mg were 

chosen, because the Raman analyses showed that the micotextures are made up of 

compounds containing these elements. Zn, S, Mn, P, and Cr were chosen, because these 

elements are commonly used in biological processes or incorporated into biomolecules 

(Libes, 1992; Stone, 1997). From these data, maps showing elemental compositions were 

created. I also used energy dispersive spectroscopy (EDS) on microbial textures, and the 

surrounding material to obtain qualitative information of elemental abundances in the 

samples. 
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2.6. Micro Raman Spectroscopy (RAMAN) 

Raman spectroscopy is a non-destructive technique used for the characterization of 

minerals and the identification of biomolecules (Wang et al., 1998; Popp et al., 2002; 

Bishop et al., 2003; Sharma et al., 2003; Stopar et al., 2005). Biogenic minerals and 

biomolecules are biosignatures that in concert with morphological textures strongly 

support biogeneicity of a fossil in question. Rock samples are scanned using a laser of a 

specific wavelength, such as near infrared Nd+ YAG laser at 1064nm or He:Ne laser at 

633 nm (Popp et al., 2002; Edwards et al., 2005). As the spectra of materials are 

measured, the laser light is monochromatically scattered as it interacts with the molecular 

vibrations of the chemical compounds of a sample (Wynn-Williams and Edwards, 2000). 

Each chemical compound such as Fe, C, etc or cellular compounds has its own unique 

Raman spectrum (Table 2) (Wang et al., 1998;Wynn-Williams et al., 1999; Sharma et al., 

2005). 

Mineral phases of rock forming minerals, accessory minerals, and diagenetically altered 

minerals can be identified using Raman spectroscopy as well (Wang et al., 1998). Raman 

spectroscopy can also reveal their spatial distribution in a sample (Popp et al., 2002; 

Schopf et al., 2002). This documentation of minerals and their spatial distribution is a 

great benefit when determining the possible origin of fossil-like textures in rocks. 
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Raman techniques have the advantage that samples do not require much preparation, and 

that in situ measurements can be done . This means that Raman is an excellent tool for 

the identification of possible fossils in rocks on the surface of Mars (Haskin et al., 1997; 

Stopar et al., 2005). Currently NASA technicians are developing a miniaturized Raman 

spectrometer coupled with a confocal microscope, which can be transported by a mobile 

rover (Edwards et al., 2003; Bishop et al., 2004). For our study, a rover could identify a 

possible MISS on the Mars surface, and could scan the rock surface for specific chemical 

biosignatures. 

To determine the best locations for Raman measurements in a thin-section, I specifically 

identified specific well-visible mat textures by optical microscopy. Raman spectra were 

collected from the Ntombe and Sinqueni samples and one modern microbial mat sample 

using a WITEC Digital Pulse scanning near-field optical microscope (AlphaSNOM) with 

Scan Control Spectroscopy Plus at the Geophysical Laboratory, Carnegie Institution in 

Washington, D.C. (guidance provided by Marc Fries and Andrew Steele). The Raman 

scans were done across microtextures in the thin sections using a frequency-doubled 

YAG laser with wavelength 532nm. The laser was focused through a 25um diameter 

fiber and a 20x ocular lens. The average scan speed was 4-6s dwell time per pixel at 78 

kW cm"2 (Fries and Steele, 2005). Scans were conducted for different lengths of time, 

from short spot scans of 1 minute lengths to long 9hr scans. The scan times, dwell times, 

and scan areas were adjusted depending on the target region in the sample. 
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Using WITeC 1.84 software, I analyzed the spectra generated by elemental constituents 

in the samples. I created virtual maps of each sample showing the spatial elemental and 

mineral composition of the microstructures from the data collected. I also collected and 

organized a list of relevant minerals and their Raman spectra for use in data interpretation 

(Table 1). 

Mineral 
Quartz 
Milky 

Quartz 
Carbon-G 
Carbon-D 
C=C 
C-H Stretch 
O-H 
Stretch 
OH-
deformatio 
n 
Ca
libration 
Si-O-Si 
Anatase 
Biotite 

Chlorite 

Goethite 

Hematite 
Ilmenite 
Kaolinite 
Lepidocroci 
te 
Magnetite 

Microcline 
Muscovite 
Rutile 

Chemical Formula 
Si02 

Si02 
C 
C 
C=C 
CH 

OH 

OH 

OH 
Si-O-Si 
Ti02 

K(Mg,Fe2+)3[AlSi30IO(OH,F)2 

(Mg,Fe,Al)3(OH)6[(Mg,Fe,Al)3{(Si,Al)4O10} 

(OH)2] 

a - FeOOH 

a - Fe203 

FeTi03 

Al2Si205(OH)4 

yFeOOH 
Fe304 

KAlSi3Og 

KAl2(Si3Al)O10(OH,F)2 

Ti02 

Raman Spectra 
201/263/354/394/465/693/795 

128/207/464 

1580-1610 
1350 
1006/1157/1525 
2500-3000 

3000, 3400 

1650 

725 

600, 705 
144/197/399/513/639 
550/670-700 

350/550/670-700/800-1150 

245/302/386-
390/478/547/681/998/1110/12 
99/3095 
214/225-
274/294/405/498/609/1313 
234/369/682/789 
260/3621/3687 

343/379/500 

380/667-690 
126,157/265,285/453,476, 
513 
260/420/700 
447/612-618/ 

Table 1. Reference list of minerals and compounds with Raman spectra. Minerals and compounds listed are 
typical for siliciclastic sedimentary rocks. 
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2. 7. Carbon Isotope Analysis 

A commonly used proxy used to prove the biogenicity of microfossils is the presence of 

biological carbon as defined by carbon isotopes. As discussed in the introduction, 

autotrophic organisms, such as cyanobacteria, fix CO2. This carbon fixation results in the 

fractionation of C/ C, with a preference for C. Thus, 6 C values derived from 

biological processes tend to fall in the range of -10 and -40. Recent data have shown an 

abiogenic source of negative 8 C values as well, and there is also much overlap in 

biogenic values. On its own, carbon isotope analysis may not be completely valid. 

However, in concert with other types of geochemical methods, carbon isotope analysis 

provides an extra line of evidence. 

To prepare the Mesoarchean samples for analysis, I broke the rocks into small pieces 

using a hammer and steel plate. The pieces were divided up into i) outer pieces (those in 

contact with the atmosphere) and ii) inner pieces (those not in contact with the 

atmosphere). I wore gloves during the sample preparation process to avoid 

contamination. The pieces of rock were ground into a fine powder using a steel grinder 

and then with a traditional mortar and pestle. These pieces were put into separate clean 

and labeled vials. I scooped between 9mg and 15mg of the sample powder into pre-tared 

steril silver cups. Each cup with sample was folded into a tiny ball and put into a steril 

capped micro-test tube and labeled. I then cleaned the sample powder using methylene 

chloride (DCM) to extract any soluble organic contaminants. 
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To detect the presence of carbon and carbon isotopes, the samples were run on 

a CHN analyzer at the Geophysical Laboratory of the Carnegie Institution, Washington, 

D.C. under the guidance of Robert Hazen and Marilyn Fogel. We used a Carlo Erba 

elemental analyzer interfaced with a Finnigan DeltaPlusXL continuous-flow isotope-ratio 

mass spectrometer. The samples were run in triplicate. 
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CHAPTER IV 

RESULTS 

/. Distribution of Microbial Mats on Fishermans Island 

On the tidal flats of Fishermans Island, two microbial mat types were identified along the 

24 meter transect (Fig. 17). The most prevalent is mat type I, which is characterized by a 

mat layer of about 1mm thickness. The dominant constructor of mat type I is O. limosa. 

These mats form multidirected ripple marks on the sandy surface in the upper intertidal 

zone. Mat type II is characterized by a mat layer of close to 2 mm thickness and 

dominantly constructed by M. chthonoplastes. These mats typically form erosional 

remnants, with "pocket" areas where erosion took place in the lower supratidal zone. 

The M. chthonoplastes dominated type II mats form a cohesive layer interweaving grains 

of the sediment surface, making it difficult to separate the mat from the underlying sand. 

This suggests that M. chthonoplastes contributes to the strength of a mat (counteracting to 

tensile forces efficiently) and increases its biostabilization effects. M. chthonoplastes 

secretes large amounts of EPS, enhancing cohesiveness between sand grains and 

filaments. Earlier studies conducted on Mellum Island in the North Sea have also shown 

the biostabilization effects of M. chthonoplastes dominated microbial mats in general 

withstanding the erosional forces of currents of velocities of up to 1.60 m per second 

(Noffke, 1999). The O. limosa dominated type I mats are thin and are easily peeled off 

the sediment surface. However, the mats remain intact after they are removed from the 

sediment surface. The reason is that the mats do not "grab on to" the sediments below as 
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strongly as the M. chthonoplastes dominated mats do. (This will be further discussed in 

the optical microscopy results section) 

Three plant species occur within the study area : Spartina alterniflora, Distichlis spicata, 

and Salicornia salicornia. S. alterniflora (Saltmarsh Corgrass) grows in a tall form in 

areas of daily tidal flooding and in a short form near the upper tidal limit. This species is 

ubiquitous, and enriches large amounts of organic material that is covered by bacteria and 

algae (Lippson, 1997). D. spicata (Saltgrass) is a short, wirey grass typically found in salt 

and brackish marshes (Lippson, 1997). S. salicornia (Glasswort) generally grows in dry 

salt pans (Lippson, 1997). On Fishermans Island, the microbial mats were growing mostly 

around S. alterniflora and D. spicata. (Details involving the association between the plants 

and microbial mats were not examined in this study). 

Two common macroorganisms inhabit the areas covered by microbial mats on Fishermans 

Island. One is Ocypode quadrata (Ghost Crab), a crab species that inhabits the upper 

intertidal zone (Lippson, 1997). The other macroorganism is a snail species, Littorina 

irrorata These thick-shelled snails, that are known to graze on algae, plant detritus, and 

bacteria (Lippson, 1997). 

The 18 relief casts that I made from the sediment cores reveal that several generations of 

microbial mats had developed on Fishermans Island over time (Fig. 24). The size of the 

relief casts are about 23 x 18cm. The surface layers representing the most recently living 

mats atop the tidal sands are about 1mm thick. The sub-recent microbial mats buried in 
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the sandy layers underneath are about 2-3 cm below the surface, and are sometimes 

stacked to piles of 9 cm filling the upper half of the relief casts. All of these mat layers 

are parallel to the surface. The thicknesses of these relict mats are also around 1mm. 

Within the upper 9 cm of the relief casts, the preserved mat layers in general are spaced 

1 mm. 

Fig. 24. Relief casts record intrasedimentary microbial mat structures in a transgressive tidal flat. (A) 
Sketch of relief cast from Fishermans Island showing regular spacing of mat layers of about 1mm close 
to the surface, followed beneath by irregularly spaced mat layers. (B) Photo of relief cast with arrows 
indicating mat layers. Bracketed area shows a region where gas bubbles accumulated in consequence of 
the decay of a mat layer underneath, scale = 5cm. 

It appears that the upper portions of the relief casts record the lower supratidal zone with 

thick microbial mats of M. chthonoplastes type forming stacks of prominent laminae. The 

microbial mats clearly dominate the sedimentary processes prohibiting the formation of 
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physically derived sedimentary structures such as ripple marks (Noffke et al., 2003a). A 

few complete shells of bivalves and gastrodods record that the macroorganisms were well 

protected against wave action or bottom currents by the sandstabilizing mats, and that 

they became buried in situ as biocoenosis. In the lower portions of the relief casts, the 

spacings between relict mat layers are irregular, and the buried mat layers are sub-parallel 

to the surface. The mat thickness also is decreased. I interpret these lower portions of the 

relief casts as sediments of a former intertidal zone, the predominant colonization site of 

O. limosa mats. The change in orientation of the mat laminae from parallel to less parallel 

indicates a soft mat cover less affected by physical sedimentary processes that merely 

adapts to the preceeding surface morphology rather than altering it (Noffke et al., 2003a). 

Shell fragments are also found in between some of the mat layers, indicative of the more 

turbulent currents of a intertidal zone. The shell fragments are redeposited after transport 

and represent a typical taphocoenosis. 

The spacings between the mat layers in the relief casts record time intervals that are not 

easily quantifiable. However, accurate generalizations can be made regarding the 

depositional environment and development of the tidal flats. The frequency of preserved 

mat layers indicates the frequency of deposition and microbial mat development (Noffke 

and Krumbein, 1999). Where there is regular spacing, there was constant deposition in 

regular distances. With response to this regular pattern of deposition, the mat building 

cyanobacteria were constantly migrating upward to establish new microbial mat 

generations (each represented by a laminum). This is typical for the lower supratidal zone 

(Noffke, 1998). It is interesting that the microbial mats pile up. It means that the tidal flat 
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actually must tectonically sink down (or that the sea level constantly rises). However, I 

cannot relate laminae to specific flooding events such as storms or the spring high tide 

flood. 

The irregular spacing visible in the lower portions of the relief casts is indicative of a 

more irregular pattern of deposition that is typical for the upper intertidal zone (Noffke, 

1998). The lowermost portions of the relief casts normally do not contain any buried mat 

layers (Fig. 24). These portions represent the lower intertidal zone, where the constant 

change between immense deposition and strong erosion of the sandy substrates simply 

prohibits the formation of a cohesive microbial mat. 

2. Biofacies Zones in the Wit Mfolozi River Gorge 

In the 46 m thick sandstone succession that crops out in the Wit Mfolozi River Gorge, a 

multitude of excellently preserved MISS have been detected (Noffke et al., 2008) (Fig. 

25). The structures include multidirected ripple marks, erosional remnants and pockets, 

gas domes, polygonal oscillation cracks, microbial mat chips, and many more. It is most 

noteworthy that these structures are related to the lower and upper intertidal facies zones, 

as well as lower supratidal (Gerdes and Klenke, 2003). That is that the MISS preserved at 

this site are identical to those found in the equivalent tidal zones on Fishermans Island 

today. This finding has been highlighted in a review by the journal Nature. 
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Fig. 25. MISS in 46 m of rock successions in the Wit Mfolozi River Gorge record an ancient tidal flat. 
(A) Polygons and gas domes in the upper portion of the succession record the upper supratidal zone. (B) 
Erosional remnants and pockets record the lower supratidal zone. (C), (D) Multi directed ripple marks 
record the upper intertidal zone. 

The fossil multidirected ripple marks are beautifully preserved on 3 upper bedding planes 

and record microbial mats colonizing an ancient upper intertidal area that was 

characterized by a slow and steady movement of periodic tidal currents (Noffke and 

Krumbein, 1999). The erosional remnants and pockets exceptionally displayed on 17 

rock bed surfaces rose from the alternation between growth of microbial mats in the 

lower supratidal zone and their partial erosion during episodic flooding, perhaps rare 

storms, or strong spring high tides. This erosion of the microbial mats ripped off 

fragments, mat chips, from the margins of the erosional pockets. Those fragments were 

spattered at random all across the tidal flat surface, recording the velocity and direction of 

the ancient flood currents (Noffke et al., 2008). 
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While not seen on Fishermans Island, impressive polygons up to about 40 cm in diameter 

are preserved in the Wit Mfolozi River Gorge (Fig. 25). These MISS record areas even 

higher up into the supratidal zone, which were characterized by longer periods without 

water inundation (Noffke et al., 2008). In fact, such polygonal patterns of oscillation 

cracks rise from the seasonal change of meteorological conditions in a semiarid climate 

(Gerdes and Klenke, 2003). This conclusion on the character of the ancient climate is of 

great interest for studies of the development of Earth's paleoclimate. Much like abiotic 

mudcracks, the microbial mats slowly shrink in a polygonal pattern from de-watering 

during periods of dessication. During the subsequent rainy season, the mats recover, fill 

with water, and expand laterally by this closing the polygonal cracks inbetween the 

patches. Unlike abiogenic mud cracks, there are holes in the center of many of these 

polygons. The holes are the result of gas domes that originally formed during desiccation 

and gas accumulation possibly during hot summers. As soon as a gas dome became too 

high, its tip ruptured and the gas escaped leaving the hole in the mat layer behind. The 

formation of these structures was described in on the southern coast of Tunisia (Noffke et 

al., 2001b). 

As discussed in the methods section, the visibility of the MISS on the bedding planes was 

dependent on the angle of solar illumination. At midday, the light from the sun shone 

directly on to the rock surfaces. At this perpendicular angle, the light was mainly 

reflected from the surface, and the outlines of the MISS were not clearly distinct (Fig. 

26). Later in the day, when the sun was lower in the sky, the incident light hit the rock 
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surface at an angle close to 45° from the horizontal surface. At this angle, the light was 

not completely reflected off the surface, and the outlines of the MISS were distinctly 

clear (Fig. 26). 

Fig. 26. Visibility of MISS on sandstone surfaces, Wit Mfolozi River Gorge. In the field, the visibility 
of the MISS is greatly affected by the direction of sunlight on the surface. (A) Light is reflected off the 
surface when the angle of light is perpendicular to the surface, obscuring the visibility of the multi 
directed ripple marks. (B) Surface features are visible with a decreased angle of the sun. 

These simple observations will assist in the detection of surface features of mm and cm 

scale on the sedimentary surface of Mars. I propose that the future Mars rovers be 

equipped with powerful lamps that illuminate the sedimentary surface in question and 

thus increase the contrast of morphologies significantly. Due to atmospheric differences 

between Earth and Mars, it is likely that different light spectra would work better on 

Mars, but such investigations are beyond the scope of this study. 
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3. Cyanobacteria and Mat Textures (Modern and Ancient) - Optical Microscopy 

The microbial mats from Fishermans Island were about l-2mm in thickness. The overall 

orientation of the filaments in the microbial mats was parallel to the surface, and some 

filaments were sub-parallel by up to 10° from the surface (Fig. 27). The microbial mat 

filaments and EPS were interwoven with sand grains (Fig. 27). 

Fig. 27. Microbial mat samples from Fishermans Island, Virginia. (A) Petri dishes with microbial mat 
samples, arrows point to microbial mats. (B) Stereomicroscope image of cross-view through microbial 
mat with mat layer and sand layer, scale = 1 mm. (C) Stereomicroscopic image of mat fabrics intertwined 
with sand grains, Q = quartz, M = mat fabric, scale = 500um. (D) Close-up stereomicroscopic image of 
microbial mat surface showing mat fabrics scale = 2mm. 
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According to the scale by Powers (1953), the roundness of the sand grains averaged 2.5, 

meaning most were sub-angular. The average sphericity of the sand grains was 4.5, 

meaning most were spherical. The sand grains were well-sorted and fine grained, with an 

average grain size of 0.205mm. The sands were made up of at least 65% quartz, 20% 

feldspars, 10% micas, and about 5% heavy minerals for all samples (Fig. 28). 
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Fig. 28. Comparison of mineral grains in modern microbial mats and Mesoarchean microtextures. In all 
samples, quartz is the most abundant component. 

Examinations of unfixed microbial mats show that the dominant mat building species are 

two filamentous cyanobacteria Microcoleus chthonoplastes and Oscillatoria limosa, and 

one coccoid species, Merismopedia punctata. M. chthonoplastes forms ensheathed 

bundles of trichomes (Fig. 29). Each trichome is about 15(j,m in thickness, and the 
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bundles typically are about 100|am in thickness. O. limosa forms individual trichomes 

of about 50um thickness (Fig. 29). The coccoids are close to 20um in diameter. 

Fig. 29. Light microscopy images of cyanobacterial species in microbial mats of Fishermans Island, 
Virginia. (A) Thick trichomes of O. limosa, scale = 200um. (B) Bundles of thinner M. chthonoplastes, 
scale = 300um. (C) Clusters of coccoids of M. punctata, scale =300um. (D) O. limosa (O), M. 
chthonoplastes (Mc), and M. punctata (Mc) together in one slide, scale = 200(im. 

O. limosa was the dominant species in all but one sample, accounting for at least 40% of 

the total population (Fig. 30). M. chthonoplastes was present in all samples, accounting 

for at least 17% of the total population. M. punctata constituted close to 5% of the total 

population. The species composition of the microbial mats on Fishermans Island is 

comparable to those found in the peritidal siliciclastic environments of Mellum Island, 

North Sea, where M. chthonoplastes, O. limosa, M. punctata, and L. aestuarii are the 
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dominant mat building cyanobacterial species (Gerdes and Klenke, 2003). Other studies 

show that these mat building speices are cosmopolitic, that is typical members of the 

microflora in temperate coastal habitats (Stal, 2000; Stolz, 2000; Noffke, 2003). 
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Fig. 30. Percent composition of a typical microbial mat from the tidal flats of Fishermans Island, Virginia 
using optical analyses. O. Iimosa is the most abundant component and makes up an average of about 40% 
of the total mat material. M. chthonoplastes makes up about 17% of the total. The coccoid species, M. 
punctata, makes up less than 5% of the total and is included with the category "other microorganisms". 
EPS and other organic material includes cyanobacterial sheaths and are substantial components of the 
microbial mats. 

Pennate and centric diatoms were present in all samples, but only constituted about 5% 

of the total population. Seasonal changes in the species composition were not monitored. 

Other microorganisms including protists, bacteria, and fungi, collectively constituted 

almost 15% of the total population, but were not specifically identified, as this would 

require a special microbiological training. Extracellular polymeric substances (EPS) and 

other organic material such as occasional roots, plant debris, or fecal pellets made up 

about 18% of the microbial mat volume. 
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Under the microscope, examinations of thin sections from the Pongola Supergroup show 

dark laminae. Those laminae are composed of filamentous textures that are arranged into 

a carpet-like network that is comparable with modern microbial mat fabrics and the 

cyanobacterial filaments that constructed them. Similarly as observed in the relief cats 

from the modern microbial mat-overgrown sands, the orientation of the laminae in thin 

section is consistently parallel to the sedimentary surface (Fig. 31). Specific orientations 

and morphological characteristics will be discussed for each group of samples in the 

following section. 
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Ntombe Formation, Pongola Supergroup 

In the thin sections from the Ntombe Formation, the microtextures collectively form 

laminae that are located only at the uppermost edge of the thin sections (Fig. 32). The 

uppermost edge of the thin section represents the surface of the MISS, and the laminae 

are therefore likely the remains of an ancient microbial mat. 

Fig. 32. Thin sections from Ntombe Formation samples. (A) Brown opaque laminae (in plane polarized 
light) located at the top of the thin section is an actual slice through the MISS. The arrow indicates 
overall orientation of laminae, which is parallel to the surface (line), lOOx magnification, scale = 200|am. 
(B) Brown, opaque laminae (in plane polarized light) oriented about 10° from the surface, lOOx 
magnification, scale = 200 um. (C) Brown, opaque laminae (under cross polars) is oriented about 20° 
from the surface, lOOx magnification, scale = 200um. (D) Close-up of laminae showing individual 
microtextures as indicated by arrows, 200x magnification, scale = 200p.m. 

In close-up, these laminae are rope-like in morphology and do not exhibit irregularities 

such as branching (Fig. 33). This is an important observation. Branching is usually 
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indicative of the migration of fluid through the rocks or from the dissolution of minerals 

as a result of pressure solution during deformation of the host rock (Davis and Reynolds, 

1996). That means that such branching laminae would be of abiotic origin. In statistical 

analyses, the laminae in the MISS samples are along one line of reference and therefore 

not the result of hydrothermal or tectonic overprint. 

Fig. 33. Morphological comparisons of laminae in the Mesoarchean samples. (Al) Sketch and outlining 
the rope-like morphology of the laminae seen in the thin sections (A2) from the Ntombe Formation. The 
laminar structure is a thick, solid mass up to 200 um thick, scale = 200 urn. (Bl) Sketch outlining the 
branching morphology of the laminae seen in the thin sections (B2) from the Sinqueni Formation. The 
laminae are separated from each other and do not form a thick, solid mass, scale = 100 um. The arrows 
indicate the overall direction of orientation. In the images from the Ntombe Formation, the laminae are 
close to parallel. In the images from the Sinqueni Formation, the laminae are branching with variable 
orientations relative to the horizontal surface. 

The orientations of the laminae are between 0 - 20° from the horizontal surface (Fig. 32). 

The laminae are between lOOum and 200^m in thickness and are made up of brownish 

opaque minerals (Fig. 32). The filamentous textures that compose those laminae have 
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average widths between lOum and 50um (Fig. 32). The thicknesses of these 

microtextures are consistent with that of trichomes of modern cyanobacteria belonging to 

the group Oscillatoriales. The microtextures are all oriented parallel to subparallel to the 

surface (Fig. 32). 

The results of petrographic analyses indicate the samples are composed of about 50.9% 

undulose quartz, 11.8% feldspars, 12.7% micas, 12.7% chert, and close to 10.4% heavy 

minerals (Fig. 28). This mineral composition is comparable to the composition of sand 

grains in modern microbial mats, of course with the exception of chert. The chert is a 

result of diagenetic processes representing perhaps fossil EPS, and is not component in 

modern samples. 

Sinqueni Formation, Pongola Supergroup 

The laminae in the Sinqueni thin sections are not concentrated close to the upper edge 

(the ancient sedimentary surface). (Fig. 34). Also, the laminae are not completely planar, 

but appear in a branching, zigzag pattern (Fig. 33). My initial interpretation is that these 

laminae are stylolitic, meaning that they derive from pressure solution of a perhaps 

organic rich clay-containing sand. However, I cannot rule out the biogenicity of the 

structures though their formation may have differed (see discussion below). The widths 

of the laminae in these samples average around 35um in thickness. The spaces between 
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the laminae vary from 2jam to lOOum. These laminae are oriented between 0 - 45° from 

the horizontal surface. 

Fig. 34. Thin sections from the Sinqueni Formation samples. (A) Overview image showing thin orange-
brown opaque laminae. Line is parallel to surface; arrow indicates the overall orientation of the laminae is 
close to parallel. The photo also shows the location of microprobe analysis (2 white arrows); 50x 
magnification, scale = 3 mm. (B) Brown, opaque, branching laminae (in plane polarized light), arrow 
indicates a deviation from the horizontal surface of close to 45° for the branches of laminae, scale = 
200um. (C) Brown, opaque laminae in 3 portions of the thin section with an average orientation of about 
10° from the horizontal. Sample contains heavy minerals oriented parallel to the laminae, scale = 500um. 
(D) Close-up of photo (C) showing heavy mineral in the laminae, scale = 250um. 

In contrast to the Ntombe samples, the laminae in the Sinqueni samples are located in a 

variety of regions in the thin sections rather than just at the uppermost edge. The 

uppermost laminae are part of the MISS preserved in the rocks. However, the laminae in 

the lower portions of the thin sections may be the remains of buried microbial mats. This 

is comparable to the microbial mat layers preserved in relief casts from Fishermans 
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Island (Fig. 24). The uppermost layer of the relief cast consists of the most recent 

microbial mat on the sediment surface, while the intrasedimentary layers consist of 

buried microbial mats. The spacings between the layers in the relief casts tend to increase 

with depth, though the thickness of the buried mat layers doesn't significantly change 

(Fig. 35). Although on a smaller scale, this is similar to what is seen in the Sinqueni 

samples with spacings between laminae of mostly uniform thickess. 

Fig. 35. Intrasedimentary mat layers. (A) Sketch of relief cast of modern microbial mat layers showing 
spacing between layers and slight deviation from the horizontal. (B) Optical microscopic image of similar 
mat-like textures from the Sinqueni Formation, scale = 200um. 

Within the laminae of the Sinqueni samples, the grain sizes ranged from around 75p, to 

225jx, defining very fine to fine grained sands. Directly below the laminae, the grain sizes 

ranged from around 50JJ, to 200|a, indicating fine grained sands. Three mm below the 
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laminations, the grain sizes ranged between 400\i to 1mm, defining medium to coarse 

sands. 

Since the laminae in the Sinqueni samples are not restricted to the surface, petrographic 

analyses were done in three portions of the thin section (Fig. 34). Monocrystalline 

undulose quartz made up almost 27%, feldspars made up over 10%, chert made up close 

to 13%, micas made up close to 10%, and heavy minerals made up almost 30% of the 

minerals within the laminae (Fig. 28). The clay/chlorite matrix made up close to 15%. 

The laminae are composed of brown and black opaque minerals. Directly beneath the 

laminae, the matrix made up about 38% of the counts, with monocrystalline undulose 

quartz comprising 14%, feldspars comprising 18%, micas comprising 7%, chert 

comprising 8%, and heavy minerals comprising 22% of the grains >50|i. The area 3mm 

below the laminae had the least amount of matrix, at just over 10%. Monocrystalline 

undulose quartz grains made up 51% of the grains in this portion of the thin section, 

followed by 14% chert, 13% feldspars, 6% micas, and 6% heavy minerals. The majority 

of these heavy minerals are adjacent to the layers of microtextures and are also oriented 

long-axis parallel to the microtextures. The main species include subangular rutile and 

abraded tourmaline. 

The grains >50|j, were fairly sorted and mostly subangular within the laminae, with the 

long axis of the grains mainly oriented parallel to the laminae. Directly below the 

laminae, the >50|a. size fraction was fairly sorted, angular to subangular, with long axis 

orientations parallel to laminae. The sorting and angularity of the grains within and 
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directly below the laminae supports the idea of sand grains being entrained within an 

ancient mat fabric. In contrast, the portion 3mm below the laminae was poorly sorted, 

with angular to subrounded grains mainly oriented parallel to the laminae. These grains 

were not part of the original mat fabrics. 

Brixton Formation, Witwatersrand Supergroup 

The laminar textures in the Brixton samples are similar to those from the Ntombe 

Formation. The laminae are located only at the uppermost edge of the thin section where 

the MISS are preserved. These laminae are also rope-like in morphology and do not 

exhibit branching (Fig. 31). The laminae are between lOOum and 200um in thickness and 

are made up of brownish opaque minerals. These laminae are oriented between 0-20° 

from the horizontal. 

There is also some differentiation of individual filaments within the laminae with average 

filament thicknesses between lOum and 50um. One feature that is seen exclusively in the 

Brixton samples is the preservation of "segmented" filamentous textures within the 

laminae (Fig. 36). These "segments" are found in 25 urn thick filaments and measure 

about 20um in width, which is comparable to the segments in modern mat building 

cyanobacteria, Beggiatoa sp. and M. chthonoplastes. However, I am careful with my 

interpretation, because these segments also resemble the dissolution domain boundaries 

of pure synthetic goethite crystals (Cornell and Schwertmann, 1996). 
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Fig. 36. Cyanobacterial segments within filaments and filamentous textures. (A) Image of the segmented 
trichomes of a modern cyanobacteria, O. limosa, scale = 120 urn. (B) Image of a thin section containing 
segmented filamentous textures (within the red box) from the Brixton Formation, scale =100 um. (C) 
Sketch outlining the segmented filamentous textures in the Brixton Formation thin section. The textures 
resemble the segmented trichomes of modern microbial mat building cyanobacteria. 

The results of the petrographic analyses show that the samples from the Brixton 

Formation are composed of almost 60% undulose quartz, 8% feldspars, 4.2% micas, 

7.1% chert, and 13.7% heavy minerals (Fig. 28). 

Summary of Microscopy Results 

The laminae, microtextures, and mineral grains in the Ntombe, Sinqueni, and Brixton 

Formation samples are likely the remains of mat fabrics and the entrained fine sands of 

ancient microbial mats. The laminae in the Mesoarchean samples are all predominantly 

oriented parallel to the rock surface; modern microbial mats are formed and buried on 

horizontal surfaces. The individual microtextures from the Mesoarchean samples have an 

average thickness that is comparable to the individual and bundled trichomes of modern 

mat building cyanobacteria. The mineral assemblages associated with the laminae and 
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microtextures in the Mesoarchean samples are analogous to the siliciclastic sands that are 

associated with the modern microbial mats on Fishermans Island. 

Stratigraphic studies of the Pongola and Witwatersrand Supergroups show that the 

Ntombe, Brixton, and Sinqueni Formations were each deposited in shallow marine 

environments (Beukes and Cairncross, 1991; Nhleko, 2004). The Ntombe and Brixton 

Formations were deposited specifically in storm dominated shelf environments and the 

Sinqueni Formation was deposited in a tidal flat environment (Beukes and Cairncross, 

1991). This is reflected in the types of structures preserved in each formation. The 

samples from the Ntombe and Brixton Formations have thick, rope-like laminae with 

individual microtextures within the laminae. (Beukes and Cairncross, 1991). These were 

formed in an environment similar to the storm-influenced shelf successions of the 

Neoproterozoic Nudaus Formation, Nama Group, Namibia, where the same rope-like 

textures and mineral assemblages occur (Noffke et al., 2002). 

In contrast, the samples from the Sinqueni Formation do not have thick rope-like 

laminae, but instead have individualized layers of laminae separated by spaces. While 

these laminae resemble abiogenic stylolites, there are some biogenic explanations. As 

discussed above, these separated layers are reminiscent of the intrasedimentary mat layers 

preserved in relief casts from the tidal flats of Fishermans Island. Also, similar textures 

have been interpreted to be preserved mat layers in the Paleozoic sandstones of the 

Montagne Noire, France and the 3.2 Ga Moodies Group, South Africa (Noffke, 2000; 

Noffke et al., 2006b). For example, in the sandstones of the Montagne Noire recording an 
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intertidal facies zone, there are stacked laminae in layers up to 3 cm thick (Noffke, 2000). 

This is much like the layers of individual laminae in the Sinqueni samples. 

4. Textures of Microbial Mats (Modern and Ancient) in CSLM 

In samples from modern microbial mats, CSLM reveals filaments and mat fabrics in three 

dimensions and distinguishes textures related to extracellular polymeric substances 

(EPS). Whereas the optical analyses with the light microscope gave the impression of a 

predominance of O. limosa over all other components that form the mat fabrics, the much 

more detailed view using CSLM shows that it is the EPS taking up the most space of at 

least 3A of the total microbial mat volume (Fig. 37). The tubular filaments of O. limosa 

are between 12 and 30um in diameter and make up about 1/8 of the total volume (Fig. 

37). The void spaces also make up about 1/8 of the total microbial mat volume (Fig. 37). 

The amount of EPS in a microbial mat can be regulated by many external parameters, and 

is not merely result of the species composition of a microbial mat (which, of course, has 

some influence). The EPS increases in many microbial mats with an increase in salinity, 

or - for tidal flat ecosystems - with the duration of subaerial exposure of the organic 

layers. Other studies using CSLM to investigate the microstructure of microbial mats 

have also proved that EPS can make up to 87% of the total biomass (Lawrence et al., 

1998, 2003; De Los Rios et al., 2004). Void spaces are an interesting phenomenon visible 
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in modern mat fabrics. These voids are often filled with water, but also can in fact 

contain highly complicated biomolecules of polysaccharine bridged by a great variety 

ofions(Decho, 2000b). 

Fig. 37. CSLM images of microbial mats from Fishermans Island. (A) Microbial mat fabrics consist of 
cyanobacterial filaments (C), extracellular polymeric substances (EPS), and void spaces (V). This image 
was taken using a FITC filter at 200x magnification, scale = 500 urn. (B) Image of microbial mat fabrics 
taken using a TRITC filter at 600x magnification in which there are quartz grains (Q) and cyanobacterial 
filaments (C), scale =100 um. (C) Composite image taken at 400x magnification without a filter in 
which cyanobacterial filaments (C) are seen, scale = 350 um. 

Similar fabrics were observed in the Mesoarchean microbial mats (Figs. 38, 39). 

However, the outlines of the textures are more diffuse than those seen in the modern 

samples. This is not a surprise, because post-mortem decay of organic matter includes the 

diffusion of chemical compounds away from their original site, as well as the ionic 
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exchange between dead organic matrix and sea water solutes. Also the diagenetic 

recrystallization that forms sand into sandstones, dehydration, as well as hydrothermal 

overprint all add to the dissolution of former discrete material. 

Fig. 38. CSLM images of samples from the Ntombe Formation. (A) Image taken without using a filter 
at 200x shows opaque filamentous textures (C) surrounded by transparent material (EPS), scale = 75 urn. 
(B) Image taken without using a filter and 600x magnification shows opaque filamentous textures (C) 
and transparent surrounding material (EPS), scale = 20 um. (C) Image taken using TRITC filter at lOOOx 
magnification shows filamentous textures (C) surrounded by darker, denser material (EPS), scale = 5 um. 
(D) Image taken using TRITC filter at 200x magnification shows filamentous textures (C) with shadowy 
outlines surrounded by diffuse material (EPS), scale = 45um. Image was saved with a grid to quantify the 
microtextures. 

The microtextures in the Mesoarchean samples are seen as filamentous channels within 

the laminae (Fig. 39). These microtextures are about 15|om in diameter and are opaque. 

The minerals surrounding the microtextures are cloudy and transparent (Figs. 38,39). 
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Fig. 39. CSLM images of microbial mat fabrics. (A) Modern mat fabrics from Fishermans Island consist 
of cyanobacterial filaments (C), extracellular polymeric substances (EPS), and void spaces (V). This 
image taken using a FITC filter at 200x magnification, scale = 400 um. (B) In comparison, there are 
similar features from the Mesoarchean Ntombe Formation, with filamentous textures (C), denser areas 
(EPS), and void spaces (V). 3-dimensional composite image taken without filters at 400x magnification, 
scale =150 um. (C) Sketch of thin section B outlines the features of the microfabrics. 

I consider the opaque microtextures to be the remains of microbial filaments and the 

surrounding transparent material to be mineralized EPS (Fig. 39). The matrix-like 

structure of EPS creates a large surface area where chemical reactions take place. EPS 

can be negatively charged, so it incorporates positively charged ions, such as Ca+2 or 

Mg+2 and metals, such as Fe+2 or Ti+2 into its structure, resulting in the precipitation of 

clays or poorly ordered iron-rich minerals (Cornell and Schwertmann, 1996; Fortin et al, 

1997; Konhauser, 1998). In this case of the fossil microbial mats, the possible "filaments" 

make up about 1/5 of the total volume. The possible "void spaces" make up about lA of 

the total volume. The possible "EPS" makes up almost Vz of the total volume. As shown 

above, this is similar to the modern examples where EPS is the most dominant 

constituent of a microbial mat. 
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5. Carbon Isotopes of Fossil Filament-like Textures 

Any study on ancient fossils, especially of microscopic scale, must include geochemical 

investigations as well. Most important are isotopes that strongly support that possibly 

preserved carbon could be indeed remains of the original organic matter, and not products 

of abiotic graphite formation - a common process especially in Archean sediments. My 

carbon isotope analyses on fossil microbial mat layers separated from the host rock by 

careful cutting show 813C values around -24.2 +/- 0.5 %o (Ntombe Formation), and 

around -22.8 +/- 0.1 %o (Sinqueni Formation). Previous analyses on samples from the 

Brixton Formation are consistent to my values, and showed 8 C of around -22 +/-0.1 

%o. The isotopic values in all three sets of samples indicate a possible biogenic source 

which could have been from ancient cyanobacteria. The known 8 C values for modern 

cyanobacteria are between -31%o and -3.0 %o (Schidlowski, 1988). The carbon enriched 

in modern abiogenic marine carbonates has an isotopic composition between -4.0 %o and 

+2.0 %o - clearly different from my values derived from the fossil material (Schidlowski, 

1988; Uenoetal., 2002). 

As mentioned above, more recent studies of microfossils in Archean rocks have shown 

that 813C values close to -28%o could be the result of the abiogenic production of 

graphite as well, for example as result of metamorphosis from ferrous carbonates under 

high temperatures and pressures (Van Zuilen et al., 2002). However, the abiogenic 

production of carbon isotopic signatures in the microtextures from the Ntombe, Sinqueni, 
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and Brixton Formations is not likely, because these rocks are sandstones,and in addition, 

have only experienced low grade metamorphosis of lower greenschist facies. 

6. Micro Raman Spectroscopy of Fossil Filament-like Textures 

In order of predominance, the microtextures in the microbial mats from the Ntombe 

Formation are mainly composed of iron hydroxides (goethite), titanium oxides (rutile and 

anatase), mica (muscovite), and iron oxides (hematite) (Table 2) (Figs 40-42). In the 

samples from the Sinqueni Formation, the microtextures are also mainly composed of 

iron hydroxides, titanium oxides, muscovite, and graphitic carbon (Figs 4-10). The grains 

directly associated with (and also within) the microtextures in samples from both rock 

successions are composed of quartz, potassic feldspars, and muscovite. Close 

examination of the filamentous textures in some of the samples reveal banding of either 

graphitic carbon (1355 and 1593cm"1), rutile (445 and 615 cm"1), anatase (145, 397, 514, 

and 643"1) or goethite (245, 300, 479, 682 cm"1). This suggests that the mineral nucleation 

was controlled by a preexisting structure identical to cyanobacterial filaments. I conclude 

therefore that the minerals formed along the filamentous cell walls of ancient microbial 

mat building cyanobacteria, and will discuss this issue in detail below. (Figs 2, 5,6). 



Sample Type of Scan 

Modern 

Location of Laminae Minerals/Elements 
Present 

Mat 

P2 

P4 

P5 

RCH2 

RCH11 

RCH12 
-1 

RCH13 
-1 

RCH18 

RCH21 

Spot Scans 

Spot Scans 

4hr35min 60x30um 
6sec dwell time 

3hr 3min 60x30|am 
4sec dwell time 

80x20|j.m 9hl0m 
4s dwell time 

RPFT? 40x20|^m 4s dwell time 
lhr 24min 

1 hr 43 min 40x20|am 
5 sec dwell time 

60x60um 6s int time 
9hr lOmin 

20x20|j.m 6s int time 
lhr 3 min 

40x20um 5s int time 
lhr 45min 

12hr 15 min 60x80|im 
6sec dwell time 

Throughout sample Quartz, sulfides, carbon 

Upper,outer edge of 
thin section/parallel to 

surface 

Upper,outer edge of 
thin section/parallel to 

surface 

Upper,outer edge of 
thin section/parallel to 

surface 
upper portion of thin 
section/within matrix 

Heavy 
mineral in laminae 

Upper portion of thin 
section, within 

matrix/parallel to 
surface 

lower portion of thin 
section/within matrix 

lower/outer edge of 
thin section 

Upper portion of thin 
section;marked by 

arrows 
Lower portion of thin 

section,within 
matrix/parallel to 

surface 

Rutile, Feldspar, Mica, 
Graphite 

Goethite, Rutile, 
Anatase, clays, graphitic 

carbon 

Goethite, Rutile, Anatase 

Goethite, rutile, 
muscovite 

Tourmaline w/Graphitic 
carbon band 

Muscovite, Quartz, 
graphite, rutile 

Quartz, anatase, 
muscovite,graphite 

Carbon from polymer 

Muscovite,rutile, 
feldspar 

Rutile, Quartz, 
Muscovite, Feldspar 

Table 2. Thin sections used for micro Raman analyses. P = Ntombe Formation, RCH = Sinqueni 
Formation Column 2: scan areas, scan lengths. Column 3: area of thin section analyzed. Column 4: 
Dominant mineral components. 
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Formation of Mineral Phases Within Microtextures 
Case 1: Goethite (a-FeO(OH)) 

The majority of the microtextures from the samples from the Ntombe Formation are 

composed of goethite. Goethite is typically a weathering product of biotite, arnphibole, 

pyroxene, magnetite, hematite, or other iron-bearing minerals (Nesse, 2000). In natural 

abiotic systems, goethite can also form as an initial hydrated iron precipitate (Cornell and 

Schwertmann, 1996). 

WhwyN ^ ^ 

Fig. 40. Raman analysis of laminae, Ntombe Formation (P2). (A) Photo through confocal microscope 
using reflected light of scan area, scale = lOum. Scan area was 30um x 30um. (B) Red reflectivity 
composite map of the scan area showing muscovite (yellow), rutile and carbon (black), and mixtures of 
mica, feldspars, and goethite (red). Individual spectra for muscovite, and rutile with carbon are also shown. 
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In laboratory controlled biomineralization studies, microbial biofilms and EPS provided 

substrates for the precipitation of iron oxides such as hematite and magnetite, whereas 

iron hydroxides only precipitated in the absence of organic material (Brown et al., 1998). 

The Raman measurements showed trace amounts of hematite still preserved within the 

microtextures of the Ntombe and Sinqueni samples. I conclude that this hematite could 

have been the first mineral to precipitate on the original organix matrix of a decaying 

microbial mat. Much later, this hematite was transformed into goethite in the course of 

weathering. 

Fig. 41. Raman analysis of laminae, Ntombe Formation (P4). (A) Photo through confocal microscope of 
scan area, scale = 80(xm. Scan area was 60um x 30um. (B) Color composite map of the scan area showing 
rutile (gray), goethite (blue), and carbon (red). (C) Red sum color map highlighting carbon band (red). 
Individual spectra for rutile, goethite, and goethite with carbon are also shown. 
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Case 2: Rutile and Anatase (T1O2) 

Rutile (titanium oxide) and anatase (titanium oxide) are also major components of the 

microtextures in the Ntombe and Sinqueni samples. Rutile is a common accessory 

mineral in igneous and metamorphic rocks, and - after weathering of those rocks, and 

transport - is found as allochthonous components in clastic sediments (Nesse, 2000). 

Anatase tends to form in low-temperature hydrothermal settings, and is a common 

mineral that replaces feldspars in late diagenesis of sandstones (Lindsley, 1991; Milliken, 

2005). Under the petrographic microscope, rutile grains outside of the microtextures 

appear to be unaltered and have distinct grain boundaries and crystal habits. It is 

noteworthy that the rutile component within the microtextures is not visible with a 

petrographic light microscope. Therefore it is an important step to take a second look at 

samples with another technique, and indeed the Raman analyses do reveal the presence of 

rutile within the microtextures. This suggests the rutile within the microtextures was 

originally part of the heavy mineral fraction of sand grains entrained within the ancient 

microbial mat fabrics. As a result, this rutile (and anatase) has been affected by 

diagenesis along with the original organic material. The unaltered rutile grains outside of 

the microtextures are detrital minerals that are typical of sandstones. 

There is a distinctive layering of alternating iron hydroxides and titanium oxides within 

the fossil textures that can be seen in the spectral maps (Fig 9). The spectra in the layers 

typically consist of bands around 245, 300, 479, 682 cm"1 for goethite, and bands around 

445 and 615 cm"1 for rutile. 
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Fig. 42. Raman analysis of laminae, Ntombe Formation (P5). (A) Photo through confocal microscope of 
scan area, scale = 80um. Scan area was 60um x 30um. (B) Color composite image of scan area in central 
portion of thin section. Composite image maps show changes in mineral composition and correlate with 
corresponding spectra; the lighter bands correspond with goethite, middle dark with rutile, and bottom 
dark with rutile mixed with muscovite. The spectra for each section is also shown. 

The alternating compositions in the laminae could indicate differences between the 

chemical composition of the original cyanobacterial filaments and the EPS. The original 

cyanobacterial filaments and EPS could have formed alternating layers of organic 

material as they were buried together. Indeed, thin-sections through modern, now buried 

microbial mat layers show a similar banded pattern. 
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As discussed in the introduction chapter, the chemical composition of the filaments 

would have been different from the composition of the EPS, so it is not surprising these 

chemically different layers could have served as templates for the nucleation of different 

types of minerals. An alternative explanation is that the textures in the Ntombe 

Formation represent compacted microbial mats. These mats originally had sand grains 

between the layers. The compaction of the two layers together could have resulted in the 

banding seen in the samples now. However, it is very unlikely that the sand grains would 

have recrystallized under those low metamorphic grades recorded in the Ntombe 

Formation. 

Case 3: Muscovite (KAl2(AlSi3O10)(OH)2 

The muscovite forming a common constituent of the Mesoarchean rocks is a mineral that 

is commonly found in sandstones and quartzites (Nesse, 2000). It can be detrital or can 

occur as the result of clay mineral reactions during diagenesis (Pettjohn et al., 1987). 

Studies it have also shown that clay minerals precipitate on microbial cell walls and EPS 

(Ransom et al., 1999; Konhauser, 1998). Many of the filamentous textures in the 

Mesoarchean samples are composed of muscovite lathes with anatase, rutile, and carbon 

in the striae (Figs 43, 44, 47). In other cases, the muscovite in the Ntombe and Sinqueni 

samples is aligned with the microtextures and laminae. 
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*, 

Goethite + Muscovite 

Fig. 43. Raman scan of micaceous laminae, Sinqueni Formation (RCH2). Sample previously used in 
microprobe analysis (A) Photo through confocal microscope of scan area showing darkened microprobe 
scan area and untouched portion, scale = 80um. Scan area was 40um x 20um. (B) Color composite map 
of the scan area showing rutile (gray), goethite (green), muscovite (black), fluorescence from Al coating 
(yellow). 

The orientation and association with the laminae and microtextures suggests i) that the 

muscovite grains were entrained within the mat fabrics and buried along with the 

microbial mat, or ii) clay minerals precipitated preferentially along the filamentous 

textures. Again, the incorporation of muscovite grains was commonly observed in 

modern microbial mats. Also, other studies regarding clay mineral -microbe interaction 
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showed a preferred orientation of the clays along the cellular components (Ransom et al., 

1999). 
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Fig. 44. Raman scan of micaceous laminae, Sinqueni Formation (RCH11). (A) Photo through confocal 
microscope of scan area, scale = 80um. Scan area was 40um x 20um. (B) Color composite map of the 
scan area showing muscovite (red) with quartz (blue) and carbon (black) interlayers. 

Case 4: Carbon (C) 

Spectral signatures for graphitic carbon also occur within the microtextures of the 

Ntombe and Sinqueni samples, with typical graphitic bands for less crystalline, 

disordered carbon around 1350 cm"1 and well-crystallized, ordered graphite around 1581 
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cm"1. The carbon occurs as a thin layer within and parallel to the microtextures (Figs 

40,41, 44, 45). This suggests an original layer of organic material that was most likely 

part of the cell wall of an ancient filamentous cyanobacterial type of microorganism 

(Marshall et al., 2005). No carbon was detected outside of the laminae or microtextures 

in the Ntombe and Sinqueni samples. Clearly, this exclusive distribution supports that the 

carbon is biogenic. 

Fig. 45. Raman scan of dark laminae, Sinqueni Formation (RCH12). (A) Photo through confocal 
microscope of scan area, scale = 80um. Scan area was 60um x 60um. (B) Color composite map of the scan 
area showing quartz (black), anatase (green), muscovite (light blue-gray), and graphitic carbon (dark blue). 
(C) Red sum color map highlighting muscovite (black). (D) Red sum color map highlighting anatase 
(black). Red sum color map highlighting graphitic carbon (black). 



97 

Also in support of a biogenic origin: A dravite grain located within the spacing between 

mat laminae in a sample from the Sinqueni Formation contains carbon too (Fig. 46). In 

this case, the carbon appears to be along an edge of the inner detrital core of the zoned 

dravite grain. This suggests that the carbon is syngenetic and was in place at the time the 

original mineral grain was deposited (Pettjohn et al., 1987). In this case, the mineral grain 

was deposited and entrained within the fabrics of the microbial mat during its growth on 

the former tidal flat. 
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Fig. 46. Raman analysis of heavy mineral, Sinqueni Formation (RCH2). (A) Photo through confocal 
microscope of scan area, scale = 40um. Scan area was 40um x 20um. (B) Color composite map of the scan 
area showing ilmenite (I), ilmenite + carbon (I+C), and rutile + ilmenite + carbon (R+I+C). Bottom panels 
show the spectra for each area. (C) Sum color map with a carbon filter, arrow points to the location of 
carbon as highlighted by the red and orange colors. 
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It is important to consider that this described co-occurrence of titanium oxides and carbon 

can be indicative of a process called oxyexsolution, a purely abiotic process, where CO2 

introduced through hydrothermal fluids (Satish-Kumar, 2005). The CO2 is reduced by 

the crystallization of Fe+3 bearing oxides during cooling, which results in the 

precipitation of graphite. However, on the other hand it is important to notice that the 

rocks in the Sinqueni and Ntombe Formations experienced only greenschist facies 

metamorphism. Because oxyexsolution typically occurs at temperatures and pressures 

higher than those associated with greenschist facies metamorphism, this abiotic 

mechanism of carbon derivation may well be excluded (Satish-Kumar, 2005). 
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Fig. 47. Raman scan of micaceous laminae, Sinqueni Formation (RCH18). (A) Photo through confocal 
microscope of scan area, scale = 80um. Scan area was 40um x 20um. (B) Color composite map of the scan 
area showing mica (green) with rutile (red) interlayers. 
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The graphitic carbon spectra in the microtextures of my rocks do correlate with the 

metamorphic grade of the rocks. It has been shown that consistently well-developed 

disordered and ordered carbon peaks is indicative of carbon that has already been in place 

at the time of metamorphism (Tice et al., 2004). Therefore, it is not likely that the carbon 

in the samples from the Ntombe and Sinqueni Formations is from contamination. 

Modern Samples 

For the modern microbial mats from Fishermans Island, the spot scans with the micro 

Raman instrumentation showed that the mat fabrics contained silica, sulfides, and 

disordered carbon grains. However, the high amount of organic material caused too much 

fluorescence to allow any reliable measurement, and just a few spot scans of the samples 

were possible. This problem can be alleviated with the use of a longer wavelength laser 

that is better suited for organic compounds (Wynn-Williams et al., 2002). 

The Problem of Biogenicity - Another Issue to Consider with Raman Microscopy 

Slight signal interference from fluorescence also occurred in the Mesoarchean samples, 

and there is a specific reason for this, related to the thin section preparation. The Raman 

microscope at the Geophysical Laboratory is equipped with a green laser, as opposed to a 

red laser. The green laser has a greater sensitivity than the red laser and is commonly 
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used for rock samples where fluorescence is not a problem (Pelletier, 1999). However, 

synthetic polymers typically used for thin sections are known to fluoresce when excited 

at the green laser wavelength of 532 nm (Pelletier, 1999). 

s 

8 

e 

c 

P 
f\ I 

*&> i l l (S3 

fl 
J', 

'*3> K!S MX. IMS 

Fig. 48. Raman scan of dark laminae, Sinqueni Formation (RCH13). (A) Photo through confocal 
microscope of scan area, scale = 80(xm. Scan area was 20um x 20um. (B) Color composite map of the scan 
area showing carbon from polymer (black and gray. (C) Spectra of carbon from polymer. 

The thin sections from the Ntombe and Sinqueni, Formations were fixed using a synthetic 

polymer, which resulted in interference that obscured some of the Raman spectra for the 

constituents of the samples. The synthetic polymer also yielded Raman spectra for carbon 

(Fig. 48). However, this phenomenon still allowed me to interpret carbon as original and 

as of biological origin, because the spectra of the polymer displayed wide and poorly 

developed peaks that differed greatly from the narrow and well-developed carbon peaks 

associated with the microtextures. 
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7. Electron Microprobe Analysis of Fossil Filament-like Textures 

The filaments in the modern microbial mat contained mainly carbon, but no heavier 

elements. The sandy interlayers between the filaments contained (in order of abundance) 

Si, Al, K, Ca, Mg, and some Fe. 

Fig. 49. Elemental maps of electron microprobe, Ntombe Formation. (A) High oxygen content in the 
laminae is indicated by the pinkish-red color. (B) High iron content in the laminae is indicated by the 
white and pink colors. The iron coupled with the oxygen constitutes the fe-oxides and fe-hydroxides in 
the laminae. (C) Red regions outside of the laminae indicate high content of carbon from the thin section 
polymer. (D) Calcium is not a significant component of this sample. 

Based on the elements scanned for by the microprobe, the laminae in the Ntombe 

samples contained high amounts of Fe and O, followed by (in order of abundance) Si, C, 

and Mg (Figs 49,50). The high amounts of Fe and O are consistent with the Raman 
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results that reveal Fe/Ti-oxides and Fe-hydroxides as the main components of the laminae 

(Figs 49, 50). Also the carbon component reflects the Raman results showing graphite 

layers within the laminae (Figs 49, 50). Outside of the laminae, the fossil samples were 

composed of Si, O, Mg (Fig. 50). This also agrees with the results from the Raman and 

petrographic analyses that show a high component of quartz and clays outside of the 

laminae. In a previous study, similar results were obtained for the Brixton samples 

(Noffke et al., 2006a). 

Fig. 50. Elemental maps of electron microprobe, Ntombe Formation. Iron in this sample is only 
associated with the laminae. Oxygen in red and silica in pink are the main constituents of the mineral 
grains. Magnesium, shown in blue, is a component of the clay matrix surrounding the quartz grains. 

The laminae in the samples from the Sinqueni Formation include Fe and C (Fig. 51). The 

elemental maps confirm the petrographic analyses with the light microscope, because 
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they also show the spatial distribution of clay matrix and quartz grains (Figs. 51,52). In 

both analyses, quartz grains were surrounded by a matrix composed of clays that contain 

K, Mg, and Si. 

Fig. 51. Elemental maps of electron microprobe, Sinqueni Formation. Iron in this sample is only 
associated with the laminae. Silica in white and red is one the main constituents of the mineral grains. 
Potassium in this sample is a large component of the clay matrix surrounding the quartz grains. 

These results are consistent with the Raman results that show a mineralic composition of 

potassic feldspars, clays, and quartz. Also, as in the Ntombe samples, Fe was restricted to 

the laminae and not a major component of the matrix. Electron microprobe analyses had 

been conducted earlier on similar sandstone samples from the 3.2 Ga Moodies Group, 
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South Africa, that contain fossil microbial mats. Also here, Fe and C dominate within the 

microbial microtextures and laminae (Noffke et al., 2006b). 

Fig. 52. Elemental maps of electron microprobe, Sinqueni Formation. Iron in this sample is only 
associated with the laminae. Silica in white and red is one the main constituents of the mineral grains. 
Potassium in this sample is a large component of the clay matrix surrounding the quartz grains. The 
carbon in this case is part of the synthetic polymer. 
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CHAPTER V 

DISCUSSION 

The aim of my research was to compose a catalogue of recommendations for the NASA 

Mars Exploration Program using analytical techniques that can be employed to find, 

identify, and clearly define life as life. Because sand and sandstones are abundant on 

Mars, and because aquatic sediments have been found on Mars, these investigations are 

of prime significance. I hope with this thesis to have made an important contribution to 

this exciting search for extraterrestrial life. 

The first step of my investigations was to assist in the investigation of early life on Earth. 

Because both Earth and Mars had a similar early history of development, it might be 

possible to find similar fossils in Mars rocks like those we find in Archean sandstones on 

Earth. In order to accomplish this aim, I specifically studied microtextures in different 

Mesoarchean siliciclastic sedimentary rocks. Importantly I respectfully assert the 

biogenicity of these structures and textures using several lines of evidence, because many 

debates have legitimately addressed this issue (Schopf, 2004, 2006; Brasier et al., 2006, 

2005). 

The biogenicity of the MISS and microtextures is suggested by three important factors. 

The first factor is geologic context, which has been thoroughly studied by earlier work. 

The Ntombe, Sinqueni, and Brixton Formations represent ancient shallow marine tidal 
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and shelf environments in the Archean (Beukes and Cairncross, 1991; Noffke et al., 

2003b, 2006a,b; Nhleko, 2004). These environments would have been similar to the 

modern siliciclastic intertidal environments of Fishermans Island, Virginia and Mellum 

Island, North Sea. Cyanobacterial mats thrive in such environments today, and it is 

possible their ancestral counterparts could have colonized the tidal flats or shallow 

shelves of the Mesoarchean (Noffke et al., 2008). 

In establishing biogenicity, the morphological character of microtextures is important, as 

microfossils could be microbial fossils but also abiotic textures of various hydrothermal, 

diagenetic, metamorphic or tectonic origins. The sandstones of the Ntombe, Sinqueni, 

and Brixton Formations each contain MISS that are similar to those seen in modern 

environments. Fishermans Island contains MISS that result from the preservation of 

microbial mats constructed mainly by filamentous cyanobacteria. Without the interaction 

of the cyanobacteria with the sedimentary dynamics of erosion and deposition, the MISS 

would not be formed (Noffke, 1998; Noffke and Krumbein, 1999; Noffke et al., 2001a, 

2003a; Gerdes and Klenke, 2003). Similar examples of MISS are also seen in sandstones 

of younger ages (Schieber, 1998, 2004; Noffke et al., 2001b, 2002; Draganits and Noffke, 

2004; Banerjee and Jeevankumar, 2005; Parizot et al., 2005). 

Closer inspection of Pongola and Witwatersrand samples showed laminae and 

filamentous microtextures. These laminae and microtextures are comparable to modern 

mat building cyanobacterial filaments and mat fabrics in dimension and orientation, 

suggesting that the microtextures are remnants of ancient filamentous cyanobacteria. 
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These laminae and microtextures are also similar to textures seen in MISS bearing 

sandstones of younger ages (Noffke et al., 2001b, 2002; Banerjee and Jeevankumar, 

2005). 

A necessary and beneficial aid in evaluating the biogenicity of a microfossil in question is 

a biologic geochemical signature. The electron microprobe, Raman, and carbon isotope 

analyses all show that carbon is associated with the microtextures in the Ntombe and 

Sinqueni samples. These results agree with previous carbon isotope and microprobe 

analyses on both the Ntombe and Brixton samples (Noffke et al., 2003b, 2007). The 

carbon signature in the Mesoarchean samples occurs exclusively within the mat laminae 

and microtextures, and not in the surrounding material. The host rocks only experienced 

greenschist facies metamorphism and little tectonism, and not conditions conducive to 

abiogenic metamorphic graphitization (Ueno et al., 2002; Tice et al., 2004; Satish-Kumar, 

2005). The concentration of the carbon along morphologically convincing features, along 

with the low grade metamorphic history, supports a biologic origin. 

The graphite in the samples from the Ntombe and Sinqueni Formations is texturally 

aligned with Fe hydroxides, Ti-oxides, and clay minerals in the microtextures. The cell 

walls and EPS buried in the sediments acted as sites of mineral nucleation and mineral 

replacement of organic material (Ferris et al., 1986, 1988; Konhauser and Urrutia, 1999). 

As shown with the CSLM analyses, EPS is a major component of microbial fabrics. 

Together the ancient cyanobacterial filaments and EPS both provided ample organic 

material and mineral nucleation sites that over 2.9 Ga years resulted in the Fe - Ti-rich 
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components and small remnants of carbon in the textures preserved in the Ntombe, 

Sinqueni, and Brixton Formations. 

The results of this work can be applied to the exploration of life on other Earth-like 

planets, such as Mars. The methods I used to examine the MISS and the microtextures 

associated with MISS can be used by a rover to detect biosignatures on the surface of 

Mars (Edwards et al., 2003, 2007; Bishop et al., 2004; Erickson et al., 2007). A Mars 

rover is limited by time and onboard space, and instruments, such as cameras and 

miniaturized Raman spectrometers, provide quick and informative results. The rover can 

detect and photograph the MISS while doing a surface scan. A point on the MISS can be 

targeted and scanned using Raman, and geochemical information can be obtained. I hope 

that this thesis contribution will support NASA in the challenging search for life on other 

planets. 
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