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ABSTRACT

MELTING AND SOLIDIFICATION STUDY OF INDIUM AND BISMUTH 
NANOCRYSTALS USING REFLECTION HIGH-ENERGY ELECTRON 

DIFFRACTION

Mohamed K. Zayed 
Old Dominion University, 2005 

Director: Dr. Hani E. Elsayed-Ali

As technology begins to utilize nanocrystals for many chemical, biological, 

medical, electrical, and optoelectrical applications, there is a growing need for an 

understanding o f their fundamental properties. The study o f melting and solidification o f 

nanocrystals is o f interest to fundamental understanding o f the effect o f reduced size and 

crystal shape on the solid-liquid phase transition. Melting and solidification o f as- 

deposited and recrystallized indium and bismuth nanocrystals were studied using 

reflection high-energy electron diffraction (RHEED). The nanocrystals were thermally 

deposited on highly oriented 0 0 2 -graphite substrate at different deposition temperatures. 

The growth dynamics o f the nanocrystals was studied using in situ  RHEED while the 

morphology and size distributions were studied using ex situ real image technique 

(atomic force microscopy (AFM) or scanning electron microscopy (SEM)). RHEED 

observation during deposition showed that 3D nanocrystals o f indium are directly formed 

from the vapor phase within the investigated temperature range, 300 K up to 25 K below 

the bulk melting point o f indium. On the other hand, bismuth condensed in the form o f 

supercooled liquid droplets at temperatures above its maximum supercooling point, 125 

K below the bulk melting point o f bismuth. Below the maximum supercooling point, 

bismuth condensed in the solid phase. Post deposition real images showed that the 

formed nanocrystals have morphologies and size distributions that depend on the
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deposition temperature, heat treatment, and the amount o f the deposited material. As- 

deposited nanocrystals are found to have different shapes and sizes, while those 

recrystallized from melt were formed in similar shapes but different sizes.

The change in the RHEED pattern with temperature was used to probe the 

melting and solidification o f the nanocrystals. Melting started early before the bulk 

melting point and extended over a temperature range that depends on the size distribution 

o f the nanocrystals. Nanocrystals at the lower part o f the distribution melt early at lower 

temperatures. With the increase in temperature, more nanocrystals completely melt with 

the thickness o f  the liquid shell on the remaining crystals continuing to grow. Due to size 

increase after melting, recrystallized bismuth nanocrystals showed a melting range at 

temperatures higher than that o f as-deposited. However, recrystallized indium 

nanocrystals showed an end melting point nearly equal to that o f the recrystallized ones 

except for the 1.5-ML film which showed an end melting point -1 0  K  higher than that o f 

as-deposited. Within the investigated thickness range, all nanocrystals were completely 

melted below or at the bulk melting point without observed superheating. The 

characteristic melting point o f the nanocrystal ensemble, the temperature at which the 

rate o f their melting with temperature is the highest, showed a linear dependence on the 

reciprocal o f the average crystal radius, in accordance with different phenomenological 

theoretical models. During solidification, all nanocrystals showed supercooling relative to 

their melting point and to the bulk melting point. For Bi, the amount o f liquid 

supercooling was found to decrease linearly with the reciprocal o f the average crystallite 

size.
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1

CHAPTER I 

INTRODUCTION*

Over the past decades, there has been an increased interest in investigating the 

fundamental physical and chemical properties o f nanometer-sized crystals [1-4]. As 

technology begins to utilize nanocrystals for many chemical, biological, medical, 

electrical and optoelectrical applications, there is a growing need for an understanding o f 

their fundamental properties [2,5,6]. Moreover, understanding the fundamental properties 

o f nanocrystals is essential from a fundamental point o f view as well as for several 

applications [1-4]. Since nanocrystals show properties that are different from ther 

corresponding bulk, the size dependent study o f these properties gives an idea about how 

these properties evolve to those o f the bulk as the size approaches a macroscopic scale

[4], This knowledge would increase the control over the material properties by 

controlling their sizes, and hence design materials with optimal properties that satisfy 

industrial and other technical needs [6 -8 ],

The thermodynamics o f the melting and solidification phase transitions is among 

the properties that are significantly affected by the crystal size [9-12]. On the opposite to 

bulk melting, which is considered as a first order transition, melting and solidification o f 

nanometer-size crystal suggests a continuum-melting scenario and/or a presence o f meta

stable states during the transition [13,14], While surface pre-melting is favorable for large 

particles, continuum melting through formation o f hexatic states, liquid-like and solid

like, is favorable for lower size crystals and two-dimensional islands [15,16]. In general, 

as the crystal size is reduced, the first-order phase transition nature o f  the bulk melting

* The reference model o f  this work follows the SPIE format.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



becomes indistinct and the process spreads over a finite temperature range [13-15], 

Moreover, the melting point and the latent heat o f fusion also significantly decrease 

[17,18], When the size gets small enough, the melting point undergoes strong non

monotonic variations with size [19,20], Geometrical shell, stable geometrical structural 

configuration, and electronic shell, stable structures correspond to complete electron 

shells analogous to those responsible for the stability and inertness o f rare gases, and may 

form clusters o f exceptional stability and hence, local maximum melting points could 

occur [21]. However, sodium clusters showed a melting point that has an irregular 

variation with the number o f atoms within the cluster in a pattern that has not yet been 

interpreted and leaves an open question [20], In spite o f these complications, melting and 

solidification studies o f nanometer-size crystals offer an opportunity to understand the 

finite-size analogue o f the bulk first-order phase transition, and hence, explore any stable 

and meta-stable states that might exist during the transitions. Much effort is needed 

before a clear understanding o f that process is achieved.

It is generally believed that the surface plays an important role in determining the 

melting behavior o f small and large crystals [22-24], At a temperature below the bulk 

melting point, To, defect free solids start to show a liquid-like layer at the surface, which 

acts as a nucleation site from which the melt propagates throughout the crystal [24], Due 

to the effect o f  surface melting and the finite size, the melting point o f  nanometer-sized 

crystals is expected to be lower than that o f the bulk. However, suppressing surface 

melting o f a solid crystal by coating with, enclosing by, or embedding in another higher 

melting point material not only prevents the melting point depression, but also drives the 

material to superheat above its equilibrium melting point [25-27], Moreover, due to
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surface energy anisotropy o f solid crystals, surface melting has an orientation dependent 

behavior [28]. Based on the surface orientation, the crystal may show surface melting, 

incomplete melting or crystal superheating. Close packed structures or high packed 

crystal surfaces such as f c c ( l l l )  remain completely solid up to Tm and can even 

superheat to a temperature above Tm [29-31]. Small crystals bounded by non-melting or

close packed facets also show superheating for an extended amount o f time [32,33]. In 

fact, the shape and the surfaces or interfaces o f the particles with the host material or with 

the substrate determine the melting and solidification behavior o f  the nanocrystals [32- 

36], For nanocrystals deposited on an inert substrate, the melting behavior is determined 

mainly by the external surface orientation and morphology o f the nanocrystal. 

Nanocrystals with low external energy facets show maximum stability and higher surface 

melting nucleation barrier as in the extensive {111} faceted platelet shaped crystals [35]. 

On the other hand, high external energy shaped crystals favor surface melting formation, 

and hence show melting point depression.

With the goal o f designing materials with specific property, nanotechnology seeks 

preparation techniques that offer size control with low cost [1,5,6]. The appropriate 

preparation technique can be selected based on the nature/type o f the nanocrystals and on 

the specific applications that these nanocrystals are prepared for [37], There are different 

techniques that have been employed to prepare nanocrystals, either as an assembly, 

nanoparticles incorporated in a host matrix, or nanostructure components. These methods 

can be categorized as direct deposition, mechanical milling, chemical methods, and gas 

aggregation methods [37,38]. Mechanical milling is suitable for commercial production 

o f nanoparticle powders o f  a single or composite material for industrial applications [39],
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It is also suitable for preparing nanometer-sized crystals embedded in a host matrix for 

the study o f fundamental properties [38,40]. Chemical techniques such as sol-gel, 

electrochemical, spray pyrolysis and other solution-based methods have been used 

extensively for inexpensive and easy preparation o f metallic, semiconductor, and organic 

assembled nanocrystals [41-43]. In these techniques, normally the nanocrystals are 

prepared and studied in two different chambers. Formation o f  an oxide layer or ambient 

contamination, which will alter the intrinsic properties o f the nanocrystals, is possible 

when the nanocrystal are transferred to the testing chamber. Therefore, it is o f 

considerable importance to prepare and study these nanocrystals in situ in ultrahigh 

vacuum in a clean environment. Conventional deposition techniques such as molecular 

beam epitaxy (MBE), chemical and physical vapor deposition (CVD and PVD) and 

pulsed laser deposition are good techniques for the preparation o f nanocrystals and 

quantum dot structures. Atomic deposition techniques including ionized beam deposition, 

high-energy cluster beam deposition and low energy cluster beam deposition are methods 

that are used effectively to deposit size selective atomic clusters [3,44].

While many techniques are now known to produce nanostructures, there are quite 

few that are involved in characterizing and measuring the melting and solidification 

properties o f such small collections o f atoms. Transmission electron microscopy (TEM) 

is a standard technique for studying the structural and melting properties o f nanometer

sized crystals [16,45]. Using this technique, the melting temperature o f  nanocrystals is 

monitored by the loss o f  crystalline structure with increasing temperature. The size- 

dependent melting property o f a thermally deposited assembly o f  nanocrystals can be 

studied by monitoring clusters with different sizes. In a different approach, dark field
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microscopy is used to determine the melting point o f individual particles by noting the 

temperature at which the dark field image greatly dims [32-35]. However, the high- 

energy beam used in these techniques may influence the melting process or introduce an 

uncertainty in measuring the sample temperature [45]. X-ray diffraction was used for 

melting and solidification studies o f nanometer-sized metallic particles [46], Peak 

intensity variations with temperature as well as the line profile changes with temperature 

were used to monitor the melting o f the small particles. The difficulty in using this 

method is the determination o f the particle size distribution, especially for the smaller 

particles. Electron diffraction was also used to study the melting and solidification o f 

thermally evaporated island films deposited on carbon substrates [47,48]. By monitoring 

the integral intensity o f one o f the diffraction patterns as a function o f temperature, the 

film melting point was measured. Ex situ real image technique is normally used along 

with diffraction technique to study the size-dependent melting. Differential scanning 

calorimetry (DSC) is another technique used to investigate solid-liquid transitions o f 

nanocrystals and clusters [17-19]. Using DSC, the heat capacity and the latent heat o f 

fusion o f the deposited nanocrystals were directly measured as a function o f  temperature. 

Also, a technique based on laser irradiation o f free metal clusters produces calorimetric 

data not affected by substrate influence or by the environment was also used [17]. Other 

non-conventional techniques such as electric field emission and y-y correlation, Raman 

spectroscopy were used to study the nanocrystal melting [49-51].

RHEED is among the more powerful techniques that are used to study surface 

phase transitions as well as melting and solidification o f  nanocrystals. RHEED is a 

sensitive surface-structural tool suitable for studying surface dynamics. The RHEED
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geometry facilitates in-situ monitoring during thin film growth and hence mechanisms o f 

surface diffusion, thin film nucleation and growth, and surface phase transitions could be 

better understood. Based on the surface features, RHEED could be operated in its pure 

reflection mode or in its transmission reflection mode [52]. The nearly grazing angle 

characteristic o f RHEED makes the beam spread over a few mm 2 o f  the sample causing 

negligible localized heating. Because o f the transmission nature o f the electron diffraction 

through surface roughness, it is probing the “bulk” structure up to a thickness 

corresponding to the electron inelastic mean free path (IMFP). By'measuring the relative 

intensity, shape, inclination, and sharpness o f the spot or streaks, RHEED patterns can 

give information about the lateral grain size and the electron penetration depth o f a well- 

textured small-grained polycrystalline thin film [53], Theoretical interpretation o f the 

diffraction pattern can be used to obtain the shape o f islands [54], Time-resolved RHEED 

also provides the ability to monitor the evolution o f the surface structure, morphology, 

and temperature during a fast laser-initiated surface phase transition [55]. By monitoring 

the temporal evolution o f the diffraction streak intensity, information is obtained on the 

mean-square vibrational amplitude o f the surface atoms and the structural integrity o f the 

surface.

Few elements are suitable for melting and solidification studies in ultrahigh vacuum 

(UHV). The element or the compound should have a low partial vapor pressure near the 

melting point, otherwise the surface will be covered with vapor near the melting point 

and the crystal can simply evaporate. Moreover, in case o f embedded or encapsulated 

nanocrystals, the observed superheating, if  it is found, will be a combination o f the 

equilibrium melting point elevation due to pressure increase inside the cell and the
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superheating by surface melting suppression [56]. The former may be dominated if  the 

nanocrystal material has a high vapor pressure near the melting point. Indium and 

bismuth nanocrystals are chosen for this study because o f their reasonable melting points 

and their extremely low partial vapor pressure near the melting point [24]. A subset o f Bi 

nanocrystals was reported to show few degrees superheating, while the rest showed 

melting point depressions [34], Beside the difference in crystallite shape and size 

distribution, the effect o f the preparation and testing techniques on the obtained results is 

still a question. Also indium is a metallic element compared to bismuth, which is a semi- 

metallic element. Moreover, bismuth has a negative volume change upon melting; it 

expands as it is solidified, while indium shows the normal volume increase upon melting.

In this work, melting and solidification o f  indium and bismuth nanocrystals are 

studied under the same preparation conditions and with the same investigation technique, 

RHEED. The nanocrystals are prepared using thermal evaporation in UHV on a highly 

oriented pyrolytic graphite (HOPG) substrate. Because o f  unique physical and chemical 

properties, HOPG surface is chemically inert, generally homogeneous, easily prepared, 

and usually free o f  extrinsic defects [57]. Ex-situ real images such as scanning electron 

microscope (SEM) and atomic force microscope (AFM) are used to study the crystal 

shape and size o f  the deposited indium and bismuth nanocrystals. The normalized 

intensity o f a selected RHEED spot as a function o f temperature is used to monitor the 

melting and solidification o f the nanocrystals. The mechanisms- by which such small 

collections o f atoms melt and solidify are discussed. The supercooling and the possibility 

o f superheating o f the nanocrystals are also studied.
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As-deposited nanocrystals may show unusual crystal morphologies as a result o f 

the substrate interaction, the preparation conditions, crystal size, or annealing treatments. 

Recrystallized nanocrystals can have shapes and external surface morphologies that differ 

from the as-deposited nanocrystals, and hence, have different melting and solidification 

behaviors. The melting and solidification o f as-deposited nanocrystals is investigated 

relative to those recrystallized from melt. After deposition, equilibrium shaped 

nanocrystals are formed by recrystallizing from melt, i.e. the film is heated to a 

temperature above the equilibrium melting point and slowly cooled down to a 

temperature below its supercooling temperature. As-deposited samples are investigated 

immediately after preparation without any heat treatment. The effects o f crystal size and 

crystal shape on the melting o f nanocrystals are studied.

The thesis is organized in six chapters including this introductory chapter. Chapter 

two gives a theoretical background covering the basic physics and fundamental theories 

o f bulk melting, surface melting, and melting o f small particles. Theories o f 

heterogeneous and homogenous solidification as well as the phenomena o f superheating 

and supercooling are also briefly reviewed in this chapter. Chapter three gives the 

experimental and basic foundations necessary to understand and interpret RHEED 

patterns. The variation o f RHEED intensity in dynamic processes that occur during film 

growth and during surface phase transition is also mentioned in chapter 3. The results on 

the melting and solidifications studies o f indium and bismuth nanocrystals are presented 

in chapter 4 and chapter 5, respectively. Although there are only minor differences 

between the ways these two experiments were done, the experimental methodology is 

presented in each chapter. Finally, chapter 6  concludes the thesis where the main results
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of this work are summarized. The basic calculations for RHEED operated in its pure 

reflection mode performed for selected graphite, indium, and bismuth surfaces are 

illustrated in appendix A. Appendix B shows how to use information in chapter 3 to 

index the transmission-RHEED patterns o f indium and graphite. Technical information 

about the used UHV system, how to operate it, and how to collect and analyze RHEED 

images are given in appendices C and D.
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CHAPTER II

MELTING AND SOLIDIFICATION OF SOLID CRYSTALS

11.1. Introduction

Melting and solidification are o f the most ubiquitous first order phase transitions 

in nature that have been extensively studied by both theory and experiment [1-12]. In 

spite o f the tremendous work published over the past decades, questions, arguments, and 

controversies, in some cases, are indistinctively clarified [4-8], Superheating and 

supercooling are often observed, despite being a reversible first order transition o f unique 

transition point [9-12], While observations o f superheated solid crystals are rare, 

supercooling o f liquid melt is quite common. Also, the amount o f superheating, if  it is 

found, is not equal to the supercooling amount. The asymmetric solid-liquid transition 

behavior in the bulk crystals and its behavior in nanometer-sized clusters, as well as the 

formulation o f  an atomic scale comprehensive theory still need a consolidate theoretical 

and experimental effort before a clear and deep understanding is achieved.

This chapter briefly reviews the theoretical foundation o f the solid-liquid phase 

transition in its forward and backward (melting and solidification) directions. 

Fundamental theories o f bulk melting, surface melting, and melting o f  small particles are 

discussed. Theories o f heterogeneous and homogenous solidification as well as the 

phenomena o f superheating and supercooling are also presented.

11.2. Melting of solid crystals

Melting is the transformation o f the material from the solid to the liquid state at a 

specific point o f  temperature and pressure. Across the transition region, the system
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absorbs a quantity o f energy equal to the latent heat o f fusion while its temperature 

remains unchanged. However, an abrupt change in some physical properties such as 

density, heat capacity, electrical and thermal conductivities, diffusivity and elastic 

properties occur [1-3]. It is a first order transition since the first derivative o f Gibbs free 

energy, G (P,T), with respect to the temperature T  and pressure P  discontinues. The 

equilibrium melting point, T0, is then defined as the temperature and pressure at which

the solid and liquid phases coexist in equilibrium, i.e. the two phases have equal values o f 

G, and approximately have equal derivatives, which could be written as [2,3]

“.(Wjr+w m jp. sw n dT̂ p j ) dp
dT 8P dT dP

Using some basic thermodynamic concepts such as ^  ~ ^  = ^  ’ anc*

TqASm = L with ASm = (Ss - S i ) ,  one can derive a relation o f  the melting point as a 

function o f the state variables P  and V [2],

r - £  = AFAP 

To L

where ASm is the entropy change upon melting, and S is the system entropy. The 

subscripts s and 1 refer to the solid and liquid states, respectively. The entropy is a 

measure o f the randomness o f the system, while L is the latent heat o f fusion. Eq. (2.2) is 

the known Clausius and Clapeyron equation that gives the shift in the melting temperature 

due to any increase AP  in the applied pressure, while AV  is the volume change upon 

melting. For most substances where AV  is positive, the melting temperature increases 

with increasing pressure, however, there is a maximum in the melting temperature as a 

function o f pressure, which corresponds to AV  = 0 [2]. Materials with negative volume
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change upon melting showed melting curves with negative slopes, a decrease in the 

melting point as the applied pressure is increased, throughout the solid-liquid coexistence 

curve. A generic P-T phase diagram o f a single element system is shown in Fig. 2.1.

Liquid

Solid

Vapor

FIG. 2.1. A generic P-T phase diagram o f a single element system showing the solid-liquid 
coexisting line for positive volume change upon melting, solid line, and negative volume change 
upon melting, dot line. T0 is the equilibrium melting point or it is the triple point o f  the system.

In fact, thermodynamic concepts give a macroscopic definition o f melting without 

any microscopic notion o f the melting mechanisms or kinetics. Even though there is no 

generally accepted picture o f how solids melt at an atomistic level, there are many 

melting mechanisms and scenarios that have been proposed and tested during the past 

decades. Homogeneous melting is one o f the mechanisms that assumes that melting 

occurs homogeneously throughout the crystal as a result o f  vibrational or mechanical 

instabilities o f  the lattice or as a catastrophic generation o f lattice defects [1-3]. Surface 

melting, which is the formation o f a surface liquid layer at a temperature below Tq that
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diverges throughout the solid as 7q is approached, is another scenario that becomes 

accepted and observed with many different surface sensitive techniques [13-15], 

Nanometer-sized crystals showed melting behaviors that could not be explained by any of 

the existing melting mechanisms or models [16,17], Efforts are being exerted to develop 

a melting scenario explaining such behavior [18]. In the sections below, the 

thermodynamics o f  these different melting realizations will be briefly reviewed.

II.2.1. Criteria of bulk melting

Since the melting o f crystalline solids is seen as a first order phase transition, 

homogenous melting theories have arisen to provide a microscopic description o f melting 

as a sudden transformation o f  the solid into liquid. Vibrational lattice instability was o f 

the earliest ideas used to introduce an atomistic understanding o f the solid behavior at the 

onset o f melting [19,20], An empirical relation was used to relate the vibrational motion 

of the crystalline lattice to the solid temperature, and hence postulate a condition o f 

melting. Generally, the crystalline lattices start to vibrate with increasing amplitude as the 

material is heated up. Melting is then attributed to the presence o f strong lattice vibrations 

and the material melts when the amplitude o f the thermal atomic vibrations reaches a 

maximum value, a fraction o f its nearest neighbor distance. In other words, when this 

maximum amplitude is reached, no further increase o f thermal energy is possible without 

transitional movement o f  the atoms from their positions. The mean-square amplitude o f

thermal vibration, (u 2^, is directly proportional to the absolute temperature according to 

[2,18],
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atom
, with kg ©  = h (2.3)

kg is the Boltzmann’s constant, <9 is the Einstein temperature, m is the atomic mass o f the 

material, h is Blanck’s constant and pat0m is the atomic spring constant, a measure o f the 

elastic stiffness o f  a material, and it is usually determined by low-temperature heat- 

capacity measurements [2]. The temperature at which the atoms would begin to melt is 

estimated to be [2,18],

where ©« is Debye temperature and Q is the molar volume. The significance o f the factor

0.083 is that the material is supposed to melt when the vibrational amplitude reaches 

8.3%, (-10% ) o f the nearest neighbor distance, the condition that is known as Lindemann 

criterion. The ratio between the mean square vibrational amplitude and the interatomic 

distance is taken to be material independent. However, continuous testing suggested that 

this ratio depends on the crystal structure and on the nature o f  the interatomic force [2 ], 

In other words, Lindemann’s criterion holds well within each group o f crystals that have 

the same structure and the same type o f interacting potential. Beside the fact it has a non

generic nature, Lindemann’s theory o f melting describes melting as an individual atomic 

property without mentioning the liquid phase [21]. Also, Lindemann’s rule, as a 

catastrophic theory, implies lattice instability at the melting and hence crystals can not be 

superheated without changing the maximum attainable amplitude [22]. However, there is 

growing evidence that crystals can be superheated to temperatures above their 

equilibrium melting points [8 - 1 0 ].

melting
(0.083)2 Q 2 m kB®2D 

3 n2 (2.4)
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Mechanically, the liquid differs from a crystal in having zero resistance to the 

shear stress. Therefore, there must be a point at which the shear modulus o f the solid 

vanishes and hence the material undergoes a solid-liquid phase transition. Based on this 

fact, Bom in 1939 formulated the mechanical criterion o f melting that melting should be 

accompanied by the loss o f  shear rigidity [23,24], By increasing the temperature, the 

distances between the atoms in the solid phase are increased due to thermal expansion; 

hence the restoring forces between the atoms are reduced. The elastic stiffness tensor Cjjki 

relates the stress tensor Gy and the strain tensor Ski by Hooke’s law,

Since each index can vary from 1 to 3 there are 81 elastic constants implied by Cyki, but 

because o f the symmetry properties o f the stress and strain tensors that ay =ay and Ski = 

Elk resulting in Cijki = Cyik = Cjiki = Cj,ik, the most general elastic stiffness tensor has only 

21 non-zero independent components. For cubic crystals, they are reduced to three 

components only named as linear, bulk, and shear moduli symbolled as C n , C 12, and C44, 

respectively. These isothermal elastic moduli can be theoretically calculated by [25],

is the volume o f the sample at zero strain. The mechanical instability conditions o f 

vanishing the rigidity modulus for defect and surface free crystals is then found to be [23-

(2.5)

(2 .6)

where S ^ s u s kl  ̂ is the canonical delta function o f the strain elements s ij and ekl, and V0

25],

Ci 1 + 2 C 12 > 0, Ci 1 - C 12 > 0, C44 > 0 (2.7)
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According to Bom, C 12 goes to zero first and the melting temperature can be found from 

the condition C 4 4  = 0. These conditions are valid for vanishing external stress only for a 

perfect infinite crystal, but a real crystal with boundaries and bulk defects undergoes 

thermodynamic melting before it reaches the mechanical melting point [26,27], In other 

words, the rigidity catastrophe would work if  the crystal could be superheated to a 

temperature above the bulk melting temperature [28],

It is proven that thermal creation and annihilation o f lattice defects introduce new 

local modes o f  vibration, soften the solid, and break down its long-range order structure 

[29,30], Therefore, melting might be seen as a progressive generation o f crystal lattice 

defects such as vacancies and intrinsic dislocations at temperatures close to the melting 

point. The proliferation and the interaction o f different types o f  crystal defects eventually 

lead to complete isotropy and the resulting state corresponds to that o f a proper liquid. 

The temperature where the defect concentration jum ps or shows a sharp increase is 

identified as the melting temperature. In other words, when defect concentration density, 

Pdisl. > exceeds critical value, the lattice o f the solid becomes unstable and a melting

transition occurs. In a molecular dynamics simulation, where dislocations near melt were 

modeled as non-interacting strings on a lattice and move in a closed random walk, the 

relation between the melting point, Tm, the shear modulus, M s, the Wigner-Seitz volume, 

vws, the coordination number, z, and the critical density o f dislocations, (Tm) , is 

given by (in units where Boltzman constant kB equal to unity) [31],

T s vws ^
m 8 ; r l n ( z - l ) K^ P d i s l  ( Tm )

, and (2 .8 )
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(2.9)
b 2

The Wigner-Seitz cell is a primitive cell that displays the full symmetry o f  the lattice and 

shows a minimum volume cell with atomic density per cell equal to unity, b is the length 

o f the shortest perfect-dislocation Burgers vector, 77, is 1 for a screw dislocation and

-  3/2 for an edge dislocation, X = / v w s), and a  is a constant that accounts for non

linear effects in the dislocation core with a value o f 2.9 [31].

Similar to theories o f crystal growth, discussed later, melting can be seen as a 

process that could nucleate at crystal defects either homogeneously, interior to the crystal 

at vacancies, interstitials, dislocations, and impurities, or heterogeneously at the grain 

boundaries, interfaces, and free surfaces [32,33]. The nucleus starts to grow forming a 

liquid drop or sphere that propagates into the solid at a velocity depending on the degree 

o f superheating. The temperature at which the nucleation rate increases very rapidly is 

considered to be the critical melting point. For homogenous melting, this temperature is 

found to be above the thermodynamic melting temperature for various elem ents,- 1 . 2  7q

[32], For low-dimensional material, whose dimensions are less than the critical 

nucleation size, the calculated temperature is anticipated to be very high. However, in 

case o f heterogeneous melting, surface melting is favorable and hence melting point 

depression is the most favorable [13,14], In fact, homogenous nucleation melting is 

considered an upper limit o f the crystal superheating, while heterogeneous melting leads 

to surface melting and melting point depression.
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1.2.2. Surface melting

Surface melting, formation o f a liquid-like layer on the top o f numerous solid 

crystals below the bulk melting point have been studied and confirmed in both theory and 

experiment [13-15]. Surface melting occurs because the combined interfacial energy o f 

the solid-liquid ( y si ) and liquid-vapor interfaces (y \v ) is less than that o f the solid-vapor

interface ( y sv) [3,13], This means that, above a certain temperature, it is energetically 

favorable for the surface to form a thin disordered layer between the ordered solid and the 

vapor. However, if  y sv is less than the sum o f ysi and Ylv» then it is energetically 

favorable for the system to stay dry and be transferred directly into the vapor phase [3].

Surface melting involves the formation o f a thin disordered surface layer at 

temperatures below Tq [3]. The thickness o f the disordered layer increases with 

temperature and diverges as Tq is approached via the movement o f  the melt front from

the surface into the interior o f the solid. The disordered topmost layer doesn’t form a true 

liquid because it is affected by the presence o f crystalline order in the solid underneath,

i.e. it always contains some crystalline order and has properties intermediate between 

those o f the solid and the liquid. It is usually referred to as a “quasi-liquid” because it has 

the following properties: i) the surface atoms are dislodged from their lattice sites 

resulting in a strong reduction o f crystalline order; ii) the mobility o f  the atoms o f the 

surface film is enhanced with respect to the solid, to such an extent, that diffusivity at the 

surface could be even larger than in bulk liquid, iii) the density and the surface roughness 

o f the melted film are close to the values expected for bulk liquid [3,13]. In fact, surface 

melting implies that the thickness o f the formed liquid or quasi-liquid disordered layer
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increases without limit as the temperature approaches Tq . If this thickness remains finite 

as the temperature increases to T q , the term incomplete melting is more often used [3].

Surface melting has been indirectly supported by different melting theories. 

Although the Lindemann’s vibrational instability-melting criterion is formulated to 

describe the homogenous melting, it is the first to point out and inspire the phenomenon 

o f surface melting. Surface atoms have a reduced number o f  neighbor atoms and hence, 

are loosely bound. They could also have much higher vibrational amplitude than bulk 

atoms, and hence, lower melting point than the bulk [2,3]. In other words, Lindemann 

criterion is fulfilled for a surface at a temperature far below Tq . This argument points to 

the important role that surfaces may play in the melting process, and provides a simple 

description o f  surface melting. Nucleation and growth theory o f  melting also considered

surface melting. Based on this theory, melting is believed to nucleate either

homogeneously, interior to the crystal, or heterogeneously, at crystal exterior.

Heterogeneous nucleation sites provide lower activation energy and/or minimum barrier 

for liquid phase formation than any other sites throughout the crystal [32,33].

Furthermore, free surface appears to be the most likely site melt may initiate from in the 

case o f well-prepared single crystals [3].

Using thermodynamics concepts, one can deduce a theoretical expression o f the 

liquid layer thickness as a function o f temperature. The following derivation is adapted 

from Ref. 3. The free energy per unit area o f a surface after creation o f a quasi-liquid 

layer o f thickness £ between the solid and vapor phase near Tm is

7  Ysq + V q v + L  N
Tq

(2 .10)
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where ysq, yqv are the free energies per unit area o f the solid/quasi-liquid and quasi

liquid/vapor interfaces, respectively. L is the latent heat o f melting per atom and N  is the 

number o f  atoms per unit area in the quasi-liquid layer o f  thickness £ such that N  = n I

and n is the atomic concentration. The last term in the above equation represents the free 

energy associated with the undercooled quasi-liquid layer considering that the latent heat 

involved in the solid/quasi-liquid transition is approximately equal to the latent heat 

involved in the solid/ liquid transition. The specific free energy for the quasi-liquid/vapor 

interface, yqv, will lie between the specific free energy o f the liquid/vapor interface yiv and 

the specific free energy o f the perfect solid/vapor interface ysv (the surface without the 

quasi-liquid layer). The specific free energy ysq will be smaller than the solid/liquid 

specific interface energy ysl, so it may be written as

r q v = r , v +  M { y s v - y lv)  or r „ = r A i - M ) .  (2.11)

M  is the effective crystalline order parameter, normalized such that it is unity for the solid 

crystal and zero for true liquid. For M, one could take the Fourier component o f the 

density having the periodicity o f crystal lattice. The order parameter in the quasi-liquid 

film thickness:

M  =  =  e ~ N / N ° (2.12)

15 2where No = n to  is a constant o f microscopic dimensions, o f the order o f  1 0  atoms/ cm 

and to  is o f  the order o f the interlayer spacing. Eqs. (2.11) and (2.12) are appropriate for a

system governed by short-range forces. They also satisfy the following boundary 

conditions,

[(/) t —» oo, quasiliquid becomes true liquid =>M —> 0  ,and y qv —>ylv
i (2 *1 2 )
| (ii) t  -»  0 ,quasiliquid vanishes => M  -»1, y qv —>ysv,and y qv -  0
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Substituting Eqs (2.11) and (2.12) into (2.10) yields

Y = Y s q + Y q v + ^ N  1 — —— + ( / Sv ~~ Ysi ~ Ylv)e  ̂ ° • (2.14)

The number o f  atoms in the quasi-liquid layer at equilibrium is obtained by minimizing y 

with respect to N, resulting in

where Ay = y sv -  y sl -  y lv is the specific interfacial free energy at temperature T. Then the 

number o f equilibrium melted atoms in the quasi-liquid layer increases logarithmically as 

T  approaches Tq . Considering long-range forces N  (T)  was found to grow

where p  is a constant with a value o f 2 for non-retarded van der Waals interactions. It is 

easily deduced from Eq. (2.15) or (2.16) that the necessary condition for surface melting 

is the number o f atoms in the quasi-liquid layer at equilibrium is not zero and has a 

positive value that is

This condition is similar to solid wetted by its won melt where the solid-liquid contact or 

wetting angel, 6, is given by cos 6  = yxv - yv// yh, . If  6 < 9 0 ,  which implies y sv > y sl,

then the liquid wets the surface and if  0 > 90,  this implies that y sv < y sl and the melt

doesn’t wet the surface. One can treat surface melting as a surface completely wetted 

with its liquid, while the un-wetted surface implies superheating [34].

(2.15)

i/i>+u
asymptotically as |r 0  -  T\  , the obtained form is

(2.16)

= Y s v - y si - y , v > o . (2.17)
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Normally, y v is calculated based on model surfaces having average density, while 

ysv has surface density or orientation dependence. For most metals the anisotropy is small, 

but it can lead to a large energy variation and hence dramatic change in melting behavior. 

The surface melting criteria has the same orientation dependence as ysv. The value o f ysv 

not only determines the melting behavior o f the surface but also the equilibrium shape o f 

the grown crystals [35,36]. Based on the surface orientation, the crystal may show surface 

melting, incomplete melting, or crystal superheating [37,38]. Close packed or high dense 

crystal surfaces such as f c c ( l l l )  remain completely solid and can even superheat to a 

temperature above Tm [39-41]. Small crystals bounded by non-melting or close packed 

facets also showed superheating for an extended amount o f time [42,43],

II.2.3. Melting of small crystals

It is now believed that any property o f any physical system may change even 

dramatically as a function o f the physical dimension o f that system [44], For small 

crystals, composed o f a countable number o f atoms each, the high proportion o f atoms at 

the surface make an important contribution to the particle's total energy. Accordingly, 

each time one atom is added to the cluster, the clusters attain new atomic arrangements 

that are energetically favorable at low dimension while it might be forbidden in the bulk

[45]. After a certain size, the concentric layers o f  atoms are added in such a way that the 

overall symmetry o f the clusters is left unchanged [45]. With the structure geometry 

change, all other physical properties are expected to change including the characteristic 

melting point o f  the material.
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Melting o f small particles attracted interest long before the early days o f modem 

cluster science. The first attempts made for theoretical understanding the melting o f  small 

particles were made within a macroscopic framework using thermodynamic concepts 

such as surface energy. There are many phenomenological models describing the melting 

point size dependence o f nanometer-sized crystals [46-54], All o f them predict a linear or 

semi-linear relation between the melting point o f the crystals and the reciprocal o f its 

radius. These models can be summarized as; the homogenous melting (HM) model 

[47,48], liquid skin (LS) model [46-49], nucleation and growth (NG) model [32,50], the 

liquid- drop (LD) model [51], surface-phonon instability (SPI) model [52], and the lattice 

vibration-based (LV) model [53,54]. All o f these models assumed spherical particles and 

drop the shape effect by adapting an orientation independent value o f the solid/vapor 

interfacial energy. In HM model, the melting point is the point at which the melt and the 

solid coexist homogenously in equilibrium. According to this model, the size dependence 

o f the melting point is described by [46,47],

A T = T n - T m =  2 T °
Ps L r

r \ 2 /3 ’

r s - yi
Ps

IP i )
(2.18)

where To is the bulk melting point, Tm is the melting point o f a cluster o f  radius r, L is the 

latent heat o f fusion, and ySt ps and pi are the surface energy per unit area and the 

density o f the solid and liquid phases. An extra interfacial energy should be added to 

account for the substrate-nano-crystal interaction. Based on this type o f interaction, the 

cluster may have a different melting point.

The LS model considers a core o f solid particles covered with its liquid melt. The 

melting point o f this nano-crystal is then defined as the point where the core is in
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equilibrium with the liquid skin at its critical thickness [46-49]. The thickness o f the 

liquid layer is used as an adjustable parameter to match the model prediction with the 

experimental results. The relation between the melting point and the crystal size is found 

to be [46-49],

2 T
A T =  Tn -  71 = ----- - Ys

Ps{ r - 5 )
■ +

r y, AP  V
—  +  —

v
1 1

—  +  —

P s  P i
(2.19)

where A is the adjustable liquid thickness and AP is the difference between the vapor 

pressure at the surface o f the liquid layer o f radius r and that at a flat surface, which in 

many cases could be neglected. In NG model, melting is thought to nucleate either at 

homogeneous sites interior to the crystal or at heterogeneous sites such as the crystal 

surface. For heterogeneous nucleation, melting is started by forming a nucleation o f a 

liquid layer at the surface and moves into the solid as a slow process with definite 

activation energy. The temperature range where the solid and liquid can coexist in 

equilibrium, and hence a nucleus liquid can grow, is defined as [49,50],

' 0 a  NG , where y sl < a  NG < -  
L r  2 Ysv Ylv

Ps

Pi
(2 .20)

Outside this range, only single phase, either solid or liquid, can exist. For a confined 

crystal, melting can nucleate homogeneously from the crystals interior and superheating 

is possible [8,32]. In this case, NG model can be used to derive the upper limit o f crystal 

superheating when heterogeneous melting is avoided. The relationship between the 

melting point and the critical size o f a spherical molten nucleus rc is then derived using 

the analogy between crystal growth from the melt and melt growth in a solid. This 

relation is found to be [32],
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(2 .21 )

where AE  is the change in strain energy per unit volume resulting from the volume 

change upon melting. Because a higher homogeneous nucleation per unit volume is 

required for small crystals, this model predicts that the degree o f  superheating increases 

with decreased crystal size. This type o f melting does not apply to the unconfmed 

nanocrystals presently studied.

In LD model, empirical relations between cohesive energy, surface tension, and 

melting temperature is used in an analogy to the liquid-drop model used in describing the 

nucleus structure. An expression for the size-dependent melting for low-dimensional 

systems is derived such that [51],

where p is a surface energy dependent constant. SPI model assumes that the mean 

phonon frequency o f the particles varies linearly with the number o f defects and surface 

sites produced in the nanoparticle [52], A relation between the particle melting point and 

its radius is found to have a form similar to that o f Eq. (2-22). However, in this case, the 

constant (i is varied depending on the bulk melting temperature and the energy o f 

formation o f intrinsic defects. LV model is another approach that does not include any 

adjustable parameter [53-55]. It is based on Lindemann’s criterion and M ott’s expression 

o f the vibrational entropy, which gives a melting point size-dependent formula as [53-

(2 .22)

55],
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\

Ti n
= exp w ith « - — + i and £ = (3 - d )  h 

3 K„
(2.23)

where Sm(oo) is the vibration entropy o f melting o f the bulk crystal, £ is  a critical radius at 

which all atoms o f  the nanocrystal are located on the surface, K b is Boltzmann’s constant, 

h is the atomic diameter, and d  is a constant that depends on the crystal dimension {d = 0 

for nano-crystals, 1 for nanowires, and 2 for thin films).

II.3. Melt solidification

It has been acknowledged that solidification processing plays an important role, 

not only for improving the performance o f a given product through optimizing its macro- 

and micro-structure, but also in developing novel materials as well [56]. Macroscopically, 

solidification is the transformation o f the material from liquid melt into solid as the heat 

content o f the melt is reduced. It is a process that is driven by the lowering o f the free 

energy o f the system across the liquid-solid phase transition. Close to the equilibrium 

transition point, the liquid phase remains metastable and a structural fluctuation is 

required to cause the appearance o f the first nucleus o f the solid phase [57,58]. However, 

it is the solid-liquid interfacial energy that controls the nucleation criterion and 

determines the nucleation and transition rates. Under a given condition, if  the probability 

o f creating a nucleus is homogeneous throughout the system, the nucleation is defined as 

homogeneous nucleation; otherwise it is heterogeneous [59]. The presence o f foreign 

sites such as container walls, substrate surface, and impurities facilitate nucleation and 

increase its formation probability. Because the energy o f heterogeneous nucleation 

formation is lower than that o f the homogenous one, and because it is experimentally
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impossible to eliminate all the heterogeneous sites, nucleation has the heterogeneous 

nature rather than the homogeneous nature in most cases.

In any case, formation o f stable nuclei able to grow is essential for solidification. 

This process depends on the free energy need to be invested to generate a critical nucleus. 

Critical nucleus is a nucleus o f size beyond which spontaneous nucleation growth is 

energetically favorable. There are different theoretical approaches developed to 

understand the nucleation kinetics and to determine the size and energy barrier o f the 

stable nuclei [60-63]. Classical nucleation theory (CNT) is a theory that has been used to 

predict the properties o f the critical nucleus from macroscopic measuring quantities using 

phenomenological thermodynamics. Other approaches, mainly simulation and 

computation methods, use microscopic models to represent the system’s structure and 

derive its macroscopic properties from first principles. O f these methods, the density 

functional theory (DFT) that assigns an interacting potential between all the particles o f 

the system and calculates the free energy density o f the system, which will depend on the 

density o f particles at that location [61,62], By minimizing the obtained free energy 

density functional, thermodynamic relationships that determine all the thermodynamic 

properties o f  the system can be derived. These relationships can be used to evaluate the 

properties o f  stable and metastable phases at a given temperature and pressure, the 

structure o f the phase diagram, or the surface tension between coexisting phases. 

However, because o f the usage o f potential functions that might not represent the real 

situation well, and that modeling might also contain adjustable parameters, these 

techniques are sometimes considered to be o f empirical or semi-empirical nature [63].
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Although CNT is usually criticized for ignoring the effect o f curvature on surface 

free energy and for predicting a finite barrier as the spinodal is approached, it is still the 

basis for understanding the dynamics o f every first-order transition. Moreover, it is 

considered the essential foundation even for the more sophisticated simulations, which 

might use many o f  its concepts either for comparison or for some parameters adjustment. 

In this section, the homogeneous and heterogeneous solidification will be discussed 

according to CNT.

II.3.I. Homogeneous solidification

Containerless strictly pure melt in which the melt is confined by its own surface 

tension and contains no impurity can be homogeneously solidified via homogeneous 

nucleation formation [59-61], The thermodynamic precondition for nucleation and 

growth o f the solid phase is that the system must be in supersaturation, which occurs 

when A// = /// ~ / j s > 0 , fi  is the chemical potential o f  the system, i.e. the system in a 

supercooled metastable phase [59]. When Afi < 0, the system is said to be undersaturated 

and hence crystals will re-melt or disintegrate, while the two phases are in equilibrium if 

Aju = 0. At temperatures not far below the melting temperature, the chemical potential 

difference between solid and liquid is given by [56,60],

Aju = A T S m , (2.24)

where AS m - ( S s - S i ) is  the entropy o f melting per unit volume, and AT  is the 

supercooling amount. In fact, the difference in chemical potential between the two phases 

is the thermodynamic driving force for solidification initiations or nucleation. The widely 

accepted kinetic model o f nucleation (within the cluster approach) is based on the
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successive “chain reaction” between atoms to form multi-atomic clusters, which are 

consecutively joined by further atomic monomers/atoms to form stable nuclei [59]. 

However, the cluster formation and hence the nucleation process is an energy activated 

process in which an energy barrier needs to be prevailed over. The homogeneous Gibbs

free energy change, AG^om, upon forming a nucleus sphere with radius r inside the 

liquid melt, assuming constant and isotropic surface tension, is given by [56,61,62],

A G h°m = _ ^ 7 r r 3 AGsi + 4 tt r 2y sh  (2.25)

where AGV/ = G/ - G v = (LAT/Tq) is the bulk free energy difference per unit volume 

between the supercooled liquid and the formed solid, L is the latent heat o f fusion, and 

y sl is the surface tension o f the solid-liquid interface. The gain in free energy associated 

with the formation o f  a volume o f stable nucleus is competing with the cost o f creating a 

solid-liquid interface. The interfacial term increases as r2 and the volume term increases 

as r . Therefore, it should be a certain critical radius, rc , at which the free energy is

maximum. Fig 2.2 shows a schematic o f the thermodynamic nucleation kinetics and the 

formed energy barrier at the critical nucleus.

Using the equilibrium condition, AGj}om -  0 ,  one can find the value o f rc and the 

energy barrier for nucleation, AG hom, to be
ĉ

rc = Ih llS L ? and AG hom = l6f sl r °2- . (2.26)
L (A T )  rc 3Z, ( A T )
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If r > rc, the system decreases its free energy by excess solidification, while if  r < r , , the 

system lowers its free energy by excess melting. A nucleus will be stable if  it has a radius 

larger than or equal to rc .

. Nucleation v - ^ ^ Growth

AG
/ 4  n v - y si

Stab)* nucleus

C luste ring

V ~  'T r A G ,/ 
» 3

FIG. 2.2. A schematic diagram represents the thermodynamic nucleation kinetics. The free energy 
change o f  a nucleus sphere consists o f  an energy released volume term, varies as r2, and an energy

obstacle interfacial term, varies as r1. At a certain critical radius, rc , a stable nucleation is formed and 

starts to grow. For a stable nucleus, an energy barrier height A G rc  needs to be overcome, [after Ref 

56 and 59],

After formation o f a stable nucleus, the second stage in the solidification 

mechanism is the growth o f the formed nucleus. The growth rate is determined by the 

transport o f monomers, clusters, or atoms through the liquid to the solid phase boundary 

and by the dissipation rate o f the released latent heat or cooling rate [56]. Therefore, in 

addition to the energy barrier for nucleus formation, an energy barrier account for the 

transport processes in the liquid is introduced (the diffusion activation energy). It is
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generally assumed that the rate o f homogeneous nucleation, j ^om, can be modeled by an

where C0 is the number o f  atoms per unit volume, AED is the diffusion activation 

energy, and k B is the Boltzmann’s constant. The parameter / 0 , which depends on the 

vibration frequency o f the atoms, activation energy o f diffusion in the liquid, and the

depends on AT and varies from an infinite value near the bimodal (the point at which the 

original phase becomes thermodynamically unstable) to zero near the spinodal where the 

system becomes unstable to arbitrarily small fluctuations o f the new phase [59]. Because 

o f the exponential dependence on a rapidly varying ffee-energy barrier height, 

homogeneous rates are extraordinarily sensitive to thermodynamic conditions o f 

temperature and pressure, as well as to small variations in intermolecular potentials. 

Moreover, the situation is more complicated in mixtures where species o f different 

diffusion rates are present, and thus the growth rate is controlled by the diffusion rate of 

all species within the mixture [64].

Arrhenius-type dependence, where the sum o f the two energy barriers A G hom and AED
r̂

is used as an activation energy for the process [56,59-61],

A G hom + AEd
, or (2.27)

\

(2.28)

/

surface area o f  the critical nuclei, is taken to be constant - lO 11 [56]. The energy barrier
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II.3.2. Heterogeneous solidification

Heterogeneous nucleation is the most common and naturally found mechanism in 

initiating most o f  the first-order phase transitions. Foreign surfaces in contact with a melt 

can induce nucleation, and hence solidification occurs at degrees o f supersaturation lower 

than those required for spontaneous or homogeneous nucleation [59,62]. In other words, 

the presence o f these heterogeneous sites acts as catalytic surfaces that decrease the 

activation energy and increase the nucleation process and solidification rate. Using a 

phenomenological procedure similar to that adapted for homogeneous nucleation, the free 

energy change associated with the formation o f a solid nucleus o f  radius r on top o f an 

impurity surface is found to be [56,60,62],

AG?et = ~ n  r 3AGsl + 4n  r 2y si + Asf y sf  + A y  y l f , (2.29)

where Asf , Ay  , y sy , and y y  are the heterogeneous interfacial areas and interfacial free

energies per unit length o f solid-foreign (sf) and liquid-foreign (If) interfaces. This 

formulation is based on the assumption that the system has a nonisotropic surface energy 

and the nucleus has a spherical cap-like shape. Using the analogy between heterogeneous 

nucleation and a wetting o f  a foreign surface by three a phase (solid, liquid and gas)

system, one can find heterogeneous free energy change, AG^ e t , upon forming a nucleus 

o f radius r to be,

AG hr et =
( A  \

 7rr3AGsi + A n r 2y si S ( 6 ) ,  (2.30)
v 3
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where S(9)  =
(Z + c o s ^ X l-c o s # ) '

. Using the equilibrium condition to find the energy

A G hr et = A G hr omS ( 9 )  .

barrier for heterogeneous nucleation and compare it with the obtained form o f 

homogeneous nucleation, one can easily find that,

(2.31)

Since S (9 ) has a numerical value <1, the energy barrier for heterogeneous nucleation 

will always be less than that for homogeneous nucleation. Moreover, S(9)  depends only 

on 9 which in turns depends on the nature o f the melt-solid-foreign surface interaction. 

This means that the energy barrier for heterogeneous nucleation is sensitive to the type o f 

the heterogeneous surfaces and the shape o f the nucleus [59,62], Since heterogeneous 

sites are stochastic in nature, it is hard to account for them, except for known surface or 

container wall. The heterogeneous growth rate, similar to homogenous process, is 

normally given by,

Jhet = C 0 exP

'  A G hom + AEd ^
rc______

k BT
S(0) = jhom exP { - S (& ) ) ’ or (2.32)

Jhet fo  C 0 exP
|  1 6 /J  T02 \ ]

^ --------------------------- (■~S(9))>
[  3L2k BT ( A T ) 2 )

(2.33)

Because o f the exponential dependence on S ( 9 ) ,  the value o f  heterogeneous growth rate 

is much larger than that o f  the homogenous rate. Because o f  the ubiquitous o f the 

heterogeneous sites, real systems always solidified heterogeneously.
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II.4. Asymmetry between melting and solidification

Although nucleation during solidification usually requires some undercooling, 

melting normally occurs at the equilibrium melting temperature without superheating. 

Supercooling is the presence o f  the material in a liquid phase at a temperature lower than 

its melting point, while superheated crystals reserve their long-range order at 

temperatures above To and have unusual high atomic mean-vibrational amplitude. On the 

opposite o f supercooling, superheating o f crystalline solid is rare and the superheating

amount, ( A T ) + , is always less than that o f the observed supercooling amount, (AT ) ~ .  

This phenomenon is known as the phenomenological kinetic asymmetry between melting 

and solidification [65].

The phenomenological kinetic asymmetry between melting and solidification is 

supposed to originate from the presence or the absence o f an energy barrier for new phase 

formation, which is different for melting and solidification [65]. Melting is initiated at 

surfaces or interfaces where nucleation o f the liquid phase is unnecessary, i.e. there is no 

energy barrier for melting, while freezing o f a melt has to overcome an energy barrier 

[3,13], For a given element or system the energy barrier is mainly due to the volume 

expansion during melting, whereas it could be negligible during freezing [56], The 

activation energy o f  atomic diffusion during melting is much smaller than that during 

freezing, due to the higher transition temperature o f melting. Thus, it results an 

asymmetry not only in the transition point but also in the transition rates [9,56,65]. 

Moreover, the increase in free energy o f the system upon solidification may be able to 

maintain the liquid phase in a metastable state almost indefinitely at temperature below
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Tm [56], In fact, these factors make it impossible to have a symmetric melting and 

freezing behaviors.

The section below introduces a survey on both supercooling and superheating 

phenomena observed during solid-liquid phase transition. The current understanding and 

the theoretical and experimental approaches are also reviewed.

II.4.1. Superheating of solid crystals

Superheating o f solid crystals is not common because surface melting is 

energetically favorable for many solid surfaces. Surface melting eliminates the barrier for 

nucleation o f the liquid phase and paves the way for further melting [3,13]. This implies 

that crystal superheating, under ordinary circumstances, is impossible. In other words, 

crystal superheating is possible only if  surface melting is suppressed. Thus, several 

experimental ways have been developed to suppress surface melting and superheat the 

solid above the equilibrium melting point [66-70]. One way is to embed the metal crystal 

into another metal with a higher melting temperature, as observed for small Pb 

precipitates in A1 that could superheat up to 62 K [6 8 ]. In these types o f  experiments, the 

interface between the crystallites and the host matrix play an essential role in their 

melting behavior. Those with coherent or semi-coherent interfaces showed superheating, 

while the randomly orientated crystallites showed melting point depression [69]. Coating 

the crystal by a higher melting material is another technique used to superheat solid 

crystals. Ag spheres coated by a few monolayers o f Au were found to superheat by 25 K 

for a period o f 1 min [70].

Solids with a highly viscous melt such as quartz can be superheated up to several 

hundred degrees above the bulk melting point [71]. The solid liquid transition is then
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limited by the liquid propagation velocity rather than by the heat flow. Superheating of 

metal crystals, in that sense, is more difficult because metals have low viscous liquid and 

some o f its surfaces show surface melting [1,3]. In this case, the melting process is heat 

flow limited. On the other hand, if  the heating is so intense that the temperature rise at the 

interface is faster than the liquid propagation velocity, the solid may be driven into a 

highly superheated metastable state. Using laser heating, superheating by 120 K for 

P b ( l l l ) ,  90 K for Bi(0001), and even 15 K for the incompletely melted Pb(100) have 

been found [39,72,73]. Superheating o f these surfaces was achieved from bypassing the 

melting temperature via large heating and cooling rates o f about 1011 K/s.

It was also found that some close-packed metal surfaces remain solid and may 

superheat above the melting point [42,43,74]. Growing some crystallites that bounded by 

non-melting facets is another attempt to superheat small crystals [42,43]. Non

equilibrium octahedral lead crystallites deposited on graphite made up o f  the {1 1 1 } facets 

and small round parts exhibit superheating by several degrees for several hours [74], 

Several attempts have been made to estimate the upper limit o f  superheating. Starting 

from the normal definition o f the bulk melting point, the temperature at which the free 

energy o f the solid equals that o f the liquid, one can extend the idea to estimate the 

superheating limit. Fecht and Johnson proposed a thermodynamic stability limit for the 

superheated crystal in terms o f an entropy catastrophe [75]. Their critical isentropic 

temperature, T sm, is the temperature at which the entropy o f the superheated crystal equals 

that o f the liquid phase. The numerical value o f this isentropic temperature, T sm , for A1 is 

found to be 1.38 Tm above the bulk melting temperature. Furthermore, the value 7],' is
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calculated for most o f  the periodic table elements, and it is found that T*n could be as high 

as twice the normal melting point [32],

Isochoric catastrophic temperature, Tmv , the temperature at which the volume o f 

the superheated crystal equal to that o f the liquid melt, rigidity catastrophic temperature, 

7 ' , the temperature at which the shear modulus vanishes, and the Isenthalipic 

superheating limit temperature were claimed to be the maximum superheating 

temperatures the crystalline solid may withstand [28]. Lu and Li have proposed another 

homogenous nucleation catastrophe for crystal superheating [32]. They have found that if 

heterogeneous nucleation centers are avoided and the crystal is melted due to 

homogenous melting centers only then a massive homogenous nucleation catastrophe 

occurs at a critical superheating temperature, T*  , estimated to be ~ 1.2 Tm for Al. The 

upper limit temperature for crystal superheating due to the rigidity catastrophe, Tmr , is 

found to be below the instability limits defined by the volume isochoric catastrophe, Tn[ , 

and the entropy catastrophe T sm . However, the superheating observed experimentally in

metallic crystals, which is about 1.17b, is evidently far below these proposed instability 

limits that range from l.3To to 2.0T0 [32]. The homogenous nucleation catastrophe limit 

T*  is well above the experimental observed superheating o f metal crystals and it is the

lowest stability limit o f  the superheating crystals at all.

In spite o f  the abovementioned ideas for estimating the upper limit o f  the 

superheating temperature, none o f them agree with the experimentally observed one. 

However, the massive homogenous catastrophe is considered to be the closest one to the 

real. Moreover, none o f these theories discussed the time period that a solid may remain
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between the melting temperature Tq and a thermodynamic critical temperature T ' .  

However, the possibility o f  long-term existence o f  a substance can be governed by the 

following rule: for any abnormal physical state such as the crystal superheating, either the 

duration o f existence o f such a state is very small or the penetration into this region is 

limited [7].

II.4.2. Supercooling of liquid melt

Because o f  the presence o f energy barrier for solid nucleation enlarged by the 

volume change upon solidification and the release o f latent heat, melted materials 

normally stay in the liquid phase below Tq without solidification. Since the height o f this

energy barrier decreases as the amount o f supercooling increases, see Eq. (2.26) and 

(2.31), the melt stays in this metastable supercooling state until the due point, the point at 

which spontaneous solidification occurs, is reached. A structure fluctuation, formation 

and disintegration o f small size metastable nucleus or the presence o f  dynamical size 

distribution, is assumed to be the characteristic feature during supercooling [57,58]. The 

metastable nature o f the supercooled melt also provides the possibility o f metastable 

phases or structure formation, while a stable phase is formed only after the due point.

The due point or supercooling point and hence ( A T )~  is determined mainly by 

the nucleation type. In other words, supercooling is limited by the presence o f impurities 

within or at the surface o f the liquid that act as heterogeneous sites for nucleation [57]. 

For systems where heterogeneous nucleation is dominant, usually small undercooling 

amounts are observed [59]. Nevertheless, if  heterogeneous nucleation is suppressed,
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eliminated, or avoided, for instance by containerless processing o f pure liquids such that 

o f water suspension in oil, liquid phase can be significantly supercooled [76].

In addition to the heterogeneous impurity sites, supercooling showed a thermal 

history dependent [57,68,69]. Thermal history is a wide expression that includes all 

experimental parameters involved in the melting and solidification process such as 

heating and cooling rates, melt overheating above T0 , the liquid overheating period, and 

number o f heating and cooling cycles [57]. In fact, the effect o f  the heat treatment or 

thermal history on the supercooling results from its role in reducing or removing the 

active nucleation sites o f  the container wall-melt interface, and its influence on the melt 

structure [57,59]. Immediately above or exactly at T0 the system is not in a true liquid 

phase, however, it is a combination o f melted liquid and insoluble metallic clusters. In 

other words, even the system is in the molten state, the short-range structure remains the 

same as that o f  the solid. The complete destroy o f the short-range structures or complete 

dissolution/melting o f  the remaining clusters is temperature and time dependent [77,78]. 

Also, these clusters can act as solid seeds or these short-range liquid structures can evolve 

to the solid phase with zero free energy barriers if  the system is cooled immediately after 

reaching T0 . If  the system is completely melted and the short-range structure is

completely destroyed, either by overheating the melt above T0 or by increasing the liquid

overheating period, a larger supercooling would be attained. A linear relation between the 

amount o f supercooling and the amount o f liquid overheating at some cooling conditions 

are sometimes observed [78]. Different supercooling rates can also lead to different 

amounts o f supercoolings with a significantly large supercooling achieved at a higher
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cooling rate where nucleation is considered as a rate limited process [77,78]. The 

nucleation is retarded due to the low heat dissipation and/or diffusion rates.

The amount o f  supercooling, ( A T )~ , is found to show size and be mass 

dependent [80,81]. Generally speaking, the lower the size the lower the supercooling 

point and the higher the amount o f supercooling. Therefore, one. might divide the melt 

into large number o f isolated droplets or confined the liquid in highly porous media with 

porous size in the nanometer range to avoid nucleation and to attain large amounts o f 

supercooling. This is simply because o f the increase o f the surface to volume ratio as the 

droplet size is increased. Moreover, one might think that droplets with sizes lower than 

critical nucleation size may remain liquefied with significant amounts o f supercooling. In 

fact, the concept o f critical size relevant to the solidification o f  bulk liquid doesn’t apply. 

However, a shift in the supercooling point is thermodynamically favorable and below this 

point nuclei o f any length will tend to grow [81,82], Using a thermodynamic treatment 

similar to heterogeneous nucleation o f Eq. (2.29) using a cylindrical-like container o f

height h and radius R, the critical supercooling temperature, Ts , and the amount o f 

supercooling are estimated to be [81,82],

( A T f  = T0 -  T* = 2A r VM T0 s ( 2  34)
L K

where A y  is the difference between the solid/wall and liquid/wall interfacial energies, L 

is the latent heat o f  fusion, and VM is the molar volume. This equation emphasizes the

linear relation between ( AT) ~  and the reciprocal o f the porous radius, ( I / R ) .

Based on CNT for heterogeneous nucleation, the cluster size is related to the 

amount o f supercooling in an Arrhenius-like relationship, Eq. (2.34). Assuming that the
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droplet diameter d, which is given by d  = jhet A d , where A j  is the surface area o f a 

droplet, and using Eq. (2.33), the dependence o f the amount o f supercooling on the 

droplet size can be given by,

ln d  = C + C '\ ----- l— —  1, (2.35)
[ T ( A T ) 2 \

where C and C ' are constants that depend on the catalytic effect o f the heterogeneous 

nucleus and the melt properties. Thus, CNT suggests a linear relation between (In d), and

( \ /  A T 2 ) . However, experimental testing o f such relation o f  pure lead, tin, and bismuth 

showed that a linear relation is held between the logarithmic diameter o f the liquid drop

(In d) and ( AT /T q )  not ( \ f  A T 2  ) . Droplet sizes in the range o f  10 pm to 2030 pm were

tested, and an empirically relation is formulated to fit the obtained measuring date such 

that [83],

In d  = A - B (̂ - ,  (2.36)
T0

where A and B  are constant coefficients. The droplet sizes are measured in control 

atmospheric environment using an optical microscope. In another experimental approach,

the droplet geometrical size, d  -  ( m / p f , m is the mass, and p  is the substance density, is

calculated based on accurately weighted samples and assuming cubic geometry [79]. This 

supercooling-size dependence is found to satisfy a relation similar to Eq. (2.36). For

island film condensate, ( A T was found to depend essentially on the substrate type and

on the droplet size. The dependence o f the contact angle,9 ,  and hence the ( AT)~  n on 

the droplet size, in fact, arises from the dependence o f  the droplet-substrate interfacial

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

energy Ydu ( R ) ,  and the liquid phase surface energy o f  the droplet y j ( R ) , on the droplet 

radius R.  This dependence can be approximated by [80],

n ' °° i
a  z)00 ^  P  yd u  1cos 0 = cos 0 ----- + ------------------- , (2.37)

R 2 R y f  S in d

where a  and f i  are positive parameters o f the order o f the inter-atomic distances 

determining the size dependence o f specific energies o f the corresponding interface 

boundaries, and the subscript oo denoting the bulk values.
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REFLECTION HIGH-ENERGY ELECTRON DIFFRACTION

III.l. Introduction

Reflection high-energy electron diffraction (RHEED) has become an essential 

technique in many surface related areas. Unlike other techniques that give information on 

a particular local area o f  the surface, RHEED gives a statistical view over a large area o f 

the top few monolayers o f the surface with minimal interference with its intrinsic 

properties [1-5]. The high-energy electrons along with the nearly grazing incident angle 

results in a high elastic scattering cross-section, narrow penetration depth, and a fairly 

wide probed area, which makes RHEED an ideal surface sensitive technique for static 

and dynamic studies [1-3]. Static RHEED patterns can provide information on structure, 

orientation, and morphology for any crystalline surface [6 -8 ]. On the other hand, real

time dynamic RHEED is used routinely to monitor the growth o f  thin and ultra-thin 

epitaxial layers [9-11]. The dynamic studies were also extended to include gas-surface 

interaction kinetics and surface chemistry [12]. Also, RHEED is considered among the 

most useful techniques to probe surface dynamics such as surface reconstruction, 

roughing, and surface melting, under conventional and laser heating [4-6].

The energetic RHEED electrons interact strongly with the periodic potential o f 

the crystal surface atoms producing a powerful very sensitive structural characterization 

tool. 1' 3 Unfortunately, this strong interaction may involve non-linear scattering processes 

such as multiple scattering, and excitations o f surface plasmons, which make it difficult 

for the theory to account for [13]. Because o f the diffraction complexities and the lack o f
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a precise theoretical realization o f RHEED, qualitative information is normally extracted 

from the obtained data [2,3,14]. Since the RHEED theory is out o f  the scope o f this 

dissertation, this chapter will briefly give an introduction to the fundamentals and basics 

o f experimental RHEED along with the basic calculations used to interpret RHEED 

patterns. Information in this chapter is used to index RHEED patterns o f  bismuth, indium, 

and graphite in the reflection and the transmission modes as shown'in appendix A and B.

III.2. Basic RHEED setups and operations

The simple setup, easy operation, low maintenance costs, ability for in situ 

monitoring, compatibility with vacuum deposition reactors and processes, and the high 

surface sensitivity are the reasons behind RHEED popularity among the surface science 

community [1-3]. The main parts o f any standard RHEED system are: an electron gun 

with a high voltage source, a phosphor screen, an image capturing camera and software 

for image analysis. Medium to ultra-high vacuum environment is also needed for 

operation, however, high pressure RHEED was also developed [15]. For high-pressure 

operation, the traveling path o f the electrons in the high-pressure region is kept as short as 

possible to minimize scattering losses. Fig. 3.1 shows a schematic diagram o f typical 

RHEED components.

The electron gun produces a collimated nearly mono-energetic (5-100 keV) 

electron beam that strikes the crystal surface at a grazing incident angle (< 5°). These 

electrons are scattered by the periodic potential o f the crystal surface, which results in a 

characteristic diffraction pattern o f  the surface that is displayed oh the phosphor screen. 

The pattern is then captured with a suitable charge-coupled device (CCD) camera. By 

changing the incident and azimuth angles or by rocking the sample to change the electron
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angle o f incident, valuable information on the average long-range order o f the top surface 

layers o f  the sample could be obtained. For example, when RHEED intensity is measured 

as a function o f  the glancing angle, which is called RHEED rocking-curve, detailed 

information about the surface potential and the atomic position up to a few layers 

underneath the surface can be obtained [16]. In dynamic studies, manual changing o f the 

glancing angle is inconvenient; therefore, a RHEED apparatus with a magnetic deflector 

composed o f two pairs o f magnetic coils has been developed [17-19]. A computer 

algorithm was then used to control the electron path and allow rapid and accurate 

measurement o f the rocking curves [17]. Structural phase transition and thermal vibration 

o f surface atoms were studied [17-19].

FIG. 3.1. Schematic diagram o f the basic RHEED components, 1) electron gun, 2) 
phosphor screen, 3) CCD camera, and 4) software image analyzer.

For qualitative RHEED analysis, rocking curves are usually measured either by 

tilting the sample or by rocking the electron beam. Convergent-beam RHEED (CB- 

RHEED) is an alternative way to obtain a rocking curve in single shot RHEED pattern

Sample
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[20,21], The incoming beam is focused onto the sample forming a cone-like incident 

beam. The CB-RHEED pattern contains many diffracted orders for each incidence angle 

and azimuth within the illuminating cone. The drawback o f CB-RHEED is that two- 

dimensional image recording is required, and an imaging energy filter is necessary to 

utilize the advantage o f parallel detection [2 0 ].

In some RHEED applications, an energy filter is added to separate the inelastic 

diffuse background from the elastic contribution o f the scattered electrons [22]. This 

energy filtering improves the shape o f the RHEED patterns and increases the signal-to- 

background ratio. The improved RHEED pattern along with electron energy loss 

spectroscopy measurements can be used to in situ measure the chemical states and/or 

chemical composition o f  some surfaces and interfaces [22], Time-resolved RHEED is 

another RHEED modification that provides the ability to monitor the evolution o f the 

surface structure, morphology, and temperature during a fast laser-initiated transition or 

during ultra-thin film deposition [23,24], In pomp-probe time resolved RHEED, a photo 

activated RHEED electron gun, instead o f conventional continues filament based gun, is 

used to generate an electron pulse that is synchronized with a heating laser pulse. Using a 

beam splitter, a laser beam is split into two parts, one is used for heating the sample, 

pump, and the other is converted into UV by nonlinear crystal and used for the photo

cathode o f the RHEED gun for electron beam generation. By changing one o f the laser 

paths, pump or probe, one can capture images before, during, and after laser surface 

heating. The temporal evolution o f the diffraction intensity is monitored to obtain 

information on the mean-square vibrational amplitude o f  the surface atoms and the 

structural integrity o f the surface.
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III.3. Laue condition and RHEED patterns

RHEED diffraction patterns are produced when the scattered electrons satisfy 

simultaneously the conditions o f constructive interference and elastic scattering [1-3]. In 

other words, the path difference between the scattered interfering beams is a multiple 

integers o f its wavelength and that the incident and diffracted beam momentums are 

equal. For energetic electrons as in RHEED, the relativistic electron wavelength X, 

measured in A, is given by the following expression [3],

where mo is the electron rest mass, q is its charge, and V is the accelerating potential 

measured in volts. Considering the scattering geometry shown in Fig. 3.2, the elastic 

scattering condition can be generally written as,

Where n, and ns are unit vectors in the incident and scattering directions respectively, 

and Sj and Ss are scalar distances. By finding the values o f the scalar distances S, and 

Ss from the scattering geometry o f Fig. 3.2, Eq. (3.2) becomes,

can be taken to represent the beam momentum and direction, and the interplaner distance 

vector d ^ i  is then equivalent to the reciprocal lattice vector Ghkl, normal to the surface

h 12.3
(3.1)

(3.2)

dhkl cos dhkl cos Qs — m X . (3.3)

If the reciprocal space is considered, the wave vector Kj where K
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but with lower magnitude such that G ^ i
2 n

1 hkl
The reciprocal space formulation o f Eq.

(3.3) could be deduced such that,

I K i | | G hkl |cos e i + 1 K s | | G hkl | cosGs = m  , or (3.4)

~ K i * G hkl + K s * G hkl = m ■ (3-5)

The negative sign is simply because K t has a negative component in the Ghkt - direction, 

and the dark dot sign is used to indicate the dot product.

Incident beam

Scattered beam

FIG. 3.2. A schematic representation o f  an elastic scattering process in real space. The necessary condition 
for constructive interference is that the path difference between the incident and scattered beam equal to an 
integer multiple o f  the wavelength o f the scattered beam.

Eq. (3.5) can be written in a simplified form as,

A K , G h k i = m (3.6)

where AK = K  -  K -. Thus, the bright spots observed at the phosphor screen are an

arrangement o f  points in the reciprocal space governed by Laue condition, Eq. (3.6). This 

condition emphasizes the quantization or periodicity o f the AK  component in the Ghk,
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direction, and that AK  is in parallel direction to Ghkl. In other words, the possible 

changes in the wave vector matches the periodicity o f the reciprocal lattice vector. For 

some proposes the right hand side o f Eq. (3.6) is taken to be 2m n  to represent the phase 

periodicity o f the scattering wave. Using a simple scattering geometry in the reciprocal 

space, Fig. 3.3, one can directly get to the same Laue condition such that,

K s = K t + G hki, where Ghki = mGm , (3.7)

Thus A K  = G hki. (3.8)

I
I
I

S a m p le
s u r f a c e

FIG. 3.3. A geometrical representation o f  the scattering process in the reciprocal space. The illustration 

shows the necessary condition for constructive interference, A K  = Gkki .

III.4. Static RHEED analysis

III.4.1 Surface orientation

As mentioned before, a RHEED pattern is the intersection o f the reciprocal lattice 

rods with the Ewald sphere projected on the phosphor screen. Provided that the radius o f 

the Ewald sphere is much larger than the inter-rods distances, one can use the principle o f 

similar triangles to relate the streak spacing on the screen to its corresponding lateral rod
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spacing in the reciprocal space [3,14], Fig. 3.4 is a schematic diagram showing a plane 

view o f the relation between the inter-spacing o f the reciprocal lattice rods o f  the zeroth 

order and the spacing o f  the observed RHEED streaks. The zeroth order Laue zone is 

defined as the rods along the direction perpendicular to the incident beam that contains 

the origin. The origin is the point at which the electron beam hits the surface. By utilizing

the principle o f  similar triangle, using Fig. 3.8, one can find that W / L &  a j  K j  , and the

reciprocal lattice vector a* is then given by:

* l n W  cx ^a = -------- , (3.9)
AL

Zeroth Laue zone

i T
(05)4

003)4 
(02) '

RHEED screen

- W - -

<w)t uq=iH_

FIG. 3.4. The relation between the inter-spacing o f reciprocal lattice rods o f  the zeroth order 
and the spacing o f  the observed RHEED streaks, one can use the principle o f  similar triangle 
to find the azimuthal orientation o f  the sample relative to the beam incident direction, [After 
Ref. 3],
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where W is the streak separation, L is the sample to screen distance, X is the electron 

wavelength. Surface orientation at a particular azimuth o f the sample with respect to the 

incident beam can be determined. Moreover, azimuthal plots, set o f intensities o f a 

diffracted beam measured at fixed polar angle while the azimuthal angle is varied, and 

rocking curves are used to determine the atomic arrangement at the surface and surface 

symmetry [2,3,14,17].

III.4.2. Surface morphology

For surface scattering, where the diffraction pattern results from two-dimensional 

(2D) lattice structure, the reciprocal lattice net is a set o f infinitely long rods extending 

normal to the surface and having the periodicity o f the surface unit mesh [25], 

Conceptually, elastic scattering condition is satisfied at a sphere o f  radius ( 2 n j X ) , Ewald 

sphere, and Laue condition o f constructive interference is satisfied at the intercepts o f 

Ewald sphere with the reciprocal lattice rods where A K  -  . Thus, RHEED pattern

is the projection o f the intercepts o f the Ewald sphere with the 2D reciprocal lattice rods 

on the screen. Figure 3.5(a,b) shows a side and a top view o f the Ewald sphere-reciprocal 

rods intercepts and their projections on a RHEED screen. For a perfect surface, RHEED 

pattern is expected to consist o f spots lying on an arc (Laue ring), arising from such 

intersection, Fig. 3.5(c). The spots tend to be streaked to some extent because the radius 

o f Ewald sphere is much larger than the inter-rod spacing for typical RHEED energies

[2], Moreover, thermal vibrations, lattice imperfections, and instrumental effects cause 

the reciprocal lattice rods to have a finite thickness, while the Ewald sphere itself has 

some finite thickness, due to divergence and dispersion o f the electron beam [6 ].
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lit

FIG. 3.5. Side view, (a), and top view, (b), o f  the Ewald sphere-reciprocal rods intercepts and their 
projection on a RHEED screen, (c) RHEED pattern o f  a perfect surface, spots arranged in an arcs 
(Laue rings, L, and i is the zone order) arising from such intersection where the condition o f  elastic 
scattering and constructive interference is satisfied [After Ref. 1,3,14].

While the RHEED pattern o f a perfect surface consists o f spots located on a 

circumference o f Laue rings, a rough surface or a non-clean surface may show 

patterns consisting o f many spotty features due to the electron transmission 

through surface asperities or adatom clusters [2,3], Furthermore, RHEED from an 

amorphous surface gives a pattern with no diffraction features, only a diffuse 

background is observed. Therefore, the first important information provided by 

RHEED, without any calculation, is about the flatness and perfection o f the 

crystalline surfaces. Like many diffraction techniques, RHEED can also 

differentiate between single crystal and polycrystalline surfaces. Spots arranged in 

half circles are observed for single crystal surfaces, while concentric half rings are 

observed in the case o f  polycrystalline surfaces [26]. Rings with uniform intensity
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mean that the grains are randomly oriented, however, if  the polycrystalline film 

exhibits a fiber-like texture, broken rings are expected instead [26]. Figure 3.6 

schematically summarizes some o f these surface morphologies and their expected 

RHEED patterns.

(»)

(1»

(c)

i f * f « ‘»SI2SrA*«WI

:::::::::::::::

/  w * * 
'm * * w * w *

«D

•tit*

FIG. 3.6. Schematic illustration o f  some different surface morphologies and its expected RHEED pattern; 
a) spots on Laue rings for atomically flat surface, b) concentric rings for polycrystalline or randomly 
oriented crystallites, c) transmission like pattern, spots arranged in a line or in a special shape, for three- 
dimension oriented asperities, and d) elongated streaks on Laue rings for two-dimension crystallites, [After 
Ref. 2],

III.4.3. Transmission RHEED

Because o f  the glancing incidence o f RHEED, the component o f the electron 

momentum perpendicular to the surface is small and so is the normal penetration depth

[3]. Also, the forward electron scattering is increased and the electrons travel a 

substantial distance through the solid, in according with their mean free path. Since the 

path-length o f RHEED electrons is relatively high, few nm in metallic crystals, the
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electron beam may pass through small surface features and. cause true bulk-like 

diffraction. A transmission spot pattern that has no relation to the surface Laue rings, but 

represents a cut through the reciprocal lattice o f the asperite structure, can be clearly 

distinguished. In this context, RHEED probes only a layer given by its inelastic mean free 

path (IMFP). The IMFP represents the average path length that an electron travels 

between two successive inelastic interactions [27]. IMFP depends on the electron kinetic 

energy and the nature o f  the solid traveling through. However, most elements show 

similar IMFP-electron energy dependence [28]. A general equation for the IMFP is given 

by [27,28],

4  = — 7-------- ^ ( 3-10>
E 2

At energies above 100 eV Eq. (3.4) reduces to [27],

A ,= — — ------- , (3.11)
E‘ fi w te )

where, A, is the IMFP, E  is the energy, E p = ■sjp N v /M  is the generalized plasmon 

energy, N v is the number o f valence electrons (per atom or molecule), p  is the density

o f the material and M  is the atomic mass. The material dependent constants (3, y, C, and D 

can be estimated from measurable quantities o f the material using empirical or semi- 

empirical theoretical expressions [28]. Even though there was no physical justification for 

universality, the IMFP-electron energy curve became known as the IMFP “universal 

curve”. Figure 3.7 shows the IMFP-electron energy curves calculated for graphite, 

indium, and bismuth, constants [3, y, C, and D are calculated based on the empirical 

relations given in Ref. [28]. Electrons with -1 0  keV energy would be able to penetrate
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islands or aspirites with ~ 1 0  nm width o f graphite, indium, or bismuth without 

significant loss due to inelastic collisions. Transmission RHEED can probe only an over

layer o f - 1 0  nm maximum dimension, in the electron traveling path direction, o f these 

systems.

100

10

1
  Graphite
 Indium

Bismuth

0.1
1000 1000010 100

Electron energy (eV)
FIG. 3.7. A log-log plot o f  the IMFP variation with electron energy as calculated for 
graphite, indium, and bismuth.

Transmission RHEED patterns can be used to obtain structural information on 

rough surfaces and 3D-island films. The patterns are similar to those obtained by the 

selected area electron diffraction (SAED), where the transmission electron microscope 

(TEM) is switched to the diffraction mode and a small area aperture is used to selectively

• 29obtain a transmission diffraction pattern o f  a particular location o f  a very thin sample.

In the case o f transmission RHEED, only half o f the diffraction spots are seen, the other 

half is covered by the crystal shadow. Fig. 3.8 shows a schematic representation o f 

transmission-reflection geometry o f RHEED. The spots in the transmission RHEED
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patterns are formed according to Bragg’s condition, however, because 0 is  very small and 

s in # = #  in radian, Bragg’s equation is rewritten as [29],

2dhkl ■ Ohkl = & ■ (3.12)

FIG. 3.8. A schematic diagram represents the transmission-reflection geometry o f  RHEED.

From the geometry o f transmission RHEED, Fig. 3.7, the angle 6  can be related to the 

origin-to-spot distance x, using the approximation o f tan 6 = 6  in radian, as

2 6 m = j - ,  (3.13)

where L is the sample-to-screen distance. The interplaner distance, d ^ i , o f a particular 

set o f planes, represented by a single spot on the screen, can be estimated as

</**,= —  . (3.14)

By measuring the spot-to-origin distances, the value o f the interplaner distances, d hk[ , o f 

a different family o f planes within the diffraction zone can be obtained. The diffraction
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zone is the zone that contains two or more diffraction planes satisfying the zone equation

[29],

hu + k v  + l w = 0 , (3.15)

where (hid) is any plane located in the [uvw] zone. The electron beam is taken to be 

parallel to the axis o f the zone. This means that only the planes that make right angles 

with the direction o f the electron beam will be seen. It is clear that changing the zone 

axis, through changing the azimuthal orientation o f the crystal, changes the diffraction 

pattern. However, low symmetry crystals may have many zones that look very similar to 

each other. Diffraction patterns attained at two or more zone axes are necessary for 

unambiguously correct and accurately index. The indexing can be done manually using 

the stereograph or automatically by using a computer program. A manual indexing 

procedure is discussed in appendix B for crystals with prior knowledge o f  their crystal 

structures.

III.5. Dynamic RHEED

The RHEED ability to resolve and detect the atomic arrangement o f  the surface 

arises from the fact that a RHEED pattern represents a cut through the surface reciprocal 

lattice rods. Surface structural modifications, either by surface defect formation or by 

adatoms deposition, will alter the arrangement o f these rods. This will directly appear as a 

change in the spot intensity or in the shape o f the diffraction pattern. RHEED patterns are 

widely used to study the surface [4,7,8].

Based on the operating condition and surface morphology, the RHEED pattern 

can be obtained either at the in-phase or at the out-of-phase conditions [2], At the in- 

phase condition the diffraction pattern is most sensitive to surface order, while at the out-
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of-phase condition RHEED is more sensitive to lattice defects [30]. In the in-phase 

condition, the angle o f incidence and electron energy are set such that the electrons 

scattered from surface layers separated by one atomic step interfere constructively. At 

this condition, the change in the specular spot intensity is sensitive to the order within the 

topmost layers o f the probed surface. Indeed, the temporal change o f the specular 

intensity has been effectively used to control film thickness within an atomic layer using 

the well-known phenomenon o f RHEED oscillations [9-11]. RHEED oscillations indicate 

layer-by-layer film growth where the maximum o f the RHEED intensity is reached when 

the growing film form a complete well-ordered monolayer (ML) film. The intensity 

continuously decays if  the growing film forms 3D islands [31]. The pattern is then 

transferred from spots/streaks arranged on a Laue ring to a transmission spot array 

reflecting the crystal symmetry o f the deposited film. The evolution o f  randomly oriented 

or oriented 3D clusters continuously decreases the RHEED intensity attributed to surface 

diffraction.

When RHEED incident angle# is made such that 2 d s in 0 -  (n  + l /2 ) / l , where d  

is the monolayer step height, X is the electron wavelength, and n is an integer, the 

electrons scattered from regions differing in height by 1 ML are 180° out o f phase and 

interfere destructively. In this out-of-phase condition, RHEED pattern is more sensitive 

to the surface defects. In electron diffraction experiments, the electron-phonon interaction 

and the elastic scattering o f electrons from surface defects such as steps, vacancies, and 

disordered adatoms appear as diffused intensity background in the diffraction pattern 

[32,34], The diffuse intensity background can be measured in RHEED and low energy 

electron diffraction (LEED) experiments using the ratio R, which is defined as [34],
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R = -----------  . (3.16)
Ipeak " ^back

Where I^ack *s the RHEED background intensity measured at a location away from the

diffraction peaks, and Ipeak is the peak intensity o f a diffraction order. Under the out-of-

phase condition the ratio R  is found to be very sensitive to surface defects while almost 

independent o f  defect density if  it is measured in the in-phase condition . 34 By measuring 

the background ratio R, the adatom/vacancies density can be estimated as a function o f 

temperature. The background intensity or surface defect density in terms o f  the ratio R is 

normally used to probe surface phase transitions such as roughing and surface melting 

[4,35,36],

In addition to the structural sensitivity, the RHEED pattern is also sensitive to 

temperature. The scattered electrons are influenced by the vibrational motion o f the 

surface atoms resulting in a decrease in the spot intensity as the temperature is increased. 

This is because the intensities measured include elastic as well as inelastic electron 

scattering such as phonon scattering. The effect o f thermal vibration on elastically 

diffracted electrons was accounted for in the Debye-Waller theory, as in x-ray diffraction. 

For T »  0 0 , O q  is the Debye temperature, the intensities in the Bragg peaks fall off 

exponentially such that [37,38],

I - I ^ e ~  2M  (3.17)

Where /  and lo are the intensity o f the diffracted beam at temperature T  and for the rigid 

lattice, respectively. This equation predicts intensity decreased by a factor o f e 2M, called 

Debye-Waller factor, as the temperature increases due to electron diffuse scattering. M  is 

a quantity dependent on the characteristics o f the crystal, electron wavelength, and the
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angle o f scattering. For the independent harmonic approximation, the exponent 2M  is

where AK  is the change in electron wave vector due to scattering. At the high

where N  is the Avogadro’s number, h is Planck’s constant divided by 2n, m is the atomic 

mass, kfj is Boltzmann’s constant, and T  is the absolute temperature. Equations (3.17)-

(3.19) are normally applied to estimate the surface temperature from the intensity o f the 

RHEED pattern after proper calibrations [40,41]. In fact, the RHEED intensity offers an 

in situ non-contact temperature measuring technique that can work efficiently for clean 

surfaces in many situations such as film growth and surface processing. RHEED intensity 

can also be used to measure the surface transient temperature in laser heating where the 

temperature raise is very fast and RHEED response almost simultaneously. By measuring 

the normalized RHEED intensity o f the specular spot as a function o f surface temperature 

using conventional heating, the transient surface temperature due to laser irradiation can 

be estimated.

2
related to the mean-square lattice vibrational amplitude (u) such that,

(3.18)

2
temperature limit, (y) is given by [39],

(3.19)
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CHAPTER IV

MELTING AND SOLIDIFICATION OF INDIUM NANOCRYSTALS

IV. 1. Introduction and literature survey

The study o f melting o f metallic nanocrystals is o f  interest to fundamental 

understanding o f the effect o f reduced size and crystal shape on the melting phase 

transition [1-3]. The melting o f nanocrystals that are free-standing, deposited on an inert 

substrate, embedded in a host matrix, or coated with a higher melting material have been 

theoretically and experimentally studied [1-14]. These nanocrystals showed structural as 

well as thermodynamical properties that are different from that o f their own bulk 

materials. Some nanocrystals that are free standing or deposited on an inert substrate 

showed size-dependent melting point depression, in quantitative agreement with 

phenomenological thermodynamic models [2,5-7]. However, in other cases considerable 

superheating o f some nanocrystals above the equilibrium bulk melting point was 

observed [1,3,8 ,9]. Embedded or coated nanocrystals have also shown a size-dependent 

melting point depression, in some cases, as well as several degrees superheating in others 

[10-14],

Melting point depression in nanocrystals and its dependence on the particle size 

are well demonstrated using different experimental techniques. Nanocalorimetric 

measurements o f discontinuous indium and tin films, evaporated on amorphous silicon 

nitride, revealed that the melting point depression decreased linearly with the inverse o f 

the particle size [5,15]. Indium nanocrystals showed a melting point depression by as 

much as 110 K for particles with 2-nm radius [5]. Scanning tunneling microscopy (STM)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

and atomic force microscopy (AFM), combined with perturbed angular correlation, were 

used to study the melting o f an ensemble o f indium nanocrystals deposited on WSe2 and 

Ge(100) [16,17]. The melting point was found to decrease as the mean film thickness was 

reduced. A reduction in the melting point as well as strong supercooling is observed for 

indium films deposited on Ge(100) [17]. Tsuboi et al. measured the size dependence o f 

the melting point o f  lead thin films deposited on Al and Ge using differential scanning 

calorimetry [18]. They observed melting point depression as the film thickness decreased 

and the substrate type hardly affected the behavior. An in situ electron microscopy study 

showed that the melting point depression o f indium particles deposited on cleaved MoS2 

is less than that deposited on amorphous carbon for particles o f the same size [19], In situ 

x-ray diffraction o f Pb nanocrystals deposited on Si(532) showed that the melting point is 

inversely proportional to the average crystallite size [20]. The nanocrystals melting 

temperature Tm, normalized to that o f the bulk, was related to the Pb crystallite diameter 

D  by the equation Tm = 1 - 0.62/D (nm). Melting point depression was also observed for 

gold and silver nanoclusters deposited on W(110) using field-emission current from 

individual clusters [6 ].

In addition to the abovementioned studies showing melting point depression o f 

nanocrystals grown on different substrates, there are reports o f  superheating o f 

crystallites grown on relatively inert substrates, such as graphite or carbon [8,9,21-23]. 

Melting o f bismuth and lead thin films, consisting o f individual crystallites, ware 

investigated using scanning electron microscopy. Depending on the individual crystallite 

shape, some showed a time delay sufficient to be superheated up to 7 K and 2 K for 

bismuth and lead respectively [8,9]. Thin platelets with extensive {0001} surfaces for
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bismuth and {111} for lead were identified as those that show superheating [8,9]. An in 

situ reflection high-energy electron diffraction (RHEED) study o f  thermally evaporated 

Pb thin films on graphite revealed that some fraction o f the films could be superheated by 

4 ± 2 K t o  1 2 ± 2 K  above the bulk melting temperature [21]. M etois and Heyraud were 

able to produce a large number o f {111} faceted polyhedral Pb crystallite on graphite that 

superheated by 3 K [21]. Small particles o f bismuth, with particle diameters from 20 nm 

to 150 nm, grown on carbon and on silicon monoxide showed 10 K superheating above 

the bulk melting temperature using electron microscopy [23], In a time-resolved study o f 

surface superheating using 100-200 ps laser pulses, superheating by -1 2 0  K, -9 0  K, and 

73 ± 9 K for P b ( l l l ) ,  Bi(0001), and I n ( l l l )  surfaces, respectively, were reported 

[24,25],

The nanocrystal shape and external surface morphology determine its melting and 

solidification behavior. Recrystallized nanocrystals can have shapes and external surface 

morphologies that differ from the as-deposited nanocrystals, and hence, the melting and 

solidification behaviors can differ between the two types [26,27]. Dark field electron 

microscopy was used to investigate the melting o f bismuth crystallites in as-deposited 

and recrystallized bismuth films on a carbon substrate [8 ]. As-deposited films were found 

to have crystallites that are different in shape and in melting behavior from those 

recrystallized after melting. While a subset o f the as-deposited crystallites, with elongated 

platelet shape, superheated by 7 K above the equilibrium bulk melting point, the 

recrystallized polyhedral hexagonal shaped nanocrystals in the as-deposited film showed 

melting point depression. Using the same technique to study the melting o f lead 

nanocrystals, superheating by 2 K was found for extensively {111} faceted platelet
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shaped nanocrystals formed in the as-deposited films. Lead nanocrystals with other 

shapes melted below the bulk melting point [9]. Indeed, non-equilibrium faceted 

nanocrystals have greater specific surface energy than equilibrium faceted ones and 

hence melt first [28]. Nanocrystals bounded by external facets with minimum energy 

surfaces are able to superheat above the bulk equilibrium melting point. Using reflection 

high-energy electron diffraction, as-deposited lead films, grown on graphite at room 

temperature, showed superheating o f up to 12±2 K [21]. The observed superheating was 

attributed to the presence o f two-dimensional (2D) {111[-oriented layers in the as- 

deposited film, while recrystallized films had the form o f three-dimensional (3D) 

crystallites. When measuring the melting point and latent heat o f  fusion o f 0.05-0.5 nm in 

radius tin particles using a nanocalorimetric technique, both were found to increase with 

the particle size. Also, the values obtained from the second heating cycle, recrystallized 

sample, were slightly higher than those obtained from the first heating cycle [15], A 

change in the melting point upon recrystallization o f embedded nanocrystals was also 

previously observed. An X-ray diffraction study o f lead crystallites embedded in 

aluminum showed substantial superheating whose value depended on the heating cycle 

and on the inclusion size [29]. Due to annealing in previous heating cycles and possible 

coalescence, superheating found in the second cycle was lesser than that found in the first 

cycle.

The melting behavior o f low-dimensional systems has been the subject o f many 

theoretical studies based on thermodynamic models and numerical investigations based 

on molecular dynamics [7,30-32]. A thermodynamic model o f the melting o f 

nanoparticles in contact with a solid surface showed a melting point behavior that is
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affected by the substrate surface and the contact angle between the adsorbate liquid and 

the substrate surface [33]. This model predicted a decrease in the nanoparticle melting 

temperature as the contact angle decreases; particles with contact angles more than 160° 

could be superheated. The size dependence o f the melting point o f thin films, embedded 

nanocrystals, or crystalline nanofibers was modeled based on the vibrational entropy o f 

melting and Lindmann’s melting criterion [31,34-36]. These models showed a decrease 

in the melting temperature with reduced size. In these models, superheating is only 

expected when the ratio between the average mean square displacement o f  the atoms at 

the surface and those within the bulk is less than one, a condition that happens only for 

embedded particles having coherent or semi-coherent interface with the surrounding 

matrix. A molecular-dynamics (MD) simulation using many-body type interaction 

potential showed that a confined cluster with coherent or semi coherent boundary 

conditions can be significantly superheated [32]. In another MD simulation, embedded 

tin clusters with 10-30 atoms per cluster remained solid at -5 0  K above the bulk melting 

point [37]. Simulations o f  small gold particles o f 100-900 atoms showed a sharp decrease 

in the melting temperature with the decrease in the cluster size [30].

This chapter demonstrates the experimental results and discussion o f using 

RHEED to study the melting and solidification o f as-deposited indium nanocrystals and 

nanocrystals recrystallized from melt. The nanocrystals were formed by evaporation on 

highly oriented (002) graphite. Indium nanocrystals were chosen because a 

nanocalorimetric study o f its size dependent melting point depression was previously 

performed [5]. In addition, a recent study o f ultrafast laser heating o f I n ( l l l )  has shown 

surface superheating [24]. The size, size distribution, and morphology were studied using
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ex situ SEM or AFM. The effect o f the nanocrystal shape and size on the melting 

behavior o f  indium nanocrystals is also discussed.

IV.2. Experimental Method

The experiment was performed in an ultrahigh vacuum system with base pressure 

~1 x 10“1() Torr. An 8.5-kV electron gun is used to obtain the diffraction patterns. A 

12xl2x2-mm, (002) highly oriented pyrolytic graphite (HOPG) substrate is used. The 

interaction between the deposited indium and the graphite substrate is known to be o f the 

Van der Waals type, with no chemical reaction or inter-diffusion o f indium in the 

graphite [38,39]. An atomically clean surface o f the HOPG substrate, hence clear 

RHEED pattern, can easily be obtained by simple cleavage. The graphite substrate is 

loaded in the ultrahigh vacuum chamber immediately after cleaving it in air. The 

substrate was mounted on a resistively heated stage capable o f reaching temperatures up 

to 1000 K. A K-type thermocouple was used to measure the surface temperature o f the 

substrate and the deposited film. The graphite substrate is cleaned by heating at ~ 770 K 

for 10 minutes, which is sufficient to obtain a clear graphite diffraction pattern. The 

thermocouple was calibrated to the bulk melting point o f indium, the melting point o f ice, 

and the boiling point o f distilled water. This calibration was performed before the 

experiment and after several cycles o f heating and cooling in vacuum. The accuracy o f 

our temperature measurements is determined to be within ±1 K near the bulk melting 

point o f indium.

Indium is evaporated from a 99.999% pure indium wire using a heated tungsten 

basket. The substrate temperature is kept at ~ 423 K during deposition. To control the 

deposition process, a shutter is used to interrupt the indium vapor flux. The film mean
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thickness is obtained by means o f a quartz crystal thickness monitor, placed as close as 

possible to the substrate. The indium film mean thickness is also monitored from the 

decrease in the RHEED (00) spot intensity o f  the graphite substrate. A calibration curve 

o f RHEED intensity versus mean film thickness enables accurate film thickness control. 

Indium thin films with different mean thickness, from 0.5 ML to 34 ML, are prepared. 

The spacing between each deposited ML is taken to be the indium-indium bond length, 

3.25 A. A deposition rate o f 0.4 - 0.7 A.s'1 is maintained by controlling the current 

applied to the heater filament. After deposition, the recrystallized films were heated to a 

temperature above the bulk melting point and slowly cooled down to a temperature below 

its supercooling temperature. The reappearance o f the indium diffraction pattern during 

cooling indicates its recrystallization. The equilibrium polyherdal shaped indium 

nanocrystals were then formed for the recrystallized films, while the as-deposited 

nanocrystals grew in shapes that are dependent on the preparation conditions such as 

deposition rate and substrate temperature. The low indium vapor pressure near the bulk 

melting temperature, < 10' 11 Torr [40], allows for conducting the melting experiment with 

negligible atom loss by evaporation. Indium has a relatively low bulk melting point (430 

K), which facilitates the melting experiment. Indium films are easily re-evaporated off 

the substrate at the end o f the investigation, by holding the substrate at 873 K for few 

minutes. A clear graphite pattern is observed, which indicates complete evaporation o f 

the deposited indium off the graphite.

A computer-controlled charged coupled device (CCD) camera is used to record 

the diffraction patterns that are displayed on a phosphorus screen. Melting and 

solidification o f the grown indium nanocrystals were studied by monitoring the intensity
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change o f the (0 0 ) and (0 1 ) spots o f the diffraction patterns as a function o f temperature. 

The measurements were conducted by raising the sample temperature from room 

temperature to 450 K in -1 0  minutes, and then the heating stage power is turned off 

letting the sample cool down to near room temperature in -3 0  minutes. The RHEED 

patterns were recorded during heating and cooling. Each RHEED pattern is acquired in 

-0 .17 s, thus, temperature changes during the pattern acquisition are negligible. The thin 

film morphology was observed by ex situ SEM or AEM. The lateral and height 

resolutions o f  the AFM used are 1 nm and <0 .1  nm, respectively, as specified by the 

manufacturer. Our lateral resolution, however, is limited by the end-tip diameter, which 

was less than 1 0  nm.

IV.3. Results and discussion 

IV.3.1. Substrate structure, and film deposition

After reaching the ultrahigh vacuum, the substrate is heated to -  770 K for 10 

minutes to get rid o f any possible adsorbed gases and obtain a clear RHEED pattern. The 

identification and analysis o f the graphite RHEED pattern is illustrated in appendix A and 

B. The obtained RHEED pattern o f the graphite was interpreted as an image o f a three- 

dimensional reciprocal lattice parallel to the (0 0 1 ) direction.

As indium is deposited on the graphite substrate, the temporal change o f the 

graphite (0 0 ) spot intensity is found to decay continuously with no intensity oscillation 

observed, as shown in Fig. 4.1(a). This is consistent with a 3-dimensional (3D) growth 

mode forming islands, as confirmed by ex situ SEM images. This is known to be the 

normal growth mode o f indium thin films [5,16,17,19]. Relating the decay o f the (00)
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spot intensity to the film thickness, as measured by a quartz crystal thickness monitor, 

gives a calibration curve between the normalized (0 0 ) spot intensity and film mean 

thickness, as shown in Fig. 4.1(b). The decay o f the (00) spot intensity with indium 

deposition is due to enhanced surface coverage with indium nanocrystals. Although the 

sticking coefficient o f indium to the quartz crystal may differ from that o f  indium to the 

graphite substrate, this difference in sticking coefficient does not affect the results since 

the nanocrystals size distribution is measured by ex situ real imaging technique.

100120

' T  100
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Shutter o ff
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FIG. 4.1. The graphite specular peak intensity, (a) as a function o f  time during film deposition, (b) as a 
function o f  the indium film mean thickness as recorded by a crystal thickness monitor. The RHEED (00) 
beam intensity decays continuously with no oscillation indicating a 3D growth. Curve (b) enables mean 
film thickness control through the RHEED (00) intensity and is used for calibration.

IV.3.2. Structure and morphology of indium nanocrystals

IV.3.2.1. Nanocrystals recrystallized from melt

Figure 4.2 shows RHEED patterns o f thermally evaporated indium films with 

different mean thickness after recrystallization from the melt. At low indium thickness, 

the 1 .1 and \.l graphite rods are still visible (indicated by arrows) due to low surface 

coverage. As the surface coverage increases, the surface area covered by nanocrystals

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

increases, resulting in an enhancement o f the indium pattern on the expense o f  that o f 

graphite. Indium gives a diffraction pattern that is characteristic o f a transmission 

RHEED pattern. Increased 3D indium island-density with further indium deposition 

eventually causes the disappearance o f the graphite pattern. Measuring the reciprocal 

basis vector from the rod spacing in the indium diffraction pattern, a = 2 n  W/AL, where 

W is the rod separation and L  is the sample-to-screen distance, a* is found to be 2.07 A'1 

in good agreement with the calculated a *001 = 2.12 A'1.

24 ME

FIG. 4.2. Diffraction patterns o f  evaporated indium films with different thickness shown along with that for 
clean graphite (002) surface. The electron beam energy is 8.5 kV for both, while 6 ~  3.5° for graphite and 

2.2° for indium. The 1 .1 and 1./ graphite rods are visible (indicated by arrows) at low surface coverage and 
gradually disappear with increased indium thickness.

The morphology o f indium films, performed at three different locations across the 

surface, was observed by SEM. Figure 4.3 shows SEM images o f the 3-ML and 34-ML 

indium films at one location, on each film, at different magnification powers. Indium is 

found to grow from the melt as an ensemble o f faceted nanocrystals. The nanocrystals 

has a cubo-octahedron shape with facets that are connected by curved surfaces with 

smooth edges similar to Pb, Sn, and In crystallites observed before [26,27,41,42]. The
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equilibrium shape o f  indium crystallites on graphite has {1 1 1 }, {0 0 1 }, and {1 0 0 } facets 

connected with smooth edges. The SEM images do not show any thin platelets similar to 

those observed when evaporating bismuth and lead without recrystallization from the 

melt [8,9,22]. The interaction between the deposited indium films and graphite substrate 

is known to be o f the Van der Waals type with no chemical reaction or interdiffusion o f 

indium in the graphite [39]. The crystallite size distribution was analyzed over an 

arbitrarily chosen 2.5 x 1.5 pm area. Figure 4.4 shows the crystallite size distribution for 

some indium films o f  different mean thickness at two different locations on each film. 

The size distribution, the number o f counted particles, and the average crystalline size are 

found to depend on the location. Because terrace edges provide sites with lower 

adsorption energy and break the isotropy o f surface diffusion, large numbers o f indium 

nanocrystals with smaller sizes are found near the terrace edges. For the 3-ML and 6 -ML 

films, Fig. 4.4(a) and Fig. 4.4(b), the morphology is strongly dependent on location. Near 

terrace edges, a significant increase in the density o f  nanocrystals and some decrease in 

the average crystalline size is observed. This strong morphology dependence on location 

is not observed for the thicker samples as show in Fig. 5(c) and Fig. 4.4(d). Although 

particle distribution analysis is sensitive to the chosen area in the SEM images, some 

general conclusion about their size distribution can be made. The slight decrease in the 

average crystallite size as the film mean thickness is increased from 3 ML to 6  ML is due 

to the increase in nucleation density as evident by the larger number o f particles counted 

in the scanned area, particularly at locations with few terrace edges. As the average film 

thickness was increased from 6  ML to 43 ML, the average crystallite size grew and some 

coalesced resulting in a reduced total number o f  particles in the scanned area. The
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average indium crystallite size and the graphite surface coverage increase with film mean 

thickness.

34.(10 Ml3.00 MI

34.00 MI3.00 MI

34.00 Ml3.00 Ml

FIG. 4.3. SEM images o f  indium nanocrystals on graphite (002) o f  films 
with mean thickness 3 ML and 34 ML are shown with different 
magnification powers at one location on each film. Well-faceted indium 
nanocrystals are distributed over the graphite substrate surface. At terrace 
edges a large density o f  nanocrystals is observed, (a) 3 ML, (b) 34 ML.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

100

80

2  60

40

20
3 ML

N= 119. D= 55.0 nm
3 ML

N = 565. D = 35.0 nm

0 50 100 150 200 250 300 350
D iam eter (nm )

(a)
50  100 150 200 250 300 350

D iam eter (nm )

100

20 6.00 ML
N= 262,D= 48.5 nm

50 100 150 200 250 300 350
D iam eter (nm )

6 ML
N: 649. D: 36.5 nm

(b)
50 100 150 200 250  300 350

D iam eter (nm )

100 100

80

16 ML
N =  190, D = 72.8 nm

50 100 150 200 250  300 350
D iam eter (nm)

40

20 16 ML
N = 273, D = 63.1 nm

(C)
50 100 150 200 250  300 350

D iam eter (nm )

100

80

2  60

40

34 ML
N = 175, D = 98.7 nm

.  . .. „ ___

50 100 150 200  250  300 350
D iam eter (nm )

20
34 ML

N = 163, D = 89.8 nm

I. L .  i . M i l l . . .  I . . J  l . i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d)

50  100  150 . 200  250  300  350
D iam e te r (nm )

FIG. 4.4. The size distribution o f  indium nanocrystals calculated for films with different mean 
thickness, taken at two randomly selected locations on each film. The inset is the SEM image o f  a 
2.5 x 1.5 pm area o f  the film for which the analysis is performed, (a) 3 ML, (b) 6 ML, (c) 16 ML, 
and (d) 34 ML. N is the total number o f  particles; D is the average particle size.
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IV.3.2.2. As-deposited nanocrystals

Within the experimental uncertainty, no relative shift in position could be noticed 

in the RHEED spots between the as-deposited and recrystallized samples, indicating no 

change in the average unit cell. The pattern remains observable at all azimuth 

orientations, a feature that is characteristic o f transmission patterns. As mentioned in the 

previous chapter, the transmission diffraction features observed in the RHEED pattern 

originate from a shell roughly the IMFP in thickness. Because o f  the penetration limit o f 

the electron beam, the RHEED patterns show no dependence on shape and size o f the 

nanocrystals for the studied films. The RHEED image results from all diffractions from 

crystallites forming the film within the probed area, and is affected by shadowing. This 

lead to poor shape and size sensitivity o f RHEED for films with high coverage ratios and 

high height differences between its crystallites [43]. Fig. 4.5 shows the room temperature 

RHEED patterns o f  the as-deposited and recrystallized indium films with different mean 

thicknesses deposited at room temperature. Spots located on the circumference o f Laue 

rings are observed for the as-deposited as well as recrystallized indium films. This 

observation is characteristic o f a transmission-reflection pattern. However, for the as- 

deposited films, streak-like features are observed between the 0 0  and the 0 1  spots and

through the 1 n and 1 n spots, where n is the Laue ring order. The streak feature in the as- 

deposited films is due to a surface reflection component in the diffraction pattern, while 

the spot pattern is characteristic o f transmission through clusters or surface roughness. 

The as-deposited 1.5-ML film does not show clear streaks; only diffraction spots 

indicating a dominant transmission feature through the 3D indium nanocrystals. As the 

film mean thickness increases, the surface diffraction component increases and reflection
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streaks are clearly observed for the as-deposited 10-ML indium film. This indicates a 

nearly flat surface o f the as-deposited nanocrystals, which is confirmed using ex situ 

AFM. Moreover, the RHEED streaks disappear and clear separate spots are observed 

when the films are recrystallized showing transmission-dominant diffraction patterns.

FIG. 4.5. RHEED patterns o f  (a) as-deposited, and (b) recrystallized indium films with 
different mean thicknesses deposited at room temperature.

The crystallographic shape and morphology o f the as-deposited relative to those 

o f recrystallized indium nanocrystals is studied using ex situ AFM. Images with different 

magnifications o f an arbitrary selected area o f the sample surfaces are obtained. Fig. 4.6 

shows AFM images taken for as-deposited and recrystallized 1.5-ML and 10-ML indium 

films deposited at room temperature. Line profiles along the highest magnification
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images are also presented. The nanocrystals are distributed uniformly throughout the 

substrate surface except at terrace edges where a higher density o f  nanocrystals is found. 

This is because, among all possible nucleation centers, terrace edges offer minimum 

energy barrier for nucleation. Shallow 3D nanocrystals with different shapes having a 

relatively flat top surface are found in the as-deposited films. However, the recrystallized 

nanocrystals are less faceted, with different sizes, and larger heights than the as-deposited 

ones. The as-deposited 1.5-ML showed nanocrystals o f  10 - 20 nm height, while the 

recrystallized nanocrystals showed heights ~ 65 nm with nearly the same crystal width. 

This indicates an increase in the crystal size as the nanocrystals are recrystallized. A 

similar observation is found for the 10-ML film. Triangular shaped nanocrystals with 

sharp and curve edges, elongated platelet, and well-faceted polyhedral shape nanocrystals 

are clearly observed for as-deposited films. Less faceted nanocrystals forming 

polyhedron shapes with curved edges and curved top surfaces are observed in the 

recrystallized films. Rounded or curved surfaces indicate the presence o f all surface 

orientations in the formed nanocrystals, however, sharp-edged shapes indicate missing 

orientations in the formed nanocrystals [44]. As reported previously in temperature 

dependent studies o f equilibrium-shaped nanocrystals, the curved regions increase in size 

at the expense o f  the plain facets, due to the decrease in surface energy anisotropy with 

temperature, until a spherical shape is formed as the nanocrystal is completely melted 

[26,27,43]. Slow cooling or annealing conditions allow all possible surface orientations to 

appear in the final form o f the nanocrystals; hence the curved surface areas in 

recrystallized nanocrystals are large.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.0 0.2 0.4 0.6 0.8 1.0
Width (nm)

0.0 0.2 0.4 0.6 0.8 1.0
Width (pm)

a. 300
S 100W) •S’ 2 0 0

0.4 0.6 0.8 1.0 0.00 0.25 0.50 0.75 1.00 1.25
Width (pm) Width (nm)

FIG. 4.6. AFM images o f  as-deposited and recrystallized 1.5-ML and 10 ML indium films 
deposited at room temperature along with line profiles. Shallow nanocrystals with relatively flat 
top surfaces are found in the as-deposited films, while the recrystallized nanocrystals form crystals 
with larger heights and curved surfaces.

The different non-equilibrium crystal shapes formed in the as-deposited films are 

determined by the size, the preparation condition, and the surface free energies involved 

in nanocrystal growth [44-46]. Small-size crystals form in the minimum total free energy- 

shapes, which are influenced by the preparation condition [44]. Moreover, the formation 

of crystal facets is due to the anisotropic surface energy and the surface free energy 

temperature and size dependence [45,46]. Because attaining an equilibrium shape is an 

energy-activated process, nanocrystals remain in the shape originally formed unless 

annealed at a higher temperature for a relatively long time or slowly recrystallized from
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melt [46]. Fig. 4.7 gives the size distribution o f as-deposited 3-ML and 10-ML films, 

deposited at room temperature for an arbitrary selected location on the surface o f the 

films. Similar to nanocrystals recrystallized from melt, as-deposited indium nanocrystals 

showed a size distribution that is affected by the location selection for low thickness. The 

size distribution is shifted toward the larger values and spreads over a wider size range as 

the mean thickness increases. The average crystallite size also increases from 78 nm to 

280 nm as the film mean thickness increases from 3 to 10 ML.

v 10

20 80 140
Size (nm)

50 2 5 0  4 5 0  650  

Size (nm)
FIG. 4.7. AFM images and histograms o f  size distribution o f  as-deposited indium 
nanocrystals with different mean thicknesses (a) 3 ML and (b) 10 ML, deposited at room 
temperature. The distribution is shifted toward the higher value and spreads over a wider 
size range as the mean thickness is increased from 3 ML to 10 ML.
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IV.3.3. Melting and solidification of indium nanocrystals 

IV.3.3.1. Nanocrystal recrystallized from melt

Melting and solidification o f the indium films were studied by measuring the 

intensity o f the (00) and (01) spots with temperature. The heating and cooling rates 

during these measurements were maintained as described in the experimental section. No 

significant pressure changes in the vacuum chamber were observed during heating and 

cooling. Examples o f  these measurements are shown in Fig. 4.8. The diffraction intensity 

is normalized to its intensity at or near room temperature. The logarithm o f the 

normalized (0 0 ) diffraction intensity is plotted as a function o f  temperature for heating 

and cooling. The deviation from the exponential Debye-Waller behavior with 

temperature indicates the initiation o f film melting. This is followed by a sharper 

intensity decrease, corresponding to increased rate o f nanocrystal melting. The end o f this 

sharp intensity decrease indicates complete melting o f the nanocrystal ensemble; only an 

inelastic diffraction background is present. In contrast to the abrupt nature o f bulk 

melting, the melting o f these indium films extends over a wide temperature range, which 

is attributed to the size distribution o f the nanocrystals. The same observation was 

reported previously for melting o f different nanocrystal thin films [5,15,18,19,47]. 

During cooling, the indium nanocrystals show supercooling relative to the onset o f its 

melting. A film with 0.5 ML mean thickness shows 4 ± 2 K supercooling that increases to 

8  ± 2 K and 12 ± 2 K as the mean thickness increases to 1.5 ML and 3.0 ML, 

respectively. Films with larger mean thickness show 16 ± 2 K supercooling, each relative 

to its own melting temperature. The observed supercooling is due to the presence o f a 

nucleation barrier for solidification that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



101

o\osfS
II

H

H

oro
II

H
fcS
H

os
©

II
H

* 2
H

0.0
- 0.6

- 1.2

- 1.8

-2.4

-3.0

-3.6 
300

1.5 ML 
•  Heating 
A Cooling

A  •  

A  •

A

320 340 360 380 400 420 440 460 

Temperature (K)

0.0
- 0.6

1.2

1.8
10.0 ML 
• Heating 
A Cooling

-2.4

-3.0

-3.6

300 320 340 360 380 400 420 440 460

Temperature (K)

0.0
- 0.6

.2
8

24.0 ML-2.4
Heating
Cooling-3.0

-3.6
300 320 340 360 380 400 420 440 460 

Temperature (K)

FIG. 4.8. Logarithm o f normalized intensity o f  the RHEED (00) spot as a function o f  
temperature during heating and cooling o f indium films with different mean thickness. 
Smaller supercooling is observed for 1.5 ML than for 10 and 24 ML.
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results from the competition between the decrease in the volume free energy upon 

solidification and the increase in the free energy associated with the existence o f a solid- 

liquid interface. The size dependence o f supercooling is attributed to the variation o f the 

surface energy o f  the melt, and the liquid-substrate interfacial energy with the size o f the 

droplet [39]. The smaller the droplet size, the smaller its melt surface energy and liquid- 

substrate interfacial energy. Thus, the energy barrier for solidification and the amount o f 

supercooling are reduced as the droplet size is reduced [39].

The range o f temperature over which the melting phase transition occurs is used 

to study the melting behavior o f the ensemble o f nanocrystals making up the indium thin 

film. If  we assume that the intensity decrease o f electron diffraction into the (00) and (01) 

orders is related to the fraction o f the solid nanocrystals that are melted within the probed 

shell, we can use data as in Fig. 4.8 to estimate the melted ratio. For electron energy o f 

8.5 kV, the inelastic mean free path (IMFP) is 6  nm as calculated from the general 

equation o f IMFP for indium [48]. Thus, the transmission diffraction features observed in 

the RHEED pattern originate from a shell roughly the IMFP in thickness. This thickness 

is larger than the critical liquid layer thickness o f 2 nm for indium. The 2-nm critical 

liquid thickness o f  indium was estimated by Dippel et al. [16] based on the size 

dependent melting equation (Eq. (1) in Ref. [16]) using data for indium. After the liquid 

shell thickness reaches this critical thickness, the liquid diverges through the solid crystal 

[16]. Results o f  the estimated film-melted ratio as a function o f temperature are shown in 

Fig.4.9. In calculating the melted ratio within the probed shell, the intensity decrease o f 

the (00) order due to thermal vibration (Debye-Waller effect) is subtracted from the 

reduction in the diffraction intensity. This difference gives the diffraction intensity
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reduction due to melting after taking the background into consideration. To account for 

the inelastic background that is superimposed on the (0 0 ) and (0 1 ) orders, we made a 

straight-line fit o f  the diffraction intensity at the high temperature tail o f  the melting 

curves, i.e. after complete melting, and subtracted that fit from the intensity o f the (0 0 ) 

order.

1 0 0
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FIG. 4.9. Estimated film melted ratio as a function o f  temperature at the phase 
transition region for indium films with different mean thickness.
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The diffuse inelastic background in RHEED arises due several effects that include 

phonon scattering (thermal diffuse scattering) and disorder in the probed region [49,50]. 

Theoretically, melting results in an increased diffuse background. The background 

intensity distribution in the RHEED pattern is complicated by dynamic (multiple 

scattering) effects. The background at a location between the (00) and (01) orders, in the 

studied temperature range, had a small value; typically - 1 0 % or less o f  the peak intensity 

o f the (00) order for temperatures up to the onset o f melting. At this location, slight 

decrease in the background intensity with temperature was observed in our experiment. 

This observation cannot be explained by simple kinematic analysis and is, thus, assumed 

to be an effect o f  multiple scattering. Given that melting should increase the background 

intensity, we conclude that this expected increase is small compared to temperature 

dependent dynamic effects.

All films start melting at temperatures below the bulk melting temperature, e.g., 

25 K below bulk melting for the 0.5-ML film. The melted ratio for the 0.5-ML film 

changes rapidly with temperature and the film melts completely below the bulk melting 

temperature. For films with larger mean thickness, the melted ratio increases with 

temperature at slower rates. The size distribution and the shape o f nanocrystals are 

expected to play a major role in this melting behavior [5,8,9,20]. Nanocrystals in the 

lower part o f  the size distribution are expected to melt at a lower temperature than those 

in the higher part, for crystallites with similar shape.

In general, the profile o f  the diffraction spots is related to the shape and size o f the 

diffracting feature. Broadening o f diffraction spots, after subtracting the instrumental 

response, is inversely proportional to the average crystalline size in the probed region.
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The probed region in this case is the shell surrounding each probed nanocrystal with ~ 6  

nm thickness. The instrumental response was obtained by deflecting the electron beam 

away from the sample so that it directly hits the phosphor screen. The shape o f the 

electron beam, on the phosphor screen, was recorded by the CCD camera. The FWHM of 

this transmitted beam in A '1, was used as the instrumental response and was subtracting 

from the FWHM o f the diffraction (00) spot, obtained at different mean film thickness. 

From the broadening o f  the (00) spot, diffraction feature size o f ~ 4-7 nm is obtained, 

which is much less than the average nanocrystal size obtained by SEM. This is expected 

from a transmission RHEED pattern probing the outer shell o f the nanocrystals. In Fig. 

4.10, the full width at half maximum (FWHM) o f the (00) spot parallel and normal to the 

sample surface is shown as a function o f temperature. The FWHM remains constant over 

a wide temperature range and starts to increase only near the bulk melting temperature. 

The observed increase in FWHM o f the (00) spot near the bulk melting temperature 

indicates that there is a reduction in the crystalline volume within the probed shell. The 

observed increase in the FWHM is consistent with the formation o f  a liquid skin covering 

the nanocrystals, thus, reducing the crystalline volume in the probed shell. The thickness 

o f that liquid skin increases with temperature, and as it reaches a critical value o f ~ 2  nm, 

the liquid diverges throughout the solid. Because the solid-liquid interfacial area is larger 

for larger crystals, small crystals melt first. Furthermore, the increase in the FWHM 

observed in Fig. 4.10 near Tm, is inconsistent with the view that the reduction in the 

diffraction pattern near Tm is due to homogeneous melting o f the small crystallites that 

the electrons are probing without the formation o f a liquid shell. Had this been the case,
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the FWHM would have been reduced because o f the increase in the average crystallite 

size as the smaller ones melt at lower temperatures.
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FIG. 4.10. The FWHM o f the RHEED (00) spot from indium films with different 
mean thickness as a function o f  temperature in a direction (a) parallel and (b) 
perpendicular to the substrate surface. The plotted values include the instrumental 
response, which is the FWHM of the e-beam without scattering in the sample, and 
is measured to be ~  0.19 A'1, for (a), and 0.15 A'1 for (b).

IV.3.3.2. Melting point-size dependent models

In order to obtain the rate o f film melting with temperature, a curve-fit is made to 

the melted ratio data in Fig. 4.10 and the derivative o f this curve-fit is plotted in Fig. 4.11.
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The peak o f this derivative gives the temperature at which the rate o f  film melting with 

temperature is the fastest, Tfm. We use Tfm to represent the characteristic film melting 

temperature, with a range that we define to correspond to 10% and 90% o f the melted 

ratio in Fig. 4.10. Melting point depression that depends on the film mean thickness is 

clearly observed in Fig. 4.12.
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FIG. 4.11. Derivative o f  the curve-fit to the melted ratio curve in Fig.
4.9 obtained as a function o f  temperature for indium films with 
various mean thickness. The peak o f  this derivative gives the 
temperature at which the rate o f  film melting with temperature is the 
fastest, Tfm.

The characteristic film melting temperature is compared with the different melting 

point-size dependent models. The melting point o f an indium nanocrystal as a function o f 

its size is calculated based on melting models discussed in section 2.2.3. The known 

physical constants o f indium (To = 430 K, ps = 7.31 g/cm3,/?/ = 7.02 g/cm3, L  = 28.39 J/g,
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FIG. 4.12. The measured melting point as a function o f  the reciprocal o f  the average 
crystalline size compared to different thermodynamic models. The film melting point 7}„, is 
obtained from Fig. 11. The horizontal bars represent the melting range as described in the 
text and the vertical bars represent the statistical error in the measured crystal size = (Ar /r2). 
The liquid skin and homogenous models agree best with this experimental result.

ysi = 63 mJ/m2, ysv = 618 ± 10 mJ/m2, yiv = 560 mJ/m2, h = 0.37 nm, S(oo) = 7.62 J/ mole 

K, 5=  2 nm) are used in the calculations [5,16,34], The melting point obtained from Eq.

(1) and Eq. (2) for indium particles o f size larger than the skin thickness are nearly the 

same. The nucleation and growth model, Eq. (4), is applicable only when surface effects 

are eliminated, e.g., by confining the crystal with a higher melting point material forming 

a coherent or semicoherent interface. In this case the crystal can be superheated. The 

measured melting points as a function o f the reciprocal o f the average crystalline size 

compared to the calculated values are shown in Fig. 4.12. The bars shown in Fig. 4.12 

represent the range o f temperature at which melting is observed in the ensemble o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109

nanocrystals because o f their size distribution. The measured characteristic film melting 

temperature Tfm obtained from Fig. 4.11 shows agreement with the liquid skin model and 

the homogenous model. Because o f the observed reduction in the crystalline volume in 

the probed shell observed in Fig. 4.10, our results favor the liquid skin model.

IV.3.3.3. Melting of as-deposited and recrystallized nanocrystals

Figure 4.13 shows the (00) spot intensity, normalized to its value at or near room 

temperature, measured as a function o f temperature for as-deposited and recrystallized 3- 

ML indium film for a typical heating and cooling cycle. A decrease in the spot intensity 

with temperature is expected due to the enhanced atomic mean-vibrational amplitude as 

described by the Debye-Waller effect [21,28]. However, a sharp drop in the RHEED 

intensity occurs as the nanocrystals lose long-range order within the shell probed by the 

electron beam. Due to annealing o f indium crystallites during heating, the normalized 

intensity o f the (0 0 ) spot o f the as-deposited film increases with temperature before its 

rapid decrease due to melting. A similar observation was reported during a melting and 

solidification study o f  Pb nanocrystals using X-ray diffraction where an increase in the 

integrated intensity o f the ( 1 1 1 ) and (2 0 0 ) diffraction peaks were detected as the 

nanocrystals were heated toward melting [20], Nanocrystals recrystallized from melt do 

not show any intensity increase before melting. Only the standard decrease due to 

increased lattice vibrations upon heating and crystal melting afterwards is observed. 

During cooling, both as-deposited and recrystallized nanocrystals showed a few degrees 

supercooling relative to their melting curves. While the normalized RHEED intensity o f 

the recrystallized indium films recovers by solidification to its original value that o f  as- 

deposited nanocrystals exceeds its original value causing the saturation o f  the detector.
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FIG. 4.13. Log o f  the normalized RHEED (00) spot intensity as a 
function o f  temperature during a heating and cooling cycle o f  (a) as- 
deposited and (b) recrystallized 3-ML indium film. The film was 
deposited at room temperature.

This behavior, observed in the as-deposited nanocrystals, is mainly due to the crystalline 

annealing and coalescence. Coalescence o f metallic nanocrystals in the solid phase before 

melting is common, however, the coalescence mechanism depends on the annealing 

temperature [51]. Therefore, as the nanocrystals are heated up, the crystal shapes are 

changed to the more rounded polyhedral shape in addition to becoming larger due to 

coalescence. Thus, annealing enhances the measured RHEED intensity. On the other 

hand, recrystallized indium nanocrystals are already in their equilibrium shape and size;
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hence no significant change in the normalized intensity is detected after solidification. 

Also, the amount o f supercooling observed for as-deposited nanocrystals is found to be 

larger than that for recrystallized films, for films deposited at room temperature. This is 

attributed to the larger average crystal size for recrystallized films, which enhances the 

heterogeneous solidification and suppresses supercooling.

Figure 4.14 shows the normalized RHEED intensity o f  as-deposited and 

recrystallized indium films o f different mean thicknesses as a function o f temperature. An 

intensity increase due to annealing o f as-deposited films is observed for the 1.5-ML film 

and is even stronger for the 3-ML film; however, is almost undetected for the 10-ML 

film. Because o f the low coverage for the 1.5-ML film, we expect that the nanocrystals 

melt and solidify without significant coalescence, except in areas with higher coverage 

such as near terrace steps. Therefore, the observed intensity increase is mainly due to 

crystal shape modification with small contribution due to size increase by coalescence. 

As the mean thickness is increased, the coverage ratio increases and the crystallites 

become closer to each other causing their coalescence during heating. With further mean 

thickness increase, the crystal size increases by coalescence during growth, as observed 

from the AFM images o f the as-deposited films. Although further coalescence and shape 

modification due to heating is possible, no increase in the RHEED intensity o f the 10-ML 

film is detected. This could be due to the fact that RHEED detects only a shell 

determined by its IMFP within the nanocrystals. No intensity increase with heating 

before melting is detected for recrystallized films within the investigated thickness range.

The rapid decrease in the normalized (00) spot intensity with temperature 

indicates a decrease in the long-range order in the probed volume within the penetrated
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shell o f the nanocrystals [28,38]. As the film is completely melted, only the inelastic 

diffraction background is left. As-deposited and recrystallized nanocrystals showed 

melting behavior that extends over a temperature range. Based on different 

phenomenological models [6,7], small nanocrystals melt at a lower temperature. The 

temperature range over which as-deposited and recrystallized indium nanocrystals melt is 

due to the size distribution o f these nanocrystals. A similar observation was previously 

reported for melting o f  different nanocrystal thin films [5-7,16,29,38].

We use RHEED to detect the diffraction pattern obtained from the ensemble o f 

nanocrystals. We emphasize the measurement o f the end melting point because it 

indicates the highest melting temperature o f a subset o f that ensemble. This is o f interest 

because a fraction o f  the formed nanocrystals was previously shown to superheat above 

the equilibrium melting point [21]. As-deposited and recrystallized indium films melt 

completely before or at the bulk melting point, 430 K. Within the experimental error, as- 

deposited films, grown at room temperature, show an end melting point nearly equal to 

that o f the recrystallized films except for the 1.5-ML film. The as-deposited 1.5-ML film 

shows an end melting point -1 0  K lower than the recrystallized film. This could be due to 

average size increase resulting from coalescence as the film is recrystallized.

The dependence o f the end melting point on the crystal size for as-deposited 

indium films, observed in Fig. 4.14, clearly suggests that not only the size but also the 

crystal shape determines the melting behavior o f the nanocrystals. While the 3-ML film 

has an average crystallite size -  200 nm less than that o f  the 10-ML film, the end melting 

point o f the 3-ML film is higher than that for the 10-ML film. This observation confirms
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the effect o f the external surface orientation on the melting o f nanocrystals. Homogenous 

melting from within o f  these nanocrystals is energy costly; therefore the most plausible 

scenario is that melting must start at the surface [52,53]. Because the surface free energy 

depends on surface orientation, the melting behavior o f same size nanocrystals is 

determined mainly by the external surface orientation and morphology. AFM images o f 

as-deposited films, Fig. 4.7 and Fig. 4.8, show nanocrystals with different external facets 

and shapes including triangular shaped nanocrystals with sharp edges and elongated 

platelet. Lead and bismuth with similar crystal shapes were reported to show few degrees 

superheating above the bulk melting point [8,9,22], Crystals with other shapes showed 

melting point depression. Indium has a non-isotropic surface energy with {111} surfaces 

having the lowest energy [27], Therefore, one could subdivide the nanocrystals according 

to the external shape energy surfaces, and hence the melting behavior into those with low 

and high external energy facets. The low external energy faceted crystals show maximum 

stability and higher surface melting nucleation barrier as in case o f  the extensive {1 1 1 } 

faceted platelet shaped crystals [9]. The high external energy shaped crystals favor 

surface melting formation, and hence show melting point depression. AFM images o f the 

3-ML film show the presence o f low external energy faceted nanocrystals with a large 

number, and hence a high-end melting point is observed in spite o f  its low average size. 

On the other hand, coalescence during growth o f the 10-ML film results in large 

crystallites with high external energy shaped, less faceted and more rounded 

nanocrystals, and hence a low-end melting point is observed.
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IV.3.3.4. Deposition temperature effect on the melting behavior of indium 

nanocrystals

The effect o f the substrate temperature during deposition on the melting behavior 

o f as-deposited and recrystallized indium films is studied. Fig. 4.15 shows the variation 

o f the normalized (00) RHEED intensity with temperature o f indium films with different 

mean thicknesses deposited at different temperatures. The deposition temperature is 

found to affect the melting behavior and the end melting point o f  the as-deposited 

nanocrystals, as shown in Fig. 4.15(a-c). This effect depends on film mean thickness. For 

the 1.5-ML film, the end melting point increases as the deposition temperature increases, 

while films with a higher mean thickness show a decrease in the end melting point as the 

deposition temperature is increased. The end melting point o f  the 1.5-ML film increased 

by -1 2  K as the deposition temperature increased from 348 K to 398 K. On the other 

hand, the 10-ML film deposited at 398 K shows an end melting point -  5 K lower than 

that deposited at either 348 K or at room temperature. High deposition temperature 

enhances the crystallinity o f the grown film and hence increases the average crystal size. 

It also increases the kinetic energy, mobility, and self-diffusion o f the deposited ad- 

atoms, which in turn enhances the formation o f curved facets or more rounded 

nanocrystals. Therefore, the effect o f the deposition temperature on the end melting point 

o f as-deposited films results from the modification o f nanocrystal shape and size during 

growth. While the size increase results in an increase in the end melting point, 

transformation o f triangular and platelet shaped nanocrystals into a polyhedral shape 

decrease the melting point [8,9]. Therefore, the observed increase in the end melting 

point with the deposition temperature for the 1.5-ML film can be attributed to the
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increase in the crystal size. Considering the limited penetration o f the 8.5 kV RHEED 

electrons, the observed decrease in the end melting point with the deposition temperature 

for films with higher mean thickness could be attributed to nanocrystal shape changes. 

The deposition temperature shows almost no effect on the end melting point o f the 

recrystallized indium nanocrystals. Fig. 15(d) shows the normalized RHEED intensity o f 

recrystallized 3-ML indium film prepared at different deposition temperatures. This 

behavior is expected since once the nanocrystals are melted then recrystallized, their 

shape, size, and size distribution remains about the same after subsequent 

recrystallizations.
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CHAPTER V

MELTING AND SOLIDIFICATION OF BISMUTH NANOCRYSTALS

V.l. Introduction and literature survey

The solid-liquid phase transition o f nanoscale systems has been extensively 

studied for the purpose o f gaining an atomistic understanding o f  the phase transition 

properties and how it is affected by the reduced size [1-6]. Nanocrystals have melting and 

solidification behaviors that are different from their own bulk materials. An abrupt 

change in the physical properties upon melting characteristic to first-order phase 

transition is observed for bulk crystals, whereas that o f nanocrystals spreads over a 

temperature range and has strong size dependent [1-10]. Also, the role o f surface and 

interfacial energies becomes crucial [2,11-15]. While the reduced size is known to cause 

melting point depression, the effect o f the surface and interfacial energies can lead to 

either melting point depression or superheating for certain crystal morphologies [1-15]. 

Nanocrystals embedded in a host matrix have melting and solidification behaviors that 

are mainly controlled by the interfacial energy, nanocrystals grown on relatively inert 

substrates give information on the thermodynamic nature o f  the transition with minimal 

interface effects.

Bi has an anisotropic crystal structure, low bulk melting point, To, low partial 

vapor pressure near T0, and undergoes negative volume change upon melting [7,16,17]. 

These properties have stimulated numerous experimental and theoretical studies to better 

understand its solid-liquid phase transition [18-21]. While a size-dependence melting 

point depression, consistent with theoretical models, is commonly observed [ 1 2 ,2 0 ,2 1 ], a
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subset o f the formed nanocrystals previously observed superheat above To [7,18,19]. 

Furthermore, experimental and theoretical studies have shown that superheating o f the 

solid phase is observed for many materials that undergo positive volume change upon 

melting [22-25], Thus, it is believed that the solid-liquid interfacial energy and/or crystal 

shape, rather than the volume change upon melting, is the reason for the observed 

superheating [16,18].

Because o f its structural and thermodynamical properties, Bi has a number o f 

phases at elevated pressures and temperatures and a wide solid-liquid hysteresis curve 

[13,26,27]. Bi in reduced dimensions has also shown many interesting physical properties 

that include lattice shrinking [28,29], the presence o f a metallic-semiconductor transition

[30], amorphous and metastable phase formation [31], thermoelectricity [32], 

superconductivity [33], quantum-size effects [34], and enhanced magneto-resistance [35]. 

Films deposited at liquid helium temperatures had an amorphous structure exhibiting 

superconductive properties [30,33], while those deposited at 300 K up to To, showed a 

typical rhombohedral Bi structure with morphologies that vary from single crystal films 

to a dendrite structure [36-43].

In general, deposition at elevated substrate temperatures increases the surface 

diffusion o f Bi adatoms, thus producing an ordered crystalline surface; while low 

temperature deposition results in microscopically rough surfaces [36-38]. Bi films 

deposited on l l l -B a F 2 substrate at 533 K using molecular beam epitaxy (MBE) showed 

a featureless scanning electron microscope (SEM) image consistent with epitaxial film 

formation [39]. On the other hand, films deposited at room temperature showed randomly 

oriented ~1 pm crystallites [39]. Bi films prepared by pulsed laser deposition (PLD) also
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showed a dramatic morphology dependence on the temperature o f  the substrate during 

deposition [40]. For epitaxial growth o f thermally evaporated Bi on cleaved mica, 

preheating the substrate to 413 K and maintaining it at that temperature during deposition 

was found to be essential for epitaxy [41]. This temperature was found to optimize the 

nucleation rate and the lateral spreading rate o f Bi adatoms. Also, it was found that the Bi 

film is hard to nucleate on a l l l -B a F 2 substrate using MBE at temperatures higher than 

423 K [42]. A two-step growth process with the film initially nucleated at 373 K followed 

by growth to a thicker film near T0 was employed to obtain an epitaxial film with a low 

level o f defects and high electron mobility.

Because o f  surface energy anisotropy o f crystalline solids, crystals o f different 

orientations melt differently. For nanocrystals, the anisotropy in surface energy affects 

their external shapes as well as their melting behaviors [44,45]. Recrystallized 

nanocrystals can have shapes and external surface morphologies that differ from as- 

deposited nanocrystals, and hence, the melting and solidification behaviors can differ 

between the two types. Dark field electron microscopy was used to investigate the 

melting o f Bi crystallites in as-deposited and recrystallized Bi films on a carbon substrate

[18]. As-deposited films were found to have crystallites that are different in shape and in 

melting behavior from those recrystallized after melting. While a subset o f the as- 

deposited crystallites, with elongated platelet shape, superheated by 7 K above the 

equilibrium bulk melting point, the recrystallized polyhedral hexagonal shaped 

nanocrystals in the as-deposited film showed melting point depression [18]. Using the 

same technique to study the melting o f lead nanocrystals, superheating by 2 K was found 

for extensively {1 1 1 } faceted platelet-shaped nanocrystals formed in the as-deposited
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films [23]. Lead nanocrystals with other shapes melted below the bulk melting point. By 

recrystallizing a 1 0 0 0 -A average thickness lead film previously deposited on a graphite 

substrate at room temperature, Metois and Heyraud were able to prepare some

nanocrystals bounded by minimum energy facets with sharp edges that were able to 

superheat by ~3 K  [22],

Reflection high-energy electron diffraction (RHEED) is a structurally sensitive 

probe used to obtain real-time information on the top monolayers o f  a surface, either 

during film growth or a surface phase transition [46,47]. In the present work, in situ 

RHEED is used to monitor the deposition o f Bi on a highly oriented 002-graphite surface. 

Ex situ atomic force microscopy (AFM) is used to study the morphology o f  the deposited 

films. Two deposition regimes were observed; growth o f  solid crystallites below a 

substrate temperature o f  413±5 K, and condensation o f the liquid phase above that 

temperature. The melting point size dependence o f the initially formed nuclei, combined 

with the thermal characteristics o f Bi is used to explain liquid Bi formation below T0 on 

the graphite surface. Elongated platelet Bi nanocrystals were found to form in the 

neighbor o f the solid/liquid deposition boundary, 415 ± 5 K showed rounded polyhedral 

as well as elongated platelet Bi nanocrystals. Bi nanocrystals having similar shapes were 

previously reported to have a resistance against surface melting and showed ~7 K 

superheating. The change in the diffraction pattern with temperature was used to probe 

the melting and solidification o f as-deposited and recrystallized Bi nanocrystals deposited 

at 415±5 K. The effect o f the crystal shape and size on the molting behavior o f the 

nanocrystals is discussed. The size-dependent supercooling o f  Bi nanocrystals was also 

studied.
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V.2. Experimental method

Bi films were prepared and in situ studied in ultrahigh vacuum (UHV) chamber 

(5.0 x 10' 10 Torr base pressure) equipped with RHEED. The base pressure o f  the chamber 

remained almost constant during melting and solidification experiments, while a small 

increase was observed during deposition. Highly oriented pyrolytic 002-graphite (HOPG) 

was used as a substrate. HOPG is chemically inert. Accordingly, the deposited Bi 

interacts with the graphite substrate via the Van der Wall attraction force with no inter

diffusion or chemical compound formation. The graphite substrate is loaded in the UHV 

chamber immediately after cleaving it in air. The substrate is mounted on a resistively 

heated stage capable o f reaching temperatures up to 1000 K. Before deposition, the 

graphite substrate is heated to ~ 770 K for 10 minutes in order to evaporate any adsorbed 

gases and obtain a clear graphite RHEED pattern. A K-type thermocouple was used to 

measure the surface temperature o f the substrate and the deposited film. The 

thermocouple is calibrated in air to the bulk melting point o f  pure bismuth. This 

calibration is performed before and after the experiment in order to assure that the 

properties o f the thermocouple were not altered during the heating and cooling cycles. A 

temperature measurement uncertainty o f ±1 K  was obtained.

Bi with 99.999% purity is evaporated from a resistively heated tungsten basket. 

The substrate temperature is kept at 423 K for -1 0  min before deposition. RHEED is 

used to monitor the deposition and the growth o f the deposited films. The film mean 

thickness is obtained using a calibrated quartz crystal thickness monitor. By controlling 

the current applied to the heater filament, the deposition rate is maintained between 0.4 - 

0.7 A s '1. Bi has an average Bi-Bi bond length o f 3.24 A, which is used to express the
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measured film thickness in ML. Films with different mean thickness, from 1.5 ML to 33 

ML, were prepared. As-deposited samples are investigated immediately after cooling to 

room temperature, while recrystallized samples are heated a few degrees above the 

melting point o f  bulk Bi and maintained at that temperature for a few minutes, and then 

slowly cooled to room temperature. The reappearance o f the Bi diffraction pattern during 

cooling indicates its recrystallization.

RHEED diffraction patterns are obtained using a 9.7-kV electron beam. A 

computer-controlled charged coupled device (CCD) camera was used to record the 

diffraction patterns that are displayed on a phosphorus screen. The heating and cooling 

rates were kept almost constant between 3 and 4 K m in'1, by controlling the current o f the 

heating stage. These heating rates are in the range o f previous melting and solidification 

experiments where subset Bi showed a time-dependent melting behavior and a subset was 

able to superheat by ~7 K  [18]. Real time RHEED patterns are obtained during film 

deposition to study the structural evolution o f Bi deposited at different temperatures. 

Each RHEED pattern is acquired in about 170 to 400 ms, depending on the image 

quality. A similar or shorter acquisition time is used in melting and solidification 

experiment, thus, temperature changes during the pattern acquisition are negligible. The 

low Bi vapor pressure near the bulk melting temperature, < 2 x lO '10Torr [17], allows for 

conducting the melting experiment with negligible atom loss by evaporation. Bi has a 

relatively low bulk melting point (544.52 K), which facilitates the melting experiment. Bi 

films are easily re-evaporated off the substrate at the end o f the investigation, by holding 

the substrate at 970 K  for few minutes. A clear graphite pattern is observed, which
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indicates complete evaporation o f the deposited Bi o ff the graphite. Thus melting and 

solidification o f  different film thicknesses can be performed on the same substrate.

For the purpose o f film morphology studies, films with different mean thicknesses 

were prepared in the UHV chamber. After completion o f the film deposition and heat 

treatments, if  any, the chamber is vented to the atmospheric pressure using argon gas and 

the films are taken out for ex situ AFM investigations. The lateral and height resolutions 

o f the used AFM is 1 nm and <0.1 nm, respectively, as specified by the manufacturer.

RHEED diffraction patterns are obtained using a 9.7-kV electron beam. A 

computer-controlled charged coupled device (CCD) camera is used to record the 

diffraction patterns that are displayed on a phosphorus screen. Real time RHEED patterns 

are obtained during film deposition to study the structural evolution o f  Bi deposited at 

different temperatures. Each RHEED pattern is acquired in about 170 to 400 ms, 

depending on the image quality. After film completion, the chamber is vented to 

atmospheric pressure using argon gas and the films are taken out for surface morphology 

studies. An ex situ AFM with lateral and height resolutions o f 1 nm and < 0.1 nm, 

respectively, as specified by the manufacturer, is used. Films deposited at different 

deposition temperatures were studied.

V.3. Results and discussion 

V.3.1. Film deposition and morphology

The growth dynamic o f Bi nanocrystals was monitored using in situ RHEED 

while the e* situ AFM is used to study the film morphology after deposition. Two 

deposition regimes were observed: growth o f solid crystallites below a substrate
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temperature o f  413±5 K, and condensation o f the liquid phase above that temperature. 

The melting point size dependence o f the initially formed nuclei, combined with the 

thermal characteristics o f Bi was used to explain liquid Bi formation below To on the 

graphite surface. The morphology o f films crystallized from the condensed liquid Bi was 

found to be different from those directly crystallized from the vapor. The dependence o f 

the formed morphology on the degree o f liquid supercooling is also discussed.

V.3.1. Low temperature solid film deposition

After heating and then cooling the graphite substrate, the RHEED pattern, taken at 

room temperature, indicated a transmission-like diffraction pattern consisting o f spots 

aligned along rods normal to the surface. The RHEED pattern o f the graphite surface was 

indexed based on 3-dimentional (3D) reciprocal lattice spots seen in the 110 zone with 

the electron beam parallel to the zone axis. Detailed analysis o f the graphite RHEED 

pattern can be found elsewhere [25]. The diffraction features observed were consistent 

with a clean graphite surface. Thermal deposition o f  Bi on graphite was studied by 

obtaining real time RHEED images during deposition. Fig. 5.1 shows RHEED patterns o f 

the surface with different Bi coverage deposited at room temperature. The graphite spot 

intensity becomes dim at a Bi coverage o f 0.5 ML and a diffuse background appears. As 

the deposited film thickness is increased to an average o f 4-6 ML, the diffraction 

intensities o f the Bi spots increase. Indexing o f these spots show that they are 

characteristic o f the rhombohedral structure o f Bi. The RHEED intensity o f the (002) 

graphite spot decayed continuously with Bi deposition and showed no intensity 

oscillation. This behavior is consistent with a 3D growth forming- islands. The intensity 

o f the 220-Bi spot increased with the deposited thickness. After deposition o f ~ 8  ML, the
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Bi diffraction spot intensity monotonically decreased. The increase o f the Bi diffraction 

intensity and reduction o f the graphite diffraction intensity is due to the increase in the 

surface coverage with Bi. However, as the Bi coverage was further increased, the density 

o f misaligned crystallites increased, resulting in a decrease in the Bi RHEED spot 

intensity. After deposition o f -1 6  ML, the shape o f the Bi spots changed from nearly 

rounded to elongated streaks, with the major axis normal to the substrate surface. 

Elongated RHEED spots indicate the formation o f crystals with asymmetric shape, which 

was confirmed later using ex situ AFM. With further Bi deposition, the elongated 

RHEED spots remained almost the same with no shape change. Films deposited at a 

substrate temperature o f 373 K showed RHEED patterns that were thickness dependent 

similar to that observed for those deposited at room temperature hut with no noticeable 

elongation in the spots at higher thicknesses.

Graphite 0.5 ML 0.75 ML 1 ML

*
2 ML 4 ML 8  M L 16 ML

440  3 3 0  220 #• *• « * «

FIG. 5.1. Real time RHEED patterns taken during Bi deposition at room temperature. The graphite 
spot intensity decays and that o f Bi start to appear after deposition o f  ~  0.5 ML. The spot 
intensities o f  Bi increase with the deposited thickness up to ~  8 ML. Elongated RHEED streaks at 
16 ML indicate coalescence and formation o f  asymmetric shape crystallites.
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For Bi films deposited on graphite with the substrate temperature between 300 K 

and 373 K, no change in the relative spot positions was observed with the deposited 

thickness. This remained the case from the initial formation o f detectable transmission Bi 

spots up to the maximum studied Bi thickness. Also, no change in the relative spot 

position was observed as the deposition temperature was increased from 300 K to 373 K, 

indicating no change in the film growth direction. Fig. 5.2 shows line profiles o f Bi 

RHEED patterns in a direction normal to the substrate surface for 8  ML films deposited 

at 300 K and 373 K. Narrower peaks with higher intensities were observed for films 

deposited at 373 K. This indicated that films deposited at 373 K have an enhanced 

average crystallite size and/or a higher degree o f orientation relative to those deposited at 

room temperature.

Ts = 300 K Ts = 373 K250

s  200

(330)

S 150
  T s = 300 K

 T„ = 373 K
R  100

(440)

180 200 220 240 260 280 300 320

Row (pixels)

FIG. 5.2. Line profiles, normal to the substrate surface, o f  RHEED patterns taken after deposition o f  8 
ML Bi films deposited at two different substrate temperatures.
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Ex situ AFM in air was used to study the structural morphology o f the films after 

deposition. Figure 5.3 shows the obtained images for 25 ML Bi films deposited at 300 K 

and 373 K along with the corresponding RHEED patterns obtained in the deposition 

chamber, after terminating the deposition. The AFM images show highly ordered, 3D 

crystallites with layered triangular pyramid-like shapes. The edges o f  these crystallites 

become more defined and sharper as the deposition temperature is increased. The 

morphology o f the formed crystallites indicates that nucleation on the top o f  a formed 

triangular Bi layer is likely. The growth o f these nuclei occurs simultaneously with the 

lateral growth o f  the layer underneath in a 2D layer-by-layer-like growth mode. This 

crystal shape and growth mode results in elongated RHEED spots that continuously 

decay in intensity with deposition. This is because the average lateral crystalline size 

parallel and normal to the electron path are not equal due to the triangular pyramid 

surface morphology. RHEED intensity is sensitive to growth dynamics within the 

electron penetration depth over the probed area. Since the growth occurs concurrently in 

isolated crystallites with different heights, no RHEED intensity oscillation o f the 002 Bi 

spot was observed, in spite o f  the layer-by-layer growth in each pyramid. Similar 

triangular-shaped crystallites formed by the same growth mode were previously reported 

for epitaxial Bi films deposited on a cleaved mica substrate [41,48]. This growth mode 

indicates solid film formation from the vapor phase.

As the substrate temperature was increased from 300 K to 373 K, the number o f 

triangular crystallites found in the scanned area decreased. While this observation 

suggests a decrease in the nucleation density with temperature, other possible causes 

include repening, annealing due to deposition at a higher temperature, and coalescence
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FIG. 5.3. RHEED pattern and ex situ AFM images along with line profiles o f  AFM through a smaller 
scanned area o f  25 ML Bi films deposited at two different substrate temperatures: (a) Ts = 300 K, and (b) Ts 
= 373 K.

are also possible. From Fig. 5.3, an enhancement in the lateral growth o f the deposited Bi 

and increased coalescence during growth is observed for films deposited at 373 K as 

compared to films deposited at 300 K. This enhancement in lateral size and the decrease 

in the nucleation density results in the transformation o f wide elongated RHEED spots 

shown in Fig. 5.3(a) to the small circular spots shown in Fig. 5.3(b). The full width at half 

maximum o f the RHEED spots is reduced with increased crystal size. Increased 

coalescence at 373 K leads to trench formation. The step heights forming the triangular 

pyramid structure in Fig. 5.3(a) and 5.3(b) were mostly found to be 0.4±0.1 nm, while a 

small number has heights o f 0.8±0.1 nm. The Bi structure can be visualized as a layered 

hexagonal structure in the [ 1 1 1 ] direction with d m  = 11.862 A, containing three
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successive layers with a 3.9 A separation distance. Thus, the measured step heights 

correspond to single and double heights o f the Bi structure with its ( l l l) - fa c e t oriented 

parallel to the substrate surface in pseudocubic notation. Measurements o f the terrace 

heights showed no variation with deposition temperatures within the studied range.

V.3.2. High temperature liquid phase condensation

RHEED observation o f Bi deposition at different graphite substrate temperatures 

showed that solid crystalline films are directly formed on the surface for substrate 

temperatures up to -4 1 0  K. The lowest substrate temperature considered was 300 K. As 

the graphite substrate temperature was increased higher than 373 K, the Bi diffraction 

pattern became weaker as compared with films o f equal thickness deposited at different 

temperatures. Fig. 5.4(a) shows RHEED patterns taken during deposition o f a 25 ML Bi 

film deposited at substrate temperatures from 403 K to 418 K. The reduction in the 

RHEED spot intensity with substrate temperature can be seen by comparing Fig. 5.4(a) 

with that o f Fig. 5.3(b) taken at 373 K. The intensity o f the 220 spot o f  the 25-ML film 

deposited at 410 K remained almost constant for a period o f  hours after deposition. 

However, a faint diffraction pattern that slowly increased in intensity after deposition o f 

25 ML was observed for films deposited and maintained at 413 K. Films deposited at 

temperatures higher than or equal to 418 K showed a diffuse pattern with a background 

intensity that decreased with increased film thickness. This diffuse pattern remained 

unaffected by the deposited Bi thickness up to 100 ML. Also, when a 25 ML film was 

left overnight at 418 K deposition temperature, no change in RHEED intensity was 

observed. However, when these films were cooled, a transmission RHEED pattern started 

to appear in the temperature range between 406 K and 392 K  as shown in Fig. 5.4(b).
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Strong RHEED patterns corresponding to twinned or multi-azimuth orientations were 

observed as the temperature was decreased to 300 K. A diffuse diffraction pattern is an 

indication o f the lack o f long-range order in the deposited film. The appearance o f a Bi 

diffraction pattern after cooling below the supercooling limit indicates that these Bi films 

were initially formed in the liquid phase and precludes the possibility that a solid 

amorphous film was initially formed.

FIG. 5.4. (a) RHEED pattern taken after deposition o f  25 ML Bi films at different substrate temperatures. 
The deposition temperature o f  ~ 415±5 K is the solid/liquid formation boundary, (b) RHEED pattern taking 
during cooling to room temperature o f  25 ML Bi film initially deposited at 433 K.

Condensation o f liquid films on different substrates at temperatures less than To, 

was previously reported. In a pulsed laser deposition experiment o f Bi on a glass 

substrate, followed by the observation o f film morphology using ex situ STM and AFM,
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it was concluded that the film condensed in the liquid phase when deposition was 

performed with the substrate temperature at 458 K. The liquid droplets crystallized with 

cooling forming submicron spherical shaped isolated crystallites [40]. At lower 

deposition temperatures, Bi nucleated directly into the solid phase forming films with 

smooth surfaces [49]. Deposition o f Bi on Si(100) did not show similar behavior. Thus, 

formation o f the liquid phase in pulsed laser deposition was attributed to the high energy 

o f the laser-ablated Bi and the absence o f substrate influence. Scanning tunneling 

microscopey, Auger electron spectroscopy, and x-ray photoelectron spectroscopy 

revealed the formation o f indium nano-drops in a 6  M L thermally deposited film on a 

Ge(001) substrate in UHV at room temperature [50]. The presence o f  indium in the liquid 

phase, even at room temperature, was attributed to the internal stress resulting from the 

lattice mismatch between the film and the substrate, and to the reduced dimensionality o f 

the deposited film. Both factors are known to decrease the equilibrium melting point. 

Also, liquid Bi droplets with spherical shapes were previously detected using in situ 

electron microscopy for films deposited at temperatures above 423 K and having 

dimensions less than 150 A [51]. Coalescence as well as transformation o f  these droplets 

into solid crystals during growth was observed.

RHEED probes a layer o f an average thickness given by the inelastic mean free 

path which is ~ 9 nm for the 9.7-kV RHEED electron beam. Thus, diffuse RHEED 

patterns could be due to surface melting or due to liquid phase condensation. In order to 

differentiate between these two possibilities, the film was cooled to 300 K then the 

RHEED intensity o f  the (220) Bi spot was measured as a function o f temperature. The 

intensity was normalized to that measured at 325 K. Fig. 5.5 shows the natural log o f the
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normalized RHEED intensity o f the (220) spot for 45 ML and 90 M L Bi films deposited 

at 423 K. A decrease in spot intensity with temperature was expected due to the enhanced 

atomic mean-vibrational amplitude as described by the Debye-Waller effect. However, a 

sharp drop in the RHEED intensity occurred as the nanocrystals lose long-range order 

within the shell probed by the electron beam, which appeared only at ~ 10-15 K below 

the bulk melting point o f  bismuth, To= 544.52 K. The normalized intensity vanished at ~ 

4 K below To, indicating complete film melting. During cooling, the liquid Bi remained 

in the liquid phase down to 418 K, -125 K below To. This behavior is repeatable with 

about 4-10 K  shift toward higher values in the onset points o f  melting and freezing after 

the first heating-cooling cycle. Within the experimental error, no significant change is 

observed for further heating-cooling cycles. Films deposited at room temperature also 

showed reproducible heating-cooling hysteresis curves, however in this case, with a small 

shift towards lower temperatures for the onset o f melting and freezing. These observed 

shifts are expected to be due to the dependence o f the solid-liquid transition on the size 

distribution and/or shape o f  the crystallites, which changes with heating and melting after 

deposition. Surface melting is a reversible phase transition with a defined onset point for 

clean surfaces [24]. Since the decrease in the measured RHEED intensity due to surface 

melting occurred only within a few degrees from To, we conclude that Bi condensed as 

liquid droplets at temperatures as low as 125 K below To-

Condensation o f liquid Bi at a substrate temperature as low as T0 -  125 K cannot 

be simply explained based on substrate effect since graphite is an inert substrate with no 

known chemical reactivity with Bi and, therefore, should have only a weak influence on 

growth. The condensation o f liquid Bi from the vapor is most likely related to the
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tendency o f Bi to show a large degree o f supercooling and size dependent melting point 

depression. It is interesting that the To -  125 maximum supercooling temperature that we 

observed for Bi in Fig. 5.5 was the same as the lowest temperature for which 

condensation o f liquid Bi from vapor occurred. Melting point depression by few degrees 

was observed in Fig. 5.5, but is know to be strongly dependent on size for Bi as well as 

other nanocrystals [13,29],

(a )  45 ML 
0 Heating 
-  Cooling

340 380 420 460 500 540 580

Temperature (K)

(b) 90 ML
Heating 

. Cooling , . v k m  . t M i  t .  a

340 380 420 460 500 540 580

Temperature (K)

FIG. 5.5. Natural log o f  the normalized RHEED intensity o f  the (002) Bi spot as a function of 
temperature during heating and cooling o f  (a) 45 ML and (b) 90 ML Bi films initially 
deposited at 423 K.
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The size effect on the melting point was described by different theoretical 

phenomenological models [7-10,29,53-55]. All o f them predict a melting point 

depression proportional to the reciprocal o f the particle radius as described in chapter 2 . 

Examples o f  these models are the homogenous melting model [7,8,9], the liquid drop 

model [51], and the lattice vibration-based model [29], The known physical constants o f 

Bi {To = 544.52 K, ps = 9.8 g/cm3, p, = 10.07 g/cm3, L = 5.19 x 10' 8 erg/g, ysl = 61 

erg/cm2, ysv = 550 erg/cm2, y v = 375 erg/cm2, h = 0.4074 nm, Svu, -  3.78 J mole ' 1 K '1, R = 

8.3142 J mole ' 1 K '1) are used to calculate the melting point size dependence o f Bi 

[7,29,51]. Figure 5.6 shows the size dependent behavior predicted by these models. 

Although these models show the same trend, there is some discrepancy at smaller sizes. 

Also, these models consider only spherical-shaped particles and do not include the 

crystallite shape effect. Therefore, the predicted melting point o f  the particle is only an 

estimate. From Fig. 5.6, particles with sizes between 5-20 nm can melt at room 

temperature. At 420 K, both the homogenous melting model and the lattice vibrational- 

based model predict that a particle o f -3 2  nm size would melt, while the liquid drop 

model requires that the particle size be less than - 8  nm to melt at 420 K. Considering the 

0.203 nm atomic radius o f the Bi atom, these sizes correspond, to clusters containing 

roughly 4 x 106 atoms for the 32 nm cluster and 6  x 10 4 atoms for the 8  nm cluster, 

which are apparently very large compared to that necessary to form stable nuclei. Based 

on the above, one would suggest that the Bi nuclei are originally formed in the liquid 

phase because o f  the size-dependent melting point depression. However, as the nuclei 

grew, it solidified when the deposition temperature was below the freezing point. This 

freezing point is observed from Fig. 5.5 to be between 410 and 424 K based on a RHEED
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measurement o f films solidified from the melt. From the RHEED observation o f Bi 

condensed on graphite, we observed a pattern for temperatures below 415±5 K (Fig. 5.4), 

which is in agreement within the expected experimental error with the maximum 

supercooling temperature obtained from Fig. 5.5. Thus, the liquid nuclei grew and 

remained in the liquid phase when the films were deposited at temperatures above the 

maximum possible supercooling temperature.
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FIG. 5.6. Melting point-size dependence o f Bi as calculated from different theoretical models.

For a deposition substrate temperature above the maximum supercooling point, 

the liquid Bi nuclei will be trapped in the supercooling state and grow forming larger size 

liquid droplets. The small size o f the stable nucleus in the Bi/graphite system, relative to
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crystallites obtained at growth termination, reduces the melting point o f the stable 

nucleus and increases the amount o f supercooling, as predicted by different size 

dependent melting models and observed experimentally [29,53,55-57]. The values o f 

surface, interfacial, and bulk free energies involved in nanocrystal growth affect the size 

o f the stable nucleus. In general, the amount o f supercooling is affected by the size o f the 

crystal as well as the melting and freezing kinetics [15,53,56]. For clusters o f sizes larger 

than the stable nucleus, the amount o f supercooling was reported to vary linearly with the 

reciprocal o f  the cluster size, assuming heterogeneous solidification due to its dominance 

and low activation energy. In Fig. 5, we observed an amount o f supercooling for 45 ML 

that is ~ 4 K larger than that for 90 ML, which is attributed to the average size increase 

with the film coverage.

In ordered to study the effect o f the freezing kinetics on the film supercooling, we 

obtained melting-freezing curves similar to those o f  Fig. 5, but with different cooling 

rates. The films were cooled from the same initial liquid overheating point, 10 K above 

T0 of Bi. As the cooling rate was increased from 0.9 K/min to 9.5 K/min, ~ 6  K increase 

in the film maximum supercooling was observed. These cooling rates are the 

experimentally feasible rates using the current setup. The effect o f  the cooling rate on the 

amount o f melt supercooling was reported to vary. For slow cooling rates, the amount o f 

supercooling remains basically unchanged. For example, for PbTe no dependence on the 

cooling rate was observed for cooling rates between 0.5 and 3.0 K/min [58]. With the 

increase in the cooling rate the amount o f supercooling could increase. For example, the 

amount o f supercooling changed by ~ 46 K as the cooling rate was increased from 90 

K/min to 456 K/min for BigsSbs [59]. The ~ 6  K shift that we observed in the amount o f
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supercooling with cooling rate is about the same as the stated error in the RHEED 

observation o f the solid/liquid formation boundary for Bi condensation on graphite, 

415±5 K. In addition, to check on the stability o f supercooled Bi droplets, melted Bi 

crystallites were left in the supercooled state overnight at 10-15 K above the freezing 

edge. No sign o f solidification was observed indicating that Bi has a stable supercooled 

liquid. Thus, within the studied experimental conditions, the freezing rate has little effect 

on the kinetics o f liquid condensation due to the relatively large and stable supercooling 

o f Bi nano-droplets.

AFM analysis o f films crystallized from the melt showed that these films have 

morphologies different from those grown from the vapor. While triangular layered shape 

crystallites were formed at a substrate temperature o f 300-373 K, rounded or elongated 

platelet shaped crystallites were formed for films deposited at 413-598 K. Fig. 5.7 shows 

ex situ AFM images and line profiles o f films deposited at substrate temperatures 

between 413 K and 532 K. Two different morphologies could be recognized based on the 

film deposition temperature. Those deposited in the neighborhood o f the solid/liquid 

condensation temperature, which is the maximum supercooling point 415±5 K, form 

elongated platelet shaped crystals; while those deposited at higher temperatures form 

rounded polyhedral crystals. Films deposited at 413 K, a few degrees below the 

maximum supercooling point, showed relatively wide elongated crystallites with almost 

flat top surfaces. These films produced a faint RHEED pattern, as shown in Fig. 5.4(a). 

Films deposited at 423 K, several degrees above the maximum supercooling temperature, 

had crystallites o f mixed shapes consisting o f rod-like and rounded crystallites with 

curved top surfaces. These films produced diffuse RHEED pattern similar to those depos-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



144

Width (nm)

100 400 700 1000 1300 1600
Width (nm) •

100 300 500 700 900 1100
Width (nm)

Width (nm)

FIG. 5.7. AFM images, along with line profiles o f  Bi films deposited at different temperatures: (a) 25 ML 
deposited at 413 K, (b) 25 ML deposited at 423 K, (c) 25 ML deposited at 453 K, and (d) ~  33 ML 
deposited at 498 K.
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ited at 418 K, as shown in Fig. 5.4(a). Finally, films deposited at a substrate temperature 

o f 453 K and 498 K showed almost identical rounded polyhedral crystallites with curved 

top surfaces. Because the RHEED image is due to diffraction from crystallites forming 

the film within the probed area, and is affected by shadowing, no significant change in 

the diffraction pattern after cooling to 300 K is observed for films crystallized from the 

liquid phase. Misalignment or randomness o f the film crystallites in addition to height 

differences between the crystallites, shown in Fig 5.7, increase the shadowing effect and 

the shape and size insensitivity o f RHEED [57].

The different crystallographic shapes o f crystallites deposited at temperatures near 

415±5 K or higher then cooled to room temperature, indicate that the formed morphology 

is affected by the degree o f liquid supercooling o f the initially condensated liquid. 

Because o f the presence o f an energy barrier for solid nucleation, which is affected by the 

volume change upon solidification and the release o f  latent heat, the melt can be 

supercooled. The presence o f short-range order is characteristic o f a supercooled melt 

[58-61], The melt stays in this metastable supercooled state until spontaneous 

homogenous or heterogeneous solidification occurs. Because the height o f the energy 

barrier for solidification decreases as the amount o f supercooling increases, different 

crystallographic structures may be formed depending on the initial supercooling point o f 

the melt. Negative volume expansion upon melting is a shared property between Bi and 

water. For water, this expansion is due to the formation o f a low-density cage structure 

created by hydrogen bonds, which link one water-molecule to the next [55,62]. For Bi, 

the negative volume change upon melting is thought to be due to liquid Bi having well- 

defined, long-lived, high-density clusters [62], For ~ 4.5-7.5 nm liquid Bi clusters,
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supported on weakly interacting carbon substrates, interference enhanced Raman 

spectroscopy showed no change in the short-range order including bond distances, the 

number o f nearest neighbors, and bond angle-distribution disorder [63]. A neutron 

diffraction study showed that there is some similarity between the structure o f liquid and 

solid Bi [63]. We also note that water crystallized with different morphologies and 

structures based on the initial supercooling point from which the liquid was crystallized 

[55].

Thus, we conclude that the formation o f different crystallographic shapes upon 

cooling o f the deposited Bi is due to solidification from different supercooling regions. 

Rod-like Bi crystallites were formed for films deposited at substrate temperatures 

between 413 K and 423 K. At these temperatures, the condensed Bi nucleates in the form 

of a highly supercooled liquid that can be described as a quasi-liquid with short-range 

order [60]. Considering that solid Bi has a highly anisotropic structure and its highly 

supercooled melt has properties closer to that o f the solid than to the liquid, the formation 

o f these crystal shapes can be explained by the presence o f order in the supercooled melt. 

Highly anisotropic crystal growth that induces anisotropic crystal shapes has been 

previously reported for Bi films grown by PLD [27]. Rounded or polyhedral crystal 

shapes were formed for Bi films solidified from less supercooled liquids where atoms 

have higher mobility and less anisotropic properties.

V.3.1.3. As-deposited and recrystallized nanocrystals deposited at 425 K

From Fig. 5.7, it is clear that films deposited around 415 ± 5 K formed rounded 

polyhedral as well as elongated platelet Bi nanocrystals. Bi nanocrystals having similar 

elongated platelet shape previously showed ~7 K superheating [18]. Thus, 125 K is
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chosen as an optimum deposition temperature to prepare thin films with nanocrystals 

having a shape o f  potential superheating. After cooling to room temperature, as-deposited 

and recrystallized Bi films showed a transmission diffraction pattern consisting o f spots 

aligned along rods normal to the surface. The patterns were indexed based on the 3- 

dimentional (3D) reciprocal lattice mesh o f the rhombohedral structure o f Bi. The 

RHEED pattern o f  as-deposited 1.5 ML Bi films and its corresponding indexing is shown 

in Fig. 5.8(a). As-deposited films with coverage o f 1.5 ML -  10 ML showed similar 

patterns. The pattern is composed o f superposition o f two spot sets representing two

different diffraction zones, and ^001^, with the [110] is a common direction. This

indicates that Bi grows on the HOPG surface as ensembles o f  3D nanocrystals have [110] 

perpendicular to the substrate surface. The presence o f two diffraction zones indicates 

that the nanocrystals have different lateral orientations on the basal graphite plane, or 

have finite misalignment angels relative to each other, ~ 40°, which is the angel between 

the observed zone directions. Formation o f  nanocrystals with two or more lateral 

orientation, due to substrate effects, has been previously reported [65,66]. Using AFM, 

we observed elongated Bi nanocrystals that are influenced by the crystal symmetry o f the 

substrate in spite o f the weak chemical interaction. Also, some spots corresponding to the 

graphite surface (pointed at by arrows in Fig. 5.8) were still observable even at higher 

film coverage. This is indicative to the low surface coverage o f the formed Bi crystallites. 

As the Bi coverage increased to 15 ML and up to the maximum thickness studied, Fig. 

5.8(b), the misalignment and randomness o f the grown crystallites in the as-deposited 

films increased. This results in diffraction patterns that are characteristic to textured films 

[67]. Regardless o f the multi-zone diffraction feature and/or textured film growth, no cha-
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FIG.5.8. (a) RHEED pattern o f  as-deposited 1.5 ML Bi film and its corresponding 3D indexing (•:  spots

o f  ̂111^diffraction zone, ▲: spots o f  ^001^ diffraction zone, and ■: spots o f  the common [110]

direction). RHEED patterns o f  (b) as-deposited, and (c) recrystallized Bi films o f  15 ML and 33 ML mean 
thickness. The films were deposited at 423 K and the patterns were taken after cooling to room 
temperature for both as-deposited and recrystallized films. The arrows pointing at graphite spots that are 
still observable even at large film thickness due to incomplete surface coverage.
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ange in the relative spot positions, within the experimental error, was observed as the film 

thickness was increased. This indicates that no structural and or orientation change with 

the thickness occurred.

For 1.5 ML -1 0  ML films, no noticeable change in the RHEED pattern is 

observed between as-deposited and recrystallized films. However, the RHEED patterns 

o f the 15- and 33-ML Bi films changed after recrystallization from that o f textured films

to patterns o f  films that have two orientation crystal sets. Moreover, the  ̂111^-diffraction

zone in the recrystallized films prevailed and the diffraction spots o f the  ̂0 0 1  ̂  -zone was 

bearly seen for 33-ML film. Such pattern suggests that the crystallites are preferably 

oriented along the [ i l l ]  than in [oOlj. Another consideration is that the RHEED 

penetration depth and shadowing effects could affect the diffraction pattern [57]. RHEED 

probes a shell given by the inelastic mean free path o f the electron beam within the 

probed nanocrystals, which is ~ 9 nm for 9.7 kV electron beam into Bi as calculated 

from a general equation o f  IMFP [6 8 ]. Within this probed depth, the RHEED pattern is a

■y
result o f diffractions from all crystallites forming the film in the few mm -probed area. 

The shadowing effect is expected to increase with increasing film thickness because o f 

the anisotropic crystal growth that results in height differences between the crystallites 

forming the film. The effect o f the shadowing is limited at the lower coverage ratios. 

Thus, the dominance o f one diffraction zone over the other is mainly due to film 

orientation enhancement.

Post deposition AFM was used to study the morphology o f as-deposited and 

recrystallized Bi films as shown in Fig. 5.9. As-deposited Bi films were found to form
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3D nanocrystals with different shapes and sizes, while those recrystallized from melt 

were found to form nanocrystals with nearly shaped but different sizes. Nanocrystals with 

different shapes including rounded, polyhedral, elongated platelet, and triangular are 

observed in as-deposited films. For the recrystallized films, facetted polyhedral-shaped 

nanocrystals with curved edges and in some cases with sharp edges, were observed. 

Formation o f crystal facets is due to the anisotropic surface energy and the surface free 

energy temperature and size dependence. Rounded or curved surfaces indicate the 

presence o f  all surface orientations in the formed nanocrystals, however, sharp-edged 

shapes indicate missing orientations in the formed nanocrystals [69]. As reported 

previously, the curved regions increase in size with temperature at the expense o f the 

plain facets due to the decrease in surface energy anisotropy until a spherical shape is 

formed as the nanocrystal is completely melted [44,45], Annealing near To or cooling 

from the melt allows all possible surface orientations to appear in the final form o f the 

nanocrystals.

The nanocrystals were uniformly distributed throughout the substrate surface 

except at terrace edges where a higher density o f nanocrystals is found. This is because 

among all possible nucleation centers terrace edges offer minimum energy barrier for 

nucleation. The nanocrystals that nucleated at terrace edges grew outward as observed in 

Fig. 5.9. Thus, the distribution o f the nanocrystals was influenced by the density o f 

substrate terrace edges, which is random due to cleavage. The majority o f these 

crystallites were found to be aligned either parallel to each other, with ~ 5° misalignment, 

or intercepts at angles o f either 60° or 120°. For few crystallites intercept angles o f 30° 

and 90° were found. This growth directionality suggests that the growth o f  Bi is influen-
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FIG.5.9. AFM images o f  (a) as-deposited and (b) recrystallized Bi films with different mean thicknesses. 
Elongated nanocrystal that align themselves in the direction o f  minimum lattice misfit and angular 
distortion are observed in the asdeposited films. Recrystallized films are formed in more rounded 
polyhedral similar shapes.

ced by the graphite structure in an epitaxial-like growth mode, in spit o f the weak 

interaction with the substrate. In this case the overlayer has lattice spacing different from 

that o f the substrate but grows with an orientation that is affected by the substrate. A 

similar observation was reported for the growth o f Bi on III-V(llO) substrates [70]. It is 

the weak interaction between these substrates and Bi and the use o f very low deposition 

temperature, 30 K, that enabled such epitaxial directional growth in spite o f the presence 

o f a large lattice mismatch, ~ 20% [70]. For a graphite substrate, Bi adatoms were 

reported to be highly mobile on its basal plane and the growth was site limited rather than 

diffusion limited [43]. Because o f the inertness and weak interaction o f graphite with Bi,
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in addition to unrestricted adatom diffusion, Bi favorably grows in directions o f 

minimum mismatch with the graphite substrate. Based on the structure symmetry o f Bi 

and 0 0 2 -graphite plane, these epitaxial relations were found to be either with 

[H 0]Bi || [120]oraphite or [010]ei|| [OlOJcraphite where minimum lattice misfit and angular 

distortion exist [43].

In order to study the size distribution o f Bi nanocrystals, the major and minor axes 

o f the formed nanocrystals were measured from images similar to those o f  Fig. 5.9. 

Histograms representing the size distribution o f as-deposited and recrystallized 

nanocrystals were generated. Two distributions accounting for the different crystal shapes 

were generated for as-deposited films; one for elongated and the other for rounded 

polyhedrons. For recrystallized films only one distribution is generated. Analysis o f 

images taken at different locations on the surface showed that the size distribution is 

sensitive to the location selection for low thicknesses, 1.5 ML to 10 ML, while 

insignificant dependence on location was found for films with large thickness. The 

random nature o f substrate terrace density upon cleavage contributes to this location dep 

endence o f the nanocrystal size distribution. Similar observation was reported previously 

in the deposition o f metallic nanocrystals on a cleaved graphite substrate [28]. 

Nanocrystals that are away from terrace edges are normally larger in size. Figure 5.10 

shows AFM images and analysis o f crystalline size distribution o f as-deposited and 

recrystallized 1.5 ML and 33 ML films. A Gaussian function-fit o f  the distributions, 

rather than histograms, are plotted in Fig. 5.10(a) and (b) for 1.5 and 33 ML respectively. 

The distributions became wider and shifted toward higher values as the coverage 

increased from 1.5 M L to 33 ML. For recrystallized rounded crystals, the full width at
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FIG.5.10. Some o f the analysis performed on the obtained AFM images o f  as-deposited and recrystallized 
Bi films. Gaussian function fits o f  the size-distribution histograms o f as-deposited and recrystallized Bi 
film o f (a) 1.5 ML, and (b) 33 ML mean thickness. AFM line profile analysis along some nanocrystals o f  
Bi films with different mean thickness; (c) as-deposited 1.5 ML, (d) as-deposited 33 ML, (e) recrystallized 
1.5 ML, and (f) recrystallized 33 ML.
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half maximum (FWHM) o f the distributions increased from 102 nm to 333 nm, and the 

most probable value increased from 150 nm to 388 nm as the thickness increased from

1.5 ML to 33 ML. Similar behavior was observed for as-deposited films where both 

elongated and rounded distribution are widened and shifted to higher values. Due to 

shape deformation upon recrystallization, rounded nanocrystals were found to have larger 

average heights than as-deposited elongated. For 1.5 ML film, Fig. 5.10(c,e), the height 

increases from ~ 10 nm to -2 0  nm, while for 33 ML it increased from -  40 nm to > 80 

nm as the films recrystallized after melting.

V.3.2. Melting and solidification of Bi nanocrystals 

V.3.2.1. Melting of Bi nanocrystals

Melting and solidification o f as-deposited and recrystallized Bi films was studied 

by monitoring the intensity o f the Bi (220) spot as a function o f  temperature. The 

intensity is normalized to its value at or near room temperature. Figure 15.11 shows the 

natural log o f the normalized intensity as a function o f temperature during heating and 

cooling o f as-deposited films with different coverage. Similar curves were obtained for 

recrystallized films. With heating, the measured RHEED spot intensities decrease due to 

thermal effects according to the Debye-Waller factor. At some temperature, a sharper 

intensity decrease occurred due to decrease in the long-range order o f the probed 

nanocrystals. The decrease in the RHEED intensity due to film partial melting is gradual 

and spans over a temperature range whose onset and end points increase with film 

thickness. As the film melted completely, the RHEED intensity decreased to its minimum 

value and only the inelastic scattering background remained. Recrystallized Bi films 

showed melting behaviors similar to that observed for as-deposited films but shifted
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toward higher temperatures. This is due to the shift o f the size distribution towards higher 

sizes as the nanocrystals recrystallized after melting.
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Fig. 5.11. Logarithm o f normalized intensity o f  the RHEED (002) spot o f  Bi as a 
function o f  temperature during heating and cooling o f  as-deposited Bi films with 
different mean thickness. Melting point depression and amount o f  supercooling that 
varies with the film mean thickness is observed.
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RHEED gives a statistical view o f order over a large area within a penetration 

depth given by the IMFP o f RHEED electrons in Bi. Thus, one would use the melting 

range over which the phase transition occurs to study the melting behavior o f the 

nanocrystals making up the films. After taking into consideration the reduction in 

RHEED intensity due to Debye-Waller factor and inelastic scattering, the intensity 

decrease o f electron diffraction into the (220) spot o f Bi is related to the fraction o f the 

solid nanocrystals that are melted within the penetrated depth o f the probed area. 

Following a procedure used to calculate the melted ratio, R, for indium films, R is 

calculated for as-deposited and recrystallized Bi nanocrystals and plotted in Fig. 5.12 as a 

function o f temperature for films with different thicknesses. Gradual changes in the 

melting ratio with temperature were observed. Melting o f  the nanocrystals making up the 

films occurred within a range o f 10 - 20 K. All films started to melt at temperatures 

below T0, e.g., To-50 K  for as-deposited 1.5-ML film. A 5 -  15 K shift in the onset o f the 

melting toward higher values was observed for recrystallized Bi films o f same coverage. 

At the beginning o f  the melting range, the melting ratios o f as-deposited Bi films, Fig 

5.12(a), increased slowly with temperature. A much faster melting rate with temperature 

was observed as the temperature approaches the film maximum melting point. This 

melting behavior is similar to that reported for surface melting where the quasi-liquid 

layer thickness grows first as logarithmic function and then diverges as a power function 

o f { T - T 0 ) as To is approached for bulk singe crystals [71]. For nanocrystals, formation 

o f a surface liquid layer is accompanied by complete melting o f  smaller sized crystals 

[72], The size distribution and the shape o f nanocrystals are expected to play a major role 

in this melting behavior. For crystallites with similar shape, nanocrystals in the lower part
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o f the size distribution are expected to melt at a lower temperature than those in the 

higher part. The film melted ratio o f recrystallized Bi films, Fig. 5.12(b), showed a 

similar behavior, but with the melting range shifted toward higher temperatures. Also, for 

higher thickness, e.g. 15 ML, the melting occurs at a narrower melting range. This is 

mainly due to the shift o f the size distribution towards higher values as the nanocrystals 

recrystallized after melting.

The melting behavior o f the nanocrystals making up the films is further 

investigated by performing profile analysis o f the obtained diffraction patterns. In 

general, the profile o f the diffraction spots is related to the shape and size o f the 

diffracting feature. Broadening o f diffraction spots, after subtracting the instrumental 

response, is inversely proportional to the average crystalline size in the probed region. 

The probed region in this case is the shell surrounding each probed nanocrystal with ~ 9 

nm thickness. The instrumental response was obtained by deflecting the electron beam 

away from the sample so that it directly hits the phosphor screen. The shape o f the 

electron beam, on the phosphor screen, was recorded by the CCD camera. The FWHM of 

this transmitted beam in A '1, was used as the instrumental response and was subtracting 

from the FWHM o f the diffraction (220) spot, obtained at different mean film thickness. 

From the broadening o f  the (220) spot, diffraction feature size o f ~ 4-7 nm is obtained, 

which is much less than the average nanocrystal size obtained by AFM. This is expected 

from a transmission RHEED pattern probing the outer shell o f the nanocrystals.

Figure 5.13 shows the measured FWHM of the Bi (220) spot in direction parallel 

and normal to that o f the beam for as-deposited and recrystallized Bi films with different 

mean thicknesses as a function o f temperature. The FWHM remains almost constant over
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FIG. 5.12. Estimated film melted ratio as a function o f  temperature at the phase transition 
region for (a) as-deposited, and (b) recrystallized Bi films with different mean thickness.

a wide temperature range in both the normal and the parallel directions. However, in the 

film melting range, the FWHM in both directions decreases with temperature, and then 

starts to increase as the maximum melting point o f the film is approached. This behavior 

is clearly observed for as-deposited and recrystallized 1.5 ML Bi films. The initial 

decrease in FWHM o f the (220) spot in both directions indicates that there is an increase 

in the average crystalline size within the penetrated depth o f the probed area. This 

average size increase might be due to coalescence o f Bi nanocrystals near melting,
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Ostwald ripening, and/or crystal shape modification as observed in the AFM o f Figs 3. 

However, this does not explain the observed decrease in the FWHM o f recrystallized 

films where no further significant shape and size changes is expected. Also, no increase 

in the normalized intensity is observed anywhere within the film melting range, which 

indicates that there is no significant crystalline enhancement during heating and the size 

increase occurs only by coalescence o f liquid droplet after film melting. Thus, it appears 

that nanocrystals with small sizes are homogenously melted at lower temperatures 

resulting in an average sizes increase. The observed increase in the FWHM at the end o f 

the melting range indicates a decrease in the detected average crystal size. This decrease 

is consistent with the formation o f a liquid skin covering the larger nanocrystals, thus, 

reducing the detected average crystalline size o f the probed area o f the films.

All films with average thickness up to 15 ML showed FWHM trends similar to 

that observed for 1.5 ML. However, recrystallized films showed a decrease in the FWHM 

without significant increase till the end o f the film melting range for both normal and 

parallel directions. AFM image o f these films, 3 ML to 15 ML, showed nearly polyhedral 

shaped nanocrystals with a size distribution shifted toward higher values. While the 

average crystal size o f  recrystallized 1.5-ML film is found to be 40 nm that o f 3-, 6 - and 

15 ML films were found to be 57, 83, and 100 nm, respectively. Also, as the coverage 

increased, the size distribution widened. The nanocrystal at the lower part o f the 

distribution are expected to melt homogenously at a temperature in the lower part o f the 

melting range. As the temperature is raised into the melting range, a subset o f  the larger 

nanocrystals becomes covered by a liquid skin layer. Because o f  the size-dependent 

liquid skin formation, the liquid layer is formed on the surfaces o f larger nanocrystals at
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higher temperatures relative to those with smaller sizes. With the increase in temperature, 

more nanocrystals completely melt with the thickness o f the liquid shell on the remaining 

crystals continue to grow with no detectable reduction in the average probed size. This 

could be due to the compensation o f the average crystallite size increase due to melting o f 

small crystals with the decrease due to liquid layer formation on larger ones. Another 

consideration is the inelastic and linear effects o f RHEED electrons, which is expected to 

increase as a big portion o f  the nanocrystals o f the film turned into liquid. The increase in 

the liquid formation not only increases such effects but also introduce an uncertainty in 

the measured FWHM.

The FWHM o f as-deposited 33 ML remain constant up to the film complete 

melting in both parallel and normal directions, while it decreases without significant 

increase for recrystallized film. This observation shows the effect o f crystal shape and 

size distribution on the melting behavior o f the nanocrystals. While as-deposited film 

have nanocrystals with different shapes, recrystallized nanocrystals have rounded shapes 

but higher average sizes. Thus, melting o f as-deposited either occurred abruptly, due to 

surface facets, or the melting proceeds via simultaneous melting o f small crystals and 

formation o f a liquid layer on the top o f larger ones with no detectable change in the 

FWHM. On the other hand, rounded nanocrystals o f  recrystallized film melt gradually 

according to their sizes with a continuous decrease in the measured FWHM.

Within the investigated thickness range, all films melted completely below or at 

To of Bi. AFM images showed that as-deposited films contain nanocrystals o f round, 

triangular, and platelet shapes. No subset o f the grown crystallites could be superheated. 

For rounded polyhedral Bi nanocrystals, the observed melting point depression was found
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to be similar to that previously reported using dark field electron microscopy [18]. 

Elongated Bi crystallites in the as-deposited films melted at temperatures lower than that 

for the recrystallized round nanocrystals. In Ref. [18], however, polyhedral shaped 

nanocrystals faceted by {111} planes were observed to superheat up to To + 7 K. These 

nanocrystals were formed during heating o f Bi films initially deposited at room 

temperature on an amorphous carbon substrate. In the present study, polyhedral elongated 

nanocrystals were formed on a heated HOPG substrate. The shape o f these nanocrystals 

was affected by the substrate and Bi grew along directions o f minimum lattice mismatch 

and angle distortion on the HOPG basal plane. Thus, the elongated platelet nanocrystals 

on the HOPG are not o f minimum energy shapes and formed in a more hexagonal 

elongated shape o f ~120° side angels (~60° for the triangle shape). In other words, these 

crystals are not in the truncated pyramidal shape that completely covered by the {1 1 1 } 

facets, however, they are most probable o f 110 facets. The absence o f  long-range order in 

the amorphous carbon substrate appears to have allowed the formation o f a subset o f 

crystallites in an elongated shape with minimum energy facets that hinder surface melting 

and allow superheating. On the other hand, the long-range order o f the HOPG substrate 

causes the formation o f elongated crystallites that are bounded by some higher energy 

facets that permit surface melting. Even with the side surfaces to be the {111}, melt can 

nucleate from higher energy faces bounding the crystal such as the top surfaces, which 

could be either 110 or 010 surfaces based on RHEED, and curved edges. For Pb, only 

triangular shape nanocrystals with sharp edges were reported to show 2-4 K superheating 

using transmission electron microscopy [22]. In this work, we observed triangular 

nanocrystals with sharp and curved edges but with fewer umber. Because RHEED gives a
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statistical view o f nanocrystals over a large area and the sharp-edges triangular 

nanocrystals were formed with lower probability, at the current experimental conditions, 

superheating o f  these nanocrystals is hard to be detected.

V.3.2.2. Melting point-size dependence

To obtain the rate o f film melting with temperature, a curve-fit is made to the 

melted ratio data in Fig. 5.12 and the derivative o f this curve-fit is plotted in Fig. 5.14 for 

as-deposited and recrystallized films. The peak o f this derivative gives the temperature at 

which the rate o f  film melting with temperature is the fastest, Tfm. We use T/m to represent 

the characteristic film melting temperature, with a range that we define to correspond to 

10% and 90% o f the melted ratio in Fig. 5.12. Melting point depression that depends on 

the film mean thickness is clearly observed in Fig. 5.14. Also, recrystallized films 

showed higher T/m than as-deposited for all films. This is mainly due to the average size 

increase. From the AFM images o f as-deposited and recrystallized films, we calculated a

shape-independent average crystal radius, rav =( ( 3x  Area x height) / (  4n  f f  /  3 , by

measuring the area and the height o f the nanocrystals. The values obtained for as- 

deposited films were lower than that obtained for recrystallized films with equal 

thickness for all films. This indicates an average crystal size increase as the films 

recrystallized after melting, thus, recrystallized films melt at higher temperatures.

We used the obtained values o f 2}m and rav to study the melting point size 

dependence o f Bi films in the light o f different phenomenological models discussed 

previously in section II.2.3. In this context rav is more convenient since all o f these 

models considered a spherical shape particle. The known physical constants o f Bi (Tq =
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544.52 K, ps = 9.8 g/cm3, pi = 10.07 g/cm3, L -  5.19 x 10' 8 erg/g, yst = 61 erg/cm2, ysv = 

550 erg/cm2, y v = 375 erg/cm2, h = 0.4074 nm, Svw = 3.78 J mole ' 1 K '1, R = 8.3142 J 

mole ' 1 K '1) are used to calculate the melting point size dependence o f  Bi [7,17,40,41], 

Fig. 5.15 shows the size dependent behavior predicted by these models compared to the 

results obtained from the present work. In calculating the melting point using the NG 

model, we used the average value o f the parameter a . Also, we used an arbitrary

value o f 8  = 4 nm in the calculation using the LS model. However, varying this value 

between 2  nm and 1 0  nm does not affect the predicted values for particles o f radius 

within the current experimental values, it only affects the melting point o f particles with 

radius close to the value o f 8.

The size-dependent phenomenological models have two characteristics in 

common; Tm converge to T0 as the radius goes to infinity, and a linear or semi-linear

relation exist between Tm and r - 1  o f the particle. Straight lines with different slops are 

obtained for Bi using these models with LV and HM models showing strong agreement 

with each other. The melting points calculated by these models converge to To for the 

larger sizes. Considering the range o f nanocrystal sizes we studied, the melting data 

shows best agreement with the SPI model. While the predicted trend o f  SPI model fits 

nicely the data o f Bi, it showed a big deviation from that measured for In. A similar 

conclusion was obtained by the authors o f the SPI model in comparing his model with 

other reported available experimental data for different materials.
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FIG. 5.15. The measured melting point as a function o f  the reciprocal o f  the average crystalline size 
compared to different thermodynamic models. The film melting point Tfm is obtained from Fig. 7. The bars 
represent the melting range as described in the text. The surface phonon instability model agrees best with 
this experimental result.

V.3.2.1. Solidification of Bi melt

During solidification, the Bi films showed high amount o f supercooling relative to 

the onset o f its melting. A wide melting- solidification hysteresis curves that varied with 

the film average thickness were observed for as-deposited Bi films as shown in Fig. 5.11. 

In general, supercooling is attributed to the presence o f a nucleation barrier for 

solidification that results from the competition between the decrease in the volume free 

energy upon solidification and the increase in the free energy associated with the 

existence o f a solid-liquid interface. Classical nucleation theory predicts that
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solidification occurs with a lower energy barrier on heterogonous sites than 

homogenously from within the liquid. The energy barrier for solidification decreases as 

the liquid is supercooled below its bulk melting point. Furthermore, if  the liquid is deeply 

supercooled, spontaneous solidification can occur with zero energy barriers. For a bulk 

liquid, this can take place after supercooling amount o f ATq . However, for a small 

droplet, spontaneous solidification starts at a different temperature given by [15],

ATm — AT§ + -  , with Ay = y S0H(i /  graphite ~ 7liquid /  graphite (^-l)

where ATm is the amount o f supercooling o f a melted particle o f radius r, a  is the fraction 

o f the liquid/substrate interface that is replaced by the solid/substrate interface after solid 

nucleation, and y soUd ,  g m p hite an d  7 liquid /  graphite are the specific interfacial energies

between the graphite substrate and the solid and liquid bismuth, respectively. The amount 

o f supercooling obtained from as-deposited and recrystallized films is plotted as a 

function o f the calculated shape-independent average crystal size, as shown in Fig 5.16. 

The obtained supercooling amount ATm fits nicely a straight line with a small negative 

slop. This indicates a supercooling amount increase as the droplet size increase. From Eq. 

(5.1), the sign o f the slope o f the straight line is determined by the sign o f A y , which

means, in our case, that A y is negative i.e. liquid Bi has a higher interfacial energy with 

graphite substrate than its solid phase. Accordingly, nanocrystals with larger sizes have a 

higher supercooling amount with maximum supercooling observed for the bulk material, 

which is found from the curve intercept to be 126 K.
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CHAPTER VI 

SUMMARY

Melting and solidification o f as-deposited and recrystallized indium and bismuth 

nanocrystals were studied using RHEED. The nanocrystals were thermally deposited on 

highly oriented 002-graphite substrate at different deposition temperatures. The growth 

dynamics o f the nanocrystals was studied using in situ RHEED, while the morphology 

and size distributions were studied using ex situ real image technique (AFM or SEM). 

The intensity change o f RHEED diffraction pattern with temperature was used to probe 

the melting and solidification o f the nanocrystals. Some o f the main results obtained in 

this work are summarized below.

For indium, RHEED observation during deposition showed that 3D nanocrystals 

are directly formed from the vapor phase at all the studied deposition temperatures, 300 

K up to 25 K below the bulk melting point o f indium. Post deposition AFM showed that 

as-deposited films were composed o f shallow 3D nanocrystals with different shapes 

having top flat surfaces, while the recrystallized nanocrystals form well faceted relatively 

high 3D crystals, polyhedral shaped, with curved edges, and curved top surfaces. As- 

deposited nanocrystals showed an increase in the (00) RHEED intensity due to annealing 

as they were heating before melting. No intensity increase before melting was detected 

for the recrystallized films; only the expected intensity decrease due to the increased 

lattice vibration and melting was observed. Both as-deposited and recrystallized indium 

nanocrystals showed melting point depression that extends over a temperature range due 

to their size distribution. Nanocrystal size and shape determine its melting behavior. 

Because o f the formation o f  low external energy faceted nanocrystals, the as-deposited 3-
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ML film show higher-end melting point than the 10-ML film in spite o f the lower 

average crystal size for the 3-ML film. For recrystallized nanocrystals, the absence o f any 

abnormal crystal morphology, with the nanocrystals formed in their equilibrium shape, 

explains the observed melting point depression. The deposition temperature is found to 

have a significant effect on the end melting point o f the as-deposited nanocrystals, while 

it has a negligible effect on the end melting point o f the recrystallized films. Within the 

experimental error, as-deposited films, grown at room temperature, show an end melting 

point nearly equal to that o f the recrystallized films except for the 1.5-ML film where the 

as-deposited film shows an end melting point -1 0  K lower than the recrystallized film. 

The measured melting point o f indium nanocrystals is found to depend linearly on the 

reciprocal o f its average crystal size, in agreement with different thermodynamic models. 

The diffraction intensity and line shape analysis favor the liquid skin model o f 

nanocrystal melting. Upon cooling below the bulk melting temperature, films with mean 

thickness > 6  ML show about constant amount o f supercooling, while films with lower 

mean thickness show an amount o f supercooling that decreases with mean thickness.

For bismuth, RHEED observation during deposition showed two deposition 

regimes; low temperature solid film deposition and high temperature liquid phase 

condensation. A substrate temperature o f 415±5 K was found to be the boundary between 

these two regimes. Films deposited at temperatures below 415±5 K showed transmission 

RHEED patterns corresponding to the Bi structure at an average thickness as low as -  0.5 

ML, indicating direct solid film formation. The continuous decay o f  the graphite (00) 

spot intensity indicated 3D Bi island formation. AFM analysis showed that these films 

were composed o f 3D multilayer triangular step-pyramid shaped crystallites. This
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crystallite shape supports the conclusion o f direct solid Bi crystallites growth from the 

vapor phase in a 2D layer-by-layer-like growth mode. Bi deposited at temperatures 

higher than 415±5 K condensed into liquid droplets. This result is supported by the 

observation o f  diffuse RHEED patterns that are thickness independent. When these films 

were cooled, clear transmission RHEED patterns appeared in the temperature range 

between 408 K and 392 K. Moreover, when these films were subsequently heated, the 

diffuse RHEED patterns appeared only at -10-15 K below To o f Bi, due to surface 

melting forming a liquid shell surrounding the crystallite. Upon cooling, these Bi 

crystallites supercooled by -125 K. Our observations indicate that not only the surface 

but also the bulk o f  the deposited Bi films were condensed in a long-lived, relatively 

stable, supercooled liquid phase. Different size-dependence melting point models support 

the conclusion that Bi is condensed in a liquid phase for substrate temperatures higher 

than 415±5 K. As the Bi nuclei grew in size, it solidified when it reached a certain critical 

size that is dependent on temperature. However, the liquid nuclei would remain in the 

liquid phase if  the films were deposited on substrates with temperatures above the 

maximum supercooling point. AFM observation o f Bi crystallized from a liquid showed 

that two different crystal shapes are formed based on the deposition temperature. Films 

deposited in the neighborhood o f the solid/liquid condensation temperature boundary, 

415±5 K, form crystallites with nonisotropic shapes, while those deposited at higher 

temperatures form rounded polyhedral crystallites. The different crystallographic shapes 

observed for these films result from the dependence o f crystal morphology on the degree 

o f liquid supercooling. AFM image o f films deposited at 425 K showed that both as- 

deposited and recrystallized films were composed o f separate 3D crystallites with
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different sizes. Nanocrystals with different shapes including rounded, polyhedral, 

elongated platelet, and triangular were observed in as-deposited films. Recrystallized 

nanocrystals were formed in facetted and/or rounded polyhedral similar shapes. The 

elongated nanocrystals were found to align themselves in the directions o f minimum 

lattice misfit and angular distortion on the 002-graphite plane. The nanocrystals were 

uniformly distributed throughout the substrate surface except at terrace edges where a 

higher density o f nanocrystals was found. The distributions became wider and shifted 

toward higher values as the thickness was increased. With heating, the Bi films showed a 

gradual solid-liquid phase transition. Melting o f the nanocrystals making up the films 

occurred at temperatures lower than To and spanned over a temperature range whose 

onset and end points increased with the film coverage. Due to size increase after melting, 

the recrystallized nanocrystals showed a melting range at temperatures higher than that o f 

the as-deposited. Within the investigated thickness range, all the nanocrystal shapes 

showed size-dependent melting point depression, and the films were melted completely 

below or at To o f  Bi. Formation o f the elongated platelet crystals due to an epitaxial-like 

growth mode, rather than minimum energy shape, explains its observed meting point 

depression. RHEED profile analyses showed that small nanocrystals melt first, while 

liquid skin formation on the curved surfaces o f larger nanocrystals continue to grow in 

thickness causing a size-dependent melting. The characteristic film melting point o f Bi 

showed a linear dependence on the reciprocal o f the average crystal radius, in agreement 

with different phenomenological theoretical models. However, the surface phonon 

instability model best fits our data. During solidification, as-deposited and recrystallized 

Bi nanocrystals showed large supercooling relative to Tq. The amount o f liquid
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supercooling was found to decrease linearly with the reciprocal o f the average crystal 

size.

Indium has a positive volume change upon melting while bismuth has a negative 

volume change upon melting. Both nanocrystals showed melting point depression with 

end melting point below or at the bulk melting point. This nullifies the property change 

upon melting as an effect on the nanocrystals melting behavior, however, it might explain 

the large amount o f supercooling, 125 K, observed for bismuth and the lower amount, 16 

K, observed for indium. The melting point depression observed for indium is consistent 

with all previous results reported for indium using slow heating. However, bismuth 

nanocrystals o f elongated platelet shapes was reported to show ~7 K superheating above 

the bulk melting point, which seems contradicting the melting point depression observed 

in this experiment. Formation o f  the elongated platelet crystals due to an epitaxial-like 

growth, rather than minimum energy shape, explains the observed melting point 

depression in the current work.
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APPENDIX A

Interpretation o f pure reflection RHEED patterns

For pure reflection RHEED patterns and for a given surface o f known orientation, 

2D indexing is used. Recalling that RHEED is an image o f the surface lattice in the 

reciprocal space, a pre-calculation o f the reciprocal lattice mesh o f  that surface is needed. 

These calculations are necessary to determine the direction o f  the incident electron beam 

relative to the surface structure. In the case o f an unknown crystal surface, calculations 

are performed for different crystal surfaces until a good match between the experimental 

and the calculated structure is found. Below is a given example o f  particular graphite, 

indium and bismuth surfaces.

A.I. Graphite structure and (0002) surface calculations

Graphite is characterized by its layered structure due to the in-plane strong 

bonding and weak van der Waals bonding between planes. This mechanism is partially 

what allows graphitic planes to be easily cleavage. The in-plane structure o f graphite 

consists o f long-range order arrangement o f fused hexagons o f  1.415 A effective bond 

length and 120-degree bond angle [1-3]. These homogenous layers o f fused hexagons 

remain almost free from each other with a c-axis average interlayer distance o f 3.35 A 

and an upper limit distance o f  around 3.5 A [ 1 ]. Figure A .l(a) shows the graphite 

structure along the 001 plane. The unit mesh in this plane can be constructed from the 

basic vectors a = 2.46 [100], and b = 2.46 [010] with the [001] vector normal to the 

page. Taking into consideration that the basic vectors a and b are not orthogonal (have a 

60°), one can resolve a into its components in the orthogonal system to be,
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a = 2.46 [costj) x +sin(f) j/], with <)> = 30, while b is parallel to the y axis. Therefore, a and 

b can be written as,

a = 2.13 x  +1.23 y_ 

b = 2A6y.

The basic vectors in the reciprocal space can be obtained from those o f real space using 

the following formula,

2.46 A ^ ; > 2 . 4 6 i A

/ i  ̂ -t„ - 210

o io  ; ;
, 100'.

FIG. A.I. The long-range order arrangement o f  fused hexagons in the in-plane structure o f  graphite layer 
with a 2D diamond unit mish in real space (a), and in reciprocal space (b). The vector normal to the page is 
[0001],

a = 2 n ( b x n } I A ,  

b* = 2n(n x a )  / A,

where, A = a . (b x  n) is the area o f the unit mesh, which can be calculated as, 

A = a .  (b x k )=  [(2.13 x +1.23 x)].[(2 .46X) x (z)]

(AT)
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= 5.2398 A 2 = 5.24 A2

The primitive reciprocal vectors can then be obtained as,

a = ( 2 n  /5.24)[(2.46 x) x (z)] = 2.95 x ,

b* = (27t /5.24) [(z) x (2.13 x +1.23 x)]

= 1.198 [-1.23 x -2.13 x)] = -1.474 x -2 .551  x

The magnitude is given simply by the square root o f the sum o f the squares o f their

components, which gives an equal value o f 2.95 A '1. The new direction in the reciprocal

space can be inferred from a calculation o f the angle that the vectors make with the

positive x-axis. In the reciprocal space, a is in the x-direction indicating a clockwise

rotation by 30 degrees angle, while b* makes a 60 degree angle with the positive x-axis

* *
indicating a 30-degree angle rotation too. This means that the vectors a and b are not 

parallel to the real space primitive vectors, however, the unit cell mesh is rotated by a 30 

degree. Figure A. 1(b) shows the 2D unit-mesh in the reciprocal space relative to the real 

lattice directions.

A.2. Indium (111) surface structure calculations

Indium has face centered tetragonal (FCT) structure with unit cell dimensions a = 

b = 4.591 A and c = 4.935 A at room temperature and atmospheric pressure [4-6]. This 

structure represents a small distortion o f the face centered cubic (FCC) structure with an 

axial ratio c/a = 1.0758. In some cases, the FCT structure o f  indium is looked at as a

body centered tetragonal (BCT). The BCT-FCT relations are: a j-ct = s f l  and 

cjet -  Cbct [4]- The lattice constants a and c o f tetragonal bulk indium showed
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temperature and pressure dependence, with the ratio c/a  increasing as the pressure 

increases. The thermal expansion in the a-axis is found to be larger than that o f the c-axis, 

resulting in a continuous decrease in the ratio c/a  with temperature [5]. Before the 

melting point o f  indium, the ratio cja  was found to be larger than unity i.e. still in the 

tetragonal phase. Figure A.2 shows the 111-plane in the FCT tetragonal unit cell o f 

indium and its extended lattice mesh in real and in reciprocal space.

(a) t  Z

Fig. A.2. (a) The 111 plane in the face centered tetragonal cell o f  indium [a = b = 4.5912 A, c = 4.9355 A 
and a  = (3 = y = 90 °], The extended lattice mesh in the 111-plane and the 2D unit cell in real space (b), 
and in the reciprocal space (c). Different crystallographic directions are also indicated. The 2D unite cell 
in the reciprocal space is rotated by a 45° relative to that in the real space.
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The unit cell in real space o f (111) plane can be constructed using the basic 

primitive vectors, a t and £2, and the unite vector normal to that plane n. These primitive 

vectors can be found to be,

The area o f  the 2D unit mesh can be calculated as,

A =  a r  (02  x n )=  3.247 [110] • [3.370 [101] x 0.1226 [111]]

= [3.247 [110]] • 0.4132 [121]

= 1.3413 + 2.6833 + 0  = 4.0246 A2 

= 4.0246 A2

The reciprocal vectors £/ and £ 2  can be calculated using the same set o f equations used 

for graphite calculations,

£/*= (2n /4.0246)[3.370 [101] x 0.1226 [111]]

= 0.6447 [121], and 

0 2 * = (271/4.0246)[ 0.1226 [111] x 3.247 [110]]

= 0.6212 [HO].

By calculating the angle between a/ and a *  or between £ 2  and £2 *, one can find the 

direction o f the reciprocal lattice vectors relative to those in real space. These calculations 

indicated that, besides the reduction in the magnitude o f the vectors constructing the 2D 

unite cell in the reciprocal space, the unit cell is also rotated by a 45° relative to that in the 

real space as shown in Fig. A.2(c).

V a 2 + b 2
Q-l=   ----- [110] = 3.247 [110],

02=    ----- [101] = 3.370 [101], and
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A.3. Bismuth structure and 002 surface

Bismuth has a non-cubic slightly complicated a-arsenic or A 7 structure similar to 

group-V semimetal elements such as As and Sb [7,8]. The unit cell is rhombohedral (a = 

b = c = 4.75 A and a  = p = y = 57° 14') with two atoms per unit cell, one at the comers

(0 0 0 ) and the second located along the body diagonal at (u,u,u) with u = 0.474 A. This 

structure can be constmcted from the simple cubic lattices by proper distortions [9,10]. 

Strain the cell along the [111] direction simultaneously with displacement o f the basis 

atoms toward each other in pairs along the same direction until the correct value o f the 

rhombohedral angle a rh is obtained, then inter-displacing or adding another atom along 

the body diagonal at the correct body location. In fact, the first distortion transforms the 

simple cube lattices into rhombohedral with one atom per unit cell while the second 

distortion generates the pseudo-cubic or A7  structure.

Bismuth structure could be visualized as layered structure in the [111] direction 

such that each atom has three pyramidal covalent bonds with its three nearest neighbors 

in one layer and a Van der Waal type force with other three next nearest neighbors in the 

adjacent layer. Because o f this graphite-like layer stmctural, bismuth symmetry is 

sometimes described in the hexagonal indices where the [ 1 1 1 ] is equivalent to [0 0 0 1 ] 

hexagonal direction. In this sense, the hexagonal cell parameters are a = 4.746 A and c = 

11.862 A with c equal to the 1 1 1  diagonal o f the rhombohedral unit cell.

The 2D lattice structure o f the 100 surface o f bismuth in the real and reciprocal 

space with different crystallographic directions in pseudo cubic notation is shown in Fig

A.3. The appropriate 2 D unit mish is a diamond cell o f 4.75 A edge length and 57.24°
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angle constructed from the unit basic vectors a / = 4.75 [100], and a2 -  4.75 [010]. 

Resolving a/, and gj into their components in the orthogonal coordinates gives, 

at = 4.75 x , and

aj = 4.75 [cos a  x +sin a  x], with a  = 57.24°

0 2  = 2.57 x + 3 . 9 9 4 1  

The area o f  this basic unit mesh can be calculated as,

A = a , . (gjx n) = [(4.75 x)] • [( 2.57 x + 3.994 x) x (z)] = 18.9715 A2 = 18.97 A2

FIG. A.3. Real space structure o f  the 100- bismuth plane and the different crystallographic direction in a 
pseudo cubic notation, §i = 4.75 [100] A, & =  4.75 [010] A, a  = 57° 14'. The 2D primitive unit cell is 
counterclockwise rotated by an angle o f  57.28° in the reciprocal space relative to that in the real space.

It is easy now to obtain the corresponding basic vectors in the reciprocal space. These 

vectors can be obtained as,

a,*=(2n  /18.97) [( 2.57 x + 3.994 y) x (z)]

= 1.323 x - 0.85 x, and 

aj* = (2n /18.97) [(z) x (4.75 x)]

= -1 .5 7 x ,
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It is clearly notable that a *  -  a 2* =1.57 A '1, which is inversely related to the

magnitude o f the basic vectors in the real space. In addition to the magnitude relation o f

the 2D primitive unite cell in the reciprocal space relative to that o f the real space, the

unit cell is counterclockwise rotated by an angle o f 57.28°, which is clearly notable from

0 2 * and a2 * directions.
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APPENDIX B

Indexing o f transmission RHEED patterns

As mentioned in section ELI.2.3, transmission RHEED patterns are indexed based on three 

indices similar to bulk diffraction and selected area electron diffraction (SAED). The 

following procedure can be used to index transmission patterns o f  known crystal 

structure.

- At a certain sample azimuth, taken as a reference point, obtain a diffraction 

pattern.

- Take the origin-transmitted spot to be the (000) point.

- Measure the distance to the origin, (000) point, in mm for three spots closest to

the origin.

Graphically, measure the angles between the selected three spots.

- Convert the measured distances into d-values using the calculated electron 

wavelength and the value o f L, the sample to screen distance, in Eq. 3.13.

Assign M iller indices to each spot by comparing the measured value to those o f

the single crystal. There might be more than one set o f  hkl assigned for a single 

spot.

- Based on the uncertainty in the measurement and the camera constant calibration, 

assign an error range in measuring d, Ad, and take all theoretical values situated

between d measured ± Ad.

- From the assigned hkl indices o f the spots, calculate the angle between these

a,«a-
spots, a n , using the dot product rule, = cos -—-j— n.

14b I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



192

- Compare the measured and calculated angles, and assign the correct hkl indices. 

Determine the zone axis [uvw] from any two knowing [hkl] vectors within the 

diffracted zone such that u = k \l2 -  k 2l\ , v= l\h2 - l 2h\ , and w= h\k2 -  h2k \ .

- Continue indexing the other spots within the diffraction pattern taking advantage 

o f the crystal symmetry and making sure that the indices must satisfy the zone 

equation, Eq. (3.16).

- The same procedure can be followed for any other diffraction zone or azimuth 

orientation.

In the following sections, the diffraction pattern obtained for graphite and indium will be 

indexing according to the abovementioned procedure.

B.l. Graphite

Figure B .l shows the obtained RHEED pattern, in its transmission mode, o f a 

cleaned graphite surface. The spot in the diffraction pattern are labeled to allow us to 

refer to. The first step in pattern indexing is to measure the distances to the origin, in cm, 

for several spots closest to the origin. In case o f digital images a conversion factor from 

cm-to-pixel is needed. This can be done by obtaining an image for two-marked points, 

with known separation distance, placed at the screen. The cm-to-pixel conversion is then 

the ratio o f the distance between the two marks in the real and that in the image. Using an 

image o f a graph paper is normally the best way to do this conversion. This calibration 

resulted in a calibration factor o f 66.917 pixels/cm and 83.885 pixels/cm for the 

horizontal and the vertical directions respectively. This calibration factor might vary 

depend on the camera-to-screen distance and the camera zoom adjustments. Because o f
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the non-uniform pixel-to-cm ratio, the vector distances can’t be transferred from pixels to 

mm directly. However, the vertical and horizontal components are first obtained then 

independently factored to cm units, and finally the distance in cm can be found. The 

measured d-values o f the vectors are then compared to that generated for a single crystal 

graphite. A web-based software, “emaps” is used to generate a detailed list o f hkl versus 

standard d-values o f graphite [1]. It is found to be more convenient to consider positive 

indexing, since the negative sign will not affect the d-value as it is clearly observed from 

the detailed calculated d-list. A full version o f “CaRIne” software can be used to generate 

the same list using ao = 2.44 and Co = 6.71 A as cell parameters [2 ],

m

[e]
4/  /  

/ < l d l /  r ,/ / / // /

FIG. B. l .  Transmission RHEED pattern o f  clean graphite surface, an accelerating voltage 
o f  9.7 keV and filament current o f  2.65 A were used to obtain this pattern. The spot are 
labeled alphabetically to make it easy to refer to. The first step in indexing this pattern is to 
measure the distances from the origin to some spots and the angles between them.

The measured d-values and the assigned hkl sets are listed in Table B.l .  Since 

Bragg’s low contains n, the interference order or integer, the calculated d-values is 

considered as (d/n) i.e. the n-multiple o f the measured values are taken into
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considerations. In order to eliminate the wrong indexing and nominate only the correct 

hkl set, the angles between the predicted hkl sets for [a] and [b] is calculated and 

compared to the measured angles. It is clear that the spots, [a] and [b] are on the same 

straight line i.e. making a zero angle. Therefore, the first step to correctly index them is to 

look carefully in the predicted hkl sets and figure out which o f  these sets making zero 

angle with each other. This means finding two hkl sets whose planes are parallel and can 

be written as (hkl) 1= (3 (hkl)% where (3 is an integer. From the table, the only sets that 

satisfy this criteria are 007 and 005 where both sets can be written in terms o f  001 with 

P equal to 7 and 5 respectively. It might not be obvious to recognize the angles between 

the planes from their hkl values, hence, one might generate a table o f  the angles between 

the different hkl sets o f  [a] and those o f [b] then do the eliminations and correct indexing. 

Note that 006 is among the predicted indices o f the [c] spot and also it belongs to the 

same family. Since all 001 are parallel planes, then the correct indexing might be 002, 

004, and 006. This is more convenient for systematic indexing because o f the spot 

arrangements and the pattern symmetry.

Based on the final indexing o f the spots [a], [b] and [c], it is clearly that the 

direction normal to the substrate surface represents the z-direction. Therefore each spot 

on the side rods should have I value based on its horizontal distance from the 0 0 0 - 

horizontal line. This implies that the [d]- and [e]-spots must have indexing o f / equal to 3 

and 4 respectively. One might starts to calculate the zone axis using the 002 and any hkl 

predicted set o f  the [d] spot and check which o f the [e] predicted sets that satisfy the zone 

equation. Keep forming combinations o f 002 and all the other predicted hkl sets [d] and 

test it with those predicted for [e]. Performing these steps left us with two zone axis
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possibilities <110> and <U)0> with possible spot indexing for [d] to be either 103 or 104 

and for [e] to be either 113 or 114. Using these two zone axis with the predicted hkl sets 

o f [g] spot reveals that <100> is not a valid zone axis and so as the 103 and 104 indexing. 

On the other hand, the zone equation is verified when using 113 and 114 indexing and, 

hence the possible indexing o f [g] spot either 220, 110, or 221. It is also clear that 226 is 

a valid indexing o f  the [h] spot among all possibilities.

Table B. l .  Comparison between the measured and the calculated d-values o f  graphite and its 
possible hkl sets. The stander d-values list is generated using a web based software [1], The 
sample-to-screen distance is 17.3 cm and the electron wavelength is 0.1237 A.

# Experimental
Calculated h k l

(d) (2 d)

[a] 0.955 1.910 0.963, 0.959 
2.033

2 0 3, 2 2 3 , 0 2  3 , 0 0 7 ,  1 0 1, 1 
1 1 , 0  1 1 , 1 0  2 , 1 1 2 , 0  1 2

[b] 0.709 1.418

0.713,0.711 
0.707, 0.704 
0.696, 1.342 

1.318

2 0 7, 2 2 7, 0 2 7, 3 0 0, 3 3 0,
0 3 0, 3 0 1, 3 3 1,0 3 1, 1 0 9,
1 1 9, 0 1 9, 3 3 2, 2 1 8 , 1 1 
8,1 2 8 , 0 0 5, 1 0 4, 0 1 4,1 1 
4,3  1 3 , 224,1  2 8,2 1 8,3 0 2

[c] 0.578 1.155
0.581,0.578 
1.157, 1.136 

1.119

3 1 8 , 3 2 8 , 2 1 8,2 3 8,1 2 8 , 1 3 
8 , 4 2 4, 2 2 4, 2 4 4, 4 1 3, 4 3 3, 
3 1 3, 1 3 3,3 4 3, 3 0 7,3 3 7,
0 3 7, 2 1 2, 1 1 2, 1 2 2, 1 0 5, 1
1 5,0 1 5,0 0 6 ,

[d] 0.765 1.532 0.756,0.758 
0.772, 1.544

2 1 7, 1 1 7, 1 2 7, 3 1 3, 3 2 3, 2 
1 3, 2 3 3,1 2 3, 1 3 3, 2 0 6 , 2 2 
6,0 2 6 ,1  0 3,1 1 3, 0 1 3,

[e] 0.673 1.345
0.691,0.677 
0.671,0.659 
1.342, 1.318

3 1 5, 3 2 5, 2 1 5, 2 3 5,1 2 5, 3 
0 3, 3 3 3, 0 3 3, 0 0 10, 2 0 8 , 2 
2 8 , 0 2 8 , 0 0 5, 1 0 4,1 1 4, 0 1
4

[g] 0.757 1.510 0.772,0.758
0.756,1.544

2 0 6 , 2 2 6 , 0 2 6 , 3 1 3, 3 2 3, 2 
1 3, 2 3 3,1 2 3, 1 3 3, 2 1 7, 1 1 
7, 1 2 7, 1 0 3,1 1 3 ,0  1 3,1 0 5

[h] 0.620 1.239
0.6280,0.6178

1.318,1.232
1 . 2 1 1

3 0 5, 3 3 5, 0 3 5, 3 1 7, 3 2 7, 
2 1 7, 2 3 7, 1 3 7, 1 2 7, 1 0 4,
0 1 4,1 1 4,2 1 0 , 1 1 0 , 1 2  0 , 2

1 1 , 1 1 1 , 1 2  1 ,
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Based on the pattern symmetry, the correct and consistence indexing o f the obtained 

graphite pattern is shown in Fig. B.2. The pattern is a cut through the 3D reciprocal 

lattice o f graphite as the electron beam passes through direction parallel to the axis o f the 

i l  0-zone. The pattern can be seen as a line o f  spots arranged in the n.l order with h = k  = 

n. Figure B.3 gives a selected area diffraction pattern (SADP) simulation o f graphite. The 

simulation was designed such that the electron beam is parallel to 1 1 0 -direction, x-axis is 

parallel to i  10-direction, 300 kV electron potential, and zero tilt angle in both x-and y- 

directions. Apparently, the obtained RHEED pattern is similar to the upper half o f the 

SADP simulation pattern with h replaced by -h.

226
*

224

222
*

116 006 116 226
■ ■ ■ •

115 115
• •

TF4 004 114 224
• * ■ •

113 113
• •

002 222
m •

000

FIG. B.2. Transmission RHEED pattern o f  clean graphite surface and its interpretation, the pattern 
represent a cut through the 3D reciprocal lattice o f  graphite as the electron beam passes through direction 
parallel to the axis o f  the 1.10-zone. It is clearly that the vector [002] is normal to the substrate surface. The 
pattern can be seen as a line o f  spots arranged in the n.l order with h=k=n. The 1./ rods seem to have spots 
with lower intensity than 2.1 rod.
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-3,3.4 

3.3.2 

3,3.0 

-3 .3 ,-?

*3.3.-4

FIG. B.3. Selected area diffraction pattern (SADP) simulation o f  graphite. The in put simulation 
parameters are: 110 is the zone axis, x-axis is taken to be parallel to 1.10-direction. The spot diameter is 
related to its simulated and expected intensity.

B.2. Indium

Indium showed diffraction RHEED patterns that are combination o f reflection and 

transmission. Figure B.4. shows RHEED pattern o f 16 ML indium film deposited at room 

temperature. The pattern can be seen as transmission spots arranged in rods normal to the 

surface with spots as if  they are located on a circumference o f  Laue rings. However, the 

indexing can be made in a transmission manner similar to that o f  graphite in the above 

section. The only difference is the presence o f double spots in the rods next to the 00 rod. 

Double spot diffractions normally results from overlapping o f  two crystals or grains 

whose lattice parameters are slightly different such as a precipitate embedded in a matrix, 

thin film on a substrate, lamellar twin, or thin foil that heavily bent and curved onto itself.
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FIG. B.4. Transmission RHEED pattern o f  16 ML indium film deposited at room temperature.
The pattern can be seen as transmission spots arranged in rods normal to the surface with spots as 
if  they are located on a circumference o f  Laue rings. The spot are labeled to be easy to refer to.

The distances to the origin, in cm, for several spots closest to the origin are 

measured and compared to that calculated using the standard cell parameters o f indium. 

The calculated d-values and its hkl indices o f the tetragonal indium are given in appendix 

B as calculated using “emaps” software [52]. The measured d-values and the possible hkl 

sets as compared to the calculated values are listed in Table B.2. The comparison gives 

rise to only one possible indexing o f the spot [a], which is 002. This makes the indexing 

of the other spots on the same rod, [b] and [c], easy. Remembering that the angle between 

the vectors from the origin to the spots [a], [b], and [c] are zeros, this contains the 

possible indexing sets in the {00/} sets. Therefore, the elected indexing o f the spots [a], 

[b], and [c] is 002, 004, and 006, respectively.
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Table B.2. Comparison between the measured and the calculated d-values o f  indium and its 
possible hkl sets. The stander d-values list is generated using a web based software [52], The 
sample-to-screen distance is 17.3 cm and the electron wavelength is 0.13232 A.

# Experimental Calculated h k l
d 2 d

[a] 2.482 4.965 2.46 0 0 2

[b] 1.215 2.430 1.23, 1.19, 2.46 0 0 4, 1 3 2, 0 0 2

[c] 0.804 1.608 0.82, 0.811,0.801, 0 0 6,3 0 5 , 04 4 , 1  52,
0.790,0.784, 1.62 1 1 6,2  5 1,3 3 4 ,0  2 2

[d1 ] 1.496 2.993 1.533, 1.527,1.382, 
1.366,3.05

1 0 3 , 2 2 0 , 0 3  1, 
1 3 0,1 10

[d2 ] 1.241 2.482 1.25, 1.23,2.46 1 2 3,0 0 4 , 0 0  2

[e1 ] 0.949 1.900 0.965, 0.959, 0.957, 
0.940,0.914,1.91

2 4 0,1 0 5 , 2 2 4 , 3  3 2, 
1 3 4,1 1 2

[e2 ] 0.843 1 . 6 8 6
0.85, 0.84, 0.82, 

1.798, 1.623
3 4 1,0 5 1, 1 5 0, 0 0 6 , 

1 2  1 , 0 2 2

[f] 1.257 2.514 1.29, 1.25, 1.23,2.46 2 2 2,1 2 3, 0 0 4,0 0 2

[g] 0.890 1.781
0.940, 0.914, 0.899, 
0.876, 0.850,1.915 3 3 2, 1 3 4 , 2 4 2 ,  1 43 , 3  4 

1,05 1 112, 1 2 1 , 0 2 21.798,1.62

[h]
0.722, 0.720,0.717, 0.709, 2 2 6 , 25  3, 0 6 0 ,  1 45,3 5

0.699 1.399 0.697, 0.693,0.691,0.683, 
1.382, 1.366

2,3 1 6 , 1 6  1,1 5 4, 1 0 7, 
0 6  2 , 2 6 0 , 0 3  1, 1 3 0

Because o f  the expected shrinking/expansion in the d-value o f plains causing the 

double spot, it is better to start indexing the spots [f], [g], and [h]. Either 002 or 004 is a 

valid indexing o f the spot [f]. This leave us with only two other possibilities; 222 and 123 

and hence two zone axis<l_10> and <210>. Using the zone equation to test the predicted 

sets for [g] gives 332 and 112 when <110> is used and 242 and 121 when <210> is used. 

Going further by testing these zones matches with the predicted sets o f  [h] eliminates the 

<210> since none o f the sets satisfy its equation. On the other hand, using the <110> axis 

show that 226 is a valid indexing o f [h]. In other words, the correct indexing o f the spots
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[f], [g], and [h] is 222, 224 and 226 respectively. Using a systematic indexing, the twin 

spots [d], and [e] can be indexed as 1 1 / where I is the horizontal distance from the 0 0 0 .

The transmission-RHEED pattern o f indium and its corresponding 3D indexing is 

shown in Fig. B.5. Also, an SADP simulation pattern o f the tetragonal indium with the 

electron beam parallel to 110-direction, x-axis is parallel to i  10-direction, 300 kV 

electron potential, and no tilting in the x-and y-directions is presented in Fig. B.6 . The 

lower half o f the SADP simulation pattern looks similar to the obtained RHEED pattern 

o f indium except at the 1 1 /, twinning direction.

000

FIG. B.5. Transmission RHEED pattern o f  indium and its corresponding indexing. The indexing indicates 
that the electron beam is passing parallel to the 110 direction and the pattern is a 3D cut o f  the indium 
reciprocal lattice taken in the 110-zone. The indexing also shows that the nanocrystals have twinning in the 
11/ direction.
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FIG. B.6. Selected area diffraction pattern (SADP) simulation o f  Indium. The spot diameter is related to its 
simulated and expected intensity.
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APPENDIX C

The ultrahigh vacuum system

The ultrahigh vacuum (UHV) chamber used in this work is a six-way 8 -inch 

stainless steal chamber. RHEED gun, RHEED screen, homemade evaporator, and XYZ- 

manipulator are assembled to four ports o f it, while the other two ports are used to 

connect the vacuum pumps and other accessories. Fig. C .l shows a schematic illustration 

o f the main components o f the used system. Nanocrystals preparations and RHEED 

studies were performed after reaching a UHV of base pressure better than mid xlO ' 9 Torr.

V2 high vacuum valve
To the turbo Molecular 
and me chanic al pump s

VI ultra hi$i vacuum valve
■V3 gas leak valve

]
cor

Evaporator

XYZ manipulator
RHEED screen''

I on pump

FIG. C . l . A schematic illustration o f  the used system.
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C.l. Pumping the system down

1. Start up the mechanical pump and a few minutes later turn on the turbo 

molecular pump.

2. Make sure that V I and V2 are opened and V3 is closed.

3. For better operation, make sure that the exhaust hose o f  the mechanical pump is 

not pended in anywhere.

4. Leaving the turbo pump packed by the mechanical pump working for couple o f 

hours till the pressure decreases to a value between the mid to the low 10' 7 Torr.

5. After reaching such vacuum, one might start bake the system for about 4-8 

hours at a temperature between -120  160° C.

6 . After cooling the system to room temperature, 3-6 hours, close V I, and then 

start the ion pump.

7. Turn o ff the turbo pump and then the roughing pumps after making sure that 

the ion pump starts working properly.

8 . Within 12-24 hours, the system should reach a value between mid and low 10' 9 

Torr and the vacuum will improve with time.

C.2. Opening the system

1. Shut o ff the ion pump and turn on the roughing pump followed by turning the 

turbo pump on while VI is closed.

2. After reaching a considerably low pressure in the region above V I, open VI 

gradually.

3. After a few minutes, close V2 and turn off the turbo and mechanical pumps.

4. Use V3 to allow a very small rate o f argon or N 2 gas to get into the chamber.

5. Stop argon flow when the pressure inside the chamber reaches low 10' Torr. 

Do not over pressurize the chamber.

6 . Open the chamber gradually and allow a gradual balance between the pressure 

inside and outside the chamber.
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APPENDIX D

Image capture and analysis

Charged coupled devise (CCD) camera is used to capture the RHEED images. 

The camera is controlled through KSA300v5 software operated using a DOS operating 

system. An upgrade o f  this KSA, KSA400v5, is used for data analysis. Below is a step- 

by-step procedure to capture and perform analysis for RHEED pattern.

D.l. Focusing the camera

1. Restart the computer controlling the camera in MS-DOS mode, and run 

the KSA300v5 program by typing the command “cd\rheed” then hit enter 

and “ksa300v5” then hit enter twice.

2. From the header menu o f the program select “(D)isplay\(p)assthru”

3. The camera monitor will show a black video o f  the captured view o f the 

camera. An indirect faint light source can be used to help find the best 

image.

4. Use the telescope lens (in the camera) to adjust the aperture opening and 

the focus. Also, you may move the camera back and forth until the best 

image is obtained.

D.2. Image capture

The KSA 400 is an integrated hardware and software system designed for the 

acquisition, archiving, and analysis o f  RHEED and LEED diffraction patterns. Images 

can be captured manually as a single image or automatically as multi-image acquisition.

Single image mode

1. From the (A)cquistion menu, select “Single Image mode”, then hit enter.
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2. Select the integration time you want, based on the image quality, as 

integer numbers o f (1/30) sec

3. After hitting enter twice, the captured image will appear on the monitor 

and the program will ask you if  you want to save the image. Type Y, for 

yes, and N, for no.

4. Repeat the above steps for capturing another image.

Multiple-image mode

1. From the (A)cquistion menu, select “Multiple Image mode”, then hit 

enter.

2. Select the number o f images, integration time, delay time between images, 

and final base name.

3. After hitting enter, the program will capture the image and save them 

automatically in the specified subdirectory.

D.3. Image analysis 

Line scan and spot profile

1. Run the program and open the image to make it the currently activated 

image.

2. Select Line Profile from the Analysis menu. A line will appear on the 

image, also a corresponding plot o f the line profile as shown in Fig. D .l 

will open in another window.

3. Move the line by dragging it with the mouse. As you move the line, the 

line profile is automatically updated. By dragging the ends o f the line, the 

orientation and length o f the line may be changed.
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4. A specific line length, position, and angle may b.e specified by double 

clicking on the line, or right clicking the line and selecting Properties.

5. Any number o f line profiles may be displayed on a given image.

6 . The line profile plot may be copied to the Clipboard (by selecting 

Edit/Copy or <Ctrl-C>). Alternatively, the line profile data may be stored 

to an ascii-text file by selecting “Export” from the “File” menu to export 

the chart.

FIG. D. l .  Typical line scan analysis window using KSA400 software. For the line length 
and position, one might drag the line it self or use the line “Properties” options.

Measuring the FWHM

This operation may be used to analyze both static diffraction images and movies.

1. Open the image to be analyzed.

2. Select the “FWHM/coherence length” from the “Analysis” menu.

3. The software will show a 2D graph o f the FWHM versus the pixel 

number within the specified square. Drag the square to the spot location 

and/or use the “Properties” option o f the square to make it coincide with 

the spot.
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4. M easuring the FWHM o f any RHEED spot can also be performed 

manually from the line scan across the spot.

D.4. Recording the temperature

The temperature is measured using a HH506R digital thermometer, which is 

compatible with either K, J, R  temperature sensors. The device is interfaced with the 

computer through an RS 323-C optical interface. Very simple software is used to acquire 

the temperature data (one reading per sec minimum) and sort them in an Excel work 

sheet.

D.5. Semi-automated melting and solidification data collection

By synchronizing the image and the temperature acquiring while controlling the 

heating rate, two independent files can be extracted to relate the image and the 

temperature during the melting and solidification experiment in a semi-automated data 

collection. The heating and cooling rates must be controlled such that the total size o f the 

acquired images during the experiment does not exceed the available space on the 

computer. Also, the time delay between accusations must be higher than the minimum 

time necessary to store the file, either temperature reading or RHEED image, on the 

computer. This time must be larger than 2 seconds. In case o f no further analysis on the 

image is required, measuring the intensity o f  a particular spot during the experiment is 

efficient.
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