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ABSTRACT 

THE EFFECTS OF AUTOMATION EXPERTISE, SYSTEM CONFIDENCE, AND 
IMAGE QUALITY ON TRUST, COMPLIANCE, AND PERFORMANCE 

Randall D. Spain 
Old Dominion University, 2009 

Director: Dr. James P. Bliss 

This study examined the effects of automation expertise, system confidence, and image 

quality on automation trust, compliance, and detection performance. One hundred and 

fifteen participants completed a simulated military target detection task while receiving 

advice from an imperfect diagnostic aid that varied in expertise (expert vs. novice) and 

confidence (75% vs. 50% vs. 25% vs. no aid). The task required participants to detect 

covert enemy targets in simulated synthetic aperture radar (SAR) images. Participants 

reported whether a target was present or absent, their decision-confidence, and their trust 

in the diagnostic system's advice. Results indicated that system confidence and 

automation expertise influenced automation trust, compliance, and measures of detection 

performance, particularly when image quality was poor. Results also highlighted several 

incurred costs of system confidence and automation expertise. Participants were more apt 

to generate false alarms as system confidence increased and when receiving diagnostic 

advice from the expert system. Data also suggest participants adopted an analogical trust 

tuning strategy rather than an analytical strategy when evaluating system confidence 

ratings. This resulted in inappropriate trust when system confidence was low. Theoretical 

and practical implications regarding the effects of system confidence and automation 

expertise on automation trust and the design of diagnostic automation are discussed. 
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INTRODUCTION 

Technological advancements have allowed engineers to introduce automation into 

complex technical systems. Automation is technology that gathers, filters, and organizes 

information, makes decision, and carries out actions that a human would otherwise 

execute (Parasuraman & Riley, 1997). Parasuraman, Sheridan, and Wickens (2000) have 

identified four stages of automation that parallel the stages of human information 

processing. These stages are information acquisition, diagnosis, action selection, and 

execution. Information acquisition automation assists operators by selecting, organizing, 

highlighting, and filtering information that needs to be processed by the operator. 

Examples include information filtering and prioritization, cueing, and highlighting 

(Wickens & Hollands, 2000). Diagnostic automation assists operators by performing 

cognitive operations such as integration and diagnosis. Examples include alerts, alarms 

and decision support systems. Action selection and execution automation assist operators 

by generating decision alternatives and executing actions on behalf of the operator 

(Wickens & Hollands, 2000). 

Despite assumptions that automation can replace the human element, there is 

consensus that the human operator must remain "in-the-loop" as an integral part of the 

system (Parasuraman & Wickens, 2008). Therefore, it has become increasingly important 

to understand how humans interact with automation. One variable that influences the 

joint performance of the human machine "team" is trust. Trust is an attitude that guides 

automation reliance and compliance (Muir, 1989; Lee & Moray, 1992; Lee & See, 2004; 

Parasuraman & Riley, 1997). 

This dissertation adheres to the format of Human Factors 
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Diagnostic automation, such as decision support systems, possesses several facets 

that may affect automation trust. First, diagnostic systems are based on imperfect 

algorithms that function in an uncertain world. Consequently, automation failures are 

likely to occur. These failures can take two forms: automation misses and automation 

false alarms. There is considerable evidence to suggest that false alarms are more 

damaging than misses (Bliss, 2003) and that the two types of errors affect trust related 

behaviors differently. Automation false alarms tend to affect operator compliance, 

whereas automation misses tend to affect operator reliance (Rice, in press). Second, 

operators may or may not have insight into the raw data the system is diagnosing. Having 

access to raw data allows the operator to determine the validity of the diagnosis, rather 

than blindly accepting the system's recommendation (Sorkin & Woods, 1985). When raw 

data are not available, or when the data are too difficult to interpret, the operator has only 

the automation's recommendation to base his or her judgments. In these situations, an 

operator's decision to rely on the system's advice will likely depend on a number of 

factors including his or her perception of automation capability and preconceived 

cognitive biases (Sheridan & Parasuraman, 2006). 

The purpose of this study was to empirically determine how information 

pertaining to automation capability, specifically automation expertise and system 

confidence, affected trust and compliance with an automated diagnostic system during a 

simulated target detection task. The ensuing sections provide a summary of the pertinent 

literature, including a review of the theoretical and empirical literature concerning trust in 

automation, followed by a detailed overview of the research domain and the experimental 

methodology. 
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Defining Automation Trust 

Researchers have defined trust with respect to automation in various ways. Muir 

(1989) defines trust as a generalized expectation related to the occurrence of a future 

event. Sheridan (2002) defines trust as a cause and effect that is based on the judged 

reliability, perceived robustness, and familiarity of automation. In Sheridan's expanded 

definition, he states that trust affects the interaction with automation and the interaction 

with automation affects trust. Lee and See (2004) describe trust as "an attitude that an 

agent will help achieve an individual's goal in a situation characterized by uncertainty 

and vulnerability (pg 54)." In this definition, the agent refers to a human or machine. 

Historical Theories of Automation Trust 

The role of trust in human-computer interaction has been the focus of much 

research over the past two decades (see Dzindolet, Peterson, Pomranky, Pierce, & Beck, 

2003; Madhavan & Wiegmann, 2007; Lee & Moray, 1992, 1994; Lee & See, 2004; Muir, 

1989; Muir & Moray, 1996). From these efforts, researchers have developed various 

theories that describe the development of automation trust. Muir (1989) developed the 

first theory of automation trust. Her Machine Trust Theory states that trust is contingent 

upon a machine's predictability, dependability, and an operator's faith that the machine 

will function for his or her best interest. Muir's theory proposes that in the first stage of 

trust development, predictability, operators observe system performance and make 

judgments concerning a machine's reliability. If the operator observers inconsistencies in 

performance, trust will diminish. As the relationship matures, trust becomes dependent on 

attributions of performance, such as dependability. These attributes can be influenced by 

perceptions of performance and hearsay information regarding the machine's capabilities. 
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The final stage of trust development requires the establishment of faith in future 

performance. That is, the operator must have faith that the machine will reliably perform 

the tasks it was designed to perform. 

Lee and Moray (1992) extended Muir's (1989) theory of automation trust. 

Contrary to Muir's framework, Lee and Moray hypothesized that automation trust 

consisted of four dimensions that were complimentary in nature rather than orthogonal. 

The first dimension, the foundation of trust, represents the fundamental assumption of 

natural order that makes the other levels of trust possible. The second dimension, 

performance, reflects the expectation of consistent, stable, and desirable performance. 

This dimension is similar Muir's concept of predictability. The third dimension, process, 

represents the underlying functioning that guide automation performance. This dimension 

corresponds with Muir's notion of dependability. The fourth dimension, purpose, reflects 

the underlying motives or intent of the machine. Purpose corresponds to faith and 

benevolence, and reflects a positive orientation regarding a machine's future 

performance. 

Lee and Moray (1992) empirically tested their theory by conducting a study in 

which participants completed sixty trials of a simulated orange juice pasteurization task. 

Participants were required to monitor system performance and allocate control of plant 

pump rates and heater settings to manual or automated control. Under manual control, 

participants manually controlled pump rates and settings, whereas under automated 

control automation controlled these settings. To investigate the effect of faults on trust 

and performance, one of the pumps periodically malfunctioned and disrupted juice 

production. The size of the fault ranged in magnitude. Lee and Moray measured trust in 
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the automated system by having participants complete a questionnaire at the close of 

every trial. Results indicated that participants' trust was sensitive to automation failures 

and that the loss of trust was proportional to the magnitude of the automated fault. 

Furthermore, for severe faults, Lee and Moray found that trust did not recover 

instantaneously. 

Using these results, Lee and Moray (1992) computed a mathematical model of 

trust using an autoregressive moving average vector (ARMAV) time series analysis. 

Contrary to Muir's (1989) theory, Lee and Moray found that faith was most closely 

associated with trust, followed by dependability and predictability. Later testing indicated 

that trust alone did not predict whether participants relied on manual or automated 

control. Rather, participants' decision to use automation was best predicted by assessing 

the difference between their trust in automated control and their self-confidence in 

manual control (Lee & Moray, 1994). 

These early theories of automation trust were significant landmarks. They 

proposed that human machine interaction was governed by principles similar human-

human interaction. Over the years, researchers have tested, critiqued, and modified these 

theories to accommodate additional factors that influence automation trust. Next, the 

discussion reviews modern theories of automation trust. For the sake of brevity, two 

prominent trust theories are reviewed: Dzindolet, Pierce, Beck, Dawe, and Anderson's 

(2001) Utility Theory of Automation Trust, and Lee and See's (2004) Appropriate Trust 

Framework. These theories are most relevant to this review because they describe the 

cognitive and behavioral dimensions of automation trust, and emphasize the dynamic 
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relationship between an operator's expectations, biases, and cognitive processes that 

guide automation interaction and automation trust. 

Modern Theories of Automation Trust 

Utility theory of automation trust. Dzindolet et a l ' s (2001) Utility Theory of 

Automation Trust describes the cognitive, social, and motivational processes that 

influence automation trust. This theory states that, when formulating trust judgments, 

human operators compare the perceived reliability of automation to the perceived 

reliability of manual performance. The outcome of this comparison, called the perceived 

utility of automation, determines the level of automation trust. If the perceived utility is 

high, trust in automation will be high and automation dependence is expected. If the 

perceived utility is low, trust will be low and self-reliance is expected. Dzindolet and 

colleagues argue that the perceived utility will only be accurate if an operator knows the 

true reliability of automation and manual performance. Unfortunately, operators seldom 

know the reliability of either. Furthermore, biases can distort reliability estimates. One 

common bias that occurs when operators compare the utility of automation to manual 

control is the perfect automation schema (Dzindolet, Pierce, Beck, & Dawe, 2002). The 

perfect automation schema refers to the expectation that automation will perform 

perfectly. This bias causes operators to readily remember automation errors. As a result, 

operators underestimate the true reliability of automation and disuse it. 

Dzindolet et al.'s (2001) model depicts two important phenomena. First, it notes 

that trust is appropriate when an operator knows the reliability of automated and manual 

performance. Therefore, communicating reliability information to an operator may foster 

appropriate utility estimates. Second, it states that preconceived expectations and 
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cognitive biases can affect trust judgments. Thus, perceptions of performance, as opposed 

to observed performance, may account for variance in trust judgments. 

Lee and See's appropriate trust framework. Lee and See's (2004) Appropriate 

Trust Framework builds upon the theoretical work of Muir (1989) and Lee and Moray 

(1992, 1994) and describes the facets, dynamics, antecedents, and cognitive components 

of automation trust. Appropriate trust refers to the degree of match between the 

operator's trust and the true capability of automation (Lee & See, 2004). 

Lee and See (2004) conceptualize appropriate automation trust according to three 

facets: calibration, resolution, and specificity. Trust calibration refers to the match 

between the operator's level of trust in the automated aid and the automated aid's 

accuracy. Trust calibration is essential for achieving appropriate dependence. If an 

operator's trust is not calibrated to the true accuracy of the system, he or she may misuse 

or disuse the system (Parasuraman & Riley, 1997). Automation misuse refers to over-

reliance on automation, or automation complacency. This "overtrust" occurs because 

operators believe the automated system to be reliable and accurate than human 

performance. Automation disuse refers to under-reliance on automation. This "distrust" 

occurs because operators believe manual performance to be more reliable than automated 

performance. Disuse is associated with the cry-wolf effect, a phenomenon that results 

from frequent exposure to false alarms (see Bliss, 1993; Breznitz, 1984). 

Trust resolution describes how precisely a judgment of trust corresponds to the 

automation's capabilities. Proper resolution is reflected when a range of system 

capabilities maps onto the same range of trust (Lee & See, 2004). 
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Trust specificity refers to trust in a particular component of automation. Trust 

specificity can be both functional and temporal. Functional specificity describes trust in 

sub-functions or modes of automation. An individual with high functional specificity will 

trust specific components of automation, whereas an individual with low functional 

specificity will only trust the capabilities of the overall system. Temporal specificity 

describes changes in trust as a function of changing situations or contexts (Lee & See, 

2004). An individual with high temporal specificity will adjust his or her trust to match 

the capabilities of a system in different contexts and situations. 

Cognitive components of trust. Lee and See (2004) note that trust calibration, 

resolution, and specificity are based on an accurate understanding of an automated aid's 

performance, process, and purpose. Information that forms the basis of these dimensions 

can be assimilated through three different cognitive processes, or tuning methods: 

analytical, analogical and affective methods. Each method uses different cues and 

cognitive processes to formulate trust judgments. 

Trust developed via the analytic method involves observing system performance 

and deducing when the system performs reliably. This method is the most cognitively 

demanding because it depends on human reasoning and an accurate understanding of the 

automation's underlying motives and functions. Furthermore, it requires users to 

formulate accurate reliability estimates across a variety of situations and build trust 

according to these estimates (Cohen, Parasuraman, & Freeman, 1998). 

Trust developed via the analogical method involves using observable cues, such 

as brand name, to infer a broad categorical membership and using these stereotypes to 

calibrate trust. This method is less cognitively demanding because it uses dispositional 
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features of automation, such as expertise and credibility, rather than performance features 

to assimilate trust. Trust based on consumer reviews or hearsay information is an 

example of tuning trust with analogical information (Lee & See, 2004). 

Affective methods for trust development focus on emotional responses to 

automation rather than logic. For instance, Kim and Moon (1998) found that trust in on

line banking systems was influenced by surface level features of the website that 

produced positive affect such as coloring and text, rather than its actual banking 

capability. Affective methods for trust tuning are the least demanding because they use 

affect as a short cut to bypass cognitively demanding appraisal processes. The affective 

method also acts as a barrier because, if the user does not like the system, he or she may 

not use it enough to develop appropriate trust (Lee & See, 2004). 

In review, Lee and See's (2004) framework indicates that appropriate trust is 

based on an accurate understanding of an automated system's performance, process and 

purpose. Information that forms the basis of these dimensions can be assimilated through 

three different methods. Each method focuses on different cues and requires a different 

level of cognitive processing. Lee and See's framework also offers a typology for 

conceptualizing appropriate trust; it conceptualizes trust according to calibration, 

resolution, and specificity. Theoretically, providing operators with information about 

automation capability should promote appropriate trust calibration, resolution, and 

specificity. However, few studies have empirically determined the manner in which 

operators use such information to calibrate trust. 

The next section will review the empirical research concerning the effects of 

system confidence and automation expertise on trust and dependence. These two forms of 
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trust supporting information are of particular interest to this review because they each can 

influence automation trust and trust related behaviors through different cognitive 

processes. 

System Confidence and Trust 

Trust is theorized to be appropriate when an operator is cognizant of the 

capabilities and limitations of automation (Cohen et al., 1998). An operator can learn 

these parameters in a number of ways. For instance, experience with automation can 

provide operators with insight regarding automation reliability and performance 

(Parasuraman & Riley, 1997). Alternatively, if an individual is unfamiliar with a system, 

displaying information related to system capability can inform operators of system 

performance (Dzindolet et al., 2003). Indeed, several studies have found that explicitly 

providing operators with analytic information, such as system reliability, or displaying 

system confidence ratings can facilitate appropriate compliance. One notable example is 

Sorkin, Kantowitz, and Kantowitz's (1988) research on likelihood alarm displays (LAD). 

LADs use multi-level diagnostic signals to express the degree of certainty associated with 

a signal event. Essentially, LADs provide operators with insight regarding the likelihood 

that a signal event is true. To test the effectiveness of LADs, Sorkin et al. designed a 

study that required participants to concurrently perform a monitoring and a tracking task. 

Participants received support for the monitoring task from either an LAD or a traditional 

binary alarm system. The LAD generated graded alarms that were associated with 

different likelihoods of a true signal "signal" event. The binary alarm system generated 

alarms only when a "signal" event occurred. Sorkin et al found that participants who 
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interacted with the LAD performed better and allocated attention more appropriately than 

participants who interacted with the traditional binary display. 

Other researchers have found similar results concerning the utility of LADs. For 

instance, St. John and Manes (2002) found that providing users with analytic information 

through a likelihood cuing system facilitated target search performance, even when the 

system was imperfect. More recently, McGuirl and Sarter (2006) examined the effect of 

dynamic system confidence information on trust and performance during a simulated 

aviation task. Their experiment required pilots to complete 28 simulated flight trials in 

icy conditions. The pilots' goal was to complete each trial without experiencing ice 

induced stalling. To help monitor ice conditions, selected participants received dynamic 

confidence information from an automated Smart Icing System (SIS). This system 

assessed reductions in aircraft stability and performance due to ice build-up. The system 

confidence display was modeled after Sorkin et al.'s (1988) LAD and provided pilots 

with confidence ratings in its own diagnostic capability. To assess the usefulness of this 

display, the researchers created two conditions: a fixed accuracy condition in which the 

reliability of the SIS system was 70% accurate, and an updated condition in which the 

system's confidence fluctuated among three levels: 89%, 50% and 25%. Results 

indicated that pilots who had access to dynamic confidence information made more 

effective flight decisions, more accurate estimates of system accuracy, and had fewer ice 

related stalls than pilots in the fixed condition. Further results demonstrated that 

compliance rates varied as a function of experimental condition. Specifically, participants 

in the fixed condition tended to over-comply with the aid's recommendation, whereas 

participants in the variable condition tended to comply more appropriately. McGuirl and 
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Sarter concluded that the availability of dynamic confidence information led to a 

significant improvement in trust calibration, which in turn, increased appropriate 

compliance and flight performance. 

The results of the aforementioned studies suggest that communicating system 

confidence can facilitate appropriate compliance. However, to date, researchers have not 

explicitly tested the effects of system confidence on automation trust. McGuirl and Sarter 

(2006) assumed that compliance, a behavioral index of trust, was indicative of operators' 

trust in the system. As previously noted, trust is an attitude with behavioral consequences. 

Compliance is a behavioral state that frequently, but not always, relates to trust. Because 

compliance is not a direct measure of trust, it is not appropriate to assume causation in 

this case. A goal of this study was to empirically answer this question and assess the 

effects of system confidence on automation trust. 

System confidence could influence automation trust in two ways. First, operators 

could observe system performance and deduce the system's accuracy for each level of 

system confidence. This resembles an analytic tuning method (Lee & See, 2004). 

Applying this tuning method to the interpretation of system confidence suggests 

operators would reason that (a) when system confidence is high, a signal event is likely 

and (b) when system confidence is low, a signal event is unlikely. In both instances, 

system confidence accurately portrays the state of the world. If operators appropriately 

trust both levels of confidence, then their compliance rates should match the system's 

level of confidence. This type of trust tuning strategy mimics the results reported by 

McGuirl and Sarter (2006). In their study, participants calibrated their compliance rates to 
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the system's level of confidence because, assumingly, they trusted system confidence 

ratings appropriately. 

Alternatively, operators could associate system confidence with the system's 

diagnostic ability and base trust on the perceived ability of the system. This resembles an 

analogical tuning strategy (Lee & See, 2004). Applying this tuning strategy to the 

interpretation of system confidence suggests operators would deduce that high system 

confidence reflects high diagnostic ability and low system confidence reflects poor 

diagnostic ability. Assumingly, operators would be more likely to trust and comply with 

the system when system confidence was high than when system confidence was low. 

Such findings have been reported in the Social Psychology literature. Sniezek and Van 

Swol (2001) had participants perform a decision-making task in which they solicited 

advice from an expert advisor. Results indicated that advisor confidence had a positive 

effect on trust and the tendency to follow the advisor's advice. Specifically, participants 

complied and trusted the advice when advisor confidence was high. 

Automation Expertise and Trust 

As previously discussed, knowledge about automation capability can influence 

trust and compliance. Similarly, expectations concerning system performance can also 

influence automation trust. For instance, receiving hearsay information from a co-worker 

that a system is error prone or reviewing a briefing about the capability of a new system 

can effect expectations of system performance (Lee & See, 2004). One variable related to 

user expectations that has generated considerable attention in the empirical literature is 

advisor expertise. Expertise refers to the level of knowledge an advisor has about a topic 

(Rhine & Severance, 1970). Social psychology research indicates that advisor expertise 
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influences relationships in two ways. First, individuals trust expert advisors more than 

novice advisors (Nan, 2007). Second, individuals are more likely to rely on advice from 

expert advisors than novice advisors (Sniezek & Von Swol, 2001). Of interest to this 

study was whether expertise demonstrates the same degree of persuasion and 

trustworthiness in human-machine relations as it does in interpersonal relationships. 

Several researchers have empirically documented the effects of automation 

expertise on automation trust and dependence. A decade ago, Dijkstra (1999) found that 

individuals tended to over-rely on advice from expert systems. In his experiment, 

participants reviewed three law cases and made decisions concerning each suspect's 

sentencing. To help with each ruling decision, participants had access to the attorney's 

notes and advice from an expert computer system. The computer system analyzed the 

facts from each case and determined the best sentence. Unbeknownst to participants, the 

attorney's notes always contained the correct sentencing, whereas the computer system 

always gave incorrect advice. Dijkstra found that when making their sentencing 

decisions, participants over-relied on the advice from the expert computer system. He 

concluded that the advertised expertise of the system accelerated users' trust in the 

system, which led to over-reliance. Dijkstra also found that participants who relied on the 

expert system exerted less mental effort than participants who relied on the attorney's 

notes. These results suggest that participants used the expert system's advice as a means 

to bypass expending mental effort. 

Dijkstra (1999) explained these results using the Elaboration Likelihood Model 

(ELM; Petty & Cacioppo, 1981). The ELM claims that advice seekers use two different 

paths when evaluating advice: the central route and the peripheral route. Individuals who 
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are highly motivated and confident in their ability to analyze the content of the advice use 

the central route. Individuals who are less motivated to attend to the content of the 

message use the peripheral route. Individuals using the peripheral route base their 

reliance decisions on surface level cues, like the advisor's presumed expertise, whereas 

individuals using the central route base their decision on more detailed cues, like message 

details and the situation. Dijkstra suggested that individuals who relied on counsel from 

the expert system used the peripheral route. Thus, he concluded that expertise influenced 

trust and reliance on the system. Unfortunately, Dijkstra (1999) did not compare advice 

acceptance across different levels of expertise. Therefore, it is hard to determine whether 

automation expertise truly influenced trust and advice acceptance. Nevertheless, 

Dijkstra's study highlights the persuasive role of analogical information, like expertise, in 

human-machine teams. 

More recently, Madhavan and Wiegmann (2007) resolved the limitations of 

Dijkstra's (1999) study by examining the effects of source expertise on trust and 

dependence. In their study, participants completed 200 trials of a simulated luggage-

screening task in which they were responsible for stopping baggage that contained 

contraband. To help with the task, participants received diagnostic advice from an 

advisor. The source (human vs. automation), expertise (novice vs. expert), and reliability 

(70% vs. 90%) of the advice varied across experimental groups. Madhavan and 

Wiegmann found participants trusted the expert advisor more than they trusted the novice 

advisor. Additional analyses revealed that when the automated advisor was 70% reliable, 

the expertise significantly influenced compliance and reliance. At the beginning of the 

task, participants' complied with the expert system more than the novice system. 
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However, these effects faded as participants learned the situational accuracy of the 

system. By the end of the task, participants actually complied with the novice system 

more than they complied with the expert system. This decline in expert system 

compliance reflects a rapid breakdown of the perfect automation schema (Dzindolet et 

al., 2002). Furthermore, Madhavan & Wiegmann (2007) found that automation expertise 

and reliability interacted to influence the participants' perceptions of system reliability. 

When the system was 90% reliable, participants perceived the expert aid to be more 

reliable than the novice system. However, when the system was 70% reliable, individuals 

actually perceived the novice system to be more reliable than the expert system. These 

results suggest that participants seemed to be more forgiving of novice errors than expert 

errors. These results also suggest that incorporating expertise characteristics into the 

design of automated systems actually heightens expectations and hinders trust calibration. 

In a different study, Mayer (2008) examined the role of user expectations on 

automation trust, reliance, and compliance during a simulated warehouse management 

task. Expectations were manipulated by providing participants with a written description 

about an automated warehouse management system that framed likely performance of 

automation in terms of high, low, or standard performance. Mayer found that 

participants' preconceived expectations influenced automation trust and dependence; 

operators who expected the system to perform well trusted and depended on the system 

more than operators who expected the system to perform poorly. However, Mayer noted 

that the differences in automation dependence lasted only through the first session. At the 

conclusion of the experimental session, there were no differences in dependence between 
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participants in the high and low expectation conditions. This rapid decline in dependence 

also illustrates the breakdown of the perfect automation schema. 

Merritt and Ilgen (2008) have also empirically documented the effect of 

automation expertise on trust and dependence. In their study, participants performed a 

simulated luggage-screening task while receiving diagnostic advice from an imperfect 

automation detection system. Prior to interacting with the system, participants read 

detailed instructions that described the system's competence, predictability, and 

dependability. Participants in the "high machine function" group were informed that the 

system was very accurate, performed predictability, and was very dependable. 

Participants in the "low machine function" group were informed that the system was 

inaccurate, unpredictable, and was prone to breakdowns. After participants finished the 

detection task, they completed a questionnaire that assessed subjective trust in the 

diagnostic system. Merritt and Ilgen found that trust predicted how often participants 

used the system. Furthermore, Merritt and Ilgen found that participants' perceptions of 

machine characteristics influenced trust more than actual machine characteristics. These 

findings represent major strides in automation trust research and collectively indicate 

how biases and perceptions about system characteristics can influence automation trust. 

In summary, the literature cited above indicates that automation expertise affects 

trust and dependence. These results can be explained by Lee and See's (2004) appropriate 

trust framework. Analogical methods to trust development use categorical membership as 

a basis for trust. Information, such as automation expertise, influences operators' 

expectancies about likely system performance. Because expert systems are expected to 

perform more reliably and accurately than novice systems, operators calibrate their trust 
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to presumed levels of performance rather than actual performance capabilities. 

Furthermore, these expectances may bias information processing; causing operators to 

activity seek out information that confirms their expectations. Consequently, operators 

may judge imperfect expert systems more harshly than imperfect novice systems, 

particularly because expert errors violate users' expectation of perfect performance. 

Task Difficulty: The Effects of Image Quality on Automation Trust 

There is also evidence that automation trust and dependence are moderated by 

environmental variables, such as task difficulty. One of the fundamental reasons for 

introducing automation into complex task environments is to reduce workload and 

improve performance (Parasuraman & Riley, 1997). Therefore, one could assume that as 

task difficulty increases automation dependence will increase. Indeed, Wickens and 

colleagues have found that operators are more likely to depend on an automated cueing 

system when a task is difficult as opposed to when it is easy (see Wickens, Conejo, & 

Gempler, 1999; Yeh & Wickens, 2000). 

Evidence also suggests that task difficulty can affect the conspicuity of 

automation errors and, in turn, affect automation trust. Madhavan, Wiegmann, and 

Lacson (2006) found that automation errors on tasks easily performed by humans were 

more damaging to automation trust than automation errors on difficult tasks. Maltz and 

Shinar (2003) found similar results in their study, in which participants performed a 

simulated target detection task with the aid of an imperfect automated cueing system. 

Specifically, these researchers found that automated cueing facilitated performance for 

difficult tasks, but hindered performance for easy tasks. In their experiment, task 

difficulty was manipulated by controlling image quality. Matlz and Shinar hypothesized 
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that automation impaired performance on easy tasks because it increased workload. 

However, there could be another explanation for these results. In the easy condition, 

automation errors were more salient because targets and automation miscues were easily 

recognized. After observing repeated automation errors, participants distrusted and 

disused the system (i.e., they relied more on manual performance even though automated 

performance was more reliable). Conversely, in the difficult condition, automation errors 

were not salient. Therefore, participants relied on the system to perform the task. 

Unfortunately, Matlz and Shinar did not measure operator trust; therefore, it is impossible 

to determine if image quality affected trust. A goal of this study was to address this 

limitation. 

Measuring Automation Trust and Dependence 

Subjective measurement techniques. To appropriately understand the relationship 

between trust in automated systems and use of these systems, researchers must be able to 

effectively measure trust (Jian, Bisantz, & Drury, 2000). Many researchers have used 

self-report scales to measure automation trust. For instance, Singh, Molloy and 

Parasuraman (1993) developed the Complacency Potential Rating Scale (CPRS) to 

ascertain people's attitudes toward automation. Lee and Moray (1994), as well as Muir 

and Moray (1996), have measured automation trust with multi-item questionnaires. Other 

researchers, such as Sanchez (2006) and Brown and Galster (2004) have measured trust 

in automated systems with a single item indicator. 

Despite the wide use of subjective measures in automation trust research, their 

validity has rarely been the subject of focused investigation and is often not assessed 

beyond internal consistency reliability. One of the more validated measures for assessing 



20 

automation trust is the System Trust Scale (Jian et al., 2000). The System Trust Scale was 

developed over the course of a three-phase experiment comprised of a word elicitation 

study, a questionnaire study, and a paired-comparison study (Jian et al., 2000). The word 

elicitation study required participants to provide written descriptions of their 

understandings of trust and distrust with respect to trust in people, automation, and trust 

in general. In the second phase, participants rated the extent to which trust and distrust 

were similar with respect to trust in people, automation, and general trust. Results from 

the questionnaire study indicated that trust and distrust were correlated. In the third 

phase, participants completed a paired comparison study. The results of these efforts 

produced a 12-item scale with two subscales for trust and distrust. 

Since its initial development, several researchers have used revised or abbreviated 

versions of the System Trust Scale. For instance, Fallon, Bustamante, Ely, and Bliss 

(2005) used a 10-item modified version of the scale to assess operator trust in alarm 

systems. Results showed that the internal consistency of the modified scale was slightly 

higher than original scale, yielding an internal consistency reliability of a = .93. Safar and 

Turner (2005) used a revised 12-item scale to measure trust in two different Internet 

banking websites. Their evaluation found that the System Trust Scale demonstrated high 

internal consistency and convergent validity. Spain and Bliss (2008) used a revised 12-

item System Trust Scale to measure trust in sonification systems. Similar to Fallon et al. 

(2005), their evaluation found that two of the original items did not offer sound 

psychometric fit with the underlying factor structure. The resulting 10-item scale yielded 

a high internal consistency reliability (a = .91). More recently, Spain, Bustamante, and 

Bliss (2008) performed a psychometric evaluation of the System Trust Scale to assess its 
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construct validity. Using structural equation modeling, these researchers found that the 

scale accurately measured trust and distrust, and that these constructs were distinct, yet 

related, factors. 

Behavioral measurement techniques. In addition to subjective measurement 

techniques, many researchers use behavioral indices of dependence to gauge automation 

trust. The assumption is that trust is an attitude with behavioral consequences; thus, if an 

operator trusts automation he or she will rely on it. 

Meyer (2004) suggests that researchers should dichotomize automation 

dependence into reliance and compliance. Reliance refers to the action an operator takes 

when automation identifies the state of the world as being "all is well." Compliance 

refers to the action the operator takes when automation identifies a "signal event" in the 

world. In target detection paradigms, compliance refers to an operator responding 'target 

present' when the automation says 'target present'. Conversely, reliance is demonstrated 

when an operator responds 'target absent' when automation indicates 'target absent'. 

Ideally, an operator's strategy to comply and rely on automation will match the accuracy 

of the automated aid. Compliance and reliance are appropriate strategies when 

automation generates a correct response (hit or correct rejection). Conversely, compliance 

and reliance are poor strategies when automation errs. 

The distinction between reliance and compliance is important for several reasons. 

First, evidence suggests that false alarm prone automation will influence an individual's 

decision to comply with automation whereas miss prone automation will influence an 

operators decision to rely on automation (Rice, in press). Thus, system errors have 
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differential effects on strategy adoption. Second, reliance and compliance are behavioral 

indices that may depend on features of automation such as confidence or expertise. 

The timing of subjective trust assessment. One concern regarding the assessment 

of automation trust is the timing of trust measurement. Many researchers choose to 

measure trust subjectively, either prior to, or after, participants interact with a system. 

Though recording trust in this manner provides an accurate account of overall system 

trust, it does not fare well for measuring the dynamics of trust. Other researchers assume 

that compliance and reliance are indicative of trust and can therefore be used as a 

measure of trust. However, as stated above, reliance and compliance are behaviors that 

are guided by, but not always related to, trust. Therefore, it is inappropriate to assume 

that compliance and reliance are indicative of trust. 

To examine the dynamics of trust, researchers must measure trust intermittently 

over the course of the task. To date, few researchers have measured trust subjectively on 

a trial-by-trial basis, thus providing a micro-scale assessment of automation trust. Part of 

the reason so few researchers have examined trust in this manner is because it is difficult 

and impractical to administer a 12-item measure such as the System Trust Scale after 

each experimental trial. Furthermore, many researchers fail to differentiate between trust 

as an attitude and trust as a behavior. One of the goals of this study was to document 

trust, subjectively and behaviorally, across time. 

Review and Limitations in Previous Research 

In review, trust is an important psychological construct that mediates human 

interaction with automation. Trust largely depends on perceptions of automation 

capability (Sheridan & Parasuraman, 2006). Therefore, trust and dependence are more 
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likely to be appropriate when operators have information about an automated system's 

capability. Lee and See (2004) identify three methods by which operators can assimilate 

trust related information: analytic, analogical, and affective methods. Empirical evidence 

suggests that displaying system confidence can promote appropriate dependence 

(McGuirl & Sarter, 2006). Evidence also suggests that automation expertise can influence 

operators' expectancies regarding system performance, which ultimately can affect trust 

and dependence (Madhavan & Wiegmann, 2007; Mayer, 2008; Merritt & Ilgen, 2008). 

To date, few studies have examined the influence of system confidence on 

subjective trust. Such research is important for several reasons. If system confidence 

ratings are proposed to indicate situational accuracy of the automated aid's capability, 

one could postulate that communicating this information to an operator would promote 

appropriate trust and dependence (Lee & See, 2004). Furthermore, preconceived biases 

could influence the manner in which operators interpret confidence ratings from expert 

and novice systems. In such a case, the expertise and confidence of a system could 

influence trust and compliance. For example, in the context of military target detection, a 

soldier may trust and depend on a highly confident expert targeting system more than a 

highly confident novice targeting system, even though the actual reliabilities of the two 

systems are the same. Unfortunately, the combined effects of system confidence and 

automation expertise on trust and compliance are unknown. Theoretically, understanding 

these effects would fill a void in the existing literature and provide valuable insight for 

developing a model of automation trust and decision-making in complex environments. 

A second limitation with current research is that few studies have examined the 

influence of system confidence and automation expertise on target detection 
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performance. Such research is important for several reasons. There are currently several 

automated systems, such as automated target recognition (ATR) systems, that provide 

operators with diagnostic confidence ratings (Sterling & Jacobson, 2006). Ideally, 

providing operators with system confidence would minimize false alarms and increase 

detection performance. However, few studies have empirically examined the benefit of 

system confidence from a performance standpoint. Understanding the benefits or 

drawbacks of incorporating system confidence ratings into automated detection systems 

is critical for the refinement and development of future systems. Furthermore, 

expectations regarding system performance could influence an operator's decision bias. 

That is, an operator may be more willing to comply with an expert system than a novice 

system because of preconceived biases concerning the performance standard of an expert 

system. Consequently, operators may be more prone to false alarms when interacting 

with expert systems. Currently, the design of expert systems and their effects on 

performance is not under study. This is a limitation because it is not only the quality of 

the underlying algorithms that guides human-automation performance (Sorkin & Woods, 

1985), but how the information is rendered and communicated to the operator. A goal of 

this study was to empirically document the effects of automation expertise and system 

confidence on task performance. 

A third limitation with existing research relates to the manner in which 

researchers have measured trust. Existing studies have assumed that compliance, a 

behavioral index of trust, is indicative of operator trust. However, trust is an attitude that 

influences, but does not completely determine, compliance. Furthermore, the few studies 

that have assessed subjective trust have measured trust either prior to, or after, interacting 
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with the automated system. While this measurement technique may provide valuable 

information concerning trust calibration, it fails to capture the dynamics of trust. To 

capture the dynamics of trust, researchers must measure trust intermittently. Recording 

trust on a trial-by-trial basis should allow valuable insight into the development and 

maintenance of trust. Furthermore, measuring trust on a trial-by-trial basis would allow 

the assessment of system confidence and automation expertise on automation trust over 

time. 

Finally, existing research has not determined how system confidence and 

automation expertise support trust across different levels of image quality. There may be 

instances in which automation expertise or system confidence emerges as an important 

factor that affects automation trust and compliance. For instance, in the context of 

military target detection, soldiers may blindly follow the advice of a diagnostic aid if the 

aid has a reputation for being state-of-the-art, especially when target detection is difficult. 

Such heightened expectations may also have a dramatic effect on automation usage 

decisions, especially when the aid errs. Dzindolet et al. (2002) reports that dissonance 

between alleged expertise and actual performance standards may cause operators to 

abandon automation, even when aided performance is statistically more accurate than 

manual performance. Therefore, it is important to determine how image quality 

influences trust and compliance. 

Purpose of Current Study 

The purpose of the current study was to determine the effects of system 

confidence, automation expertise, and image quality on trust, compliance, and 

performance. Previous research on automation trust suggests a conceptual model where 
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information pertaining to automation capability, such as automation expertise and system 

confidence, influences trust and compliance (see Figure 1). In that model, operators 

appraise system and task information and filter it through cognitive biases. The resultant 

appraisal of automation capability and manual capability influences automation trust and 

compliance. Based on this model and previous research, the following hypotheses were 

tested. 

System 
I Confidence \ 

Automation 
Expertise 

j Task Difficulty j 
• {Uncertainty) 
| "image quality j 

(Properties ol System & Task) {Cognitive Processes) (Outcomes) 

Figure 1. Model depicting the effects of system confidence, automation expertise and 
image quality on trust and compliance. 

Trust Hypotheses 

Main effect of system confidence on trust (Hypothesis 1). Trust is theorized to be 

influenced by perceptions of automation capability (Lee & See, 2004). Thus, cues such as 

system confidence, may affect trust. As such, I hypothesized that system confidence 

would positively impact trust ratings. This effect was predicted to manifest itself in a 

significant main effect of system confidence for diagnostic trust. 

Appraisal of 
Automation 
Capability 

Appraisal of 
Manual Capability 



Interaction between system confidence, automation expertise, and image quality 

on trust (Hypothesis 2). System confidence and automation expertise reflect two sources 

of trust supporting information. Because these two processes do not exist in a vacuum, I 

expected a significant interaction. Specifically, I hypothesized that participants would 

weigh diagnostic confidence from expert and novice systems differently (Sniezek & Von 

Swol, 2001). Moreover, these differential weighting effects were predicted to be more 

salient when image quality was low than when image quality was high. These effects 

were predicted to manifest in a significant interaction of system confidence, automation 

expertise and image quality on trust. 

Interaction between automation expertise, system confidence and time on trust 

(Hypothesis 3). Dzindolet et al.'s (2002) notion of the breakdown of the perfect 

automation schema suggests that automation errors significantly decrease perceptions of 

system accuracy, which can cause mistrust. This loss of trust may be more evident in 

"expert systems" because of the heightened expectation surrounding their performance 

standards. Indeed, previous research has indicated that compliance decreases as operators 

learn a system's true accuracy and that this decrease is more evident for expert systems 

than novice systems (Madhavan & Wiegmann, 2007; Mayer, 2008). However, 

researchers have yet to explicitly measure this change in trust. Based on previous 

research, I expected trust in the expert system to decrease more rapidly than trust in the 

novice system. However, I also expected system confidence ratings to moderate this 

effect. Specifically, I expected the system confidence ratings to mitigate the loss of trust 

associated with expert errors particularly when system confidence was high. This 

hypothesis was rooted in previous research by McGuirl and Sarter (2006) and Bliss and 
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Dunn and Fuller (1995) who demonstrated that confidence information can induce 

compliance with diagnostic system advice and mitigate the loss of trust associated with 

automation errors. This effect was predicted to manifest in a significant interaction of 

system confidence, automation expertise and session on trust 

Compliance Hypotheses 

Interaction between automation expertise, system confidence, and image quality 

on compliance (Hypothesis 4). Based on the literature and similar to Hypothesis 2,1 

expected participants to calibrate their compliance to the system's level of confidence 

(McGuirl & Sarter, 2006). I also expected an interaction between system confidence, 

automation expertise, and image quality. Specifically, I predicted that participants would 

comply more often with the expert system than the novice system when system 

confidence was high. I further hypothesized that this interaction would be greater when 

image quality was low than when image quality was high. 

Interaction between automation expertise, system confidence, and time on 

compliance (Hypothesis 5). Previous research indicates that compliance with advice from 

expert systems decreases when the aid errs (Madhavan & Wiegmann, 2007). This change 

is assumed to be a direct result of a breakdown in participants' perfect automation 

schema (Dzindolet et al., 2002). Therefore, I expected to find a significant interaction 

between session and automation expertise on compliance. Specifically, I expected 

compliance with the expert system to decline more rapidly over the course of the 

experiment than compliance with the novice system. Similar to the trust hypothesis, I also 

expected system confidence to mitigate the loss of compliance with expert errors. 
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Performance Hypotheses 

Detection sensitivity hypotheses. I expected participants to be more accurate when 

they received automated assistance than when they performed the task manually. I also 

expected system confidence and image quality to interact and significantly influence 

detection sensitivity. Specifically, I expected participants to correctly identify more 

targets when image quality was high and the automated system was highly confident that 

a target was present than when image quality was high and the system was not confident 

that a target was present. 

Response bias hypotheses. With regard to detection bias, I expected participants 

to more bias (i.e., indicate that a target was present more often) when they interacted with 

the expert system. Conversely, I expected participants to be more conservative (i.e., 

indicate that a target was present less often) when they interacted with the novice system. 

I also expected participants to be more liberal when image quality was low as compared 

to when image quality was high. Furthermore, I expected participants to adopt a liberal 

bias on trials in which the system was highly confident a target was present, and a 

conservative bias on trials in which the system was not confident that a target was 

present. 
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METHOD 

Experimental Design 

A 2 (Automation Expertise: expert, novice) x 4 (System Confidence: 75%, 50%, 

25%, no aid) x 2 (Image Quality: high, low) x 3 (Session: 1, 2, 3) mixed subjects factorial 

design was used for this experiment. In addition, a single control group was added to the 

experimental design. Automation expertise was manipulated between subjects so that 

operators interacted with a single system over the course of the experiment. System 

confidence, image quality, and session were modeled as within subject variables. System 

confidence varied randomly on a trial-by-trial basis within each experimental session. 

The experimental design was crossed using a Latin-square design. Dependent variables 

included initial trust, diagnosis trust, overall system trust, perceived system reliability, 

automation compliance, and detection performance. Detection performance was assessed 

using signal detection theory measures of sensitivity (d' prime) and bias (c). 

Participants 

One hundred and fifteen undergraduate students from Old Dominion University, 

selected through convenience sampling, participated in this study. According to Keppel 

and Wickens' (2004) sample size calculation formula, this sample size achieved an 

experimental power of .80 with a medium effect size of .25. Participants received one and 

a half extra credit points for participating. Participants were at least 18 years of age (M = 

22.22, SD = 5.96) and had normal or corrected-to-normal vision. Of the 115 participants, 

42 were male and 73 were female. All participants were treated in accordance with the 

American Psychological Association's "Ethical Principles of Psychologists and Code of 

Conduct" (American Psychological Association, 2002). 
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Materials and Apparatus 

Informative flyer. A flyer that described the purpose of the study was posted on 

Old Dominion University's online research participation system, SONA™ , to advertise 

the study (see Appendix A). 

Participant background information form. Participants completed a background 

information form that assessed demographic information such as age, class status, 

computer usage, and opinions concerning automation. The form also asked questions 

pertaining to participants' visual deficiencies (see Appendix B). 

Experiment instructions. The experiment instructions described the nature of the 

study and provided participants with a description of the automated system that assisted 

them during the experiment (see Appendix C). 

Post instruction questionnaire. A post instruction questionnaire was used to 

ensure that participants understood the expertise, purpose, development history, and 

performance standards of the automated system that assisted them during the experiment 

(see Appendix D). Participants were required to correctly answer each question before 

proceeding to the data collection phase. 

Trust questionnaire. A modified version Jian et al.'s (2000) System Trust Scale 

(see Appendices E & F) was used to assess the level of trust participants maintained in 

the automated diagnostic system during the experiment. The System Trust Scale 

contained 12 items, seven of which were intended to assess trust and five of which were 

intended to assess distrust in automated systems. Each item was measured on a 7-point 

Likert-type scale. 
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Diagnosis trust. Diagnosis trust was operationally defined as participants' trust in 

the system's diagnosis. This variable was measured after each trial using a single item 

indicator that ranged from 1 (not at all) to 5 (very much so) on a Likert-type scale. 

Specifically, the item asked, "Do you trust the system's diagnosis?" Because participants 

did not receive diagnostic assistance on "no aid" trials, diagnostic trust was not assessed 

during those trials. 

Opinion questionnaire. Upon finishing the experiment, participants completed an 

opinion questionnaire. The opinion questionnaire assessed subjective levels of stress, 

image quality, and task stimulation. Participants also reported strategies they adopted for 

completing the detection task (see Appendix G). 

Apparatus. A simulated military target detection scenario served as the primary 

task. The scenario was created using Visual Basic 6.0™. The simulation was hosted on 

IBM compatible 3.20 GHz Intel Pentium D computers. Each computer had a 17-inch 

monitor. The scenario required participants to search for covert enemy targets in two 

types of images, high quality and low quality images. During the task, participants 

received diagnostic advice from an automated target detection system that varied in 

expertise (expert vs. novice) and confidence (75%, 50%, 25%, no aid). As shown in 

Figure 2, targets (i.e., foes) always faced left; friendly objects always faced right. 

Approximately half of the images contained an enemy target. The type (i.e., Hum-V, 

Soldier, or Tank) and placement of the target randomly varied within the images. 
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Figure 2. Experimental stimuli: (a) HUM-V, (b) soldier, (c) tank, (d) helicopter, (e) tree, 
(f) truck. 

Experimental Manipulations 

Automation expertise. Automation expertise was manipulated by providing 

participants with written descriptions concerning the automated system's technology, 

development history, system specifications, testing, and performance capability (see 

Table 1). Previous researchers have used a similar technique to manipulate automation 

perceptions of automation capability (see Madhavan & Wiegmann, 2007; Mayer, 2008). 

To ensure that the descriptions were comparable in construction and clarity, twenty 

participants were recruited to read each dimension (i.e., technology history, system 

specification, etc.) and rated the comparability of the language, grammar, sentence 

construction, and length between both systems. Ratings ranged from 1 (not comparable) 

to 5 (completely comparable). Then, participants read each description in its entirety and 
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rated the "credibility" of each system using a seven-point scale ranging from 1 (not at all 

credible) to 7 (very credible). 

Table 1: System characteristics for novice and expert systems 
Dimension 

Introduction 

System 
technology 

Development 
history 

System 
specifications 

System testing 

Expected 
system 

performance 

SYSTEM 1 

Today you will perform a target 
detection task and will receive 
advice from CONTRAST 
DETECTOR. 

CONTRAST DETECTOR is an 
automated diagnostic aid that has 
been designed to identify military 
targets in synthetic aperture radar 
(SAR) images. CONTRAST 
DETECTOR is based upon 
technology used in military target 
detection over the past 10 years. 

CONTRAST DETECTOR was 
designed and developed at a 
small technical college in the 
Midwest that contains a small 
department in military target 
detection. 

CONTRAST DETECTOR 
currently possesses a limited 
database of the types of modern 
weapons and targets commonly 
found in today's military 
operations. Its algorithms are 
relatively ineffective in their 
attempts to detect enemy targets. 

Recent testing indicates that the 
accuracy, dependability, and 
robustness of CONTRAST 
DETECTOR do not meet the 
standard for military target 
detection systems. 

The U.S. Department of Defense 
is considering whether to conduct 
limited field-testing using 
CONTRAST DETECTOR. 

SYSTEM 2 

Today you will perform a target 
detection task and will receive 
advice from SUPER CONTRAST 
DETECTOR. 

SUPER CONTRAST DETECTOR 
is an automated diagnostic aid that 
has been designed to identify 
military targets in synthetic 
aperture radar (SAR) images. 
SUPER CONTRAST DETECTOR 
is based upon, but far exceeds, 
technology used in military target 
detection over the past 10 years. 
SUPER CONTRAST DETECTOR 
was designed and developed by the 
nations top military research firm 
in Washington D.C. that contains a 
highly specialized department in 
military target detection. 

SUPER CONTRAST DETECTOR 
currently possesses an extensive 
database of the types of modern 
weapons found in today's military 
operations. Its algorithms are 
highly effective in their attempts to 
detect enemy targets. 

Recent testing indicates that the 
accuracy, dependability, and 
robustness of SUPER 
CONTRAST DETECTOR set the 
standard for military target 
detection systems. 

The U.S. Department of Defense is 
currently using SUPER 
CONTRAST DETECTOR in its 
Middle Eastern military 
operations. 
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Pilot study results indicated that all comparisons received average comparability 

ratings of 4.0 or higher. The only exception was the dimension 'System Technology' 

which received an average comparability rating of 3.1. Consequently, this description 

was modified. Following the modification, ten additional participants read and rated the 

system descriptions. Analyses indicated that each dimension averaged at least 4.0 on 

comparability. Because each system varied only in their description, not their 

performance capability, automation expertise provided analogical information regarding 

automation capability. 

System confidence. System confidence was manipulated by providing participants 

with four levels of diagnostic confidence: 75%, 50%, 25% and no aid. Participants were 

informed both verbally and in the written instructions that the confidence estimates were 

based on how well the information collected from the system's detection algorithms 

matched the enemy template located in the system's target database. They were also 

informed that higher confidence estimates were associated with a higher probability of a 

target being present. System confidence ratings were presented numerically and 

graphically. A 75% rating was displayed with a red bar three-fourths the size of the 

horizontal indicator with the rating superimposed in black font (Figure 3). A 50% rating 

was displayed with an orange bar, one-half the size of the horizontal indicator, with the 

rating superimposed in black font. A 25% rating was displayed with a yellow bar, one-

fourth the size of a horizontal indicator, with the rating superimposed in black font. On 

trials with no aid, participants did not receive diagnostic advice from the system. Each 

participant received 24 high confidence, 24 neutral confidence, 24 low confidence trials, 
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and 24 no aid trials. In these four conditions, a target was present on 75%, 50%, 25%, and 

50% of the trials, respectively. These levels were chosen for two reasons. 

Super-Detector indicated that a target 
could be present 

confidence: 

Would you like to indicate that a target was 
present? 

Figure 3. Screen-shot of simulation interface. 

First, as McGuirl and Sarter (2006) noted, using a range of confidence estimates 

assures that there is a perceptually distinct difference in performance between each level 

of confidence. Second, current technologies, such as automated target recognition (ATR) 

systems, provide operators with a range of confidence estimates. Therefore, the levels in 

the current study were chosen to increase the ecological validity of the simulation. 

Because each level of system confidence was associated with a unique probability of a 

target being present, system confidence provided analytical information regarding the 

capability of the detection system. 
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Image quality. Image quality was manipulated as an independent variable by 

introducing random pixel noise into the simulated SAR images using Adobe® 

Photoshop® CS3 Expanded version 10.0.1 for Macintosh. This program allows users to 

increase image distortion from 10% to 400% in magnitude. Two types of images were 

created, moderately distorted and severely distorted, which coincided with noise levels of 

100% and 200%, respectively. Entin, Entin, MacMillan, and Serfaty (1995) and 

MacMillan, Entin, and Serfaty (1994) each used a similar technique to control image 

noise in their target detection research. Additionally, the distortion levels replicated those 

of real SAR images, thus promoting the ecological validity of the simulation. Figures 4a 

and 4b show an image with distortion rates of 100% and 200%, respectively. 
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Figure 4. Image distortion percentages (a) 100% and (b) 200%. 

Results from pilot testing indicated that target detection was more difficult for the 

severely distorted images (M= 105.92, SD =13.01) than the moderately distorted images 
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(M= 115.92, SD =19.88), F(l, 25) = 5.09,;? < .033. Therefore, I categorized the two 

picture types as being representative of two levels of image quality; classifying the 

severely distorted pictures as the "low image quality" and the moderately distorted 

pictures as the "high image quality". 

Tasks and Procedure 

During the scenario, participants played the role of a military inspector who had 

to search simulated SAR images for enemy targets. At the onset of each trial, the S AR 

image appeared on the screen for 1000ms. After the image disappeared, aided 

participants received diagnostic advice from the detection system in the form of a text 

message. This message included the system's diagnosis and confidence estimate 

concerning the presence of an enemy target. As previously noted, participants were 

informed that the confidence estimates were based on how well the information collected 

from the system's detection algorithms matched the enemy template located in the 

system's target database. Higher confidence estimates were associated with a higher 

probability of a target being present. It is important to note that the system always 

indicated that a target could be present; only the system's confidence concerning the 

likelihood of a target varied. After reviewing the system's diagnosis, participants 

indicated whether they thought a target was present. Participants clicked the "Yes, Target 

Present" icon or the "No, Target Not Present" icon. Then, participants reported their 

decision confidence on a Likert-type scale that ranged from 1 (no confidence) to 5 (very 

confident). Participants also reported their trust in the system's diagnosis using Likert-

scale that ranged from 1 (not at all) to 5 (very much). After making their ratings, 

participants received feedback concerning the accuracy of their decision. Detection 
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performance was also scored. Participants received one point if they correctly identified a 

true target or correctly rejected a false target. Conversely, participants lost one point if 

they missed a true target or if they responded to a false target. Pilot testing and past 

research has indicated that participants are highly motivated to respond quickly, 

accurately, and appropriately when presented with this payoff matrix (Bliss, 2000). 

When participants arrived, they were randomly assigned to an experimental 

condition. Each participant completed a background information form and signed the 

informed consent. Then, they logged onto separate computers hosting the experimental 

simulation and read the task instructions. The instructions included an introduction to the 

target detection task, a description of the automated detection system, and a description 

of how the system generated its confidence estimates. Next, participants completed the 

post-instruction questionnaire to ensure they understood the forthcoming task and the 

system that was assisting them. Participants also completed a modified version of the 

System Trust Scale to assess their initial trust in the diagnostic system. Afterwards, 

participants completed several practice trials. Then, experimental testing commenced. 

After completing the first session (96 trials), participants completed the System 

Trust Scale to report their trust in and their perceived reliability of the automated system. 

Then, participants took a short comfort break. The second session followed the same 

procedures as the first session; however, the image quality changed. Participants who 

viewed high quality images in the first session, viewed low quality images in the second 

session, and vice versa. At the end of the second session, participants completed the 

System Trust Scale and an opinion questionnaire. Then they were debriefed. Participants 

completed both sessions (i.e., 192 trials) in approximately one hour. 
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RESULTS 

Prior to computing inferential statistical analyses, I screened the data set for missing data, 

unequal sample sizes, and outliers. Nine cases were removed because the data were deemed 

invalid. The response patterns indicated that the participants responded inappropriately; they 

always indicated that a target was present or absent. These nine cases were removed resulting in 

a sample of 106 participants. Descriptive statistics for each variable were computed to ensure 

that the statistical assumptions for each analysis were not violated. Means and standard 

deviations for trust, compliance, sensitivity and bias are presented in Table 2. 

Prior to calculating inferential analyses I computed an analysis to ensure that target base 

rate did not confound the effects of system confidence. Results indicated that target base rate did 

not influence response patterns. Greater details of these results are reported in Appendix H. 

Hypotheses were tested via planned comparisons and by building custom analysis of 

variance (ANOVA) models in SPSS version 17.0 for Macintosh. Building custom models 

simplifies the experimental design and preserves power by isolating relevant portions of the data 

and testing specific family comparisons (Keppel & Wickens, 2004). I addressed violations of 

homogeneity of variance by using a more stringent alpha level. Violations of sphericity were 

addressed by using Greenhouse Giesser F value (Tabachnick & Fidell, 2001). After testing the 

hypotheses, exploratory analyses were calculated to examine addition relationships among 

variables. Post hoc analyses for quantitative within subjects variables were addressed via trend 

analyses. Post hoc analyses for qualitative within subjects variables were addressed via simple 

contrast analyses. Unless otherwise noted, all analyses were computed using a critical value of a 

= .05. 
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Table 2: Means and Standard Deviation for Trust, Compliance, Sensitivity, and Bias as a Function of Image Quality, System Confidence, 
and Automation Expertise 

Diagnostic Trust 
Expert 
Novice 
Total 

Compliance 
Expert 
Novice 
Total 

25% 

M 

2.73 
2.41 
2.57 

0.36 
0.30 
0.33 

Sensitivity (d' prime) 
Expert 
Novice 
Total 

Bias (Q 
Expert 
Novice 
Total 

0.63 
0.95 
0.79 

0.26 
0.35 
0.30 

SD 

0.67 
0.69 
0.70 

0.17 
0.11 
0.15 

0.75 
0.81 
0.79 

0.45 
0.31 
0.39 

High Image Quality 

50% 

M 

2.79 
2.47 
2.63 

0.51 
0.48 
0.50 

0.49 
0.79 
0.64 

-0.02 
0.08 
0.03 

SD 

0.59 
0.63 
0.63 

0.15 
0.15 
0.15 

0.67 
0.73 
0.71 

0.41 
0.44 
0.43 

75% 

M 

3.40 
2.91 
3.15 

0.73 
0.68 
0.71 

0.43 
0.48 
0.45 

-0.61 
-0.42 
-0.51 

SD 

0.61 
0.75 
0.72 

0.21 
0.16 
0.18 

0.64 
0.71 
0.67 

0.71 
0.56 
0.65 

25% 

M 

2.61 
2.21 
2.41 

0.57 
0.53 
0.55 

-0.02 
-0.18 
-0.10 

-0.94 
-0.71 
-0.83 

SD 

0.69 
0.69 
0.71 

0.19 
0.17 
0.18 

0.63 
0.53 
0.59 

0.54 
0.59 
0.57 

Low Imag e Quality 

50% 

M 

2.74 
2.28 
2.51 

0.41 
0.39 
0.40 

-0.02 
0.04 
0.01 

-0.40 
-0.04 
-0.22 

SD 

0.67 
0.66 
0.70 

0.22 
0.19 
0.20 

0.53 
0.54 
0.53 

0.53 
0.38 
0.49 

75% 

M 

3.24 
2.74 
2.99 

0.64 
0.51 
0.58 

0.05 
0.07 
0.06 

0.26 
0.34 
0.30 

SD 

0.85 
0.76 
0.84 

0.18 
0.15 
0.18 

0.45 
0.62 
0.54 

0.63 
0.52 
0.58 

Note: N = 80 
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Testing the Predicted Effects 

Hypothesis 1.1 hypothesized that system confidence would significantly impact 

trust ratings. To discern this effect, I computed a repeated contrast analysis using system 

confidence as the predictor and diagnostic trust as the criterion. Because the comparisons 

were not mutually orthogonal, I used a bonferroni correction to control for Type I family 

wise error rates (Keppel & Wickens, 2004; p. 115). All interferences were made using an 

a = .025. As shown in Figure 5, participants trusted the system significantly more when it 

was 75% confident (M= 3.07, SD = .85) than when it was 50% confident (M= 2.57, SD 

= .72), F(l, 79) = 107.15,/? = .001, partial rj2 = .58. The difference between trust ratings 

when the system was 50% confident (M= 2.57, SD = .72) and 25% confident (M= 2.49, 

SD = .77) failed to reach significance, F(l, 79) = 4.72,p > .025. 

-3 T. 
© 
B 
0* 

1 

' '." 

25% 

2.57 
.>.()" 

50% 

System Confidence 

Figure 5. Diagnostic trust as a function of system confidence. 

75% 
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Hypothesis 2. A custom 3 (System Confidence: 75%, 50%, 25%) x 2 (Automation 

Expertise: expert, novice) x 2 (Image Quality: high, low) mixed factorial ANOVA was 

calculated to test the hypothesized interaction of system confidence, automation 

expertise, and image quality on trust (note: the variable 'session' was included in the 

model, but mathematically operated as a control variable). The assumption of sphericity 

was violated for several of the within-subjects variables, therefore all interpretations were 

made using the Greenhouse-Geisser F value. The predicted interaction failed to reach 

significance, F(1.78, 139.01) =.91,/? > .05. However, the main effects for system 

confidence, F{\.11, 138.05) = 91.45,/? = .001, partial rj2 = .54, image quality, F{\, 78) = 

10.32,/? = .002, partial n2 = .12, and automation expertise, F( l , 78) = 9.49,p = .003, 

partial rj2 = .11, were statistically significant. Post hoc analyses indicated a significant 

linear trend for system confidence, F(l, 78) = 122.88, p = .001; trust increased linearly as 

system confidence increased (refer to Figure 5). The main effect of image quality 

indicated that participants exhibited more trust in the system when image quality was 

high (M= 2.78, SD = .76) than when image quality was low (M= 2.63, SD = .81). The 

main effect of automation expertise indicated that participants trusted the expert system 

(M= 2.92, SD = .76) more than the novice system (M= 2.50, SD = .76). 

Hypothesis 3. A custom 3 (System Confidence: 75%, 50%, 25%) x 2 (Automation 

Expertise: expert, novice) x 3 (Session: 1, 2, 3) mixed factorial ANOVA was calculated 

to test the hypothesized interaction of system confidence, automation expertise, and time 

on trust (note: the variable 'image quality' was included in the model, but mathematically 

operated as a control variable). The assumption of sphericity was violated for the within-

subjects variables, therefore all interpretations were made using the Greenhouse-Geisser 
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F value. The predicted interaction failed to reach statistical significance, F(3.75, 292.7) = 

1.50,/? > .05. However, the omnibus ANOVA for session was statistically significant, 

F(\.19, 139.84) = 3.91,/? = .02, partial rj2 = .05. Post hoc trend analysis indicated a 

significant linear trend, F(l,78,) = 5.56,p = .02, partial rj2 = .07; trust declined over the 

course of the experiment. 

Hypothesis 4. A custom 3 (System Confidence: 75%, 50%, 25%) x 2 (Automation 

Expertise: expert, novice) x 2 (Image Quality: high, low) mixed factorial ANOVA was 

calculated to test the hypothesized interaction of system confidence, automation 

expertise, and image quality on compliance. Compliance was defined as the portion of 

times participants reported that a target was present. Because participants did not receive 

diagnostic assistance on 'no aid' trials, responses for these trials were excluded from this 

analysis. The predicted interaction was statistically significant, F(2, 156) = 3.74, p = 

.026, partial rj2 = .05. Simple effects analyses indicated that the interaction between 

system confidence and image quality differed for the levels of automation expertise. 

Therefore, interactions were compared separately for the expert and novice systems. Only 

for the expert system was the interaction statistically significant, F(2, 78) = 3.24, p = 

.044, partial rj2 = .08. Participants who interacted with the expert system complied more 

often when image quality was low than when image quality was high across all levels of 

system confidence, except when the system was 25% confident (Figure 6). When the 

system was 25% confident, the mean compliance rates for the low and high image quality 

conditions were (M= .41) and (M= .37), respectively, F(l , 39) = 2.77,p > .05. 
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Expert System 

High Low 

Image Quality 

- -A- • 

•%57 

%05 

%52 

Figure 6. Compliance as a function of system confidence and image quality for expert 
system condition. 

Hypothesis 5. A custom 3 (System Confidence: 75%, 50%, 25%) x 2 (Automation 

Expertise: expert, novice) x 3 (Session: 1, 2, 3) mixed factorial ANOVA was calculated 

to test the hypothesized interaction of automation expertise, system confidence, and 

session on compliance. Results indicated that the predicted interaction failed to reach 

statistical significance, F(4, 312) =.36, p > .05. However, the omnibus ANOVA for 

system confidence, F(2, 156) = 194.37, p = .001, partial rj2 = .71, session, F(2, 156) = 

21.75,/? = .001, partial n2 = .22, and automation expertise, F( l , 78) = 6.51, p = .013, 

partial rj2 = .08, were statistically significant. Post hoc analysis indicated a significant 

linear trend for system confidence, F( l , 78) = 242.27, p = .001; compliance increased as 

system confidence increased (see Figure 7). Mean compliance rates for the 25%, 50% 

and 75% confident conditions were M= .36 (SD = .22), M= .54 (SD = .22) and M= .75 

(SD = .22), respectively. Trend analyses also indicated a significant linear trend for 
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session, F(l, 78) = 33.40, p = .001; compliance decreased over the course of the 

experiment (see Figure 8). The main effect of automation expertise indicated that 

participants complied with the expert system (M= .58, SD = .22) more than the novice 

system (M =.52, SD = .20). 
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Figure 7. Compliance as a function of system confidence. 
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Figure 8. Compliance as a function of session. 
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Detection sensitivity hypotheses. A custom contrast analysis with group 

(experimental vs. control) as the predictor and detection sensitivity as the criterion was 

calculated to determine if sensitive was higher when participants received automated 

assistance than when they performed the task manually. Detection sensitivity was 

operationally defined as participants' decision-making accuracy and was calculated using 

the Signal Detection Theory metric dt prime (Green & Swets, 1966). Results failed to 

support the predicted relationship, F(\, 104) = .16, p > .05; aided participants (M= .29, 

SD = .35) were not significantly more sensitive than unaided participants (M= .31, SD = 

.36). 

Next, a custom 4 (System Confidence: 75%, 50%, 25%, no aid) x 2 (Image 

Quality: high, low) ANOVA was calculated to test the predicted interaction between 

system confidence and image quality. Results revealed a significant interaction, F(3, 243) 

= 7.84, p = .001, partial rj2 = .09 (see Figure 9). When image quality was high sensitivity 
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Figure 9. Detection sensitivity as a function of system confidence and image quality. 
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decreased as system confidence increased. Conversely, when image quality was low, 

sensitivity increased as system confidence increased. 

Detection bias hypotheses. A custom contrast analysis was calculated to 

determine if automation expertise influenced response bias. Response bias was 

operationally defined as participants' response criterion, or willingness to respond, and 

was calculated using Signal Detection Theory metric C. As expected, results showed that 

participants who interacted with the expert system (M= -.17, SD = .43) adopted a more 

liberal response strategy than participants who interacted wit the novice system (M= -

.03, SD = .37), F(l, 78) = 5.61,p = .02, partial rj2 = .07 (see FigurelO). 
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Figure 10. Response bias as a function of automation expertise. 

Next, a simple contrast analysis was calculated to determine if image quality 

influenced response bias. Results revealed a significant trend, F( l , 78) = 27.56, p = .001, 
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partial rj2 = .26. Contrary to expectations, participants were more liberal when image 

quality was low (M= -.18, SD = .43) than when image quality was high (M= -.01, SD = 

.38) throughout the task (see Figure 11). 
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Figure 11. Response bias as a function of image quality. 

Finally, a linear trend analysis was calculated to determine if participants' 

response criterion was positively influenced by system confidence. Results revealed a 

significant linear (F(l, 78) = 123.32, p = .001, partial rj2 = .61) and quadratic trend (F(l, 

78) = 169.98,/? = .001, partial rj2 = .69). As shown in Figure 12, when no aid was 

available participants adopted a neutral response strategy. However, the introduction of 

system confidence ratings influenced participants' response criterion such that 

participants became more liberal as system confidence increased. Participants' mean 

response criterion rates for the no aid, 25%, 50%, and 75% confident trials were M= -



50 

.01 (SD = .39), M= .26 (SD = .40), M= -.09 (SD = .40), and M= -.54 (SD = .45). 
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Figure 12. Response bias as a function of system confidence. 

Exploratory analyses 

Next, a series of exploratory analyses were calculated to examine additional 

relationships among the variables. The results of these analyses are grouped according to 

each analysis' criterion (i.e., dependent variable). For brevity, interpretations exclude 

previously discussed main and interaction effects; only unique relationships are reported. 

Initial trust. A one-way between subjects ANOVA was computed to examine the 

effects of system expertise on initial trust. Initial trust was measured using a modified 

version of the System Trust Scale (Jian et al., 2000). Though no hypotheses were made 

regarding participants' initial trust in the diagnostic system, empirical data suggest that 

automation expertise can impact perceptions of system accuracy. Therefore, it is 

reasonable to assume that participants would perceive the expert system to be more 

trustworthy than the novice system. Prior to running the ANOVA, Pearson's correlation 
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analyses were calculated to determine if the scale items were related. Results indicated 

that the distrust and trust items were significantly negatively correlated. However, 

because previous research suggests that trust and distrust are separate but related 

constructs, the distrust items were excluded from the analysis (Spain, Bustamante, et al., 

2008). Thus, only the items that pertained to operator trust were aggregated to arrive at a 

single score of initial trust. Results confirmed a significant main effect for automation 

expertise, F(l, 72) = 23.76,p = .001, partial rj2 = .25. As illustrated in Figure 13, 

participants perceived the expert system (M= 4.82, SD = 1.08) as being more trustworthy 

than the novice system (M= 3.64, SD = .98). 
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Figure 13. Initial trust ratings as a function of automation expertise. 

Overall system trust. A 2 (Automation Expertise: expert, novice) x 2 (Image 

Quality: high, low) mixed factorial ANOVA was calculated to assess the effects for 

automation expertise and image quality on overall system trust. Overall system trust was 
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assessed at the end of each experimental session using the System Trust Scale. Results 

indicated that the interaction between image quality and expertise, F( l , 78) = .92, p > .05, 

and the main effect for image quality, F{\, 78) = .20, p > .05, failed to reach statistical 

significance. However, a significant main effect for automation expertise indicated that 

participants trusted the expert system (M= 3.31, SD =1.16) more than the novice system 

(M= 2.84, SD =1.05), F( l , 78) = 5.11,p = .026, partial rj2 = .06. 

Perceived reliability. A 2 (Automation Expertise: expert, novice) x 2 (Image 

Quality: high, low) mixed factorial ANOVA was calculated to assess main and 

interaction effects of automation expertise and image quality on perceived system 

reliability. Perceived reliability was assessed at the end of each experimental session. The 

interaction between image quality and automation expertise, F{\, 72) = .14, p > .05, and 

the main effect for image quality, F(l , 72) = .31,/? > .05, failed to reach statistical 

significance. However, the main effect for automation expertise approached significance, 

F{\, 72) = 3.70,/? = .06, partial rj2 = .05. Data suggest participants perceived the expert 

system (M= 56.55, SD = 16.00) as being more reliable than the novice system (M = 

50.44, SD= 14.58). 

Diagnosis trust. A 3 (System Confidence: 75%, 50%, 25%) x 2 (Automation 

Expertise: expert, novice) x 2 (Image Quality: high, low) x 3 (Session: 1, 2, 3) mixed 

factorial ANOVA was calculated to explore the effects of automation expertise, system 

confidence, image quality, and session. The purpose of this analysis was to determine if 

any of these factors jointly contributed to the temporal variability of trust scores. 

Analyses indicated that the assumption of sphericity was violated for several within-

subjects variables, therefore all interpretations were made using the Greenhouse-Geisser 
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F value. Results revealed significant interactions of image quality and session, F(1.85, 

141.6) = 3.99, p = .020, partial rj2 = .05, and image quality, system confidence, and 

session F(3.69, 288.27) = 3.12,/? = .015, partial rj2 = .04. The significant three-way 

interaction suggested that image quality and system confidence affected diagnostic trust 

differently over the course of the experiment. Therefore, I conducted a follow-up post 

hoc analysis to examine these differences. 

Simple effects interaction analyses indicated that the interaction differed for the 

two image quality conditions. Only for the high image quality condition was the 

interaction of system confidence and session statically significant, ^(3.64, 287.37) = 

2.68,p = .032, partial rj2 = .03. As shown in Figure 14, when image quality was high, 

trust changed over the course of the experiment and the rate of change varied as a 

function of system confidence. When the system was 75% confident, participants 

sustained a high level of trust during the first (M= 3.21, SD = .72) and second session (M 

= 3.23, SD = .86), but during the third session (M= 3.02, SD = .86) trust dropped 

significantly, F( l , 79) = 9.99, p = .002, partial rj2 = .11. A different trend was evident 

when the system was 50% confident. Trust dropped significantly from the first session 

(M= 2.76, SD = .66) to the second session (M= 2.57, SD = .71), F(l , 79) = 9.50,p = 

.002, partial rj2 = .11, but no change was evident from the second to third session (p > 

.05). Conversely, when the automated system was 25% confident, trust declined linearly 

from the first (M= 2.65, SD = .71) to the third session (M= 2.47, SD = .79), F(l , 79) = 

6.41,p = .013, partial rj2 = .08. 
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Figure 14. Diagnosis trust as a function of system confidence and session for the high 
image quality condition. 

Compliance. A 3 (System Confidence: 75%, 50%, 25%) x 2 (Automation 

Expertise: expert, novice) x 2 (Image Quality: high, low) x 3 (Session: 1, 2, 3) mixed 

factorial ANOVA was calculated to explore the effects of automation expertise, system 

confidence, image quality, and session on compliance that were not accounted for in the 

original hypotheses. The purpose of this analysis was to determine if any factors 

contributed to the temporal variability of compliance. Results revealed interactions 

among the following variables: system confidence and session, F(4, 312) = 3.74, p = 

.005, partial n2 = .05; image quality, session, and automation expertise, F(2, 156) = 3.99, 

p < .020, partial rj2 = .05, and image quality, system confidence, and session, F(4, 312) = 

3.44, p = .009, partial rj2 = .05. 
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A post hoc analysis was conducted to examine the interaction of system 

confidence, image quality, and session on compliance. I was specifically interested in 

determining if participants' adopted different compliance strategies based on image 

difficulty and system confidence. Results showed participants' compliance differed for 

the levels of image quality. Therefore, simple effects interactions were compared 

separately for the high and low image quality conditions. 

Only for the high image quality condition was the interaction between system 

confidence and session statistically significant, F(4, 316) = 6.07, p = .001, partial rj2 = 

.07. As shown in Figure 15, and similar to the diagnostic trust results, compliance 

changed and the rate of change varied a function of system confidence. To discern this 

change, I computed repeated contrasts to look at deviations in compliance across 

consecutive sessions (i.e., session 1 to session 2, and session 2 to session 3). A bonferroni 

correction was used to control for type I error. When the system was 75% confident, 

participants sustained a high level of compliance during the first (M= .74, SD = .21) and 

second session (M= .75, SD = .20), but at the third session compliance dropped 

significantly (M = .63, SD = .25), F(\, 79) = 21.62,/? = .001, partial rj2 = .22. A different 

trend was evident when the system was 50% confident. In this condition, compliance 

mimicked a negative linear trend, F(l , 79) = 10.71, p = .002, partial rj2 = .11. Mean 

compliance rates for the first, second, and third session were M= .55 (SD =.24), M= .50 

(SD =.20), and M= AA (SD =.44), respectively. When the system was 25% confident, 

compliance dropped significantly from the first session (M= .36, SD = .20), to the second 

session (M= .28, SD = .21), F(l, 79) = 10.53,/? = .003, partial rj2 = .12. 
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Figure 15. Compliance as a function of system confidence and session for the high image 
quality condition. 

Observed compliance versus optimal compliance. Next, a series of exploratory 

analyses were conducted to compare participants' observed compliance to optimal 

compliance. Because each level of system confidence was associated with a unique 

probability of a target being present, optimal compliance was defined as the system's 

accuracy given its level of confidence. Thus, optimal compliance when the system was 

75% confident was .75, optimal compliance when the system was 50% confident was .50, 

and optimal compliance when the system was 25% confident was .25. Group means were 

compared using one sample /-tests. 

As shown in Figure 16, on trials in which image quality was low and the system 

was 75% confident, participants over-complied with the expert system (M= .82, SD = 

.16), /(39) = 2.69, p = .010. Similarly, when image quality was low and the system was 
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50% confident, participants also over-complied with the expert system (M= .64, SD — 

.18), /(39) = 5.10,/? = .001. On trials in which image quality was high and the system was 

75% confident, participants under-complied with the novice system (M= .68, SD = .16), 

/(39) = -2.62, p = .010. Finally, participants always over-complied with the system when 

it was 25% confident, regardless of image quality or automation expertise. However, 

when image quality was high and the system was 25% confident, participants were more 

likely to comply with the expert system (M= .41, SD = .22), t{39) = 4.69, p = .001) than 

the novice system (M= .30, SD =.11), /(39) = 2.76, p = .010. 
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Figure 16. Observed compliance versus optimal compliance. 

Response bias. A 2 (Group: experimental, control) x 4 (System Confidence: 75%, 

50%, 25%, no aid) x 2 (Image Quality: high, low) mixed ANOVA was calculated to 

determine if there were differences in the response bias between participants who 
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received automated assistance and participants in the control condition. Results revealed 

a significant interaction between group and confidence, F(3, 312) = 29.01,/? = .001, 

partial rj2 = .87. As shown in Figure 17, on trials in which the system was 75% confident, 

aided participants (M= -.66, SD = .54) were more liberal than unaided participants (M= -

.02, SD = .31), F( l , 104) = 31.78,/? = .001, partial rj2 = .23. Conversely, on trials in which 

the system was 25% confident, aided participants (M= .30, SD = .36) were more 

conservative than unaided participants (M= .01, SD = .41), F{\, 104) = 10.63, p = .002, 

partial rj2 = .09. 
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Figure 17. Response bias as a function of group and system confidence. 

A 4 (System Confidence: 75%, 50%, 25%, no aid) x 2 (Automation Expertise: 

expert, novice) x 2 (Image Quality: high, low) x 3 (Session: 1,2,3) mixed factorial 

ANOVA was calculated to explore the effects of automation expertise, system 
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confidence, image quality, and session on response bias for aided participants. 

Participants in the control condition were excluded from this analysis. Results revealed a 

significant interaction between image quality, system confidence, and automation 

expertise, F(3, 234) = 2.89, p = .036, partial rj2 = .03. Simple effects analysis indicated 

that participants' response bias differed for the levels of automation expertise. Only for 

the expert system was the interaction between image quality and system confidence 

statistically significant, F(3, 117) = 5.32, p = .01, partial rj2 = .12. As shown in Figure 18, 

on trials in which the expert system was 75% confident, participants were more liberal 

when image quality was low (M= -.75, SD = .38) than when image quality was high (M 

= -.49, SD = .52), F( l , 39) = 20.83, p = .001, partial n2 = .35. 
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Figure 18. Response bias as a function of system confidence and image quality for the 
expert system condition. 
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A similar trend occurred on trials in which the expert system was 50% confident; 

participants were more liberal when image quality was low (M= -.35, SD = .44) than 

when image quality was high (M= -.02, SD = .36), F( l , 39) = 19.12, p < .001, partial rj2 = 

.33. Conversely, on trials in which the expert system was 25% confident, there was no 

difference in participants' response bias between the low (M= .21, SD = .51) and high (M 

= .24, SD = .38) image quality condition, F( l , 39) = .23,p > .05. 

False alarm rates. Based on the performance results, an exploratory 2 (Group: 

experimental, control) x 4 (System Confidence: 75%, 50%, 25%, no aid) x 2 (Image 

Quality: high, low) mixed ANOVA was calculated to determine if there were differences 

in false alarm rates between participants who received automated assistance and 

participants in the control group. False alarm rate was defined as the proportion of false 

targets reported. Because participants in the control condition did not receive automated 

assistance, this analysis tested if participants were more apt to generate false alarms when 

they received automated assistance. 

A comparison of false alarm rates on 75%, 50%, 25%, and no aid trials between 

the control condition and experimental condition revealed a statistically significance 

interaction, F(3, 312) = 25.83, p = .001 partial rj2 = .20. As shown in Figure 19, aided 

participants' false alarm rates increased as system confidence increased. Conversely, 

participants in the control group maintained a consistent rate of false alarms. Results also 

revealed a significant main effect for image quality, F(l , 104) = 50.76, p = .001, partial n2 

= .33. Participants were more likely to commit a false alarm when image quality was low 

(M= .54, SD = .20) than when image quality was high (M= .40, SD = .21). The omnibus 
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ANOVA for system confidence was also significant, F(3, 302) = 27.03, p = .001, partial 

rj2 = .21. Post hoc trend analysis indicated significant linear and quadratic trends. 

No aid 

•Aided 

Control 

25% 50% 

System Confidence 

75% 

Figure 19. False alarm rates as a function of group and system confidence. 

Next, a 4 (System Confidence: 75%, 50%, 25%, no aid) x 2 (Automation 

Expertise: expert, novice) x 2 (Image Quality: high, low) x 3 (Session: 1, 2, 3) mixed 

factorial ANOVA was calculated to assess the effects of automation expertise, system 

confidence, image quality, and session on participants' false alarm rates. Participants in 

the control condition were excluded from this analysis. Though no specific hypotheses 

were made regarding false alarm rates, it is reasonable to assume that automation 

expertise, system confidence, and image quality would significantly impact false alarm 

rates. 
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As expected, results revealed significant main effects for image quality, system 

confidence, automation expertise, and session. Participants were more likely to commit a 

false alarm when image quality was low (M= .55, SD = .23) than when it was high (M= 

.42, SD = .24), F( l , 78) = 73.10,/? = .001 partial rj2 = .48. The main effect of automation 

expertise indicated that participants who interacted with the expert aid (M= .51, SD = 

.23) committed more false alarms than participants who interacted with the novice aid (M 

= .45, SD = .22), F(l, 78) = 6.11,/? = .016, partial rj2 = .07. The omnibus ANOVA for 

system confidence was significant, F(3, 234) = 93.61, p = .001 partial rj2 = .55. Post hoc 

analyses revealed a significant linear trend; false alarm rates increased as system 

confidence increased. Mean false alarm rates for the 25%, 50%, 75% trials were M= .36 

(SD = .21), M= .48 (SD = .24), and M= .63 (SD = .23), respectively. With respect to the 

effect of session, post hoc linear trend analysis indicated that false alarm rates decreased 

over the course of the experiment, F(2, 156) = 15.90, p = .001 partial rj2 = .16. Mean false 

alarm rates for the first, second, and third session were, M= .52, (SD = .22), M= .48 (SD 

= .23), and M= .45 (SD = .23), respectively. All other effects failed to reach significance 

(p > .05). 

Overall detection performance. A 2 (Automation Expertise: expert, novice) x 2 

(Image Quality: high, low) mixed factorial ANOVA was calculated to assess main and 

interaction effects for automation expertise and image quality on overall detection 

performance scores. Results revealed a significant main effect for image quality, F(l, 78) 

= 65.27,p = .001, partial rj2 = .46; performance was significantly impaired in the low 

image quality condition (M= 108.93, SD = 10.98) compared to the high image quality 
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condition (M- 126.92, SD = 16.99). All other effects failed to reach significance (p > 

.05). 
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Results Summary 
• Trust 

o System confidence affected automation trust. 
o Participants trusted the expert system more than the novice system. 
o Participants had greater trust in the diagnostic system when image quality 

was high than when image quality was low. 
o System confidence influenced the temporal variability of diagnostic trust, 

particularly when image quality was high. 

• Compliance 
o Participants complied with the expert system more than the novice system 
o Participants weighed confidence information from expert systems. 

differently when image quality was low, which manifested itself in 
different compliance strategies. 

o System confidence influenced the temporal variability of compliance, 
particularly when image quality was high. 

o Participants demonstrated overmatching behavior, particularly when 
image quality was low. 

• Sensitivity 
o Aided participants were not more sensitive than unaided participants. 
o When image quality was low, participants used system confidence to 

increase performance accuracy. Conversely, when image quality was 
high, performance suffered as system confidence increased. 

• Bias 
o Automation expertise, system confidence, and image quality influenced 

response bias. 
o Participants who interacted with the expert system were more likely to 

indicate that a target was present when image quality was low than when 
image quality was high. 

• False Alarm Rates 
o False alarm rates increased linearly with system confidence. 
o Participants who interacted with the expert aid were more apt to generate 

false alarms than participants who interacted with the novice aid. 
o Participants generated more false alarms while viewing low quality 

images. 
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DISCUSSION 

The present study had four main objectives. The first objective was to assess the 

effects of system confidence on operator trust and compliance. The second objective was 

to determine if automation expertise moderated the effects of system confidence on trust 

and compliance. The third objective was to determine if image quality influenced the 

relationship of automation expertise and system confidence on trust and compliance. The 

final objective was to assess the performance effects of system confidence, automation 

expertise, and image quality. Research concerning trust in automation is not new; a 

unique contribution of this research is that the present experiment examined the joint 

influences of two different sources of trust supporting information, system confidence 

and automation expertise, on trust and compliance. Furthermore, unlike previous 

research, this study measured trust on a trial-by-trial basis, thus providing greater insight 

into the temporal variability of automation trust and compliance. The results from this 

study have theoretical and practical implications. The results are revisited below, 

followed by their theoretical and practical implications. 

Automation Trust and Compliance 

System confidence and trust. Data from the present study indicated that 

participants exhibited the least amount of trust in the 25% confident system and the 

greatest amount of trust in the 75% confident system. In reviewing comments from the 

opinion questionnaire, many participants stated that they only relied on the system when 

it was 75% confident because they thought the system was wrong when it was 50% and 

25% confident. These comments are intriguing considering that the diagnostic aid's 
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confidence levels were associated with a unique likelihood of a target being present. 

Specifically, when the aid was 75% confident there was a 75% likelihood that a target 

was present, when the aid was 50% confident there was a 50% likelihood that a target 

was present, and when the aid was 25% confident there was a 25% likelihood that a 

target was present. Thus, the aid was generally accurate in its diagnoses. Still, trust varied 

as a function of system confidence. There are several possible explanations for this effect. 

First, participants may have interpreted system confidence ratings using an 

analogical trust tuning strategy rather than an analytic tuning strategy. Analytic methods 

to trust development are cognitively demanding (Lee & See, 2004). In the present study, 

adopting this strategy would have required participants to discern the system's level 

accuracy for each level of system confidence. Analogical methods, on the other hand, are 

a less demanding and imply that trust can be based on an entity's dispositional 

characteristics. Applying this tuning strategy to the interpretation of system confidence 

suggests participants may have reasoned that high system confidence reflected high 

system diagnostic ability and low system confidence reflected poor diagnostic ability. 

Participant comments support this interpretation as many reported that they associated the 

25% confidence rating with poor diagnostic ability and the 75% confidence rating with 

reliable diagnostic ability. 

Second, the framing of the system's diagnosis and confidence estimate may have 

hindered participants' ability to determine the system's accuracy for each level of system 

confidence. In the current experiment, the system stated that a target could be present and 

provided a confidence estimate regarding the likelihood that a target was present. This 

may not have been the optimal framing. Research indicates that humans interpret 
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probability information poorly and that the framing of such information can influence 

decision-making (see Dzindolet et al., 2002; Wickens & Hollands, 2000). Furthermore, 

research on decision-making and over-confidence for dichotomous choice tasks suggests 

it is best only to present confidence information between 50% and 100% for a given 

outcome because decision makers inappropriately interpret confidence information when 

it is below 50% (Yates, Lee, Shiotsuka, Patalano, & Sieck, 1998). Applying these results 

to the current study suggests that participants may have distrusted the system when it was 

25% confident because they were not able to associate low confidence with high levels of 

accuracy. Perhaps changing the framing of the system's diagnosis and confidence 

estimate would have mitigated this effect. Rather than indicating that the system was 25% 

confident that a target could be present, the interface could have indicated that the system 

was 75% confident that a target was not present. Communicating system confidence in 

this manner may have better facilitated appropriate trust. Future research concerning best 

practices for displaying system confidence information to operators is needed. 

System confidence and compliance. The present study also observed the effects of 

system confidence on compliance. Results indicated that participants' compliance rates 

matched the system's level of confidence. These results are interesting considering 

participants distrusted the system's diagnostic capability when system confidence was 

below 50%. Based on the observed trust data, participants should have complied with the 

system when it was 75% confident and relied on their own intuition when system 

confidence was 50% and below. However, the compliance data failed to confirm this 

pattern. 
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Figure 20 shows the relation between trust and compliance found in previous 

research and in the current study. In McGuirl and Sarter's (2006) study, participant's 

compliance matched the system's level of confidence because, assumingly, participants 

trusted the system. That is, they trusted that when confidence was high, medium, and low 

the probability of a problem occurring was also high, medium, and low, respectively. In 

the present study, participants did not trust each level of system confidence equivalently. 

Yet, their compliance matched the system's level of confidence. This differs from 

previous research and highlights disconnect between trust and compliance. There are 

several plausible explanations for these results. 
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First, participants may have calibrated their compliance and diagnostic trust to the 

base rate of a target occurrence for each level of system confidence. In the present study, 

each level of confidence was associated with a unique likelihood that a target was 

present. Given this set up, it is reasonable that participants used the base rate as a 

heuristic to calibrate trust and compliance. This would explain why participants' 

diagnostic trust matched compliance patterns. 

Alternatively, participants' concurrence strategy may have hindered their ability 

to accurately evaluate system performance; which led to inappropriate levels of system 

trust when system confidence was low. As shown by the compliance data, many 

participants engaged in a probability matching behavior; they matched their response 

frequency to the accuracy of the aid. This strategy may have caused participants to 

confuse the reliability of the system with the reliability of manual performance. Indeed, 

the trust data support this interpretation, as participants were not able to estimate the true 

reliability of the system when it was 50% and 25% confident. A similar phenomenon has 

been reported in automation trust literature before. Specifically, Wiegmann (2002) found 

that participants who adapted a probability matching strategy were not able to accurately 

estimate the reliability of a diagnostic aid. He attributed these results to the cognitive load 

associated with simultaneously keeping track of manual and automated performance. 

Finally, the observed relation between the trust and compliance data could be 

attributed to the present study's payoff matrix. The extent to which real world users of 

diagnostic aids will engage in probability matching is likely a function of the costs 

associated with correct and incorrect decision. The present experiment used a payoff 

strategy that encouraged participants to consider the costs and benefits associated with 
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correct and incorrect decisions. Specifically, participants earned one point for a correct 

decision and lost one point for an incorrect decision. Participants reported that the payoff 

system was motivating. Nonetheless, earning and losing points does not approximate the 

circumstances that might confront a military soldier who must decide whether an object 

in a SAR image is friendly of hostile, and thus whether to engage on the target. Because 

the payoff for inappropriately responding was not too costly, participants may have 

approximated their response rates to the systems confidence to maximize the probability 

of detecting a target despite their distrust in the system's diagnosis. 

Automation expertise and trust. A secondary goal of this research was to 

determine the effects of automation expertise on trust. As expected, participants 

perceived the expert system as being more trustworthy and reliable than the novice 

system. These results support Lee and See's (2004) theoretical model and provide further 

evidence that hearsay information concerning automation performance can influence 

automation trust. An important contribution of this research relates to the convergence of 

evidence concerning the effects of automation expertise on automation trust. Three 

different measurements (i.e., initial trust, diagnostic trust, and system trust) collected at 

three different time points (i.e., prior to, during, and after interacting with the system) 

converged to indicate that participants trusted expert systems more than novice systems. 

These results provide strong empirical evidence that automation expertise influenced 

automation trust. As discussed by Madhavan and Wiegmann (2007), the source of 

diagnostic information plays a significant role in the development and maintenance of 

automation trust. 
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Factors affecting the appraisal of diagnostic information. System confidence, 

automation expertise, and image quality were expected to influence automation trust and 

compliance. As such, the present study tested several interaction effects. Results partially 

supported the hypotheses concerning the interaction of system confidence, automation 

expertise, and image quality on trust and compliance. Individuals who interacted with the 

expert system weighed confidence information differently when image quality was low 

than when image quality was high. No differences were observed for the novice system. 

These results suggest that the perceived capability of an expert system affects user 

compliance strategies, particularly when uncertainty is high (i.e. the task is difficult). The 

data for automation trust trended in a similar pattern but failed to reach statistical 

significance. 

Temporal variability of trust and compliance. The effects of automation expertise, 

system confidence, and image quality were also tested over time. The predicted 

interaction between system confidence, automation expertise, and session on trust failed 

to reach significance. Rather, results showed that image quality, not automation expertise, 

interacted with system confidence to influence the temporal variability of trust and 

compliance. Specifically, trust and compliance declined over time, particularly when 

image quality was high, and the rate of decline varied as a function of system confidence. 

Participants sustained trust the longest when the system was 75% confident; when system 

confidence fell below 75% trust declined rapidly over time. These results suggest that 

participants developed a greater trust for the system when it was 75% confident. 

The fact that participants' trust and compliance varied only in the high image 

quality condition could be attributed to the saliency of automation errors. According to 
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the easy errors hypothesis, automation errors on task easily performed by humans 

undermines trust and compliance with automated aids (see Dzindolet et al., 2003, 

Madhavan et al., 2006). In the present experiment, participants may have been more 

likely to notice "easy errors" when image quality was high than when image quality was 

low. Indeed, many participants reported that it was easier to detect targets when image 

quality was high. Thus, it seems likely that participants were also more likely to observe 

system errors in this condition. 

It's also important to note that participants trusted and complied with the expert 

system more than the novice system over the entire experiment. These results contradict 

previous research that has shown compliance with imperfect expert systems to decrease 

more rapidly than compliance with imperfect novice systems (Mayer, 2008). This 

discrepancy could be attributed to the type of automated system used in the current and 

previous research. In Madhavan and Wiegmann's (2007) and Mayer's (2008) research, 

participants interacted with a traditional binary automated diagnostic system. Binary 

diagnostic systems provide two forms of diagnostic information about problems: 

"present" and "absent". This type of design philosophy, though needed in some instances, 

can be limiting because it does not allow insight into the system's decision-making 

process. As previously discussed, the best way to provide insight into a system's 

algorithm is to use a design philosophy similar to Sorkin et al.'s (1988) Likelihood Alarm 

display (LADs). LADs use multi-level diagnostic signals to express the degree of 

certainty associated with a signal event. The diagnostic aid used in the present study was 

modeled similar to an LAD. The system indicated the likelihood that a target was present. 

Participants may have judged the performance of the current system less severely than 
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they would judge a traditional binary diagnostic system gave them more diagnostic 

information. This slight difference in the design of the diagnostic aid may have mitigated 

the loss of trust compliance associated with the breakdown of the perfect automation 

schema observed in previous research. Further research is needed to substantiate these 

possibilities. 

Observed compliance vs. optimal compliance. When comparing observed 

compliance against optimal compliance, participants over-complied with the expert 

system across all levels of system confidence, particularly when image quality was low. 

This "over-matching" behavior suggests participants used the expertise of the aid as a cue 

to reduce uncertainty. Dijkstra (1999) found similar results and explained them with the 

Elaborate Likelihood Model (ELM; Petty & Cacioppo, 1981). The ELM states that 

individuals use two routes when evaluating advice: the central route and the peripheral 

route. Individuals using the central route are highly confident in their ability to analyze 

the content of advice, whereas individuals using the peripheral route are not, and 

therefore base their compliance decisions on surface level cues such as the advisor's 

presumed expertise. In the present study, participants used the peripheral route when 

image quality was low to combat uncertainty, and therefore complied with the expert 

system more often than they complied with the novice system. 

It is also important to note that on trials in which the system was 25% confident, 

participants always over complied with the system. That is, they reported that a target 

was present too often. This response strategy resembles an estimation bias associated 

with low likelihood events. Similar to the trust results, these findings have implications 
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for designing human-machine interfaces that support appropriate trust. These 

implications will be discussed later. 

Performance Data 

Detection Sensitivity. Data from the current experiment partially supported 

expectations concerning the effects of image quality and system confidence on detection 

sensitivity. Participants made more correct decisions when image quality was high than 

when image quality was low. However, compared to the control group, aided participants 

were not able to use system confidence to improve detection performance. Jamieson and 

Wang (2007) have found similar results. One reason the data from the present experiment 

did not show a performance effect for aided participants could be related to their false 

alarm rates. Aided participants' committed more false alarms as system confidence 

increased than unaided participants committed. An increase in false alarm rates can 

reflect poorly on detection sensitivity (Wickens & Hollands, 2000). 

The significant interaction between image quality and system confidence suggests 

that when faced with high levels of uncertainty, providing confidence information can be 

beneficial to performance. However, there is a cost of presenting confidence information 

when the detection task is easy. Maltz and Shinar (2003) found similar costs of using 

automation when a detection task was easy; specifically they found that automated cuing 

facilitated performance for difficult tasks and impaired performance for easy tasks. 

Response bias. Similar to the compliance results, automation expertise and system 

confidence significantly influenced response bias, particularly when image quality was 

low. These data indicate that participants attempted to maximize the number of targets 

found when the expert system was moderately and highly confident, particularly when 
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the task was difficult. These results are in accordance with previous research (see 

Madhavan & Wiegmann, 2007) and suggest that shifts in criterion setting are strongly 

influenced by automation expertise, particularly when uncertainty is high. 

Additional costs. Data from the current experiment also indicated several incurred 

cost of system confidence and automation expertise. Participants were more apt to 

generate false alarms as system confidence increased. Furthermore, automation expertise 

influenced false alarm rates. Participants were more likely to generate false alarms when 

the expert aid was highly and moderately confident in its diagnosis. This behavior 

resembles a form of automation bias in which operators rely on automation rather than 

processing task related information manually (Mosier & Skitka, 1996). The increase in 

false alarm rates was also evident in participants' response bias. Individuals who adopted 

a liberal response strategy were likely to commit more false alarms than participants who 

adopted a conservative strategy. 

Theoretical Contributions 

Lee and See's (2004) Appropriate Trust Framework suggests that operators use 

analytic and analogical methods to calibrate automation trust. Calibrating trust via an 

analytic method can be cognitively demanding because it requires human reasoning and 

the ability to deduce when a system is performing reliably. Calibrating trust via an 

analogical method is less demanding because it involves using cues to infer how 

automation will perform. Results from the present study suggest that rather than using 

logical reasoning to deduce how accurate the diagnostic system was for each level of 

confidence (i.e. an analytic approach), participants adopted an analogical trust tuning 

strategy. That is, participants used system confidence as a cue to infer how the system 
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was performing, rather than its original intent: to provide likelihood information 

regarding the presence of an enemy target. As a result, trust varied as a function of 

system confidence. 

Data from the current experiment could be used to update Lee and See's (2004) 

Appropriate Trust Framework. Currently, the framework does not address the manner in 

which operators use analytic, analogical, methods to guide trust calibration. The model 

suggests only that these are three methods operators use to tune trust. The present 

experiment's results suggest that operators may be more likely to adopt a less cognitively 

demanding trust-tuning strategy. That is, operators may be more likely to use analogical 

information to serve as a bridge that facilitates trust until operators acquire enough 

analytic information to guide trust. This calibration strategy has considerable design 

implications, especially considering the current trend to display automation confidence 

and reliability information to system users (Jamieson & Wang, 2007). 

The results from the present study could also be used to update utility models of 

automation trust. Dzindolet et al.'s (1999) model describes the manner in which users 

appraise automation and manual capability, but it does not address how information 

pertaining to automation capability influences these utility assessments. The present 

study's results suggest that preconceived biases can influence the interpretation of system 

confidence information from automation of varying expertise, particularly when 

uncertainty is high. This appraisal affects trust and compliance. 

Practical Implications 

With regard to interface design, the results of this research have implications for 

presenting system confidence feedback to operators. Participants calibrated their trust 
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levels and compliance rates to the system's level of confidence. However, this led to 

mistrust for the 25% confident system. This could be due to low perceptions of 

automation capability. Applying the results in the context of a target detection task 

suggests that a diagnostic system should only provide system confidence feedback for the 

state of the world that is above chance. That is, rather than indicating that the system is 

25% confident that a target is present, the interface should indicate that the system is 75% 

confident that a target is not present. However, there is a notable limitation with this type 

of interface: humans are notoriously bad at interpreting negatively phrased information 

(see Dzindolet et al. 2002). Future research should focus on best practices for designing 

human-machine interfaces that display confidence or reliability information. 

Results from the current experiment failed to reflect immense performance benefit 

associated with system confidence ratings. The availability of system confidence ratings 

improved performance when the task was difficult. However, participants were more apt 

to generate false alarms as system confidence increased. Furthermore, system confidence 

ratings impaired detection performance when the task was easy. It is possible that 

performance suffered as system confidence increased in the easy task condition because 

automation errors were more obvious and participants stopped relying on the system 

because it was imperfect. Further testing and refinement are needed to validate the utility 

of incorporating confidence estimates into diagnostic automation. 

Results from the current experiment also indicate that it is important to consider 

the influence of automation expertise on trust and performance. The analogical process of 

trust may play an important part in real-world interactions with automation. The U.S. 

Armed Forces currently have many different forms of aided target recognition technology 
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(Boyd et al., 2006). Clearly, hearsay information concerning the aid's history and 

functionality can affect trust and dependence (Bliss, Dunn, et al., 1995). This type of 

information will likely affect an operator's decision bias to comply with aid advice. In the 

current experiment, participants were more liberal, and consequently generated more 

false alarms, when they interacted with the expert system. In an operational environment, 

operators who interact with an "expert" aid may also adopt a liberal response criterion 

until they learn the accuracy of the system. In this case, the "expertise" of the system may 

serve as a bridge that facilitates trust until operators acquire enough information to 

achieve at least moderate levels of analytic trust. This may cause operators to over-rely 

on automation, and consequently generate more false alarms. Research needs to be 

conducted to explore the generalizability of the present findings to higher-risk scenarios 

and specifically determine if users of expert systems adopt liberal or conservative 

response strategies. 

There are several strategies and practices that designers and practitioners could 

implement to combat the observed cost associated with system confidence and expert 

systems. First, practitioners could train operators to recognize situations or signal patterns 

that correlate with automation capability and reliability. This type of training may 

enhance users' temporal specificity of trust. Second, practitioners could inform operators 

about the capabilities and limitations of expert systems. Learning the performance 

standards of so-called "expert systems" may reduce preconceived cognitive biases and 

facilitate appropriate trust and compliance. Third, practitioners and training agencies 

should institute training events that provide real time feedback regarding the performance 

of automated and manual performance during training events. This way, operators will 
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learn the situational accuracy of manual and automated performance. This too may 

reduce biases about automated and manual performance. 

A final intervention strategy relates to the design philosophy driving the 

automation. Researchers acknowledge that it is important that operators have the ability 

to observe the system's decision and the information it uses to reach that decision (Beck, 

Dzindolet, & Pierce, 2007; Lee & See, 2004; Sheridan, 2002). Thus, automation should 

be designed to allow users to "reach back" and validate automated decisions. This mimics 

a "trust but verify" design strategy. Incorporating such a level of transparency into the 

design of automated systems may enhance trust calibration. 

Funding Opportunities and Directions for Future Research 

Because recent concern over reducing battlefield fratricide has focused interest on 

developing advanced battlefield combat identification systems, results from the current 

experiment could lead to funding opportunities for the research and development of 

automatic target recognition (ATR) systems. Automatic target recognition systems use 

advanced algorithms and sensor data to detect, recognize, and identify battlefield targets. 

ATR systems were originally envisioned to operate autonomously, detecting, locating, 

and classifying targets with little or no human intervention (MacMillian et al., 1994). 

However, completely autonomous performance remains well beyond current ATR 

capability. Under current performance levels, human operators play a critical role: 

screening ATR interpretations, rejecting false alarms, and searching for additional 

targets. Consequently, it has become increasingly important to understand how humans 

interact with their automated counterparts. 
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Future research should focus on best practices for conveying confidence 

information to operators and methods for training operators to appropriately use 

confidence information. Research concerning group decision-making indicates that, for a 

dichotomous choice task, decision makers should receive confidence information only 

when it is above 50% for a given outcome (Yates et al., 1998). To date, there is no 

empirical evidence regarding human machine interface configurations for communicating 

confidence information to system operators. This seems to be a fruitful avenue of 

research considering the proliferation of automated systems in complex task 

environments. 

Future studies should also focus on the best presentation format (numerical vs. 

text), modality (verbal vs. visual), and timing (prior vs. concurrent vs. after presenting the 

image) for presenting system confidence information. Additionally, it may be important 

to examine if system confidence information should be supplemented with additional 

visual or verbal cues. Providing operators with confidence ratings along with a referent 

image of the supposed target may influence detection sensitivity and response bias. 

Future research should also focus on the continued refinement of trust 

measurement techniques. One of goals of this study was to measure trust on a trial-by-

trial basis. To achieve this goal, I used a single item indicator. Participants were 

instructed to rate their trust in the system's diagnosis using a Likert type scale. One 

limitation with this approach pertains to the validity of the measurement item. Though the 

data indicate that system confidence did influence trust ratings, participants may have 

rated their trust in the systems overall diagnosis capability, rather than their trust for in 

the system's diagnosis that specific trial. Additionally, participants may not have coupled 
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the system's confidence rating and diagnosis when making their trust rating. Future 

research may consider measuring trust for each level of system confidence during and 

after the experiment to obtain convergent validity. The measurement of trust needs 

continual refinement to ensure researchers can make appropriate assumptions from their 

research. 
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CONCLUSIONS 

The present study sought to determine the effects of system confidence, 

automation expertise, and image quality on trust, compliance, and performance. As 

expected, these sources of information significantly influenced automation trust and 

participants' response strategies. Specifically, results indicated that 

• Participants matched their trust and compliance to the system's level of diagnostic 

confidence. 

• Participants were more likely to trust and comply with the expert system than the 

novice system. 

• Participants weighed confidence information from expert and novice system 

differently, especially when uncertainty was high. This resulted in different 

compliance strategies. 

• System confidence affected the temporal variability of automation trust and 

compliance. 

• Participants generated more false alarms as system confidence increased and when 

interacting with the expert system. 

These results may prove to be beneficial for designing automated aids and updating 

training modules for interacting with automated aids. Future research should focus on 

best practices for conveying system confidence information to operators and methods for 

training users to appropriately interpret system confidence feedback from expert systems. 



83 

REFERENCES 

American Psychological Association. (2002). Ethical principles of psychologists and 

code of conduct. American Psychologist, 47, 1597-1611. 

Beck, H. P., Dzindolet, M. T., & Pierce, L. G. (2007). Automation usage decisions: 

Controlling intent and appraisal errors in a target detection task. Human Factors, 

49, 429-437. 

Bliss, J. P. (1993). The cry-wolf phenomenon and its effect on operator responses. 

Unpublished doctoral dissertation, University of Central Florida, Orlando. 

Bliss, J. P. (2000). Investigations of alarm mistrust under conditions of varying alarm and 

ongoing task criticality. In Human Factors in Auditory Warnings. N. Stanton & J. 

Edworthy (Eds.), pp. 173-199 (Aldershot: Ashgate). 

Bliss, J. P. (2003). Collective mistrust of alarms. International Journal of Applied 

Aviation Studies, 3(1), 13-38. 

Bliss, J., Dunn, M., & Fuller, B. S. (1995). Reversal of the cry-woIf effect: An 

investigation of two methods to increase alarm response rates. Perceptual and 

Motor Skills, 80, 1231-1242. 

Boyd, C. S., Collyer, R. S., Skinner, D. J., Smeaton, A. E., Wilson, S. A., Krause, D. W., 

et al. (2005). Characterization of combat identification technologies. In IEEE 

International Region 10 Conference, Melbourne, Australia, pp. 568-573. 

Breznitz, S. (1984). Cry-wolf: The psychology of false alarms. Hillsdale, NJ: Lawrence 

Erlbaum. 

Brown, R. D., & Galster, S. M. (2004). Effects of reliable and unreliable automation on 

subjective measures of mental workload, situation awareness, trust, and 



84 

confidence in a dynamic flight task. In Proceedings of the 48' Annual Meeting of 

the Human Factors and Ergonomics Society, New Orleans; LA, pp 147-151. 

Cohen, M. S., Parasuraman, R., & Freeman, J. T. (1998). Trust in decision aids: What is 

it and how can it be improved? Proceedings of the 1998 Command and Control 

Research and Technology Symposium, Monterey, CA. pp 1- 28. 

Dijkstra, J. J. (1999). User agreement with incorrect expert system advice. Behaviour and 

Information Technology, 18, 399-411. 

Dzindolet, M. T., Peterson, S. A., Pomranky, R. A., Pierce, L. G., & Beck, H. P. (2003). 

The role of trust in automation reliance. International Journal of Human-

Computer Studies, 58, 697-781. 

Dzindolet, M. T., Pierce, L. G., Beck, H. P., & Dawe, L. A. (2002). The perceived utility 

of human and automated aids in a visual detection task. Human Factors, 44(1), 

79-94. 

Dzindolet, M. T., Pierce, L. G., Beck, H. P., Dawe, L. A., & Anderson, B. W. (2001). 

Predicting misuse and disuse of combat identification systems. Military 

Psychology, 13(3), 147-164. 

Entin, E. B., Entin, E. E., MacMillan, J., & Serfaty, D. (1995). Situation awareness and 

human performance in target recognition. Intelligent Systems for the 21s' Century. 

IEEE International Conferences, 4, 3833-3837. 

Fallon, C. K., Bustamante, E. A., Ely, K. M., & Bliss, J. P. (2005). Improving user trust 

with a likelihood alarm display. In Proceedings: 11th International Conference 

on Human-Computer Interaction, pp 1-10. 



85 

Green, D. M., & Swets, J. A. (1966). Signal detection theory andpsychophysics. New 

York: Wiley. 

Jamieson, G. A., & Wang, L. (2007). Developing human-machine interfaces to support 

appropriate trust and reliance on automated combat identification systems (Tech. 

Rep. No. 1.). Toronto, Canada: University of Toronto. 

Jian, J., Bisantz, A. M., & Drury, C. G. (2000). Foundations for an empirically 

determined scale of trust in automated systems. International Journal of 

Cognitive Ergonomics, 4, 53-71. 

Kim, J., & Moon, J. Y. (1998). Designing towards emotional usability in customer 

interfaces - Trustworthiness of cyber-banking system interfaces. Interacting with 

Computers, 10, 1- 29. 

Keppel, G., & Wickens, T. D. (2004). Design and Analysis: A Researcher's Handbook, 

4th Edition, Prentice Hall, Upper Saddle River, NJ. 

Lee, J. D., & Moray, N. (1992). Trust, control strategies, and allocation of function in 

human machine systems. Ergonomics, 35, 1243-1270. 

Lee, J. D., & Moray, N. (1994). Trust, self-confidence, and operators' adaptation to 

automation. International Journal of Human-Computer Studies, 40, 153-84. 

Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. 

Human Factors, 46, 50-80. 

MacMillian, J., Entin, E. B., & Serfaty, D. (1994). Operator reliance on automated 

support for target detection. In Proceedings: 38'" Annual Meeting of the Human 

Factors and Ergonomics Society, 1285-128. 



86 

Madhavan, P., & Wiegmann, D. A., & Lacson, F. C. (2006). Automation failures on tasks 

easily performed by operators undermine trust in automated aids. Human Factors, 

48, 241-256. 

Madhavan, P., & Wiegmann, D. A. (2007). Effects of information source, reliability, and 

pedigree on operator interaction with decision support systems. Human Factors, 

47(2), 332-341. 

Maltz, M., & Shinar, D. (2003). New alternative methods of analyzing human behavior in 

cued target acquisition. Human Factors, 45(2), 281-295. 

Mayer, A. (2008). The manipulation of user expectancies: Effects on reliance, 

compliance, and trust using an automated system. Unpublished master's thesis, 

Georgia Institute of Technology, Atlanta. 

McGuirl, J. M., & Salter, N. B. (2006). Supporting trust calibration and the effective use 

of decision aids by presenting dynamic system confidence information. Human 

Factors, 48, 656-665. 

Merritt, S. M., & Ilgen, D. R. (2008). Not all trust is created equal: Dispositional and 

history based trust in human-automation interactions. Human Factors, 50, 194-

210. 

Meyer, J. (2004). Conceptual issues in the study of dynamic hazard warnings. Human 

Factors, 46, 196-204. 

Mosier, K. L., & Skitka, L. J. (1996). Human decision makers and automated aids: Made 

for each other? In R. Parasuraman & M. Mouloua (Eds). Automation and human 

performance: Theory and applications. Human Factors and Transportation (pp. 

201-220). Mahwah, NJ: Lawrence Erlbaum Associates. 



87 

Muir, B.M. (1989). Operators' trust in and percentage of time spent using the automatic 

controllers in a supervisory process control task. Unpublished doctorial 

dissertation. University of Toronto, Ontario, Canada. 

Muir, B. M., & Moray, N. (1996). Trust in automation II: Experimental studies of trust 

and human intervention in a process control simulation. Ergonomics, 39(3), 429-

460. 

Nan, X. (2007). The effect of perceived source credibility on persuasion: Moderators and 

mechanisms. Paper presented at the Annual Meeting of the International 

Communication Association, San Francsisco CA, Online Retrieved 2008-7-17 

from http://www.allacademic.eom/meta/p 16895 l_index.html. 

Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, misuse, disuse, 

abuse. Human Factors, 39, 230-253. 

Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A model for types and levels 

of human interaction with automation. IEEE Transactions on Systems, Man, and 

Cybernetics - Part A: Systems and Humans, 30(3), 286-297. 

Parasuraman, R., & Wickens, C. D. (2008). Humans: Still vital after all these years of 

automation. Human Factors, 50, 511-520. 

Petty, R. E., & Cacioppo, J. T. (1981). Attitudes and persuasion: Classic and 

contemporary approaches. Dubuque, IA: William C. Brown. 

Rice, S. (in press). Examining single and multiple-process theories of trust in automation. 

Journal of General Psychology. 

Rhine, R. J., & Severance, L. J. (1970). Ego-involvement, discrepancy, source credibility 

and attitude change. Journal of Personality and Social Psychology, 16, 175-190. 

http://www.allacademic.eom/meta/p


88 

Safar, J. A., & Turner, C. W. (2005). Validation of a two factor structure for system trust. 

In Proceedings: 49' Annual Meeting of the Human Factors and Ergonomics 

Society, 497 - 5 0 1 . 

Sanchez, J. (2006). Factors that affect trust and reliance on an automated aid. 

Unpublished doctoral dissertation. Georgia Institute of Technology, Atlanta. 

Singh, I. L., Molloy, R., & Parasuraman, R. (1993) Automation-induced complacency -

Development of the complacency potential rating scale. The International Journal 

of Aviation Psychology, 3, 111-122. 

Sheridan, T. B. (2002). Humans and Automation: System Design and Research Issues. 

Wiley Interscience: Santa Monica, CA. 

Sheridan T., & Parasuraman, R. (2006). Human-automation interaction. Reviews of 

Human Factors and Ergonomics, I, 89-129. 

Sniezek, J. A., & Von Swol, L. M. (2001). Trust, confidence and expertise in a judge-

advisor system. Organizational Behavior and Human Decision Processes, 84, 

288-307. 

Sorkin, R. D., Kantowitz, B. H., & Kantowitz, S. C. (1988). Likelihood alarm displays. 

Human Factors, 30(4), 445-459. 

Sorkin, R. D., & Woods, D. D. (1985). Systems with human monitors: A signal detection 

analysis. Human Computer Interaction, 1, 49-75. 

Spain, R. D., & Bliss, J. P. (2008). The effect of sonification display pulse rate and 

reliability on operator trust and perceived workload during a simulated patient 

monitoring task, Ergonomics, 51, 1320-1337. 



89 

Spain, R. D., Bustamante, E. A., & Bliss, J. P. (2008). Towards an empirically developed 

scale for system trust: Take two. In Proceedings: 52" Annual Meeting of the 

Human Factors and Ergonomics Society, 1335-1339. 

Sterling, B. S., & Jacobson, C. N. (2006). A human factors analysis of aided target 

recognition technology. (Technical Memorandum No. ARL-TR-3959). Aberdeen 

Proving Ground, MD: Army Research Laboratory. 

St. John, M., & Manes, D. I. (2002). Making unreliable automation useful. In 

Proceedings: 46! Annual Meeting of the Human Factors and Ergonomics 

Society, 332-336. 

Tabachnick, B. G., & Fidell, L. F. (2001). Computer-Assisted research design and 

analysis. Needham Heights, MA: Allyan & Bacon. 

Wickens, C. D., Conejo, R., & Gempler, K. (1999). Unreliable automated attention 

cueing for air-ground targeting and traffic maneuvering. In Proceedings: 43rd 

Annual Meeting of the Human Factors and Ergonomics Society. 21-25. 

Wickens, C. D., & Hollands, J. G. (2000). Engineering psychology and human 

performance. 3 ld Edition. New Jersey, NJ: Prentice Hall. 

Wiegmann, D. A. (2002). Agreeing with automated diagnostic aids: A study of users' 

concurrence strategies, Human Factors, 44, 44-50. 

Yeh, M., & Wickens, C. D. (2001). Examination of explicit and implicit display signaling 

on attention allocation and trust calibration. Human Factors, 42, 455-465. 

Yates, J. F., Lee, J., Shinotsuka, H., Patalano, A. L., & Sieck, W. R. (1998). Cross-cultural 

variations in probability judgment accuracy: Beyond general knowledge 



overconfidence. Organizational Behavior and Human Decision Processes, 74, 

89-177. 



91 

APPENDIX A 

FLYER FOR PROJECT TARGET DETECTION (IRB # 08 087) 

Description: 
This project is a laboratory experiment studying human interaction with computer 
advisors. The study is interested in how automation credibility and automation 
confidence ratings affect detection performance, decision-making accuracy, trust, and the 
perceived reliability of computer advisors. 

Eligibility: 
You must be 18 years or older to participate. You must have normal hearing. If you 
require corrective lenses, you must wear them during the experiment. 

Incentives: 
Participation in this study will earn you two Psychology Department research credits. 

Location and Time: 
This study will take place in Mills Godwin Building room 328. The study will take 
approximately 1 hour and 30 minutes. You may sign up for the experiment using SON A. 

Researchers: 
Principal Researcher: Dr. James P. Bliss, Ph.D. 
Graduate Researcher: Randall D. Spain, M.S. 

Contact Information: 
rspain@odu.edu 

mailto:rspain@odu.edu
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APPENDIX B 

PARTICIPANT BACKGROUND INFORMATION FORM 

Participant # Date: Time: 

The purpose of this questionnaire is to collect background information for participants in 
this experiment. This information will be used strictly for this experiment and for 
research purposes only. Please complete each item to the best of your ability. 

1. Age 

2. Sex (circle one) Male Female 

3. Status (circle one) Undergrad Grad Faculty Staff N/A 

4. Department / Major 

5. How often do you use a computer? (circle one) 

5-7 days/week 2-4 days/week 1 day/week 2-3 days/month 1 day/month less 

6. Have you ever been diagnosed as color blink or color deficient? 

0 = No 

l = Y e s 

7. Have you ever been diagnosed as having a deficiency in your vision? 

0 = No 

l = Y e s 

a. If yes, do you have correction with you (i.e., glasses, contact lenses, etc.)? 

8. Which statement below best describes your attitudes towards computers and other 
automated devices in general? (check one) 

a. Computers and automated devices are generally reliable 
until they prove otherwise. 

b. Computers and automated devices are unreliable until they 
prove otherwise. 
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APPENDIX C 

EXPERIMENT INSTRUCTIONS 

Welcome to the experiment! 

Today, you will pretend to be a military analyst, looking for covert enemy targets in 
intelligence images. Your job will be to search these images and report whether a target is 
present. Click on the "View Targets" button to familiarize yourself with the potential 
targets. Then, click on the "View SAR Images" button to familiarize yourself with the 
intelligence images. 

You will complete 96 trials. On each trial, you will view an image for about 1 second. 
After that, you will make several responses. First, you will click on a button to indicate 
whether you wish to report an enemy target. Click on the YES button if you wish to 
report that an enemy target is present. Click on the NO button if you do not think that an 
enemy target is present. Next, you will indicate how CONFIDENT you are in your 
response. You will rate confidence on a 1 to 5 scale, where 1 indicates "Not Confident" 
and 5 indicates "Very Confident". In addition to reporting your decision confidence, on 
some trials you will be asked to indicate how much you trust a computer aid's diagnosis. 
You will rate your trust on a 1 to 5 scale where 1 indicates that you "Not at all" trust the 
diagnosis and 5 indicates you "Very much" trust the aid's diagnosis. After you make your 
responses, you will receive immediate feedback regarding the accuracy of your decision, 
and your score will be updated. 

You will start with 100 points. You will receive +1 point if you correctly CONFIRM a 
target, or correctly DISMISS a false diagnosis. Conversely, you will be deducted a -1 
point if you wrongfully DISMISS a true target or if you CONFIRM when a target is not 
present. 

Please take a moment to become familiar with the enemy targets. To do so, please press 
the "targets" icon. Enemy targets will always face towards the left, while friendly targets 
will always face towards the right, like one of the many pictured in front of you right 
now. Now take a moment to familiarize yourself with how these images look in radar 
photos. Look at this sample synthetic aperture radar (SAR) image. Can you spot the 
enemy target? If not, let the experimenter know and s/he will help you spot it. 
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APPENDIX C (CONTINUED) 

[NOVICE SYSTEM DESCRIPTION] 

Because of the difficult nature of the task, you will have some help detecting enemy 
targets from a computer system called CONTRAST DETECTOR. 

What is CONTRAST DETECTOR? 

CONTRAST DETECTOR is a novice automated diagnostic aid that has been designed to 
detect enemy military targets in intelligence images. CONTRAST DETECTOR is based 
upon technology used in military target detection over the past 10 years. CONTRAST 
DETECTOR was designed and developed at a small technical college in the Midwest that 
contains a small department in military target detection. CONTRAST DETECTOR 
currently possesses a limited database of the types of modern weapons and targets 
commonly found in today's military operations. Its algorithms are relatively ineffective in 
their attempts to detect enemy targets. Recent testing indicates that the accuracy, 
dependability, and robustness of CONTRAST DETECTOR are not up to military 
standards for military target detection. The U.S. Department of Defense (DOD) is 
considering whether to conduct limited field-testing using CONTRAST DETECTOR. 

If present, CONTRAST DETECTOR will indicate how confident it is that the image 
contains an enemy target. Note: CONTRAST DETECTOR'S confidence estimates are 
based on how well the information collected from CONTRAST DETECTOR'S 
algorithms match enemy templates located in its target database. 

A 75% confidence estimate indicates that CONTRAST DETECTOR has considerable 
evidence that a target is present. 

A 50% confidence estimate indicates that CONTRAST DETECTOR has variable 
evidence that a target is present. 

A 25% confidence estimate indicates that CONTRAST DETECTOR has little evidence 
that a target is present. 

Remember, on some trials CONTRAST DETECTOR may not be present. When it is 
present, the use of CONTRAST DETECTOR is completely optional. The responsibility 
of the final decision is ultimately your own; you can choose to either accept the aid's 
diagnosis or ignore it. Because of the "fog of war" CONTRAST DETECTOR may not 
always be correct. 

Now, you must answer several questions to make sure that you understand the task and 
the background of the diagnostic aid that will assist you in the detection task. 
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APPENDIX C (CONTINUED) 

[EXPERT SYSTEM DESCRIPTION] 

Because of the difficult nature of the task, you will have some help detecting enemy 
targets from a computer system called SUPER CONTRAST DETECTOR. 

What is SUPER CONTRAST DETECTOR? 

SUPER CONTRAST DETECTOR is an expert automated diagnostic aid that has been 
designed to detect military targets in intelligence images. SUPER CONTRAST 
DETECTOR is based upon, but far exceeds, technology that the U.S. Military has used in 
military target detection over the past 10 years. SUPER CONTRAST DETECTOR was 
designed and developed by the nations top military research firm in Washington D.C. that 
contains a highly specialized department in military target detection. SUPER 
CONTRAST DETECTOR possesses an extensive database of the types of modern 
weapons and targets found in today's military operations. Its algorithms are highly 
effective in their attempts to detect enemy targets. Recent testing indicates that the 
accuracy, dependability, and robustness of SUPER CONTRAST DETECTOR set the 
standard for military target detection systems. The U.S. Department of Defense (DOD) is 
currently using SUPER CONTRAST DETECTOR in its Middle Eastern military 
operations. 

If present, SUPER CONTRAST DETECTOR will indicate how confident it is that the 
image contains an enemy target. Note: SUPER CONTRAST DETECTOR'S confidence 
estimates are based on how well the information collected from SUPER CONTRAST 
DETECTOR'S algorithms match enemy templates located in its target database. 

A 75% confidence estimate indicates that SUPER CONTRAST DETECTOR has 
considerable evidence that a target is present. 

A 50% confidence estimate indicates that SUPER CONTRAST DETECTOR has variable 
evidence that a target is present. 

A 25%o confidence estimate indicates that SUPER CONTRAST DETECTOR has little 
evidence that a target is present. 

Remember, on some trials SUPER CONTRAST DETECTOR may not be present. When 
it is present, the use of SUPER CONTRAST DETECTOR is completely optional. The 
responsibility of the final decision is ultimately your own; you can choose to either accept 
the aid's diagnosis or ignore it. Because of the "fog of war" SUPER CONTRAST 
DETECTOR may not always be correct. 

Now, you must answer several questions to make sure that you understand the task and 
the background of the diagnostic aid that will assist you in the detection task. 
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APPENDIX D 

POST INSTRUCTION QUESTIONNAIRE 

Instructions: Please answer the following questions about the detection aid whose 
decisions will assist you in the target detection task. You must answer each question 
correctly before continuing. You may refer to the information you just read if you need 
to. 

1) What is the name of the computerized detection aid? 
a. Contrast Detector 
b. Super Contrast Detector 

2) The computerized detection aid is an/a 
a. Novice 
b. Expert 

3) The detection aid's knowledge / database of modern military weapons and targets 
in target detection is: 

a. Limited 
b. Extensive 

4) The detection aid is being used in current military efforts in the Middle East. 
a. True 
b. False 

5) The detection aid's confidence estimates are based on the degree of match 
between the data its algorithms collect and the target templates contained in its 
database. 

a. True 
b. False 
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APPENDIX E 

INITIAL TRUST QUESTIONNAIRE 

[NOVICE SYSTEM] 

INSTRUCTIONS: Please respond to the following statements addressing your 
impressions of SUPER CONTRAST DETECTOR on a scale of 1 to 7 with 1 being 
"strongly disagree" and 7 being "strongly agree." 

1) CONTRAST DETECTOR is likely to 
i. Use underhanded tactics (i.e. random guesswork) to arrive at 

diagnosis 
ii. Behave in a deceptive manner 

2) I am suspicious of CONTRAST DETECTOR'S diagnostic potential 

3) I have little or no confidence in CONTRAST DETECTOR'S ability to 
formulate accurate diagnoses 

4) CONTRAST DETECTOR comes across as having integrity 

5) CONTRAST DETECTOR'S decisions are likely to be consistent 

6) CONTRAST DETECTOR is likely to be dependable 

7) CONTRAST DETECTOR is likely to be reliable 

8) I have faith in CONTRAST DETECTOR'S ability to generate correct 
diagnoses 

9) I will feel comfortable and familiar using CONTRAST DETECTOR 

10) I can trust CONTRAST DETECTOR 

APPENDIX E (CONTINUED) 
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INITIAL TRUST QUESTIONNAIRE 

[EXPERT SYSTEM] 

INSTRUCTIONS: Please respond to the following statements addressing your 
impressions of SUPER CONTRAST DETECTOR on a scale of 1 to 7 with 1 being 
"strongly disagree" and 7 being "strongly agree." 

1) SUPER CONTRAST DETECTOR is likely to 
i. Use underhanded tactics (i.e. random guesswork) to arrive at 

diagnosis 
ii. Behave in a deceptive manner 

2) I am suspicious of SUPER CONTRAST DETECTOR'S diagnostic potential 

3) I have little or no confidence in SUPER CONTRAST DETECTOR'S ability to 
formulate accurate diagnoses 

4) SUPER CONTRAST DETECTOR comes across as having integrity 

5) SUPER CONTRAST DETECTOR'S decisions are likely to be consistent 

6) SUPER CONTRAST DETECTOR is likely to be dependable 

7) SUPER CONTRAST DETECTOR is likely to be reliable 

8) I have faith in SUPER CONTRAST DETECTOR'S ability to generate correct 
diagnoses 

9) I will feel comfortable and familiar using SUPER CONTRAST DETECTOR 

10) I can trust SUPER CONTRAST DETECTOR 

APPENDIX F 
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OVERALL TRUST QUESTIONNAIRE 

[NOVICE SYSTEM] 

Instructions: Please respond to the following statements addressing your impressions of 
CONTRAST DETECTOR on a scale of 1 to 7 with 1 being "strongly disagree" and 7 
being "strongly agree." 

1) CONTRAST DETECTOR is likely to use underhanded tactics (i.e. random 
guesswork) when diagnosing targets. 

2) CONTRAST DETECTOR behaves in a deceptive manner 

3) I am suspicious of CONTRAST DETECTOR'S target diagnoses 

4) I am wary of CONTRAST DETECTOR'S target diagnoses 

5) CONTRAST DETECTOR'S diagnoses are likely to have a harmful outcome 

6) CONTRAST DETECTOR is a dependable target detection aid 

7) CONTRAST DETECTOR is a competent target detection aid 

8) CONTRAST DETECTOR is a reliable target detection aid 

9) I have faith in CONTRAST DETECTOR'S diagnoses 

10) The answer provided by CONTRAST DETECTOR is predictable 

11)1 feel comfortable and familiar using CONTRAST DETECTOR 

12) I can trust CONTRAST DETECTOR 

13) CONTRAST DETECTOR is credible 

14) One a scale from 0% -100%, please indicate how reliable you think CONTRAST 
DETECTOR was at identifying targets: 
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APPENDIX F (CONTINUED) 

OVERALL TRUST QUESTIONNAIRE 

[EXPERT SYSTEM] 

Instructions: Please respond to the following statements addressing your impressions of 
SUPER CONTRAST DETECTOR on a scale of 1 to 7 with 1 being "strongly disagree" 
and 7 being "strongly agree." 

1) SUPER CONTRAST DETECTOR is likely to use underhanded tactics (i.e. 
random guesswork) when diagnosing targets. 

2) SUPER CONTRAST DETECTOR behaves in a deceptive manner 

3) I am suspicious of SUPER CONTRAST DETECTOR'S target diagnoses 

4) I am wary of SUPER CONTRAST DETECTOR'S target diagnoses 

5) SUPER CONTRAST DETECTOR'S diagnoses are likely to have a harmful 
outcome 

6) SUPER CONTRAST DETECTOR is a dependable target detection aid 

7) SUPER CONTRAST DETECTOR is a competent target detection aid 

8) SUPER CONTRAST DETECTOR is a reliable target detection aid 

9) I have faith in SUPER CONTRAST DETECTOR'S diagnoses 

10) The answer provided by SUPER CONTRAST DETECTOR is predictable 

11)1 feel comfortable and familiar using SUPER CONTRAST DETECTOR 

12) I can trust SUPER CONTRAST DETECTOR 

13) SUPER CONTRAST DETECTOR is credible 

14) One a scale from 0% -100%, please indicate how reliable you think SUPER 
CONTRAST DETECTOR was at identifying targets: 
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APPENDIX G 

OPINION QUESTIONNAIRE 

Part. #: Group: Date: Time: 

Thank you for participating in this research project. Please complete the following items 
by entering the number of your choice on the answer sheet. As before, your answers are 
completely confidential. 

Please rate the target detection game on the following dimensions: 

1. Stress: 

1. Very Stressful 

2. Slightly Stressful 
3. Neither Stressful Nor Relaxing 
4. Slightly Relaxing 
5. Very Relaxing 

2. Complexity: 

1. Very Understandable 
2. Slightly Understandable 
3. Neither Understandable Nor Complex 
4. Slightly Complex 
5. Very Complex 

3. Simplicity: 

1. Very Challenging 
2. Slightly Challenging 
3. Neither Challenging Nor Simple 
4. Slightly Simple 
5. Very Simple 

4. Stimulation: 

1. Very Stimulating 
2. Slightly Stimulating 
3. Neither Stimulating Nor Boring 
4. Slightly Boring 
5. Very Boring 
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5. Did you have a strategy for searching for enemy targets?_ 
If so, what was it? 

6. Was is too difficult to spot enemy targets? If so, how did you determine whether a 
target was present? 

7. Did you have a strategy for using the diagnostic aid's advice? Where there certain 
instances where you were more likely to rely on the aid's advice compared to others? 

8. Do you have any other thoughts, feelings, or comments about 
this experiment? 
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APPENDIX H 

MANIPULATION CHECK 

A 2 (Group: experimental, control) x 4 (System Confidence: 75%, 50%, 25%, no 

aid) mixed ANOVA was calculated to ensure that system confidence, not event base rate, 

influenced participants' response frequency. Response frequency was defined as the 

proportion of times a participant reported that a target was present. Results revealed a 

significant interaction between group and system confidence, F(3, 312) = 31.71, p < .001, 

partial rj2 = .23. Participants who received automated assistance matched their response 

frequency to the system's level of confidence, whereas participants in the control 

condition reported a target being present roughly 50% of the time. These results suggest 

that system confidence, not target base rate, influenced participants' response frequency. 
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