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ABSTRACT

CRISP AND FUZZY SIGNAL DETECTION THEORY AND PILOT WEATHER 
JUDGMENT: IMPLICATIONS FOR VFR FLIGHTS INTO IMC

Joseph T. Coyne 
Old Dominion University, 2004 
Director: Dr. Carryl L. Baldwin

Weather represents one of the greatest hazards to general aviation (GA), 

accounting for 15% of the GA accident fatalities. Of the fatal weather accidents 90% are 

attributed to visual flight rules (VFR) flight into instrument meteorological conditions 

(IMC). The situation assessment hypothesis suggests that pilots may inadvertently enter 

IMC because they lack the sensitivity needed to distinguish between visual 

meteorological conditions (VMC) and IMC. An alternative hypothesis is that pilots 

recognize conditions have deteriorated but are motivated by some other factor, such as 

pressure from passengers. The present study uses Jensen’s Pilot Judgment Model and 

Signal Detection Theory to explain pilot judgment. The impact of Graphical Weather 

Information Systems (GWIS), particularly graphical METARs on pilot judgment was 

also assessed. Twenty-four general aviation pilots were shown simulated video images 

of different weather conditions. Several of these trials contained GWIS surface data of 

varying accuracy. Results indicated that pilots had trouble in distinguishing between 

VFR and EFR conditions, especially determining ceiling. Overall, pilots had a low 

sensitivity in determining whether the ceiling was VMC or IMC and tended to 

overestimate ceilings. This problem was amplified by an interaction with visibility. 

Pilots’ estimates of IMC ceilings actually increased as the visibility increased. A similar
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effect of ceiling influencing visibility judgments was also found. Pilots’ judgments were 

additionally influenced by the inaccurate METAR information presented in the GWIS. 

GWIS data that suggested conditions were worse than those seen out-the-window caused 

a liberal shift in response bias, and conditions that were better than those out-the-window 

had a corresponding conservative shift in response bias. Overall the experiment found 

evidence to suggest both situation assessment and motivation could contribute to a 

decision to continue into IMC. The interaction of ceiling and visibility also suggests a 

new potential factor in inadvertent VFR flight into IMC. The improper evaluation of one 

weather dimension based upon a bias from the other weather dimension needs to be 

further examined for its role in pilots’ decision to continue into deteriorating weather 

conditions.
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1

INTRODUCTION

General Aviation Flying and Weather

Weather affects piloting more than any other physical factor. An understanding 

of the current and forecasted weather is a critical aspect of general aviation (GA) flight 

safety, particularly for non-instrument rated pilots who are restricted to flights under 

visual flight rules (VFR) conditions. Despite its importance for flight safety, many pilots 

believe weather is the most difficult and least understood subject in their pilot training 

(Lankford, 2001). Gathering, analyzing and making decisions based upon weather is 

ultimately the responsibility of the pilot in command (PIC) (Buck, 1998). Remaining 

vigilant about weather is particularly important in GA where there is seldom a co-pilot. 

Forecasts based on computer models and satellite imagery may be outdated or inaccurate. 

Weather is a dynamic environment, where conditions can change rapidly and 

unexpectedly. Pilots must constantly appraise and interpret the information available. 

Failure to recognize deteriorating weather is a potentially fatal error for GA pilots.

Pilots’ concern with weather begins when they decide to fly and does not end 

until they arrive safely at their destination. The first component of pilots’ weather 

decision making is the evaluation of the weather prior to flight. This process can begin 

days before the flight, particularly for cross-country trips. It is prior to flight that pilots 

should learn the overall weather systems. The big picture includes knowing what the 

weather is along the flight path, where fronts are, and what the conditions are expected to 

be throughout the flight. The pilot has a number of different weather information sources
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available for consideration. Some information such as radar and satellite imagery 

is typically available only prior to flight while others such as Flight Watch can be 

acquired only enroute.

The pilot’s first weather decision is the “go/no go” decision. This decision is 

driven by the weather conditions at the airport at takeoff and the forecasted conditions for 

the planned flight route. Unlike the decision at takeoff, in-flight weather decision making 

is a continuous process. It is the pilot’s responsibility to be aware of the current weather 

situation and to see if  it matches the forecast. If a forecast is incorrect or “busted” the 

pilot must be prepared to respond appropriately. However, as evidenced by pilot reports 

and as indicated by accident reports, weather-related decisions are sometimes incorrect. 

Examination of the factors associated with inaccurate or risky weather-related decisions 

is critical to aviation safety.

Weather can be one of the most dangerous variables for GA pilots. Weather 

related accidents are more likely to be fatal than any other type of GA accident (Goh & 

Wiegmann, 2001a). According to the 2002 Nall Report (Aircraft Owners and Pilots 

Association [AOPA] Air Safety Foundation, 2002), weather was a causal factor in 4.1% 

of all GA accidents; however, these accidents represented 15.2 % of the total fatal GA 

accidents in 2001. Attempted VFR into instrument meteorological conditions (IMC) 

represents the largest weather related hazard, accounting for 90% of all fatal GA weather 

accidents.

Inadvertent flight into IMC while operating under VFR is most hazardous for GA 

pilots, whose intent is to navigate and maintain separation by visual cues (i.e., not having 

to rely on instruments). VFR flights are categorized by rules related to cloud base

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3

(ceiling) and visibility. Federal Aviation Regulations (FARs) categorize YFR minimums. 

These minimums differ by airspace class, although generally the ceiling must be 1000 ft 

or more and the visibility must be at least 3 statute miles (sm). Appendix A provides a 

breakdown of the different FAR weather categories. FARs prohibit non-instrument rated 

pilots from flying when conditions are below these VFR minimums.

The fatality rate for VFR into IMC accidents in the U.S. was approximately 80% 

between 1990 and 1997 (Goh & Wiegmann, 2001a). Although VFR into IMC accidents 

represented approximately 2.5% of the total GA accidents between 1996 and 2000, they 

accounted for over 10% of the fatal GA accidents (AOPA Air Safety Foundation, 2001). 

Earlier studies found similar statistics (AOPA Air Safety Foundation, 1996; 

Transportation Safety Board, 1990). In Canada, VFR to IMC accidents accounted for 

only 6% of the total accidents between 1976 and 1985; however, these accidents 

represented 26% of the total GA fatalities (or 418 persons) for the same time period 

(Transportation Safety Board, 1990).

The decision to continue into IMC conditions can have severe consequences, 

particularly when a pilot does not have an instrument rating. Although 48% of pilots 

hold an instrument rating, approximately 75% of pilots who are involved in VFR into 

IMC accidents are not instrument rated (AOPA Air Safety Foundation, 1996). The 

majority of these accidents occurred during the cruise phase of flight. Frequently 

difficulties arise when a pilot has taken off while conditions were VFR, but then 

encounters bad weather enroute. Many of the accidents (209 of 580) involve non­

instrument pilots continuing or initiating IMC. Another frequent problem within the 

VFR into IMC accidents (95 of 580) involves flying VFR under an overcast ceiling in
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areas with rising terrain. Upon entering IMC, pilots typically become disoriented, which 

can result in a controlled flight into terrain (CFIT). There are a number of reasons pilots 

may make an improper weather related flight decision. Due to the potentially fatal 

consequences of an incorrect weather decision, identifying these reasons is imperative.

Several researchers have investigated the factors that influence pilots’ decisions to 

continue a VFR flight into IMC (Goh & Wiegmann, 2001a, 2001b, 2002; Griffin & 

Rockwell, 1987; Hunter, Martinussen, & Wiggins, 2003; David O'Hare, Owen, & 

Wiegmann, 2001; David O’Hare & Smitheram, 1995; Wiegmann, Goh, & O'Hare, 2002; 

Wilson & Fallshore, 2001). Many variables have been identified that may potentially 

influence the decision to “press on” into IMC. These can be roughly categorized into two 

groups: poor situation assessment, and improper motivation. Poor situation assessment 

suggests that the pilots do not recognize that weather conditions have deteriorated. This 

category corresponds to an inability to accurately assess or diagnose the situation, or 

inadequate sensitivity in signal detection theory (SDT) terms. Within the context of this 

study a signal is the presence of instrument conditions. Inadequate situation assessment 

or sensitivity suggests that had they perceived the information correctly, they would have 

decided to divert.

The second major classification involves improper motivation and in SDT terms 

can be associated with the pilot’s response criterion and response bias. Improper 

motivation is evidenced when a pilot recognizes that the situation has deteriorated, but 

chooses to continue anyway. One factor that may affect a pilot’s response bias is a 

phenomenon referred to as sunk cost (Arkes & Blumer, 1985). The sunk cost 

phenomenon refers to a desire to continue in an effort to preserve the resources and costs
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that have already been invested in the task. For example, pilots who are farther along in 

the flight plan may be more motivated to not “waste” the time invested in the flight and 

therefore may be motivated to continue on despite adverse weather.

Investigations that provide initial evidence supporting both situation assessment 

and motivational influences as contributing factors in decision making errors will be 

discussed Anther. Previous investigations provide valuable but limited information on 

the factors involved in continuing a VFR flight into IMC. Before discussing the previous 

research in any detail, a unifying framework or model that incorporates the various 

elements of pilot judgment is provided.

Jensen’s Pilot Judgment Model

Jensen’s Pilot Judgment Model is a dynamic model well suited for examination of 

the weather-related decision making process (Goh & Wiegmann, 2002). Jensen’s model 

uses a normative foundation that incorporates both sensory/cognitive factors and 

motivational factors and allows separate metrics of each to be constructed through the use 

of SDT.

The majority of previous research on VFR into IMC has focused only on single 

aspects of decision making in isolation. A number of different models and heuristics 

have been used to describe the decision making process. Weather related decision 

making is a process characterized by uncertainty (D. O'Hare, 2003). If pilots were fully 

aware of the information and the outcomes the process would be a simple act of choice. 

However, pilots do not know exactly what the weather is, what it will be, or what all the 

consequences of a decision to continue or divert may be. The pilot is therefore tasked 

with weighing the information available, considering the possible outcomes associated
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with each choice and selecting the best option. The concept of evaluating the value and 

likelihood of an outcome is the basis for normative decision making models.

A more recent trend in the literature is a naturalistic decision making approach. 

Naturalistic decision making focuses on expert decision makers in more “realistic" tasks. 

The more realistic tasks are those that involve constraints such as time pressure and 

questionable information. Naturalistic models such as the recognition primed decision 

model explain how experts are able to use cues from the environment to quickly identify 

and diagnose a situation (Lipshitz, Klein, Orasanu, & Salas, 2001). Once the initial 

situation assessment has occurred a decision can be made, often without comparing 

possible outcomes. Naturalistic decision models have been useful in real world tasks and 

could be applicable to VFR into IMC decision making. However, the majority of pilots 

involved in VFR into IMC accidents are the less experienced pilots (AOPA Air Safety 

Foundation, 1996). Less experienced pilots, and novice operators in general, may lack 

the sensitivity for accurate situation assessment. Naturalistic decision models are useful 

when considering expert decision makers. However, normative models are more useful 

in predicting novice performance (Kaempf & Klein, 1994).

It is therefore necessary to use a normative model that recognizes decision making 

as an iterative process that involves time constraints and questionable information. It is 

also important to have a model that incorporates factors external to the situation such as 

social pressures. Jensen’s Pilot Judgment Model is a dynamic model that incorporates a 

number of different interdependent processes. Although the model has a normative 

foundation it also allows for external factors such as social pressure to come into the 

decision making process. The model incorporates the concept of signal detection theory,
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and benefits from the ability to separate the sensory/cognitive and motivational aspects of 

decision making into separate metrics. Jensen’s model has been used in previous 

investigations as an organizing framework to provide a better understanding of the VFR 

into IMC problem (Goh & Wiegmann, 2001b). Jensen’s detailed model of decision 

making includes eight steps (Figure 1).

Problem Vigil. The first stage of the judgment process refers to the constant stage 

of vigilance a pilot attempts to maintain at all times. Pilots use their senses to look for 

changes that can affect the safety of flight and their progress. Attention, defined by 

Jensen as the “mental faculty that controls the subject matter chosen for information 

processing” is of critical importance in this stage. Pilots are trained to focus their 

attention on the important safety related aspects of flight. Problems can occur here when 

a pilot simply does not attend to flight critical information such as weather.

Recognition. The second stage is problem recognition. In this stage, perception 

and expectancy are two important factors. During the recognition stage the pilot realizes 

a problem has developed that may affect the safety of flight. As a whole the perceptual 

system reduces the information in the environment to a more manageable size, allowing 

pilots to become aware of the different objects in their environment. The second key 

aspect is expectancy. As pilots gain more experience they learn which patterns of events 

can be grouped together. These expectancies drive which aspects of the environment 

pilots may focus on and become increasingly important when there is limited time 

available.

Problem Diagnosis. The third step is the problem diagnosis. It is here the pilot 

attempts to discover the nature of the problem. Although this step is more important for
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mechanical problems it has some application to weather. It is here that the pilot asks 

what is causing the problem. Knowledge and experience play key roles in this 

component. For example if pilots have accurate knowledge of the weather systems, when 

a problem occurs they will be able to properly diagnosis the problem (i.e., a front 

advancing from a particular location faster then predicted). Accurately diagnosing the 

situation would allow them to divert in the appropriate direction. However, an improper 

diagnosis could lead to their decision to continue further into IMC.

Alternative Identification. The fourth element of pilot judgment is to identify a 

set of possible alternatives that would allow the pilot to solve or avoid the problem. For 

example, after diagnosing the situation as IMC, they may continue towards the 

destination, return to the departure airport, select another alternate, or try and fly around 

the weather.

Risk Assessment. The fifth element is an assessment of the risk involved in each 

of the identified alternatives. This requires that the pilot estimate the probability of 

success of each alternative. There are a number of factors that can effect the estimation 

of risk, including skill of the pilot, amount of fuel, and facilities available at nearby 

airports.

Background Factor. The sixth factor is the background factor. Jensen (1995) 

sums this up as “the motivational forces that keep us from following purely rational 

decisions” (p. 46). These are the non-flight related factors that can have an effect on 

every decision made by the pilot. These come from a variety of sources such as ego, 

social pressure, and decision framing.

Decision Making. The pilot applies the previous elements and arrives at his or her
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decision.

Problem Vigil

Alternative
Identification

Recognition

Diagnosis

Background Factor

Action

Risk Assessment

Decision Making

Figure 1. Jensen’s Pilot Judgment Model.

Action. The final component is the execution of the pilot’s decision.
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Jensen’s framework provides an important tool for addressing the causal factors 

associated with pilots’ decisions to continue a VFR flight into IMC conditions. Problems 

can arise in any of the eight stages of Jensen’s judgment model. However there is a 

fundamental difference in problems that arise early in Jensen’s framework and those that 

arise later in the process. Failures in the early stages are the inability to recognize cues, 

interpret, integrate and diagnose information, and understand the risk associated with 

each decision. These stages together represent rational judgment. Failures in the first 

three stages are represented in the situation assessment hypothesis (Goh & Wiegmann, 

2001b). Ultimately pilots who make situation assessment errors do not realize they are 

flying into IMC. However, pilots may make a proper diagnosis of the situation but still 

be pressured due to background factors to make an incorrect decision. Background or 

motivational factors would be reflected in changes in response bias. The framework 

provides a necessary understanding of the judgment process that is needed before 

reviewing the VFR into IMC literature that emphasizes the different situation assessment 

and motivation aspects of this process in isolation. The model allows for both situation 

assessment and motivational components to play a role in the final decision.

Situation Assessment

The situation assessment hypothesis states that pilots continue into IMC because 

they do not completely understand that the conditions no longer support a VFR flight 

(Goh & Wiegmann, 2001b). For example the pilot’s attention may not have been on the 

relevant weather cues (problem vigil), there may have been a failure to recognize the 

changes in weather (recognition stage) or the pilot may have underestimated the severity 

of the changing weather or where it was developing (diagnosis stage). According to this
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hypothesis a poor decision would be the result of errors in the early, rational stages of the 

judgment process, specifically, the stages of problem vigil, recognition, and/or diagnosis. 

Although alternative identification and risk assessment are both rational components of 

judgment, the situation assessment hypothesis emphasis focuses primarily on problems 

that lead to the diagnosis of the situation.

Ultimately the situation assessment hypothesis assumes that if pilots are able to 

recognize the weather cues or have accurate information indicating they are flying into 

IMC, they will divert (Wiegmann et al., 2002). If this hypothesis is incorrect, then a 

pilot’s decision to continue into IMC is a willful disregard for the FARs and the weather 

cues that would have indicated a safer course. Support for the situation assessment 

hypothesis comes from both accident data (AOPA Air Safety Foundation, 1996) and 

empirical investigations (Goh & Wiegmann, 2001b; Wiegmann et al., 2002).

In addition to its relationship with the early stages in Jensen’s model, the situation 

assessment hypothesis also has ties to situation awareness (SA). According to Endsley 

(1995); situation awareness is the portion of the person’s knowledge that refers to the 

state of a dynamic environment. It is the perception of elements, the comprehension of 

their meaning, and the projection of their status into the future. A simpler definition 

offered by Vidulich (2003) is that SA is the “momentary understanding of the current 

situation and its implications” (p. 116). There is considerable debate as to exactly what 

situation awareness is and how it should be represented as a model (Vidulich, 2003). 

Some researchers use it as a structural model of information processing (Endsley, 1995) 

where as others keep more with a “black box” approach, not considering the specific
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inputs or outputs of SA but instead defining it as an emergent property of information 

processing (Wiekens, 2001).

Some authors have also argued for a distinction between the process and product 

of situation awareness (Adams, Tenney, & Pew, 1995). The process of SA reflects the 

various perceptual and cognitive aspects involved in the construction and updating of the 

state of awareness. The product refers to the state of awareness. However the process 

and product are interdependent and cyclical. The process creates the state of awareness, 

which in turn determines what is expected and important and therefore also drives the 

perceptual processes. This relationship is also a driving mechanism in Jensen’s judgment 

model. Specifically, it is evidenced in the relationship between expectancy and 

perception in the recognition stage.

Regardless of the mechanisms behind situation assessment and situation 

awareness, pilots have a mental representation of the dynamic weather situation. This 

representation includes their model for their current situation and what they expect the 

weather to be along the flight path. When the pilots’ mental model of the weather 

situation does not match the actual weather conditions, pilots are susceptible to situation 

assessment errors. Within the framework of Jensen’s model, failures in SA can result 

from errors at the stages of perception of the elements (problem vigil and recognition), 

comprehension of their meaning (diagnosis) or the projection of their future status 

(alternative identification and risk assessment). SA is a major input to the decision 

making process (Endsley, 1995) and faulty SA can lead to an incorrect decision. 

Simulator studies provide evidence that faulty situation assessment may be the cause of 

VFR into IMC accidents (Goh & Wiegmann, 2001b; Wiegmann et al., 2002). Additional
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evidence for the role of S A, particularly as it relates to pilot experience, can be found in 

accident data (AOPA Air Safety Foundation, 1996; David O'Hare et al., 2001).

Simulator Research. One source of support for the situation assessment 

hypothesis comes from flight simulation research. Wiegmann and colleagues had pilots 

of varying experience levels fly a 120 NM cross-country flight. Twenty-five of the 36 

pilots had instrument ratings. Pilots were allowed to review weather information from 

Terminal Area Forecasts (TAFs), meteorological repots (METARs), and winds aloft 

information prior to takeoff. The destination airport did not support IFR landings thus 

even instrument rated pilots should not have continued into IMC. All of the pilots took 

off under VFR conditions. However, these conditions began to deteriorate either at 30 

NM (short group) or 90 NM (long group). The experimenters measured the amount of 

time the pilots remained in IMC conditions before deciding to divert. Only 1 of the 36 

pilots attempted to continue, however ultimately this pilot failed after crashing the 

aircraft simulation. The distance pilots flew into IMC ranged from .91 NM to 13.72 NM. 

Due to the wide variation of the values, nonparametric statistics were used in their 

analysis.

Pilots who encountered adverse weather early were more likely to proceed further 

into the IMC conditions than those who experienced IMC later in the flight (Median = 

5.94 vs. Median = 2.75 NM respectively). This corresponds to 2.86 minutes for the early 

weather group and 1.48 minutes for the late weather group.

Previously the aircraft’s location along the flight route had been used as support 

for a motivational (background) factor known as the sunk cost hypothesis (David O'Hare 

et al., 2001). This will be discussed in more detail along with other motivational factors
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later in this paper. Sunk cost suggests that as goals become closer there is a shift in 

situation framing from gains to losses. As more resources are invested (i.e., time) in a 

particular goal it is less likely that the goal will be discarded than if fewer resources were 

invested. However, pilots who encountered the weather earlier (i.e., those that had 

invested the least amount of resources) were more likely to press on into the deteriorating 

weather conditions. This contradicts the sunk-cost hypothesis and the anecdotal “get- 

home-itis.”

The results are easily explained using situation assessment as an explanation of 

weather decision making. Pilots received a weather briefing prior to departure allowing 

them to create a mental model of the weather system. As pilots take off and begin their 

flight they are provided with weather cues from out the window that either match their 

current mental model of the system, or cause them to update their model. Pilots who 

encountered the adverse conditions earlier had just received their weather briefing and 

predictions. Because of the recency of the reports pilots may have been more likely to 

trust their original model and would be more likely to “take a look” to update their model 

and gain a more accurate weather awareness. Knowledge that the departure airport is 

close behind and provides a safe haven would also encourage this behavior. The later the 

weather is encountered in the flight, the older the original information from the report has 

become, and therefore the less reliable it is. The pilots in the early group had more 

reason to trust the weather reports due to their recency and therefore were more likely to 

question their interpretation of the out-the-window conditions. Having older weather 

data, the group experiencing adverse conditions late in flight was more likely to trust 

their own interpretation.
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This interpretation follows an explanation ofVFR into IMC flight described by 

Smith (2001). Smith uses anchoring and adjustment biases to explain pilots’ decisions to 

continue into IMC. If the initial weather briefing received by the pilot states “good VFR 

conditions” the pilot will use this information as an anchor. Their interpretation of the 

weather would be based upon a good weather VFR anchor. However this anchor can 

negatively influence the pilot’s judgment. Pilots encountering bad weather after having a 

good weather anchor would be more inclined to rate the weather as less severe. In this 

situation their diagnosis of the situation would be less accurate than pilots without an 

anchor. Within the framework of Jensen’s model the failure has occurred in one of the 

earlier stages. The failure may be at recognition, because the pilot’s expectations are 

influencing them not to focus on weather since they believe it should be VFR. 

Alternatively, the pilots may be including the incorrect weather reports in their diagnosis 

and arriving at an incorrect assessment. Regardless of the precise stage at which the error 

occurs, it represents a failure on the rational side of the judgment process, and ultimately 

a situation assessment error.

Wiegmann et al. (2002) also offered another perceptual explanation of their 

results. Pilots in the short weather group experienced the adverse weather almost 

immediately after take off. This contrasts with the long group that experienced a long 

“baseline” of steady weather conditions prior to encountering the adverse weather. It 

may have been easier for the pilots to detect the change because it would have 

represented a sudden change from the baseline, whereas in the long weather condition the 

change in weather would have appeared to be a continuous change.
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Stronger support for a situation assessment explanation comes from another 

simulator study conducted at the University of Illinois (Goh & Wiegmann, 2001b). 

Thirty-two VFR only pilots first completed a preflight questionnaire to ascertain different 

motivational biases that may have been present. Following the questionnaire, 

participants flew a simulated flight. The first leg of the flight was used to familiarize the 

pilots with the simulator. During the experimental route the pilots flew an 85 NM cross­

country flight. Participants were given a map of the route, alternate airports, TAFs and 

winds aloft information. Weather conditions at takeoff were VFR. However, 45 minutes 

into the flight conditions deteriorated into below VFR conditions (ceilings were 1500 

Mean Sea Level (MSL) and visibility was 2 sm). Participants had a 5-minute window 

from when the conditions deteriorated below VFR minimums until the experiment was 

terminated. If a decision was not made to divert during this time participants were 

considered to have made a decision to continue. Pilots were asked to estimate ceiling, 

visibility, and distance to the airport at the time the simulation ended.

Of the 32 pilots only 10 made the decision to divert using the experimenter’s cut­

off. The pilots who decided to divert were compared with those who continued. The 

most important factor in predicting this dichotomy was the pilot’s estimation of visibility 

at the time the scenario ended. The pilots who decided to continue overestimated the 

visibility (conditions were worse than the pilots believed). Pilots who decided to divert 

had a mean error of 0 for visibility estimates compared to a mean error of 1.4 sm for the 

pilots who decided to continue. Pilots in both groups tended to overestimate the ceilings 

by about 2200 ft. The study revealed both the importance of situation assessment in 

predicting VFR flight into IMC and demonstrated pilot’s difficulty with interpreting out-
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the-window weather cues. If pilots make an error in the recognition stage of pilot 

judgment they would have no reason to consider a need for diverting. These two studies 

suggest that failures in the recognition and diagnosis stages may be why pilots 

inappropriately continue into IMC.

In both of the University of Illinois (UI) studies (Goh & Wiegmann, 2001b; 

Wiegmann et al., 2002) the ceiling and visibility both dropped below VFR minima. In 

the UI studies either ceiling or visibility could have led to an IMC classification using 

FARs. Would the pilots’ decisions have been the same if only ceiling or visibility fell 

below VFR minima? Using the guidelines provided by the FARs the answer would be 

yes. If pilots interpreted one of the two components as being below VFR minima then 

they should have diverted. However research conducted by the FAA (Driskill et al.,

1997; Hunter et al., 2003) suggests that pilots may be incorrectly combining weather 

information and overestimating weather conditions. How pilots combine weather is an 

important step in situation assessment, and may be a problem for pilots.

Information Integration and the Diagnosis Stage. The pilot is tasked with 

evaluating weather as a whole. However, there are different components that play a role 

in this overall assessment. Ceilings and visibility vary independent of each other. A low 

ceiling or poor visibility alone can categorize conditions as IMC. Research sponsored by 

the FAA addressed the question of how pilots mentally combine different ceilings and 

visibilities (Driskill et al., 1997; Hunter et al., 2003). These FAA studies utilized the 

same methodology, however Hunter and colleagues looked at samples from several 

countries.
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Pilots were provided with textual information about cloud ceiling, visibility and 

precipitation. This information was given within 81 textual scenarios (3 sets of 27). Sets 

were divided by terrain (water, mountainous, and non-mountainous). Each set was 

comprised of 3 levels of ceiling, visibility, and precipitation (each containing a high, 

medium, and low). Participants were instructed to rank order the 27 scenarios for each 

terrain route. After the ranking they were instructed to provide a rating ranging from 1 to 

100 to describe their level of comfort with the flight.

Equations were developed for both compensatory and non-compensatory decision 

models using the comfort rating as the dependent variable and the three different weather 

attributes as the predictor variables. Within a compensatory decision making framework 

the positive and negative attributes of each option are considered and the selection is 

based upon the greatest number of positive attributes. If pilots use this type of strategy, 

good ceilings would “compensate” for poor visibility. Compensatory models of decision 

making are an efficient use of the available information, however they are not the optimal 

decision making strategy. In fact compensatory models can place inexperienced pilots at 

a greater risk of being involved in a weather accident (Hunter et al., 2003). For example 

inexperienced pilots cannot allow for good ceilings to compensate for poor visibility. If a 

non-instrument pilot cannot see where they are flying then they should not be flying. 

Indeed for conditions to be VFR they must meet both ceiling and visibility requirements 

stipulated in the FARs.

Non-compensatory models such as the multiple hurdle model offer a safer 

alternative. This non-compensatory model compares each aspect against a criterion. For 

example, a pilot would continue a flight only if the ceiling met their ceiling criterion and
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the visibility met their visibility criterion. When either the ceiling or visibility falls below 

the pilot’s criterion they will opt not to fly. Failure of any aspect to be above the pilot’s 

criteria should result in a decision to abort. FARs provide ceiling and visibility criteria 

for VFR flight. However, a better strategy would be for pilots to establish personal 

minimums for flying VMC. Despite the FARs, GA pilots are for the most part 

unsupervised. This lack of supervision may lead to a weak commitment to follow the 

FARs. Pilots should have a stronger commitment if they establish a set of their own 

personal minimums (Jensen, Guilkey, & Hunter, 1998). These personal minimums are 

generally more conservative than the FARs.

Results from both FAA studies (Driskill et al., 1997; Hunter et al., 2003) indicate 

that pilots used a compensatory decision making strategy. Models using either the sum 

or product of the three weather attributes had the largest correlations with the pilot’s 

reported level of comfort. Correlations for these two models were above .8 across three 

samples from different countries (Hunter et al., 2003). How the pilots integrate the 

different weather components is the critical component of Jensen’s diagnosis stage of 

judgment. Averaging all of the weather components instead of using the worst condition 

can result in an improper diagnosis. The evidence from the FAA research suggests that 

pilots’ problems in situation assessment may result from improper diagnosis.

The evidence from information integration (Driskill et al., 1997; Hunter et al., 

2003) and recognition of deteriorating conditions (Goh & Wiegmann, 2001b; Wiegmann 

et al., 2002) all provide direct support for a situation assessment hypothesis. Additional 

support is provided by research examining the influence of flight experience on VFR into 

IMC decisions.
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Experience. Experience plays a critical role in the early rational stages of 

Jensen’s model, and therefore also in the situation assessment hypothesis. Within the 

problem vigil stage, more experienced pilots may simply have more resources available 

to focus their attention on the different safety critical aspects o f flight. Experience can 

also affect the recognition stage of judgment. Particularly, experience influences which 

cues pilots believe are important and drives their expectations of the situation. 

Additionally, failures may occur at the diagnosis stage as pilots may simply lack the 

experience necessary to interpret the real time weather (Wiegmann et al., 2002).

The importance of experience in decision making is illustrated in its defining role 

in Recognition Primed Decision making (RPD) (Lipshitz et al., 2001). According to 

RPD the key to decision making is having the relevant experience or knowledge 

necessary to properly recognize and assess situations. Fair weather pilots may simply 

lack the experience and knowledge of weather cues to recognize IMC conditions. Indeed 

75% of the pilots involved in VFR into IMC accidents did not have instrument ratings 

(AOPA Air Safety Foundation, 1996). This is a substantial overrepresentation 

considering that non-instrument rated pilots account for only half of the GA population.

Data from accident reports (David O'Hare et al., 2001) and VFR to IMC 

simulations (Wiegmann et al., 2002) have demonstrated an important relationship 

between pilot experience (based upon cross country hours) and an inappropriate decision 

to continue. The more experienced pilots were, the more likely they were to divert when 

they encountered bad weather. This suggests that experienced pilots can more accurately 

recognize the cues of deteriorating weather conditions and/or make better decisions 

regarding the continuation of the flight. Survey data reveal that expert pilots (over 1,000

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



21

cross country hours) rely on different weather cues than novice pilots when making 

decisions to continue a flight (Wiggins & O'Hare, 2003). Inexperienced pilots may not 

understand the importance of the different weather cues and therefore ignore them when 

assessing the weather situation.

Wiggins and O’Hare (2003) compared the ability of experts and novices to 

determine if they could remain in VMC conditions. Participants were classified as 

experts and novices based on their cross-country hours. Experts were defined as those 

who had accumulated over 1000 cross-country hours. The study was conducted on the 

web using static in-flight images. Pilots rated the importance of nine different cues for 

determining whether remaining in VMC was possible. The nine different cues were 

determined after interviewing a group of experts. These cues are presented below in 

Table 1. Experts rated horizontal visibility and increasing cloud concentration as more 

important than novices, whereas novices rated wind strength as more important than 

experts.

TABLE 1: Nine Weather Cues Identified by Wiggins and O’Hare (2003)_______
A change in the type of cloud formation 
An increase in cloud density (concentration)
A darkening of the cloud 
A lack of adequate terrain clearance 
A lowering cloud base 
Rain showers
A change in wind direction 
A change in wind speed
A reduction in horizontal visibility (loss of horizon)________________________

In the final section, pilots viewed ten static out-the-window images. After 

viewing the images the pilots were asked to state whether it was possible to remain in
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VMC on their current track and altitude. They then reported the confidence in their 

answer and reported what cues they used to make their decision. Experts more frequently 

used cloud type, cloud base and cloud concentration during their assessment process. 

Pilots who judged it possible to remain in VMC more frequently relied upon cloud base 

and cloud type to make their decisions.

Experts (i.e., pilots with more than 1000 cross country hours) were more 

confident in their decisions than novice pilots. Pilots who decided to remain in VMC 

were more confident with their decision than those who believed VMC flight was no 

longer possible. The appropriateness of the pilots’ decisions was not discussed within the 

context of their paper. The authors appeared to make the assumption that the decisions 

made by the experts were correct. However it is apparent that expert and novice pilots 

weight different weather cues differently. The cues that pilots use could influence not 

only what aspects of weather they pay attention to and perceive, but also affect what 

information they use to diagnose the situation.

Wiggins and O’Hare (1995) used multiple flight decision scenarios to compare 

experts (pilots’ with over 1,000 cross country hours), intermediates (pilots’ with 101 -  

1,000 cross country hours), and novices (pilots’ with less than 101 cross country hours). 

Participants were given an image of the aircraft and its position along the flight path. 

Pilots had access to data screens containing aircraft information (current aircraft state and 

performance), weather information, and terrain and airport information. The analysis 

revealed that expert pilots used fewer information screens and returned to the same 

information screen less often than novice pilots. Pilots with less experience were more 

likely to return to their original point of departure; which due to terrain, weather and fuel
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limitations represented an incorrect decision. Expert pilots were more likely to make the 

correct decision and continue to their original destination. However this evidence is 

indirect. Expert decisions to continue on with the flight may have actually been a result 

of experts having a greater confidence in their abilities. It is unclear if experts would be 

more likely to divert when conditions become IMC.

Utilizing a full mission flight scenario Wiegmann, Goh, and O'Hare (2002) found 

that experience, particularly recent flight experience (within the last 90 days), was 

negatively correlated with the distance pilots traveled into IMC conditions. More 

experienced pilots recognized the deteriorating conditions and decided to divert earlier 

than less experienced pilots. Recent flight experience had a stronger impact on the 

distance traveled into IMC conditions when the conditions were experienced later in 

flight. Although total flight hours, solo hours, IFR hours and cross country hours were 

also negatively correlated with distance flown, none of these measures reached 

significance.

Although the evidence to support the role of experience in weather decision 

making has been demonstrated, it is still not clear which components of situation 

assessment expertise impacts. In the Wiegmann, Goh and O’Hare (2002) study, although 

flight experience was a significant variable for flight decisions, there was no significant 

relationship between experience and the ability to estimate ceiling or visibility conditions. 

Previous research had identified the ability to estimate visibility as the best predictor of 

the pilots’ decision to divert (Goh & Wiegmann, 2001b). However, the role of expertise 

was not considered in this investigation. A strong link between expertise and situation
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assessment in weather decision making has yet to be established. Experienced pilots may 

still have difficulties with sensitivity, or accurately recognizing weather information.

Situation assessment is not the only explanation for VFR into IMC accidents. 

Indeed a pilot may have a perfect mental representation of the weather system and still 

continue into IMC. The alternative explanation is that the pilots are influenced by 

motivational factors not accounted for by the current weather situation. Jensen’s model 

classifies motivational influences as background factors that take place after an 

assessment of the situation has been made.

Motivational Judgment

Many motivational factors have been investigated within the VFR into IMC 

literature. A popular motivational explanation is that some pilots may have an attitude of 

invulnerability. On the average, GA pilots are overconfident in their abilities and do not 

fully appreciate the risks associated with weather (Wilson & Fallshore, 2001). Other 

motivational factors include how the decision is framed (David O'Hare & Smitheram, 

1995), how the pilots rate their abilities (Goh & Wiegmann, 2001b; Wilson & Fallshore, 

2001), how hazardous pilots believe weather to be (Goh & Wiegmann, 2001b), and 

potential influence from passengers (Goh & Wiegmann, 2002).

Decision Framing. O’Hare and Smitheram (1995) conducted a laboratory study 

investigating how prospect theory could be applied to weather decision making. The most 

notable feature of prospect theory is that people make decisions differently based upon 

risks involving perceived losses versus perceived gains (Kahneman & Tversky, 1984). 

According to prospect theory, people view outcomes not as end states or total assets, but 

instead view outcomes in terms of gains or losses from a reference point. A value
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function for losses and gains shows a different value being placed upon losses and gains 

of equal amounts. The function is considerably steeper for losses. As a result, people are 

more risk averse when considering gains; however they become more risk seeking when 

considering losses. For example, over 80% of people surveyed will choose a sure gain of 

$240 over a gamble involving a 25% chance to win $1000 and a 75% chance to win 

nothing (Kahneman & Tver sky, 1984). This is a clear demonstration of risk aversion 

when considering gains. However, only 13% of people surveyed chose a sure loss of 

$750 over a gamble involving a 75% chance to lose $1000 and a 25% chance to lose 

nothing. This in turn demonstrates people’s tendency to be risk seeking when considering 

losses.

Manipulating the reference point from which decisions are evaluated may change 

preferences for the same option. The manipulation of the reference point is known as 

decision framing. With respect to flight, pilots typically set their reference point as either 

the departure airport or their current position. The selection of the reference point may 

impact their decisions (David O'Hare & Smitheram, 1995).

Prospect theory has several implications for pilots’ choices in weather decision 

making. Pilots who frame the decision of diverting in questionable weather conditions as 

potential losses (i.e., increased fuel consumption, delays, and increased cost) could be 

expected to be more likely to risk continuing into IMC. Whereas, pilots who frame the 

decision to divert as potential gains (i.e., safety of passenger and aircraft, maintenance of 

an untarnished flight record) should be more likely to divert when encountering IMC.

O’Hare and Smitheram (1995) tested prospect theory in GA weather decision 

making scenarios. Their focus was on the critical role of the reference point in how pilots
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will frame the decision. Pilots were placed in one of two groups and given identical 

weather scenarios. The scenarios gave pilots access to information regarding weather 

(textual information), airports, topographic maps, and the current state of the aircraft. 

Pilots reviewed this information at several points along the flight path and made the 

decision to continue or divert. Weather conditions along the flight path deteriorated to 

Marginal VFR. Information for one group was worded to emphasize the departure 

airport as a reference point and reminded them of the time and money invested so far. 

Information for the other group used the current position as the reference point thus 

encouraging pilots to ignore these previous “losses.”

The decision framing manipulation had a significant impact on pilots’ decisions. 

When the decision to continue or divert was framed as gains using the current position as 

the reference point 75% of the pilots decided to divert. Only 33% of pilots from the 

group that used the departure airport as the reference decided to divert. The risk seeking 

decision to continue in the latter group is attributed to the framing of their decision in 

terms of losses.

Sunk Cost. The sunk cost phenomenon is another potential motivating factor in 

the decision to continue into IMC. This effect is demonstrated in the tendency for people 

to continue with an endeavor after an investment has been made (Arkes & Blumer, 1985). 

This investment can be anything from time to money. The effect is attributed to the 

desire not to appear wasteful. An analysis of GA accident data from New Zealand from 

the 1988 to 2000 (David O'Hare et al., 2001) provides some evidence that the sunk cost 

effect may play a role in weather related decision making. The data showed that weather 

accidents occurred significantly further from the departure airport than other types of GA
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accidents, such as mechanical failures. This finding supports the sunk cost hypothesis. 

Pilots who had invested more time and money into the flight were less likely to abandon 

their original goal or destination.

Self-judgment. Goh and Wiegmann (2001b) investigated several motivational 

factors, testing 32 non-instrument rated pilots in a simulated weather decision making 

flight. Pilots were given a modified version of the Aeronautical Risk Judgment 

Questionnaire (David O'Hare, 1990). The questionnaire contained items regarding pilots’ 

background, self judgment, hazard awareness, and risk awareness. The self-judgment 

questions used a 7-point Likert scale to assess pilots own skill compared to others, their 

willingness to take risks, and the frequency in which they take risks. Hazard awareness 

questions asked the pilots to estimate the percentage of accidents due to six broad causal 

factors (e.g., weather, pilot error). They also ranked seven specific factors (e.g., fatigue, 

and flying into adverse weather) on how likely they would be to cause an accident. The 

participants answered the question in two ways, one was how likely the factors would be 

in general to contribute to an accident, and the other was how likely the factor would be 

to contribute to an accident in which they might be involved.

Self-ratings indicated that the pilots who opted to continue into IMC had 

significantly higher ratings of skill and were more likely to take risks. This suggests that 

greater confidence in their piloting abilities led these pilots to be more willing to risk a 

flight into IMC conditions. Questionnaire data from other investigators also suggests that 

pilots are subject to this same optimism bias and an ability bias (Wichman & Ball, 1983; 

Wilson & Fallshore, 2001).
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A survey of 57 student pilots and 103 GA pilots revealed that pilots believe they 

are less likely to inadvertently fly into IMC, and more likely to successfully fly out of 

IMC than other pilots of equal experience (Wilson & Fallshore, 2001). Unfortunately the 

survey did not provide data on the actual experience levels of the participants.

In addition to an assessment of their own skills, decisions made under uncertainty 

involve the perception of risk. Pilots must be able to determine the likelihood of 

suffering a loss. Pilots in the Goh and Wiegmann study (2001b) who continued the flight 

believed themselves to be less likely to be involved in an accident than those in the divert 

group. According to these biases, pilots underestimate the risk associated with a hazard 

and overestimate their abilities to overcome a hazard. In combination, these biases can 

lead to poor decisions, particularly on the part of non-instrument rated pilots when facing 

instrument conditions. Although the assessment of risk is part of the rational judgment 

process, the combination of overestimating skill and underestimating risk is 

demonstrative of the hazardous attitude of invulnerability some pilots may have.

Social pressure. An investigation ofNTSB accident data from January 1990 

through December 1997 revealed several differences between VFR into IMC accidents 

and a random selection of other GA accidents (Goh & Wiegmann, 2002). VFR into IMC 

accidents totaled 409 during the reviewed period. Results of the analysis indicate that 

social pressure may have been a factor in the decision to continue. Compared to the 

random selection of accidents, VFR into IMC accidents were more likely to involve 

passengers. The addition of passengers may have caused the pilots to try and impress 

their passengers, or the passengers may have pushed for the pilot to continue to the 

original destination.
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Despite support for both situation assessment and motivation in pilot judgment 

there has been no systematic attempt to separate the relative contribution of each. Pilot 

judgment is a process of collecting and weighing the available evidence. Once the 

evidence has been evaluated regarding weather conditions the pilot is left with two 

possible choices, conditions are IMC or VMC. The decision faced by the pilot is similar 

to many other types of diagnostic decisions that have benefited from SDT. Further, 

identifying the relative influence of situation assessment and motivational factors will 

assist in the development of strategies aimed at improving weather-related decision 

making and overall aviation safety.

Signal Detection Theory

Jensen’s full model of pilot judgment provides a valuable tool for decomposing 

the different stages of pilot judgment. However, the principal advantage of the model is 

that it can be reduced into a two-factor model based upon the metrics of SDT. These two 

factors are rational judgment, which encompass the stages from problem vigil through 

risk assessment, and motivational judgment, which represents the background factor. 

Within the SDT framework sensitivity is the metric for accuracy o f the diagnosis. There 

are both parametric (i.e., cT) and non-parametric (i.e., A’) metrics for sensitivity. The 

response criterion, which is representative of directional bias, also has a parametric (i.e., 

p) and non-parametric (i.e., c) metric. The parametric statistics are used when the signal 

and noise distributions are both normal and have equal variance. If the assumptions were 

not met d ’ would vary with response criterion and therefore the non-parametric A’ would 

be applied (Stanislaw & Todorov, 1999).
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Crisp Signal Detection Theory. Signal detection theory was originally used in 

psychology as a psychophysical tool for characterizing human performance in detecting 

weak signals (Green & Swets, 1966). The theory has been used to explain both how 

accurate an operator is and what type of bias is present. Since its inception in 

psychology the theory has seen widespread use, particularly in diagnostic fields (Swets, 

Dawes, & Monahan, 2000). In its traditional, or “crisp” form it has been applied to 

situations where there are two distinct states of the world (i.e., a signal is either present or 

it is not).

In terms of weather decision making, a signal can be thought of as the presence of 

IMC or the absence of IMC, (i.e., VMC). To each of these two states of the world the 

observer can make two distinct responses; either a signal is present (IMC) or it is not 

(VMC). Based on the two states of the world and the two responses there are four 

possible outcomes (these are provided in Table 2 below). SDT assumes that there are 

two stages to information processing. First, evidence is collected regarding the presence 

or absence of the signal. Second, the evidence is compared to a cutoff or criterion and 

used to make a decision.

TABLE 2: Weather Response Categorization for Crisp SDT
Actual Weather Conditions

Pilot’s Response IMC (target) VMC (noise)
IMC Hit False Alarm
VMC Miss Correct Rejection

The advantage of SDT is that it allows for the separation of sensitivity and 

response bias. The sensitivity of the system represents the ability to distinguish between
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signal and noise. The greater the sensitivity the more accurate the system or operator will 

be in distinguishing between the two. The sensitivity metric is calculated from the z 

transformation of both the hit rate (HR) and false alarm (FA) rate. Different hit -false 

alarm rate pairs can generate the same sensitivity. The second component is the response 

criterion. This component is involved in the decision making stage. When two different 

hit-false alarm pairs produce the same sensitivity they differ in the amount of response 

bias. The criterion represents how a stimulus that is not clearly classified as signal or 

noise will be classified. An individual can have a liberal bias such that they require less 

evidence to believe a signal was present. As a result they will detect the signal more 

often (i.e., more hits), but also demonstrate a tendency to respond positively when no 

signal is present (i.e., more false alarms). Alternatively a conservative bias would result 

in a reduction in both hits and false alarms. The criterion is a measure of the bias relative 

to the halfway point between the means of the hit rate and false alarm rate. The different 

SDT metrics are graphically depicted in Figure 2 and variations of sensitivity and bias are 

provided in Figure 3. In terms of weather decisions the response criterion will 

distinguish between pilots who are more likely to consider questionable conditions IMC 

and those who consider the same conditions VMC.

Fuzzy Signal Detection. The original or crisp SDT is based upon classical set 

theory. Conditions either are IMC or they are not. FARs provide a clear binary 

categorization of weather conditions as either VFR or IMC. However despite this 

categorization real world signals can be fuzzy (Parasuraman, Masalonis, & Hancock,

2000). According to fuzzy logic, an event can exist somewhere between one state and 

the other.
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Figure 2. Graphical representation of the signal detection metrics.
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Figure 3. Signal detection sensitivity and bias combinations.
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Fuzzy signal detection theory represents a useful extension of signal detection 

theory using fuzzy logic. Instead of the binary classification of signals used in crisp 

SDT, fuzzy SDT allows the signal to take on an infinite range of values. Because an 

event can lie somewhere in between, forcing a classification of the event into one of two 

categories can result in loss of important information. The advantage to fuzzy SDT is 

that it improves the precision of crisp SDT by “retaining the information provided by the 

middle ground, rather than by rounding it into oblivion” (Parasuraman et al., 2000).

Weather conditions have a binary classification as either VFR or IMC conditions 

based upon FARs. However ceiling and visibility clearly vary along a continuum. This 

variation of weather along a continuous dimension makes it amenable to fuzzy SDT. The 

first step in using fuzzy SDT is to create a fuzzy mapping of signal strength to the state of 

the world. Although it can be argued that a fuzzy mapping function is arbitrarily created, 

the same argument can be applied to the categorization point used in crisp SDT. Once a 

fuzzy mapping function has been created, fuzzy SDT works essentially the same as crisp 

SDT. The major difference after the mappings have been created is that an individual’s 

response can fall into multiple cells.

Fuzzy SDT has clear applicability to real world contexts such as weather 

decision making. However, results obtained using a fuzzy analysis can be quite different 

than those using a crisp analysis (Masalonis & Parasuraman, 2003). Masalonis and 

Parasuraman (2003) reanalyzed data sets from two previous studies using both crisp and 

fuzzy SDT. The reanalysis involved conflict detection in air traffic control (ATC). 

Similar to weather an ATC conflict has a legal definition in the FARs, however despite 

this set point conflicts can vary along a continuum. The legal definition of a conflict is
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two aircraft separated by less than 5 miles. Thus a mapping function of aircraft 

separation and signal was created. Analyses were then done with both crisp and fuzzy 

SDT.

The results of analyses indicated that the fuzzy SDT reduced both the hit rate and 

false alarm rate. This had different effects across the two studies. The first study 

reanalyzed data from an ATC conflict detection system (machine). The hit rate dropped 

from .84 to .75 after using a fuzzy analysis. However, false alarm rate only dropped from 

.0052 to .0022. This resulted in the fuzzy analysis yielding a lower sensitivity. Both the 

fuzzy and crisp analysis revealed a liberal response criterion (participants were more 

willing to respond that a conflict was present resulting in higher hit rates and higher false 

alarm rates). The fuzzy analysis shifted the criterion so that it was less liberal (i.e., more 

conservative).

The second data reanalysis investigated differences in automation-aided controller 

conflict detection using data collected from four controllers. The same decrease in P(H) 

and P(FA) was found as in the first analysis. However the decrease in the P(H) was 

typically smaller than the decrease in P(FA) resulting in higher sensitivities when using a 

fuzzy SDT analysis. The decrease in P(H) and P(FA) in a fuzzy analysis also results in a 

more conservative response criterion. The authors attributed this to the assignment of 

slightly lower signal strengths to more severe conflicts.

Fuzzy SDT may indeed be a more realistic representation of sensitivity.

However, it may be at the cost of the response criterion. When using SDT as a tool for 

decomposing diagnostic decisions it is typically assumed that evidence is ambiguous. 

Swets et al. (2000) (p 2) point out that we should consider “the degree of evidence as
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being represented by a value along a single dimension with high values tending to be 

associated with the positive diagnostic alternative and low values tending to be associated 

with the negative alternative.” The response criterion or decision threshold is then 

associated with the amount of evidence necessary to make either a positive or negative 

decision. It is actually the variability of the evidence or “fuzziness” of the signal that 

allows the response criterion to take on meaning.

It becomes unclear as to what meaning the response criterion takes on in fuzzy 

SDT. If the operator is allowed to specify where on a continuum a signal falls then there 

is no cutoff for what they say is a signal and a non signal. Additionally, in crisp SDT 

using the operators’ report of confidence has been used to generate multiple points (i.e., 

multiple response criterions) on the Receiver Operator Characteristic (ROC) curve. 

However, Hancock, Masalonis, and Parasuraman (2000) suggest that the operator’s 

degree of confidence could be used as a fuzzy response. In effect fuzzy SDT may be 

adding precision to the sensitivity metric at the price of removing some of the variability 

found in the response criterion.

The use of both fuzzy and crisp analysis allows a more complete understanding of 

decision making. Masalonis and Parasuraman (2003) suggest that fuzzy SDT be used to 

compliment crisp SDT and not to replace it, particularly in exploratory analyses.

Although fuzzy SDT may be a more accurate representation of operator sensitivity it is 

likely that it does so at the expense of a meaningful response criterion. The present study 

will compare pilots using both SDT methodologies.

SDT has a long standing history in psychological research particularly with 

respect to diagnostic decisions (Swets et al., 2000). However, due to methodological
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constraints previous researchers have not used it as a tool in VFR into IMC decision 

making. The studies conducted at the University of Illinois (Goh & Wiegmann, 2001b; 

Wiegmann et al., 2002) were full flight simulations that allowed pilots to diagnose the 

conditions at only one point in the entire experiment. One of the main objectives of the 

present study is to use SDT as a tool to measure the relative contribution of situation 

assessment and motivational judgment in VFR into IMC decision making. SDT will 

ultimately lead to a better understanding of why pilots take a VFR flight into IMC. In 

addition to the ability to decompose pilot judgment based solely upon their skills in 

interpreting out the window conditions, SDT can also be valuable for investigating how 

graphical weather information systems impact pilot decisions.

Graphical Weather Information Systems

Current weather decision making research provides an incomplete picture. 

Decisions are not based only upon weather forecasts and the “out-the-window” view. 

Pilots also have the ability to access different weather information sources enroute. A 

number of different weather services can be requested via the radio. Some GA aircraft 

also include some single sensor based weather avionics to detect a single weather hazard 

(e.g. Stormscope ™, Strike Finder™). However, these systems typically have a limited 

range.

If pilots are aware of changing weather conditions they can use these different 

automated sources to aid in their diagnosis, or use the sources in advance to determine if 

conditions are following the forecast.

Reliance on auditory information for acquiring weather information enroute 

contains a number of problems. One of the biggest drawbacks is that enroute services
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such as Flight Watch (FW) become congested precisely when they are needed most. 

There are only a limited number of specialists at FW and when conditions change, 

particularly when they change unexpectedly, pilots will typically turn to this service at 

the same time. Automated systems such as Automated Weather Observing System 

(AWOS) and Automated Surface Observation System (ASOS) provide only a static 

picture of specific airports and paint only a limited picture o f the weather situation to the 

pilot. Because of the limited nature of the available systems pilots may not be able to use 

them to their full advantage in the diagnosis of the situation.

New technology has made it possible to provide pilots with data linked weather 

information enroute. This information can be conveyed through a graphical weather 

information system (GWIS) that provides pilots with aircraft location on a moving map 

display as well as the location of weather with respect to the aircraft. A number of these 

systems have been developed all of which are capable of providing graphical METAR 

and NEXRAD data. These products provide surface weather observations and 

precipitation information.

To date, few studies have examined graphical weather displays and pilot decision 

making. Some initial research conducted at Massachusetts Institute of Technology’s 

(MIT) Lincoln Laboratory (Lind, Dershowitz, & Bussolari, 1994) investigated the effect 

NEXRAD data presented on a GWIS systems had on pilots’ decisions. The MIT study 

utilized twenty instrument rated pilots of two different experience levels (moderate 

experience 40-150 instrument flight hours, and extensive experience over 150 instrument 

flight hours). There were 10 pilots in each of the experience groups. Participants
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completed 4 test flight scenarios with half of the scenarios being completed with a GWIS 

display.

The methodology utilized in the experiment was similar to previous research 

conducted at Ohio State (Griffin & Rockwell, 1987; Layton & McCoy, 1989; Potter, 

Rockwell, & McCoy, 1989). Pilots were presented with a verbal description of the 

weather situation at three points along the flight route. After the description pilots were 

asked what they would do next. Pilots could make calls to FW to obtain weather 

information if desired. All four of the scenarios could have been completed. Subjects in 

the GWIS group were provided graphical precipitation data. These data could be 

requested and presented at various ranges.

There were significant differences between the decisions made with and without a 

GWIS display. When using the GWIS displays, pilots made significantly fewer calls to 

ATC and FW for weather information. Consistent with other GWIS studies (Latorella & 

Chamberlain, 2002; Novacek, Burgess, Heck, & Stokes, 2001; Yuchnovicz, Novacek, 

Burgess, Heck, & Stokes, 2001) pilots in the MIT study were significantly more 

confident in their decisions when they had a GWIS display available. Decisions made 

with the GWIS display were such that in certain scenarios pilots were more likely to 

continue and in other scenarios pilots were more likely to divert. Overall the GWIS 

display provided a better global understanding of the weather situation. Pilots could see 

where weather was localized and make decisions about how to divert based on this 

information. In one scenario, half of the pilots without the GWIS display decided not to 

take off because of predicted thunderstorms. All of the pilots with the GWIS display 

decided to take off because based on the display it was apparent that none of these storms
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had manifested. In another scenario pilots with the GWIS display saw that an area of 

precipitation was localized and 80% made the decision to divert around the weather as 

opposed to 40% of the pilots without the display.

In an exit interview, pilots were asked how they would like to receive weather 

information in flight. None of the pilots responded that they would prefer only voice 

information, where as 85% preferred a combination of both. The remaining 15% claimed 

they would prefer only the graphical information. Of the 85% preferring a combination 

of both, 55% wanted an even split and 30% wanted a split with more information being 

obtained from a graphical display. This investigation demonstrated that a GWIS display 

could provide IFR pilots with a beneficial tool for avoiding weather and making more 

informed decisions. The MIT study also demonstrates pilots’ willingness to trust and use 

GWIS information.

GWISs and Convective Weather. Other research on GWIS displays has focused 

on decision making regarding convective activity (Beringer & Ball, 2003; Chamberlain & 

Latorella, 2001; Latorella & Chamberlain, 2002; Novacek et a l ,  2001; Yuchnovicz et al., 

2001) and workload associated with graphical displays.

Researchers at RTI International (Novacek et al., 2001) and the FAA (Beringer & 

Ball, 2003) independently investigated the impact of a graphical weather display on 

instrument rated pilots’ decision making around areas of convective activity in a 

simulated flight. In the RTI study, pilots flew a mission from Newport News- 

Williamsburg International Airport stopping at Richmond International Airport and then 

continuing on to NASA-Wallops Flight Facility. Pilots were divided into groups of 12 

with one group using a high resolution (4x4 km cells) NEXRAD image and the other
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group having a lower resolution (8x8 km cells) NEXRAD image. NEXRAD images 

provide pilots with graphical information about precipitation. There were six levels of 

precipitation graphically displayed in the NEXRAD image (the colors ranged from light 

green to magenta, corresponding to changes from light to severe precipitation). Due to 

technological limitations this information was always at least six minutes old when it 

reaches the aircraft. Thus it was not a real time depiction of the current weather situation. 

All of the pilots in the experiment had a graphical weather display available to them in 

addition to normal enroute sources of weather (ATC, FW, ASOS, and ATIS). The 

graphical weather display used in the experiment provided NEXRAD images, textual 

METARs and graphical METAR information (ceiling and visibility categories).

One objective of the experiment was to determine the propensity for pilots to 

misuse a GWIS display. The proper use of a GWIS display is to use the information in 

the display “strategically.” That is, to use the information to plan routes around areas of 

potential hazards. An inappropriate use of a GWIS display would be to use the 

information “tactically.” Pilots may try to use the information as if it were a real time 

depiction of the current weather information and possibly attempt to navigate through 

areas of bad weather. Because of the time delay present in the current system tactical use 

of the information is inappropriate.

Pilots should have abandoned the approach at Richmond because of potential 

hazardous convective activity and altered the course to Wallops Island to avoid that 

activity. Pilots’ decisions were judged on a 4-point scale. With respect to the Richmond 

decision, judgments were made using pilots’ decisions to continue the approach and their 

ability to remain at least 5 NM away from hazardous weather. Before reaching Wallops
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the GWIS showed pilots two thunderstorms. One storm was north and one storm was 

south of the pilot’s most direct route. The NEXRAD displayed an “enticing corridor that 

tempted the pilots to fly between them” (p 29). A good decision was one in which the 

pilot diverted south to avoid the thunderstorms. A poor decision was one in which the 

pilot attempted to navigate through them.

Findings from the RTI experiment indicated the potential benefits of GWIS 

displays and also provided some recommendations for their design. The data suggested 

that the lower resolution NEXRAD images led to better decisions. These results were 

also reproduced in an experiment conducted by the FAA (Beringer & Ball, 2003). Five 

of the twelve pilots with the high-resolution display made good decisions at Richmond 

compared with nine of twelve pilots in the low-resolution display. There are two 

potential explanations for this. One is that the lower resolution display covered a larger 

area on the display and thus provided a more salient warning cue. A second explanation 

is that the lower resolution led to greater uncertainty and thus more cautious behavior on 

the part of the pilots. The FAA study found a benefit for the low resolution NEXRAD 

display compared to pilots without any display.

Research conducted at NASA Langley indicated that pilots who had a GWIS had 

better weather SA than pilots who only had conventional auditory information (HIWAS, 

FW, and ATC) or information from out the window. SA was demonstrated in better 

detection of convective weather cells as well as better estimates of distance to those cells.

The research available concerning GWIS displays still leaves many unanswered 

questions. Most importantly, how will having a display impact pilot’s decision making 

regarding continuing a flight into IMG? Ideally the display provides pilots with the
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information they need to make the most appropriate decision regarding continuing the 

flight or diverting from the original course. However, other studies using GWIS displays 

(Beringer & Ball, 2003; Novacek et al., 2001) as well as research with GPS (David 

O'Hare et al., 2001) suggests that the information may be used inappropriately and may 

actually lead to poorer decisions.

The majority of GWIS research has investigated the use of NEXRAD 

(precipitation) data (Beringer & Ball, 2003; Chamberlain & Latorella, 2001; Latorella & 

Chamberlain, 2002; Novacek et al., 2001). This information can be between 12 and 14 

minutes old before it is updated (Beringer & Ball, 2003). METAR information on the 

other hand is only updated every hour. During this time frame weather can obviously 

change for better or worse. It is not certain if pilots will use this potentially old 

information when evaluating and diagnosing weather conditions. It is critical to 

understand how pilots use GWIS information in their weather judgments before these 

displays are widely used in GA.
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PRESENT STUDY

Previous research suggests that both situation assessment (Goh & Wiegmann, 

2001b; Wiegmann et al., 2002) and motivational factors (David O'Hare & Smitheram, 

1995) affect pilot judgment. Unfortunately these factors are typically investigated 

separately and in such a way that the relative contribution of each is not understood. 

Following Jensen’s model of judgment it is clear that both the situation assessment and 

motivation can affect pilot judgment within the same situation. However, without a tool 

such as SDT to measure both factors it is impossible to understand how each impacts the 

pilot’s decision.

The primary objective of the proposed investigation was to model how pilots 

classify weather categories following Jensen’s ADM which utilizes a crisp SDT analysis. 

Additionally, the proposed study examined the discrimination ability of fuzzy SDT, 

relative to crisp SDT, in an effort to further increase understanding of pilot’s ability to 

accurately assess weather conditions. Weather-related decision making appears 

particularly suited to analysis with fuzzy SDT methodologies. Although fuzzy SDT is 

not meant to replace crisp SDT it can provide some additional insight into the pilot’s 

sensitivity (Masalonis & Parasuraman, 2003). The SDT approaches allowed for the 

separation of rational (i.e., situation assessment) and motivational biases. Both rational 

judgment and motivational bias have been shown to influence pilots’ decisions and 

ultimately their classification of the weather conditions. Identifying the extent to which 

each component influences the overall judgment is a critical step in addressing the VFR 

into IMC problem and evaluating new GWIS technology.
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Using SDT the principal aim of the current experiment was to determine how well 

GA pilots could assess weather based on an “out-the-window” visual. Anecdotally, pilots 

cite difficulty with accurately estimating distances or visibility while in flight (Boatman,

2001). GA pilots, specifically non-instrument rated pilots, may lack the necessary 

weather experience to accurately assess weather cues available out-the-window.

Although empirical evidence is limited (Goh & Wiegmann, 2001b), pilots appear to be 

very poor at estimating ceiling and visibility based upon the out-the-window conditions. 

This inaccurate situation assessment may cause a pilot to inadvertently continue into 

IMC.

Results from previous VFR into IMC research have demonstrated a relationship 

between pilot experience and pilot judgment (Wiegmann et al., 2002; Wiggins & O'Hare, 

1995). Additionally it has been found that non-instrument rated pilots are more likely to 

be involved in VFR into IMC accidents (AOPA Air Safety Foundation, 1996). Despite a 

link between experience and pilots weather judgment, no relationship between experience 

and the ability to estimate weather conditions has been found. Using SDT, the present 

study therefore compared instrument and non-instrument rated pilots in both their ability 

to distinguish VFR and IMC conditions as well as identify any difference in bias between 

the two groups.

The second major objective of the present study was to examine the weather- 

related decision making strategies used by pilots to determine if pilots use compensatory 

or non-compensatory strategies. Previous work, sponsored by the FAA, investigated how 

ceiling and visibility information is combined to make a decision regarding the pilot’s 

comfort in continuing a flight (Driskill et al., 1997; Hunter et al., 2003). The results of
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these studies revealed pilots used a compensatory strategy when integrating the 

information. Specifically an average of the two pieces of information was used when 

making judgments about their comfort in continuing the flight. This strategy is 

inappropriate, and can lead to an incorrect situation assessment. For example if the 

ceilings are below VFR minimums but visibility is unlimited pilots should not consider 

VFR flight. Pilots’ judgments should use the worst of the two conditions (ceiling and 

visibility) when making judgments about continuing under VFR, and not a combination 

of the two. How pilots use the two conditions to form a diagnosis is an essential 

component of understanding situation assessment. However the results of these FAA 

studies are limited because pilots were provided with a textual representation of the 

conditions without the opportunity to view graphical scenes resembling what they would 

see out the window. Pilots’ strategies for integrating the information may differ if the 

ceiling and visibility must be derived from a single image. It is not clear if a 

compensatory strategy will be maintained if pilots have to make judgments based upon 

the out the window view. The determination of the most used decision making strategy 

followed the analysis used by Driskill et al. (1997) and Hunter et al. (2003).

The third objective was to evaluate how GWIS information is used. These 

systems are ultimately being designed to provide pilots with an image of the weather with 

respect to their aircraft. Several studies have looked at the use of a GWIS in weather 

decision making with respect to convective weather (Beringer & Ball, 2003; Yuchnovicz 

et al., 2001). However, it still remains unclear as to how the GWIS will affect pilots’ 

categorization of conditions as IMC or VMC. Surface weather observations, specifically 

graphical METARs, display airport ceiling and visibility information along four
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categories (LIFR, IFR, MVFR, VFR). However, it is unknown if  pilots will generalize 

this surface information to the area around the airport. This information is specific to the 

airport and is only updated every hour. Since the information has the potential for being 

old, data displayed on the GWIS may indicate weather conditions that are either slightly 

better, slightly worse or equivalent to the conditions out the window.

The current investigation was designed to assess whether or not pilots consider 

graphical METAR information in their assessment of the situation. Providing pilots used 

GWIS METAR information, the current investigation sought to examine how this 

information is integrated with their “out-the-window” assessment. If pilots decide to 

incorporate the inaccurate GWIS information into their judgment it would influence both 

their sensitivity and response criterion. The directional shift in criterion would be 

dependent upon whether the GWIS was over estimating or underestimating conditions. 

Inaccurate information should reduce pilot sensitivity.

Hypotheses

1.) Pilots have evidenced an inability to estimate weather conditions both anecdotally 

(Boatman, 2001) and in previous research (Boatman, 2001; Goh & Wiegmann, 

2001b). Previous research has shown pilots on average may be inaccurate by 

about 2200 feet (SD approximately 1000 feet) when judging ceiling and 1.5 miles 

(SD approximately 1 mile) when judging visibility (Goh & Wiegmann, 2001b). 

Similar errors and deviations when estimating weather conditions were expected 

in the present study.

2.) Previous research has suggested that pilots overestimate weather conditions (Goh 

& Wiegmann, 2001b). If this trend continues in the present study there should be
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a conservative response criterion for pilots. That is, pilots will be more likely to 

say conditions are VFR.

3.) Instrument pilots will be more accurate in their assessment of weather conditions. 

Experience has been shown to improve weather judgments (Wiggins & O'Hare, 

1995). Therefore, since instrument rated pilots are not limited to flying in visual 

conditions, their additional experience training with different weather conditions 

should provide them with an advantage over non-instrument pilots who can only 

flyinVMC.

4.) Pilots’ overall weather judgment will follow FARs. That is, weather 

categorization will be based upon a non-compensatory decision model where 

categorization is driven by the lesser of the two conditions. Specifically, pilots’ 

comfort and categorization should be based only on the worst condition. This 

represents the safest strategy and also the correct strategy as outlined by FARs. 

Previous research (Driskill et al., 1997; Hunter et al., 2003) suggests that pilots do 

not follow FARs when combining weather information. According to the FAA’s 

research, pilots use a compensatory model (combine both categories) when 

making weather judgments. However, these results were based upon textual 

weather information and the results might have been due to aspects of the 

experimental design. The multiple points of data used in the original experiments 

may have enticed pilots to use all of the available information. The present study 

compares the decision making strategy used in evaluating both textual 

information regarding the current conditions and an out-the-window depiction of 

the conditions. The out-the-window representation, which provides a holistic
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representation of the conditions, should demonstrate a non-compensatory decision 

making strategy as is outlined by FARs.

5.) When provided with only textual representations of the conditions, pilots are 

expected to demonstrate use of compensatory decision making strategy as found 

by previous FAA research (Driskill et al., 1997; Hunter et al., 2003).

6.) The pilots will use the GWIS when it is available. Pilots have been reported as 

being poor in their assessments of “out-the-window” weather conditions 

(Boatman, 2001; Goh & Wiegmann, 2001b), and may therefore rely on the GWIS 

to estimate the weather conditions. Pilots’ assessments of the weather situation 

will vary with the consistency of the GWIS METAR information. That is, when 

METAR information does not precisely coincide with the out-the-window 

conditions pilots will show a lower sensitivity compared to the accurate and no­

display conditions, and reveal a shift in the response criterion. The shift in the 

criterion would be in the direction of the inconsistency (i.e., when the ceiling is 

displayed as worse than the actual there would be a shift towards a more liberal 

response criterion).
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METHODOLOGY 

Participants

Twenty-four general aviation pilots participated in the experiment. One of the 

non-instrument rated pilots was female. Pilots were recruited, scheduled and 

compensated through a contract with Lockheed-Martin. The contractor at Lockheed- 

Martin provided a database of pilots without-military or commercial experience from the 

Mid-Atlantic region. Pilots were then selected from the database based upon cross­

country hours and instrument ratings. Half of the pilots selected had instrument ratings 

and the other half were non-instrument rated. Pilots also supplied information on 

experience during the experiment at NASA Langley Research Center (Appendix D). 

There was some inconsistency in the information provided by pilots to Lockheed-Martin 

in their applications, and that obtained at the time of the experiment. Several pilots cited 

that they used their logbooks to provide the information to Lockheed-Martin, but did not 

have the exact information available at the time of the experiment. The mean experience 

data from both the study and Lockheed-Martin database are provided in Table 3.

TABLE 3: Mean (and Standard Deviation) Data for Pilot Experience
Study Lockheed-Martin

Age Total
Flight
Hours

Last 90 
Days

Cross-
Country
Hours

Total
Flight
Hours

Last 90 
Days

Cross-
Country
Hours

IFR 33.75 440.04 17.45 196.17 404.4 13.74 155.34
Rated (10.89) (259.00) (19.12) (156.48) (221.46) (13.66) (107.40)
VFR 47.92 364.5 19.42 128 339.59 25.63 97.33

(13.81) (159.75) (16.76) (65.04) (151.82) (26.67) (40.11)
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Apparatus and Materials

All experimental data were collected in a small experimental chamber at NASA 

Langley Research Center. Two computers linked via a local area network were used to 

run the experiment. The first computer drove the out-the-window weather depiction.

This computer has a Pentium 4 3.0 GHz Processor, 1 GB of RAM, and a GeForce FX 

5950 Ultra video card with 256 MB of video RAM. The computer was linked to a Dell 

3300 MP projector with a maximum brightness of 1500 ANSI lumens, a native resolution 

of 1024 x 768 pixels, and a contrast ratio of 1700:1 (full on/full off). The projected 

image was 34.75 inches x 26 inches. The second computer displayed a static 

representation of the flight instruments and collected the participant’s responses. The 

second computer had a Pentium Xeon 1.8 GHz Processor, and 512 MB of RAM. The 

information was presented on a 17 inch Dell flat panel display.

Pre-experimental Questionnaire

A pre-experimental questionnaire (See Appendix D) was administered to collect 

information from several different categories. The first part of the questionnaire acquired 

background and demographic information. Specifically information on ratings, total 

flight hours, cross-country hours, flight hours in the last 90 days, endorsements, age and 

gender were collected. The second part of the questionnaire surveyed pilots’ weather and 

aviation operation knowledge. This section specifically addressed pilots’ knowledge of 

FARs regarding VFR flight. A third section collected data about personal VFR 

minimums. The final section surveyed pilots’ attitudes towards risk, their own piloting 

abilities, their involvement in hazardous flight activities, and FARs regarding VFR flight.
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Experimental Instructions

Following the pre-experimental questionnaire pilots were given instruction about 

the experiment. This instruction was in the format of a presentation. Pilots where told 

that their objective was to view a series of simulated out-the-window video clips and 

answer several questions regarding the scene. The questions were to be answered as if 

there was preflight information obtained 2 hours ago that indicated that a warm front may 

be coming through the area and there was a possibility of reduced ceilings and visibility.

Pilots were told that graphical METAR information for an airport approximately 

1 mile from their position would be available on some of the trials. They were informed 

that this METAR information could be between 5 - 6 0  minutes old and they would not be 

given any indication of the actual age of the report. They were told that how they used 

the information in the METAR to answer the questions was at their discretion. The 

system used was representative of EchoMap™. A sample METAR screen is presented 

in Figure 4.

Weather Generation Program

Several pilots at NASA Langley Research Center served as pretest pilots. The 

initial out-the-window imagery was static representations of different weather conditions 

rendered in a flat area without physical features. Feedback from the pretest pilots 

indicated that lack of terrain features made it difficulty to determine altitude and distance. 

The pretest pilots also indicated the need for motion to help judge their distance from the 

clouds. Pretest pilots also suggested the use of landmarks to help judge distance. The 

pilots also provided feedback on images rendered with different flight simulator software.

Based upon the feedback from the pretest pilots, the out-the-window weather
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conditions were generated through Microsoft’s Flight Simulator 2004. The videos were 

augmented with satellite imagery and terrain overlays from MegaScenery™ and 

displayed via an overhead projector. Due to a limitation of the software, all of the clouds 

rendered were stratus clouds with a height of 900 feet. All of the videos taken from Flight 

Simulator 2004 used the same location over Brookhaven Airport (KHWV) in Shirley, 

NY.

Figure 4. Graphical Weather Information System.
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This location was selected based upon several criteria. First the airport is 

approximately at sea level. This alleviates any confusion between MSL and AGL when 

pilots estimated cloud ceiling. Second, the area had satellite imagery available to provide 

a more realistic depiction. Third, the specific region had several features that could help 

pilots estimate distance including an interstate (approximately 2 miles from the aircraft’s 

position), and Calverton, a former naval base and operational very-high-frequency omni­

directional range (VOR) (approximately 5 miles away). All of the videos collected were 

five seconds in duration and started from the same location just east of KHWV. The 

video resolution was 1024 by 768 pixels.

Post Experiment Task

The post experiment task followed the methodology previously used by FAA 

sponsored research (Driskill et al., 1997; Hunter et al., 2003). Pilots were given 16 cards 

with different weather scenarios. The cards gave the pilots ceiling and visibility 

information. Ceiling was always listed before visibility. Pilots were asked to sort the 

cards according to how comfortable they would be flying given the conditions 

represented on the cards. After sorting the cards from least comfortable to most 

comfortable pilots were then asked to assign comfort ratings for each card ranging from 0 

to 100.

Procedure

Pilots first read and signed a written informed consent document. They were then 

briefed about the schedule for the day. Participants were then asked to complete the pre­

experiment questionnaire on the second computer. Upon completing the questionnaire, 

pilots were given training on interpreting the data on a GWIS. The training included a

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



54

familiarization with the test area including images taken from sectional charts and a 

depiction of the area without any weather. Landmarks and their approximate distances 

were given to the pilots. Upon completing the training, pilots began the main 

experimental trials.

The main experimental trials procedure presented pilots with a five-second out- 

the-window video. The video was displayed using an overhead projector. A second 

display provided pilots with the primary flight instruments and the moving map display 

that also served as a platform for the graphical METARs. The primary instruments 

include the altimeter, attitude indicator and airspeed indicator.

The videos looped until the pilots answered a set of questions regarding the 

current situation. Using the available information, pilots were required to answer several 

questions (see Figure 2). Questions appeared one at a time, and pilots were given an 

unlimited amount of time to answer each question. After completing each question the 

next trial was presented. There was a two-second pause between the presentation of each 

trial. Pilots completed two blocks of 46 trials. Each block consisted of all of the 

different ceiling, visibility, and GWIS manipulations. The order of presentation was 

randomized within each block. A break was provided in between the two blocks. After 

completing the second block of trials the participant completed the post experiment task.

Baseline (No GWIS conditions). The different out-the-window videos were 

presented via an overhead projector. There were a total of 16 different videos in the 

baseline conditions. These videos represented a combination of four different ceilings 

and four different visibilities. Ceiling was manipulated by adjusting the base layer of the 

clouds. The definition of ceiling followed the definition of ceiling provided in the FARs,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



55

which is also used in aviation weather reports. Specifically, a ceiling is the lowest layer 

of clouds or obscuring phenomenon that is reported as broken, overcast or an 

obscuration. Ceiling is reported as above ground level. Cloud cover was presented at 

four different base levels (400,900,2900, and 4500 ft). VFR conditions were those 

above 3,000 feet, MVFR ceilings were between 1,000 and 3,000 feet, IFR conditions 

were between 500 and 1000 feet, and LIFR conditions were below 500 feet. Visibility 

took on one of four distances (2, 3, 5, and 10 miles). These four levels represented one 

VFR, two MVFR and one IFR.

The aircraft’s altitude was always at 2400 feet AGL. This allowed both 

clearances above the low clouds and below the higher clouds. Pilots must maintain at 

least 500 feet below the cloud deck or 1000 feet above the cloud deck to remain in VFR. 

Since pilots cannot control the aircraft (i.e., climb or descend) they were asked to 

evaluate the conditions from the perspective of a ground station. That is, are the ceilings 

and visibility above VFR minima with respect to that area? When asked about their 

comfort in continuing VFR, pilots were instructed to answer this considering the fact that 

they could climb or descend if necessary. The 36 baseline conditions were thus broken 

down across four factors, ceiling (4), visibility (4), and block replication (2).

GWIS conditions. Weather information on the GWIS was manipulated so that 

there were five levels of weather information consistency. The weather conditions are 

presented below in Table 4. The GWIS provided graphical METAR information for an 

airport less than 1 mile from the aircraft. Graphical METARs provide ceiling and 

visibility information for equipped airports. METARs are issued every hour and 

graphically present weather conditions in four categories (LIFR, IFR, MVFR, VFR).
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When information in the GWIS was better or worse than the actual conditions the 

difference was in the magnitude of one category. For example when the ceiling 

information on the GWIS was worse than reported, the GWIS ceiling was IFR when out 

the window conditions were MVFR. To allow for a full manipulation of information 

consistency, out the window ceiling and visibility was constrained to either IFR or 

MVFR when flying with a GWIS. The 60 GWIS trials can be broken down across 5 

factors, ceiling (2), visibility (3), GWIS consistency (5), and block replication (2).

Would a grouno ttahoi- jofiu.iicns a* VF"FI =

Definitely P robably  - M . c  P robab ly  -  Definitely
'  IFR IFR n m s u w  V FR VFR

jjjgO

Based upon FARs how should a grot ind station categorize 
the current situation?

fl
US

urn irn mvfr yfr

H e v s

If allowed tc climb or descend. How comfortable would 
you be flying VFR in the cun ent situation?

1 Ifiro n ilo n ab ic  C n i  forr.-bi?

Figure 5. Screen shots of the experimental scenario questions.
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There were a total of 46 experimental scenarios that were replicated twice for a 

total of 92 experimental trials. The experimental trials were divided into two blocks of 

46 trials. There were a total of 32 trials without any GWIS information, and 60 trials 

with GWIS information of varying levels of consistency.

TABLE 4: GWIS Information Consistency Manipulations

Condition
Out the window

Ceiling Visibility
GWIS Consistent Same Same
GWIS Higher Ceiling Better Same
GWIS Lower Ceiling Worse Same
GWIS Greater Visibility Same Better
GWIS Poorer Visibility Same Worse
No GWIS NA NA

Dependent Measures

Crisp SDT (sensitivity and response criterion). The crisp SDT analysis followed 

the formulas originally developed by Green and Swets (1966). The different SDT 

formulas can be found in the Appendix C. The response data used for the crisp SDT 

analysis were based upon the question “Is the current situation VMC or IMC?” The crisp 

SDT response matrix is provided in Table 2. Actual categorization of the conditions was 

supposed to follow FARs.

The application of SDT to weather has the potential for confusions particularly 

with regard to response bias. Figure 3 is provided to help clarify the SDT terms, 

principally the response bias. The sensitivity metric in SDT represents the ability to 

distinguish between IMC and VFR conditions. The lower the sensitivity the more 

overlap there would be between the signal and noise distributions depicted below. The
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response bias represented by the vertical bar in Figure 6 is the participant’s criterion for 

responding that conditions are either VFR or IFR. The participant’s response bias 

depicted in Figure 6 represents a neutral response criterion or a c of 0. However, if pilots 

are more likely to respond that conditions are VFR the vertical bar would shift to the right 

and c would increase. This would then be a conservative shift in response bias resulting 

in fewer false alarms at the cost of more misses. From a safety perspective a 

conservative bias (i.e., pilots tending to respond conditions are VFR) could potentially 

result in more accidents. Alternatively, a decrease in c (a shift to the left) would result in 

more hits at the cost of more false alarms. A c below 0 would be a liberal response bias 

and from a safety perspective this could potentially result in fewer accidents.

Sensitivity

Response Bias

Liberal
Bias Hit (respond 

IMC, when
M Q

Correct
Rejection,

aiservative
Bias

VMC
(Noise)

m e
(Signal)

False Alarm (respond 
IMC, when VMC)

Mss

Figure 6. Application of signal detection to weather.
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Fuzzy SDT (sensitivity and response criterion). Use of fuzzy SDT requires that 

either the signal or response vary along a continuum. A mapping function for the signal 

uses the objective properties of the world to determine the signal’s position along a 

continuum. The mapping functions for both ceiling and visibility consist of four linear 

transformations. These transformations are based upon the categorization of weather 

across four levels, i.e., LIFR, IFR, MVFR and VFR. The LIFR conditions take on a 

signal value between 1 and .95, IFR values fall between .85 and .95, and MVFR values 

fall between 0 and .85, VFR conditions are always categorized as 0. The functions for 

ceiling and visibility across the two conditions are provided in Table 5 below. Figures 7 

and 8 are a graphical representation of these functions for ceiling and visibility 

respectively.

TABLE 5: Mapping Functions for Ceiling and Visibility
Mapping Functions

Category Ceiling Visibility
LIFR If ceiling < 500 then If visibility < 1 then

s = (-.0001 * ceiling) + 1 s = (-.05 * visibility) + 1
IFR If ceiling > 500 and < 1000 then If visibility > 1 and < 3 then

s -  (-.0002 * (ceiling -  500) + .95) s = (-.05 * (visibility -  1) + .95)
MVFR If ceiling > 1000 and < 3000 then If visibility > 3 and < 5 then

s = (-.000425 * (ceiling -  1000) + s = (-.425 * (visibility -  3) + .85)
.85)

VFR If ceiling > 3000 then If visibility > 5 then
s = 0 s = 0

The mapping functions were created such that the relative position within each of 

the four categories was equivalent for both ceiling and visibility. Specifically, the 

midpoint of the ceiling MVFR category is 2000 ft. This value generated the same signal
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strength as the midpoint of the visibility MVFR category, which is 4 sm. All VFR 

conditions took on signal strength of 0.
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Figure 7. Fuzzy mapping function for ceiling.
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Figure 8. Mapping function for visibility.
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Weather categorization is based upon both ceiling and visibility. Two separate 

mapping functions are depicted below. The state of the world is based upon the condition 

closest to 1, or closest to IFR conditions. The fuzzy response was generated from the 

category slide bar (see Figure 2, question number 2). The response strength was 

generated from the position of the bar. The fuzzy mapping for the response was the same
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as the mapping for the signal. The position within each category was determined by the 

strength of the response.

The mapping functions for the signal and noise can be used to compute hit, miss, 

false alarm, and correct rejection rates. The major difference is that a response can fall 

into more than one of the four categories used in crisp SDT. For example if the weather 

is computed as .75 from the mapping function and the pilot’s response maps to .85 the 

resulting response would be equivalent to a .75 hit, .10 false alarm, and .15 correct 

rejection. Memberships in the four-decision response outcome matrix were defined by 

functions derived from Parasuraman et al. (2000). Once the hit rate and false alarm rate 

have been determined computation of d’ and p are the same as crisp SDT.

TABLE 6: Fuzzy Response Categorization
Function

Hit H = minimum (s, r)
Miss M = maximum (s-r, 0)
False Alarm FA = maximum (r-s, 0)
Correct Rejection CR = minimum (1-s, 1-r)

Comfort. Pilots were asked to rate their comfort in continuing the flight under 

VFR (see Figure 5 question 3).

Ceiling and Visibility Absolute Error. Participants provided absolute ceiling 

information in feet and visibility information in statue miles. The error was calculated as 

the absolute difference between the actual and reported conditions.

Design

A series of multiple univariate ANOVAs were used instead of a single 

MANOVA. The multivariate and univariate analyses are intended to be used to address
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separate research questions. According to Huberty and Morris (1989) it is inappropriate 

to follow a MANOVA with multiple univariate analyses. A MANOVA should be used 

when the researcher is interested in determining if any overall (including main effects and 

interactions) differences exist. The analysis forms an underlying construct based upon all 

of the dependent variables. In addition if significance is found, the researcher can also 

identify the relative contribution of each of the dependent variables. However, for the 

purposes of this study the authors consider the dependent variables to be “conceptually 

independent.” There is no interest in creating a linear composite of all of the dependent 

variables. Instead, the interest is in seeing where differences lie in each of the dependent 

variables. This is particularly the case for the crisp and fuzzy SDT metrics. Therefore, 

for the purposes outlined in the current experiment, multiple univariate analyses were 

performed.

ANOVAs. A series of separate univariate ANOVAs were performed on the 

dependent measures listed above. Two separate series of ANOVAs correspond to the 

baseline conditions and the GWIS conditions plus their no-GWIS equivalents. 

Additionally, these two series were broken down based upon the dependent measures 

involved. The SDT metrics were not analyzed with ceiling and visibility as an 

independent variable (IV). For a SDT analysis there needs to be a signal and noise.

Since signal and noise are defined by the I Vs ceiling and visibility they were not included 

in the ANOVAS with the SDT metrics.

The no GWIS conditions was analyzed with a three way, Ratings (2) x Ceiling (4) 

x Visibility (4), mixed repeated measures ANOVA. Pilot instrument ratings were the 

only between subject variable (i.e., instrument rated vs. non-instrument rated). The
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remaining variables were all within subjects. Ceiling had four different levels (400 ft,

900 ft, 2900 ft, and 4500 ft). Visibility had four levels (2, 3, 5, and 10 miles). The first 

ANOVA series involved the comfort ratings, and ceiling and visibility estimates. The 

different sources of variation and the error terms used in the baseline analyses are 

provided in Table 7.

TABLE 7: Sources of Variation for the Baseline Analyses
Effect dfsource Error term df error
Rating (R) 1 Rating (Subject) 22
Ceiling (C) 3 Rating (Subject) x Ceiling 66
Visibility (V) 3 Rating (Subject) x Visibility 66
R x C 3 Rating (Subject) x Ceiling 66
R x V 3 Rating (Subject) x Visibility 66
C x V 9 Rating (Subject) x C x V 198
R x C x V 9 Rating (Subject) x C x V 198

A second series of ANOVAs compared the pilot ratings on the four different SDT 

metrics.

The third ANOVA series compares four factors, Ratings (2) x Ceiling (2) x 

Visibility (3) x GWIS (6). There were six levels for the weather information display. 

These include the baseline moving map only condition, and five levels of information 

consistency (See Table 5). Ceiling has only two levels (900 ft, 2900 ft) and visibility has 

three levels (2,3, and 5 miles). The reduced number of out the window conditions 

resulted because only IFR and MVFR conditions can receive the full manipulation of 

information consistency. This series of ANOVAs was performed on the comfort ratings, 

and ceiling and visibility estimates. The different sources of variation and the error terms 

used in the baseline analyses are provided in Table 8.

Reproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



64

TABLE 8: Sources of Variation for the GWIS Analyses
Effect dfsource Error term df error
Rating (R) 1 Rating (Subject) 22
Ceiling (C) 1 Rating (Subject) x Ceiling 22
Visibility (V) 2 Rating (Subject) x Visibility 44
GWIS (G) 5 Rating (Subject) x GWIS 110
R x C 1 Rating (Subject) x Ceiling 22
R x V 2 Rating (Subject) x Visibility 44
R x G 5 Rating (Subject) x GWIS 110
C x V 2 Rating (Subject) x C x V 44
C x G 5 Rating (Subject) x C x G 110
V x G 10 Rating (Subject) x V x G 220
R x C x G 5 Rating (Subject) x C x G 110
R x  V x  G 10 Rating (Subject) x V x G 220
R x C x V 2 Rating (Subject) x C x V 44
C x V x G 10 Rating (Subject) x C x V x G 220
R x  C x V x G 10 Rating (Subject) x C x V x G 220

The fourth ANOVA series compared two factors, Ratings (2) x GWIS (6). This 

ANOVA series was performed on the four SDT metrics.
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RESULTS

Baseline SDT Results

Signal detection metrics were computed for each participant for all baseline trials. 

In several instances crisp metrics indicated that participants had either a hit rate (HR) of 1 

(2 VFR pilots, 0 IFR pilots), or false alarm rate (FAR) of 0 (4 VFR pilots, 5 IFR pilots). 

These extreme values prevent the calculation of d’, B, and c. This problem did not occur 

for the fuzzy computations. Several solutions have been proposed to address this 

problem. The hit and false alarm rate metrics can be pooled across participants, however 

this technique can be problematic and is only recommended if  participants have similar 

response biases and sensitivities (Macmillan & Kaplan, 1985). For example, if 

participants with equal sensitivity but different biases were pooled, their pooled 

sensitivity would be an underestimate. The most common solution is to correct the 

extreme scores by replacing rates of 0 with (0.5 / n), and rates of 1 with (n -  0.5)/ n, 

where n is the number of trials (Stanislaw & Todorov, 1999). However this approach can 

also lead to biased measures of sensitivity. Hautus (1995) recommends the loglinear 

approach, where .5 is added to the number of hits and false alarms and 1 is added to the 

number of signals and noise trials. This correction is applied irrespective of whether the 

data is extreme or not. Although only changing the extreme scores is the most common 

approach (Stanislaw & Todorov, 1999) the loglinear approach is less susceptible to bias 

and was therefore used in the computation of SDT metrics. Table 9 below provides the 

corrected and uncorrected hit rates and false alarm rates for both the crisp and fuzzy 

responses.
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TABLE 9: Computation of Hit Rates and False Alarm Rates Before and After the 
Loglinear Correction_____________________________________________

Crisp Fuzzy
HR Corrected FAR 

HR
Corrected
FAR

HR FAR

IFR .808 .794 .111 .141 .770 .057
VFR .833 .817 .118 .147 .834 .118

Both parametric and nonparametric SDT measures were calculated. However 

since response bias was not manipulated nonparametric measures are more appropriate. 

There was no significant difference between instrument and non-instrument rated pilots 

on any of the SDT metrics. ANOVA Tables for all interactions and means are available 

in Appendix E. The detailed computation of SDT metrics for each observer is provided 

in the Appendix F.

TABLE 10: Crisp and Fuzzy SDT Measures for the Baseline Trials
Crisp SDT Fuzzy SDT

d' Beta A’ c d' Beta A’ c
IFR 2.114 2.106 .916 .180 2.542 4.860 .922 .486
VFR 2.206 1.550 .918 .067 2.191 2.719 .922 .178

Ceiling and Visibility SDT The pilots’ estimations of ceiling and visibility 

allowed for additional SDT analyses. In the original SDT calculations conditions were, 

normatively, based upon the worst conditions, however in the current analysis separate 

metrics were calculated for ceiling and visibility. Pilots’ estimations of ceiling and 

visibility were used to determine crisp and fuzzy hit and false alarm rates to look at both 

ceiling and visibility independently. The participants’ response was considered IFR for
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ceiling when estimates were below 1000 ft and IFR for visibility when estimates were 

below 3 miles. The fuzzy calculation was based upon the same formulas used to classify 

the conditions.

The SDT data generated from the ceiling and visibility estimates was checked 

with the overall SDT data for consistency. The estimate data had to be compared to the 

overall SDT data because there were no SDT data for ceiling and visibility. The overall 

SDT data created from the estimate were based upon the lowest response (e.g., for the 

overall crisp if either estimate was IFR then the overall response was IFR). The 

correlation between the overall crisp SDT data generated from the pilot estimates and the 

overall crisp SDT response was .51. This correlation is based upon two dichotomous 

variables, and the lack of variability in both variables has the effect of lowering the 

correlation. Comparing the response generated from the estimates and the crisp SDT 

response, 70 percent of the responses matched. The correlation between the fuzzy SDT 

data generated from the estimates and the overall fuzzy SDT response was .85.

The data generated from the ceiling and visibility estimates had a large number of 

extreme scores and therefore all of the calculations are derived from numbers based upon 

a loglinear correction. The number of obtained extreme scores is presented in Table 11. 

Hit rate and false alarm rates are provided for both instrument and non-instrument pilots 

in Table 12. Data for the non-parametric SDT measures are displayed in Table 13. 

Baseline Accuracy, RMSE and Comfort Data

The accuracy, RMSE and comfort data were analyzed using a three-way, ratings 

(2) x ceiling (4) x visibility (4), mixed repeated measures ANOVA. All significant main 

effects were followed up by Tukey post hoc analyses.
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Accuracy. Analysis of the accuracy data revealed no main effects for pilot rating, 

F( 1,22) = 0.212,p  > .05; or ceiling, F{3,66) = 2.181, p  > .05. A significant main effect 

was found for visibility, F{3,66) = 5.848,p  < .05. Post hoc analysis revealed that 

accuracy for the 10-mile visibility conditions was significantly lower than accuracy for 

the 2 and 5 mile conditions and there was no significant difference between the 10 and 3 

mile visibility conditions. The data for the main effect of visibility on accuracy are 

presented in Figure 9.

TABLE 11: Number of Extreme Scores in the Crisp and Fuzzy Ceiling and Visibility 
Analyses________________________________________________

Ceiling
Crisp

Visibility
HR HR FAR FAR HR HR FAR FAR
= 1 = 0 -  1 = 0 = 1 = 0 = 1 = 0

IFR 0 2 0 10 1 0 0 5
VFR 0 2 0 9 4 0 0 0

Ceiling
Fuzzy

Visibility
HR HR FAR FAR HR HR FAR FAR
=  1 = 0 = 1 = 0 = 1 = 0 = 1 = 0

IFR 0 0 0 2 0 0 0 1
VFR 0 0 0 2 1 0 0 0

TABLE 12: Ceiling and Visibility Response Rates
Ceiling Visibility

Crisp Crisp Fuzzy Fuzzy 
HR FAR HR FAR

Crisp
HR

Crisp Fuzzy 
FAR HR

Fuzzy
FAR

IFR .324 .044 .744 .081 .630 .120 .742 .094
VFR .363 .054 .763 .114 .769 .220 .817 .224
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TABLE 13; Nonparametric SDT Measures for Ceiling and Visibility

Crisp
A’

Ceiling 
Crisp Fuzzy 
c A’

Fuzzy
c

Crisp
A’

Visibility 
Crisp Fuzzy 
c A’

Fuzzy
c

IFR .752 1.185 .903 .395 .856 .493 .726 .116
VFR .739 1.108 .891 .262 .850 -.014 .796 .239

2 3 5 10

Visibility (sm)

Figure 9. Accuracy data across the baseline visibilities. Means with different letters are 
significantly different at p <  .05.

A significant interaction of ceiling and visibility was also found, F(9,198) = 

16.647, p < .05. This interaction is depicted in Figure 10 below. Separate analyses 

inspected the effect of visibility at each of the 4 different ceiling conditions. Visibility 

had a significant simple main effect when analyzed at the 400,900 and 4500 ft ceiling 

conditions, but not at the 2900 ft ceiling condition. When analyzed at the two IFR (400 ft 

and 900 ft) conditions there was a significant difference between the 10-mile visibility 

condition and all of the other visibilities. The 10-mile visibility condition had a 

significantly lower accuracy than the 2, 3 and 5 miles conditions within the 400 and 900 

ft ceiling conditions. No significant differences were found for the different visibilities at 

the 2900 ft ceiling condition. The analysis at the 4500-foot ceiling conditions revealed
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the 3-mile visibility condition was significantly lower than both the 5 and 10 miles 

conditions. The 3-mile condition was no significantly different from 2 miles within the 

4500-foot ceiling conditions. There were no other interactions found for the accuracy 

data

400 900 2900 4500

Ceiling (ft)

Figure 10. Accuracy for the different cloud heights across visibility. Means within each 
ceiling and with different letters are significantly different a tp <  .05.

Comfort. Analysis of comfort data revealed no main effect for pilot type. 

Significant main effects were found for both ceiling, F{3,66) = 101.977,/? < .05 and 

visibility, F{3,66) = 166.269, p  < .05. Mean comfort data across the different visibilities 

is reported in Figure 11. Post hoc analysis found significant increases in mean comfort 

with each increase in visibility.

Mean comfort data for ceiling is reported in Figure 12. There was a significant 

increase in comfort rating between the low ceilings (400 ft and 900 ft) and the higher 

ceilings (2900 ft and 4500 ft). There were no differences within the two low and two high 

ceilings.
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Figure 11. Mean comfort across the visibility conditions. Means within each ceiling and 
with different letters are significantly different atp <  .05.
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Figure 12. Mean comfort across the ceiling conditions. Means with different letters are 
significantly different a tp  < .05.

There was a significant interaction between ceiling and visibility, F(9,198) = 

8.495, p  < .05. The data for the interaction is presented in Figure 13. Four separate 

analyses were conducted at each level of ceiling. There was a simple main effect for 

visibility at each level of ceiling. At each level of ceiling comfort increased with 

increasing levels of visibility. At both 400 ft and 900 ft there were no significant 

differences between 2 and 3 mile visibility. However the 2 and 3 mile visibility
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conditions were significantly lower than the 5 mile visibility. Additionally the 5 mile 

visibility was significantly lower than the 10 mile visibility. Data for the 2900 ft and 

4500 ft ceilings had significant increase in comfort with each increase in visibility. There 

were no other significant interactions for the comfort data.
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Figure 13. Interaction of ceiling and visibility on mean comfort. Means within each 
ceiling and with different letters are significantly different atp <  .05.

Ceiling RMSE. Significant main effects were found for both ceiling, F(3,66) = 

18.99,p  < .05 and visibility, F(3,66) = 3.\A ,p < .05 in the ceiling RMSE data. Post hoc 

analysis of ceiling revealed that ceiling RMSE was significantly larger at 4500 feet than 

at any other level. There were no differences within the 400, 900, and 2900 ft ceilings. 

Ceiling RMSE data for each of the four ceilings is provided in Figure 14.

Post hoc analysis at the different visibility levels revealed no significant 

differences within 3, 5, and 10-mile visibility. No significant differences were found 

within the 2, 5, and 10-mile visibility conditions. However ceiling RMSE was 

significantly larger at 2 miles than it is at 3 miles.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



73

2500 
W 2000 

I  1500
jf  1000
tS 500 

0

B

. O
400

B

900

B

L _

2900

Ceiling (ft)

4500

Figure 14. Ceiling RMSE data at each of the four ceilings. Means with different letters 
are significantly different at p  < .05.
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Figure 15. Ceiling RMSE data at each of the four visibilities. Means with different 
letters are significantly different atp  < .05.

There was also a significant interaction of ceiling and visibility, F(9,198) = 6.34, 

p  < .05. A series of analyses were done on visibility at each level of ceiling. There was a 

simple main effect at the 400, 900, and 4500 ft ceilings. The 2900 ft ceiling did not have 

a significant simple effect for visibility. At 400 ft there was a significant difference 

between the two lowest visibilities (2 and 3 miles) and the 10 mile condition. The 5 mile
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condition was not significantly different from any of the other visibilities. At 900 ft the 

only significant difference was between the 3 mile condition and the 10 mile condition. 

There were no differences among any of the visibilities with a 2900 ft ceiling. At the 

4500 ft ceiling the 2 mile visibility had significantly higher error than any other visibility 

condition. No differences existed among the 3, 5, and 10 mile conditions. No other 

interactions were present within the ceiling RMSE data.
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400 900 Ceiling (ft) 2900
4500

Figure 16. Ceiling RMSE data for the ceiling by visibility interaction. Means within each 
ceiling category and with different letters are significantly different atp  < .05.

Visibility RMSE. Significant main effects were found for both ceiling, F(3,66) = 

6.387,/? < .05 and visibility, F(3,66) = 23.283,/? < .05 in the visibility RMSE data. Post 

hoc analysis revealed that the RMSE at the 2 mile visibility was significantly smaller than 

all other visibilities. Additionally RMSE was smaller for 3 and 5 mile visibilities than 

RMSE data for the 10 mile visibility. RMSE data for visibility is presented below in 

Figure 17.
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Figure 17. Visibility RMSE across the visibility conditions. Means with different letters 
are significantly different atp  < .05.

Post hoc analysis on the visibility RMSE across the four levels of ceiling revealed 

that RMSE with the 400 ft ceiling conditions was significantly higher than conditions 

with 2900 ft ceilings and 4500 ft ceilings. RMSE with the 900 ft ceilings was 

significantly greater than the 4500 ft ceilings but not the 2900 ft ceilings. There were no 

differences between the 2900 ft ceilings and 4500 ft ceilings.

5 i  
w .

p̂
I?3  2 A -o
i? 1 n

400

A,B

R
B.C

1

900 2900

Ceiling (ft)

C,D

J L I
4500

Figure 18. Visibility RMSE across the ceiling conditions. Means with different letters 
are significantly different atp <  .05.
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A significant interaction of rating and visibility was found for the visibility 

RMSE, F(3,66) = 6.121, p < .05. A series of analyses on the simple main effect of rating 

at each level of visibility were conducted. At 2, 3, and 5 mile visibility there was no 

simple main effect of rating. At 10 miles visibility the instrument pilots had a 

significantly lower visibility RMSE than the non-instrument pilots. The data for the 

visibility by rating interaction is presented in Figure 19.

■  Instrument 
11 Non-Instrument

2 3 5 10

Visibility (sm)

Figure 19. The interaction of visibility and rating on visibility RMSE. Means within 
each visibility and with different letters are significantly different atp <  .05.

There was also a significant interaction of ceiling and visibility on visibility 

RMSE, F(9,198) = 24.706, p < .05. A series of analyses on the simple main effect of 

ceiling were performed at each level of visibility. A simple main effect of ceiling was 

present at 2, 3, and 10 mile visibility conditions. The analyses at 2 miles visibility found 

a significant difference between error at 400 ft and 900 ft, with the error at 900 ft being 

significantly smaller than error at 400 ft. There were no other significant differences at 2 

miles. At 3 miles visibility, RMSE was significantly lower at 400 ft and 900 ft compared 

to 2900 ft. The 4500 ft condition at 3 miles was not significantly different from any of
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the other ceilings. There was no effect of ceiling in the 5 mile conditions. At 10 miles 

the two high ceilings (2900 and 4500 ft) had a significantly lower visibility RMSE than 

the low ceilings (400 and 900 ft). There were no differences within the high and low 

ceilings. Data for the interaction is plotted in Figure 20. There were no three-way 

interactions or any other significant interactions in the visibility RMSE data.
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Figure 20. The interaction of ceiling and visibility on visibility RMSE. Means within 
each visibility and with different letters are significantly different at p <  .05.

GWIS SDT Results

Non-parametric signal detection metrics were calculated for each participant. As 

with the baseline data there were several instances of extreme scores. However, unlike 

the baseline analysis this also extended to the fuzzy SDT data. A loglinear correction 

was performed on the GWIS SDT data. After the correction the SDT was analyzed in a 

two way, 2 (ratings) x 6 (GWIS), mixed repeated measures ANOVA. A table of the 

extreme scores from perfect performance is presented in Table 14 below. Additionally 

within the overall crisp SDT data there were three cases of a false alarm rate of 1. All
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three cases were non-instrument pilots. One was located in ceiling worse condition and 

the remaining two were within the visibility worse condition.

TABLE 14: Number of Cases with Perfect Performance within the GWIS SDT Data

None Accurate
Overall Crisp 

Ceiling Ceiling 
Better Worse

Visibility
Better

Visibility
Worse

HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR
= 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 =0

IFR 3 8 4 9 2 8 1 5 4 8 5 5
VFR 6 7 8 9 5 10 6 6 5 7 8 5

None Accurate
Overall Fuzzy 

Ceiling Ceiling 
Better Worse

Visibility
Better

Visibility
Worse

HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR
= 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0

IFR 0 0 0 0 0 0 1 0 0 0 1 0
VFR 0 0 0 0 0 0 2 0 0 0 2 0

Sensitivity. The ANOVA on the crisp A’ found a significant main effect for 

GWIS, F(5,l 10) = 4.647, p < .05. The visibility worse was not significantly different 

from the ceiling worse condition, however it was significantly lower than every other 

GWIS condition. The ANOVA on the fuzzy A’ also had a significant main effect of 

GWIS, F(5,l 10) = 4.002, p < .05. The ceiling worse condition had significantly lower 

sensitivity than the visibility better, accurate, and no GWIS conditions. There was no 

significant difference between ceiling worse, ceiling better and visibility worse. Data for 

both sensitivity metrics is provided in Figure 21.
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None Accurate Ceiling Ceiling Visibility Visibility
Better Worse Better Worse

GWIS Condition

Figure 21. Sensitivity data for the GWIS conditions. Comparisons should only be made 
within each analysis technique (i.e., crisp or fuzzy). Means with different numbers or 
letters are significantly different atp  < .05.

Bias The analysis of the crisp response bias data revealed a significant effect of 

GWIS on the crisp c, F(5,l 10) = 4.705,/? < .05. Post hoc analysis revealed that the 

visibility worse condition had a significantly lower (more liberal, i.e., more likely to 

respond that conditions are IFR) c than any other GWIS condition with the exception of 

the ceiling worse condition. There were no other significant differences within the other 

GWIS conditions. Analysis of the crisp c revealed no other main effects or interactions. 

There was a significant main effect of GWIS on the fuzzy response bias, F(5,l 10) = 

12.227, p < .05. Post hoc analysis revealed that the visibility worse and ceiling worse 

conditions had a significantly lower fuzzy c than the four other GWIS conditions. There 

were no significant differences between the visibility worse or ceiling worse conditions. 

There were also no differences within the four other GWIS conditions. Response bias 

data for both the fuzzy and crisp c is provided in Figure 22.
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Figure 22. Combined response bias data for the GWIS conditions. Comparisons should 
only be made within each analysis technique (i.e., crisp or fuzzy). Means with different 
numbers or letters are significantly different atp  < .05.

GWIS Ceiling SDT  As with the baseline trials, pilots’ estimates of ceiling and 

visibility were used to create crisp and fuzzy responses to both ceiling and visibility. The 

incidence of extreme scores in the crisp ceiling analysis was high. Every pilot in every 

GWIS condition had a crisp ceiling false alarm rate of 0. Additionally there were a 

number of cases where the hit rate was equal to 0. There were also several instances of 

perfect ceiling scores within the fuzzy data, but no instances where the scores reflected 

all wrong responses. The data for the extreme GWIS ceiling scores is presented in Table 

15. A loglinear correction was applied to all of the data.

The analysis was performed only using the nonparametric analysis. The data 

were analyzed in a two way, 2 (ratings) x 6 (GWIS), mixed repeated measures ANOVA.
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TABLE 15: Number of Extreme Scores within the GWIS Ceiling SDT Data

None
Ceiling Crisp Perfect Performance 

Accurate Ceiling Ceiling Visibility 
Better Worse Better

Visibility
Worse

HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR
= i = o = 1 = 0

oIIIIoIIII = 1 = 0 = 1 = 0
IFR 0 12 0 12 0 12 1 12 0 12 0 12
VFR 0 12 0 12 0 12 0 12 0 12 1 12

Ceiling Crisp All Incorrect
None Accurate Ceiling Ceiling Visibility Visibility

Better Worse Better Worse
HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR
= 0 = 1 = 0 = 1 ll o II II o II = 0 =1 = 0 = 1

IFR 4 0 6 0 7 0 3 0 5 0 4 0
VFR 3 0 3 0 6 0 1 0 3 0 3 0

Ceiling Fuzzy Perfect Performance
None Accurate Ceiling Ceiling Visibility Visibility

Better Worse Better Worse
HR FAR HR FAR HR FAR HR FAR HR FAR HR FAR
= 1 = 0 = 1 = 0 = 1 = 0  =1 = 0 = 1 = 0 = 1 = 0

IFR 0 4 0 4 0 7 1 2 0 5 0 2
VFR 0 2 0 2 0 3 0 1 0 2 0 1

There was a significant main effect for GWIS on the crisp sensitivity metric,

F(5,110) = 6.676, p < .05, but not the fuzzy sensitivity metric. The highest crisp ceiling 

sensitivity was obtained within the ceiling worse condition. The ceiling worse condition 

had a significantly higher sensitivity than the no-GWIS, accurate, and ceiling better 

GWIS conditions. Additionally, the visibility worse condition had a significantly higher 

sensitivity compared to the ceiling better condition. The ceiling crisp A ’ means for the 

different GWIS conditions and the post hoc groupings are in Table 16. There was no 

main effect for GWIS on fuzzy ceiling A’ data.

Analysis of both the crisp and fuzzy ceiling response bias yielded a significant 

main effect of GWIS, F(5,l 10) = 10.597, p < .05 and, F(5,l 10) = 6.786, p < .05 

respectively. Within the crisp ceiling analysis, the ceiling worse condition had a
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significantly lower response bias than the no-GWIS, accurate, and visibility better GWIS 

conditions. The ceiling better condition had a significantly larger response bias 

compared to the no-GWIS and visibility worse conditions. Within the fuzzy ceiling 

response bias analysis the ceiling worse condition had a significantly lower response bias 

compared with the ceiling better and visibility better GWIS conditions. The ceiling better 

condition had a significantly higher response bias compared with the no-GWIS and 

visibility worse GWIS conditions. Means and post hoc groupings for the fuzzy and crisp 

ceiling response bias are in Table 17.

TABLE 16: Mean Ceiling Crisp A’ and Post Hoc Groupings for the GWIS Conditions
None Accurate Ceiling

Better
Ceiling
Worse

Visibility
Better

Visibility
Worse

Mean .666 .679 .621 .778 .687 .729
Post hoc 1,2 1,2 1 3 1,2,3 2,3
Group

TABLE 17: Mean Fuzzy and Crisp Ceiling c and Post Hoc Groupings for the GWIS 
Conditions

None Accurate Ceiling
Better

Ceiling
Worse

Visibility
Better

Visibility
Worse

Crisp
Mean .997 1.042 1.227 .735 1.048 .879
Post hoc 2 2,3 3 1 2,3 1,2
Group

Fuzzy
Mean .233 .253 .387 .113 .289 .208
Post hoc 1,2 1,2,3 3 1 2,3 1,2
Group
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GWIS visibility SDT. The crisp and fuzzy visibility SDT data contained several 

extreme scores. The frequency of the extreme scores within the visibility SDT analysis is 

presented in Table 18. A loglinear correction was used on both the crisp and fuzzy 

visibility data.

TABLE 18: Number of Extreme Scores within the GWIS Visibility SDT Data

None
Visibility Crisp Perfect Performance 

Accurate Ceiling Ceiling Visibility 
Better Worse Better

Visibility
Worse

HR FAR HR FAR HR FAR HR FAR HR FAR H R= FAR
= 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = 0 1 = 0

IFR 2 5 1 7 0 4 2 4 1 8 0 7
VFR 5 0 6 1 4 1 2 1 4 1 6 1

Visibility Crisp All Incorrect
None Accurate Ceiling Ceiling Visibility Visibility

Better Worse Better Worse
HR FAR HR FAR HR FAR HR FAR HR FAR H R = FAR
= 0 = 1 = 0 = 1 = 0 = 1 = 0 =1 = 0 =1 0 = 1

IFR 1 0 2 0 3 0 1 0 3 0 2 0
VFR 0 0 0 0 0 0 0 0 2 0 0 0

Ceiling Fuzzy Perfect Performance
None Accurate Ceiling Ceiling Visibility Visibility

Better Worse Better Worse
HR FAR HR FAR HR FAR HR FAR HR FAR HR = FAR
= 1 - 0 = 1 = 0 = 1 = 0 ll il o = 1 = 0 1 = 0

IFR 0 2 0 4 0 2 0 3 0 3 0 2
VFR 1 0 1 1 1 0 1 0 1 0 1 0

Analysis of the crisp visibility sensitivity yielded a significant main effect of 

GWIS, F(5,l 10) = 2.432, p < .05. The sensitivity for the visibility better condition was 

significantly lower than the no-display GWIS condition. No other differences were 

found within the crisp visibility sensitivity data. Crisp A’ means and post hoc groupings 

for the GWIS conditions are provided in Table 19. There was no significant main effect 

of GWIS on the fuzzy A’ data.
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TABLE 19: Mean Crisp Visibility A’ and Post Hoc Groups for the GWIS Conditions
None Accurate Ceiling

Better
Ceiling
Worse

Visibility
Better

Visibility
Worse

Mean .791 .783 .759 .782 .694 .769
Post hoc 2 1,2 1,2 1,2 1 1,2
Group

Analysis of the visibility crisp and fuzzy response bias revealed significant main 

effects for GWIS, F(5,l 10) = 4.982, p < .05 and, F(5,l 10) = 3.497, p < .05 respectively. 

Means and post hoc groupings for the crisp and fuzzy response bias are available in Table 

20.

TABLE 20: Mean Fuzzy and Crisp Visibility c and Post Hoc Groupings for the GWIS 
Conditions

None Accurate Ceiling
Better

Ceiling
Worse

Visibility
Better

Visibility
Worse

Crisp
Mean .183 .276 .323 .239 .563 .306
Post hoc 
Group

1

Fuzzy

1 1,2 1 2 1

Mean .034 .046 .044 .040 .087 -.085
Post hoc 
Group

1,2 2 2 1,2 2 1

Additionally both the crisp and fuzzy c revealed a significant main effect of 

Rating, F(5,l 10) = 8.054, p < .05 and, F(5,l 10) = 5.941, p < .05 respectively. In both 

analyses instrument pilots had a significantly higher response criterion (tendency to 

overestimate conditions) than non-instrument pilots. The mean data for the fuzzy and 

crisp visibility response criterion is in Table 21.
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TABLE 21: Visibility Response Criterion across Rating
Crisp c Fuzzy c

Instrument .558 .190
Non-Instrument .071 -.134

GWIS Accuracy, RMSE, and Comfort Data

The accuracy, RMSE and comfort data was analyzed using a four way, 2 (ratings) 

x 2 (ceiling) x 3 (visibility) x 6 (GWIS), mixed repeated measures ANOVA. Due to the 

previous baseline analysis, only main effects of the GWIS manipulation and interactions 

involving the GWIS manipulation will be explained.

Accuracy. There was a significant main effect of GWIS on the accuracy data, 

F(5,l 10) = 2.911,/? < .05. Post hoc analysis revealed that the only significant difference 

was between the visibility worse condition and the accurate condition, with the accurate 

condition having significantly higher accuracy. The accuracy data for the GWIS 

conditions are provided in Figure 23.

The GWIS condition had a significant interaction with ceiling level. A test of 

simple main effect o f GWIS at each of the two levels of ceiling was performed. There 

was no simple main effect for 900 ft, but there was a simple main effect for 2900 ft. 

Within the 2900 ft ceiling conditions, accuracy for the visibility worse conditions was 

significantly lower than accuracy for the accurate and ceiling better conditions. The 

ceiling worse condition was also significantly lower than the ceiling better conditions, but 

not the accurate display conditions. Data for the ceiling and GWIS interaction are 

provided in Figure 24.
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None Accurate Ceiling Ceiling Visibility Visibility
Better Worse Better Worse

GWIS Condition

Figure 23. Accuracy data for the GWIS conditions. Means within each visibility and 
with different letters are significantly different at p  < .05.

There was a significant interaction of GWIS and visibility on accuracy, F (10,220) 

= 2.506, p < .05. A test of simple main effects was done for visibility at each of the 

GWIS conditions. Only the visibility worse condition had a significant effect of 

visibility. Accuracy at the visibility worse condition was significantly higher at 2 miles 

visibility than 3 miles visibility. Neither 2 nor 3 miles were significantly different from 

the 5 mile condition. Data for the interaction are in Figure 25. The GWIS manipulation 

was not involved in any other interactions within the accuracy data.

Visibility RMSE. Inspection of the visibility RMSE data for the GWIS 

manipulation revealed a data entry error with one of the participants. The overall mean 

for visibility RMSE was 1.16 with a standard deviation of 1.15. The invalid entry had a 

visibility RMSE of 203, which is 175 standard deviations away from the mean. The 

entry was excluded from the subsequent analyses, as it is likely an entry error on the part
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of the participant. The visibility RMSE did not show either a main effect of GWIS or any 

interactions involving GWIS.

■  900 ft 
02900 ft

None Accurate Ceiling Ceiling Visibility Visibility
Better Worse Better Worse

GWIS Condition

Figure 24. Accuracy data for the ceiling and GWIS interaction. Comparisons should 
only be made within each ceiling condition (i.e., 900 or 2900). Means with different 
numbers or letters are significantly different atp <  .05.
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Figure 25. Accuracy data for the GWIS and visibility interaction.

Ceiling RMSE. Analysis of the ceiling RMSE data revealed a significant main 

effect of GWIS, F(5,l 10) = 3.82, p < .05. The ceiling worse condition had a significantly
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higher ceiling error than the accurate and visibility better GWIS conditions. The ceiling 

RMSE means and post hoc groupings for GWIS condition are provided in Table 22.

TABLE 22: Ceiling RMSE Data and Post Hoc Groupings across GWIS Conditions
None Accurate Ceiling

Better
Ceiling
Worse

Visibility
Better

Visibility
Worse

Mean 709.896 590.625 698.872 839.080 604.688 649.306
Post hoc 1,2 1 1,2 2 1 1,2
Group

Additionally the ceiling RMSE was involved in a significant 3-way interaction of 

rating x GWIS x visibility, F{10,220) = 2.798, p < .05. A test of simple interactions of 

rating and visibility was done at each level of GWIS. Only the ceiling better condition 

had a significant interaction of rating x visibility. A subsequent test of simple main 

effects of rating was done at each visibility within the ceiling better condition. Rating 

had a significant simple main effect at the 2 mile visibility condition, however it was not 

significant at any other level of visibility. Instrument pilots had a significantly higher 

ceiling RMSE within the ceiling better GWIS condition and at 2 miles visibility. The 

data for the 3-way interaction is provided in Figure 26. Ceiling RMSE was not involved 

in any other interactions.

Comfort. The ANOVA on the comfort data revealed a significant main effect of 

GWIS, F(5,l 10) = 4.647, p < .05. Post hoc analysis revealed that the visibility worse 

condition had a significantly lower level of comfort than the visibility better and ceiling 

better conditions. The ceiling worse condition was also significantly lower than the 

ceiling better condition, but not the visibility better condition. Data for mean comfort
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across each of the GWIS conditions are in Figure 27. Comfort was not involved in any 

interactions with GWIS.
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Figure 26. The interaction of GWIS by ceiling by rating on ceiling RMSE.
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Figure 27. Mean comfort data for the GWIS conditions. Means with different letters are 
significantly different atp <  .05.

Correlations

The second part of the analysis was a series of correlations between several 

compensatory and non-compensatory decision models and mean comfort levels used in 

previous research (Driskill et al., 1997; Hunter et al., 2003). The comfort levels were 

those obtained from both the experimental conditions and card sort task.

The different models were constructed from the standardized safety benchmark 

ratings used in Driskill et al. (1997). These benchmark ratings transform ceiling and 

visibility into a normal distribution with a mean of 5 and standard deviation of 1. The 

distributions for ceiling and visibility safety ratings are provided in Figures 24 and 25 

respectively.

The values in the original Driskill study did not contain the necessary range of 

ceilings and visibilities used in the current study. Additional data points had to be 

estimated for the purposes of the current experiment. For example since no value existed 

for a ceiling of 4500 ft one was estimated from existing data points to be 6.33 (i.e., the
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value midway between Driskill’s 4000 ft and 5000 ft points). Additionally, the values 

did not drop below the values established in Driskill et al. (1997) (i.e., the 400 ft ceiling 

condition took on the value of the lowest point on the original scale, that of a 600 ft 

ceiling, 3.664).

Additional models were computed incorporating the GWIS categories for ceiling 

and visibility. The models containing the GWIS conditions used the midpoint of each 

FAR category range (i.e., the midpoint of IFR ceilings is 750 ft). For ceiling LIFR was 

the value assigned to 600, 3.664 (i.e., the lowest value on the original scale). Since the 

VFR category has no maximum the midpoint of the VFR values used by Driskill et al. 

(1997) was selected as the value for the VFR GWIS. The GWIS VFR value for ceiling 

was that of a 4000 ft ceiling and the corresponding value for visibility was that of 7 miles 

visibility. The values assigned to each of the GWIS ceiling and visibility categories are 

in Figures 28 and 29.

The correlations are divided into those obtained from the card sort task, those 

obtained from the out the window, and those obtained from the GWIS out the window 

conditions. Due to the inaccuracy of pilots’ estimation of ceiling and visibility both the 

actual and pilots’ estimated ceiling and visibilities were used to construct the different 

models. The actual conditions were those presented by the computer (e.g., a ceiling of 

either 400, 900,2900, or 4500 ft). The estimated conditions were what the pilots 

believed the conditions to be. The correlations’ obtained from the baseline conditions 

and card sort task are presented in Table 23. All correlations were significant (p < .05).
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Figure 28. Safety ratings of ceiling adapted from Driskill et al. (1997). Values in 
parentheses are the GWIS category values.
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Figure 29. Safety ratings of visibility adapted from Driskill et al. (1997). Values in 
parentheses are the GWIS category values.
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Additionally, the models incorporating the GWIS utilized only the 900 ft ceiling 

and 2900 ft ceiling, and the 2, 3 and 5-mile visibility conditions. This represents a 

restricted range of values for both the ceiling and visibility correlations. Such a 

restriction of range will often result in an attenuation or reduction of the obtained 

correlations compared with correlations using the full range of ceiling and visibility 

levels. All correlations were significant (p < .05).

TABLE 23: Comparison of Compensatory and Non-Compensatory Models. (All 
correlations were significant (p < .05))____________________________________
Model Used Window Conditions Obtained Correlation (r)

Non- Ceiling .490
Compensatory Visibility .441

Models Worst Factor (C or V) .622
Ceiling + Visibility .658

Compensatory (additive)
Models Ceiling * Visibility .661

(multiplicative)
Pilot Estimates of Window

Conditions
Non- Ceiling .620

Compensatory Visibility .768
Models Worst Factor .788

Compensatory Ceiling + Visibility .809
Models Ceiling * Visibility .802

Textual Conditions
Non- Ceiling .741

Compensatory Visibility .378
Models Worst Factor .840

Ceiling + Visibility .812
Compensatory (additive)

Models Ceiling * Visibility .839
(multiplicative)
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TABLE 24: Decision Models with the GWIS and Restricted Range. (All correlations
were significant (p < .05))

OTW Conditions Correlation With Comfort
Non- Ceiling .496

Compensatory Visibility .331
Models GWIS Ceiling .358

GWIS Visibility .225
Worst Factor (C or V) .567

Worst Factor (GWIS, C, V) .490
Ceiling + Visibility .581

Compensatory (additive)
Models Ceiling * Visibility .584

(multiplicative)
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DISCUSSION

Overall, the results of the present study reveal valuable insight into pilot weather 

judgment. The results provide additional support to the situation assessment hypothesis, 

as the data revealed that pilots have problems estimating weather conditions. In addition 

to being fairly inaccurate at their estimation, pilots’ also had a tendency to overestimate 

conditions (i.e., estimate that conditions are better than they are). From a safety 

perspective this conservative response bias or tendency to respond that conditions are 

VFR is a potential hazard. Accident data suggested that IFR pilots might be better at 

estimating weather conditions (AOPA Air Safety Foundation, 1996). However, the 

problem in estimating conditions does not appear to be mitigated by the additional 

training IFR pilots have. Overall pilot rating only had a small impact on responses, and 

there only within an interaction with visibility in the visibility RMSE data.

The present study examined several decision making strategies that pilots might 

use when making weather judgments. The evidence to suggest the use of a compensatory 

model, as described in previous research (Driskill et al., 1997; Hunter et al., 2003) over a 

worst factor model was not substantiated. However, the interaction of ceiling and 

visibility (see Appendix G for additional analyses on this interaction) that prevailed 

throughout the data suggests a different type of compensatory model.

The study found mixed results for the use of the graphical METAR information. 

The overall SDT results suggest that pilots use the GWIS information only when it 

suggests that conditions are worse. There was no significant impact on the overall GWIS 

measures when it suggested either ceiling or visibility was better. However, the 

examination of the ceiling and visibility SDT measures increase pilots’ tendency to
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overestimate conditions when the GWIS contained conditions that were better than those 

depicted.

Weather Estimation

One of the major objectives of the experiment was to provide some empirical 

evidence of pilots’ ability to estimate weather conditions. Previous research has 

suggested that pilots are poor at estimating weather in flight (Goh & Wiegmann, 2001b). 

However, this evidence was taken from a single IFR weather estimation. The present 

study set out to systematically examine how pilots estimated different weather conditions. 

Several metrics of pilot performance in estimating weather were created through a 

number of questions. Two of these performance metrics were the ceiling and visibility 

root mean square error (RMSE) for both ceiling and visibility.

The first hypothesis was simply to confirm previous findings about pilots’ ability 

to estimate weather conditions within a more systematic experiment. Ceiling RMSE 

ranged from about 650 feet to 1800 feet across the four ceilings used in the current 

experiment. The errors were not as large as the 2200 ft error obtained in previous 

research (Goh & Wiegmann, 2001b). However, the errors are still problematic to flight 

safety as they often resulted in pilots misinterpreting IFR conditions as VFR. The ceiling 

SDT analysis (described later in more detail) revealed a strong tendency to overestimate 

the cloud height. The bias was so strong that it resulted in an average crisp hit rate for 

ceiling below 35% and several pilots actually had 0% hit rates.

Pilots were also tasked with estimating visibility. Previous research found pilots 

were on average off by 1.5 miles in their estimations (Goh & Wiegmann, 2001b).

Overall the current study yielded similar errors in visibility estimation. Across the four
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visibility conditions visibility RMSE ranged from .65 miles to 2.5 miles, with the error 

increasing as visibility increased. The estimate from previous research was generated at 

low visibility (i.e., 2 miles), and the corresponding estimate at 2 miles in the present 

study had an error of only .65 miles.

It is not surprising that the estimates for visibility and ceiling were somewhat 

better in the present study. Pilots in the current experiment had more knowledge of the 

simulated area, and a greater focus on the weather. Pilots only task during the experiment 

was to estimate and evaluate the weather conditions. Before the experiment began, they 

were shown the area on a clear day and were made aware of two landmarks and the 

distances to those landmarks. Landmark information was given to keep the experiment 

similar to pilots’ knowledge of a familiar area. Another advantage was that pilots had the 

video clip of the weather repeating in a continuous loop while answering the questions.

In the University of Illinois study (Goh & Wiegmann, 2001b) pilots were flying the 

simulator and were asked questions regarding ceiling and visibility after the simulation 

was complete. The large errors found in the present study are a testament to the difficulty 

of estimating weather conditions.

The first hypothesis of obtaining errors similar to prior research (Goh & 

Wiegmann, 2001b) was only partially supported. Some of the errors generated within the 

current experiment were smaller than those previously found. However this may again 

be due to the emphasis on weather estimation within the current experiment, the use of 

landmarks, and the constant presence of the weather stimulus. Despite being less 

substantial than errors previously obtained, the errors in the current experiment are still
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cause for concern since as the SDT analysis revealed they tended to be overestimates of 

the weather conditions.

Pilot Sensitivity and Response Bias

This experiment was the first to apply SDT to pilot weather estimation. The 

theory has been applied to a range of settings where an individual would have to 

distinguish between two possible states of the world, such as VMC and IMC flight 

conditions. However, a new extension of the theory (Parasuraman et al., 2000) has 

allowed for analysis of conditions that vary along a continuum. This fuzzy extension of 

SDT was created to allow for a more precise measure of sensitivity (Hancock et al., 2000; 

Parasuraman et al., 2000); however, there have been only limited applications of the 

fuzzy technique to date. The analysis of weather conditions provides a unique 

application of SDT. In addition to having two distinct states (i.e., IMC and VMC), and 

varying along a continuum, weather can actually be considered to vary along multiple 

continuums (i.e., ceiling and visibility). To fully appreciate pilot weather judgment a 

series of separate SDT analyses were performed.

The first SDT analysis was based upon the traditional or crisp version of the 

theory (Green & Swets, 1966). The overall weather was classified based upon the worst 

condition, overall conditions were either VMC or IMC. On average pilots had an A’ of 

.917 and a small conservative response bias. On average pilots missed just under 20% of 

the IFR conditions. However, pilots varied in their sensitivities and biases. Although 

overall there was a slight conservative bias (i.e., a positive c), eight of the twenty-four 

pilots actually had a liberal response bias (i.e., a negative c). A complete breakdown of 

the 24 pilots and their sensitivities and response biases is provided in Appendix F. When
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considering flight safety it is best for pilots to respond more frequently that conditions are 

IFR (i.e., have a liberal response bias), however only eight of the pilots had this type of 

bias. That pilots on average had a conservative bias or tendency to respond that 

conditions were VFR is a potential flight safety problem.

A second analysis was based upon fuzzy SDT (Parasuraman et al., 2000). The 

overall weather was again based upon the worst condition, however it took on a range of 

values from 0 to 1. The fuzzy responses were generated from the question asking pilots 

to place the weather condition along a continuum containing LIFR, IFR, MVFR and 

VFR. On average pilots had an A’ of .922. The fuzzy analysis also suggested the pilots 

had a small conservative response bias. However, there was again variability in 

individual pilot sensitivities and biases. Four of the pilots had a liberal response criterion 

(i.e., they tended to respond that conditions were IMC).

The inclusion of the ceiling and visibility estimation questions offered an 

opportunity to apply separate SDT metrics based solely upon ceiling and visibility.

These analyses provided a better understanding of how pilots were making weather 

estimates. Separate crisp and fuzzy analyses were done on both a ceiling and visibility 

dimension. The results of the crisp analysis on ceiling revealed that on average a pilot’s 

ability to respond that IFR conditions were IFR (i.e., HR) was below 40%. That is, more 

than 60% of the IFR conditions were categorized as VMC. The corresponding error, 

categorizing VMC conditions as IMC (FAR) occurred less than 5%. The result was a 

low sensitivity (i.e., poor ability to distinguish between VMC and IMC) and a liberal 

response criterion of c = 1.146. Taken alone the poor sensitivity and tendency to 

overestimate ceilings could be a serious problem. Even more troubling was that four of
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the pilots demonstrated no sensitivity (i.e., A’ = .5) for the crisp ceiling analysis. That is, 

the pilots never estimated the ceiling as being below 1000 feet when the ceiling was in 

fact at 400 and 900 feet.

Results from the fuzzy ceiling analysis provide a different picture of the pilots’ 

sensitivities and biases. The fuzzy analysis shows that pilots had an A’ of .897 and ac  of 

.329. This represents a rather large increase in sensitivity and decrease in response bias 

compared with the crisp c results. The fuzzy data yielded hit and false alarm rates of 

75% and 10% respectively. This represents an increase o f over 35% in hit rate from the 

fuzzy analysis with only a corresponding 5% increase in false alarm rate.

Considering either the fuzzy or crisp analysis for ceiling alone would provide a 

different and incomplete understanding of ceiling judgment. To interpret these results, it 

is helpful to understand how pilots were making their judgments and how fuzzy and crisp 

logic treated MVFR responses during IFR conditions. Understanding they were flying at 

2400 ft, pilots were fairly good at correctly identifying ceilings that were VMC. This is 

likely due to the fact that two VMC ceilings (i.e., 2900 and 4500 ft) were always above 

the aircraft. There was little difference between the crisp and fuzzy analyses in their false 

alarm rate, which suggests the differences between the two did not stem from the 

estimation of the VFR (and MVFR) conditions. The difference in the analysis most 

likely resulted from how each analysis considered LIFR and IFR conditions with MVFR 

responses. If a pilot responded that IFR conditions were VFR, the crisp analysis would 

mark the trial as a (complete) miss whereas the fuzzy analysis would give the pilot a 

partial hit depending on how low their estimate was. For example if  a pilot estimated a 

900 ft ceiling as being 1500 ft, the crisp analysis would consider the response as a 0 for
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hit and 1 for a miss. The same estimates would be scored a hit of .64 in the fuzzy analysis 

and a miss of .36. If pilots consistently overestimate ceiling height the crisp analysis 

would show decreased sensitivity and shift the criterion to be more conservative. The 

same estimates modeled with the fuzzy analysis would still shift the criterion, however 

the shift would be smaller and the sensitivity higher.

The differences in the fuzzy and crisp ceiling analysis represent one of the most 

stark differences between the two techniques and provides support for previous 

suggestions that researchers use both (Masalonis & Parasuraman, 2003; Parasuraman et 

al., 2000). Neither analysis provides a complete picture of ceiling judgment.

The results of the crisp and fuzzy analyses of the visibility were more consistent 

than that of ceiling. However, they were still different. The crisp visibility analysis 

indicated that pilots had a sensitivity of .853 and a response bias of .239. The fuzzy 

analysis revealed a lower sensitivity and bias, .761 and .177 respectively. It is likely 

that the difference comes from the marginal conditions with overestimated responses. A 

pilot responding that visibility was 4 miles when it was in fact only 3 miles would not be 

penalized for sensitivity in the crisp analysis, but since the conditions border on being 

IFR, they would receive a hit of .425 and a miss of .425 in the fuzzy analysis.

As with the ceiling analysis it seems that both a fuzzy and crisp analysis are 

necessary to understand pilot judgment of weather conditions. Overall, the data seems to 

suggest that pilots do have problems estimating weather conditions and that their 

responses are biased such that they tend to overestimate conditions. The second 

hypothesis, that overall pilots would have a conservative response bias, was supported.

In the overall, ceiling, and visibility analyses the pilots exhibited conservative biases
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regardless of fuzzy or crisp technique. This potential for a conservative bias is a cause 

for concern particularly since it occurred in the absence of any external or background 

factors such as time, money or passengers. According to Jensen’s model (1995) these 

background factors would have an additional influence on pilot’s response bias.

However these judgments are based upon averaged data and there were in fact pilots in 

the present study who tended to underestimate conditions as well.

Pilot Rating

The third hypothesis that instrument pilots would be better than non-instrument 

pilots was not supported. It was expected that the extra training required to obtain an 

instrument rating accounted for the differences between the incidence in which the two 

groups are involved in VFR into IMC accidents (AOPA Air Safety Foundation, 1996). 

There were no main effects of rating on any of the performance metrics or SDT 

sensitivity metrics. There was a significant interaction of rating and visibility on 

visibility RMSE where instrument pilots had a lower RMSE than non-instrument pilots 

within the 10-mile visibility conditions. Although this difference does favor the 

instrument pilots it is not fully consistent with the hypothesis. The hypothesis suggested 

instrument pilots would have more experience with IFR conditions and therefore a better 

ability to recognize them. The 10-mile visibility conditions are (based only upon 

visibility) VFR conditions.

It is most likely that the lack of differences between the instrument and non­

instrument pilots are a result of the matching of the two groups on cross-country hours. 

That is, it is more likely that any difference between the groups that appears in accident 

data are the result of flight experience and not IFR training. Previous research has found
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that the number of cross-country hours is a predictor of pilot ability (Wiggins & O'Hare, 

1995). However, an inspection of correlations with data from the present study found 

non-significant negative relationships between both cross-country hours and overall 

hours with pilots’ ability to distinguish between conditions (i.e., sensitivity). The lack of 

correlation was likely due to the both the number of participants and reduced range of 

flight hours and cross-country hours. The only data to suggest that instrument pilots 

would be better came from indirect accident data indicating that 75% of pilots involved in 

VFR into IMC accidents were not instrument rated (AOPA Air Safety Foundation, 1996).

If there were no differences between the two groups in their ability to distinguish 

between the two conditions (as found in the present study), an alternative explanation of 

the AOPA findings might be that the instrument pilots had a more liberal response bias 

than the non-instrument pilots. The current study did find a significant difference 

between the two groups in their bias in estimating visibility. The direction of the fuzzy 

analysis would support such a hypothesis (the instrument pilots had a significantly less 

conservative response criterion). However the results of the crisp analysis for visibility 

were also significant with the direction of the difference being reversed. It is not clear 

why the SDT analyses of visibility would return one set of results for the crisp data and a 

different set for the fuzzy set. Such results provide further caution in using a fuzzy 

analysis as a replacement for a crisp analysis.

The AOPA findings that non-instrument rated pilots are more likely to be 

involved in a VFR into IMC accident is more likely the result of experience. Obtaining 

an instrument rating requires additional training. The pilots that were selected for the 

current study represented the lower end (in terms of cross country hours) of the available

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



IFR pilots, whereas the selected VFR pilots were among the higher end of the available 

pilots. The AOPA accident data may be a result of IFR pilots having the tendency to 

have more cross-country experience. In addition to the IFR rating requiring additional 

training it would also allow those pilots to fly in a wider range of conditions, and 

therefore have greater opportunity to fly. Unfortunately the previous literature (AOPA 

Air Safety Foundation, 1996) does not discuss cross-country hours within the different 

ratings. Separately addressing the issue of ratings and experience would require a large 

number of participants, and would require a considerable database to match pilots within 

both groups on experience. Future research should continue to examine the issue of pilot 

ratings, experience and judgment.

Window Based Decision Making Strategies

The present experiment conducted an analysis similar to that used in previous 

studies of pilot weather decision making (Driskill et al., 1997; Hunter et al., 2003). This 

previous literature concluded that pilots’ comfort in continuing flight was most correlated 

with compensatory decision strategies. That is, pilots appeared to take a mathematical 

average of all of the different weather conditions when making an overall rating of 

comfort. This would allow pilots to compensate low ceilings for high visibility when 

deciding comfort. The present study suggested that the results might be different if pilots 

were presented with a visual depiction of weather conditions as opposed to textual 

weather information. It was expected that pilots would actually use a decision model 

based upon the worst condition when given the overall visual. Such a model would be 

consistent with Federal Aviation Regulations.
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There were several issues in calculating the decision model. The largest obstacle 

was pilots’ inaccuracy in estimating weather conditions. Due to the estimation 

inaccuracy two series o f models were created, one based upon what the conditions 

actually were and the second based upon the pilots’ estimates of those conditions.

Overall the use of the pilots’ estimates of the weather conditions increased the 

correlations with comfort. Both the estimated and actual conditions show the two 

compensatory models having higher correlations with comfort than the worst condition 

model. However, the magnitude of difference between the worst condition model and the 

better of the compensatory models is only .04 for the actual conditions and .02 for the 

estimated conditions.

It is difficult to conclude that pilots use a compensatory decision model as 

opposed to the worst factor model. Unfortunately based upon the results it is not clear 

what model is most representative of pilots’ decision making.

The nature of the weather presentation also creates another problem in comparing 

the results with those obtained through textual conditions and previous literature (Driskill 

et al., 1997; Hunter et al., 2003). The FAA studies, actually presented pilots with all of 

the weather condition combinations cards at once and then asked them to sort them based 

upon their comfort. Then after sorting the cards, pilots were asked to provide a rating of 

comfort. The present study simply gave pilots a weather depiction and asked them to 

provide a rating for comfort. Weather combinations were presented one at a time 

because presenting 16 videos of weather conditions simultaneously was beyond the 

resources available for the current experiment. A more direct replication of the FAA 

studies would have had the pilots have all conditions to be sorted simultaneously.
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Despite limitations in a direct comparison between the current methodology and 

previous literature, it appears that the previous conclusion that pilots follow a 

compensatory decision making model should be further examined. In addition, the 

method for validating the pilots’ decision model should also be given further 

consideration in future research using both textual and visual presentation of weather. 

Card Sort Task

Previous research (Driskill et al., 1997; Hunter et al., 2003) had found that pilots 

followed a compensatory decision making model as just discussed. Although the 

previous hypothesis questioned these results because of the methodology used to obtain 

them it was expected that using a similar text based card sort task the results could be 

replicated. However, the results in the FAA study were not replicated within the present 

study. Results of the present study indicated that within the textual ratings the worst 

factor model was most highly correlated with a pilot’s judgment. However, this 

correlation was only different by .001 and .028 compared to the multiplicative and 

additive compensatory models respectively. Although this difference does not 

necessarily suggest pilots did follow a worst factor model it does not provide strong 

support for the FAA’s conclusions from previous research that suggest either 

compensatory model would be the most accurate. There are several potential differences 

between the current experiment and previous literature that may account for this lack of 

strong support.

One major difference between the present study and the previous FAA research 

was the inclusion o f precipitation information. Both FAA studies used varying levels of 

precipitation in addition to varying ceiling and visibility. However, because the
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conditions also had to be rendered graphically, a decision was made not to include a 

precipitation manipulation in the current investigation. This makes it difficult to directly 

compare the results obtained in the current study with those obtained in previous work. It 

is not clear if the inclusion or exclusion of precipitation would change the pilots’ decision 

making strategy.

An additional consideration is that the pilots in the present study were specifically 

trained to use a worst factor model. In their training for the experimental paradigm pilots 

were reminded of FAR definitions for categories which is consistent with the worst factor 

model. It is possible that training the pilots to make this judgment in the experiment 

impacted their strategies in the card sort task.

It is not clear if either of the two methodological differences accounted for the 

inability to replicate the data from previous research. However, combined with the data 

and models generated from the out the window images it does suggest that the issue 

needs further examination.

Influence of the Graphical METARs

The sixth hypothesis that the graphical METARs would have an impact on pilots’ 

weather judgments was supported. In combination there were 12 different signal 

detection metrics calculated ((fuzzy/crisp) x (overall/ceiling/visibility) x 

(sensitivity/bias)). Of these 12 metrics, the GWIS had a significant effect on all 6 of the 

sensitivity measures and 4 of the bias measures.

With respect to the overall crisp sensitivity only one of the inaccurate display 

conditions (i.e., the visibility worse condition) had a significantly lower sensitivity than 

the no-display conditions. The accurate display, two better display conditions, and the
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ceiling worse condition were not significantly different from the no-display condition.

The overall fuzzy sensitivity data revealed similar trends. The visibility-worse condition 

resulted in significantly poorer sensitivity than the no-display condition. None of the 

other display conditions resulted in different crisp sensitivity values relative to the no­

display conditions. The crisp and fuzzy data that reveals a lower sensitivity for the 

visibility worse condition was likely obtained because pilots with the display were more 

likely to incorrectly report that conditions with 3-mile visibility (which is at the boundary 

between VMC and IMC) were IMC. This type of an increase in FAR would be reflected 

in the response bias.

The overall crisp and fuzzy response criterion also had significant main effects of 

GWIS. The crisp bias data indicated that the visibility worse condition significantly 

shifted pilots’ response criterion compared to every other condition with the exception of 

the ceiling worse such that they lowered their estimates of visibility. The fuzzy bias 

confirmed these results finding both the ceiling worse and visibility worse conditions to 

be significantly different from all of the other conditions.

Taken together the overall sensitivity and response bias paints a positive picture 

of pilots’ use of the GWIS. Although the inaccurate display of information did serve to 

lower the pilots’ sensitivity it was in the direction of improved safety. The pilots did not 

allow the displayed information that was better than the out-the-window conditions to 

bias their answers. Pilots did however demonstrate a greater tendency to respond that 

conditions were IFR (i.e., a liberal response bias) when the display portrayed conditions 

worse than those out the window.
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The separate ceiling and visibility SDT analyses had more mixed results as to the 

impact of the GWIS. With respect to ceiling, the fuzzy sensitivity analysis did not reveal 

any differences between the GWIS conditions. The crisp analysis indicated that none of 

the display conditions had a significantly lower sensitivity than the no-display conditions. 

However, the ceiling worse conditions yielded a significantly higher sensitivity than the 

no-display condition. Both the crisp and fuzzy analysis of ceiling response bias indicated 

that the ceiling better conditions significantly increased response bias (i.e., a conservative 

shift) compared to the no-display conditions. Conversely, the ceiling-worse display 

condition did have a significantly lower response bias in the crisp, but not the fuzzy 

analysis.

The visibility analyses also provided some results that suggest that the GWIS 

could lead to poorer decisions by the pilots. The crisp visibility sensitivity analysis found 

that the visibility better condition had a significantly lower sensitivity than the no-display 

condition, however this difference was not present in the fuzzy analysis. Additionally 

within the crisp analyses the visibility better condition had a significantly more liberal 

response criterion than the no-display condition. The no-display condition was not 

different from any other display condition in the fuzzy response bias analysis.

Unlike the overall SDT analysis the separate ceiling and visibility analyses 

revealed that the GWIS could have a negative impact on pilot decision making (i.e., 

creating a tendency to estimate conditions as better than they are.) When looking only at 

pilots’ ability to judge ceiling, the ceiling-better display further shifted the pilots’ already 

conservative response criterion in both the fuzzy and crisp analysis. Without any GWIS 

information pilots had a conservative bias and were on average likely to overestimate
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ceiling conditions. However, the potential for the graphical METAR information to add 

to the problem of overestimating ceiling could be dangerous. On the positive side, the 

crisp ceiling bias was less liberal when the display depicted the ceilings as being worse. 

The same trend was present when looking at the visibility SDT analysis. When the 

display suggested the visibility was better than it was there was a reduction in the pilot’s 

crisp sensitivity and an increase in crisp bias when compared to the no-display condition.

Regardless of the positive or negative impact of the GWIS display it did factor 

into the pilot’s weather judgment. If the GWIS is to have a positive impact on pilots’ 

weather decision making, they should be trained in how to use the information.

Fuzzy Signal Detection Theory

The process of analyzing weather data using fuzzy and crisp signal detection 

theory provided a unique comparison of the two paradigms. Several papers have been 

published highlighting the potential benefits of fuzzy signal detection theory over crisp 

signal detection theory (Hancock et al., 2000; Masalonis & Parasuraman, 2003; 

Parasuraman et al., 2000). Ultimately the current analysis arrives at the same conclusion 

as previous research that both techniques should be used. However, the current study had 

perhaps the most significant differences in the values generated by a fuzzy and crisp 

analysis. This study found some benefits and drawbacks to fuzzy SDT not discussed in 

prior literature.

A major difference between the two types of analysis was in the incidence of 

extreme scores. Extreme scores are those in which the observer has hit and false alarm 

rates that are equal to either 1 or 0. These extreme scores can be due to either perfect 

discrimination or sampling variability (Hautus, 1995). Typically perfect discrimination
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can be ruled out, particularly in the present experiment where there were several 

instances of hit rates that were at 0.

There were fewer extreme scores when using the fuzzy analysis. The crisp data 

from the baseline trials contained 11 extreme scores, whereas the same fuzzy data did not 

contain any extreme scores. Particularly in the case of a strong bias it is easy to 

understand how extreme scores can be obtained in a crisp analysis. However, with the 

fuzzy analysis and an imperfect observer there is a greater chance for having some error 

on every trial. The fuzzy analysis was created as a more precise measure of sensitivity 

(Parasuraman et al., 2000). This added precision helped to reduce the possibility of 

obtaining extreme scores in the current study.

Unfortunately this added precision in the sensitivity metric is not without its 

drawbacks. There were substantial differences in the results obtained from the crisp and 

fuzzy analysis of ceiling sensitivity. The current study originally suggested that although 

the fuzzy analysis might make gains in being a more precise metric of sensitivity it does 

so by reducing variability in response bias. The crisp analysis of ceiling shows that, 

pilots were very poor at distinguishing between IMC and VMC ceilings. The participants 

were very good at determining VMC ceilings; however, they determined less that 40% of 

the IMC ceilings to actually be IMC. The participants had a strong tendency to 

overestimate the ceilings. Four observers actually missed every IFR ceiling that was 

presented. As a result the overall sensitivity within the ceiling analysis was low, an A’ of 

only .746. The low hit rate was coupled with a low false alarm rate resulting in a fairly 

conservative response bias of 1.146.
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The crisp analysis suggests pilots are poor at differentiating conditions and have a 

tendency to overestimate conditions. The fuzzy analysis indicates that pilots were 

inaccurate at estimating the conditions however their estimates did correspond to the 

actual conditions. Estimating a ceiling to be 1500 ft when it is actually 900 would result 

in a miss within the crisp analysis, but a partial hit within the fuzzy analysis. The fuzzy 

analysis suggests that pilots are better able to discriminate conditions (i.e., an A’ of .897) 

and have a less conservative response bias (i.e., a c o f  .329) than the crisp analysis.

The two different explanations of sensitivity and response bias determined by the 

fuzzy and crisp analyses ultimately leads to the question of which technique is better. 

Given the disparity in results obtained it is a sound question. Both analyses provide 

valuable insight into how pilots estimate ceiling. The arguments for the use of fuzzy 

SDT suggest that it provides a more precise metric of sensitivity. Based upon the ceiling 

results this is a reasonable argument. The poor sensitivity suggested by the crisp analysis 

may indeed hide the true picture that pilots were still relatively close in their estimates of 

cloud height. However, with this more precise measure o f accuracy there was a 

substantial reduction in response bias. The fuzzy analysis does not show how, when 

forced to categorize ceilings as VMC or IMC, pilots were more likely to decide that 

ceilings were VMC. The differences in the obtained results only reaffirm prior 

recommendations that both fuzzy and crisp analysis should be performed. Both analyses 

added unique explanations of events, and as such the present study found some cause for 

questioning the meaning of each analysis alone.

Ceiling and Visibility Interaction

Although it was not anticipated there was a significant interaction of ceiling and
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visibility on all of the dependent variables in the baseline analyses. As a result of the 

prevalence of the interactions several additional analyses were performed (See Appendix 

G).

The nature o f the interaction was such that there was a significant drop in 

accuracy for the two IFR ceilings at 10 miles visibility. This combination of low IFR 

ceilings and high visibility should have been interpreted as IFR. However, accuracy at 

400 ft with 10 mile visibility was 60% whereas accuracy with 900 ft ceilings and 10 mile 

visibility was 40%. This means that despite the IFR ceilings pilots erred and interpreted 

the conditions to be VMC. What is also unusual is that the problem was not present at 

the 5-mile visibility conditions as pilots’ estimates for the 400 and 900 ft ceilings were 

90% and 80%.

The visibility estimation data (in Appendix G) shows that as the ceiling increased 

pilots’ estimation of visibility also increased. Pilot’s estimation of visibility was always 

below the actual visibility within the two IFR ceiling conditions. However, as the ceiling 

increased (i.e., 2900 and 4500 ft) pilots’ estimate of visibility increased. The two IFR 

ceilings revealed significantly lower estimates of visibility compared to the two VMC 

ceilings within each level of visibility. The average estimates for ceiling were above the 

actual ceilings in the baseline data. The data within Appendix G reveal that as the 

visibility increased pilot’s estimates of cloud height also increased at the 400,900 and 

4500 ft ceilings.

It is not clear as to why pilots’ estimations of ceiling would be influenced by 

visibility, or why ceiling would influence visibility estimates. One potential explanation 

is that pilots do use a compensatory decision making model as suggested by previous
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authors (Driskill et al., 1997; Hunter et al., 2003). The pilots may be using the high 

visibility to compensate for the low ceilings. The compensatory model suggested by the 

previous literature suggested that when a pilot knew both the ceiling and visibility he or 

she would use a mathematical combination of the two values to determine their overall 

comfort.

However in the current study, the exact ceilings and visibility are not known and 

the pilot must make an estimate. It may be that the pilot evaluates one dimension, and 

this in turn may impact his or her response bias for the second dimension. Based upon 

the examination of the results of the SDT analysis in Appendix G this appears to be the 

case. For example, if pilots estimate that the ceiling is VMC then their bias for visibility 

may in turn experience a conservative shift. This is in fact the case in the visibility 

response bias data for both crisp and fuzzy SDT. Pilots reveal a liberal bias for visibility 

when ceilings are IFR, and a conservative response bias for visibility when ceilings are 

VMC. The fuzzy ceiling bias data also suggests that as visibility improves there is a 

conservative shift in response bias.

From a safety perspective a conservative shift in response criterion for one 

dimension due to high values in the other dimension is a potentially serious problem. 

Previous research suggested pilots use a compensatory strategy to average the different 

dimensions when making an overall judgment. The compensatory model was based upon 

the actual values of ceiling and visibility. The data generated from this study suggest a 

problem earlier in the decision process. Pilots may have a bias in estimating one 

dimension based upon levels of the other dimension. In forming their estimate of 

visibility pilots demonstrate a conservative or liberal bias based upon the actual ceiling.
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That is, before pilots even have the two pieces of data necessary to make an overall 

decision they may have already been biased in their estimation. The bias suggested by 

this experiment does not exclude the compensatory decision model suggested by previous 

research (Driskill et al., 1997; Hunter et al., 2003) but, may actually occur in addition to 

it. Future research should further investigate the ability for estimates in one dimension of 

weather to influence response bias in the other dimensions of weather.

2-D Simulation of 3-D

The validity of generalizing results obtained in a 2-D simulation of weather 

conditions to the real 3-D world must be examined. Several arguments can be brought up 

in the defense of the 2-D methodology used in the present study. The first argument is 

that the present study also included the dimension of time or apparent motion. Pilots 

were not asked to make judgments based solely upon a static 2-D depiction. Motion (and 

apparent motion) provides additional cues to depth that would have aided pilots’ 

judgments. The most notable cue is motion parallax. Motion parallax is a monocular 

depth cue in which the speed and direction of objects are based upon their distance from 

the observer. The clouds rendered in the experiment were broken. The holes in the cloud 

layer would have given the pilot a cue as to how far he or she was from the clouds. The 

faster the hole appears to move the closer the clouds are.

A second argument comes from the estimation of height in 2-D versus 3-D 

displays (Dixon & Proffitt, 2002). Research has investigated the use of 2-D, 3-D and the 

real world estimates of height as a function of display size. The authors conducted a 

study of the vertical horizontal illusion where vertical objects are overestimated when 

asked the height of the vertical object using a horizontal scale. Previous research (Yang,
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Dixon, & Proffitt, 1999) had found that the magnitude of the overestimation was larger 

(and closer to perception in the real world) for 3-D versus 2-D displays. However more 

recent research (Dixon & Proffitt, 2002) has found that the magnitude of estimation 

errors is related to the size of the display and not whether it is 2-D or 3-D. The larger the 

2-D or 3-D image the closer the visual system will be to perception of height in the real 

world. In the current investigation the weather conditions were presented with a 

projector on a screen at 34.75 x 26 inches and were therefore relatively large when 

compared to other visual displays.

Although the use of a 2-D display is a limiting factor in the present experiment 

the inclusion of motion and the use of a projected image would have aided in the realism. 

Motion was included at the recommendation of several pilots during a pretest phase. 

Additionally the inclusion of terrain features based upon satellite imagery also eliminated 

problems based upon indistinct terrain features.

Limitations

The current study contained a few limitations that may have had an impact on the 

results obtained and their generalization to the larger GA population. The pilot 

population selected represents a relatively homogenous group of GA pilots. This 

homogeneity resulted from matching of instrument and non-instrument pilots on cross­

country hours. Pilots were intentionally matched to isolate the impact of instrument 

training. This typically resulted in the selection of lower hour instrument pilots and 

higher hour non-instrument pilots. None of the pilots selected for the study had over 

1000 flight hours. Based upon cross-country hour cut offs used in previous research
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(Wiggins & O'Hare, 1995) all of the pilots were novices. Future research should 

incorporate a wider range of pilot experience.

On an actual flight, pilots typically acquire weather information from a variety of 

sources. This helps them to build a mental model of current weather conditions and 

trends. Having this model of the weather conditions helps pilots set expectations, frame 

and interpret what they see out the window. Although in the instances of inaccurate 

forecasts this can lead to problems, it usually aids pilots in their judgments. This study 

intentionally focused on in flight point estimation of weather, and therefore no prior 

weather information was provided. In a typical flight pilots would have this information 

and it would likely affect their bias in interpreting the weather conditions.

Although the use of a simulator is a limitation in the present study, it would have 

been impossible to use an aircraft. The precise measurement of the actual ceiling and 

visibility at the aircrafts location would require the aircraft flight path be next to weather 

equipment. Replications would require the cooperation of weather and the ability to take 

each pilot on multiple trips to see the same conditions. Several pretest pilots were 

brought in to ensure the depictions had a high level of realism.

These limitations were the result of the specific questions being addressed within 

the present study. Eliminating variability such as flight experience and available weather 

information was necessary. However, future research may be needed to more fully 

examine the impact these variables have on pilot judgment.

Summary and Conclusions

What does the current study reveal about accidents due to VFR flight into IMC? 

Previous research cites the difficulty that pilots have estimating weather conditions as a
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possible cause for their decision to continue into IMC (Goh & Wiegmann, 2001b; 

Wiegmann et al., 2002). The evidence from this experiment demonstrates that pilots do 

indeed have problems accurately estimating the weather conditions.

It was originally hypothesized that pilot’s instrument ratings and additional 

training might aid in the earlier stages of Jensen’s judgment model which compose 

sensitivity. However, this was not supported within the present study. The lack of 

substantial differences between instrument and non-instrument rated pilots can likely be 

attributed to the approximate equivalence of the two groups on cross-country hours. This 

suggests that the additional IFR training undertaken by instrument pilots does not aid in 

their judgment of weather.

Based upon other researchers categorizations (Wiggins & O'Hare, 2003) all of the 

pilots in the present study were novices (i.e., they had less than 1000 cross-country 

hours). The use of SDT with a wider range of cross-country hours may help to reveal 

potential differences attributed to experience. A clear relationship between pilot 

experience and sensitivity in weather judgment has not yet been established.

The ability to distinguish between conditions (i.e., pilot’s sensitivity) is only a 

part of the judgment process (Jensen, 1995). Pilots also have motivational influences that 

take the form of response bias in SDT. The greater the difficulty in distinguishing 

between weather conditions, the stronger the potential for response criterion to influence 

pilots decisions. The GWIS provided additional information that had both conservative 

and liberal shifts on response criterion depending upon the consistency of information in 

the display.
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With respect to their use of the GWIS, pilots revealed a potential to allow the 

display to influence their judgments. What is troubling is that pilots might use inaccurate 

METAR information that is better than the actual conditions to further their 

overestimation of weather conditions. When questioned after debriefing the majority of 

pilots realized that the conditions on the display and projected window did not always 

correspond. However, the majority of the pilots stated that when this happened they 

would trust their own judgment over that of the display. Despite this claim the separate 

ceiling and visibility SDT analyses suggests that the inaccurate displays did impact their 

decisions both by causing a shift in the response criterion and changing their sensitivity. 

Both conservative and liberal shifts were seen in the GWIS data, as well as both increases 

and decreases in sensitivity based upon the accuracy of GWIS information.

Although the present study points out possible problems with the use of GWIS 

METAR information it did not allow pilots to interact with the display. Under normal 

circumstances, the GWIS display would allow the pilot to access information on time of 

the report, more precise textual data from the report and also information from other local 

stations. However, the potential for pilots to use the GWIS to overestimate weather 

conditions suggests the need for training on the proper use of the display. Pilots should 

be taught to make use of the METAR information, but should also be trained on where to 

look for additional information when something does not agree.

A particularly alarming result was pilots’ inability to accurately estimate ceilings. 

Although the data were generated from a simulation it revealed a potential estimation 

problem. Previous research has suggested pilots use a compensatory decision model in 

estimating weather conditions (Driskill et al., 1997; Hunter et al., 2003). However the
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current experiment found evidence of another potential problem. Data suggests that high 

VMC levels of visibility may have resulted in a conservative shift in pilot’s response 

criterion in estimating ceiling. The same was true of the high visibility conditions 

causing a conservative shift in ceiling response criterion. Although this was not the 

compensatory decision model suggested by previous authors it may in turn be an equally 

serious problem. There may be a potential for both a criterion shift caused from one 

dimension of weather and then a compensatory judgment model after a biased estimation 

has been made.

Future research needs to further investigate the potential of the different weather 

dimensions to influence response bias in other dimensions. Ideally a larger number of 

ceilings and visibilities would be used to determine the extent of the biasing effects. It is 

not clear if one dimension has a stronger impact on the other dimension. That is, can 

ceiling influence visibility judgments more than visibility can influence ceiling 

judgments? The present study always asked pilots to estimate ceiling first. This may 

have caused pilots to consider ceiling before visibility thus establishing ceiling as an 

anchor for visibility. Although the data demonstrates criterion shifts in both dimensions 

the methodology may have contributed to a stronger biasing effect for ceiling because it 

was asked first. The requirement of pilots to estimate both ceiling and visibility may 

have also aided in the criterion shift. When a pilot estimates ceiling to be VMC it may 

serve as a VMC anchor for visibility. If pilots did not have to estimate both would there 

still be a criterion shift? Future research may also consider manipulating both 

dimensions but only asking pilots to estimate a single dimension.

Overall the experiment found evidence to suggest both situation assessment and
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motivation could contribute to a decision to continue into IMC. Pilot weather judgment 

is vulnerable to a number of different factors. These factors include poor sensitivity, a 

tendency to overestimate conditions, and inaccurate weather data. The current 

investigation also identified a new possible variable that influences pilot weather 

judgment, the interaction of the different elements of weather. Attributing a VFR into 

IMC accident to simply one of the factors would be a mistake. This experiment 

demonstrated the success of both crisp and fuzzy SDT in assessing the different 

components of weather j udgment, and a need for future research to incorporate both.

The current investigation raises some new concerns for research in pilot weather 

judgment. It is important for research to continue to examine how the two dimensions of 

weather interact with pilot judgment, and to determine the potential for this interaction to 

push pilots to continue a VFR flight into IMC.
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APPENDIX A:

WEATHER CLASSIFICATION BASED UPON FARS

TABLE A l: Ceiling and Visibility Categories
Category Ceiling Visibility
VFR >3000 > 5 sm
MVFR 1000-3000 3 to 5 sm
IFR 500 to 1000 1 to 3 sm
LIFR <500 ft Less than 1 sm

TABLE A2: Basic VFR Weather Minimums
Airspace Visibility Clearance
Class A N/A N/A
ClassB 3 SM Clear of Clouds

Class C & D 3 SM 500 feet below 
1000 feet above 

2000 feet horizontal
Class E less than 10,000 3 SM 500 feet below
MSL 1000 feet above 

2000 feet horizontal
Class E at or above 10,000 5 SM 1000 feet below

feet MSL 1000 feet above 
1 SM horizontal

Class G Day 1,200 feet AGL 1 SM 500 feet below
or less then 10,000 MSL 1000 feet above 

2000 feet horizontal
Class G Night below 10,000 3 SM 500 feet below

feet MSL 1000 feet above 
2000 feet horizontal

Class G at or above 10,000 5 SM 1000 feet below
feet MSL and above 1,200 1000 feet above

AGL 1 SM horizontal
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APPENDIX B: 

GLOSSARY

AGL Above Ground Level
AIRMET Airman’s Meteorological Information
ANOVA Analysis of Variance
AOPA Aircraft Owners and Pilot Association
ARTCC Air Route Traffic Control Center
ASOS Automated Surface Observation System
ATC Air Traffic Control
ATIS Automatic Terminal Information Service
AWOS Automated Weather Observing System
CAMI Civil Aerospace Medical Institute
CFIT Controlled Flight into Terrain
DUATS Direct User Access Terminals
EFAS Enroute Flight Advisory System
FAA Federal Aviation Administration
FAR Federal Aviation Regulations
FISDL Flight Information Services Data-Link
FSS Flight Service Station
FW Flightwatch
GA General Aviation
GPS Global Positioning System
GWIS Graphical Weather Information System
HI WAS Hazardous In-flight Weather Advisory Service
ICAO International Civil Aviation Organization
IFR Instrument Flight Rules
IMC Instrument Meteorological Conditions
LIFR Low Instrument Flight Rules
MANOVA Multivariate Analysis of Variance
METAR Meteorological Report
MSL Mean Sea Level
MVFR Marginal Visual Flight Rules
NAS National Airspace System
NEXRAD Next Generation Radar
NOAA National Oceanic and Atmospheric Administration
NTSB National Transportation Safety Board
NWS National Weather Service
PIREP Pilot Report
SDT Signal Detection Theory
SIGMET Significant Meteorological Information
sm Statue Miles
TAF Terminal Aerodrome Forecast
VFR Visual Flight Rules
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VMC Visual Meteorological Conditions
VOR_________________Very high frequency Omnidirectional Range
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APPENDIX C:

SIGNAL DETECTION FORMULAS

Sensitivity

The most commonly used metric for sensitivity is cT. It is the standardized 

distance between the normal curve that approximates the signal distribution and the noise 

distribution. It is the distance between the curves in units o f standard deviations.

D' = Z(HR) -  Z(FAR)

Where HR and FAR are equal to the hit rates and false alarm rates respectively. 

Z(HR) is equal to the position of the observed hit rate along the normal curve. Z(FAR) is 

equal to the position of the observed false alarm rate along the normal curve. Use of tf  

as a metric of sensitivity requires two assumptions be fulfilled. First the data must be 

normal. Second the standard deviations of the signal and noise distributions must be 

equivalent.

When assumptions for <F are violated researchers turn to nonparametric measures 

of sensitivity. The most popular nonparametric measure of sensitivity is A’(Stanislaw & 

Todorov, 1999). A’ ranges from .5 when a signal cannot be differentiated from noise to 1 

when there is perfect performance.

A’ -  1-(0.25*[(FAR/HR) + ((1-HR)/(1-FAR))])

However, problems with both metrics arise when there is extreme performance. If HR =

1 or FAR = 0 both metrics cannot be computed. Two approaches have been advocated 

for dealing with extreme performance. One is to add 0.5 to the number of hits and false 

alarms and to add 1 to both the number of signals and the number of noise trials. This 

method would be applied regardless of extreme scores. The second approach is to
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APPENDIX C (continued)

replace rates of 0 with (0.5In) and rates of 1 with (n-0.5), where n is the number of signal 

or noise trials. Both corrections can be applied to either d ’ or A ’.

Response Bias

Similar to sensitivity there are multiple metrics for response bias the two most 

popular are (3 and c. The parametric version P assumes responses are based upon a 

likelihood ratio. Subjects who favor neither a yes nor no response have p = 1. A p 

greater than one corresponds to a participant who is more willing to say no and a p less 

than one corresponds to a participant more willing to say yes.

p = Y(HR)/Y (FAR)

Where Y(HR) represents the ordinate of the normal curve for the hit rate and 

Y(FAR) represents the ordinate of the normal distribution for the false alarm rate.

The most commonly used non-parametric version of response criterion is c. c is 

defined as the distance between the criterion and the neutral point. The neutral point is 

where P = 1. At this point c has a value of 0. Negative values of c represent a bias 

towards responding yes, where as positive values of c are representative of a bias to say 

no.

c = -0.5(Z(HR) + Z(FAR)

As in the formula for d \  Z(HR) is equal to the position of the observed hit rate along the 

normal curve. Z(F AR) is equal to the position of the observed false alarm rate along the 

normal curve.
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QUESTIONNAIRE

D sfpograph ios ------ - .............. -   ~

W.iat pilot ratings do you have? (Cnecl- all that appiyj

I R ecrea tiu n a lP ilu t ■ C ci.inie-.td ' Piiul irftirucu* ICFI)

1" P n v a ie P ilo i Airl.re T r s n ;p c r rp ,lol

■ ~  Iiir;ijrvief.t R a te d  F !ot , IFR Irrtiu c io i ICF-Iij

How many flight hour. on /ou  h a ,e ’’

How many instrument flight hours do you have?
Actual Instrument Time

Simulator Instrument Time 

How many cross country hours do you nave? .....................

How many hours ha/e you flown in the last 90 days? '........

Do you have any flight experience m Long island ? Y° s No

It /ou answered yes ho v mam nours ao you have .̂..... ..............

SuditI Da>3
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APPENDIX E:

ANOVA AND MEANS TABLES

Baseline Accuracy and Means Tables

TABLE El: Baseline Accuracy ANOVA Table
Source df

effect
MS
effect

df error MS error F P Partial
n2

Between Subjects
Rating (R) 1 .0326 22 .153 .212 .649 .010
Within Subjects
Ceiling (C) 3 .296 66 .136 2.181 .099 .090
Visibility (V) 3 1.171 66 .200 5.848 .001 .210
R x C 3 .0569 66 .136 .418 .740 .019
R x V 3 .0152 66 .200 .076 .973 .003
C x V 9 1.946 198 .117 16.647 .000 .431
R x C x V 9 .0210 198 .117 .179 .996 .008

TABLE E2: Accuracy Means Table for Rating
Rating Mean N Std Dev

Instrument 0.839 384 0.368
Non-instrument 0.852 384 0.356

TABLE E3: Accuracy Means Table for Visibility
Visibility Mean N Std Dev

2 0.880 192 0.326
3 0.839 192 0.369
5 0.922 192 0.269
10 0.740 192 0.440

TABLE E4: Accuracy Means Table for Ceiling
Ceiling Mean N Std Dev

400 0.870 192 0.337
900 0.786 192 0.411

2900 0.865 192 0.343
4500 0.859 192 0.349
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TABLE E5; Accuracy Means (and Standard Deviations) for Ceiling at Each Visibility
Ceiling

Visibility 400 900 2900 4500
2 .958 (.202) .979 (.144) .771 (.425) .813 (.394)
3 1.00(0.00) .958 (.202) .771 (.425) .625 (.489)
5 .896 (3.09) .813 (.394) .979 (.144) 1.00(0.00)
10 .625 (.489) .396 (.494) .938 (.245) 1.00(0.00)

Baseline Comfort ANOVA Tables and Means 

TABLE E6: Baseline Comfort ANOVA Table
Source df MS df error MS error F P Partial

effect effect n2
Between Subjects

Rating (R) 1 .173 22 4708.193 .000 .995 .000
Within Subjects

Ceiling (C) 3 84105.44 66 824.74 101.977 .000 .823
Visibility (V) 3 96889.17 66 582.726 166.269 .000 .883
R x C 3 409.83 66 824.74 .497 .686 .022
R x V 3 721.970 66 582.726 1.239 .303 .053
C x V 9 2549.733 198 300.140 8.495 .000 .279
R x C x V 9 337.104 198 300.140 1.123 .348 .049

TABLE E7; Comfort Means Table for Rating
Rating Mean N Std Dev

Instrument 43.625 384 34.268
Non-instrument 43.655 384 34.136

TABLE E8: Comfort Means Table for Visibility
Visibility Mean N Std Dev

2 17.451 192 20.164
3 34.898 192 28.713
5 52.691 192 32.364
10 69.519 192 29.852
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TABLE E9: Comfort Means Table for Ceiling
Ceiling Mean N Std Dev

400 23.312 192 27.905
900 27.876 192 25.900

2900 62.448 192 29.751
4500 60.923 192 32.183

TABLE E10: Comfort Means (and Standard Deviations) for Ceiling at Each Visibility
Ceiling

Visibility 400 900 2900 4500
2 5.518(11.627) 10.535 (13.598) 30.037 (23.004) 23.715(20.170)
3 13.025 (17.302) 16.849 (17.770) 57.154(23.683) 52.564 (22.990)
5 25.240 (24.549) 33.281 (23.067) 74.939 (20.023) 77.302 (2.033)
10 49.467(31.519) 50.837 (26.340) 87.660 (13.999) 90.111 (14.216)

Baseline Visibility RMSE ANOVA Tables and Means 

TABLE E ll:  Baseline Visibility RMSE ANOVA Table
Source df MS df error MS error F P Partial

effect effect P2
Between Subjects

Rating (R) 1 13.814 22 5.780 2.390 .136 .098
Within Subjects

Ceiling (C) 3 20.647 66 3.233 6.387 .001 .225
Visibility (V) 3 121.581 66 5.222 23.283 .000 .514
R x C 3 8.828 66 3.233 2.731 .051 .110
R x V 3 31.963 66 5.222 6.121 .001 .216
C x  V 9 38.960 198 1.577 24.706 .000 .529
R x C x V 9 1.037 198 1.577 0.658 .747 .029

TABLE E12: Visibility RMSE Means Table for Rating
Rating Mean N Std Dev

Instrument 1.430 384 1.526
Non-instrument 1.698 384 1.873
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TABLE E13: Visibility RMSE Means Table for Visibility
Visibility Mean N Std Dev

2 0.651 192 0.861
3 1.328 192 1.064
5 1.719 192 1.308
10 2.557 192 2.506

TABLE E14: Visibility RMSE Means Table for Ceiling
Ceiling Mean N Std Dev

400 1.932 192 1.936
900 1.740 192 2.017

2900 1.354 192 1.373
4500 1.229 192 1.322

TABLE E15: Visibility RMSE Means (and Standard Deviations) for Ceiling at Each 
Visibility

Ceiling
Visibility 400 900 2900 4500

2 0.833 (0.663) 0.313 (0.589) 0.708 (0.824) 0.750 (1.176)
3 1.000 (0.825) 1.083 (0.794) 1.750 (1.246) 1.479 (1.167)
5 2.021 (1.407) 1.521 (1.148) 1.625 (1.315) 1.708 (1.336)
10 3.875 (2.481) 4.042 (2.501) 1.333 (1.742) 0.979 (1.407)

Baseline Ceiling RMSE ANOVA Tables and Means 

TABLE E16: Baseline Ceiling RMSE ANOVA Table
Source df

effect
MS effect df MS error 

error
F P Partial

n2
Between Subjects

Rating (R) 1 5192607 22 4643364 1.118 .302 .048
Within Subjects

Ceiling (C) 3 62798380 66 3305274 18.99 .000 .463
Visibility (V) 3 3785047 66 1203028 3.14 .031 .125
R x C 3 1144118 66 3305274 .346 .792 .015
R x V 3 731861 66 1203028 .608 .612 .027
C x V 9 7177263 198 1130735 6.34 .000 .224
R x C x V 9 1494251 198 1130735 1.321 .228 .057
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TABLE E17: Ceiling RMSE Means Table for Rating
Rating Mean N Std Dev

Instrument 1113.7 384 1515.7
Non-instrument 949.2 384 998.6

TABLE E18: Ceiling RMSE Means Table for Visibility
Visibility Mean N Std Dev

2 1201.3 192 1677.7
3 892.7 192 1103.5
5 943.2 192 966.6
10 1088.5 192 1267.7

TABLE E19: Ceiling RMSE Means Table for Ceiling
Ceiling Mean N Std Dev

400 778.6 192 984.7
900 647.1 192 819.6

2900 817.7 192 930.8
4500 1882.3 192 1771.7

TABLE E20: Ceiling RMSE Means (and Standard Deviations) for Ceiling at Each 
Visibility_____________________________________________________________

Ceiling
Visibility 400 900 2900 4500

2 383.3 (414.3) 740.6 (1195.3) 981.3 (991.4) 2700.0 (2368.8)
3 606.3 (426.0) 356.3 (535.1) 816.7 (1052.7) 1791.7 (1471.0)
5 843.8 (619.2) 604.2 (528.7) 760.4 (871.0) 1564.6 (1349.0)
10 1281.3 (1658.8) 887.5 (760.9) 712.5 (793.2) 1472.9 (1482.1)
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Baseline SDT ANOVA Tables

TABLE E21: Baseline Crisp and Fuzzy ANOVA Table
DV df MS effect df MS F P Partial

effect error error
Crisp A’ 1 .00003 22 .0017 .017 .897 .001
Crisp C 1 .07692 22 .169 .454 .508 .020
Fuzzy A’ .00000 22 .00122 .000 .988 .000
Fuzzy C .568 22 .199 2.858 .105 .115
Crisp Ceiling A’ 1 .0001 22 .0218 .045 .834 .002
Crisp Ceiling c 1 .0355 22 .215 .165 .688 .007
Fuzzy Ceiling A’ .0009 22 .0036 .247 .624 .011
Fuzzy Ceiling c .106 22 .0965 1.103 .305 .048
Crisp Visibility 
A’
Crisp Visibility c

1 .0002 22 .0050 .044 .835 .002

1.540 22 .254 6.054 .022 .216
Fuzzy Visibility 
A’
Fuzzy Visibility c

1 .0296 22 .0165 1.799 .193 .076

1 .0908 22 .0160 5.673 .026 .205
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GWIS Accuracy ANOVA Tables and Means

TABLE E22: GWIS Accuracy ANOVA Table
Source df

effect
MS
effect

df
error

MS error F P Partial
Tl2

Between Subjects
Rating (R) 1 1.021 22 .244 4.184 .053 .160

Within Subjects
Ceiling (C) 1 2.370 22 .333 7.122 .014 .245
Visibility (V) 2 .146 44 .359 .406 .669 .018
GWIS (G) 5 .249 110 .0854 2.911 .017 .117
R x C 1 .113 22 .333 .341 .565 .015
R x V 2 .0486 44 .359 .135 .874 .006
R x G 5 .0444 110 .0854 .520 .760 .023
C x V 2 4.267 44 .298 15.507 .000 .413
C x G 5 .491 110 .0982 5.001 .000 .185
V x G 10 .230 220 .0917 2.506 .007 .102
R x C x G 5 .0537 110 .0982 .547 .740 .024

R x C x V 2 .238 44 .298 .799 .456 .035
R x  V x G 10 .04931 220 .0917 .538 .862 .024
C x V x G 10 .138 220 .0833 1.653 .093 .070
R x  C x V x G 10 .0600 220 0833 .720 .706 .032

TABLE E23: Accuracy Means Table for GWIS
GWIS Mean N Std Dev
None 0.878 288 0.327

Accurate 0.906 288 0.292
Ceiling Better 0.885 288 0.319
Ceiling Worse 0.837 288 0.370

Visibility Better 0.872 288 0.335
Visibility Worse 0.830 288 0.376
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TABLE E24: Accuracy Means (and Standard Deviations) for GWIS at Each Ceiling
Ceiling

GWIS 400 900
None 0.917 (0.277) 0.840 (0 368)
Accurate 0.931 (0.255) 0.882 (0 324)
Ceiling Better 0.854 (0.354) 0.917 (0 277)
Ceiling Worse 0.896 (0.307) 0.778 (0 417)
Visibility Better 0.910 (0.288) 0.833 (0 374)

TABLE E25: Accuracy Means (and Standard Deviations) for GWIS at Each Visibility
Visibility

GWIS 2 3 5
None 

Accurate 
Ceiling Better 
Ceiling Worse 

Visibility Better

0.875 (0.332) 
0.885 (0.320) 
0.927 (0.261) 
0.885 (0.320) 
0.833 (0.375)

0.865 (0.344) 
0.938 (0.243) 
0.906 (0.293) 
0.833 (0.375) 
0.896 (0.307)

0.896
0.896
0.823
0.792
0.885

(0.307)
(0.307)
(0.384)
(0.408)
(0.320)
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GWIS Comfort ANOVA Tables and Means

TABLE E26: GWIS Comfort ANOVA Table
Source df

effect
MS effect df

error
MS error F P Partial

2
n

Between Subjects
Rating (R) 1 .821 22 15157.10 .000 .994 .000

Within Subjects
Ceiling (C) 1 449929.29 22 4587.57 98.706 .000 .817
Visibility (V) 2 149335.27 44 1063.59 140.40 .000 .865
GWIS (G) 5 1055.84 110 227.21 4.647 .001 .175
R x  C 1 1116.71 22 4587.57 .243 .623 .011
R x  V 2 329.98 44 1063.59 .310 .735 .014
R x  G 5 70.42 110 227.21 .310 .906 .014
C x V 2 23737.20 44 966.14 24.569 .000 .528
C x G 5 133.89 110 175.43 .763 .578 .034
V x G 10 84.96 220 154.49 .550 .853 .024
R x C x G 5 262.46 110 175.43 1.496 .197 .064

R x C x V 2 731.15 44 966.14 .757 .475 .033
R x V x G 10 46.48 220 154.49 .301 .980 .013
C x V x G 10 166.85 220 132.53 1.259 .255 .054
R x  C x V x G 10 247.08 220 132.53 1.864 .051 .078

TABLE E27: Comfort Means Table for GWIS
GWIS Mean N Std Dev
None 37.133 288 30.289

Accurate 37.096 288 30.819
Ceiling Better 40.086 288 30.412
Ceiling Worse 35.916 288 31.656

Visibility Better 38.186 288 29.996
Visibility Worse 34.483 288 30.406
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GWIS Ceiling RMSE ANOVA Tables and Means

TABLE E28: GWIS Ceiling RMSE ANOVA Table
Source df

effect
MS effect df

error
MS error F P Partial T]2

Between Subjects
Rating (R) 1 8566892 22 7375333 1.162 .293 .050

Within Subjects
Ceiling (C) 1 19564917 22 5994796 3.264 .085 .129
Visibility (V) 2 6828903 44 1435893 4.756 .013 .178
GWIS (G) 5 2369227 110 619141 3.82 .003 .148
R x  C 1 5470876 22 5994796 .913 .350 .040
R x  V 2 92530 44 1435893 .064 .938 .003
R x  G 5 85656 110 619141 .138 .983 .006
C x V 2 3083155 44 1628849 1.893 .163 .079
C x G 5 328741 110 731498 .449 .813 .020
V x G 10 533695 220 554497 .962 .477 .042
R x C x G 5 363704 110 731498 .497 .778 .022
R x C x V 2 1179819 44 1628849 .724 .490 .032
R x V x G 10 1551724 220 554497 2.798 .003 .113
C x V x G 10 1128337 220 1128337 1.452 .159 .062
R x C x V x  G 10 417433 220 776827 .537 .863 .024

TABLE E29: Ceiling RMSE Means Table for GWIS
GWIS Mean N Std Dev
None 709.896 288 911.549

Accurate 590.625 288 765.273
Ceiling Better 698.872 288 819.695
Ceiling Worse 839.080 288 1336.731

Visibility Better 604.688 288 804.032
Visibility Worse 649.306 288 966.296
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APPENDIX E: (continued)

TABLE E30: Ceiling RMSE Means Table for GWIS by Visibility by Rating
Ceiling

Visibility Rating 2 3 5

None Instrument
Non-instrument

961
760

(1345)
(783)

706
467

(1043)
(622)

704
660

(757)
(691)

Accurate Instrument
Non-instrument

593
581

(669)
(618)

579
452

(877)
(578)

833
505

(1142)
(502)

Ceiling
Better

Instrument
Non-instrument

1258
593

(1243)
(662)

492
606

(579)
(656)

579
665

(554)
(805)

Ceiling
Worse

Instrument
Non-instrument

1000
895

(1019)
(1114)

869
615

(1255)
(595)

756
900

(1508)
(2082)

Visibility
Better

Instrument
Non-instrument

693
621

(897)
(600)

498
438

(602)
(540)

863
517

(1276)
(614)

Visibility
Worse

Instrument
Non-instrument

719
756

(1391)
(753)

633
471

(923)
(496)

808
508

(1262)
(644)
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APPENDIX E: (continued)

GWIS Visibility RMSE ANOVA Tables and Means

TABLE E31: GWIS Ceiling RMSE ANOVA Table
Source df MS df MS F P Partial

effect effect error error ti2

Rating (R) 1
Between Subjects 

22.891 22 11.247 2.035 .168 .085
Within Subjects

Ceiling (C) 1 91.103 22 8.257 11.033 .003 .334
Visibility (V) 2 150.175 44 2.706 55.495 .000 .716
GWIS (G) 5 1.146 110 0.811 1.414 .225 .060
R x C 1 33.018 22 8.257 3.999 .058 .154
R x  V 2 1.225 44 2.706 .453 .639 .020
R x  G 5 1.456 110 .811 1.796 .120 .075
C x V 2 11.389 44 2.701 4.217 .021 .161
C x G 5 1.210 110 .662 1.827 .113 .077
V x G 10 .722 220 .686 1.052 .401 .046
R x  C x G 5 .879 110 .662 1.328 .258 .057
R x C x V 2 14.121 44 2.701 5.228 .009 .192
R x V x G 10 .385 220 .686 .561 .844 .025
C x V x G 10 .319 220 .609 .524 .872 .023
R x C x V x G 10 .706 220 .609 1.159 .320 .050

TABLE E32: Visibility RMSE Means Table for GWIS
GWIS Mean N Std Dev
None 1.167 288 1.138

Accurate 1.160 288 1.192
Ceiling Better 1.104 288 1.109
Ceiling Worse 1.142 288 1.254

Visibility Better 1.281 288 1.166
Visibility Worse 1.118 288 1.056
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APPENDIX E: (continued)

GWIS SDT ANOVA Tables

TABLE E33: Crisp A’ ANOVA Table
Source df

effect
MS
effect

df MS F  
error error

P Partial T]'l

Rating (R) 1 .022
Between Subjects 
22 .012 1.832 .190 .077

Within Subjects
GWIS (G) 5 .019 110 .004 4.364 .001 .166
R x  G 5 .002 110 .004 .510 .768 .023

TABLE E34: Fuzzy A’ ANOVA Table
Source df MS df MS F P Partial r f

effect effect error error

Rating (R) 1 .003
Between Subjects 
22 .007 .375 .547 .017

Within Subjects
GWIS (G) 5 .003 110 .0007 4.002 .002 .154
R x  G 5 .0009 110 .0007 1.357 .246 .058

TABLE E35: Crisp c ANOVA Table
Source df MS df MS F P Partial r\l

effect effect error error

Rating (R) 1 .598
Between Subjects 
22 .547 1.092 .307 .047

Within Subjects
GWIS (G) 5 .470 110 .100 4.705 .001 .176
R x  G 5 .010 110 .100 .103 .991 .005

TABLE E36: Fuzzy c ANOVA Table
Source df MS df MS F P Partial rj

effect effect error error

Rating (R) 1 1.056
Between Subjects 
22 .604 1.748 .200 .074

Within Subjects
GWIS (G) 5 .283 110 .023 12.227 .000 .357
R x  G 5 .005 110 .023 .236 .946 .011
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APPENDIX E: (continued)

TABLE E37: Crisp Ceiling A’ ANOVA Table
Source df

effect
MS
effect

df MS F  
error error

P Partial rf

Rating (R) 1 .062
Between Subjects 
22 .094 .660 .425 .029

Within Subjects
GWIS (G) 5 .070 110 .012 5.676 .000 .205
R x G 5 .006 110 .012 .462 .804 .021

TABLE E38: Fuzzy Ceiling A’ ANOVA Table
Source df

effect
MS
effect

df MS F  
error error

P Partial rf

Rating (R) 1 .005
Between Subjects 
22 .016 .306 .586 .014

Within Subjects
GWIS (G) 5 .001 110 .0008 1.745 .130 .073
R x  G 5 .0005 110 .0008 .649 .663 .029

TABLE E38: Crisp Ceiling c ANOVA Table
Source df

effect
MS
effect

df MS F  
error error

P Partial rf

Rating (R) 1 .421
Between Subjects 
22 .690 .610 .443 .027

Within Subjects
GWIS (G) 5 .670 110 .063 10.597 .000 .325
R x  G 5 .074 110 .063 1.167 .330 .050

TABLE E39; Fuzzy Ceiling c ANOVA Table
Source df

effect
MS
effect

df MS F  
error error

P Partial x\2

Rating (R) 1 .294
Between Subjects 
22 .438 .670 .422 .030

Within Subjects
GWIS (G) 5 .197 110 .029 6.786 .000 .236
R x  G 5 .028 110 .029 .974 .437 .042
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APPENDIX E: (continued)

TABLE E40: Crisp Visibility A’ ANOVA Table
Source df

effect
MS
effect

df MS F  
error error

P Partial rf

Rating (R) 1 .007
Between Subjects 
22 .063 .109 .744 .005

Within Subjects
GWIS (G) 5 .030 110 .012 2.432 .039 .100
R x  G 5 .015 110 .012 1.180 .324 .051

TABLE E41: Fuzzy Visibility A’ ANOVA Table
Source df

effect
MS
effect

df MS F  
error error

P Partial i f

Rating (R) 1 .009
Between Subjects 
22 .007 1.287 .269 .055

Within Subjects
GWIS (G) 5 .003 110 .002 1.462 .208 .062
R x  G 5 .002 110 .002 .954 .449 .042

TABLE E42: Crisp Visibility c ANOVA Table
Source df

effect
MS
effect

df MS F  
error error

P Partial rf

Rating (R) 1 8.456
Between Subjects 
22 1.061 8.054 .010 .268

Within Subjects
GWIS (G) 5 .415 110 .083 4.982 .000 .185
R x  G 5 .061 110 .083 .735 .599 .032

TABLE E43: Fuzzy Visibility c ANOVA Table
Source df

effect
MS
effect

df MS F  
error error

P Partial i f

Rating (R) 1 3.781
Between Subjects 
22 .636 5.941 .023 .213

Within Subjects
GWIS (G) 5 .082 110 .023 3.497 .006 .137
R x  G 5 .002 110 .023 .094 .993 .004
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APPENDIX F: 

INDIVIDUAL SDT METRICS

TABLE FI: Baseline SDT scores for individual observers

ID
Crisp
HR* FAR* A’ c

Fuzzy
HR FAR A’ c

Instrument Pilots
1 0.786 0.115 0.903 0.203 0.847 0.031 0.951 0.419
2 0.786 0.115 0.903 0.203 0.695 0.015 0.917 0.834
3 0.643 0.038 0.892 0.701 0.741 0.022 0.926 0.683
4 0.69 0.038 0.906 0.636 0.752 0.113 0.893 0.265
5 0.833 0.269 0.862 -0.176 0.645 0.01 0.906 0.969
6 0.738 0.115 0.887 0.28 0.883 0.039 0.959 0.288
7 0.69 0.115 0.871 0.351 0.674 0.028 0.906 0.73
8 0.929 0.346 0.879 -0.535 0.892 0.041 0.96 0.249
9 0.929 0.038 0.971 0.152 0.897 0.047 0.96 0.203
10 0.786 0.038 0.932 0.489 0.876 0.286 0.875 -0.293
11 0.786 0.038 0.932 0.489 0.759 0.033 0.927 0.565
12 0.929 0.423 0.855 -0.636 0.575 0.021 0.882 0.918

Non-Instrument Pilots
13 0.69 0.192 0.835 0.186 0.792 0.054 0.928 0.396
14 0.738 0.115 0.887 0.28 0.909 0.463 0.83 -0.622
15 0.929 0.115 0.949 -0.133 0.884 0.066 0.95 0.155
16 0.976 0.038 0.984 -0.106 0.864 0.019 0.96 0.489
17 0.833 0.038 0.945 0.401 0.886 0.035 0.961 0.301
18 0.643 0.115 0.854 0.416 0.666 0.069 0.885 0.529
19 0.881 0.346 0.856 -0.392 0.972 0.26 0.924 -0.634
20 0.643 0.038 0.892 0.701 0.737 0.032 0.921 0.606
21 0.976 0.269 0.923 -0.683 0.95 0.306 0.901 -0.57
22 0.738 0.192 0.854 0.116 0.629 0.021 0.897 0.851
23 0.881 0.038 0.958 0.295 0.817 0.027 0.945 0.515
24 0.881 0.269 0.883 -0.282 0.904 0.06 0.958 0.122

* Values are those obtained after a loglinear correction
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APPENDIX F: (continued)

TABLE F2: Baseline Ceiling and Visibility SDT scores for individual observers
Ceiling Visibility

ID
Crisp 

A’ c
Fuzzy 

A’ c
Crisp 

A’ c
Fuzzy 

A’ c
Instrument Pilots

1 0.7828 1.2592 0.9185 0.6652 0.8624 1.0269 0.5283 0.0513
2 0.5 1.8895 0.9054 0.5401 0.8882 0.346 0.7617 0.0816
3 0.8394 1.0187 0.9129 0.6733 0.8624 1.0269 0.67 0.0263
4 0.7529 0.5986 0.9074 0.0069 0.7978 1.3216 0.4083 0.0289
5 0.5 1.8895 0.882 0.8474 0.8926 0.8858 0.7867 0.0487
6 0.6818 1.6206 0.8589 0.7015 0.8505 -0.2215 0.85 0.2816
7 0.7828 1.2592 0.9233 0.4291 0.8348 0.0914 0.705 0.1816
8 0.7828 1.2592 0.8176 0.4369 0.9354 -0.3389 0.8817 0.2013
9 0.9218 0.6303 0.9698 -0.0681 0.853 0.163 0.8183 0.2013
10 0.8396 0.6019 0.8659 -0.1491 0.8806 -0.0976 0.7933 0.1763
11 0.8217 1.0944 0.9381 0.275 0.7847 0.5402 0.7267 0.0395
12 0.8217 1.0944 0.9402 0.3842 0.8312 1.168 0.78 0.0711

Non-instrument Pilots

13 0.7463 0.9048 0.8695 0.4111 0.8162 0.0269 0.7333 0.2289
14 0.6818 1.6206 0.7958 0.7749 0.8348 0.0914 0.6767 0.1763
15 0.9058 0.7158 0.9278 0.0676 0.9354 -0.3389 0.8817 0.1697
16 0.5 1.8895 0.9047 0.7381 0.8806 -0.0976 0.8217 0.3329
17 0.9058 0.7158 0.9245 0.2842 0.872 0.6363 0.7017 0.1211
18 0.6161 1.2004 0.8821 -0.1268 0.8882 0.346 0.8467 0.0395
19 0.7597 1.3552 0.9161 -0.0688 0.8399 -0.7966 0.9667 0.5658
20 0.8732 0.8708 0.9623 0.3601 0.6877 0.0116 0.73 0.4342
21 0.5 1.8895 0.7026 0.2862 0.9468 -0.2564 0.9383 0.2882
22 0.8732 0.8708 0.9382 0.297 0.6627 0.5272 0.5533 0.1316
23 0.9377 0.5344 0.9601 0.2478 0.9237 0.1571 0.8217 0.0592
24 0.5741 0.7248 0.9098 -0.127 0.9124 -0.4749 0.8817 0.3184
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APPENDIX G:

EXPLORATORY CEILING BY VISIBILITY ANALYSES

Several additional analyses were performed to fully understand the nature of the 

ceiling by visibility interaction that occurred in the accuracy, comfort (in continuing the 

flight), and two RMSE dependent variables. The subsequent analyses are exploratory in 

nature and can provide additional insight into the nature of the interaction.

The two RMSE variables provide data on the magnitude of errors that occur in 

estimating ceiling and visibility. However, RMSE does not provide data on the direction 

of this error. An examination of the mean estimate for ceiling and visibility would show 

if pilots would provide data on the direction of pilot’s error. An analysis of simple main 

effects was performed to investigate the effect of visibility at each level of ceiling on the 

pilot’s estimate of ceiling.

Ceiling Estimation across Visibility

Visibility had a significant simple main effect at the 400,900, and 4500 ft ceiling 

conditions. The ANOVA results showing the simple main effects are presented in Table 

Gl. Post hoc analysis at the 400 ft ceiling condition found that pilots’ estimations of 

ceiling was significantly higher at the 5 and 10-mile visibilities than the 2-mile visibility. 

The 3-mile visibility condition was also significantly lower than the 10-mile condition. 

Within the 900 ft ceiling condition estimates of ceiling were significantly higher at the 

10-mile visibility condition compared to the 3-mile condition. The data and post hoc 

analysis for the 400 and 900 ft ceiling conditions is presented in Figure G l.
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APPENDIX G: (continued)

TABLE G l: Simple Main Effects of Visibility at Each Level of Ceiling on Ceiling 
Estimation

Source df
effect

MS effect df
error

MS
error

F P Partial
n2

Visibility at 
Ceiling = 400

3 7994913 66 858044 9.318 .000 .298

Visibility at 
Ceiling -  900

3 3318381 66 1050085 3.16 .030 .126

Visibility at 
Ceiling = 2900

3 1219513 66 996407 1.224 .308 .053

Visibility at 
Ceiling = 4500

3 12251181 66 3459751 3.541 .019 .139

1500 -
|  1250
% iooo H w

750 H
i  500 
o

250

10

Visibility (sm)

Figure Gl. Mean ceiling estimation data for visibility at the 400 and 900 ft ceiling 
conditions. Comparisons should only be made within each ceiling condition (i.e., 400 or 
900). Means with different numbers or letters are significantly different (atp  < .05).

There was no simple main effect of visibility on ceiling estimation within the 

2900 ft ceiling condition. Within the 4500 ft ceiling condition pilots estimate of ceiling 

at 2 miles was significantly lower than pilot’s estimation of ceiling at 10 miles. The
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APPENDIX G; (continued)

means and post hoc analysis data for the 2900 ft and 4500 ft ceilings is presented in 

Figure G2.

5250 
5000 H 
4750 
4500 

1 4250 - 
% 4000 - 
gp 3750 - 
1  3500 
u  3250 - 

3000 
2750

1,2

■
A

A
1,2

A \

I
0  2900 ft 
■  4500 ft

10

Visibility (sm)

Figure G2. Mean ceiling estimation data for visibility at the 2900 and 4500 ft ceiling 
conditions. Comparisons should only be made within each ceiling condition (i.e., 2900 
or 4500). Means with different numbers or letters are significantly different a t p <  .05.

Visibility Estimation across Ceiling

An analysis of simple main effects of ceiling was performed on the visibility 

estimation data at each level of visibility. The ANOVA Table for the simple main effects 

of ceiling is presented in Table G2.

The analysis of simple main effects at 2 miles visibility revealed that visibility 

estimates within the 400 ft ceiling condition were significantly lower than visibility 

estimates at any other ceiling. Additionally, the 900 ft ceiling condition was significantly 

lower than the 2900 ft and 4500 ft ceiling conditions. At 3 miles visibility, visibility
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APPENDIX G: (continued)

estimates within the 400 and 900 ft ceilings were significantly lower than estimates made 

at the 2900 and 4500 ft ceilings. Means and post hoc analysis for ceiling at the 2 and 3- 

mile visibilities are presented in Figure G3.

TABLE G2: Simple Main Effects of Ceiling at Each Level of Visibility on Visibility 
Estimation

Source df
effect

MS
effect

df
error

MS
error

F P Partial
n2

Ceiling at 
Visibility = 2

3 24.186 66 .585 41.362 .000 .653

Ceiling at 
Visibility = 3

3 77.116 66 1.280 60.255 .000 .733

Ceiling at 
Visibility = 5

3 95.424 66 1.974 48.337 .000 .687

Ceiling at 
Visibility =10

3 138.63
0

66 3.597 38.536 .000 .637

The analysis of simple main effects at both 5 and 10 miles visibility revealed that 

visibility estimates were significantly smaller at the two IMC ceilings (i.e., 400 and 900 

ft) than the two VMC ceilings (i.e., 2900 and 4500 ft). The means and post hoc 

groupings are presented in Figure G4.

Ceiling and Visibility SDT Analysis

It was assumed the bias metric from SDT would be able to provide the necessary 

insight into the direction of pilot’s estimation error. Within the design of the current 

experiment, the overall SDT metrics could not examine bias at the different levels of 

ceiling and visibility. The overall analysis could not provide separate SDT metrics at the 

different levels of ceiling or visibility because they compose the signal and noise 

distributions necessary to calculate the SDT metrics.
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APPENDIX G: (continued)
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Figure G3. Mean visibility estimation data for ceiling at the 2 and 3-mile visibility 
conditions. Comparisons should only be made within each visibility condition (i.e., 2 or 
3). Means with different numbers or letters are significantly different a tp <  .05.
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Figure G4. Mean visibility estimation data for ceiling at the 5 and 10-mile visibility 
conditions. Comparisons should only be made within each visibility condition (i.e., 5 or 
10). Means with different numbers or letters are significantly different at j? < .05.
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APPENDIX G: (continued)

The calculation of separate SDT metrics for ceiling and visibility would allow for 

the examination of visibility SDT metrics at the different ceilings, and the ceiling SDT 

metrics at the different levels of visibility. However, the number of trials used to 

calculate SDT for each observer would be decreased by 75%. Due to this reduction in 

data an overall hit rate and false alarm rate were calculated across participants. SDT 

metrics were created from the overall data. Since only one data point was computed for 

each SDT metric no statistical comparison can be made across groups.

The means for the fuzzy and crisp ceiling sensitivity at each visibility is provided 

in Figure G5. There is a reduction in the crisp ceiling A’ from the 2 and 3 mile visibility 

conditions and the 5 and 10 mile conditions.

Crisp O Fuzzy

o 0.7 -

 ̂ Visibility (sm) ^ 10

Figure G5. Fuzzy and crisp ceiling A’ at each visibility.

Inspection of the crisp ceiling c shows a conservative bias at each level of 

visibility. The fuzzy ceiling c reveals a small liberal response bias at 2 miles with a
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APPENDIX G: (continued)

progressively more conservative response bias as visibility increases. The ceiling 

response bias data is provided in Figure G6.

The means for the fuzzy and crisp visibility sensitivity at each ceiling is provided 

in Figure G7. The maximum difference in the crisp visibility A’ between ceilings is .04, 

and the maximum difference in the fuzzy visibility A’ is .01.

SP 0.5

-0.5 - ■  Crisp □  Fuzzy

-1.5 J 2 3 5

Visibility (sm)

Figure G6. Fuzzy and crisp ceiling bias at each visibility.

0  Fuzzy

0.90 0.90

■53 0.7

400 900 Ceiling (ft) 2900 4500

Figure G7. Fuzzy and crisp visibility A’ at each ceiling.
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APPENDIX G: (continued)

The crisp visibility c shows a liberal response bias for the two IMC ceilings (i.e., 400 ft 

and 900 ft) and a conservative bias at the two VFR ceilings (i.e., 2900 ft and 4500 ft).

The occurrence of a liberal bias at the IMC ceilings and a conservative bias at the VFR 

ceilings was also present in the fuzzy c data. The visibility response bias data is provided 

in Figure G8.

1.5

I* 0.5 -
X>

> -0.5 -

-1.5

1.35
1.00 1.08 0.95

- 0.72 - 0.67
400

Crisp 11 Fuzzy
- 0.43

900 2900

Ceiling (ft)

Figure G8. Fuzzy and crisp visibility bias at each ceiling.

4500

A full discussion of the implications of the interaction of ceiling and visibility is 

provided in the discussion section of this paper. The analyses contained within this 

appendix are provided to supplement the discussion of the interaction.
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