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ABSTRACT 

THE ASSOCIATION OF COGNITIVE FUNCTION WITH AUTONOMIC-
CARDIOVASCULAR REACTIVITY TO AND RECOVERY FROM STRESS 

Sanjay Mehta 

Virginia Consortium Program in Clinical Psychology, 2012 

Co-Directors: Dr. Serina Neumann 

Dr. Michael Stutts 

The contribution of stress in the development of chronic and terminal disease has 

garnered significant interest in contemporary research. The current study aims to look at 

how performance in domains of cognitive function may affect autonomic-cardiovascular 

reactivity and recovery to psychologically stressful tasks as such reactions, over time, 

may contribute to the development of cardiovascular disease. 

The current study analyzed data from 209 healthy middle-age adults. This 

included four neuropsychological tests utilized here to represent abilities in four different 

cognitive domains: response inhibition, mental flexibility, verbal memory, and non

verbal memory. The participants were also introduced to three psychologically stressful 

tasks while blood pressure, heart rate, and spectral components of heart rate variability 

measurements were taken during the tasks and the post-task recovery period. 

Results showed no significant relationship between blood pressure reactivity or 

recovery and cognitive function. No significant relationship was found between heart rate 

variability reactivity and cognitive function. Results showed no significant relationship 

between blood pressure reactivity or recovery and cognitive function. No significant 

relationship was found between heart rate variability reactivity and cognitive function. 

However, superior performance in response inhibition was significantly positively 



associated with both LF-HRV (p =.04) and HF-HRV (p =.02) in the immediate recovery 

phase and HF-HRV (p =.02) in the delayed recovery phase. Such findings suggest that 

greater response inhibition abilities may contribute to greater vagally induced recovery 

from stressful tasks. Such a response can be considered healthy and likely acts as a 

protective factor against the development of cardiovascular disease. 
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NOMENCLATURE 

BP Blood Pressure, mmHg 

HR Heart Rate, beats per minute 

HRV Heart Rate Variability 

LF-HRV Low Frequency HRV 

HF-HRV High Frequency HRV 

LF: HF-HRV High Frequency / Low Frequency Ratio HRV 
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CHAPTER I 

INTRODUCTION 

Long term psychological stressors have become increasingly prevalent part of 

modern life for many individuals. While such stress is often associated to the 

development of various medical conditions such as ulcers or back pain, there is relatively 

little research on the long term physiological impact such reactions to psychological 

stress may create. In a recent study by Banks, Marmot, Oldfield and Smith (2006), it is 

found out that middle-aged American adults are less healthy than their equivalent British 

counterparts. These findings were significant in the research causes of diabetes, 

hypertension, heart disease, myocardial infarction, stroke, lung disease, and cancer 

despite controlling for traditional risk factors. The differences in health between two 

similar populations certainly raise the question of the significance of the impact of non-

traditional risk factors can have in the development of chronic and terminal disease, even 

after taking into account the traditional risk factors. 

Cardiovascular disease, in particular, has been the leading cause of death in the 

U.S. for the past 80 years (Greenlund, Giles & Keenan, 2006). Despite recent declines 

over the past several decades, cardiovascular disease continues to be the leading cause of 

death in adults in the United States, accounting for almost 950,000 deaths annually -

more than 40% of all deaths (American Heart Association, 2001). Additionally, 

cardiovascular disease is the cause of substantial healthcare expenditures. For example, 

cardiovascular disease treatment has projected to be an estimated $448.5 billion in direct 

and indirect costs in 2008 (Rosamond et al., 2008). Most commonly, cardiovascular 

disease is the result of a progressive narrowing of the blood vessels that supply 
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oxygenated blood to the heart over an extended period of time, some progression even 

take decades to develop. This vessel narrowing can ultimately lead to heart failure, 

myocardial infarction, arrhythmia, and angina due to cardiac ischemia. A major 

contributor to coronary heart disease development is atherosclerosis, a degenerative and 

inflammatory syndrome promoting the accumulation of cholesterol and cellular waste 

products in the vascular system that remodel peripheral blood vessels and impair the 

optimal functioning and blood flow of vessels surrounding the heart (Libby, 2002, 2005; 

Rosamond et al.. 2008). Additionally, an individual's vulnerability to acute events such 

as atheroma and thrombosis affect the development of cardiovascular disease (Buja & 

Willerson, 1981; Davies & Thomas, 1985; Falk, 1983; Fuster, 1994; Lefkowitz & 

Willerson, 2001; Libby, 2001). 

It is now recognized that the likelihood that such acute conditions can trigger a 

more serious cardiovascular event is increased by cardiovascular changes related to 

environmental, emotional, and behavioral stressors that are of personal relevance to the 

individual (Bhattacharyya & Steptoe, 2007; Steptoe & Brydon, 2009; Strike & Steptoe, 

2005). Only about 50% of the variance of cases of cardiovascular disease can be 

predicted by traditional risk factors, including family history, obesity, smoking, diabetes 

mellitus, and hypercholesteremia (Roig et al., 1987). The variance unaccounted for by 

this has led researchers to investigate non-traditional risk factors such as chronic stress. 

For years, psychological stress has been associated in the development of coronary heart 

disease and other cardiovascular problems (Brotman et al., 2007; Holmes et al., 2006; 

Krantz et al., 1988; Manuck et al., 1988). The current study aims to see whether markers 

of increased risk for future cardiovascular disease may be related to various trait levels of 
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performance in certain domains of cognitive function and how such cognitive function 

likely impacts how an individual may react to stress. 
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CHAPTER II 

BACKGROUND 

Allostasis and Arousal 

To explain the relationship between chronic stress and compromised health, 

Sterling and Eyer (1988) proposed the concept of allostasis. Allostasis refers to the 

body's ability to adapt and adjust to environmental demands by matching the demands of 

the environment with physiological responses. For example, human heart rate fluctuates 

throughout the day in response to environmental demands (e.g., increasing during activity 

and decreasing during sleep). To coordinate an efficient response to environmental 

demands, central nervous system control is essential to allow an organism to prepare and 

maintain the physiological level of arousal needed to respond to demands and then to 

adjust these levels downward when the stress diminishes. McEwen and Stellar (1993) 

defined this physiologically compromised state as allostatic load. They described 

allostatic load as the strain which the body produce with repeated ups and downs of the 

physiological response, the elevated activity of physiologic systems under stress and 

changes in metabolism, and the impact of wear and tear on a number of organs and 

tissues, that can predispose the organism to disease. McEwen and Stellar went on to 

suggest that increased arousal or allostatic load should be activated in response to 

cognitive interpretations of specific external stressors in the environment. Thus, allostatic 

load should, in turn, act as an explanatory variable linking such external stressors to 

internal physiologic events (Evans & Lepore, 1992). If, for example, an organism were to 

become vulnerable to physical attack, the body would increase energy levels and 

physiological arousal in order for the organism to either escape or confront the threat. 
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The physiological responses involved with this is the "fight or flight" response as well as 

recovery once the threat is no longer present, represents the allostatic load. According to 

McEwen and Stellar (1993), if the stress is chronic and intense (as is common in modern 

day situations), there is more strain on the internal system than if the stress is episodic. 

Given the costs of physiological arousal, organisms undergoing chronic stress and 

chronic arousal may experience depleted physiological resources which lead to decreased 

levels of physiologic response to future stimuli. To summarize, allostasis allows an 

organism to adapt to stress by supporting a state of physiological arousal, but prolonged 

strain on the system due to chronic stress can result in physiological and psychological 

damage. Thus, the construct of allostasis helps to explain how prolonged stress influences 

physical health outcomes, such as cardiovascular disease (Kamark & Jennings, 1991), 

immunosuppression (Schneiderman & Baum, 1992), diabetes (Bradley, 1988), and 

psychological outcomes, such as depression (Avison & Turner, 1988) and anxiety 

(Eckenrode, 1984). In this regard, the previously cited researches have demonstrated that 

chronic stress is associated with negative health outcomes. However, the mechanisms 

that may contribute to individual differences in allostatic load are not yet very clear. The 

current study may shed greater light on the role that trait levels of cognitive functioning 

play in individual differences in allostatic load. 

Cardiovascular Reactivity 

The current study utilizes cardiovascular reactivity as a physiologic marker to 

measure bodily reactions to stress. Cardiovascular reactivity is generally defined as a 

change in an individual's hemodynamic responses from a resting state to a subsequent 

behavioral state related to internal or external stressors (Obrist, 198; Treiber et al., 2003). 
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This encompasses any change in cardiac (heart rate, heart rate variability) or vascular 

(blood pressure, pulse rate) responses by the body. In a general sense, stress-related 

cardiovascular reactivity is assumed to be a marker of autonomic function (Dunlap & 

Pfeiffer, 1989). Numerous control mechanisms regulate and integrate the functions of the 

cardiovascular system in order to supply blood to specific body areas according to the 

organism's needs (Dampney et al., 2002). When homeostasis is challenged, a 

reproducible cardiovascular reactivity pattern is elicited (i.e. a change in blood pressure, 

heart rate or other hemodynamic parameters) (Rosenman, 1991). These blood pressure 

and heart rate responses to psychological challenge can be used as an index of 

cardiovascular autonomic activity (Wieling & Karemaker, 1999). Overtime, an 

individual's response to stress may ultimately affect at least one of several 

pathophysiological pathways that can lead to permanent changes. Permanent changes can 

include decreased heart rate variability, elevated blood pressure, or elevated heart rate. 

The "reactivity hypothesis", a model linking stress to cardiovascular disease 

(Krantz & Manuck, 1984; Manuck, 1994) postulates that cardiovascular reactivity may 

play a role as a marker or mechanism in the pathogenesis of cardiovascular disease 

through the complex interaction of multiple physiological systems guided by the actions 

of the central nervous system. Thus, an individual or situation characterized by high 

levels of cardiovascular reactivity may be related to higher risk for development and 

exacerbation of cardiovascular disease. Despite inconsistencies in the literature, there is a 

current and growing body of evidence suggesting that a link between cardiovascular 

reactivity and measures of subclinical and clinical cardiovascular disease exists. Studies 

have shown that cardiovascular reactivity is related both cross-sectional and 
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longitudinally to heart disease and hypertension. In one of the earliest studies the 

literature. Keys, Taylor, Blackburn, Brozek, Anderson and Simonson (1971), examined 

blood pressure responses to the cold pressor task in 279 healthy middle-aged men as a 

predictor of the development of coronary heart disease over a 20-year follow-up. The 

investigators defined exaggerated task-related reactivity as anything greater than a 

20 mm Hg change in diastolic blood pressure. Those who met this criterion were 2.4 

times more likely to experience a myocardial infarction or die of coronary heart disease-

related causes than those who were less physiologically reactive to the task. More 

recently. Light, Dolan, Davis and Sherwood (1992) discovered that heart rate reactivity 

on a reaction time test predicted the blood pressure levels of a group of middle aged 

adults. The test includes predicting the reaction time of the same group 10 to 15 years 

later, even after taking into account traditional risk factors such as resting blood pressure 

levels and parental history of hypertension. Similarly, Matthews, Woodall and Allen 

(1993) found this to be true in a population of adolescents. More recently, Tuomisto, 

Majahalme, Kahonen, Fredrikson, and Turjanmaa (2005) also discovered that increased 

blood pressure reactivity to certain psychological stimuli may differentially predict the 

development of BP elevation or hypertension 9 to 12 years later when looking at a 

population of middle aged men. Longitudinal studies have also linked cardiovascular 

reactivity in individuals with pre-existing essential hypertension (Alderman et al., 1990) 

and coronary heart disease (Krantz, Sheps, Carney & Natelson, 2000). However, a recent 

review of the literature by Treiber et al., (2003) suggests that a number of studies have 

not found such correlations between cardiovascular reactivity and future disease 

development. For example, Carroll, Davey-Smith, Willemsen, Sheffield, Sweetnam, 
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Gallacher and Elwood (1998) reported negative findings in a large ( N =  1493) sample of 

men (average age is 56.8 years). Their data showed that blood pressure responses to the 

cold pressor task were unrelated to 9-year incidence of cardiovascular disease or 

mortality. Treiber et al., (2003) suggest that the reason for a lack of consistency in the 

literature is due to a need for increased emphasis on statistical power requirements, 

measurement standardization, and investigation of mechanisms and moderating factors 

that may influence these associations. 

In addition to reactivity, the inability of cardiovascular recovery from stress may 

also be an important risk factor for cardiovascular disease. Cardiovascular recovery 

generally refers to either the time required for cardiovascular parameters to return to 

baseline levels after termination of stress or the extent of elevation in cardiovascular 

parameters that remains during a post-task period (Linden, Earle, Gerin, & Christenfeld, 

1997). It has been hypothesized that the duration of stress-related cardiovascular 

responses may be as important as the response magnitude in the development of 

cardiovascular diseases (Christenfeld, Glynn, & Gerin, 2000; Schwartz et al., 2003). 

Accumulating evidence suggests that recovery from stress may be related to future health 

status. Results from three studies indicate that elevated post-exercise blood pressure is 

associated with an increased risk of developing hypertension up to 10 years later 

(Davidoff et al., 1982; Singh et al., 1999; Tanji et al., 1989). In addition, Treiber and 

colleagues (2001) reported that average blood pressure and heart rate recovery across 

physical and psychological tasks predicted resting rate of these physiological indicators 

over a 4-year period. When coupled with heightened cardiovascular reactivity, poor 

recovery could accelerate vascular changes, potentially leading to an earlier onset of 
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chronic illness (e.g. hypertension, cardiovascular disease). It is also possible that poor 

recovery could bring about these pathophysiological changes in the absence of 

heightened reactivity. Evidence of recovery from cardiovascular stress as a reliable 

independent indicator of disease is also a possibility to consider. As mentioned above, 

results from previous studies indicate that measures of recovery (Davidoff et al., 1982; 

Singh et al., 1999; Tanji et al., 1989, Treiber et al., 2001) are able to be used to predict 

long term rates of cardiovascular functioning and likelihood of disease development. In at 

least one study, however, (Treiber et al., 2001) reactivity measures were more consistent 

predictors than recovery measures of resting blood pressure (BP) at four annual follow-up 

evaluations. Although the existing findings are somewhat mixed, they do suggest that 

poor cardiovascular recovery from stress may also be an independent indicator for later 

chronic disease states. 

Among measures of cardiovascular reactivity, heart rate variability is of particular 

interest in the current study. Heart rate variability is a measure of the continuous interplay 

between sympathetic and parasympathetic influences on heart rate that yields information 

about autonomic flexibility and represents the physiological basis for emotion regulation. 

The sympathetic and parasympathetic branches of the autonomic nervous system 

influence the length of time between consecutive heartbeats in an antagonistic manner 

(Applehans & Lueken, 2006). Parasympathetic influence is mediated by acetylcholine on 

vagal modulation. Under resting conditions, heart rate is primarily under the control of 

vagal tone (Levy, 1971) and vagal modulation. Increased heart rate can be due to 

increased sympathetic influence and/or decreased parasympathetic activity. This 

corresponds to a shorter beat interval while slower heart rates have a longer beat interval. 
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The sympathetic influence on heart rate is largely mediated through the release of 

epinephrine and norepinephrine. These neurotransmitters activate adrenergic receptors 

that result in AMP mediated phosphorilation of membrane proteins and lead to increases 

in calcium (Trautwein & Kameyama, 1986) and current (Brown, DiFrancesco & Noble, 

1979; Difrancesco, Ferroni, Mazzanti, Tromba, 1986) causing increased diastolic 

depolarization in the sino-atrial node. These variations in heart rate may be seen on an 

ECG and the time between what is often referred to as normal-to-normal intervals 

(intervals between adjacent QRS complexes resulting from sinus node depolarizations) or 

the instantaneous heart rate may be determined (Malik, 1996). These changes may be 

analyzed to determine heart rate variability. 

Frequency-based analyses of heart rate variability are based on the fact that the 

variations in heart rate produced by sympathetic and parasympathetic nervous system 

activity occurs at different speeds. Power spectral density (PSD) analysis allows one to 

estimate how power is distributed as a function of frequency (Malik, 1996). Several 

methods of spectral analysis (fast fourier transform, point process, and autoregressive 

procedures) are used to calculate and mathematically quantify components of heart rate 

variability. These methods may be broken down into parametric and non-parametric 

methods. Non-parametric methods allow for a simpler algorithm (fast fourier transform) 

and higher processing speed. Parametric methods allow for smoother spectral 

components that can be distinguished without having to identify pre-selected frequency 

bands, easier processing of power components and their individual central frequency 

components, and an accurate estimation of PSD in smaller samples. While three main 

frequency bands are expressed, two main frequency regions or bands (Hz) are used to 



determine heart rate variability reliably: high frequency (HF) and low frequency (LF) 

power. The third frequency band, very low frequency power (VLF), is a much less 

defined component of heart rate variability and lacks a coherent non-harmonic 

component that is stable and allows for removal of baseline or trend distribution. 

Therefore, this component is generally not considered to be an accurate measure for 

short-term (less than five minutes) electrocardiogram recording and interpretation (Malik, 

1996). The measurement of these power components is usually made in absolute values 

of power (milliseconds squared). HF power primarily reflects respiratory-modulated 

parasympathetic outflow, whereas LF power is subject to both substantial sympathetic 

influence and varying amounts of parasympathetic contribution. The LF/HF ratio has 

been proposed, by some investigators, as an index of relative balance of sympathovagal 

influences on the heart, with higher LF/HF ratios reflecting increased sympathetic 

activity and/or decreased parasympathetic tone. The sympathetic nervous system is slow 

acting and mediated by norepinephrine while parasympathetic action is fast acting and 

mediated by acetylcholine. While the heart may be dually innervated, literature suggests 

that the heart is generally under the tonic inhibitor)' control of parasympathetic influences 

via the vagus nerve (Jose & Collison, 1970). Thus, low heart rate variability reflects 

reduced parasympathetic nervous system influence or increased sympathetic nervous 

system stimulation. This autonomic imbalance leads to lack of flexibility of the 

individual when dealing with stressors the individual might encounter in the future. A 

loss of the ability to normally modulate heart rate may increase the likelihood of 

developing coronary artery disease or related illnesses (Huikuri et al., 1999; Brook & 

Julius, 2000; Thayer & Friedman, 2004). 
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Additional factors associated with low heart rate variability include hostility, 

anxiety, and depression. Several studies suggest that these psychological factors may 

combine with stress exposure to result in lower heart rate variability. Sloan et al., (2001) 

found that participants who scored high on a trait measure ofhostility showed greater 

reductions in heart rate variability in response to mental, but not physical, stressors. 

There is also evidence that persons high in depressive symptoms show decreases in heart 

rate variability at a greater rate in response to mental stress than similar non-depressed 

persons (Hughes & Stoney, 2000). In related findings, heart rate variability has been 

shown to be significantly lower in depressed coronary artery disease patients when 

compared to non-depressed patients (Carney et al., 1995) and decreased rate in 

individuals with high levels of anxiety (Kawachi, Sparrow, Vokonas & Weiss, 1995). 

With regards to blood pressure reactivity and related risk for hypertension, three 

large epidemiological studies that enrolled a large cohort of normotensive subjects and 

followed them for 20 or more years have provided reasonable evidence that the extent of 

blood pressure response to a stressor task may foretell an increased risk for the 

development of essential hypertension (Wood, Sheps, Elveback & Schirger, 1984; 

Menkes et al., 1989, Kasagi, 1995). The studies by Borghi, Costa, Boschi, Mussi and 

Ambrosioni (1986) and Falkner, Kushner, Onesti and Angelakos (1981) suggest that 

reactivity in young borderline hypertensive subjects can be used to predict stable essential 

hypertension several years later. Findings from a number of larger studies that have 

documented relationships between reactivity to behavioral tasks and subsequent resting 

blood pressure levels have shown generally positive results. Additionally, the results 

from a number of other studies indicate that the relationship between cardiovascular 
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reactivity and subsequent resting blood pressure level can be documented based on 

responses to challenge in children (Treiber et al., 2001; Murphy, Alpert & Walker, 1992), 

adolescents (Matthews, Woodall & Allen, 1993), young adults (Markovitz, Raczynski, 

Wallace, Chettur & Chesney, 1998), and middle-aged individuals (Matthews, Woodall & 

Allen, 1993). All reports showed associations between stressor-related blood pressure 

reactivity and blood pressure elevations within 1 to 6 year range and some showed an 

impressive degree of internal replication across tasks and time. There is also evidence 

that blood pressure may be elevated when no concrete external stressor is present but an 

individual continues to be under cognitive load (Schwartz et al., 2003). Fauvel, Quelin, 

Ducher, Rakotomalala and Laville (2001) suggest that blood pressure may be elevated 

during the perceived experience of a stressor, but that may be unrelated to the general 

pattern of greater cardiovascular reactivity. However, the mechanisms by which 

environmental stressors might lead to elevated blood pressure (i.e. hypertension), remain 

poorly specified. The control of blood pressure results from actions of the kidneys, 

central and autonomic nervous systems, hypothalamic-pituitary-adrenal axis, vascular 

endothelium, and other pathways (Black, Bakris & Elliott, 2001). In the development of 

hypertension, a distinction must be made between short-term factors that initiate blood 

pressure elevation, and long-term self-perpetuating mechanisms that sustain the 

hypertensive state. The set of factors that initially raise blood pressure may be quite 

distinct from the factors that perpetuate hypertension. By the time blood pressure is 

elevated, the initiating factors may no longer be acute blood pressure elevations in 

response to stress and are usually attributed to chronically increased sympathetic nervous 

system activity. Long-term regulatory changes that may perpetuate hypertension include 
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vascular remodeling and endothelial dysfunction (Gibbons, 1998). Vascular remodeling 

involves alterations in vessel architecture, including decreased lumen diameter and 

rarefaction (in which the number of micro vessels is reduced), both of which lead to a 

chronic increase in vascular resistance. This process is the result of hemodynamic 

changes in blood flow and blood pressure and also changes in the level of 

vasoconstrictive and vasodilatory substances. Vascular remodeling may facilitate the 

transition from an initial high cardiac output stage of hypertension to a high total 

peripheral resistance state (Gibbons, 1998). 

However, it should be noted that a number of cognitive and affective processes 

are necessary in order for an individual to initiate the autonomic changes present in 

cardiovascular reactivity and recovery. The attentional processes are necessary to 

properly grasp the external stimuli that are eliciting the stress response (Gaillard & 

Kramer, 2001) and the ability to inhibit certain prepotent responses also play an 

important role in guiding goal-directed behavior. Cognitive functions such as working 

memory, sustained attention, behavioral inhibition, and mental flexibility are all 

important components that are related to pre-frontal cortical activity (Arnsten & 

Goldman-Rakic, 1998). Working memory processes are necessary to associate external 

stimuli with memories of similar events and affective processes are needed to give these 

stimuli emotional valence and intensity, causing associated internal stress (Gianaros, 

May, Siegle, & Jennings, 2005). Mental flexibility is necessary in the development of 

possible coping strategies that allow one to adapt to stressful circumstances (Glynn, 

Christenfield & Gerin, 2002). Finally, pre-frontal inhibition plays an important role in 

overriding sub-cortical influences and guiding recovery associated with physiologic 
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reactions to stressful events (Waldstein & Katzel, 2005). Deficits in cognitive abilities 

such as mental flexibility, attention, and memory have also been found to be present 

during negative affective states, including depression and anxiety (Hammar, Lund & 

Hugdahl, 2003; Airaksinen, Larsson, Lundberg & Forsell, 2004; Castaneda et al., 2008). 

An example of the way in which these processes interact is associated with the "fight or 

flight" instinct which is previously mentioned. Attentional processes must focus on a 

specific external stimulus. Working memory must compare this to the memory of 

previous threats in order to decide if the stimulus is a stressor. From there, the amygdala 

mediates the "fight or flight" that urges an individual to confront or avoid a threat. 

However, the pre-frontal cortex is able to mediate this instinct, when deemed an 

inappropriate response, primarily through the use of the neurotransmitter GABA. It is 

possible that autonomic disregulation can be related to a decline in attention and 

cognitive performance and that such a decline in cognitive ability can exacerbate other 

factors related to autonomic dysfunction. Studies examining delayed responding, working 

memory, and executive function in relation to heart rate variability (Johnsen, Eid, Laberg, 

& Thayer, 2002; Hansen, Johnsen, Sollers, Stenvik & Thayer, 2003) states that 

performance did not differ on simple or choice reaction times, but that tasks associated 

with pre-frontal cortical activity and executive function resulted in poorer performance in 

both speed and accuracy from individuals with low heart rate variability as opposed to 

their high variability counterparts. 

Affective Regulation and Autonomic-Cardiovascular Reactivity 

A number of investigations have looked at the link between cognition, emotion 

regulation and associated autonomic activation. For example, a study examining the 
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effects of inhibitory response and heart rate variability to emotional stimuli, Johnsen 

et al„ (2003) found that a group of dental phobic subjects had longer reaction times in 

reacting to color-incongruent and dental related words than color-congruent and neutral 

words on an altered Stroop task. This delay suggests difficulty in inhibiting pre-potent 

responses. Additionally, the study found that greater heart rate variability was associated 

with faster reaction times, which is consistent with the idea that there is a link between 

vagally mediated heart rate variability, inhibitory ability, and emotion. Lesion studies, 

such as those performed by Tranel and Damasio (1994), have suggested that the inferior 

parietal area, ventro-medial prefrontal area, and the anterior cingulate gyrus are important 

for linking emotional stimuli to physiological responses. This reaction was present 

regardless of whether pleasant or unpleasant stimuli were introduced. More recent 

neuroimaging studies (Damasio et al„ 2000; Lane, Chua & Dolan, 1999; Lane et al„ 

1997) have demonstrated that cortical structures, subcortical structures, including the 

amygdala, thalamus, and hypothalamus, and midbrain structures to activate concurrently 

and lead to an increase in heart rate and skin conductance during either pleasant or 

unpleasant stimuli. Recent literature (Gianaros & Sheu, 2009; Thayer & Ruiz-Padial, 

2006) have included a number of structures including the anterior cingulate, insular 

cortex, orbitofrontal, and ventromedial prefrontal cortices, amygdala, the paraventricular 

and related nuclei of the hypothalamus, the periaqueductal gray matter, the parabrachial 

nucleus, the nucleus of the solitary tract, the nucleus ambiguus, the ventrolateral medulla, 

the ventromedial medulla, and the medullary tegmental field. 

The cingulate cortex has shown significant evidence of being involved in 

cardiovascular reactivity evoked by stressors. The cingulate cortex is a medial cortical 
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brain system that supports cognitive, emotional, nociceptive, skeletal-motor, and 

visceromotor processes. Three distinct functional subdivisions of the cingulate cortex are 

generally identified: a rostral affective division, a dorsal cognitive-motor division and a 

caudal evaluative-monitoring division (Bush et al., 2000; Devinsky et al., 1995; Paus, 

2001; Vogt, 2005; Vogt et al., 1992; Vogt et al., 1995). In addition to supporting 

cognitive functions and those related to emotion, evidence suggests that the cingulate 

subdivisions play a role in mediating stressor-evoked cardiovascular reactivity. The 

perigenual anterior cingulate cortex is viewed to support several stress-related functions, 

including the appraisal of salient environmental events, the subjective experience of 

aversive behavioral states, and the regulation of behavioral and autonomic responses to 

aversive stimuli (Bush et al., 2000; Critchley, 2005; Paus, 2001; Phillips et al., 2003; 

Vogt, 2005; Wager et al., 2009a; Wager et al., 2009b). Imaging evidence demonstrates 

that the perigenual anterior cingulate cortex is engaged during negative mood initiation, 

anticipatory anxiety, and scenarios involving possible negative social evaluation (George 

et al., 1995; Mayberg et al., 1999; Straube et al., 2009; Wager et al., 2009a, 2009b). It is 

also engaged when distracting emotional information is presented during a demanding 

cognitive task performance (Mohanty et al., 2007) and when one is committing self-

relevant and negatively evaluated errors during cognitive tasks (Kiehl et al., 2000). Both 

animal and human studies have ascertained the perigenual anterior cingulate cortex to 

have reciprocal circuitry with the orbital and medial prefrontal cortex, insula, amygdala, 

portions of the thalamus, hypothalamus, periaqueductal grey, pons, medulla, and the pre-

sympathetic intermediolateral cell column of the spinal cord (Barbas, 2000; Barbas et al., 

2003; Buchanan and Powell, 1993; Chiba et al., 2001; Critchley, 2005; Freedman et al., 



18 

2000; Ongiir et al., 1998: Ongiir and Price, 2000; Vogt, 2005). Through this circuit, it 

may have an important role in supporting stressor-evoked autonomic and cardiovascular 

reactivity. 

Portions of the dorsal anterior cingulate cortex are generally seen as supporting 

processes related to attention, effortful executive control, and conflict and error 

monitoring. These processes are represented by connections of reciprocal circuitry with 

the lateral prefrontal cortex, motor and supplementary motor cortex, and posterior 

parietal cortex (Vogt & Pandya, 1987). Specifically, the dorsal anterior cingulate cortex 

areas monitor conflicts between competing streams of incompatible information. After a 

conflict is detected, dorsal anterior cingulate cortex areas engage prefrontal, motor, and 

parietal cortices to resolve conflicts and minimize behavioral error by modulating 

attention, working memory, and motor control processes (Botvinick et al., 2001; Hester et 

al., 2004; Holroyd & Coles, 2002; Ridderinkhof et al., 2004a, 2004b, Koski & Paus, 

2000; Paus, 2001; Paus et al., 1998). Growing evidence also implicates areas of the dorsal 

anterior cingulate cortex in stress-related behavioral processes associated with 

physiological reactivity. These areas are engaged by states of pain-related anxiety 

(Ochsner & Gross, 2005; Vogt et al., 2003), intentional regulation of autonomic activity 

(Critchley et al., 2001, 2002), awareness of subjective emotional experiences (Lane et al., 

1998), and even social rejection associated with activation of the hypothalamic-pituitary-

adrenal stress response axis (Eisenberger et al„ 2007). This suggests that the area may be 

important for generating autonomic and cardiovascular responses via projections to 

network of cortical and subcortical areas to support volitional, cognitive, and emotional 

behaviors. 
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The posterior cingulate cortex supports evaluative processes that include the 

ability to maintain a general representation of the environment, appraising the emotional 

salience of environmental events, and monitoring for threatening or otherwise stressful 

environmental stimuli (Gusnard et al., 2001; Maddock, 1999; Vogt & Laureys, 2005; 

Vogt et al., 2006). These processes are supported by reciprocal circuitry between the 

posterior cingulate cortex, perigenual anterior cingulate cortex, and parahippocampal 

cortices (Vogt & Laureys, 2005; Vogt et al., 2006). A recent meta-analysis (Maddock, 

1999) also implicates the posterior cingulate cortex in the automatic appraisal of 

unpleasant stimuli. Neuroimaging evidence also indicates that the posterior cingulate 

cortex is a major component of a distributed network of functionally and anatomically 

connected brain systems (including dorsal and ventral medial prefrontal cortex, medial 

and lateral parietal cortex, and areas of the medial and lateral temporal cortex) that all 

show coherent and relatively high levels of metabolic activity during resting states 

(Buckner et al„ 2008; Fox and Raichle, 2007; Fox et al., 2007; Greicius et al., 2003; 

Gusnard et al., 2001). Activities in components of this network are thought to attend to 

interoceptive information, such as changes in autonomic functioning (Nagai et al., 2004). 

There is also substantial evidence that when cognitive effort and attentional resources are 

redirected to the external environment to support goal-directed behaviors, activity in the 

posterior cingulate cortex and other components of this network are markedly curtailed. 

This is likely due to the need to focus neural activity on demands related to 

environmental challenges and execute outwardly directed action rather than focusing on 

internal functioning (Buckner et al., 2008; Gusnard et al., 2001). While the posterior 

cingulate cortex lacks the many direct connections with other important areas related to 
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autonomic and cardiovascular regulation, such as the perigenual anterior cingulate cortex, 

dorsal anterior cingulate cortex, insula, and amygdala, neuroimaging studies demonstrate 

that stressor-evoked autonomic and cardiovascular reactions are in conjunction with 

changes in posterior cingulate cortex activity (Gianaros et al., 2005b, 2007, 2008; Wong 

et al., 2007). Gianaros et al., (2005b, 2007, 2008) found individuals classified as stable 

high blood pressure reactors have been shown to express enhanced posterior cingulate 

cortex activation to a Stroop color-word interference stressor when compared to less 

reactive counterparts who consistently showed expected patterns of deactivation in the 

posterior cingulate cortex during effortful task performance. Wong et al. (2007) 

demonstrated that an effortful isometric handgrip exercise evoked transient increases in 

heart rate and blood pressure and decreases in posterior cingulate cortex and 

ventromedial prefrontal cortex activity among healthy young men and women. Further 

analyses of a time series revealed that activity changes in the ventromedial prefrontal 

cortex, but not the posterior cingulate cortex, were directly associated with time related 

and exercise-induced changes in heart rate. Wong et al. (2007) theorized that posterior 

cingulate cortex activity may be suspended during effortful behavioral tasks and that this 

change is not instrumental for associated task-related changes in autonomic or 

cardiovascular function. Thus, posterior cingulate cortex activity is likely to correspond 

to the evaluative appraisal of self-referential information, and possibly environmental 

contexts and stressors, which may indirectly relate to autonomic and cardiovascular 

functioning because of concurrent changes in the activity of ventromedial and other 

visceromotor cortices (O'Connor et al., 2007). 
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In addition the cingulate cortex, the insular cortex has also been significantly 

implicated in cardiovascular reactivity responses. The insular cortex is a brain region that 

has efferent and afferent connections, similar to those of the anterior cingulate, the 

orbital, and the medial prefrontal cortex. This includes connections with the amygdala, 

hypothalamus, thalamus, periaqueductal grey area, pons, and nucleus of the solitary tract 

innervating peripheral target organs (e.g., the heart) (Augustine, 1996; Cechetto, 1994; 

Ongur & Price, 2000; Verberne & Owens, 1998). Multi-synaptic afferent relays from all 

peripheral target organs project to the insular cortex. These projections are routed via the 

nucleus of the solitary tract, parabrachial pontine nuclei, ventral posterior and 

mediodorsal thalamic nuclei, and the lateral hypothalamic area in a viscerotopic fashion 

(Craig, 2003, 2005). These connections have been thought to allow for integration 

between interoceptive physiologic information, appraisals of emotion-related stimuli, and 

adaptive behavioral and autonomic responses (Craig, 2005; Critchley, 2005; Paulus & 

Stein, 2006). The insula is activated when an individual is confronted by behavioral 

challenges that elicit aversive responses and negative emotional stimuli (Feldman-Barrett 

& Wager, 2006; Phan et al., 2002; Taylor et al., 2003; Klein et al., 2007). Numerous 

studies involving brain lesions, neural stimulation, neuroanatomical tracing, and 

neuroimaging implicate the insular cortex in autonomic and cardiovascular regulation 

(Allen & Cechetto, 1992, 1993; Allen et al., 1991; Cechetto, 1994; Cechetto & Chen, 

1990; Oppenheimer, 1993; Ruggiero et al„ 1987; Verberne and Owens, 1998; Yasui et 

al., 1991). Clinical evidence has also revealed that ischemic strokes selectively involving 

the insula elevate risk for cardiac arrhythmia (Cheung & Hachinski, 2000; Colivicchi et 

al., 2004, 2005). There is mixed evidence to suggest that the insular regulation of 
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autonomic and cardiovascular function may be lateralized. Several studies suggest that 

the left insula is more likely to be involved in regulating parasympathetic cardiovascular 

control and in mediating responses related to decreases in blood pressure and heart rate, 

while the right insula is implicated in sympathetic cardiovascular control and in 

mediating responses that relate to increased blood pressure and heart rate (Craig, 2005; 

Kimmerly et al., 2005; Oppenheimer et al„ 1992; Oppenheimer et al., 1996). However, 

some neuroimaging evidence found bilateral and left insular activation to be associated 

with blood pressure reactivity evoked by mental stressor tasks (Gianaros et al., 2005a; 

2007, 2008). Other evidence suggested heightened levels of resting neural activity in the 

right insular cortex predict subsequently greater stressor-evoked blood pressure reactions 

across individuals (Gianaros et al., 2009). Neuroimaging literature regarding stressor 

induced changes in cardiovascular reactivity showed direct correlations with concurrent 

changes in functional neural activity (Critchley et al., 2000; Gianaros et al., 2005). 

Critchley et al., (2000) tested whether changes in mean arterial pressure correlated with 

concurrent changes in functional neural activation when evoked by two different 

stressors. Results showed that increased mean arterial pressure evoked by the stressors 

correlated on a within-individual basis with increased cerebral blood flow to the 

perigenual and mid-anterior areas of the cingulate cortex, the orbitofrontal cortex, 

postcentral gyrus, insula, and cerebellum. These findings were replicated and extended in 

a subsequent functional magnetic resonance imaging (fMRI) study of twenty older adults 

(Gianaros et al., 2005) where participants completed a version of the Stroop color-word 

interference task. Results showed that increased mean arterial pressure induced via 

stressor correlated on a within individual basis with greater activation in the perigenual 
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and mid-anterior cingulate cortex, insula, medial and lateral prefrontal cortex, 

supplementary motor area, and regions of the temporal, inferior parietal, and occipital 

cortex. Subcortical regions in which greater activation correlated with increased mean 

arterial pressure included the basal ganglia, lentiform area bordering the extended 

amygdala and caudate, thalamus, cerebellum, and periaqueductal grey area (Gianaros et 

al., 2005). In an fMRI study of individual differences in stressor-evoked autonomic 

reactivity using a version of the Stroop color-word interference task, Gianaros et al. 

(2007) found that a larger task-induced rise in autonomic reactivity co-varied with 

heightened activation of the perigenual anterior cingulate cortex, the medial prefrontal 

cortex, insula, posterior cingulate cortex, the lateral prefrontal cortex, and cerebellum. No 

associations with activation in other corticolimbic regions thought to be involved in 

cardiovascular regulation, particularly the amygdala, midbrain and brainstem areas. 

However, in a follow-up study Gianaros et al., (2008) found that individuals who 

exhibited greater stressor-evoked blood pressure reactivity showed greater stressor 

evoked perigenual anterior cingulate cortex, posterior cingulate cortex , insula, and 

amygdala activation and a stronger positive functional connectivity between the 

amygdala and perigenual anterior cingulate cortex and between the amygdala and pons. 

The authors did suggest that the pons may represent a relay area that specifically links 

individual differences in stressor-evoked amygdala activity with the peripheral 

expression of autonomic reactions. They point to neuroanatomical evidence that the 

amygdala expresses reciprocal connections with pontine cell groups critical for 

cardiovascular control (Dampney, 1994; Hopkins & Holstege, 1978; Miller et al., 1991) 

and that the pons is known to relay afferent cardiovascular information to higher levels of 
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the neurological areas, including the amygdala (Dampney, 1994). Gianaros & Sheu 

suggest that one possibility is individual differences in autonomic reactivity maybe due to 

differential signaling between the amygdala and the pons or other pre-autonomic areas. 

For example, the authors believe that stronger efferent signaling from the amygdala to 

pre-autonomic areas could reflect stronger descending commands for rises in blood 

pressure during acute stressful experiences and stronger afferent signaling could reflect 

stronger ascending negative feedback to the amygdala that inhibits excessive blood 

pressure increases. 

The amygdala, particularly the central nucleus, has been implicated in playing a 

significant role in emotional processing related to cardiovascular reactivity. A key 

function of the amygdala in processing environmental stressors is the assignment of 

behavioral salience and valence to environmental stimuli (Davis & Whalen, 2001; 

LeDoux, 2003; Sah et al„ 2003b; Zald, 2003). Previous research has shown (Bechara et 

al., 1995) that selective bilateral lesions of the amygdala prevent the possibility of 

conditioning and physiological response to aversive stimuli. The amygdala accomplishes 

such tasks by integrating sensory inputs from distributed cortical, thalamic, and brainstem 

afferent relays. Sensory inputs are relayed through thalamic and cortical-thalamic 

pathways to the lateral nucleus, basolatcral nucleus, and the accessory basal nucleus 

(Doux, 2003; Sah, Faber, Lopez, De Armentia & Power. 2003a, b). From the basolateral 

nucleus, those stimuli that are judged to be behaviorally relevant are relayed to the central 

nucleus. The central nucleus is the major site of output commands and relays adaptive 

changes in behavior and/or physiology via the stria terminalis to lateral and 

paraventricular hypothalamic nuclei and to periaqueductal, medullary, and pre-autonomic 
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nuclei. The central nucleus is also networked with the perigenual and dorsal regions of 

the anterior cortex and the insula (Amaral & Price, 1984; McDonald, 1998; Morecraft et 

al., 2007; Price, 2003). Evidence suggests that the amygdala plays a pivotal role in 

interrelating cortical processes related to the coordination of stressor-evoked changes in 

behavior and cardiovascular reactivity (Berntson et al., 1998; Dampney, 1994; Saper, 

2002; Smith & DeVito, 1984; Smith et al., 1984; Westerhaus & Loewy, 2001). Studies 

involving lesions to the central nucleus of the amygdala in rats show that this can impede 

exaggerated stress induced blood pressure reactions in those genetically prone to 

hypertension (Galeno et al., 1984; Sanders et al., 1994) and prevent the development of 

hypertension induced by chronic stress (Fukumori et al., 2004). The amygdala can 

regulate heart rate and blood pressure reactivity via influence of the baroreceptor reflex, a 

negative-feedback control mechanism that constrains arterial pressure around a 

regulatory set point by modulating efferent autonomic outflow (Berntson et al., 1998; 

Dampney, 1994; Saha, 2005, Eckberg, 1992). The baroreceptor reflex controls beat-by-

beat changes by adjusting parasympathetic and sympathetic control over heart rate, 

cardiac output, and vascular resistance to maintain autonomic functioning within the 

homeostatic range to match ongoing metabolic demands (Guyenet, 2006). Changes in 

these functions are reflected in low-frequency heart rate variability reactions to evoked 

stressors. As a negative-feedback loop, the baroreceptor reflex relies on afferent 

projections from stretch-sensitive cardiopulmonary mechanoreceptors and 

chemoreceptors that signal changes to the nucleus of the solitary tract. Activation of the 

nucleus of the solitary tract activates vagal nuclei in the medulla and inhibits pre-

sympathetic nuclei in the rostroventrolateral medulla and spinal column. The amygdala 



26 

can also suppress the sensitivity of the baroreceptor reflex through inhibition of the 

nucleus of the solitary tract and activation of the rostroventrolateral medulla 

(Berntson et al., 1998; Dampney, 1994; Saha, 2005; Saper, 2002). By coupling 

sympathetic inhibition and parasympathetic activation, the baroreceptor reflex can 

maximize blood pressure reduction. Sympathetic inhibition leads to a drop in peripheral 

resistance, while parasympathetic activation leads to a depressed heart rate and 

contractility. The combined effects will dramatically decrease blood pressure. Similar 

projections as those from the amygdala are found in the cingulate and medial prefrontal 

cortex and insula, allowing control of the baroreceptor reflex and associated regulatory 

mechanisms (Berntson et al., 1998; Dampney, 1994; Saper, 2002). Given these 

similarities and evidence that sensitivity of the baroreceptor reflex is suppressed by 

psychological stressors in humans (Reyes del Paso et al, 2004; Steptoe and Sawada, 

1989), and suppressed baroreceptor reflex sensitivity has been associated with the 

severity of preclinical and clinical cardiovascular disease (Gianaros et al., 2002; De 

Ferrari et al., 2007; La Rovere et al., 1998; La Rovere et al., 2008; Schwartz et al., 1992), 

it has been suggested that the amygdala and corticolimbic areas and associated 

baroreceptor reflex could account for some of the individual differences in cardiovascular 

reactivity and risk of cardiovascular disease (Berntson et al., 1998). 

It is important to consider the role of ascending influences of baroreflex and 

related interoceptive information in modulating the neural circuitry. In particular, 

evidence shows that visceral afferent activity can influence a range of centrally-mediated 

cognitive, emotional, and behavioral processes via feedback mechanisms (Adam, 1998; 

Berntson et al., 2003; Cameron, 2002; Craig, 2003; Critchley, 2005; Dworkin, 1993). 
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Animal research has shown that baroreceptor activation can decrease cortical arousal 

(Adam, 1998; Dworkin, 1993) and inhibit the processing of nociceptive stimuli 

(Dworkin et al., 1979). Similar research in humans has found baroreceptor activation may 

similarly influence nociceptive processing (Edwards et al., 2002), particularly via 

corticolimbic and brainstem pathways (Gray et al., 2009). Functionally, these 

cardiovascular and visceral feedback mechanisms have been implicated not only in 

adaptive stressor responding, but also in increased risk for hypertension and 

cardiovascular disease (McCubbin, 1993; Rau & Brody, 1994; Zamir& Maixner, 1986). 

Ascending cardiovascular and visceral afferent information arising from both the 

sympathetic and parasympathetic branches of the autonomic nervous system may impact 

other central processes supporting stressor-related cognitive functions and behavioral 

responses, including amygdala-mediated attention, memory and arousal processes 

(Cahill & McGaugh, 1998; Kapp et al., 1992; McGaugh et al., 1996) and cortically-

mediated decision-making processes important for guiding adaptive behaviors (Bechara 

et al., 1999). The primary node in the brainstem that is instrumental for relaying 

ascending visceral afferent information to higher-level corticolimbic systems involved in 

blood pressure control is the nucleus of the solitary tract (Berntson et al., 2003; 

Dampney, 1994; Guyenet, 2006). Specifically, afferent signals due to autonomic changes 

that are detected by peripheral arterial baroreceptors in the carotid sinus and aortic arch 

are transmitted via the glossopharyngeal and vagal nerves, which terminate within the 

nucleus of the solitary tract. From the nucleus of the solitary tract, multi-synaptic 

projections are issued to medullar and pre-autonomic brainstem, midbrain, and 

hypothalamic regions, and higher-level corticolimbic systems, such as the amygdala, 
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insular cortex, and areas of the cingulate, medial and orbital pre-frontal cortices (Allen 

and Cechetto, 1992, 1993; Allen et al., 1991; Berntson et al., 2003; Buchanan and 

Powell, 1993; Dampney, 1994; Dampney et al., 2002, 2003; Verbene and Owens, 1998). 

Viewed as components of an integrated system relying on pathways for the processing 

and feedback, these higher-level corticolimbic systems may represent afferent visceral 

information regarding dynamic (e.g., stressor evoked) autonomic changes in the service 

of adaptive and dynamic cardiovascular regulation (Dampney, 1994; Dampney et al., 

2002). For example, an individual exposed to an environmental stressor would 

experience a rise in blood pressure that triggers an afferent signal which would be relayed 

to the nucleus of the solitary tract for representation by higher level corticolimbic areas. 

In turn, this afferent information is likely to modulate ongoing activity in corticolimbic 

areas in either a positive or negative feedback manner, which could further modulate 

descending corticolimbic signaling with midbrain and brainstem circuits. This signaling 

would serve to adjust ongoing autonomic, neuroendocrine, and cardiovascular 

functioning. This interplay of afferent and efferent systems would then impact the 

magnitude and even duration of stressor-evoked blood pressure changes. Thus, higher-

level corticolimbic areas should not only be viewed only for their top-down influences 

over stressor-evoked blood pressure reactivity, but also as cyclic processes with a 

bottom-up feedback component from autonomic systems may serve to affect the 

magnitude and duration of a stressor induced autonomic-cardiovascular reactions through 

positive and negative feedback mechanisms. These cyclic negative feedback processes 

are likely what govern an individual's recovery time back to baseline levels of autonomic 

activity. Given this, it is possible that individuals with a tendency to show exaggerated 
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cardiovascular and autonomic reactions may also exhibit disregulated patterns of 

feedback and top-down processing between higher-level corticolimbic systems and 

lower-level midbrain and brainstem circuits, which may reflect impairments in efferent 

and visceral afferent regulatory mechanisms (Gianaros et al., 2008). Such disregulated 

connectivity also likely corresponds to impairments as Thayer and Lane (2000) describe 

in their theory of neurovisceral integration. Figure 1 illustrates a possible model that was 

derived from the work of Gianaros & Sheu (2009), Berntson et al., (1998), Dampney 

(1994), Saha (2005), Saper (2002), Thayer & Lane (2000), and Westerhaus & Loewy 

(2001). There remains some question as to whether there is a hemispheric specialization 

related to the autonomic arousal that occurs due to an emotional response. The 

aforementioned research (Damasio et al. 2000; Lane, Chua & Dolan, 1999; Lane et al, 

1997) has generally suggested left hemisphere subcortical activation during emotional 

arousal. However, electrophysiological data presents evidence of right cortical activation 

during unpleasant stimuli. Hagemann, Waldstein & Thayer, (2003) suggest that such 

findings are best explained by the joint function of two inhibitory mechanisms; one that is 

ipsilateral and inhibits efferent subcortical structures and another, which is contralateral. 
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Figure 1. Conceptual diagram of selected brain systems processing of stressor-reiated 
information. PVN; paraventricular nucleus; LHA, lateral hypothalamic area; 
NTS,nucleus of the solitary tract; DVN, dorsal vagal nucleus; NA, nucleus ambiguous; 
CVLM, caudal ventrolateral medulla; RVL, rostral ventrolateral medullary; IML, 
intermediolateral cell column; HR, heart rate; HRV, heart rate variability; BP, blood 
pressure. Blocked endpoints denote inhibitory influences and arrowed endpoints denote 

excitatory influences. 
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The Relation of Executive Function, Attention Regulation and Autonomic Function 

While several models have been proposed to explain the association between the 

emotion-related central nervous system function and autonomic response patterns, it is 

those that have tied cortical and subcortical systems together that have shown the most 

promise. One conceptual model of cardiovascular reactivity proposed by Lovallo and 

colleagues (Lovallo, 2005; Lovallo & Gerin, 2003) integrates concepts of stressor 

appraisal theory (Holroyd & Lazarus. 1982; Lazarus & Folkman, 1984) with 

neurobiological concepts derived from animal research models regarding neural control 

of cardiovascular systems (Bard, 1928; Cannon, 1928, 1932). According to cognitive 

stressor appraisal theory, stress is a transactional process in response to a real or 

perceived demand that is evaluated as threatening or benign, depending on the individual 

and their respective adaptive coping resources (Cohen et al„ 2007; Monroe, 2008). 

Additionally, coping responses that ensue from such processes are believed to influence 

risk for and resilience against ill health, including cardiovascular disease (McEwen, 

2007). 

Lovallo's conceptual model suggests that these processes related to the stressor 

appraisal theory and the resulting neural commands resulting in physiological and 

behavioral stress reactions are instantiated in rostral or corticolimbic brain systems that 

are located above the level of the hypothalamus in the neuroaxis. Hence, according to this 

model, the individual differences found in stressor-evoked cardiovascular reactivity 

would likely originate from altered stressor-related activity along three reciprocally 

interacting levels neural activity that lead from the corticolimbic systems to midbrain and 

brainstem relay pathways and neuromodulatory systems and, finally, to the peripheral 



target organs (i.e., the heart and vasculature) that are physiologically affected by the 

neural inputs. In this instance, the corticolimbic systems allow for the evaluative 

cognitive appraisal of self-relevant psychological and environmental stressors. After 

appraising such demands, corticolimbic systems are theorized to reciprocally signal to 

generate adaptive coping behaviors that include metabolically supportive changes in the 

reactivity of the target organ (e.g., peripheral changes in cardiac output and blood 

pressure) via midbrain and brainstem relay pathways and neuromodulatory systems. An 

individual's tendency to express increased neural activation in response to an evoked 

stressor in corticolimbic systems could, therefore, mediate the peripheral expression of 

exaggerated cardiovascular reactivity. The corticolimbic systems implicated in Lovallo's 

model to regulate stressor evoked cardiovascular reactions include networked divisions of 

the cingulate and medial prefrontal cortices, amygdala, and septal nuclei. Specific relay 

pathways and neuromodulatory systems used by corticolimbic systems to regulate the 

acute expression of cardiovascular reactions include the hypothalamus, ventral 

tegmentum, pontine raphe nucleus, and locus ceruleus. 

Critchley (Critchley et al., 2000, 2003; Critchley, 2005) developed a 

neurobiological model of emotional and cognitive integration utilizing neuroimaging and 

lesion evidence. This model suggests that functional subdivisions of several corticolimbic 

brain systems suggested by the above model from Lovallo, including the cingulate and 

medial prefrontal cortices, insula, and amygdala, are posited to play an instrumental role 

in calibrating autonomic and cardiovascular reactions to stressor evoked adaptive 

behavior. Several neuroimaging studies have shown that behaviorally-evoked changes in 

cardiovascular and cardiac-autonomic activity are correlated directly with neural activity 
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within areas of the cingulate and medial prefrontal cortices, often in interaction with 

activity in the insula, amygdala, and relay regions of the thalamus, hypothalamus, 

midbrain and brainstem (e.g., Critchley, 2005; Critchley et al., 2000; Critchley et al., 

2003; Gianaros et al., 2004; 2005a; 2007; 2008; Gray et al., 2009b; Lane et al., 2001; 

Matthews et al., 2004; Mujica-Parodi et al., 2009; O'Connor et al., 2007; Wager et al., 

2009a; Wager et al., 2009b). Additionally, lesion studies of patients with damage to the 

cingulate cortex done in parallel with these neuroimaging studies further implicate this 

particular corticolimbic system as being critical for coordinating autonomic and 

cardiovascular adjustments with emotional and cognitive behaviors (Critchley, 2005; 

Critchley et al., 2003). 

The model of neurovisceral integration originally developed by Thayer and Lane 

(2000) attempts to account for the complex interplay of cognitive, affective, behavioral 

and physiologic activity that occurs as a result of affective states. The model suggests 

that these interconnections are broken down into functional units that respond to specific 

types of stimuli. One such functional unit is the central autonomic network (Benarroch, 

1993; 1997). Thayer and Lane suggest that the central autonomic network is a common 

central functional network. They have acknowledged that many competing models 

comprise similar brain structures including the anterior executive network (Devinsky, 

Morrell & Vogt, 1995), and the emotion circuit (Damasio, 1998). These structures are 

also very similar to those identified in the models by Critchley and Lovallo. The central 

autonomic network is associated with the processes of response organization and 

selection, and serves to control psychophysiological resources in attention and emotion 

(Thayer & Lane, 2000; Friedman & Thayer, 1998; 1997). This network functions as an 
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integrated component of an internal regulation system through which the brain is able to 

control an array of visceromotor, neuroendocrine, and behavioral responses, which are 

necessary for the completion of the goal-directed behavior and adaptability. Structurally, 

this network is comprised of the anterior cingulate, insular cortex, and ventro-medial pre

frontal cortices, the central nucleus of the amygdala, the paraventricular nucleus of the 

hypothalamus and related regions, the periaquaductal gray matter, the parabrachial 

nucleus, the nucleus of the solitary tract, the nucleus ambiguous, the ventrolateral 

medulla, ventromedial medulla, and the medullary tegmental field. The output of the 

central autonomic network is mediated through the pre-ganglionic sympathetic and 

parasympathetic neurons. These neurons innervate the heart through the stellate ganglia 

and the vagus nerve. The actions of these two inputs to the sino-atrial node of the heart 

are the source of heart rate variability over a given period of time (Saul, 1990). Sensory 

information from organs, such as the heart, also feedback to the central autonomic 

network and affect further changes in the system. Thus, the actions of the central 

autonomic network can be directly linked to heart rate variability and this variability can 

also be viewed as an index of neural feedback between the central and peripheral nervous 

system and central-autonomic integration. 

The central autonomic network is under tonic inhibitory control through the use of 

gamma-am inobutyric acid (GABA) interneurons that are in the nucleus of the solitary 

tract. Disruption of this pathway has been shown to lead to hypertension and sinus 

tachycardia (Benarroch, 1993, 1997; Masterman & Cummings, 1997). This inhibitory 

control by the prefrontal cortex via GABAnergic extensions extends to 

sympathoexcitatory subcortical threat circuits are activated, such as those involving the 
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amygdala and related projections to autonomic, endocrine, and other physiological 

systems (Amat et al., 2005; Thayer & Ruiz-Padial, 2006; Thayer, 2007; Davidson, 2000). 
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CHAPTER III 

CURRENT STUDY 

Given that a significant body of previous work has suggested a relation between 

cognitive function and autonomic-cardiac reactivity (as measured by heart rate 

variability, blood pressure, and heart rate), there still remains the question of exactly 

which areas of cognitive domain account for the individual differences in autonomic-

cardiac reactivity response and associated recovery. Previous research by Waldstein and 

Katzei (2005) has established that higher stress-induced systolic and diastolic blood 

pressure reactivity is associated with poorer performance on tests of immediate and 

delayed verbal memory and executive function (i.e., response inhibition). The authors 

suggest that these differences account for between 3% and 8% of the variance in 

measures. Waldstein and Katzei (2005) was one of the few studies focused on the 

relations of cognitive functioning to autonomic reactivity in participants. Previous studies 

relating blood pressure response to neuropsychological testing did not relate to variability 

in cognitive performance (Pierce & Elias, 1993). Responses elicited in that study were 

modest compared to those seen in the Waldstein and Katzei study. Though, other recent 

findings also indicate that increased autonomic variability was associated with poorer 

performance on cognitive tests, including executive function, or with cognitive 

impairment in both hypertensive and normotensive older adults (Bellelli, Pezzini, 

Bianchetti & Trabucchi, 2002; Kanemaru, Kanemaru & Kuwajima, 2001). Additionally, 

the authors had previously theorized that repeated episodes of stress-induced reactivity 

during daily life may enhance cerebrovascular damage by inducing periods of cerebral 

hypoperfusion or vasospasm, perhaps due to compromised autoregulatory capacity in 
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older adults (Waldstein, Siegel, Lefkowitz, Maier, Pelletier, et al., 2004). Given that 

cerebral hypoperfusion is thought to be particularly important to the ultimate 

development of dementia (Meyer, Rauch. Rauch & Haque, 2000), the authors also 

investigated significant associations between enhanced blood pressure reactivity and 

indexes of silent cerebrovascular disease assessed by MRI in a small subset of the 

participants (i.e., increased white matter disease and silent brain infarction) (Waldstein, 

Siegel & Lefkowitz, 2004) and suggested a relation between blood pressure reactivity 

and poorer cognitive function may be mediated, in part, by silent cerebrovascular disease. 

However, they did not rule out the possibility that a third neurobiological variable may 

simultaneously lead to both enhanced BP reactivity and poorer cognitive function. 

The present study will attempt to replicate and extend the findings in Waldstein and 

Katzel (2005) by examining whether differences in pre-frontal cortical abilities (verbal 

and non-verbal memory, mental flexibility, and response inhibition) account for any 

variance in individual differences related to autonomic-cardiac reactivity. Specifically, 

the study will test whether these cortical abilities determine any significant differences 

either reactivity or recovery of blood pressure, heart rate, and heart rate variability. This 

study will test current models of neurobiology reviewed above that suggest pre-frontal 

cortical activity may inhibit sub-cortical structures in the course of goal-directed 

behavior. In turn, the degree to which inhibition of affective processes occurrence will 

influence respective changes in autonomic regulation during periods of stress. The 

differing levels of sympathetic activation to stressors in the environment will dictate 

variations in the level of physiologic responsiveness and stress hormones released into 

the body. This, in particular, is important when looking for indicators of long-term 
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cognitive dysfunction. Given what the previous research has suggested, we would 

theorize that individuals with high trait levels of attention, memory, mental flexibility, or 

executive function are better protected against the threat of stressful stimuli than those 

with lower trait levels. Thus, those with higher levels of these protective traits would 

likely elicit significantly lower levels of reactivity to an evoked stressor than those with 

lower levels. Additionally, there is the question of whether these higher trait levels of 

cognitive functioning will aid in recovery from stressors. It is possible that differences in 

recovery are responsible for the differences seen in the development of long term 

cardiovascular disease. Alternatively, and perhaps more likely, it is possible that 

individuals that possess traits beneficial in stress-induced reactivity also have an 

advantage in recovery from a stressor induced event. In either case, it is hypothesized that 

greater trait levels of cognitive function allow one to recover more quickly from stressful 

external stimuli. Specifically, it is hypothesized that: 

I. Higher trait levels of response inhibition, mental flexibility, and verbal and 

non-verbal memory will be associated with a significantly lower than 

expected level of stress-induced responding in cardiovascular reactivity as 

compared to those with lower trait levels. 

II. Higher trait levels of response inhibition, mental flexibility, and verbal and 

non-verbal memory will be associated with significantly earlier and more 

substantive recovery from stress-induced cardiovascular reactivity as 

compared to those with lower trait levels. 
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CHAPTER IV 

METHOD 

Participants 

The participants consisted of 360 adult individuals, 180 men and 180 women, 

between 30 and 55 years of age, from the greater southwestern Pennsylvania (Allegheny 

County) area and recruited from a larger study. Subjects were not excluded from 

participation based on HIV status or ethnicity and were recruited in proportion to their 

ethnic representation in the local population. All subjects recruited to take part in the 

study were generally in good health and without reported clinical history of 

atherosclerotic disease (e.g., myocardial infarction, congestive heart failure), 

cardiovascular problems (rheumatic heart fever, abnormal heart rhythm, heart valve 

problem) or related treatment (angioplasty, bypass, and pacemaker), angina or peripheral 

arterial disease claudication. Individuals suffering from other severe and chronic diseases 

affecting general health [within the past year] (e.g., cancer, chronic kidney or liver 

disease, diabetes, thyroid problems, asthma, lung problems, chronic pain) and Central 

Nervous System (CNS) disorders or neurological deficits (multiple sclerosis, Parkinson's 

disease, muscular dystrophy, stroke, transient ischemic attack, embolism, epilepsy or 

convulsive disorders, head injury, loss of consciousness) were also excluded. They were 

also required to not be taking any medications that would interfere with cardiovascular 

function. This included cardiovascular, psychotropic, serotonergic, glucocorticoid, lipid 

lowering, diabetic, or weight-loss drugs, and those drugs prescribed for irritable bowel 

syndrome. 
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Additionally, participants were excluded if they had severe hypertension (a BP of 

180/110 mm Hg or greater), secondary hypertension due to chronic renal insufficiency 

(as indicated by a creatinine level greater than 1.8 mg/dl), suspected hyperaldosteronism, 

a potassium level of less than 3.5 mg/dl, or heavy alcohol consumption (considered to be 

more than 21 drinks per week), diabetes, being significantly overweight or obese 

(indicated by a body mass index of 40 or greater), the presence of an eating disorder such 

as bulimia nervosa or anorexia nervosa, or bariatric (gastric bypass) surgery. These 

exclusionary characteristics were identified during participation in the previous study. 

Finally, because some of the cardiovascular measures associated with the study may be 

affected by pregnancy or lactation-related hormone changes, pregnant or lactating women 

were not eligible for participation in the study (Monk et al., 2001; Altemus et al., 2001). 

Procedure 

Participants completed 4 hours of neuropsychological testing and 3 hours of 

cardiovascular reactivity testing at the Behavioral Physiology Laboratory at the 

University of Pittsburgh on two separate days. Participants were asked to forgo 

consumption of alcohol 24 hours prior to neuropsychological assessment as well as 

medications and dietary supplements for 12 hours prior to session (e.g., cold medications, 

weight loss aids, sleeping pills, muscle relaxants, sleeping pills, and pain medication). 

Prior to cardiovascular reactivity session, participants were asked to forgo caffeine 4 

hours prior session, nicotine 1 hour prior, medications and dietary supplements for 12 

hours prior to session (e.g., cold medications, weight loss aids, sleeping pills, muscle 

relaxants, sleeping pills, pain medication) and vigorous exercise 4 hours prior to sessions. 
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Attention and memory were assessed using the Wechsler Memory Scale - 3rd Ed. 

(WMS-III). Verbal memory was evaluated by means of the Logical Memory subtests 

Part I (Immediate Recall) and Part II (Delayed Recall) of the WMS-III. Part I of this 

subtest consists of two stories, story A is read once to the examinee, which then orally 

provides any information recalled. Story B is read twice to the examinee, with any 

recalled information provided after each reading (Lezak, 2004). The examiner records the 

number of free recall units and thematic units, which represent more general information, 

that are provided by the examinee. The examinee is instructed to try to remember the 

stories because he or she will be asked to tell them again later. Following 30 minutes of 

other testing. Part II is administered and the examinee is asked to provide any 

information recalled from Story A and then Story B. A standard cue is provided if the 

examinee has no memory of a story. The recall and thematic unit scores are again 

recorded. Fifteen yes/no recognition memory questions are then asked about each story 

and the recognition memory scores are recorded (Wechsler, 1997). Nonverbal memory 

was evaluated by the Visual Reproduction subtests Part I (Immediate Recall) and Part II 

(30 minutes Delayed Recall) of the WMS-III. This subtest consists of five drawings that 

an examinee is required to view. The examinee is then asked to reproduce the design 

from memory immediately after the drawing is removed from view. After approximately 

30 minutes has passed, the examinee is again asked to reproduce all the designs from 

memory (Lezak, 2004). 

The WMS-III was designed using a large normative sample ( N  =  1250) with good 

representation of a wide age range of individuals. The test is currently in its third revision 

and has been designed to assess memory, learning, and working memory (Lezak, 2004). 
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Reliability coefficients for immediate memory are .93 for auditory memory and .82 for 

visual memory. Reliability for associated delayed recognition tasks is .87 auditory and 

.83 visual delayed. Logical Memory and Visual Reproduction subtests both have 

reliability coefficients above .70 as well for both immediate and delayed tasks. Haaland, 

Price and Larue (2003) have shown that the instrument is sensitive to differences in 

memory encoding, storage, and retrieval even between normally aging subjects. 

The Stroop Color-Word Test measures working memory, response inhibition and 

cognitive interference, which are dimensions of executive function. The test is based on 

the finding that interference in stimuli changes reaction times (Stroop, 1935). The 

standard format of the task is composed of three parts. The subject is initially required to 

read words representing names of some basic colors in black ink. In the second part, 

he/she must name the color of non-interference objects (e.g. XXX). The third part is the 

subtest of interference. The subtest of interference is based on the assumption that 

looking at the name of a color that differs from the actual color of the word (e.g. the word 

red is written in green) (Lezak, 2004). However, the subject tends to read the name 

instead of saying the color in which the word is written (which is what the instruction 

requires). When reading quickly, the person gets into a conflict-filled stressful situation 

because the answer is influenced by the learned reaction (in this case by the tendency to 

read words, not to name the colors) and the subject must inhibit said reaction in order to 

complete the task. 

MacLeod (1991) completed a review of literature related to the Stroop test. The 

review showed that although there was some inconsistency in the findings, studies by 

Smith and Nyman (1974) and Schubo and Hentschel (1977, 1978) suggested that 
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reliability for this test is good. Santos and Montgomery (1962) directly examined 

reliability, finding it to be good and uninfluenced by events interpolated between test and 

retest. Uechi (1972) also reported high reliability. In the most comprehensive study, 

Jensen (1965) concluded that, with multiple administrations, the Stroop test was probably 

more reliable than any other comparative psychometric test of the time. Additionally, 

there is a body of literature that has suggested selective inhibition is the mechanism with 

defines with Stroop effect. Specifically, Neill and Westberry (1987) studied speed-

accuracy differences and inter-trial intervals and found evidence that after broad 

activation, selective inhibition is used to restrict processing to just the relevant 

information. More recently, Kane and Engle (2003) have shown that individual 

differences in working memory can also predict Stroop performance. 

Trail Making Test parts A and B will assess perceptual-motor speed and executive 

function (e.g., mental flexibility). The Trail Making Test was originally designed as part 

of the Army Individual Test Battery (1944) and has since included in a number of general 

and specific-purpose neuropsychological test batteries (e.g., Halstead-Reitan Battery, 

Reitan, & Wolfson, 1993). The test is given in two parts: Trail Making, Part A (TMT-A) 

involves drawing a line connecting consecutive numbers from 1 to 25. Part B (TMT-B) 

involves drawing a similar line, connecting alternating numbers and letters in sequence 

(i.e., 1-A-2-B and so on). The time to complete each 'trail' is recorded. In the 

standardized administration procedure, examiners point out errors as they occur, and 

error-correction influences the time to complete a trail (Lezak, 2004; Reitan & Wolfson, 

1993). Initially, interpretation of the test rested on the assumption that the difference in 

completion time between TMT-B and TMT-A reflected the additional cognitive control 
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required to switch between sequential numbers and letters, a process generally referred to 

as executive control. TMT-A was assumed to provide a baseline for motor and visual 

control and speed that could then be compared to the time cost of executive control for 

each individual. In addition to the completion times of TMT-A and TMT-B, two derived 

scores are often used for interpretive purposes: the B-A difference, and the B/A ratio. 

These derived scores are calculated to assess relative performance for TMTB and TMT-

A, providing information somewhat independent of motor speed and visual scanning 

speed (Corrigan & Hinkeldey, 1987; Heaton, Nelson, Thompson, Burke, & Franklin, 

1985; Lamberty, Putnam, Chatel, Bieliauskas, & Adams, 1994). Slowed performance on 

TMT-B relative to TMT-A indicates cognitive impairment, specified by some as 

impaired ability to execute and modify a plan of action (Golden, 1981) or general frontal 

lobe dysfunction (Ameiva, Lafont, Auriacombe, Rainville, Orgogozo, Dartigues, & 

Fabrigoule, 1998; Pontius & Yudowitz, 1980). The current study utilized the B/A ratio 

score. 

Participants in this study also completed a psychophysiological assessment. 

Generally, a psychophysiological assessment related to research in cardiovascular 

reactivity involves eliciting a stress response via physical or psychological stressors. In 

laboratory studies, these stressors often require individuals to complete demanding tasks 

that (a) entail consequences, either negative or positive, of motivational or personal 

relevance, and (b) prompt a coping response that enables successful task performance and 

engagement (Kamarck and Lovallo, 2003). The most common psychological stressors 

used to evoke cardiovascular reactivity are those that require engaging in difficult or 

frustrating cognitive tasks that tax executive control processes (e.g., solving mental 
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arithmetic problems, preparing and delivering speeches on interpersonally distressing 

topics, working memory tasks, inverted or mirror-image tracing, and Stroop color-word 

interference tasks). Common are physical stressors that involve immersing a limb in 

painfully cold water (cold pressor task) or squeezing a handgrip dynamometer to 

maintain a constant amount of muscular tension over a prolonged period of time 

(isometric exercise). In most individuals, such stressors will evoke measurable 

cardiovascular changes from a baseline state. However, it is recognized that individuals 

differ markedly in the magnitude, pattern, and duration of cardiovascular changes and 

that some individuals appear to have a trait-like (dispositional) tendency to reliably 

express relatively large-magnitude (exaggerated) and sometimes prolonged stressor-

evoked increases in cardiovascular activity, which are implicated in coronary heart 

disease risk. 

Subjects were presented with three cognitive and psychomotor tests designed to 

mimic tasks encountered in daily life. A Stroop interference task, a memory task, and a 

tracking task were utilized for this study. Measures of blood pressure (BP) and 

continuous measures of heart rate (HR) [by EKG leads attached on the surface of the 

skin] were taken during these tasks. Subjects engaged in three, 6-minute experimental 

tasks chosen to evoke negative emotions. Each task was preceded by a 10-minute 

baseline rest period. The initial rest period served to calculate a baseline for HR, BP, and 

heart rate variability (HRV). Each of the following baseline periods were used to 

calculate recovery as compared to the initial baseline. HRV is calculated using the QRS 

complexes recorded on an electro cardiogram (ECG). Three components of HRV are 

commonly used and will be utilized in the current study: low-frequency heart rate 
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variability (LF-HRV), high-frequency heart rate variability (HF-HRV), and a ratio score 

of high and low frequency hear rate variability (LF: HF-HRV). HF-HRV is generally 

considered to be associated with vagal tone via respiratory sinus arrhythmia. LF-HRV is 

considered to be associated with sympathetic outflow, but has been shown to be 

associated with vagal tone as well. LF: HF-HRV is considered to be a better indicator of 

any changes in HRV due to sympathetic outflow. 

Cardiovascular reactivity is considered to be a reliable psychophysiological 

construct describes the patterns, magnitude, and/or mechanisms of cardiovascular 

responses to psychological stress (Girdler et al., 1995). Recent research has suggested 

that cardiovascular reactivity is stable between periods of days and months, but findings 

related longer periods (i.e. years) are inconsistent and sparse (Kamarck & Lovallo, 2003). 

Additionally, cardiovascular reactivity was found not to overlap with other tests of 

autonomic function, suggesting good construct validity and was at least moderately stable 

across stressors varying in the type of underlying response system elicited (e.g., cardiac 

vs. vascular; active vs. passive). Finally, Kamarck & Lovallo (2003) found that while 

there is evidence of good construct validity, there are inconsistencies when translating 

findings to the real world. There are considerable individual differences in cardiovascular 

reactivity, differences that are related neither to how engaging the task is nor to how well 

research participants perform the task (Krantz, Manuck & Win, 1986; Turner, 1994). 

With regard to computational procedures, there is cumulative evidence from 

cardiovascular reactivity research that change scores computed by subtraction procedures 

(e.g., subtracting baseline from task levels of a cardiovascular parameter) and regression 

procedures (e.g., regressing task on baseline levels and retaining the residual values) 
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show adequate statistical (test-retest) reliability when such scores are averaged across 

multiple stressors sharing similar task dimensions (Kamarck et al., 1992; Kamarck and 

Lovallo, 2003; Llabre, Spitzer, Saab, Ironson, & Schneiderman, 1991; Manuck et al., 

1995). Having utilized numerous psychometric principles in this study, such averaging 

and normalizing of these parameters should minimize nuisance or error variance 

attributable to the idiosyncratic features of particular stressors and also maximizes the 

likelihood of capturing the dispositional properties of a given cardiovascular reactivity 

measure, which are thought to be of most importance for predicting cardiovascular 

disease risk across individuals (Kamarck & Lovallo, 2003). While far less research has 

been done on the reliability of measurement of cardiovascular recovery in laboratory 

studies (largely due to the fact that interest this marker is more recent and fewer studies 

regarding its efficacy have been published), similar procedures were taken to ensure that 

the reliability of recovery measures in this study. 

With regards to the limitations of this method research, previous researchers have 

noted that cardiovascular reactivity patterns vary not only as a function of dispositional 

tendencies of the individual subject, but also as a function of the stressor used in the 

experimental paradigm (Kamarck & Lovallo, 2003; Gianaros & Sheu, 2009). For 

example, a specific experimental stressor may require either an active or passive coping 

behavior. Additionally, the stressor or necessary response may be physical or 

psychological in nature (Obrist, 1981). The neurobiological consequences of such 

differences could suggest the involvement of different brain circuits and pathways 

resulting in divergent or even comparable patterns of observable cardiovascular 

reactivity. For example, a subject attempting to passively cope with the physical pain 
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imposed by a cold pressor task may evoke a rise in BP and HR because of an increase in 

vascular resistance due to a temperature-induced stimulation of alpha-adrenergic 

receptors located on peripheral blood vessels. In contrast, attempting to actively cope 

with psychological stress, imposed by the Stroop color-word interference task, may 

evoke an equivalent rise in BP and HR because of a mixed increase in cardiac output and 

vascular resistance resulting from a centrally-orchestrated stimulation of beta- and alpha-

adrenergic receptors located on the myocardium and blood vessels, respectively 

(Gianaros & Sheu, 2009). Thus, a particular stressor and associated cardiovascular 

changes evoked should be grounded by the caveat that different stressors may elicit 

different (and sometimes similar) patterns of cardiovascular reactivity (e.g., equivalent 

rises in BP, HR, etc.) via diverse neurobiological and peripheral response mechanisms. 

Additionally, such mechanisms may differ in their predictive relevance for cardiovascular 

disease risk (Kamarck & Lovallo, 2003; Obrist, 1981, Gianaros & Sheu, 2009). 

An additional issue that has been noted in the literature is that the ability to 

quantify cardiovascular reactivity in an accurate manner is complicated by physiological 

factors and statistical issues related to the reliable measurement of change (Gianaros & 

Sheu, 2009). Specifically, the magnitude and direction of change from baseline of a given 

cardiovascular parameter often depends on the initial (baseline) level of that parameter. 

This phenomenon, referred to as the principle of initial values, suggests that higher 

overall levels of a given physiological parameter will tend to predict subsequently smaller 

levels of observed change and likely directionally negative change in said parameter 

(Berntson et al., 1994; Stern et al., 2001; Wainer, 1991; Wilder, 1967). Alternatively, 

lower baseline levels of a given physiological parameter will tend to predict larger levels 
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of observed change and likely directionally positive change in said parameter. To limit 

these tendencies in the present study, residual change scores were utilized in other for an 

individual's own baseline scores to serve as a reference point for change. However, even 

using these measures an individual's response level will likely vary according to the 

principal of initial values. 

Participants were also asked to complete two questionnaires regarding their 

affective (Positive Affect-Negative Affect Schedule) and cognitive (i.e., Stress Appraisal 

Measure) reactions to the tasks. These measures were used to measure their state 

emotional reactions to the task. The Positive Affect Negative Affect Schedule (PANAS) 

is a 20-item self-report measure of mood in the present moment. Each item is rated on a 

five-point scale and the items produce two sub-scales: a positive affect scale and a 

negative affect scale. Internal consistency reliabilities in the literature fall in the .8 range, 

and the positive affect subscale correlates negatively with measures of depression, while 

the negative affect scale correlates highly with measures of depressed mood and anxiety 

(Watson & Tellegen, 1988). More recent studies have shown Cronbach's alpha as .82 for 

positive affect and .76 for negative affect (Suhr & Tsanadis, 2007). 

Stress appraisal measure (SAM) by Peacock and Wong (1990) was used to assess 

the perceived level of stress among the sample. The measure consists of 28 statements 

rated on a scale from 1 to 5 (not at all, slightly, moderately, considerably and extremely). 

These statements include questions about the their feelings towards the task and whether 

they feel that it is likely to be resolved (e.g. Do you feel anxious, Do you have the ability 

to do well. Do you feel that the problem is unresolvable, Are you eager to tackle the 

problem, etc) There are seven subscales of the measure and each subscale consists of four 



statements, which assess both primary and secondary cognitive appraisal as well as 

overall stressfulness. The three primary appraisal scales included Threat, Challenge, and 

Centrality. The three secondary appraisal scales included Controllable-by-Self, 

Controllable-by-Others, and Uncontrollable-by-Anyone. The seventh scale of the SAM is 

a more general scale to index overall perceived stressfulness. Peacock and Wong (1990) 

summarized three studies which found the six specific factors to have good internal 

consistency (scores ranged from 0.73 to 0.86) and convergent validity. Threat and 

challenge subscales each accounted for unique variance on the stressfulness subscale, 

suggesting that they were tapping distinct dimensions of the overall experience. 

However, there is some question as to whether other factors may be present (Roesch & 

Rowley, 2005). Currently, the SAM is the only measure of cognitive appraisal in the 

literature that has theoretical and psychometric support for its validity. 
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CHAPTER V 

RESULTS 

Data Reduction 

Four cognitive factors represented the independent variables or predictors in this 

study: mental flexibility, response inhibition, verbal memory and non-verbal memory. 

Scores from four neuropsychological tests were chosen to represent measurements of 

each of the four cognitive factors. A ratio score (B/A) derived from the two components 

of the Trail Making Test was used as a representation of mental flexibility. A ratio score 

was chosen to factor out the perceptual-motor component of the Trail Making Test and 

focus more on mental flexibility. Response inhibition was represented by the scaled 

scores on the interference task of the Stroop Color-Word Test. Verbal memory was 

represented by a summation of scaled scores for both items and thematic events recalled 

on the Logical Memory I and II subtests of the WMS-III. Similarly, non-verbal memory 

was represented by scaled score totals of both item and thematic scores on the Visual 

Reproduction 1 and II subtests of the WMS-III. Each of these four scores was converted 

into a standardized z-score for analysis. 

Regarding the physiological measures (systolic BP, diastolic BP, HR, LF-HRV, 

HF-HRV, and LF: HF-HRV) were utilized as measurements of physiological response to 

a cognitive stressor. Resting or baseline scores for each participant were represented by 

the initial baseline measured prior to the administration of the first stressor task. This 

score was chosen over an average of baseline scores in order to acquire physiological 

measures that were closest to the participants' true baseline measures. Task scores for 

each participant were calculated using an average of the psychological changes elicited 
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through each of the three stressor tasks in order to maximize reliability and variance that 

occurs due to trait characteristics as indicated by previous research (Kamark & Lovallo, 

2003). Recovery scores for BP tasks were similarly averaged together to create a 

recovery score representing seven minutes post-task recovery. For HR and HRV 

measures, ten minutes of post-task recovery data was available. Therefore, recovery 

scores were broken into two five-minute intervals in order to more accurately discern 

patterns in psychological change among participants. For purposes of data analysis, the 

mean cardiovascular values obtained within each period (resting, task, recovery) were 

compared to residual change scores obtained by performing a regression of the 

cardiovascular levels obtained during the rest periods preceding the laboratory 

challenges. Residual change scores were used rather than raw averages to compensate for 

baseline differences among individuals, thus resulting in a more "pure" measure of 

reactivity and recovery. 

Preliminary Analysis 

The data from the 360 original participants was again screened to remove the data 

of any individuals who were missing data in any of the dependent or independent variable 

categories. Additionally, any participant with scores greater than 3.29 standard deviations 

in either direction for the relevant categories was also removed from the sample. After 

removing these participants, the final sample size was 209 participants. The vast majority 

of the participants were removed due to missing data in at least one of the categories 

utilized for this study. The reason for removing these participants from the study was 

two-fold. Any individual without a complete set of baseline physiological measures 

would not be able to produce a residual change score as these scores are estimates of 
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change based on individual baseline performance. Additionally, given the large number 

of subjects available in the database, using only those with a full set of results did not 

affect the power of the study while being able to ensure the results were from a more 

consistent dataset. A small number of subjects were excluded due to outlier scores. Given 

the fact that these outlier scores were often more than 10 standard deviations away from 

the mean, it is likely that these scores were due to experimental error. 

A preliminary power analysis was completed to ensure that the 209 individuals 

were an adequate sample size. Power analyses showed the sample size has appropriate 

power to obtain a statistically significant result even when adjusting for the three other 

independent variables (r = .93). This is in line with previous research related to the topic 

have shown statistically significant differences between groups with sample sizes of 12 to 

20 individuals per group (Davig, Larkin, & Goodie, 2000; Krantz et al., 1988). These 

studies have shown power values of .70 or more and have been classified as medium to 

large power by Cohen (1988). 

Pearson product moment and point biserial correlations were computed for 

relations among sex, age, education, race, handedness, subscale scores for the PAN AS 

(positive and negative affect scales) and SAM (all seven subscales) to examine potential 

covariates. All cognitive factors were found to have significant covariation with 

education and SAM threat scale. As these cognitive factors will be included in all 

analysis, both education and the SAM threat scale will be included in the first step of all 

regressions. Utilizing these covariates in all regressions will help account for educational 

differences and differing levels of anxiety. The covariates found to significantly correlate 

with systolic BP included sex, the PANAS Negative Affect scale, the PANAS Positive 
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Affect scale, the SAM Challenge scale, and the SAM Control Self scale and will also be 

added to the first step of all regressions involving systolic BP. The covariates found to 

significantly correlate with diastolic BP were sex, the PANAS Positive Affect scale, the 

SAM Challenge scale, and the SAM Centrality scale, which were added to the first step 

of those regressions. The covariates found to significantly correlate with HR were sex, 

race, and the SAM Control Self scale. Similarly, these covariates were added to first step 

of regressions involving HR. The covariates found to significantly correlate with LF-

HRV were sex and the SAM Control Other scale. None of the covariates tested showed a 

significant correlation to HF-HRV, so only education and SAM threat scale were 

controlled for in the first step of those regressions. However, sex and age showed a 

significant correlation to the LF: HF-HRV score. As previously mentioned, all 

regressions will include covariates for the cognitive predictors and then each covariate 

found to significantly correlate with a physiologic variable was added to the first step of 

the hierarchical regression related to the respective dependent variable. (See Tables 1-6 

for details regarding correlations.) 
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Table 1 

Correlations between Mean Baseline Physiological Measures and Covariates 

COVARIATES PHYSIOLOGICAL MEASURES 

Sex 

(Males = 1, 

Females = 2) 

Age 

(Years) 

BP- BP- Heart Rate LF-HRV 

Systolic Diastolic (mean (mean 

(mean (mean baseline) baseline) 
baseline) baseline) (r. p) (r, p) 

(r, p) (r, p) 

HF - LF: HF-

HRV HRV 
(mean (mean 

baseline) baseline) 
(r, p) (r, p) 

-.51 ,.00 -.37 ,.00 .29 ,.00 -.14 , .04 -.10, .15 -.26 ,.00 

-,03,.70 .06, .37 -.05, .48 -.11,. 10 -.10, .12 .16,.02 

Race 

(White-I, Black-2) .01, .90 .10, .17 -.14', .03 -.02, .71 -.02, .78 -.11,-11 

Education 

(Years: 

post-secondary, 0-8) 

Total Handedness Scale 

(Right handed= 13, 

Left handed= 39) 

-.10,.17 -.06,-38 -.05,.43 .04, .52 .05, .43 .02, .75 

-.07, .34 -.04,.56 .07, .32 .02, .74 .01, .84 .01,.93 

N = 209 

* = p< .05 

** = p < .01 
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Table 2 

Correlations between Mean Baseline Physiological Measures and PANAS Subscales 

PANAS SUBSCALES PHYSIOLOGICAL MEASURES 

BP-
Systolic 

(mean 
baseline) 

(r, p) 

BP-
Diastolic 

(mean 
baseline) 

(r. p) 

Heart 

Rate 
(mean 

baseline) 
(r, p) 

LF-HRV 
(mean 

baseline) 

(r. p) 

HF-HRV 

(mean 
baseline) 

(r.p) 

LF: 
HF-HRV 

(mean 
baseline) 

(r. p) 

PANAS - Positive Affect 

Scale 

(0 = not at all, 

50 = extremely) 

.01,.96 .03, .72 -.09, .18 .07, .26 .07, .28 -.01,.87 

PANAS - Negative Affect 
Scale 

(0 = not at all, .01, .99 -.03, .73 .02, .83 -.06, .34 -.07, .32 -.04, .54 

50 = extremely) 

N = 209 

* = p < .05 

** = p < .01 
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Table 3 

Correlations between Mean Baseline Physiological Measures and SAM Subscales 

SAM SUBSCALES PHYSIOLOGICAL MEASURES 

BP- BP- Heart LF-HRV HF-HRV LF:HF-

Systolic Diastolic Rate (mean (mean HRV 
(mean (mean (mean baseline) baseline) (mean 

baseline) baseline) baseline) (r, p) (r. p) baseline) 
(r, p) (r, p) (r, p) (r, p) 

SAM Threat Scale 

(1 = not at all, 

5 = extremely) 

SAM Challenge Scale 

(1 = not at all, 

5 = extremely) 

SAM Centrality Scale 

(1 = not at all, 

5 = extremely) 

SAM Self Control Scale 

(1 = not at all, 

5 = extremely) 

SAM Other Control 

Scale 

(1 = not at all, 

5 = extremely) 

SAM Uncontrolled Scale 

(1 = not at all, 

5 = extremely) 

SAM Stress Scale 

(1 = not at all, 5 = 

extremely) 

N = 209 

• = p < .05 

** = p < .01 

.22 ,.01 .18*,.01 .03, .60 -.04, .56 -.04, .55 -.01,.85 

-.09, .17 .03. .68 .11,.09 -.09, .18 -.08, .21 .06, .33 

.16,.02 .11,.12 .03, .65 -.03, .69 -.03, .64 -.01, .94 

.00, .99 .10, .15 .16,.02 -.08, .22 -.07, .26 .03, .61 

.16, .03 .16, .02 .12, .06 -.13,.04 -.11,.08 .05, .46 

.14*, .05 .22", .00 --12, .07 -.04, .58 -.05, .46 .05, .42 

.09, .17 .06, .42 -.02, .71 -.04, .59 -.04, .57 -.04, .57 
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Table 4 

Correlations between Cognitive Predictors and Covariates 

COVARIATES COGNITIVE PREDICTORS 

Sex 

(Males = 1, Females = 2) 

Trails Ratio 
Score 

(Sees) 
(r. p) 

Stroop 
Score 

(T-score) 
(r. P) 

Verbal 

Memory 

(0-70) 
(r, p) 

Nonverbal 

Memory 
(0-50) 
( r .p )  

-.09, .21 .05, .47 .22, .06 -.13, .07 

Age 

(Years) .15, .06 -.04, .61 -.01,.95 -.07, .31 

Race 

(White =1, Black =2) 17, .07 -.18, .06 -.18, .12 -.08, .23 

Education 

(Years: Post-secondary, 0-8) -.25**, .00 .18**, .01 .21**, .01 .31**, .00 

Total Handedness Scale 

(Right handed= 13, 

Left handed= 39) 

-.07, .28 .12, .09 .04, .55 .01,.86 

N = 209 

* = p < .05 

** = p < .01 
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Correlations between Cognitive Predictors and PAN AS Subscales 

59 

PANAS SUBSCALES COGNITIVE PREDICTORS 

PANAS - Positive Affect Scale 

(0 = not at all, 50 = extremely) 

Trails Ratio Score 
(Sees) 

(r.p) 

-.13, .07 

Stroop 

Score 
(T-score) 

(>\ P) 

.03, .70 

Verbal 
Memory 
(0-70) 

(r. p) 

.02, .73 

Nonverbal 
Memory 
(0-50) 

&, p) 

.07, .31 

PANAS - Negative Affect Scale 

(0 = not at all, 50 = extremely) 
.09, .20 -.01, .99 -.14, .06 -.01, .93 

N = 209 

* = p < .05 

** = p< .01 
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Table 6 

Correlations between Cognitive Predictors and SAM Subscales 

SAM SUBSCALES COGNITIVE PREDICTORS 

SAM Threat Scale 

(1 = not at all, 5 = extremely) 

Trails Ratio 
Score 

(Sees) 

&. p) 

Stroop 

Score 
(T-score) 

(r. p) 

Verbal 

Memory 

(0-70) 
(r. p) 

Nonverbal 
Memory 
(0-50) 

(r.p) 

.21**, .01 -.16*. .02 -.21**, .01 -.26**, .00 

SAM Challenge Scale 

(1 = not at all, 5 = extremely) .11,.13 -.11,.11 -.04, .61 -.16, .20 

SAM Centrality Scale 

(l=not at all, 5 = extremely) .19, .06 -.09,.19 -.07, .33 -.17, .13 

SAM Self Control Scale 

(I = not at all, 5 = extremely) -.19, .06 .06, .37 .08, .28 .03, .61 

SAM Other Control Scale 

(1 = not at all, 5 = extremely) -.06, .39 .03, .69 .12, .10 .07, .33 

SAM Uncontrolled Scale 

(I = not at all, 5 = extremely) .09, .06 -.05, .30 -.12, .08 

SAM Stress Scale 

(1 = not at all, 5 = extremely) .10, .16 -.02, .74 -.17, .07 -.09, .17 

N = 209 

* = p < .05 

** = p < .01 
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Main Study Analysis 

To maximize the unique information provided by each neuropsychological test 

and to best determine the contributing role of other variables, multiple hierarchical 

regressions were utilized to examine each cognitive predictor variable (i.e. mental 

flexibility, response inhibition, verbal memory and non-verbal memory). Comparisons 

were completed for cardiovascular reactivity levels, post-task cardiovascular recovery 

levels immediately following the task (five minutes), and recovery levels after a delayed 

rest period (five minutes). BP recovery was measured using a single recovery period 

(seven minutes). Regression coefficients for all regressions included systolic and diastolic 

BP, HR, and spectral components of HRV including: HF-HRV, LF-HRV, and LF: HF-

HRV. For each hierarchical regression, any covariates found to be significantly related to 

the cardiovascular or cognitive measures were entered in as the first level of predictors. 

The second level of predictors was each of the four individual cognitive factors being 

investigated. 

The regression results for the Task period showed no significant correlation 

between systolic BP and mental flexibility (p = .66; covariates: Sex, Education, PANAS 

Negative Affect scale, PANAS Positive Affect scale, SAM Threat Scale, SAM Centrality 

Scale & SAM Uncontrollable Scale), response inhibition (p - .95; covariates: Sex, 

Education, PANAS Negative Affect scale, PANAS Positive Affect scale, SAM Threat 

Scale, SAM Centrality Scale & SAM Uncontrollable Scale), non-verbal memory (p = 

.66; covariates: Sex, Education, PANAS Negative Affect scale, PANAS Positive Affect 

scale, SAM Threat Scale, SAM Centrality Scale & SAM Uncontrollable Scale) or verbal 

memory (p=.64; covariates: Sex, Education, PANAS Negative Affect scale, PANAS 
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Positive Affect scale, SAM Threat Scale, SAM Centrality Scale & SAM Uncontrollable 

Scale). Similarly, the task period showed no significant correlation between diastolic BP 

and mental flexibility (p = .17; covariates: Sex, Education, PANAS Positive Affect scale, 

SAM Threat Scale & SAM Uncontrollable Scale), response inhibition (p = .17; 

covariates: Sex, Education, PANAS Positive Affect scale, SAM Threat Scale & SAM 

Uncontrollable Scale), non-verbal memory (p — . 19; covariates: Sex, Education, PANAS 

Positive Affect scale, SAM Threat Scale & SAM Uncontrollable Scale) or verbal 

memory (p=.44; covariates: Sex, Education, PANAS Positive Affect scale, SAM Threat 

Scale & SAM Uncontrollable Scale). The task period results for HR showed no 

significant correlation between HR and mental flexibility (p = .26; covariates: Sex, 

Education, SAM Threat Scale & SAM Self Control Scale), response inhibition (p = .42; 

covariates: Sex, Education, SAM Threat Scale & SAM Self Control Scale) or non-verbal 

memory (p = .47; covariates: Sex, Education, SAM Threat Scale, & SAM Self Control 

Scale). Scores on the verbal memory were also non-significant, but were marginally 

significant (p = .07; covariates: Sex, Education, SAM Threat Scale & SAM Self Control 

Scale). No significant relationship was seen between LF-HRV and mental flexibility 

(p = .68; covariates: Sex, Education, SAM Threat Scale & SAM Other Control Scale), 

non-verbal memory (p = .23; covariates: Sex, Education, SAM Threat Scale & SAM 

Other Control Scale), or verbal memory (p = .88; covariates: Sex, Education, SAM 

Threat Scale & SAM Other Control Scale). A significant positive correlation between 

LF-HRV and scores in response inhibition (p = .04; covariates: Sex, Education, SAM 

Threat Scale & SAM Other Control Scale) was found. Results for HF-HRV were similar 

to HR as mental flexibility (p = .31; covariates: Education & SAM Threat Scale), 
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response inhibition (p = .09; covariates: Education & SAM Threat Scale) and non-verbal 

memory (p - .42; covariates: Education & SAM Threat Scale) were non-significant, 

while scores on the verbal memory did come close to significance (p = .07; covariates: 

Education & SAM Threat Scale). The results of LF: HF-HRV showed no significant or 

close to significant results to mental flexibility (p = .34; covariates: Sex, Age, Education 

& SAM Threat Scale), response inhibition (p = .74; covariates: Sex, Age, Education & 

SAM Threat Scale), non-verbal memory (p = .17; covariates: Sex, Age, Education & 

SAM Threat Scale), or verbal memory (p = .16; covariates: Sex, Age, Education & SAM 

Threat Scale). (See Table 7 for further details regarding task period regression.) 
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Table 7 

Regression Scores for Blood Pressure and Heart Rate Variability during the Task Period 

PHYSIOLOGICAL 
MEASURES 

COGNITIVE FACTORS 

Trails Ratio 

Score 
(Sees) 
(B. p) 

Stroop 

Score 
(T-score) 

(B.p) 

Verbal Memory 
(0-70) 

(B.p) 

Non

verbal 
Memory 

(0-50) 
( B . p )  

BP -Systolic 

(Mean Task) 
.04, .66 -.01, .95 .04, .64 .04, .66 

BP -Diastolic 
(Mean Task) .12, .17 .17 -.06, .44 .11, .19 

Heart Rate 

(Mean Task) -.08, .26 -.06, .43 .13, .07 -.05, .47 

LF-HRV 
(Mean Task) .03, .68 .15 , .04 -.08, .23 -,01,.8 

HF-HRV 

(Mean Task) .08, .31 .13, .09 -.13, .07 .06, .42 

LF: HF-HRV 
(Mean Task) -.07, .34 .03, .74 .10,.17 -.10, .16 

N = 209 

* = p < .05 

** = p < .01 



65 

The regression results for the BP recovery period (seven minutes) showed no 

significant correlations. Systolic BP did not show any significant relation to mental 

flexibility (p = .95; covariates: Sex, Education, PANAS Negative Affect scale, PANAS 

Positive Affect scale, SAM Threat Scale, SAM Centrality Scale & SAM Uncontrollable 

Scale), response inhibition (p = .25; covariates; Sex, Education, PANAS Negative Affect 

scale, PANAS Positive Affect scale, SAM Threat Scale, SAM Centrality Scale & SAM 

Uncontrollable Scale), non-verbal memory (p -.32; covariates: Sex, Education, PANAS 

Negative Affect scale, PANAS Positive Affect scale, SAM Threat Scale, SAM Centrality 

Scale & SAM Uncontrollable Scale), or verbal memory (p = .41; covariates: Sex, 

Education, SAM Threat Scale, PANAS Negative Affect scale, PANAS Positive Affect 

scale, SAM Centrality Scale & SAM Uncontrollable Scale). Similarly, no significant 

correlations were found between diastolic BP and mental flexibility, but it was 

marginally significant (p = .06; covariates: Sex, Education, PANAS Positive Affect scale, 

SAM Threat Scale & SAM Uncontrollable Scale). Scores for response inhibition 

(p = .81; covariates: Sex, Education, PANAS Positive Affect scale, SAM Threat Scale & 

SAM Uncontrollable Scale), non-verbal memory (p = .22; covariates: Sex, Education, 

SAM Threat Scale & SAM Uncontrollable Scale), and verbal memory were also non

significant (p = .87; covariates: Sex, Education, SAM Threat Scale & SAM 

Uncontrollable Scale). (See Table 8 for further details regarding regression for BP 

recovery.) 

The regression results for the immediate task recovery period (first five minutes) 

showed a significant negative relationship between HR and both mental flexibility 

(p = .04; covariates: Sex, Education, SAM Threat Scale & SAM Self Control Scale) and 
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response inhibition (p = .01; covariates: Sex, Education, SAM Threat Scale & SAM Self 

Control Scale). However, non-verbal memory (p = .97; covariates: Sex, Education, SAM 

Threat Scale & SAM Self Control Scale) and verbal memory tests were non-significant 

(p = .11; covariates: Sex, Education, SAM Threat Scale & SAM Self Control Scale). A 

significant positive correlation was also found between LF-HRV and scores in the 

response inhibition (p = .04; covariates: Sex, Education, SAM Threat Scale & SAM 

Other Control Scale). However, no significant correlation was found between LF-HRV 

and mental flexibility (p = .68; covariates: Sex, Education, SAM Threat Scale & SAM 

Other Control Scale), non-verbal memory (p = .23; covariates: Sex, Education, SAM 

Threat Scale & SAM Other Control Scale), or verbal memory (p = .88; covariates: Sex, 

Education, SAM Threat Scale & SAM Other Control Scale). Results for HF-HRV 

similarly showed a significant positive relationship with response inhibition (p < .01; 

covariates: Education & SAM Threat Scale) and no significant relationship with mental 

flexibility (p = .09; covariates: Education & SAM Threat Scale), non-verbal memory 

(p = .32; covariates: Education & SAM Threat Scale), and verbal memory (p = .28; 

covariates: Education & SAM Threat Scale). Results for the LF: HF-HRV showed a 

significant negative relation to mental flexibility (p = .05; covariates: Sex, Age, 

Education & SAM Threat Scale), but showed no significant relationship to response 

inhibition (p = .94; covariates: Sex, Age, Education & SAM Threat Scale), non-verbal 

memory (p = .55; covariates: Sex, Age, Education & SAM Threat Scale), or verbal 

memory (p = .16; covariates: Sex, Age, Education & SAM Threat Scale). Of note, the 

covariate of sex showed a significant relationship to the LF: HF-HRV score (p = .05). 

(See Table 9 for further details regarding regression for immediate recovery of HRV.) 
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The regression results for the delayed recovery period (second five minutes) 

showed a significant negative correlation between HR and mental flexibility (p = .05; 

covariates: Sex, Education, SAM Threat Scale & SAM Self Control Scale) and response 

inhibition (p = .02; covariates: Sex, Education, SAM Threat Scale & SAM Self Control 

Scale). However, non-verbal memory (p = .53; covariates: Sex, Education, SAM Threat 

Scale & SAM Self Control Scale) and verbal memory tests were non-significant (p = .99; 

covariates: Sex, Education, SAM Threat Scale & SAM Self Control Scale). No 

significant correlation was found LF-HRV and scores response inhibition (p = .07; 

covariates: Sex, Education, SAM Threat Scale & SAM Other Control Scale), mental 

flexibility (p = .60; covariates: Sex, Education, SAM Threat Scale & SAM Other Control 

Scale), non-verbal memory (p = .41; covariates: Sex, Education, SAM Threat Scale & 

SAM Other Control Scale), or the verbal memory (p = . 11; covariates: Sex, Education, 

SAM Threat Scale & SAM Other Control Scale). Results for HF-HRV showed a 

significant positive relationship with response inhibition (p = .01; covariates: Education 

& SAM Threat Scale). However, mental flexibility (p = .41; covariates: Education & 

SAM Threat Scale), non-verbal memory (p = .46; covariates: Education & SAM Threat 

Scale), and verbal memory (p = .18; covariates: Education & SAM Threat Scale) were 

non-significant. The results of LF: HF-HRV showed no significant relation to mental 

flexibility (p = .10; covariates: Sex, Age, Education & SAM Threat Scale), response 

inhibition (p = .28; covariates: Sex, Age, Education & SAM Threat Scale), non-verbal 

memory (p = .65; covariates: Sex, Age, Education & SAM Threat Scale), or verbal 

memory (p = .51; covariates: Sex, Age, Education & SAM Threat Scale). Of note, the 
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covariate of sex again showed a significant difference in LF: HF-HRV (p = .02). (See 

Table 10 for further details regarding regression for delayed recovery of HRV.) 
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Table 8 

Regression Scores for Blood Pressure Variability During the Recovery Period 

PHYSIOLOGICAL MEASURES COGNITIVE FACTORS 

Trails Ratio 

Score 
(Sees) 

(B.p) 

Stroop 

Score 
(T-score) 

(B.p) 

Verbal Memory 

(0-70) 

(B, p) 

Non

verbal 
Memory 

(0-50) 
(B.p) 

BP - Systolic 
(Mean Recovery) .01, .95 .09, .25 .06, .41 .08, .32 

BP - Diastolic 
(Mean Recovery) .15, .06 .02, .81 .01, .87 .10, .22 

N = 209 

* = p < .05 

** = p < .01 
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Table 9 

Regression Scores for Heart Rate Variability during the Immediate Recovery Period 

PHYSIOLOGICAL 
MEASURES 

COGNITIVE FACTORS 

Heart Rate 
(Mean Immediate Recovery) 

Trails Ratio Stroop Verbal Memory Non-
Score Score (0-70) verbal 
(Sees) (T-score) (B, p) Memory 
(B, p) (B. p) (0-50) 

( B . P )  

-.16 ,.04 -.19 ,.01 .01,.99 -.12, .1: 

LF-HRV 
(Mean Immediate Recovery) .01, .98 .18 ,.01 -.09, .21 .02, .82 

HF-HRV 

(Mean Immediate Recovery) .13, .09 .21 , .00 -.07, .32 .08, .28 

LF: HF-HRV 
(Mean Immediate Recovery) -.15,-05 -.01,.94 .04, .55 -.10,.16 

N =209 

* = p < .05 

** = p < .01 
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Table 10 

Regression Scores for Heart Rate Variability During the Delayed Recovery Period 

PHYSIOLOGICAL 

MEASURES 

COGNITIVE FACTORS 

Heart Rate 
(Mean Delayed Recovery) 

Trails Ratio 
Score 
(Sees) 
(LI p) 

Stroop 

Score 
(T-score) 

(B.p) 

-.15,. 05 -.17,.02 

Verbal Memory 

(0-70) 
(B.p) 

Non
verbal 

Memory 
(0-50) 

(B, P )  

.01,.99 -.05, .53 

LF-HRV 

(Mean Delayed Recovery) -.04, .59 .14, .07 - . 1 1 ,  . 1 1  .06, .41 

HF-HRV 
(Mean Delayed Recovery) .06, .41 . 2 1  , . 0 1  -,09,.18 .05, .46 

LF: HF-HRV 
(Mean Delayed Recovery) -.13, .10 -.08, .28 .05, .51 -.03, .65 

N = 209 

* = p < .05 

** = p < .01 
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A Bonferroni correction was instituted to ensure that statistical significance does 

not falsely occur due to multiple comparisons. In this case, the Bonferroni corrected 

value used was based on the number of independent variables (four) and covariates 

(between two and seven) used for each regression. The results of the Bonferroni 

correction for the task period showed a non-significant correlation between LF-HRV and 

response inhibition (p =. 16). The corrected results for the immediate post-task recovery 

period showed a non-significant correlation for HR (p = .06) and response inhibition. 

However, LF-HRV (p = .04), and HF-HRV (p = .02) had a significant positive 

relationship with response inhibition. Additionally, there was no significant correlation 

between HR (p = .26) or LF: HF-HRV score (p = . 19) and mental flexibility. The 

corrected results for the delayed post-task recovery period did not show a significant 

correlation between HR and response inhibition (p = .14) or mental flexibility (p = .34). 

However, HF-HRV (p = .02) and response inhibition continued to show a significant 

positive correlation. 
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CHAPTER VI 

DISCUSSION 

It was hypothesized that those individuals with higher levels of cognitive function 

would exhibit significantly lower levels of stress reactivity and significantly higher levels 

of post-task recovery. However, there was only one significant result in the task found 

after the regression analysis, a significant positive relationship between LF-HRV and 

Stroop Interference scores. However, that result was shown to be non-significant after a 

Bonferroni correction analysis was applied. Given the depth of literature regarding BP 

and HRV reactions to stress, it was expected that more significant relationships would 

have been seen in the task period. These findings need further investigation to determine 

why the reactions in this study did elicit similar reactions to previous studies including 

those using similar data from the same larger study. The two most likely possibilities for 

explaining such a difference from the literature are related to the method of calculation 

used in this study. Many of the studies that reported significant findings used singular 

task measures compared to an individual baseline. The current study utilized averaged 

scores for both the cognitive variables and the physiological measures used. The reason 

for averaging these measures was to better represent trait abilities of participants with 

regards to cognitive performance and physiological reactivity rather than using a 

representation of a single instance, making them more generalized to a variety of 

circumstances. The other difference seen between the current study and others cited 

earlier is the use of residual change scores. Residual change scores are computed by 

comparing task reactivity and recovery scores recorded during physiological testing to 

estimates of ideal individual reactivity and recovery scores mathematically predicted 
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using an individual's own baseline scores. Thus, while previous studies generally 

compared simple change scores (those scores obtained comparing individuals to an 

overall average from participants), the current study compares an individual's reactivity 

and recovery scores to ideals based on his or her own baseline scores to take into account 

individual differences in reactivity. These differences were less prevalent in the recovery 

period than the task period, but may have played the same role in seeing fewer results 

than expected. It is possible that in averaging scores for physiological reactivity, some 

amount of difference between subjects was removed due to the tasks being in sequence 

and a lack of time between tasks to allow all participants to recover back to baseline 

norms and, therefore, recovery differences may influence subsequent task differences. 

In the immediate recovery period, the corrected results show that response 

inhibition performance appears to be a significant predictor of changes in both HF-HRV 

and LF-HRV changes during recovery from an evoked stressor. Furthermore, response 

inhibition showed a positive correlation with both HF-HRV and LF-HRV; that is to say 

that individuals who performed better on the Stroop Interference task had a tendency to 

show significantly higher levels of HRV change than predicted when presented with 

psychologically taxing stressor tasks. This may suggest that those individuals who 

possess greater response inhibition trait abilities (as represented by Stroop Interference 

Task scores) are able to recover more quickly following a stressful task than those with 

poor response inhibition abilities, who do not fully recover and have decreased HRV. 

Given that both HF-HRV (parasympathetic) and LF-HRV (sympathetic and 

parasympathetic) showed significant differences in relation to Stroop Interference scores, 

it may suggest that both parasympathetic and sympathetic processes differ in those with 
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greater response inhibition as opposed to those with relatively weaker response inhibition 

abilities. However, given that LF: HF-HRV showed no significant relationship to 

response inhibition, it is more likely that vagal influence may play a greater role in these 

differences and sympathetic responses play lesser role. 

In the delayed recovery period, those with higher scores in response inhibition 

continued to show evidence of a significant relationship with HF-HRV changes while 

LF-HRV was no longer significant. However, the direction of these changes remained 

consistent in the delayed period. Thus, those with those with better scores on a test of 

response inhibition evidenced greater changes in HF-HRV. As previously mentioned, 

HF-HRV primarily reflects respiratory-modulated parasympathetic outflow, whereas 

LF-HRV is subject to both substantial sympathetic influence and varying amounts of 

parasympathetic contribution. Given that HF-HRV continued to show a significant 

relationship to response inhibition while LF-HRV did not, this would provide further 

support that individuals with better response inhibition abilities are likely to show 

significantly better cardiovascular recovery stemming from vagally controlled 

parasympathetic influences. Alternatively, given the differences seen LF-HRV during the 

task and immediate recovery period, it is possible that superior response inhibition 

abilities may also have some effect on sympathetic influences affecting autonomic 

arousal. Thus, the LF-HRV differences seen may relate to sympathetic and 

parasympathetic influences while HF-HRV differences seen extending into the delayed 

recovery period are more likely due to the ongoing vagally controlled parasympathetic 

influences after the differences in sympathetic influence have reduced between these 

groups due to the removal of the external stressor. However, whether response inhibition 
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affects sympathetic reaction to a stressor or not, the results do suggest that response 

inhibition abilities may play a significant role in influencing parasympathetic activity 

during recovery from a cardiovascular stressor. 

It should also be noted that prior to the Bonferroni correction a number of other 

significant findings were present and should be discussed. The most consistent of these 

findings is related to HR and cognitive factors. Specifically, HR was found to be 

significantly negatively related to both response inhibition and mental flexibility both in 

the immediate and delayed recovery period. Said another way, greater ability in either 

response inhibition or mental flexibility were associated with less change than expected 

in HR throughout the recovery period. While these findings seem counterintuitive given 

the HRV findings, it may simply be that HR is not a very clear indicator of 

cardiovascular response to stress as several covariates were found to have an effect on 

heart rate. Another possibility is that such findings may simply suggest that those with 

better cognitive function are less likely to have less of a response during the task period 

and, thus, produce less change in the recovery period. Given that a similar pattern of 

negative correlation was found with LF: HF-HRV during the immediate task recovery 

period, this may also suggest that those with lower scores on cognitive measures evidence 

greater sympathetic change during recovery. Several regressions also showed some large 

but non-significant differences in HR an LF: HF-HRV related to mental flexibility scores. 

It may be that mental flexibility is related to change in sympathetic activity. An 

additional issue that does need to be noted is that inhibition does play a role in the mental 

flexibility (Trails B) task (as inhibition is needed to efficiently accomplish switching 

between numbers and letters) as well. Thus, at least some of the differences seen may be 
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related to a common response inhibition and mental flexibility component, such as a 

greater ability to handle multiple or complex tasks. As this ability was less prominent in 

the memory tasks, it may explain why those tasks showed no significant relationship to 

physiological measurements. One future avenue of further study may be to delineate 

whether a specific ability like response inhibition or some more complex group of 

abilities, such as a multi-tasking ability (one that may include the ability to divide 

attention between multiple tasks, plan or prioritize between them, and inhibit all but the 

most important tasks), may more accurately reflect differences found in HRV. Finally, 

while a number of covariates were found to have a significant relationship with both 

cognitive and physiological variables utilized here, participant sex had a particularly 

strong relationship to LF: HF-HRV. Several previous studies have suggested that a 

relationship between sex and HRV may be affected by female hormone levels. Greater 

HRV and vagal activity has been found in the follicular phase (Sato et al., 1995; Saeki et 

al., 1997) and greater sympathetic activity during the luteal phase (Guasti et a!., 1999; 

Yildirir et al., 2002) compared with other phases of the menstrual cycle have been 

reported. Previous research has also suggested greater sympathetic activity during peak 

progesterone levels of the luteal phase (Sato et al., 1995; Guasti et al., 1999; Yildirir et 

al., 2002) and increased HR and lower HRV in post-menopausal women following 

combined oestrogen/progesterone hormone replacement therapy (HRT) (Christ et al. 

2002) as possible evidence that progesterone may cause vagal inhibition. Such 

differences are most likely to be highlighted by in LF: HF-HRV scores which look more 

clearly at sympathetic influences in HRV. 
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Regarding the previous findings by Waldstein and Katzel (2005) discussed 

earlier, the current study failed to replicate their findings with regard to systolic and 

diastolic BP reactivity. Additionally, the findings in the previous study regarding logical 

memory were not found to be significantly related to any autonomic measure utilized in 

the current study. The marginally significant findings related to the Trail Making Test in 

the current study were not found to be significant by Waldstein and Katzel. There are 

several reasons that this may have occurred. The most likely of these reasons is that 

Waldstein and Katzel used individual test scores rather than collapsed trait scores to 

compare individuals. The delayed recall measures in the Waldstein and Katzel study were 

less significant than the immediate recall measures for both systolic and diastolic BP, 

only achieving marginal significance with diastolic BP. It is possible that in combining 

all Logical Memory measurements into a single score may have led to a much more 

conservative measurement in this case. The current study also utilized residual change 

scores, or deviation from predicted individual change, rather than raw change differences. 

Waldstein and Katzel also did not utilize any correction procedures which could have 

further lead to the differences seen here. It should also be noted that in the current study 

as well as in the Waldstein and Katzel (2005) study, BP measures covaried with a number 

of affective measures and other relevant factors, thus making smaller significant findings 

difficult to attain. That said, it should be noted that response inhibition (as measured by 

Stroop Interference scores) was found to be a significant factor related to both systolic 

and diastolic BP by Waldstein and Katzel (2005) was also shown to be a significant 

factor related to both LF-HRV and HF-HRV recovery in the current study. Given that 

this cognitive test was most similar to the one utilized in the Walstein and Katzel, it is 
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certainly worth considering that this factor may play a significant underlying role in 

autonomic reactivity. To a lesser degree, HR was also implicated in being affected by 

response inhibition giving further credence to this consideration. Taking into account the 

previous findings and those in the current study, there is certainly strong evidence that 

inhibition plays a significant role in response and recovery to environmentally evoked 

stressors. Given the importance of pre-frontal inhibition in other behavioral contexts, it 

would certainly make intuitive sense that these same pre-frontal regions play a critical 

role is regulating stressor evoked reactions. There is significantly less evidence that other 

cognitive factors play a critical role in autonomic reactivity and recovery. It may be that 

these factors simply play a much less direct role in the process than inhibition and the 

current paradigm may be limited in not seeing those contributions. Certainly, the 

neuropsychological tasks utilized to tap these domains may not portray the most accurate 

representation of these abilities when pertaining to stressor evoked responses. As 

mentioned earlier, it is possible that a more complex group of cognitive abilities are 

responsible for such autonomic differences with response inhibition only being part of a 

larger picture. One additional avenue of research utilized in the current study is discussed 

by Treiber et al., (2001), who have suggested the possibility that such reactivity patterns 

may not be most accurately seen using static methods such as averaging scores, but rather 

through a time series curve that estimates changes. While HRV may be considered a time 

series measurement, BP and HR were not analyzed using a time series approach in the 

current study. However, this is a promising area of interest that may lead to further 

discovery regarding the effect that cognitive factors have on autonomic abilities, 

particularly given the significant findings related to HRV found in the current study. 



CHAPTER VII 

CONCLUSION 

The current study does provide evidence that superior performance in response 

inhibition was significantly positively associated with both LF-HRV (p = .04) and HF-

HRV (p = .02) in the immediate recovery phase and HF-HRV (p = .02) in the delayed 

recovery phase. These findings would suggest that response inhibition likely plays a 

significant role is vagally controlled HRV recovery from stress, but a less significant, if 

any, role affecting sympathetic influences. However, a number of questions remain with 

regard to the role cognitive abilities may play in BP reactivity and recovery as Waldstein 

and Katzel (2005) found significant relationships to cognitive abilities, but the current 

study failed to replicate those findings. Additionally, no significant relationship was seen 

between any cognitive domains and HRV during the task reactivity period. While, there 

has not been much literature tying cognitive abilities to task reactivity, there are a 

significant number of previous work that suggests significant differences in task 

reactivity. While it is certainly possible that cognitive performance does not affect task 

reactivity and only has a significant impact in the recovery period, the question remains 

whether the methods of data reduction and calculation in the current study were too 

conservative. Alternatively, the use of standard static measures for BP and HR may have 

contributed to the lack of findings and time series measure of change for such 

physiological measures may uncover significant differences. Studies using data reduction 

and calculation methods found more commonly in the literature as well as those utilizing 

a more complex time series measure would clarify whether the significant and non

significant findings in the current study are due to differences in calculation between 
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studies or if complex physiological differences are at play in HRV recovery that may not 

be seen in other physiological measures. 
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