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ABSTRACT 

SUPER-RESOLUTION OF UNMANNED AIRBORNE VEHICLE 
IMAGES WITH MAXIMUM FIDELITY STOCHASTIC RESTORATION 

Amr Yousef 
Old Dominion University, 2012 

Director: Dr. Mohammad A. Karim 

Super-resolution (SR) refers to reconstructing a single high resolution (HR) image from 

a set of subsampled, blurred and noisy low resolution (LR) images. One may, then, envision 

a scenario where a set of LR images is acquired with sensors on a moving platform like un­

manned airborne vehicles (UAV). Due to the wind, the UAV may encounter altitude change 

or rotational effects which can distort the acquired as well as the processed images. Also, the 

visual quality of the SR image is affected by image acquisition degradations, the available 

number of the LR images and their relative positions. This dissertation seeks to develop a 

novel fast stochastic algorithm to reconstruct a single SR image from UAV-captured images 

in two steps. First, the UAV LR images are aligned using a new hybrid registration algorithm 

within subpixel accuracy. In the second step, the proposed approach develops a new fast 

stochastic minimum square constrained Wiener restoration filter for SR reconstruction and 

restoration using a fully detailed continuous-discrete-continuous (CDC) model. A new pa­

rameter that accounts for LR images registration and fusion errors is added to the SR CDC 

model in addition to a multi-response restoration and reconstruction. Finally, to assess the 

visual quality of the resultant images, two figures of merit are introduced: information rate 

and maximum realizable fidelity. Experimental results show that quantitative assessment 

using the proposed figures coincided with the visual qualitative assessment. We evaluated 

our filter against other SR techniques and its results were found to be competitive in terms 

of speed and visual quality. 
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CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW 

The process of SR involves reconstructing a single HR image from a set of subsampled, 

blurred and noisy LR images. SR techniques attempt to improve spatial resolution by 

incorporating into the final HR result the additional new details that are revealed in each LR 

image. In super resolution techniques the degraded images are captured either from different 

cameras looking at the same scene or a single camera capturing a set of successive frames of 

the scene with sufficient overlap between them [1-7]. These frames are registered with respect 

to a common set of coordinates, and the inter-subpixel shifts between them are typically 

unknown, random and don't follow a regular pattern or structure. Consequently, without 

accurate registration, the visual quality of the reconstructed image is degraded significantly. 

The spatial resolution of the acquired images can also be improved physically by decreasing 

the pixel size or increasing the chip size where the latter increases the capacitance, which 

reduces the data transfer, and the former increases the photo-detector noise [1], SR has 

many applications, including improving the resolution of the video printing, high definition 

television, video surveillance, biometrics, astronomical imaging and medical imaging [8-13]. 

SR is an effective and inexpensive method for reducing aliasing and increasing spatial 

resolution. It can be used to reconstruct and restore the image beyond the Nyquist frequency 

of the acquisition image. Increasing the spatial resolution in SR techniques basically depends 

on the availability of multiple LR images of the same scene, with slightly different angles of 

view: i.e., the LR images represent different looks at the same scene. If the shifts between 

the degraded images are of integer units then these images contain identical information that 

can't be used to reconstruct an SR image. If the degraded images differ from each other by 

subpixel amounts then the extra information in every LR image can be used to increase the 

spatial resolution of the imaging device and produce an SR image [1, 4, 5]. 
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1.2 MOTIVATION 

During its flight the UAV experiences roll, pitch and yaw even when it is flying at roughly 

the same altitude. The change in these parameters changes what falls within the field-of-

view (FOV) of the camera [14] which leads to slightly different looks at the same scene. 

These looks contain similar, but not identical information which can be used to get an 

SR image of the overlapping area common to all these images. The visual quality of the 

SR image is affected by many factors, such as the optics blur, the inherent signal-to-noise 

ratio of the system, quantization artifacts, the number of scenels (scene elements) i.e., the 

number of overlapped images used for SR reconstruction within the SR grid and their relative 

arrangement. A technique referred to as microscanning is an effective method for reducing 

aliasing and increasing spatial resolution. By moving the FOV with predetermined sub-

pixel shifts, both aliasing reduction and resolution improvement are realized with increasing 

effective spatial sampling periods which can be used in obtaining the reconstructed SR image 

with high quality. However, the LR images may have relative shifts that are unknown. This 

random pattern of subpixel shifts can lead to unpleasant visual quality, especially at the 

edges of the reconstructed SR image. Because microscanning is limited by the time required 

to shift the image gathering sensor horizontally and vertically [15], it can't be done from the 

UAV. But, by using its concept, it is possible to reduce the artifacts within the reconstructed 

image [16]. Also, to boost the SR images visual quality and to correct for the acquisition 

and display degradations, restoration filters such as optimal stochastic Wiener filter can be 

used to remove artifacts within the reconstructed image [17]. 

1.3 PROBLEM FORMULATION 

The SR problem can be defined as follows: 

Given a set of LR images Sk,k = 1,... ,K each of dimension Mi x M% and an SR 

factor r, it is required to reconstruct a single HR image of dimension rMi x rM2. 

SR is considered an ill-posed problem because it is undetermined, as there isn't a sufficient 

number of LR images, and the blur operator is ill-conditioned. Describing the acquisition 

of LR images is a key factor in the recovery or the estimation of the original HR scene. 

Charged coupled device (CCD) cameras contain arrays of photo-detectors or sensors that 

capture the reflected light from the scene that falls within its FOV. The image gathering 
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lens blurs the captured images through the spatial convolution between the scene and the 

spatial response of the camera. The CCD array samples and quantizes the continuous scene 

into a 2-D digital image. The acquired images are degraded with various types of noises like 

quantization errors, thermal noise, etc. Prom the central limit theory, these additive noises 

can be represented by a single Gaussian random variable [18]. 

Following Carl et al. [19], the image gathering device transforms the continuous input 

scene L(x,y) into discrete image Si(x,y) as defined by: 

S i ( x ,  y )  =  [ L ( x ,  y )  * r<(x, y) + n^x, y)} ||| (x, y) (1) 

where T i ( x ,  y )  is the spatial response of the image acquisition device, r i i ( x , y )  is the additive 

photo-detector noise and the symbol * denotes spatial convolution. The sampling function 

J|i (x,y)-=^2^26(x-m,y-n) (2) 
m n 

denotes sampling on a rectangular grid with unit sampling intervals and 5 ( x , y ) is the Dirac 

delta function. This formulation is considered as the core of the SR model that will be 

introduced in section 4.1. This model can be discretized and written as [2, 20] 

Gi = AiF + Ti (3) 

where Gi, F and T* are the lexicographical representation of st,L and n, respectively. The 

operator Ai combines the motion, the blurring and the sampling operators. 

1.4 RECENT RESEARCH 

Most SR approaches consist of three main steps: registration, reconstruction and restora­

tion. Registration is a process of aligning several images to a reference one. Registration with 

subpixel accuracy is essential in reconstructing high resolution (HR) images with enhanced 

visual quality and minimum unwanted artifacts [3]. The subpixel registration techniques can 

be classified into four types: (1) Correlation interpolation, (2) Intensity interpolation, (3) 

Differential interpolation and (4) Phase correlation. 

In correlation interpolation, a discrete correlation function between two images is cal­

culated and interpolated, and the translation is obtained by searching for the maximum of 
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the correlation function. In intensity interpolation, parts of the reference image are selected 

and interpolated according to the subpixel accuracy required and a search is conducted over 

these parts with the unregistered image [21]. The idea behind differential interpolation is to 

relate the difference between two consecutive frames to the spatial intensity gradient of the 

first image [21]. The phase correlation technique can be used to register images with trans-

lational shifts and a different scaling [22]. It depends on the idea that the phase of the cross 

power spectrum between two images contains most of the information about the relative 

displacement between them [23]. Also, it is known for its high accuracy, low computational 

complexity, robustness to noise and invariance to lens optical blur [24-26]. 

Image reconstruction is a method of reconstructing HE images by incorporating the 

available different registered LR pixels to estimate the missing pixels on the HR grid. In 

most cases, the registered LR pixels are irregularly distributed over the HR grid. Popular 

techniques for image reconstruction [12] are nearest neighbor interpolation, bilinear interpo­

lation, cubic spline interpolation and piecewise cubic convolution [27]. Image restoration is 

a method of correcting the reconstructed HR image from degraded LR images with blurring, 

aliasing and noise [28]. Popular restoration methods are inverse filters, least square filters 

and iterative approaches [12, 29]. 

Developments and challenges in SR algorithms have attracted many researchers in recent 

years due to the high demand on its many applications. Figure 1 depicts the hierarchy of 

SR techniques. The earliest work in SR was to enhance the spatial resolution of a single 

LR image which was extended to cover all the levels in the given hierarchy. The emphasis 

of this dissertation is the reconstruction and restoration of a single SR image from a set of 

degraded LR images, which falls at the second level of the given hierarchy. We are going to 

briefly discuss some of the main SR techniques that works at that level. 

SR algorithms can be divided into two categories: spatial domain approaches and spatial 

frequency domain approaches [3]. Frequency domain approaches include reconstruction via 

aliasing removal, recursive least squares filters and multichannel sampling theorem based 

techniques [3]. Spatial domain approaches include non-uniform interpolation, algebraic fil­

tered back projection, probabilistic methods like maximum likelihood (ML) estimation and 

maximum a posteriori (MAP) based algorithms, projection onto convex set (POCS), hybrid 

ML/MAP/POCS methods and Tikhonov-Arsenin regularized methods [3]. Frequency do­

main approaches are simple because the relation between the LR images and the HR images 
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FIG. 1: SR enhancements hierarchy 

is easy to understand in the frequency domain. Also, they have low computational complex­

ity but their performance degrades if the motion model is other than a global translation and 

the blur kernel is not a linear shift invariant (LSI) one. On the other hand, spatial domain 

approaches can be exploited to work on any arbitrary motion and degradation models such 

as motion blur spatially varying or invariant blur, but they are computationally intensive 

approaches [1]. 

Non-uniform approaches are the simplest ones. Alam et al. [30] proposed a method to 

reconstruct a HR infrared image from a set of randomly shifted LR infrared frames. They 

estimated the shifts between the LR frames using a gradient based registration method and 

used a weighted nearest neighbor approach to estimate missing pixels on the HR grid and 

finally restore the reconstructed image using the traditional Wiener filter [31]. Ur and Gross 

[32] used a framework based on the multichannel sampling theorem followed by a deblurring 

step to reconstruct the SR image. Komatsu et al. [33] proposed a very high definition (VHD) 

imaging system using multiple cameras with high signal-to-noise ratio, and their approach 

was based on Lanweber algorithm [34]. Shah and Zakhor [35] developed a method to enhance 

images extracted from a video sequence by compensating for inaccurate motion estimation 

by estimating multiple motion vectors for each pixel. Nguyen and Milanfar [36] reconstructed 

SR images using an interpolation-restoration method based on wavelets theory. 

Tsai and Huang [37] proposed one of the earliest frequency domain SR approaches. They 
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utilized the shift property of the Fourier transform and related the aliased LR images to an 

ideal image. They relate the degraded LR discrete Fourier transform (DFT) coefficients to 

the continuous Fourier transform (CFT) of the original scene. Once the DFT coefficients 

are obtained, they constructed the HR image by means of inverse Fourier transform (IDFT). 

Their approach is limited to global lateral shifts which are considered its main drawbacks. 

Kim et al. [38] applied this approach to blurred and noisy images and restored the recon­

structed high resolution image using the Tikhonov regularization [39]. Their technique was 

improved by Kim and Su [40] to incorporate LR images with different blurs. A recursive 

least square approach was developed by Bose et al. [41] to minimize the registration errors. 

This method was enhanced by Rhee and Kang [42] to reduce the computational complexity 

by utilizing the discrete cosine transform (DCT) instead of DFT. 

Sauer and Allebach [43] used the POCS method to reconstruct a HR image from LR 

images based on the assumption that these LR images are not affected by any blur. It esti­

mates the HR image from a convex constrained set that contains all the possible candidates 

for the HR image. This set is confined by limitations like fidelity, positivity, bounded energy, 

etc. The HR image is estimated iteratively as given by 

Fn+1 = PmPm-x • - - PiFn (4) 

where P* is the projection operator that maps the ith iteration to the space of the convex 

set Ck,(k = 1... m). Constraints like consistency with a given iteration, bounded energy, 

and fidelity axe given by 

CGi =  {F :  | G i ( x , y )  -  < 7K*,y)} , (5) 

CB = : vmin < F(x, y) < tw} (6) 

and 

C r  =  { P : \ \ F - F r e f \ \ < e r ]  (7) 

respectively. Ti(x, y) is a threshold that is selected based on the estimated noise, registration 

accuracy and number of iterations. vmin and bound the minimum and the maximum 

values in the solution space for every iteration. Also, Cr constrains the iteration outputs to 

be at a certain extent from a target image Fref , that is usually selected as an interpolated 
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version of the image used in the motion estimation step as a reference image. The main 

strength and advantage of the POCS method is its robustness to noise and the ability to 

define a-priori constrains like fidelity, bounded energy, positivity, etc. to regularize the 

solution space. The main drawback of the POCS is to find the right projection operator 

that appropriately maps the iteration outputs to the convex solution space. Also, the current 

realizations are limited by large computational complexity and huge memory requirements 

and need larger number of iterations to converge to an accepted output [44]. 

Stark and Oskoui [45] extended the POCS technique to noiseless blurry images and 

combined interpolation and restoration in one step. Teklap et al. [46] applied the idea 

of POCS to reconstruct a HR image from a sequence of LR images that are affected by 

motion blur (non-zero aperture time). An improved technique based on the POCS was 

demonstrated by Patti et al. [47] to include the space varying blur, optical sensor noise and 

its physical dimensions. Patti and Altunbasak [48] suggested a POCS technique based on a 

continuous image formation model to interpolate the reconstructed image with higher orders, 

and they also improve the quality of the reconstructed images at the edges by minimizing 

the ringing artifacts. Another approach which is similar to the POCS was suggested by Tom 

and Katsaggelos [49] to estimate the SR image using ellipsoidal constraint sets. Although, 

the computational complexity and memory requirements of the POCS techniques are very 

high, and they reconstruct non-unique SR images, their main advantages are their simplicity 

and their efficient spatial domain model representation that can include a priori information. 

Irani and Peleg [50] developed a SR reconstruction approach based on iterative back 

projection that is used in tomography to minimize the difference between simulated LR 

images and actual LR images by defining a back projection kernel that incorporates that 

difference into the reconstructed HR image. For the ith iteration, the estimated HR image 

F' is obtained by adding the estimated (ith — 1) image F,_1 to the back projected difference 

between the acquired LR frames Gj and the simulated LR images Gt as given by: 

• F = Fi-1 + HBP(Gi-Gi) 

= F'-1 + HBP(Gi - AiF*'1) (8) 

where H B P  is the back-projection kernel. Because the back projection approach does not 

have a step for regularization, the estimated HR image may diverge away from the solution 

space, which is considered its main drawback. To obtain a smooth estimated image, the 
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initial estimate may be selected as the average of the registered actual LR images. Later, 

Picard [51] extended that approach to include a perspective motion model. Then, Irani and 

Peleg [52] improved the model to cover general motion models. 

SR can also be categorized as ill-posed due to the lack of LR images. Deterministic and 

stochastic regularization techniques can be used to constrain the solution space of the SR ill-

posed problem. The deterministic techniques estimate the SR image using the constrained 

least squares (CLS). The regularization parameter is selected in a way too closely make 

the effect of the data fidelity and the smoothness of the solution in equilibrium state [28]. 

Katsaggelos et al. [53, 54] assign a different value for the registration parameter for every 

iteration using multi-channel iterative CLS approach. The significance of the regularization 

parameter and its best value is further studied by Bose et al. [55, 56] using the L-curve 

method. 

Stochastic approaches use a Bayesian framework to solve for the SR problem. One of 

these approaches is the MAP technique, which estimates the SR image by maximizing the 

a-posteriori probability density function (PDF) PR(F\G\,..., GN) with respect to F. Using 

Bayes rule, the estimated image is given by MAP 

By applying the log function to Equation (9), the estimated image can be obtained by 

The first term accounts for the log-likelihood, function while the second term accounts for 

a-prior density of the proposed solution. The log-likelihood can be described by the joint 

PDF of the noise Pr(T) as given by 

F M A P  = argmax{Pr(F|Gi,...,GAr)} 
G N \ F ) P R ( F )  

arg max (9) 

F M A P  =  arg max{log[Pr(Gi,..., Gtf|F)] + log[Pr(F)]} (10) 

P R I G R , G N \ F )  = Pr(T){(G1 - A I F ) ,  . . . , ( G N -  A N F ) }  (11) 

If the noise is described by independent and identically distributed (IID) Gaussian random 

variable with zero mean and variance a2 then the joint probability density function Pr(T) can 

be written as the multiplication between the probability distribution of the individual terms 
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as given by 

P R ( G I ,  • .  •  , G N \ F )  =  j L j - j j e x p  | £  | | C ,  -  A F f  |  ( 1 2 )  

where M  is the total number of pixels that the image contains. To solve for the MAP 

estimator in Equation (9), a Markov random field (MRF) general model based on Gibbs 

distribution is defined as 

iexp{-£< 
I c€C 

P R ( F ( K ) )  =  exp{—fi(fc)} = exp { - > J < J > C ( K ) ^ (13) 

where Z  is the partition function and fi is the energy function that is defined by 

n(F) = exp j-^4>c(A;)l (14) 
I cec J 

where C is the set of MRF cliques and <J>C is the potential function that is defined on a given 

clique. Typical prior models are 

• Q — \\F\\L (Z2 - norm) 

• f2 = ||V2F||2 {h - norm of Laplacian) 

• ft — |VF| (magnitude of gradient) 

Applying Gibbs model, the MAP estimator in Equation (9) can be obtained by 

N  
F M A P  = arg min { £ ||G4 - A F F  + A Q ( F )  [ (15) 

k t=i ) 

where A is the regularization parameter that converges the estimated SR image to the solution 

space. Iterative conjugate descent techniques can be used to minimize Equation (15) that 

can be differentiated with respect to F as given by 

EiF) = -2'£A[iGi-AiF) + X^ (16) 
i=l 

and the SR image is estimated by 

FK+1 = FK + NKE(FK) (17) 
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where /j,k is the step size that is computed using the steepest descent method as given by 

Tom and Katsaggelos [57] developed a ML SR algorithm based on the expectation max­

imization (EM) algorithm to estimate the subpixel shifts between the LR images, noise 

contaminated in every frame and the SR image. In [58], Schultz and Stevenson reconstruct 

an SR image from a sequence of LR video sequence using the MAP algorithm. A MAP 

approach to estimate both the lateral subpixel shifts between the LR frames and the HR 

image was discussed by Hardie et al. [59]. Elad and Feuer [2, 60] combine ML, MAP and 

POCS approaches into a hybrid method to reconstruct SR image from a set of blurred, noisy 

and undersampled images. 

In addition to the above directions for SR research, there are many other approaches. 

Nguyen et al. [61] used the conjugate gradient method to solvit the Tikhonov regularized 

SR problem by using efficient block circulant preconditions. Farsui et al. [62] used the L\ 

norm minimization to reduce errors in blur and inter-LR subpixel shifts estimations. An SR 

technique based on the adaptive filtering theory and Kalamn filter was developed by Elad 

and Feuer [20] where the HR image is estimated using the steepest descent method. Elad 

and Hel-Or [63] reconstruct an SR image using two separate fusion and deblurring steps. 

In their approach, the blur is assumed to be LSI and the subpixel shifts are assumed to be 

translational only. Haxdie [64] reconstructs the HR image using a Wiener sliding window to 

restore the HR pixels from a weighted sum of LR pixels' that is selected by minimizing the 

mean square error and is adapted to the relative positions of the surrounding LR pixels. 

The main problem of the previous approaches is that they work on a frame by frame 

basis to reconstruct the HR image and as a result, they don't exploit the available LR pixels 

spatial structure that can be used efficiently to produce a high quality image with minimum 

number of artifacts, especially when we have insufficient number of LR images. Also, their 

approaches depend on a discrete-discrete (DD) model which isn't sufficient to cover the 

acquisition and display degradations and can't be used to achieve optimal reconstruction 

and restoration with maximum fidelity between the original HR scene and the reconstructed 

SR one. Beside this, they use a blind estimation for the inter subpixel shifts between the 

acquired frames which is not sufficient to cover complex registration models with relatively 

(18) 
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large motions. In our proposed approach we have two distinct steps: one for the accurate 

estimation of the subpixel shifts that is more flexible to cover any motion models and robust 

to moderate noise and lens optical blur. The other step is for the optimal reconstruction 

and restoration of the SR image that depends on the fully detailed SR CDC model and it 

optimally restores the SR image with maximum end-to-end fidelity. We revisit the Wiener 

filter developed by Carl et al. [19] and extend it for the general SR problem where the 

subpixel shifts are unknown and random. Although the Wiener filter has been discussed 

throughout the literature, our formulation for the SR problem is quite different. The earlier 

developments of this filter are for a single image restoration and are based on the assumption 

that the CDC model is constrained only by blurring and noise and ignores the insufficient 

sampling in the image gathering process [31]. Consequently, it will not actually minimize 

the mean square error of the reconstructed image [16]. 

1.5 CONTRIBUTION OF THE DISSERTATION 

The dissertation seeks to develop a novel fast stochastic algorithm to reconstruct a sin­

gle SR image from UAV captured images. Figure 2 depicts the pipeline of the proposed 

SR algorithm consisting of two steps. The first step is a robust registration of UAV LR 

images, while the second step is the stochastic optimal reconstruction and restoration with 

information theoretic assessment. The main contributions in the1 first step are: 

• Automatically register the acquired UAV LR with in subpixel accuracy and correct 

for the distortion in these images. In our problem and due to the wind, the UAV 

may encounter altitude change or rotational effects such as yaw, pitch and roll, which 

can distort the acquired as well as the processed images with scaling, shear, tilt or 

perspective distortions. So, we need to correct for these distortions using spatial trans­

formations such as affine or projective transformations and then align the corrected 

images within subpixel accuracy. To automate the subpixel registration process, we 

propose a hybrid algorithm to register the UAV LR images within subpixel accuracy 

with the following contributions 

- Use scale invariant feature transform (SIFT) to correct the distorted images. 

- Speed-up the performance of one of the most efficient and reliable subpixel algo­

rithms that is robust to noise and lens optical blur. The proposed FFT based 

method reduces the dimensionality of the Fourier matrix of the cross correlation 
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and uses a forward and backward search in order to obtain an accurate estimation 

of the subpixel shifts. 

- Optimally map the registered LR images to a denser HR grid with either one of 

following two methods: 

* Minimum square distance allocation (MSDA) that finds the constrained op­

timum transformation to convert the nonuniform subpixel shifts pattern into 

a uniform one using the Minkowski distance with orders equal 1 or 2. 

* Mid-point subpixel shifts allocation (MSSA) allows a relaxed allocation on 

the HR grid depending on the relative shifts and relative structure between 

the different LR scenels (scene elements). 

- Spatially adjust the phase shifts of the interlaced LR frames using discrete Fourier 

transform shift theorem so that the interlaced LR images will have uniform phase 

shift differences between them. 

• A new fast optimal stochastic minimum square restoration Wiener filter for SR recon­

struction and restoration is introduced. This filter is used to boost The visual quality 

of the SR image that is affected by degradations during the acquisition such as blur 

due to system optics, aliasing due to insufficient sampling, photodetector noise, regis­

tration and fusion error, the number of scenels, i.e., the number of overlapped images 

used for SR reconstruction within the HR grid and their relative arrangement on the 

high resolution grid. The following contributions are proposed: 

- Introduce the mathematical derivation that depends on the CDC model to repre­

sent most of the degradations encountered during the image-gathering and image-

display processes. Also, the end-to-end model is analyzed and the Wiener filter is 

formulated as a function of the parameters associated with the proposed SR sys­

tem,. such as image gathering and image display response indices, system average 

signal-to-noise ratio (SNR) and inter-subpixel shifts between the LR images. 

- A new parameter that accounts for LR images registration and fusion errors is 

added to the SR CDC model in order to improve the overall system fidelity. 

- The filter performance is speeded up by constraining it to work on small patches 

of the images and can be implemented efficiently in the frequency domain. 
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- The loss in the end-to-end system fidelity is analyzed and it is separated into three 

components and every component is related to its corresponding degradation in 

the proposed system, which enables a good design of the SR model. 

• Produce multi- or pyramidical resolution reconstructed images depending on the avail­

able number of the LR images and their relative positions. So, it may be possible to 

produce SR only along a single dimension: diagonal, horizontal or vertical and use 

interpolation in the orthogonal dimension because there isn't sufficient information 

to produce a full 2D image. Thus the reconstructed SR image may have areas with 

full-SR or partial-SR. 

• Assess the visual quality of the resultant images with two figures of merits that basi­

cally depend on the information theory. The information rate is used to measure the 

amount of information that the image gathering device is -producing while the max­

imum realizable fidelity is used to measure the closeness between the reconstructed 

restored output images and the original input HR scenes. 

• Reconstruct multi-response SR images by assuming the existence of more than one 

optical sensor on the UAV with different optical response indices. The reconstruction 

of SR images is utilized with either a single optimal Wiener filter or a matrix of optimal 

Wiener filters. 

Simulation and experimental results demonstrate that the derived Wiener filter with the 

optimal allocation of LR images can reduce aliasing and blurring, resulting in a sharper 

reconstructed image with pleasant visual quality. Throughout simulations and experimental 

results it is found that quantitative assessment using the proposed figures coincides with the 

visual qualitative assessment. We evaluate our filter against other SR techniques and its 

results were found to be competitive. 

1.6 ORGANIZATION OF THE DISSERTATION 

The rest of this dissertation is organized as follows: In Chapter 2 we describe the robust 

subpixel registration stage of the proposed technique. Chapter 3 suggests two efficient meth­

ods for the optimal allocation of the LR pixel elements to the HR grid. Chapter 4 presents 

the mathematical development of the stochastic Wiener filter and the analysis of its results 

and its speeded-up performance. In Chapter 5, we propose two figures of merit based on the 
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information theory to assess the visual quality of the reconstructed images with its further 

enhancement using a multi-response reconstruction and restoration is covered in Chapter 6. 

The conclusions of the work done in this dissertation are summarized in Chapter 7. 
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CHAPTER 2 

ROBUST REGISTRATION OF UAV CAPTURED IMAGES 

Image registration is a process of aligning several images to a reference one or to a 

common reference coordinate grid. Typically, the alignment process brings the input, or 

the reference image, into alignment with the base image [65]. In our approach, the UAV 

images will be corrected from distortions using an appropriate spatial transformation like 

the affine or the projective transformation. Then a speeded-up phase correlation based 

technique that is implemented efficiently in the frequency domain will align the corrected 

images within subpixel accuracy. Prior to processing the available LE images, we define 

a metric to determine if there is enough overlap between them that would allow for SR 

reconstruction. 

2.1 SUFFICIENT OVERLAP CRITERION 

It is assumed that a set of LR images is acquired with sensors on a moving platform 

such as UAVs. During its flight the UAV experiences roll, pitch and yaw even when it is 

flying at roughly the same altitude. We define yaw as the rotation of the UAV about an 

axis pointing directly upwards from the body; roll is a rotation about the axis that connects 

the UAV tail to its nose; and pitch is a rotation about an axis which is orthogonal to the 

axes of rotation for pitch and yaw. Figure 3 shows the rotations that can affect an UAV 

during its flight. The change in these parameters changes what fails within the field-of-view 

(FOV) of the camera, [14] which leads to slightly different looks at the same scene. These 

looks contain similar, but not identical information which enables the reconstruction of a 

super-resolution image. 

In such a case, an SR image can be reconstructed in an area of sufficient overlap between 

the LR images which generally have a relative shift with respect to each other by unknown 

subpixel amounts. When sufficient overlap exists, we use this set to reconstruct an SR 

image. We define a metric that depends on the sensor characteristics that can be used for 

this purpose. The FOV determines the angular extent of a given scene that is imaged by a 

camera. The horizontal FOV $H and the vertical FOV <L>Y define the angle that the camera 

subtends on the ground. The area encompassed by the FOV is, of course, a function of 
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Pitch axis 

Roll axis 

Yaw axi 

FIG. 3: UAV rotations: yaw, pitch and roll 

the camera height above the ground. If the ground footprint due to the FOV of a camera at 

a l t i t u d e  h  i s  b o u n d  b y  a  r e c t a n g l e  w i t h  c o r n e r s  a t  ( x \ , y i ) ,  ( — X i , y i ) ,  ( — x j ,  — y \ )  a n d  ( x i ,  — y \ ) ,  

then, using Figure 4, we can derive the relationship between the extent of the footprint, i.e., 

the projection of the FOV on the ground, in the horizontal and vertical directions, the altitude 

h and the FOVS as [14]: 

(0,0) 

FIG. 4: FOV of the camera and the corresponding ground footprint 

x\ = /i tan($/f/2) 

t/i = /itan($v/2) (19) 
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Even when the altitude does not change, a change in the rotational parameters causes the 

camera footprint to change. Figure 5 shows the typical situation when the UAV experiences 

pitch of q°. Ideally this cause a shift in the x-direction only, causing (xi, 0) to be mapped 

to (x2,0) and ((—£i,0) to be mapped to (x3,0). The new x coordinates are given by: 

x-i = /itan($n/2 — a) 

X3 = /itan($i//2 + a). (20) 

Similarly, when the UAV experiences a r o l l  of 0 ° ,  ideally only the y  coordinates are affected, 

causing the (0, y\) coordinate to shift to a new location (0,2/2) and the (0, —2/1) coordinate 

to shift to (0,2/3) : 

2/2 =  h  tan(<Iv/2 —/?) 

y 3  = /itan($v/2 + 0 ) .  (21) 

(*3.0)< 

(-xT,u 
/ 

FIG. 5: Change in the x  ( y )  coordinate as the UAV experiences a pitch of a°. Rotating the 
figure by 90° shows the case for changes due to a roll 0°. 

Figure 6 shows the typical situation when the UAV experiences a y a w  of 70. The yaw 

operation affects both the x and the y coordinates due to the rotation about the axis normal 

to the line connecting the tail and the nose of the UAV. The new footprint coordinates in 
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_ _ 

~ ~ i  

FIG. 6: Change in the x  and y  coordinates as the UAV experiences yaw = 70 

this case are given by: 

Xi cos(7) sin(7) 

V i  — sin(7) cos(7) ±0i 

where (x2,y i )  are obtained by applying the rotation to (xi,?/i), (2:3,y 3 )  from (xi, —yi), 

(x4,y4) from (-Xi,-j/i) and (x5,y5) from (-®i,yi). 

Assuming that two frames are captured at time instants t \  and t 2 ,  the frame captured 

at t\ is treated as the reference frame, i.e., with no rotational changes. All rotational and 

translational measurements for the frame captured at time £2 are relative to the reference 

frame. Additionally, we assume that the change in altitude between the two frames is 

negligible. So, a metric can be obtained to check if the frames have sufficient overlap so 

that they can be combined to produce an SR image of the overlapped area. Figure 7 depicts 

the extreme condition where the two frames have no overlap. This allows us to develop the 

distance metric d between the two frames where the second frame has experienced roll, pitch 

and yaw with respect to the first frame. The metric d can be used to determine whether the 

degree of overlap between the two frames is sufficient to produce an SR image. 

In order to determine d ,  we need first to compute the parameters for the case where the 



20 

UAV experiences all three rotational changes. We break this determination into two separate 

cases: When the UAV experiences pitch and roll, the new coordinates are given by: 

(x'i,y'i) = ( h  tan ($/f/2 - a), /itan { $ v / 2  -  f } ) )  

(4.J/2) = (~/itan($w/2 + a), /itan($v/2 - 0 ) )  

(4.1/3) = (-/itan($ff/2-a),-/itan(4>i72 + /3)) 

{x'4<y'i) = ( tan($i//2 — a), —htan($v/2 + /?)) 

(23) 

where x[ — x'4,x'2 = £3,2/1 = j/21 and 2/3 = 2/4- Then if it experiences yaw of 70, the new 

coordinates will be given by: 

cos(7) sin(7) x [  

2/f — sin(7) cos(7) y [  
i  =  1,2,3,4 (24) 

Figure 7 shows two consecutive frames captured from the UAV. The second frame is under 

the effect of yaw, pitch and roll. The distance d between the centers of the two frames is 

given by 

d = xi + \x'2 cos(7)| + \ y [  sin(7)|. (25) 

Then substituting for x'2 and y[ in Equation (25) and taking into account the sign for pitch 

and roll, d becomes: 

d  =  x i  +  |/itan(<l>tf/2 ± a) cos(7)| + |/itan(<IV/2 ± 0) sin(7)| (26) 

If we let d n  be the minimum distance when the two frames touch each other but there is no 

overlap, then overlap occurs whenever d < dn. We use d/dn < 0.50 as the condition that 

defines sufficient overlap. In other words, there has to at least 50% overlap between the two 

frames to produce a reasonable SR image of the overlap area. 

2.2 REGISTRATION BASED ON SPATIAL TRANSFORMATION 

Spatial transformations reallocate the coordinates in one image to new coordinates in 

another image. The registration step depends on the accurate determination of the spatial 

transformation parameters used in the alignment process of the unregistered images. Usually, 

when the UAV experiences yaw, pitch and roll the captured image will be affected by shear, 

or it may be tilted, or it may have perspective distortion. So, spatial transformations like 
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FIG. 7: Ground footprints of two consecutive images under the effect of the rotational 
parameters 

the affine and the projective can be used to correct for those distortions. If the unregistered 

image is f(x, y), its registered representation r(x, y) = T (f(x, y)), where T represents either 

the affine or the perspective transformation. 

2.2.1 AFFINE TRANSFORMATION 

The affine mapping is usually utilized when the image is affected by translation, rotation 

and scaling. If the base image is b(x,y) and the unregistered image is f(x',y') then, given 

three corresponding points in the two images, the transformation matrix can be calculated 

from 1 

H
 

» 

an ai2 013 V 

V i  

ii 

021 a 22 a23 y ' i  

l 0 0 1 I 

where (Xi,yi) and (rr'^y-) are the coordinates of the control points in the base and the 

unregistered images respectively; an, an, a21 and a-n control the scale, the rotation and the 

stretch; and ai3 and a23 are the translation in the x— and y— directions. Since there are 6 

unknowns, Equation (27) can be used to compute the transformation matrix T which can 

then be used to map f to b with 3 keypoint matches between the unregistered image and 

the reference one. 

2.2.2 PROJECTIVE TRANSFORMATION 

The projective mapping is usually utilized when the images have perspective distortion 
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and are tilted. A mapping h  is projective if, and only if, there exists a non-singular 3x3 

matrix H such that h(p) — Hp, Vp, where p = [x y\ is the vector representation of a 

point. If the base image is b(x,y) and the unregistered image is f(x',y') then the projective 

transformation can be written as 

These equations are linear in the elements of H .  To solve for H ,  four keypoints matches 

between the reference image and the unregistered one. These keypoints should be in random 

pattern with no three points are collinear. After extracting the parameters of H, its inverse 

will be applied to the unregistered image to correct the perspective distortion. 

In our experimental simulations, checkerboard images are used to simulate the UAV 

captured images. They contain the same scene but with different views. By controlling the 

camera orientation, the different images will contain the distortions that are expected when 

the UAV experiences yaw, pitch and roll. Figure 8 shows the results of changing the camera 

orientation on the base image. Figure 9 shows the results after spatial registration. The 

"dark" regions show the overlap region that can be used to produce SR images. 

2.3 AUTOMATED CORRECTION OF UNREGISTERED UAV 

IMAGES 

The first step of registration is to correct the UAV distorted images using an appropriate 

spatial transformation (affine or projective) to eliminate the effect of scale change, yaw, pitch 

or roll. The landmark points that control these spatial transformations are selected manually, 

which is subject to errors and is not powerful. Accordingly, an automatic selection of these 

point is done using the scale invariant feature transform (SIFT) [66]. The effectiveness of 

SIFT comes from its robustness to affine changes, noise, illumination change, and 3D view 

partial change. It extracts a set of unique features that can be used in image registration. 

First, the SIFT extracts all the available features form the reference image and store them 

in a database. Then, it extracts all the available features from the unregistered images and 

compares them against the stored database by means of nearest-neighborhood search to find 

the exact matches between the reference image and the unregistered one [67]. 

x'(h,3ix + /132J/ +1) — hux + hi2y + hi3 

y'{h,3iX + /I32J/ +1) = h,2\X + h22y + /l23 

(28) 

(29) 



23 

FIG. 8: Simulated high resolution scenes with different camera orientation to simulate yaw, 
pitch and roll: (top-left) reference image; (top-right) pitch; (bottom-left) yaw; (bottom right) 
roll 

2.3.1 SIFT STAGES 

SIFT consists of four major stages [66]: (1) scale-space creation; (2) keypoint allocation; 

(3) orientation designation; (4) keypoint descriptor. Once the keypoint descriptors have 

been assigned, they will be used to extract the parameters of the affine or the projective 

transformation. 

Scale-Space Creation 

Koendernik [68] and Lindeberg [69] have shown that the reasonable scale space kernel is 

the Gaussian function. In this sense, the scale space of an images, SS(x,y,a), is defined as: 

S S ( x ,  y ,  a )  =  h ( x ,  y ,  a )  *  g ( x ,  y ) ,  (30) 



(a) Registration with roll 

(b) Registration with pitch 

(c) Registration with yaw 

FIG. 9: Registered images after different rotational parameters 
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where g ( x , y )  is the image, * refers to spatial convolution and h { x , y , o )  is the Gaussian 

kernel defined by 
h(x,y,a) = ^e-^2+y2)^2. (31) 

To detect the stable features inside the image, SIFT uses difference-of-Gaussian, 

DOG{x,y,o), which is calculated from two adjacent scales differs from each other by a 

constant k. The DOG(x,y,a) is defined as: 

D O G ( x , y , c r )  =  [ h ( x ,  y ,  k a )  -  h { x ,  y ,  a ) ]  *  g ( x ,  y )  

=  S S { x , y , k a ) - S S ( x , y , ( T ) (32) 

Figure 10 depicts the process of creating the DOGs at different scales. At the first octave, a 

set of different scale spaces are computed by convolving the processed image with Gaussian 

functions that differ in their scales by constant k = 21/s where s is an integer. Once the 

scale spaces are created, the DOGs will be calculated by subtracting every scale space from 

its neighbor scale space. After processing the first octave, the subsequent octaves will be 

constructed by subsampling the scale spaces within the previous octave by a factor of 2, then 

the set of DOGs will be calculated similarly as they are computed in the first octave. After 

processing all octaves, a search for local extrema is conducted. This is done by comparing 

every point in the DOGs by its eight neighbors in the same scale and the nine neighbors at 

the above and lower scale and selected only if it is greater than those points. 

Keypoint Allocation 

After the keypoints have been selected, the next step is to eliminate those points that 

are insufficiently confined to an edge or have low contrast. The rejection criterion depends 

on the Taylor expansion of the DOG at the selected point as defined by: 

+ (33) 

where the DOG and its derivatives are evaluated at the point X that represents the shift from 

the origin which is set at the keypoint. The location of extremum is found by differentiating 

Equation (33) and setting it to zero. So, the location of the extremum is given by: 

& D O G - l d D O G  
* = — a- (34) 
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Set Kernels 

Difference of Gaussian (DOG) Set of Scale Spaces 

Processed Image 

FIG. 10: Generation of scale spaces and DOGs 

As suggested by Brown [70], the Hessian matrix and the derivative of the DOG are approxi­

mated by the difference of the adjacent points. If the estimated shift is greater than 0.5 then 

that extremum belongs to a different sample point and it's rejected. Also, to eliminate the 

u n s t a b l e  e x t r e m u m  w i t h  l o w  c o n t r a s t ,  t h e  v a l u e  o f  t h e  D O G  a t  t h t ;  e s t i m a t e d  s h i f t ,  D O G ( x ) ,  

is calculated and it's rejected whenever the value of \DOG(x)\ is less than 0.03. Because 

the DOG has a strong response at the edges, another elimination of incorrect keypoints is 

done. A poor peak is characterized by large principal curvature across the edge and a small 

curvature in the orthogonal direction. The principal curvature can be extracted from the 

Hessian matrix eigenvalues. The points are rejected whenever the ratio between the square 

of the Hessian trace to its determinant is greater than 10. 

Orientation Designation 

Each keypoint is assigned an orientation that will be used to generate the keypoint that 

is invariant to image rotation. At every keypoint, its scale space SS can be used to generate 

the gradient magnitude, G(x,y), and the orientation, 6(x,y), as given by 

G ( x , y )  =  y / ( S S ( x  +  1 , y )  -  S S ( x  -  1 , y ) ) 2  +  ( S S ( x , y  +  1) -  S S ( x , y  -  l))2 (35) 
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9 { x , y )  =  tan 1 ( ( S S { x , y  +  1) -  S S ( x , y  -  l ) ) / ( S S ( x  +  l , y )  -  S S ( x  -  l , y ) ) )  (36) 

At each keypoint, an orientation histogram is formed using the available orientations in a 

region around the examined keypoint. The histogram is divided into 36 bin with every bin 

covering 10 degree of orientations. The histogram peak corresponds to the local gradient 

prominent direction and is assigned to be the orientation of the processed keypoint. 

Keypoint Descriptor 

The orientation designation characterizes each keypoint with image location, scale and 

orientation. In this step, the descriptors will be generated in such a way to be invariant 

to other variations such as illumination change and 3D viewpoint. A window of 16 x 16 

samples around each keypoint is broken into 16 windows where the size of each window is 

4x4 samples. For each sample of the 16 samples inside each window, the gradient magnitude 

is calculated and is added to a histogram consisting of 8 bins where their magnitudes are 

weighted according to the samples distance from the examined keypoint. By repeating this 

procedure for the 16 windows, each keypoint will be described by a vector of dimension 128. 

The vector is then normalized to a unit length to make it invariant to illumination change 

and 3D viewpoint. 

Keypoint Matching 

First, the sift is applied to the reference image and the extracted descriptors will be saved 

in a database. Then, it is applied to the unregistered images, and the extracted descriptors 

will be matched to the saved database through a nearest neighborhood search that minimizes 

the Euclidean distance between them. 

2.3.2 SPATIAL TRANSFORMATIONS PARAMETERS EXTRACTION 

In our studies, we need to correct the UAV captured images distortions by means of 

affine or projective transformations to eliminate the effect of the yaw, pitch, roll and altitude 

change. Once the match between the reference and the unregistered image has been done, the 

affine transformation will have 6 degrees of freedom (DOF), so it needs 3 keypoint matches, 

while the projective transformation has 8 degrees of freedom, so it needs 4 matches to derive 

the transformation parameters. With 3 keypoints match, the affine transformation given in 
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Equation (27) can be rewritten as: 
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(37) 

which can be written as a system of linear equations AX = B. The solution of this 

system can be obtained through the least square method given by the normal equation 

X = [ATA]_1ATB which minimizes the sum of the distance between the corresponding lo­

cations in the reference and the unregistered images. Similarly, the projective transformation 

in Equation (29) can be rewritten as 

Xi 

2/i 

X 2  

V 2  

2/4 

x \  y'x 1 0 0 0 —x'iXi 

H 1 h n  

0 0 0 x \  y'1 1 ~ x i V i  - y [ y i  h\2 

x'2 2/2 1 0 0 0 -2/2^2 h n  

0 0 0 A  2/2 1 ~AV2 -2/22/2 h2i 

x'3 2/3 1 0 0 0 X3X3 -y^s h22 

0 0 0 x'3 y'3 1 -2/32/3 tl23 

x'4 2/4 1 0 0 0 'X4X4 -1/4X 4 h 31 

0 0 0 x \  2/4 1 -Ay* -ViVA /l32 

(38) 

which can be solved using the normal equation such as in the affine case. Figure 11 shows 

the results of applying the SIFT to a set of home images with different orientations to 

simulate the distortions of shear, tilt and rotations. Also, Figure 12 and 13 show the results 

of registering two different sets of aerial images. The left column in these three figures shows 

the corresponding keypoints or landmarks matches between the reference images and the 

unregistered ones while the right column shows the images after the registration with dark 

regions showing the areas of overlapping between these processed images that can be used to 

reconstruct SR images. Once the appropriate transformation is applied to the unregistered 

image, the reprojected images will be registered within subpixel accuracy using the enhanced 

SSDFT approach. 
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FIG. 11: Corrected LR images after using the SIFT algorithm (home images) 
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FIG. 13: Corrected LR images after using the SIFT 
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2.4 FREQUENCY-DOMAIN BASED REGISTRATION 

Up to this point, the UAV images are restored form shear, tilt, and perspective distor­

tions. The following step is to align them within subpixel accuracy, which is considered a 

crucial step in any SR reconstruction algorithm. Without accurate subpixel registration, se­

vere artifacts will be present within the reconstructed SR images. Many applications require 

the accuracy of the registration to be within a small portion of a pixel such as in medical 

imaging, computer vision [50, 71] and remote sensing. In the latter, a pixel in Landsat im­

ages measures approximately 80 m on the earth, so 0.1 pixel registration accuracy will lead 

to a resolution of 8 m [21]. 

For the case of a translation between two images, the usual technique to address this 

problem is to compute the cross-correlation between the unregistered and the base images 

by means of discrete Fourier transform (DFT), and locate its peak [72]. If the image to be 

registered is g(x,y) and the base image is f(x,y), then the normalized mean square error 

(NRMSE) E2 between two images is defined as [73]: 

^ 2  - x o , y -  y o )  -  f ( x , y ) |  

E2 = min x'v 

a,X0,V0 J 2 \ f ( x , y ) \  
x,y 

max|r/fl(i0,J/o)| 
(39) 

£|/(s>v)|2£|s(s.iOr 
x,y x,y 

where r / g  is the cross-correlation of f ( x , y )  and g { x , y )  is defined by: 

rfa( x Q , y 0) = f { x , y ) g * { x  -  x 0 , y  -  y 0 )  
x,y 

=  Y , v )  e x p  ( ^  +  ^ )  )  •  ( 4 0 )  
f," 

Mi and Mi are the image dimensions; * denotes complex conjugation; and F(/z, u) and 

G ( f i ,  v )  a r e  t h e  D F T s  o f  f ( x , y )  a n d  g { x , y ) ,  r e s p e c t i v e l y .  T h e  2 D - D F T  o f  a n  i m a g e  f { x , y )  

is defined by 
1 M—1 M"2 — 1 / \ 

= /(*,»)exp-<2* (^ + H) (41) 
* x=0 y=0 N 
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The evaluation of the NRMSE requires solving the more general problem of sub-pixel image 

registration by locating the peak of cross-correlation rfg(x,y). The usual DFT approach to 

find the cross-correlation peak to within a fraction, 1 /e, of a pixel is to 

1. compute F(n ,u )  and G(n ,  v ) ,  

2. embed the product F(/x, v )G*( fx ,  v )  in a larger array of zeros of dimension ( eM,  eN) ,  

3. compute the inverse DFT to obtain the up-sampled cross-correlation, and 

4. locate its peak. 

Although this approach is very accurate and robust to moderate noise, its computational 

complexity and huge memory requirements make it unrealistic even for small dimension 

images with large upsampling factors. The computational complexity of this approach is 

O {MiM 2 e  [ log 2 ( eMi)  +  e log 2 ( eM2) ]}  [72]  where  e  i s  t he  upsampl ing  f ac to r  and  M\ and  M 2  

are the image dimensions. 

Two algorithms were reviewed and compared against the enhanced speedy proposed 

approach. The first algorithm is non-linear Optimization gradient routine (NLOGR) and 

the other one is single step discrete Fourier transform (SSDFT). Both algorithms start with 

an initial estimate for the location of the cross correlation peak by means of usual FFT 

approach with upsampling factor ea of 2 which means that the location of the peak is within 

±0.5 pixel accuracy. Most of the time required for the registration process is consumed in 

this step, which is considered the main drawback of these algorithms. The SSDFT approach 

is classified as one of the most reliable and efficient subpixel registration algorithms [26], 

and it is faster and more computationally efficient than NLOGR approach. A speeded-up 

version of the SSDFT approach is proposed without sacrificing the required accuracy and it 

is roughly 5X times faster than the original SSDFT approach and can be used efficiently in 

the case of large dimension images. 

2.4.1 NON-LINEAR OPTIMIZATION GRADIENT ROUTINE 

The algorithm refines the initial estimate obtained by the usual FFT2X approach using 

a nonlinear-optimization conjugate-gradient routine to maximize |r/s(x0, y0)12• The partial 
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derivative of r j g  with respect to x0 is given by 

x e*p(«r(i2! + !3S))) (42) 

with a similar expression for the partial derivative with respect to yo- The algorithm itera-

tively searches for the image displacement (x0, yo) that maximizes rfg(xo, j/o) and can achieve 

registration precision to within an arbitrary fraction of a pixel. Assuming that the usual 

FFT2X initial estimate is X(0) = (x(0),2/(0)), then the steps to refine this estimate are: 

1. compute the gradient of r j g  at (x(0),y(o)) as given by 

f i f  , f i f  ,  
Vr/„(X(0)) = (-^,-^)|(lI1„TO>1 (43) 

2. start with d(0) = r(0) = Vr/s(X(0)). 

3. find ct(i) that minimizes V|r/9(X(j) + ct(i)d(i))|2 

4. update: 

(a) X(i+i) = X(i) -f a(i)d(i), 

(b) r(i+i) = Vr/9(X(<+1)) 

5. calculate 0( i+i )  as given by 

6. calculate d(i+i) as given by 

Ai+D - (44) 
(») (*) 

d(i+i) = «•(*+!) + /?(i+i)d(i) (45) 

7. stop when the maximum iterations exceeded a certain number or ||r(i)|| < e ||r(1+1)|| 

with e < 1. 

The parameter acan be obtained using general line search using the Newton-Raphson 

Method. If we let V|r/g(X(i) + a(i)d(j))|2 = f(x + ad), then the Taylor expansion of the 
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function / is given by 

f ( x  +  a d )  « f ( x )  +  a  
d a  

f ( x  +  a d )  
. Gt=0 

a2 

+ T da2 
f ( x  +  a d )  

=  f ( x )  +  a [ f ( x ) } T d + ^ - < F f " ( x ) d  

Differentiating this equation with respect to a yields 

a=0 

(46) 

f ( x  +  a d )  w [ f ' ( x ) } T  d  +  a d T f " ( x ) d  
d a  

iT riii (47) 

The function f ( x  +  a d )  is minimized by setting ^/(x + a d )  to zero and hence 

f ^ d  
a  

( F f " d  
(48) 

where f " ( x )  is the Hessian matrix defined by 

(a2! d2.f \ dxidxi dxidx-2 1 

a2/ a2/ | 
dxidxi dxidxi} 

(49) 

2.4.2 SINGLE STEP DISCRETE FOURIER TRANSFORM APPROACH 

The second efficient subpixel algorithm was developed by Guizar-Sicairos et al. [72] to 

register images with the same accuracy obtained by the usual FFT approach but with a huge 

reduction in computational time and memory requirements. Their technique was classified 

as one of the most reliable and best algorithms to register images using phase correlation 

methods [26]. The SSDFT works on two steps. The first step, which is similar to NLOGR, 

finds an initial estimate for the location of the cross correlation peak between two images 

using the usual FFT approach with upsampling factor of e0 = 2. The usual FFT approach 

causes a tremendous waste of memory and processing time as it must process the entire zero 

padded upsampled matrix of dimensions (eMi,eM2) to get the accurate peak location. On 

the contrary, the SSDFT approach searches for the accurate peak in a small window around 

the initial estimate by means of DFT instead of FFT. It utilizes the DFT implementation 

to obtain an upsampled version of the cross correlation in a small window of size 1.5e x 1.5e 

around the initial estimate without zero padding the product F(v, U)G*(v, LJ). This process 
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is implemented by rewriting Equation (41) as a product of three matrices of dimensions 

(1.5e, Mi), {Mi, Mi), and (A/2,1.5e). Then a search for the peak is done over the output 

matrix of size (1.5c, 1.5c). The computational complexity of this approach is 0(MiM2e), 

which is a great improvement to the usual FFT approach. 

Although the SSDFT approach is an efficient subpixel registration algorithm, its main 

disadvantage is that most of the time needed for registration is consumed in searching for 

the initial estimate. This drawback will be tremendously improved in our proposed approach 

which greatly reduces the time required for locating the initial estimate and also reduces the 

time required for the refinement step. 

2.4.3 SPEEDED-UP SSDFT APPROACH 

We enhanced the SSDFT approach by reducing the required time for its two steps, i.e., 

the time required for the initial estimation of the peak location; and the time needed for the 

refinement step. Our approach to reduce the computational time for estimating the initial 

peak location depends on reducing the dimension of the Fourier transform of the cross 

correlation matrix and by applying the inverse FFT, the initial estimate can be obtained in 

a faster way than the SSDFT approach. 

Suppose we replaced the Fourier transform of both the reference image F\{v,us) and the 

unregistered version F2(i/,w) by a sampled version of them; then the right hand side of 

Equation (41) becomes 

where K i  and K 2  are the sampling factors along the x -  and y — , directions respectively, and 

5 is the Dirac delta function. Rearranging the sums and by using the sifting property of the 

Dirac delta function, the last equation can be written as 

which represents the inverse Fourier transform of the product at the new reduced dimension. 

EE F ( f i ,  v ) G * ( n ,  1 ' ) 8 ( n  —  K i m ) 6 ( i /  —  f a n )  

(50) 

F { K \ m ,  K - x n ) G * { K \ m ,  K 2 n )  

(51) 
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TABLE 1: Optimum sampling factors for different image sizes 

Image size Sampling factor K  
128 
256 
512 
1024 
2048 
4096 
8192 

4 
8 
16 
32 
64 
128 
256 

So, the idea here is to sample the Fourier transform of the two images being registered and 

to apply the same SSDFT approach in searching for the initial estimate of the peak location. 

The computational complexity of our enhancement is 0(K[1 K^1 MiM2e) which is a great 

improvement over the SSDFT approach. 

The selection of the sampling factors K i  and K 2  will depend on the image size, preferably 

of base of 2 to gain the full power of the FFT. Table 1 shows the sampling factors for different 

image sizes. If Kl2$ is the sampling factor for an image of size 128 x 128, then the sampling 

factor for an image of size M x M can be extracted as KM = M/128 * These sampling 

factors can make the computational time required for the initial estimate of the peak location 

to be roughly the same. 

The second enhancement of the SSDFT approach reduces the number of matrix multipli­

cations required to find the accurate location in the upsampled cross correlation window by 

minimizing the number of matrix multiplications required to obtain a partial inverse DFT 

matrix. Consider Equation (41) to be written as a product of three matrices as given by 

then the SSDFT approach searches for the accurate location by multiplying the whole three 

matrices and then searching for the peak in the resultant matrix C/j/2, which consumes 

sometime as not all the values inside the output matrix are required. 

In our approach we overcome this weakness by partially obtaining some values inside the 

resultant matrix and accurately determining the peak location using a forward and backward 

search. It depends on the idea that the peak of the cross correlation will be close to one 

C/1/2 = Ai.btY.My * BMxXM2 * Cm2X1.5O (52) 
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of the borders of the output upsampled cross correlation matrix (row or column). Figure 

14 shows an upsampled cross correlation version of a window of size 150 x 150 (upsampling 

factor =100) around the initial peak location, and Figure 15 shows its level curves. Usually, 

the location of peak will be close to one of the borders of the upsampled cross correlation 

window. By calculating partial parts of upsampled window, we can speed up the search 

1.675--. 

FIG. 14: Upsampled cross correlation with window size 150 x 150 

for the accurate peak location. This can be done using the following steps: 

1. calculate the output matrix borders Ri, RM^ Ci, and CM2 as defined by 

Ri  =  (A{i, : )  *  B)  * C ,  i  =  1 or M i  

C j  =  A * ( B * C ( : , j ) ) ,  j  =  \ o i M 2  (53) 

where the use of "()" specify the order of matrix multiplication, 

2. find the max value across these borders and assume for example it is across the first 

row R{ \ , : ) ,  

3. from /2(1,:) the algorithm starts a forward search in steps of a to find the next max 

value across the rows R(oi + 1,:) where i refers to the iteration number and it stops 
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FIG. 15: Level curves for the upsampled cross correlation 

when the next maximum value drops below the previous one. 

4. from the last scanned row, the algorithm starts a backward search with a decrement 

of 1 until the next maximum value is less than the previous one. 

At the last scanned row, the algorithm accurately finds the maximum peak and its location. 

To evaluate our improvements against the SSDFT approach, we compare the performance 

of the two approaches against different image sizes ranging from 256 x 256 up to 8192 x 8192 

in a multiple of 2. The images are corrupted by additive white Gaussian noise and blurred by 

a Gaussian kernel to simulate the optical lens blur. Also, they are shifted by a lateral shifts 

of (3.48574,7.73837) in pixels to obtain the unregistered versions of them. The simulations 

are performed using MATLAB 7.8 Release 2009a program on OPTIPLEX 780 (Intel(R) 

Core (TM)2 Quad 2.66 GHz CPU, 8.00 GB RAM, MS Windows 7 Professional 2009). The 

SSDFT technique and the enhanced one register images with accuracy of 0.01 pixel. The 

estimated shifts for both algorithms are (3.49, 7.74) with estimation error 6s = 0.00456 of 

a  p i x e l  w h e r e  t h e  e s t i m a t i o n  e r r o r  i s  g i v e n  b y  t h e  / 2 - n o r m  b e t w e e n  t h e  a c t u a l  s h i f t s  ( d x , d y )  
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and the estimated shifts ( d x , d y )  as given by 

6s = \J(d x  -  d x ) 2  +  ( d y  -  d y ) 2  (54) 

Figure 16 and 17 show the comparison between the SSDFT approaches (the original and 

the enhanced one) and the NLOGR in terms of the estimated NRMSE E and the estimated 

error Ss. The greater the upsampling factor the better is the estimate for the subpixel shifts 

and the lower value of the NRMSE. A comparison of the computational time required for 

0.4 

o.oe 

-e- SSDFT, e=2 e=6 —1— e=10 NLOGR t 
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> 

* r / 
* 

* 
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E 

FIG. 16: The estimated NRMSE E  against the actual one 

the initial peak estimation, the refinement step, and the total registration time are shown 

in Figure 18, Figure 19, and Figure 20, respectively. It can be seen that our approach 

tremendously reduces the amount of time required to obtain the initial estimate for the peak 

location compared to the SSDFT approach. Also, our approach makes the time required 

for this step roughly the same regardless of the image size which can be done by controlling 

the selection of the sampling factors K\ and Ki- For example, for an 8192 x 8192 image it 

requires around 2 milliseconds using our approach while it needs around 200 seconds using 

the SSDFT approach. In the refinement step, our method enhances the performance of the 

SSDFT approach as can be seen in Figure 19. Throughout simulations, we set the forward 
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FIG. 17: The upsampling factor e against the estimation error Ss 
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FIG. 18: Computational time required for the initial estimate 
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TABLE 2: Total time required to register images of dimension 512 x 512 with different 
subpixel accuracy. 

Subpixel accuracy (pixels) Enhanced SSDFT (seconds) SSDFT (seconds) 
0.1 0.15 0.54 
0.01 0.2 0.63 
0.001 1.4 2.98 

0.0001 75.13 151.56 

step a to 0.3e. The total computational time required for the whole registration process for 

both approaches is shown in Figure 20. Over all, our approach is approximately 5X faster 

than the SSDFT approach. 

Also, we test the performance of both algorithms against changing the required subpixel 

accuracy, which can be seen in Table 2. Our enhancement increases the attainable subpixel 

accuracy with a large decrease in the computational time. 
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FIG. 19: Computational time for the refinement step 

The proposed enhanced approach registers images that differ by translational shifts or 

scaled by a constant and can be used in the presence of moderate noise. Our enhanced 

approach offers a great reduction in computational time and memory requirements against 

the SSDFT and the usual FFT approaches without sacrificing the required accuracy. It 
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FIG. 20: Total time required for registration 

can register very large dimension images of size 8192 x 8192 in roughly 1 minute compared 

to 5 minutes using SSDFT approach with subpixel accuracy of 0.01 pixel. Other subpixel 

registration techniques such as cross correlation surface fitting [71] or stochastic sampling 

approaches [74] can perform faster but their registration accuracy is not as efficient. 
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CHAPTER 3 

LR IMAGES PROJECTION ONTO HR GRID 

3.1 OPTIMUM SCENELS HIGH RESOLUTION GRID 

ALLOCATION 

Like general SR cases, the estimated subpixel shifts are random and don't follow a regular 

pattern, causing the spacing between the LR scenels to be nonuniform. One approach 

called nonuniform interpolation converts the nonuniform spaced samples into uniform ones 

by interpolating the available pixels and using them to estimate the samples or the pixels 

located at the coordinates of the uniform HR grid, but the reconstructed image using this 

technique loses some of the frequency components, which in turn affects its visual quality 

[3, 39], 

If the LR scenels are not located correctly to the most correct points of the uniform HR 

grid coordinates, then the visual quality of the reconstructed images will be affected greatly, 

which can be seen in Figure 21 that shows the interlaced LR images without reconstruction 

and restoration. It can be seen with LR scenels optimum allocation, the left image is much 

better than the right one. 

(a) Optimal Allocation (b) Non-optimal Allocation 

FIG. 21: The effect of optimal and non-optimal allocation on the visual quality 
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A technique referred to as microscanning is an effective method for reducing aliasing 

and increasing spatial resolution. The acquisition is performed for each of the microscanned 

images y) for 0 < k\ < Ki and 0 < fc2 < where Ki'is the number of microscans in 

the x— direction and Ki is the number of microscans in the y— direction. It is assumed that 

the subpixel shifts between scans are equal and constitute a uniform pattern. Thus, for K\ x 

K2 microscanning each scan would differ by a Ci/^i shift in the x- direction and a Qi!in 

the y— direction where Ci and £2 are the the photo-detector pitch in the x— and y— directions. 

Images that have been acquired using a single scan cannot be restored and reconstructed 

accurately beyond the Nyquist frequency of the acquisition device. Suppose, however, that 

for a particular input scene, energy is present at frequencies beyond the Nyquist frequency. 

Without physically adding more detectors to the sampling device, accurate reconstruction 

of those high frequency features and components could rely on the use of microscanning, 

which can be used accurately to restore pixel-scale features [75]. 

Usually, the possible artifacts with the reconstructed image through microscanning are 

a minimum that results in a reconstructed image with better visual quality. It is desirable 

to achieve these results in the UAV captured images. The main idea here is to readjust 

the subpixel shifts of the UAV registered frames that will be combined to form the high 

resolution image. So, it is required to correctly estimate the subpixel shifts of the frames 

first and then to optimally allocate them to the HR grid and finally to adjust them to match 

one of the popular microscanned patterns. Theses modes are 2x2, 3x3, and 4x4 scene 

elements (scenel) per pixel with displacement in the x— and y— directions of Q\/2 and C2/2, 

£i/3andC2/3, and Ci/4and(2/4, respectively where Ci and C2 are the x and y photo-detector 

pitches [76]. 

We propose two approaches that are simple yet effective to optimally allocate the pixels 

of registered LR frames to the HR grid in order to reduce the visual artifacts in the recon­

structed image. The two approaches are: (1) minimum square distance allocation (MSDA) 

and (2) mid-point subpixel shifts allocation (MSSA). For simplicity, the subpixel shifts in 

both approaches will be adjusted such that they are located in the first quadrant of R2 space. 

If d^m and d™tn are the smallest subpixel shifts in the x— and y- directions among all the 

LR frames, then the adjusted phase shift x'ki and y'k2 for the k^kf frame are given by: 

= x k l  +<Cn  

= Vki + 
(55) 
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3.1.1 MINIMUM SQUARE DISTANCE ALLOCATION 

If the HR grid consists of M\ x M2 blocks and every block contains K y  x K2  scenels, 

then the pre-determined uniform HR grid subpixel  shif ts  are and ^  in the x— and y-

directions, respectively, which constitutes a uniform pattern or raster. Unlike the uniform 

pattern, the subpixel shifts of the registered LR frames form a completely random structure. 

Consider 

<? = {( 0,0),(0, £),••• (56) 

is the set of the pre-determined subpixel shifts and 

/  = {(so.tfo)  , (*o,Vi)  , •••  (57) 

is the set of estimated subpixel shifts of the registered LR frames. It is required then to find 

the optimum mapping or transformation T : / —>• g that converts the nonuniform subpixel 

shifts pattern into a uniform one. The approach here uses the Minkowski distance as a 

comparison metric to optimally and accurately allocate the elements of the set / to the 

elements of the set g with minimum distance between the corresponding points in these sets. 

If  P k l k 2  = e g and k  = 0,1,  • •  •  ,  Ki  -  1 with i  = 1 or 2 and Qh h  = (xh ,yh)  € 

/ and l i  = 0,1, • • • , Ki — 1 with i  = 1 or 2 then the Minkowski distance of order p between 

Pklk2 and Qhh is given by [77]: 

1/P /I P P\ L /P  
diPiakziQhh) = ~ + T&~Vh J (58) 

Typically, the order p is usually set to 1 or 2. To measure the Euclidean distance, we set p = 

2 and to measure the Manhattan distance, we set p = 1. For simplicity and computational 

complexity purposes we use the Manhattan distance. Assume the HR grid is now empty and 

we want to fill in the required locations, so we calculate the Manhattan distance between 

all the points in the set / and only one point in the set g and the point with the minimum 

distance is  set  to  this  locat ion in the HR grid.  In other  words,  for  a  given point  P k lk2  € g,  

the optimum and most close point to it in / is given by: 

argmin {d(P k l k 2 ,Qi i h)}^£_1 (59) 
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The search for the nearest location should be done in a zigzag scan to avoid misplacing the 

elements of the set / to the correct locations of the HR grid. If the total number of LR 

frames is L, then the total number of searches required to allocate all the LR frames to the 

HR grid is  L\.  

3.1.2 MID-POINT SUBPIXEL SHIFTS ALLOCATION 

In the MSDA approach, the allocation of LR frames scenels is constrained by the uniform 

spacing and structure of the HR grid. So, even with proper adjustment of LR frames phase 

shift, the reconstructed image will have some undesirable edge artifacts [16]. In the MSSA 

approach, the scenels will have a relaxed allocation on the HR grid which will be constituted 

depending on the relative shifts and relative-structure between the different LR scenels, 

providing a smooth reconstructed image. To construct the HR grid in this approach, we 

first project the scenels' locations on the x axis and then divide the inter-distance between 

the projected scenels  to obtain the horizontal  l ines of  the HR grid at  the mid-points  of  the x 

projected scenels '  inter-distance.  Similarly,  the scenels '  locat ions wil l  be projected on the y 

axis and the vertical lines of the HR grid will be located at the midpoints of the y projected 

scenels inter-distance. The HR grid will be formed by the intersection between the horizontal 

and vertical lines and every LR frame scenel is located with respect to its relative location 

to the other LR frames' scenels. 

3.2 PHASE SHIFT ADJUSTMENT 

Once the locations of the LR scenels to the HR grid have been determined using either 

the MSDA or the MSSA methods, the phase shifts of the interlaced LR frames is spatially 

shifted, using discrete Fourier transform shift theorem, so that the interlaced LR scenels have 

uniform phase shif t  differences between them. If  kik^1  LR image is  Sfcik2(x — x k l ,y  — y k l)  

where xkl and yk2 are the estimated subpixel shifts in the x— and y— directions then its 

representation in the spatial frequency domain w) is given by [16]: 

w) = s^ki ("i u>)e~i2*(Xki V+Vk2") (60) 

Also, if the determined HR grid locations are (dk^d^), then the subpixel shift adjustment 

can be performed in the spatial frequency domain by re-adjusting the phase of the LR image 
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f k l k 2 ( v , u > )  as given by: 

= Aifc2 ("> uj)ei2ir^Xki ~dhi' p+(vfc2 ~dkt'w) (61) 

So, for example, if we need to double the spatial resolution in the x —  and y —  directions, 

we need 4 LR frames and the phase shift adjustments can be performed as follows: 

=  f o o ( v ,^0 exp [ i 2 n ( x Q  v  +  y o  w)] (62) 

3oi(I/>w) = f o i ( u , u ) e x p  [ i 2 n ( x o v  +  (yi - |)w)] (63) 

9 i o ( v , w )  =  f i o ( " , u )  exp [ i 2 T t { { x x  - \ ) v  +  y Q u ) }  (64) 

gn(v,u)  =  /n(i/,cx;)exp [i27r((xi - |)i/+(j/i - |))] (65) 
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CHAPTER 4 

STOCHASTIC OPTIMAL RECONSTRUCTION AND 

RESTORATION 

In this dissertation, we revisit the Wiener filter and extend it for the general SR problem 

where the subpixel shifts are unknown and random. The earlier traditional developments of 

this filter are for a single image restoration and are based on the assumption that the CDC 

model is constrained only by blurring and noise and ignores the insufficient sampling in the 

image gathering process. Consequently, it will not actually minimize the mean square error 

of the reconstructed image. The proposed work is an extension to the Wiener filter devel­

oped by Carl et al. [19] that we extend for addressing the SR problem. Also, our derivation 

indicates periodic and non-periodic frequency inter-relationships between different CDC pa­

rameters in addition to highlighting the decomposed output and fidelity components that 

result from aliasing, blur and noise encountered during the image-acquisition, intermediate 

processing and image display processes. We formulate the Wiener filter as a function of 

the parameters associated with the proposed SR system, such as image gathering and image 

display response indices, system average signal-to-noise ratio (SNR) and inter-subpixel shifts 

between the LR images. Also, we derive the loss in system fidelity and separate it into three 

components and relate every component to its corresponding degradation in the proposed 

system. Simulation and experimental results demonstrate that the derived Wiener filter with 

the optimal allocation of LR images can reduce aliasing and blurring, resulting in a sharper 

reconstructed image with pleasant visual quality. 

4.1 LOW RESOLUTION IMAGE FORMULATION 

Figure 22 details our Super-resolution CDC based system components. It represents 

most of the degradations including blur, noise and aliasing that are encountered during the 

image gathering, image reconstruction and image display processes. 

• The blur results from convolving the continuous input scene with spatial shift invariant 

low pass filter that represents the spatial frequency response (SFR) of the image gath­

ering optical lens. In addition, blur also occurs when the image acquisition device is 
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FIG. 22: Complete continuous-discrete-continuous SR reconstruction model 

out of focus or there is a relative movement between optical system and the captured 

scene, and sometimes it is caused by atmospheric turbulence in the case of remote 

sensing images [29]. 

• The additive noise results from image gathering photo-detectors or quantization arti­

facts. Usually, the noise is assumed to be spatially uncorrelated. Sometimes, images 

and noise are correlated especially when noise is multiplicative instead of additive, or 

the image gathering is nonlinear. For simplicity, noise is modeled as additive white 

noise. 

• The aliasing results from sampling beyond the Nyquist sampling rate, causing high 

frequencies in the scene to fold back into the low frequencies band. The aliasing 

causes certain visual artifacts inside the captured images such as jagged lines, spurious 

highlights and repeated patterns [29]. 

According to Carl et al. [19], for the kik'2h LR frame, the image gathering device transforms 

the continuous input scene L(x,y) into a discrete signal (x, y) as defined by: 

BkxbiXiV) = fk,k2(x,y)g(x,y)  

= [L(x-x k l ,y-yK 3 )*T k l k 2(x,y)  + N k l k 3{x,y)]\^{x,y)  (66) 

where T(X , y) is the spatial response of the image acquisition device, N k l k 2(x,  y)  is the additive 
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photo-detector noise, and the symbol * denotes spatial convolution. The sampling function 

UK*.?/) = (67) 
m n 

denotes sampling on a rectangular grid with unit sampling intervals and 8(x,  y)  is the Dirac 

delta function. The Fourier transform of Equation (66) gives the spatial frequency represen­

tation of the discrete signal sklk2 as defined by: 

Skikafaw) = * ||(i/,w) 

-  EE L(u — m,u — n)ffcjfc2(f — m, ui ~  n)  exp(—i2n(x k l  (v — m) 
TO n 

+ y k 2(w-n)))  + N k l k 3( i / -m,uj-n )J (68) 

where L(u,u)  and N k l k 2(v,u>) are Fourier transforms of the input scene and the photo-

detector noise respectively, Tkik2(i/,cj) is the Spatial Frequency Response (SFR) of the image 

acquisition device, the function 

-n) 
TO n 

= 5{v,u))  + jj^i /  — m,uj  — n)  (69) 

is the Fourier transform of the sampling function and ||| (v,  UJ) accounts for the sampling 

sidebands. The associated sampling band is defined as: 

B = [{V,U)-M<\M< \ ]  (70) 

The symbol tilde is used instead of the symbol caret V whenever the corresponding 

Fourier transformed function is periodic in the spatial frequency domain. Equation (68) can 

be rewritten as 

= L{v,v)f k l k 2(v,uj)exp(-i2ir(x k l  v + y k 2u))  + Na{v,uj)  + N k l k 2(v,uj) (71) 
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where 

Na{u,u))  = L(v -  m,u -  n)f k l k t(u -  m,u -  n) 
m/O n^O 

x exp (-i27r(xfc, (i' - rri) + yk2(u - n))) (72) 

are the aliased components that insufficient sampling folds back into the sampling passband 

and Nklk2(v,w) is Fourier transform of the photo-detector noise. The Fourier components 

of the wide-sense stationary random fields L(v,u>) and Nklk2(i/,ui) and the co-aliased com­

ponents of the sampled scene are uncorrelated. These uncorrelated interrelationships can be 

expressed as 

E ̂ L(u — m,u — n)L*(y — m' ,u — = $l( i /— m,uj  — n)  6(m — m' ,n — r i ) ,  (73) 

E -m,u>-n)Nk l k 2(u-m,u -n)} = k l„2( f  -  m,u -  n)S(m -  m',n -  n),  (74) 

E^N k l k l( f-m,w-n)N l*h(u-m' ,uj-n ')J = 0, (75) 

E {i>(v — m,u) — n)N£ l k l( i;  — m',w — n")} = 0 (76) 

The power spectral density (PSD) of the acquired digital image s k l k 2(x,y)  is defined by: 

(l/'w) = E{\*kxkMu)\2} (77) 

with corresponding variance 

a*lk2 = II (78) 

Using Equation (73) through Equation (76), the PSD of the degraded image can be expressed 

as 

TO W) = [*ITO.W) |T(I/,UJ)\ 2 + tow)] * |[(i/,W) (79) 

where is the PSD of the input scene and is defined by 

— JS{|l(i/,O;)|2} (80) 

with associated variance given by 

a\ = J  J  $L( i>,u))di>du) (81) 
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and is the PSD of the noise associated with the LR frame and it is defined by 

^lt2(^,a;) = JE;{|iVfclfc2(I/,w)|2} (82) 

with corresponding variance 

= J J *N k l k a  (", u)dv<kj.  (83) 

4.2 HR GRID INTERLACING 

After the phase shifts of the individual LR images have been corrected, the reconstruction 

of the output image is performed by interlacing the pixels of the acquired images into a HR 

grid with a sampling density equal to K\K2 times the sampling density of the individual LR 

images. Thus, the composite HR image S is given by: 

S(Kimi + k i t  K2m2  + k2)  = s k l k 2(mi,m2) ,  (84) 

and its Fourier transform is given by: 

1 KiMi — l  K2M2—I 

E E 
TOl=0 7712=0 

The above equation can be rewritten and simplified as 

1  K1-IK2-I  . M2-IM2-I 
s(„,U)  = _ £ jr^  £ E 

ki =0 /c2=0 7712—O m2=0 

exp (-a*" {KTAk'))exp {~i2™ (**^*0) (86) 

Rearranging the summation terms 

M\ — \  A/2 — 1 
i 

Ml A/fr\  
k i -0 k2=0 

1 K1-IK2-I j 
S { " ' u )  =  « E E  m S E » * ( * " * ' i  

1 * *•—n L—n 1 mi=0 m2 

exp (-«" (w+isr))]exp {~i2n +i£k)) (87) 
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Recall that the discrete Fourier transform of the degraded image sklk2 is given by 

- Mi—1 Mi—1 /  /  \ \ 

= MM E E + ̂ )) (88) 
1 z mi=0 m2=0 v v 1 ^ / 

So, by substituting Equation (88) into Equation (87), the Fourier transform of the recon­

structed image S(U,OJ) can be expressed as 

= irk £ "p (~a* + j^)) <89> 
&i=0 *2=0 n 

If Xfc, and t/jfc2 are the subpixel shifts in the x— and y— directions, respectively, and (V ' ,OJ ' )  

is the normalized frequency pair, then the last equation can be written as 

j K x-l K2-I 
S(u',u') = YY ^2 Sfcifc2(I/,.w')exp(-i27r(i/'xfcl + ufykt)) (90) 

1  2  ki=0 k2=0 

Thus, the reconstructed image in the frequency domain is the sum of the phase shifted 

Fourier transform of the individual scans [75]. 

4.3 DERIVED STOCHASTIC WIENER RESTORATION FILTER 

In this section, we derive the stochastic Wiener filter based on the fully detailed SR 

CDC model that is given in Figure 22. It is constrained by the periodic and non-periodic 

inter-relationships between the different frequency components of the proposed SR system. 

It can be used as reconstruction filter as well as a restoration filter to recover images from the 

degradations that are introduced during image acquisition and image display. If the number 

of LR frames is K1K2, which is sufficient to produce full SR along the horizontal and vertical 

dimensions of the reconstructed images, then the derived filter works only as a restoration 

filter. On the other hand, if the available number of LR images is less than KtK2, then 

the filter works as a restoration and a reconstruction filter to estimate missing pixels on the 

dense HR grid. In spatial domain, the observed image R0(x, y) is reconstructed through the 

spatial convolution of the Wiener filter ^(x,y), the spatial response of the image display 

device rd(x,y) and the interlaced image S{x,y) as given by 

R0(x,  y)  = S(x,  y)  *  V(x,  y)  *  rd(x,  y)  (91) 
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The spatial frequency representation of this equation is given by 

R 0(V,UJ) = S(is ,u;)4'( i / ,u>)rd( is ,  u)  (92) 

By substituting Equation (71) and Equation (90) into Equation (92), the output image R0 

can be decomposed into three components as defined by 

Ro{v,  ui)  = Rf{u,  u)  + Ra(v,  u)  4- Rn{v,  w) (93) 

where Rj is the filtered component that accounts for the low-pass filtering of the image 

gathering, image display devices and the restoration filter, and it is given by 

R f(u,u))  -  -^Y]L(v,Lj)T k l k 2(v,uj)exp(-i4-7r{i>x k l  + u}y k t)) fd{u,u})^{v,uj) ,  (94) 
"1^2 t~T kxk2 

RN(I / ,UJ)  is the noise component that accounts for the additive white noise and is given by 

Rn{v,u)  = -77-77- N k l k 2( i / ,uj)  exp(—i4Tr(ux k l  + uy k 2 ) )Td { i / ,u)V ( i ' ,u) ,  (95) 
K l K*t£ 

and Ra{v,uj) is the aliasing component that accounts for the frequency folding due to sam­

pling beyond the Nyquist rate, and it is given by 

Ra{v,u) = —l— Y]iVa(^,cj)exp(-i47r(i/xfel 4- uy k 2)) fd{v,u)^{u,uj) ,  (96) 
K l K*££ 

where Na( i / ,uj)  is defined in Equation (72). The Wiener filter minimizes the mean-square 

restorat ion error  (MSRE) e2  between the input  scene L(x,  y)  and the output  image R0{x,  y) ,  

as defined by [19] 

= E \L(x,y)  -  R0(x,y) \2  dxdy j  

•«{/ /!  L{v,u)  — S(v,ui)4f(u,uj) fd(^ ,uj)^  
(97) 
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Using Equation (73) through Equation (76), the MSRE can be expressed as 

JJ[$l(V,UJ)  - $is.(f,w)$'(f,w)f;(i/,«) - $t.s(^.a;)^(i/,u;)rd(i/,a;) 

+ 4>s(i>,u/) u) \fd(i / ,uj) \2] dvduj  (98) 

where 

®LS*IY,U)  =  {$L'S{V,U))*  = E{L(I / ,U)S*(U,UJ)}  (99) 

is the cross power spectrum between the input radiance field and the reconstructed image. 

The optimal CDC Wiener restoration filter must satisfy [12]: 

de2  -  -
- j -  = -$L-s(^w)Td(^w) +$S( l / ,w)$*(l / ,U/ )  \ fd{u,uj) \  

= 0 (100) 

Accordingly, the Wiener filter that minimizes the MSRE is given by: 

*(,,.) = (101) 
$ S (L/ ,W) \T d(v,u)  |  

The cross power spectrum $ls-(^, w) between the input scene and the reconstructed image 

is given by: 

$ls*(v ,w )  = -r^-*L(f,w) y ^ f t k  2 ( i s , u } ) e x p ( i 4 n ( v x k l  + w y f c j ) )  ( 1 0 2 )  
fr fcl«2 

The power spectrum density of the reconstructed image $5(1/, CJ) is given by: 

I> s(v,  w) = * k»,w)  
1 2 \ mn 

]L1 exp(-i2jr(i/ifcl +w'vfc2)) 
kiki  

+ W) * JiLC^' I (103) 
*1*2 / 

where 1/ = 2v — m and u/ = 2a; — n.  If the photo-detector noise is modeled as wide-sense 
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stationary discrete random process, then its PSD is given by 

- EE RN k i k 2(m,n) exp(—i2n(mu + nu))  (104) 

where Rxkik^(m,n) is the noise autocorrelation function for the kik^1 scan. Also, 

if this noise is white, then RNklk2 = aNklk2Hm>n) and ^Nklk2 — aNklk.2• Con­

sequently, the Wiener filter expressed as a function of the SNR CTL/PN is given by 

^  ̂ _ K1K2&L(",u)t*(v,u>)t}( i>,ui)exp(i4n(i /xk l  + uyk i)) / \ td(v,t>»)|2  

5Z |f*1fca(,/''w/)|2exp(-i27r(i/'xfcl +u'yk 2))  
ki  k3  

+ J2("I . /<'N k i i , i )~ 
fc j  k2  

where u>). It can be seen that Wiener filter is a function of the different 

components of the CDC system, the subpixel shifts of the individual LR frames and the sys­

tem SNR. Unlike the traditional Wiener filter, which is based on an incomplete degradation 

model, the derived stochastic filter restores most of the image acquisition and image display 

degradations. The traditional Wiener filter is given by [31] 

•.(>,„)- doe) 
\T(I / ,ui) \  + {aL /aN)  2  

4.4 ENHANCED CDC MODEL 

The registration process has a direct impact on the quality and the performance of any 

SR algorithm. Inaccurate registration leads to severe results in the reconstructed images. 

The quality of SR images can be enhanced by adding a parameter that accounts for the 

registration and fusion errors to the proposed model [78, 79]. In our derivation we incorpo­

rate new parameters and 0k2 to the SR CDC model to refer to registration and fusion 

errors. By the appropriate selection of its distribution, Equations (90), (102) and (103) can 

be re-derived leading to a modified version of Wiener filter. The new equations for the re­

constructed image S, the cross power spectrum $LS-(V,U) and the power spectrum density 
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of the reconstructed image $s(f, u) are: 

= ~K~K~ Y1 ]C 5*i*aKV) 
KlK2 k^O k2=0 

x exp (—i27r(i/ (a:^ + afcl) + a/ (y k 2  + Pk2))) ,  (107) 

*LS*(",W) = Vfi^fi/.wjexp^^xifc,+0;^)) 

X E{expi2ir( t / (a k l  +u(0k2))}  (108) 

and 

*s(v,u)  = -^^2 I $lKu;)*|||(i/,w)^| ̂ fjJlfc2(i/',o;')exp(-j27r(i//xfcl+w'yfe2)) 
1  2  \  mn k\k2  

x £{expi27r(t/afcl+w/?fc2)} |2 + * l|(^w) j (109) 
*1*2 / 

respectively, where ct^ and 0k2 are the corresponding registration and fusion errors. Far-

siu et al. [79] suggested that the registration and fusion errors are properly described by 

Laplacian distribution. We derived the E {expi2n(i>(ak1 + w(Pk2))} term for three different 

distributions (Laplacian, uniform, and Gaussian) and compare their performance in terms 

of the maximum realizable fidelity. If the registration and fusion errors are described by a 

Laplacian probability density function 0k2\b) given by 

h{ock i ,Pk2)  =  ̂ e  b (110) 

where 6 is a scale parameter and related to the variance of the error, then the expectation 

for the error term is given by 

/

OO 

ea*(-^+^2) /L(Q f c i ,  f%2)  da k ld/3 k 2  

•OO 

1  (HI) 
62(47t262^2 + l)(47r262u;2 + 1) 

The proposed second distribution is the Gaussian probability function fd&ki, 0k2) defined 
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by 

/G(afci,/3fc2) — 
1 n».+5> 

e 
Y/2TTCT 

(112)  

Accordingly, the expectation for the error term is given by 

E |ei2,(,afcl+u,^) } = p  ̂(ua k l  + u0 k 2)  ^  
J -oo 

27r2<r2(f2+u>2) (113) 

Likewise if the distribution is the uniform probability distribution function fui&kn Pk2) de­

fined by 

W xW y  if |afcj < 2^, \Pky \ — 2W v  

0 otherwise 
fu(<*ki ,  Pk2)  ~  

then the corresponding expectation for the error is given by 

/

OO 

ei2«(»akl+u,pk2)fu(aki ̂  
•oo 

= si„c(^)sinc(^-) 

(114) 

(115) 

4.5 SPEEDED-UP WIENER FILTER 

The main drawback of the proposed SR. reconstruction and restoration Wiener filter is 

its computational time required to prepare the Wiener filter in the frequency domain using 

Equation (105). The idea here is to reduce the dimensions of the Wiener filter by constraining 

it to work on small patches on the images. As a result the required time to prepare the filter 

is reduced in addition to the time required to apply fast Fourier transform and its inverse 

operations. Back to Equation (91), the interlaced image S(x,y) can be expanded as 

S(x,y)  = 

Pu  0  . . .  0  

0  0  . . .  0  

0  0  . . .  0  

+ 

0 Pn •••  o 

0  0  . . .  0  

0  0  . . .  0  

+ ... 

0 0 . .  

0  0 . .  

0 0 . . .  P t  

0 

0 

P1P2 

(116) 

where P l }  represents the i j t h  partition, 0 is a block zero matrix of dimension L x  x L2 and 

PI and p2 are the number of partitions in the x— and y— directions, respectively. Suppose 

that S(x, y) and Pij(x, y) are of dimension Mi x M2 and Lx x L2, respectively; then PtJ can 
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be written as 

Pa = S(iL x  :  ( i  + l)Lx - IJL2 : (j  + l )L2  - 1) (117) 

As a result of this partitioning, Wiener filter can be applied independently to each of these 

partitions and because they are dominated by zeros in a well organized structure it can be 

applied efficiently to its nonzero part. The size of the derived Wiener filter can be constrained 

to the size of the Pij matrix, and as a consequence, its performance is expected to improve. 

The main parameters that control the derivation of the Wiener filter are the subpixel shifts 

of LR images and the mean spatial detail of the acquired scene. After the subpixel shift 

adjustments, these subpixel shifts constitute a uniform structure and are the same for all 

partitions. Also, as a good approximation of the mean spatial detail of the scene can be 

taken as the average spatial detail across all the partitions. As a consequence, only one 

Wiener filter can be used efficiently in the reconstruction and restoration of all partitions, 

which enables parallelization of the process and reduces the total time required for the 

processing of the whole image. Figure 23 shows the pipeline for the implementation of the 

speeded-up Wiener filter. It can be prepared in the frequency domain with the new smaller 

dimension and then it is pointwise multiplied with Fourier transform of every partition. 

Every partition will be recovered independently by means of inverse Fourier transform and 

finally all the processed partitions can be combined again to construct the final reconstructed 

SR image. If Mi = M2 = M and Li = L2 = L, then the new computational complexity of 

the processing of the Fourier transform operations is L log2 L compared to M log2 M for the 

older one. 

Pn FFT 

Six .  y)  
» Pvi FFT 

1 

IFFT IFFT 

IFFT 
no(.r. y) 

• P1P2 FFT IFFT IFFT 

FIG. 23: Pipeline of the speeded up Wiener filter 
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4.6 WIENER CHARACTERISTIC RESTORATION FILTER 

It is sometimes desirable to enhance a specific spatial feature of the input scene which 

can be formulated by letting Lc(x,y) = L(x,y) * rc{x,y) be the desired representation of 

the input scene L(x,y), where rc(x,y) is a linear characteristic function. The corresponding 

MSRE e2 is defined by [27] 

--{If i L c{v,ui)  — (118) 

Thus, the Wiener characteristic filter becomes 

^  ̂  _ KIK2$ L {U,U)T'  (i/,U)T'  (</, U)T; (i/,U) exp(»47r(i/xfcl + WY K L ))/ |fd(i/. W) |2 

* III (|/, a/) 1 I2 
2J (" '^ ' )  |  exp{-i2n(f '  x k l  +u>'y*2))  

2 
+ lk2) ~2 

mn *1*2 *1*2 

For example, the characteristic filter tc(u,ui) can be the spatial frequency response fe{u,w) 

of the Laplacian of Gaussian (V2G) operator commonly used to enhance the input scene 

transitions for subsequent edge detections [27]. The spatial response and spatial frequency 

response of this operator, respectively, are 

T- (x- ! / ,  =  ̂ (1-^)exp  
r2 1 

(120) 

and 

T e{v ,U)  = (2ttp)2  exp [-2(7xa epf] (121) 

where r2 = x2  + y2 ,  c e  is the standard deviation of the Gaussian function, and p = v2  + u2 .  

The selection of the Gaussian standard deviation ae normally entails a compromise between 

high resolution (with a small operator) and suppression of artifacts (with large operator). 

We choose ae = 0.75 because the spatial response re(x,y) relative to the unity sampling 

interval is then the same as that of Marr's model of the smallest operator in early human 

vision relative to the mean center-to-center distance between photodetectors in the foveal 

region of the eye's retina [27]. 

4.7 WIENER GAUSSIAN ENHANCEMENT FILTER 

The images that the Wiener filter restores with minimum MSRE normally posses high 

resolution. However, these images also exhibit visually annoying defects and artifacts due to 
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aliasing, photodetector noise that is amplified by the high frequency enhancement inherent 

in the Wiener restoration, and the ringing near sharp edges (Gibbs phenomenon) caused 

by the steep roll-off in the throughput response of image gathering restoration. So, it is 

desirable to combine this filter with an interactive control function for enhancing the visual 

quality. This control is provided by the Wiener- Gaussian enhancement filter [27] as defined 

by 

$v{y,u) = (122) 

where 

T V (F,  UJ)  =  exp [—2(7T0jp)2] + C exP [~2(7rcreP)2] (123) 

where aQ = 0.7. The standard deviation at controls the roll-off of the Wiener filter, while 

the standard deviation ae and the enhancement factor C controls the edge enhancement. 

The ratio a\ja\ is included so that the enhancement with C = 1 is directly proportional 

to the change of the intensity at an edge transitions [80]. The resultant WIGE restoration 

substantially reduces the ringing of the Wiener restoration at the cost of a barely perceptible 

loss in sharpness. 

4.8 FIDELITY ANALYSIS 

We analyze and decompose the end-to-end system fidelity and relate every component to 

its corresponding degradation in the CDC system. Linefoot [81] computed the image fidelity 

between Fourier transforms of both the continuous input scene and the continuous output 

scene as 

T = \ -  ( 1 2 4 )  
ff &L dv dui 

By using Eqs. (98), (102) and (103), the fidelity can be expressed as 

T = 1 - Tf - Ta - Tn (125) 

where J) is the loss due to the filtration process and is given by 

*/ = 
Jj & 

2 

1 - -£T-i^'r(i(i/,w)<i'(i/,w) y* Tklk2(u,u)exp(-i4TT(i/xkl  +uykl)) 
KlK* fa 

J J 4>'l dv dui 

dvdu) 

, (126) 
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Tn is the loss in the fidelity due to noise and is given by 

// KfKlJ? (?LloN k i k i)  2 \y(v,u)i l t(v,uj) \  dudhj  

J J df dui 

and Ta is the loss in the fidelity due to aliasing and is given by 

(127) 

ff-mSS*'-* m,n^O 
J a  ~  

fd(y',w')4/(u',u') (i/,lj) exp(~i2ir(v"xkx + u>"yk2)) 
*1*2 

2 

dudu 

ffr 
(128) 

rL dvdu 

where v" = 2u — m, u" = 2u — n, v* = v — m and ui' = ui — n. 

To minimize the loss in the fidelity due to filtration process it is necessary that we select 

H",u)td{v,  u) exp(—i47r(f x k l  + uy k i))  KIK 2  
kik2 

closer to 1 at the frequencies where is large. Also, to reduce the loss in the fidelity 

due to aliasing, the term 

-(u' ,u/)rd(i / ,u) ')4>(is ' ,u ')  exp{-i2n(v"x k ,  +u"y k 2))  
k\k2 

should be approaching zero at those frequencies where $'L(t / ,u/)  is large. Finally, the loss in 

the fidelity due to the noise can be reduced by increasing the SNR of the imaging system. 

4.9 SIMULATIONS AND RESULTS 

To assess and evaluate the proposed approach, we used two sets of images. The first 

set is the random polygons image shown in Figure 24 to simulate and analyze the Weiner 

restoration filter results. The other set is the checkerboard images and is used to simulate 

the UAV captured images. The random polygon consists of regions whose boundaries are 

distributed according to Poisson probability with a mean separation /z and whose input 

scene magnitudes are distributed according to independent zero-mean Gaussian statistics 

of variance <j\. The mean separation n is measured relative to the sampling interval of 

the image-gathering device and treated as the mean spatial detail of the scene [27]. The 
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checkerboard images contain the same scene but with different views. By controlling the 

camera orientation, the different images will contain the distortions that are expected when 

the UAV experiences yaw, pitch and roll. Figure 8 shows the sets of checkerboard images 

that have been used in simulations. 

FIG. 24: Random polygon image 

4.9.1 WIENER FILTER ASSESSMENT 

In our simulations, we start with a simulated high resolution scene that is blurred by a 

Gaussian low-pass filter defined as: 

t  {v,  u>) — exp 
i>2 + u? 

(129) 

where a is the optical-response index for which t(u, u>) « 0.37. This Gaussian filter approx­

imates the SFR of the image-gathering device. Schade[82] and Schreiber[83] concluded that 

the image-gathering device with SFR T(V, us) characterized by A = 0.8 provides generally the 

most favorable trade-oflF between sharpness and aliasing artifacts without the aid of digital 

processing. The simulated HR images are down sampled by a factor of 2 and white noise 

and blurring are superimposed to them such that the blurred signal-to-noise ratio (BSNR) 

is 30 dB: 

BSNR = 10 log10 ((130) 

where <J 2
l is the variance of the blurred image scene and is the variance of the white noise. 
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The derivation of the Weiner restoration filter depends on the estimation of the input scene 

PSD $£,. Itakura et al. [84] have shown that the PSD of natural scenes can be approximated 

by: 
27r/i2cr£ 

(131) 
[l + (2Trup)2]3'2 

where p2 = u2 + ui2 and p. is the scene mean spatial detail. The HR image is reconstructed 

and Weiner filter is applied to restore the images from the degradations encountered in the 

image-gathering process. Figure 25 shows the derived Weiner filters for the random polygon 

and checkerboard images. The vertical solid line in Figure 25 identifies the amount of the 

energies that can be restored beyond the Nyquist frequency. 

C*0.3 

o*0.5 

o*0.7 
o*0i 
cr=u 9 

FIG. 25: 
index (a) 

Fmqwncy 

(a) Random polygon images (b) Ch."',;erboard images 

Derived Wiener restoration filter for different image-gathering optical response 

As the optical-response index a of the image-gathering device increases the response of 

the restoration process becomes better. This is because when a is small (less than 0.5) 

the blurring of the image-gathering device is heavy and results in attenuating energies at 

frequencies in the pass band, and consequently, the restoration can't efficiently restore those 

energies. The fidelity is used as a comparison metric between the original HR image and 

the reconstructed one. Figure 26 shows the fidelity between the simulated HR images and 

the reconstructed ones. The greater the optical-response index a of the image-gathering 

device the better the fidelity between the reconstructed and the simulated HR scenes. The 

reconstructed images for the random polygon and the checkerboard images are shown in 

Figure 27 and Figure 28, respectively, for different image-gathering optical response index 

(a). For the checkerboard images that simulate the UAV captured images, it can be seen 
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(a) Random polygon images (b) Checkerboard images 

FIG. 26: Fidelity between simulated HR scene and the reconstructed images for different 
image-gathering optical response index (<r) 

that it is possible to reconstruct a HR image from a sequence of degraded images that may 

be affected with the rotational parameters (yaw, pitch and roll) during the UAV flight, and 

the reconstructed images have a very good visual quality. Figure 29 shows a comparison 

between the realizable fidelity for the enhanced CDC model. It can be seen that the maxi­

mum realizable fidelity is achieved when the registration and fusion errors are described by 

Laplacian model which is similar to the assumption proposed by Farsiu et al. [79]. Also, if 

the error is modeled by Gaussian, it will still have a higher fidelity compared to the cases of 

using the model without the new error parameter or using the uniform probability model. 

4.9.2 MULTI-RESOLUTION SR IMAGE 

During our simulations we consider two different cases: (1) LR images are sufficient to 

reconstruct a full-SR image in the vertical and horizontal dimensions and (2) LR images are 

insufficient to reconstruct partial-SR image. We compare the performance of our method 

with some of the well-known SR reconstruction approaches in terms of fidelity, visual quality 

assessment and the computational time. These techniques are non-uniform interpolation, 

Papoulis-Gerchberg [85], iterated back projection [50], roubust SR [86], POCS [43] and 

structure-adaptive normalized convolution [87]. All of these algorithms were developed at 

the Laboratory of Audiovisual Communications (LCAV), Ecole Polytechnique Federale de 

Lausanne (EPFL), Switzerland [88]. 
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FIG. 27: (left) Degraded low resolution images; (right) random polygon reconstructed HR 
images for different image-gathering designs, (a) a = 0.2; (b) a = 0.4 ; (c) a — 0.8 ; (d) 
<7 = 1. 
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FIG. 28: (left) Degraded low resolution images; (right) checkerboard reconstructed HR 
images for different image-gathering designs, (a) a = 0.2; (b) a = 0.4 ; (c) a = 0.8 ; (d) 
a — 1 (Without HR grid optimal allocation). 
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FIG. 29: Fidelity comparison for different registration and fusion models with different 
image-gathering optical index a 

Case 1: Full-SR 

In this case the blurred and noisy image is sampled at a half-pixel location, resulting in 4 

images of dimensions 128 x 128. These images are used to reconstruct the SR. images using 

the derived Wiener filter in addition to the other mentioned SR reconstruction algorithms. 

Figure 31 shows the reconstructed SR images using different SR approaches for a = 0.7 and 

SNR=32. It can be seen that all of them are better than the LR image given in Figure 31b. 

Also, the Wiener reconstructed SR image is very close to the original HR image and is much 

better than the other reconstructed images. In addition to comparing the visual quality of 

the reconstructed images, we examine the fidelity between the different reconstructed images 

and the original simulated scene against either the optical response with a fixed SNR=32 or 

a SNR with a fixed a — 1. The results can be seen in Figure 32a and Figure 32b. The fidelity 

of the Wiener reconstructed images is greater than the fidelities of the other reconstructed 

images. Also, The fidelity is improved when the optical response index is increased. This is 

because when the optical index is decreasing, the reconstructed image will lose some of its 

high frequency content, which will be reflected in its visual quality and its fidelity. 
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The loss in the decomposed fidelity components versus the image gathering optical index 

are plotted in Figure 33 in the case of full-SR and SNR=32. It can be seen that the loss 

in the fidelity due to aliasing is increasing when a is increasing while the loss in the filtered 

component is decreasing. This can be explained as follows: as a is increasing, the image 

becomes less blurry and hence the loss in the filtered component will decrease. Conversely, 

the loss due to aliasing will increase as a increases, as the aliasing is introduced in the 

images whenever the image gathering device SFR extends beyond the sampling passband 

(<7 = 0.5). Also, the more blur in the image the more reduction in the energies of the 

high frequency components which contain the aliased components; hence, their effect on its 

corresponding fidelity loss decreases. The loss in the noise is constant as it is assumed white 

and independent of the optical index of the image gathering device. So, any decrease in the 

loss of one of the fidelity components will affect the other terras. Over all, the performance 

of the system in terms of total system fidelity is improved when sigma is greater than 0.6. 

Case 2: Partial-SR 

Here the blurred and noisy image is sampled at a quarter-pixel location resulting in 16 

images of dimensions 64 x64. We select 4 of them to reconstruct the SR images using the same 

procedure described in the first case. Figure 30 shows the reconstructed SR images using 

different SR approaches for a = 0.7 and SNR—32. It can be seen that all the reconstructed 

SR images are blurrier than the full-SR reconstructed images due to the interpolation and 

reconstruction processes. Also, all the reconstructed images are better than the LR image 

given in Figure 30b. The Wiener reconstructed SR image is closc to the original HR image 

and is much better than the other reconstructed images. Figure 34a and Figure 34b show 

a fidelity comparison between different SR reconstructed images when changing either the 

SNR and keeping a at 0.7 or changing a and keeping SNR at 32. Similarly, the fidelity of the 

Wiener reconstructed image is greater than the fidelities of the other reconstructed images, 

and it is improved when the optical response index is increased. 
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(a) HR image (b) LR image (c) Stochastic Wiener 

(d) Non-Uniform interpolation (e) Papolis-Griechbach (f) Robust SR 

(g) POCS (h) Adaptive normalized convolu- (i) Iterative back Projection 
tion 

FIG. 30: DiflFerent Paxtial-SR reconstructed images (a = 0.7 and SNR=32) 
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(a) HR image (b) LR image . (c) Stochastic Wiener 

(d) Non-Uniform interpolation (e) Papolis-Griechbach (f) Robust SR 

(g) POCS (h) Adaptive normalized convolu- (i) Iterative back Projection 
tion 

FIG. 31: Different full-SR reconstructed images (a = 0.7 and SNR=32) 
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FIG. 32: Fidelity comparison for different full-SR reconstructed images 

4.9.3 MORE ON EXPERIMENTAL SR 

SR reconstructions in real applications have many challenging problems. It is crucial 

to accurately estimate the subpixel shifts of LR images, as they have a great impact on 

the reconstruction of SR images. Also, estimating the optical blur caused by system optics 

and the noise caused by photodetectors greatly affect the restoration process, which in turn 

affects the visual quality of the reconstructed and restored images. Throughout our work we 

assume that the blur and noise are already known, and we are concerned with the accurate 

estimation of the subpixel shifts and their optimal allocation to the HR grid as presented in 

our recent work [16]. This optimal allocation depends on readjusting the subpixel shifts of LR 

images to match a uniformly spaced pattern using MSDA approach and Fourier transform 
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shift property. Throughout the simulations, we neglect the effect of the camera blur and 

noise and subsample the acquired images to 256 x 256 which will be used for the quantitative 

assessment of SR reconstruction and restoration. Then, degradations are superimposed to 

the images as we did in the random polygon images. The images will be subsampled at 

quarter and half pixel locations to examine both partial-SR and full-SR cases, respectively. 

The degraded images will be registered with respect to a reference image to a subpixel 

precision. Table 3 lists the estimated subpixel shifts between the different images and the 

reference one and it can be seen that they're random and don't follow a uniform pattern. 

They will be adjusted and optimally mapped to a uniform HR grid listed in Table 4. The 

Wiener filter is applied to the composed HR grid and a comparison between its output and 

the different SR approaches outputs is displayed in Figure 35 and Figure 36 for the Full and 

partial-SR cases, respectively. Images with full SR have better visual quality and sharpness 

than the ones with partial SR. Also, The images with Wiener restoration are much better 

than the other techniques in both the cases of full and partial SR. Comparisons between 

the fidelity for the different SR reconstruction techniques are listed in Table 5 and Table 6 

for Full-SR and Partial-SR cases, respectively. Images with Wiener restoration have higher 

fidelity than the other techniques. In addition, full-SR images have higher fidelities than 

partial-SR images. 
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FIG. 34: Fidelity comparison for different partial-SR reconstructed images 
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TABLE 3: Estimated subpixel shifts 

Subpixel Shifts 
rc-direction y-direction 

LR 1 -0.01 -0.06 
LR 2 -0.03 -0.03 
LR 3 -0.04 -0.03 

TABLE 4: Adjusted Subpixel Shifts 

Image New subpixel shift 
Reference image (0.5, 0.5) 

LR 1 (0.5, 0) 
LR 2 (0, 0.5) 
LR 3 (0, 0) 

TABLE 5: Fidelity comparison for full-SR reconstructed checkerboard SR images 

SR Tech­ Stochastic Non- Robust POCS Adaptive Iterative 
niques Wiener Uniform SR convolu­ back pro­

interpo­ tion jection 
lation 

Fidelity 0.984 0.953 0.963 0.956 0.96 0.964 

TABLE 6: Fidelity comparison for partial-SR reconstructed checkerboard SR images 

SR Tech­ Stochastic Non- Robust POCS Adaptive Iterative 
niques Wiener Uniform SR convolu­ back pro­

interpo­ tion jection 
lation 

Fidelity 0.927 0.852 0.896 0.875 0.623 0.898 



(a) HR image (b) LR image (c) Stochastic Wiener 

(d) Non-Uniform interpolation (e) Robust SR (f) POCS 

(g) Adaptive normalized convolu- (h) Iterative back Projection 
tion 

FIG. 35: Different full-SR reconstructed checkerboard images with optimal HR grid alloca­
tion (a — 0.8 and SNR=128) 



(a) HR image (b) LR image (c) Stochastic Wiener 

(d) Non-Uniform interpolation (e) Robust SR (f) POCS 

(g) Adaptive normalized convolu- (h) Iterative back Projection 
tion 

FIG. 36: Different partial-SR reconstructed checkerboard images with optimal HR grid 
allocation(<r = 0.8 and SNR=128) 
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TABLE 7: Computational time for full-SR reconstructed SR images (s) 

SR Tech­
niques 

Stochastic 
Wiener 

Non-
Uniform 
interpo­
lation 

Robust 
SR 

POCS Adaptive 
convolu­
tion 

Iterative 
back pro­
jection 

Full-SR 0.92 2.839 36.56 13.665 11.716 13.713 
Partial-SR 0.434 0.96 35.319 12.616 7.176 5.756 

TABLE 8: Improvements in computational time using speeded-up Wiener filter (s) 

SR Techniques Normal Wiener Wiener with 4 par­
titions 

Wiener with 16 
partitions 

Full-SR 0.92 0.3978 0.1326 
Partial-SR 0.434 0.257 0.089 

4.9.4 COMPUTATIONAL COSTS 

The computational costs of the different SR techniques are listed in Table 7. The simula­

tions are performed using MATLAB 7.8 Release 2009a program on OPTIPLEX 780 (Intel(R) 

Core (TM)2 Quad 2.66 GHz CPU, 8.00 GB RAM, MS Windows 7 Professional 2009). The 

performance of the different SR techniques in case of partial SR is much faster than that in 

case of full SR. Also, Wiener computational time is much smaller than the other SR tech­

niques. Most of Wiener computational time is consumed in a preprocessing step (0.355 s in 

case of partial SR and 0.78 s in case of full SR) which is considered as the main demerit of 

this approach. The results of the speeded-up Wiener filter are shown in Table 8. As can 

be seen from the results, we enhanced the performance of the filter in terms of its speed 

and it is faster than the original one. Also, by increasing the number of partitions we can 

parallelize the process and reduce both the computational time and memory requirements. 

4.9.5 MSDA AND MSSA ASSESSMENTS 

To evaluate the performance when using either the MSDA or the MSSA along with full-

SR or partial-SR reconstruction, we need to examine the available number of LR frames 

on the reconstructed image along with the two other types of Wiener filter. So, if we have 

4 LR frames, we can obtain full SR in both dimensions by using 4 scenels per pixel, and 
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by using the MSDA method we can optimally allocate the scenels to the HR grid. Table 4 

shows the locations of LR scenels after using the MSDA method. Also, if we have only two 

of these scenels and suppose they are LR 1 and LR 2 then we can use either the MSDA or 

the MSSA methods to allocate them to the HR grid and obtain a partial SR in a certain 

dimension and interpolate the missing pixels on the other dimension. Table ?? shows the 

results of using the MSDA and the MSSA methods. The MSSA makes the allocation of the 

scenels more relaxed to the HR gird than the MSDA as the latter restricts the scenels to a 

pre-defined points on the HR grid. After the LR frames are allocated to the HR grid using 

TABLE 9: The optimal HR grid locations for the LR scenels (partial-SR) 

LR 1 LR 3 

MSDA (0,0.5) (0.5,0.5) 
MSSA (0,0) (0.5,0.5) 

the MSDA or the MSSA, they are sub-pixel shifted using Equation (61) to readjust their 

phase shifts. Then we use three different Wiener restoration filters introduced in Sections 

4.3, 4.6 and 4.7 to enhance and restore the reconstructed images from the degradations 

encountered during the image-gathering process. We examine the cases of sufficient and 

insufficient scenels along with using the MSDA and MSSA methods to produce full-SR or 

partial-SR where the fidelity is used as a comparison metric between the original HR im­

age and the reconstructed ones. The WIGE filter parameters used in this simulation are: 

£ = 0.2, aQ = 0.7, <7i = 0.3 and ae — 0.8. Figure 37 shows the different reconstructed images 

using different enhancement filters and the effect of allocating the LR scenels using either 

the MSDA and MSSA. Also, Figure 38 and Figure 39 show a fidelity comparison between 

the different reconstructed images and the original simulated HR scene. It can be seen that 

the full-SR MSDA reconstructed images are better than the ones that have partial-SR. Also, 

the images with MSSA allocation are much better than the the ones with partial-SR MSDA 

allocation. In terms of their fidelity, images with MSDA full-SR reconstruction have higher 

fidelity than the ones with partial-SR reconstruction using either MSDA or MSSA methods. 

When comparing the performance of different restoration filters along with using the differ­

ent allocations methods, it can be seen that both the SWR and WCR filters perform nearly 

the same and they are much better than the WIGE filter reconstructed images. The WIGE 

filter outputs are blurrier than the outputs produced by either the SWR or WCR filters. 



(a) Reference HR image (b) Degraded LR image (c) Full-SR MSDA SWR 

(d) Partial-SR MSDA SWR (e) Partial-SR MSSA SWR (f) Full-SR MSDA WCR 

(g) Partial-SR MSDA WCR (h) Partial-SR MSSA WCR (i) Full-SR MSDA WIGE 

0) Partial-SR MSDA WIGE (k) Partial-SR MSSA WIGE 

FIG. 37: Different restoration outputs at image-gathering device index a = 0.8 
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When comparing the fidelity of the reconstructed images through the different restoration 

filters, it can be concluded that the SWR reconstructed images are little higher than the 

WCR reconstructed images while the fidelity of SWR and WCR reconstructed images are 

much higher than the ones with WIGE reconstruction. 

(a) SWR filter reconstructed images' fidelity 

(b) WCR filter reconstructed images' fidelity 

(c) WIGE filter reconstructed images' fidelity 

FIG. 38: Fidelity comparison for SWR, WCR, and WIGE restoration outputs with different 
image-gathering optical index a 
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(a) MSDA different full-SR restoration filtered images fidelity comparison 

(b) MSDA different partial-SR restoration filtered images fidelity comparison 

(c) MSSA different partial-SR restoration filtered images fidelity comparison 

FIG. 39: Fidelity comparison for different restorations with optimal allocation 
against different image-gathering optical index a 

methods 
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CHAPTER 5 

INFORMATION THEORETIC APPROACH FOR SR VISUAL 

QUALITY ASSESSMENT 

5.1 INTRODUCTION 

In this chapter we incorporate the information theory into the visual quality assessment 

of the reconstructed SR images. We emphasize the close correlation between the information 

rate and the visual quality of the images. The higher the information rate, the better the 

visual quality. The proposed model contains two major transformations: (i) the continuous-

to-discrete transformation of the continuous input image L(x,y) into discrete interlaced 

image S(x,y) and (ii) the digital-to-continuous transformation of the discrete interlaced 

image S(x,y) into the continuous output image R0(x,y). We propose two figures of merit: 

(i) information rate H and (ii) maximum realizable fidelity T that can be used to assess 

these transformations. The information rate assesses the first transformation while the 

maximum realizable fidelity assesses the end-to-end CDC transformation. In addition, the 

information rate is used to measure the amount of information that the image gathering 

device is producing, while the maximum realizable fidelity is used to compare the closeness 

between the reconstructed restored output images and the original input HR scenes. 

5.2 INFORMATION RATE 

Shannon [89, 90] defined the information rate that is produced by the image acquisition 

device or in other words the mutual information between the continuous input scene L and 

the discrete interlaced image S as 

H = £[S(x,  y)]  -  £[S{x,  y) \L(x ,  y)]  (132a) 

U = £\5(i/, w)] -  £[S{v,w)\L(v,u)]  (132b) 

where £{•} refers to the entropy of the interlaced image S(x,y ) defined in the spatial and 

frequency domains, respectively, and £[-|-] is the conditional entropy of the same interlaced 
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image given the input scene. The composite image S(v,u)  in Equation (90) can be rewritten 

as 

S(v,u) = 5Il(i/,w)ffclfc2(i/,a;)exp(-t47r(xfcli/ + y*,a;)) + n(i/,u>) (133) 
KlK2tt2 

where n(v,  ui)  represents the composite noise that results from aliasing and the photodetector 

noise and it is given by 

Na(v, w) + Nk lk2{v, w)j exp(-i27r(o:fclv 4- ykjuj)) (134) 
1 2 *1*2 

If the aliased noise components and the photo-detector noise are assumed to be independent 

additive Gaussian noise, then the information rate can be simplified to [90] 

U = £[5(x, y)}  -  £{n{x,  j/)] (135a) 

H = £{S{V,OJ)\ — £[n(v,W)\ (135b) 

Equation (135a) measures the mutual information between the input scene and the interlaced 

image S{x,y). Thus it gives the obtainable amount of information of the image gathering 

device minus the noise component. If the Gaussian probability density Ps[S(v, w)] of the 

composite image S{v,w) and the Gaussian probability Pn[h(v,uj)\ of the noise are given by 

J>s[5(i/,w)] = rexp [- I S(t/,u) /4s(*/,w) 
7r$s(i/,u>) L I 

(136) 

and 

Pn[n{v,u})\ = -exp [- |n(i/,a;)|2 /$n(i/,w)l (137) 
i&n{v,u) J  

respectively, then the information rate U can be written as [91] 

n = \ lliog2 lsirldvdw * J J B  9 N ( I / , U > )  

=  f f  log2 
dl/(Lj (138) 

* J J B  <&s(i/,w) 



where the PSD $s(f, w) is given by 
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1 
K2K t  -  m,u -  n) 

*1*2 

2 

x exp(-z27r((2i/ - m)x k l  + (2u -  n)y k 2 ) )  

*1*2 

(139) 

and the PSD $„(v, w) is given by 

^(^jW) — f t !  J(2 $l(v>U) * jlta(^ w) ^Tkihiiy - m,u -n) 
*1*2 

2 

x exp(-i27r((2i/ - m)x k l  + (2u - n)yfe;2)) 

*1*2 

(140) 

Accordingly, 4>s(f,a») can be written as 

I>s(f,w) = $n(t/,a>) + K^K2 (",<*>) 
*1*2 

x exp(- i4n(vx k l  + uy k 2 ) )  (141) 

By using Equation (140) and (141) into Equation (138), the information rate % can be 

written as 

H - 4//elo4 1 $L{v,u)  

K\Kl<|S(„>W) ^T k lk*{v,u)  
*1*2 

x exp(-i47r(i/xfel + uy k 2 ) )  (142) 

From Equation (101), l>s(^,w) can be written as 

*s(",w) = j^^Y^^2^k{v,uj)exp{i4Tr{i/xkl + wyfca)) 
V{v,u)  ££ 

(143) 
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Substituting Equation (143) into Equation (142) yields 

n = log2 1 - u) exp(-i47r(i/xfcl + uy k 2 ) )  (144) 

Thus, the information rate produced by the imaging gathering device depends on its optical 

response index, the design of Wiener filter, and the inter-subpixel shifts between the indi­

vidual LR frames. From Equations (97) and (101), the minimum MSRE error e^in(f, w) can 

be expressed as 

4in(l/>w) = (l - f(l/,w)) (145) 

where f is given by 

fy.w) = ^^X]flt«*»(,/'w)exP(*4ir(:r*i,/ + f*aW)) (146) 
KlK2 

By comparing Equations (144), (145) and (146), the information rate can be written as 

H — —^JJ \og 2  1 — f(i/,LO)j dvdui  (147a) 

U = \  [f  log2 ®L^ u )  duduj  (147b) 
2J J B  Cmin 

n = \ JJ§ lo§2 w) dvdu - | JJ^ log2 4in dvdw (147c) 

The first term in Equation (147c) represents the information rate that the image gathering 

device can produce without any degradations during the acquisition process and the second 

term refers to the loss in the information rate caused by the CDC system degradations. 

5.3 MAXIMUM REALIZABLE FIDELITY 

Linefoot [81] defined as the fidelity the similarity between the continuous input scene and 

the reconstructed output scene as given by 

F = 1 — cr£z Jj  e 2 (v ,uj)  dudu (148) 

By substituting the minimum MSRE cost function given by Equation (145) into Equation 
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(148), the maximum realizable fidelity T is given by 

T = (T~l2 JJ $x,(i/,u;)f (i/,w) dvdu (149) 

From Equation (147), the information rate spectral distribution is given by 

ti{v, w) = - log2 [l - f (v, w)j (150) 

Accordingly the maximum realizable fidelity T is given by 

T = cr~[2 J J w) |l — dvdu) (151) 

It can be concluded that whenever the information rate spectral distribution is high 

over all the spectrum, J hits its maximum value for a given image gathering device. 

In our simulations and to assess the close correlation between the visual quality and both 

the information rate and the maximum realizable fidelity, we discussed three cases: (a) for 

a given MSD and SNR of 3 and 32 respectively, we compare the change in the information 

rate with the optical response index a that controls the design of the image gathering device; 

(b) Similar to the first case, we compare the change in the information rate with the total 

SNR of the system when a is 0.8 and for a given input scene with MSD of 3; (c) finally, we 

discuss the change in the information rate with the MSD of the input scenes while keeping 

both the SNR at 32 and for a given image gathering device with optical response index of 

a = 0.8. Figure 40, 41, and 42 show the results of these three cases. The information rate 

produced by the image gathering device improves with the increase in its spatial response 

index that controls the trade off between the aliasing and blur find also it improves with 

the enhancement in the system SNR that reflects the reduction in the effect of the total 

noise in the system. Also, the amount of information produced by the image device is 

affected with the mean spatial detail of the scene. The smaller the MSD, the higher the 

information contained in the output scene. Finally, the performance in full-SR case is better 

than partial-SR case as more information is contained in the former case. Figures 43-48 show 

the reconstructed and restored outputs for different image gathering device designs, different 

SNR and different input scenes for full-and partial-SR cases. The reconstructed images in 

both full-SR and partial-SR are given in Figure 43 and 44 for various image designs. It can 

be seen that the visual quality improves as the optical response index of the image gathering 
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device increases, and the quality of the images in full-SR is better that partial-SR. Also, 

there's a close correlation between the visual quality and the information rate. The higher 

the information rate the better the visual quality. It can be concluded from Figure 45 and 

46 that the visual quality and the information rate are also high whenever the SNR is high. 

Figure 47 and 48 depict the reconstructed outputs for different input scenes. The smaller 

the MSD of the input scene, the higher the information rate. Also, the full-SR reconstructed 

outputs are sharper than the partial-SR cases as the information contained in full-SR images 

is much higher than the partial-SR images. 

-0- Full-SR Partial-SR 

0 
a L. 

C 
0 
n 
E 
£ c 

Optical response Index a 

FIG. 40: Information rate comparison against optical response index a 
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Partial-SR -B-Full-SR 

300 250 150 
SNR 

200 100 

FIG. 41: Information rate comparison against SNR 

-e-Full-SR Partial-SR 

£3 A 

100 
Mean spatial detail n 

FIG. 42: Information rate comparison against mean spatial detail n 



(a) a = 0.1 (b) a = 0.2 (c) a — 0.3 

(g) a = 0.7 (h) <r = 0.9 (i) = 1 

FIG. 43: Different full-SR reconstructed outputs for various a 



(a) a = 0.1 (b) a = 0.2 (c) a = 0.3 

(g) a = 0.7 (h) a = 0.8 (i) a = 0.9 

FIG. 44: Different partial-SR reconstructed outputs for various a 



(a) SNR=2 (b) SNR=4 

(e) SNR=32 (f) SNR=64 

FIG. 45: DiflFerent partial-SR reconstructed outputs for various SNR 



(a) SNR=2 (b) SNR=4 

(e) SNR=32 (f) SNR=64 

FIG. 46: Different partial-SR reconstructed outputs for various SNR 



(a) n = 0.2 (b) fj, = 0.5 (c) fj, = 1 

(g) n = 20 (h) n = 50 (i) /x = 100 

FIG. 47: Different full-SR reconstructed outputs for various mean spatial detail 



(a) fi = 0.2 (b) y. = 0.5 (c) n = 1 

(g) /x = 20 (h) » = 50 (i) m = 100 

FIG. 48: Different full-SR reconstructed outputs for various mean spatial detail 
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CHAPTER 6 

MULTI-RESPONSE SR RECONSTRUCTED IMAGE 

6.1 INTRODUCTION 

It is assumed that more than one optical sensor is mounted on the UAV. Every sensor 

acquires a set of degraded LR images that have subpixel shifts between them. The idea here 

is to incorporate the extra information obtained from the spatial response of different sensors 

to construct a single SR image that will contain more details than the case of using only 

one sensor. Figure 49 represents different image gathering spatial frequency responses. The 

vertical solid line designates the sampling passband of every sensor. The more the spatial 

response extends beyond the the sampling passband the more information is gathered by 

the sensor. Huck et al. [27] discuss the multi-response restoration in case of single image 

1-D Image gathering device Spatial Frequency Response 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.2 0.3 0.4 05 0.6 0.9 

FIG. 49: Different spatial frequency responses 

reconstruction and restoration without increasing its resolution. They assume that every 

LR image is captured with a different sensor, and they restore every single image and then 
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combine the processed images to get one restored image. Their approach is incomplete as 

they don't account for the subpixel shifts between the acquired frames. Accordingly, we 

extend their approach in the field of SR problems by assuming two cases. In both cases, 

every sensor captures a set of LR images which will be registered with respect to each other 

and with respect to the other sensors' LR images. 

6.2 CASE 1: SINGLE WIENER RESTORATION FILTER (SWF) 

The degraded LR images from all the available sensors will be mapped to 

a single HR grid and only one Wiener filter will be applied to reconstruct 

and restore a single SR image. Similar to the derivation given in Chapter 

4, the Wiener filter for reconstruction and restoration of SR image is given by 

£,([/, w)f* (e,w)f£(i/1w)exp(i4*(i>'xkj + wy*,))/ \Ta(v, w)|2 

2 

4L(f,w) * iii(f,w)52 $2 kfcifc2(l/'.«')| exp(-i27r(i/'itl +u/y*2)) 
2 

mn *1 *2 

6.3 CASE 2: WIENER FILTERS RESTORATION MATRIX (WFM) 

In this case, we will consider groups of LR images that belongs to one sensor. Wiener 

filters matrix will be derived from these groups and every derived Wiener filter sub-matrix 

will be applied to its corresponding group to produce its corresponding SR image that will 

be combined with other SR images to reconstruct a single SR image, RA(V, w), as given by 

Optical sensor r1 

H^n <p, r 

*U.V)) Ra{t: u\  
' J Output image 

y) 
Optical sensor r1 

Input scene 

Optical sensor r1 

FIG. 50: Multi-response SR reconstruction and restoration 
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1 
RA(V,U)  =  ̂ 5^4'Q(i/,a/)5a(i/,w) (153) 

Q=1 

We will derive a closed form for Wiener filters matrix and compare the performance and the 

visual quality of the obtained SR images in terms of the produced information rate and the 

maximum realizable fidelity. For a given image gathering device characterized by an optical 

response index f(Q', the acquired LR image for a given optical sensor s^2 is given by 

s^a = yt [l(i/ — m, — n)f^(i/ — m,u> - n) exp(-i2n((v — m)x^) 
mn 

+ (w - n)y (
kf) + (v-m,u- n)] (154) 

and its corresponding interlaced image Sa  is given by 

Sa = ly~~r7~ exp(-«27r(i/x^) + ujy{°])) (155) 
K l K 2  

6.4 WIENER FILTERS MATRIX DERIVATION 

The MSRE e\ between the input scene L and the reconstructed output RA is given by 

e\ = E J \L(U,UJ) — RA{V,U) (156) 

which can be expanded as 

I A A 9a(t/ ,u)E{3a(i/ ,w)L*(i/,w)} -
a=l a=l 

A A 

x E{s*a{v,u)L,(v,u)) + EE* a{v,u)%{v,u)E{sa{v,u))s*a{v,u)} (157) 
a=l 0=1 

The optimal Wiener matrix filter must satisfy 

2 „ 

—- = -E{sa{v,u)L*{v,u)}+ Y^%(v,u)E{sQ{v,u))s* f j{v,u)} 
°*a 0=1 

= 0 (158) 
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Accordingly, the Wiener filter matrix can be extracted from 

^*p{v,u)E{?Jy,u)Sfi(v,u)} = E{?a(i/,u)L{v,uj)} 
0=1 

For a = 1,..., A, Equation (159) can be written as 

E{slL} 

E{§2SI} £{S2«2> • 4*2 = ... E{S\L} 

E{S*ASI} £{S^S2} • Va E{S*aL} 

where E{s*aL} and are given respectively by 

E{S*AL} = -^^^4i(I/,w)fg*(i/,a;)exp(z47r(i/x^) +wy£})) 
fcl*52 

and 

1  2  \  mn kikz 

x t^\v — m,u — n) exp —i2n ^(2v — m)(x— x^) 

+ (2w - n)(^f - y£})] + ^2 ̂ Nklk2 {v, w) * ||(^, w)<5(<*, /3) 
KIK 3  T 

Equation (160) can be rearranged in a compact matrix notation as 

(159) 

(160) 

(161) 

(162) 

(163) 

The Wiener filter matrix can be obtained through the least square solution given by the 

normal equation = [EJ. Ea. ]_ 1EJ. Es. . Once the Wiener filters matrix is obtained, 

Equation (153) is used to find the multi-response reconstructed and restored SR. image. 

Figure 52 compares the original HR input scene to the reconstructed outputs using single 

optical sensor, SWF, and WFM cases. It can be seen WFM case is most close to the original 

input scene and it has the highest visual quality compared to the other two cases. This is 

because WFM processes more information and it also reassembles the aliased components in 

the sampling passband, so it decreases the effect of aliasing and reduce the artifacts within 



(a) Original HR (b) Single response 

(c) SWRF (d) WFRM 

FIG. 51: Comparison between different multi-response outputs. 
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the reconstructed image. More outputs are considered in Figures 54, 55, and 56. A com­

parison between the three cases in terms of the fidelity and the information rate are given 

in Figure 52 and 53, respectively. It can be seen the highest fidelity and information rate 

are obtained when restoring the output using WFM, and the performance of SWF is better 

than restoring the output using a single optical response. 

1.005 
Singto R—pon— - -f - C— 1 - • - 2 

0.995 

f 0.99 
4 

0.985 

0.98, 

0.975, 
10 30 20 40 50 

MSD (n) 
60 70 80 90 100 

FIG. 52: Fidelity comparison between different multi-response cases 
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FIG. 53: Information rate comparison against mean spatial detail fj, 



(a) N =  0.2 (b) FI  = 0.5 (c) N = 1 

(g) fi = 9 (h) fi = 10 (i) fi - 30 

0) H = 50 (k) ( I  = 70 (1) /i = 100 

FIG. 54: Reconstructed single optical response versus different MSD 



(a) n = 0.2 (b) n = 0.5 (c) ft = 1 

(d) n = 3 (e) n = 5 (f) n = 7 

(j) /i = 50 (k) n = 70 (1) /i = 100 

FIG. 55: Reconstructed SWF versus different MSD 



(a) ft = 0.2 (b) ft = 0.5 (c) /i = 1 

(d) n = 3 (e) ft = 5 (f) n = 7 

(g) n = 9 (h) /x = 10 (i) A* — 30 

0) = 50 (k) n = 70 (I) m = 100 

FIG. 56: Reconstructed WFM versus different MSD 
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CONCLUSIONS AND FUTURE DIRECTIONS 

7.1 CONCLUSIONS 

In this dissertation, we developed a new stochastic algorithm to reconstruct and restore 

a single SR image from UAV captured images in two steps. The first one is for the accurate 

estimation of the subpixel shifts, and it is more flexible to cover any motion models and 

robust to moderate noise and lens optical blur. The other one is for the optimal reconstruc­

tion and restoration of the SR image that depends on the fully detailed SR CDC model, and 

it optimally restores the SR image with maximum end-to-end fidelity. The main problem 

of the previous research is that they work on a frame by frame basis to reconstruct the 

HR image and as a result, they don't exploit the available LR pixels spatial structure that 

can be used efficiently to produce a high quality image with minimum number of artifacts, 

especially when we have insufficient number of LR images. Also, their approaches depend 

on the DD model, which isn't sufficient to cover the acquisition and display degradations 

and can't be used to achieve optimal reconstruction and restoration with maximum fidelity 

between the original HR scene and the reconstructed SR one. Besides this, they have a blind 

estimation for the inter subpixel shifts between the acquired frames, which is not sufficient 

to cover complex registration models with relatively large motions. 

The first step in our algorithm is the robust fast subpixel registration described in Chap­

ter 2. The proposed approach is both immune to moderate noise and invariant to image 

features, lighting conditions and camera orientation. Because, the UAV captured images 

may have some acquisition distortions like shear and tilt that results the UAV rotational pa­

rameters such as encounters yaw, pitch, roll, or altitude change, we used the SIFT to correct 

for these distortions. Then, a more accurate registration algorithm was used to register the 

image with in subpixel accuracy. We enhanced one of the most efficient subpixel registration 

algorithms proposed by Guizar-Sicairos et al. [72]. Our enhancements are based on reducing 

both the dimensionality of the Fourier matrix of the cross-correlation matrix and the number 

of matrix multiplications required to find the accurate estimation of the subpixel shifts by 
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using a backward and forward search. 

Before reconstructing the SR image, the registered LR pixel elements are optimally 

mapped to a uniform HR grid as described in chapter 3 in order to reduce the visual artifacts 

within the reconstructed image. The mapping is done with either the MSDA or the MSSA 

depending on the available number of LR images. With a sufficient number of LR frames, 

the MSDA method performs better than the MSSA method. 

The second step described in Chapter 4 is to filter the composite image using new fast op­

timal stochastic minimum square restoration Wiener filter for SR reconstruction and restora­

tion that basically depends on the fully detailed SR CDC model depicted in Figure 22. This 

filter is used to boost the visual quality of the SR image that is affected by degradations 

during the acquisition, such as blur due to system optics, aliasing due to insufficient sam­

pling, photodetector noise, registration and fusion error, the number of scenels, and their 

relative arrangement on the high resolution grid. We revisited the Wiener filter that was 

developed by Carl et a!. [19] and extended it for the general SR problem where the subpixel 

shifts are unknown and random. We introduced its mathematical derivation and analyze the 

end-to-end model and formulated the Wiener filter as a function of the parameters associated 

with the proposed SR system such as image gathering and image display response indices, 

system average signal-to-noise ratio (SNR) and inter-subpixel shifts between the LR images. 

In addition, we added a new parameter that accounts for LR images registration and fusion 

errors in order to improve the overall system performance. Also, we speeded-up the filter 

performance by constraining it to work on small patches of the images, and consequently, 

it can be implemented efficiently in the frequency domain. Also, we analyzed the loss in 

the end-to-end system fidelity and separated into three components and every component 

is related to its corresponding degradation in the proposed system, which enables a good 

design of the SR model. 

As discussed in Chapter 5, we proposed two figures of merit: The information rate and 

the maximum realizable fidelity. Both are based on the information theory to asses the visual 

quality of the reconstructed images. The information rate is used to measure the amount 

of information produced by the imaging gathering device, while the maximum realizable 
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fidelity is used to measure the closeness between the reconstructed output and the original 

HR scene. It is shown that SR images can be reconstructed with both a high information 

rate and maximum realizable fidelity. 

Finally, we discussed the reconstruction of multi-response SR images in Chapter 6 to en­

hance the visual quality of the reconstructed image. By assuming the existence of more than 

one optical sensor on the UAV with different optical response indices, we can balance and 

reduce the effect of both the blur and aliasing that exist in the reconstructed images with 

a single response. The reconstruction of SR images is utilized with either a single optimal 

Wiener filter or a matrix of optimal Wiener filters. 

The research presented in this dissertation demonstrated that the derived Wiener filter 

with the optimal allocation of LR images can reduce aliasing and blurring, resulting in 

a sharper reconstructed image with pleasant visual quality. Throughout simulations and 

experimental results it is found that quantitative assessment using the proposed figures 

coincides with the visual qualitative assessment. We evaluated our filter against other SR 

techniques and its results were found to be competitive. 
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7.2 FUTURE WORK DIRECTIONS 

The research in the area of SR. reconstruction and restoration is both rich and chal­

lenging. The work explored in this dissertation is expected to lead to future research and 

considerations including the following avenues: 

• The CDC model considered in this work is solely constrained by LSI blur and additive 

white Gaussian noise. So, the model can be revised to include other spatially variant 

blur models, such as out-of-focus or atmospheric turbulence blur. A blur identification 

stage may need to be included to find the best approximation for the blur operator that 

should be then fed back into the SR algorithm. In addition, the noise herein is modeled 

by an additive Gaussian random variable. The proposed model can be generalized to 

include other sources of noises such as impulsive noise and salt-and-pepper noise. 

• SR techniques attempt to increase the spatial resolution of the imaging device by 

reconstructing HR images with sharp and crisp visual quality. Due to the smoothness 

effect of the stochastic Wiener filter, some of the image information at the edges and 

the sharp transitions areas of the image are lost and consequently the reconstructed 

images tend to be a bit blurry. So, it is desirable to combine the proposed Wiener 

filter approach with edge preserving techniques such as anisotropic diffusion in order 

to reconstruct high quality SR images with sharp edges and features. By including a 

term that depends on the differential structure of the image, the smoothness can be 

limited at edges in the reconstructed images. 

• The performance of the proposed multi-response SR reconstruction and restoration is 

limited because of its computational time and high memory requirement which would 

limit its use in real-time applications. The proposed system can be accelerated by 

using possibly parallel and multi-thread computations. Each group of LR images can 

be processed independently and all the optical sensors can be synchronized so the 

reconstruction and the fusion of single SR image can be speeded-up. 

• Shadows in the acquired LR images degrade the registration process and reduce signif­

icantly the quality of the reconstructed images. Techniques for shadow removal should 

be considered to eliminate it from LR images before applying the subpixel registration 

step. 
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• SR images have high resolution on behalf of the image size and the bandwidth con­

sumed in transmission. So, it may be desirable to reconstruct SR compressed images 

without sacrificing the visual quality. The analysis of the information rate and the 

image entropy can be used to reduce the size of the reconstructed image using lossless 

compression and obtaining high compression ratios. 
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