Old Dominion University ODU Digital Commons

February 23, 2018: Infrastructure Resilience

Hampton Roads Sea Level Rise/Flooding Adaptation Forum

2-22-2018

Climate Impacts On Infrastructure

Mark Bennett

Follow this and additional works at: https://digitalcommons.odu.edu/hraforum_19

Climate Impacts On Infrastructure

Mark Bennett, USGS February 23, 2018

Climate Related Impacts to Infrastructure

Obvious vulnerabilities

- Flooding
- Storm Runoff
- Extreme precipitation
- Storm surge
- Wind-driven tides

Not so obvious vulnerabilities

- Estuarine salinity
- Groundwater inundation
 - Sewage infrastructure
 - Onsite waste-water treatment
- Water quality and water availability
- BMP efficacy

Chickahominy River

- Primary source of fresh water to the region
- Limited source during droughts due to low flows and salinity
- Tidal barrier dam designed/installed in 1940's

Scenarios Modeled

- Normal and drought flow conditions in Chickahominy River
- Low, Median, and High Sea-level Rise Scenarios
 - 1. 20th Century rate = 3-4 mm/year; 30-40 cm by 2100
- 2. 20th Century rate + 2 mm/year acceleration; up to 50 cm by 2100
- 3. 20th Century rate + 7 mm/year acceleration; up to 100 cm by 2100

Model Results

Model development, testing and calibration by VIMS and USGS

Adapted Chesapeake Bay model and river models

Model Results

Model Results

Number of Days high tide overtops current tidal barrier

Model	Dry year	Wet year	Typical
scenario	2002	2003	year
			2005
No rise	1	22	17
30-cm rise	44	133	120
50-cm rise	138	190	195
100-cm rise	214	214	214

Rising Groundwater Levels – Hidden Response to Sea Level Rise

Figure 1: Conceptual diagram of marine and groundwater inundation, obtained from Rotzoll and Fletcher (2012).

From G. Johnson, City of Virginia Beach, 2016 Hampton Roads Water Symposium

Groundwater in the Wastewater System

Infrastructure vs. Seasonal Groundwater Levels

What percent of the gravity system is "potentially" below the groundwater?

Rising Groundwater Levels –

- Sewage infrastructure HRSD documented inflows from groundwater system. Additional water increases costs of treatment operation.
- Onsite waste-water treatment Large scale applications are problematic where water tables are shallow.

Rising Groundwater Levels -

Water Quality Limitations on Water Availability

USGS 63A 3

Rising Groundwater Levels –

Water Quality Limitations on Water Availability

CENTURIES

LATERAL INTRUSION

Saline intrusion – Reversible? Not likely

Inverse carbon-14 age dating models

- Shallow aquifers have been exposed to freshwater flushing for 30,000 years
- Relatively thin freshwater lense 200 ft max. Majority of area <150 ft.
- 22% of shallow aquifer water contains residual seawater
- Indicates salt-water intrusion may be irreversible on reasonable time-scales

Rising Groundwater Levels -

Water Quality Limitations on Water Availability

TMDLs/Rising GW

VA Tech/USGS Collaboration

1. Shallow groundwater tables – Johnson, Sample, and McCoy (in press- JIDE)

USGS 2013-2015 Sampling

- 1. 10 QW samples/yr
- 1. Ecoli Rapid transport of nutrients and coliphage in rural areas near onsite waste water infrastructure
- 1. Focus on <40 ft deep wells
 Locally elevated nutrients in

 urban areas

Rising Groundwater Levels –

⊠USGS

Water Quality Limitations on Water Availability

BMP Efficacy –

A Chesapeake Bay Program STAC Workshop: Monitoring and Assessing Impacts of Changes in Weather Patterns and Extreme Events on BMP Siting and Design

- How anticipated changes in weather patterns and extreme events may affect the integrity of a subset of urban stormwater, agriculture, and stream restoration Best Management Practices (BMPs) over time
- Updated design storm curves that account for future climate change.

