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ABSTRACT 

CREATION OF A LARGE SCALE FACE DATASET 
USING SINGLE TRAINING IMAGE 

Qun Wang 
Old Dominion University, May 2012 

Co-Directors: Dr. Mohammad A. Karim 
Dr. Vijayan K. Asari 

Face recognition (FR) has become one of the most successful applications of image 

analysis and understanding in computer vision. The learning-based model in FR is 

considered as one of the most favorable problem-solving methods to this issue, which 

leads to the requirement of large training data sets in order to achieve higher recognition 

accuracy. However, the availability of only a limited number of face images for training a 

FR system is always a common problem in practical applications. A new framework to 

create a face database from a single input image for training purposes is proposed in this 

dissertation research. The proposed method employs the integration of 3D Morphable 

Model (3DMM) and Differential Evolution (DE) algorithms. Benefitting from DE's 

successful performance, 3D face models can be created based on a single 2D image with 

respect to various illumination and pose contexts. An image deformation technique is 

also introduced to enhance the quality of synthesized images. The experimental results 

demonstrate that the proposed method is able to automatically create a virtual 3D face 

dataset from a single 2D image with high performance. Moreover the new dataset is 

capable of providing large number of face images equipped with abundant variations. 

The validation process shows that there is only an insignificant difference between the 

input image and the 2D face image projected by the 3D model. Research work is 

progressing to consider a nonlinear manifold learning methodology to embed the 



synthetically created dataset of an individual so that a test image of the person will be 

attracted to the respective manifold for accurate recognition. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1 Overview 

1.1.1 Introduction 

During the last 40 years, researchers have achieved significant progress in the field of 

face recognition (FR) [1]. Especially in the recent decade, a number of substantial 

advances have been developed with the emergence of evaluation systems for FR. The 

early research utilized no more than 10 images for the system validation. It was not until 

middle 1990s that methods were proposed and tested on large scale face datasets. 

Thereafter the idea aiming at establishing a common evaluation system containing 

thousands of diversified face images became popular. 

In 1994, Y. Moses et al. revealed that "the variations between the images of the same 

face due to illumination and viewing direction are almost always larger than image 

variations due to change in face identity" [2]. As shown in Figures 1.1, 1.2 and 1.3, face 

images taken from the same person, with the same facial expression, lead to dissimilar 

appearance with great difference when light source directions or viewpoints vary[3, 4]. 



2 

Fig. 1.1 Frontal face images taken undo* different controlled lighting conditions 
(Courtesy of Yale Face Database B) 

Fig. 1.2 Face images taken from different viewpoints 
(Courtesy of Yale Face Database B) 

Fig. 1.3 Face images taken from different subjects 
(Courtesy of Yale Face Database B) 

1.1.2 Public Face Databases 

Machine learning plays a very important role in computer vision (CV). It has become 

common sense that most of solutions in CV, such as scene matching, 3D reconstruction, 

classification and segmentation, can be approximated by using machine learning 

algorithms. In 1983 and 1986, Dietterich et al. [5, 6] pointed out that "pure empirical 

learning systems require a set of examples that sufficiently cover the problem space in 
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order for the algorithm to produce a description of the problem class." Based on this 

common awareness, researchers have developed a large number of face databases to meet 

the demands for data training purposes. 

In the following section, we present four representative face databases (refer to Figure 

1.4-1.8). These databases have their own characteristics and are different from each other. 

Some of them involve face images taken under scenarios of various controlled or 

uncontrolled lighting sources, and combinations thereof. Some of them provide 

expression variations beside neutral faces and pose variations. The number of subjects of 

each database varies from 10-20 to more than 300 [7]. 

(I) AR Database 

t fi 
i*; 

t ft 
Fig. 1.4 Images from AR Database. The conditions are (from left to right, top to bottom) neutral, smile, 

anger, scream, right light on, left light on, both lights on, sun glasses, sun glasses/right light, 
sun glasses/left light, scarf, scarf/right light, scarf/left light 

(Courtesy of AR Database) 



BANCA 

Fig. 1.5 Images from BANCA Database: (Top) taken under controlled conditions, 
(Middle) degraded image quality, (Bottom) adverse environment conditions. 

(Courtesy of BANCA Database) 

CMU - PIE Database 

Fig. 1.6 Images from CMU-PIE Database with pose and expression variation 
(Courtesy of CMU-PIE Database) 
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Fig. 1.7 Images from CMU-PIE Database with pose and illumination variation 
(Courtesy of CMU-PIE Database) [8] 

(IV) Yale Face Database B 

Fig. 1.8 Frontal images taken under various lighting conditions 
(Courtesy of Yale Face Database B) 

1.2 Scope of the Dissertation Research 

1.2.1 Motivation 

Face recognition (FR) has become one of the most successful applications of image 

analysis and understanding in computer vision. In the last decades, researchers 

endeavored to establish FR systems based on the computational conception, which 

demonstrates its capability comparable to that of human perception system. The 
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commonly used representation of the facial appearance is obtained in the form of 

rasterisation, e.g. still intensity images or sequential images. Nevertheless, the potential 

obstacles to the efforts are exponentially increased not only by the complexity of facial 

appearance itself but also by illumination conditions, distance and perspective to the 

viewer and lens distortions, as well as the noises during the acquisition. 

Among all the aforementioned disadvantages, pose and illumination have been identified 

as the major challenges in FR[1]. The nature of facial 3D structure leads to the fact that 

there is a large chance for part of the key facial features to be diminished in the shadows 

cast by direct lighting[9]. It has been experimentally proved that differences in 

appearances induced by the illumination are larger than those between individuals. The 

authors give their experimental results and explanation of the effects of changing 

illumination conditions to the performances of certain kinds of face recognition methods. 

They conclude in the paper that all the face recognition approaches they put into 

experiments, such as edge maps, image intensity derivatives and images convolved with 

2D Gabor-like filters, can not provide satisfactoiy results by themselves although these 

methods are designed to avoid sensitivities from illumination variations. In addition, the 

same conclusions have also been drawn from experimental results under different poses 

and different expressions conditions. 

The learning-based model is considered to be one of the most favorable problem-solving 

methods for this issue, which thus leads to the requirement of large training data sets in 

order for higher recognition accuracy. However, the circumstances of limited number of 

training images are a common problem. Consequentially, it makes sense to propose a 

scheme of creating face databases consisting of training images equipped with extra 



7 

variations based on the small set of candidate images. The generated database should then 

be capable of providing continuous face sequences of wide range of lighting and pose 

variations to the training set of face recognition framework. 

Real Image 3D Face Model Generator Gam** DMaba* of Virtual Faces 

Fig. 1.9 Illustration of motivation of the creation of the large database from single face image 

1.2.2 Research Feasibility 

As aforesaid, the idea of creating a new database stems from the fact of insufficient 

information provided by the training resources. So acquiring prior knowledge appears to 

be an instinctive proposition. The intrinsic patterns and structures of the image exemplars, 

on which the extrinsic features are imposed, make it possible to disclose the distinctive 

features of certain class of objects. On the other hand, if the major characteristics of the 

specific class of objects, e.g. human faces and human bodies, are extractable, the 

assumption of producing new instances of the same class is valid. 

The model-based method in computer vision was invented to enhance the capability of 

the system for image understanding and interpretation. Particularly, the emergence of 

statistical-based method provides an opportunity to depict the specific class of object in a 

generic framework that is represented in the form of a set of parameters. The method is 
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fitting the model to the given images and/or the associated features, which is basically a 

tuning-up process of the model parameters to the test images by producing its synthesized 

counterparts. This fact results in an explicit procedure of creating new instances of the 

specified class of objects. Figure 1.9 illustrates the basic concept of the scheme 

mentioned above. 

1.2.3 Contributions 

The first contribution of this dissertation is to propose a novel method for the 3D face 

synthesis and reconstruction by using a simple and efficient global optimizer. A 3D-2D 

matching algorithm, which employs the integration of the 3D morphable model (3DMM) 

and the differential evolution (DE) algorithm, is addressed. In 3DMM, the estimation 

process of fitting shape and texture information into 2D images is considered as the 

problem of searching for the global minimum in a high dimensional feature space, in 

which optimization is apt to have local convergence. Unlike the traditional scheme used 

in 3DMM, DE appears to be robust against stagnation in local minima and sensitiveness 

to initial values in face reconstruction. Benefitting from DE's successful performance, 3D 

face models can be created based on a single 2D image with respect to various 

illumination and pose contexts. The experimental results demonstrate that we are able to 

automatically create a virtual 3D face from single 2D image with high performance. The 

validation process shows that there is only an insignificant difference between the input 

image and the 2D face image projected by the 3D model. 

Another contribution presented in this dissertation originates from moving our 

concentration from statistical-based methods to appearance-based methods. In order to 
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seek real image quality, we utilize backward texture mapping to operate transformations 

from the image space to the texture space. The key point is we tentatively borrow the idea 

from the image warping (e.g. Moving Least Square deformation) and integrate it in our 

work. The synthesized images demonstrate that the proposed approach is convenient, 

easy to use and significantly improves the final results. 

1.2.4 Organization 

In this dissertation, Chapter 2 provides an overview of the proposed framework. Chapter 

3 focuses the relevant literature review and reports on the statistical 3D facial 

representation. Some discussions about key factors pertaining to the internal mechanisms 

associated with our models are also given. In Chapter 4, the detailed physical models are 

presented. The approaches and simulation scheme used in this dissertation research are 

described and explained in detail. Next, Chapter 5 shows the results obtained based on 

the models of Chapter 3 and Chapter 4. We also provide the validation process to the 

experimental results. In Chapter 6, we address a complementary scheme to enhance to 

result obtained from Chapter 5. A summary and conclusion of the present research along 

with the discussion on future works are given in Chapter 7. 
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CHAPTER 2 

SYSTEM INTRODUCTION AND OVERVIEW 

2.1 Introduction 

The proposed system is a generic framework for the research topic of the creation of 

large scale face database from single training image. In other words, given a 2D input 

face image, the framework is able to synthesize a new face dataset with illumination and 

pose variations. Inspired by the realistic scene created by computer graphics technology, 

the system builds its problem-solving capacity upon the concept of 3D face models 

reconstruction as well as the 3D scene rendering. It is a systematic and nontrivial task, 

especially for the 3D face reconstruction, which requires the involvement of different 

technologies in machine learning, computer vision, image processing and computer 

graphics. 

The framework deploys its solution into several modules, which are 3D model generation, 

3D model enhancement, and 3D model rendering respectively. In the following sections, 

we will discuss each module and the associated units within them. The diagram (Figure 

2.1) of the whole framework is shown at the end of this chapter. 

2.2 3D Model Generation 

The module of 3D model generation is the core of the whole system. It is designed to 

reconstruct the 3D face model from the input image. It consists of five parts, e.g. unit of 
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image processing, 3D Morphable model, a set of training weights, an optimizer and the 

cost function. The basic idea of the model generation is fitting 3D face model to the 2D 

input image by tuning up a set of parameters that are capable of handling the face model. 

The system takes iterations to execute the 3D-2D matching operations that are driven by 

the optimizer circulating through 3DMM and the cost function to approximate toward the 

optimal solution. 

2.2.1 3DMM Unit 

The 3DMM unit is based on a statistical-based model, which contains prior knowledge of 

3D human faces, such as shape and texture representations of the mean face model as 

well as their corresponding principal components. It also manages the algorithms of 

dealing with the training weights, by which the 3D new face model is generated and 

projected onto the 2D image plane. 

2.2.2 Optimizer 

The implementation of 3D face reconstructions in our case is a nonlinear problem in 

which a large number of training weights complicates the situation. A global optimizer, 

named Differential Evolution (DE), is included in attempt to find the optimal 

combination of the training set. DE is a genetic algorithm-like method that is known for 

its excellent performance of global optimization. DE seeks the global optimum in an 

iterative working manner until the iteration is stopped by the cost function. 



2.2.3 Cost Function 

The cost function provides a quantitative description of the result came from 3DMM by 

indicating its distance to the input image. Only if the distance falls below the threshold or 

certain criteria is reached, the cost function constantly informs the optimizer to locate a 

better solution. The cost function represents itself in different forms with respect to 

different training phases in the estimation process. For example, the Training Phase I is 

executing rigid registration by measuring the distance between feature points of 3D 

object /3d and that of 2D image The feature point sets are manually selected before the 

training starts, which will be explained in detail in the Chapter 5. While in the Training 

Phase II, the cost function operates non-rigid registration and 3D-2D matching between 

the 3D morphable model and the input image. In our experiments, the cost function is 

designed on basis of 2-norm Euclidean distance function, also known as the function of 

Mean Square Error (MSE). There are multiple choices of distance functions that are 

available for the cost function, but we take MSE into consideration based on the tradeoff 

between the system performance and time consumption. 

2.2.4 Training Weights 

The set of training weights is a combination of parameters from different domains, e.g. 

Eigen space, color space and 3D Cartesian space. Literally speaking, they determine the 

success of the face reconstruction. During the process of optimization, the weight set with 

the best result in previous iterations will be maintained, or updated by a better result if 

there is any. 
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2.2.5 Image Processing Unit 

3DMM is somehow incompatible with noise and blur. However, facial appearances bring 

challenges to the face model reconstruction due to the reason that they are instantiated 

based on images that will inevitably suffer from noise. The image processing unit is 

designed to tackle the disturbance caused by noise in the reconstruction process. At the 

same time, according to our experiments, it is critical and beneficial for the 3DMM to 

know the edge and outstanding information of the input image. Image processing unit is 

in charge of filtering out the unwelcome noise but retaining possession of the useful edge, 

shadow and lighting information at the same time. 

2.3 3D Model Enhancement 

The model enhancement module is set to reconstruct an approximated facial appearance 

to its ground truth by backward texture mapping. The new 3D face from the model 

generation module is augmented on its texture appearance. The module transforms the 

input image from the image plane to the texture plane and assigns it to the shape surface 

of the 3D face. The transformation of the input image to the texture plane demands for 

annotation landmarks on the image as the control points. Hence a user interface is also 

needed. 

2.4 3D Model Rendering 

The 3D rendering module is basically built upon the computer graphics technology. Since 

our goal is to create a large scale database, rendering the new face model in a 3D context 
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is an instinctive thought. Two sets of parameters control the output for new dataset, in 

which one is the lighting control and the pose control the other. The computational 

lighting model, accompanied by the pose calculation and the user definitions on both 

sides, ensures the diversification of new face images for the dataset creation. The 

overview diagram of the entire framework is shown in Figure 2.1, which is demonstrated 

on the next page. 
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Fig. 2.1 Overview diagram of the entire framework 
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CHAPTER 3 

STATISTICAL 3D FACE REPRESENTATION 

3.1 Background and Previous Works 

3.1.1 Overview of Statistical-based Methods 

The statistical-based method is a successful model to capture image patterns. A number of 

models have been addressed over the past years. It would be quite elaborate to cover all 

the papers in this area, so only a small number of milestones or breakthroughs will be 

mentioned in the following short review. 

The first notable paper was published in 1995 written by T.F. Cootes, et al., who was 

inspired by an extraordinary paper [10] proposed by Kass, Witkin and Terzopoulos. The 

concentration of the research was originally directed toward the shape modeling. Active 

Shape Model (ASM) learns through observations, giving the model flexibility, robustness 

and specificity as the model only can synthesize plausible instances with respect to the 

observations [11]. Figure 3.1 shows the basic application of AAM in hand matching. 

On the basis of ASM, T.F. Cootes, et al., presented a new model, named Active 

Appearance Model (AAM) [12-14], which overcomes the disadvantages of ASM by 

integrating complementary texture information from the image. In [13], the authors give a 

comprehensive review of the improvement of AAM from three different perspectives: 

effectiveness, discrimination and robustness. For the purpose of applying AAM in real­

time situation, researchers developed many methods to reduce the computational 

complexities by involving texture representation, optimization algorithm and model 
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training. As a result, AAM brings considerable advances to statistical-model with new 

features of synthesizing picturistic images. AAM finds its wide applications in various 

situations, e.g. facial recognition and expression [15], human eye movement [16], object 

tracking[17], and medical image segmentation [74]. 

(c) (d) 

Fig. 3.1 Illustration of ASM applied to hand matching, (a) initialization, 

(b)-(c) transitional results, (d) the final result 

In [19], the authors point out that one of the drawbacks of AAM is that the pose modeling 

is the most difficult problem for shape modeling. The reason for this stems from the pose 

changes in 3D space, which lead to the nonlinear solution of facial appearance. The 



authors also mention that the combination of 2D and 3D might be able to find the solution 

between computational complexity and effectiveness for AAM. 

Another remarkable paper was published by Volker Blanz and Thomas Vetter in 1999 [6], 

in which the author presented a statistical-based method in the 3D space, which is named 

3D Morphable Model (3DMM). The estimation process of fitting shape and texture 

information into 2D images is considered as the problem of searching for the global 

minimum in a high dimensional feature space, in which optimization is apt to have local 

convergence. 

3.2 Introduction to Statistical 3D Morphable Model 

3D face modeling has been one of the greatest challenges for researchers in computer 

graphics for many years. Various methods have been used to model the shape and texture 

of faces under varying illumination and pose conditions from a single given image. In 

order for better understanding of 3D Morphable Model, I would like to give a rough 

introduction of the previous works done in this field in the following several pages. 

3.2.1 Previous Works 

Researchers introduced Shape-From-Shade (SFS) [18] to reconstruct the 3D surface of 

human faces. Unfortunately, SFS shows rapid decrement in performance, such as biased 

calculations and improper estimates of surface normals caused by varied lighting 

conditions and cast shadows on the 2D image. The active appearance model (AAM), 

which has been mentioned in the previous section, is also a statistical deformable 

technique which has been widely used in computer vision. 
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(a) (b) 

Fig. 3.2. Illustration of Shape-from-Shade model, (a) original image, (b) 3D shape with respect to (a) 

However, AAM only allows a small range of out-of-plane rotation and displays 

inadaptation to directed light sources. In 1995, David Beymer and Tomaso Poggio created 

a pose-invariant face recognizer whose strategy is based on a set of example views at 

different poses. By using 2D example views of prototype faces under different rotations, 

they proved that it is still possible to use the view-based approach by exploiting prior 

knowledge of faces to generate virtual views, or views of the face as seen from different 

poses. During the process of deformation, they measured the prototype optical flow 

between face images of different views from one person and then mapped this prototype 

flow to the new person to generate the virtual view of the that person. 

In 1999, Georghiades, et al. [4] proposed an image synthesis method based on 

illumination-cone to deal with pose and illumination problems. They build the concept 

that is able to solve the problem of illumination variations successfully in face 

reconstruction. But the issues, such as variations due to rotation, regarding pose variance 

still remain fully unsolved though they have suggested many ways to the problem solving. 



In [19], Jinho Lee and et al obtain arbitrary human faces using a sequence of silhouette 

images as the input. They demonstrated that 2D silhouette matching captured in different 

viewpoints play important role in human face reconstruction. However, the performance 

of their experimental results is highly affected by the number and locations of cameras for 

the high qualified shape recovery. Romdhani and Vetter [20] point out in their paper that, 

in some cases, the intensity information by itself cannot prevent fitting process from 

stepping into local minima. Thus they include 3D Morphable Model extra features 

extracted from the image, like edge information and highlight specular, to constrain the 

optimization process more likely on the path toward the optimal result. 

In [21], A. Patel and W. A. P. Smith addressed the combination of statistical tools of thin-

plate splines and Procrustes analysis to construct a morphable model for face shape 

recovery. 

In [22], the authors designed their method for using a single 3D reference model of a 

different person's face. Different from classical reconstruction methods from single 

images, which require knowledge of the reflectance properties and lighting as well as 

depth values for boundary conditions, in the proposed method a single reference model is 

molded by the input image reach a reconstruction of the sought 3D shape. Their method 

uses harmonic representations of lighting based on the assumption of Lambertian 

reflectance. 

3.2.2 Face Representation and Synthesis 

"A virtual view is a synthetically generated image of a face with a novel pose or 
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expression." [23] In 1992, Poggio and Vetter first proposed the idea of "linear class." 

Associated with the image representation that is based on pixelwise correspondence, they 

addressed a novel model for object representation, which uses linear combinations of 

views to define and model classes of objects. They were inspired individually by the 

results of Ullman and Basri [24] and Shashua [25] who both demonstrated that any virtual 

view of an object is able to be obtained by linear combinations of three views of that 

object. 

In their paper, Poggio and Vetter defined a linear object class as a set of 2D views of 

•y 
objects that "cluster in a small linear subspace of R where n is the number of feature 

points on each object." At the same time, they declare that in the case of linear object 

classes rigid transformations can be learned exactly from a small set of examples. In 

addition, other object transformations (such as the changing expression of a face) can be 

approximated by linear transformations in the same way. In particular, they used their 

linear model to generate new virtual views of an object from a single (example) view. 

Vetter and Poggio combined a linear model of shape and texture vectors to generate 

virtual views across large viewpoint changes [26] In 1995, Beymer addressed a new 

approach for modeling human faces in order to generate "virtual" faces in a face 

recognition system [23]. In 1996, Ezzat made use of the linear combinations of vectorized 

images to build a model for synthesis and analysis of novel views of a specific face [27]. 

In the following section, we will review a few models based on the concept of "linear 

class " to represent a novel view of the object, particularly faces, by the synthesis a set of 

examplar images of that object from different views. 
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3DMM can not only be applied to face reconstruction from images but also from video 

frames. In [28], 3DMM is used for 3D face reconstruction from videos. Their method is 

basically based on the combination of Support Vector Machines (SVMs) and a Morphable 

Model of 3D faces. The algorithm first detects individual facial features by using a novel 

regression- and classification-based approach, and a list of candidates for several fecial 

feature positions are selected from probabilistically plausible configurations of features. 

Then the configurations of feature points are evaluated using a novel criterion that is 

based on a Morphable Model and combinations of linear projections. Finally, the feature 

points initialize a model-fitting procedure of the Morphable Model. 

3.3 3D Morphable Model 

3D face modeling has been one of the greatest challenges for researchers in computer 

graphics for many years. 3D Morphable Model (3DMM), proposed by T. Vetter [29, 30], 

is a realistic 3D face modeling method which can be synthesized automatically by a linear 

combination of exemplar faces. One of the applications of 3DMM in face recognition is 

to create the 3D face model of an individual from given 2D images [30, 31]. 

The reconstruction procedure is regarded as conducting iterations of the analysis-by-

synthesis process, which are driven by fitting the 3D model to 2D images. Meanwhile, the 

parameters with respect to 3D environment such as focal length of the camera, 

illumination and color contrast, can also be modeled explicitly and estimated 

automatically. As valuable as it is, morphable model, therefore, could be utilized to 

expand the spectrum and create versatile variations for the original photographic database. 
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3.3.1 Model Construction 

The prototypical 3D faces are acquired by 3D laser scanners, whose range and texture 

data that are digitalized with high precision. Preprocessed through registration and texture 

extraction, each face is represented in the form of a shape vector and a texture vector as: 

S = (Xl,Y„Zl,X2,..„Y„,Zj (3]) 

T = {R^,Gx,Bx,R1y...,GniB^) {3.2) 

where n is the number of vertices on the 3D face and (Bj Gj RJ) are the corresponding R, 

G, B color values of the vertex (Xj Yj ZJ). Therefore, a morphable model can be generated 

by using the linear combination of shape vectors S, and texture vectors T, of 3D training 

faces as [29]: 

Smodel = X QiSi ^odel = X ̂  X = X b> = 1 (3-3) 
i=l /=1 i i 

in which m is the number of training faces, S, and J", are shape and texture of training 

faces and a, and b, are their corresponding weights contributed to the new face with 0 < a, 

b< 1. 

+a 2 - ^+a 3 - ^g+° 4 . ^ + . . .  =Sa  

Arbitrary face shape formation 

£. Is. 
+ A - ^ p + -  = t P  

Arbitrary face texture formation 

Fig. 3.3 Illustration of the formation of linear combination of 3D Morphable Model 



24 

In the practical consideration of computational effectiveness, a common technique as 

PCA (Principal Component Analysis) is employed to reduce the high dimensionality of 

3D face data without the loss of potential face information. In particular, PCA performs a 

transformation of the original cloud data to an orthogonal coordinate system formed by 

the eigenvectors Sj and t, of the covariance matrices. 

S = S 
model mean 

m-1 +ZaA 
1=1 

m-1 
T -T + V BT. model mean / <' i i 

i=1 
(3.4) 

where Smean and Tmean are the average shape and texture vectors. S, and T, are principal 

components, a- (al, a2,...,an) and/? = 01, ($2,...,fin) are shape and texture combination 

coefficients, and a and /? obeys Gaussian distribution as: 

P(a) = exp 
j m-l ( 

£ L (=1 

a. 

\ G Sj  )  

( 
= exp 

j m-l ( 

z 1=1 

A 
v2\  

(3.5) 

Fig. 3.4 Shape and texture information of die training face 
(a) shape information (b) the corresponding training face. 



3.3.2 Several Key Points in 3DMM 

3DMM is a composite and sophisticated model that consists of a number of various 

techniques in computer vision and computer graphics. To make a clear concept of 3DMM, 

we would like to discuss several key factors of the model as well as the associated 

considerations in our implementation. 

Similar to AAM, 3DMM decouples the shape and texture information and then analyzes 

them separately. PCA is the most common way in statistical-based method for model 

analysis, which is inherited by 3DMM with extension to the 3D space. Since PCA has the 

ability to capture the most significant features of the training data and convert them into 

the PC space or the feature space, it is possible to reduce the dimensionality of 3D data 

into the feature space with lower dimensions. Even more, it ensures concentration on the 

most significant features without minimum loss in the result quality. We emphasize this 

point here, because we take advantage of this property in our experiments, and which 

results in the fact that only the first 70s features from the principal components of shape 

and textures are included. In Figure 3.5, we display a sequence of projections of a 

synthesized 3D face model with respect to different amount of principal components of 

shape and texture involved simultaneously. The images illustrate that with fewer PCs 

added to the model, the face is located closer to the mean face; whereas when more PCs 

are taken into consideration, more and more details show up in the model. 
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(d) (e) (f) 
Fig. 3.5 (a) face model generated by different PCs, 

(a)-(f) face model with 5,10,20,30,40,50 PCs respectively 

Another key point that is necessary to stress here, is the importance of generating 

correspondences between the 3D face model and the target image. Based on the 

observation from our experiments, the correspondence issue, to some extent, is a crucial 

factor to the final result of the whole system. It has been proved by our experimental 

results that the 3D face model and the target image are supposed to be well registered 

before the fitting procedure starts; otherwise there is little chance to achieve sound 

performances. In the next section, we will discuss more details about our findings on this. 

At the same time, we will present our own approaches to the issue of the optimal 

correspondence. 
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Salient Features 
Correspondence 

Fig. 3.6 Feature points correspondence 
between 3D model and 2D target image 

Thirdly, as the face model is manipulated in the context of 3D space, it is inevitable to 

deal with the illumination models or lighting models. In order to create a realistic 2D 

output that is close enough to the target face image, we make use of the perspective 

projection and Phong illumination model in the rendering process. Given the kfh vertex at 

(X,Y,Z) with texture value (R,G,B), the perspective projection on the image plane is 

represented as: 

h (*» y) = (7r,* (*» y\(*» y\h,k (*> yjf (3.6) 

where Ic k{x,y) is computed under the Phong illumination model as: 

Icjt {x, y) = R (/„ + tL-Nj) + K, 1^ (F -Vf (3.7) 

Ia c and Idir c are separately intensity of ambient light and direct light of the c'h color 

component. Ks is the reflectance, L, N, F, V are light direction, normal, reflective 

direction and direction of viewer respectively and n is the mirror reflectance index. 

The other problem should be taken into consideration is how to determine the mode of 

3D projection that maps 3D objects to the 2D image plane. Orthographic projection is the 
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one where a 3D object is projected onto a plane by a set of parallel rays orthogonal to the 

image plane. Equation (3.8) is used to represent the orthographic projection. 

*h 

r
o

~
 o

 

0
 

1 

~ X ~  

yh 0  1 0  0  Y 

zh 0  0  0  0  Z ( 3 . 8 )  

w 0  0  0  1  1  

in which x = — = X and y = — = Y. 
w w 

Different from the orthographic projection, the perspective projection brings the effect 

that objects in the distant appear smaller than objects close by. Equation (3.9) is used to 

represent the perspective projection. 

" V  

o
"

 o
 

0
 

1 

~ X ~  

yh 0 / 0 0  Y 

zh 0  0 / 0  Z (3.9) 

w 0  0  1 0  1  

in which x = — ~— t y = ¥*- = £- and z = — = f. 
w Z w Z w 

However, the classic perspective projection mentioned above is too complicated to 

implement. So we take an alternative projection mode instead, called weak perspective 

projection that is a simplified equation of the classic perspective projection. The weak 

perspective projection assumes that the object's dimensions are much smaller to its 

average distance Zavg to the camera. As a result, xh and y/, are proportional to the distance 
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from the object to the camera. Equation (3.10) is used to represent the orthographic 

projection. 

f 0 0 0 ~x 
yh 0 / 0 0 Y 

zh 0 0 0 0 z 
w 0 0 0 avg _ 1 

,. , xh fX , yh fY 
in which x- — = and y = — = 

w Z_ w Z_ 
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CHAPTER 4 

GLOBAL OPTIMIZATION FOR 3DMM 

4.1 Introduction 

The morphable model provides an approach in solving face modeling problems under 

different illumination and pose conditions. However, one of the issues lies in the process 

of minimizing the cost function that performs error evaluation in the pixel-level 

measurement. This involves algorithms of image matching and a large-scale optimization. 

In 3DMM, fitting shape and texture into 2D images is equal to searching for the global 

minimum in a high dimensional feature space, in which optimization is apt to have local 

convergence. Stochastic gradient descent [29] and Levenberg-Marquardt [20] method are 

used to evaluate the residual and global error as well as objective function optimization. 

Differential Evaluation (DE) appears to be robust against stagnation in local minima and 

sensitiveness to initial values in face reconstruction. Considering its successful 

performance, we tentatively introduce DE to tackle the problem in 3D-2D matching. 

Fig. 4.1 Illustration to the global optimization for 3D-2D Fitting, the image on the top left is denoted as the 
initial state of the mean face; the image on die right bottom is the target face; the hollow star symbol 

indicates the global minimum while the solid star indicates die local minimum 
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4.2 Global Optimization 

Global Optimization is a set of approaches whose main task is to determine the optimal 
m 

global solution to the objective function /, which seeks its optimum under the condition 

of a set of equality and inequality constraints. Unlike finding the solutions that are locally 

optimal, global optimization is considerably more challenging to evolve into the vicinity 

of the global convergence point. For all that, in the past decade, global optimization has 

found a number of ever-growing facets of application, such as engineering, applied 

sciences, and sciences [32] [56]. Global optimization algorithm could be divided into a 

number of categories according to their method of operations [64], such as deterministic 

algorithms and probabilistic algorithms. In the latter scheme, Monte Carlo algorithms 

play very important roles, which contains one of the most important classes of global 

optimization, Evolutionary Computation. 

4.2.1 Evolutionary Algorithms 

Evolutionary Algorithms (EA) is a population based global optimization scheme inspired 

by the biological mechanisms and processes, e.g. mutation, crossover and selection. EA 

contains a big set of members, such as Genetic Algorithms (GAs), Genetic Programming 

(GP), Learning Classifier System (LCS), Evolutionary Programming (EP) and etc, which 

have following features in common [64]: 

1. The population size, denoted as NP, or the number of populations used. 

2. The method of selecting the individuals for reproduction, denoted as f. 

3. The way the offspring is included into the populations). 



4.3 Differential Evolution 

Differential Evolution (DE) is a "parallel direct search method" [33], which was first 

proposed by Storn and Price in 1995. It is characterized as a stochastic and population-

based global optimization that is simple and effective for implementation. It inherits the 

merits of employing the difference between vectors in the objective function from two 

ancestors, the Nelder-Mead algorithm [34, 35], and the controlled random search (CRS) 

[36]. Unlike general Evolutionary Algorithms (EA), DE applies variations (differentiation 

and crossover) sequentially to each individual whilst EA is more apt to stand a better 

chance to reproduce the parent generation itself. 

4.3.1 Background and Previous Works 

For better clarification of DE, we list several principal advantages of DE over other 

global optimization algorithms. 

a. In contrast to other EAs, DE demonstrates its advantages of straightforward for 

implementation, whose simplicity arises from a concise computational framework of 

iterations. In other words, it reduces the threshold and the associated workloads of 

users for coding. Figure 4.2 depicts the operational procedure of standard DE. 

b. The successful performance of DE makes it stand out from other optimization 

algorithms. It has been proved in studies [37, 38] that DE outperforms other 

algorithms, like G3 with PCX, MA-S2 and etc. According to the report from, DE was 

proved to be the fastest evolutionary algorithm in the competition. Additionally, in a 

comparison by Storn and price in 1997, DE surpasses simulated annealing and genetic 

algorithms by more efficiency. In 2004, Ali and Torn revealed that DE was both more 
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accurate and more efficient than controlled random search and another genetic 

algorithm. In the same year, Lampinen and Stom demonstrated that DE was more 

accurate than several other optimization methods including genetic algorithms, 

simulated annealing and evolutionary programming. Considering the overall 

situations, DE is significantly impressive in terms of accuracy, converged speed, 

reliability and etc. 

c. Global optimization is, in practice, generally taken into consideration in the scenario 

of finding optimal solution to high dimensional vectors, in which easiness of 

manipulation is concerned as one of the major factors. The whole framework of DE is 

controlled by few parameters, such as F, CR and NP. Even for its varieties developed 

in later years to increase the DE's performance, the total overhead applied to the 

control parameters is relatively less than other global optimization models. 

From the viewpoint of algorithm, the secret of DE's success was revealed by [39], in 

which the author summarizes it as spontaneous self-adaptability, diversity control and 

continuous improvement. 

DE discovers itself wide ranges of applications in various areas. For example, DE was 

applied to the multisensory fusion problem [40], the power electronics problem [41], data 

mining [42]. In addition, it has been utilized to DNA researches to discover subsets of 

informative genes that accurately characterize all the samples [43]. It is also applicable to 

the integration of other algorithms, such as digital filter design [44], neural network 

training [45] and so on. A review of DE applications is presented in [46]. 
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4.3.2 Introduction to DE Algorithm 

DE repeatedly processes through operations which are, in turn, "mutation, crossover and 

selection" until an optimal solution to the objective function^*) is reached (Figure 4.1). 

Fig. 4.2 Canonical Differential Evolution Procedure 

The classic version of DE is defined as follows. Suppose we have N D-dimensional 

parameter vectors 

X - Q  £ . X j , X j , X p j  , /  1 , 2 , . . . , N  (4.1) 

representing the population for generation of G. The algorithm starts by randomly 

initializing the vector populations with, as the author suggested, a uniform probability 

distribution [47]. We use a different distribution in our experiment due to the special 

feature of 3DMM, which we will present later in Chapter 4. 

Step 1: Initialization 

The vector population is randomly initialized with uniform probability distributions. 
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Xi 

*>. 
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A vector population is 
generated such that the 
allow ed parameter region 
is entirety covered. 

contour lines 
of/(jr,,jr2) 

All vectors get a 
uniqu4 index for bookkeeping 
because each of them has to 
aiter'i competition. 

•• JC. 
-Ylma\ 

Fig. 4.3 DE population initialization 
(Courtesy of Differential Evolution - A Practical Approach to Global Optimization) 

Step 2: Mutation 

For each individual jc, , a corresponding mutation vector v, is produced according to the 

equation: 

V/,G = *rl,G +F* {Xr2,G ~ Xr3,G ) (4.2) 

in which random index rl,r2,r3e{l,2,...,JV}and rl*r2*r3. F is a real amplifier designed 

to control the offset of v,Gto *, G by scaling the differential variation (xr2 G - xr3 G ). 

There is another mutation strategy developed by Price in 1996, where 

Vi,G = Xbest,G +F* (X
r\,G + Xr2,G ~ Xr3,G ~ Xr4,G ) (4.3) 

The involvement of another differential vector is to expand the range of optimization 

searching in the case of population NP that are high enough. 
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difference 
vector X,, -x,; Xri and xr2 are two 

randomly selected vectors 
from the vector population 

Fig. 4.4 Generate the perturbation: xri - xr2 

(Courtesy of Differential Evolution - A Practical Approach to Global Optimization) 

weighted difference 
vector /•"•(*,.,-xr2) 

xr3 is another randomly 
selected vector which, 
together with the weighted 
difference vector, yields 
die trial vector uo. 

Fig. 4.5 Mutation 
(Courtesy of Differential Evolution - A Practical Approach to Global Optimization) 

Step 3: Crossover 

Trial vectors are introduced in the phase of crossover to expand the range of global 

search. It is defined in the form as: 
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(4.4) 

in which 

u _ JVjuctf (rcmdb(j) < CR) vj = Ibr 

J''G \Xji^if{raildb{j) > CR)^j * hr 
(4.5) 

In equation (4.5), randb(•) is a random generator with uniform distribution. CR is the user 

defined crossover constant e[0, 1]. lbris an integer randomly chosen from {1,2, ...,D}2, 

which prevents G from being equal to u,a-

Step 4: Selection 

DE utilizes pair-wise comparison between ui G and xi G to survive the vectors with fewer 

objective function values to the next generation. 

x otherwise 
(4.6) 
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*2 
% competes against 
the vector no. 0 of the 
population. 

The vector with the 
tower objective function 
value gets marked as 
vector no. 0 of the next 
population. 

*• *i 

Fig. 4.6 Selection. Uo replaces the vector with index 0 in the next generation since its lower function value. 
(Courtesy of Differential Evolution - A Practical Approach to Global Optimization) 

weighted difference 
vector F-(\ r l-x r 2) 

x,.ls x r 2  and x r }  are 
generated anew and 
u i is the new trial vector 

rl* 

Fig. 4.7 A new population vector is mutated with a randomly generated perturbation. 
(Courtesy of Differential Evolution - A Practical Approach to Global Optimization) 
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x2 

u, competes against 
vector no. 1 of the 
population and loses. 

Vector no. 1 of the old 
population is marked so 
that it survives into the 
next population. 

Fig. 4.8 Selection with the trial vector loses. 
(Courtesy of Differential Evolution - A Practical Approach to Global Optimization) 

In the following sequence of images (Figure 4.9), we can have a clear and straightforward 

explanation of the scheme of DE and how it works on finding the global minimum to the 

peak function. 
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3D 
: 

« 3D 30 « B> 6 , , * 

' (5) 
Fig. 4.9 DE optimization of finding global minimum of the peak function. 

NP = 15, F = 0.8, CR = 1 

4.3.3 Other Types of DE Algorithms 

The classic DE algorithm is improved by many mutations for real world applications. The 

improvements are roughly categorized into several aspects, such as variables NP, F and 

CR, perturbation, diversity enhancement, vector populations and etc [46]. 
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The choice of the variables of NP, F and CR is very important to the final result of the 

global optimization because it is highly related to the convergence, searching ranges and 

the time consumption. Although Storn and Price have pointed out the basic range of these 

parameters that would be suitable for most of the cases, there are still reports about 

finding the best NP, F and CR. In [23], the search range given by Storn and Price is (1) 

FE [0.5, 1.0], (2) CR G [0.8, 1.0] and (3) NP € 10*D. It is also proven in our 

experiments of 3D face reconstruction that the parameters in this range are more likely to 

find the best solution compared to other choices. In [15], an important criteria developed 

by the author is the mutation scale factor F should not less than Fcri„ where 

Another very important factor of mutation scheme is the perturbation factor in the process 

of mutation. It is noticed equation (4.7) and equation (4.8) are commonly used in many 

applications of DE. Comparing to equation (4.7), equation (4.8) is greedier in the global 

searching. 

(4.6) 

(4.7) 

(4.8) 
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CHAPTER 5 

3D FACE RECONSTRUCTION 

5.1 Key Factors in 3D Reconstruction 

5.1.1 Face Detection 

Prior to carrying on the 3D face reconstruction, it is of foremost importance to extract the 

region containing face information of the incoming image from its background. The 

major task is to determine the likelihood and the location of the face in the image before 

it is conducted to the procedure of the image analysis and understanding. Due to its 

importance to the automation of face reconstruction, we would like to introduce the state-

of-art technologies of face detection as well as the one applied in our framework. 

The face detection technology discovers its difficulties in dealing with the mutable image 

context, such as face variations in scale, location and orientation, occlusion and so on 

[48]. It has been pointed out that the research of face detection in the circumstances of 

unconstrained settings is confronted with challenges from many factors, especially the 

varied significance in pose and lighting. Fortunately, many important algorithms have 

been invented to cope with these uncertainties. One of the most famous and popular used 

algorithms is the Viola-Jones face detector, which is renowned for its real-time 

computing, simple implementation and sound accuracy. The algorithm achieves its 

successfulness based on three steps, e.g. the integral image, AdaBoost classifier and the 

cascade structure. Support Vector Machine (SVM) has also been introduced into the face 

detection as its excellent performance in seeking for the minimized empirical error and 
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the maximized geometric margin [24] [49]. The Face detector based on neural networks 

is one of the alternatives which are trained to build up a generic model by reducing the 

dimensionality of the features of facial representation [50]. 

In our framework, we utilize the Viola-Jones face detector to find the face region in the 

incoming image. In addition, we are able to find the region of eyes and mouth, which 

provides the possibility of locating the feature points. The region, marked by the 

rectangle box in Figure 5.1, is the final results from Viola-Jones face detectors. The 

detailed information about the Viola-Jones face detector is introduced in the Appendix A. 

Fig. 5.1 Illustration of face detection using Viola-Jones face detector 

5.1.2 Feature Points Correspondence 

As we discussed in Chapter 2, correspondence plays an important role in the 3D-2D 

matching, which is favorable to the 3D face finding an optimal initial point to begin with. 

Considering the instinctive property of human faces, we focus the correspondence by 

locating salient fecial feature points on the 2D image and the 3D face model, which is 

able to represent most of the face attributes. As we can see from the illustrations below, 
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the feature points include eyes corner, nose tip, mouth corner and a few marks on the 

facial outline. For 2D face images, we manually locate annotation landmarks with the 

associated fecial appearance. For the 3D face model, we manually select the 

corresponding vertices on the mean face model shown in Figure 5.2. We use mean face 

model for correspondence because it is the basic shape of the model morphing. On the 

other hand, mean face model represents as a rigid object which makes it easier to process 

for 3D transformation. 

Fig. 5.2 Annotation landmarks manually selected 
on the 2D image and 3D face model 

Facial appearance on incoming images is fairly unpredictable. Orientation variations are 

the most common situation encountered. Hence, we impose a number of 3D rigid 

transformations, such as rotation, translation, scaling and projection, to cope with 

different poses of the facial appearance. For example, the angles of rotations along with 

different axis, R«, Rpand RY; translation along x, y, z, Tx, Ty and Tz; scaling along x, y, z, 

Sx, Sy and Sz. Unfortunately, as perspective projection is a nonlinear computation, it can 

not be solved by linear equations. We follow the ideas of optimization and incorporate 

this issue into the DE optimizer. We design the cost function EmaHa as the Euclidean 
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distance between the 2D landmarks and the projective position of the 3D landmarks on 

the 2D plane, which is in the form as, 

= X*,.,.14* (*> y) - * l<«*m (*> y> z))|| (5.1) 

where Mid is the sequential 3D transformations of rotation, translation and scaling applied 

to the 3D model. Proj(-) is the perspective projection. Limg(x, y) indicates a set of 

locations of 2D landmarks in the image space. 

As long as the optimal solution is achieved, the 3D model face is ready sitting on the right 

position and facing the right orientation to start the appearance matching. Figure 5.3 

depicts conceptually the optimization process of mean face orientation to the image facial 

orientation. Please note that some feature points are ignored because of the facial self-

occlusions. 

(a) (b) (c) 
Fig. 5.3 Result comparison before and after the shape registration, (a) the landmarks on the 2D image, 

(b) overlaid landmarks of initial position of mean face model on (a) 
(c) overlaid landmarks of the optimization result on (a) 

Figure 5.4 shows the learning curve of the optimization of orientation estimation using 

DE with population NP = 50, F = 0.8 and CR = 0.5. 
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*10 

Fig. 5.4 Learning curve of the orientation estimation using DE 

5.1.3 Color Fitting of 3DMM 

The mean face of the 3D model (shown in Figure 5.2(b)) is created by averaging the 

prototypical 3D faces acquired by the 3D digital scanner. The color value of each vertex 

has already been determined at the time of acquisition, whereas the practical situation is 

the fecial appearance of the image is diversified and cannot be decided beforehand. 

Inspired by the idea of histogram matching, we conclude a parametric way to fit the color 

of the model to the image. 

The color images are commonly represented in the color space of <R, G, B>, in which 

images can merely be regarded as a set of pixel values. As a matter of fact, we can 

decompose an image in different color space to retrieve more knowledge hidden in the 

image. For example, we can convert the image from the <R, G, B> space to <H, S, I> 

space, in which H as Hue, S as Saturation and I as Intensity. 
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R G , B r = ~—-—r, g = , b = -
R + G+B R + G + B R + G+B 

h = cos-1 < 
0.5*[(r-g) + (>-fr)] 

h € [0,7t] for b <= g 

h = 27t- cos-1« 
0.5*[(r-g) + (r-Z?)] 

[(,'-s)2+(''-6)U-a)] 
h e [ 0,7t ] for b > g 

I = i*255; i 6 [0,1 ] 

.  ( R  +  G + B ) /  .  r A 1 ,  
/{3*255)' ' e t ' I 

H  =  h*l&0/. ,5 = 5*100; I = i*255 
/ 7t 

We use HSI color model because not only can H channel represent the global color tone 

of the image, but also I channel is able to provide edge information which normally 

contains promising features of the face image. How to integrate the estimation of model's 

color in our DE framework? We come up with an idea of using parametric equations to 

control each channel of H, S, I. Every channel is adjusted by two parameters as offset and 

amplifier, which is written as: 

H = (H + offset hue) *Amphue 

I = (I + offsetint) *Ampint 

S = (S + offsetsal) *Ampsat 
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Then we integrate these six parameters in our DE optimization framework as the training 

vector. Fig 5.5 depicts the channels of H, I, S respectively of the input image. 

(b) (c) (d) 
Fig. 5.5 Illustration of HSI transformation (a) the original image, 

(b) - (d) hue, intensity, saturation respectively 

5.1.4 Preprocessing of incoming images 

Normally speaking, incoming images are coming with noise, which is an potential 

troublemaker for the system to read useful information from the image. More importantly, 

redundant noise highly increases the risk for the optimization to be divergent from the 

optimal solution. So it is necessary to preprocess the incoming images for better 

understanding of the image. 
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Regular lowpass filters can filter out noises but at the same time the distinctive features 

such as eyes edges or mouth edges will disappear from the image. In our work, we 

employ diffusion filtering to denoise the incoming image. Diffusion based image filtering 

methods [51, 52] make it convenient to screen out noises on the image, and 

simultaneously, it reserves, sometimes even enhances, the edge information. This merit is 

somewhat a complementary measure to contribute to the convergence of the optimization. 

Figure 5.6 makes comparison between images before and after the process of diffusion 

filtering as well as the image filtered by Gaussian filter, in which Figure 5.5(b) is 

obtained after 20 iterations of computation. 

(a) (b) (c) 

Fig. 5.6 Comparison between Diffusion filtering and Gaussian blur, 
before(a) and after(b)the image Diffusion filtering, (c) after Gaussian blur 

5.2 Experimental Results 

Various 3D face databases have been established during the last decades. As far as we 

know, the current existing 3DMM databases are those from 3D Basel Face Model (BFM), 

Max Planck-Institute Tubingen (MPI) [53] and the University of South Florida (USF). In 

our experiments, we use the 3D Basel Face Model (BFM) database [54] to derive the 

morphable model for 3D shape and texture. The reason we use BFM database is based on 
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three factors. Firstly, comparing to the other two, the BFM not only offers a higher 

resolution and precision than the MPI and USF models, but also makes use of a different 

registration method yielding less correspondence artifacts. Secondly, renderings of fitting 

results are more realistic with the new model. Thirdly, according to our experiments on 

the USF database, we found texture problems, which are unsuitable for reconstructing 

reasonable texture information. 

The BFM database collects 200 3D faces from 100 male and 100 female subjects, each of 

which keeps neutral expression, without makeup, accessories and glasses. The 3D range 

data, which consists of shape and texture information, are collected through 3D scanners. 

For each vertex (x, y, z), there is a corresponding pixel value, denoted as (r, g, b). The 3D 

data is originally stored in the type of cylinder coordinate which brings more convenience 

to the accurate and detailed description of human faces. This feature also inspires the idea 

of converting the facial texture space to the image space, which we will talk about in 

Chapter 6. 

The registered 3D faces are parameterized as triangular meshes with 53490 vertices [54]. 

Figure 5.7(a) shows the mean face of the 200 faces in the database, which is represented 

as Smean and Tmean in (4). In equation (3.3), we have discussed the 3D faces are compliant 

with the manipulation of PC vectors, a and /?. In Figure 5.7(b), we demonstrate 3D face 

synthesized by the randomly assignment of PC vectors. 
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(a) (b) 

Fig. 5.7 (a) 3D mean face from BMF database, consists of 100 male faces and 100 female 
faces, (b) face generated by random assignment of a and /? 

5.2.1 3D Face Model Training 

As described in Chapter 3, the 3D morphable model equipped with DE leads to our 

framework for 3D model reconstruction. In our experiment, DE populations are 

initialized by Gaussian distribution instead of uniform distribution. The reason for this is, 

according to the equation (3.5), shape and texture combination coefficients, a and/?, both 

obey Gaussian distribution. 

BFM database provides 200 principal components for both shape and texture 

representations. Due to the consideration of computational efficiency, we only employ the 

first 70 principal components of S1, and F, for face training. Even then, final results still 

show that these components deliver a sound outcome. 

5.2.2 Cost Function for Appearance Matching 

Matching the 3D face morphable model to the given face images is a process of model 

parameter estimation, in which a bunch of coefficients involved are required to be 

determined. For example, camera and illumination model is adopted in the projection of 
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the 3D face model into the image plane since 3D face model and 2D input fecial images 

cannot be measured directly. Aiming at retrieving a 3D face the closest projective image 

to the input facial image, the error function between 3D model projective image Im0d and 

input image Imput is described as: 

5.2.3 Fitting Process 

To achieve a sound result from 3DMM estimation of human faces, we divide our 

algorithm into following steps. 

1) Annotating landmarks on the target image. 

2) Denoising the target image using image diffusion filtering. 

3) Estimating the head orientation by fitting the feature points of the 3D model to those 

on the target image. 

4) Facial appearance fitting estimation. 

(5.1) 

6/ 

Fig. 5.8 Illustration to the difference between the initial image and the target 
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a) At the beginning phase, estimating the set of parameters for color matching 

dominates the optimization while estimating the feature vectors with respect to the 

principal components a and P has not yet begun. 

b) Once the color of the face model runs close to the target image, a and P start to 

evolve into the optimization. DE populations are initialized by Gaussian 

distribution of (0 ~ 1) instead of uniform distribution. 

c) The optimization process runs iteratively until certain predefined criterion is 

completed. Figure below shows the learning curve of one of the learning cases. 

5.2.4 Learning Face Model 

In this section, we show our experimental results obtained over lighting and pose 

variations. The test images applied in our experiments are literally divided into two 

separate parts, frontal images and non-frontal images. 

A. Frontal Image Test 

We first use the frontal image from the ODU-VL face database as the training image. 

Figure 5.9 shows the original image and synthetic image of a test individual. 

(a) (b) 
Fig. 5.9 Original image and synthesized image, 

(a) original image; (b) synthesized image 
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(1) Lighting Variations 

Once the 3D model is reconstructed, it is ready to re-render the 3D scene by using 

different lighting variations. Figure 5.10 shows composited scenarios dominated by light 

sources in different positions. Given constant distance from the light to the object, we 

change the light source positions by varying azimuth and elevation angles of the light 

source. 

Fig. 5.10 Faces rendered under different illumination conditions; 
azimuth and elevation angles ranging from -60 to 60 and -30 to 30 respectively. 

(2) Pose Variations 

Figure 5.11 shows composited scenarios rendered by various pose conditions. We 

diversify the face orientation by assigning different azimuth and elevation angles to the 

transform matrix of rotation. 
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Fig. 5.11 Faces rendered under different pose conditions; 
azimuth and elevation angles ranging from -30 to 30 and -10 to 10 respectively. 

isfc! 
m 
W 
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Fig. 5.12 Learning curve of facial estimation using 3DMM and DE 

B. Non-Frontal Image Test 

Most scenarios in real world applications contain non-frontal images. To demonstrate the 

feasibility of our framework on non-frontal images, we execute our experiments on the 

CMU-PIE database, from which we select the image with the out-of-plane rotation and 

controlled lighting source. Figure 5.13 depicts the original 2D image (a) used to generate 
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the 3D model and the associated synthesized image (c) as long as they are overlaid 

composition (c). 

(a) (b) (c) 

Fig. 5.13 Experimental results from non-frontal face training, (a) the original image; (b) the original image 
overlaid by the synthesized; (c) the synthesized image 

Fig. 5.14 Pose variations w.r.t. the 3D model generated in Figure 5.13 

Figure 5.14 shows the pose variations based of the 3D face model generated above under 

the same illumination conditions. In order to make comparison of the experiments above, 

the new 3D face model is imposed by varied lighting directions. Figure 5.15 depicts the 

output of the proposed framework. 



Fig. 5.15 Lighting variations w.r.t the 3D model generated in Figure 5.13 

Please note that the facial appearance demonstrated on the generated 3D model is 

different from the original image. That reason could be explained from two aspects; the 

original image is dark and stained with noise which makes us preprocess the original 

image to improve its "readabilitySecondly, we use the first 70 features of the PCs to 

reconstruct the face model, which means the majority parts of the model has been 

reconstructed while partial information has been lost. 

5.2.5 Validation for Synthesized Faces 

To validate our algorithm, we apply our model on CMU-PIE database whose image 

gallery is collected from 68 subjects across 13 poses and under 43 illumination conditions 

[8]. We select images of 6 subjects, which are taken under 3 different lighting conditions 

and with 5 different pose orientations. We use the frontal image as training data for the 

3D model generation, while the rest are included in the test dataset for validation. Figure 

5.11 shows images used in our preliminary experiment. 
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Fig. 5.16 Training and test images with different subjects 

We utilize Principal Component Analysis (PCA) [55] to evaluate the synthesized images 

rendered per individual. Each test image is associated with a cluster of 9 synthesized 2D 

images that are included in the PCA training dataset for recognition purposes. An 

example of the test image and its corresponding training images are showed in Figure 

5.17. 

Fig. 5.17 Example test image and corresponding training images. The image in the center of clustered 
images (right) is imposed with same orientation as the real image (left). The surrounding images (right) are 

created by minor orimtation offsets to the corresponding pose view, which are varied by azimuth and 
elevation angles ranging from -3 to 3 degrees. 
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Figure 5.18 shows the evaluation results from PC A with respect to different training 

datasets. The top curve (star) is obtained by using test images as training images. The 

bottom curve (diamond) informs the FR accuracy merely from frontal images training. 

The curve in the middle (circle) indicates the performance of training images projected by 

the synthesized 3D model. The comparison between these curves shows that the 

generated images, to some extent, achieve similarities to the real images. An illustration 

of the camera, flash lighting positions as well as head positions are plotted in Figure 5.19. 
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Fig. 5.18 Face orientations vs. face recognition accuracy w.r.t different sets of training images. 
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CHAPTER 6 

BACKWARD TEXTURE MAPPING 

6.1 Introduction 

In Chapter 4, we proved that it is feasible to reconstruct 3D face models from single 2D 

images. However, in some cases, the synthesized texture is not comparable to the real 

image. Consequently, the new database created cannot provide reliable training datasets 

to the face recognition system. Since the synthetic texture is incompatible to the database 

construction, we attempt to find our solution from the target image, which leads us to 

texture mapping and image warping techniques. 

6.2 Texture Mapping 

Texture mapping [56, 57] can be reached by two ways which include forward mapping 

and backward mapping. Forward mapping refers to projecting the texture pattern of the 

source image from the pixel coordinate onto the target image. Backward mapping 

indicates the inverse operation: mapping from the target image to the source image. As 

we collect the texture data from image pixels, we are supposed to choose the backward 

mapping. To better clarify the facial texture space, we denote it as <U, V>, which is 

illustrated in Figure 6.1. The discrepancy in data representation between texture space 

and image space is obvious. First, pixel value in image is regularized in grid data whereas 

vertex value in texture is scattered. Second, the facial appearance in image space is quite 

different from that in texture space. However, image warping makes the issue resolvable. 
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Fig. 6.1 Facial appearance of the 3D model in texture space 

6.3 Image Warping 

6.3.1 Background 

Image warping [25, 58, 59] is regarded as a smooth transformation between the source 

image and the target image. In contrast to statistical-based model, it is an appearance-

based image morphing technique that is more convenient and straightforward for 

implementation. Since it only concerns the pixel-level transformation in the image space, 

there is no necessary seeking prior knowledge from the training data. Given the 

correspondence geometric feature points marked on both images, a mapping function is 

established [60, 61]. From the viewpoint of Shape and Texture, as we discussed in the 

previous chapter, geometric feature points along with their topological connections could 

be regarded as Shape information; whilst the color blending or interpolation as the 

computation based on Texture information. 
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6.3.2 Previous works 

It is naturally concluded from aforesaid that the mapping function plays an important role 

in image warping. Brookstein [62, 63] attempts a way of minimizing the amount of 

bending using thin-plate splines. Alexa et al. [64] introduced the concept of as-rigid-as-

possible transformation to image morphing. At first, a mesh structure is associated to the 

image. Then they solve a linear system of equations whose size is equal to the number of 

vertices in the mesh to produce it as-rigid-as-possible deformation. They dissect source 

and target objects into isomorphic complexes. Igarashi et al. [63, 65] proposes a point-

based image deformation technique for cartoon-like images in which the resulting 

deformations are as "rigid-as-possible." Such deformation has the property that the 

amount of local scaling and shearing is minimized. Schaefer et al. [66] addresses a 2D 

image deformation technique by seeking for the optimal rigid transformation that maps a 

set of weighted points which handles to their deformed positions, at each image domain 

point. Because the optimal transformation is calculated and assigned for every point on 

the image, this method is called image deformation based on Moving Least Square (MLS) 

[67, 68]. 

6.3.3 Image Deformation based on Moving Least Square (MLS) 

Three properties make it more feasible to apply texture mapping. 

1. Interpolation: the handles p on the source image should map directly to q under 

deformation. 

2. Smoothness: deformation function is supposed to generate smooth deformation. 
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3. Identity: mapping function should be keeping identity when both handlers on the 

source image and target image are the same. 

Schaefer et al. [66] construct a deformation function / based on the idea of Moving 

Least Square. Let us define p, a handler in the image and q, the corresponding deformed 

positions to p,. Given a point v in the image, we try to find the best affine transformation 

lv(x) that minimizes the cost equation Ec, 

w—* i ,2 
£

C
=ZW<l /vO'.)-« ,, | (6.1) 

/ 

Pi and q, are both row vectors and the weights w, are denoted as: 

W: 
\2a (6.2) 

V ' \p, 

Since /y(x) is the affine transformation, it can be written in the form as following, 

/v(x) =xM + T (6.3) 

We define p* and q* be the weighted centroids of/?, and qt respectively, 

HW 'P. 
P* = = (6.4) 

/ / 

then a translation T yields, 

T  =  q * - p * M  (6.5) 

So /y(x) yields 

l v ( x )  =  ( x - p * ) M + q *  (6.6) 

which means equation (1) can be represented in the form as 



Ec=Y,w\PiM-ii  
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(6.7) 

where p = p,-p* and q =q,-q*. Considering Mis an affine transformation, we can 

conclude the deformation function fjy) as: 

/(v) = Z4 i?/+?* (6-8) 
j 

in which A} is given by 

Aj={v-p*){YJ P] w,P, 1 WjP] (6.9) 
/ 

Additionally, if Mis a rigid transformation, 

f(v) = VUT(x-p*)+q* (6.10) 

where U and V can be obtained through Singular Value Decomposition, which is 

UAVT  = ]T w, (x){P i  - p *)(q, -  q *)T  (6.11) 

6.3.4 Application of MLS Deformation 

The MLS deformation is found to have a wide range of applications in image analysis, 

medical image processing, computer vision etc. Yuanchen Zhu and Steven Gortler [69] 

even extend the idea of MLS to the 3D settings to control 3D object deformation by 

manipulating a set of handlers. Figure 6.2 illustrates the comparison of the facial 

expressions before and after MLS deforming the input image (a). Note that there is a 

minor offset in (c) of the control point close to mouth right corner comparing to the same 

point in (b). 
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(a) (b) (c) (d) 

Fig. 6.2 Illustration of rigid transform of MLS deformation on faces 
(a) the original neutral face, (b) control points, 

(c) deformed position of control points, (d) smiling faces by deformation 

We applied the MLS deformation to the texture mapping from the image space to the 

texture space. The control points p are manually selected from the image. The deformed 

points q are manually selected from the vertices in the texture space. As shown in Figure 

6.3, once the deformation transformation/is established between the pixel on frontal face 

image and the texture vertices, the backward mapping is operated. The vertices index in 

the texture space is fully corresponding to those in shape space. This means the newly 

deformed texture is ready to impose on the 3D face surface. 



(a) 

(b) (c) 

Fig. 6.3 MLS transformation from image space to texture space, 
(a) frontal face image with control points p, 

(b) texture space with deformed positions marked, 
(c)newly generated image in texture space 

Figure 6.4 shows the comparison between the synthesized results before (a) and after (b) 

the 3D shape is imposed by the real image after the backward texture mapping. 
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(b) 
Fig. 6.4 Synthesized images before (a) and after (b) texture mapping 

6.4 Image Warping Applied to 3D Face Synthesis 

Since the aforementioned approaches are available for the synthesis of 3D faces, we thus 

attempt to implement them to the face dataset for more quantitative valuations. We apply 

our technique to the candidate images from CMU-PIE database, which aims at providing 

comparable results to those obtained in Chapter 5. 

6.4.13D Faces Synthesis 

Figure 6.5(b) shows the initial state of the 3D face that is overlaid on the original image. 

The training process consists of several stages whose major functionality is different from 

the others. The first stage, denoted as Stage I, is the process of 3D-2D rigid registration, 

in which the 3D transform functions the 3D face iteralively to fit to the pose of the target 

image. Besides the rigid registration, Stage I performs the color registration between the 

3D face model and the target image. Figure 6.5(c) demonstrates the process of rigid shape 

registration and color matching. 
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(b) 

(d) (e) (f) 
Fig. 6.5 Illustrations to different training stages; (a) OTiginal image, (b) initial state, (c) Stage I, (d) Stage II, 

(e) Stage III, (f) Stage IV 

The second stage, denoted as Stage II, is the process of illumination matching by 

estimating the position of the light source in 3D spaces. In this stage, the majority 

contribution of the target image to the training is the specular highlights and the cast 

shadows. In our experiments, the Phong illumination model is employed to simulate the 

reflectance of the object surface. We present the illumination context with different 

lighting positions in Figure 6.5(d). 

In Stage III, we start manipulating 3DMM to generate the morphed faces whose 

projections on 2D planes are used to measure the distance of the 3D face to the target. 

Figure 6.5(e) shows the result of the synthesized face overlaid on the target face. 



In Stage IV, the image warping technique, MLS, is used to enhance the facial appearance 

of the 3D faces. Figure 6.5(f) shows the final result of the system. Please note that, due to 

the original image pre-processed prior to the morphing procedure starts, the associated 

color space presented on the synthesis faces is biased from the original image. 

6.4.2Validation of Synthesized Images 

Following the same procedure in Chapter 5, we generate a training dataset that consists of 

images synthesized from 3D faces under different pose and illumination conditions. 

Fig. 6.6 Frontal images from five different subjects which are used for the training of 3D models 

We select five candidates to create the corresponding 3D models based on their frontal 

images, denoted as Itr,i in which (i=l,2, ...5). All five subjects are listed on the gallery in 

Figure 6.6. In addition, twelve images with different poses or lighting conditions from 

each individual are picked up as the test dataset, 

The projections of synthesized 3D faces on 2D planes are denoted as , which are 

used as the 2D face recognition training dataset. We tentatively create two sets of M, r ,  

frftr and Aftr, which are produced from the controlled and uncontrolled parameters of 

pose or lighting imposers. The "controlled" parameters indicate that the light or pose 

coordinates has been provided by the database, while the "uncontrolled" parameters the 

random coordinates within certain ranges. In Aftr, we create three snapshots with minor 
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pose offsets for each image from There are 36 hf n- snapshots and equal number of 
* 

A s n a p s h o t s  f o r  e a c h  s u b j e c t  t o  e n s u r e  h a s  t h e  b e s t  c o v e r a g e  o f  t h e  p o s s i b l e  

scenarios. 

Figure 6.7 gives the comparison between the images in /«,,/ and their associated synthetic 

images, in hf*, projected under the same pose and lighting scenario. In Figure 6.8, we 

demonstrate some of the images in Af & -

Fig. 6.7 Comparison between test feces and the virtual faces, 
the images on the top are real images from the PIE database; the bottom row contains face images 

generated under the controlled pose directions and light source positions 

Fig. 6.8 Samples of images generated without the control on pose directions and light source positions 
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Figure 6.9 shows the learning curves of the 3D feces generation. Each individual is 

represented with different colors. It could be learned from the diagram that the error curve 

starts from significant differences between the mean face and the target face. Then the 

curve drops rapidly until they reach their 60-70 iterations. As the iterations increase, the 

optimization process marches closer to its optimum, which means the 3D face model 

finds its optimal linear combination to present the target face. 

Error 
3500 

3000 

2500 

2000 

1500 

1000 

500 

Itrs 
100 

Fig. 6.9 Learning curve from five subjects with errors v.s. iterations 

The bar graph in Figure 6.10 indicates the FR rate obtained under three different training 

sets. We still use PCA to execute the validation process. The blue bar indicates the FR 

rates without training but with frontal faces. The green bar indicates FR rates by using 

uncontrolled database in the training phase. The red bar depicts FR rates by using 

controlled database in the training phase. The plot preliminary proves the synthesized 

faces, to some extent, enhance the performance of the FR system. At the same time, those 

faces generated under controlled parameters bring more accuracy to the system than 

uncontrolled parameters. 
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Fig. 6.10 Bar-plot of FR rate v.s. subjects 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORKS 

7.1 Conclusions 

Several factors can effectively decide whether the performance of the face recognition 

system is compatible with practical applications, such as Homeland Security, real-time 

monitoring, access control, etc. On the one hand, various face recognition algorithms 

were invented in the last decades. As shown in [2, 55, 58], researchers continuously 

create innovative ideas to push face recognition advances forward to the next level; on the 

other hand, it is eagerly desired for as many training face images as possible to expand 

system-owned knowledge about potentially unknown human faces. A database that is 

manually created, to some extent, could be one of the solutions to this problem. However, 

in most cases, gathering sufficient data from candidates could be either impossible or 

intended for extra resource consumption. 

Due to the aforementioned facts, the research topic of this paper is introduced into 

discussion. In this dissertation, we propose a novel framework for creation of large scale 

of 2D database from single image. In Chapter 2, we demonstrate an overview diagram of 

the whole framework. 

In order to achieve that goal, we first attempt to reconstruct the 3D model from the input 

image and then project the 3D faces model onto 2D image space. In our work of 3D 

model reconstruction, the 3D Morphable Model is employed to estimate the 3D shape and 

texture of the incoming face. Theoretically speaking, 3DMM is able to synthesize face 



images under pose and illumination variations. This technique can be used in either face 

analysis of model generation from images or to generate training or test images at any 

imaging condition [31]. Hence, it can be regarded as the model for a meta-database that 

allows the creation of augmented images for test or training purposes. 

Considering the complicated context of the incoming images could be, we include into 

the estimation process several parameters with respect to shapes, textures, shadows and 

light directions. The estimation process of fitting shape and texture information into 2D 

images is considered as the problem of searching for the global minimum in a high 

dimensional feature space, in which optimization is apt to have local convergence. 

In Chapter 4, we introduce the concept of global optimization and how it is related to our 

work. One of the most important members of the global optimization algorithms is 

Evolutionary Algorithms whose basic idea derives from the inspiration of biological 

mechanisms. The Differential Evolution algorithm is regarded as a powerful optimizer in 

the EAs family. Hence we integrate DE into the framework to tackle the local 

optimization. The experimental results, in Chapter 5, demonstrate that we are able to 

automatically create a virtual 3D face from a single 2D image with high performance. 

3DMM is a statistical-based model in which the synthesized pixels from the model are 

estimated according to the likelihood of their existence. Additionally, as the MSE is used 

in our global cost function, the synthesized face textures are shown to be characterized as 

focusing more on the global appearance instead of local facial features. In order to 

generate realistic texture information, in Chapter 6, we integrate the backward texture 

mapping to the 3D face reconstruction that includes the image warping technique, 
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Moving Least Square Image Deformation. In our work, MLS deformation is used to 

construct the mapping function from the image space to the texture space. Our results 

have shown the beneficial effect brought by the texture mapping to the synthesized 3D 

model as well as the generated 2D face database. 

7.2 Future Works 

Future research will focus on the following sections: 

1. Reduce Time Consumption 

Aforementioned in Chapter 3, Differential Evolution is employed to keep the global 

optimization from the local minimum. However, the computation efficiency of DE 

optimization would be a considerable issue. The future work should be more emphasized 

on the decrease of computing time. 

2. Pre-processing on input images 

The facial appearance in the input image is undetermined. One of the disadvantages 

brought by this fact is that in some cases, it is difficult for the 3D reconstruction scheme 

to estimate satisfactory results. This is because only the pixel-level comparisons of 

intensity image are used in the cost function. In the future work, more constraints are 

suggested to be included like illumination and reflectance to retain the result from 

divergent away from the optimal point. 
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3. Input Image Annotations 

Either in the process of facial estimation or texture mapping, landmark annotation plays 

an important role in our implementation. Nevertheless manual annotations are both time 

consuming and involve human interactions, which is an unstable factor. Therefore, future 

work is recommended in the direction toward an automatic feature points annotation. 

4. Database Simplification 

BFM database is featured as a high resolution 3D faces. In other words, it provides high 

definition of the faces but, on the other hand, uses over 60k vertices to represent human 

faces. Practically speaking, it is not necessary to apply 3D faces about this level to lower 

resolution images. If we regard the computational complexity as one of the factors that 

affect the face reconstruction, it is highly recommended to downsample face models to a 

low resolution with few number of vertices like 5,000 -6,000. 

5. 3D Representation of Face Expressions and Movements 

The 3D reconstruction is able to be working on single 2D image or multiple 2D images 

with neutral facial expressions. The future works with applications on multiple 

expressions is supposed to be one of the research directions, which means the facial 

movements is able to be represented and reconstructed on basis of certain sets of features. 

One possible solution is using the synthesis of 3D face database and Structure from 

Motion (SfM) [60] techniques to mimic the movement of facial key features. 
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APPENDIX A 

Viola-Jones Face Detection 

A.l. The Integral Image 

For an incoming image, an integral image is represented as the sum of the pixels above 

and to the left of x, y, inclusive, 

H ( x , y ) =  X '(*',/) (A.1) 
x'£x,y'<y 

in which ii(x, y) is the integral image and i(x, y) is the original image. 

It is obvious to compute the sum of the pixels in the region of the rectangle (shadowed) 

which is shown in Figure A.l. 

X *"(*' y)= " 0 ° ) + -  " ( 5 )  -  " ( Q  ( A . 2 )  
(x,y)eABCD 

Figure A.2 shows four types of Haar-like features whose basic size if 24*24 pixels. Each 

of four features is shifted and scaled across all possible combinations, which means there 

are estimated 160,000 possible features to be calculated. 

•X 

Y i r 

A B 

C 
» • • 

Figure A.l Illustration of calculation of the integral image 
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(a) (b) (c) (d) 
Figure A.2 Haar-like feature used in feature extraction 

A.2 Adaboost Learning 

Adaboost (Adaptive Boost) algorithm is regarded as a strong classifier, noted as f(x), 

which is represented as the linear combination of simple and weak classifiers, noted as 

h(x). Let's assume there are T weak classifiers involved in the classification. The final 

decision made by the algorithm is determined by the combination of the weighted weak 

classifiers. 

T 

f (x )  =  Y, aM x )  (A.3) 
1=1 

Following is the pseudo code for the Adaboost algorithm: 

I. Input 

(1) Training examples S = {(*, z), i= 1, 

(2) T is the number of weak classifiers; 

II. Initialization: 

(3) Initialize example score F°(x,) = \n(N+/N.)/2, where N+ and N. are the number of 

positive and negative examples in the training data set. 
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HI. Learning: 

F o r / =  1 , T :  

1). For each Haar-like feature h(x) in the pool, find the optimal threshold H and 

confidence score c\ and c? to minimize the Z score L'; 

2). Select the best feature with the minimum L'; 

3). Update Fix,) = F,.i(x,) + £(*.), *=1 N; 

4). Update W+lh WAi,j =1,2. 

IV. Output: FJ(x). 

A.3 Cascade of Boosted Classifiers 

Cascade of boosted classifiers are regarded as the degenerate decision tree, which is 

featured as fast evaluation and quick rejection of sub-windows when testing. Each node in 

the structure shown in Figure A.3 is trained by using the false positives of the prior. In the 

method of Viola-Jones, they present a method of iteratively building boosted nodes to 

reach the desired false positive rate. 

Input sub-windows ^ Further processing 

Rejected sub-windows 

Figure A.3 Cascade of boost classifiers 
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