Old Dominion University ODU Digital Commons

February 23, 2018: Infrastructure Resilience

Hampton Roads Sea Level Rise/Flooding Adaptation Forum

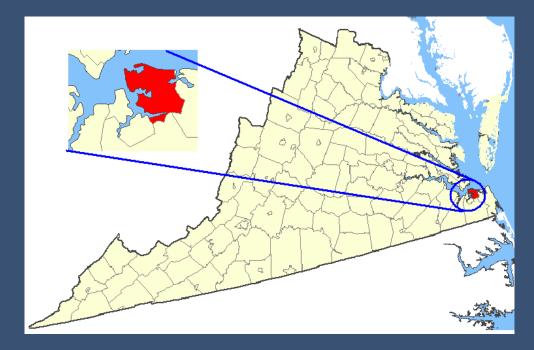
2-23-2018

Water Infrastructure Resiliency Planning for the City of Norfolk

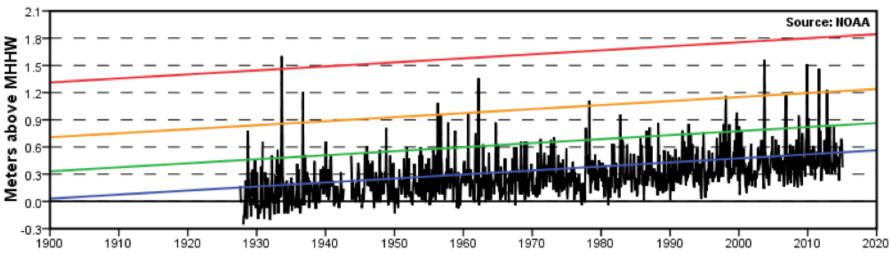
Chris Harbin

Follow this and additional works at: https://digitalcommons.odu.edu/hraforum_19

Water Infrastructure Resiliency Planning for the City of Norfolk


Chris Harbin, Water Production Manager, Department of Utilities

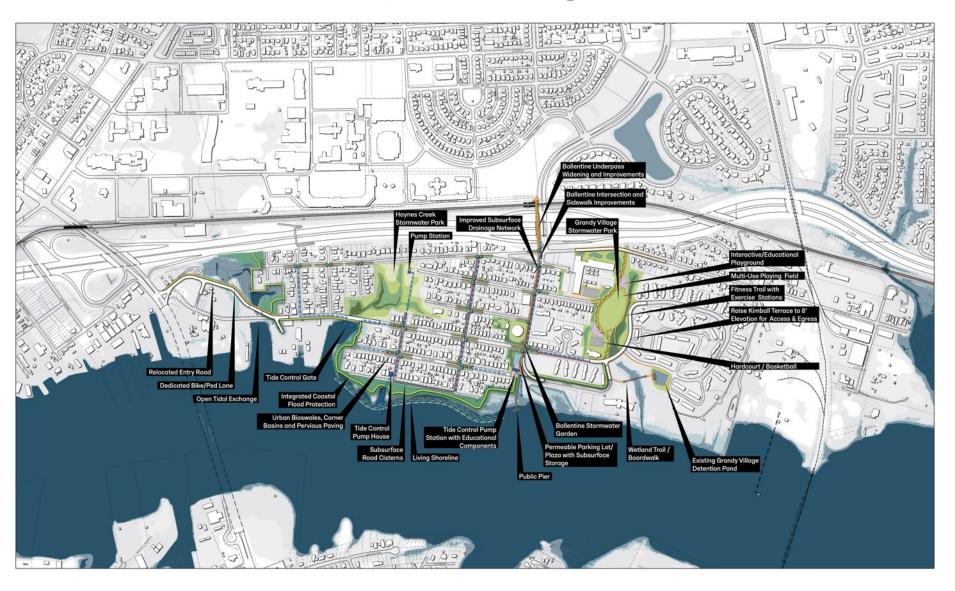
Agenda


- 1. City of Norfolk Resiliency Efforts
- 2. Norfolk's Water System
- 3. Resilience of Norfolk's Water System
- 4. Next Steps
- 5. Conclusions

City of Norfolk Resiliency Efforts

Current Challenge

- 90% developed area
- 12 feet above MSL


Sewells Point, VA

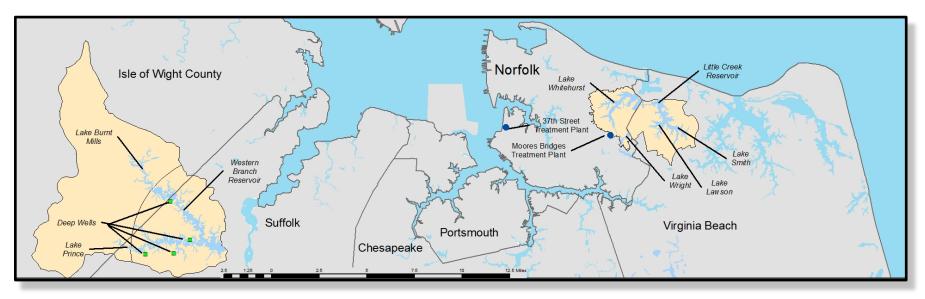
Highest Relative SLR on East Coast Approx. SLR = 14 inches since 1930

Resiliency Efforts

- 2015 Dutch Dialogues
- 100 Resilient Cities (Rockefeller Foundation)
 - Resilience Strategy
 - Vision 2100
- Flood Risk Study (with USACOE)
- Ohio Creek Project
- Water Infrastructure Resiliency Planning

Ohio Creek Conceptual Design

Norfolk's Water System


Norfolk's Water System – the Early Days

Moores Bridges mid-1870s

Lake Prince construction

Norfolk's Water System Today

- Norfolk's raw water sources are located throughout southeast Virginia
 - ➢ 5 Reservoirs in Norfolk and Virginia Beach
 - ➢ 3 Reservoirs in Suffolk and Isle of Wight
 - 2 River Sources on Nottoway and Blackwater Rivers
 - ➢ 4 Deep Wells in Suffolk
- Norfolk operates two water treatment plants: 37th Street and Moores Bridges with a combined capacity of 136 MGD

Resilience of Norfolk's Water System

How Can We Improve Resilience of Norfolk's Water System?

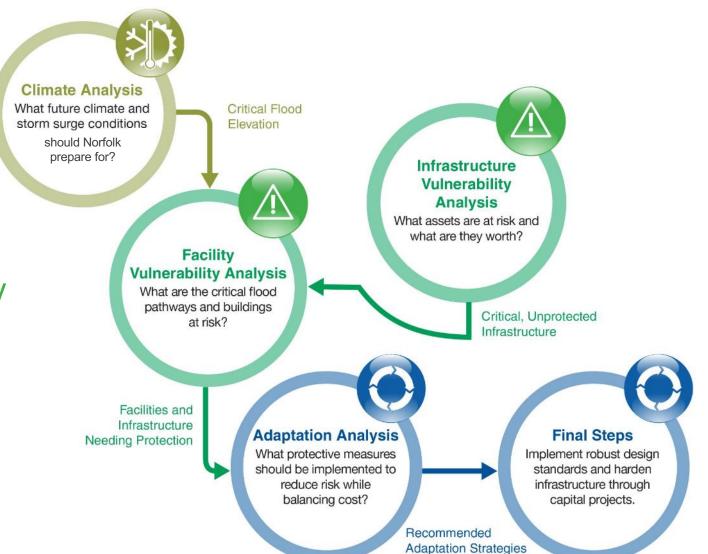
For over 140 years, the City of Norfolk has consistently treated and delivered drinking water to our customers.

Recent events with widespread flooding:

- 2009: Tropical Depression Ida and a Nor'easter
- 2011: Hurricane Irene
- 2012: Hurricane Sandy
- 2016: Hurricane Matthew

Flood and Wind Vulnerability Assessment and Hazard Mitigation Plan

Evaluate vulnerabilities to the City's water production infrastructure and develop adaptation measures to improve resiliency


- Moores Bridges Water Treatment Plant
- 37th Street Water Treatment Plant

Risk Based Evaluation

Phase 1 Climate Analysis

Phase 2 Vulnerability Analysis

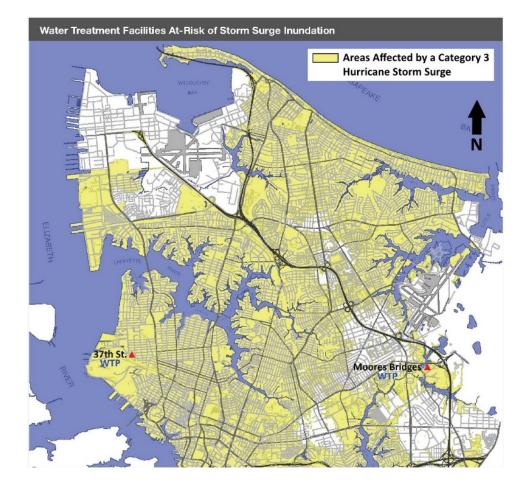
Phase 3 Adaptation Analysis

Benefits of Risk Management Approach

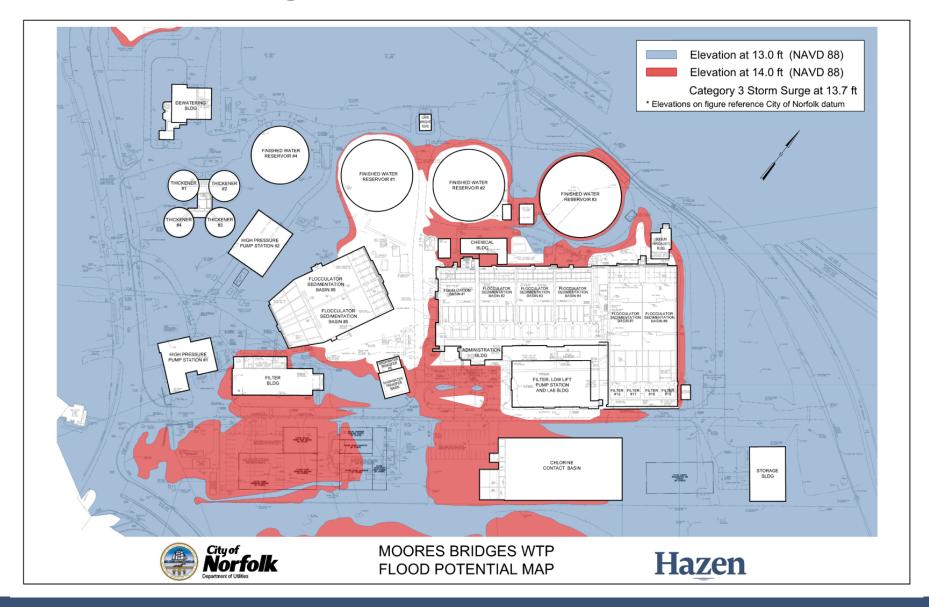
- Provides transparent, accountable and defensible business case for resiliency implementation
- > Quantifies potential risks and impacts
- Facilitates analyses of tradeoffs
- Streamlines evaluation of multiple alternatives

Phase 1: Climate Analysis

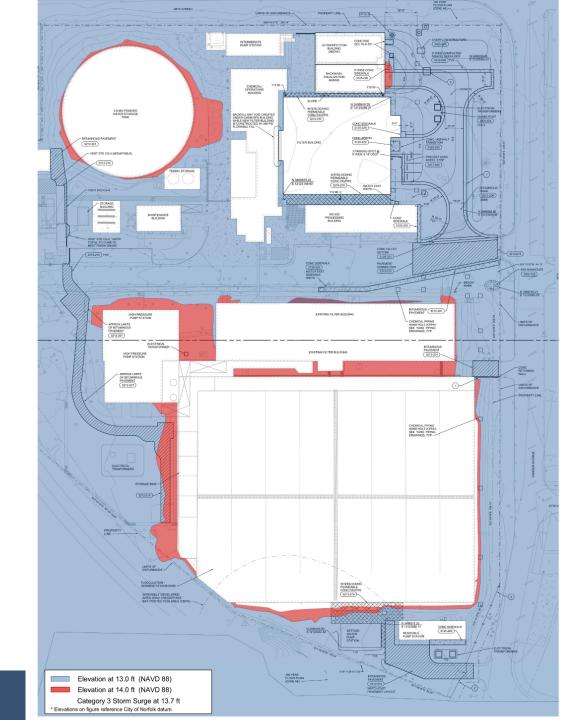
Climate Analysis

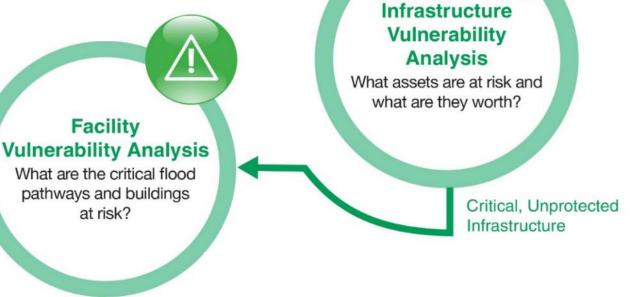

What future climate and storm surge conditions should we prepare for?

Critical Flood Elevation


- Established to evaluate what is at risk
- The elevation to which assets must be protected may vary depending on funding agency requirements

Storm Levels Considered


- 100 Year Storm Recurrence: El 7.6 ft
- City of Norfolk Building Code Ordinance: El 10.6 ft
- Hurricane Storm Surge Category 3: El 13.7 ft


Moores Bridges WTP

37th Street WTP

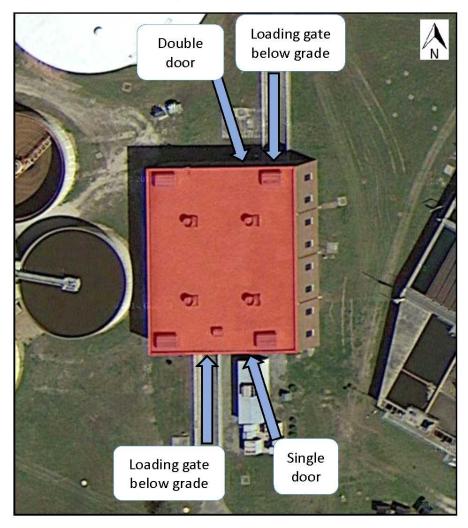
Phase 2: Vulnerability Analysis

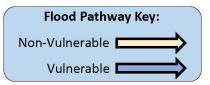
Facilities and Infrastructure Needing Protection

Holistic understanding of magnitude of impact

• Field Survey, Facility Database, Asset Database, and Storm Surge Placards

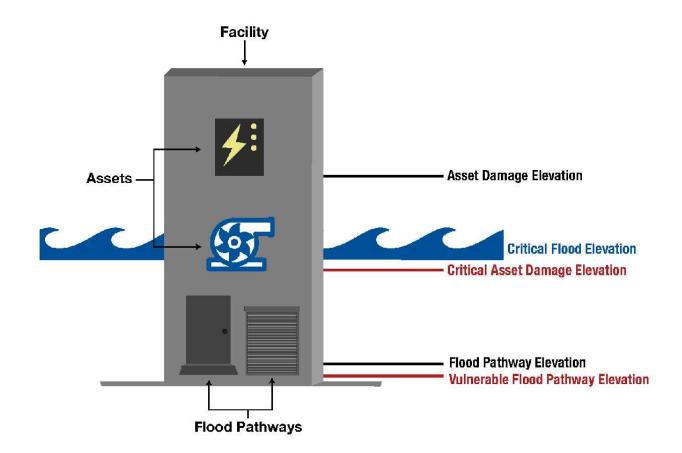
Investigate Flood Pathways and Establish Threshold Flood Elevations





Other flood pathways: open process tanks, outfalls, storm drains and plant drains, wet wells, and interconnected buildings.

Facility Analysis – Flood Pathway Assessment


High Pressure Pump Station

Critical Flood Elevation

Figure 3.5: Different Elevations of a Facility Analysis

Facility Analysis – Field Survey

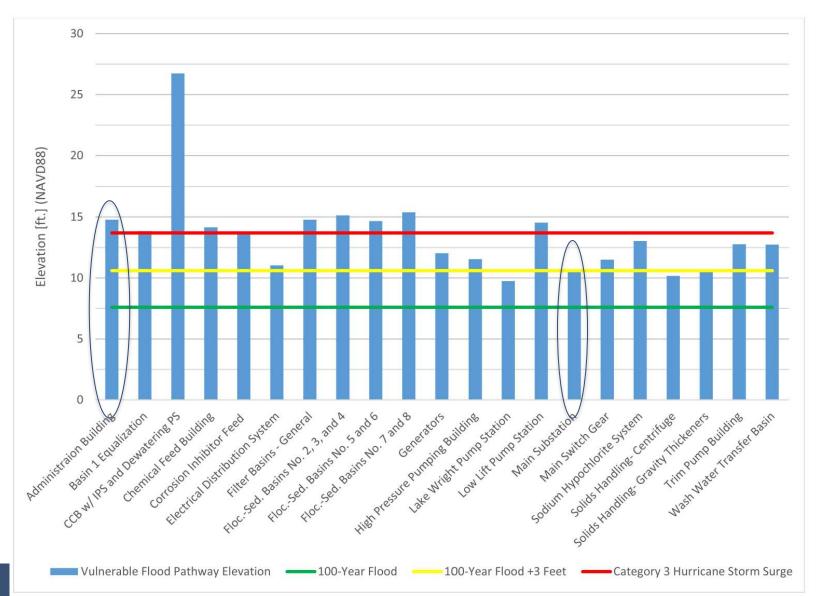


Figure 3.2: Flood Pathway Elevations for Moores Bridges WTP Facilities

Phase 3: Adaptation Analysis

- Prioritize processes/assets for adaptation
- Discuss stakeholder objectives
- Evaluate alternative adaptation strategies, including feasibility, costs and levels of protection provided

Asset Criticality Assessment

Must be Protected

Cost-Benefit Driven Decision

High Criticality

Impact conveyance, disinfection, or power generation

E.g.: Influent Motors, Effluent Pumps, Emergency Generators, Main Plant Feed and Transformers, Chlorination or UV Equipment

Moderate Criticality

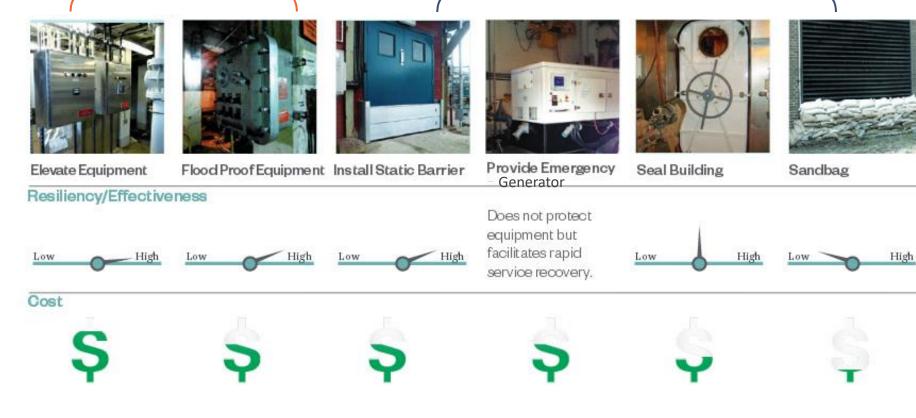
Reduce level of service

E.g.: Collectors for Settling Tanks, Sludge Pumps, Aeration Blowers

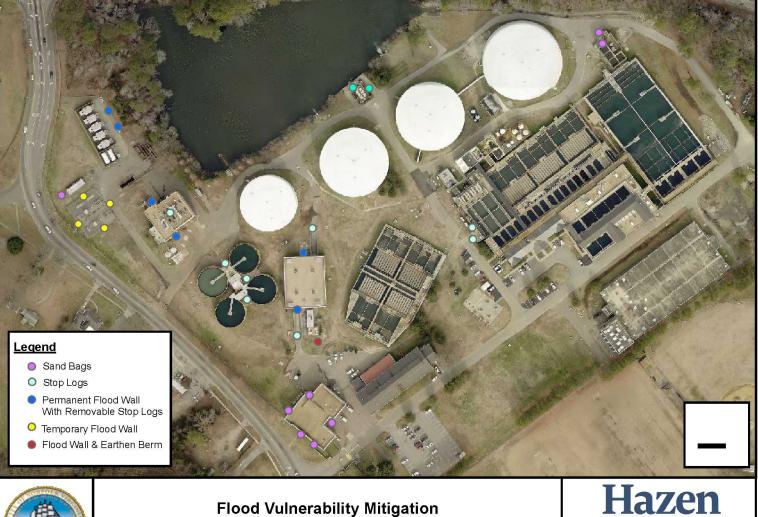
Low Criticality

Minor or no impact to process

E.g.: Odor Control Blowers and Scrubbers, Maintenance Equipment

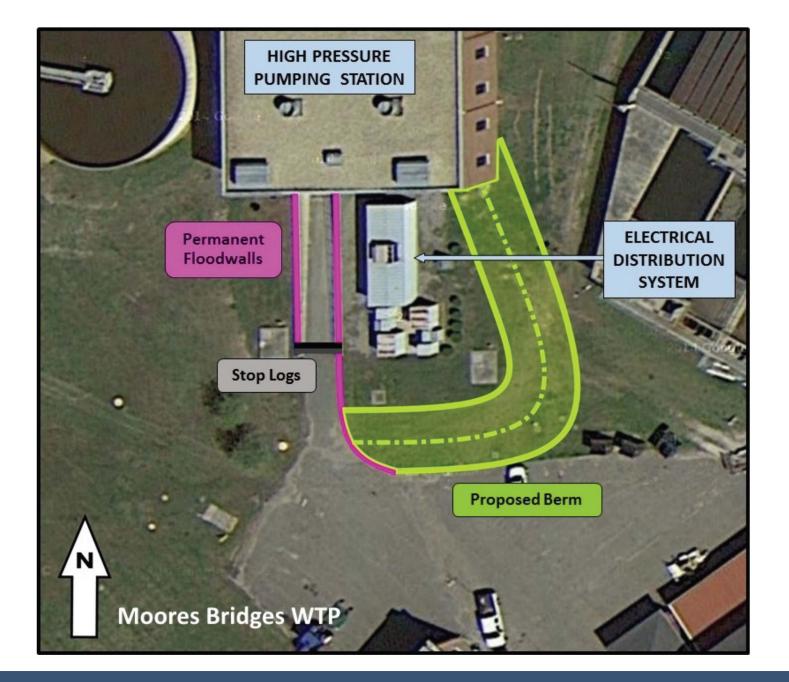

Table PO-2: Moores Bridges WTP Vulnerable Facilities Summary

	Facility Vulnerable Critical ADE Vulnerable			
	FPE	(NAVD 88)	Assets(s)	Criticality Rating
	(NAVD 88)			
Electrical	11.04′	12.04'	Electrical	5
Distribution			Distribution System	Autor
System				
Generators	12.03′	12.03'	Electrical Equipment	5
High Pressure	11.54′	10.04'	High Pressure	5
Pumping Building	3		Pumps	
Lake Wright Pump	9.74′	9.74'	Pumps 5	
Station				
Main Plant	10.53′	10.53'	Electrical Equipment	5
Substation				
Main Plant	11.50'	11.50'	Electrical Equipment	5
Switchgear				
Sodium	13.04′	13.04'	Motor Control 5	
Hypochlorite			Center	
Solids Handling -	10.17′	10.87′	Polymer Feed 3	
Centrifuge			Pumps	
Solids Handling -	10.50'	11.33'	Transfer Pumps	4
Gravity Thickening				
Trim Pump	12.77′	13.02'	Variable Frequency	5
Building			Drive	
Wash Water	12.74′	14.24'	Pump	3
Transfer Basin	8			


Asset Level Adaptation Strategies

Individual Asset

Multiple Assets



Adaptation Recommendations

Flood Vulnerability Mitigation for Moores Bridges WTP Water Production Infrastructure

Table 4.2. Woores bridges with mulvidual racinty withgation cost comparison				
Facility	Mitigation Alternative	Mitigation		
		Strategy Cost		
Electrical Distribution	Berm with flood wall	\$158,000		
System				
Generators	Temporary flood barrier	\$20,000		
High Pressure Pump	Permanent flood barrier with removable	\$53,000		
Station	stop logs			
Lake Wright Pump Station	Permanent flood barriers with removable	\$12,000		
	stop log sections. Seal old entrance.			
Main Plant Substation	Temporary flood barrier	\$50,000		
		5.0°		
Main Plant Switchgear	Flood stop plate at one door, permanent	\$27,000		
	flood barrier with stop logs on other door			
Sodium Hypochlorite	Sand Bag at doors below flood elevation	\$1,000		
Building				
Solids Handling -	Flood stop plates and permanent flood	\$16,000		
Centrifuge Building	barriers with removable stop log sections			
Solids Handling - Gravity	Flood stop plates and permanent flood	\$13,000		
Thickening	barriers with removable stop log sections			
Trim Pump Building	Flood stop plates and permanent flood	\$16,000		
	barriers with removable stop log sections			
Wash Water Transfer	Concrete improvements to raise curb	\$5,000		
Basin	around grates			

Table 4.2: Moores Bridges WTP Individual Facility Mitigation Cost Comparison

Implementation

Implementation

Overall cost of implementation of protective measures at Moores Bridges: \$520K

Storm Surge Placards

Emergency Preparedness:

These charts allow plant staff to quickly determine vulnerability to flood from approaching storms and begin implementing temporary adaptation strategies, such as sandbags.

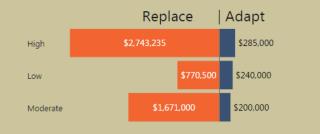
Storm Surge Guidance: **Moores Bridges WTP** If a storm surge advisory is announced as part of a weather report, locate the forecasted surge level below. Protective measures should be taken for all locations at or below that level Storm Surae Floodplain Elevations and areas to be protected Advisorv³ and elevations NAVD 88 Datum (to convert to City of Norfolk Datum, add 101.96') 16' 17.0' 15' 16.0' 14 Flocculation-Sedimentation Basins #5 and 6. Front Office. Filter Basins-General. 15.0' Flocculation-Sedimentation Basins #2, 3, 4, 7, and 8 13 14.5 Low Lift Pump Station Cat 3 14.0' Corrosion Inhibitor Feed, Basin 1 Equalization, Chemical Feed Building Hurricane 13.7 13.5' 12 13.0' Water Transfer Basin, Trim Pump Building, Sodium Hypochlorite System 11 Generators 12.0' 11.5' Main Plant Switchgear, High Pressure Pumping Building, Storage Building 10 11.0' Main Distribution Switchgear 100 yr. + 3' 10.6 Solids Handling-Gravity Thickeners 9 10.5' 10.0' Lake Wright Pump Station, Solids Handling-Centrifuge 8 9.0' 7 8.0' 100 yr. 7.6' 6 7.0' HAZEN AND SAWYER "Storm surge added to Mean Higher High Water at City of Norfolk, which is 1.12 ft (NAVD 88 Datum).

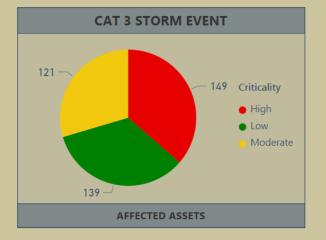
Next Steps

New Moores Bridges WTP Emergency Entrance

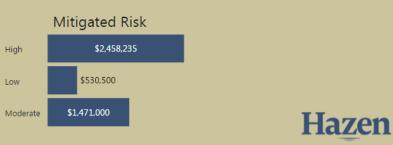
Integrating Asset Management and Resiliency Planning

- An Asset Management Plan was completed for Moores Bridges in 2017
- Asset Management and Resiliency Planning include similar evaluations of the same assets
- Combining AM and Resiliency together reduces redundancy and improves capital planning
- City of Norfolk will incorporate Resiliency Planning into Asset Management Program for City sewer and water infrastructure

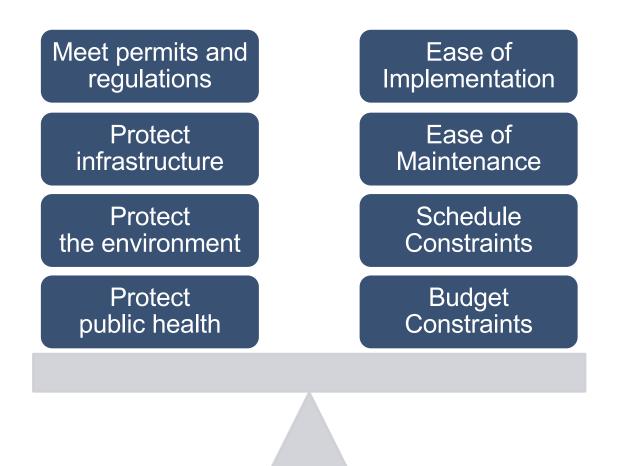

Resiliency Planning Dashboard


/	Flood Event	Critical Flood Elevation (ft)
	100 Year	7.60
	500 Year	8.50
	Category 1 Storm	10.40
	Category 2 Storm	12.10
	Category 3 Storm	13.70

Critical Flood Elevation is based on:


Base Flood Elevation + 2' Sea Level Rise (SLR) + 1' Freeboard + 0.25' Subsidence

Facility	Replacement Cost	Adaptation Cost	Mitigated Risk
Dewatering Building	\$314,835	\$75,000	\$239,835
Emergency Electrical	\$2,000,000	\$150,000	\$1,850,000
Pumping Station	\$2,405,000	\$400,000	\$2,005,000
Thickening System	\$464,900	\$100,000	\$364,900



Total Replacement Cost	Total Mitigated Risk	Benefit Cost Ratio
\$5,184,735	\$4,459,735	6.15

Conclusions

Resiliency Adaptation Requires Balance

Conclusions

- Increases water production reliability during extreme storm events for Norfolk citizens and customers
- Reduces risk of flood damage and costly repair / replacement of infrastructure
- Provides a cost effective solution to improve resilience to many potential storm events
- Provides a framework for Department of Utility infrastructure moving forward

Acknowledgements:

Dwayne Amos, Associate Vice President, Hazen and Sawyer

Cherryl Barnett, P.E., Engineering Manager, Norfolk Utilities

