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It has been observed that atmospheric neutrons can produce single-event upsets 

in digital flight control hardware. Potentially, they can reduce system performance 

and introduce a safety hazard. One experimental system-level approach investigated 

to help mitigate the effects of these upsets is NASA Langley’s Recoverable Computer 

System. It employs rollback error recovery using dual-lock-step processors together 

with new fault tolerant architectures and communication subsystems.

In this dissertation, a class of stochastic hybrid dynamical models, which consists 

of a jump-linear system and a stochastic finite-state automaton, is used to describe 

the performance of a Boeing 737 aircraft system in closed-loop with a Recoverable 

Computer System. The jump-linear system models the switched dynamics of the 

closed-loop system due to the presence of controller recoveries. Each dynamical 

model in the jump-linear system was obtained separately using system identification 

techniques and high fidelity flight simulation software. The stochastic finite-state au

tomaton approximates the recovery logic of the Recoverable Computer System. The 

upsets process is modeled by either an independent, identically distributed process 

or a first-order Markov chain.
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Mean-square stability and output tracking performance of the recoverable flight 

control system are analyzed theoretically via a model-equivalent Markov jump-linear 

system of the stochastic hybrid model. The model was validated using data from 

a controlled experiment at NASA Langley, where simulated neutron-induced upsets 

were injected into the system at a desired rate. The effects on the output tracking 

performance of a simulated aircraft were then directly observed and quantified. The 

model was then used to analyze a neutron-based experiment on the Recoverable 

Computer System at the Los Alamos National Laboratory. This model predicts that 

the experimental flight control system, when functioning as designed, will provide 

robust control performance in the presence of neutron-induced single-event upsets at 

normal atmospheric levels.
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1

CH A PTER  I 

INTRO DUC TIO N

This dissertation analyzes the output tracking performance of an aircraft in 

closed-loop with a recoverable flight control system, that is subjected to neutron- 

induced upsets. A mathematical model is proposed to calculate the stability bound

ary and output performance of the closed-loop system. The model is then validated 

via experimental data obtained from a simulated-neutron environment. The vali

dated model is finally used to analyze data collected from a real neutron experiment. 

The main conclusion of the dissertation is that the recoverable flight control sys

tem, when functioning as designed, will provide reliable control performance in the 

presence of neutron-induced single-event upsets at normal atmospheric levels.

This chapter is organized as follows. Section 1.1 provides the background and 

motivation for this dissertation. In Section 1.2, a literature survey is provided. Sec

tion 1.3 states the primary research goals of this dissertation. Section 1.4 outlines 

the main mathematical notation (see also the List of Symbols on pages xiv-xv). 

Section 1.5 outlines the basic structure of the dissertation.

1.1 BA C K G R O U N D  A N D  M OTIVATION

When cosmic rays collide with oxygen and nitrogen atoms in the earth’s up

per atmosphere, free neutrons are produced with energies varying from 1 MeV to

1This dissertation follows the style of the IEEE Transactions on Automatic Control for placement 
of figure titles, placement of table titles, and the format of bibliography.
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1 GeV [1,2]. For altitudes less than 60,000 ft, the higher the altitude, the higher the 

neutron flux and energy [3]. When a neutron passes through a solid state device, 

it has been observed that stored electric charge can be locally redistributed, which 

may cause a single-event effect (SEE). SEE’s can be classified into three categories 

according to the duration of the phenomena: single-event burnout (SEB), single

event latchup (SEL), and single-event upset (SEU) [4]. SEB’s are failures which 

cause “permanent” damage to hardware, for example, a frozen bit in a register or 

random-access memory that cannot be cleared by recycling the power. SEL’s are 

errors that can usually be corrected if the hardware is reset or refreshed in some 

manner. For example, a short circuit between the power supply and ground of para

sitic bipolar transistors of bulk CMOS (Complementary Metal Oxide Semiconductor) 

technologies triggered by a local charge deposition from a traversing particle is an 

SEL phenomenon. SEU’s are errors which are transient and nondestructive, for ex

ample, a temporary bit flip in a memory cell from a binary “one” to a “zero” or vice 

versa. If a sequence of such bit errors is not detected and corrected, it can cause sys

tem errors and reduce closed-loop performance. This phenomenon has been studied 

extensively at the component level by semiconductor manufacturers [5-7]. In this 

context, both analytical models and data are available to provide SEU probability 

estimates under a wide variety of circumstances. In contrast, at the system level, 

the problem has not received much attention. In [8,9], the effect of upsets on system 

stability was studied for a few fault tolerant architectures. However, at the present 

time no performance analysis studies are available.

As more commercial aircraft control systems and avionics are implemented using 

embedded digital hardware, SEU’s have recently come to the attention of the Federal
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Aviation Administration (FAA) as a potential safety hazard. In response, a program 

has been developed by the NASA Langley Research Center with the general goal of 

quantifying the nature of the risk and to produce guidelines for the aerospace industry 

and chip manufacturers. As part of this program, this dissertation investigates the 

effects of atmospheric neutrons on system-level performance of commercial aircraft 

with experimental flight control hardware in the loop. While a variety of different 

technologies were tested in the NASA program, the focus here is exclusively on an ex

perimental Recoverable Computer System (RCS) developed by Honeywell, Inc. The 

error recovery system in this prototype device is implemented using dual-lock-step 

processors together with new fault tolerant architectures and communication subsys

tems [10,11]. It has most recently been used to study recoveries from transient faults 

introduced by high intensity electromagnetic radiation [12,13]. The error recovery 

technique implemented on the RCS is a variation of rollback recovery [14,15]; it has 

the following steps: checkpointing, fault tolerant comparison, rollback, and retry. 

During a checkpoint, the state of each microprocessor module is stored. When an 

upset is detected, rollback of both microprocessor modules to a previous checkpoint 

takes place, and then the system is allowed to proceed with normal execution. Fig. 1 

shows the architecture of the duplex fault tolerant RCS [12,13,16]. In a digital flight 

control application, once the execution of the normal control program is interrupted, 

the execution of a different control law takes place, one that has significantly different 

dynamics and is on a time scale that can alter the overall closed-loop dynamics. The 

behavior of a recoverable system can be modeled as a two-mode switched system. 

If there is no upset detected, the system operates in its nominal mode. When the 

controller is executing a rollback recovery, the system is in its recovery mode. A
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Trigger
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Data
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Data

\  Protected Memory 

Fig. 1. Architecture of the duplex fault tolerant RCS.

conceptual diagram of the RCS in a closed-loop configuration is shown in Fig. 2.

To better understand the performance of the RCS in a radiation environment, 

mathematical models and performance criteria are needed. If the upset process 

is(k) is an rth-order Markov chain, where r  G {0,1} (see [17,18]), and the rollback 

recovery process of the RCS is modeled via a stochastic finite-state automaton (SFSA) 

(formally defined in Definition II. 1 on page 36), then the recoverable flight system 

can be modeled using the stochastic hybrid model shown in Fig. 3. Since the output 

process of an SFSA is not a Markov chain in general, the hybrid system may not 

be a Markov jump-linear system [19]. This is unfortunate since Markov jump-linear 

systems have been well studied in regards to their stability (see, for example, [20]) and 

performance (see, for example, [21]). Motivated by this fact, it will be necessary in 

Chapter II to identify an equivalent Markov jump-linear model suitable for stability 

and performance analysis of the hybrid system.

Throughout the dissertation, the output performance criteria, output power and 

output energy, are considered for the following reasons:
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Fig. 2. A conceptual closed-loop flight control system with a recoverable flight 
control computer.
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Fig. 3. The stochastic hybrid model consisting of a switched system driven by an 
SFSA.
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(a) Output signals can be easily measured in experiments. For example, the altitude, 

calibrated airspeed, and tracking angle are generally available as system outputs. 

On the other hand, the dynamic states of a system are not always available and 

difficult to estimate, since the closed-loop system is nonlinear and highly coupled 

internally.

(b) Controller design problems are not considered in this dissertation. Instead, per

formance analysis is used to understand the behavior of RCS hardware with a 

fixed control law in an experimental setting. Therefore, it is not necessary to 

include the states and control signals in the performance criteria.

The basic idea behind the calculation of the output performance for a recoverable 

system follows from considering a simple deterministic, discrete-time linear system

Assume the system (la) is asymptotically stable, that is, the spectral radius of 

A  is strictly less than one. Then system (1) has a finite output energy, Jo

x(k  +  1) =  Ax(k),  x(O) =  Xq (la)

y(k) = Cx(k). (lb)

YlkLo ||l/(^)i|2) which can be expressed via the observability Gramian, W0, and initial

condition, x 0, as

00 OO

k= 0 k = 0
oo

=  Y  (Cx(k))TCx(k )
k = 0

= Y x o (AT) h CTCAkx0
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=  tr  (X0Wo) ,

where X 0 := x 0 X q ,  and WQ := YlkLo {AT) k CTC A k is the observability Gramian (see, 

for example, [22]). If xo is a second-order random variable x 0, then system (1) is 

a stochastic system with a finite mean output energy Jo := E  {Y^'kLo ||^ (^)||2} =  

tr^XoW o), where X0 E  { x o*o}. By extending this idea to stochastic hybrid

models, it is shown in the dissertation how to express both output energy and output 

power of such systems in terms of a generalized observability Gramian (see Chap

ter IV, Section IV.2). The results of this analysis are central to analyzing RCS 

performance in a real neutron environment.

In parallel with the theoretical studies, the performance of a simulated aircraft 

system in closed-loop with an RCS was evaluated experimentally in a real neutron 

environment. Of course, it is difficult to test any electronic device in an atmospheric 

neutron environment because of its low neutron intensity. Therefore, a set of high in

tensity (accelerated) neutron experiments was conducted at the Los Alamos Neutron 

Science Center (LANSCE) in Los Alamos, New Mexico. A conceptual diagram of the 

testbed is shown in Fig. 4. A beam of free neutrons was directed through a flux sensor 

at the device under test, in this case the RCS. The energy spectrum of the neutron 

source is shown in Fig. 5. Its shape is very similar to that produced by atmospheric 

neutrons, but the flux is five to six orders of magnitude higher. The RCS in this con

figuration ran a control program which processes outputs from a Boeing 737 flight 

simulation system running on a separate host computer. The RCS generated the 

appropriate control signals to the aircraft simulation model for maintaining straight 

and level flight at a cruising altitude of 34,000 ft. This interconnection between
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Flight Control Barrier
Flux Sensor ComputerBeam Source

Data Acquisition Flight Simulation
Host Computer Host Computer

Fig. 4. The testbed for the LANSCE experiments.
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Fig. 5. The neutron energy spectrum at LANSCE in December, 2002.
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the RCS and the flight simulation host computer constitutes a closed-loop feedback 

control system, which was the unique feature of these experiments. Under nominal 

conditions, i.e., no neutrons, this system regulates the aircraft heading and orienta

tion very well, even under 1 ft/sec (light) winds and gusts which can be introduced 

into the simulation model. The data acquisition system was maintained on a third 

computer system. It collected the flight data from the simulation as well as the mea

surements from the flux sensor for off-line analysis. Should the aircraft deviate from 

the nominal flight path at any time, it was possible to determine the total radiation 

dose the RCS received up to that instant. When neutrons collide with the RCS, 

the specific effects of any disturbance will depend on the particular internal hard

ware affected and how effective the rollback recovery mechanism functions in this 

environment. Since this was an accelerated neutron experiment, the upset rate was 

expected to be much higher than that observed in an atmospheric neutron environ

ment. Correspondingly, the output tracking power of the flight system in closed-loop 

with an RCS should also be much higher than that from the atmospheric neutron 

environment. In order to predict the output tracking performance under atmospheric 

conditions, the mathematical performance models were used to extrapolate the Los 

Alamos data (a conceptual example is shown in Fig. 6). This is viewed as the central 

contribution of the dissertation.
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Los Alamos SEU 
Operating Point

Q.

o>

CL Atmospheric SEU 
Operating Point

Upset probability

Fig. 6. Output tracking power as a function of upset probability for both at
mospheric and accelerated neutron conditions.

1.2 LITERATURE SURVEY

1.2.1 Single-Event Upsets: Fault D etection  and Correction

Although SEU’s are soft faults and nondestructive to digital devices, they can 

degrade the performance of a system. For digital systems with high reliability and 

safety requirements, such as flight control systems, the SEU phenomenon is a po

tential threat. SEU’s mainly occur in space applications due to the abundance of 

cosmic rays, trapped protons, and solar event particles [23,24], However, in an envi

ronment with high energy thermal neutrons and a-particles, even some ground level 

applications, such as devices comprised of large digital memories, like bank servers 

and communication servers can experience SEU’s [24,25]. Most studies on fault tol

erance and SEU phenomena are focused at the component-level, especially for static
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random-access memories (SRAM’s), field-programmable gate arrays (FPGA’s), and 

integrated circuits (IC’s). See, for example, [26-29] and the references therein. The 

existing fault tolerant techniques include memory scrubbing, triple modular redun

dancy, crossparity checks, error detection and correction (EDAC), etc.

As described in [30], a component-level approach may not always compensate the 

system properly, because it does not take into account the fact that:

1. upsets can be multiplied within individual devices;

2. upsets can propagate between interconnected devices;

3. the performance of various software sets may not take into account fault toler

ant routines.

Therefore, it is necessary to perform system-level compensation, analysis and testing. 

There are many system-level fault tolerant techniques described in the literature. 

In [31], an algorithmic-based fault tolerance (ABFT) is proposed which has a low level 

of hardware and time redundancy. In [32,33], both duplex and triplex fault tolerant 

architectures are presented.. In [34], system-level recovery approaches are categorized 

as recovery via re-initialization, recovery via temporary storage and recovery via a 

dedicated data link. A detailed performance evaluation of each rollback recovery 

technique is given in [15]. In this dissertation, the prototype experimental system, 

the RCS, is implemented using a duplex fault tolerant system with rollback recovery 

techniques via temporary storage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

1.2.2 Markov Jum p System s: A pplications, Stability and Perform ance

As discussed in [35], hybrid dynamical models usually include two components: 

one component embodies the system dynamics and the other executes the decision 

making-process. The system dynamics can be either continuous-time or discrete

time or a mixture of both. The decision-making process might be realized by a 

discrete-event system such as a finite-state machine (FSM) or a Markov chain, which 

can affect the trajectory of the system dynamics. On the other hand, the system 

dynamics may or may not affect the decision making. Hybrid dynamical models find 

wide usage, for example, in disk drive and stepper motor applications [36,37]. If the 

system dynamics and/or the decision-making process is stochastic, then the hybrid 

system is called a stochastic hybrid system. A formal mathematical definition is 

given below:

D efinition 1.1. [38, 39] A stochastic hybrid system is a collection f) =

(Q, X, Dom, 0 ,0 , Init, G, R ), where

•  Q =  {<7i> 0.2 , • • •} is a countable set representing the discrete state space;

•  X =  R" is the continuous state space, where IRn is the n-dimensional real vector 

space;

• Dom : Q —► 2X assigns to each q G Q an open subset of X, where 2X denotes 

the power set (that is, set of all subsets) of X;

• 0, ip : Q x  X —» Mn are vector fields, where x) and ip(q, x) are bounded and 

Lipschitz continuous at x £ X. This ensures that for any q e  Q, the solution
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of dx(t) — (j>(q,x(t)) dt + ip(q,x(t)) dWt exists and is unique when Wt is a 

one-dimensional standard Wiener process;

•  Init : ®(Q x X) —>• [0,1] is an initial probability measure on (Q x X, ®(Q x X)) 

concentrated on (JgeQ x Dom(<7)}, where ®(Q x X) is the Borel cr-algebra 

of Q x X;

•  G : Q x Q —> 2X assigns to each (q, q) G Q x Q a guard G (q, q) C X such that

-  For each (q, q) £ Q x Q, G (q, q) is a measurable subset of d  Dom(g) 

(possibly empty), where 5Dom(g) denotes the boundary of Dom(g) in X;

— For each q G Q, the family {G (q, q) \ q G Q} is a disjoint partition of 

dDom(g);

•  i ? : Q x Q x X - »  P(X) assigns to each (q, q) G Q x Q and x £ G (q,q) a 

reset probability kernel on X concentrated on Dom (q). Here P(X) denotes the 

family of all probability measures on X. Furthermore, for any measurable set 

A C Dom (g), R  (g, q, x) (A) is a measurable function in x.

One special class of stochastic hybrid systems is the Markov jump-linear system. 

In this case, the system dynamics are produced by a linear system, and the decision

making process is realized by a Markov chain. The well-known properties of Markov 

chains often make it is easier to analyze the stochastic stability and performance of 

a Markov jump-linear system. Thus, considerable research has been conducted on 

many system theoretical problems: stability and stabilization, i f 2 and/or control, 

controllability and observability, estimation and identification, etc. Many of these 

references are provided in [40]. In this dissertation, only the stochastic stability and
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output performance of Markov jump-linear systems are relevant. In [20,41-46], stabil

ity of a Markov jump-linear has been studied extensively for both the continuous- and 

discrete-time cases. The main method employed in this body of work is a stochastic 

version of Lyapunov’s second method, i.e., a set of coupled Lyapunov equations. For 

Markov jump-linear system, both sufficient and necessary stability conditions have 

been obtained. Most performance criteria are given in the context of controller design 

(see, for example, [46-49]). One exception is [50-52], where networked control sys

tems with Markovian dropouts are studied. In these papers, an output performance, 

the power semi-norm of the output signals, is used to describe how to relate system 

performance to the data dropout rate through the autocorrelation of the output sig

nals. A generalized version of this output performance criteria will be considered in 

this dissertation.

Markov jump-linear systems have been applied to a variety of applications. For 

example, air-launched uncrewed air vehicles (UAV’s) are studied in [53]. For clear 

and safe separation, UAV’s are often released with their wings folded. However, as 

they begin a significant glide slope maneuver, the wings are deployed. The “folded” 

and the “deployed” modes have much different dynamics and form a switched process, 

which can be modeled as a Markov jump-linear system. In [54], a solar energy plant 

is used to heat the water in a boiler. The water flow is regulated according to the 

atmospheric conditions, i.e., whether it is a sunny or a cloudy day. The atmospheric 

conditions can therefore be modeled as a two-state Markov chain: “sunny” and 

“cloudy” . In [55], a Markov jump-linear system is used to model a macroeconomic 

policy problem. Specifically, in a time-variant macroeconomic model, certain model 

parameters are allowed to fluctuate according to a Markov chain. One simplified

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

case involves three modes: “bad” , “neutral” , and “good” . Each mode represents a 

measurable state of the economy. Simultaneously, a second Markov chain is used to 

model the policy modes used by policy makers: “neutral” , “Keynesian” , and “classic” 

with a fixed probability transition matrix.

A particularly relevant application to this dissertation is described in [56]. Here 

a Markov jump-linear system is used to analyze the effects of random interruptions 

in feedback due to a non-ideal communication system network. The system has two 

modes: one in which the packet from the sensor is received with a probability 7T0, and 

the other in which the packet is lost with a probability 7Ti =  1—n0. In this application, 

the switching signal is actually an independent, identically distributed (i.i.d.) process. 

For the communication system in [57], a Markov jump-linear system is used to model 

a network of single-integrator agents where the communication/sensing topology is 

subject to Markovian fluctuation.

1.2.3 Stochastic F in ite-State A utom ata

In this dissertation, an SFSA is used to model the rollback recovery processes 

of the RCS. SFSA’s are a type of probabilistic finite-state machine. A detailed 

review of their properties appears in [58]. Stochastic automata have been applied 

in a variety of areas. In [59], a stochastic automaton is used to model a quantized 

system, where each state of the automaton models an event produced by a quantizer, 

and the input symbols of the automaton are used to represent a discrete input signal 

for the injector. This automaton is called an abstraction of the quantized system. 

In [60], an SFSA is used as a simplified model of a linear time-invariant system, and 

its robustness with respect to the error of such approximation is analyzed. W ith slight
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modifications to the definition, SFSA’s are also widely used in modeling language 

behavior and machine translation [61,62]. In [63], two algorithms are presented 

which check properties written in a simple probabilistic real-time logic against a 

given stochastic automaton. A special type of SFSA’s is an FSM. In this case, the 

transition from the current state to the next state is deterministic if the current state 

and current input to the automaton are given.

In general, when the input process of an FSM is a Markov chain, neither its state 

nor output process is a Markov chain [19,64], However, it is known that the input- 

state cross product process is Markov when the input process is Markov [19,64,65]. 

This is relevant to the research presented in this dissertation because this proposition 

can be extended to an SFSA. Thereafter, the stochastic hybrid model can be made 

model-equivalent (formally defined in Definition II.9 on page 53) to a Markov jump- 

linear system. A collection of well-established stability and performance analysis 

tools for Markov jump-linear systems can then be used to analyze the flight control 

system in closed-loop with an RCS. In Chapter II, these properties will be extended 

nontrivially to a general SFSA.

1.3 PROBLEM  STATEM ENT

The main objectives of this dissertation are to solve the following problems:

1. To synthesize appropriate mathematical models for a Boeing 737 in closed-loop 

with a digital controller implemented with an RCS. This involves modeling the 

aircraft system with and without active rollback recovery processes, the upset 

generating process, and the external wind disturbances.
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2. To build a class of stochastic hybrid models via the mathematical models ob

tained in item 1  which can be used to analyze the output tracking error.

3. To develop stability and output performance theory for these stochastic hybrid 

models.

4. To apply these theoretical results to predict the tracking performance of the 

Boeing 737 in closed-loop with the RCS subject to neutron-induced SEU’s.

5. To validate these predictions with experimental data obtained from a simulated 

neutron environment at NASA Langley Research Center.

6 . To process performance data derived from real (accelerated) neutron tests con

ducted at LANSCE.

7. To estimate the performance effects of SEU’s on the aircraft’s control system 

when it is implemented in an RCS under normal atmospheric conditions using 

the theory developed in item 4.

1.4 M ATHEM ATICAL NOTATION

The mathematical notation used throughout this dissertation is largely consistent 

with [66,67]. Random variables are denoted in bold italic fonts. The symbol Z+ 

denotes the set of all non-negative integers. N is the set of all natural numbers. 

M (Mn, Rm) denotes the linear space of all m  x n real matrices. M (Mn) is the normed 

linear space of all n  x n  real matrices. The subset of all symmetric positive semi- 

definite matrices is M (R ra)+. =  {V  = (Vi, V2, . . . ,  Vk ) : U € M(Mn)} will be 

used to denote the space of all A-tuples of n  x n  real matrices. If every V of a given V
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in Wk  is positive definite or positive semi-definite, this is indicated, respectively, by 

V  > 0 and V  >  0. Mn+ denotes the set {V  e W K : V >  0}. For U = (Uu U2, . . . ,  UK) 

and V  = (Vi, V2, . . . ,  Vk ) in H^+, the notation U < V  (U < V )  denotes that U% < V  

(Ui < V)  for every i — 1 , . . . ,  N.  Given U, V  G the inner product on is 

defined by
N

(U,V) = Y , t s ( V ? V i )  ,
i= 1

and ||V | | 2 =  (V,V)  is the induced norm squared of V. (|| • || will also be used for 

representing the standard norm on f n.) B (H^-) is the space of all bounded linear 

operators on EF  ̂ under the induced operator norm

v#o \\v\\

where £  € ra(£) is used to denote the spectral radius of £ , specifically,

II -r ff(£) =  linifc^oo ||£ fc ||k for k G N. A summary of the symbols used in this dissertation 

appears on pages xiv-xv.

1.5 DISSERTATION O UTLINE

This dissertation is organized as follows. In Chapter II, the methodology for 

modeling a recoverable flight control system is presented in detail. There are three 

basic modules to consider: the aircraft dynamics, the Dryden wind gust filters, and 

the rollback recovery logic. The models for the aircraft system with the Dryden wind 

gust filters and control system (normal and upset) will be identified using a high 

fidelity flight simulation system. The rollback recovery process will be approximated 

by an SFSA. The final stochastic hybrid model is built by cascading these models 

as shown in Fig. 2. Because the input-output cross product process of an SFSA can
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be proven to be a Markov chain, when the input process is also a Markov chain, a 

model equivalence theory and the theory of Markov jump-linear systems will be used 

to analyze the recoverable system.

In Chapter III, the mean-square stability of a hybrid system is analyzed by study

ing that of an equivalent Markov jump-linear system. A variety of definitions of 

stochastic stability are considered. Under certain assumptions, it can be shown that 

some of these definitions are equivalent. The main empirical task in this chapter is 

to apply the analytical tools to determine the stability region of the hybrid system 

modeling the recoverable aircraft system.

In Chapter IV, the output performance criteria, mean output power and mean 

output energy, are considered. The main theory needed for the calculation of the two 

criteria is presented in detail. Using these results, a prediction of the mean output 

tracking error power due to the presence of SEU’s in the aircraft system is calculated.

In Chapter V, two experiments are described. One experiment was conducted at 

the NASA Langley Research Center under a simulated neutron environment. The 

SEU’s were triggered using predetermined Markov chains. This experiment was used 

to validate the hybrid model and the stability and performance prediction tools. 

The second experiment involved the real neutron environment at Los Alamos. The 

output performance data from this experiment is used to produce output performance 

predictions for normal atmospheric conditions.

In Chapter VI, main conclusions are summarized, and future research topics are 

given.
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C H A PTE R  II

M ODELING RECOVERABLE DIGITAL FLIGHT  

CONTROL SYSTEM S

In order to analytically evaluate the stability and performance of the recover

able digital flight control system described in Chapter I, a mathematical model is 

needed to describe these experiments. The system under consideration consists of 

three main subsystems: the linear (open-loop) aircraft dynamics (Ap, B P,CP), a set 

of Dryden wind gust shaping filters, and the digital control system, which is as

sumed to be implemented with an RCS. A simplified view of the system structure is 

shown in Fig. 7. The actual system is complex, highly interconnected and nonlinear. 

Therefore, a major task here is to synthesize a simplified, linear representation of the 

recoverable flight system [68,69].

This chapter is organized as follows. First, a conceptual model for each of the 

three subsystems is presented in Section II. 1. It serves as guide for the practical model 

that needs to be synthesized. In Section II.2, it is shown that these models are not 

in some instances directly available nor simple enough for the stability and output 

performance analyses to be presented in Chapters III and IV. Thus, some central 

modeling approximations are proposed which will lead to the primary mathematical 

model for the recoverable closed-loop system. In the subsequent three sections, this 

model is developed. Specifically, in Section II. 3, linear models for both the nominal 

and the recovery modes are obtained via system identification. Section II.4 describes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

w(k)

Aircraft Dynamics

r(k)

Recovery System

Dryden
Filters

Controller
Dynamics

Upsets

Fig. 7. A simplified view of the Boeing 737 in closed-loop with an RCS.

the modeling of the rollback recovery process using SFSA’s. Section II.5 describes 

how to integrate the models obtained from the previous two sections to produce a 

stochastic hybrid system. Some Markov characterizations of the input and output 

processes of SFSA’s and model-equivalent Markov jump-linear systems of the hybrid 

system are also discussed in this section. Finally, the chapter is summarized in 

Section II.6 .
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11.1 A C O N C EPTU A L M ODEL OF TH E RECO VERABLE  

BO EIN G  737 CONTROL SYSTEM

In this section, the three subsystems in the recoverable Boeing 737 control system 

shown in Fig. 7 are characterized with mathematical models that are more conceptual 

than practical. But these models are important as they guided most of the real model 

development.

11.1.1 The Aircraft D ynam ics o f a B oeing 737

The Boeing 737 aircraft control system under consideration maintains straight 

and level flight at a cruising altitude of 34,000 ft and at a speed of 0.78 Mach. The 

aircraft’s discretized linear state space model is the deterministic system

Xp(k T 1) — Ap3?p(A:) B pUp(k)

Vp(k) = CpXp(k),

where the input up(k) is a vector of seven control signals: engine thrust (lb); sta- 

bilator position (pilot units); aileron, elevator, and rudder deflections (deg); and 

left/right spoiler deflections (deg). x p(k) is the plant’s state vector, which contains 

states defined in either the aircraft body reference frame or the earth inertial ref

erence frame. In the body frame, ten states are defined: forward, side, and down 

velocities (ft/sec); roll, pitch, and yaw angles relative to the inertial frame (rad); roll, 

pitch, and yaw angular velocities (rad/sec); and altitude above mean sea level (ft). In 

the inertial frame, eight states are specified: latitude and longitude (deg); velocities 

to the north, east, and downward (ft/sec); and accelerations to the north, east, and 

downward (ft/sec2). yp(k) is the output vector of the aircraft model, which in this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

dissertation is taken to be the altitude of the aircraft (ft), the track angle (deg) and 

the calibrated airspeed (kt).

The controller in principle can be modeled under the given flight conditions by 

a linear output feedback control law with state space description (Ac, B c,Cc, Dc). 

Letting A p := A p — B pDcCp and r(k) =  0, the nominal closed-loop plant (Ac\, B ci, Cc\) 

has the form

A P ~ B pCc I

II

r -|

, Bc\ = Cp 0

BcCp n i 0 L -1

where I  is an identity matrix. But as will be discussed in the next section, the control 

law was not directly available. Thus, a system identification procedure was employed 

with the help of a high fidelity Boeing 737 Simulink model [70].

II.1.2 The Dryden W ind G ust M odel

Winds and gusts in this application are typically modeled by white noise, w(k),  

passed through Dryden shaping filters to produce random processes having the spec

tral densities:

q (, _  - 2  1 +  3(Lvu)/V0)2
v«( J v 2nVo [ 1  +  (Lvu)/Vo)2]2 

q ( \   2 -̂ w 1 +  3(Lwo;/Vp) 2

Y,s{UJ)~ ^ 2 n V 0 [i + { L ^ / V Qy f

where the subscripts “u” , “v” and “w” represent the forward, side, and down 

components in the aircraft body frame, respectively, and ug, vg and wg represent 

the corresponding wind and gust velocity components [70]. u> is the angular fre

quency (rad/sec); a is the root mean square gust magnitude (ft/sec); L  is the length
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scale for the gust velocity (ft); Vq is the magnitude of the apparent wind velocity 

from the motion of the aircraft relative to the air mass (ft/sec). Let 7  € {u, v, w} 

and 5 E {v, w}. Define the parameters:

n - =

Vo
v

1
m

(1 d7 )

d7  — exp (—/37 T)

bsy    ̂1 dsy ̂
P'y

js  =  _  ^)>

where T  is the sample period. Then the corresponding discrete-time transfer func

tions for the shaping filters can be expressed as

w„(z

5"v,C
W ,(z

^Wg(^

/ 2 au -)- 6u2:
=  f A  • 1  -  duz - i

/  3  _ Gty “h 6y,£ Zy ~f" j y Z
=  o - v y  y P v  • • 1  _  ^ - 1

a™ T A*
aw +  M  1 «w + j v

1  — 1  — gL^ - 1  ’

Their discrete-time state space representations are given by

x g(k +  1) =  A gx g(k) + B gw(k)  

y J k )  =  Cgx g(k) +  Dgw ( k ),

(3a)

(3b)

with A g = diag(AUg, A Vg, A Wg), B g = diag(BUg, B Vg, BWg), Cg =  diag(CUg,C Vg, CWg) 

and Dg = diag(DUg, DVg, DWg), where for forward winds and gusts:

=

B »e = 

Cus = 

D„_ =

du

(̂ n \ l  r p P n iP n  +  O'udu)

\ l  rjiPua u
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and for side and down winds and gusts:

A sg =

Bs.

2ds -d% 

1  0

1  

0

Cs.

Dss -

as \ /  —(3s(bsis +  a6j s +  2asd$is)

crs\lTpPsibgjs ~  asd2gis)

(Ts\l

When the reference input signal r(k) =  0, the Dryden wind gust model can be 

integrated with the closed-loop aircraft dynamic model, as shown in Fig. 8 , using an

H k )
(AS’BS’Cg’Dg)

y A k )
( A ct ’ B cl ’ Ca )

y„(k)

Fig. 8 . The integrated Dryden wind gust model and the closed-loop system.

input matrix K %. According to (2) and (3), the modified closed-loop system with 

w(k)  as the input is then

Ap - B pCc KgCg KgDa

o II BcCp Ac 0 > Bc i — 0 II Cp 0 0

0 0 hO Bg

II.1.3 The Recoverable Control System

In [16] (Lemma 3.2.1), a rollback interference model is given for an autonomous 

system. In this subsection, a variation of this approach is introduced which admits 

wind gust disturbances. In Fig. 2, let v(k)  denote the state of the upset process and
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0(k) the state of the recovery process. When 6(k) =  0, the nominal control system 

is engaged, and when 0{k) =  1 , the recovery process is activated. Let x c(k) be the 

state of the controller. Suppose the last checkpoint occurred q sample periods ago; 

and x ri(k), x r2 (A;),. . . ,  x Tq(k) are q auxiliary vectors, then the rollback interference 

can be integrated into the closed-loop system model as shown below:

x{k + 1 ) =  A 6(k)x(k)  +  G w (k) 

y p(k) =  Cx(k),

where

and

II x^(k) x \ m x g(k) *£(*)

1 T

x j2(k) ••• x jq(k)

4 - BpCc K g Cg 0  •••

i
oo

BcCp A c 0 0  ••• 0  0

0 0 Ag 0  ••• 0  0

IIo

0 I 0 0  ••• 0  0 when 6{k) =  0 ,

0 0 0 I  . . . 0  0

0 0 0 0  ••• I  0

(4)
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1

0 K gCs ~ B pCc ••• 0 0

0 0 0 0 0 I

0 0 A g 0 0 0

A i  = 0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I

- 1 T

G = T 0 R j  0  • • •  0

C = C'p 0 . . .  0

when 0(k ) =  1 ,

Here I  is a modified identity matrix with diagonal entries set to zero if the cor

responding states are not stored during checkpointing. When I  ^  / ,  the recovery 

scheme is called partial state rollback. In the RCS experiments conducted at LAN- 

SCE, only the elevator and the aileron commands were implemented with rollback 

capability. Therefore, only the control states associated with those commands were 

rollback enabled. A conceptual model of the partial state rollback system is shown 

in Fig. 9, where y ci(k) is the control vector without rollback recovery; y c2(k) is 

the elevator and the aileron commands without rollback recovery and y'c2(k) is the 

corresponding vector with recovery.

II.2 PRACTICAL MODELING CONSIDERATIONS AND  

ASSUM PTIONS

The modeling approach presented in the previous section is useful for under

standing how the system works logically. For a simple system, such as the simplified
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w(k)

Wind Gust 
Disturbances

Open-Loop Aircraft Dynamics

RCS

Recoverable Controller System

Upset
Generator

Controller
Dynamics

Dryden 
Shaping Filters

Fig. 9. A conceptual closed-loop model of the recoverable aircraft system.
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longitudinal dynamics of the F-16 discussed in [9,16], it can be fully realized to ob

tain a very accurate model. For example, the actual freezing of the control signals, 

the rolling back of the control data, the logic of the recovery process, and the delay 

introduced into the feedback loop were all considered in [9,16]. However, there were 

significant difficulties in applying this method to the Boeing 737 flight system:

1. It is difficult to obtain the state space model (Ac, Bc,Cc,D c), since the control 

system employed in the Boeing 737 Simulink model is highly complex and 

nonlinear. For example, there are many mode switches that can be activated 

by even light winds and gusts. Thus, as to be described in Section II.3, a model 

identification procedure was employed to characterize the closed-loop system.

2. The dimension of the recoverable control system presented in Subsection II.1.3 

is too large to conduct the stability and performance analyses in the subsequent 

chapters. In the Boeing 737 Simulink model, the open-loop aircraft model is 

a ten-dimensional system. Suppose the controller system is modeled as an nc- 

dimensional system. From (3), the Dryden wind gust filters can be modeled 

as a five-dimensional system. Then according to (4), the dimension of the 

state vector, x(k),  of the recoverable flight system is 1 0  +  5 +  nc(q +  1 ). As 

will be shown in Chapters III and IV, to determine the stability and output 

performance of the system, one needs to calculate the spectral radius of a 

nonsymmetric matrix ^  (formally defined on page 58) and the inverse of a 

nonsymmetric matrix I  — srf-i, each having dimension 2(l0 +  5-1- nc(q +  l ) ) 2. 

Let, for example, nc =  10 and q = 6 , then the dimension of srf-i is 14,450, which 

is presently too large to reliably calculate its spectral radius and the inverse of
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I  — si2 -

3. In Chapter V, it will be shown that the experimental data suggest that the delay 

parameter, q, described in Subsection II. 1.3 should be modeled as a stochastic 

process, q(k). This gives rise to different models whose dimension is a function 

of time. Thus, a nontrivial revision of the existing theory would be required.

In addition to the issues above, the experimental data suggested that certain ap

proximations be made. Consider, for example, the data 1 shown in Fig. 10. Observe:

<r>
COco>
■«

c
oo
ffl
_Q
2

>oo
2

T3
C
(0

CDO)O)

O
V)
CL3

Upset Trigger Signal 
Aileron Control Signal 
Elevator Control Signal

13855 13860 13865 13870 13875 13880 13885
Frame (0.05 sec/frame)

Fig. 10. The applied control signals (aileron and elevator) in response to an upset 
detected at Frame 13,865.

1. Fig. 10 shows the applied aileron and elevator control signals in response to an 

upset signal. The upset triggers a request for a rollback at Frame 13,865. After 

a two frame delay, i.e., at Frame 13,867, both the aileron and the elevator start

1This experimental data comes from file RCS_preiidl_3.mat (see Table XI in Appendix B.2). 
More details about the experiments will be presented in Chapter V.
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reacting to the upset signal. Both control signals are frozen by the RCS, so their 

values are constants during the period from Frame 13,867 to Frame 13,873, 

which will be referred as the recovery period. The two frame delay is not 

modeled as it does not affect closed-loop performance. But internally, the 

rollback process has already been initiated within the RCS.

2 . The RCS must freeze the aileron and the elevator control signals during a 

portion of the rollback process. In Fig. 10, the recovery period is six frames. 

This is typical, but in practice, the recovery period is a random variable. Thus, 

the closed-loop model needs to describe this type of behavior in some manner.

3. In practice, after a recovery process is finished, the states of the controller will 

be reinitialized to the values store at the previous check point. In this case, 

at Frame 13,874, the states of the aileron and the elevator were set to their 

previously stored values. The RCS then tried to restart the calculation from 

this point. This reinitialization and retry process was ignored in subsequent 

modeling because it is specifically the source for the large increase in the dimen

sionality of the model. Only the control signal delay due to rollback recoveries 

was explicitly modeled.

Other experiments showed that if several upset signals occurred consecutively, only 

the first one would have the potential to trigger a rollback recovery process. For 

example, the single upset signal occurring at Frame 2 in Fig. 11(a) has precisely the 

same effect on the RCS’s rollback recovery mechanism as the three consecutive upset 

signals occurring at Frames 2-4 in Fig. 11(b). Therefore, in Fig. 11(b), when modeling 

the upset signal process, it is of no consequence to consider only the first upset and to
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3
Frame

(a) One single upset signal.

3
Frame

(b) Three consecutive upset signals.

Fig. 11. Two types of upset signals have the same effect on the RCS’s rollback 
recovery mechanism.

ignore the other two. This observation will significantly simplify the determination of 

the probability transition matrix when the upset process is modeled as a first-order 

Markov chain (see Subsection III.3.1 for details). Of course if the upset probability 

is very small to begin with, then the probability of two or more consecutive upsets 

is very small. For example, in the RCS experiments, the probability of two or more 

consecutive upsets is smaller than 4 x 10~3. In this case, the upset process can also 

be approximately modeled as a zeroth-order Markov chain, i.e., an i.i.d. process (see 

Subsection III.3.2 for details).

W ith these assumptions in place, the closed-loop flight control system and the 

recovery process of the RCS can in some sense be modeled separately. The following 

sections describe precisely how these approximations were utilized to produce the 

primary mathematical model for the recoverable aircraft system.
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II.3 ID E N T IFY IN G  LIN EA R  M ODELS FOR TH E CLOSED-LOOP  

A IR C R A FT D Y N A M IC S

In light of the modeling approximations introduced in the previous section, two 

state space models for the Boeing 737 in closed-loop with an RCS in level flight were 

identified: one for the nominal mode £ n : (An,G n,Cn) (i.e., the dynamics outside a 

recovery period) and one for the recovery mode Er : (Ar,Gr,Cr) (i.e., the dynamics 

during a recovery period). Input-output data was collected for model identification 

using the nonlinear Boeing 737 Simulink model described in [70]. W ith the reference 

input set to zero, the only nonzero inputs in this case were the noise signals, which 

were used in the Simulink code to drive the Dryden wind gusts model. The output 

signals were taken to be the altitude of the aircraft, the calibrated airspeed, and the 

track angle. The model for the nominal mode was identified without any modification 

of the closed-loop structure of the Simulink model. However, the recovery mode was 

identified using the following modification: both the aileron and the elevator control 

signals were frozen, i.e., kept as constants after being initialized. The function pem 

from MATLAB’s System Identification Toolbox was used for identifying the state 

space models. Seventeen sample input functions of 2,000 samples (0.05 sec/sample) 

each were used for building the nominal model, and another 35 sample input functions 

were used to validate it. The identified model for the nominal mode, £ n, was an eight

dimensional system. Assuming the system operates in the recovery mode for a short 

period of time, a sample length of 2 0 0  samples per sample input function was used 

for building the recovery model. A total of 190 sample input functions were used 

for identification and another 35 sample input functions were used for validation.
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The identified model for the recovery mode Er was six-dimensional. Tables I and II 

summarize the system identification parameters and model validation results. The 

identified models are given in Appendix A.I.

TABLE I 
System Identification Parameters

Inputs Forward, side and down components of the wind

Outputs Altitude, calibrated airspeed, and track angle

Sample period 0.05 second

Identification algorithm m = pem(data , ’b e s t ’ )

TABLE II 
Modeling and Model Validation Data

Nominal mode Recovery mode

Data length (in samples) 2 0 0 0 2 0 0

Data sets for modeling 17 190

Data sets for validation 35 35

Model dimension 8 6

Switching between En and Er is only possible if their respective state spaces co

ordinate systems are the same. But here not even their dimensions are equivalent. 

To remedy the situation, Er was embedded into an eight-dimensional system in such 

a way that the new system, Er, had the same controllability indices as En, specifi

cally, {3,3,2}. Therefore, each system can be transformed to the same Brunovsky
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form [2 2 ], and the switching can be done (formally) by simply switching the state- 

space gain matrices, K n and K r, and the input transformation matrices, L n and Lr. 

Specifically, Fig. 12 shows how the Brunovsky canonical form acts as a “bridge” be-

R . G „ , C „ } -
(8 States)

■ { L A C ,}

Bmnovsky 
Canonical 1 
Fonn

7r f T 7̂  1 Controller{A,,Gr,Cr} - ^ { \ , G „ C ry
(6 States)

Embedding
(8 States)

±K

Fig. 12. The Brunovsky canonical form acts as a “bridge” between the state space 
models for the two system models, £ n and £ r.

tween the controller canonical forms of the two modes. Here £ n was transformed into 

its controller canonical form £„ by Tn. Likewise, £ r was transformed into its con

troller canonical form £ r by Tr. Then two stable states were added to £ r to produce 

an eight-dimensional system £ r. Now £ n and £ r can be transformed to the same 

Brunovsky canonical form (A°,G°) by (jCn, Ln j  and ( K r,L r Ĵ, respectively, where 

A° =  A n — GnLnK n =  A r — GrLvK v and G° =  GnLn — GrLr. The switching between 

£ n and £ r can be done using K  := K n — K r, L n and Lr, since A n =  A r + G°K  and 

Gn = G^Ly-L^1. The linear models for switching are given in Appendix A.2 .
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II.4 M O DELING  TH E RECO VERY PROCESSES OF TH E RCS 

U SIN G  A N  SFSA

As discussed in Section II.2, a simplified approach to modeling a rollback recovery 

process of the RCS is to only consider its rollback recovery period. Experiments, 

which will be presented in more detail in Chapter V, showed that approximately 

80% of the recovery periods of the RCS were six frames in length and 20% were 

five frames. Any upset for a recovery during an active recovery process was ignored. 

This information was encoded into an FSM by assuming that all the recovery periods 

were six frames. For better accuracy, an SFSA was also designed to match the 

recovery length probability distribution. Some basic concepts of an SFSA/FSM and 

its application to modeling the rollback recovery of an RCS are discussed next.

II.4.1 D efinition of an SFSA

In [71], a stochastic automaton is defined in a purely probabilistic setting. In [72, 

73], it is defined in terms of graph theory. In this dissertation, an SFSA is defined 

from the viewpoint of systems theory, which means that it has a finite number of 

internal states, and receives input symbols and generates output symbols. From this 

perspective, an SFSA is defined as follows [59,74-76].

D efin ition  I I . l  (SFSA). Let (fl, F, Pr) represent the ambient probability space. 

A stochastic finite-state automaton, 21, is a six-tuple, (Si, Es, So, [0,1 ], / ,  g), where 

=  {?7i> V2 , • • • , V m }  is the set of input symbols; S s =  {Ci, ( 2 , • • •, Cn }  denotes the set 

of internal states; and So =  {^1 ,^ 2 , • • •, £p} is the set of output symbols. Let v(k),  

z(k),  and 0(h) denote the input random process, the state process, and the output
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process of the automaton, respectively, where k E Z+. /  describes the dynamics of 

the state transition probabilities:

/ :  ( £s, S i , £ s) - [ 0 ,  1]

(0 , m, Ct) ^  P r  { * ( *  +  1) =  0  I H & )  =  Vi, z(k)  =  C i) } := [7T"]CiC. ,

where [/P7*]^ is the £j£j-th component of the state transition matrix I l r,i for 

the input symbol rji. For fixed i E {1,2, . . . , N }  and I E {1,2 

YljLi [ir, l]<iC =  1 - It is assumed that the state transition probabilities at time 

i depend solely on the input symbol at that instant. That is, given the input 

sequence {v(k) = v(k), v ( k  — 1) =  v(k  — 1) , . . . ,  i/(0) =  z'(O)} and initial condition 

(z ( 0 ) =  2 (0 )}, the following identity holds:

Pr {z(k) = z{k), z (k  — 1) =  z(k  — 1) , . . . ,  z (  1) =  z( 1) |

u(k) — v(k), u(k  — 1 ) =  v{k — 1 ) , . . . ,  i/(0 ) =  i/(0 ), z ( 0 ) =  z( 0 )}

A;—1

= II •
i=0

The output relation g is described by

9 '■ (So, Si, Es) —>• [0,1]

(6 , Vr, (s) H- Pr {0(fc) =  & I (v{k) =  7]r, z(k)  = Cs) } := ’

where for given s G {1 ,2 , . . . ,  N }  and r G {1,2, . . . ,  M},  0 <  X)tLi [ ^ r]cs& — P

D efin ition  I I .2 (FSM). Given an SFSA, if both [nm] ^ .  and [<Pr,r]^^ only as

sume values 0 or 1 for all r/i, gr E Si, Ci,Cj,Cs £ Ss and E So, then the 

automaton is called a finite-state machine, and is denoted by the six-tuple 311 =  

(Si, S s, Sq, {0,1} , f ,  g).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

Therefore, an FSM is simply a special case of an SFSA with transition probabil

ities only taking the value 0 or 1. In the current application, it is always assumed 

that the output is isomorphic to the state of an SFSA with probability one, that is, 

P  =  N  and g (£t, rjr, ( s) =  l{s=t} for all input symbols gr G £i, where l{s=t> is the 

Dirac measure.

II.4.2 M odeling the Recovery Processes U sing an SFSA

The five or six-frame recovery period of the RCS can be modeled by either an 

FSM =  (£ i ,£s ,Eo ,  (0 ,1 } ,/, 9) or an SFSA 21 =  (£!, £ s , £ 0 , [0,1],/,<?). The 

corresponding FSM and SFSA are shown in Figs. 13 and 14, respectively. The input

{0 , 1 }

{0, 1}{1}

{0, 1}

{0, 1} {0, 1}

{0, 1}

Fig. 13. The FSM used to model the rollback recovery process of the RCS.

process to the SFSA/FSM is a homogeneous, two-state, first-dimensional Markov 

chain. The probability transition matrix of the input Markov chain is TI\. The 

set of states is £ j =  {0 , 1 }, where “0 ” indicates that no upset was detected and 

“1 ” indicates that an upset was detected. The SFSA/FSM symbol sets are £s =
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1.00

1.00

1.00

1.00

0.20

1.00 1.00
0.80

(a) The state transition diagram for input symbol “0”, which 
specifies II0.

1.00

1.00

1.00

1.00

0.20

1.00 1.00
0.80

(b) The state transition diagram for input symbol “1”, which 
specifies II1.

The SFSA used to model the rollback recovery process of the RCS.
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{N, Ri, R2, . . . ,  Re} and Eo =  {n, r 1? r2, . . . ,  r6}. /  is described by 17° and I I 1, and 

g is a state-to-output isomorphism. The SFSA/FSM produces at its output the 

random signal 0{k), which switches between the symbols “n” and “r ”, i =  1, 2 , . . . ,  6  

representing the “nominal” mode and the “recovery” modes, respectively.

When the SFSA/FSM is in the nominal state “N” , and if the input symbol is “0” , 

the SFSA/FSM will remain in the nominal state. Otherwise, it will transit to the 

recovery mode “Ri” . If it is in one of its recovery states, “R /’ (for i =  1, 2 , . . . ,  6 ), 

then the input is ignored., and the state will transit to the next state “Rj+i” for 

i — 1 , 2 , . . . ,  4. When the current state is “R5” , for the SFSA, then 20% of the next- 

step transitions go to “N” and 80% go to “R6” . For the FSM, the state “R5” will 

always transit to “Re” . The state will transit without exception back to its nominal 

state “N” when 1 =  6  for both the SFSA and the FSM. The state transition matrices 

for the SFSA and the FSM are given in Appendix A.3.

II.5 STO CH ASTIC H Y B R ID  M ODELS FOR TH E RECO VERABLE  

CLOSED-LOOP SYSTEM

The main class of stochastic hybrid models used in this dissertation to model an 

aircraft in closed-loop with an RCS is shown in Fig. 3 (page 5). It consists of a jump- 

linear system driven by an SFSA with a Markov input process. Electromagnetic 

radiation induced upsets (see [8 ]) and the neutron-induced upsets [17,18] can be 

modeled as a two-state nth-order Markov chain with either r  =  0,1. The SFSA 

models the rollback recovery process. The switched system models the dynamics of 

the closed-loop due to the presence of controller recoveries with the nominal mode
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£ n and the recovery modes {£ri =  £ r, i = 1 , 2 , . . . ,  6 }. If the switching process 0{k) 

is a Markov chain, then the system’s mean-square stability and output performance 

can be analyzed using existing methods (for example, see [20,21]). However, in most 

cases, the output process of an SFSA is not Markovian. Therefore, the goal of this 

section is to describe a related process which is Markov. This is a generalization of 

the results given in [19,64,65]. In Subsection II.5.1, it is shown that in general, if 

the input process of an SFSA is a Markov chain, then its input-output cross product 

process is also a Markov chain. This result is then used in Subsection II.5.2 to 

construct a model-equivalent Markov jump-linear system for the stochastic hybrid 

model.

II.5.1 M arkov C haracterization o f th e  Input and O utput Processes o f an 

SFSA

This subsection presents a main theorem which describes the Markov character

istics of an input-output cross product process generated by an SFSA with a Markov 

input. The special case for FSM’s appears in [19,64] and the references therein. A 

similar idea (without proof) also appears in [77] for random dynamical systems with 

jumps. A more general result was proved in [78] using only measure theoretical tools. 

The related Feller-Markov property is proved in [79] for continuous-time stochastic 

systems. The following three lemmas (Lemmas II.3, II.4 and II.5) are useful tools 

for proving the main theorem (Theorem II . 6  on page 46).

Lemma II.3. For an SFSA 21 =  (£i, Es, Eq, [0,1], f ,g ) ,  given integers k and q with
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k > q, the probability of a random event {v{k), v{k — 1 ) , ,  v{k — q), z(k  — q)} is

Pr (i/(fc), v{k -  1 i / ( k -  q), z(k  -  q)}

— V '' \  T T ^ k - q - l ) ]
Z _ J  I11 \ z { k - q - \ ) z { k - q )  ( 5 )

i/(fc-g-l)eEi
« ( f c - g - i ) e s s

P r{v{k), v{k — 1) , . . . ,  v(k — q — 1), z(k — q — 1)}.

Proof. For any k  G Z+, let, for example, {u(k)} represent the event {r'(k) =  ^(/c)} 

and { (v(k), z{kf)  } represent the event { (is(k), z (k f)  =  (v(k ), z{kf) }. For a random 

event {v(k), v(k — 1 ) , . . . ,  v(k — q), z(k — q)}, observe that the following equality holds:

{v(k), u{k -  1 ) , . . . ,  v(k -  q), z (k  -  q)}

U { v ( k ) , i / ( k - l ) , . . . , u ( k - q ) , u ( k - q - l ) , z ( k - q ) , z ( k - q - l ) } .
v{k—q— l ) e £ i  
z { k - q - l ) & T . s

Furthermore, the set of events

{ {u(k), v(k -  1 ) , . . . ,  u(k -  q), u{k -  q -  1 ), z(k  -  q), z(k  -  q -  1 )}}„(fc_ ,_1)eEl
*(fc-9 -i)eEs

is mutually exclusive. Therefore,

Pr{i/(fc), u{k -  1) , . . . ,  v(k -  q), z(k -  g)}

=  X  P*{v {k ) ,v {k -  l ) , . . . , u ( k - q ) , u ( k - q -  1), z(k -  q), z(k -  q -  1 )}
u(k—q—l) e E i  
z { k - q -  1 )gE s

E r T jv {k -q - \ ) - \
L J z ( k —q—l) z ( k—q)

u (k—q— l ) e E i 
z ( k - q - l ) e E s

Pr{i/(fc), y{k — 1) , . . . ,  v{k — q — 1), z(k — q — 1)}.

The proof is complete. □
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L em m a II.4 . For an SFSA 21 =  (£i, E g , E q , [0,1], / ,  g), given integers k and q with 

k >  q, the probability of a random event {n(k), u(k — 1 ) , ,  v{k — q), z(k  — g)} is

Pr{z/(fc), v{k -  1) , . . . ,  u{k -  g), z(k  -  9 )}

= e  n  <k - ! ) -  • -"(°)- *«»}•
v(0),...,i/(k—q— l ) e S i i = l  
«(0),...,z(fc-g-l)eE s

(6)

Proof. The identity is verified by applying Lemma II.3 repeatively k — q times. For 

example, using it once, (5) can be obtained. If A: — q — 1 >  1, then

Pr{z/(A;), u{k -  1 ) , . . . ,  u(k -  q -  1), z(k  -  q -  1)}

E [ r j v { k -q -2 ) - \
I J z ( k —q—2)z{k—q-1)

v ( k—<7—2)eE j 
z ( k —q—2)eSg

Pv{u(k), v{k — 1 ) , . . . ,  v{k — q — 2), z(k  — q — 2)}.

Thus,

Pr{v(k), u(k -  1) , . . . ,  u(k -  g), z(k -  q)}

=  5 Z  Pr{^(A:), n(k — 1) , . . . ,  v(k — q), u{k — g — 1 ), z{k — q), z{k — q — 1)}
i/(k—q—l)e'Si  
z ( k - q - l ) e E s

E l" T j v { k - q - l ) ' \
L 1 z( k —q—l) z ( k —q)

u(k—q - l) e E i  
z ( k - q - l ) e S s

Pr{r/(A;), u{k -  1) , . . . ,  v(k  -  g -  1), z { k - q -  1)},

r r u{ k - q - l ) - \  V  [ TTu( k - q - 2 ) l
L 1 z ( k —q—l)z(fe—q) 7  j  L J z ( k —q—2)z(k—q—1)

v ( k—q—l ) e E i  i/(fe—q—2) e S i
z ( k—q— l ) e S s z {k—q—2 )e S s

P r{n(k), u(k — 1) , . . . ,  u(k — q — 2), z(k  — g — 2)}

\ T j A k - q - l P  r Tjv( k -q -2 ) - \
7  L J z ( k —q— l ) z ( k—q) L J z ( k—q—2)z(k—q—1)

u(k—q— l ) e S j  w(k—q—2)eHi  
z ( k —q—l ) e S s  z ( k—q—2)eE g
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Pr {v{k), u(k — 1 ) , ,  u(k — q — 2), z(k — q — 2 )}

e  n  ■
v ( k—q—\) , v ( k—q—2)€.Tii i = 1 
«(fe—q— l),z(fc—g—2)GSs

Pr{i/(A;),. . . ,  u(k — q — 2), z(k — q — 2)}.

Doing this recursively for a total of k — q times produces (6 ). □

L em m a I I .5. For an SFSA 2 1  =  (Ei, Eg, Eo, [0,1], / , g), given integers k and r with

k > r ,  i f  v  is an rth-order Markov chain and independent of z (  0), it follows that

P r{v(k) | v{k — 1) , . . . ,  u(k — r), z(k  — r)} =  P r {u(k) \ u(k — 1) , . . . ,  u{k — r)}.

Proof Prom the assumptions,

P r{v{k), u(k -  1) , . . . ,  i/(0), *(0)}

=  Pr {u{k) \ u ( k - l ) , . . . ,  i/(0), 4 ° )}  Pr {u(k -  1) , . . . ,  x/(0), 2(0)}

=  Pr{i/(fc) | v{k -  1) , . . . ,  i/(0)} P r{v{k -  1) , . . . ,  z/(0), *(0)}

=  Pr{z/(fc) | u(k — 1) , . . . ,  u{k — r)} Pr{j/(fc — 1 ) , . . . ,  i/(0), z(0)}.

When k = r, then

Pr{z/(r), v{r -  1) , . . . ,  i/(0), *(0)}

=  P r(i/(r) | */(r — 1 ) , ,  i/(0)} Pr{i/(r -  1) , . . . ,  i/(0), z(0)},

and thus,

Pr(z/(r) | v{r -  1 ) , . . . ,  i/(0), z(0)} =  Pr{i/(r) | u(r -  1 ) , . . . ,  i/(0)}.
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When k > r, according to Lemma II.4,

Pr{is(k), v{k — 1 ) , ,  v(k  — r), z(k  — r)}
k—r

z {k—r —i)z(k—i— i + 1 ) Pr{v(k), v{k -  1) , . . . ,  i/(0), *(0)}
r —l ) e £ i  i= l 

z(0),. . . ,z(k—r —l ) e S s

k—r

I I  [ n vik- r^ i)]z (k—r —i)z(k—r —i + 1)
i/(Q),...,v(k—r —l ) e S i  * = 1
z(0),...,z(fc-r-l)e£s

Pr{v(k) I v{k -  1) , . . . ,  1/(0 ), 2 (0 )} Pr {v(k  -  1) , . . . ,  i/(0), 2 (0 )}

k —r

i / ( 0 ) , . . . , i / ( f c - r - l ) e E i  i = l  
z(o),...,z'(fc—j—i)ess

z (k—r —i)z(k—r —i + 1)

Pr{i/(fc) | u(k — 1) , . . . ,  u{k — r)} P r {v{k — 1) , . . . ,  i/(0), -z(O)}

=  Pr{i/(A;) | v(k  — 1) , . . . ,  v(k — r)}-

k—r

z {k—j— i )z (k—r —i + 1)
u(0),...,i>(k—r —l ) e S i  i = 1 

k z(0), . . . ,z(k—i l ) e S s

Pr{i/(k  -  1), v{k -  2 ) , . . . ,  i/(0), 2 (0 )}

Pv{u(k) | v(k  — 1) , . . . ,  v{k — r)}Px{u(k  — 1), v(k  — 2 ) , . . . ,  u(k — r), 2 (fc — r)}.

Therefore,

Pr{z/(A;) | u(k — 1) , . . . ,  u(k — r), 2 (fc — r)} =  Pr{z/(A;) | u(k — 1) , . . . ,  u(k — r)},

and the proof is complete. □

With these lemmas established, the following main theorem shows that, under 

certain conditions, the input-output cross product process of an SFSA is Markov
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when its input process is Markov. Furthermore, its probability transition matrix can 

be calculated using the probability transition matrix of the input process and the 

state transition matrices of the SFSA.

T h eo rem  I I . 6 . I f  the input process v(k) of an N-state SFSA, %  is an M-state 

Markov chain with probability transition matrix III, which is independent of the initial 

state of the automaton, z ( 0), then the Cartesian product of the input and output 

processes of the SFSA, p(k) := (v (k ) ,0 (k ) ) , is an M N-state Markov chain with 

state transition matrix

where 0  denotes the Kroneckerproduct. (Here In  denotes an N x N  identity matrix.) 

Proof. For any k £ Z+, consider an arbitrary event of the form

When k > 2, from the assumptions that v  is Markov and independent of z ( 0), it 

follows that

Hi/o = diag (nm, n ^ , . . . ,n ^ ) -  {n, 0  iN) (7)

&{k) '■= { (u (k) ,z (k ) ) , (v(k  -  1 ), z ( k - l ) ) , . . . ,  (z/(0 ), 2 :(0 )) } .

k- 1

= II t77"*0] *(i)*(i+1) Pr v ( k -  !)»•••» ^(0)» «(0)}

fe- 1

n  z ( i ) z { i + i )  Pr I v ( k ~  l ) , . . . , ^ ( 0 ) } P r M f c -  l ) , . . . , i / ( 0 ) , « (0 ) }
i =0

k- 2

P r { u ( k -  l ) , . . . , t ' (0) ,^(0)}
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k —2

= ,(*_„*) n  t ^ 11] Pr M* - 1). ■• • •. ■'«>), 2(0)}
i=0

=  W U -  1M»)Pr W *  - ! ) } '

Therefore,

Pr {(„(*), *(*)) I jr(fc - 1 ) }  =  [ n ^ ] z{k_ l ) m  [/7,]„( M ) „W . (8)

Applying Lemma II.5 (with r  =  1) gives

Pr {u{k) | v(k  — 1), z(k  — 1)} =  Pr { v{k)  \ u(k — 1)} , k > 1.

Thus,

Pr { (u(k), z (k )), {u(k -  1), z(k  -  1)) }

=  ,<*-.)«*>Pr M * ) . "(*  -  1), 4 k  -  1)}

=  Pr { -4k)  I 4 k  -  1), z (k  -  1)} Pr { v (k -  1), z (k  -  1)}

=  [ ir '{k- 1)] ::ilt_t j m Pr{i'(k) | v ( k - l ) }Pr{ i / ( fc -  l ) , z ( k -  1)}

= WW-rM*) P r{p (*  -  1 ) , 4 k  -  1))} ■

Consequently,

P r{(v (k ) ,z (k ))  | {v{k -  I), z { k - ! ) ) } =  (9)

Comparing (8 ) and (9), it is clear that

Pr { {y{k), z(k)) \ & {k  -  1)} =  Pr {(v(k), z(k)) \ (v{k  -  1 ) , z ( k  -  1))} ,

which implies that the input-state cross product process (u, z )  is Markov. Prom 

the assumption that the output process is isomorphic to the state process of the
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SFSA with probability one, it is immediate that p =  (u, 6) is also Markov with the 

transition probability

Pr { H e  =  V„6(k)  =  (i) I H k  -  1) = v. ,0(k  - ! ) = « . ) }  =  [® ],„  1 ^ ‘U  •

The matrix of transition probabilities [/7r,s] ^ .  for i , j  = 1 ,2 ,. . .  , N  and s , t  —

1,2 , . . .  ,M  is

••• w u n , ! ,  •••

W Im . ' ' '

P ' L W m ,  ■■■

} n in«m  ^ " b e ,  ■■■ P C  •••

■■■

' ' '  P 'lm m  lJT'"kN(K

IH'Kmvm ' ' '  IH’hwto

]&£, • "  [ ^ " W

[77,1 n™ ■ ■ • [/7, n™

=  diag (IP1, 1 1 ^ , . . . ,  n VM) • (77r <S) /* ) ,

[ t f i U

ill/O =
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which concludes the proof of the theorem. □

So in general, the output process of an SFSA is not Markov even when its input 

process is a Markov chain. However, the following theorem shows that if its input 

process is an i.i.d. process, then under fairly mild conditions, its output process 

is Markov. Its probability transition matrix can be calculated via the probability 

distribution vector of the input process and the state transition matrices of the SFSA.

T h eo rem  I I .7. I f  the input process u(k) is an i.i.d. process with a n M x  1 distribution 

vector 7Ti, where the ip-th component (rji) = Pr {i/(k) = r/;} for i = 1 , 2 , . . . ,  M, 

which is independent of the initial state of the automaton, z ( 0 ), then the output 

process 0 (k ) of the SFSA is an N-state Markov chain with a probability transition

which implies that the state process z  is Markov. From the assumption that the 

output process is isomorphic to the state process of the SFSA with probability one,

matrix

no =  n vi n m • • • /p m • (^i ® In) ■ (10)

Proof. For any k € Z+, consider an arbitrary event of the form

%  := {z(k), z(k  -  1 ) , . . . ,  z(0 )} .

Similar to the proof for Theorem II.6 , for k > 1, it follows that

P r{%  | &k- i}  = Pr {z(k) | z(k  -  1)}
M

=  1 )} Pr {z {k) I (z(k — 1 ), v{k — 1 ))}
5—1

M

s=l
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it is immediate that 6 is also Markov with the transition probability

M

[ff° W  := Pr w * + 1 ) =  <* i =?<} =  £  fo*>
S= 1

The transition probability matrix of the output process is

M

n 0 = Y , * i ( r i s ) n r'' =
s= 1

j jm  . . .  hvm (7Ti <g> Ijy) ,

which completes the proof. □

The following corollary shows that if the input process of an SFSA is a constant, 

then its output process is a Markov chain, which is essentially equivalent to its 

input-output cross product process. The probability transition matrix can be simply 

deducted from either (7) or (10).

C oro llary  I I . 8 . [75] I f  the input process u{k) =  rj is a constant, then the output 

process 9{k) of the SFSA is an N-state Markov chain with a probability transition 

matrix

n Q = n 1/0 = n \

The following examples demonstrate some of the utility of these theoretical re

sults.

E xam ple  II. 1. In this example, the probability transition matrix I7i/o is calculated 

from Theorem II . 6  and compared against simulation. Let v(k)  £ {1,2} be a two- 

state Markov chain with Hi =  ( [{S) [];.(). The state transition matrices 771 and i7 2  for 

the two input symbols are assumed to be

0 . 8 0 . 1 0 . 1 0.9 0 0 . 1

n 1 = 0.9 0 0 . 1 and I I 2  = 0.7 0 . 1 0 . 2

0.7 0 . 2 0 . 1 0 . 8 0 0 . 2
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Then, according to (7), the probability transition matrix for the input-output cross 

product process is

I/O

0.72 0.09 0.09 0.08 0 . 0 1 0 . 0 1

0.81 0 0.09 0.09 0 0 . 0 1

0.63 0.18 0.09 0.07 0 . 0 2 0 . 0 1

0.63 0 0.07 0.27 0 0.03

0.49 0.07 0.14 0 . 2 1 0.03 0.06

0.56 0 0.14 0.24 0 0.06

using MATLAB shows that

n yo

0.7195 0.0921 0.0863 0.0816 0 . 0 1 1 0 0.0095

0.8069 0 0.0836 0.1014 0 0.0081

0.6241 0.1838 0.0923 0.0712 0.0184 0 . 0 1 0 2

0.6213 0 0.0697 0.2794 0 0.0296

0.5010 0.0585 0.1190 0.2422 0.0271 0.0522

0.5203 0 0.1516 0.2578 0 0.0703

A simple calculation shows that 

error for most applications.

n \/o  — i7i/o 2 % ||i7i/o|L, which is a small

E xam ple  I I .2. In this example, the probability transition matrix Z7o is calculated

from Theorem II.7 and compared against simulation. Let is(k) € {1,2,3} be i.i.d.
n t

with a distribution vector tx\ — 0.3 0.5 0.2 . Assume that i l 1 and IT2 are as
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given in Example II. 1. The state transition matrix for the input symbol “3” is

0.2 0.7 0.1

n 3 =  0.6  0.2 0.2

0.5 0.1 0.4

Prom the theoretical calculation using (10) and a 50,000-sample simulation using 

MATLAB, it follows, respectively, that

0.73 0.17 0 . 1 0 0.7284 0.1706 0 . 1 0 1 0

n Q = 0.74 0.09 0.17 and 77q = 0.7336 0.0900 0.1764

0.71 0.08 0 . 2 1 0.7053 0.0768 0.2180

Hence 

example.

I7o — 77,o 1 % 11 TTq 112 • This error is comparable to that in the previous

The next subsection shows how to use Theorem II.7 to build an equivalent Markov 

jump-linear system for the stochastic hybrid system shown in Fig. 3. It will be used in 

the next two chapters to analyze the stability and output performance of a stochastic 

hybrid system.

II.5.2 M odel-Equivalent Markov Jump-Linear System  for a Stochastic  

H ybrid System

Consider the n-dimensional stochastic hybrid system in Fig. 3 with p output 

signals given by the state space model

x (k  +  1) =A0(k)x(k) +  G0(k)w(k), cc(0) =  x Q, 0(0) = 0O (11a)

y(k) =Cm x(k),  ( l ib)
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where 0(k) is a stochastic switching signal produced by the SFSA. Here w(k)  is a 

zero-mean, white noise process with covariance matrix Im. In general 0(k) is not 

necessarily Markov, so letting p(k) be the Cartesian product of the input and output 

processes of the SFSA (see Fig. 15), the n-dimensional Markov jump-linear system

p(k)

v(k)

Upset
Generator

Recovery
L ogic

Cartesian
Product

C losed-Loop
System

rth-Order
Markov
Process

Stochastic
Finite-State
Automaton

Markov
Jump-Linear

System

w(k)

Fig. 15. The equivalent Markov jump-linear model for a stochastic hybrid system 
driven by an SFSA.

x (k  +  1 ) =Ap(k)x (k ) +  Gp(k)w(k), x(0) = x 0, p{0 ) =  p 0 (1 2 a)

y ( k ) =Cp{k)x(k), (1 2 b)

is equivalent to system (1 1 ) in the following sense.

D efin ition  I I .9 (Model Equivalence). The stochastic hybrid system (11) and 

the Markov jump-linear system (12) are said to be model-equivalent if A p^  := 

A{u(k),e{k)) = A0(fc), Gp(fc) := G ^ ) ^ ) )  = G0(k) and Cp(k) := C ^ k) ^ k)) = C6(k) 

for k € Z+.

From the definition, the following result is immediate.

L em m a 11.10. When systems (11) and (12) are model-equivalent, they have the

same state process, x(k), and the same output process, y(k), for k G Z + .
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II.6 SU M M AR Y

In this chapter, the problem of modeling a Boeing 737 in closed-loop with an RCS 

was addressed in detail. First a conceptual model was introduced. It helped iden

tify the need for certain approximations and motivated a more pragmatic approach. 

The main mathematical model to be used in subsequent chapters was introduced in 

three stages. First, system identification techniques were used to obtain the nominal 

and the recovery dynamics of a Boeing 737 in closed-loop with an RCS. Then an 

SFSA/FSM was employed to model the rollback recovery of the RCS from a con

trol point of view. Finally, a stochastic hybrid model was used to integrate these 

submodels. The chapter concluded with the presentation of some properties of the 

stochastic hybrid model and the notion of a model-equivalent Markov jump-linear 

model. These results will be used for stability and output performance analyses in 

the subsequent chapters.
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C H A PTER  III

STABILITY ANALYSIS OF STOCHASTIC H Y BR ID

SYSTEM S

Stability is a basic requirement of any closed-loop control system. Performance 

analysis is usually based on the assumption that the system is stable. In this chapter, 

a variety of stochastic stability definitions are given: mean-square stability (MSS) 

or second moment stability, exponential second moment stability, stochastic second 

moment stability and almost sure stability [42]. Under some assumptions, the three 

second moment stability definitions are equivalent, and they all imply almost sure 

stability. In this dissertation, only criteria for the MSS of a stochastic hybrid system 

are presented and applied [20]. As discussed in [80], the advantages of using MSS 

include:

1 . it is easy to test for;

2 . it implies stability of the mean dynamics;

3. it yields almost sure asymptotic stability of the zero-input state space trajec

tories.

This chapter is organized in the following way. Section III. 1 defines four notions 

of stochastic stability. In Section III.2, necessary and sufficient conditions for MSS of 

a stochastic hybrid system, are given in terms of its model-equivalent Markov jump- 

linear system. The results are then applied to determine the mean-square stability
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boundary for a Boeing 737 in closed-loop with an RCS in Section III.3. Finally, a 

brief summary of the chapter is given in Section III.4.

III .l D EFIN ITIO N S OF STO CH ASTIC STABILITY

As discussed in Section II.5.2, the stochastic hybrid system (11) is model equiva

lent to the Markov jump-linear system (12) since at each time instant, given identical 

inputs, both systems possess the same state and output values for all time. Therefore, 

stability of the stochastic hybrid system (1 1 ) can be determined using standard sta

bility results for Markov jump-linear systems. Let I =  (i — 1 )N  + j  and pi := (rji, £,) 

for i =  1, 2 , . . . ,  M  and j  = 1, 2 , . . . ,  N.  The symbol set {/q : I = 1 , 2 , . . . ,  M N }  la

bels the elements in the input-output cross product space of the SFSA/FSM, i.e., 

Ei x Eo. The following are standing assumptions:

1. The process p (k ) is a homogeneous, finite-state Markov chain which takes val

ues from {/q, p 2> • • •, Pm n }, where M, N  G N. The probability transition ma

trix is denoted by IIi/o-

2. Both p(0) := p0 and cc(0) := x (i can have any distribution.

The various types of stochastic stability for the Markov jump-linear system (12a) is 

given next.

D efinition I II .l .  [41,42] The Markov jump-linear system (12a) with w(k) = 0 is 

said to be:

1 . Second moment stable (or mean-square stable), if for any Xq E Kn and any
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initial probability distribution p 0,

lim E {\\x(k)\\2} = 0 .► OO

2. Exponentially second moment stable, if for any x 0 E Mn and any initial proba

bility distribution p 0, there exist constants a, (3 > 0 independent of x 0 and p 0

3. Stochastically second moment stable, if for any Xq E R” and any initial prob

ability distribution p 0,

4. Almost surely stable, if for any x 0 G Mn and any initial probability distribution

The relationship among these types of stochastic stability are given in the follow

ing two theorems [41,49].

T h eo rem  I I I .2. For system (12a) with w (k ) =  0, mean-square stability, exponen

tially second-moment stability and stochastically second moment stability are equiva

lent.

T h eo rem  I I I .3. For system (12a) with w(k) = 0, mean-square stability, expo

nentially second-moment stability and stochastically second moment stability imply 

almost sure stability.

Throughout the remainder of the dissertation only the notion of MSS is employed.

such that

E {\\x (k )\\}2 <  a  I M | 2e * , Vf c> 0 .

OO

Po>
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III.2 STABILITY ANALYSIS OF GENERAL M ARK O V  

JU M P-L IN E A R  SYSTEM S

There are many approaches in the literature for determining the mean-square 

stability of a Markov jump-linear system. In this section, the spectral radii of 

two linear operators associated with the system (1 2 ) are employed to test for 

MSS. This technique is ultimately based on Lyapunov’s second method. Let 

S  =  . . .  ,S^,MN) € WljN be an M A-tuple with e  M ( R n) for I =

1 , 2 , . . . ,  M N .  Define three linear operators in ® (H ^y)

£ ( ■ )  =

£(•) =  ( £„ ( • ) , £« ( • ) , . .  . ,£„„„(•) )

T(-) =  ( % , ( ■ ) , % „ „ ( ■ ) ) ,

such that

M N

M « )  =  E M * ® - .
q= 1

A., (S) = A l e H(S)A„
M N

= Y , l n y ° \ m , AvA > Al -
q= 1

It is easy to verify that C is the adjoint of T  and vice versa since (£  (S '), V) =  

(V, T  (S)> for all S, V  £ WnMN [40], C is called the observability Gramian operator, 

and T  is the controllability Gramian operator. It is easily verified that

^  := diag (A* <8 > A* , AJ, <g> Aj a, . . . ,  A jMiv <g> A jM J  (iJi/o ® /„*) (13)
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is a matrix representation of £. Similarly, if ,<J\ := «ĝ T, then is a matrix repre

sentation of the linear operator T . Let S  E  IHT̂ V such that

where [S^] . E  Mn for i  =  1 , 2 , . . . ,  M N  and j  =  1 ,2 , . . . ,  n. Define two linear column 

stacking operators vec : M (Rn) —> M” 2 and <p : H ^ jV —> R M iV ra 2  such that

vec (s«) = [5« ] t 2  ••• [ M .
I T 

■n

and

<p ( S ) vecT (.S',,,) vecT (.S',,,) vec

It is simple to check that both linear operators are invertible with corresponding 

inverse operators denoted by vec- 1  and respectively. Fig. 16 illustrates precisely

s T
T ( S ) s C ( S )

<P - l -l - 1

v ( s ) ^ N v { c ( s ) )

Fig. 16. The relationships between T  and and £  and srfi.

the relationships between T  and ,s/i, and £  and s^2 - It is well-known that ra{£) = 

ra(T), since £  and T  are adjoints of each other. (See [66,81] for additional details.) 

The following theorem describes a set of mean-square stability criteria for a jump- 

linear system in terms of these operators.
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T h eo rem  I I I .4. [40] The following statements are equivalent:

(a) System (1 2 a) with w(k)  =  0 is MSS.

(b) ra{srff) <  1 .

(c) ra(C) < 1.

(d) (Adjoint Coupled Lyapunov Equations) Given any S  =  (Pi, S 2 , ■ .. , S m n ) > 0 in 

I there exists P  =  (Pi, P2, . . . ,  P m n ) > 0 in satisfying P  — £ (P )  =  P 

with P = E ^= o£fe (^)-

(e) For some S  G S  > 0, it follows that

s - c ( s ) >  0 .

(/) Por some j3 > 1, and 0 < (  < 1, and for any initial distributions of Xo and p 0,

£ { | |x ( * 0 H 2} k e  Z + .

(5 ) For any initial distributions of x Q and p 0,

OO
J^ P {t|a ;(A ;)||2} <  00.
fc=0

Note that if system (12a) is MSS, then for any S  G V m N, there exists a unique 

P  G Wn+N such that P  -  T  (P ) =  S  and P -  C (P) =  S. If S  > f  >  0 (> 0, 

respectively) and P  -  T  ( P )  =  P, L -  T  (Z) =  P  or P  -  £  ( P )  =  S, L -  £  (L) = T  

then P > L >  0(>0, respectively). The result above also holds when £ is replaced 

with T , and is replaced with In the following context, £  and ^  will be used, 

because in the next chapter the observability Gramian will be used to compute the
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output performance of the stochastic hybrid system. In regards to the MSS of the 

stochastic hybrid system (11), from Lemma 11.10, the following result is immediate.

Lemma III.5. A stochastic hybrid system (11) is MSS i f  and only if  its model- 

equivalent Markov jump-linear system (12) is MSS.

III.3 STABILITY ANALYSIS OF TH E STO CH ASTIC H Y B R ID  

M ODEL FO R A N  A IR C R A FT SYSTEM  W ITH  A N  RCS

Using the techniques described in Section III.2, mean-square stability of the Boe

ing 737 in closed-loop with an RCS can be tested using the models given in Appen

dices A.2 and A.3. The results provide boundaries for the upset probability under 

which the hybrid system is MSS. As discussed in Section II.4, the upset process, 

u{k), is a two-state stochastic process: “0 ” represents there is no upset detected and 

“1” denotes an upset is detected. It can be modeled either as a first-order Markov 

chain or an i.i.d. process. These two cases are discussed below.

III.3.1 W hen the U pset Process Is M odeled as a First-Order M arkov 

Chain

According to the discussion presented in Section II. 2 , when the upset process is 

modeled as a Markov chain, it has approximately the probability transition matrix

1  0

The parameter [17i]01 is the upset probability, which denotes the probability of de

tecting an upset condition at the next frame given no upset is detected at the current
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frame. The second row in the matrix indicates that it is impossible to detect two 

consecutive upset signals.

The SFSA/FSM used to model the rollback recovery process of the RCS has seven 

output symbols, i.e., 6{k) e  {N, R1? R2, . . . ,  Re}. According to (7), the input-output 

cross product process p(k) has a transition probability matrix

77I / 0  =  d iag (i7 ° ,i7 1 ) - ( i 7 I (g)/7).

According to (13) and Theorem III.4, mean-square stability of the stochastic hybrid 

system can be determined from the spectral radius of the following matrix:

:= diag ( Aj N, A j Rl, . . . ,  A jRe; A'}n , A JRi , . . . ,  A j ^ )  • (i7I / 0  <g> h?) ,

where A^N = A n ® A n and A^Ri =  Ar <g> Ar for i =  1 , 2 , . . . ,  6  and j  =  0,1. Since 

An and Ar are eight-dimensional matrices (see Appendix A.2 ), ^  has dimension 

2  x 7 x 8 2 =  896. This value is much smaller than the dimension of the conceptual 

model, which was 14,450 (see Section II.2 for details). Fig. 17 shows ra plotted 

as a function of [i7i]01. The SFSA stochastic hybrid model is MSS when [i7i] 0 1  < 

0.0016, which is a slightly higher upset probability boundary than that predicted by 

the FSM hybrid model, namely, [i7i] 0 1  < 0.0015.

III.3.2 W hen the U pset Process Is M odeled as an I.I.D . Process

Under the approximations introduced in Section II.2, when the upset signal is 

modeled as an i.i.d. process, it has the probability distribution:

7Ti 7 T i (0 )  7 T i ( l ) 1  — 7 T i ( l )  7 T i ( l ) (15)
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1.12
— F in ite -S ta te  M achine
"O " S toch astic  F in ite -S ta te  A utom aton

>  1.08

a

°r 1.02

Stability Threshold

0.9I
0.4 0.6
U pset probability

0.80.2

(a) [i7i]01 e [0,1].

1.005
F in ite-S ta te  M achine 

"O " S tochastic  F in ite-S ta te  A utom aton

Stability Threshold<o
" C <

0.995
o <o
o

0.99
13<D
Q .W

0.985

0.9!
0.5 1.5

U pset probability -3
x 10’

(b) [7Tr]01 g [0,0.002],

Fig. 17. ra { ^ 2^ as a function of upset probability for the SFSA stochastic hybrid 
model and the FSM hybrid dynamical model.
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where the parameter 7Ti(l) is the upset probability. It is equivalent to the probability 

of detecting an upset signal at each frame. An i.i.d. process can also be considered as 

a Markov process where each row of the corresponding transition probability matrix 

is equal to tv\. That is,

17t =
TTl

TTl

1 -  7 T i( l)  7 T i( l)

1 -  7 T i( l)  7 T i( l)

Then the analysis in Subsection III.3.1 can be applied directly to calculate the upset 

probability boundaries.

Another analytical technique for the i.i.d. case is to apply the results of Theo

rem II.7 since the output process 6{k) is a Markov chain. According to (10), the 

corresponding probability transition matrix is

n Q n° n 1 (?Ti ® h )  ■

Thus, the mean-square stability of the stochastic hybrid system can be determined 

from the spectral radius of the following matrix:

J 2 := diag (A£, A ^ , . . . ,  A £ J  • (i70  <8 > I& ) ,

where An =  An@An and A r4 =  Ar<g)Ar for i =  1, 2 , . . . ,  6 . In this case, the dimension
 ̂ ~ _

of sf2 is 448, which is only half of tha t for stf2 in the previous subsection. The spectral

radius plot of as a function of 7 T i( l)  is almost indistinguishable from that shown in

Fig. 17. Thus, the normalized difference of the spectral radius is used to characterize

their difference for a given probability p0 E [0,1]. Specifically,

normalized difference of ra ( ^ 2 ) at p0 =
2)  - r a (gf2)

\  /  7T l( l )= p o  '  / [̂ iloi=Po

[ni]0 i=po
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(a) [/Zi]01,7n e [0,1].
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(b) [i7x]01,7TI € [0,0.002].

Fig. 18. The normalized difference between the spectral radii of the (r =  0, 
namely, i.i.d.) and ^  (r = 1) for typical values of 7Ti(l) and [/7i]01.
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The normalized difference of ra (,£/2) is shown in Fig. 18. In general, a lower upset 

probability leads to a smaller difference. Thus, it is clear, from an MSS point of 

view, that the i.i.d. and first-order Markov chain are nearly equivalent for modeling 

the upset process. Either approach works well for the specific application.

III.3.3 Num erical R eliability o f the Eigen-Analysis

In Subsections III.3.1 and III.3.2, the spectral radii ra ( ^ 2)  and ra were 

calculated via the MATLAB function e ig , which uses the LAPACK routines [82]. As 

discussed in [83], for some matrices, eigenvalue computations are sensitive to finite 

word length effects. For example, small roundoff errors introduced during the com

putation with floating-point arithmetic can lead to large errors in the eigenvalue 

estimates. In the following discussion, as a case study, the eigenvalue sensitivities 

associated with the calculation of ra (g&J for the SFSA stochastic hybrid model with 

twenty-one upset probabilities [77i] 0 1  G {0,0.0001,. . . ,  0.002} (increased by 0.0001) 

are examined. Let Ai be an estimate of the eigenvalue of having maximum mod

ulus, namely,

Ai Ar ,

and v\ be the corresponding eigenvector estimate. If Ai is close to a true eigenvalue 

of £&2 , then the matrix \ \ I  — should be nearly singular. This can be quantified 

using the matrix condition number of Ai/  — <e/2, which is defined as

K
/~ <̂ max ( Ai/  £$2 1

( \ i l  — = ----------jz-----------r y ,
ĉ min ( A l l  -  =e/2J

where crmax(-) and <7 min(•) denote the maximum and the minimum singular values of 

the matrix, respectively. Using the MATLAB function, cond, K~l ( \ \ I  — was
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calculated from k (^Xil — for the given range of probabilities and found to be of 

an order between 10- 1 9  and 10- 1 7  as shown in Fig. 19. For comparison, the result

-14

eps
-16

k (A /-

-20

Q .

,-22

0.5
Upset probability ■3

x 10

Fig. 19. The reciprocal matrix condition numbers, k 1 ( \ \ I  —

rcond ( \ i l  — ^  j , as a function of the upset probability [I7i] 0 1  G [0 , 0 .0 0 2 ].

and

given by the MATLAB function, rcond, was also provided, which is more efficient 

but less reliable than cond. The definition of rcond ( \ \ I  — is given below:

1
rcond ^AiJ — :=

Ai/ — s^2 '-I 1 b
i

i

where denotes the 1-norm of a matrix. In each case, the reciprocal condition 

numbers were smaller than eps, namely, 2.2204 x 10-16, which is the floating-point 

relative accuracy of MATLAB. Thus, for this example, Ai/  —̂  can be considered to 

be nearly singular, and Ai is close to a true eigenvalue of (though not necessarily 

the one with maximum modulus). Next, if ^Ai,hi^ is a good eigenvalue-eigenvector
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-10
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CL
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,-12

o
1—o
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-1 4

3Q.
Eo
O eps

-1 6

0.5
Upset probability ■3

x 10

Fig. 20. The computation error for the eigenvalue-eigenvector pair ^Ai,hiJ of 
as a function of the upset probability [i7i] 0 1  £ [0 , 0 .0 0 2 ].

estimate of ^ 2 , then the computation error defined as

Aihi — s$iV\

should also be close to zero. As shown in Fig. 20, they were of the order 10~13, which 

is larger than but still reasonably close to e p s .  From this analysis, it is concluded 

that ^Ai,hi^ is a good estimate of an eigenvalue-eigenvector pair of sA-2 -

For additional eigenvalue sensitivity analysis, the eigenvalue condition number 

was employed. Given a matrix A, the sensitivity for a given eigenvalue, A, can be 

evaluated using the eigenvalue condition number,

k ( x ' a )  =  ~ W ^ T '  <16)

Ai, v i j  :=
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where yT is the left eigenvector of A  (i.e., yTA  =  XyT), and x  is the (right) eigen

vector of A  (i.e., A x = Xx). The eigenvalue condition number provides a worst-case 

estimate of the computation error one might encounter. It is clear that «(A, A) >  1, 

since by the Cauchy-Schwartz inequality \yTx\ < \\y\\ ||a:||. When A  is symmet

ric, it follows that \yTx\ =  ||y|| ||x||, since x  and y are linearly dependent. Thus, 

k(X,A) = 1 , or equivalently, the symmetric eigenvalue problem is perfectly condi

tioned. But in general, the larger the eigenvalue condition number or the smaller 

its reciprocal is, the more sensitive to roundoff errors the corresponding eigenvalue 

estimate becomes. The eigenvalue condition numbers can be estimated using the 

MATLAB function, condeig. (Note however that, condeig uses e ig  to compute 

x  and y  in (16). Therefore, significant inaccuracy in the corresponding eigenvalue 

condition numbers is possible.) Using condeig, the reciprocal eigenvalue condition 

number, k 1 ^Ai, , was found to have an order between 1 0 - 1 2  and 1 0 - 1 0  as shown 

in Fig. 21. It was significantly larger than eps, which means that the Ai calculation 

has the potential to be very sensitive to numerical errors. But in general eigenvalue 

condition numbers only provide upper bounds on numerical errors. That is, they 

do not say with certainty that at any specific eigenvalue estimate was inaccurately 

computed. Therefore, this analysis was not conclusive.

A final step in the eigenvalue sensitivity analysis was to use the MATLAB func

tion, e ig s  to compute ra • This command is usually employed to find the 

largest eigenvalues/eigenvectors of a sparse matrix. In this case, is a sparse ma

trix with no more than 15% of its entries being nonzero. The function e ig s  employs 

the ARPACK library, which is a collection of routines specifically designed to solve
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Fig. 21. The reciprocal eigenvalue condition number, k 1 as a function
of the upset probability [/7i] 0 1 G [0 , 0 .0 0 2 ].

large scale eigenvalue problems [84]. Using e ig s, nine spectral radii estimates con

verged. The differences between these two different approaches (e ig  and e ig s) for 

those nine spectral radii are shown in Fig. 22 in blue, which were on the order of 

10~8. These values are much larger than eps. But in this application, the primary 

interest is in determining how close ra is to 1 , which means that the two ap

proaches provided nearly indistinguishable spectral radii estimates for the nine upset 

probabilities. For the other twelve upset probabilities (shown in Fig. 22 as magenta 

x ’s), the e ig s  did not converges properly, and thus there is no basis for comparison.
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O)
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of A<1 between using eig and eigsdifference
-12

[IT ] without convergent A, using eigs-1 4

eps
-16.
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Fig. 22. The difference between e ig  and e ig s  computed Ai as a function of the 
upset probability [17i]01 £ [0 , 0 .0 0 2 ].

I I I . 4  S U M M A R Y

In this chapter, the mean-square stability of a stochastic hybrid system was an

alyzed via its model-equivalent Markov jump-linear system. First, several analytical 

techniques for determining the MSS of a Markov jump-linear system were presented. 

Then, using the models given in Appendices A.2 and A.3, the mean-square stability 

of the Boeing 737 in closed-loop with an RCS was evaluated for both a Markov chain 

and an i.i.d. modeled upset process. For this application, it was determined that the 

aircraft system is MSS when the upset probability is less than 1.5 x 10-3.
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C H A PTER  IV

O U T PU T  TRACK ING  PERFO RM A NCE ANALYSIS OF 

A RECOVERABLE FLIGHT CONTROL SYSTEM

In this chapter, an output tracking error system is built for studying output per

formance of a recoverable flight control system. Then performance criteria, including 

mean output energy and mean output power, are used to analyze the tracking sys

tem mathematically. For a real aircraft system under normal operating conditions, 

winds and gusts are always present. Therefore, the mean output power is of primary 

interest for the Boeing 737 in closed-loop with an RCS.

This chapter is organized as follows. In Section IV. 1, an output tracking error 

system is developed to evaluate the performance of a switched system versus a nom

inal unswitched system. In Section IV.2, the output performance of the stochastic 

hybrid system (11) is studied by means of its model-equivalent Markov jump-linear 

model. In Section IV.3, a simple example is given to show how to calculate the output 

performance analytically. In Section IV.4, the results in Sections IV.2 and IV.3 are 

applied to predict the output tracking error performance of the Boeing 737 system 

in closed-loop with an RCS. Section IV.5 briefly summarizes this chapter.

IV. 1 TH E TR A C K IN G  ER R O R  SYSTEM

As discussed in Chapter I, the closed-loop dynamics of a flight control system 

with an RCS can be modeled as a jump-linear system with two modes: the nominal
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mode and the recovery mode. In general, the system operates in the nominal mode. 

However, when a neutron encounter produces a detectable SEU in the flight control 

hardware, the RCS will rollback the state of the controller to its stored value from the 

previous checkpoint. During this recovery process, the current control output values 

are frozen until the checkpointed values can be reloaded and made available. During 

this process, the system is said to be in recovery mode. Therefore, it is important to 

evaluate the performance difference between the nominal system and the switched 

system. As shown in Fig. 23, this difference gives rise to an output tracking error 

Output Tracking Error System

Switched System

W( k)
Nominal System

+

Fig. 23. The output tracking error system.

system described by the state space model

x (k  + 1 ) 

x n(k + 1 )

V e ( k )  =

A o ( k ) 0

0 A „ _

* ( 0 )

1

a

■

i 
---

---
---

1

*3
? - a

i
ST

i

Go(k)
+

Xn (Ac) Gn _

w(k),

x 0

•En,0

x{k)

x n(k)
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The random process 0(k) switches among the symbols {n, r l5  X2 , ■.., r6} representing 

the “nominal” mode and all the “recovery” modes, respectively; x ( k ) and x n(k) 

are the state vectors of the switched and nominal closed-loop systems; w (k ) is the 

white noise process used to generate the wind input; and y e(k) is the closed-loop

x T(k) x^(k )

Cg(k) —Cn

output tracking error. Let x e(k) =
T

and Ce,0 (fe) =
^ 0 ( k )  n

G e,0(k) :

written concisely as

, A e,0(k) =  d ia g  

Then the error system can be

X e { k  T  1) A ) x e ( k )  +  Gej0(k)W(k), CCe(0) *Ce,Oj 0(0) 00 (1^^)

y e(k) = Cefi(k)Xe(k), (17b)

which is also a jump-linear system with switching signal 0(k). Therefore, its sta

bility and output performance can be calculated via the same methods applied to 

systems (11) and (12). The next section develops the theory for the performance 

analysis of a general Markov jump-linear system.

IV .2 T H E O R Y  T O  A N A LY ZE T H E  O U T P U T  P E R F O R M A N C E  O F 

A G E N E R A L  M A R K O V  JU M P -L IN E A R  SY ST E M

For an MSS Markov jump-linear system (12), the output performance measure J  

is defined below:

J  = . k= 0

Jw := hrn E  { \ \ y ( k ) f }  : w ( k )  ^  0,

where Jo is the mean output energy, and Jw is the mean output power. The goal of 

this section is to produce explicit analytical expressions for J  via a generalization
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of the observability Gramian described in [66,81]. The expression for Jw can be 

shown to be similar to the output’s power semi-norm, developed in [51] for network 

controlled systems with data dropouts when both G and C  in system (1 2 ) are not 

switched.

Suppose that a Markov chain, p{k), has a stationary distribution, and p s is 

a random variable with this distribution. Then n y o (p/) := P r{ p s =  p/} for I =

1 , 2 , . . . ,  M N  is determined by solving the eigen-equation

7 b /o (P l) 7!"l/o(Pl)

7 b /o (P 2)
=  n ?/Q

K i / o M

^ i/ o (p m n ) ^ i/ o {Pm n )

or, equivalently,

M N

7h/o(Pj) =  [n yo ]PiPj ^I/O(aO for j  = 2> • • • >M N ■ (19)
i— 1

Before addressing the main theory, the following useful identity is presented. 

Lemma IV .1. Given a matrix M e  M , R m 2  ̂  where m ,p  g N , 

tr  (vec- 1  (M  vec (Ip))) =  tr  (vec- 1  (M t  vec (/m))) •

Proof. According to the formula (T3.9) in [85],

tr  (vec- 1  (M  vec (Ip))) = tr  ( /^  (vec- 1  (M  vec (Ip))))

= (vec (/m))T vec (vec- 1  (M  vec (Jp)))

=  (vec (/m))T M vec (Ip)

= (vec (IP))T M t  vec (Im)
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=  (vec (IP))T vec (vec- 1  (M T vec (Im)))

=  tr  ( I j  (vec- 1  (M t  vec ( /« ))))

=  tr  (vec- 1  (M t  vec (/m))) ,

which proves the lemma. □

The following theorem, is a variation of Proposition 8  in [20]. It ultimately pro

vides a mathematical tool to calculate the output performance via the matrix sF2, as 

presented subsequently in Corollary IV.3.

T h eo rem  IV .2. For an MSS Markov jump-linear system (12), where p  is aperiodic 

and ergodic, let

Qm(k) := ■E{*(fc)ajT(*01{p(fc)=M} for any k e Z +

and

Q m  :=  ,l i m  Q i M -
fc—>00

I f  X q, w , a n d  p  a r e  i n d e p e n d e n t  t h e n

Q m  Ffn  ^ ( kM N n 2 ~~ )  F  ( V ^ i ,  • • • j >

where VH := E ^ f  [# i /o ]  ^ . GIHGjHnl/0 (jk)-

C oro llary  IV .3. For an MSS Markov jump-linear system (12), where p  is aperiodic 

and ergodic, i f  Xo =  0, and w  and p  are independent then

(
M N  \

E P w & i l J -  (2 0 )
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Proof. For any f c e Z +,

Jw =  hm E  { y T(k)y(k)}

= { tr  ( c J (k)Cp{k)x ( k ) x T(k fj  }

(
M N

S  ( E  { a? (fc) £KT (fc) 1  {/,(fc)=^}} )

/ M N

= tr  (p N  ‘ ^ 0E  {a;(/i:)a;T(A:)1 {p(fc)=^}})

(
M N  \

y~! (E^]Qth)j >

which completes the proof. □

Shortly, it will be shown in Theorem IV. 5 (page 79) that this result concerning Jw 

can be concisely expressed in terms of a generalized observability Gramian. Before 

the main output performance results are presented, another useful lemma is given 

below.

Lemma IV .4. For an MSS Markov jump-linear system (12), given any P  =  

(-Pi) -P2) • • •) P m n ) £  H m jv;

(a) i f  w  = 0, and xo and p  are independent, then for any k £ Z+

E  { x T(k +  1 )Pp(k+1)x{k  + 1)} =  E  { x T(k)£p{k)(P )x(k)}  ;

(b) i f  Xo =  0, and w  and p  are independent, then for any k £ Z+

E  { x T(k + l)Pp{k+l)x (k  +  1)}

=  E  { x T(k)£p{k)(P )x(k)}  + E  { tr ('GTp{k)Pp{k+l)Gp{k^j } .
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Proof, (a) For any k E  Z+, observe

E  { x T{k +  l)Pp(fc+i)®(fc +  1)}

=  E  ■|a; (k)Ap f̂:'jPp^k^-i)Ap^x{k)'^

M N

— E  |a ;  (k)All.PfJ,jAllix(k)l{p(i()=lliyl{p(k+i)=iJJj}f  
i,j=l 
M N

=  'y  ̂ E  |  E  |  x  (k)Atl.Pljj:jApix(k)l{p(k)=iii}l{p(k+i)=nj} I *(^)>P(^)}j
i,j= 1

M N

= Sy^j E  I *  (k)Alx.Ppj Apix(k)l{p(i{')=pi}E { lfp ^ + i)^ }  | x {k),p{k) = Ah}j
»J= 1

M N

= ^  E  I® (k)Afi.PljijApix(k)l{p(iS;)=pi}E  { l{p(fc+i)=/ijr} I p(k) = Ah}|
i,j= 1

M iV

y y  e  \^xT (k)^piPfj.j^Pix (k)i{p(k)=m} [ n y o ] ^ . }
i,j= 1

MJV (  /  M N

J 2  E  * T«  ( A I  £  [n Vo]mtt. P„Ah ) x(k)
i=i I V j=i
M N

=  ^ P { a : T(fc)£w (P)a;(A;)l{p(fc)=Mi}}
i= l

=  P  {®T(A;)£p(fe)(P)a;(A:)} .

(b) For any k E Z+, using the independence assumption and the fact that 

E  {w (k )w T(l)} =  Im ■ l{k=i} and E { w (k )}  =  0, it follows that

E  { x T(k + l)Pp{k+i)x{k +  1)}

=  E ^ -F G p(jt^w{k') Pp(k+i) ■̂■p(k)x {JA A  G'p(fc)'tu(/u)j ^

— E ^ x  {E]Apfj^Pp^k+i)Ap[k)x {A) A  x  (JAAp^Pp(k+i)GpQt)w{}i)^f 

A  {k)Gp(k-)Pp(k+i)Ap(k)x (k) A  w  p{k)Pp{k+i)Gp(k)w(k')^

= E ^ x  (k)Ap^Pp(k+i)Ap(k)x {k) +  w  (k)Gp^Pp(k+i)Gp(k)w {k)^
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=  E ja ; (k)Cp(k)(P)x(k) +  tr  ^ G p ^P p ^ i^G p ^^ j  j  .

The proof of the lemma is complete. □

The main results concerning output performance of the Markov jump-linear sys

tem (1 2 ) are given next. Specifically, it is shown that the mean output energy, Jo, 

and the mean output power, Jw, of this system can be concisely written in terms of 

generalized observability Gramians.

T h eo rem  IV .5. Consider an MSS stochastic hybrid model with Markov jump-linear 

system (1 2 ), where p  is aperiodic and ergodic.

(a) I f  w  = 0, and Xq and p  are assumed to be independent, then the mean output

tion of C k times (C°(C) := C).

(b) I f  Xq = 0 and w  and p  are assumed to be independent then the mean output

energy is

where X 0  := E  { a ^ o  }> Qo := P  { Y^kLo Pp0( ^ ) }> an^ Pk denotes the composi-

(21)

power is

=  t r ( f i { G „ , O f t } ) ,

(22)

toftere Gp, := GftGjs and Qr. := (E ^ o & (C )) .

Proof (a) Noting that Xo is independent of p0, the result is immediate once it is 

proven for any k € Z+ that

(23)
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When k = 0,

E  { I l 2/ ( 0 ) H 2 }  =  E  { * o C £ ^ P b * o }

=  E  {a;0 CPoXo]

= e { x ^C,,J C ) x  „} .

For any k > 1 observe that

E {\\y(k)\\2} =  E  { x T(k)Cm x(k)}  

= E  { x T(k)C°p{k)(C)x(k)} .

Now since Ck(C) € (23) follows directly by repeatedly applying

Lemma IV.4(a) k times.

(b) Since x 0, p  and w  are independent, and E {w (k ) \  = 0, the natural response of 

the MSS Markov jump-linear system has zero average power. Hence, there is 

no loss of generality in assuming that Xo =  0. Trivially then E  {||t/(0)||2} =  0. 

When k = 1,

£{llw(l)H2} =  b { » t (0)GJ,c pO)g «,«>(0)}

=  E  { tr  (w (0 )w T(0) ■ }

=  tr (E  { w (0)w t (0) }  ■ E  {GJ0CP(1)GPO} )

= B M e ^ > e p°)}

=  B { t r ( G j o£»(1)(C)Gw>) } .

For any k > 1, simply apply Lemma IV.4(b) (k — 1) times, and under the given 

conditions the first equality of (22) holds. The fact that p (k ) is aperiodic and
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ergodic (i.e., the states of p(k)  form a single ergodic class) ensures that the limit 

with respect to k is well defined and independent of p 0. To validate the second 

equality of (22), it will be enough to show that (20) and (22) are equivalent. Let

then

and

fe=0

(Q) — (iMNn2 ~  8$2 )
- 1

C J ® C J

Cm n  ®

vec(Ip) ,

(24)

Qm — ^m(Q)
M N

£ [ % ° U Q .
3= 1

Hj

Qn i Qfj- 2 Î MN

/ \

®  I n

\ /

In addition,

tr  (G J.^,<e)<3p.)
/ M N

=  tr  o {/<,)]

(25)

i=l
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/ /

M N

£
i= 1

V . V

Q i Q2 • • • Qmn

/
[ ^ /o  ]ww

\ \

® 4

V J i 7 l/ o ] ^ JV_ / /

' G ^ ' K y o  (jJ-i)

=  tr

(  {

vec - 1
M N

£
, i= 1

"■1 / 0  (/■«.) GX

v

■■■ f a / o kH i H M N
Gv ( I m N t i 2 ~  1̂ 2 )

- 1

c j ,  ® C£
\ \

< & ® C £
vec (/p)

GT (X) GT
M M /V  W  H M N / /

/  /

=  tr vec -1
MJV

£
. i=l

[7ZI/0] TTl/O (^i) GJ, [iII/0] WiW2 7T!/o (/i/)

V V

• •  [/ 7 Vo]w#lMN’n / o ( ^ ) G j G (ImNji2 ~  ^ 2 )
-1
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c £ ® c £
\ \

c £ ® c £ vec (7p)

r ,T (Ri r TVMN W MMJV / /

tr

( (

vec- l
'MN

£
. i— 1

Mi Mi

V V

[/ 7 l/° U w « r 7ri/o ( ^ 0  Gl  ® Gl
\ \

{Imnh2 — 2 )
® < £ vec (ip)

i;1 / /

=  tr  (vec 1 (Mvec (ip))) 

where

£ [ f f i / o L w "-./oO *)G £® G £
. i=l

M N

Y  [Hyo\m N  7Ti/o (aO G l  <g> G l
i= 1

( J m N t i 2 ~  6^2 )
- 1

<7T 6?) r TMMJV HMN

(26)
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Next observe that according to Theorem IV.2, if for j  G { 1 ,2 ,. . . ,  M N },

M N

^ : = £ [ t f l / o ] W J< V 5 > / o  (*<<),
i= 1

then for V  = (V^, V ^ , . . . ,  VMmn),

<P(V) =

vec(Vm) 

vec (V^)

v e c ^ J
' M N

X %]/° Gw ®
i=l
M N

X \.n V°\,HH2 ^/o (/h) Gw <8> G
2 = 1

MAT

L i= l

vec (/m) .

Therefore,

</? (Q) =  {Imnh2 ~  ^ 2 ) 1 v W

(ImNu2 — ^ 2 )
X\ - l

MAT

X I [^ /o lw w  ^  0  G*
i = l
M N

X  [^i/o] 2 7TI/0 (/Xj) Gw 0  GMi
2 = 1

M N

X [ ^ / o ]  * 1 / 0  ( /X i)  G Mi 0  G n
2 =  1

vec(7m)

But according to Corollary IV.3,

( M N  

i= i
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„-itr  ^vec 

/  /
Cfj,i ® C^  C„2 ® • ■ ■ C,MN ® CfiMN <p(Q)

=  tr vec- l Cpi ® <8 > C^ 2 • • • CUMN ® CtV- MN  ^  P M JV

V V

(j-MNn2 ~  ^ 2T)
- 1

M N

Y 1  [n V ° \ %yo  (/h)
i=l
M N

Y 1  iIJl/0 \nu2 ^ /o  (M<) ® Gih
i= 1

M N

Y 1  [n yo }m  *i/o (lk) Gim ® Gw
- i=l

vec(/m)

=  tr  (vec 1 (M t  vec (/m))) • (27)

According to Lemma IV. 1, the right-hand sides of (26) and (27) are equivalent. 

Thus, the proof is complete. □

The following corollary shows that Theorem 2(b) in [8 6 ] is a special case of The

orem IV. 5(b).

C oro llary  IV .6 . In the context of Theorem IV.5(b), i fG Mi =  G fo r i  =  1 ,2 , . . . ,  M N  

then

Jm =  tr  (G WE  {<2Ps} )  =  tr  [g wQw)  , (28)

where Gw := GGT and Qw := E  {QPs}.
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Proof. Observe, using (18) and (24), that 

£{<3o.} =  £  {£„ ,(« )}

(M N

3= 1  

M N  r / M N

= X (X W w Qh ) 'xyoipi)
i=1 L \J = 1  /
MAT r  / M N  \

=  X I  ( X  t ^ U  I Qfij
j=l  L \  i= i  
M N

=  ^  [t̂ I/O (A*j )̂ >Uj ] 
J= 1

= £{«->,}

Qw

This completes the proof. □

C oro llary  IV .7. I f  M  — N  — 1, then system (12) is a non-switching system with 

[n]yQ =  1 . Let Ax =  A with ra (^Aj < 1, G\ =  G and C\ =  C. Then

Jm =  tr {GwQw^ >

where Gw := and := Sfelo 

ability Gramian matrix.

(A Ty  CTC A k

(29)

, which is exactly the observ-

IV .3 S IM P L E  E X A M P L E S

When system (12) is MSS, the result in Theorem 111.4(d) can be used to calculate 

J0 and Jw analytically. Prom the MSS property, it is clear that Q as defined in (24) 

is the unique solution to Q — jC(Q) =  C. This adjoint coupled Lyapunov equation 

can be solved using which is a matrix representation of £ . By means of the
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linear column stacking operator tp and its inverse operator p~l , the adjoint coupled 

Lyapunov equation can be written as the matrix equation

p(Q) -  &/2 • <p(Q) = (p(C),

and hence

Q =  V7 1 {(IM N n 2 — £̂ 2) 1 ’ <P(C)) ■

Therefore, the tracking error measures can be written in terms of

{00 'j M N

E £X(e'q = £ ‘?-«Pr{po = /‘i}
fc= 0  J i= 1

f oo \  M N

Y,£k(c) =E([/r,/o](,,we-j)\fc=o /  j = 1

and

{00 'j M N

£ < ( < ? )  = E <5 « Pr{ f t = f t > -
k = 0 J j = l

Specifically, the mean output energy, J0, and the mean output power, Jw, can be 

expressed as

/  M N
J0 =  tr  X 0  Y  Qih P r(Po =  Vi}

\  i= 1

(M N  M N

Y  Y  [Hvo]^ GhQh} Pi'{ps = ),
i=i j = 1

and when =  G for i = 1, 2 , . . . ,  M N ,  then

( M N  \

^  Pr{ps =  Vj} j  •

The following example is used to demonstrate the theoretical results given in 

Theorem IV.5 and Corollary IV . 6  using a simulation.
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E xam ple  IV . 1 . Consider a pair of one-dimensional (scalar) systems (A{,G, C*), 

i = 1,2 driven by a Markovian jump-linear system p(k) with the parameters given 

in Table III. Here the transition probability [77] 1 2 is varied between [0,0.90] (which

TABLE III
Parameters for the Simulation Example IV. 1

Parameters Values

A! 0.99

A-i 1 . 0 1

Cl 1.50

c 2 1.50

G 2 . 0 0

Pr{p 0  =  1 } 

Pr{p 0  =  2 }

0.50

0.50

x 0 0  or uniform on [0 , 1 ]

77 =
[n\ 12

0.90 0.10
[/7] 1 2  6  [0, 0.9]

ensures the system is MSS). According to Theorem IV.5 and Corollary IV.6 , the 

plots of J 0  and Jw with respect to [77] 12 are shown in Fig. 24. It is clear that J 0  

and Jw increase as the transition probability [77] 1 2 increases. Roughly speaking, the 

increasing [77] 1 2 causes the unstable A 2 to appear more frequently, so that the Markov 

jump-linear system approaches instability. On the other hand, when [77] 1 2 =  0.05,
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x 10
12
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8

6

4

2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 24. Plots of Jo and Jw with respect to the transition probability [77] 1 2 -

for example, then

Q = Q\ Q2 126.1912 131.5214

and thus,

Qo = Qi- Pr{p 0  =  1} +  Q2 • Pr{p 0  =  2 } =  128.8563.

Moreover, X 0 = E  {x 0Xq} = so by (21) J 0  =  42.9521. By comparison, the 

Monte-Carlo simulation estimate calculated from (12) via y{k)  is J 0  =  42.6461. In 

addition, when x Q = 0, it follows that Pr{ps =  1 } =  0.9474 and Pr{ps =  2} =  0.0526. 

Therefore,

Qw = Qi- Pr{ps =  1} +  Q2 ■ Pr{ps =  2 } =  126.4718.

Since Gw = 4, it follows from (2 2 ) that Jw =  505.8870. In this case, the Monte-Carlo 

simulation estimate of E  {||2/(A;)||2} calculated from (12) is shown in Fig. 25. It is in
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good agreement with this prediction.

550

505.8870
500

450

400

350

250

200

150

100

50

500 1000 1500
k

Fig. 25. A plot of E  { ||j/(A;) ||2} from Monte-Carlo simulation and ,JW from theoretical 
calculation when xq — 0 and [77] 12 =  0.05.

The simple example above demonstrates that the simulation results match well 

with the theory presented in the preceding section. In the next section, the theory is 

used to compute the output tracking error of the Boeing 737 system in closed-loop 

with an RCS subject to SEU’s. This provides our central theoretical performance 

estimate which is compared against the experimental data.

IV .4 O U T P U T  TR A C K IN G  PER FO R M A N C E OF TH E BO EIN G  737 

IN  CLOSED-LOOP W ITH  A N  RCS SU BJEC T TO SE U ’S

From Section IV. 1, it is clear that the output tracking error system is also a 

stochastic hybrid system, whose structure is similar to system (11). Therefore, all the 

model-equivalent techniques for the MSS and the output performance of system (1 1 )
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can be applied here. For this application, calculations using MATLAB show that 

the MSS characteristics of the error system are indistinguishable to those described 

for the closed-loop system (11) given in Section III.3 (see Figs. 17 and 18). Since 

an aircraft flying at cruising altitude is always disturbed by winds and gusts, the 

output tracking energy is never finite. Therefore, in this section, only the output 

tracking power is meaningful for an MSS error system. As discussed in Section III.3, 

the tracking performance will be analyzed assuming the upset process is modeled as 

either a Markov chain or an i.i.d. process.

IV .4.1 Tracking Perform ance W hen the U pset Process Is M odeled as a 

First-Order M arkov Chain

When the upset process is modeled as a Markov chain with the transition prob

ability matrix, ZZi, given in (14), then for the output tracking system,

where

diag (An, A rj  for i =  1,2, . . . , 6  and j  =  0,1, which are sixteen-dimensional ma

trices. Thus, the dimension of srf-i is 3,584 (i.e., 2  x 7 x 162). Let

^(^2x7x162 — • <P >

where

0,N j ^ 0 ,R i  j * • * 5 ^ 0 ,R ^  j t^ l ,N i -̂/ l,R i j * * • ? ^ 1 ^ 6

with CjjN =  diag ( c J C n, C j C'n j  and Cj,r, =  diag ( c ^ C n, CrL CT̂ j. Similarly, define
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with GjjN =  diag (G nG j, GnG ^ j  and G j,^  =  diag ^GnG^, GrGj^j. Then the output 

tracking power of the system, Jw, can be calculated using (22). Among the three 

output signals, altitude, calibrated airspeed, and tracking angle, only the altitude 

is significant numerically. Therefore, Jw embodies primarily the altitude variations. 

The predicted mean output tracking error power, Jw, is shown in Fig. 26 for the

40
  Prediction from an FSM
  Prediction from an SFSA

<» 30

c  20

Q.

c  10

0.4 0.6
Upset probability

0.9
■3x 10

Fig. 26. The SFSA/FSM-predicted mean output tracking error powers as a function 
of upset probability [i7i]01.

SFSA/FSM modeled recovery processes. As might be expected, the higher the upset 

probability, the larger the output tracking error power. It is unbounded at the 

stability boundary. The mean tracking error power is less than 40 ft2 when the upset 

probability, [77i]01, is less than 1.2 x 10-3. In this case, the corresponding altitude 

variation is less ±6.4 ft at cruising altitude. Therefore, it is predicted that the RCS 

controlled Boeing 737 system will function well for any upset probability less than 

1 . 2  x HT3.
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IV .4.2 Tracking Perform ance W hen the U pset Process Is M odeled as an 

I.I.D . Process

When the upset process is i.i.d. with the probability distribution, 7T/, given in (15), 

then one approach to calculating its output tracking power is via Theorem IV. 5 ( b) 

with

l - T T i ( l )  7 T i( l)  

l - 7 T i ( l )  7 T i( l)

An alternative approach is to use I7o, given in Subsection III.3.2, and

J-i := diag , . . . ,  • (I70  ® h&)

with AN =  diag (An, An )  <g> diag ^An, An)  and ARi =  diag ^An, Ar)  ® diag ( A n, Ar j  

for i =  1 , 2 , . . . ,  6 , which are sixteen-dimensional matrices. (Here the dimension of 

J 2 is 1,792 (i.e., 7 x 162).) Let

Q =  v ~ l ( ( - G x  162 -  g/2) 1 ■ (p ( u ) )  ,

where

C =  ( C n , ^ , . . . , ^ )

with GN =  diag ^G jG n, C jC n ĵ and Cff =  diag ^G„ Cn, CrvCr^j. Similarly, define

G = ^Gn, G r1? • • •, G r ^

with Gn =  diag ^GnG j,G nG„^ and GRi =  diag ^GnG^, GTGj^j. Then the output 

tracking power of the system, Jw, can be calculated using (22). The plot of Jw as a 

function of 7 T i( l)  is almost indistinguishable to Fig. 26. Thus, for a given probability 

Po and under the condition that the system is MSS, the normalized difference of the
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mean output power,

normalized difference of Jw at p0  =  .   I^iIoi-po ^
J w \[lh)(n=Po

is shown in Fig. 27 corresponding to r = 0 and r  =  1. When po 6  [0,1.4 x 10-3], the

—  FSM: i.i.d. -  Markov 
11"  SFSA : i.i.d. -  Markov

n  -2

- 4
0.2 0.4 0.8

U pse t probability
0.6

x 10"3

Fig. 27. The normalized difference between the output performances when r =  0 
(i.i.d.) and r  =  1  for typical values of 7Ti(l) and [77i]01.

normalized difference is less than 10-4. Thus, it is clear, from a mean output power 

point of view that modeling the upset process as an i.i.d. process or a first-order 

Markov chain produces approximately the same theoretical performance prediction.

I V . 5 S U M M A R Y

In this chapter, theory to compute the output performance of a stochastic hybrid 

system was presented via its model-equivalent Markov jump-linear system. It was 

shown that both mean output energy and mean output power could be expressed
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in terms of a generalized output observability Gramian. The analytical expressions 

were derived under the condition that the system is MSS, which guaranteed their 

finiteness. Then the theory was applied to calculate the mean output power of the 

Boeing 737 in closed-loop with an RCS subject to either a Markov or an i.i.d. upset 

process. For this specific application, the mean tracking error power was less than 

40 ft2 when the upset probability was less than 1.2 x 10-3. Thus, the corresponding 

altitude variation was around ±6.4 ft at cruising altitude, an acceptable performance 

level given the circumstances.
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C H A PTER  V

EXPERIM ENTS FOR EVALUATING THE TRACK ING  

ERROR PERFO RM A NCE OF A RECOVERABLE  

FLIGHT CONTROL SYSTEM

In this chapter, two RCS experiments are described. One experiment was con

ducted in a high intensity neutron environment at the Los Alamos National Lab

oratory (see [87] for additional details). The primary goal here was to gather real 

neutron performance data in order to assess any potential safety hazards due to 

SEU’s for RCS controlled aircraft flying under normal atmospheric conditions. The 

other experiment was conducted in a simulated neutron environment at the NASA 

Langley Research Center. The main purpose of this experiment was to validate the 

hybrid model for the recoverable flight control system developed in Chapter II by 

evaluating the accuracy of the theoretical prediction of the system’s mean output 

tracking performance presented in Chapter III.

This chapter is organized in the following way. First, descriptions of the RCS 

experiments conducted at LANSCE and NASA Langley are given in Section V.l. 

Then in Section V.2, the experimental data obtained from NASA Langley will be 

analyzed and the results will be compared against the theoretical performance pre

dictions obtained in Chapter IV. In Section V.3, the experimental data obtained 

from the LANSCE will be analyzed in a similar fashion. Finally, a summary of the 

main experimental conclusions is given in Section V.4.
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V .l  D E SC R IPTIO N  OF TH E RCS EX PER IM EN TS

Two experiments were designed and conducted to evaluate the output tracking 

performance of an RCS controlled flight system: one was performed at LANSCE in 

Los Alamos, New Mexico and the other conducted at the NASA Langley SAFETI 

Laboratory in Hampton, Virginia. At LANSCE, RCS performance was measured un

der a high intensity neutron environment. As will be discussed shortly, this data can 

be used to assess the performance of an RCS controlled flight system under normal 

atmospheric conditions. At NASA Langley, the tests were conducted in a simulated 

neutron environment, which was used to validate the mean output tracking power 

prediction model. Aside from the difference in the environments, both experiments 

were conducted in as similar conditions as possible: same hardware, same software, 

identical flight configurations, etc.

V .1.1 D escription o f the H igh Intensity N eutron Experim ent at L A N 

SCE

The experimental configuration at LANSCE was described in Chapter I. The 

layout of the experimental environment is shown again in Fig. 28. A concrete wall 

separates the laboratory into two sections. The section below the concrete wall 

depicts the control room containing the host computers, one for the flight simulation 

of the Boeing 737 system and one for data acquisition. It is also a safe environment 

for the personnel operating and controlling the experiment. The actual control room 

at LANSCE is shown in Fig. 29. The section above the concrete wall depicts the 

radiation chamber, where the free neutron beam source was directed at the RCS
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Flight Control Barrier
Flux Sensor ComputerBeam Source

Concrete Wall

Data Acquisition Flight Simulation
Host Computer Host Computer

Fig. 28. The layout of the experimental environment at LANSCE.

Fig. 29. The control room at LANSCE.
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through a flux sensor. The flux sensor was used to measure the neutron intensity. 

It sent a signal to the data acquisition computer, which could be converted into a 

time-varying flux measurements. In addition, an image plate (front plate) was placed 

between the flux sensor and the RCS in order to measure the position and diameter 

of the beam before striking the RCS. Another image plate (back plate) was placed 

between the RCS and the barrier which created an image of the chip set within the 

RCS exposed to neutrons. The real radiation chamber with the RCS in the beam 

path is shown in Fig. 30. (The back plate is not visible here.) Since the diameter

ix Sensor

Fig. 30. The LANSCE neutron radiation chamber.

of the neutron beam (adjustable between 1-3 in) is smaller than the dimensions of 

the RCS (20.5 in x 7.25 m x 6  m), only a portion of the RCS can be targeted 

at any one time. Fig. 31 shows a virtual RCS used to select neutron targets. The 

beam path (denoted in pink) is just below the dual CPU’s (shown in red). A wide 

variety of target positions were investigated (see [87] for an overview), but in general
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Fig. 31. A beam path (shown in pink) just below the dual CPU’s (depicted in red).

those located in the vicinity of the CPU’s were the most sensitive. With the beam 

path selected, Fig. 32 shows how the front and back image plates record which chip 

sets received neutrons. After a neutron beam passed through the front plate for 

several hours, a circular white region was recorded as shown in Fig. 32(a). As the 

neutron beam passed through the RCS, it was partially absorbed by the electronics, 

which then produced a back plate image as shown in Fig. 32(b). A typical target 

was exposed to the beam between three to ten hours depending on the number of 

recoveries observed. A total of 87 experimental runs were produced in three days. 

As this was the very first test of its kind, target selection was often done on an ad 

hoc basis. In addition, the LANSCE facility is reserved by users 365 days a year. 

This means that only a limited number of good data sets can be collected and used 

for our analysis. In this case, no more than 15% of the 87 runs contained significant 

statistical information. Of those, only six were used for Markovianess analysis of the 

upset signals (see Subsection V.3.1) and eleven were used for the output tracking
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(a) Front plate. (b) Back plate.

Fig. 32. The front and back image plates used to record which chip sets received 
neutrons. (The horizontal lines are printed circuit boards.)

performance analysis (see Subsection V.3.2). Nevertheless, the experiment provided 

a usable set of data describing how neutron-induced SEU’s can interfere with digital 

closed-loop systems.

V .1.2 Description of the Sim ulated N eutron Experim ent at N A SA  

Langley

The experiment at NASA Langley had a similar configuration as the one at 

LANSCE (see Fig. 33), except that there was no real neutron source. Instead, the 

neutron interactions were simulated by triggering rollback recoveries according to pre

determined Markov or i.i.d. upset processes, which were characterized by sets of upset 

trigger sequences. The main advantage to testing the RCS in this manner is that 

the upset signals could be simulated using software triggers having a precisely known 

and controllable probability distribution, unlike what was possible at LANSCE. As 

discussed in Chapter II, the upset signals were assumed to be either a first-order
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f  Power Limiter Real Time 
Visualization

Fig. 33. The RCS experimental environment in the SAFETI Laboratory at NASA 
Langley.

Markov chain or an i.i.d. process. Thus, two corresponding groups of RCS tests 

were conducted to simulate the neutron environment. For each group, ten sets of 

experimental data were collected for each of the following six upset probabilities, 

[ili]01, in the Markov test or, 7Ti(1), in the i.i.d. test: 0, 0.0001, 0.0004, 0.0006,

0.0009, and 0.0012. That is, in total there were 60 one hour runs for each group. 

These probabilities were selected such that the closed-loop system was MSS, and thus, 

the output tracking power was finite. In each case, different sample functions from 

the corresponding Markov or i.i.d. process, v(k),  were used to supply the RCS with a 

series of recovery requests for the closed-loop system. A summary of the experimental 

parameters is listed in Table IV (see also Tables XII and XIII in Appendix B.2 for 

the MATLAB data files).
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TABLE IV
The Parameters of Markov and I.I.D. Tests for the RCS

Markov tests I.I.D. tests

Probability transition 
or

probability distribution
I I \  =

i m 01 m 01 

1  0

TTl =  1 — 7Tj ( 1) 7 T i( l)

Upset probability Itf.loi

Values of upset 
probability

0, 0.0001, 0.0004, 0.0006, 0.0009, and 0.0012

Sample period for 
each run

0.05 sec/sample (or sec/frame)

Duration of each run 60 mins

Number of samples 
for each run

72,000 samples (or frames)

Total number of runs 60 for each group

Magnitude of the winds 1  ft/sec

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

Since the RCS is a prototype device, it was also necessary to perform a variety 

of pretests to guarantee the device and the experimental configuration worked as 

expected. Those pretests are described below.

1. Repeatability test:

To establish a baseline, it was first important to test the repeatability of the 

software, the hardware and the communication units in the following sense: 

if given the same upset trigger sequence and the same sample function from 

the wind process, the system should to some degree produce the same recov

ery process and same output signal. Six test runs were conducted under these 

conditions. An example of the result is given in Fig. 34. In Fig. 34(a), the 

altitude (ALT) deviations (i.e., the deviations from the 34,000 ft cruising alti

tude) of two runs1 are shown. The difference between these runs is shown in 

Fig. 34(b). The primary reason that the difference signal is not zero is that the 

connection between the RCS and the flight simulation is asynchronous. Thus, 

the communication between the units during the course of an hour is slightly 

different for each experimental trial. On average, the difference between runs 

was around 8 % of the deviations from cruising altitude.

2. Upset trigger type test:

There are several types of trigger signals that the RCS might employ: edge 

triggers, state triggers and time triggers. For example, the trigger signal2  shown

in Fig. 35(a), from Frame 1,049 to Frame 1,050, forms a rising (positive) edge

Experiment data for run 1 is RCS5_29.mat and for run 2 is RCS_Pre2_09.mat (See Table XI in 
Appendix B.2).

Experiment data set is upsets_test_0629.mat (see Table XIV in Appendix B.2).
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<to

Altitude Deviation for Run 1 
Altitude Deviation for Run 2

Frame x 10
(a) Altitude deviations from 34,000 ft of two experimental runs.

Frame x 10
(b) Altitude difference between two experimental runs.

Fig. 34. Comparing the altitudes of the aircraft for two experimental runs with the 
exact same configuration.
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(a) No response to state triggering.

150
 FtGS_count Signal
—  Upset Trigger

100
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(c) No response to falling edge triggering. 

Fig. 35. Response of the RCS to varii
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Fram e

(b) No response to triggering during an ac
tive recovery.
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RCS_count Signal 
U pset Trigger
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CD
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Fram e

(d) Response to triggering after a full recov
ery.

trigger signals.
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trigger, then from Frame 1,050 to Frame 1,058, forms a set of state triggers, and 

from Frame 1,058 to Frame 1,059, it forms a falling (negative) trigger. During 

this test it was discovered that the rollback recovery mechanism of the RCS 

would only react to a rising edge upset trigger. Furthermore, it would only 

respond to the first upset trigger if a sequence of consecutive upset triggers 

was injected. Critical in this analysis is the internal variable RCS_count of the 

RCS experiment3 (see Fig. 35). The main characteristics of RCS_count are: if 

there is no upset trigger, its value increases from 0 to 255, one increment per 

frame, and then the process is restarted. If an upset trigger is detected, the 

current value of RCSLcount is held till the rollback process finishes, and then 

its value is reset to 0. For example, Fig. 35(a) shows that the RCS does not 

respond to the state triggers during Frames 1,050-1,058. Fig. 35(b) indicates 

that the RCS ignores any new upset triggers which occur during a recovery 

period. Specifically, the upset triggers at Frames 1,903 and 1,905 are ignored. 

Fig. 35(c) shows that the RCS does not respond to a falling edge trigger at 

Frame 755. Fig. 35(d) shows that it will respond to another rising edge upset 

trigger at Frame 1,510 immediately after finishing the current recovery.

3. Recovery recognition test:

This test was important in order to obtain statistical information concerning 

the recovery lengths. It was done primarily by monitoring the internal variable 

RCS_count. Take Fig. 36 as an example: Fig. 36(a)4 shows that two recoveries

are detected. A closer view of the first recovery event is given in Fig. 36(b). Here

3Experiment data set is RCS5_l.mat (see Table XIV in Appendix B.2).
4Experiment data is RCS_Pre2_09.mat (see Table XI in Appendix B.2).
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250

200
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DC 1 0 0

13,400 14,000 14,600
Frame

(a) Recovery processes detected from RCS_count.

120

c
Z3ooIco
O
CC

40

13,860 13,866 13,872 13,880
Frame

(b) Closer view of the first recovery event.

Fig. 36. Recognition of recovery processes using the internal variable RCS_count.
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it can be seen that recovery period is six frames in length (from Frame 13,866 

to Frame 13,872). A series of such tests revealed that approximately 20% of the 

recovery periods were five frames in length and 80% were six frames in length.

4. MSS tests:

MSS could not tested directly in the experimental environment since the hard

ware employs nonlinear protective devices such as limiters to prevent the system 

variables from becoming unbounded. In other words, the linear model was ob

tained for one trim  condition of the flight system. However, some obviously 

unstable phenomena could still be observed for high upset probabilities. For 

example, Fig. 37 shows that when the upset probability is [i7i]01 =  0.26, the al-

200

-O - 2 0 0  3

(0
*5 -4 0 0
co

-4—*
<0
■>o
D

-6 0 0

-8 0 0

-1000
5 ,0 0 0  10,000  15,000  2 0 ,0 00  2 5 ,000

Fram e

Fig. 37. A stability test of the recoverable flight system when [77i] 0 1  =  0.26.

titude deviation increases dramatically . 5  MSS results presented in Section III.2

5Experiment data is RCS5_11 .mat (see Table XIV in Appendix B.2).
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predicted that the system would not be MSS for this upset probability.

V .2 ANALYZING  TH E EX PER IM EN TA L DATA FROM  N A SA  

LA NG LEY

In this section, the experimental data obtained from the NASA Langley test

bed are analyzed to produce an experimental mean output tracking power. In the 

analysis, the aircraft’s output variables are compared against nominal flights, i.e., 

ones with no rollback recoveries (when [i7i] 0 1  =  0 for the first-order Markov chain or 

7Tj(1) =  0 for the i.i.d. process) but identical wind conditions. The tracking error sta

tistics are then computed using the output errors. The results are finally compared 

against the theoretical predictions developed in Chapter IV to validate the hybrid 

model presented in Chapter II. In particular, Subsection V.2.1 presents the results 

obtained using Markov upset processes, while Subsection V.2 . 2  presents the results 

obtained using i.i.d. upset processes.

V .2.1 Perform ance A nalysis for the Markov Tests

For the Markov upset signals, the ten experimental output tracking error powers 

for each value of [I7i] 0 1 e U : =  {0,0.0001,0.0004,0.0006,0.0009,0.0012} are shown 

in Fig. 38. In the calculation, only the altitude output signal (in units of feet) was 

considered because it is more significant in magnitude than the calibrated airspeed 

and the tracking angle. Cluster analysis, a tool for analyzing under sampled data sets, 

was used to exclude the outliers for each probability [88,89]. Specifically, as shown in 

Fig. 39, hierarchical clustering diagrams were used based on the Euclidean distances 

between the measured output powers. The red-dotted lines denote experimental data
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Fig. 38. The distribution of ten output tracking error powers for six specific upset 
probabilities for Markov upset signals.

which was discarded because it was far away from the main clusters (indicated in solid 

lines). Here the one or two highest links were removed if they were approximately four 

times higher than the other links. After using the cluster analysis, effects from outliers 

were obviously reduced. Fig. 40 compares the averages and standard deviations of 

the experimental mean output tracking powers at each upset probability [77i] 01 before 

and after employing the cluster analysis technique. The black-dotted line denotes 

the average power before the cluster analysis. The magenta-solid line denotes the 

average power after the cluster analysis, which is smoother. The blue dot-dash and 

the green-dashed lines are used to denote their standard deviations, respectively. The 

standard deviation before the cluster analysis is larger than that after the cluster 

analysis. More details are given in Table V, where the deviation reduction ratio is
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Fig. 39. The cluster analysis diagrams for six specific upset probabilities for the 
Markov upset signals.
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Fig. 40. The averages and standard deviations of the experimental output tracking 
powers before and after applying cluster analysis for Markov tests.

TABLE V
Comparison Between the Standard Deviation of the Output Tracking Powers 

Before and After the Cluster Analysis for Markov Upsets

Upset
probability

Standard
deviation

before
cluster

analysis

Standard 
deviation 

after cluster 
analysis

Deviation
reduction

ratio

Number of 
outliers 
removed 

after cluster 
analysis

0 0 0 1 0

0 . 0 0 0 1 2.5846 1.6183 0.6261 1

0.0004 18.0319 5.0544 0.2803 3

0.0006 20.5188 3.9220 0.1911 2

0.0009 14.7303 14.7303 1 0

0 . 0 0 1 2 42.2334 28.8601 0.6833 1
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used to describe the degree to which the cluster analysis eliminates the outliers. It

is defined as

. . . . standard deviation after the cluster analysis
deviation reduction ratio = ------ -— —----------- -—-------      .

standard deviation before the cluster analysis

Therefore, the smaller the deviation reduction ratio, the more effect the elimination

procedure. If the ratio is less one, then some outliers are said to be effectively

eliminated. For example, in Table V, the cluster analysis works well at [77i] 01 =

0.0006 but is not effective at [I7i] 0 1  =  0.0009.

The average output tracking error powers for the six probabilities were computed

empirically from the experimental output data within the main cluster. The results

are shown in Fig. 41 and compared against the theoretical predictions using both

  Prediction from an FSM
  Prediction from an SFSA
—  Experimental Cluster Error Bar 
— Experimental Cluster MeanCM

CL

o  40

o>
■i 30

Q-20

® 10

0.60 0.1 0.4 0.9 1.2
Upset probability x ^q-3

Fig. 41. The average power after cluster analysis and the theoretical predictions 
from the FSM and the SFSA for Markov upset signals.

the SFSA and the FSM. The SFSA prediction is better, as it is slightly closer to
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the experimental curve. In order to accurately characterize the error between the 

theoretical predictions and the experimental estimates, the normalized error and 

mean-square normalized error (MS error) are utilized. These statistics are defined

as

.. , estimate at p\ — prediction at p\
normalized error at p\ = -------------------------------------------

estimate at p\

for pi G U, and

mean-square normalized error =  (normalized error at p \)2,
y Pieu

respectively. Negative normalized error means that the prediction is larger than 

the estimate and vice versa. The smaller the error is, the closer the prediction and 

estimate are. The error statistics for the Markov upsets are shown in Table VI.

TABLE VI
Normalized Errors Between Experimental Estimates and Theoretical Predictions of 

the Output Tracking Powers for Markov Upsets

Upset

probability

Normalized error before 
cluster analysis

Normalized error after 
cluster analysis

FSM SFSA FSM SFSA

0 0 0 0 0

0 . 0 0 0 1 -3.6184 -2.8412 -2.5691 -1.9685

0.0004 -4.6035 -3.7359 -1.3941 -1.0234

0.0006 -1.4418 -1.0979 0.1081 0.2337

0.0009 -0.3498 -0.2117 -0.3498 0.2117

0 . 0 0 1 2 -0.2133 -0.2323 0.0533 0.0384

MS error 6.0441 4.8305 2.9463 2.2413
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It can be seen that the normalized errors before the cluster analysis is applied are 

significant. In addition, the predictions from the SFSA modeled recovery process 

are slightly better than the predictions from the FSM models. However, the MS 

normalized errors are small for both cases when compared to the 34,000 ft cruising 

altitude. Thus, the model works well for this application under the assumption that 

the upset process is a first-order Markov chain.

V .2 .2 Perform ance A nalysis o f the I.I.D . Tests

This subsection basically repeats the analysis in Subsection V.2.1 for the tests 

which used the i.i.d. upset sequences where 7Ti(l) G U. In this case, the ten experi

mental output tracking error powers for each value of 7Ti(l) are shown in Fig. 42. The
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Fig. 42. The distribution of ten output tracking error powers for six specific upset 
probabilities for i.i.d. upset signals.

corresponding hierarchical clustering diagrams are shown in Fig. 43. The outliers are
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Fig. 43. The cluster analysis diagrams for six specific upset probabilities for the
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linked in red-dotted line. The averages and standard deviations of the experimen

tal mean output tracking powers at each upset probability, 7 T i ( l ) ,  before and after 

employing the cluster analysis technique are compared in Fig. 44. As expected, the

" « " Average Power Before Cluster Analysis
—  Standard Deviation Before Cluster Analysis 

Average Power After Cluster Analysis
-  -  Standard Deviation After Cluster Analysis

S2 40

Q_

t  30
//O)

2  20

Q.
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0 0.1 0.4 0.6 0.9 1.2
Upset probability x1Cf3

Fig. 44. The averages and standard deviations of the experimental output tracking 
powers before and after applying cluster analysis for i.i.d. tests.

standard deviations before the cluster analysis is applied are larger than those after 

the cluster analysis is employed. The details are summarized in Table VII, where it is 

clear that when 7Ti (1) =  0.0004, the cluster analysis is the most effective at excluding 

the outliers. The average output tracking error powers for the six probabilities were 

computed empirically from the experimental output data within the main cluster. 

The results are shown in Fig. 45 and compared against the theoretical predictions 

using both the SFSA and the FSM. Again, the SFSA prediction is better, as it is 

slightly closer to the experimental curve. The normalized errors and MS (normal

ized) errors for i.i.d. upsets are shown in Table VIII. The normalized errors before
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TABLE VII
Comparison Between the Standard Deviation of the Output Tracking Powers 

Before and After the Cluster Analysis for I.I.D. Upsets

Upset
probability

Standard
deviation

before
cluster

analysis

Standard 
deviation 

after cluster 
analysis

Deviation
reduction

ratio

Number of 
outliers 
removed 

after cluster 
analysis

0 0 0 1 0

0 . 0 0 0 1 2.9317 2.0540 0.7006 1

0.0004 15.5031 1.3141 0.0848 3

0.0006 11.8691 3.6152 0.3046 3

0.0009 4.1638 3.1974 0.7679 1

0 . 0 0 1 2 19.1979 13.7766 0.7176 4

the cluster analysis are much larger, and the predictions from the SFSA modeled 

recovery process are slightly better than the predictions from the FSM models. But 

as in the Markov case, the MS normalized errors are small for both cases. Thus, the 

hybrid model works well for this application under the assumption that the upset 

process is an i.i.d. process.

In summary, the hybrid model developed in Chapter II and the output perfor

mance produced in Chapter IV faithfully model the output tracking performance of 

the Boeing 737 system in elosed-loop with an RCS subject to either a Markov or an

i.i.d. upset process. From Tables VI and VIII, it is obvious that the difference of the 

tracking performance between Markov and i.i.d. upset processes is small.
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TABLE VIII
Normalized Errors Between Experimental Estimate and Theoretical Prediction of 

the Output Tracking Powers for I.I.D. Upsets

Upset

probability

Normalized error before 
cluster analysis

Normalized error after 
cluster analysis

FSM SFSA FSM SFSA

0 0 0 0 0

0 . 0 0 0 1 -5.0250 -4.0112 -3.9179 -3.0904

0.0004 -2.8716 -2.2721 -0.1840 -0.0007

0.0006 -1.5360 -1.1788 -0.3776 -0.1836

0.0009 0.4938 0.5456 0.5597 0.6047

0 . 0 0 1 2 0.3869 0.3773 0.0596 0.0448

MS error 6.0207 4.8043 3.9804 3.1547
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—  Prediction from an FSM
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Fig. 45. The average power after cluster analysis and the theoretical predictions 
from the FSM and the SFSA for i.i.d. upset signals.

V .3 ANALYZING  TH E EX PER IM EN TA L DATA FROM  LOS 

ALAM OS

In this section, the data obtained from the LANSCE testbed is analyzed and 

compared against the experimental outcomes from NASA Langley and the theoretical 

predictions. In Subsection V.3.1, the Markovian nature of the SEU’s is characterized. 

In Subsection V.3.2, the output tracking power is computed from the LANSCE data 

and then used to estimate the performance of the RCS under normal atmospheric 

conditions using the hybrid model.
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V .3.1 Statistical D ata A nalysis o f the M arkovianess o f SE U ’s

In Chapter II, when modeling the flight control system in closed-loop with an 

RCS, the upset process was assumed to be either a first-order Markov chain (r =  1) 

or an i.i.d. process (r =  0). In this subsection, this assumption will be investigated 

using the high intensity neutron test data obtained from LANSCE. This section 

is based on the work presented in [17,18]. Out of 87 total trials, six experimental 

runs with 44,850 samples each were chosen because they contained the most recovery 

activity observed during the experiment. The number of rollbacks, believed to be 

caused by neutron-induced SEU’s, for each of the six experimental runs is shown 

in Table IX (see Table X in Appendix B .l for additional information). It should

TABLE IX
Recoveries Caused by Neutron-Induced SEU’s in the Experiments Conducted at

Los Alamos

Los Alamos test number Recovery count

RCS-106 14

RCS_107 13

RCS_113 16

RCS_114 10

RCS-136 20

RCS_151 31

be noted from the onset that the Markovianess of the upset signal, v(k),  cannot be 

determined directly from this data since v(k)  could not be measured with the in

strumentation available. Instead, the switching signal 0(h), a filtered version of v(h)
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via the recovery logic of the SFSA (see, for example, Figs. 2 and 3), was measured 

using the internal variable RCS_count. The signal 0{k) takes the value 1 only during 

the recovery period and is 0 otherwise. For example, in Fig. 36(b) on page 108, 

from Frame 13,860 to Frame 13,880, 0(k ) =  1 for k =  13866,13867,..., 13871 and

0(k ) =  0, otherwise. The claim is that u(k)  is i.i.d. because 0(k)  is a first-order

Markov chain (see Theorem 11.7).

The procedure to determine the Markovianess of 0(k) was based on x'2 hypothesis 

testing. In this application, two types of x 2 hypothesis tests were employed to analyze 

the 0{k) sequences: one for testing the homogeneity and the other for selecting the 

best order fit of a Markov chain to the data [90]. The two tests are described briefly 

as follows (see [17,18] for additional details).

For testing the homogeneity, two hypotheses were considered:

Hq : The 0(k)  sequences are homogeneous,

Hi  : The 0{k) sequences are non-homogeneous.

Let s be the total number of tests and K  the length of the data sequences. (In our 

context, s =  6  and K  =  44, 580.) For i , j  € {0,1} and k = 1, 2 , . . . ,  K,  rii(k — 1) is 

used to denote the total number of instances in the s data sets such that 0(k — 1 ) =  i. 

Let pij(k) denote the non-homogeneous transition probability from 0(k  — 1) =  i to 

0{k) =  j  based on the s data sets at time k. pij denotes the homogeneous transition 

probability from i to j  based on the total s K  data. A homogeneity test can be 

conducted using the following test statistic

rn(k -  1 ) \pij(k) -  pij]2 

k = 1 ij€ { 0 ,l}  P %:i
x ts  =- y z  y i
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where as s K  —» oo, the test statistic is a y 2  distribution with 2(K  — 1) degrees 

of freedom. The critical value, Xcv> f°r the hypothesis test is determined by the 

degrees of freedom and a specified cr-error, which is the conditional probability of 

choosing H i  given that the true hypothesis is H q . Specifically, H q cannot be rejected 

if Xts < Xcv> and d  is rejected if Xts — Xcv- Using the experimental data from 

LANSCE, the y 2  homogeneity test results are shown in Fig. 46. The test statistic

x  10"3
1 .5

1

-Q

0 .5

— “  % D istribu tion  w ith D F =  4 5 2 9 7  
"  "  C ritical V a lu e  = 4 5 7 9 3 .2 1 6 2  

R e je c tio n  R eg io n : a  = 0 .0 5  
-  -  T e s t  S ta tis tic  = 4 5 1 5 2 .4 8

0
4.51 4 .5 2  4 .5 3  4 .5 4  4 .5 5  4 .5 6  4 .5 7  4 .5 8

Fig. 46. Homogeneity results from the LANSCE experiments.

was found to be Xts =  45152.48. The y 2 critical value for an a-error of 0.05 with 

45,297 degrees of freedom is Xcv = 45793.22. Since y | s < Xcv> the data was deemed 

to be homogeneous.

For fitting a Markov chain model to the data, another pair of hypotheses was 

considered:

H q : The 0 ( k )  sequences can be fitted to an (r — l)th-order Markov Chain,
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Hi  : The 0(k)  sequences can be fitted to an rth-order Markov Chain.

The hypothesis tests are iteratively executed starting with a specified upperbound for

number of occurrences of this word in the s K  data, and let riij . . .k*  =  )C/e{o 1} n ij~.ki-

by Pij...ku and for an (r — l)th-order Markov chain it is denoted by p j . . M ,  where j  . .  . k l  

is of length r. The test statistic for an rth-order Markov chain is then defined as:

As sK  —> 0 0 , this test statistic has a y 2  distribution with 2r 1 degrees of freedom. 

The critical value, XqV, can also be determined by the degrees of freedom and a

The Markovianess analysis of the data from LANSCE is shown in Fig. 47. The 

graph indicates, for a = 0.05, that the test statistic values for each hypothesis test 

are greater than the corresponding critical values. Thus, all the H0,s are rejected; 

that is, in this case, the data cannot be fitted with a fourth or lower order Markov 

process. However, for a significantly smaller a-value, a  =  10“ 10, it indicates that 

9(k)  can be fitted to a first-order Markov chain. Of particular interest is the fact 

that the test statistic increased by three orders of magnitude in the r  =  1 case. This 

is strong evidence that 0(k)  is a first-order Markov process, which, in turn, suggests 

that the upset process, 1/(fc), can be modeled as an i.i.d. process. Therefore, the 

experimental output tracking powers should be compared with the corresponding 

theoretical predictions and simulated-neutron experimental results for the i.i.d. case.

r. Let i j  . . .  kl be a specific binary word of length r + 1. is used to denote the

The (homogeneous) transition probabilities for an rth-order Markov chain is denoted

specified a-error. H0 cannot be rejected if yv2s < Xcv> and h  is rejected if Xts — Xcv-
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Fig. 47. Fitting a Markov chain to the LANSCE experimental data.

V .3 .2 O utput Tracking Perform ance Analysis in the LANSCE N eutron  

Environm ent

In this subsection, the output tracking power was computed for eleven trials from 

the LANSCE neutron experiment. The upset probability was estimated using the 

ratio of the number of rollback recoveries for each test to the total number of frames 

in this test, that is,

„ . . number of rollback recovery processes 
total number of frames

In the analysis, the aircraft’s output variables were compared against nominal flights,

i.e., ones with no rollback recoveries (in this case, 7Ti(l) =  0). The tracking error sta

tistics were then computed using the output errors. The results were finally compared 

against those from the NASA experiment and the theoretical predictions. In Fig. 48,
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Fig. 48. Comparing the mean output tracking powers obtained from the theoreti
cal predictions, the simulated neutron environment at NASA Langley (after cluster 
analysis) and the high intensity neutron environment at LANSCE.
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predictions from the hybrid models with an FSM and an SFSA recovery logic unit are 

denoted in blue-dotted and red-solid lines, respectively. The experiment data from 

NASA Langley with an i.i.d. upset process is denoted with a magenta curve. The 

experimental data from LANSCE is denoted using single black dots in the figure. 

The standard deviation of the output tracking power is 9.9917. A least-square fit of 

the data is given in a green-solid line. The average point is denoted as a red diamond 

point. It represents the average upset probability and the average output tracking 

power pair (0.0002,6.6567). If cluster analysis is employed, which will eliminate the 

outlier (0.0006,31.8958) (see Fig. 49), the new average point pair is (0.0002,4.1328),

<n
0) i—
Z3
CO
CC
0)
E
ca>©
CD-Q
a>oc
CO•t-»
CO

b

15

10

5

0
1 8 9 4 2 3  10 5 6 7  11

Test no.

Fig. 49. The cluster analysis diagram for the output tracking power estimates from 
LANSCE.

and the standard deviation of the output power is 5.7506. The deviation reduction 

ratio for the output power is 0.5755 < 1, thus the cluster analysis effectively deletes 

the outlier. The new least-square fitting curve also significantly improves. Fig. 50 

shows the LANSCE experimental estimates after the cluster analysis. Therefore, 

at the average point, when 7Ti(l) =  0 .0 0 0 2 , under the high intensity neutron envi

ronment, the rollback recovery process of the RCS introduces a deviation less than
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Fig. 50. Comparing the mean output tracking powers obtained from the theoret
ical predictions, the simulated neutron environment at NASA Langley (after clus
ter analysis) and the high intensity neutron environment at LANSCE (after cluster 
analysis).
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±3 ft from the cruising altitude (34,000 ft). Since the upset probability under nor

mal atmospheric conditions is much lower than this, using the performance theory, 

the output tracking performance will also be much smaller (see Fig. 6 ). Specifically, 

the neutron intensity at LANSCE is around 105 higher than the normal atmospheric 

conditions, so the deviation under normal atmospheric conditions is estimated to be 

smaller than ±0.01 ft. This means that the recoverable flight control system, when 

functioning as designed, provides reliable control performance in the presence of the 

neutron induced single-event upsets at normal atmospheric levels.

V .4 SU M M A R Y

In this chapter, two RCS experiments were described: one experiment was per

formed at LANSCE in a real neutron environment; the other was conducted at the 

NASA Langley in a simulated-neutron environment. Mean output tracking power 

was calculated using the data obtained from NASA and compared with the theo

retical prediction. The results validated that the stochastic hybrid system could be 

used to predict output tracking performance of the recoverable flight control system. 

The LANSCE experimental data was used to analyze the Markovianess nature of the 

SEU’s. The mean output tracking power was also computed using this data, which 

was then rescaled to assess the tracking performance of the RCS controlled aircraft 

system under normal atmospheric conditions.
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CH A PTER  VI 

CONCLUSIONS A N D  FU TU R E RESEARCH

In this final chapter, the main contributions and conclusions of this dissertation 

are summarized in Section VI. 1, and future research topics are described in Sec

tion VI.2.

V I .l M A IN  CONCLUSIO NS

The general contributions of this dissertation are, from a theoretical point of 

view, constructing a stochastic hybrid model class for a recoverable flight control 

system and developing mathematical tools for stability and output tracking perfor

mance analysis. From an application point of view, the contributions are modeling 

a Boeing 737 in closed-loop with an RCS and analyzing its tracking performance in 

a real neutron environment in order to determine the efficiency of the fault tolerant 

architecture.

The specific research conclusions in this dissertation are summarized as follows:

1. A class of stochastic hybrid models was introduced for modeling recoverable 

closed-loop systems. In this model, the upset processes were modeled as either 

(first-order) Markovian or i.i.d. processes; the nominal and recovery modes were 

modeled by linear state space realizations; and the rollback recovery processes 

of the RCS were approximated using an SFSA (or an FSM).
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2 . A mean-square stability criterion for the stochastic hybrid system was devel

oped by analyzing its model-equivalent Markov jump-linear system. It was 

shown that if the hybrid system is MSS, its output performance can be charac

terized in terms of a new generalized observability Gramian. This model was 

then applied to the recoverable Boeing 737 control system to generate output 

tracking performance predictions.

3. A series of tests performed in a simulated neutron environment at NASA Lang

ley, where the upsets were triggered by software-injected signals, validated the 

theoretical performance predictions.

4. The performance analysis tools were used to rescale the performance estimates 

derived from real (accelerated) neutron tests conducted at LANSCE to at

mospheric levels. The main conclusion of the dissertation is that the recoverable 

flight control system, when functioning as designed, will provide reliable con

trol performance in the presence of neutron-induced single-event upsets under 

normal atmospheric conditions.

V I.2 FU T U R E  RESEARCH

Some interesting open problems related to this dissertation are presented in the 

following subsections.

V I.2.1 M odel R eduction Im provem ents

The model-equivalent Markov jump-linear system used for the recoverable flight 

control system is an 8 -dimensional system with a 14-state input-output cross product
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process. The dimension of ̂  is 896 (i.e., 8 2 x 14). This size limits the accuracy of the 

calculations for the stability and the output performance since the spectral radius 

and the matrix inverse must be computed. For the output tracking error system, 

which is of dimension 3,584 (i.e., (2 x 8 ) 2 x 14 =  896 x 4), the situation is even worse. 

Therefore, it will be interesting to consider some type of model reduction. Some 

ideas in this direction are:

1. To use only the output signals of the SFSA in the analysis. Is it possible to ex

tend the theory presented in this dissertation to a non-stationary Markov/non- 

Markov jump-linear system? If so, only the output signals of the SFSA need 

be considered. In this case, the dimension of the hybrid model is exactly half 

of the Markov jump-linear system.

2. To use the fact that all the six recovery states “Ri, R2, . . . ,  Re” of the SFSA 

share the same dynamics. These dynamics were replicated six times in the 

stability and performance calculations. Is it possible to avoid this redundancy? 

In this case, the dimension will be reduced from 896 to 128 for the hybrid 

system and from 896 x 4 to 128 x 4 for the tracking error system.

3. To employ partial switching. Only two control signals (those for the aileron 

and the elevator) have the recovery capability. The idea is to partition the 

controller dynamics, and then employ system identification to the two subsys

tems individually. A conceptual view of this idea is given in Fig. 51. Assume, 

for example, that the controller dynamics for the aileron and the elevator are 

2-dimensional and the other part is 6 -dimensional. Then the dimension of srfi
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Aileron and Elevator

Aircraft Dynamics

Fig. 51. A conceptual view of a partial switching system.

with the 14-state cross product switching process is 22 x 14 =  56 and the di

mension of the whole system is 56 +  6 =  62. For the tracking error system, the 

total dimension is 230 (i.e., 56 x 4 +  6).

4. To use a different model class, for example, stochastic nonlinear systems. But 

in this case, it may be difficult to analytically calculate the output tracking 

performance.

V I.2.2 RCS A lgorithm  Im provem ent

This dissertation did not address the problem of how to apply the results to 

improving the RCS device. However, the hardware might be improved at least in 

two ways:

1. To improve the efficiency of rollback recovery algorithm itself. The current
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rollback recovery algorithm simply rolls all the states back to previously saved 

values when it is doing a recovery. Therefore, the recovery periods are five to 

six frame in length, which in turn  reduces the system performance. If only the 

critical states are rolled back, then the algorithm may operate faster. Thus, 

the performance may also be improved. There should be some system theoretic 

method to determine what the critical states are for a given application.

2. Improve the fault detection and correction algorithm. At present, only detected 

upset signals are corrected. But how can one know for sure whether some 

upsets are missed, and thus uncorrected? One idea is to compare the output 

performance prediction with the actual system performance at each checkpoint. 

If the actual performance is significantly worse than the prediction, it is possible 

that there were missed detections, and an additional rollback is necessary.

VI.2.3 Other Interesting Topics

It was shown in Section II.3 that the nominal mode has a higher dimensional 

state space realization than the recovery mode. A state augmentation technique 

was used to equate the dimensions by adding two auxiliary states to the recovery 

mode. But another approach is to decouple the states of the nominal mode into two 

parts: one part with two states which are non-switched and the other part with six 

states which are switched with the recovery mode. In this case, no state embedding 

is needed. One could also remove two states from the nominal mode, so that both 

the nominal and the recovery modes are six-dimensional. But how can this be done 

systematically? Another technique is to develop a mathematical tool for analyzing a
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system switching between dynamics of different dimensions.

The main application for the theory in this dissertation was a Boeing 737 simu

lation system. It would be interesting to apply the theory to another aircraft system 

or perhaps a UAV. The methodology can also be extended to other safety critical 

applications like nuclear power plant control systems.
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A P P E N D IX  A 

LINEAR MODELS FOR THE BOEING 737 AIRCRAFT  

SYSTEM  IN CLOSED-LOOP W ITH A N  RCS

A .l  TH E ID EN T IFIED  LIN EA R  M ODELS FOR TH E BO EIN G  737 

A IR C R A FT SYSTEM  IN  CLOSED-LOOP W IT H  A N  RCS

The state space representations of the identified models for the RCS controlled 

Boeing 737 closed-loop system are given in this section. The inputs of the sys

tem were: forward, side and down components of the wind signal, and the outputs 

were: altitude, calibrated airspeed, and track angle. £ n : (An, Gn, Cn) is an eight

dimensional system for the nominal mode, and Er : (Ar, Gri Cr) is a six-dimensional 

system for the recovery mode.

-0.1526 - 0 . 0 2 1 0 0.1555 -0.1927 0.1286 0.3234 0.5743 0.0103

-0.5528 0.8558 0.0794 -0.0914 0.0847 0.1713 -0.0400 0.0156

0.8182 0.4362 0.6091 -0.1658 -0.1018 -0.1013 0.4448 0.0811

-0.1970 0.0157 0 . 2 1 0 2 1.0813 0.0295 -0.0324 -0.3494 -0.0306

-0.1518 -0.0151 0.1142 0.0343 0.9900 0.0909 -0.4197 -0.0556

0.0051 -0.0066 -0.0079 -0.0127 0.0382 0.8787 0.1816 0.0633

0.0306 0.0052 -0.0032 0.0140 -0.0164 - 0 . 0 0 1 1 1.0214 -0.0189

-0.0061 0.0190 0.0074 - 0 . 0 2 0 0 0.0806 -0.2403 0.4113 1.1117
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G n =

C n =

0.1638 0.2423 -0.1632

0.0561 0.1078 -0.0374

-0.0727 -0.1884 0 . 0 1 2 1

-0.0141 0.0252 0.0543

-0.0229 0.0124 0.0594

0.0153 0.0051 -0.0283

0.0007 0 . 0 0 0 0 -0.0055

0.0342 0.0164 -0.0582

-1.4160 6.0827 1.0965

1.8808 -4.3033 -1.1529

0.0139 0.0232 0.0224 -0.1754

and

Ar =

Gr =

0.4440 -0.2463 0.0672 -0.0204 0.1304 0.0269

0.0885 1.0089 -0.0216 0.0234 -0.0325 0.0080

0.0655 -0.0264 0.8468 0.2198 -0.0278 0.1414

-0.0350 -0.0349 0.0071 0.9535 -0.0146 0.0013

0.0318 0.05715 -0.0190 0.0384 1.0167 0.0104

0.0597 -0.0469 -0.1307 0.2197 -0.0502 1.1247

0.1367 0.2140 -0.3239

-0.0170 -0.0346 0.0696

0.0659 0.0645 0.2648

0.0049 0.0092 - 0 . 0 2 2 2

0.0025 0.0068 0.0374

0.0689 0.0749 0.2652

25.5580

11.7400

-0.2722

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



152

Cr =

2.4026 -20.4010 88.6780 -35.3950 51.4550 -91.5610

0.9882 -1.3717 -3.6503 -30.6670 -16.6910 5.0725

0.0577 0.1782 -0.0084 -0.5842 -0.1237 -0.0001

A .2 TH E SW ITC H ED  LIN EA R  M ODELS FOR TH E BO EIN G  737 

A IR C R A FT SYSTEM  IN  CLOSED-LOOP W ITH  A N  RCS

The state space representation used to build the stochastic hybrid system for 

the RCS controlled Boeing 737 closed-loop system is given in this section. En : 

^An, Gn, C'n'j is the controller canonical form of £ n for the nominal mode, and Er : 

Gr, Cr)  is the controller canonical form of Er with two extra states embedded 

for the recovery mode. Both are eight-dimensional systems.

5.5673 -7.6364 3.0654 4.7791 -8.5719 3.7877 -10.0493 10.0490

1.0000 0.0000 - 0.0000 - 0.0000 0.0000 - 0.0000 - 0.0000 0.0000

- 0.0000 1.0000 - 0.0000 - 0.0000 0.0000 - 0.0000 - 0.0000 0.0000

-2.4555 4.5975 -2.1429 -1.3480 5.0787 -2.7333 5.9803 -5.9378

0.0000 - 0.0000 0.0000 1.0000 - 0.0000 0.0000 0.0000 - 0.0000

0.0000 - 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 - 0.0000

- 0.0000 -0.0086 0.0087 - 0.0000 -0.0173 0.0175 2.1759 -1.1763

0.0000 - 0.0000 0.0000 - 0.0000 0 . 0 0.0000 1.0000 - 0.0000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



153

1 . 0 0 0 0 - 0 . 0 0 0 0 -49.9930

- 0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 0 0 0 0

- 0 . 0 0 0 0 - 0 . 0 0 0 0 0

0 . 0 0 0 0 1 . 0 0 0 0 30.4399

- 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

0 0 . 0 0 0 0 - 0 . 0 0 0 0

0 . 0 0 0 0 0 . 0 0 0 0 1 . 0 0 0 0

- 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0

- 0 . 0 0 0 0 -0.0256 0.0244 -0.0089 -0.0282 0.0350 0.3024 -0.2723

Ca = 0.0779 -0.3664 0.2870 -0.0029 -0.3824 0.3829 4.0076 -3.9825

- 0 . 0 0 0 2 -0.0013 0.0013 -0.0007 -0.0014 0.0018 0.0130 - 0 . 0 1 1 0

and

2.4531 -1.9279 0.4746 0.0026 - 0 . 0 0 0 2 -0.0023 -0.0266 0.0185

1.0000 0.0000 - 0.0000 - 0.0000 0.0000 - 0.0000 - 0.0000 0.0000

- 0.0000 1.0000 0.0000 - 0.0000 0.0000 - 0.0000 - 0.0000 0.0000

-0.0401 0.0753 -0.0352 2.4148 -1.8465 0.4318 -0.0550 0.0642

0.0000 - 0.0000 0.0000 1.0000 - 0.0000 - 0.0000 0.0000 - 0.0000

- 0.0000 - 0.0000 0.0000 - 0.0000 1.0000 - 0.0000 - 0.0000 0.0000

0.0000 -0.0051 0.0051 0.0000 -0.0088 0.0088 1.5267 -0.5260

0.0000 - 0.0000 - 0.0000 0.0000 - 0.0000 0.0000 1.0000 - 0.0000
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1 . 0 0 0 0 0 . 0 0 0 0 -0.4080

- 0 . 0 0 0 0 - 0 . 0 0 0 0 - 0 . 0 0 0 0

- 0 . 0 0 0 0 0 . 0 0 0 0 0

- 0 . 0 0 0 0 1 . 0 0 0 0 -2.8971

0 . 0 0 0 0 0 . 0 0 0 0 - 0 . 0 0 0 0

0 . 0 0 0 0 - 0 . 0 0 0 0 0 . 0 0 0 0

0 . 0 0 0 0 - 0 . 0 0 0 0 1 . 0 0 0 0

0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

0.1680 -0.3399 0.1666 0.1052 -0.2947 0.1861 0.0865 -0.2312

Cr = 0.0745 -0.1058 0.0324 0.0056 - 0 . 0 0 1 2 -0.0039 0.0663 -0.0241

0 . 0 0 1 1 -0.0016 0.0005 -0.0006 0 . 0 0 1 0 -0.0004 -0.0015 0.0009

A .3 TH E STATE T R A N SIT IO N  M ATRICES FO R TH E SFSA  A N D  

TH E FSM

In this section, the state transition matrices for both the SFSA and the FSM 

used to model the recovery processes of an RCS are given. 77° is for the machine 

input symbol “0 ” , which means no upset was detected. 771 is for the machine input 

symbol “1” , which means at least one upset was detected. For both matrices, the 

summation for each row is equal to 1. The entries in both matrices for the SFSA can
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have any value between 0  and 1 :

1 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 , n 1 ^ 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 . 2 0 0 0 0 0 0 0.80 0 . 2 0 0 0 0 0 0 0.80

1 0 0 0 0 0 0 1 0 0 0 0 0 0

For the FSM, the entries in both matrices can only take value of either 0 or 1:

1 0 0 0 0 0 0 0 1 0 0 0 0

1---o

0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 , n l = 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0

The distinguishing entries between these two sets of state transition matrices are 

boxed for comparison.
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A P P E N D IX  B  

SUM M ARY OF EXPERIM ENTAL DATA OBTAINED  

FROM  LANSCE A N D  N A SA  LANGLEY

In this appendix, a summary of the experimental data sets obtained from LAN

SCE and NASA Langley is given. Only those data sets used in this dissertation are 

described. For additional information on the data sets, see [87].

B .l  EXPER IM EN TA L DATA O BTA IN ED FROM  LANSCE

The neutron experimental data sets of interest from LANSCE are listed in Ta

ble X. For each run, the test number (which is also the MATLAB data file name), 

data length, recovery count, estimated upset probability, and beam target are given. 

For targets T2p and T2pp, at least one RCS processor was struck by the beam. For 

target T3, the primary target was the instruction memory.

B.2 EX PER IM ENTAL DATA O BTA IN ED  FROM  N A SA  LA NG LEY

The six one hour repeatability runs (72,000 samples/run) done at NASA are 

listed in Table XI: three of them were generated with no upsets, and the other three 

were generated with Markov upsets. All six runs were done using the same random 

number seed for the wind gust models.
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TABLE X
List of Experimental Data Obtained from LANSCE

Test number Data length Recovery
count

Estimated upset 
probability

Beam
target

RCS_071 71,330 0 0 T3

RCS_072 71,330 1 1.4019 x 10“ 5 T3

RCS_073 71,320 1 1.4021 x 10“ 5 T3

RCS_106 71,320 14 1.9630 x 10“ 4 T2p

RCS_107 44,080 1 0 2.2686 x 1 0 - 4 T2p

RCS-113 71,230 15 2.1059 x 10~ 4 T2p

RCS_114 71,210 1 0 1.4043 x 10“ 4 T2p

RCS-136 52,130 2 0 3.8366 x 10~ 4 T2pp

RCS-141 25,900 9 3.4749 x 10~ 4 T2pp

RCS_145 38,330 15 3.9134 x 10“ 4 T2pp

RCS_151 50,380 31 6.1532 x 10“ 4 T2pp
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TABLE XI 
Repeatability Test at the NASA Langley

Run file Test description Seed

RCS5_22.mat 

RCS_Pre2_00. mat 

rcs_ p re iid l_ 2 .m a t

Nominal runs with 

the upset probability 

[ff.lo, = *1(1) =  0.
(-220)

RCS5_29.mat 

RCS_Pre2_09. mat 

r cs_ p re iid l_ 3 .m a t

Recovery runs with 

the upset probability 

[ili]0i =  t t i ( I )  =  0.0009.
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In total, sixty one hour Markov runs and sixty one hour i.i.d. runs were performed. 

For both cases, they were divided into ten groups. A different random number seed 

was employed for each group. Table XII provides the group ID (MarkovGr and

TABLE XII
Group ID and Wind Generating Seed for the Markov and the I.I.D. Tests

MarkovGr PreACC pre3 mainl main2 main3

IIDGr preiid2 mainiidO mainiidl mainiid2 mainiid3

Seed (-2 2 0 ) (-260) (-280) (-300) (-320)

MarkovGr ma,in4 main5 main6 main7 main8

IIDGr mainiid4 mainiid5 mainiid6 mainiid7 mainiid8

Seed (-340) (-360) (-380) (-400) (-420)

IIDGr) and the corresponding seed. In each group, six different upset probabilities, 

[ili]01, 7Ti(1) e  U, were tested. The corresponding MATLAB data file name, upset 

probability, spectral radius of ^  and expected recovery count are in Table XIII. 

Other tests related to this dissertation are given in Table XIV.
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TABLE XIII
Six Runs in Each Group of the Markov and I.I.D. Tests

Markov run file I.I.D. run file Upset
probability

To (<e/2) Expected
recovery

count

RCS_MarkovGr_00. mat rcs_IIDGr_00.mat 0 0.9802 0

RCS_MarkovGr_01 .mat rcs_IIDGr_01 .mat 0.0001 0.9833 7

RCS_MarkovGr_04. mat rcs_IIDGr_04.mat 0.0004 0.9902 29

RCS_MarkovGr_06. mat rcs_IIDGr_06.mat 0.0006 0.9930 43

RCS_MarkovGr_09. mat rcs_IIDGr_09.mat 0.0009 0.9960 65

RCS_MarkovGr_12.mat rcs_IIDGr_12.mat 0.0012 0.9983 86

TABLE XIV 
Other Runs Cited in This Dissertation

Run file Data
length

Recovery
count

Description

u p se ts_ te s t_ 0 6 2 9 . mat 6,000 n /a Trigger signal for RCS5-1. mat

RCS5_1.mat 6,000 24 Upset trigger type test

RCS5_11 .mat 36,000 2,421 MSS test
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