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ABSTRACT 

THE EFFECTS OF METACOGNITIVE TRAINING ON ALGEBRA STUDENTS’ 

CALIBRATION ACCURACY, ACHIEVEMENT, AND MATHEMATICAL LITERACY 

 

Deana J. Ford 

Old Dominion University, 2018 

Director: Dr. Linda Bol  

 

 

This dissertation describes an empirical study that investigated how metacognitive 

training influenced lower achieving Algebra students’ calibration accuracy, achievement, and 

development of mathematics literacy.  Multiple methods were used to collect and analyze the 

data.  Close analysis of students’ work and classroom observations revealed that students that 

were exposed to the metacognitive training had significantly higher prediction accuracy and 

made gains in their understanding of the mathematics word problems than did students who did 

not receive the metacognitive training.  Overall, however, both the intervention and comparison 

groups improved in their academic performance and became more mathematically literate and 

accurate in their metacognitive judgments.  These findings suggested that explicit instruction of 

self-regulation strategies was beneficial for improving metacognitive judgments among lower 

achieving Algebra students in this study.  Results further suggest that the problem-solving 

strategy enhanced mathematics learning for both groups.  Further research is warranted to better 

understand students’ metacognitions as they engage in the problem-solving process.     
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CHAPTER 1 

INTRODUCTION 

Research has consistently shown that students are more likely to succeed academically if 

they self-regulate their learning processes.  Panadero and Alonso-Tapia (2014) define self-

regulation as “the control that students have over their cognition, behavior, emotions, and 

motivation through the use of personal strategies to achieve the goals they have established” (p. 

450).  As students encounter a variety of problems, different strategies are necessary.  Students 

plan, monitor, and reflect on their problem-solving processes to adapt a variety of appropriate 

strategies to successfully solve tasks.   

Self-regulation has been extensively investigated as a predictor of students’ mathematical 

problem-solving (Garcia, Rodrigues, Gonzalez-Castro, Gonzalez-Pienda, & Torrance, 2016; 

Pennequin, Sorel, Nanty, & Fontaine, 2010), mathematics achievement (Bol, Campbell, Perez, & 

Yen, 2016; Cleary & Chen, 2009; Perels, Dignath, & Schmitz, 2009, Zimmerman, Moylan, 

Hudesman, White, & Flugman, 2011) and metacognition (Bol et al., 2016; Chen & Chiu, 2016).  

Math educators should explicitly teach, model, and practice self-regulation strategies with their 

students, specifically lower achieving students.  Self-regulation skills, such as self-monitoring 

performance, are not only important to academic success, but are also key components in 

becoming a life-long learner.   

Calibration 

Specific self-regulated learning (SRL) processes that underlie academic success are 

metacognition and calibration.  Metacognition is the monitoring of one’s learning processes.  

One type of metacognitive monitoring is calibration.  Calibration is a metacognitive process that 

requires students to think about and make judgments of their own performance (Bol & Hacker, 
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2012).  Fairly consistent results have been discovered between calibration accuracy and 

mathematics achievement.  First, students struggle to accurately judge their learning in 

mathematics (Hacker & Bol, 2018).  Second, students’ mathematics achievement is related to 

their judgments of learning in math.  Third, students that are more accurate in their judgments 

tend to be higher achievers and students that are less accurate in their judgments tend to be lower 

achievers (Hacker & Bol, 2018; Ozsoy, 2012).  Lastly, lower achieving mathematics students 

often overestimate their judgments while higher achieving mathematics students lean towards 

underestimating their judgments (Bol, Riggs, Hacker, Dickerson, & Nunnery, 2010; Garcia et al., 

2016; Ozsoy, 2012).   

Lower achieving students have a history of scoring in the lowest quartile on mathematics 

assessments (Rinne & Mazzocco, 2014), and there appears to be a significant number of lower-

level learners that are not proficient in mathematics (Kastberg, Chan, & Murray, 2016).  

Research has shown that lower achieving students seem to benefit the most from learning self-

regulation strategies and training (Montague, Krawec, Enders, & Dietz, 2014; Zimmerman et al., 

2011).  Since self-regulation and calibration accuracy have been found to be linked to improved 

mathematics achievement (Garcia et al., 2016; Ozsoy, 2012), helping lower achieving students to 

monitor their mathematics learning is a valuable skill that is integrated into self-regulated 

learning (SRL) frameworks (Bol et al., 2010; Bol et al., 2016;). 

Problem Solving  

“Math problem solving is an increasingly critical skill in today’s mathematics 

curriculum” (Krawec, Huang, Montague, Kressler, & Melia de Alba, 2013, p. 81).  Developing 

students’ problem-solving abilities is related to their academic success and is a valuable life skill.  

By being aware of their thoughts and performance while engaging in the problem-solving 
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process, students can monitor and assess their knowledge and learning (Schoenfeld, 1985).  

George Polya defined problem solving as finding “a way where no way is known, off-hand...” 

(1945, p. 1).  Polya (1945) also offered four essential steps to problem-solving: understanding 

the problem, devising a plan, carrying out the plan, and looking back.  His problem-solving 

process prompts self-regulated learning and involves metacognitive awareness, often through 

questioning strategies.   For example, some students that struggle with problem solving may not 

necessarily understand the question.  To better understand the question, Polya proposed students 

use metacognitive and explicit questioning strategies such as do you understand all the words or 

can you restate the problem.  The second step, devising a plan, may entail looking for a pattern 

or drawing a picture to better understand the question.  Research has shown that visual 

representations of math problems facilitate student comprehension (Krawec, 2014; (Schoenfeld, 

1985) and illustrate how math concepts are applied (Dexter & Hughes, 2011; Edens & Potter, 

2007; Montague et al., 2014).  The third step, carrying out the plan, involves knowing if you 

have the necessary skills to complete the task and follow through with the task at hand.  The last 

step, looking back, encourages students to reflect on their problem-solving process by 

determining what strategies worked and did not work.   

Problem-solving has been extensively studied in mathematics.  Polya’s four problem-

solving steps continue to underlie most, if not all, adopted approaches for problem solving in 

school mathematics.  In fact, research has shown that explicit problem-solving and strategy 

instruction can improve students’ mathematics performance, especially among lower achieving 

students (Krawec et al., 2013; Montague et al., 2014; Xin, Jitendra, & Deatline-Buchman, 2005; 

Schoenfeld, 1985).  For this research study, Polya’s problem-solving process was explicitly 
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taught to lower achieving mathematics students to determine how it influenced their 

achievement, calibration accuracy, and development of mathematics literacy. 

Mathematical Literacy 

 Mathematical literacy (ML) is the ability “to formulate, employ, and interpret 

mathematics in a variety of contexts.  It includes reasoning mathematically and using 

mathematical concepts, procedures, facts and tools to describe, explain and predict phenomena” 

(Organization for Economic Cooperation and Development (OECD), 2013, p. 25). These 

abilities are portrayed in the Principles and Standards for School Mathematics with the 

assumption that “students must learn mathematics with understanding, actively building new 

knowledge from experience and prior knowledge” (National Council Teachers of Mathematics 

(NCTM), 2000, p. 11).  Proficiency in mathematics literacy necessitates students to analyze and 

communicate ideas by posing and interpreting solutions to mathematical problems (OECD, 

2013).  Explicitly teaching lower achieving students to problem solve in mathematics may be 

one way to promote and develop students’ mathematical literacy. 

Lower Achieving Students 

In the present study, participants were lower achieving students.  A variety of terms have 

been used in research to describe students that consistently score at or below the 25th percentile 

on mathematics achievement tests.  Some examples are underserved (Grant, Crompton, & Ford, 

2015), low achievers (Ozsoy, 2012), at-risk (Geary, 2011; Xin et al., 2005), underprepared (Bol 

et al., 2016), or at-risk students (Zimmerman et al., 2011).  It is recognized that the terms used to 

refer to these students are controversial and sometimes used to infer reasons (e.g., poverty, 

education system, transience, family issues, learning disability, health issues, motivation, etc.) 

for students’ low achievement scores.  The specific factors that lead to students struggles in 
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mathematics, however, are beyond the scope of this study.  The term ‘lower achieving students’ 

will be used throughout to refer to students who consistently score at or below the 25th percentile 

on standardized mathematics achievement tests and is not intended to suggest any student 

deficits.     

Purpose Statement and Research Questions 

Lower achieving students struggle with self-regulating their mathematics learning, 

resulting in low achievement scores, poor judgments of their learning, and stagnate development 

of mathematics literacy.  Metacognitive training is a promising avenue of study to improve lower 

achieving students’ regulation of their own knowledge, achievement scores, and development of 

mathematics literacy.  Thus, metacognitive training to guide students during problem-solving 

activities is an important strategy for promoting mathematics literacy.   

The intervention implemented in the present study placed particular emphasis on 

explicitly teaching students how to comprehend, represent, and plan to solve mathematical word 

problems using Polya’s problem-solving process with metacognitive questioning.  Implementing 

effective problem solving and self-regulated learning could advance students’ mathematics 

achievement, calibration accuracy, and development of mathematical literacy.  Therefore, the 

purpose of this study was to investigate the impact of metacognitive training on lower achieving 

Algebra students’ calibration accuracy, achievement, and development of mathematics literacy 

when solving word problems.  The following research questions were investigated:  

1. How does metacognitive training influence the achievement scores of lower achieving 

Algebra students? 

2. How does metacognitive training influence the calibration accuracy of lower achieving 

Algebra students? 
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3. How does the metacognitive training influence lower-achieving Algebra students 

development of mathematics literacy? 

It was predicted that the students that were exposed to metacognitive training would have better 

calibration accuracy and higher mathematics achievement scores than students exposed to the 

problem-solving strategy without metacognitive training.  It was also predicted that students that 

were exposed to metacognitive training would show greater development in their mathematical 

literacy.   

Significance of Study 

 Results of this study may be of value to researchers and practitioners by demonstrating 

the importance of metacognitive training on lower achieving mathematics students’ calibration 

accuracy, achievement, and mathematics literacy development.  Greater insight may be 

established to determine the impact of metacognitive training on secondary students’ problem-

solving.  Such results may provide educators with a metacognitive strategy to implement into 

mathematics instruction to improve lower achieving students’ mathematics literacy.  This 

information may be valuable in combating persistent low math literacy rates (OECD, 2013).  

This study may provide insight to lower achieving mathematics students’ calibration accuracy.  

Research suggests that lower achieving students are challenged to effectively self-regulate 

(Garcia et al., 2016; Ozsoy, 2012).  The recommendation is to teach explicitly how to monitor 

and control their cognitions and metacognitions as they engage in problem solving activities 

(Krawec et al., 2013).  Making students aware of their learning and the quality of their 

performance through calibration can be valuable knowledge towards improving mathematics 

performance.   
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Organization of the Dissertation 

 

The dissertation is organized into five chapters.  The beginning of Chapter 2 delves into 

the role of self-regulation and calibration on students’ performance and learning of mathematics.  

Later in the chapter, the primary focus is on the theoretical framework and empirical studies 

related to problem-solving in mathematics and mathematics literacy.  Chapter 3 delineates the 

research design and methodology of the study, including the instrument, used to gather the data, 

the procedures followed, and determinations of the sample selected for study.  An analysis of the 

data and a description of the findings are presented in Chapter 4.  Chapter 5 contains the 

conclusions, implications, and recommendations for future research.   
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CHAPTER 2 

Literature Review 

This chapter reviews the theoretical and empirical literature addressing the role of self-

regulation and calibration on students’ performance and learning of mathematics.  It also focuses 

on the theoretical framework and empirical studies related to problem-solving in mathematics 

and mathematics literacy.  It begins with an overview of the self-regulation model, followed by 

its role in calibration accuracy and mathematics achievement.  Problem-solving in mathematics 

is then discussed as being a fluid process between procedural steps, followed by the influence 

visual representations can have in problem solving.  Mathematics literacy is presented in the 

latter part of the chapter, with a review of how literacy should be positioned among the 

disciplines, specifically in mathematics and problem solving.   

Self-Regulation Framework 

“Self-regulation (or self-regulated learning) refers to processes that learners use to 

systematically focus their thoughts, feelings, and actions, on the attainment of their goals” 

(Schunk, 2012, p. 400).  Proficient self-regulated learners control their learning processes by 

being aware of their strengths and weaknesses, making personal adjustments to their learning, 

and achieving desired outcomes (Isaacson & Fujita, 2006).  These students are proactive learners 

that, despite obstacles, find ways to succeed (Zimmerman, 1990).   

Zimmerman and Campillo (2003) present a cyclical model of self-regulation, which 

provides an appropriate framework for promoting students’ learning in an academic context.  

The three-phase cyclical learning process encompasses forethought, performance, and self-

reflection (see Figure 1).  The forethought phase is the process that “sets the stage for action,” 

(Schunk, 2012, p. 411).  It precedes learning or performance and incorporates goal setting, 
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strategic planning, task analysis, and self-motivation.  The second phase of Zimmerman and 

Campillo’s (2003) self-regulation process is the performance phase.  The performance phase is 

the process of performing the task at hand.  It involves self-control and self-observation.  Self-

control refers to implementing methods or strategies that were selected during the forethought 

phase, such as imagery, task strategies, and time management.  Self-observation refers to 

consciously tracking one’s progress through a task and involves metacognitive monitoring.  The 

third phase of the self-regulation process is the self-reflection phase.  The self-reflection phase is 

one’s response to their efforts on the task and encompasses self-judgment and self-reaction.  

Self-judgment refers to comparing one’s performance against a standard, and includes beliefs 

about the causes of successes or failures.  Self-reaction is the feeling of self-satisfaction or failure 

after completing a task.  These feelings drive either an adaptive behavior, such as modifying 

strategies, or a defensive behavior, such as avoiding the task all together.   

 

Figure 1. Zimmerman and Campillo’s (2003) three cyclical phases of self-regulation. 
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Self-Regulation and Mathematics Achievement 

Several studies have indicated that self-regulated training can improve students’ 

mathematics achievement (Cleary & Kitsantas, 2017; Martin & Elliot, 2016; Perels et al., 2009; 

Schmitz & Perels, 2011).  For example, Martin and Elliot (2016) examined how one component 

of self-regulation, goal-setting, could influence students’ mathematics achievement.  Elementary 

and secondary students were randomly assigned to either a treatment or control group.  The 

treatment group was involved in a goal setting procedure in which the students determined their 

personal best, the score they wanted to accomplish or surpass on the mathematics test.  The 

control group was not involved in the goal setting procedure.  The results revealed that the 

students in the goal setting group scored significantly higher on the mathematics test than the 

students in the control group.    

Another study also focused on the forethought phase, but examined a different 

component: the relationship between motivation and mathematics performance.  Cleary and 

Kitsantas (2017) assessed three self-report measures of motivation: self-efficacy, task interest, 

and school connectedness.  Statistical analysis revealed four variables emerging as unique 

predictors of students’ mathematical performance: socioeconomic status, prior academic 

achievement, self-efficacy beliefs, and SRL behaviors, with prior achievement contributing the 

most.  Self-efficacy, however, accounted for unique variation in SRL and mathematics grades 

suggesting “that self-efficacy acts as a critical factor in understanding academic outcomes” 

(Cleary & Kitsantas, 2017, p. 101).  Although task interest and school connectedness were not 

strong predictors of academic achievement, they were strong predictors of students’ efficacy 

beliefs to regulate their behaviors.   
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Some research studies have implemented all three phases of self-regulation to determine 

its influence on mathematics achievement (Perels et al., 2009; Schmitz & Perels, 2011).  For 

example, Perels et al. (2009) investigated the effects self-regulation training had on middle 

school students’ mathematical achievement.  Students in the experimental group were taught 

eight self-regulation strategies and mathematical content over a period of three weeks.  Students 

in the control group were taught three problem solving strategies and mathematical content over 

three weeks.  The results revealed that after the intervention, both groups improved regarding 

their mathematical competencies (achievement).  Only the group exposed to the self-regulation 

strategies, however, showed a statistically significant increase in their mathematical achievement 

(Perels et al., 2009).  It is possible that these differences are related to the number of strategies 

each group was exposed to.  The participants in the intervention group were exposed to eight 

SRL strategies while students in the control group were exposed to only three problem-solving 

strategies.  In addition, the SRL strategies were implemented in conjunction with mathematical 

content instruction, while the mathematical content was not implemented in conjunction with the 

problem-solving strategies.    

Also implementing all three phases of self-regulation, Schmitz and Perels (2011) 

investigated how using standardized diaries to monitor self-regulation during math homework 

influenced middle school mathematics student’s self-regulation, self-efficacy, and performance.  

Using a pretest/posttest experimental design, participants were assigned to either an experimental 

or control group.  The experimental group consisted of working with a learning diary for seven 

weeks.  The learning diary was completed every day and invited students to observe and reflect 

on their mood and learning behaviors outside of school.  The control group did not complete 
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learning diaries.  Linear trend analysis revealed a significant positive linear trend for self-

regulation, self-efficacy, and mathematics performance.   

The results from the previous studies show that self-regulated training, in a natural 

learning environment, can be used to enhance students’ mathematics achievement and self-

regulatory processes.  Self-regulated training has also shown to be effective for improving 

performance among lower achieving students (Bol et al., 2016; Cleary, Velardi, & Schnaidman, 

2017; Zimmerman et al., 2011).  For example, Zimmerman and colleagues (2011) sought to 

enhance students’ self-reflection in response to their academic feedback (quiz outcomes).  At-

risk college students in remedial and introductory math courses were randomly assigned to either 

the intervention or control group.  Students in the control group received conventional 

instruction, but students in the intervention group received three different reflective components.  

Students in the intervention group were taught to 1) detect errors and adapt strategies such as 

using feedback to make changes and adjustments in their learning, and 2) correct quiz errors by 

completing a self-reflection form.  The form required students to reflect on their judgement 

accuracy, explain their unsuccessful strategies, establish new strategies, make new confidence 

judgments, and solve a similar math problem.  If students solved the similar math problem 

accurately they would receive a point that had been lost during the quiz.  The quiz points were an 

incentive system that rewarded students for making subsequent attempts.  

All students were periodically (three times) administered a five-question quiz and were 

asked to make self-efficacy and self-evaluative judgments before and after the quiz, respectively.  

Results revealed that the SRL instructional group significantly outperformed the control group.  

Although there were no significant differences on the first quiz, a significant difference was 

found on the second and third quizzes in favor of the intervention group.  Similar results were 
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found for the final exams in the developmental classes, as well as analysis of the tests and final 

exams in the introductory math courses; the SRL experimental groups significantly surpassed the 

control groups.  Zimmerman and colleagues (2011) proposed “Instead of viewing the reception 

of an academic grade as an end-point of learning, these students learned to view it as an 

opportunity for further learning” (p. 157). 

Also focusing on lower achieving students, Bol et al. (2016) investigated how SRL 

training would affect math achievement and metacognitions of community college students 

enrolled in a developmental mathematics course.  Students were placed in the developmental 

course based on mathematical deficiencies that were identified through placement testing.  

Placement in the developmental mathematics courses categorized these students as 

underprepared, because they were lower achieving mathematics students with deficiencies.  An 

experimental design was used, in which all the mathematics students were randomly assigned to 

either a SRL treatment condition or a control condition.  Over a three-week period, students in 

the treatment condition were required to set a weekly academic goal and plan their math study 

time for the week (forethought), assess their math study habits and time management skills 

(performance), and compare their observed behaviors to their goals using reflective journaling 

(self-reflection).  The control group received traditional mathematics instruction.   

The results revealed significant differences between the control and treatment groups on 

achievement and metacognitions.  Specifically, the treatment group scored significantly higher in 

mathematics achievement than the control group.  The treatment group scored above average on 

their final exams, while the control group scored below average on their final exams.  In 

addition, the treatment group reported higher metacognitive self-regulation scores and higher 

time/study management scores when compared to the control group.  In fact, students that 
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received the SRL training were more likely to complete the course unit than students that did not 

receive the SRL training (Bol et al., 2016). 

Lower achieving middle school students also showed academic improvement from a 

Self-Regulation Empowerment Program.  The program was an applied self-regulated learning 

intervention for improving motivation, strategic skills, and mathematics achievement.  Cleary et 

al. (2017) examined the effectiveness of the Self-Regulation Empowerment Program among at-

risk middle school students.  Students in remedial mathematics classes that were exposed to the 

Self-Regulation Empowerment Program were provided instructional modules and guidelines 

over the course of 3-4 months.  The modules and guidelines included foundational concepts of 

SRL, strategy learning and practice, and self-reflections.  The results revealed significant group 

differences on measure of strategic and regulatory thinking.  There were also significant 

differences between the intervention group and comparison group in achievement scores.  Over a 

period of two years, the middle school students exposed to the Self-Regulation Empowerment 

Program exhibited a statistically significant more positive trend in achievement, supporting the 

importance of targeting students who are at-risk for underperforming in mathematics.     

The studies described above provide support for self-regulatory training as an effective 

strategy for improving performance scores and learning outcomes for mathematics students, 

particularly lower achieving mathematics students.  These studies, however, focus on the self-

regulation learning process and students’ success in collegiate (Bol et al., 2016; Zimmerman et 

al., 2011) or middle school (Cleary et al., 2017) math courses.  More research is needed to 

examine the effectiveness of applied field-based self-regulation interventions in secondary 

school contexts and among lower achieving students.   
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Calibration Accuracy 

Self-regulation is dependent on cognitive and metacognitive strategies, and during each 

phase of SRL, metacognitive monitoring plays an important role (Hacker & Bol, 2018).  

Metacognition is crucial for self-regulation because a student could regulate their own 

knowledge by being aware of and having control over their metacognitive processes (Paris & 

Paris, 2001).  Accurate monitoring, control, and evaluation of one’s metacognitive processes is 

critical for successful learning (Hacker & Bol, 2018).  The study of calibration is used to help 

understand the accuracy of metacognitive monitoring.   

Calibration is a metacognitive process that requires students to think about and make 

judgments of their own performance (Bol & Hacker, 2012).  More specifically, calibration is a 

quantitative comparison of the degree to which a person’s judgment of performance on a task 

corresponds with their actual performance on the task (Keren, 1991).  Calibration is commonly 

measured by absolute accuracy, which is calculating the absolute value of the difference between 

the predicted score and the actual performance score (Hacker, Bol, & Bahbahani, 2008; Schraw, 

2009).  The closer the difference is to zero, the better calibrated the individual (Garavalia & 

Gredler, 2002).  Consider a scenario in which a student predicts, prior to taking a test, that they 

will receive a 90 on the test and then actually scores a 92 on the test.  This student would be 

considered well calibrated because their actual score was close to their predicted score.  In 

another scenario, a student may predict their score as a 90 and subsequently scores a 70.  The 

large difference in their predictive and actual test score indicates that they are poorly calibrated 

(Garavalia & Gredler, 2002).   

The direction of the difference between the predicted score and actual score is also 

revealing and is known as bias (Schraw, 2009).  If the difference between the two scores is a 
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positive or negative number then the individual is considered either overconfident or 

underconfident, respectively, in their predictions.  The first student in the example above would 

be considered slightly underconfident because their prediction score (90) was lower than their 

actual score (92) resulting in a negative calibration value of -2.  The student in the second 

example, however, would be considered very overconfident because their prediction (90) was 

greater than their actual performance (70), yielding a positive calibration score of 20. 

Glenberg and Epstein (1985) first used the term calibration, rather calibration 

comprehension, when they discovered that students’ predictions and performance were generally 

unrelated.  In recent years, calibration studies in educational settings have increased in interest, 

specifically as they relate to student achievement mostly in elementary schools (Garcia et al., 

2016; Labuhn, Zimmerman, & Hasselhorn, 2010; Ozsoy, 2012; Pennequin et al., 2010) and 

collegiate settings (Hacker, et al., 2008; Zimmerman et al., 2011).  Few studies, however, have 

investigated students’ calibration accuracy in middle (Bol et al., 2010; Rinne & Mazzocco, 

2014), and secondary schools (Chiu & Klassen, 2010; Dupeyrat, Escribe, Huet, & Regner, 2011). 

Calibration Accuracy and Mathematics Achievement 

There is a strong relationship between students’ calibration accuracy and mathematics 

performance (Chiu & Klassen, 2010; Digiacomo & Chen, 2016; Dupeyrat et al., 2011; Garcia, et 

al., 2016; Labuhn et al., 2010; Ozsoy, 2012; Pennequin et al., 2010).  Research has shown that 

students’ mathematics achievement is related to their judgments of learning in math, and most 

students struggle to accurately judge their mathematics learning (Garcia et al., 2016; Ozsoy, 

2012).  For instance, Garcia et al. (2016) examined fifth and sixth grade mathematics students’ 

calibration accuracy patterns with respect to mathematics achievement and grade level.  Using 

students’ final academic grades in their mathematics class as the level of mathematics 
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achievement, the researchers discovered that high achieving students made more accurate 

judgments than the lower achieving students.  Overall, the participants had low calibration 

accuracy, and there were no significant differences between grade levels.     

In another study involving the relationship between calibration accuracy and 

achievement, Ozsoy (2012) investigated fifth grade students’ mathematical calibration skills.  In 

his study, fifth grade students completed a 30-item mathematics achievement test and a 28-item 

mathematical calibration instrument which was developed by the researcher.  His results showed 

that overall, the participants had medium-high levels of calibration skills.  Although there were 

no differences between boys and girls, he did discover that high mathematical achievers were 

significantly better calibrators than middle and low math achievers.  Middle achievers were 

significantly better calibrators than low achievers. 

Students tend to be overconfident when monitoring their abilities or knowledge, (Hacker 

& Bol, 2018) and this is known as bias.  Investigating bias in self-assessments of competence 

among high-school mathematics students, Dupeyrat et al. (2011) gave a mathematics 

achievement goals survey and a perceived competence in mathematics question to 8th and 9th 

grade students.  Comparing the results of the survey and questionnaire to students’ mathematics 

achievement scores and the students’ progress in mathematics, the researchers found that overall, 

students did not accurately assess their mathematics competence.  More specifically, gender 

differences were revealed; girls underestimated their competence, while boys overestimated their 

competence when compared to their actual mathematics achievement.  In addition, students who 

overrated their math competence generally had the lowest average achievement progress. 

In a broader study, Chiu and Klassen (2010) examined mathematics self-concept, 

calibration, and achievement among a large sample of fifteen-year-olds.  The study indicated that 
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students that were better calibrated had higher mathematics achievement.  Also, students that 

overestimated their predictions had lower mathematics achievement and students that 

underestimated their predictions had higher mathematics achievement.  Students that had higher 

mathematics achievement typically had mathematics scores that exceeded their country’s mean.   

 Studies have shown that calibration accuracy can be improved through self-regulation 

strategies, such as metacognitive training (Pennequin et al., 2010).  For instance, to better 

understand students’ calibration accuracy while solving mathematics problems, Pennequin et al. 

(2010) asked elementary students to predict the number of problems they would solve correctly 

on a 12-item mathematics test.  Prior to the test, half of the students were provided with 

metacognitive training related to solving math problems (treatment group) and half of the 

students were not (control group).  The researchers discovered a significant difference when 

comparing pretest/posttest accuracy in the lower achievers that received metacognitive training.  

Lower achieving students that were exposed to metacognitive training were more accurate in 

their postdictions than students in the control group.  Even though the difference was not 

significant, the treatment group had better calibration accuracy than the control group.  In 

addition, all the students were overconfident in their predictions, supporting the claim that 

students struggle to accurately judge their mathematics learning.     

 Calibration accuracy can also be improved through other self-regulation strategies, such 

as feedback. For example, Labuhn et al. (2010) sought to investigate how feedback and self-

evaluative standards would influence students’ calibration accuracy and mathematics 

performance.  Fifth grade students were randomly assigned to two groups; one of either 

individual feedback, social comparative feedback, or feedback control group; and one of either 

mastery learning standards, social comparison standards, or standards control group.  Students 
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were asked to predict and postdict their performance on an eight-question mathematics test 

involving the order of operations.  Their results revealed that overall, the students that received 

social comparison feedback or individual feedback showed significantly higher calibration 

accuracy than students in the control group.  Students that were overconfident in their 

postdictions, however, were also overconfident in their predictions.  Additional analysis revealed 

the overconfident students were lower mathematics achievers on both the pretest and posttest.  

The lower achievers that received social comparison feedback, however, scored significantly 

higher on the posttest than the other groups of lower achievers.         

 Other self-regulation strategies have also been found to improve students’ calibration 

accuracy.  For example, Digiacomo and Chen (2016) found that calibration accuracy and 

mathematics achievement can be improved through self-monitoring and self-reflection training.  

Middle school students were exposed to structured and guided questions to encourage them to 

reflect on their calibration and regulatory behaviors.  “The intervention focused on learners’ 

attention to metacognitive monitoring during the performance phase to facilitate more productive 

reflection” (DiGiacomo & Chen, 2016, p. 604).  Despite having a small sample size of only 30 

students, and a short intervention period of only three weeks, significant differences between the 

intervention group and comparison group were reported.  The results showed that the 

intervention group had significantly higher math performance and better calibration accuracy 

than the comparison group.   

Calibration Accuracy and Lower Achieving Students 

As revealed in many of the previous studies, student’s ability to accurately calibrate their 

learning is often difficult, this is particularly difficult for lower achieving students (Chiu & 

Klassen, 2010; Garavalia & Gredler, 2002; Hacker et al., 2008).  Much of the previous research 
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revealed a relation between calibration accuracy and achievement group, suggesting that lower 

achieving students may have limited insight to the capacity of their learning and knowledge 

(Hacker & Bol, 2018).  To this end, some researchers further investigated mathematics students’ 

calibration abilities and biases, specifically among lower achieving students or students in entry 

level mathematics classes.   

For example, in Rinne and Mazzocco’s (2014) study, fifth through eighth grade students 

were grouped by their mathematics achievement levels as either typical achievement, low 

achievement, or “having a mathematics learning disability” (p. 3).  A total of 56 arithmetic 

equations were presented to the students.  The students were asked to quickly judge how 

confident they were that the presented arithmetic equation was accurate.  Although students in 

the higher grades were more accurate and better calibrated, the results showed that students with 

mathematics learning disabilities had a greater number of incorrect responses and were poorly 

calibrated when compared to their peers. Overall, the lowest achieving students, the students 

with mathematics learning disabilities, were less accurate and overconfident in their responses.       

Calibration accuracy and bias was also evaluated among at-risk mathematics students in 

the Zimmerman and colleagues’ (2011) study mentioned earlier.  The researchers found that 

students receiving self-reflection training were more accurate in their judgments before and after 

task completion.  An analysis of students’ bias in their judgments revealed that the SRL group 

was significantly more accurate than the control group.  The results suggest that teacher explicit 

instruction and student training involving self-regulation can improve students’ judgments and 

achievement, particularly among lower-level mathematics achievers.  

Calibration researchers have shown a clear relationship between calibration accuracy and 

mathematics achievement; overall students struggle to accurately judge their learning in 
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mathematics.  Higher achieving students more accurately judge their learning and are generally a 

bit underconfident.  Lower achieving students, however, have more difficulty accurately judging 

their learning and tend to be overconfident.  It should be noted, however, that lower achieving 

students are not incapable of accurate monitoring (Hacker & Bol, 2018), rather, the degree to 

which they self-regulate and monitor their learning may differ (Bol & Garner, 2011) from other 

students.  Lower achieving mathematics students may simply need to develop their skills that 

will assist them in accurately monitoring and assessing their knowledge and learning (Garofalo 

& Lester, 1985); calibration is one such skill.  The previous studies provide support for a variety 

of interventions that are explicitly taught to students to improve their metacognitive awareness, 

because accurate monitoring of one’s learning as an important factor for successful academic 

performance.   

Problem-Solving 

One way for students to monitor and assess their knowledge and learning is for them to 

be aware of their thoughts and performance while engaging in the problem-solving process.  

Alan Schoenfeld called this ‘control’ in his book entitled Mathematical Problem Solving (1985).  

He proposed four characteristics of mathematical problem-solving behavior and performance; 

resources, heuristics, control, and belief systems.  Resources are facts, algorithmic procedures, 

routines, and understandings that can be used to solve a problem.  Heuristics are strategies used 

to solve the problem such as drawing a figure, exploiting related problems, and verifying 

procedures.  Control is one’s planning, metacognitive acts, and monitoring while problem 

solving.  Lastly, belief system is one’s world view about the topic, mathematics, self, and the 

environment.  Schoenfeld contends that problem-solving performance is not only what “students 

know, it is also a function of their perceptions of that knowledge” (p. 14).  He argues that 
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“students’ failures to solve problems were caused by malfunctions at the control level; poor 

decision-making” will result in failed solutions, regardless of how much mathematical content 

students might know.       

Schoenfeld (1985) also proposed that problem-solving can take two forms.  Problem-

solving may involve routine access to subskills and relevant knowledge retrieved from scripts, 

schemata, or frames, which are consistent and reliable.  This kind of problem-solving “comprises 

the foundation upon which competent problem-solving performance is built” (p. 68).  On the 

other hand, problem-solving in which the individual does not have ready access to a solution, 

which includes more than routinized performance, involves a variety of factors.  These factors 

may include informal and intuitive knowledge, deeper meaning of facts and definitions, the 

ability to execute algorithmic procedures, and possession and application of relevant 

competences and heuristics.    

“Once nearly forgotten, heuristics have now become nearly synonymous with 

mathematical problem-solving” (Schoenfeld, 1985, p. 23).  Heuristic strategies are rules of 

thumb for successful problem-solving performance and include drawing a figure, exploiting 

related problems, and verifying procedures.  Schoenfeld credits Polya’s book, How to Solve It 

(1945), as the revival of heuristics and a guide to useful problem-solving techniques.     

Polya defined problem solving in a similar way, as finding “a way where no way is 

known, off-hand...” (1945, p. 1).  He proposed that students need to work through details of a 

problem to reach a solution, and their critical thinking skills can often be gauged by how they 

engage in the problem-solving process.  In 1945, George Polya offered a general (heuristic) four 

step problem-solving process that is effective for solving word problems:  understand the 

problem, devise a plan, carry out the plan, and review and extend.  Polya’s seminal problem-
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solving process is a cyclical model in which problem-solvers can progress through in many 

different ways, back tracking and skipping (see Figure 2).   

 

Figure 2.  Visualization of Polya’s problem-solving process (Golden, 2009). 

Polya’s problem-solving process stimulates self-regulated learning and involves 

metacognitive awareness, often through questioning strategies.  The first principle of problem-

solving requires students to put forth effort and energy to read and understand the problem.  

They must make sense of the information provided in the problem, whether it is in table, graph, 

figure, or text form.  During this phase, students are in the forethought phase of self-regulation, 

because they are setting goals and planning strategically.  They should be organizing the 

information, establishing goals, and constructing diagrams or other visual representations, to 

assist them in solving the problem.  Students should also engage in metacognitive questions, 

such as:  Do you understand all the words used in stating the problem? What are you asked to 

find or show?  Can you restate the problem in your own words?  Can you think of a picture or 

diagram that might help you understand the problem?  Is there enough information to enable you 
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to find a solution?  These metacognitive questions can assist students in understanding the 

problem.   

While remaining in the forethought phase of self-regulation, the second principle of 

Poyla’s problem-solving process, the planning phase, requires students to consider various 

solution approaches.  Devising a plan or strategy is often the hardest step.  During this phase of 

problem solving, mathematical concepts, knowledge, and facts are accessed and considered 

while conjectures are formulated.   Solution approaches are imagined and a strategy is 

determined.  Four strategies commonly used to solve mathematics problems are guessing and 

checking, making a table, drawing a picture, and solving a simpler problem.  Metacognitive 

questions students could use during this phase of problem-solving include: Do you know a 

related problem? Have you seen the same problem in a slightly different form?  Is your diagram 

a good representation of the problem?  Did you use all the data?   

The third principle of problem-solving, carrying out the plan, coincides with the 

performance phase of self-regulation.  During this phase the students engage in task strategies by 

implementing the plan that was selected and putting forth effort to stay mentally engaged.  

Students execute various procedures, construct and connect mathematical representations, carry 

out computations, and make sense of the new information.  Students use metacognitive 

monitoring to determine if their plan of action is working to solve the problem.  If not, they 

should discard the plan and choose another.  Metacognitive questions students should ask 

themselves include: Can you connect the data and the unknown visually?  Is your diagram a 

good representation of the problem?  Do you need a formula or special notation?  Do you know 

how to calculate the solution? 
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The final principle of Polya’s problem-solving process is review and extend.  During this 

phase students are engaging in the self-reflection phase of the self-regulation process.  Students 

check their answer for accuracy and reasonableness, and a decision is made about the validity of 

their answer.  During this final phase the student determines if they should discard their plan and 

choose another, requiring them to cycle back into the problem-solving process, or cycle forward 

based on their results.  Students should ask themselves: Are your computations accurate?  Is your 

answer reasonable?  Where will you see this problem again?  Which solution did I decide to use?  

Reflecting on their results, and the metacognitive process, can enable students to predict what 

strategy to use to solve future problems by considering the efficiency and effectiveness of 

various methods. 

Problem-Solving in Mathematics 

Problem-solving has been extensively studied in mathematics.  Research has shown that 

explicit problem-solving and strategy instruction can improve students’ mathematics 

performance among lower achieving students (Krawec et al., 2013; Montague et al., 2014; Xin 

et al., 2005).   For example, Montague et al. (2014) implemented a problem-solving intervention 

among seventh grade mathematics students with varying abilities (students with learning 

disabilities, low-achieving students, or average-achieving students).  The intervention required 

the students to read the word problems for understanding, visualize the problem by drawing a 

picture or a diagram, develop a plan to solve the problem, predict the answer, make 

computations, and check their work.  Students in the intervention group “showed a significantly 

greater rate of growth on the curriculum-based measures” (Montague et al., 2014, p. 469) when 

compared to the comparison group.   Synthesizing the results of this study involving seventh 

grade students, to an identical study involving eighth grade students, the researchers found the 
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intervention effect was stronger for the low-achieving and learning-disabled students than the 

average-achieving students.  The researchers posit that these findings suggest specialized 

instruction in math problem solving may improve lower achieving students’ mathematics 

achievement. 

 Elaborating on the data from the previous study, Krawec and colleagues (2013) sought to 

examine the treatment effects of the intervention on students’ ability levels and their knowledge 

of problem-solving.  Students completed a math problem-solving assessment that measured their 

knowledge, use, and control of the problem-solving process.  Results indicated that students in 

the treatment group improved significantly from pretest to posttest on their reported strategy use, 

but the comparison group did not.  In addition, after the intervention, students in the treatment 

group reported using significantly more strategies than their counterparts.  Furthermore, the 

intervention was equally effective for students regardless of their ability level (average achieving 

students or students with learning disabilities).    

Polya’s problem-solving process was situated in a study by Xin et al. (2005).  The 

researchers investigated the effect schema-based instruction and general strategy instruction had 

on middle school students’ word problem-solving performance.  Middle school students who had 

learning disabilities or were at-risk for mathematics failure participated in the study.  Students in 

the schema-based instruction group were taught to read the problem for understanding, identify 

the problem type (multiplicative compare problem or proportion problem), use the schema 

diagram to represent the problem, transform the diagram to a math sentence, solve the problem, 

and look back to check their work.  Students in the general strategy instruction group were taught 

to read the problem for understanding, draw a picture to represent the problem, solve the 

problem, and look back to check their work.  Therefore, unlike the schema-based instruction 
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group, students in the general strategy instruction group did not receive instruction in 

recognizing the two different word problem types.  

 The results showed that students in the schema-based instruction group performed 

significantly better than students in the general strategy instruction group on all measures of 

acquisition, maintenance, and generalization.  This study “used a schema-based instruction to 

systematically teach the structure of different problem types and directly show the linkage of the 

schematic diagram to problem solution” (Xin et al., 2005, p. 189).  In addition, students in the 

schema-based instruction group that identified problem structure or type and applied schema 

knowledge to represent and solve the problems showed higher-order thinking skills. 

Zollman (2009) examined how explicitly teaching students Polya’s (1945) problem-

solving hierarchy could influence mathematics students word problem solving process.  In an 

action research project, ten elementary school teachers implemented a graphic organizer tool 

during a measurement unit with elementary grade students.  The graphic organizer guided 

students through Polya’s (1945) problem solving hierarchy: understand the problem, devise a 

plan, carry out the plan, and review and extend.  The results showed that on average, word 

problem performance improved across all grades from pretest to posttest.  In addition, the 

graphic organizers were efficient and effective for students at all achievement levels.  Low-

ability students now had a way to begin the problem-solving process, average-ability students 

had a way to organize the information and strategies, and high-ability students could improve 

their problem-solving communication skills.  Lastly, graphic organizers which involve 

visualizations of the word problem allowed students to break the problem down into manageable 

parts, design and analyze multiple representations, and make connections about mathematics 

(Zollman, 2009). 
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Problem-solving is a focus of school mathematics.  Students that have difficulty solving 

word problems often “lack knowledge of (or fail to use) problem-solving processes, particularly 

those necessary for representing the problem” (Montague et al., 2014, p. 470).  Problem-solving 

researchers have shown, however, that teaching lower achieving students the problem-solving 

process and related strategies to solve word problems, can improve their mathematics 

performance.  Thus, students, especially lower achieving students, should be explicitly taught 

strategies for representing word problems, such as visual representations, and how to apply them 

during the problem-solving process.   

Visualizations  

Visualizations are diagrams that transform “problem information to a representation that 

shows the relationships among problem parts” (Montague et al., 2014, p. 470).  Visual 

representations can take many forms (graphic organizer, graph, table, picture, figure, etc.) during 

the problem-solving process.  In fact, Stylianou (2002) found that expert problem-solvers, 

professional mathematicians, use visualizations to help them complete problem-solving 

activities.  Other research has shown that the use of visual representations improved students’ 

comprehension of the content (Dexter & Hughes, 2011) and problem-solving abilities (Edens & 

Potter, 2007), especially for lower achieving math students (Krawec, 2014).  

To emphasize the importance of visualizations in problem-solving, Edens and Potter 

(2007) examined how fourth and fifth-grade students’ drawing tasks related to their 

mathematical problem-solving.  More specifically, the researchers were investigating students 

proportional thinking of math problem solving through students’ drawings.  The students were 

required to represent numerical information graphically and derive answers from their 

representations.  Analysis revealed that there was a significant relationship between students that 
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used schematic visual representations and their problem-solving scores.  Further analysis showed 

that the more proportional the visual representation was, the more accurate their problem 

solving. 

Visual representations are important mathematical tools that help lower achieving 

mathematics students with the problem-solving process (Gersten & Clarke, 2007).  Visual 

representations offer students a way to organize their mathematical thinking, identify relevant 

information, and assist in developing a solution to the problem (Draper & Wimmer, 2015), tasks 

that lower achieving students struggle with (Geary, 2011; Gersten & Clarke, 2007).  Dexter and 

Hughes (2011) conducted a meta-analysis of graphic organizers and students with disabilities 

across multiple content areas.  They extensively reviewed sixteen articles involving participants 

from grades four to twelve.  They found that a variety of visualizations that required students to 

visually represent information, improved students’ factual comprehension of the content.  

Additionally, visual representation was found to improve students’ academic vocabulary, basic 

skills, and higher-order thinking skills (Dexter & Hughes, 2011).   

  Also investigating students’ visual representations of mathematics word problems, 

Krawec (2014) examined the problem-solving solutions and visual representations of eighth 

grade students with varying mathematical abilities.  The researcher analyzed students’ work for 

accuracy and retrieval of relevant information.  The results showed that average-achieving 

students demonstrated stronger problem-solving abilities and visually represented more relevant 

information than both low-achieving students and students with disabilities.  Even more 

interesting, visual representation accuracy explained more of the variance in problem-solving 

accuracy than ability group.  These results suggest that visual representation of mathematical 
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word problems is critical for accurate problems-solving, specifically for lower achieving 

students.    

 Many lower achieving mathematics students struggle with forming mental 

representations of mathematical concepts and have week abilities to access numerical meaning 

from symbols (Geary, 2011).  Furthermore, because each mathematics problem is slightly 

different, there is no single way to solve a mathematics problem, making problem-solving even 

more difficult.  Thus, teaching students not only the knowledge base, but strategies to use during 

problem-solving (Stylianou, 2002), such as visualizations, can be an effective method for 

assisting students in understanding concepts and transferring their skills and knowledge in 

various contexts.  Students’ ability to transfer their skills and knowledge to a variety of 

mathematics problems is a skill that is integrated in mathematics literacy practices.   

Mathematics Literacy 

Mathematics literacy (ML) is student’s ability to “formulate, implement, and interpret 

mathematics in various contexts, including the capacity to perform reasoning mathematically and 

using the concepts, procedures, and facts to describe, explain or predict phenomena” (Wardono, 

Mariani, & Hendikawati, 2017, p. 1). Similarly, others have defined mathematics literacy as the 

ability to formulate, employ, connect, implement, and interpret mathematics in a variety of 

contexts (OECD, 2013), or more broadly as any individual that “has mathematical skills and 

abilities beyond pure mathematical content” (Lengnink, 2005, p. 247).   

 Mathematics literacy is imbedded in the disciplinary literacy framework.  Disciplinary 

literacy is built on the premise that each content area has its own ways of understanding and 

knowing the material and that it is abstract and complex in nature (Moje, 2008; 2015).  Shanahan 

and Shanahan (2008) illustrated a hierarchical model of how the development of literacy 
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progresses, placing disciplinary literacy at the most advanced level (see Figure 3).  They propose 

the base of the pyramid entails basic literacy skills, such as decoding, recognition, and 

knowledge of high-frequency words.  Literacy at the basic level is usually mastered during 

primary grades, for slower learners during middle grades.  The middle of the pyramid, 

intermediate literacy, entails comprehension strategies, vocabulary understanding, 

interpretations, and discourse within the discipline.  At this level of literacy development, skills 

are still more generalizable to other domains.  Finally, disciplinary literacy is placed at the top of 

the pyramid.  Disciplinary literacy skills are more sophisticated and specialized to the discipline 

but less generalizable.  

 

Figure 3. Shanahan and Shanahan (2008) Development of Literacy Progression  

The disciplinary literacy framework has been suggested as an instructional perspective to 

improving students understanding of mathematical concepts (Shanahan & Shanahan, 2008; 

2012).  Disciplinary literacy does not focus on traditional literacy perspectives, instead focusing 

on engaging students in the practices, routines, and skills of the discipline (Moje, 2008; 2015; 

Shanahan & Shanahan, 2008).  These disciplinary practices are specific to the discipline and 

cannot be generalized to other content areas.  Therefore, disciplinary literacy instruction in 

mathematics engages students in a deeper understanding of the content and employs practices of 

mathematicians (Draper, 2008).   
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Disciplinary literacy researchers often focus on experts of a discipline to determine 

disciplinary practices.  For example, Shanahan and Shanahan (2008) studied experts to better 

understand how they approached reading texts in their discipline.  The experts were asked to read 

and think aloud about their process as they engaged with their disciplinary texts.  The experts 

among each discipline “emphasized a different array of reading processes,” (Shanahan & 

Shanahan, 2008, p. 49), which demonstrated the importance of disciplinary strategies for reading 

a variety of texts.  More specifically, mathematicians stressed the importance of rereading and 

close reading as the most important strategies in order to understand the text.  The experts 

emphasized that every word has precise meaning in math, and rereading allows for a deeper 

understanding of the text. 

Not only is understanding the text of word problems important for problem solving in 

mathematics but creating visual representations of the problems are equally important.  

Researchers have found that expert mathematicians use visualizations to help them complete 

problem-solving activities.  Stylianou (2002) investigated how visualizations are utilized by 

mathematicians during the problem-solving process.  Through think alouds, interviews, and 

observations, Stylianau discovered that not only do mathematicians use visual representations to 

problem-solve, but they create their representations in systematic steps, pausing between 

sketching.  During these pauses, the mathematicians were engaging in self-regulation and 

metacognitive monitoring.  They were “thoroughly and systematically exploring the images they 

construct at each visual step, while closely monitoring the effectiveness of each visual step they 

take, altering and retracting their images when they find this necessary” (Stylianou, 2002, p. 

315).  This process provided the mathematicians with a complete understanding of the problem 

situation.  Understanding the problem is an important factor in developing mathematics literacy.  
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It would be difficult to formulate, implement, or interpret mathematics if one does not 

understand the problem.  Creating a visualization of the problem is a useful strategy for deeper 

understanding, and a common problem-solving activity used by expert mathematicians.   

Disciplinary literacy researchers have studied mathematics experts to determine what 

constitutes the best practices and strategies that educators can implement in the classroom to 

support their students’ development of mathematics literacy (Shanahan & Shanahan, 2008; 

Stylianou, 2002).  These strategies include systematic processes, self-regulation, metacognitive 

monitoring, reading and rereading for understanding, and creating visual representations of the 

problem.  “Making good use of metacognitive strategies allows for the transfer of mathematical 

literacy into new contexts” (Chen & Chiu, 2016, p265).   

Mathematics researchers agree that developing students’ mathematical literacy is a 

process (Friedman, Kazerouni, Lax, & Weisdorf, 2011; Lengnink, 2005; Lo’pezLeiva, Torres, & 

Khirsty, 2013; Wardono et al., 2017).  The process that increases students’ ability to become 

confident in handling, judging, and explaining mathematical applications.  “Putting mathematical 

ideas and reasoning into words is a key element of mathematical literacy” (Friedman et al., 2011, 

p. 31).  For instance, in a qualitative study involving elementary students’ development of 

mathematical reasoning, Lo’pezLeiva et al. (2013) analyzed the social and communication 

processes of two groups of students working on probability tasks.  The researchers sought to 

better understand what linguistic resources bilingual students use to make sense of probability 

problems.  Fifteen hours of video data, students’ work, and facilitators field notes involving 

seven students were analyzed for this study.  Data analysis revealed that the students used a 

myriad of resources to develop their conceptual understanding and sense making.  One student 

used meaningful linguistic resources, such as Spanglish words (Lo’pezLeiva et al., 2013), to 
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explain their understanding of the problem.  Other students required a more concrete 

representation of the problem, such as a game-like activity or simulation, to develop their 

conceptual understanding.  The researchers concluded that using multidimensional resources that 

capitalize and expand on struggling students’ current ideas assisted in the development of 

students’ mathematical literacy. 

 In another study, Friedman et al. (2011) investigated students’ development of geometric 

concepts, vocabulary, and communication using a personal math concept chart to promote 

mathematical literacy.  The chart required students to categorize, describe, draw a visual, and 

provide a real-life example and non-example of multiple math concepts or vocabulary terms.  

This action research study involved four classes of students in grades, first, second, third, and 

sixth.  A pre-assessment and post-assessment was used to determine how the four-week 

intervention involving the personal math concept chart impacted their discipline specific 

language development.  Data was collected from students’ pre-assessment and post-assessments, 

pictorial descriptions, personal math concept charts, and teacher notes from informal math 

dialogue.  Analysis of the data showed that the students provided longer, clearer, and more 

descriptive answers and explanations post-assessment (after using the personal math concept 

chart) than they did on the pre-assessment (prior to using the personal math concept chart).  

Additionally, all four teachers “found that the quality and depth of math discussion in class was 

increased throughout” (Friedman et al., 2011, p. 33) the intervention period.  Furthermore, math 

surveys were conducted to determine whether students found the personal math concept chart 

beneficial to their learning.  Overall, the students found the concept chart to be easy and helpful, 

specifically for daily work, and would like to have it available to them more often as a reference.     

 In a mixed methods study that involved both qualitative and quantitative data, Wardono 
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et al. (2017) sought to better understand how two instructional methods that engage students in 

the mathematizing process would influence their mathematics literacy.  Mathematizing “is a 

process for mathematics phenomenon” (Wardono et al., 2017, p. 1).  One could look at 

“mathematics relevant to a phenomenon” or build “a mathematical concept of a phenomenon” 

Wardono et al., 2017, p. 1).  The researchers investigated how students cognitive style (reflective 

or impulsive) influenced their mathematizing process.  Two classes of 8th grade junior high 

students were grouped to receive either problem-based instruction (experimental group) or 

scientific learning (control group) while solving real-life mathematics problems.  Data was 

collected through documentation of observations, tests, and interviews.  Analysis of the data 

revealed that students that engaged in the mathematizing process through problem-based 

instruction had improved mathematics literacy.  Further analysis showed that students that had a 

reflective cognitive style towards the mathematizing process scored higher and developed their 

mathematics literacy more than the students that had an impulsive cognitive style towards the 

mathematizing process.    

 Kramarski and Mizrachi (2006) sought to quantitatively understand how instructional 

methods influenced middle school students’ development of mathematical literacy and SRL 

strategies.  Over a period of four weeks, a total of 86 students received either online or face to 

face discussion and metacognitive guidance or no metacognitive guidance during mathematical 

problem-solving.  Metacognitive guidance provided students with a series of self-addressed 

metacognitive questions regarding comprehension, connection, strategy, and reflection when 

engaging in mathematical tasks.  Students in the metacognitive groups received training in 

answering the metacognitive questions and were provided with an index card to guide them 

through the metacognitive process.  Multiple-choice and open-ended pretests and posttests were 
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used to determine students level of mathematical literacy.  A questionnaire was used to evaluate 

students SRL strategies.  The results of the study revealed that students that were exposed to 

metacognitive guidance attained a higher level of mathematical literacy and SRL strategies than 

the students that were not exposed to metacognitive guidance.  This study supports the 

importance of metacognitive training in developing students’ mathematical literacy and SRL 

strategies.      

Students’ development of mathematics literacy is a process that can be improved by 

teaching them effective problem-solving strategies.  However, teaching mathematics from a 

disciplinary literacy perspective should demonstrate characteristics of expert mathematicians: 

self-regulation, systematic problem-solving processes, metacognitive monitoring, reading and 

rereading for understanding, and creating visual representations of the problem.  Therefore, 

students’ development of mathematics literacy should focus on these characteristics.   

Purpose Statement and Research Questions 

This literature review provided empirical evidence for the connections between self-

regulation, problem-solving, visualizations, and mathematics literacy in the classroom.   No 

studies could be found that directly show that teaching from a disciplinary literacy perspective 

have improved students’ way of thinking and learning mathematics.  This study aims to fill the 

gap between disciplinary literacy instruction and student outcomes in terms of their achievement, 

calibration accuracy, and development of mathematics literacy.  Thus, the purpose of this study 

was to investigate the impact metacognitive training had on lower achieving Algebra students’ 

achievement, calibration accuracy, and development of mathematics literacy when solving word 

problems.   The following research questions were investigated:  
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1. How does metacognitive training influence the achievement scores of lower achieving 

Algebra students? 

2. How does metacognitive training influence the calibration accuracy of lower achieving 

Algebra students? 

3. How does the metacognitive training influence lower-achieving Algebra students 

development of mathematics literacy? 

It was predicted that the students that were exposed to metacognitive training would have better 

calibration accuracy, higher mathematics achievement scores, and greater development in their 

mathematics literacy than students exposed to the problem-solving strategy without 

metacognitive training.  

Summary  

Chapter 2 presented a review of the related literature regarding self-regulated learning, 

calibration, problem-solving, visualizations, and disciplinary literacy in mathematics.  The 

literature review revealed that SRL is an effective strategy to improve student learning in 

mathematics classrooms.  Students generally struggle to accurately judge their learning in 

mathematics and lower achieving students are typically overconfident.  Polya’ problem-solving 

process has shown to be an effective strategy for student learning and is integrated in self-

regulated frameworks.  Visualizations are one strategy, used by experts, that can assist students 

in better understanding the problem.  As students advance their learning and understanding of 

mathematical concepts, they develop their mathematics literacy.  Teaching students 

characteristics of mathematicians, such as systematic problem-solving, self-regulation, and visual 

representations, may improve students’ mathematical literacy, in turn, their mathematics 

achievement and calibration accuracy.    
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CHAPTER 3 

Methodology 

Chapter 3 describes the design and the specific procedures that were used in the study.  It 

begins with a restatement of this study’s research questions followed by the research design, its 

rationale, and research variables.  The population and sampling procedures for this study are then 

described in detail followed by the procedure, measures, and materials that were used in the 

study.  Subsequently, data collection procedures and data analysis are described. 

Research Questions 

The following research questions were investigated:  

1. How does metacognitive training influence the achievement scores of lower achieving 

Algebra students? 

2. How does metacognitive training influence the calibration accuracy of lower achieving 

Algebra students? 

3. How does metacognitive training influence lower-achieving Algebra students’ 

development of mathematics literacy? 

Design 

 A pretest/posttest quasi-experimental (Gall, Gall, & Borg, 2003) design was employed to 

compare the effectiveness of the metacognitive training group to the problem-solving group 

among lower achieving secondary mathematics students.  The treatment was implemented over 

three weeks while students were solving algebra word problems as a warm up activity.  The 

independent variable was the treatment condition, either the metacognitive training (MT) or the 

traditional problem-solving strategy (PSS).  The dependent variables were students' calibration 

accuracy, achievement scores (score on the posttest), and mathematics literacy.            
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Participants 

 This study had a total sample size of 37 participants, using two classes with 15 and 18 

participants in each class.  Participants were male and female adolescents enrolled in an Algebra 

1B course attending a local Southeast Virginia high school.  All participants followed the 

Algebra 1B mathematics curriculum.  One class was randomly assigned to the MT condition and 

the other class was the PSS condition.   

The participants were lower achieving students and were assigned to the Algebra 1B 

course based on previous years grades and performance.  This high school used a block schedule 

which means that students have longer class periods that typically meet fewer times each week.  

Students in the Algebra 1B courses, however, attended class everyday allowing for double the 

instructional time and covering half of the content of a traditional Algebra I course.  Noteworthy, 

students who have higher mathematical ability usually take Algebra 1 in middle school; the 

participants in this study were 9th and 10th grade high school students.  Moreover, eight students 

among the two classes had either an Individual Education Plan, a 504 plan, or a Behavior 

Improvement Plan.   

Protection of subjects and participants.  Since this study involved minors, participants’ 

parents or guardians were informed of the study and could have chosen to “opt out” and not have 

their child’s data included in the analysis (see Appendix A).  The use of an opt-out, rather than 

an opt-in, form for parents is common practice and a typical procedure in this school district.  All 

students participated in the instruction because warm-up activities were a regular part of the 

instruction; however, if the student or their parents decided not to participate in the research, 

their scores and responses were not used in the analysis.  Students were provided with an 

introduction letter (see Appendix B) and were asked about their willingness to participate 
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(assent).  To protect students’ confidentiality, all identifying information was stripped from the 

data once it was collected.   

Procedure 

Word problem-solving warm up activities were implemented among the two classes.  

Over a period of three weeks, approximately the first thirty minutes of each lesson was dedicated 

to word problem-solving using either metacognitive training or problem-solving strategy.  The 

time was allotted as follows: 10-15 minutes for students to work one warm up problem, 15-20 

minutes for a class discussion about the problem solutions and for the cooperating teacher to 

model a solution to the problem using either MT or PSS.  The cooperating teacher participated in 

a professional development session, provided by the researcher, to support the teacher in learning 

and implementing the metacognitive training and the problem-solving strategy. 

Metacognitive training (MT).  Metacognitive training was the same as the problem-

solving strategy but included metacognitive questions.  The five key features of the 

metacognitive training included 1) read the problem, 2) pull out important information, 3) draw a 

visualization, 4) solve the problem, and 5) check your work.  Each one of the five steps were 

combined with two metacognitive questions to encourage students to think about each step of 

their problem-solving process.  During the warm up activity, the students were provided with a 

worksheet that contained the warm-up problem and the MT procedure (see Appendix C) that 

reinforced and guided them through the MT process.  After students work independently on the 

warm up activity, the cooperating teacher discussed and reviewed the five-step metacognitive 

process for solving mathematical word problems by way of modeling (Geary, 2011; Gersten & 

Clarke, 2007) and think aloud (Jacobse & Harskamp, 2012; Throndsen, 2011).   
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Problem-solving strategy (PSS).  The problem-solving strategy was the same as the 

metacognitive training but did not include the metacognitive questions.  The five key features of 

the problem-solving strategies included 1) read the problem, 2) pull out important information, 

3) draw a visualization, 4) solve the problem, and (5) check your work.  During the warm up 

activity, the students were provided with a worksheet that contained the warm-up problem and 

the PSS procedure (see Appendix D) that reinforced and guided them through the PSS process.  

After students worked independently on the warm up activity, the cooperating teacher discussed 

and reviewed the five-step problem solving strategy for mathematical word problems by way of 

modeling and thinking aloud.  Table 1 provides a comparison of the PSS and MT problem-

solving processes. 
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Table 1.  

Comparison of Problem-Solving Strategies and Metacognitive Training  

STEP PSS MT Metacognitive Questions for MT 

1 Read the problem Read the problem • Do you understand the problem? 

• Do you know what all the words mean? 

2 Identify important 

information 

Identify important 

information 
• What is the unknown, what is being 

asked? 

• What are the data? 

3 Draw a 

visualization 

Draw a visualization • Can I connect the data and the unknown 

visually? 

• Is my diagram a good representation of 

the problem? 

5 Solve the problem Solve the problem • Do I need a formula or special notation? 

• Do I know how to calculate the solution?  

6 Check your work Check your work • Are your computations accurate? 

• Is your answer reasonable? 

 

Materials 

Problem-solving questions.  The cooperating teacher and researcher selected word 

problems that directly related to multi-step problems-solving involving visualizations.  All word 

problems that were selected for the VisA instrument and warm up activities, were reviewed by a 

content expert to determine appropriateness and level of difficulty.  Word problems were 

selected from a variety of resources including the current curriculum, previous curriculums, and 

resources available online.  See Table 2 for an example problem. 
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Table 2. 

Example question from the VisA instrument   
Page 5 

Name: 

 

Problem 

There are three rectangular tables.  Each table 

seats six people, 2 people on each side and 1 

person on each end.  How many people can be 

seated at the tables if the tables are lined up 

end to end?   

 

Question 

On a scale of 1-3, how well do you think you 

can solve this problem?  Circle one. 

1 = I am sure I will solve this problem 

correctly 

2 = I am not sure whether I will solve this 

problem correctly or incorrectly 

3 = I am sure I cannot solve this problem 

correctly 

Please explain why… 

 

 

Page 6 

 

 

Problem 

There are three rectangular tables.  Each table 

seats six people, 2 people on each side and 1 

person on each end.  How many people can be 

seated at the tables if the tables are lined up 

end to end?   

 

Question 

Draw a sketch you can use to solve the 

problem. 

 

Page 7 

Problem 

There are three rectangular tables.  Each table 

seats six people, 2 people on each side and 1 

person on each end.  How many people can be 

seated at the tables if the tables are lined up 

end to end?   

 

Question 

Solve the problem. 

 

Page 8 

Problem 

There are three rectangular tables.  Each table 

seats six people, 2 people on each side and 1 

person on each end.  How many people can be 

seated at the tables if the tables are lined up 

end to end?   

 

Question 

On a scale of 1-3, how well do you think you 

solved this problem?  Circle one. 

1 = I am sure I solved this problem correctly 

2 = I am not sure whether I solved this problem 

correctly or incorrectly 

3 = I am sure I did not solve this problem 

correctly 

Please explain why… 
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Warm-up worksheets.  During the warm-up activity, students were provided with a 

worksheet that contained the word problem and guided them in either the MT or PSS process 

(see Appendix C and D).  The worksheets were intended to remind students to engage in the 

five-step process.  In addition, the MT worksheet provided students with the metacognitive 

questions they should ask themselves for each step in the process. 

Measures 

Visualization & Accuracy (VisA) instrument.  Typically, the valid and popular think 

aloud procedure has been used to assess students’ metacognitions.  Because the think aloud 

procedure is time-consuming, Jacobse & Harskamp (2012) sought to develop a less time-

consuming method to assess students’ metacognitions during problem solving; the Visualization 

and Accuracy (VisA) instrument.  Comparing the VisA instrument to the think aloud procedure, 

they found that the think aloud measure and the VisA measure correlated highly with problem 

solving performance (r(37) = 0.66), and 43 percent of the variance was explained by both 

measures.  More specifically, the VisA instrument explained 23 percent of the variance in 

students’ word problem solving performance; making the VisA instrument a valid method for 

predicting students problem-solving performance (Jacobse & Harskamp, 2012).   

The VisA instrument used in this study was revised to include 6 multi-step word 

problems, a prediction question, and a postdiction question.  The researcher and cooperating 

teacher created the assessment instrument by selecting and creating word problems, appropriate 

for using visualizations, from the mathematics textbook and other available resources ensuring 

that the students have already learned the content.  For each word problem, however, students 

were asked to divide their problem-solving over four phases: 
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1. Read the problem and rate your confidence for finding the correct answer (without 

calculating the answer); 

2. Make a sketch or plan which can help you solve the problem; 

3. Solve the problem and fill in the answer; 

4. Rate your confidence for having found the correct answer; 

Each of the four phases (listed above) were provided on a different page in the form of a 

booklet, therefore, the problem question was repeated on each page for student convenience (see 

Table 2).  Students received approximately 60 minutes to solve all the word problems.  The VisA 

instrument was administered to all participants using standardized procedure for both the pretest 

and posttest.  The cooperating teacher was trained prior to administration.  The pretest and 

posttest contained six different word problems but of equal difficulty.  The VisA instrument was 

scored to determine students’ achievement score and calibration accuracy.  Components of the 

VisA instrument were used to determine students’ development of mathematics literacy.  The 

first and last page of the pretest and posttest contained an open-ended calibration item requesting 

participants to predict and postdict the number of questions correct (0-6). 

Achievement.  To determine students’ achievement scores, all six word problems were 

scored as a 1 for a correct answer and 0 for incorrect answer.  A sum score was computed (0-6) 

for each student for the total number of correct answers (actual score) to determine students’ 

achievement score. 

Calibration Accuracy.  Participants were asked to make predictions and postdictions of 

how many problems they think they got correct on both the pretest and posttest.  The directions 

for the pretest predictions were, “The following test involves six real-life problem-solving 

questions.  Please estimate how many questions, out of 6, that you think you might get correct.  
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Number of questions I think I will get correct (0-6) _____.”  The directions for the pretest 

postdictions were, “This test involved six real-life problem-solving questions.  Now that you 

have completed the questions, please estimate how many questions, out of 6, you think you got 

correct.  Number of questions I think I got correct (0-6) _____.”  The directions for the posttest 

predictions and postdictions were the same as the pretest. 

The participants’ prediction calibration accuracy was computed by calculating the 

absolute value of the difference between their total prediction scores and their total actual scores 

(number correct) on the tests.  Calibration bias was calculated by calculating the difference 

between participants’ predictions and their actual scores.  The same computations were 

calculated to determine participants’ posttest calibration accuracy and bias.   

Mathematics Literacy.  Mathematics literacy was assessed using several sources of 

quantitative and qualitative measures to triangulate findings.  Quantitative measures were 

interpreted from the VisA instrument, Analytic Scale for Problem Solving (Wilson, 1991; 

Szetela & Nicol, 1992), and a Visualization rubric.  Qualitative data was collected from 

reviewing students’ visualizations, classroom observations, and casual conversations with the 

students and teacher, which allowed for a more complete understanding of students’ 

development of mathematics literacy.  In an effort to get an overall view of the data (Creswell, 

2007), the researcher reviewed students’ representations three times while writing memos about 

their work.  The researcher’s journal, memos, and notes from the students’ work and classroom 

interactions were reviewed to identify broad themes.    

To maintain the integrity of the study, the researcher was present in the classroom every 

other day during the intervention period and maintained a journal of field notes, memos, and 

reflections (Hays & Singh, 2012).  To minimize researcher bias, themes that emerged from 
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researcher observations and journal were cross-checked with the cooperating teacher.  

Researcher observations and interactions with participants were documented and analyzed 

simultaneously to ensure accuracy of interpreting results (Hays & Singh, 2012).  This analysis 

helped shape researcher questions, observations, and interactions for the next classroom visit.  

Analyzing such a wide range of measures allowed the researcher to provide thick descriptions 

and look deeply at students’ progress toward becoming mathematically literate.   

Analytic scale for problem-solving.  Charles, Lester, & O’Daffer (1987; 1994) 

propose that analytic scoring is a process-oriented view of evaluation, where the emphasis is on 

the problem-solving process, and “involves the use of a scale to assign points to certain phases of 

the process” (p.29).  Analytic scales consider several phases of the problem-solving solving 

process, allow for differential weighting of categories that make up the scale, and assign 

numerical values to students’ work for further analysis.        

In the current study, students’ word problems were scored using a modified version of 

Wilson’s (1991) Scale for Problem Solving (see Table 3).  The scale assigns separate scores to 

three different stages in problem solving: understanding the problem, solving the problem, and 

answering the question.  Notice there is an increase in emphasis on understanding and solving 

the problem compared to answering the problem.     
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Table 3. 

Wilson’s (1991) Analytic Scale for Problem Solving  
Analytic Scale for Problem Solving 

Understanding the problem Solving the problem Answering the problem 

0. No attempt 

 

1. Completely misinterprets the 

problem 

 

2. Misinterprets major part of the 

problem 

 
3. Misinterprets minor part of the 

problem 

 
4. Complete understanding of the 

problem 

0. No attempt 

1. Totally inappropriate plan 

2. Partially correct procedure but 

with major fault 

 
3. Substantially correct procedure 

with minor omission or 

procedural error 

 
4. A plan that could lead to a 

correct solution with no 

arithmetic errors 

0. No answer or wrong answer 

based upon inappropriate plan 

 
1. Copying error, computational 

error, partial answer for 

problem with multiple answers, 

no answer statement, answer 

labeled incorrectly 

 
2. Correct Solution 

 

 Below are three examples from students’ work to demonstrate how the analytic scale was 

applied.  It is evident from the student work in Figure 4 that she has identified all the important 

data: namely, that there is a 35ft. fence, 5 ft. wide sections, and 1 post at each end.  So, this 

student received 4 points for understanding.  This student used the visualization to solve the 

problem.  She then checked her visual representation using select operations and calculations.  

She received 4 points for her solution.  Finally, this student answered the question correctly, 

provided a label for their answer, and circled their final answer; receiving 2 points for answer 

and acquiring an overall, and maximum, score of 10.  

 

Figure 4. Example of student’s work 
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The student’s work in Figure 5 had merit, even though the wrong answer was obtained.  

This student appeared to have identified all the important data, however, there was no clear 

indication of 1 fence post on each end; he received 3 points for understanding.  This student used 

the visualization to solve the problem and he checked his visual representation using select 

operations and calculations.  Unfortunately, the visualization and the calculations did not clearly 

represent the problem; he received 2 points for his solution.  This student did not answer the 

question correctly nor did he provide a label for his answer.  He received 0 points for his answer 

and acquired an overall score of 5 out of 10 points.  

 

Figure 5. Example of student’s work 

 In the last example (see Figure 6), the student’s work indicated they did not quite 

understand the problem.  The student’s sketch of the problem did not show the length of the 

fence as 35 ft.  Even though the student identified that each section of fence was 5 ft. long, there 

were only four sections, suggesting 20 ft. of fence configured as a square with no ‘ends,’ not 35 

ft. as the question indicated; she received 1 point for understanding.  Her plan was to create a 

visualization and make some calculations.  The plan itself could have lead somewhere (it did in 

the first example), but it was not correct; receiving 1 point for solution.  Finally, this student 
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received 0 points for answer because they provided a wrong answer based upon and 

inappropriate plan.  She acquired an overall score of 2 points. 

 

Figure 6. Example of students’ work 

Students’ scores on the analytic scale were further reviewed to verify the level of 

improvement at which understanding of the context of the problem, the solution procedure, and 

the answer requirements were evident between the pretest and posttest and across similar 

problems.  Descriptive statistics for each component of the analytic scale were calculated to 

provide additional diagnostic information, more details about students’ strengths and 

weaknesses, and specific determination about the effectiveness of the intervention for improving 

students’ mathematics literacy.  To check scorer reliability, a content area expert and the 

researcher scored a sample of the pretests and posttests.  An intraclass correlation coefficient 

(ICC) was calculated to confirm interrater reliability.   

  Visualization rubric.  A five-level rubric was used to evaluate students’ ability to 

link important information from the word problem to a visual representation (Draper & Wimmer, 
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2015) (see Appendix E).  Level 5, as in Figure 4, indicated that the diagram was a valid and 

appropriate linked representation of the word problem, while a level 2, as in Figure 6, suggested 

that the diagram was not a valid or linked representation of the problem and depicted multiple 

major identifiable errors.  Level 1 was scored if no diagram was provided.  To check scorer 

reliability, a content area expert and the researcher scored a sample of the pretests and posttests.  

An intraclass correlation coefficient was calculated to confirm interrater reliability.   

Classroom observations.  Classroom observations were conducted to observe 

students’ natural occurring behaviors in the classroom setting, such as individual practice, 

collaboration, willingness to try problems, and perseverance.  During warm up activities the 

researcher observed the class to better understand how the students engaged with the activity.  To 

gain deeper insight to students’ behaviors, observations were limited by looking for specific 

aspects of performance or attitude, and sometimes the researcher selected only a few students to 

observe.  Although the researcher often had a plan during observations, she was also flexible 

enough to note other significant behaviors that may have been displayed.  During instructional 

time, however, the researcher was an active participant in the classroom and engaged in casual 

and informal conversations with the students and teacher.  This information was used to gain 

more insight into students’ abilities to deal with the data and choose appropriate strategies and to 

better understand the teachers’ beliefs about the students’ abilities, attitudes, and behaviors.  The 

researcher recorded the overall responses and findings briefly and objectively in a reflective 

journal. 

Fidelity of Implementation.  This study was conducted in a more ecologically valid 

context of the real-world classroom with the same teacher instructing both groups of students.  

To document fidelity of implementation, warm up lessons from both the intervention and 
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comparison groups were observed by the researcher.  This ensured that the cooperating teacher 

incorporated the intervention as he was trained to do.  While observing the lessons, the 

researcher used a checklist (Jitendra, Harwell, Dupuis, Karl, Lein, Simonson, & Slater, 2015) 

developed to document the presence of the core features of metacognitive training (see Appendix 

E).  The same checklist was used in the control conditions to evaluate program differentiation 

and determine whether the problem-solving strategies group was provided any key elements of 

the metacognitive training.  For each observation, the researcher evaluated whether the teacher 

completed all five components and questions corresponding to MT and all five components for 

the PPS.   
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CHAPTER 4 

Results 

 In the present study, the researcher examined how metacognitive training during Algebra 

warm-up activities influenced lower achieving students’ calibration accuracy, achievement, and 

development of mathematics literacy.  In Chapter 4, I first report the verification of fidelity to 

evaluate group differentiation and diffusion of treatment.  Second, I describe the data cleaning 

and assumption checking methods and decisions.  Third, I report how the metacognitive training 

influenced students’ mathematics achievement.  Fourth, I examine how the metacognitive 

training influenced students’ calibration accuracy and bias.  Lastly, I report the influence 

metacognitive training had on lower achieving students’ development of mathematics literacy.  

Fidelity of Implementation 

A checklist was used by the researcher during classroom observations to ensure that the 

cooperating teacher was implementing the intervention as he was trained to do so, and to 

evaluate program differentiation to determine whether the problem-solving strategies group 

received any key elements of the metacognitive training.  The cooperating teacher accurately 

implemented the five key features that were shared among the metacognitive training and the 

problem-solving strategy which included 1) read the problem 2) pull out important information 

3) draw a visualization 4) solve the problem and (5) check your work.   

There were two metacognitive questions for each of the five key features in the MT 

group.  On five different occasions, the researcher observed that the teacher did not address all 

ten metacognitive questions with the intervention group.  In fact, on the first day of observation 

the teacher only addressed six of the ten questions.  The researcher retrained the teacher, 

emphasizing the importance of addressing all ten metacognitive questions during every warm-up 
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activity.  After the retraining, the teacher did much better, missing only one question on four 

different occasions throughout the duration of the study. 

The same checklist was used to determine whether the problem-solving strategies group 

was provided any key elements of the metacognitive training.  On seven different occurrences, 

the PSS group was inadvertently exposed to metacognitive questions.  Table 4 provides a list of 

the questions and how many times the question was inadvertently asked to the comparison 

group.   

Table 4.  

Metacognitive Questions and Frequency Used in the Comparison Group 

Metacognitive Question Frequency 

Do you know what all the words mean? 2 

Do I need a formula or special notation? 3 

What is the unknown? 1 

What are the data? 5 

 

Data Cleaning 

 Data cleaning was used to identify and correct errors in the data to minimize their impact 

on the study’s results.  For this study, data was collected over a period of 17 consecutive days.  

Exploratory descriptive statistics were used to check for missing data and outliers.  The data 

from two participants was removed from the analysis, because they enrolled in the course two 

days after the intervention began.  Two additional data points were removed from data analysis, 

because they were identified as an extreme value and outlier since they were both more than 

three standard deviations from the mean (Field, 2013).  Three participants were missing some 

data, but remained in the analysis, leaving a total of 33 data points for analysis.   
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Descriptive Statistics 

 One independent variable, Group, was used in the analysis.  Group was categorized into 

the intervention group (N = 18) and comparison group (N = 15).  There were five dependent 

variables: test scores, prediction, postdiction, bias, and mathematics literacy.  To determine 

students’ test scores, all six word problems were scored as a 1 for a correct answer and 0 for 

incorrect answer.  A sum score was computed (0-6) for each student for the total number of 

correct answers (actual score) to determine students’ achievement score.  Prediction calibration 

accuracy was computed by calculating the absolute value of the difference between participants’ 

total prediction scores and their total actual scores on the tests.  Calibration bias was calculated 

by calculating the difference between participants’ predictions and their actual scores.  The same 

computations were calculated to determine participants’ posttest calibration accuracy and bias.  

Table 5 presents the descriptive statistics that were calculated for the dependent variables by 

group for both the pretest and posttest. 
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Table 5.  

Descriptive Statistics for Calibration Accuracy and Achievement 

Group 

 Problem Solving  Metacognitive Training  

 M SD M SD  

Pretest      

    Prediction    2.43 0.37 2.00 0.33  

    Postdiction 1.93 0.35 1.50 0.32  

    Test Scores 2.07 0.44 1.50 0.37  

Posttest      

    Prediction 

    Postdiction 

   Test Scores 

 

    PreBias 
 

     PostBias 

 2.57 

 1.93 

 3.21 

 

-1.00 

 

-0.50 

0.40 

0.50 

0.54 

 

0.77 

 

0.72 

1.25 

1.00 

2.44 

 

0.88 

 

0.75 

0.25 

0.26 

0.37 

 

0.34 

 

0.31 

 

 

Mathematics literacy was more qualitative and is described in depth later.  However, 

some additional dependent variables were used to analyze mathematics literacy: analytic scale 

for problem solving scores, component scores of the analytic scale for problem solving, and 

visualization rubric scores.  The analytic scale was used to determine a wholistic view of three 

components: student understanding, solution, and answer for each problem.  The analytic scale 

scores ranged from 0-10.  Individual component scores of the analytic scale range from 0-4 for 

understanding, 0-4 for solution, and 0-2 for answer.  A rubric was used to score students’ visual 

representations as an aspect of their mathematics.  Visualization scores range from 1-5.  Table 6 

shows the descriptive statistics for the dependent variables involving mathematics literacy.  
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Table 6.  

Descriptive Statistics for Mathematics Literacy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assumption Checking 

 

 Univariate and exploratory descriptive statistics were used to check for underlying 

assumptions of an analysis of covariance (ANCOVA).  Groups were independent samples, 

meaning that no participant was in both groups.  Shirpiro-Wilk tests were used to determine 

normality of the dependent variables by group.  The dependent variables prediction accuracy and 

achievement scores were normally distributed.  The dependent variable, postdiction accuracy, 

was not normally distributed, however, ANCOVA is robust to violations of normality.  Through 

visual inspection of scatterplots, a linear relationship between the covariates and the 

corresponding dependent variables, by group, appeared to be linear.  Homogeneity of regression 

Group 

 Problem Solving  Metacognitive Training  

 M SD M SD  

Pretest      

  Analytic Scale 

  Understanding    

4.81 

2.21 

2.42 

1.06 

3.97 

1.74 

2.88 

1.18 

 

  Solution    2.07 0.95 1.68 1.14  

  Answer 0.69 0.54 0.56 0.61  

  Visualizations 

Posttest 

   2.68         0.96           2.28 0.82  

  Analytic Scale 

 

  Understanding 

 

  Solution 

 

  Answer 

 

  Visualizations 

6.87 

2.67 

2.63 

1.12 

 

2.95 

3.02 

1.34 

1.35 

0.76 

 

1.08 

5.66 

2.49 

2.26 

0.84 

 

2.42 

3.08 

1.19 

1.12 

0.59 

 

0.90 
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slopes was significant for achievement scores by group, suggesting that the relationship between 

the pretest achievement scores and posttest achievement scores were not consistent between both 

groups.  Homogeneity of regression slopes was not significant for prediction or postdiction 

accuracy, suggesting consistency between groups.  Levene’s test for homogeneity of variance 

between groups was significant for all three dependent variables.  Three ANCOVAs were 

performed to determined differences between groups across the three dependent variables: 

achievement, prediction accuracy, and postdiction accuracy. 

Achievement 

 There were no significant pretest differences between the groups before the intervention 

for achievement, F(1, 30) = 1.00, p > 0.05.  The data was analyzed to determine how the 

metacognitive training influenced the achievement scores of lower achieving Algebra students.  

To determine students’ achievement scores, all six word problems from the VisA instrument 

were scored as a 1 for a correct answer and 0 for incorrect answer.  A sum score was computed 

(0-6) for each student for the total number of correct answers (actual score) to determine 

students’ achievement score. 

Using the data from Table 5, an ANCOVA was performed to determine if there was a 

statistically significant difference between the intervention and comparison groups in terms of 

achievement, while controlling for their pretest scores.  Not surprisingly, the results revealed that 

the covariate, pretest scores, were significantly related to students posttest achievement scores, 

F(1, 30) = 14.33, p < 0.00, partial 2 = 0.32.  If a student had a high score on the pretest, they 

were more likely to score high on the posttest, in turn, if a student scored low on the pretest, they 

were more likely to score low on the posttest.  There was no significant effect of achievement 

scores between groups, after controlling for the effect of pretest scores, F(1, 30) = 0.86, p > 0.05, 
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partial 2 = 0.03.  This means there was no significant differences between the groups on the 

posttest when considering their pretest scores.  Interestingly, both the intervention and 

comparison groups improved in achievement scores from pretest to posttest (see Figure 7). 

 
Figure 7.  Average pretest and posttest achievement scores by group. 

 

Calibration Accuracy 

 The data was analyzed to determine how metacognitive training influenced the 

calibration accuracy of lower achieving Algebra students.  I organized the results by prediction 

accuracy, postdiction accuracy, and bias.  The participants’ prediction calibration accuracy was 

computed by calculating the absolute value of the difference between their total prediction scores 

and their total actual scores (number correct) on the tests.  The participants’ postdiction 

calibration accuracy was computed by calculating the absolute value of the difference between 

their total postdiction scores and their total actual scores (number correct) on the tests.  
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Calibration bias was calculated as the signed difference between participants’ predictions or 

postdictions and their actual scores (Schraw, 2009).  

Prediction Accuracy.  There were no significant pretest differences between the groups 

before the intervention prediction accuracy, F(1, 30) = 0.73, p > 0.05.  Using the data from Table 

5, another ANCOVA was performed to determine if there was a statistically significant 

difference between the intervention and comparison groups in terms of prediction accuracy, 

while controlling for their pretest predictions.  There was a significant difference in students’ 

prediction accuracy between groups, after controlling for the effect of pretest differences, F(1, 

29) = 6.49, p < 0.05, partial 2 = 0.18.  The intervention group was significantly more accurate in 

their predictions on the posttest (see Figure 8).  It must be noted that lower scores mean better 

calibration accuracy.    

 
Figure 8. The effect of group on participants’ prediction accuracy.  Note: Lower scores mean 

better calibration accuracy.   
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Postdiction Accuracy.  There were no significant pretest differences between the groups 

before the intervention for postdiction accuracy, F(1, 30) = 0.81, p > 0.05.  Using the data from 

Table 5, a third ANCOVA was performed to determine if there was a statistically significant 

difference between the intervention and comparison groups in terms of postdiction accuracy, 

while controlling for their pretest postdictions.  There was no significant difference in students’ 

postdiction accuracy between groups, after controlling for the effect of pretest differences, F(1, 

27) = 6.49, p > 0.05, partial 2 = 0.09.  The intervention group was more accurate in their 

postdictions than the comparison group, and became even more accurate in their postdictions 

after the intervention.  The comparison groups’ postdiction accuracy remained exactly the same 

from pretest to posttest (see Figure 9).    

 

 
Figure 9. The effect of group on participants’ postdiction accuracy.  Note: Lower scores mean 

better calibration accuracy.   
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Calibration Bias.  Another way to look at calibration accuracy is through bias scores.  

As was described in the method section, bias scores were derived from participants’ prediction 

and postdiction accuracy.  Participants that make judgments that are higher than their actual 

scores are overconfident and participants that make judgements that are lower than their actual 

scores are underconfident.  On average, students in the comparison group were underconfident in 

their predictions (M = -1.00, SD = 0.77) and students in the intervention group were 

overconfident in their predictions (M = 0.88, SD = 0.34).  Students in the comparison group were 

more accurate in their postdictions (M = -0.50, SD = 0.72) than the students in the intervention 

group (M = 0.75, SD = 0.31).  Figure 10 provides a visual representation of students’ bias scores 

on the posttest.     

 
Figure 10. Students’ prediction and postdiction bias scores on the posttest.  Note: Scores closer 

to zero mean better calibration accuracy.   
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Mathematics Literacy 

 Both quantitative and qualitative analyses were used to determine how metacognitive 

training influenced lower-achieving Algebra students development of mathematics literacy.  

Mathematics literacy is typically assessed as a spectrum of students’ ability.  Multiple aspects of 

data analyses were conducted to determine students’ development of mathematics literacy.  Data 

from the analytic scale for problem-solving, components of the analytic scale, visualizations, 

informal conversations, and classroom observations were analyzed to look deeply at students’ 

development of mathematics literacy.  

Analytic Scale for Problem Solving.  Students’ problems were scored using Wilson’s 

(1991) version of the Analytic Scale for Problem Solving.  The analytic scale was used to 

determine a wholistic view of three components: student understanding, solution, and answer for 

each problem.  Descriptive statistics for the analytic scale are available in Table 6.  An intraclass 

correlation coefficient (ICC) was calculated to confirm interrater reliability.  The ICC for the 

pretest and posttest were .94 and .88, respectively, which is considered to be excellent reliability 

(Cicchetti, 1994).  An ANCOVA was performed to determine if there was a statistically 

significant difference between the intervention and comparison groups in terms of students’ 

analytic problem-solving scores, while controlling for their pretest analytic scores.  There was no 

significant difference in students’ analytic scores between groups, after controlling for the effect 

of pretest differences, F(1, 30) = 0.14, p > 0.05, partial 2 = 0.34.  The intervention group scored 

lower than the comparison group on both the pretest and the posttest.  Both groups, however, 

improved their scores on the analytic scale after the intervention, overall; 81% of the students 

improved on the analytic scale (see Figure 11).  This finding suggests a wholistic view of 
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students understanding, solution, and answer to the problems improved in both groups from 

pretest to posttest; these are key features of mathematics literacy. 

 
Figure 11. Students’ average scores on the Analytic Scale for Problem Solving from pretest to 

posttest by group. 

 

The following example demonstrate Ken’s (pseudonym) understanding, solution, and 

answer to corresponding problems before and after the intervention.  In Figure 12, it is noticeable 

on the pretest that Ken chose not to, or was not capable of, creating a visual representation of the 

problem, which would demonstrate some understanding.  Ken did not offer a solution procedure 

or rationale for his answer.  In addition, Ken’s answer was incorrect, was not labeled, nor was it 

circled, as prescribed in the question.  By simply presenting only a number answer suggests Ken 

guessed the answer, assuming, that is, that the 16 noted on the paper was a solution and not the 

Ken’s work.   
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Figure 12. An example of Ken’s response to question number six on the pretest. 

 

 

Figure 13. An example of Ken’s response to a similar question on the posttest. 

On Ken’s posttest, however, he demonstrated understanding of the problem through the 

visualization he created (see Figure 13).  His visualization made the words to the problem more 

concrete, provided him a visual representation of the problem, showed his problem-solving 

process, and anchored a solution. The visualization also provided evidence of how he solved the 

problem and how his appropriate plan led to an accurate solution to the problem.  Although 
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unlabeled, Ken showed additional understanding of the question because he circled the number 

12, indicating it was his final answer. 

 Figures 14 and 15 demonstrate another example of a students’ improved understanding, 

solution, and answer to similar problems before and after the intervention.  On the pretest, Cay’s 

(pseudonym) sketch is not an accurate representation of the problem, suggesting she did not fully 

understand the problem.  Cay did not represent that the path was 27 meters long, nor that the 

bushes were three meters apart.  Cay calculated that 3 x 9 = 27, perhaps signifying that there 

should be nine bushes, but the sketch does not represent this; there are only eight bushes, four on 

each side of the path.  Cay does acknowledge that there needs to be an even number of bushes, 

so instead of nine bushes she concluded eight bushes would be sufficient.  Cay misinterpreted a 

major part of the problem, and her solution was inappropriate.  Although her answer was 

incorrect based upon an inappropriate plan, she did circle and label her answer (see Figure 14).   

 
Figure 14. An example of Cay’s response to a question on the pretest. 
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On the posttest, however, Cay demonstrated complete understanding of the problem 

through their visual representation.  Notice how she sketched the fence as 35 ft. long with each 

section of the fence 5 ft. wide (see Figure 15).  Not only did she specify that there were fence 

posts on each end of the fence, but she even sketched fence posts every 5 feet apart.  Cay showed 

her problem-solving procedure by numbering and totaling the fence posts.  Her answer was 

correct, labeled, and circled, suggesting a complete and accurate understanding, solution, and 

answer for the problem.       

 

Figure 15. An example of Cay’s response to a similar question on the posttest.   

 Components of Analytic Scale.  The analytic scale provided a wholistic view of students 

understanding, solution, and answer while solving word problems.  Students’ scores on the 

analytic scale were further reviewed to verify the level of improvement at which understanding 

of the context of the problem, the solution procedure, and the answer requirements were evident 

between the pretest and posttest with similar problems.  Descriptive statistics for each component 

of the analytic scale were calculated to provide additional diagnostic information, more details 

about students’ strengths and weaknesses, and specific determination about the effectiveness of 
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the intervention for improving students’ mathematics literacy.  Table 6 shows the descriptive 

statistics for each component of the analytic scale.  

Understanding.  The intervention group scored lower than the comparison group on both 

the pretest and the posttest for the component of understanding the problem.  Both groups, 

however, improved their understanding after the intervention (see Figure 16).  It is important to 

note that the intervention group made greater gains in understanding after the intervention than 

the comparison group, an increase of 0.75 and 0.46, respectively.  This is a valuable finding 

because understanding the problem is important for developing a solution and correctly 

answering the problem (Stylianou, 2002) and is a key aspect for developing one’s mathematics 

literacy. 

 
Figure 16. Students’ understanding scores on the Analytic Scale for Problem Solving from 

pretest to posttest by group. 
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Solution.  The intervention group scored lower than the comparison group on both the 

pretest and the posttest for the component of solving the problem (see Figure 17).  Both groups, 

however, improved their solutions after the intervention by almost the same amount (0.56 and 

0.58). 

     

 
Figure 17. Students’ solution scores on the Analytic Scale for Problem Solving from pretest to 

posttest by group. 
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Answer.  The intervention group scored lower than the comparison group on both the 

pretest and the posttest for the component of answering the problem (see Figure 18).  Both 

groups improved their answers after the intervention with the comparison group making greater 

gains.  Students in the intervention group showed little improvement in the component of 

answering the problem, an increase of only 0.28.      

 

 
Figure 18. Students’ answer scores on the Analytic Scale for Problem Solving from pretest to 

posttest by group. 

 

A comparison of students’ understanding, solutions, and answers showed that students in 

the comparison group scored higher than the intervention group on all components of the 

analytic scale (understanding, solution, answer) on the pretest (see Figure 19), suggesting 

students in the comparison group may have been more developed in their mathematics literacy 

from the onset of the study.  It is also noticeable, as shown in Table 6, that students in both the 

intervention and comparison groups improved on all components of the analytic scale from 
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pretest to posttest.  It is important to note, however, that the metacognitive training group made 

greater gains in their understanding of the problem, improved about the same in their solutions, 

and showed less gain in their answers than the problem-solving strategy group.   

 

Figure 19. Comparison of the three components of the Analytic Scale for Problem Solving from 

pretest to posttest by group. 
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  Visualizations.  A five-level rubric was used to score students’ visual representations as 

an aspect of their mathematics literacy.  An intraclass correlation coefficient (ICC) was 

calculated to confirm interrater reliability.  Descriptive statistics for students’ visualization scores 

are available in Table 6.  The ICC for the pretest and posttest were .82 and .80, respectively, 

which is considered to be good reliability (Cicchetti, 1994).  One last ANCOVA was performed 

to determine if there was a statistically significant difference between the intervention and 

comparison groups in terms of students’ visualizations, while controlling for their pretest answer 

scores.  There was no significant difference in students’ visualizations between groups, after 

controlling for the effect of pretest differences, F(1, 30) = 0.32, p > 0.05, partial 2 = 0.40.  The 

intervention group scored lower than the comparison group on both the pretest and the posttest.  

Both groups, however, improved their visualizations after the intervention (see Figure 20).   

 
Figure 20. Students’ average visual representations score by group using a five-level rubric. 
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From pretest to posttest, 69% of the students in the intervention group improved on the 

visualization scale, and 60% of the students in the comparison group improved on this scale.  

More specifically, the intervention group improved from an average score of 2.25 on the pretest, 

to an average score of 2.42 on the posttest.  The comparison group also improved from pretest to 

posttest, 2.68 to 2.95, respectively.  Student improvement in creating accurate visual 

representations of math problems is important for understanding the problem and demonstrates 

development of mathematics literacy.   

Classroom Observations.  Classroom observations were conducted by the researcher for 

the full class period, three to four days a week, for the entire duration of the study.  The 

researcher was an active participant in the classes and engaged in informal conversations with 

the teacher.  Through casual conversation, towards the beginning of the intervention, the teacher 

emphasized multiple times that his students often misbehaved and may not be cooperative with 

the study.  He was also highly concerned that his students would not be able to successfully 

understand and complete the word problems, because his students had a history of struggling 

with mathematics content, specifically word problems.  Approximately a week later, the 

cooperating teacher did not express any concerns regarding students’ behaviors and expressed 

little concern about a few students struggling with the content.  After the intervention ended, the 

teacher appeared ‘pleasantly surprised’ that the students’ behaviors were appropriate and 

compliant during the warm up activities.  The teacher did not express any concerns regarding 

students’ behavior, participation, or understanding of the content. 

 The researcher also engaged in informal, casual conversations and interactions with the 

students.  The researcher-student conversations and interactions allowed the researcher to build 

rapport with the students and establish a safe learning environment.  During classwork time, the 
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researcher noticed that one individual student would constantly come to them for assistance with 

classwork problems, often showing no attempt at solving the problem.  The researcher 

encouraged him to try to solve the problem on his own, and then when he was unsure what to do 

next to return to the researcher for some guidance.  Over the next week, the number of times the 

student sought the researcher’s help did not reduce, however, when the student did seek 

assistance, he had already attempted or completed the problem successfully.  The researcher 

spoke with the student privately, praising him for successfully attempting and solving the 

problems on his own, further suggesting that he needs to have more confidence in himself and 

his math skills.  The student responded, “I only ask for help when I don’t know what to do.”  The 

researcher corrected this misconception demonstrating to him that most of his answers were 

correct, and that he does not need affirmation from others, suggesting he maintain confidence in 

his answers.  The researcher suggested that he save his help-seeking behavior for when he really 

does not know what to do on a problem.  The student responded by saying that he “just likes to 

know if I’m doing it right.” 

 Another noteworthy conversation between a student and the researcher involved the 

posttest.  When the researcher arrived to pick the posttest up from the cooperating teacher, a 

participating student stated “The questions were easier this time. I just knew what to do.”  This 

student, exposed to the metacognitive training, did not get any problems correct on the pretest, 

but correctly answered four out of the six of the questions on the posttest, demonstrating the 

usefulness of metacognitive questioning, and his development in mathematical literacy.     

Classroom observations, casual conversations, researcher-student interactions, students’ 

work, and the researchers’ journal, containing field notes, memos, and reflections, revealed two 
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broad themes in regard to mathematics literacy: students’ vocabulary knowledge and problem-

solving strategy use.   

Vocabulary knowledge.  Since the students were engaged in word problems, there were a 

significant number of words in each problem for students to understand and interpret.  

Observations of the warm-up activities revealed that many students expressed difficulties with 

content specific vocabulary words and formulas.  For example, the researcher observed multiple 

students asking the teacher: 

“What are kilometers?”  

“What do they mean square meters?”  

“What is a vertices?”  

“What do they mean by three times as many?”  

“What is a triangular lot?”   

In addition, another warm up activity question involved three people in a race and required 

students to determine “How many different ways they could finish.”  Students did not understand 

the question as being a combination problem.  During other warm-up activities, the students 

often asked the teacher to provide them with mathematical formulas, such as the area of a square, 

area of a circle, the Pythagorean Theorem, and the area and perimeter of a rectangle.  One 

student even said to the researcher, “Not knowing the formulas made the problem difficult.”  It 

was apparent that students struggled with content specific vocabulary terms and formulas.   

 Problem-solving strategies.  Students individual work on the warm-up activities was 

followed by a class discussion and example from the teacher.  Observation of the class 

discussions revealed that students used a variety of strategies to complete their warm-up 

activities.  Many students shared or demonstrated their problem-solving strategy to the class.  
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Most students created a visualization, as requested by the researcher, to demonstrate their 

understanding and to solve the problem (see Figure 21).  The question was:  

There are some bicycles and tricycles at the playground.  There are 7 seats and 19 wheels. 

How many bicycles and tricycles are there? 

 

Figure 21. Example of Jon’s work when using a visual representation to solve the problem.   

The student whose work is in Figure 20, Jon, shared his problem-solving strategy with 

the class.  He said he knew that a bicycle had two wheels and a tricycle has three wheels.  He 

also knew that there was a total of seven seats.  To begin with, he decided to draw the seven seats 

and then make the seats into bicycles and count the wheels, which totaled 14.  Jon then decided 

to add one wheel to each bicycle, making it a tricycle, until he had a total of 19 wheels.  Lastly, 

he counted how many bicycles and tricycles he created, and accurately answered the question on 

a different page stating, “two bi five tri.” 

 A couple of students, however, were particularly fond of solving the problems 

algebraically rather than creating a visualization (see Figure 22).  It is obvious that Libby had a 

complete understanding of the problem, as demonstrated through her accuracy in setting up the 

problem algebraically.  In the first equation, x represented roses which were $2.00 each, and y 

represented carnations which were $0.75 each, and the bouquet totaled $20.50.  A florist was 

putting together a bouquet with a total of 14 flowers, second equation.  Students were asked to 
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determine how many of each flower was needed for the bouquet.  Libby admitted she entered the 

two formulas into her calculator to determine the solution.  The question was:  

The florist advertises roses for $2.00 each and carnations for $0.75 each.  If John pays $20.50 

excluding tax, for a bouquet of 14 flower for Teresa, how many of each flower is in the bouquet? 

 

Figure 22. Example of Libby’s work when solving the problem algebraically. 

Other students preferred to “make a chart and look for a pattern” (see Figure 23).  Kevin 

informed the class about his table for the bicycle and tricycle problem mentioned earlier.  He 

said he selected two numbers that totaled seven the total number of seats between the two types 

of bikes (he inaccurately labeled this “wheels” on the chart).  Kevin then multiplied the number 

of seats by how many wheels and summed the wheels together to get a total.  He noticed as the 

number of tricycles increased the number of total wheels also increased; resulting in an accurate 

solution.  
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Figure 23. Example of Kevin’s work when solving the problem by making a chart and looking 

for a pattern. 

  Many students reported using “random guess and check” to solve the word problems (see 

Figure 24).  In this example, Asia was solving the flower bouquet problem mentioned earlier.  

She knew there was a total of 14 flowers in the bouquet, so she started with seven of each flower 

and calculated the total ($19.25), which was not enough.  She randomly picked 10 roses and 4 

carnations (total 14) and calculated the total for each flower.  Noticing that they totaled $20.00 

with the roses, leaving only $0.50 left to buy carnations, which totaled $3.00, she decided to 

select another combination of 14.  Asia then selected eight roses and six carnations, calculated 

the costs, and concluded it was the correct combination of flowers.    

 

Figure 24. Example of Asia’s solution using guess and check method. 
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 Students used other interesting strategies to demonstrate their understanding of the 

problem.  Some students used an organized list to keep their work manageable during a difficult 

problem.  The student’s work in Figure 25 shows their calculations on the right and a visual 

representation of the process (building a wall) on the left.  It is interesting that this student was 

the only student that built the wall from bottom to top.   

 

  

Figure 25. Example of student work when solving the problem by making an organized list. 

Another student created a very concrete visualization of the problem (see Figure 26).  

The student created 60 markers, put a circle around 30 of them for elimination, and circled an 

additional five for elimination.  The remaining markers, not circled, was the answer to the word 

problem.  The question was:  

A hitchhiker set out on a journey of 60 miles.  He used a map to calculate the distance.  He 

walked the first 5 miles and then got a lift from a taxi driver.  When the taxi driver dropped him 

off he still had half of his journey to travel.  How far had he traveled in the taxi? 
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Figure 26. Example of student work when solving the problem by using a concrete 

representation. 

 

In the last example (see Figure 27), a student used a simple number sentence to solve the 

word problem.  Using a calculator, they individually added the cost of one apple or one orange 

until they reached the total cost they were looking for.  It should be noted, however, that this 

student used apple and oranges and the problem was asking for oranges and bananas.  The 

question was:  

A grocer mixes oranges and bananas to make a 10-pound fruit basket.  The oranges cost $0.75 

per pound and the bananas cost $0.60 cents per pound.  How many pounds of each should he use 

if the basket is to cost $6.90? 
   

 

Figure 27. Example of student work when solving the problem by using a simple number 

sentence. 
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 Classroom discussions of the warm up activities provided the researcher deeper insight to 

the students’ vocabulary knowledge and problem-solving strategy usage.  Observations of these 

discussions revealed limitations in vocabulary knowledge, specifically for content specific terms 

and formulas.  The broad spectrum of visualizations were representative of the numerous 

available strategies that can be utilized by students for problem-solving, providing a glimpse into 

their development of mathematics literacy.   

Summary 

 In Chapter 4, I reported the findings of how metacognitive training during Algebra warm-

up activities influenced lower achieving students’ calibration accuracy, achievement, and 

development of mathematics literacy.  The results revealed there was no significant difference in 

achievement scores between groups, and in fact both the intervention and comparison groups 

improved in achievement scores from pretest to posttest.  Regarding calibration accuracy, the 

intervention group was more accurate than the comparison group in their predictions and 

postdictions.  Overall, students in the intervention group were overconfident in their calibrations, 

while students in the comparison group underconfident in their calibrations.   

Students’ data from the intervention group provided deeper insight into their 

development of mathematics literacy.  An in-depth analysis of students’ understanding, 

solutions, and answers of the mathematical word problems from pretest to posttest revealed that 

students that were exposed to the metacognitive training showed improvement in all analytic 

components of problem solving.  The results were triangulated using analysis of students’ 

visualizations of the math problems and classroom observations.  The results suggest that 

explicitly teaching students Polya’s problem-solving process with metacognitive questioning was 

an effective strategy for developing their mathematical literacy.  In Chapter 5 I elaborate on these 
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results by providing a discussion by research question, important conclusions drawn from 

findings, limitations of the study, and recommendations for further research.    
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CHAPTER 5 

Discussion 

Chapter 5 contains a discussion of the results, research, and major findings for each 

question.  In addition, discussions of implications for practice followed by limitations of the 

study are included.  The conclusion of the chapter contains recommendations for further 

research. 

Metacognitive Training and Achievement 

It was hypothesized that metacognitive training with the problem-solving strategy could 

enhance students’ mathematics achievement.  Quantitative analyses showed that students who 

were exposed to the problem-solving strategy with metacognitive training did not score higher 

on the achievement test than the comparison group.  It is possible that the experimental 

manipulation, metacognitive questions, was not powerful enough to augment the problem-

solving strategy.  Students in the intervention group may not have applied the metacognitive 

questions when they were solving the problem because they were too engaged in the problem-

solving process itself.  Perhaps, teaching all of the students the problem-solving strategy first, 

then implementing metacognitive questions with the intervention group, would have revealed 

different results.   

This study is not the only one to show no differences in students’ achievement scores.  

Labuhn and colleagues (2010) discovered similar results when exploring the effects of 

metacognitive feedback and standards on students’ problem-solving scores.  They found that 

extensive metacognitive training with middle school students showed no significant differences 

in mathematics achievement between groups for metacognitive standards or feedback.  Likewise, 

Huff and Nietfeld (2009) found that their intervention may have focused only on monitoring but 
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not control of learning, resulting in increased calibration accuracy but not performance.  In this 

study it is possible that students who received metacognitive training may have improved their 

monitoring abilities, but they did not improve their content knowledge or problem-solving 

abilities.     

The findings of the current study contrast with the research that is available, which 

suggests a relationship between metacognitive training and mathematics achievement (Cleary et 

al., 2017; DiGiacomo and Chen, 2016; Kramarski & Mizrachi, 2006; Montague et al., 2014; 

Pennequin et al., 2010).  For example, Pennequin et al. (2010) investigated the effects of 

metacognitive knowledge and skills training on students problem-solving performance.  Students 

were taught to create representations of the problem, develop problem solving strategies, identify 

key words for interpretation, identify mathematical expressions, and apply the metacognitive 

knowledge and skills individually.  The researchers found that metacognitive training improved 

students’ mathematical word problem-solving performance.  Likewise, DiGiacomo and Chen 

(2016) also investigated the effect of metacognitive training on mathematics performance.  

Students in the intervention group were taught SRL strategies, were provided feedback about 

their performance, and completed a worksheet designed to elicit self-reflection.  Students in the 

comparison group used a computer program that was part of their math curriculum.  The 

researchers found that the treatment group, exposed to metacognitive training, had significantly 

higher math performance than the control group.  Although there are mixed research results 

regarding metacognitive training and achievement, this study contributes to the literature and 

may offer deeper insight about effective metacognitive strategies that improve student 

mathematics performance.    
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Although there were no significant differences between groups on achievement, overall, 

the problem-solving strategy instruction itself was effective for improving students’ 

achievement, with or without the metacognitive questions, which is supported by previous 

research (Krawec et al., 2013; Montague et al., 2014; Polya, 1945; Xin et al., 2005).  Both 

groups improved about the same amount in academic performance from pretest to posttest.  One 

explanation for the improvement in both groups is that students were monitoring their learning 

by engaging in metacognitive processes simply by participating in the five-step problem-solving 

process.  When students ‘check their work,’ they are using metacognitive processes to review 

their solution by determining if their computations were accurate, if their visualization is a good 

representation of the problem, or if their answer was reasonable.  Therefore, all the students may 

have been engaging in the metacognitive questioning, either implicitly or explicitly, through the 

problem-solving process.  Research has found students’ achievement to improve after engaging 

in metacognitive processes during problem-solving activities (Cleary et al., 2017; Krawec et al., 

2013; Montague et al., 2014; Xin et al., 2005).  For example, Cleary et al. (2017) found that 

mathematics students’ achievement scores improved over time for a group of students that were 

exposed to metacognitive questions and reflections.  Likewise, Montague and colleagues (2014) 

found that specialized instruction involving math word problem solving was effective for 

improving students’ performance, particularly among lower achieving students.  If students 

naturally engage in metacognitive questions when problem-solving, then diffusion of treatment is 

a concern.  Future research could investigate which metacognitive questions and strategies 

students naturally engage in when problem-solving in mathematics classrooms.      

Students mathematics achievement may have improved by engaging in the problem-

solving solving process because students were taught a plan (PSS) and a strategy for solving 
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mathematics word problems.  Schoenfeld (1985) referred to a plan as control and strategies as 

heuristics.  He proposed that both control and heuristics were necessary for successful problem 

solving.  Additionally, planning for the task using the problem-solving steps may have provided 

students “a more complete mental representation of the task” (Hacker & Bol, 2018, p.15).  It is 

possible when lower achieving students encounter a word problem, they begin to solve the 

problem without developing a plan of action.  The five problem-solving steps all the students 

used required them to think about their problem-solving process, engaging them in thinking 

about their learning.  Asking students to identify important information, draw a representation of 

the problem, and check their work, required them to make connections between words, symbols, 

and visuals.  For example, when students identify important information in a word problem, they 

are engaging in a metacognitive process to access and connect their prior knowledge, as well as 

understand and distinguish between relevant and irrelevant information (Cleary & Kitsantas, 

2017; Schoenfeld, 1985).  They may have even read the problem multiple times, a metacognitive 

strategy, to ensure understanding of the problem, information, and question.  Creating a visual 

representation of a word problem requires students to think deeply about their understanding of 

the problem to appropriately link the important information and the unknown visually.  Previous 

research has emphasized the importance of visual representations of math problems, because 

they provide examples of how math concepts are applied (Dexter & Hughes, 2011; Edens & 

Potter, 2007; Montague et al., 2014; Polya, 1945; Schoenfeld, 1985) and facilitate student 

comprehension (Krawec, 2014).  In fact, Krawec (2014) concluded that visual representations of 

math word problems was critical for accurate problems-solving, especially for lower achieving 

students, a claim that is supported by the data found in the present study.    

Metacognitive Training and Calibration Accuracy 
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It was hypothesized that students that were exposed to metacognitive training with the 

problem-solving strategy would be better calibrated than students exposed to the problem-

solving strategy without metacognitive training.  Calibration accuracy was measured by 

quantitative analyses of students’ predictions, postdictions, and bias.  Predictions are based, in 

part, on students’ judgments (confidence) of their abilities, knowledge, and skills.  Faulty 

assessments of confidence lead to inaccurate predictions of performance (Glenberg & Epstein, 

1985).  In turn, sound assessments of confidence lead to accurate predictions of performance. 

Postdictions, on the other hand, are based on students’ beliefs about how they performed 

on a test.  Postdictions are usually more accurate than predictions because predictions typically 

have an uncertainty to them (Foster, Was, Dunlosky, & Isaacson, 2017), whereas, postdictions 

are grounded on students’ judgments of their abilities of the task at hand (Glenberg & Epstein, 

1985; Hacker & Bol, 2018).  For example, completing a test provides students with additional 

information about the skills and content knowledge needed for mastery of the test which, in turn, 

should allow them to better assess what they knew against what was tested.  In this study, 

quantitative analysis revealed significant differences between the groups in prediction accuracy, 

but not for postdiction accuracy.  In other words, students’ that were exposed to metacognitive 

questions made significantly more accurate predictions about their mathematics performance 

than the comparison group.   

Lower achieving students may not take full advantage of the additional information that 

is provided to them from completing the test, hence, inaccurate postdictions.  This is a reasonable 

explanation, because researchers have shown that lower achieving students lack the ability to 

self-regulate their own knowledge (Chiu & Klassen, 2010; Garavalia & Gredler, 2002; Hacker et 

al., 2008; Hawthorne, 2014; Rinne & Mazzocco, 2014).  In other words, the lower achieving 
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students in this study were not properly assessing their knowledge of the content material or their 

ability to apply the necessary skills needed to master the test.  Similarly, Glenberg and Epstein 

(1985) proposed that the knowledge subjects use in arriving at a confidence rating is imperfectly 

matched to the knowledge necessary to perform successfully on a test.  The researchers found 

that their intervention was effective for assisting students in analysis of their knowledge prior to 

taking the test, but after taking the test, the students felt it was more difficult than they thought it 

would be.  Similarly, Hawthorne (2014) argued that domain knowledge is needed for calibration 

accuracy, especially for lower achieving students.  They determined, the same skills needed to 

achieve competence are the same skills needed to evaluate ones’ competence (Hawthorne, 2014).  

Improving the accuracy of lower achieving mathematics students’ judgments of their 

performance is an important focus of research because they may not be aware of their 

mathematical knowledge, abilities, or deficits.   

 Although students that were exposed to the metacognitive training were not properly 

assessing their knowledge of the content material or their ability to apply the necessary skills 

needed to master the test, they were able to accurately judge the potential of their knowledge.  In 

this study, it is possible that the metacognitive training raised students’ general awareness of the 

importance of metacognition, a key component in becoming a life-long learner.  This is 

especially important for lower achieving students who typically struggle in assessing their 

abilities.  The intervention groups’ predictive accuracy showed that the metacognitive training 

may have allowed students to adequately self-assess and judge the potential of their knowledge 

concerning mathematics problem-solving.  Few research studies support this claim (Hawthorne, 

2014; Pennequin et al., 2010; Schneider, Castleberry, Vuk, & Stowe, 2014).  For example, 

Pennequin and colleagues (2010) found significant differences for prediction accuracy by group, 
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discovering that metacognitive training closed the achievement gap between ‘normal achievers’ 

and ‘low achievers’ with regard to predicting their own problem-solving performance when 

solving mathematical word-problems.  The researchers explained that the students’ improvement 

in prediction accuracy was related to them learning the importance of problem-solving strategies, 

which strategies to use, and how to apply them.  Likewise, Schneider et al. (2014) found that 

“students in the lowest performance quartile were the best predictors of examination 

performance” (p3).  It is important to note, that once students learn to accurately judge the 

potential of their knowledge (predictions) they may reach a ceiling effect (Hacker et al., 2000; 

Schneider et al., 2014) by showing no additional improvement in their predictive judgments.  In 

addition, as students become more aware of how they apply skills, cognizant of their 

weaknesses, and knowledgeable of the content, their postdictions should improve.   

Research has shown that lower achieving students are typically overconfident in their 

judgments (Bol et al., 2010; Garcia et al., 2016; Hacker & Bol, 2018; Pennequin et al., 2010).  In 

a study of over 500 mathematics students, Garcia et al. (2016) found that low achievers were 

more overconfident than other students.  Bol et al. (2010) reported similar results, that lower 

achieving middle school mathematics students were overconfident.  The participants in the 

current study, however, were all lower achieving secondary students, therefore, one would posit 

that most of the participants would be overconfident.  Interestingly, this was not the case, as the 

students in the metacognitive training group were consistently overconfident in their judgments 

and the students in the comparison group were steadily underconfident.  Reflecting on the 

literature, it can be argued that because the students in the metacognitive training group scored 

lower than the comparison group on both the pretest and the posttest, they may struggle more 
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with mathematics problem-solving, and therefore were more lower achieving students than the 

students in the comparison group.    

Another explanation for students’ overconfidence could be wishful thinking (Finn & 

Metcalfe, 2014; Foster et al., 2017) or desired grade (Serra & DeMarree, 2016).  Foster and 

colleagues (2017) found that students did not account for past exam performance when making 

predictions about future exam performance.  Since past performance is a good predictor of future 

performance, this finding suggests that students were not reporting how they think they will 

perform, but rather how they want to perform.  Finn and Metcalfe (2014) proposed that students 

may overvalue their effort in attempting a task and undervalue information needed to complete 

the task.   This claim is consistent with the data found in this study; it is possible that the students 

in the intervention group increased their metacognitive awareness, which resulted in overvaluing 

their abilities and effort which, in turn, led to overconfidence.  A regression analyses conducted 

by Serra and DeMarree (2016) revealed that students’ desired grade was a stronger predictor of 

exam predictions and course predictions than actual grade.  Perhaps, the students exposed to 

metacognitive training in this study focused on the grade they wanted to receive rather than the 

grade they thought they would earn when they were challenged to make judgements of their 

performance.   

Metacognitive Training and Development of Mathematics Literacy 

It was hypothesized that students that were exposed to metacognitive training with the 

problem-solving strategy would show greater development in their mathematics literacy than the 

students that were exposed to the problem-solving strategy.  Mathematics literacy was assessed 

using several sources of both quantitative and qualitative measures to better understand and 

explain students’ progress toward becoming mathematically literate.  The data from this study 
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showed (1) that students that were exposed to the metacognitive training made greater gains than 

the comparison group in understanding of the problem, (2) that there were little differences 

between the groups in students’ solutions or visualizations, (3) the comparison group made 

greater gains in answering the problems, and (4) students in both groups portrayed a variety of 

ability levels in their mathematics literacy. 

Students that were exposed to the metacognitive training made greater gains than the 

comparison group in their understanding of the problem.  It is possible that metacognitive 

training prompted the students to become more aware of their learning process, resulting in 

deeper understanding of the problems.  More simply, it is possible that the students that were in 

the metacognitive training were more aware of the details of the word-problems.  In turn, these 

details may have assisted the students in identifying relevant from irrelevant information in the 

word-problems.  This finding is supported by other research.  Xin and colleagues (2005) found 

that schema instruction in conjunction with diagrams helped students that were at risk for 

mathematics failure to differentiate between relevant and irrelevant information during problem-

solving.  Being aware of one’s learning process is necessary to analyze and interpret 

mathematics is found to be a characteristic of expert mathematicians.  For example, Stylianou 

(2002) found that expert mathematicians continuously engaged in metacognitive processes while 

problem solving.  Experts closely monitored the details and effectiveness of each step and 

strategy while adjusting their strategies as needed during problem-solving activities (Stylianou, 

2002).  Chen and Chiu (2016) proposed that metacognitive training may force students to clarify 

concepts or generate new alternatives.  In their study regarding calibration and mathematic 

literacy, they found that students that carry out the design and restructure their own knowledge 

develop at a higher level of mathematics literacy (Chen & Chiu, 2016).  In relation to the present 
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study, the students that were exposed to the metacognitive training group were more aware of 

their learning, which allowed them to gain a deeper understanding of the problems. 

It is also plausible that the metacognitive training group developed in their understanding, 

because of multiple exposures to metacognitive questioning, dual training (Kramarski & 

Mizrachi, 2006).  As posited earlier, it is possible that the 5-step problem-solving process 

exposed all students to metacognitive questioning, implicitly.  In this case, however, the 

metacognitive training group was also explicitly exposed to metacognitive questions.  If students 

were engaging in metacognitive questions during the problem-solving process, it is unknown if 

the questions were helpful or relevant.  In addition to the unknown questions the students may 

have been asking themselves, the metacognitive training group received guided, relevant 

questions that related to the task at hand.  Other studies have also shown effects of dual training; 

metacognitive self-questioning and online discussion (Kramarski & Mizrachi, 2006) and 

guidelines in group settings (Bol, Hacker, Walck, & Nunnery, 2012).   

Although students in the metacognitive training group made greater gains in their 

understanding of the word problems, there were nearly no differences between the groups in 

students’ solutions or visualizations of the problems.  These results are consistent with the 

previous studies regarding students’ problem-solving achievement scores (Labuhn et al., 2010; 

Huff & Nietfeld, 2009; Schoenfeld, 1985).  As mentioned earlier, it is possible that the 

experimental manipulation, metacognitive questions, was not powerful enough to overcome the 

problem-solving strategy.  Students in the intervention group may not have applied the 

metacognitive questions when they were solving the problem or drawing their visualizations, 

because they were too engaged in the problem-solving process itself.   
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It is possible that the visualizations did not directly link the problem representations and 

its solution.  The visualizations may have been effective for assisting students in understanding 

the problem, but not for solving and answering the problem correctly.  Xin et al. (2005) found 

similar results and proposed that the linage of the visualization to problem solution may not be 

apparent to lower achieving students, because the students may have perceived the visualization 

as an external visual aid and did not use it as the solution.  Schoenfeld (1985) called this 

routinized performance and argued that problem-solving that relies on routine procedures does 

not enhance deeper understanding of the content.  He elaborated that specific heuristics were 

better for training tasks but were worse on transfer tasks than general heuristics.   

Moreover, the metacognitive questions focused on self-regulation rather than content 

knowledge, a finding proposed by Chen and Chiu (2016).  They found that encouraging students 

to plan, monitor, and regulate their problem-solving process was different than focusing on the 

knowledge aspect.  Guthrie and colleagues (1996) found similar results in a study involving 

elementary students’ literacy development in science classrooms.  They found that students that 

were more self-regulated made greater gains in their literacy engagement. 

Although the students that were exposed to metacognitive training improved the same 

amount as the comparison group in their solutions and visualizations, they made less gains on the 

component of answers.  It is possible that students in the intervention group did not spend as 

much of their time performing calculations and reviewing their progress as they did planning, 

organizing, and representing the information.  This finding is consistent with the research that 

suggests students spend little time reviewing and checking their work (Garcia et al., 2016).  For 

example, Garcia and colleagues (2016) found that students reported spending a large amount of 

time thinking about solutions and little time reviewing and correcting mistakes.  Klauda and 
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Guthrie (2015) discovered that student engagement and motivation does not necessarily increase 

student achievement, especially for struggling learners.  They proposed that struggling learners 

may get caught up in strategies and the thinking process which may not “facilitate gains in 

achievement” (Guthrie & Klauda, 2015, p. 266).  It is possible that the students in this study 

were overly focused on the strategies they were using to solve the problem and not as concerned 

about the accuracy of the answer they provided.     

Lastly, as suggested earlier, it is possible that the students’ ability levels were different 

between groups, signifying that students in the intervention group were less developed in their 

mathematics literacy than the comparison group.  Hiebert (1984) proposed three levels of 

problem solving.  The first level, or “site” (Hiebert, 1984, p. 499), students link symbolic 

representations with referents to create meaning.  At the second site, students link the problem to 

a procedure or algorithm with the problem.  During the last site, students connect the solution to 

the problem to a real-world or concrete context.  The metacognitive training may have assisted 

students in improving their symbolic representations, however, it did not assist them in making 

the connection to a real-world context.  Perhaps because students were not required to justify 

their solutions.  The students may have had surface understanding, in which they memorized 

mathematics facts but no relational understanding of the concepts (Schoenfeld, 1985).  

Additionally, the metacognitive training group may have planned more, but they did not evaluate 

their progress and results, possibly because they had difficulties transferring their skills beyond 

planning.  This suggests a potential relationship between strategies and mathematics literacy and 

that students need to take an active role in their learning process. 

A book by the National Research Council, entitled Adding it up: Helping children learn 

mathematics (2001) proposed that learning mathematics entails five strands which include 
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conceptual understanding (comprehension of concepts), procedural fluency (skill in carrying out 

procedures), strategic competence (ability to solve math problems), adaptive reasoning 

(reflection, explanation, and justification), and productive disposition (efficacy).  This 

framework could help to explain the results of this study.  Students that were exposed to the 

metacognitive training made greater gains in understanding, made the same gains in solution, 

and made less gains in answers than the comparison group on the components of the analytic 

scale for problem-solving.  Perhaps the metacognitive training assisted students in conceptual 

understanding and procedural fluency but not with strategic competence, adaptive reasoning, or 

productive disposition.  In addition, Adding it up (2001) proposes that these strands must be 

“intertwined” (p. 5), it is possible that all of the strands were either not addressed or not 

intertwined in this study resulting in insignificant development of students’ mathematics literacy.    

Classroom observations and review of students’ visualizations exhibited a variety of 

abilities levels across both groups which may explain the lack of differences between groups.  A 

broad range of problem solving visualizations, from abstract to concrete, were identified and 

provided details about students’ strengths and weaknesses.  Overall, students in both groups 

could represent the problem in many forms as a graph, sketch, or table, suggesting they used 

different strategies flexibly, however, most of students work showed only one attempt at the 

problems and a lack of mistakes being corrected.  Garcia et al. (2016) found similar results.  In 

their study, students used different strategies to organize the information, which showed a clear 

relationship between data and facts, however, student answers were incorrect, and they showed 

limited signs of correction and editing.  Likewise, Jacobse and Harskamp (2012) pointed out that 

building a representation of the problem is important in mathematics problem-solving and 

establishing a relationship between variables help students to solve the problem.  They concluded 
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that visual representations provide insight into students’ exploration and analysis of the problem 

(Jacobse & Harskamp, 2012).        

Classroom observations showed that both groups portrayed difficulty in understanding 

vocabulary that was presented to them in the word problems.  This is a concern because an 

important element of mathematical literacy is the ability to put “mathematical ideas and 

reasoning into words” (Friedman et al., 2011, p. 31).  In fact, Schuth, Kohn, and Weinert (2017) 

found academic vocabulary to be a significant contributor to academic achievement in 

mathematics. Developing students’ academic vocabulary is important for assisting them in 

development of mathematics literacy and should be a focus of mathematics classroom 

instruction.   

 The most interesting finding, however, is that students in both the intervention group and 

comparison group made gains in their development of mathematics literacy.  Both groups 

improved on all measures and sources used to assess mathematics literacy.  From pretest to 

posttest, students in both groups developed a better understanding of the problems, demonstrated 

their solutions, and provided more complete and accurate answers to the problems.  As explained 

earlier, the problem-solving strategy itself was sufficient to assist students in understanding, 

applying, analyzing, and evaluating the mathematics, in addition to improving students’ 

mathematics literacy.  The problem-solving strategy was equally effective for students, 

regardless of ability level.  Overall, knowledge of strategies for problem solving transferred to 

improved mathematics literacy, suggesting a relationship between strategies and mathematics 

literacy.  High school classrooms have a broad range of ability levels, so explicitly teaching a 

problem-solving procedure that emphasizes higher-order concepts and skills can benefit all 

students by making them more mathematically literate.   
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Implications for Practice 

 Overall, findings from this study have several implications for practice.  All students, 

including lower achieving mathematics, students require instruction designed to meet their needs 

(Grant et al., 2015; Labuhn et al., 2010).  The findings here provide support for the effect self-

regulation strategies (metacognitive questioning) and problem-solving strategies (five step 

process) have on lower achieving students’ achievement scores, calibration accuracy, and 

mathematical literacy.  These findings extend from school-based practices and are seen in other 

research that indicates self-regulation strategies, (Bol et al., 2016; Chen & Chiu, 2016; Cleary et 

al., 2017; Kramarski & Mizrachi, 2006) and problem-solving strategies, are teachable (Montague 

et al., 2014; Schoenfeld, 1985; Stylianou, 2002).  In addition, explicit instruction of strategies is 

beneficial for lower achieving students, particularly in mathematics (Gersten & Clarke, 2007; 

Hacker & Bol, 2018; Montague et al., 2014), and should be embedded within the curriculum 

(Hattie & Donoghue, 2016).  This finding is also valuable because low achievement in 

mathematics is an ongoing problem in the United States, and state and national mathematics 

assessments typically include problem-solving (NAEP, 2018).   

 Teacher training should raise awareness to the importance of self-regulated learning and 

metacognition, so that these techniques may be integrated consciously and effectively into the 

classroom.  Teachers are in a unique position to support students to be more aware of their 

learning processes.  They can assist students in monitoring their own learning by explicitly 

teaching learners self-regulation theory and strategies, while allowing them to practice during 

class time.  The responsibility is on the preservice teacher programs to educate pre-service 

teachers about the importance of self-regulation, metacognition, and mathematics literacy on 

students’ learning and academic outcomes.  Current administrators and mathematics teachers 
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should seek out professional development opportunities to acquire training regarding teaching 

self-regulation strategies to students.  Self-regulation is a significant component in problem-

solving and mathematics achievement and, based on the present results, is effective for 

enhancing metacognitive judgments and mathematics literacy when explicitly taught (Bol et al., 

2016) to lower achieving mathematics students using guided practice and visual aids. 

 Mathematics literacy is a broad concept and is directly influenced by many different 

variables; prior knowledge, vocabulary, personal experiences, specific skills, emotion, and the 

ability to communicate (read, write, listen, speak) and think critically.  In order to improve 

students’ performance and development of mathematics literacy, it has been suggested that 

teachers teach from a disciplinary literacy perspective (Colwell & Enderson, 2016; Draper & 

Wimmer, 2015).  Mathematics teachers should establish a learning environment that integrates 

disciplinary literacy and mathematics content, in a variety of contexts and in a unified manner, to 

support students’ development of mathematical literacy (Colwell & Enderson, 2016).  

 Lastly, it is imperative that teachers, specifically in mathematics, keep a positive caring 

attitude to avoid students’ sense of learned helplessness, discontent, and negative beliefs.  “If 

student-teacher relationships are not synergistic, they may not promote effective mathematics 

learning” (Grant et al., 2015, p. 113).  Teachers should build students’ confidence, provide a 

welcoming classroom environment, and motivate them to engage in mathematics.  Motivation 

has been found to significantly influence mathematics achievement (Cleary & Chen, 2009; 

Cleary & Kitsantas, 2017).  Take for example the student that continued to see the researcher for 

assistance and verification with their classwork.  A few choice words of encouragement and 

confidence from the researcher, reduced the students need for seeking help, and increased his 

attempts to solve the problems independently and accurately.  Negative attitudes from teachers 
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can decrease student motivation, specifically in mathematics, which can also influence the 

learning cycle of self-regulation (Cleary & Kitsantas, 2017).  These concepts, motivation and 

learned helplessness, however, have been researched extensively and are beyond the scope of 

this study.        

Limitations 

Though some limitations have already been noted in the discussion of results, they are 

described here more generally, and others should be acknowledged.  One potential limitation to 

this study is selection bias.  Always an uncontrollable variable in quasi-experimental designs, the 

researcher could not randomly assign participants to conditions because the classes were already 

predetermined.  A potential confounding variable is temporal validity, that is, the time of day the 

participants were in the mathematics classes, a variable that in this study could not be controlled.  

For example, there may be differences between having class after lunch or as the last class of the 

day.  Differences were evident between the classes in all measures, but there were no statistically 

significant differences identified, suggesting that the classes were similar.  Caution should be 

taken when generalizing the results of this study, because the sample size was small, (37 

participants) and classes were unequal (18 & 15).  Small samples reduced the power of the study 

and may explain why there were no significant results, suggesting perhaps a ceiling effect.  The 

small sample did, however, afford a detailed evaluation of students work from four perspectives; 

statistically, holistically, specifically, and visually.   

The length of the intervention is another limitation.  The results of this study should not 

be generalized to the effects of implementing SRL strategies over a longer period of time or the 

course of an entire academic year, because the students were exposed to the intervention for a 

total of only 17 days.  Although other studies have revealed successful results from short SRL 
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interventions (Bol et al., 2016; Chen & Chiu, 2016; Pennequin et al., 2010; Perels et al., 2009), 

the short time period utilized in this study is a possible area of concern.   

 The cooperating teacher’s expressed concerns about student behaviors, ability, and effort 

prior to the administration of the study.  Although his concerns diminished throughout the 

intervention period, these beliefs could have been a contributing factor to the general culture of 

the classroom.  In addition, the students in this study were classified as lower achieving students 

by class enrollment, but they were limited to only the cooperating teacher’s students.  Other 

classes, subjects, or topics within mathematics could have proven valuable if utilized within the 

study parameters.  

Lastly, it is possible that fidelity of implementation of the metacognitive training 

questions may have influenced the results of this study.  Diffusion of treatment may have 

occurred, as the cooperating teacher erroneously asked some metacognitive questions to the 

intervention group early in the study.  When discovered, the teacher received additional training, 

and the study was accurately administered for the remainder of the intervention.  If some of the 

students in the comparison group inherently utilized metacognitive questioning, there is also the 

possibility of treatment diffusion. 

It should be noted, however, that many of the limitations, such as sample size, unequal 

classrooms, and length of intervention, provide a glimpse into what is actually happening in the 

classroom.  Because this study portrays a realistic representation of research in real-world 

contexts, it offers ecological validity.   

Recommendations for Further Research  

Additional research is needed to fully understand the influence metacognitive training has 

on students’ performance, calibration accuracy and mathematics literacy.  Although this study 
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focused on lower achieving secondary algebra students, the small sample did not allow for 

analysis by gender, race, age, or special education services.  Researchers have found differences 

across these factors.  Jitendra et al. (2015) found significant differences among students problem-

solving performance by race.  Montague et al. (2014) found significant differences by ability 

level with regard to the problem solving of students with and without learning disabilities.   Ozoy 

(2012) found differences among boys and girls.  Additional research regarding these factors 

could reveal differences based by group concerning students’ monitoring and regulating their 

learning processes.     

 This study was conducted over a short period of three weeks with a small sample.  Some 

studies have had significant results during short intervention periods (Bol et al., 2016; Chen & 

Chiu, 2016; Pennequin et al., 2010; Perels et al., 2009) and with small sample sizes (DiGiacomo 

& Chen, 2016; Xin et al., 2005).  To generalize these conclusions, future research could 

longitudinally investigate the effects of self-regulated learning strategies over time or replicate 

this study with a larger sample size. 

To clearly determine the differences the explicit metacognitive questions and implicit 

metacognitive questions may have on outcome variables, it is recommended that a baseline is 

established (Dugard, File, & Todman, 2012).  All students could be taught the problem-solving 

strategy for a few weeks and then implement the metacognitive questions with the intervention 

group for a few weeks.  Allowing students to learn the problem-solving strategy first would 

eliminate implicit metacognitive questions, and perhaps ease the difficulty of the problem-

solving process, which may show the influence that explicit metacognitive questions have on 

students’ performance, calibration accuracy, and mathematics literacy.   
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Further research could compare additional groups to see the effects of metacognitive 

training on students’ performance, judgments, and mathematics literacy.  For example, 

researchers could compare four groups; one that receives metacognitive training, one that 

receives the problem-solving strategy, one that receives both metacognitive training and the 

problem-solving strategy, and one that receives neither metacognitive training nor the problem-

solving strategy.  These group comparisons could identify cause and effect relationships between 

variables and provide additional empirical evidence to the effects of metacognitive training.       

Providing the teacher with a variety of mathematics activities may offer deeper insight to 

how self-regulation could vary for different types of tasks.  Research involving different types of 

activities implemented into the curriculum could account for the novelty effect and shed some 

light onto which activities are most effective for developing students’ mathematical literacy, 

improving their academic achievement, and making them more aware of the learning processes.  

In fact, the five-step problem-solving process used in this study could be compared to other types 

of problem-solving strategies. 

National Council and Teachers of Mathematics (2000) developed Principles and 

Standards for School Mathematics (PSSM) that are intended to guide and improve mathematics 

education nationally.  Within the PSSM there are five process standards: problem solving, 

representations, reasoning and proof, communication, and connections.  This study showed that 

students’ representations improved more than their solutions.  Therefore, future research could 

focus on how students’ representations might improve students’ solutions during problem-

solving.   

 Additional qualitative research involving participants’ perceptions and reflections about 

their problem-solving process, metacognitive questions, and visual representations is warranted.  
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To add depth to a study, students could illustrate the perspectives of their problem-solving 

process through verbal and written reflections and explanations about their decisions and visual 

representations.  It has been suggested that having students explain in writing how a pictorial 

representation should be “read” by others assists in developing mathematical literacy (Old 

Dominion University, 2018).   

Additionally, different measures to assess the way students solved the word problems 

should be examined further, to gain understanding of students’ experiences and the impact it had 

on their mathematics learning (Ferguson, 2017).  A collection of assessment and qualitative data 

from students (e.g., observations, student work, grades, reflections, interviews) would provide a 

holistic view of students’ self-regulatory processes and development of their mathematics 

literacy.   

To further gauge the relationships between strategy use, achievement, self-regulation, 

metacognition, and mathematics literacy, specific case studies of students’ data could be 

evaluated (Ferguson, 2017).  Lastly, a variety of measures across different groups and contexts is 

an important direction for future research to better understand students’ development of 

mathematics literacy, performance, and metacognitive awareness.   

Conclusion  

The primary goal of this study was to test whether explicitly teaching a problem-solving 

strategy with metacognitive questioning effectively improved participants’ math achievement 

scores, ability to monitor their learning, and develop their mathematics literacy.  The study’s 

participants were lower achieving high school mathematics students enrolled in a public school.  

The effective of metacognitive questions was examined to determine its influence on students’ 

academic performance, calibration accuracy, and mathematics literacy. 
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The first research question addressed the impact of metacognitive questions on 

mathematics performance.  Although there were no significant findings between groups for 

achievement, the data in this study revealed that lower achieving students, in both the 

comparison and intervention groups, made academic gains from the word problem-solving 

training itself.  The problem-solving process supported students in developing a plan, identifying 

relevant information, and making connections, tasks that many lower achieving mathematics 

students have difficulties with (Geary, 2011; Gersten & Clarke, 2007).  Overall, these results 

suggest that the problem-solving strategy, with or without metacognitive questions, was 

sufficient for improving students’ mathematics achievement.  Perhaps, with additional time and 

training, enhanced self-regulation differences would materialize. 

In addressing the question of whether metacognitive questions influenced students’ 

calibration accuracy, significant results were found for prediction accuracy. The research here 

demonstrated that students’ expectations for performance were synchronized with their actual 

performance.  In other words, students exposed to metacognitive questioning were able to 

accurately judge the potential of their knowledge.  These students also improved in their 

judgements of performance and became less overconfident.  Enhancing students’ metacognitions 

is not an easy task to achieve, since students do not inherently self-regulate (Finn & Metcalfe, 

2014), and self-regulation is even more difficult in mathematics (Winne & Muis, 2011).  

Metacognitive knowledge, however, can be improved through instruction (Gutierrez & Schraw, 

2015) and practice (Pennequin et al. 2010; Serra & DeMarree, 2016) when it is embedded into 

the daily activities of mathematics classrooms and explicitly taught to students. 

Lastly, the influence metacognitive questioning would have on students’ development of 

mathematics literacy was assessed.  Two important aspects of students’ development in 
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mathematics literacy were observed: better understanding of the problem and the ability to use a 

broad variety of visual representations.  The metacognitive questions played a valuable role in 

engaging students in understanding of the problem.  Understanding of the problem, needed to 

create a solution and answer, is the first step to promoting students’ literacy in mathematics.  

Students also portrayed a wide variety of visualizations of the problems, which demonstrated 

students’ ability to use flexible strategies across multiple contexts.  Embedding self-regulatory 

strategies, such as metacognitive questioning, helped to improve students’ understanding and 

flexibility, signifying development in mathematics literacy.   

Self-regulation strategies, such as the problem-solving strategy presented in this study, 

are needed to promote academic achievement, metacognitive awareness, and mathematics 

literacy, and are equally effective regardless of ability level.  The intervention, however, played a 

critical role in engaging students in being more aware of their learning processes.  Future 

research should continue investigating the relationship between metacognitive awareness on 

students’ academic performance, calibration accuracy, and mathematics literacy.    
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APPENDIX A 

PARENT LETTER 

 

Dear Parents, 

 

I am presently enrolled in a doctoral program at Old Dominion University, and research is one 

program requirement. My research topic relates to improving students’ mathematics achievement 

through problem solving training.  I truly believe that success in mathematics begins teaching 

students effective problem-solving techniques that they can use in the real world.  Therefore, in 

your student’s Algebra class their teacher will be using a problem-solving strategy to assist them 

in better understanding mathematics.   

 

In addition, students will be asked to make judgments about how confident they are about 

solving a problem correctly.  They will be asked to predict how likely they will solve the 

problem correctly and, afterwards, how confident they are that they solved the problem correctly.  

Developing these judgment skills may help our students improve study habits, test performance, 

grades, and SOL scores.  Overall, I am interested in how problem-solving strategies influence 

students’ judgments and mathematics achievement.   

 

I will be collecting data from two Algebra classes.  Your child will be in one of two classes.  

This study will have minimal impact on classroom instruction and instructional time.  It will 

occur for 30-40 minutes during the warm-up period for three weeks.  All data collected will be 

used strictly for the purpose of the research and will not be released for any other purpose.  Your 

child will not be exposed to any risk.  All data will be handled with confidentiality so that 

student names will not be released.  This research has been approved by Chesapeake Public 

Schools and Old Dominion University. 

 

If you have any questions regarding the use of this data, or how the research is being conducted, 

please do not hesitate to contact me, Deana Ford, at 904-536-5028 or Dr. Linda Bol at 757-683-

4584.  If you have any other questions or concerns please contact Dr. Jill Stefaniak, current chair 

of the Darden College of Education Human Subject Committee at jstefani@odu.edu or 757-

6836696.   

 

Your child’s participation is strictly voluntary and your child will in no way be penalized if you 

choose not to let him or her participate in the study.  I believe this research will be extremely 

beneficial and I hope that you will permit your child to participate. 

 

Please return this form only if you do not want your child to participate in this research project. 

 

         

I _________________________________(guardian name) do not give permission for  

 

my student _______________________(student name) to participate in this research.   

mailto:jstefani@odu.edu
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APPENDIX B 
 

STUDENT LETTER 
 
 
Dear Student, 
 
I am a doctoral student at Old Dominion University conducting a research project.  My project 

focuses on improving students’ mathematics achievement by better understanding the problem-

solving process.  I truly believe that success in mathematics begins with learning effective 

problem-solving techniques that you can use in the real world.   

 

I need your help in getting information to improve mathematics problem-solving instruction.  I 

will be collecting some information during your Algebra class.  Before and after you learn the 

problem-solving process, I am going to ask you to predict how confident you are at solving real 

world word problems.  I will also ask you to tell me how well you think you solved the 

problem after you finished.    

 

The potential benefit of your participation in this research is improvement in your mathematics 

performance and learning.  There are no foreseen risks to your participation.  I will maintain 

strict confidentiality and remove any information that might identify you.  The results of this 

study may be used in reports, presentations, or publications, but you will not be identified.  

Your teacher has approved this project and your participation is voluntary; therefore, your 

participation or responses will not have any consequences for you. 

 

If you have any questions regarding the use of this data, or how the research is being conducted, 

please do not hesitate to contact me, Deana Ford, at 904-536-5028 or Dr. Linda Bol at 757-683-

4584.  If you have any other questions or concerns please contact Dr. Jill Stefaniak, current chair 

of the Darden College of Education Human Subject Committee at jstefani@odu.edu or 757-

6836696.  By proceeding, you agree to participate.  Thank you very much for your participation. 

 

 

 

mailto:jstefani@odu.edu
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APPENDIX C 

EXAMPLE WORKSHEET FOR METACOGNTIVE TRAINING 
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APPENDIX D 

EXAMPLE WORKSHEET FOR THE PROBLEM-SOLVING STRATEGY 
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APPENDIX E 

 

VISUAL REPRESENTATION RUBRIC 

 

 

 

 

 

Ability 

Level 

Visualization 

(model of a problem that links 

important information to a visual 

representation) 

5 Diagram is a valid and 

appropriately linked 

representation of the problem. 

4 Diagram generally represents the 

problem with few minor 

identifiable errors.    

3 Diagram may represent the 

problem with few major 

identifiable errors. 

2 Diagram is not a valid or linked 

representation of the problem 

depicting multiple major 

identifiable errors.   

1 No diagram was provided. 
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APPENDIX F 

 

 

PROCEDURAL FIDELITY AND ADHEARENCE TO THE METACOGNITIVE 

TRAINING 

Group:  MT _____ PSS _____ 

Date: ______________________ 

Step Check if 

Observed 

Metacognitive Questions 

Read the problem   

  Do you understand the problem? 

  Do you know what all the words mean? 

Identify important information   

  What is the unknown, what is being asked? 

  What are the data? 

Draw a visualization   

  Can I connect the data and the unknown visually? 

  Is my diagram a good representation of the 

problem? 

Solve the problem   

  Do I need a formula or special notation? 

  Do I know how to calculate the solution? 

Check your work   

  Are your computations accurate? 

  Is your answer reasonable? 
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Courses Taught 

Old Dominion University, 2014 - Present 

TLED 360: Classroom Management and Discipline – This course examines theories, 

research and practices involved in classroom management, motivation and discipline.  It 

explores techniques for organizing and arranging classroom environments that are most 

conducive to learning.  Instructor, Fall 2015 – Spring 2018. 

FOUN722: Introduction to Applied Statistics and Data Analysis – This course provides 
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FOUN813: Program Evaluation in Education – This course examines procedures and 

problem in the design and utilization of program evaluation in education.  It identifies 

evaluation purposes and the methods of evaluation especially as affected by 

organizational behavior, ethical consideration, and political influences.  Evaluation 

methodology includes, but is not limited to, design considerations, data utilization, and 

teacher evaluation.  Both quantitative and qualitative strategies were covered.  Teaching 

Assistant, Summer 2016. 

STEM101:  Inquiry Approaches to Teaching STEM – This course provides mathematics 

and science students with the opportunity to explore teaching in a real classroom setting. 

Master teachers introduce students to examples of high-quality inquiry-based lessons and 

model the pedagogical concepts to which they are being introduced. In this course, with 

the guidance of the master teacher, students engage in two classroom observations and 

prepare and teach three inquiry-based lessons in an upper elementary school classroom. 

Teaching Assistant, Fall & Spring 2014. 

STEM102:  Inquiry Based STEM Lesson Design – This course continues the exploration 

of inquiry-based lesson design in STEM education. In this course, students build upon 

and practice lesson design skills developed in STEM101 while also becoming familiar 

with exemplary mathematics or science curricula at the middle school level. With the 

guidance of the master teacher, students engage in one observation and prepare and teach 

three inquiry-based lessons in a middle school classroom. Students incorporate and 

demonstrate their content knowledge in developing the inquiry-based lessons. At the end 
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