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ABSTRACT

PULSED OPTOACOUSTICS IN SOLIDS

Zibiao Wei 
Old Dominion University, 2000 
Director Dr. Amin N. Dharamsi

Optoacoustic techniques are widely used to probe and characterize target materials 

including solids, liquids and gases. Included in such applications are diagnoses of thin 

films and semiconductor materials. The need to obtain greater spatial resolution requires 

the generation of shorter optoacoustic pulses. For such pulses, non-thermal effects may 

he quite important. On the other hand, even when an optoacoustic pulse is generated by 

an initially non-thermal technique, the thermal aspects become important in its evolution 

and propagation. The research undertaken in this PhD. dissertation included the 

generation and detection o f optoacoustic signals through the thermal elastic mechanism. 

Several applications in material property diagnostics were investigated using several 

pulsed lasers. Both contact and non-contact detection techniques were used. A compact, 

lightweight, inexpensive system using a semiconductor laser, with potentially wide 

applicability, was developed.

We developed the methods of analysis required to compare and explain the 

experimental results obtained. Included in such development was the incorporation of 

the responsivity o f a piezoelectric transducer, whose necessarily non-ideal characteristics 

need to be accounted for in any analysis. We extended the Rosencwaig-Gersho model, 

which is used to treat the thermal diffusion problem with a sinusoidal heat source, to a
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general pulsed laser source. This problem was also solved by a numerical method we 

developed in this work.

Two powerful tools were introduced to process experimental data. The Fourier 

transform was used to resolve the time interval between two acoustic echoes. The wavelet 

transform was used to identify optoacoustic pulses in different wave modes or those 

generated by different mechanisms. The wavelet shrinkage technique was used to remove 

white noise from the signal.

We also developed a spectral ratio method, which eliminates the need for the 

knowledge of several material parameters, to obtain the optical absorption coefficient. 

Finally, we extended the optoacoustic measurement to biological samples and applied 

techniques that we developed in this work to process and analyze signals obtained from 

such samples.
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I

CHAPTER I 

INTRODUCTION

1.1. AN OVERVIEW OF OPTOACOUSTICS

1.1.1. Generation mechanisms of acoustic signals by light

The photoacoustic (PA) or optoacoustic (OA) effect is the phenomenon in which 

acoustic waves are generated when a sample is irradiated with light. A common 

mechanism, which leads to energy conversion from light to acoustic energy, is the 

thermoelastic effect. When a pulsed or modulated laser beam strikes the surface of a 

sample, the local temperature will rise due to the absorption of the laser energy. This 

temperature gradient produces, as a result o f thermal expansion, a strain in the body. The 

surrounding medium is compressed by the reaction force from the expanded volume. The 

expansion-compression action generates an acoustic wave. The transient heating and 

thermal expansion process is so brief that the detected acoustic wave usually is ultrasonic. 

For small incident optical powers, this acoustic generation process is an elastic one and 

does not induce any phase changes in the medium. The conversion efficiency of this 

elastic process is rather low (typically about I O'4 for condensed matter [1 ,2]), but it often 

provides a useful tool for non-intrusive diagnostics.

This dissertation will concentrate on the generation of ultrasound by the thermoelastic

Journal model used for this dissertation is Journal o f  Applied Physics.
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effect However, it has to be noted that there are other mechanisms that also lead to 

acoustic generation from incident laser radiation. Such mechanisms include the initially 

cold photostrictive process, dielectric breakdown, vaporization, ablation, electrostriction 

and radiation pressure.

The photostrictive mechanism for OA generation is a non-thermal effect [3]. When 

the sample is excited by ultrashort laser pulses, the lattice constant can change via a non- 

thermal photostrictive mechanism. Such non-thermal optoacoustic generation occurs in 

semiconductor materials irradiated by a subpicosecond laser of proper wavelength. There 

are three stages that occur during this generation [4], namely: the electron-hole pair 

dephasing, which results in a temperature rise only for carriers but not the lattice; optical 

phonon emission through which the carriers lose their excess energy; and acoustic 

phonon generation, which is an efficient way for carrier cooling after the second stage. 

After the carrier and lattice temperatures are equalized, the material has "heated up". The 

thermal elastic acoustic signal is generated after such heating. Therefore, a non-thermal 

optoacoustic signal is always accompanied with a thermal optoacoustic signal, but they 

occur at different stages after the laser irradiation. The non-thermal OA generation has 

many potential applications [5].

The dielectric breakdown mechanism occurs at ultra high laser intensity (~1010 

Wcm-2) [6, 7]. It can be distinguished from the thermoelastic effect in transparent media 

where sound generation by absorption and thermal expansion does not easily occur. The 

plasma due to the dielectric breakdown can produce shocks. This highly nonlinear 

process often has a high conversion efficiency, which can be as high as 30% in liquid [2], 

but requires a relatively high threshold intensity.
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Both vaporization and material ablation correspond to matter phase change because 

of over heating by laser radiation [2, 8, 9]. Vaporization occurs on a liquid surface while 

ablation occurs on a solid surface. The ejection of material from the surface generates a 

recoil momentum in the sample and results in an acoustic signal. This mechanism also 

requires that the laser energy density be above a threshold, which is determined by the 

properties o f the medium. The conversion efficiency can reach 1% [2].

Electrostriction is due to the electric polarization o f molecules in the sample [10-12]. 

The high light intensity causes these polarized molecules to move backward or forward 

according to positive or negative polarization. These motions produce a density gradient 

which corresponds to the generation of sound in the medium. Electrostriction often 

occurs in transparent media when electric field intensity exceeds approximately 107 

Vcm~l [10].

The acoustic signal can also be generated directly by radiation pressure. The 

amplitude of the radiation pressure is given by prad= I  tc, where /  is the intensity and c is 

the light velocity in medium. A laser intensity of 106 Wcm‘\  which is typical for our 

experiment, only corresponds to 0.3mbar pressure, thus this mechanism is the weakest 

one among all mechanisms discussed in this section.

In this dissertation, the term optoacoustic or OA implies acoustic generation via 

thermoelastic mechanism.

1.1.2. Relation of this work to previous research in optoacoustics with solids

Since the optoacoustic phenomenon was first discovered by Alexander Graham Bell 

in 1880 [13], it has been successfully used to perform many investigations on gases,
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liquids and solids. Two factors that play an important role in the study of optoacoustics 

are the characteristics o f the incident light source and detection techniques. Note that this 

work mainly focuses on the generation and detection o f pulsed OA signals with solid 

samples.

A. Light sources and methods to generate OA signals

Both incoherent and coherent light sources have been used to conduct OA 

experiments. To generate an acoustic signal, the light intensity must be varying with time. 

This has been achieved either by chopping the beam from a continuous light source or by 

using a pulsed light source. The first OA experiment performed by Bell more than 100 

years ago utilized chopped sunlight. In some o f our experiments, we also used incoherent 

light pulses from passivation mixtures o f an excimer laser. However, the signal to noise 

ratio increases greatly when coherent light pulses, which produce high fluencies, are 

used. Presently most optoacoustic work is performed with lasers.

Early OA experiments were done on gaseous samples with chopped light beams. This 

was because the OA generation efficiency in gases is higher than in condensed matter 

(the gas has a higher thermal expansion coefficient), and acoustic signals in gases are 

easily detected by sensitive microphones, hi 1963, White first investigated OA generation 

with solid samples using chopped light beams [14]. These signals detected by 

microphones were actually indirect ones, since they were generated by thermal expansion 

in the surrounding air. The difference o f the OA generation in a gaseous sample and the 

indirect OA generation with a solid sample, is that the former is caused by a direct 

absorption of laser energy by the gas while the latter is caused by the diffusion, into the
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gas, from the optically generated thermal energy in the solid sample. In the early 1970s, 

this indirect generation of OA by a chopped light beam was investigated thoroughly, as 

for example by Rosencwaig [15] and Harshbarger [16]. In later years, pulsed lasers were 

often used to generate OA signals, since the OA generation efficiency by pulsed lasers is 

higher, as a result of higher incident intensities. Also, piezoelectric transducers became 

very popular. These transducers can directly detect acoustic signals in solids and are very 

sensitive to weak signals. After the late 1970s, much work on pulsed direct OA 

generation in solids has been done [8,17-19].

However, the generation and detection of pulsed indirect OA signals in the gas in 

contact with the solid target has not been done by many workers. The work in this 

dissertation is one of the few such investigations. Except for Tam’s work in the mid- 

1980s [20] and the work described in this dissertation, the author is not aware of other 

work on indirect pulse optoacoustic work using a totally non-intrusive optical probe beam 

deflection technique.

B. O A detection schemes

Most authors used piezoelectric transducers to detect direct OA signals, without 

analyzing the performance of the transducer, by assuming that the detector's response was 

linear. It is known that the transfer function of a piezoelectric transducer displays a 

resonance whose frequency is determined by the thickness of the piezoelectric material 

and the sound speed in this material. Therefore, the linear approximation is only valid 

when the spectrum of the acoustic signal is at a region far away from the resonant
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frequency. Note, however, that the responsivity in such a region is low compared with 

that at the resonant frequency.

A further feature of the work described in this dissertation is the additional 

complexity that had to be accounted for because the optoacoustic signals generated had 

strong components around the resonant frequency of the piezoelectric transducer used. In 

order to analyze the experimental results obtained we use Mason's model [21] for a 

piezoelectric material.

Since the early 1980s, optical detection of OA pulses has been amply investigated. In 

general, the sensitivity of the optical detection is smaller than that of the piezoelectric 

transducer. However, it provides a non-contact method to detect the acoustic signal. 

Therefore, OA diagnostics of material properties can be performed in a completely non- 

intrusive and non-contact manner. Such a feature makes the OA technique a powerful 

inspection tool in a hostile or inaccessible environment.

In these optical detection schemes, normally either the motion of the sample's surface 

or the change of the index of refraction is sensed by a probe beam. Interferometers have 

been used to detect the displacement of the surface [22,23]. This method uses a coherent 

continuous probe beam. Alternatively, the beam deflection method was used to monitor 

the surface deformation by measuring the deflection angle of the probe beam due to the 

change of the slope o f the surface [24, 25]. The beam refraction method also measures 

the bending of the probe beam, but this is due to the change of index o f refraction along 

the optical path caused by the acoustic signal [26,27]. This change of index of refraction 

has also been detected by the optical reflectivity method, which monitors the change of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

the intensity o f the reflected probe beam by the sample surface [28, 29]. This method is 

useful to detect the OA signal generated by picosecond laser pulses.

Most of the optical detection schemes require a  smooth sample surface, which is not 

practical for many experiments. Although the beam refraction method does not require a 

smooth surface, the sample must be transparent to the wavelength of the probe beam. 

Recently, Caron and coworkers proposed the gas-coupled laser acoustic detection scheme 

[30, 31]. This method has the same detection mechanism as that used by the beam 

refraction method, but the probe beam is located in the gas and detects the acoustic signal 

transmitted from the solid sample. Therefore, it does not require a smooth surface and can 

be used for indirect detection of acoustic signals in almost all solid samples. However, 

since the transmission o f an acoustic signal from the solid to the gas is very small due to 

the large acoustic impedance mismatch, this method is practical only when the acoustic 

signal in the solid is very strong.

The work in this dissertation uses the same experimental setup as that used by the 

gas-coupled laser detection scheme, but it detects the indirect OA signal generated in the 

gas instead of the transmitted OA signal from the solid. Since the efficiency of indirect 

OA generation is high, the acoustic signal can be detected by a probe beam even when 

the pump laser is weak.

C. Theories of OA generation

Many authors have investigated the theory used to predict the profile of the OA signal 

in solids. For a weak absorption medium, cylindrical symmetry can be assumed [10]. For 

a highly absorbed sample, if  the radius o f  the pump is small compared to the absorption
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length, a spherical model can be used [32]. Otherwise, the acoustic wave can be treated as 

a plane wave [15].

To predict the OA signal profile, the sound speed in the sample, the optical absorption 

coefficient and the boundary condition must all be known. White directly derived the 

sinusoidal solution of the wave equation [14]. Patel and Tam used potential theory that 

was developed by Landau and Lifshitz [33] to first obtain the potential and then the 

pressure signal [10]. Burmistrova and coworkers developed the transfer function theory 

for the OA generation [34]. Our work adopted the transfer function theory, because it 

reveals clear pictures of the relevant processes, and the required convolution of the 

impulse response and the laser pulse profile can be easily performed by a computer. Our 

work also independently developed a numerical method to calculate the pulsed indirect 

O A generation.

D. Signal processing of OA signals

Most OA experimental results have been interpreted in time domain. Rarely has work 

been done to interpret OA signals in frequency domain [35]. Our work develops a 

method to obtain the time interval between acoustic echoes in frequency domain by the 

Fourier transform. We also utilize the wavelet transform theory to analyze the OA signal 

in the two-dimensional time-frequency space, as well as to remove noise from the 

experimental results. To the author's knowledge, this work is among the first which 

introduces these techniques to the processing o f OA experimental data.
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1.13. Applications

Many applications of optoacoustic techniques have been developed and 

demonstrated. These include OA spectroscopy [36], material characterization for 

parameters such as absorption coefficient [37], sound velocity and sample thickness [38]. 

There are many other applications in nondestructive evaluation [39], photochemistry [35] 

and biology [40].

OA spectroscopy has been widely investigated. Compared to other conventional 

methods for weak absorption media, OA spectroscopy has several advantages. For 

example, scattering and reflection losses are severe problems for optical spectroscopy but 

not for OA spectroscopy, because the OA signal only senses the absorbed energy. OA 

spectroscopy is also suitable for measuring very high absorption coefficients. In this case, 

the OA generation efficiency increases and it is easier to detect the OA signal. On the 

other hand, there is little light transmission in an opaque sample, making an absorption 

spectroscopy very difficult, if not impossible.

Optical absorption coefficients have been measured by using modulated incident light 

[41-43]. These methods measured the OA signal magnitudes or phases and required the 

knowledge of parameters such as the thermal expansion coefficient, heat capacity, laser 

intensity, etc.. Terzic and Sigrist proposed a method to get the optical absorption 

coefficient by pulsed OA measurement [37]. Their amplitude ratio technique eliminated 

the need to know the parameters mentioned above by taking measurements at two 

different boundary conditions. However, it requires one of these conditions to be rigid, 

which is difficult to achieve for many experiments.
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Our work develops a novel method for the measurement o f absorption coefficient* 

and also uses the ratio technique, but in the frequency domain. This method exploits 

differences due to varying boundary conditions but not necessarily a rigid boundary, hi 

addition, it is inherently independent of the characteristics of the detector and the 

amplifiers.

Thin-film testing for the verification and quality control of electronic components, 

protective layers, or optical coating is in great demand. OA testing can be and has been 

used for this purpose [38]. To achieve enough resolution in thin film applications, 

picosecond longitudinal acoustic pulses must be excited with picosecond pump lasers. 

This technique has been used for ultra thin film (50nm ~ 10pm) to determine either the 

thickness or the sound velocity from the acoustic echo interval. Optical detection of a 

picosecond optoacoustic signal is usually required since the piezoelectric transducers do 

not have sufficiently short response times. For an opaque film, the OA signal is directly 

generated. For a transparent, thin film, the stress generation is not possible by absorption 

of the incident laser energy. However, stress can be generated in the opaque substrate. 

Part o f the resultant acoustic pulse is transmitted into the film, and this is used for a 

diagnostic purpose.

The electroacoustic technique is a commonly used method for non-destructive 

evaluation (NDE), such as flaw detection. Compared with the electroacoustic method, 

optoacoustic evaluation has several advantages. First, since the pump laser can be well- 

focused, spatial resolution can therefore be improved. Second, nanosecond and even 

picosecond optoacoustic pulse can be generated. Therefore, shallow defects as thin as 

micrometers can be detected. Finally, by using optical detection o f the OA signal, the
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evaluation can be performed in a fully non-contact, non-intrusive manner. Such a method 

is useful in applications where the sample surface cannot be contaminated or it is located 

in an inaccessible environment.

OA evaluation is extremely useful for another category of NDE application to which 

the conventional electroacoustic method cannot be applied, hi this category, the defect 

has the same acoustic impedance, but different optical properties, as the main body. An 

incident acoustic probe beam would not have reflection at the defect, thus it cannot detect 

the location o f the defect. However, an internal OA signal can be generated by the defect 

itself if a properly chosen laser beam can penetrate the main body and reach the defect. A 

three-dimensional image of the defect can be obtained by scanning the pumping laser 

beam across the object.

OA technique has also found applications in biological samples such as optical 

absorption coefficient measurement in tissues [40], depth resolving [44], selective 

ablation [45] and penetration of sunscreen into skin [46]. This dissertation also worked on 

measuring properties of tissue samples at different laser wavelengths [47].

1.2. STRUCTURE OF THIS DISSERTATION

This dissertation has seven chapters. Following this introduction is Chapter II, which 

describes the physics of the pulsed optoacoustic phenomenon. Although most o f the 

theory has been done by earlier researches, we put these results together with our own 

contributions to give readers a thorough picture o f this phenomenon from generation to 

propagation and finally detection.
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In Chapter HI, methods used to theoretically calculate electrical signals from a 

piezoelectric detector or a photodiode, based on the theories described in the previous 

chapter, are given in detail. These calculations were done to compare theory with 

experiments, which are described in detail in Chapter IV. hi this chapter, a comparison 

between theoretical and experimental results is also presented.

Chapter V presents methods that we developed to analyze and process the OA 

experimental data by Fourier and wavelet transforms.

Finally, in Chapter VI, two new applications o f the OA technique are given. First, we 

investigated a new way to measure the optical absorption coefficient. Both the theory and 

its application to the experimental results are presented. Then, the pulsed OA experiment 

with biological tissue samples were described. Some techniques developed in this work 

were used to process the experimental results from tissue samples. This chapter is 

followed by a conclusion chapter that ends this dissertation.
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CHAPTER II 

PHYSICS OF GENERATION, PROPAGATION AND 

DETECTION OF OPTO ACOUSTIC SIGNALS

This chapter deals with the theories of generation o f ultrasound by pulsed lasers, and 

the propagation and detection of acoustic signals. The emphasis here is on the generation 

and detection.

2.1. GENERATION OF ACOUSTIC PULSES BY LASER EXCITATION IN 

OPTICALLY UNIFORM MEDIA

In this section, the mechanism of optoacoustic generation will be discussed. When the 

energy o f a laser pulse is absorbed by a solid sample in contact with a fluid such as the 

air, an acoustic pulse is generated within the sample. This is a direct generation of 

ultrasound due to the laser energy absorption. However, the heat converted from the laser 

energy that is absorbed by the solid sample will partially diffuse to the adjacent fluid, 

which will generate another acoustic pulse in the fluid. This mechanism is called indirect 

generation. Both direct and indirect generation of OA pulses will be discussed here.

2.1.1. Direct Generation - Acoustic pulses generated within the absorbing sample

Because the transducer we used in our experiments for direct detection is only 

sensitive to the longitudinal acoustic waves, we will deal mainly with the longitudinal
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pressure or displacement signals in this section. To simplify the discussion and get a clear 

picture of the physical phenomenon, we will start with a one-dimensional model, which 

is normally sufficient for the case when the optical absorption coefficient is not too large, 

i.e., the length of the absorption region cannot be ignored. We will concentrate on this 

one-dimensional theory and extend the discussion to a more general, three-dimensional 

model which is necessary when the optical absorption is sufficiently large.

A general formulation of the theory needed to describe the generation of an 

optoacoustic pulse is given. This involves the solution of two coupled equations, namely 

the acoustic wave equation with a source term and a thermal diffusion equation. The one

dimensional model will be discussed in detail to approach the solutions, followed by a 

brief description o f the three-dimensional case.

The acoustic wave may be approximated as a plane wave when the conditions a »  do

and a2/A »  do hold, where a is the radius of the laser beam, do is the thickness of the

absorption layer and A is a characteristic wavelength of the acoustic signal. The acoustic 

wave equation can be derived from the continuity equation for mass and Newton's second 

law, which are written as Eqs. (2.1a) and (2.1b):

p (l + ^ ) = P o -  (2.1a)oz

f t | ^ + f r = 0 .  (2.1b)
d r  oz

Here u is the displacement, p  is the mass density and po is its value at equilibrium, hi Eq. 

(2.1b) p  is the pressure, which depends on the displacement gradient and thermoelastic 

expansion:
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Here, 0 is the linear thermal expansion coefficient, cq is the sound speed and T  is the 

temperature increment. The first term on the right hand side of Eq. (2.2) is the regular 

relation of the stress (negative pressure) and the strain. The second term is the 

contribution from thermal expansion. Combining Eqs. (2.1) and (2.2), one gets the wave 

equation for displacement:

dzu 2 92u yQ d T  n—r  = c - — r - c-6— . (2.3)
at oz oz

Replacing u by p  according to the relation in Eq. (2.2), the wave equation for pressure

can be modified from Eq. (2.3) and written as:

d2p  I d2p a d2r
&2 cl dr p° a 2 ■ ( ’

Eq. (2.4) can be extended to the three-dimensional case for a homogeneous and 

isotropic medium without loss. Then the pressure wave equation can be written as [48]

1 d2p  9 dH
<2-5'

Here Cp [Jkg‘lKTl] is the specific heat at constant pressure and H(r,t) [W/m3] is the net 

heat flowing into the observation point per unit time, per unit volume. In the above 

equation, the source term is written in terms o f heat instead of temperature. They are 

interchangeable by the relation dT'/dt = H  /(pCp) .

hi Eq. (2.5), the thermal expansion coefficient 0  [1/K] for a bulk medium is defined

as
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(2.6)

where T is the absolute temperature.

When there is no external heat disturbance, i.e. the right hand side o f Eq. (2.5), which 

is the source term, equals zero, then Eq. (2.5) becomes the standard wave equation. The 

general solution then has the format of J[c0t ± z) for one-dimensional equation, and the 

signal profiley[.r) is determined by appropriate boundary and initial conditions.

When the source term is present, which is always the case for optoacoustic 

generation, the general solution is usually difficult to obtain. One reason is that it is often 

difficult to find the exact functional form for H(r, t).

The heat power flow density, H(r, t), at time instant t = r<j and position r  = ro, has two 

components. The first part, //Opt(ro, to), is the instantaneous heat converted from the laser 

energy that is absorbed at position ro and at time instant to. H0pt is determined by the 

optical absorption coefficient cc. The second part, #th(ro» to), is the heat generated at t < to 

which has reached ro, by thermal diffusion, from any r  *  ro.

The instantaneous heat converted from laser absorption H0pt can be expressed by:

where I  is the laser intensity. If it is assumed that the laser beam is incident from -z  

direction and obeys Beer's law, Hm (z) is therefore,

Ut) describes the temporal profile of the laser pulse before it is absorbed by the sample.

There are two general limiting conditions that can be described in terms o f whether 

the absorption is strong or weak. If the absorption is weak, i.e. e~cc«  1, the gradient of

(2.7)

(2.8)
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//opt in z direction can be neglected compared with the gradient in transverse (x and y) 

directions which is determined by the geometries by the laser beam. Then the thermal 

expansion occurs in transverse directions. The wave equation can be solved in a 

cylindrical coordinate system [10]. If the absorption is strong, the laser energy is 

absorbed within a thin top layer (about 1/a). The initial temperature decays exponentially 

in the z direction. Here, it is convenient to proceed by discussing two limiting geometries, 

namely: (a) when the diameter o f the laser beam is large enough, and satisfies the 

conditions stated in the beginning of this section, then the optoacoustic signal can be 

taken to be one dimensional in the z  direction. As discussed in Chapter IV, in most of our 

experiments, this assumption is justified; (b) when the absorption length is comparable to 

the diameter o f the laser beam, then the solution can be written in the spherical coordinate

Thermal diffusion is caused by the non-uniform temperature distribution that exists 

within the material, hi an optoacoustic experiment, the thermal diffusion equation for 

temperature can be written as [49]:

[32].

j ’ _ I dT tfppt (2.9)
D dt k

where k  [Wm‘lKTl] is the thermal conductivity and D [m2/s] is the thermal diffiisivity. D 

is related to /cby the following formula:

D -  icl pC , (2.10)

where p  is the density and C  is the specific heat Since H& is directly related to the

temperature, H0pt and H& are coupled via Eq. (2.9).
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In summary, the formulation of the appropriate optoacoustic pulse profile requires a 

solution to the two coupled equations, Eqs. (2.5) and (2.9).

A. One-dimensional model

To solve the pressure wave equation Eq. (2.5) (or Eq. (2.4) for one dimension), one 

needs to know the temperature distribution and the initial and boundary conditions. When 

the laser pulse is short, one can assume that the temperature rises and the thermal 

expansion occurs on a time scale short enough that the medium has not yet reformed its 

density, i.e., du/dz = 0 . Therefore, the first term at the right hand side of Eq. (2.2) can be 

ignored. Then the pressure changes are merely due to the thermal expansion [50] (second 

term in Eq. (2.2)). To treat the acoustic generation problem, one can take a two-step 

approach: first a pressure pulse is initiated at time zero within the absorption region by 

thermal expansion; then the pressure pulse travels, obeying the wave equation for a 

homogenous medium.

Indirect acot 
detection

Direct acoustic 
* detection

Laser
impulse Temperature

distribution

Fig. 2.1. Optoacoustic generation by a laser impulse and the detection.
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Let us assume the ideal experiment illustrated in Fig. 2.1. A laser impulse with 

intensity loS^t) (and the flux is E0 Joules/m2) irradiates the sample surface. An acoustic

detector can be placed either on the back of the sample, to directly measure the pressure 

signal, or in front o f the surface at distance L2, to detect the signal transmitted into the 

adjacent medium (which normally is air, and such detection is referred to as an indirect 

measurement). Note that an ideal indirect measurement should record not only the 

transmitted acoustic pulse but also an acoustic signal generated in the fluid due to heat 

diffused from the sample's surface. The profile of the latter signal will be discussed in 

section 2.1.2. In this section, the indirect signal refers only to the transmitted acoustic 

pulse from the solid.

The time it takes for the light to travel across the absorption region can be neglected. 

Also, the time for the temperature rise can be ignored, because such a rise occurs on a 

time scale of picoseconds while this work treats laser pulses in nanoseconds. The initial 

distribution of the temperature increment (at time zero) according to Beer’s law can 

therefore be written as:

F ( /  = 0 ,z) = t (2 .1 1)

where a  is the optical absorption coefficient of the sample at the incident laser 

wavelength. Therefore, from Eq. (2.2) the pressure signal initiated at time zero can be 

written as:

(rQaE  #?_ccr
p(t = 0 ,z) = CQf* r ° e , (2  *  0 ). (2 .1 2)

After time zero, the initial pressure signal will split into two counter-propagating 

pulses. The indirect detector located at z  — -L2 will see the transmitted portion o f the
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signal propagating in the - z  direction after a time delay tz -Lzlcz, where cz is the sound 

speed in the fluid. This pressure signal can be written as:

=--------------- a£--------- , (r > r 2 = L ,/c 2).p(tyz =  , (f > r 2 = L ,/c 2). (2.13)
2  c p

hi the above equation, kt is the transmission coefficient. The normalized pressure 

signal is shown in Fig. 2.2(a).

On the other hand, the direct detector located at z  = L\ will first see the pulse 

propagating in the positive direction whose peak arrives at r, =LX/ c0. Then it records

the reflected portion o f the pulse that originally travels toward the negative direction but 

is reflected at the irradiated surface. The time delay for the detector to see the reflected 

signal is also q. Therefore, the signal that the direct detector measures can be written as:

1 c-QaE eaCol,~t,)
= A) =LE2z ~ £ . --------, ( 0 < r < r , ) ,

(2.14)
k cz0aE

 , ( r > r t).

In Eq. (2.14), kr is the reflection coefficient. The combined pressure signal is 

illustrated in Fig. 2.2(b).

Note that the indirect signal in Fig. 2.2(a) is always positive, since the transmission 

coefficient kt -  2Z,/(Z , +Z2), where Z\ and Zz are the acoustic impedance of the

sample and the adjacent fluid respectively, is always a positive number. However, the 

second wing of Fig. 2.2(b) has the same polarization as the reflection coefficient kr, 

where kr =(Z , — Zt)/(Z» -t-Zt) . Therefore, kr can be either positive or negative, and is
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determined by the impedances of the sample and the adjacent medium. For the rigid 

boundary, Z2 = °o and kr— 1, in which case the directly detected signal has even symmetry 

centered at t — L\Icq. For the free boundary, Z? = 0 and kr =  -1, in which case the 

symmetry is odd for the direct signal.

- 0.5
0 Time

= 0.1

0 Time

(a) (b)

Fig. 22. Pressure signals generated by a laser impulse and measured by detectors located at (a) .t = 
and (b) x = £,. The signals have been normalized to p (x  =  0, t  — 0 ). The reflection coefficient kr = -0.8. 
The transmission coefficient k, = 0.24. Note these coefficients are for pressure amplitude. Therefore, kr+ k, 
* I-

Another interesting thing one may notice is that the pressure signal is a positive pulse. 

(The negative part in Fig. 2.2(b) is due to the negative reflection coefficient at the 

boundary.) Although an all-positive signal satisfies the wave equation, such a pressure 

pulse does not physically exist in a sample. This is because an all-positive pressure pulse 

forces a particle to move toward one direction without turning back to its equilibrium 

position, which is not true for an elastic wave. However, for an optoacoustic experiment, 

such an all-positive pressure signal is a good approximation as long as the thermal
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diffusion occurs more slowly than the sound speed, which means the particle will move 

quickly away from, but return slowly to, its equilibrium position.

By taking the Fourier transform of Eqs. (2.13) and (2.14), the signal in the frequency 

domain is obtained as follows.

The spectrum of the normalized indirect signal shown in Fig. 2.2 is:

P(a>,z = - L ) = -

For the direct measurement:

P(eo,z = £,)=•

2  ac0 +  jco

?~Jen' ac0(l + kr) +  jo )(l  - kr)

(2.15)

(2.16)
2  (ac0)-+co

in Fig. 2.3, where the signals are plotted in the frequency domain, one sees that the 

impulse response of a direct measurement of a free (kr = -1) or free-like {kr < 0 ) boundary 

is a bandpass filter; while for a rigid {kr -  I) or rigid-like {kr> 0 ) boundary, the impulse 

response is a Iowpass filter. If the detection is indirect, the impulse response is always a 

lowpass filter.

Direct. kr>0

Direct. kr<Q3m
Indirect

Frequency (a.u.)

Fig. 23 . Spectrum of pressure signals generated by laser impulse at different boundaries and measured 
either directly or indirectly.
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In general, the laser pulse width cannot be neglected. Then the optoacoustic signal is 

obtained by the convolution of the temporal profile of the laser pulse and the impulse 

response. This impulse response is given by either Eq.(2.13) or (2.14), depending on the 

detection scheme. Equivalently, the signal spectrum is the multiplication o f the spectrum 

of the laser pulse and the system transfer function, either Eq. (2.15) or (2.16).

There are two limits that are of special interest because they allow one to have a quick 

qualitative estimate of the OA signal profile. These are the absorption length limit and the 

laser pulse width limit. For the absorption length limit, either the absorption is weak or 

the laser pulse width is narrow, i.e., octl« \ .  For this case, the laser pulse can be treated 

as an impulse and the pressure signal follows Fig. 2.2. For the laser pulse width limit, 

octl» I. For indirect detection or direct detection under the rigid boundary condition, 

the pressure signal follows the laser pulse profile. For direct detection under the free 

boundary condition, the pressure profile is approximately the first time derivative o f the 

laser pulse profile, i.e., the displacement signal follows the laser pulse profile. Therefore, 

from the detected OA signal profile, one is able to roughly estimate the order of the 

absorption coefficient if the laser pulse width and the sound speed are known.

Eq. (2.5) states the relation of heat and pressure in the solid. For convenience, we 

identify two contributions to the heat term, namely the direct heat deposited by the laser 

pulse and the heat that has diffused from other locations. Consequently, the acoustic 

signal can be considered as the combination o f an optoacoustic portion (from the laser 

energy deposition) and a portion that we call thermo-acoustic wave (from thermal 

diffusion). Here we describe an analytical method to solve the thermal diffusion equation 

and obtain the temperature distribution in the sample. This is the first step in obtaining
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the thermo-acoustic signal. Then, the conditions that allow one to neglect the thermal 

diffusion effect will be analyzed.

To simplify the problem, assume that the initial temperature increment distribution is 

formed by the absorption of a laser impulse. At time t = 0, the distribution can be 

described by Eq. (2.9). At anytime thereafter, the distribution o f F ean  be obtained by the 

convolution o f its initial condition (Eq. (2.9)) and the impulse response of the diffusion 

equation without the source term. Here the impulse response refers to the temperature 

distribution at any time by assuming that the initial distribution is a delta impulse. The 

source-free one-dimensional thermal diffusion equation can be written as (modified from 

Eq* (2.7)):

= (2.17)
dz 2 D dt

Since the thermal conductivity of air is much smaller than that of the solid sample

used in our experiments, as an approximation we assume that no thermal energy diffuses

into the air surrounding the surface. The solution of Eq. (2.17) for a half-infinite medium

with a delta temperature impulse initiated at the boundary z  = 0  can be written as:

■*
T (z,r) = Crtn e x p (- -^ - ) , (z > 0), (2.18)

4Dt

where C is a constant and can be obtained by realizing that the integration of T  over z  at 

any time should be conservative (which is required by energy conservation). The 

subscript p  denotes the impulse response.

Therefore, the temperature distribution can be calculated as:

T \x ,t)  = C [  r in exp(-(z ~ ^ )2 )exp(-az,)dz’, (2.19)
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where C' is a new constant which is a product of C in Eq. (2.19) and constant aE0 / pCp

in Eq. (2.11). In practice, Cr can be obtained by the same method used for getting C.

If the laser pulse width cannot be neglected, at each instant a certain amount of laser 

energy is absorbed and causes an additional temperature increment with a distribution 

over the space. This additional temperature increment, plus the previous distribution, 

forms a new initial condition and then starts to diffuse, as described by Eq. (2.19). This 

process (i.e., heat absorption and simultaneous diffusion) repeats until all the energy of 

the laser pulse has been deposited into the sample. Thereafter, the process of thermal 

diffusion continues until all heat spreads out evenly in the whole sample.

Note that Eq. (2.19) is valid only when no energy diffuses out of the sample. In 

Chapter III, we develop a numerical method that solves the diffusion equation with 

arbitrary boundary conditions and with external heat sources. This is especially useful for 

the case of indirect OA generation where the energy diffused to air must be considered. 

The thermal diffusion equation with general boundary conditions can also be solved by a 

method combining the Rosencwaig-Gersho model introduced in 2.1.2.A and the Fourier 

transform technique. This really is an analytical method. We will show that both the 

numerical and the analytical methods yield identical results in Chapter m.

After obtaining the temperature spatial distribution at all time, one is able to calculate 

the thermo-acoustic signal. Note that thermal diffusion is a continuous process. At each 

instant, the newly generated acoustic signal that is proportional to the temperature 

changes is added to a shifted version of the previous acoustic signal because the acoustic 

signal keeps on moving at the sound velocity. If one is only interested in the signal 

profile, the thermo-acoustic signal can be calculated from the following equations [28]:
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pu( z - c t)  = fcd t'fd z 'dT^ /  *8(z '~ z+ c{t-t')) (z>ct),

( 22 .0)

Pta(^- cr) = f  dt'[dz1 (S(z'-z + c(t-t'))+ kr6 ( z ' + z ))] (z<ct).

Here, the effect of reflection at the boundary has been included.

In general, the treatment o f the coupling of optoacoustic and thermo-acoustic effects 

is computationally intensive. However, this is not necessary for many applications where 

the optoacoustic and thermo-acoustic signals are effectively decoupled. This usually 

happens, for instance, in experiments where non-metal samples are used.

Thermal diffusion can be neglected if  all the following conditions apply [51]:

d » D / c 0, (2.21)

(2.22)

and

c;tL » D .  (2.23)

Here d is the thickness of the optical absorption region, zL is the width of the laser 

pulse and c0 is the sound velocity. Condition (2.21) shows that the acoustic signal 

initiated at the surface has moved out o f the heating region when its corresponding heat 

source spreads out of the same length d. Condition (2.22) shows that the laser pulse 

width should not be so long that the resultant thermal energy has diffused out to a 

dimension greater than d  before the laser source term ends. On the other hand, Condition

(2.23) shows that the laser pulse should be long enough so that the acoustic signal travels 

the dimension c0rL before the heat spreads out to this length, during the duration of the 

laser pulse.
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The above conditions can be derived from the comparison of the propagation of an

>
!/•»acoustic wave and the diffusion o f the temperature with the format t  exp(—^ - ) .

In fact, condition (2.21) can be derived from conditions (2.22) and (2.23). From

(2.23) one gets

rL» D / c l  (2.24)

Substituting (2.24) into (2 .2 2 ), one gets (2.21).

Conditions (221) and (2.23) can also be derived from the concept o f thermal wave.

12D
We will show in section 2.1.2 A , the thermal wave has a diffusion length// = J  and a

V CO

speed of yJlcoD , where co is the frequency of the thermal wave. In order for thermal and 

optoacoustic waves to decouple, the diffusion length should be much smaller than the 

optical absorption length and the speed of the thermal wave should be much smaller than 

that of the acoustic wave, i.e.,

J —  « d ,  (225)
V co

and

pcaD  «  Cq . (2.26)

Substituting co — 2k / r t  into (2.25) leads to (2.22) and into (2.26) leads to (2.23).

Note, however, that (2222) and (2.23) together are sufficient conditions for (2.21) but

not necessary conditions. Our simulation in Chapter III shows that actually (2.21) is the 

most important condition. As long as (2.21) is met, the rest of the conditions can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

broken without causing a dramatic coupling o f optoacoustic and thermo-acoustic signals 

for pulsed experiments.

B. Three-dimensional model

The above one-dimensional model deals with the longitudinal pressure signal due to 

the longitudinal thermal expansion at the absorption region. It is a good approximation 

when such a pressure is much larger than the pressure caused by the longitudinal 

displacement induced by the transverse thermal expansion. When the absorption 

coefficient is extremely large and the surface is exposed to air, the latter is dominant. The 

transverse-expansion-induced longitudinal displacement can be described by a three- 

dimensional model. These three-dimensional equations had been solved by the Green 

function method using a double Laplace-Hankel transform technique [52-54]. Shujun 

Yang, another Ph.D. student in our research group, is currently investigating this three- 

dimensional model. Although the details of the theoretical treatment will not be given in 

this dissertation, here we interpret the typical displacement profile from a physical aspect 

without introducing any equations. This description is rarely seen in the literature.

When the light pulse irradiates an extremely highly absorptive surface, the absorption 

depth is very thin. For instance, this depth is about lOnm for metals [28]. (As a 

comparison, the absorption depths of the non-metallic materials that we used in our 

experiment are in the order o f micrometers, and the one-dimensional model works well). 

For such a highly absorptive material, the light energy is deposited on the surface. If  this 

surface is exposed to air, which is the case for most OA experiments, the air-solid 

interface is effectively a free boundary. Therefore, no longitudinal pressure can be
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initiated from the absorption region because of the free boundary. The transverse 

expansion exists and forms a transverse wave propagating to the detector. A transverse 

expansion results in a longitudinal compression, which is similar to the mechanism of a 

radial compression induced by mechanically pulling a rod in the axial direction.

Fig. 2.4 shows a typical longitudinal displacement profile of the OA signal generated 

by a spatially wide and uniform surface impulse heat source. It is a theoretical result 

produced by Shujun Yang. Note that this discussion assumes an ideal displacement 

detector located at the epicenter at the other side of the sample. The transverse expansion 

at the surface generates a longitudinal compression. This displacement is defined to be 

negative and starts to propagate toward the detector at the longitudinal sound speed ci. If 

the distance from the surface to the detector is L, then the longitudinal displacement wave 

will arrive at the detector after a delay o f Uct- In the meantime, a shear wave driven by 

the transverse expansion at the surface propagates toward the detector at the shear wave 

sound speed cs. During the propagation o f the shear wave, new longitudinal 

displacements are formed and ultimately accumulate at the detector until the shear wave 

reaches the detector after a delay of L/cs. The arrival of the shear wave causes a surface 

deformation of the contact displacement detector, which has an upward longitudinal 

component.

The above discussion neglects the thermal diffusion effect. Therefore, the 

displacement stays at certain level after the arrival of the shear wave. If the thermal 

diffusion is included, this displacement will ultimately change back to zero (i.e., its 

equilibrium position). The rate of this change is determined by the thermal diffusion 

constant.
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Fig. 2.4. A typical longitudinal displacement profile of the OA signal generated by a spatially wide and 
uniform surface impulse heat source.

2.1.2. Indirect Generation - Acoustic pulses generated in the fluid surrounding the 

solid surface

The indirect OA generation discussed here refers to the case where the fluid that 

surrounds the solid sample does not absorb the laser energy. While an OA signal is 

generated in the solid sample due to thermal expansion occurring within the sample, the 

heat generated in the sample will also diffuse across the solid-fluid boundary into the 

fluid. Therefore, another OA signal will be generated due to thermal expansion in the 

fluid. This is the so-called indirect OA generation.
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In this section, a brief description of the theory of indirect OA generation by a 

sinusoid light source is given, followed by a discussion o f our extension to pulsed OA 

generation.

The method used to calculate the indirect OA signal is to first calculate the 

temperature field in the fluid, and to then apply Eq. (2.5) to get the pressure signal. The 

temperature field excited by a sinusoid heat source in the solid was first solved by 

Rosencwaig and Gersho [55]. This is often referred to as the RG model.

A. The Rosencwaig-Gersho model for calculation of the temperature field

The one-dimensional RG model is shown schematically in Fig. 2.5. The incident light 

is assumed to be a uniform plane wave, as is the generated thermal wave. This model 

solves the heat diffusion equation for each layer in z direction. The solutions show that 

the temperature varies as a highly attenuated wave in each layer.

Backing Sample Fluid
.......

(b) (s) ( 0
Laser

J ________________ I__________ 1______________L_*. z
-I - Ib -I 0  lf

Fig. 2.5. Geometry of the RG model. The laser is incident at z -  0 Rom the right side and is only 
absorbed by the sample, but not the coupling gas or liquid.

The light flux comes from the right side and reaches the surface of the sample at z=0. 

The fluid that surrounds the sample could be a coupling gas, liquid, or simply the 

atmosphere, hi general, the sample can have a backing. It is assumed that neither the fluid
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nor the backing absorbs the light energy. The existence of the fluid and the backing in 

this one-dimensional model is to provide a temperature reference. The temperature T(z, t) 

used in the following formulation is actually the temperature rise at location z and time t 

referring to the far ends o f the fluid and the backing. Therefore, the lengths o f these two 

layers If sad k  should be infinity or at least long enough to ensure that the “thermal wave” 

initiated at z=0 has already died off to zero when it reaches these two ends. (See the 

boundary conditions o f Eq. (2.28)).

Let subscripts / denote the layer of fluid, s  the sample, and b the backing. The heat 

diffusion equations for the three layers are then:

dzTf  l dTf
~dP~~~D̂ ~dT (within the fluid), (2.27a)

J QY
——r  = ———̂ -  A exp(az)(l+ exp(/<ar)) (within the sample), (2.27b)
oz~ Ds at

d%  1 dTh
— r  = —— ■— (within the backing). (2.27c)
az~ Db at

The boundary conditions for the three layers are:

r/ (z = 0 ) = ri (z = 0 ) ,  k ,  ^ ( z  = 0 ) = ̂  ^ ( z  = 0 ), (2.28a)
dz dz

Ts{z = - /)  = F6 ( z =  - / ) ,  ks ^ ( z  = - 0  = kb ̂ ( z  = -/), (2.28b)
dz dz

Tf ( z=l f ) = Tb{z = - l - l b). (2.28c)

The above equations assume that the light flux is modulated sinusoidally at a 

frequency to and the absorption of the light obeys Beeris law. The steady-state solutions 

o f Eq. (2.27) are given by:
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Tf (z,t) = Bexp(-<rf z  4 -  jcot) (2.29a)

Ts (z ,t) -  [U exp(ersz) + V exp(r<rsz) -  E  exp(az)]exp(yrur) (2.29b)

Tb(z,t) = W exp[cr6(z + l)+ jox \ . (2.29c)

Here constants B, U, V, E, and W are complex and related to parameters a, kit Di, and 

geometry /, etc. The expressions for these constants can be found in references [55] or

where //, is the thermal diffusion length. It is a characteristic parameter and is defined as:

The solutions given by Eq. (2.29) show that the heat diffusion is a thermal wave with

attenuation constant l///„ which means the thermal wave is important only within a range 

less than one wavelength. Like other waves, the thermal wave can reflect, diffract and 

interfere. For example, because of the possibility of the reflection at each interface, there 

may exist waves propagating in both directions within the sample layer. The first term of 

solution (2.29) represents a wave in the +z direction, and the second term is a wave in the 

- z  direction. The third term represents the temperature rise from the absorption of light 

energy. However, because the thermal wave is highly attenuated, both the fluid and the 

backing are equivalent to semi-infinite layers. Therefore, only a unidirectional wave 

exists in both o f these two layers. This is shown in expressions Eqs. (2.29a) and (2.29c).

[56].

In solutions Eq. (2.29), is given by:

(2.30)

(2.31)

a wavelength 2nniy and a speed ^IcaD; . The amplitude quickly decreases with an
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B. Indirect pulsed OA signal In the fluid

The mechanism o f indirect optoacoustic generation in the fluid is the same as the 

electro-acoustic generation in the sample. Both are due to the thermal diffusion, while 

one occurs in the fluid and the other in the sample. To theoretically obtain the profile of 

this indirect OA signal in the fluid, one needs to know the temperature distribution in the 

fluid for all time.

The RG model introduced above solves the temperature distribution at each layer 

including the fluid with a sinusoidal heat source. Therefore, it cannot be directly used to 

calculate the indirect OA signal pumped by a pulsed laser. However, we can decompose 

the heat pulse into sinusoidal components by the Fourier transform, then apply RG's 

solution at each frequency and finally assemble thermal waves at all frequencies into a 

temperature pulse by the inverse Fourier transform. The process of this method is 

straightforward except for the treatment of the zero frequency. At zero frequency, a  is 

zero and constants B, £/, V, E. and W turn to infinity according to the RG theory. 

However, the coefficient of the zero frequency component can be set to any value 

without affecting the shape o f the profile because this coefficient is the DC average of the 

inversed signal. Practically this coefficient is determined by the initial condition, i.e., all 

temperatures at time zero are zero.

We have independently developed a numerical method to solve the diffusion equation 

with external heat sources and with general boundary conditions. This method will be 

presented in Chapter HI. There we will show that the results from our numerical method 

and from the RG model combined with the decomposition-recombination technique are 

in good agreement.
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After obtaining the temperature anywhere and at anytime, one can calculate the 

indirect pulse OA signal using the same method as that for calculating the thermo- 

acoustic signal in the sample, which is described by Eq. (2.20).

2.2. PROPAGATION OF OA SIGNAL IN SOLIDS

Since the acoustic detector is often located beyond the absorption region, the OA 

signal must travel over a finite distance to reach the detector. If one desires to use the 

echoes o f the original acoustic pulse, this pulse must travel within the sample over a 

distance of at least twice the thickness. While propagating, the acoustic wave always 

suffers losses and distortions caused by various mechanisms. While detailed 

investigations of these mechanisms are beyond the scope of this work, these factors still 

need to be considered when we analyze the signal detected at the remote site.

Some samples have multiple layers, and all piezoelectric transducers have multi-layer 

structures. Multi-reflection occurs at each interface between two different layers. These 

reflections may make the detected signal very complex. However, the acoustic wave 

propagation at multiple layers can be theoretically treated in a systematic maimer as 

shown below.

2.2.1. Attenuation and distortion

Acoustic attenuation in a medium includes transmission losses at impedance 

mismatched boundaries, absorption, scattering and diffraction. Distortion often 

accompanies attenuation, because most acoustic loss mechanisms are frequency 

dependent.
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For acoustic absorption, the classical theory reveals that the absorption coefficient is 

proportional to a t [48]. Therefore, high frequency components die off more quickly than 

the lower ones in a pulse. For most experiments, the absorption losses are smaller than 

other losses.

Scattering losses are dependent on the acoustic wavelength and the grain size of the 

material. A typical wavelength of our OA signals is about 0.3mm. Therefore the 

scattering can be neglected for many materials. The PVC sample that we used in our 

experiment has long molecular chains, whose lengths range from 50 to 500 microns [57]. 

Therefore, the scattering contributes to the total acoustic loss.

For many experiments, the main contribution of the loss and distortion comes from 

diffraction. The acoustic field can be divided into a near field and a far field. The border 

of these two fields is located at [48,58]

z ,=</2/ 4/1, (2.32)

where d  is the size of the laser beam. A. is the effective wavelength of the acoustic pulse, 

and it can be calculated from the sound speed and the center frequency. Before the 

acoustic signal travels a distance z/, i.e., within the near field, it can be treated as a plane 

wave. Within this region, the wave shows no attenuation and distortion. When it enters 

the far field region, it can be considered as a spherical wave confined within a cone with 

apex angle 2s  given by

e  = arcsin(d / 2  z/  ) . (2 .3 3 )

If the detector is located within the far field, it may only sense a portion of the signal if  

the signal diverges into a region larger than the detection area. The detected signal suffers 

distortion too, because both the border Zf and the divergent angle e  are frequency
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dependent The low frequency components attenuate faster than the higher ones, which 

can be seen from the definitions of z/ and s  shown in the above equations. For our 

experiments, the dimension o f the light beam is about l~2mm, and the effective 

wavelength is typically 0.3mm corresponding a near field limit of 3~10mm. The typical 

thickness o f the sample used in our experiment is 1.5mm. Therefore, at least the first 

acoustic echo is within the near field, and both the attenuation and the distortion can be 

neglected.

In this work, the transmission losses are separately treated, since they can be 

calculated from the impedances of the adjacent media. All other losses are incorporated 

in an effective attenuation coefficient /?. Since all our acoustic signals have limit 

bandwidths, as an approximation, is assumed to be a constant, independent of 

frequency within the signal bandwidth. In addition, the signal travels a distance at 

millimeter scale before it reaches the detector in most of our experiments. Therefore, the 

distortion is not obvious, hi Chapter HI, our theoretical calculation treats the acoustic 

pulse attenuation without distortion, although in some experiments, we did observe the 

distortion after the pulse had been reflected several times and traveled a long distance. 

However, the first echo with least distortion can be used if one needs to analyze the 

signal profile.

2.2 Jt. Propagation in multiple layers

When a wave propagating in a  medium reaches the boundary, reflection and 

transmission occur if the impedances o f the two adjacent mediums are mismatched. The 

reflected wave now travels in the opposite direction and. finally will reach the other end.
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Reflection and transmission occur again at the other end due to the same reason. The 

reflected wave is still within the medium and thus multiple reflections occur at each 

boundary until the magnitude of the wave dies out. The acoustic signal at any position is 

the summation of the original and all the reflected waves with proper time delay. It can 

be formulated as follows.

As illustrated in Fig. 2.6, in general, the impedances of the adjacent mediums are 

mismatched, i.e., Z,*Zo and Z,*Z2, and all are characteristic impedance of materials. The 

reflection coefficients for waves traveling within layer 1 at the two boundaries are 

denoted as To, and r 2t. Assume the initial wave is in +z direction in a form of Ae~‘k': . 

The wave at any position within layer I after sufficient long time (steady state) will be:

u U > = - - _ . (2.34)
1 01 21

Lx
A .

Z\ Ae~J •*
Zo • ------►

<------ • z 2

AYne 'lk̂ - z)

4
Vo, r 2r  

1------------------------------- -------------------- ►

Fig. 2.6. Multi-reflected waves m the middle layer.

Eq. (234) can be derived by several methods [59]. It can be interpreted as the 

summation of a geometry series. The numerator is the original forward wave Ae~Jk'x plus
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the first reflected wave .dr,te~y*'(2it_r) which includes the phase delay. The second term of 

the denominator is the roundtrip gain that also includes the roundtrip phase delay. Gq.

(2.34) holds for a sinusoidal signal with frequency a>.

One can extend the use of Eq. (2.34) to the case where the initial signal is a pulse 

described as u{z=0,t) by Fourier transform analysis. In that case, one can interpret A as 

the coefficient of the Fourier transform o f the signal, and k[ w h e r e  vt is wave 

velocity in layer I. Both A and k\ are frequency-dependent. The reflection coefficients 

Toi and Tji could also be frequency-dependent. At any position z, all frequency 

components can be reassembled into a pulse in the time domain using the inverse Fourier 

transform, hi this way, one obtains the time dependent signal at any point in layer 1.

When considering the propagation of an acoustic pulse in a multi-layered structure, it 

is convenient to formulate the problem in terms of complex impedances and complex 

reflection coefficients. This allows one to use Eq. (2.34) and Fourier transform methods 

as mentioned above.

Fig. 2.7 shows an initial wave propagating in the positive z direction from medium 0. 

A part of the energy will be transmitted into layer 1. At the interfaces between layers 1 

and 2, and between layers I and 0, multiple reflections occur. Part o f each such reflection 

will be transmitted back into layer 0. The total reflection observed at the interface 

between layer 0  and layer 1 will be:

“^ . 0 = ^ 0^ ,  (2.35)

where Ho is the reflection coefficient for the wave incident to layer I. Note that Ho 

contains information about the whole structure to the right o f the interface between media 

0  and I, including the thickness o f layer I.
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fa general, this reflection coefficient is a complex number, which can be obtained 

from:

r„  = 1 ^ 1 “- . (2.36)
•^0 ^ 0 1

where Zo is the characteristic impedance of layer 0. Z q  is a real number, and it is the 

product of density and wave velocity if loss is not considered, i.e., Zq=pov0. Zoi is the 

impedance (looking in the positive z direction) at the interface between layers 0  and 1.

T

Fig. 2.7. Wave reflection due to multi-layered structure.

Transmission line theory gives [60]:

_ Z,, -  Z, tanhfy^Z,)
01 Z .+ Z ^ t a n h t / * , ! , )  1  ̂ ;

where Z\x is the impedance at interface between layer 1 and layer 2 and Z\ is the

characteristic impedance of layer 1. From Eq. (2.37), one sees that Zot is complex and 

depends on frequency, fa general, Z\z is also complex and can be expressed by an

expression similar to that for Zot. Note that when layer 2 is semi-infinite, then Zt2 is

simply the characteristic impedance o f layer 2 , namely Z2.
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The advantage o f using the complex, frequency-dependent reflection coefficient (Eq.

(2.35)) is that such a reflection coefficient automatically includes the effects of all 

multiple reflections from succeeding layers. This is seen as follows: Z<u is a function of 

Ziz and tanh(/£tL[). tanh(/&tZt) has information of multi-reflection within layer 1, and Zi?, 

dependent on tanh(JkzLj), has information of multi-reflection within layer 2, and so on. 

By using the complex reflection coefficient each layer can be treated independently, 

which greatly simplifies the calculation. With the aid of the complex reflection 

coefficient, one only needs to treat the reflection at the incident interface once, as if  it is 

an interface between two semi-infinite media. This feature makes the processing of 

multiple reflections neat and simple.

23. DETECTION OF OA SIGNALS

The piezoelectric transducer nowadays has become the most commonly used detector 

for optoacoustic signal detection. In order to maximally utilize the sensitivity of this 

device, the piezoelectric transducer is usually in contact with the sample, so that the 

acoustic wave can transmit into the detector. It is necessary to investigate the influence 

of the piezoelectric transducer upon the acoustic signal because, like any other, it is not 

an ideal linear detector, and hence the voltage output is not proportional to the acoustic 

signal. The impulse response of a piezoelectric transducer is determined by piezoelectric, 

electromagnetic and elastic constants o f the piezoelectric material, as well as by the 

geometry of the transducer, hi this section, the piezoelectric equations are given first, 

followed by the introduction o f the Mason's model, which is an equivalent electric circuit 

for a piezoelectric material.
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Another commonly used category of ultrasound detection is non-contact optical 

probing. Although there are many optical probing techniques for OA detection, they all 

share the same features: non-contact and non-disturbing, which make the completely non- 

intrusive OA diagnostics possible, wide bandwidth and relative small sensitivity 

compared with that by the piezoelectric transducers. In this section we will overview 

several commonly used non-contact detection techniques, followed by the detail of the 

perpendicular beam refraction method that we used to probe the indirect OA in the 

surrounding air of the solid sample.

2.3.1. Contact detection by a piezoelectric transducer

A. Piezoelectricity

A material is said to have piezoelectricity if an electrical field appears in this material 

when an external force is applied to it and vice versa. There are four field variables that 

can be used to describe a piezoelectric material. Two of them are electrical, namely the 

electric field strength E  [V/m or N/C] and the electrical displacement D [C/m2]; the other 

two are elastic, namely the dimensionless mechanical strain S  and stress T  [N/m2]. These 

variables are related to each other by the electric constants, elastic constants and 

piezoelectric constants. The relations are described by the piezoelectric equations. For a 

simple case demonstrated in Fig. 2.8, where d  «  I and d  «  w, the one-dimensional 

piezoelectric equations are [61]:

7] = c33*£j , (2.38)

and
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(2.39)

Here c£ [N/m2] is the elastic stiffness constant, [m/F] is the dielectric

impermeability, and A33 [V/m] is the piezoelectric displacement constant.

The displacement wave equation for the piezoelectric material is the same as that for 

a normal acoustic medium which is given by

where M3 is the displacement in X3 direction and p  is the density.

B. Mason's model

Noticing the following facts, relations between the forces acting on the piezoelectric 

plate and the voltage across the plate were derived by Mason [21].

xtv Polarization

Fig. 2.8. A thin piezoelectric plate in thickness vibration mode.

The voltage across the plate is related to E field byF = ^Ezdxz .

The particle velocities at the two surfaces are j/ = and
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The forces at the two surfaces are F. = -lwT,\ „ and F, = -hvTJ
1 J  1 X 3 = 0  -  •5 l x j = l /

The relations derived by Mason are given by

* = , Z 0« a n fa i+ (7 | H ^ -----------------
j  sin 9 jo)(-C0 / N 2)

1
)(UX+U2) + NV, (2.41)

and

 S' ^ --------------------
j  sin 9 jeo(-C0 I N 2)

I )(UX+U2) + N V . (2.42)

/wHere Z0 =lw(pvD)is the acoustic impedance, C0 = ------  is the capacity of the plate,

defined as 9 = — , where ud is the acoustic wave velocity and (o is the acoustic

The coupling between the voltage and the force described by Eqs. (2.41) and (2.42) 

can be graphically represented by an electronic circuit, which is shown in Fig. 2.9. Note 

that the term yZ0 tan 4 describes an inductive behavior, while the term Z0 / ysin# is

equivalent to a capacitor. Therefore, the circuit in Fig. 2.9 can be slightly modified to 

convert to a transmission line model [62], which allows one to conveniently simulate this 

equivalent circuit using the PSPICE software [63]. The PSPICE circuit will be described 

in Chapter 01 where we model the optoacoustic wave propagation and detection.

If one only needs to investigate the relation of the displacement and the voltage, a 

simple expression can be derived for the open circuit case:

and N  s  — ̂  q = C0h33 is a coupling coefficient for force and voltage. The phase is

cod

frequency.
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(2.43)

The above equation shows that the open circuit voltage is proportional to the 

displacement difference between the two surfaces of the plate. The piezoelectric 

displacement constant A33 is normally a large number on the order o f 109 V/m; thus, the 

piezoelectric transducer has very high sensitivity in detection of small displacement. Eq. 

(2.43) was used in another method that we developed to theoretically calculate the 

optoacoustic experiment by combining the analytical solution to the wave equation and 

the Fourier transform technique. This work will also be discussed in Chapter Iff.

/Z* tan-f /Z„ tan 4

Fig. 2.9. Mason's equivalent circuit for a piezoelectric plate.

2.3.2. Non-contact detection by an optical probe beam

A. Overview of techniques for non-contact detection

For non-contact ultrasound detection, a laser probe beam is usually used to monitor a 

certain change caused by the acoustic signal in the solid sample. Such changes include
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surface deformation, surface displacement and variation of index o f refraction in the solid 

or in the coupling fluid.

The acoustic wave propagating in the sample will cause surface motion when it 

arrives at the surface. The displacement is usually detected by the interferometry method. 

The interferometer is a very sensitive instrument for detecting a small difference in the 

optical path lengths between a probe and a reference beam which propagate in two arms 

of the interferometer. When the acoustic wave arrives at the surface where the probe 

beam is incident, the surface is distorted slightly by the pressure of an acoustic signal. 

The displacement will cause a change in optical path length of the probe beam and, 

therefore, an interference pattern will be generated when combining with the probe and 

the reference beam. The advantage of an interferometer is that it does not require a super 

smooth and highly reflected surface, although such a surface helps to improve the signai- 

to-noise ratio. However, it is sensitive to vibrations and thus requires a highly stable 

environment. The detection sensitivity can reach 10‘7nm(WSr/Hz)l/:! [64].

Instead of probing the displacement, the beam deflection method can be used to 

detect the slope of the surface deformation. The deflection angle is approximately twice 

that of the slope. Therefore, the incident probe-beam should be aligned to the maximum 

slope. A long distance from the reflection site to the detection plane (where the photo 

detector is located) may help to increase the displacement of the laser spot in the 

detection plane, hence, helping to increase the signal-to-noise ratio. However, there is a 

tradeoff between this displacement and probe beam diffraction. The advantage of this 

method is that it is insensitive to vibrations and easier to implement. It usually requires a
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polished surface and is thus suitable for use with semiconductor samples. The sensitivity 

can be I O' 7 nm(W/Hz) 1/2 [64], which is similar to that of the interferometer.

The index of refraction of a medium is modulated by the acoustic propagating in it 

through modulation of the density. If  a probe beam passes through this modulated region, 

the beam will change its direction. The same detection scheme for the beam deflection 

can be used for the detection of this refracted probe beam. This method is called beam 

refraction in order to tell from the beam deflection caused by surface slope.

To perform beam refraction, the probe beam must be able to pass through the sample 

without too much attenuation, because the photo detector is placed outside the sample. 

The probe beam can be either parallel or perpendicular to the pump beam [65]. The 

detection of beam refraction can utilize either a position sensor or a knife-edge and a 

photodiode. A position sensor directly measures the displacement o f the laser spot on the 

detection plane. For example, the resolution of a two-dimensional position sensor 

(Hamamatsu S2044) can reach 2.5 pm. However, the rise time is as much as 0.3ps, which 

is too slow for our nanosecond ultrasonic signals. If the reflected probe beam can be 

partly blocked by a knife-edge, then the light power falling onto the detected surface will 

change when the beam is deflected, hi this case, a single photodiode can be used to detect 

the intensity change. In our experiment, a photodiode made by Thorlabs (DET200) is 

used. Its Ins rise time is short enough for our optoacoustic signals.

Recently, the perpendicular beam refraction has been used to probe the OA signal 

transmitted to air from the solid sample by Caron and coworkers [30, 31]. They named 

this method "gas-coupled laser acoustic detection" (GCLAD). In this method, the probe 

beam does not need to penetrate into the solid sample. Neither does it need to be reflected
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by the surface. Therefore, most lasers can be used as a probe and there is no polish 

requirement for the sample surface. However, since air is not a good coupling fluid for 

most solids, the portion of acoustic energy transmitted into air is very small. In order to 

get a satisfied signal-to-noise ratio, it is required that the OA signal in the solid sample is 

strong enough [31]. We have successfully used the off-sample perpendicular beam 

refraction technique to probe the indirect OA signal due to the thermal expansion in air. 

Since the efficiency of indirect OA generation is relatively higher than the transmission 

from the solid, the intensity requirement for the pump laser reduces. More details of this 

method are discussed in the next section.

For all non-contact detection techniques, a continuous probe laser is usually required. 

A pulsed laser theoretically can also be used and has its own advantages. However, it is 

only applicable when the OA pulse is very narrow such as in picosecond scale. Longer 

delay of the probe pulse is required if the acoustic pulse is wider, or if  more than one 

echo is needed. This will require a complicated system for optical pulse delaying, if it is 

not impossible.

B. Off-sample perpendicular probe beam refraction

Fig. 2.10 is the schematic for the off-sample perpendicular probe beam refraction. 

The probe beam is parallel to the sample surface and perpendicular to the pump beam. It 

is off the surface with a distance x. The pressure signal in the surrounding air causes 

variation o f the index of refraction, which results in a beam deflection with an angle 8. If 

a knife-edge is used to block part o f the probe beam, then a photodiode can be used to
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detect the variation of light intensity. Otherwise, a position sensor is needed to directly 

detect the displacement at the detection plane.

If the pressure Ap in the surrounding air is known, the corresponding change of the 

index of refraction is given by [31]

An = (nQ-  l)Ap(x) /(pc*), (2.44)

where no is the ambient index of refraction, p  and ca are the density and sound velocity of 

air respectively.

Pump
Acoustic 
Wave

Probe
t

Sample Knife-

Detection
Plane

Refracted
Unrefracted

Fig. 2.10. Schematic of off-sample perpendicular probe beam refraction for the detection of indirect 
OA signal due to the thermal expansion in the surrounding air. If a knife-edge is used to block part of the 
probe beam, a photodiode can be used to detect the deflection. Otherwise, a position sensor should be used.

The deflection angle is given by [31,65]

— I f i d n8 = —  f  —  dz, 
n0ca A* dt (2.45)

where 2b is the width of the acoustic field through which the probe beam passes.

From Eqs. (2.44) and (2.45), one can see that the profile of the detected signal by the 

beam refraction method is the time derivative of the pressure signal if  the time derivative 

of the index o f refraction is assumed to be unchanged along z  direction.
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For a knife-edge beam deflection experiment, maximizing the signal-to-noise ratio is 

a very important issue since the observed signal is a very weak AC voltage superimposed 

upon a large DC bias. Any noise will decrease the detection sensitivity. The noise has the 

following components: environmental noise, laser-intensity fluctuation, laser-pointing 

instability, electric circuit thermal noise and detector shot noise. The highest frequency of 

the first three types o f  noise is usually lower than 50kHz [6 6 ]. Since our signals are short 

pulses in nanosecond scale, these three types of low frequency noise do not need to be 

taken into consideration. Only the thermal noise and the shot noise are important, since 

they are wide band.

The thermal noise power is [64]

where A/is the bandwidth of the signal, T  is the temperature and R is the load impedance. 

The shot-noise power is

where rj is the quantum efficiency, hco is the photon e n e rg y  of the probe laser, e is the 

electron charge and P j is the probe power falling onto the photodiode.

The signal photocurrent (id) is proportional to the change o f power of the probe laser 

(APd) that the photodiode receives due to beam deflection:

(2.46)

(2.47)

id = APdrje/(hco) . (2.48)

APd is proportional to the power o f the probe laser.

Therefore the signal to noise ratio can be expressed as:
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f
APdrjel(tieo)

(2.49)

Eq. (2.47) shows that the shot noise power is proportional to the light power that the 

photodiode receives, and hence, to the power of probe laser. Decreasing the laser power 

will help to reduce the shot noise power. However, the signal photocurrent is directly 

proportional to the laser power as seen from Eq. (2.48). Hence, the overall effect is that 

increasing the laser power increases the signal to noise ratio. Therefore, in a beam 

refraction experiment, one should seek to use a high power probe laser.
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CHAPTER ffl

THEORETICAL CALCULATION OF PULSED 

OPTOACOUSTIC SIGNALS

This chapter presents the theoretical treatment of a one-dimensional pulsed OA 

signal. From the basic generation theory introduced in the previous chapter, we know that 

the acoustic signal is initiated in the absorption region. This signal can be modeled by 

the convolution of the profile o f the laser pulse and the impulse response, which is 

determined by the optical absorption coefficient at the laser wavelength and the boundary 

condition at the end where the laser is incident. However, the profile of the electrical 

signal one finally obtains, either by a piezoelectric transducer or a probe beam, is 

different from that of the initial acoustic signal due to the following reasons. First, each 

detection scheme imposes its own transfer function on the signal and, often, the transfer 

function is non-linear. Second, the acoustic signal is usually picked up at a site distant 

from the laser interaction region. Therefore, the signal generally experiences some 

distortion before reaching the detector. Finally, additional echoes of the original acoustic 

pulse may appear due to the multiple reflections at the boundaries.

This chapter presents two methods for calculating the propagating acoustic pulse 

profile in multi-layered media, including the evaluation o f the system response of a 

wideband piezoelectric detector. This is followed by the evaluation o f the response of a 

detection scheme involving the deflection of an optical probe beam, hi the latter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

technique, which is completely non-intrusive, the beam probes the indirect OA signal 

generated by the irradiated solid sample.

3.1. CONTACT DETECTION OF PULSED OA SIGNAL FROM A SOLID 

SAMPLE

In an experiment described in detail in the next chapter, the laser pulses were incident 

on the front end o f a solid sample which has a piezoelectric transducer in good acoustic 

contact with the back of the sample. The sample can be a single solid or have multiple 

layers. In this section, we calculate the signal given by the transducer, assuming that the 

initial acoustic pulse is known. Note that the acoustic pulse details can be calculated as 

discussed in Chapter II.

An acoustic medium can be modeled in a manner analogous to an electrical 

transmission line. A piezoelectric transducer can also be similarly represented by a 

transmission line which is modified by the addition of an electrical-to-mechanical energy 

transformer. A big advantage of this approach is that it allows one to use electrical circuit 

theoretical formulation, and enables one to take advantage o f any software, such as 

PSPICE, which is commercially available and dedicated solely to circuit analysis. We 

refer to this technique as the Equivalent Electrical Circuit (EEC) Method.

Another approach to the same analysis utilizes the principles o f the Fourier transform 

theory. Here, a sinusoidal solution to the wave equation for an acoustic medium is first 

obtained. The initial acoustic pulse is then decomposed into its harmonic components 

and reassembled at the detection site by a fast Fourier transform algorithm. We call this 

method FFT method.
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At the end of this section, we compare these two methods with a third one, which 

solves the relevant partial differential equations (PDE) numerically [67]. It is shown that 

all three methods yield identical results.

3.1.1. The equivalent electrical circuit model

In Chapter II, we summarized Mason’s model, which is an electric circuit 

representation for an ultrasonic transducer. The analytical solution for Mason's model can 

be obtained, for instance, by using the Laplace transform method. However, since only a 

few standard functions such as step function, rectangle function and ramp function, have 

analytical Laplace transforms, only limited inputs with such standard functions have such 

analytical solutions [62]. While the analytical method helps us to understand the model 

and the behavior of a transducer, such a method is not practical for a real experiment. In 

that case, a numerical method, such as those utilizing the Z transform, can be employed. 

The Z transform is the discrete form of the Laplace transform, and it has been 

incorporated to the numerical solutions for Mason’s model and has yielded results 

consistent with experimental ones [6 8 ]. Several other methods for modeling and 

predicting the system response can be found in the references given in Hayward's paper 

[6 8 ].

Mason's model can be further modified, by replacing the capacitive and inductive 

components in the model with a transmission line [62,63,69]. This has the advantage of 

allowing a PSPICE simulation to be done conveniently. In addition, the sample itself can 

be considered as a transmission line with the following mapping relations: p= fi= L; cj/ 1 

= s=  C; F  = V; u = I  (see Appendix A). The whole system therefore can be modeled by
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cascading several transmission lines. PSPICE is then set up to analyze this combination 

of transmission lines. The program can also be used to account for the reflection and 

refraction of the acoustic signal at the various interfaces that it encounters.

There are several unique features in this transmission-line model for simulating the 

piezoelectric transducer by PSPICE. First, there is a negative capacitance in Mason's 

model. Although the negative capacitor is not in PSPICE’s library as a standard 

component, it can be modeled as the circuit illustrated in Fig. 3.1 [63]. Here Co is the 

absolute value o f the negative capacitor. The selection of the value of the reference 

capacitor Cs is random, but it determines the gain (/7) o f the current-controlled current 

source. The relation of the current and the voltage is given by:

rc = { i + f i ) j a c y e . (3.1)

From the above equation, one can see that the value of J3should be set to -(1  + Q / C J  

in order to model the capacitance -Co.

- ( 0)

Fig. 3.1. Representation of negative capacitance in PSPICE. Qj is the absolute value of the negative 
capacitance, fi is the gain of the current-controlled current source and /? = -( !+ C0 /  C,) -
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Second, in Mason's model there is an ideal electrical-to-mechanical energy 

transformer To guarantee energy conservation between the primary and the secondary 

coils, this ideal transform can be modeled by a voltage-controlled voltage source and a 

current-controlled current source [63] (see El and F2 in Fig. 3.2).

A. Modeling the piezoelectric transducer as a transmitter

A piezoelectric transducer normally has at least two layers: an active element and a 

backing medium. Piezoelectric ceramic (PZT), quartz or PDFV film can be used as the 

active material that converts between the electrical and mechanical signals. The sample is 

usually placed in front o f the active element with good contact A thin wear plate and/or 

acoustic conducting materials sometimes can also be placed between the active element 

and the sample. Fig. 3.2 is the complete PSPICE schematic for a transmission-line model 

of a simple experiment that utilizes a piezoelectric transducer as the acoustic transmitter. 

The piezoelectric material (PZT) has a backing layer and the sample is placed in contact 

with the other surface of the PZT. A voltage signal is applied to the PZT as a driving 

source. The PSPICE schematic is used to model the pressure signal launched into the 

sample. The upper part o f the schematic is the mechanical portion. The transmission line 

Ti represents the piezoelectric material. Rt> is equivalent to the acoustic impedance of the 

backing material, and Rf is the impedance o f the sample. The voltage across resistor Rt, 

represents the force (or pressure) launched into the sample. The voltage-controlled 

voltage source Et and current-controlled current source Fz form the ideal electrical-to- 

mechanical transformer. The lower-right part is the electrical portion of the transducer. 

The current controlled-current source Ft and capacitor Cs form the negative capacitance.
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The capacitor Co is the intrinsic capacitance o f the transducer. Voltage source Vi is the 

electrical driving source.

R3
tOOOk 471TOGOfc

Fig. 3.2. PSPICE schematic of the transmission-line model for a piezoelectric transducer as a 
transminer. The upper part is the mechanical portion, the lower-left part is the electricai-to-mechanical 
energy transformer and the lower-right part is the electrical portion. Voltage source V, is the electrical 
driving source, and the voltage across resistor Rf represents the transmitted force.

Hayward successfully modeled the stress signal generated by a piezoelectric 

transducer driven by a negative voltage spike using z-transform method [6 8 ]. The 

theoretical result was in good agreement with the experimental one. Then Morris was 

able to reproduce Hayward’s result using the circuit theory and a SPICE simulation [63]. 

Our PSPICE model Fig. 3.2 is modified from Morris’s SPICE model, hi order to verify 

the accuracy of this PSPICE model, we took the same values for all components that 

were used by Morris, and successfully reproduced Morris’s result The voltage across Rf, 

which equivalently is the stress launched into the sample by the piezoelectric transducer, 

is shown in Fig. 33 .
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Fig. 3.3. PSPICE output from the schematic shown in Fig. 3.2.

B. Modeling the piezoelectric transducer as a receiver

In our OA experiments, we used the piezoelectric transducer to detect the acoustic 

signal and obtain a voltage signal. We modified the schematic shown in Fig. 3.2 and 

made it suitable for modeling the transducer as a receiver. The new schematic is shown in 

Fig. 3.4. Vi is a voltage source simulating the stress wave in the sample. Rf is the acoustic 

impedance of the sample. Note that the sample impedance is in series with the voltage 

source, instead of parallel to it. The large value of Ro represents open circuit.

Using the schematic o f Fig. 3.4, we simulated the step response of the transducer as a 

receiver. Fig. 3.5 is the computed output for the voltage across the transducer under 

conditions that (1) the acoustic impedance o f the transducer is twice o f that of the sample; 

(2) the backing is air (Rb*0); (3) the delay time at the transducer is 100ns. This result 

agrees with the analytical solution [62].
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Fig. 3.4. Schematic for modeling a piezoelectric transducer as an acoustic receiver. It is modified horn 
Fig. 3.2.

C. Modeling the properties of the Panametrics transducer used in our experiments

After we have tested the PSPICE model for the transducer, either as a transmitter or 

as a receiver, we are almost ready to model a real experiment except for one problem. 

The piezoelectric transducer that we used in our experiment is a commercial product 

from Panamatrics Inc. We know the structure of a typical Panamatrics ultrasonic 

transducer (Fig. 3.6) from the company's technical notes [70]. However, we do not have 

any parameters of the transducer that are needed in the simulation except that the 

spectrum of the response was given. According to the testing sheet from the 

manufacturer, this response spectrum is obtained by launching an acoustic signal into a 

one-inch long silica by the transducer driven by a negative voltage impulse (spike), and 

then detecting the acoustic echo using the same transducer as a receiver.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

»»T

SU
SS ISSns 288ns 388ns 888ns 388ns

o -U(8)
Tins

Fig. 3.5. PSPICE output of the voltage across the transducer in response to a step stress driving signal. 
It is assumed that the impedance of the transmission line is twice the impedance of the sample and the 
backing is air.

Our goal here is to obtain all parameters required by the PSPICE model as accurately 

as possible to the real product. This is achieved by simulating the testing experiment 

described above with selected parameters. Initially we used the typical parameters for 

PZT materials. Then we compared the simulation result with the spectrum given by the 

manufacturer and fine-tuned the parameters until these two results reasonably agreed one 

another.

'onnector

Electrical

Inner sleeve

Backing 

Active element

Wear plateElectrodes

Fig. 3.6. Structure o f a typical Panametrics ultrasonic transducer.
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Fig. 3.7 is the schematic used to model the testing experiment described above. 

Although in this experiment the same transducer was used to launch and detect the 

acoustic signal, we used two separate transmission lines (with same specifications) to 

model them respectively. The transmission line, T l, and its auxiliary circuit is used to 

model the transmitter, and T2 and its auxiliary circuit work as the receiver. The silica 

sample is represented by the transmission line, T3. It is connected to the transmitter by an 

ideal transformer (E3, F5) and to the receiver by another ideal transformer (E4, F6). The 

effect of the wear plate is neglected since it is very thin. A negative spike voltage (V3) is 

applied to the transmitter. The voltage across the load resistor, Ru is the output from the 

receiver. In order to match the transducer’s responsivity to the one given by the 

manufacturer, two parameters in schematic Fig. 3.7 can be adjusted, namely the delay 

time of Tl (T2) and the acoustic impedance of the backing material, Rb (Rb2). This delay 

time, which corresponds to the center of the responsivity spectrum, is determined by the 

thickness of the piezoelectric element. Impedance Rb detennines the width of the 

spectrum. The backing material absorbs all acoustic signal transmitted into it. Therefore, 

we can simply use a resistor to simulate it.

Fig. 3.8 is the calculated responsivity of the Panametrics transducer using the circuit 

shown in Fig. 3.7 and the comparison with the data provided by the manufacturer. Most 

parameters used to obtain the blue trace have been labeled in Fig. 3.7 except for 

impedance Z(T1, T2) = 782.7a delay Td(Tl,T2) = 26.5ns, impedance Z(T3) = 257.65a  

delay Td(T3) = 4.252ps, gain P(E1,F2,E2,F4) = 2.4. All these values are based on the 

published data from [61,71] and the sensitive area o f the transducer which is 1.8x I0*5m2,
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except Rb and Td (Tl, T2), which are adjusted to best simulate the behavior of the

transducer.

Rb > 
•100 < .

BT
10001' F3

F T f

Fig. 3.7. Schematic used to model the testing experiment for the Panametrics transducer. A negative 
spike voltage (V3) is applied to the transducer (Tl as a transmitter). The generated ultrasound propagates 
through the silica sample (T3) and then is detected by the same transducer (T2 as a receiver).

—  PSPICE Simulation
—  Manufactory Testing

0.7-

£  0 .6 ’ 
>M

0.S-
coa.
CO
IDtr

35 40
Frequency (MHz)

Fig. 3.8. Responsivity o f the panametrics transducer by the simulation (solid) and the comparison with 
the data provided by the manufacturer (dashed). The simulation result is the normalized frequency 
spectrum of the voltage signal across resistor RL m Fig. 3.7.
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D. Modeling the optoaconstlc experiment

After getting the property parameters o f the Panametrics transducer, we are now 

ready to model the optoacoustic experiment using the EEC method. Fig. 3.9 is the 

schematic o f such a circuit. Voltage source VI provides the acoustic pressure signal in 

the sample (T3). The EEC method cannot model the generation of an OA signal. 

Therefore, the pressure data needs to be provided through a disk file generated by other 

methods. T2 and its auxiliary circuit model the transducer. The output of the transducer is 

taken from voltage across the loading resistor, R[_. One result from this circuit is 

presented in 3.1.3, where results from different methods are compared.

fll£=c:\wei\dota\guass.stl

R2
TOOOfc -p  C02 

T.lSnF
Cs2
H.5pF

Fig. 3.9. The PSPICE schematic used to simulate an optoacoustic experiment.

3.1.2. The fast Fourier transform model

The FFT model is the method we independently developed to calculate the OA signal 

read from a piezoelectric transducer. This is a technique that combines the sinusoidal
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solution to the wave equation for acoustic media and the Fourier transform. First, we 

apply the propagation theory of an acoustic wave m multiple layers that has been 

discussed in Chapter EL Then we calculate the voltage signal from the acoustic detector 

using Mason's theory for the piezoelectric transducer. We use FFT and inverse FFT 

techniques to decompose the initial acoustic pulse into harmonic components and 

synthesize the corresponding voltage harmonics into a pulse. Theoretically, this method 

is an analytical approach to the problem, but it can accept any initial condition by using 

the Fourier transform technique. Therefore, it is very applicable to problems.

Consider an optoacoustic experiment such as that illustrated in Fig. 3.10. A pulsed 

laser beam shines normally on the front face of a sample with thickness L\. A pressure 

contact is made between a piezoelectric transducer and the back end of the sample. The 

structure of the transducer has been described previously. There is a thin wear plate in 

front of the PZT layer and a backing layer to absorb leaked acoustic waves from the PZT 

layer. Since the backing is highly absorptive for acoustic waves and there will be no 

reflected waves existing in this layer, the backing can be treated as a semi-infinite 

acoustic medium. Further, since the wear plate is thin, its influence on the experiment can 

be neglected and thus it is not shown in Fig. 3.10.

For the convenience of calculating the response of the piezoelectric transducer, we 

use displacement to represent the optoacoustic signal. The initial displacement signal can 

be converted from the pressure signal calculated from the generation theory presented in 

Chapter H. Then the displacement at any layer in Fig. 3.10 can be calculated using Eq. 

(2.34) in Section 2.2.2 o f Chapter II, where the theory of the acoustic wave propagation is 

discussed.
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Fig. 3.10. Multi-layered structure for modeling an optoacoustic experiment

A. Displacement signal at each layer

Let Uo(eo) be the Fourier transform of «o(f), the signal originating at the surface 

which is exposed to the laser pulse (z=0). One needs to calculate U(co, z) in terms of 

Uo(a>). The signal registered on the piezoelectric detector can be obtained from U(ax, z) 

by recognizing that the open circuit voltage across the piezoelectric transducer is the 

difference o f displacements at two faces of the transducer. Hence, one needs to solve for 

the displacement at z=L\ and z=Li+Lz, where L% is the thickness o f the detector.

In order to calculate the displacement at any point in space, for all time, with the help 

of Eq. (2.34), one needs the relevant complex impedances and reflection coefficients 

which are evaluated as follows.

The impedance at z=L\+Lz is simply the characteristic impedance of the backing 

material since it can be treated as a semi-infinite layer. Therefore one gets Z23=Z3r where 

Z3 is the characteristic impedance o f the backing material.
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The displacement reflection coefficient for waves incident to the boundary from the 

transducer is

T* - Zt k '  (32)

where Z2 is the characteristic impedance of the material from which the pulse is incident.

The impedance atz = £i can be calculated by Eq. (2.37) and is

^  - Z ,  tanh(yfc,L,) ^
12 Z ,+ Z a tanh(y*,L,) 2' (3.3)

The displacement reflection coefficient for waves incident to the boundary from the 

sample is

= <3'4)

where Zt is the characteristic impedance of the sample. (Note that, in general, T,j is not 

equal to -Tji.).

At z — 0, the displacement reflection coefficient can be set to unity for all frequency 

Z - Zcomponents since T0, = —-----  and Zocan be approximated to zero since Z = p  v and p,
Z, +Z0

the density of air, can be neglected in comparison to the density of the solid sample. 

Hence, Toi = 1.

Now one is able to solve the displacement at z  = Ly and z  = L\ + Lz. In the sample 

layer, Uq(o)) is the original wave starting at z  = 0. Substituting z  — L\ into Eq. (2.34) 

results in:

U(.o>,z-W)----- , _ r r . - w  • P-5)
1 L oi1- 21
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where k\ = col vt. Eq. (3.5) calculates the displacement at z = L^, i.e., the left side of the 

interface between layers 1 and 2 .

We also apply Eq. (2.34) to the transducer layer to obtain the displacements at z  = ZJ- 

and z  = Li + Li, i.e.,

Because of displacement continuity at the interface, U(co7z = ) = U(co,z -  ), the

displacement at z = L\ + Lz can be obtained by substituting Eq. (3.5) into Eq. (3.8). In the 

same manner, the displacement can be derived at each boundary no matter how many 

layers the structure has.

B. Voltage signal produced by the piezoelectric transducer

To get open circuit voltage, an inverse Fourier transform should be applied to the 

displacement at z  -  I t and z  = L\ + Lz. The voltage is proportional to the difference in 

these displacements:

U(a),z = Cx) = (3.6)

and

U(co,z = Ll +L,) = (1 + f n )U02(co)e-jk̂
i - r nrne-J2kiU- (3.7)

Dividing Eq. (3.7) by Eq. (3.6)(11) and rearranging slightly, one gets

(3.8)

Vopm =hK -{u(t,z = Lx) - u ( t ,z  = Lx +L,)) (3.9)

where I133 is the piezoelectric constant o f the transducer material.
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Since in the experiment the transducer is connected to a preamplifier, one needs to 

account for the loading presented by the latter. The load resistance parallel with the 

internal resistance of the transducer forms an effective high pass filter when the internal 

capacitance is also accounted for.

The transducer capacitance is

„  enernr~
(3.10)

where £  is the relative permittivity of PZT and r? is the radius of the transducer. Let R be 

the shunt resistance o f the inner resistance of the transducer and the input impedance of 

the preamplifier. The transfer function o f this RC high pass filter is:

. (3 11)
*  l + ja>RC0 ^ ’

Hence, the measured signal voltage can be calculated from the following inverse 

Fourier transform:

V = fi3 3 'F~'{[U(a),x = Ll) -U (a j , x  = Ll +L,)]-Hhp(a>)\. (3.12)

C. Incorporation of acoustic losses in the model

Note that the discussion above holds for materials that are lossless, as well as those 

which have acoustic losses, hi the latter case, one uses the complex acoustic 

characteristic impedance, which leads to a complex propagation constant 

In general, then, &isa complex variable:

k ^ k t + J k ' .  (3.13)

The real part is defined as usual:
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kR =0)1 v. (3.14)

The imaginary part, k\, accounts for attenuation and is often called attenuation 

coefficient /? which has unit of Nepers/meter. In our calculation, we use the unit of 

inverse meter. As discussed in Chapter II, there are several mechanisms that lead to 

acoustic attenuation. Here is an effective attenuation coefficient that accounts for all 

losses, fi is generally frequency dependent. Here we assume it is a constant in the 

frequency region of our OA signal as an approximation.

For a lossy acoustic medium the complex characteristic impedance is [72]:

(3-I5)

3.1.3. Comparison of all three methods

In this section, results of computations for the acoustic signals, based on the two 

models discussed above, are given. They are compared to the third method, which 

implements the numerical solution to the relevant partial differential equations and is 

therefore called the PDE method. All three methods give the same result for a specific 

problem. Later in this section, we discuss the advantages and disadvantages for each 

method.

Fig. 3.11 shows the computational results obtained by these three different methods. 

These computations were performed for a lossless sample with density of 2500 kg/m3, 

sound velocity of 2273 m/s and thickness of 1.5mm (these are typical parameters for a 

PVC sample). The initial displacement pulse is assumed to have the same profile as the 

laser pulse, which is a Guassian pulse with FWHM o f 100ns. This is a good
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approximation if  the OA experiment is laser pulse width-limited ( cQrL » 1  f a )  and with 

the free boundary, as discussed in Chapter IL The signal plotted is the open circuit 

voltage. The first four echoes within 5jis are plotted. The result by the PDE method is 

taken from [67].

PDE
EEC
FFT
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- 0.8

0 2 3 41 5
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Fig. 3.11. Modeling of an optoacoustic pulse propagating in a typical sample and detected by an open 
circuit piezoelectric transducer. Results obtained by the PDF, EEC and FFT methods are superimposed.

It is seen from Fig. 3.11 that the results obtained by all three methods are in excellent 

agreement. While all three methods are clearly valid for our application, each has its 

advantages and disadvantages.

PSPICE is a commercial software package and has been fully tested. However it is 

transparent to the user, i.e., the user does not know how it approaches a problem. This 

restricts its applicability to some standard configurations, and offers the user a  very
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limited tool, especially when modeling a research experiment. One other major problem 

with this method is that while there is a standard model for a lossy electromagnetic 

transmission line in PSPICE, this model incorporates a shunt combination of conductance 

and capacitance. In a lossy acoustic line one needs to use a series combination of these 

elements [73]. Hence, utilizing the electromagnetic analog for an acoustic line requires a 

somewhat tedious conversion that has to be performed for every frequency component 

present in the input acoustic pulse.

The advantage of the PDE method is that it calculates the displacement at every 

position and every instant in time. However, this advantage comes with an increased 

CPU time requirement. An additional disadvantage with the PDE method arises with the 

difficulties in specifying the correct boundary conditions in situations where the 

reflection coefficient at the final surface has a magnitude not equal to one. For example, 

to model a transducer, one has to assume that the backing layer (for the transducer) is 

very long (several times the sample length). The lower bound on the assumed length of 

the backing layer depends on the number o f pulse echoes one wants to simulate, since, 

during this time interval, one cannot have the computational artifact o f non-physical 

echoes generated from the back of the transducer. This dramatically increases the number 

of calculation steps required. However, one great advantage of the PDE method is that it 

is able to incorporate viscosity fosses o f  the material fairly conveniently.

The FFT method is a numerical implementation of the analytical solutions of the 

wave equation. It calculates the signal (pulsed or sinusoid) at specified spatial and 

temporal locations. It provides both time and frequency information, and is hence 

convenient in spectrum analysis. All the three methods require one to specify the
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temporal resolution. It determines the number o f discrete time instance. For example, this 

number could be I04. The PDE method also requires specifying spatial resolution and 

calculates the signal during the whole time period at each discrete location. Assume, for 

the purposes o f illustration, that the number of discrete location is about 104. To complete 

the calculation, the CPU needs to collect at least 10s data. PSPICE calculates the signal 

during the whole time period at each circuit node. The number of nodes is determined by 

the complicity of the circuit. There are about 50 nodes in the equivalent circuit for the 

optoacoustic experiment. The CPU needs to collect at least 106 data (both the current and 

the voltage signal at each node). For the FFT method, the number of discrete time is the 

same as that of discrete frequency. The program calculates the signal at each interface of 

the multi-layered structure at frequency domain. For a typical OA experiment the number 

of the interface is less than 10. The CPU needs to collect about 105 data plus one 

calculation of discrete Fourier transform (DFT) and one inverse DFT. The calculations of 

DFT and inverse DFT are based on the FFT algorithm. The above comparison reveals the 

fact that the algorithm used in the FFT method allows this method to generally be the 

fastest of the three. On the other hand, one aspect that leads to an increase in the 

computation time needed for the FFT method is that this method requires one to set an 

adequate FFT window size. Any signal outside the window will be folded back into this 

window. Hence, to help identify signals within or outside the window, especially with 

small attenuation in the sample, it may be necessary to use a large window size. This 

increases the CPU time.

The influence o f  the FFT window size is seen by comparing Fig. 3.11 and Fig. 3.12. 

Fig. 3.11 shows the result of an FFT analysis with a window of 30ps (only the first 4
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pulses within the first 5 ps is shown). Fig. 3.12 shows the result obtained for the same 

problem using an FFT window equal to I Ops. Pulse 7 is physically followed by pulses 8 , 

9 and so on. Since pulses 8 , 9 ... are outside the FFT window, they are simply folded 

back into the window. The 30ps window in Fig. 3.11 ensures that the echoes folded back 

can be neglected because their magnitudes are too small to be seen.

0.8

0.8

0.4

0.23
CO

§
g >

< -0.2 
O

-0.4

• 0.6

- 0.8

Fig. 3.12. A simulation with FFT window of 10 ps for the same problem defined for Fig. 3.11.

One attraction o f the FFT method, as discussed above, is that it is flexible to deal with 

attenuation. The attenuation may be exponential losses, such as absorption and bulk 

scattering, or linear losses, such as transmission and scattering at the interface.

As mentioned above, the physically measurable signal is the voltage filtered through 

a highpass filter from the open circuit voltage. To compare with experimental results, 

each theoretical computation should include the effect of the high-pass filter. It is easy to
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implement a high-pass filter by PSPICE method by simply add one capacitor and one 

resister to the schematic. For the FFT method, it is also convenient to multiply the open 

circuit signal by the transfer function of the high-pass filter in the frequency domain 

before implementing inverse FFT. However the PDE method only deals with the signal in 

time domain. A convolution of the open circuit signal and the impulse response of the 

high-pass filter needs to be performed. Convolution calculation would not be as easy as 

the previous two simulations o f the high-pass filter. We have not tried it yet.

3.2. INDIRECT PULSED OA SIGNAL IN THE COUPLING GASEOUS 

MEDIUM

In the previous chapter, we have discussed non-contact detection of an optoacoustic 

signal utilizing an optical probe beam. We also described the optoacoustic signal 

generated in the adjacent fluid (often a gas) due to the temperature rise at the surface of 

the solid sample. This is the indirect pulsed OA signal. Such a signal is conveniently 

detected by a non-intrusive optical probe that suffers deflections as the result of index-of- 

refraction variations generated by pressure fluctuations.

In this section, we calculate the deflection of such a beam and the resultant signal 

generated at a photodiode detector. First, we numerically solve the thermal diffusion 

problem both inside the solid sample and in the fluid. The solution in the fluid is used to 

calculate the indirect OA signal. In addition, the solution in the sample helps to identify 

the condition under which the thermal diffusion-generated OA signal should decouple 

with the initial thermoelastic OA signal. Finally, the change of index-of-refraction due to
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the acoustic wave in the fluid is calculated and this leads to a solution for the signal 

generated at the photodiode by beam refraction.

3.2.1. Numerical solution to a thermal diffusion problem

Here, we discuss a numerical method that we independently developed to solve a 

general one-dimensional heat diffusion problem within a medium and at the boundary, 

allowing for the diffusion of heat from one medium into another. We examine heat 

conduction at the boundary, on which an external source provides thermal energy. 

Having obtained the solution for this general problem, it is then simple to apply it to the 

more simplified cases involving only one medium or those in which there is no external 

thermal source.

In the numerical scheme, the spatial (z) coordinate is discretized, with subscript i 

representing location zt. We set the origin at the boundary; therefore, subscript i varies 

from -oo to oo (Fig. 3.13). In general, the spatial grid size, h, is chosen to be different in 

the two materials, i.e., h\* hi. (It is found that in general this choice presents an 

additional flexibility in the numerical scheme that is necessary for a stable solution. The 

criteria used to choose these grids are discussed below.) Similarly, time is also 

discretized, with subscript j  representing temporal coordinate, tj, and the grid size is r. 

The temperature in the cell centered at z, is assumed to be T,j and is uniform throughout 

this cell. Heat is assumed to flow between this cell and the adjacent cells across the 

boundaries. The subscript i on T,j denotes the spatial location, while /  denotes the time 

instant.
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Material 1 Material 2 
- 3 - 2 - 1  0 1 2  3

p
n i

V Ch?

Fig. 3.13. Numerical scheme for the one-dimensional thermal diffusion problem.

The cell at the boundary where r=0 is in a somewhat unique location and its 

characteristics are used to start the numerical formulation. The width o f this cell is 

(h+h2)!2. We assume the temperature within this cell is uniform, which is consistent with 

the boundary condition that the temperature must be continuous. The heat flow into this 

ceil horn the left hand side is

T —T 
AE ^ = kx -»•' °'j A t ,

K
(3.16)

where K\ is the heat conductivity of material 1, A is the cross-section (in x-y plane) of the 

cell. Similarly, the heat flowing into the unit cell from the right hand side is

AE*j = kz
T  - T

A t .
h-,

(3.17)

Hence, the total thermal energy growth in the cell is the sum of these two quantities 

and the resultant temperature rise is

Ar = - (3.18)
ApxC^hi 12  +  ApJZplK  /  2 * 

where AZT̂  is any additional heat generated by any external source such as the pump 

laser pulse.
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Substituting Eq. (3.16) and (3.17) into (3.18), one gets

A r0 =
X ^ ( T UJ- T 0J) +^ T U -T 0J)

N A£f.o.j
(3.19)

(PiC„A+ P i C M / 2

Considering the fact that thermal diffiisivity D -  k ! pCp, the temperature for unit

cell i=Q at timeJ+l can be calculated from (3.19):

T = T  +1 o.j+i l o,y T  2= :
KT,̂ 1 [

AE,0  ./

(3.20)

2D,r 2D,r

Eq. (3.20) is the final format of the numerical solution to a one-dimensional thermal 

diffusion problem at a generalized boundary. The evolution of the temperature change 

can be obtained numerically using this equation. If there is no external heat source at the 

boundary, Eq. (3.20) simplifies to

T = r  +
* 0 . y + t  Q .y  T

nt hz
<A <2h2 (3-21)

2D{C 2D2t

Although Eq. (3.20) is derived for the boundary, it can be applied to any location 

within one material by setting /rt=/i2> and D\=D>, Therefore, Eq. (320) can be 

modified for any place other than the boundary in a simple format:

D r Dt DAE?.
^ , = ^ + W + a - 2 F ) r , . + - ^ .

If there is no source term, Eq. (322) can be further simplified to be:

( 322)

(323)
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One can show that Eq. (3.23) can also be obtained directly from the numerical 

implementation of the non-source thermal diffusion

dlT 1 dT  ™  — r  = --------, (3.24)
dz D d t

as expected.

hi summary, the generalized one-dimensional thermal diffusion problem can be 

numerically solved by Eq. (3.22) used within the medium and Eq. (3.20) at the boundary. 

Starting with an initial temperature distribution in space at time j=0, the temperature can 

be calculated at any location and at any time.

To validate this numerical scheme, first we checked the energy conservation of the 

system. Then we compared the numerical results with the analytical solutions. Both 

methods verified that as long as the value of Dt/hz is properly set, the numerical scheme 

works well.

A. Conservation of energy test for numerical solution

The total thermal energy of the system (material 1 and material 2) at time j  can be 

calculated by the following equation, by adding the thermal energy stored in each cell:

j d > i n Lu « • /  i  n n
,< o  ‘- '2  i> 0

If the system does not have any external heat sources, Ej should be a constant for all j .  

Numerous tests were run and it was found that energy is conserved when Drth2 < 0.5. 

This condition has also been found to be necessary by other researchers who have found 

it to be true for this problem, but by using another method [74].
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B. Consistency of numerical solution to simple analytical solution

If  the initial temperature is a delta pulse in the middle of an infinite long material and 

there is no external heat source, the analytical solution of this thermal diffusion problem 

is

• (x--ra)2
T(x,t) =-----— — e 4Dt . (3.26)

2 {nDt)in

This analytical solution can be used to test our numerical scheme. Fig. 3.14 shows 

such a comparison between these two calculations. Initially, there is a delta pulse at 

z = 2.8xl0~*m. This temperature impulse starts to diffuse in both directions in the 

sample ( D = 2.3 x 10~*m2 / s ). Fig. 3.14 plots the temperature distribution in space at two 

time instants by both analytical and numerical calculations. It can be clearly seen that the 

numerical scheme works well.

C. Comparison of numerical and analytical solutions to an OA problem

Fig. 3.15 shows another comparison of results to a thermal diffusion problem by the 

numerical and analytical methods. In this example, the temperature distribution for a 

practical OA problem is solved. The thermal energy initially comes from the absorption 

of a laser pulse with the FWHM of 7.5ns. The absorption coefficient (a) of the sample is 

8.7xI04m‘l, taken from one of our measurements for a  (details in Chapter VI). The solid 

sample (location z<0 ) has a diffiisivity of OAxIO^nT/s, and a thermal conductivity of 

0.167 Js_Im~l. For the gas (z>0), the thermal diffiisivity is 2xl0*5m2/s and the thermal 

conductivity is 2.6xl0 ' 2 Js 'W 1. This figure plots the temperature distribution in the solid 

sample and in the gas at time 160ns after the laser starts to deposit energy. The analytical
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solution was obtained by the RG model, which was introduced in the previous chapter. 

Since the RG model only gives the solution to a sinusoidal heat source, we have used the 

Fourier transform and its inverse transform to decompose and synthesize the pulse signal.

0.045
Analytical solution 
Numerical solution0.04

0.035

0.03

!  0.0250a
1 0.02
a.

Î
 0.015

0.01

0.005

0 3 42 5 61
Location (m) x1Q-4

Fig. 3.14. Solutions to a thermal diffusion problem where the initial temperature is an impulse in the 
middle of the sample (D = 23 x I0~*nr / s ). Here the boundaries are far from the center, and, therefore, the 
diffusion is considered to occur in an infinite long medium.

Fig. 3.15 shows that the results given by the numerical and analytical methods are in 

good agreement. The slight difference in the gas (z>0 ) that leads the temperature to 

negative values horn the analytical solution, which is physically incorrect, may come 

from the FFT technique. FFT is a numerical implementation of the Fourier transform. It 

assumes that the signal it takes for the transformation is periodic. Errors may be 

introduced when the inverse FFT is used to recover an aperiodic signal.
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Fig. 3.1 S. Solutions to a thermal diffusion problem with a boundary condition by the numerical method 
and by the analytical method (RG model and the Fourier transform). The thermal energy is initially 
deposited by a laser pulse with FWHM of 7.5ns. The figure shows the temperature distribution in the solid 
sample (location z<0) and in the gas (z>0) at time 160ns after the laser starts to deposit energy.

D. Minimization of error in numerical calculation

In the numerical calculation, the choice of the value of Dzfh2 is important. If the value 

is set to be too small, the error will build up in the later steps. If this value is too large, the 

sampling rate is not enough to follow the rapid change of temperature in the very early 

stages. As mentioned above, many test runs showed that the value o f Ddh1 must be 

smaller than 0.5. It is to be emphasized that in this dissertation no attempt was made to 

investigate the mathematics o f numerical analytical theory.

In the simplified problem above, it is possible to perform numerical experiments to 

find which value of the parameter results in the smallest error since the exact analytical 

solution is known. After several tests it was found that the value o f D-dh2 should be set
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to 0.1661 to minimize the numerical error. The experiments showed that primary errors 

often occur at the center of the temperature pulse (z = zo). The error at z = zo in the 

example shown in Fig. 3.14 was calculated to be 2.24% under the condition Dr/h2 =

0.1661. For a real application, this error is expected to be less, because the actual 

temperature would not change impulsively.

3.2.2. Calculation of the pressure profile due to thermal diffusion

Our numerical method allows one to calculate the temperature at anytime and 

anywhere during the thermal diffusion process. Therefore, one is able to calculate the 

acoustic signal generated by thermoelastic effect due to the temperature variation caused 

by thermal diffusion. As discussed in Chapter H, the resultant acoustic signal in the solid 

sample is called the thermo-acoustic portion of the total optoacoustic signal. The resultant 

acoustic signal in the surrounding fluid (often just air) is called the indirect OA signal. At 

each time instant, the newly generated pressure is proportional to the change of 

temperature. As soon as a pressure signal is generated at one place, it starts to propagate 

to the wave direction at sound speed. Therefore, the pressure at a certain place and a 

certain time is the sum o f the pressure generated locally and the pressure propagated from 

other places generated sometime ago. The analytical expression of this pressure signal 

due to thermal diffusion has been described by Eq. (2.20). It is repeated here for a quick 

reference:
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p n( z - c t)  = £ d t ' j ° d z '? ^ ^ $ ( z ' - z + c ( t - t ' ) )  (z>ct),

(3.27)

pm( z - c t ) =  £ dt'l<t'dnz^ ; n [5{z'-z  +  c{t- / ' ) )  + krS(z'+z- c ( t- 1'))\ ( z < c t ) .

In this section, the numerical algorithm for implementation of the above equations 

used to calculate the pressure signal is given through an example. Our algorithm solves a 

difficulty that may appear if the time and space grids for the acoustic signal and for the 

temperature distribution are different.

Fig. 3.16 is the schematic used for the example where we calculate the pressure signal 

in the solid sample monitored at z = zi, as well as the signal in the fluid monitored at z —

First, we calculate the temperature distribution at discrete locations and discrete times 

in both the solid and the fluid. Then, we calculate the temperature increments for all 

times and locations, i.e., AT(z,-, tj). Finally, we add all correlated AT in a manner described 

below and yield the pressure profile.

Z3 Z2 Z\ Zo Z\ Z l Z i

J  I !____  I___ I___L_
Solid Interface Fluid

Fig. 3.16. Schematic for the calculation of the pressure signal due to thermal diffusion.

A. Thermo-acoustic (pressure) signal in the solid sample

Previously we have discussed the criteria of choosing the time and spatial grids. Here 

we summarize these criteria. Let To, be the time grid, and let hs and h/be the spatial grids 

for the solid and the fluid respectively. Then DmvaJhm < 0.5, where m denotes either.y or
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f  For minimum error, Dmztfjhn — 0.1661. There is another set of time and spatial grid, 

namely ra and Xa- It is required that Xa = csra, where cs is the sound speed in the solid. 

Generally, these two sets of grids do not share the same values, because there is a

different requirement for each set. This mismatch produces some difficulties for the

conversion from temperature to pressure. The solution is to use the interpolation 

technique to generate a new set of data in a manner that both the temperature and the 

pressure have the same sampling rates in both time and space.

To reduce the amount of interpolation, we let the two signals have the same time grid,

i.e., vth = ra, and one spatial grid is integer times of the other, i.e., either hs = NXa or Mhs= 

Xa, where N  is an integer. This can be achieved by setting

= Ta = (ifh*= (3-28)

or

r = r* = ra = -— f -  (ifNhs= Xa), (329)
A cs

where A = Dmt,h/hmz = 0.1661.

Then

(3 JO)

and

Z .= c tr .  (3.31)

If hs = Nxa, then only N-1 linear interpolations are required between ATfe, tj) and 

ATfeH, tj). In the case o f Nhs= Xa, N-1 interpolations are required between ATfe, tj) and 

AT(z„ tj+{). Note that each new interpolated sample, as well as the existing sample at (zt,
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tj), now has the value of A71(z„ tj)/N. This is not a linear interpolation, and the algorithm is 

required by the principle of energy conservation.

Suppose we need to monitor the acoustic signal at location Z2, we can use the scheme 

described below with the aid of Fig. 3.17. In this example, M=2, i.e., hs = Ijj,. We first 

calculate AT at location zq , z \, z % and at time ft, ... , f9 (circles in the figure). Then we 

linearly interpolate data at location zoi and Z12 at each time instant (stars in the figure). At 

time ft, the pressure signal is the one generated locally at (Z2, ft). At time fi, the signal is 

the one generated locally at (Z2, f2) plus the one propagated from its neighbor but 

generated at last time instant, i.e., the value at (zt2, ft). This method applies for all the rest 

of the time instants. Therefore, the pressure signal at location Z2 at each time instant is the 

sum of data on the diagonal line as illustrated in the figure. Note that, to be complete, 

pressures generated in locations on the left of location Z2 sometime ago need also be 

added to the signal. However, this contribution can be neglected if Z2 is far away from the 

absorption region.

We have used the method illustrated in Fig. 3.17 to calculate the thermo-acoustic 

portion and then the total OA signal for a case where the influence of thermal diffusion 

cannot be neglected. Fig. 3.18 shows the theoretical OA signal generated in an aluminum 

sample by a laser impulse, considering the thermal diffusion effect (blue) or not (red).

The parameters used for the calculation are: absorption in aluminum a  = I08m_1, 

diffiisivity Z), =  9x l0“5/n2s '1, and sound velocity c, = 6.3xl03m/.s. Since 

Dsa /c s = 1.4, the decoupling condition, Eq. (2.21), i.e., d » D J c I , is not met (d can

be approximated by I /a). Therefore, the thermo-acoustic wave should strongly couple 

with the OA wave. This is seen in Fig. 3.18 where the total OA signal with thermal
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diffusion is quite different from the signal for which thermal diffusion is not considered. 

The profile that we obtained while considering the thermal diffusion effect is in 

agreement with Thomsen's result [28]. We have also tested the case where the decoupling 

condition Eq. (2.21) is met using the same method. No obvious coupling between the 

thermo-acoustic and optoacoustic waves was observed.

Z 2 Zt2 Z, Zoi Zo Zot z, Z(2 Z2

t1

t2

t3

t4

t5

t6

t7

t8

t9

AT in the solid sample Its image * kr

Fig. 3.17. Calculation of acoustic signal at location zz from temperature changes AT in the solid 
sample. The circle denotes the data derived from the numerical algorithm for the thermal diffusion. The star 
denotes the interpolated data. The acoustic signal at each time instant is the sum of the data on the 
corresponding diagonal line.
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Fig. 3.18. Theoretical OA signal generated in an aluminum sample by a laser impulse, considering the 
thermal diffusion effect (solid) or not (dashed). In this case, the decoupling condition, Eq. (2.21), is not met
since Dsa  /  Cs =  1.4. This indicates the thermo-acoustic wave and the OA wave are strongly coupled,
which is proven by the computed results.

B. Indirect OA (pressure) signal in the fluid

Calculation of the indirect OA signal in the fluid follows the same steps used for the 

calculation of the thermo-acoustic signal in the solid. The rules for selection of temporal 

and spatial grids also apply here. However, if  one desires to obtain both the thermo

acoustic and the indirect OA signal from one experiment, one may need to calculate the 

temperature distributions twice using different sets of time and spatial grids, one for the 

thermo-acoustic signal and the other for the indirect OA signal. This is because it is 

difficult to simultaneously fulfill the selection rules for the solid and for the fluid.

With diffusion 
Without diffusion

/
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Because o f the geometry shown in Fig. 3.16, the indirect OA signal at at each time 

instant is the sum of data on the cross diagonal line illustrated in Fig. 3.19. Again, here 

we neglect the contribution from the pressures generated at locations on the right of 

location because of their weak amplitudes.

Although the method used to calculate the indirect OA signal in the fluid is the same 

as that used for the thermo-acoustic signal in the solid, physically there are two 

differences between these two calculations. First, the initial condition o f the thermal 

diffusion problem in the solid has the profile of the energy absorbed in the solid, which is 

an exponentially decaying curve, while the initial condition for the fluid is zero 

everywhere. Second, the pressure signal generated in the fluid is purely due to thermal 

diffusion; no direct optoacoustic signal is produced in this region.

Fig. 3.20 is the calculated indirect OA signal in the air due to the excitation of a PVC 

sample with a laser impulse. The absorption coefficient of PVC was assumed to be 

a  = 4.3x I04m~l , diffusivity for PVC D, = 6.4xlO‘*m‘V t . For the fluid (air) 

Df — 2 x I0"5m2s"‘, sound velocity cf  = 366m / s . The signal was monitored in the air at

z — 1.256mm. This result shows that the indirect OA signal corresponding to a laser 

impulse is also impulse-like but asymmetric with a long tail. The contour o f the tail is 

determined by many factors, such as the thermal properties of the solid and the fluid, as 

well as the optical absorption coefficient of the solid. It is difficult to directly extract the 

information o f each of these parameters from the profile of the signal. For a practical 

laser pulse with finite pulse width, as a rough estimate, one should expect that the 

pressure signal in the fluid follows the profile of the laser pulse, since the actual pressure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

signal has a profile resultant from the convolution of the laser pulse and the impulse 

response illustrated in Fig. 3-20.

Z12 z,' Zb,* Zot

tt

t2

t3

t4

t5

t6

t7

t8

t9

Its image * kr AT in the fluid

Fig. 3.19. Calculation of acoustic signal at location from temperature changes AT in the Quid. The 
circle denotes the data derived from the numerical algorithm for the thermal diffusion. The star denotes the 
interpolated data. The acoustic signal at each time instant is the sum of the data on the corresponding cross 
diagonal line.
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Fig. 3.20. Theoretical indirect OA (pressure) signal generated in the air by exciting a PVC sample 
using a laser impulse.

3.2 J . The indirect O A signal detected by the beam refraction method

In Chapter II, we have discussed the principle o f utilizing the beam refraction method 

to probe an acoustic signal in a medium. This method can be used to detect the indirect 

OA signal in the surrounding air. The deflection angle can be calculated from Eqs. (1.45) 

and (1.46). If one is only interested in the signal profile, the relation of the deflection 

angle S and the pressure p  can be expressed by combining these two equations as follows:

The geometric relation o f the acoustic field and the probe beam is shown in Fig. 3.21.

(3.32)
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Since we assume that the acoustic wave is a plane wave, dp I dt along the z direction 

remain unchanged for a fixed x. Therefore, the profile of 8  (and, hence, the detected 

signal) is the time derivative o f the pressure signal, if  the probe beam has a very narrow 

dimension 2a. However, normally this dimension cannot be neglected because the sound 

velocity in air is relatively slow. A typical probe beam has a dimension 2a= 100pm, and it 

takes about 0.3ps for the acoustic wave to pass through this length. The pressure pulse in 

our experiment has a pulse width less than 100ns, which is estimated from the pulse 

width of the pump laser. Therefore, if such a probe beam is used to detect this acoustic 

signal, the result will suffer tremendous broadening. The detected signal can be 

calculated as the convolution o f the pressure signal and the spatial profile of the probe 

beam. In our measurement, this broadening was obvious. These results will be shown in 

Chapter IV.

.t  _ Acoustic
'-O y—  Acoustic

Probe
Probe

(a) (b)

2a

x  » T

Fig. 3.21. Geometric relation of the acoustic field and the probe beam: (a) in the x-y plane; (b) in the y- 
z  plane. 2a is the dimension of the probe beam and 26 is the dimension of the acoustic field, which is 
roughly the same as the pump beam.
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CHAPTER IV 

EXPERIMENTS AND RESULTS OBTAINED

In this chapter, two types of optoacoustic experiments, both utilizing pulsed light 

sources, are described. For the first type experiment, a piezoelectric transducer is in 

contact with the back epicenter of the sample; while for the second type, a probe beam in 

the surrounding air and parallel with the front surface of the sample is used to detect the 

indirectly generated OA signal. Apparatuses for both type experiments are described with 

the aid of schematics, followed by the experimental results and discussions. We have 

used the methods developed in Chapter HI to model these experiments. The theoretical 

results are also presented together with the experimental ones. It will be seen that most of 

these theoretical results are in quantitative agreement with the experimental ones.

4.1. EXPERIMENTS

4.1.1. Setup for contact detection using a piezoelectric transducer

An optoacoustic experiment using a piezoelectric transducer to pick up the acoustic 

signal is illustrated in Fig. 4.1. Light pulses from a laser are incident to the sample 

surface and OA signals are initiated in the absorption region. Four pulsed lasers have 

been used in our experiments, namely a diode laser (Hamamatsu L4356-01), a nitrogen 

laser (Laser Photonics LNI03Q, a NdrYAG laser (Physics) and an excimer laser 

(Tachisto 80IXR). For the last one, we actually used the incoherent light of the 

passivation mixture. From now on, we will call this incoherent light the passivation light.
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The acoustic signal was picked up at the back of the sample by a 20MHz (center 

frequency) piezoelectric transducer (Panamatrics V116-RM). Depending on the 

magnitude o f the signal from the transducer, one or two stages of amplification may be 

needed. The first stage is a pulse amplifier (Picosecond Pulse Labs® 5818B), with a gain 

of 18dB. The second stage is the internal amplifier of an oscilloscope (Tektronix 7804) 

with a gain of about !4dB. The amplified signal was fed to a 400MHz digital 

oscilloscope (Tektronix TDS380). The signal was also sampled and digitized by the 

scope, and the data were sent to a PC for further processing and storage through a GPEB 

interface. The scope was triggered either by the trigger output from the laser driver (for 

the diode laser and the Nd:YAG laser) or by the laser pulse split from the main pulse and 

received by a photo multiplier (for the nitrogen laser) or a photodiode (for the 

passiviation light). Since the signal was generally noisy, 256 shots were averaged to 

obtain a clean signal by the scope itself before the data were transferred to the PC.

Table 4.1 lists wavelength, pulse width, energy per pulse and repetition rate for each 

laser. The pulse widths were measured from the pulse profiles shown in Fig. 4.2. The 

profiles were taken by a photo multiplier (for the nitrogen laser) or by a photodiode (for 

other lasers) with fast enough rise time. For instance, the photodiode (Thorlabs DET200) 

used has a rise time of Ins. The pulse energy was estimated from the menu and the 

condition of the laser.
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Fig. 4.1. Schematic of apparatuses used for an optoacoustic experiment The acoustic signal is picked 
up by a piezoelectric transducer. The experimental data are averaged by a digital scope and stored in a PC 
for signal processing.

Table 4.1. Specifications of light sources used in optoacoustic experiments

Light Source Wavelength
Pulse Width 

(FWHM)

Operation 

Repetition Rate

Typical Energy 

Per Pulse

Diode Laser 880nm IOIns I kHz 2pJ

Nitrogen

Laser
337nm 2ns 5Hz 50pJ

Passivation

Light
773nm I Ins 1Hz ImJ

NdrYAG I064nm 54ns 5Hz lOOmJ
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Fig. 4.2. Temporal profile of light pulses used in optoacoustic experiments. The pulse widths have 
been measured and listed in Table 4.1.

The diode laser that we used has the weakest pulse energy (see Table 4.1). Such a 

weak laser is not often used in literature to excite OA signals, yet we were able to use it 

to generate signals with reasonably high signal-to-noise ratio. The advantages of utilizing 

a semiconductor laser include (a) the compact size of the whole system; (b) it is 

inexpensive; (c) there is no RF noise from gas discharge existing in other lasers used; and 

(d) a high repetition rate.

La order to efficiently and conveniently transfer data from the digital scope to the 

computer, we used Lab VIEW to program a Windows application. Lab VIEW is a 

graphical programming language designated for scientific instrumentation. It can directly 

manipulate a data acquisition board, or control and communicate with other devices
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through a data interface or a data bus such as GPIB (general purpose industrial bus). A 

Lab VIEW program is called a VI (virtual instrument). A VI has two parts, namely the 

panel and the diagram. The panel is the graphical user interface, which contains 

indicators and controls. The diagram is a graphic representation o f the codes.

Fig. 4.3 shows a part o f the panel of the VI that is used to communicate with the 

scope as well as to process experimental data. The diagram of this VI is given in 

Appendix II. This VI can acquire a signal from the scope or load the data of a signal from 

a disk file and then display the signal on the screen. It can also save the whole acquired 

signal or the portion selected by the user to a disk file.

Fig. 43. Front panel of the LabVTEW VI (Virtue Instrument) for data acquisition and processing.
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For an OA experiment, if the background noise is not random, one can obtain the 

signature of the noise by blocking the laser and then saving it as a reference. Later, this 

background noise can be subtracted from a measurement with the laser unblocked, which 

yields a better signal. The VI provides such a function that allows the user to subtract the 

noise, whose data have been saved in the disk, horn the current on-display signal (the 

"Subtract" button).

The hie used to store the data of a signal is in ASCII mode. Each file has a header and 

a data area. The header contains a description of the signal and the experiment. The data 

area contains data of time and amplitude of the signal. When a signal is acquired from the 

scope, the user can type a description such as date and experimental conditions in the 

"Comments” box. Later the description will be automatically retrieved and displayed in 

the same text box when the data file is loaded from the disk.

By default, the useful data are only located in the second half of an acquisition from 

the scope. One can use the "Half Screen" button to zoom to the second half or one can 

directly type the upper and low borders of the display window.

This VI provides a smoothing function for further noise removing if  the averaging 

function of the scope does not give a satisfied result. It utilizes a time window whose size 

can be preset by the user to slide along the time axis of the signal and smooth out the 

sharp features. Chapter V discusses some other signal denoising methods, such as the 

wavelet technique.

The "Address" in the front panel refers to the address o f  the device (i.e., the scope) to 

which the GPIB connects. The "Channel" refers to the five channels available from the
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scope, namely CHI, CH2, MATH, REF1 and REF2. The "Format" defines how the data 

is interpreted, with the choice of "Unsigned" (all positive) and "Signed" (bipolar).

The VI also provides tools (not shown in Fig. 4.3) for the user to communicate with 

the scope manually by typing commands in a text box. Although they are rarely used, 

they are necessary if  the user needs to manipulate the scope through functions not 

provided above.

4.1.2. Setup for noncontact detection using a probe beam

Fig. 4.4 is the schematic of the apparatuses used for OA generation and detection by a 

non-contact probe beam. It is similar to the experimental setup for the contact detection 

discussed above, except that there is no piezoelectric transducer at the back of the sample. 

Instead, a probe beam is located in front of the sample. The probe beam does not 

penetrate into the sample but passes through the surrounding air. The beam is parallel 

with the surface of the sample. Any changes of the index-of-refraction of air caused by 

the density fluctuation due to the pressure wave in air will refract the optical beam. As a 

result, the probe beam changes it propagating direction. In our experiment, a knife-edge 

was used to partially block the probe beam. A photodiode was placed behind the knife- 

edge to detect the intensity changes of the portion that was unblocked. Normally the 

angle of the changing direction is very small. Therefore, the photodiode was placed at a 

reasonably long distance (about 13m) to the probe-acoustic interaction region in order to 

have relatively large displacement at the detection plane.
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Fig. 4.4. Schematic of apparatuses used for an indirect OA generation. The acoustic signal in air is 
detected by the photo diode responding to the probe beam refraction.

As discussed in Chapter HI, a high intensity probe laser is required to get a high 

signal-to-noise ratio. In our experiment, a diode laser (Sanyo DL-7140-201) with 70mW 

maximum output was used, hi literature, higher power up to hundreds mW has been used.

Theoretically, such a detection scheme is able to probe three signals due to the 

absorption of laser energy in the solid sample. One is the indirect OA generation in the 

air. Another is the OA signal generated in the solid sample and transmitted from solid-air 

interface. The third is the photothermai signal, which also causes beam refraction not by 

the pressure, but by the increased temperature due to the thermal energy diffused from 

the interface.

The indirect OA signal and the transmitted pressure signal are overlapped m time. 

Due to the large acoustic impedance mismatching, the transmission efficient is very low. 

Therefore, the indirect OA signal generally is dominant. These two signals can be
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identified by the signal duration. The indirect OA signal only has one pulse because the 

air can be considered as a semi-infinite long medium and there is no reflection occurring 

at the other end. However, the transmitted pressure signal normally has echoes following 

the first pulse due to the multi-reflection at both ends o f the solid sample. The 

photothermal signal can be almost completely separated from the OA signals because it 

arrives at the detection site with much longer delay. This is due to the slow speed of 

thermal diffusion compared with the acoustic velocity. For our experiment, the OA signal 

was normally observed in microsecond scale while the photothermal signal was found in 

millisecond scale.

The sensitivity of our non-contact detection system was not optimized so that the 

transmitted pressure signal has not been clearly recorded yet hi section 4.2.2, we will 

present the results of the indirect OA signals. Although the photothermal signals were 

also observed in experiments, they will not be discussed in this work since they are 

irrelevant to the subject.

4.2. RESULTS OBTAINED AND COMPARISONS WITH THEORIES

4.2.1. Contact detection with PVC samples at various wavelengths

Optoacoustic experiments were first performed on PVC material using the diode laser 

at a wavelength of 880nm. A series o f PVC samples with various thicknesses, as well as 

those with a multi-layered structure, were used. Theoretical calculations based on the 

experimental conditions were also done to compare with the experimental results.

Three other light sources, namely the nitrogen laser at 337nm, the NdrYAG laser at 

I064nm and the passivation light at 773nm, were also used to excite OA signals in a PVC
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sample. These experimental results, as well as the corresponding theoretical results, are 

given below.

The experimental setup has been described previously. To obtain the theoretical 

results, we first used the convolution theory to calculate the pressure signals generated in 

the absorption region, and then used the FFT method developed in Chapter HI to 

calculate the voltage signals from the piezoelectric transducer.

The profiles of the pump pulses have been measured and plotted in Fig. 4.2. The 

optical absorption coefficients were also experimentally measured by the spectral ratio 

technique that we developed and will be presented in Chapter VI. Therefore, the pressure 

profile induced by a laser impulse can be calculated by Eq. (1.14) given in Chapter H. 

Then the pressure profile induced by a practical optical pulse is the convolution of the 

pulse profile and the O A impulse response.

The FFT method models the experiment as an acoustic signal propagating in multiple 

layers. These layers namely are the surround air, the sample (one or more layers, 

dependent of the sample's structure), the piezoelectric plate and the backing. The 

displacements at the two ends of the piezoelectric plate were used to produce the 

theoretically calculated voltage signal.

A. O A results by the diode laser

The OA results from experiments on PVC material with various thicknesses are 

shown in Fig. 4.5, Fig. 4.6 and Fig. 4.7. These thicknesses are 2mm, 1.5mm, and I mm, 

respectively. All theoretical results are superimposed onto the experimental ones in these 

figures. All the parameters used in the theoretical calculations are kept the same except
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the sample thickness. The optical absorption coefficient is a  = 28mm'1 (see Chapter VI).

calculations. Note that it is an approximation by assuming P a constant since, in general, 

it is frequency dependent, hi our calculations we assumed, the attenuation constant does 

not depend on frequency, because the signal's bandwidth is relatively small (less than 

10MHz). The value o f P  came from experiments. It can be obtained from the ratio of an 

acoustic echo to its preceding one, since this ratio is the product of the reflection 

coefficients at two boundaries, which are already known, and the percentage o f the 

acoustic signal leftover after other losses during one round trip in the sample.

Fig. 4.5. Experimental and theoretical results from a 2mmrthick PVC sample by the diode laser. For 
the theoretical calculation, laser pulse width rL = 101ns, optical absorption a  -  28mm'1, and acoustic 
attenuation p  = 0.17mm'1.

An effective acoustic attenuation constant P  = 0.17mm'1 has been assumed for all three
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Fig. 4.6. Experimental and theoretical results from a 1.5mm-thick PVC sample by the diode laser. For 
the theoretical calculation, laser pulse width r*. = 101ns, optical absorption a  -  28mm'1, and acoustic 
attenuation P=0.17mm'1.
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Fig. 4.7. Experimental and theoretical results from a Imm-thick PVC sample by the diode laser. For 
the theoretical calculation, laser pulse width rL = 101ns, optical absorption a  = 28mm'1, and acoustic 
attenuation p = 0.17mm'1.
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The high attenuation is due to the long molecular chain of PVC material. PVC 

(polyvinyl chloride) is a thermoplastic polymer. Its molecular unit is [57]

where n=500~l500. The chain size ranges from 50 to 500 microns. PVC belongs to linear 

class polymers. Unlike crystalline structures, the arrangement o f the chains is almost 

entirely random (Fig. 4.8). There are no primary forces holding neighboring chains 

together. This arrangement shows that PVC is isotropic material. The energy relaxation is 

along the molecular chain, and thus, can be any direction. This explains that the 

attenuation of PVC is much larger than the attenuations found in crystalline materials. No 

other experiments measuring the acoustic attenuation constant of PVC were found. The 

measured attenuation constants of some other polymers have the same scale as our 

measurement of PVC [75].

Fig. 4.8. The arrangement o f PVC molecular chains.

After successfully interpreting the experimental results involving a single sample, we 

are able to extend our computation to the case where a multi-layered sample is used. Fig.
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4.9 shows the results for a two-layer sample from both experiment and calculation. As 

illustrated in Fig. 4.10, the first layer irradiated by the diode laser has a thickness of 

1.0mm. The second layer, adjacent to the transducer, has a thickness o f 0.5mm. Both 

layers are PVC and are adjoined by a thin layer of grease. This experiment is set to check 

the computation model for the multi-layered structure and is also a good illustration of 

crack detection by ultrasonic technique. The theoretical calculation is in good agreement 

with the experimental result They clearly show that pulse 2 and pulse 3 are due to the 

discontinuity between the two pieces of samples by comparing this result with the result 

obtained from one single-piece sample with a thickness of 1.5mm (see Fig. 4.6). Fig. 4.10 

also shows how these echoes are originated.

Theory
Experiment0.8

0.6 Pulse 3

0.4

■02

-0.4

Pulse 4Pulse 2- 0.6

- 0.80 1000 2000 3000 4000 5000
Time(ns)

Fig. 4.9. Experimental and theoretical results from a two-layer sample by the diode laser. The first 
layer is 1mm thick and the second layer is 0.5mm thick. Both layers are PVC and they are coupled by a thin 
grease layer.
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Fig. 4.10. Schematic of the generation o f the pulse sequence observed in Fig. 4.9. Additional echoes 
(pulses 2 and 3) appear due to the reflections at the discontinuity.

B. OA results with the nitrogen laser

The OA experiments by the diode laser were actually laser pulse width limit (see the 

discussion in Chapter n, section 2.1.1 A ) since the pulse width is about 100ns. Therefore, 

the pulse profile itself can be used as an approximation of the initial acoustic 

displacement signal and yields a reasonably good agreement between the theory and the 

experiment. However, this is not true for the experiment involving the nitrogen laser that 

has a pulse width of 2ns. Fig. 4.11 gives the results from a l.5mm PVC sample induced 

by the nitrogen laser. If only the laser pulse profile is used to calculate the signal, then the 

theoretical signal pulse width is much narrower than the experimental one. The 

theoretical result shown in Fig. 4.11 was obtained by assuming the optical absorption 

coefficient a  = 87mm'1, which is a result from Chapter VI. It is seen from Fig. 4.11 that 

the pulse widths from both the experiment and the theory are in reasonable agreement
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This provides a way to validate the spectral ratio theory that will be discussed in Chapter 

VI for the measurement of the optical absorption coefficient.
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Fig. 4.11. Experimental and theoretical results from a 1.5mm-thick PVC sample by the nitrogen laser. 
For the theoretical calculation, laser pulse width rL = 2ns, optical absorption a  = 87mm'1, and acoustic 
attenuation f i = 0.25mm'1.

The theoretical signal has more oscillations than the experimental one. This is 

because the center frequency of the signal is higher than the one induced by the diode 

laser. This center frequency now is closer to the resonant frequency of the piezoelectric 

transducer, hi practice, the manufacturer has taken special treatment to reduce this 

oscillation.

The acoustic attenuation coefficient /? used here is 0.25mm*1, which is different from 

the previous experiment. There are two reasons that may account for this change. First,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

the center frequency of the OA signal has increased, for which one expects higher 

acoustic losses. Second, the dimension o f the laser spot has changed, which results in a 

different diffraction loss. Unfortunately, we have not been able to measure the size of the 

laser spot.

C. OA results with the passivation light

Fig. 4.12 shows the experimental and theoretical results with a l.5mm PVC sample 

and the passivation light. The results are similar to those obtained by the nitrogen laser, 

since the light pulse width (11ns) is also narrow. Therefore, the contribution of the 

absorption length cannot be neglected. Here a  = 34mm'1 has been used for calculation. 

Also, the theoretical signal shows some oscillations. Comparing with the experiment 

result with the nitrogen laser, the acoustic pulse for this experiment is wider. Therefore, 

there are fewer oscillations, and the acoustic losses are smaller (/? = 0.19mm'1).
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Fig. 4.12. Experimental and theoretical results from a I.5mm-thick PVC sample by the passivation 
light For the theoretical calculation, laser pulse width tl = I Ins, optical absorption a  = 34mm‘l, and 
acoustic attenuation p  = 0.19mm'1.

D. OA results by the Nd:YAG laser

Fig. 4.13 shows the OA signals with a 1.9mm PVC sample and the NdrYAG laser. 

These results are similar to those obtained by the diode laser, since the laser pulse width 

(54ns) is also wide. No obvious oscillation o f the signal is seen. However, the influence 

from the absorption region still cannot be neglected. We have not done experiments to 

measure the optical absorption coefficient a. From the trend of the coefficients for PVC 

at three other wavelengths, we expect a  at 1064nm is in the order of I0lmm*1 but less 

than 28mm'1 which is the value for cr at 880nm. We found that by assuming a=  10mm*1, 

the theoretical pulse has the pulse width, close to the experimental one.
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For the acoustic losses, we expect the value of P  is smaller than that for the previous 

experiments since the acoustic pulse width is wider. However, the experiment turned out 

that P = 0.26mm'1, which is quite larger than the previous result. The diffraction losses 

for this experiment may have increased.
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Fig. 4.13. Experimental and theoretical results from a 1.9mm-thick PVC sample by the NdrYAG laser. 
For the theoretical calculation, laser pulse width Z£. = 54ns, optical absorption a  -  10mm'1, and acoustic 
attenuation f i=0.26mm'1.

4.2.2. Noncontact detection on PVC sample pumped with Nd:YAG laser

We have used a probe laser to measure the indirect OA signal in air due to the 

absorption o f the pump laser in the solid sample. We also have used the method 

developed in the previous chapter to model this indirect OA signal. The results and the 

comparison are given in this section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I l l

The probe beam has been placed in various positions in order to investigate the 

acoustic attenuation in air. The signals as well as the estimate of the attenuation are also 

presented here.

A. Model of the indirect OA signal in air

As calculated in Chapter HI and shown in Fig. 3.20, the indirect OA pressure signal in 

the air induced by a laser impulse is also like an impulse but with a long slowly decaying 

tail. Therefore, for an experiment pumped by a laser with finite pulse width, the indirect 

pressure signal should have a profile close to the laser pulse. The Nd:YAG laser that we 

used to generate the OA signal has a pulse width of 54ns. The computed indirect pressure 

signal in the air is shown in Fig. 4.14, in which the laser pulse profile is also given as a 

comparison to the pressure signal. The figure shows that the main portion of the pressure 

signal follows the profile o f the laser pulse, but it decays slowly. This is due to the 

thermal diffusion in air.

Knowing the pressure in the air, theoretically the beam deflection anger 8  can be 

calculated from Eq. (3.32) in Chapter HI. An ideal position sensor should give a signal 

which follows the profile o f 8, which is a time derivative of the pressure signal. However, 

the probe beam always has a finite geometric dimension. Since the acoustic velocity in 

air is much slower, the transition time for the acoustic signal to pass through the probe 

beam cannot be neglected. For instance, if the probe beam has a diameter of 2a = 100pm 

(see Fig. 3.21), the corresponding acoustic transition time is 270ns assuming the sound 

speed is 366m/s. This time is much longer than the pulse width o f the acoustic signal 

itself which is about 50ns. Consequently, the detected signal from the probe beam suffers
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a tremendous broadening. This signal can be calculated from the convolution of 8  and 

J[x)/ca, where J{x) is the spatial profile of the probe that normally is a Guassian function 

and ca is the sound velocity in air.

 Indirect OA signal
 Laser pulse

0.8

0.4

0 0.1 0.3 0.5 0.60.4
Time (ps)

Fig. 4.14. The calculated indirect OA pressure signal in the air generated by the Nd:YAG laser. The 
main portion o f the pressure pulse follows the profile of the laser pulse, but it decays slowly due to the 
thermal diffusion effect.

Another difficulty to model this detected signal comes from the knife-edge detection 

scheme that we actually used in our experiment. If  the dimension of the probe beam can 

be neglected and the direction of the displacement of the probe on the knife-edge plane is 

perpendicular to the knife-edge, then the intensity change on the photodiode is 

proportional to 8, However, the probe beam has a  finite dimension and each portion of 

the probes is separately affected by the pressure signal. Hence, some o f the deflection
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may be completely blocked by the knife-edge. In addition, the relation o f the orientation 

of the knife-edge and the direction of beam spot displacement on the knife-edge plane is 

unknown. These factors make it difficult to model the effect of the knife-edge, which is 

no longer a linear process.

In the experiment, we observed the broadening of the signal. We also observed that 

this broadening was a function of the dimension of the probe beam as one expects. The 

other important phenomenon that we noticed in the experiment was that the signal profile 

from the photodiode behind the knife-edge was close to the time derivative of the 

deflection angle. Therefore, we took a three-step approach to calculate the signal from the 

photodiode in response to the indirect pressure in the air: (1) calculate the indirect 

pressure signal, which has been done previously and the results has been shown in Fig. 

4.14; (2) calculate the deflection signal as a convolution of the time derivative of the 

pressure signal and the profile of the probe beamy(.r)/Ca; and (3) take the time derivative 

of the result from step 2 as an approximation o f the final result from the photodiode.

Fig. 4.15 shows the comparison between the experimental result and the theoretical 

one that is yielded by the three-step approach. The probe beam was assumed to be 

Guassian and had a FWHM of 100pm. This value was estimated from the experiment. 

This comparison shows that the calculated signal has pulse width close to the 

experimental one. The first 700ns from both signals are also similar, and later the 

experimental one exhibits broadening. As another comparison, the theoretical signal 

assuming an infinitely small dimension of the probe beam is also shown in this figure. It 

can be seen that this is not a good approximation for a  practical experiment.
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Fig. 4.15. Theoretical and experimental results from a probe beam with a spatial FWHM of 100pm. 
The blue one is the theoretical result considering the influence of the dimension of the probe beam. It has 
roughly the same pulse width as the experimental one. The black trace is the theoretical result assuming the 
probe beam is infinitely narrower.

We also use the above three-step approach to calculate the signal probed by a wider 

probe beam. This result, superimposed on the experimental one, is shown in Fig. 4.16. 

This experiment used a probe beam with a FWHM of 0.8mm, which corresponds to a 

transition time of 2.2(is for the acoustic wave to pass through it. In this case, the theory 

matches with the experiment quite well.
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Fig. 4.16. Theoretical and experimental results from a probe beam with a spatial P.VHM of800pm.

B. Acoustic attenuation In air

Using the experimental setup that has been discussed previously and shown in Fig. 

4.4, and by varying the distance from the probe beam to the sample surface, we have 

observed acoustic attenuation as well as distortion. These experimental data can be used 

to give a quantitative measurement o f the attenuation. Tam has used the similar apparatus 

to perform similar measurement [20]. hi his experiment, the gas (pure CO2 or a CO2+H2O 

mixture) was confined in a chamber at a constant temperature environment. Our 

measurement is performed in the open air without any control of the environment.

Fig. 4.17 shows the indirect OA signal as a function of positions. The origin of the 

position axis was set to where the first signal was measured. Actually, it was about

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

0.5mm away from the solid sample surface. All the remaining signals were measured 

further way from the surface.

We took the peak value of the signal at each location as a representative of the signal 

amplitude. Then these peaks were normalized to the peak at position x=0. The effective 

acoustic attenuation coefficient can be obtained from the relation of the normalized signal 

amplitude and its corresponding position. Fig. 4.18 plots the logarithms of the peak 

amplitudes versus the position. The attenuation coefficient P  then is the absolute value of 

the slope. Our measurement yields P = 0.48mm'1, i.e., the acoustic attenuation in air is

0.48 nepers/mm.

0.5
an
I
tfl -as

0.15

0.1

Fig. 4.17. Indirect OA signal in the air as a function o f time as well as of position. The origin o f the 
position axis was set to where the first signal was measured. The rest o f the signals were measured further 
away from the sample surface.
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Fig. 4.18. Acoustic attenuation versus distance. The peak value from each OA signal at various 
locations has been compared with the peak at x=0. The acoustic attenunation coefficient |3 was measured 
from the slope to be 0.48mm‘ ue. 0.48nepers/mm.

The peak amplitude method can only give an estimate of the attenuation coefficient. 

The frequency dependent attenuation can be obtained by comparing the frequency spectra 

of signals at two locations. Fig. 4.19 gives the frequency dependent measurement by the 

spectral comparison method. The ratio of spectra magnitudes from two indirect signals at 

x  — 2.54mm and x  = 0 was used to yield the attenuation coefficient at a unit of 

nepels/mm. The trend o f the frequency dependence of the attenuation in air is similar to 

that of pure CO2 investigated by Tam [20].
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Fig. 4.19. Acoustic attenuation as a function of frequency, (a) Spectra o f OA signals at r=0 and 
.t=2.54mm. (b) Attenuation versus frequency. The attenuation was taken from the magnitude ratio of the 
spectra and converted to the unit of nepers/mm.
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CHAPTER V

OPTOACOUSTIC SIGNAL PROCESSING BY THE 

FOURIER AND WAVELET TRANSFORMS

This chapter presents methods that we developed to treat optoacoustic experimental 

data. These include a Fourier transform method to measure echo interval in frequency 

domain and wavelet transform methods to interpret optoacoustic signals as well as to 

remove noise from experimental data. These methods have not been widely used 

previously to treat OA signals. The treatment here is general; therefore, it can be used in 

other applications also.

5.1. ECHO TIME MEASUREMENT FROM FREQUENCY SPECTRUM

5.1.1. Introduction

The measurement of acoustic pulse propagation velocity in any medium, or the 

measurement of the sample thickness, requires one be able to resolve the time separation 

between acoustic pulse echoes. To increase the accuracy o f the measurement, one desires 

to record several echoes within one trace. This allows measurements of several intervals 

between echoes, which can then be averaged. In many experiments, however, where a 

digital scope is used (as for example in the experiments undertaken in this work), one is 

restricted to a fixed number of samples in a given run. hi such a case, an increase in the
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time window to include more echoes does not necessarily increase the accuracy o f the 

measurement because of the concurrent loss in the resolution in the location of each echo.

Another reason for not taking a long sequence of echoes is that the acoustic pulse 

deforms along the path due to diffraction and dispersion. Consequently the location of the 

peak in each pulse may vary from early echoes to late echoes. Therefore, there is an 

advantage if  one only measures the first two echoes, as long as one does not need to 

extract dispersion information.

Here we prove that the time separation between pulse echoes can be equivalently 

obtained in the frequency domain. This method is especially useful for an experimentally 

obtained time sequence where the time signal may suffer distortion by noise.

5.13 . Principle

First assume that there is no distortion from the first to the second echo, but there is 

an attenuation of the second echo due to the transmission loss at the boundaries. 

Therefore, the signal can be illustrated as Fig. 5.1, and it can be expressed as

where J[t) describes the profile o f the first echo only, T is the separation between these 

two echoes and k\ is the attenuation factor whose absolute value is less than one.

The Fourier Transform of Eq. (5.1) is:

s(t) = / ( 0  + kxf { t  -  T) , (5.1)

S(6>) = F(o>)(l + kle-ja,r) . (52)

Hence, the magnitude of S(a>) is

|S(<a)| = [F(m)|(l+ +  2Art cos((oT)). (5.3)
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Fig. 5.2 plots the magnitude |S(g>)| o f s(t) shown in Fig. 5.1. It is an amplitude 

modulation o f the spectrum of the arbitrary pulse J[t). The period of the frequency 

modulation is 1 IT. Therefore, by measuring the period at the spectrum of signal s(r), one 

is able to get the time separation between two echoes.

(0co
CO

Time

Fig. 5.1. An ideal echo pair used in the theory. The second echo is assumed to be identical to the first 
one except the magnitude is smaller due to the transmission loss at the boundary.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



122

a

Frequency

Fig. 5.2. The Fourier transform of the signal shown in Fig. 5.1. The period of the frequency modulation 
yields the separation between the echoes o f the tiine signal.

When 1 IT  is smaller than the bandwidth of signaler), there is more than one cycle of 

the modulation within the bandwidth. (The smaller of 1 IT  compared to the bandwidth, the 

more number o f cycles.) In the ideal case where the second echo does not exhibit 

distortion in the shape, taking one measurement or average of several measurements of 

the modulation period makes no difference since both yield the accurate time separation 

T without any error. Also, in this case, there is no difference in taking the measurement o f 

T  whether in frequency domain or directly in time domain.

However, in practice the time signal in an experimental environment will suffer 

distortion due to the inherent dispersion and all kinds o f unavoidable noise. This makes 

the measurement o f T  in time domain inaccurate and sometimes difficult. For instance, 

the peak-to-peak or center-to-center or some other criterion can be used as a
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measurement o f 71 Taking different criteria may give different results from the same 

signal, and thus generate ambiguity.

The Fourier transform of a pair of distorted echoes results in the fluctuation of the 

modulation period. However, separation T  can be more accurately obtained by taking the 

average of several measurements of the modulation period as long as the condition that 

I IT  is much smaller than the bandwidth of signal^/) is met.

The advantage of this Fourier transform method comes from the feature that this 

method utilizes the whole signal of each echo, while the direct measurement in time only 

takes a pair of points from consecutive echoes. Note that the Fourier Transform of a time 

sequence that contains more than one echo will not give the spectrum of each echo 

because the result from the transform exhibits interference. Therefore, the Fourier 

transform cannot be used if one needs to analyze the spectrum of each echo. Instead, one 

needs to utilize short time Fourier transform or wavelet transform which will be 

discussed in section 52.

5.1.3. Application to optoacoustic signals

Fig. 5.3 is the signal of one OA experiment done on a tissue sample. The pump laser 

was the nitrogen laser, and the 0  A signal was picked up at the other side of the sample by 

the 20MHz piezoelectric transducer (The experiment setup has been described in Chapter 

IV). It can be seen that the background noise is not trivial in this experiment. Also, there 

is considerable distortion in the second echo. For instance, the negative peak is not at the 

negative center for the second echo. A direct peak-to-peak measurement in time domain
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yields the separation between the echoes to be 6.06ps. It is hard to estimate the error of 

this measurement because there is only one measurement.
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Fig. 5.3. An OA experimental result from a tissue sample excited by the nitrogen laser.

Fig. 5.4 is the Fourier transform o f the OA signal. The average modulation period 

based on 30 measurements was 0.1632MHz. The variance of the measurement was 

calculated to be 0.0080MHz. Therefore, the measurement of the time separation using the 

Fourier transform method was 6.13±03lps.

From this example one can see that the results horn the direct measurement in the 

time domain and from the calculation in the frequency domain are very close. For this 

example the difference in these results is about 1%. However, the measurement from the 

frequency spectrum has a higher confidence level and the variance can be easily 

determined.
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Fig. 5.4. Fourier transform of the OA signal shown in Fig. 5.3. The average of the modulation period is 
used to calculate the time separation between echoes.

5.2. ECHO SEPARATION BY WAVELET TRANSFORM IN TIME- 

FREQUENCY SPACE

5.2.1. Introduction to wavelet transform

Mathematical transformations use basis functions that satisfy certain mathematical 

requirements to represent data in another space. By the transformation method, one has 

another representation of data and gams a new (and maybe powerful) tool to analyze 

data. Among all these transforms, The Fourier transform is the one that has been most 

commonly used. However, the wavelet transform developed in the past 10-20 years has 

shown many advantages over the Fourier transform, and has found applications in many 

areas.
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By using the Fourier transform, one gains the frequency information of a signal but 

loses the time information. For example, two completely different time signals may have 

the same power spectrum by the Fourier transform. Generally the Fourier transform can 

be only applied to a stationary signal. For a non-stationary signal, one usually desires to 

obtain the frequency contents varying with time. For this purpose the short time Fourier 

transform (STFT) was used before.

The idea o f STFT is to frame the original signal into pieces by using a time window, 

and then to apply the Fourier transform to each piece. Therefore, the STFT yields both 

the time and frequency information of a non-stationary signal. One can plot the result 

from the STFT in a time-frequency space. Note that the frequency contents obtained by 

STFT correspond to the entire time window but not to a specific time location, and also 

the frequencies are not accurate. The uncertainty of the frequencies are related to the 

width of the window and governed by the uncertainty principle. The wider the time 

window is, the more accurate the results are in the frequency domain, but the less 

accurate they are in the time domain. To analyze a signal, one desires to get high 

frequency resolution in the low frequency region and high time resolution in the high 

frequency region. Thus, a dynamic window size is required, which is not provided by the 

STFT because the width of the window is fixed.

hi summary, to analyze the frequency contents o f a non-stationary signal, a transform 

is required to present this signal in a thne-frequency space, hi addition, multiresolution 

results balanced by the uncertainty o f time and frequency are desired. The wavelet 

transform is the ideal candidate for such purposes.
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The wavelet transform has two unique features that often make it more useful than 

other transforms, especially the Fourier transform. First, in wavelet analysis, large 

windows are used to look at gross features, and small windows are used to look at the 

finer features. The selection of the window size is performed automatically without the 

user's intervention. Second, the basis function set used in a wavelet transform can have a 

variety o f forms as long as they meet certain mathematical requirements, while each of 

the other transforms has its own unique basis function; for example, the Fourier transform 

uses sinusoid functions to represent a signal. The choice of basis function is really 

determined by the data to be represented and the application. If the best wavelets are 

adapted to the data, or if the coefficients are truncated below a threshold, the data can be 

sparsely represented. This sparse coding makes the wavelet transform an excellent tool in 

the field of data compression and signal denoising.

Because of its prominent features, the wavelet transform has gained many 

applications in the applied fields. Besides data compression and signal denoising, other 

applications include sub-band coding, signal and image processing, magnetic resonance 

imaging, speech discrimination, earthquake-prediction, as well as solving partial 

differential equations. This section introduces the wavelet transform and the concept of 

time-frequency window, followed by the application of time-frequency localization to 

our experimental data. In the next section the procedure of signal denoising will be given, 

followed by denoising demonstrations applying this method to our optoacoustic 

experimental results.
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5.2.2. Wavelet transform and tune-frequency localization

In this section, the short time Fourier transform is first briefly described. Then we 

discuss the wavelet transform and its varying time-frequency window. This is followed 

by a comparison between these two transforms.

In STFT, a time-Iocalization window <f>{t -  b) can be used to segment the signal, and 

then the Fourier transform of the short time signal is taken. Here, b is the sliding 

parameter because it determines temporal location of the window. The window is also 

called "time-frequency” window because a time window sliding along the time axis is 

equivalent to a frequency-localization window sliding along the frequency axis. This can 

be seen from the definition of the STFT:

(G4f){b ,4)  = £  f{t)e~J*<f>{t -  b)dt (time-Iocalization)

(5.4)

£  }{fi))ejba><f {pi -  <5)dco (frequency-localization),

where/is the signal, b and are used to localize the time and frequency respectively. The 

carat represents the Fourier transform o f the appropriate function, and the star denotes the 

complex conjugation.

The uncertainty principle governs the product of the widths of the time window and 

the frequency window, i.e.,

’ (5.5)

where A# is the width of the time window 0 and A  ̂is the width of its Fourier transform,

i.e., the frequency window ^ . For the Fourier transform, the width of the time window is
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infinite so that the width of the frequency window shrinks toward zero. Therefore, the 

spectrum is accurate to each single frequency.

The widths o f the time and frequency windows in a STFT are fixed (Fig. 5.5). 

However, it is desired to have a wide time-window to analyze low frequencies thoroughly 

and a narrow window to locate high frequencies more precisely. Unfortunately, STFT 

does not have such automatic zoom-in and zoom-out capability. On the other hand, the 

wavelet transform does.

'WWW***

Tin*

Fig. 5.5. Fourier basis functions and time-frequency windows of the STFT [76].

The definition of the wavelet transform is similar to that of the STFT. It can be 

expressed as:

= 4 =  £ / ( » ) » / ( — ) * .  (5.6)

Here is the basic wavelet, b is a translation parameter that represents a shift in time, 

a (a > 0) is the dilation parameter representing a frequency shift, and (Wwf)(b ya) is the 

wavelet transform coefficient indexed by b and a.
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H(/7
~y/(t) and

ty/{t) must be in i }  and ^(0) = 0. These conditions indicate that the wavelet y/(t) is a 

bandpass filter.

The translation parameter b slides the time window along the entire time axis. The 

time-window function is given by

[b + a t ' - a \ rb + a t '+ a \ ] ,

where t and A  ̂are the center and the width o f the basic wavelet iy(t) , respectively. The

width of this time window is therefore2aA^.

It can be seen that the wavelet transform also works as a frequency windowing of the 

spectrum of the signal. It can be obtained from the Parseval identity that

( » ; / ) ( M )  - (5-8)

Therefore, a slides the frequency window along the positive frequency axis. The 

frequency window is given by

[-(o>; -  a; ) , - (* > ;+ a;>], (5.9)
a a

where and A  ̂ are the center and the width of \j/ , i.e., the Fourier transform o f the 

basic wavelet yr(t), respectively. The width of the frequency window is

therefore *A^. The scale parameter a not only locates the frequency window but also 

determines the width o f this window. To map a  to an exact frequency, one may consider

a -*■ ̂  — ~~ some c > 0. (5.10)
a
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The constant c is called a calibration constant in frequency units. It is dependent on the 

wavelet basis, and can be obtained by applying the wavelet transform to a sinusoidal 

signal with a known frequency.

Now we can see the differences of the STFT and the wavelet transform. As 

mentioned above, the widths of both the time window and frequency windows of a STFT 

transform are rigid. However, for a wavelet transform the value of a decreases when it 

locates a higher frequency £A^, which corresponds to a narrower time window with

width 2aA^, and vice versa. Thus, the wavelet transform has automatic zoom-in and

zoom-out capabilities. This relation is shown in Fig. 5.6. Note that the product of the 

widths of the time-window and the frequency-window remains constant and obeys the 

uncertainty law, i.e.,

A ^ > | .  (5.11)

K-

TtM*

Fig. 5.6. Daubechies wavelet basis functions and time-frequency window of the wavelet transform 
[76].

Eq. (5.6) actually defines an integral wavelet transform (IWT) or continuous wavelet 

transform (CWT). The CWT coefficients can be obtained in a discrete formulation as the 

following equation [77]:
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(5.12)

where x is the time sequence with N  samples, St is the sampling period, and b and b' are 

the indexes. Normally the time window slides along the time axis one sample a time, 

therefore, for a given dilation a there are N  CWT coefficients. It is convenient to compare 

the transformed signal with the original signal if both have the same length. The other 

more important reason is that (forward and inverse) fast Fourier transform algorithm can 

be used to evaluate Eq. (5.12) and yields N  coefficients for a given a simultaneously and 

efficiently [77].

In the calculation of CWT coefficients, the dilation parameter a is also discrete. 

Although the value of a can be arbitrary, it is often chosen to increase as the power of 

two. The details of how to select this parameter can be found in many references such as 

[77]. (Note that the inverse of a is proportional to the frequency.) Such a choice 

guarantees higher resolutions in lower frequencies and lower resolutions in high 

frequencies.

From the process of the CWT calculation, one should see that CWT adds lots of 

redundancies into the transformed signal. More redundancies usually help the user to 

more easily interpret the data. Also, the plot of CWT in the time-frequency space has 

higher resolutions than that o f discrete wavelet transform, which is briefly introduced 

below.

The CWT is often used for applications, such as time-frequency localization, because 

o f  the resolution and redundancy. However, the amount of computation is large. To 

overcome this difficulty, a discrete wavelet transform (DWT) can be used. This can be
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obtained by evaluating the time sequence at the position b = k / 2 J with binary dilation 

a = 2~J, where j  is an integer. It can also be conveniently calculated by utilizing 

quadrature filters (a pair of complementary low-pass and high-pass filters) and down- 

sampling technique (up-sampling for the reconstruction) [78]. The number of DWT 

coefficients is the same as the number of the time samplings, but the calculation of DWT 

is much faster.

In most practical applications, the DWT has a large number of coefficients that are 

zero or in small value if  the wavelet basis set is properly chosen. Therefore, a signal can 

be sparsely represented by its DWT by ignoring these small or zero coefficients. When it 

is necessary, then, the signal can be reconstructed without any substantial loss in fidelity 

by padding zeros to the transformed sequence for the purposes o f the inverse DWT. This 

technique has been widely used for data and image compression. Note that for DWT, 

orthogonal wavelet bases are often used for the convenience o f reconstruction, while such 

bases are not possible to be applied to CWT [79].

5.2.3. Time-frequency localization method for echo separation of OA signals

To compare the wavelet transform and the short time Fourier transform, a clean and 

simple signal taken from our optoacoustic experiments was used to test the Iocalizability 

of the STFT and the wavelet transform. The results show that the wavelet transform 

yields better time-frequency resolution. We apply the wavelet transform to some o f our 

other OA experimental results. We show that, in addition, the wavelet analysis can be a 

powerful tool to identify different acoustic modes within a  solid sample.
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Fig. 5.7 shows an OA signal in time domain and its STFT. The OA signal was the 

result with the diode laser upon a PVC specimen, which has been present in the previous 

chapter. Note that all experimental signals were sampled by the digital scope. This 

chapter deals with the data processing, the absolute value o f the time is not important 

Therefore, all time axes in the figures presented in this chapter by default are labeled by 

the sample sequence unless other units are specified. Also, the frequency axes are not 

calibrated since we are only interested in their relative values. The time sequence that we 

use as an example has 499 samples and includes four acoustic echoes (pulses). The width 

of the time-window for the STFT was 64. This window slides along the time axis one 

sample a time. For the convenience of comparison, power spectra are plotted for all 

transforms. The power spectrum is shown in Fig. 5.7 by the contour plot where the inner 

contour represents the higher power. Another three-dimensional plot of the same STFT is 

shown in Fig. 5.8 for the better visual effect. With the aid of the STFT, the four echoes 

are separated in the time-frequency space.
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Fig. 5.7. An OA time signal and its STFT transform. The time axes are numbered by samples. The 
frequencies are not calibrated. The larger number means the higher frequency. The time window slides one 
sample a time.
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Frequency

Fig. 5.8. Three-dimensional representation of the same STFT that has been shown in Fig. 5.7.

The continuous wavelet transform of the same OA signal is shown in Fig. 5.9 

(contour plot) and Fig. 5.10 (3-D plot). These results are generated using the MoIet-6 

wavelet. The profile of the MoIet-6 wavelet is shown in Fig. 5.12. Note that the number 

at the vertical axis is the level of the dilation. The real value of the dilation parameter a in 

this case is 2LI4, where L is the dilation level shown in the plot. The four echoes in the 

time space are clearly resolved in the time-frequency space.

The contours in the STFT plot (Fig. 5.7) are like rectangles. This is due to the fact 

that the widths o f the time and the frequency windows are fixed. As a comparison, the 

contour in the CWT plot (Fig. 5.9) is like an inverse teardrop. The time width at low
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dilation level (high frequency) is narrow. This is because the wavelet transform has the 

time-window that zooms in for high frequencies and zooms out for low frequencies. This 

example clearly shows that the wavelet transform has better time-frequency localization 

resolutions.

The power o f time-frequency localization o f the wavelet transform can be seen 

particularly in this example by noticing another small but important feature. The dilation 

level of the center contour corresponding to each echo shifts slightly upward for later 

echoes (Fig. 5.9), which means that the center frequency of the echo decreases for later 

echoes. This is physically correct because the acoustic loss is frequency-dependent with a 

higher loss at the higher frequency region. Such a frequency shifting effect is not easily 

seen by the STFT (Fig. 5.7) due to the poor time-frequency resolution. Hence, pulse 

broadening is easily discerned by the wavelet transform method.
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Fig. 5.9. The same OA time signal (Fig. 5.7) and its CWT transform using Morlet wavelet bases. The 
time axes are numbered by samples. The dilation level L can be mapped to frequency by the logarithm
relation log, /  =  c x  2 ’ i/4 , where c is a calibration constant. Therefore, a higher dilation level 
corresponds a lower frequency.
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Dilation Level

Fig. 5.10. Three-dimensional representation of the same CWT shown in Fig. 5.9.

As mentioned earlier, there are many choices for the wavelet basis functions. The 

wavelet used to produce Fig. 5.9 and Fig. 5.10 is Morlet-6. The Morlet-6 is a complex 

wavelet (see Fig. 5.12). As a comparison, the DOG-2 (second derivative of the Gaussian 

function) wavelet (also named Mexican hat) was used to process the same OA signal and 

yielded the results shown in Fig. 5.11. The DOG-2 is a real wavelet (Fig. 5.12). There are 

two main differences between these two wavelet transforms (by Morlet-6 and DOG-2 

wavelets). First, the wavelet transform using DOG-2 wavelet exhibits finer scale structure 

in time space, yet coarser scale in frequency space. Second, the center frequency of the 

same echo from the OA signal is located at different dilation levels in the two plots. This
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is because the calibration constant for the conversion between the dilation parameter a 

and the Fourier frequency is different for each wavelet. The choice o f wavelet basis 

function is really application dependent.
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Fig. 5.11. CWT of the same time signal (Fig. 5.9) but using DOG2 wavelet bases.
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Fig. 5.13 shows the OA signal obtained from an aluminum sample excited by the 

passivation light as well as the CWT of the signal. Compared with the result obtained 

from a PVC sample, the aluminum's OA signal is much more complicated, although both 

samples are excited by the same light source. This complexity comes from the 

coexistance o f both the longitudinal and shear acoustic modes within the alumininum 

sample. Note that the generation mechanisms have been discussed in Chapter II. These 

two acoustic modes mix together in the one-dimensional time space. However, they can 

be clearly separated in the two-dimensional time-frequency space by the wavelet 

transform (the lower plot in Fig. 5.13). The Iongitidinai mode acoustic pulses are wide 

band, which is reflected in the plot where the dilation extends toward level 1. The shear 

mode acoustic pulses are narrow band, and in the plot the dilation only extends to about 

level 10.
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Fig. 5.13. An OA signal from an aluminum sample and its wavelet transform. The longitudinal and 
shear waves are clearly separated in the time-frequency space. The wide band pulses (lower dilation levels) 
are in longitudinal wave mode and the narrow band (higher dilation levels) pulses are in shear wave mode.
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5.3. SIGNAL DENOISING BY WAVELET SHRINKAGE

Signal denoising is one of many successful applications of wavelet transforms. In this 

section the process of denoising will be briefly described, followed by a discussion of the 

advantage of denoising by wavelet transforms. Finally, the denoised signal from the 

optoacoustic experimental result by wavelet shrinkage is presented, and compared with 

the results by other traditional methods.

5.3.1. Principle

The process of removing noise by applying a threshold to the DWT coefficients has 

been summarized by Donoho, who named this method wavelet shrinkage [80]. Assume 

that the noisy signal y  has n samples, i.e., y t = /( f ,)  +oz,.,i = !,...,«; here / ( r f) is the

real signal and zx is a white noise with standard deviation a. To process signal denoising, 

first, one obtains the wavelet coefficients o f the noisy data (the noisy signal are 

preconditioned and normalized to -Jn). Then one applies thresholding to the noisy 

wavelet coefficients. All coefficients whose absolute values are less than the threshold 

t = ̂ /21og{n )a /4 n are set to zero.

There are two ways to deal with those coefficients whose absolute values are larger 

than or equal to the threshold t. For soft-thresholdingt the threshold t  is subtracted from 

each absolute value; while for hard-thresholding, these coefficients keep their original 

values. Finally, one reconstructs the signal using the inverse wavelet transform with the

shrunken wavelet coefficients, producing the estimated (less noisy or noiseless) f ( t ) .
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Note that in this process, forward and inverse discrete wavelet transforms are used for the 

purpose of simple and fast computation.

The foundation of the wavelet shrinkage method lies on the fact that for most 

practical useful signals, only a few DWT coefficients are significant while the remaining 

coefficients are zero or insignificant since almost all the signals have limited bandwidth. 

However, white noise evenly spreads out over all DWT coefficients with small 

amplitude. This is because the white noise has a limited energy content but a wide band 

spectrum. Therefore, the DWT o f a contaminated signal shows several coefficients 

standing out from the rest of the small coefficients. By setting all insignificant 

coefficients to zero, the wavelet shrinkage can effectively suppress the noise and still 

keep the signal’s fidelity.

The behavior of wavelet shrinkage is very different from other traditional denoising 

methods, such as the linear smoothing or the filtering method. The linear smoothing 

method suppresses noise at the expense of significant broadening, and in fact, it erases 

certain features of the signal. The filtering method suppresses noise at a certain frequency 

band but cannot filter out all the noise if  the noise is white. At the mean time, it may filter 

out part of the signal, causing the signal distortion. All these differences are shown in the 

examples given below.

5.3.2. Application to remove noise in OA signals

Noise exists for all practical experimental signals. For a repeatable pulsed 

experiment, such as the pulsed optoacoustic experiment where the acoustic signal pattern 

repeats with the repetition of pumped laser pulses, the best way to remove the random
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noise is to take multiple measurements and get an average from all the acquired signals. 

This can be achieved by using a Boxcar Averager or a digital scope operating in the 

average mode. However, if  the laser repetition rate is very slow, for example the excimer 

and the nitrogen lasers that we used for our OA experiments work at several Hz, it 

usually takes a long time to get a good average. The averaging method is not applicable 

for some applications such as OA imaging in a scanning manner, hi this case, the wavelet 

shrinkage method introduced above can be used to effectively remove white noise 

existing in a single shot.

Here, we use the wavelet denoising technique to process a very noisy OA signal, and 

then compare it with the results obtained by other denoising methods. The averaged result 

from a digital scope will be used as a reference, since it is the closest measurement that 

we can obtain to the real signal.

Fig. 5.14 shows the OA signal obtained from the PVC sample pumped by a nitrogen 

laser. Fig. 5.14(a) is the signal recorded by a single shot and it contains a lot of noise. 

Most of the noise presented in this single shot has been removed by a digital scope 

operating at average mode (at level 256). The averaged signal is shown in Fig. 5.14(b). 

This averaged signal will be used as a reference to compare with the results from every 

denoising method used in this section.
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Fig. 5.14. An optoacoustic signal: (a) a single shot; (b) averaged by multiple shots.
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A. Denoising by wavelet shrinkage

Fig. 5.15 shows the denoising process by the wavelet shrinkage method. The noisy 

signal is plotted in Fig. 5.15(a). It contains 512 samples. The DWT of the noisy signal is 

plotted in Fig. 5.15(d). The DWT also contains 512 coefficients. Note that in this plot the 

vertical axis is the amplitude of the coefficients, and all coefficients are combined and 

plotted along the horizon axis by both time and frequency in a way described below. The 

axis is non-umformly divided into 9 segments. From left to right, each segment contains

2 ,2 ,4 , 8 ,..., 256 coefficients. Each segment covers the whole time range, which means 

that the time sampling rate doubles from one segment to its right neighbor. All 

coefficients within a segment have the same frequency, and the frequency increases with 

the power of two, segment by segment from left to right.

hi order to use the wavelet shrinkage method, one needs to determine the threshold. 

For most practical signals, the variance is unknown. Therefore, one has to use an 

empirical threshold often determined by the visual effect o f the output signal. Fig. 5.15(d) 

shows that the DWT of the noisy signal is also noisy, but all significant coefficients 

appear at the low frequency region. It is quite safe to assume that all nonzero coefficients 

in the second half-region (between indexes 257 and 512, which is the highest frequency 

region) are due to the noise and thus can be shrunk to zero. This is because for our 

experiment (and this is true for many other applications), the signal is over sampled over 

the Shannon sampling limit. Therefore, at least all DWT coefficients in this region should 

be zero. For the best visual effect, the threshold can be set to the maximum magnitude of 

the noisy coefficients in the second half region, hi Fig. 5.15, the threshold has been set to 

1.5x ICT3 for both soft- and hard-thresholding. Both results are visually noiseless.
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Fig. 5.15. The signal before and after denoising: (a) raw signal; (b) signal denoised by soft- 
thresholding; (c) signal denoised by hard-thresholding; (d)-(e) corresponding DWT coefficients to (a)-(c). 
All the vertical scales have a factor of I O'3. The threshold for both denoising is set to be 1.5x 10'3.

However, if the threshold is set too high, some useful information may also be 

removed horn the signal and errors will be introduced in the result. This is because any 

DWT coefficients that are below the threshold, but belong to the real signal, will be 

treated as noise and shrunk to zero. To reduce the risk o f losing useful information, the 

wavelet basis set that most resembles the main feature o f the time signal needs to be used 

to perform the DWT. By using the optimized wavelet, the signal can be transformed into
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a lesser number o f DWT coefficients but with higher amplitudes. For this treatment, the 

Coilet-3 wavelet basis (Fig. 5.16) has been used.
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Fig. 5.16. Coiflet-3 wavelet basis function.

The three results, namely the averaged signal, the one obtained by soft-thresholding 

and the one obtained by hard-thresholding are superimposed in one plot (Fig. 5.17). From 

this figure we draw the following conclusions. First, both thresholding methods are able 

to effectively remove noise and keep the fidelity o f the signal, especially in that the signal 

pulses are not broadened. Second, the result from hard-thresholding maintains the signal 

amplitude while the result from soft-thresholding decreases a little bit in amplitude. This 

is because the coefficients that belong to the real signal shrink by the amount of the 

threshold in the soft-thresholding but they stay unchanged in the hard-thresholding. 

Third, there is a slight distortion of the results from the wavelet shrinkage methods (by 

the threshold t  =1.5x1 O'3). Therefore, as expected, there is a tradeoff between removing 

noise and preserving fidelity o f  the signal.
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To illustrate this tradeoff, we reduced the threshold t to 0.8xl0'3 and repeated the 

denoising process. This result is shown in Fig. 5.18. Since this threshold is not high 

enough to remove all noisy coefficients in the highest frequency region, the recovered 

signals exhibit some spike-like noise. However, the acoustic pulses in these recovered 

signals have less distortion. Although the signal recovered from soft-thresholding has 

attenuation in amplitude, it exhibits a better visual effect than that from hard- 

thresholding. Note that wavelet shrinkage is a nonlinear process. Therefore, even though 

these two results from soft- and hard-thresholding have similar features, one cannot make 

them identical by normalizing one to the other.
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Fig. 5.17. Superimposing the denoising results by three methods: averaging, wavelet soft denoising 
and wavelet hard denoising.
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after thresholding. Both soft- and hard-thresholding are used. The threshold for both cases is set to be 
0.8x1 O'3.
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B. Denoising by linear smoothing

We also used the linear smoothing and filtering methods to remove noise from the 

same testing signal. The linear smoothing method slides a window along the time axis. 

The average o f all samples within this window is used as an estimate for the signal at the 

center of the window. If the smoothing window is too wide, it leads to the distortion 

(broadening) of the signal. If the window is too narrow, it cannot remove very many 

noises. In addition, this method is not effective in removing low frequency noise, since 

the smoothing window is equivalent to a Iowpass filter. This tradeoff is shown in Fig. 

5.19. To generate Fig. 5.19(a), a smoothing window incorporating 15 samples was used. 

Most noise has been removed, but the acoustic pulses are also broadened. In contrast, Fig. 

5.19(b) used a 5-sample window. However, the result is still quite noisy.
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Fig. 5.19. Denoising by (he linear smoothing method: (a) the size of the smoothing window is 15; (b) 
the window size is 5.
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C. Denoising by filtering

Fig. 5.20 shows the denoising results by the filtering method. In this example, a 

lowpass finite impulse response (FIR) filter and a bandpass FIR filter are used to remove 

the noise. The passband for the lowpass filter is [0 0 J 5 tc]. The passband for the bandpass 

filter is [0.l7t 0.257t]. Both filters are able to remove some noise. However, they cannot 

remove the noise within the passband. If the passband is too narrow, the signal will suffer 

distortion. In this example, the bandpass filter results in more distortion. Therefore, this 

method cannot remove any noise that has the same frequency contents as the real signal, 

which is also true for the linear smoothing method.
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Fig. 5.20. Denoising by the filtering technique: (a) filtered signal by an FIR lowpass filter; (b) filtered 
signal by an FIR bandpass filter.
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In summary, the linear smoothing and the filtering methods can only partially remove 

noise. They have difficulty in treating noises whose frequency ranges are within the 

spectrum range of the real signal. However, the wavelet shrinkage can effectively remove 

noise while the recovered signal maintains high fidelity. In our example, this method can 

completely remove the noise outside the OA pulse region even though the noise has a 

spectrum overlap with the acoustic pulses.

The wavelet shrinkage method is a powerful tool only when the signal is white. If the 

noise is not white, high amplitude wavelet coefficients appear in the transform space. 

Then the fixed threshold is not reasonable, and a dynamic threshold is effective if the 

characteristics of the noise are known. The filtering technique may be more convenient in 

some situations. In addition, there is a tradeoff between removing noise and maintaining 

fidelity while selecting the threshold for wavelet shrinkage. For many applications 

fidelity is more important, therefore the threshold should not be set too high, which will 

allow some noise to remain in the signal.

D. Denoising by the hybrid method

Here we propose a hybrid method that combines both the wavelet shrinkage and the 

traditional denoising techniques. We illustrate that by applying this novel technique to the 

same noisy testing signal we are able to obtain better results.

Fig. 5.21 is the denoising result obtained by first applying hard thresholding wavelet 

shrinkage with a threshold t = I.OxKT5 and then by filtering the output from the wavelet 

shrinkage with a lowpass FIR filter whose cutoff frequency is 0.4ir. In this process, the 

threshold used for the wavelet shrinkage is not high enough to remove all noise but it
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maintains high signal fidelity. The remaining spike-like noise is further removed by the 

lowpass filter whose passband is wide enough not to distort the signal itself. Therefore 

the overall quality of the result from these two denoising steps is improved. This can be 

seen by superimposing the result to the averaged signal in Fig. 5.21. The lowpass filtering 

can be alternatively replaced by the linear smoothing. Fig. 5.22 shows such a result by 

utilizing hard thresholding at t = l.OxlO'3, followed by applying a smoothing window 

with size 5 twice to the output from the previous step. This denoising result has the 

similar quality as the first hybrid technique (Fig. 5.21), and both are better than the results 

obtained before (Fig. 5.17 - Fig. 5.20) by using only one denoising method.
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Fig. 5.21. Denoising by the hybrid technique: first wavelet shrinkage (WS) and then filtering.
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Fig. 5.22. Denoising by the hybrid technique: first wavelet shrinkage (WS) and then linear smoothing.

The advantage of the hybrid technique, which to our knowledge is the first such 

application, gives a dramatic improvement in signal quality. This can be seen by the 

appearance of the third pulse, between the two main echoes, in both Fig. 5.21 and Fig. 

5.22. This pulse is in shear mode in the PVC sample while the main pulses are in 

longitudinal mode. Similar to the aluminum OA experiment (Fig. 5.13), both longitudinal 

and shear waves exist in the PVC sample. Previously we neglected this shear wave 

because its amplitude is small and it is not the mam interest o f our research. Also, this 

pulse in shear wave mode is not obvious in the averaged signal from multiple acquisitions 

(Fig. 5.14, Fig. 5.21 and Fig. 5.22). it may be due to the jittering of the trigger for 

acquisition. To show the middle small pulse is in shear mode, we performed the 

continuous wavelet transform of the signal. The time-frequency plot in Fig. 5.23 clearly
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shows that the middle pulse has narrower bandwidth than the main pulses (in longitudinal 

mode). This indicates that the middle pulse might be a shear wave. To prove the 

difference in bandwidths is not caused by the big changes in amplitude, we normalized 

these three pulses to a similar level in amplitude and redid the CWT. The result is shown 

in Fig. 5.24. The time-frequency plot of the normalized pulses has the same signature as 

before, i.e., the middle pulse has narrower bandwidth. This confirms our conclusion that 

the middle pulse is a shear wave.
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Fig. 5.23. The CWT of the denoised signal obtained in Fig. 5.21
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Fig. 5.24. The CWT of the normalized signal.

To conclude this section, the wave shrinkage technique has some advantages over 

other traditional methods in denoising. Soft-thresholding has a better visual effect than 

hard-thresholding, but also reduces the signal amplitude. The choice of the threshold is 

empirical and is a tradeoff between rejecting noise and maintaining signal information. 

We illustrated that the combination of the wavelet shrinkage and the filtering or 

smoothing techniques has better performance for our application.
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CHAPTER VI 

OPTOACOUSTIC APPLICATIONS

As summarized in Chapter I, optoacoustic techniques have been used for diagnostics 

of material properties, such as the optical absorption coefficient, hi this chapter we 

describe the acoustic spectral ratio technique, which is a new method developed during 

the course of this research to determine the optical absorption coefficient of a condensed 

sample. This method utilizes boundary conditions but requires less knowledge of other 

parameters than that required by traditional OA methods. We also present OA results 

performed on biological tissues. We apply the new data processing and diagnostic 

techniques developed in the previous and current chapters to treat the experimental 

results from these tissue samples.

6.1. MEASUREMENT OF OPTICAL ABSORPTION COEFFICIENT BY THE 

ACOUSTIC SPECTRAL RATIO TECHNIQUE

The new method discussed here uses one laser source and detector. One end o f the 

sample is subject to an unvarying boundary condition, while the front end, which is 

irradiated by the laser, is subject to varying boundary conditions. We show below that a 

measurement and comparison of the signals obtained under these varying boundary 

conditions then yields information about the optical absorption coefficient of the material.
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6.1.1. Introduction

The conventional optoacoustic method for obtaining a quantitative value of the 

optical absorption coefficient requires one to have a measurement o f the laser pulse 

energy and the magnitude of the optoacoustic signal. One also needs a value of the 

sample's specific heat, thermal expansion coefficient, density and sound speed.

The absorption coefficient can also be derived from the temporal profile o f the 

optoacoustic signal, by realizing that the spectrum of the acoustic signal is proportional to 

the product of the frequency spectrum of the light pulse and the spatial spectrum of the 

temperature distribution function. The temperature distribution caused by a delta light 

pulse is only determined by the absorption coefficient. Therefore, the absorption 

coefficient can be obtained from the deconvolution o f the OA signal from the known 

laser pulse profile. This deconvolution method even allows one to determine a spatially 

varying absorption coefficient for an inhomogeneous medium [34]. However, a practical 

acoustic transducer will introduce distortion to the signal one measures. The 

deconvolution method will not work if the behavior o f the transducer is not known, 

which is quite true if  it is a commercial product.

Absorption coefficient measurement utilizing a ratio technique was proposed before 

by Terzic and Sigrist [37]. In their method, the amplitude ratio of the OA signal peaks, 

under the rigid and the free boundary conditions, was taken. By taking the ratio, some of 

the common parameters that are required to describe each signal can be canceled in the 

formula. For instance, knowledge o f the temporal profile o f the laser pulse, the energy of 

each pump pulse, the specific heat o f  the sample and the sensitivity of the detector, is not 

needed if  these parameters do not vary during the transition of boundary conditions. This
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ratio technique assumes that the acoustic detector is ideal. A non-ideal transducer can 

affect the locations and magnitudes o f the peaks at both signals in different ways, which 

makes this method inapplicable if  the behavior of the detector is unknown. In addition, 

the method requires the experiment to be done with the rigid boundary, which cannot be 

easily fulfilled in many applications.

The spectral ratio method we propose here compares the spectra of optoacoustic 

signals generated at different boundary conditions. Therefore, the influence upon the 

signals of a non-ideal transducer can be cancelled since the transfer function is the same 

for both cases, hi addition, the rigid boundary is not necessarily required for our 

formulation. Instead, a general boundary together with a free boundary can be used. 

Similar to the peak ratio method, knowledge of many common parameters is not required 

for this new method.

6.1.2. Theory

The spectrum o f an optoacoustic signal, P(a)), can be expressed as [36]

P(aS) = a 1(a)) F(a>) T(aj)t (6 ^

where a is a constant; 1(a)) is the laser power spectrum; F(co) is the Fourier transform of 

the acoustic impulse response o f the sample; and T(a)) is the transfer function o f the 

transducer.

This relationship assumes that the system is linear, and describes the scenario where 

the incident laser (spectral intensity 1(a))) irradiates the sample, whose response function 

is F(co). The latter includes all the effects that account for acoustic pulse generation by
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thermal means. Hence, F(eo) is the response function which incorporates the generation 

of the initial acoustic signal from thermal expansion, as well as the acoustic effects that 

originate from thermal diffusion from the absorption region.

l\co) describes the response o f the detector to the total acoustic signal generated. This 

function will depend on the method of detection employed. For example, the functional 

form of T(co) will be different when one uses optical detection as opposed to piezoelectric 

detection.

The ratio o f the spectra of acoustic signals with two different boundary conditions is

since the other terms in Eq. (6.1) cancel out.

The acoustic impulse response of the sample is its response to an optical delta pulse. 

If one ignores the effects of thermal diffusion that occur subsequent to the initial thermal 

expansion that generates the original acoustic pulse, which is true for most o f our 

experiments, the impulse response can be written as the following (as discussed in 

Chapter II):

Here, to = L / cq is the time it takes for the acoustic signal to travel the length o f the 

sample, at the end o f which is the detector. kr is the pressure reflection coefficient at the 

irradiated end o f the sample. Eq. (6 Ja ) represents the acoustic profile seen at the detector 

end due to the direct traversal of the signal from the irradiated end. Eq. (6.3b) describes 

the acoustic signal that reaches the detector after first having reflected off the irradiated

Pi(co) I Pi((o) = Fi(aj) / Fi(co) (6.2)

(6.3a)
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surface. These components and the complete temporal profile of the signal pulse 

reaching the detector have been shown in Fig. 2.2 in Chapter IL

If one considers the acoustic loss with coefficient /?, Eq. (6.3) should be revised as:

Note that, in general, /? is frequency dependent. Here we assume it is a constant within 

the bandwidth of interest as a first order approximation. For a rigid boundary, the 

pressure wave reflection coefficient at the front end of the sample is kr = 1, while for a 

free boundary kr — -1. hi general, the value o f kr is between -1 and 1, for which case we 

call it a constrained boundary. It is this difference in the reflection coefficients at 

different boundaries that allows one to use the method developed here.

The Fourier transform F(co) of Eq. (6.4) is

The above equation is obtained under the assumption that eac'*> =eaL » I , where L is the 

distance from the absorption surface to the detector. This condition is met for many 

experiments where either L or a  is large. Also, the acoustic dispersion is not considered 

in the above equation, i.e., the sound speed cq is a constant.

Now we can get the spectral ratio by substituting Eq. (6.5) with reflection coefficients 

kri and kri into Eq. (6.2):

(6.4b)

(6.4a)

F(a)) = e~™°e QCq(1 + K ) + fic0{ 1 - kr) + j(Q{ 1 - kr) 
((a  -  0)co -  jco){{a + P)cq + jco) (6.5)

|P,(m)| \acQ (1+fcr,) + ftr0 (1 -  fcrt)+ jgjjl -  kn )|
|P,(©)| |ac0(I +krZ)+ 0co( l - k r2)+Ja>(l-kr2)\ * (6.6)
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The simplest case is to utilize the free and rigid boundaries for a lossless medium. Let 

P = 0, kri — -1 for the free boundary and kri  = 1 for the rigid boundary. Eq. (6.6) is 

simplified to be

Therefore, the absorption coefficient can be obtained from the slope of the plot of

If acoustic loss is considered, Eq. (6.6) can be rewritten as the following equation 

under conditions fttO, kr\ = -land kri= 1.

The optical absorption coefficient in this case can be obtained from the second order 

polynomial coefficient of the best fitting of g  versus to.

In an experiment, the free boundary condition can be very closely approximated by 

exposing the surface of the condensed sample to air. However, the rigid boundary 

condition cannot be easily obtained because it requires the sample to be in good contact 

with a medium which has an infinite acoustic impedance and is transparent to the laser 

wavelength. Here we show that effectively any practical (i.e., constrained) boundary 

condition combined with the free boundary can be used to determine the absorption 

coefficient. This constrained boundary can be made by placing a window material that is 

transparent to the pump laser, such as glass or quartz for our experiments, in front of the 

sample with good contact.

(6.7)

(6.8)
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Substituting the free boundary (kr\ — -1) to the numerator and keeping the 

denominator for the general constrained boundary with reflection kr, the lossless version 

(/?= 0) of Eq. (6.6) can be written as

PA a)

P(*»
2a

(6.9)
J a 2c2(l + kr)z + a 2( l - k r)2

If the value of kr is known, then the absorption coefficient can be obtained from the above 

equation. Alternatively, we rewrite Eq. (6.9) in the following format:

g(a) =
'  P(l0) (1 - K f

Pf ((0)
\  1

4
/

- 1/2

2(0
acQ(\ + kr)

(6.10)

Therefore, a  can be obtained from the slope of the plot g(a>) versus to using a least square 

fitting technique. Note that g((o) is computed by Eq. (6.10) from experimental data P and 

Pf. Due to experimental random errors, the term within the square root may mm out to be 

negative. In practice, frequency regions that contain such "bad" data need to be excluded. 

If a  constant acoustic attenuation is considered, Eq. (6.9) should be rewritten as:

Pf (a>)

P(o>)
4 (o)2+/32c2)

(6.11)
\ja2c2(l + kr)2+ (0 2c2+(o2) ( l - k r)2 '

If one desires to use the least square fitting technique to extract a  from the above 

equation, the following steps can be taken. First, one can plot g(y) versus (o by the 

following equation:

I - y  B - A

where
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Pfjco)
P(<o)

( i - K f

and

d2 [aeoa + k r) + 0co( l - k r) f  
B =

Az = 0 lc l

g(y) is computed from experimental data, and the following parameters k\ and ki are 

obtained from the least square fitting technique:

k  -  A*
1 Bz - A 2 '

and

k - ___[___
2 Bz - A 2 '

Therefore, acoustic attenuation coefficient is obtained by taking the ratio of k\ and fo

P = —  fa- .
cQVk2

Then optical absorption coefficient can be solved from the following equation

a 2cz(l + kr)2 -t-2a0cz( l - k z)
( i - * r)2

(6.12)

The above discussion shows that to measure the absorption coefficient utilizing the 

acoustic spectral ratio technique, one can record the OA signals at the free and 

constrained boundary, respectively, hi addition, one needs to know the sound speed and 

the pressure reflection coefficient at this constrained boundary. Since kr is determined by 

the acoustic impedances o f the two materials forming the boundary, namely the window
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and the sample, one only needs to know the sound speed and the density. Sound speed 

can be obtained by measuring the time interval between optoacoustic echoes o f a known 

thickness. Density can be measured by any conventional methods. Note that usually the 

impedance of the window material is known.

In summary, this new method provides a simple but powerful tool to determine the 

optical absorption coefficient. It does not require knowledge of the specific heat, thermal 

expansion coefficient o f the sample, nor that o f the intensity and temporal profile o f the 

laser pulse. In addition, the response of the transducer and any amplifiers that are used in 

the experiment need not be known. It is especially useful for the measurement of an 

unknown material.

It must be pointed out that there are some limits to the spectral ratio method. First, the 

above derivation is based on a one-dimensional OA generation theory; therefore, it is 

valid only for the case where pump laser can penetrate into the sample by a certain depth 

and directly generate longitudinal OA signal in the laser incident direction through 

thermal expansion effect. Second, in the derivation we did not consider the multi

reflection at the other end of the sample and the window. Therefore, both the sample and 

the window should be long enough that they guarantee that no reflected signal from the 

other ends will mix with the original acoustic pulse. Future work is needed to extend the 

theory to include this multi-reflection effect.

Next, we will use our method to extract optical absorption coefficients from 

published OA experimental data and compare our results with published values o f the 

coefficients. We also apply this new technique to analyze our own OA experiment data 

and get the absorption coefficients o f the sample at different wavelengths.
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6.1.3. Applications

In this section, we first utilize the acoustic spectral ratio method to extract the 

absorption coefficient of water from OA experimental data obtained at the free and the 

rigid boundaries by Sigrist [48]. It shows that our measurement is in good agreement with 

the published value of the absorption coefficient. Then, we use the same method to 

measure the coefficient for PVC at three different wavelengths, where the free and 

constrained boundary are encountered.

A. Analysis of published experimental data

Fig. 6.1(a) shows the OA experimental results from distilled water under the free and 

rigid boundary conditions [48]. The pump was a COz laser at a working wavelength of 

10.6 pm. The pulse width is about 90 ns (our method does not require the knowledge of 

the pulse width). The spectra of these two signals are plotted in Fig. 6.1(b). The published 

value of the optical absorption coefficient of water at this wavelength is 8.7xl04 m*1 [48]. 

If losses are neglected, the spectral ratio method yields a  = 8.5xl04 m*1 using Eq. (6.7). 

This process is shown in Fig. 6.1(c). If losses are not neglected, Eq. (6.9) is used to give 

both a  and p  from the coefficients of the second order polynomial fitting to the 

experimental data. This process is shown in Fig. 6.1(d), where a  was calculated to be 

8.9xl04 m'1 and p  = 53x l03 m*1. To our knowledge, the measurement of P  is too high. 

However, our measurements for a  using the spectra ratio method are in good agreement 

with the publish data.
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Sigrist also did experiments on heavy water (D2O) and gave the reference o f the value 

of a  at 10.6 pm to be 42  xlO4 m'1 [48]. We took his experimental data and applied our 

method to determine c l If acoustic losses are neglected, our method gives a  = 4.3x104 

m_l. If losses are included, then a =4.4x104 m '1. Once again, this shows that the spectral 

ratio method is a reliable technique.

B. Analysis o f our own experimental data

In section A we have applied the acoustic spectral ratio technique to obtain the optical 

absorption coefficient of H2O and DiO. Our results are in good agreement with the 

published data. Now we use this technique to get the absorption coefficient of PVC, 

which is not available in the literature, from our experimental results under various 

boundary conditions and pump wavelengths.

The experiments are briefly described again, although most of the details have been 

given in Chapter IV. The pump light irradiated the PVC sample front surface through a 

glass window. The panametrics piezoelectric transducer was placed at the back of the 

sample to detect the OA signal. Three types of light source have been used to excite the 

OA signal. They are a diode laser at 880nm, a nitrogen laser at 337nm and the incoherent 

light of the passivation mixture of an excimer laser at 773nm. The glass window was 

placed in good contact with the sample to form a constrained boundary. In another 

experiment, the glass window was also inserted to the optical path but not in contact with 

the sample. This formed the free boundary, and guaranteed that the pump light intensities 

are the same for both experiments.
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The sound speed in PVC is 2273 m/s, and the acoustics impedance of PVC is 

3.35xl06 kg/m2/s. The sound speed in glass is 5676 m/s, and the acoustic impedance of 

glass is I4.2xl06 kg/m2/s. Therefore, the reflection coefficient at the constrained 

boundary is kr = 0.62. The thickness o f the glass window was 1.03mm, corresponding to 

a round trip acoustic delay of 800 ns. This delay guarantees that the reflected acoustic 

signal from the open end of the glass will not interfere with the original OA pulse.

Fig. 6.2(a) shows the OA signal from the PVC sample at both the constrained and the 

free boundaries pumped by the nitrogen laser. Fig. 6.2(b) shows the computed frequency 

spectra of these two signals. We ignored the acoustic loss in the PVC sample, since the 

thickness of the sample is 1.5mm. (The calculation is complicated if one considers the 

acoustic attenuation and uses Eq. (6.12).) Therefore, the absorption coefficient or can be 

obtained from Eq. (6.10) by measuring the slope of the fitting line for g  versus frequency 

(Fig. 6.2(c)). The absorption coefficient of PVC at 337nm was measured by the spectral 

ratio method to be a=  8.7xI04 m'1.

Similarly, the absorption coefficient at 773nm was measured to be 3.4xI04 m‘l (Fig. 

6.3), and at 880nm to be 2.8xI04 m*1 (Fig. 6.4).
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frequency, whose slope is used to calculate the absorption coefficient a  by Eq. (6.10). This experiment 
yields a(jI = 337/im) = 8.7x 10*m ‘.
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The differences between our experiments and the ones presented in section A by 

other authors lie in two facts. First, we used a constrained boundary instead o f the rigid 

boundary. Second, the ultrasonic transducer we used is not an ideal device. Theoretically 

the acoustic signal under the rigid or the constrained (when kr>0) boundary has a 

spectrum corresponding to lowpass filters (Fig. 2.3 and Fig. 6.1). However, our 

constrained results have spectra like bandpass filters. This is because the transducer we 

used shows the behavior of a bandpass filter. The advantages o f the acoustic spectral ratio 

technique are that it can utilize the result from a constrained boundary and does not 

require the knowledge of the behaviors of the tranducer (as well as any amplifiers as long 

as they are linear and time-invariant devices).

6.2. OPTOACOUSTIC EXPERIMENTS ON TISSUE SAMPLES

6.2.1. Introduction

In the past few years, many efforts have been made to extend the applications of 

optoacoustic technique to the biomedical area. Such applications include diagnostics of 

optical and thermal properties of tissue, tomography, spectroscopy and therapy 

monitoring [81]. Both in vivo and in vitro OA experiments on real tissues have been 

reported [40,46, 82], and artificial tissue models have also been used [44, 82]. We have 

done some OA experiments on muscle tissues, and some of the preliminary results will 

be discussed in this section.

The main content o f tissue is water (70-95%). Therefore, it is almost transparent to 

visible, near IR and near UV wavelengths. For instance, the optical absorption coefficient 

for muscle at 515nm is 11.2 cm'1, and smaller for other tissues [44]. Often the OA signal
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is too weak to be detected. This feature makes it possible to probe strong absorbing 

targets underneath the tissue surface. On the other hand, the optical scattering of tissue is 

very high (530 cm'1 for muscle at wavelength 515nm), which is quite different from the 

behavior of water. Therefore, water cannot be used as a model for tissue. Instead, the 

solution of milk powder, or gelatine, or Intralipid with proper concentrations can he used 

[44, 82]. Therefore, the depth o f subsurface detection is limited by scattering. In 

references [44, 82], the detectable depth was reported to be up to several millimeters or 

one centimeter.

We have not succeeded in the subsurface detection because of the strong scattering 

and the limited pulse energy of our pump light sources. However, we found that the thin 

connective tissues attached to both surfaces of the muscle tissue exhibit strong absorption 

at the wavelengths of the lasers that we used. We have successfully detected the OA 

signal produced by these connective tissues and identified the differences between these 

two connective tissues.

6.2.2. Experiment

The OA experimental setup for tissue samples that we used is similar to the one used 

for PVC samples described in Chapter IV. The light irradiated the front surface o f the 

sample and the piezoelectric transducer picked up the OA signal at the back. For PVC, 

the transducer was directly attached to the back of the sample with certain pressure to 

ensure a good contact. However, the tissue samples were very soft, and a direct contact 

between the tissue and the transducer results in a distortion o f the tissue and the poor 

reproducibility. This difficulty can be overcome by using a solid buffer to conduct the
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OA signal from the tissue to the transducer, hi addition, although the experiment was 

performed in vitro, it will be closer to the in vivo situation if  the tissue sample is 

immersed in isotonic saline.

Based on the above considerations, we designed a container to hold the tissue sample 

(Fig. 6.5). The dimension of the container is 1.25"xl.25"x0.4". It is made o f aluminum. 

The tissue sample was placed in the container which was filled with isotonic saline. The 

thickness of the bottom is about 0.5mm, corresponding to a round trip acoustic delay of 

about 160ns. Although the multi-reflected acoustic signal within the aluminum wall 

superimposes to the original OA signal (in microsecond scale) generated by the tissue, 

one is able to observe the main profile of the signal, since the interferences were 

relatively small. The interference can be avoided if the aluminum wall is thick enough; 

however, this introduces problems such as acoustic attenuation and diffraction.

The samples we used in our experiments were muscle tissues taken from a rabbit. The 

muscle tissue itself appears transparent to the eye. However, it has thin connective tissue 

layers on both surfaces. These connective tissues are white but show differences amongst 

themselves. For example, one layer, labeled Cl appears lighter (Fig. 6.5(a)), while the 

other visibly distinct layer (Fig. 6.5(b)), is labeled the C2 layer.

The OA signals that we observed were generated by these two connective tissues, 

because they absorbed the pump energy before the light reached the muscle tissue. In our 

experiments, the C2 layer generated a larger OA signal than the C l layer did.
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Fig. 6.5. The aluminum container and the tissue sample: (a) Cl layer on top; (b) C2 layer on top.

In order to measure the optical absorption coefficient using the spectral ratio 

technique developed in the first section o f this chapter, we also inserted a glass window 

to the optical path before the light hit the sample. The glass window was either in contact 

with the sample to form a constrained boundary or not in contact with the surface to form 

the free boundary, hi our experiments, the OA signal generated by the tissue was wide 

enough that the multi-refiected echoes from the glass window also superimpose onto the 

original signal. Strictly, the equations that we developed in the first section need to be 

modified to include these reflected echoes. Here, we still use these equations to process 

the data to get at least an estimate of the absorption coefficient, since the influence of 

these echoes is relatively small.

Next, we will present the OA experimental results on tissue samples by the nitrogen 

laser and the passivation light of the excimer laser. We will also compare the difference 

between the OA signals generated by the Cl and C2 connective layers.
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6.2J. Results and discussion

Fig. 6 .6  shows the OA signals obtained from a tissue sample with dimensions of 

about lcmxlcmx0.4cm. The pump is the nitrogen laser at 337nm. Fig. 6 .6 (a) is the 

results generated by the Cl connective tissue under both the free and the constrained 

boundary conditions. Fig. 6 .6 (b) shows the results by the C2 layer. From Fig. 6 .6 , it can 

be seen that the C2 connective tissue generated stronger OA signals than the C l layer did, 

which indicates that the optical absorption in the C2 layer is higher than that in the Cl 

layer. This can be proven from another comparison. The width of the OA pulse generated 

by C2 is narrower than that generated by C l. According to the theoretical analysis given 

in Chapter H, the narrower the OA pulse is, the larger the optical absorption coefficient. 

Note that all signals in Fig. 6 .6  have pulse widths in microsecond scale, which are wider 

than the pulse widths (about 100ns) from experiments on the PVC sample pumped by the 

same nitrogen laser. This implies that the absorption in tissue is weaker than in PVC at 

wavelength 337nm.
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Fig. 6.6. Optoacoustic signals obtained from a tissue sample pumped by the nitrogen laser at 
wavelength 337nmr (a) signals generated by the Cl layer under the free and constrained boundaries; (b) 
signals generated by the C2 layer under the free and constrained boundaries.

To get a quantitative measurement of the optical absorption coefficient, we apply our 

spectral ratio technique to the experimental data. Only the first echo o f each signal in Fig. 

6 .6  is needed to obtain the absorption coefficient. Fig. 6.7 shows the process of 

measuring a  for the Cl connective tissue. Because of the weak absorption, the signals are 

quite noisy (Fig. 6.7(a)). We first applied the wavelet shrinkage method developed m
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Chapter V to remove noise. The clean signals are shown in Fig. 6.7(b). Then we used the 

spectral ratio method to obtain a. The processing yields a ( X =227nm) = 2 .2 x 10Jm'1.
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Fig. 6.7. Determining the optical absorption coefficient of the Cl connective tissue at wavelength 
337nm: (a) noisy time signals at both boundaries; (b) denoised signals by wavelet shrinkage method; (c) 
spectra of the denoised signals; (d) best fitting for the parameter g  versus frequency, whose slope is used to 
calculate the absorption coefficient a  by Eq. (6.10). This experiment yields a(A = 337rtrrt) = 2.2x 10J m'1.

The signal to noise ratio o f the signals generated by the C2 layer is higher. We 

directly use the ratio technique to process data, which yields a(A. = 3 3 7 nm) = 5 .8  x I0 3m't. 

As a comparison, the coefficient for PVC at 337nm that we obtained in the previous 

section was 8.7x 104 m'1, which is one order of magnitude larger than the tissue.
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These measurements confirm the conclusions made from the above qualitative 

discussion, i.e., the absorption coefficient o f the C2 tissue is higher than that o f Cl, and 

both coefficients are smaller than that for PVC.
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Fig. 6.8. Determining the optical absorption coefficient of the C2 connective tissue at wavelength 
337nm: (a) time signals at both boundaries; (b) spectra o f these two signals; (c) besting fitting for the 
parameter g  versus frequency, whose slope is used to calculate the absorption coefficient a  by Eq. (6.10). 
This experiment yields a(A  = 337ran) = 5.8 x 10J mT1.
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We used the passivation light from the excimer laser and repeated the experiment on 

the tissue sample. The conclusions were similar to those obtained by the nitrogen laser. 

However, due to the strong scattering property of the tissue and the high energy of the 

passviation light, some of the incident light was scattered by the tissue sample, then 

reflected by the sidewall of the container and absorbed by the aluminum bottom wall. An 

OA signal is hence generated by the bottom wall. The detected signal is the combination 

of the OA pulse generated in the tissue, and the OA pulse generated in the aluminum 

wall, together with their echoes. These two different types of signals can be identified by 

the difference of the arrival time. In Fig. 6.9(a), pulse A is generated by the C2 

connective layer and pulse B is its first echo. Pulse I (not displayed in Fig. 6.9(a)) is the 

O A pulse generated by the scattered light onto the aluminum bottom. Since it takes a very 

short time (about 80ns) to arrive at the transducer, this pulse is buried by the RF noise 

from the discharge o f the excimer laser. In this work, we do not use this pulse, since its 

echoes (pulse 2 and 3) can be clearly seen.

To illustrate that pulses A and B and pulses 2 and 3 are generated by different 

mechanisms, we apply the continuous wavelet transform to the combined signal, hi the 

time-frequency space (Fig. 6.9(b)), these two types of pulses are separated not only in 

time but also in frequency. The pulse generated in the aluminum and its echoes have 

higher frequencies.
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Fig. 6.9. The OA signal obtained from the tissue sample under the free boundary and its continuous 
wavelet transform. The signal is a mixture of OA pulses generated by the C2 layer (pulses A and B) and the 
aluminum wall (pulses 2 and 3). They can be clearly identified in the time-dilation (frequency) space.

Finally, we tried an OA experiment on a multi-layered tissue sample. This sample had 

two thick muscle layers with the thin connective layer in the middle. We expected a 

strong OA signal to be generated in the connective layer. However, such a signal was not 

observed. This is probably because of the strong scattering and the limited pump energy 

available. Therefore, not enough light energy was absorbed in the connective tissue. 

However, we did not see an additional reflection at the connective layer while the 

acoustic wave propagated in the sample. This implies that the acoustic properties of the 

connective layer are the same as those o f the muscle tissue, although they exhibit large 

differences in the optical absorption.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



190

CHAPTER VH 

CONCLUSION

This dissertation has comprehensively discussed the generation, propagation and 

detection of optoacoustic signals by the absorption of energy from optical pulses in solid 

samples. We also have adapted several data processing techniques that utilize the Fourier 

and wavelet transforms. The extension of wavelet transform technique to optoacoustics 

is, to our knowledge, new. In addition, a novel method, the spectral ratio method, has 

been developed to measure the optical absorption coefficient of highly absorbing media. 

This extension has one big advantage over the similar method (i.e., the peak ratio 

method) currently in use, namely, there is no need to ensure that the very difficult 

experimental condition of a rigid boundary must always be maintained. The application 

of the pulsed optoacoustic technique on biological tissue samples has been investigated.

This work dealt mainly with optoacoustic generation through thermal expansion in 

the laser incident direction, which can be described by a one-dimensional generation 

theory. The initial pressure pulse within the solid sample induced by a laser impulse has 

an exponentially decaying profile that is only determined by the optical absorption 

coefficient. The OA signal from a practical laser can be theoretically obtained through the 

convolution theory given the boundary condition and the laser pulse profile. There are 

two limiting cases for which one can get a quick estimate of the OA signal. If  the laser
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pulse width is very narrow, then it can be considered as a laser impulse and the OA 

pressure is simply the impulse response. If the laser pulse is very wide, then the OA 

pressure follows the profile of the laser pulse (for the rigid boundary) or the derivative of 

the laser pulse (for the free boundary).

The optoacoustic signal is always accompanied by the thermo-acoustic signal that is 

generated due to thermal diffusion in the solid. We have examined the relevant physics, 

as well as developed a numerical method to show the conditions under which these two 

acoustic signals decouple. We found that the condition 1 / a » D / c 0, i.e., the acoustic

signal initiated at the surface has moved out of the absorption region when its 

corresponding heat source spreads out o f the same region, is critical for the decoupling. 

This condition applies for most of our OA experiments.

The indirect OA signal in the surrounding fluid of the solid sample is generated by 

the heat diffused across the solid-fluid boundary. We applied the same numerical method 

used for the thermo-acoustic signal in the solid to calculate this indirect signal. The 

indirect pressure signal turned out to be similar to the profile of the laser pulse but with a 

long, slowly decaying tail due to the thermal diffusion in the fluid.

Experimentally, we have used a piezoelectric transducer in contact with the sample to 

detect the direct OA signal. The experimental results have been modeled by two methods, 

namely the electrical equivalent circuit and the fast Fourier transform methods, which 

took into account the multi-reflections at each boundary and distortion o f  the signals 

caused by the detector. We also investigated a non-contact method for acoustic detection 

utilizing an optical probe beam. This beam refraction method does not require a 

penetration o f the probe into the sample, nor a smooth and highly reflected sample
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surface, and hence has considerable potential o f applications in non-intrusive 

measurements. We have been able to use this method to detect the indirect OA signal in 

the fluid and matched the experimental results with the theoretical ones.

Acoustic pulses are often used to measure the thickness o f a specimen from the time 

interval between echoes. We developed a method to get this time interval at the 

frequency domain by taking the Fourier transform o f the echoes.

The wavelet transform gives us a novel tool to analyze and process OA signals. This 

technique transforms the signal from the time domain into the two-dimensional time- 

frequency space with optimized resolutions. We have demonstrated that the wavelet 

transform is extremely useful in identifying pulses from different acoustic wave modes or 

those generated by different sources in one signal. We believe that this is the first such 

use of wavelet transform techniques in this field. We also applied the wavelet shrinkage 

method, which is based on the discrete wavelet transform, to effectively remove white 

noise presented in OA signals.

Finally, we performed pulsed OA experiments on biological tissue samples. Some of 

the previously developed techniques, such as the wavelet shrinkage and the spectral ratio 

methods, have been used to process the experimental data and to measure the optical 

properties of the tissue.

This work dealt only with a one-dimensional OA generation theory. A three- 

dimensional model is needed for the case where surface expansion is dominant. The 

essential physics o f this three-dimensional model have been described in this dissertation. 

However, more quantitative work is required.
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We also described mechanisms of acoustic losses in the medium and pointed out that 

these losses generally are frequency dependent. However, in the calculations we simply 

used an effective attenuation coefficient that is frequency independent. To get a better 

fitting between the experimental and theoretical results, losses should be separately 

considered classified by their mechanisms, and the frequency dependency should be 

included.

The non-linear influence from the knife-edge on the probe beam for non-contact 

detection of acoustic waves has not been theoretically analyzed. Such an analysis has not 

been found in literature either. To better model the signal from the photodiode, this effect 

must be considered. Alternatively, a position sensor with a fast rise time is needed. In 

addition, we have not been able to observe the OA signal transmitted from the solid 

sample using a probe beam. This is because first, the detection system has not been 

optimized and second, the signal itself is not strong enough. Further effort can be made to 

improve the sensitivity so that this non-contact probe technique is more powerful and 

useful.

We have done some OA experiments on tissue samples. OA applications in the 

biomedical area have attracted much interest in recent years. The work on tissue 

presented in this dissertation is just an introduction. More investigations can be used in 

the applications, such as biomedical imaging and laser therapy.

Our work can also be extended for other applications including in-situ monitoring of 

laser ablations or other material treatments by pulsed lasers.

The OA technique can be used to detect discontinuities between two optically 

different but acoustically identical media. This idea came to the author during the writing
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of this dissertation. No experiments have been done yet. New applications can be found 

utilizing this new technique. Such applications include the monitoring of discontinuities 

in liquids and solids where the addition of a small dopant may drastically change the 

optical absorption coefficient but leave the acoustic impedances unchanged, hi such 

situations, although one would not expect multiple acoustic reflections at the interface, 

the acoustic signature could carry extremely useful information about the discontinuity 

that may not be easily obtained by any other method. Taken together with the fact that 

optoacoustics can be a used in a non-invasive mode, and that there exist many tunable 

lasers with varying pulse widths, the technique could spur a large number of scientific 

and practical applications.
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APPENDIX A

TRANSMISSION LINE MODEL FOR ISOTROPIC

SOLIDS

la this appendix, we will show that an isotropic acoustic medium is equivalent to an 

electrical transmission line. First, the general acoustic field equations and the constitutive 

equations are introduced. Then, the transmission line equations for an isotropic medium 

are derived from the field equations. Finally, the solutions to the transmission line 

equations are given. Most of these details can be found in Auld’s book [73].

1. ACOUSTIC FIELD EQUATIONS AND ISOTROPIC SOLIDS

The acoustic field equations are:

where T  is the stress tensor, v is the particle velocity and F is the long range force acting 

upon unit volume. Eq. (A.1) and (A.2) parallel the Maxwell equations, where T and v are 

equivalent to electric field E and magnetic field H respectively, t  and s are elastic 

constants of the material. Elastic constants, generally in a matrix format, relate field

(A. I)

and

(A.2)
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variables through the constitutive equations. For example the constitutive equation for the 

stress tensor T and the strain tensor is S:

T = c:S + n :|r -8t
(A3)

where c is elastic stiffness and q is the viscosity coefficient. Both are elastic constants, 

and they are related to the other two constants by s = c' 1 and x = c'lq.

The stiffness matrix for an isotropic solid is:

[c] =

cll C12 C\2 0 0 0

C12 cll C\2 0 0 0

C12 Cn C12 0 0 0

0 0 0 C 44 0 0

0 0 0 0 C 44 0

0 0 0 0 0 cu

(A.4)

In the above matrix there are only two independent elastic constants because of the 

following relation:

C|, = Cj| 2cy . (A.5)

In the literature, another two constants, namely the Lame constants A and ft, are often 

used to describe an isotropic solid. They are related to the elastic constants by

A = c12, (A.6 )

and

/z = c« . (A. 7)

For a lossy isotropic medium, q  satisfies similar conditions as those for c. There are 

therefore three different damping coefficients for an isotropic medium (qt t. 7 tz 744)- Only 

two of them are independent. The condition to reduce the degree o f freedom is

72 = 7 i - 2 7«- (A-8 )
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2. TRANSMISSION LINE MODEL

la an isotropic medium, both longitudinal and shear waves can propagate along any 

direction. Assume z axis is the propagation direction for a plane wave. The derivatives 

d d
— and —  of a field variable are zero. The first non-source acoustic field equation for an ex dy

isotropic medium can be written in a matrix format as follows:

0 0 0 0 d 0
X  

t .;0 0 0 d
&
0 0

0 0 d
dz
0 0 0

T;
t 5

- &
J*.

= P a

> /
—

V . F z

(A.9)

The second field equation, if t  = 0, can be rearranged and written as

cn C12 C12 0 0 0‘

0 
o

1

X
C12 Cll CX2 0 0 0 dv.
Ct2 *12 CII 0 0 0 dz

dz

_ d t.;
0 0 0 cu 0 0 ~ a T*
0 0 0 0 C44 0 dvx Ts
0 0 0 0 0 4̂4. dz X

_  0

(A. 10)

Eqs. (A.9) and (A.10) break down into three independent sets:

ars dvr
a ’ " ' - *

dvr
'4 4

ar5
& a

(A.I1)
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\d ^
&

'•U

= p -

do y
&

duy

~a

a

and

dT, do, „
 =  p — —  —  F
a  F a

do, dT,
Cn & a

In addition, there are three individual equations

do.d ll
a =c"-&  •

and

dTz do,
~ a =c'2~ a '

dr* «— L= o .

(A.I2)

(A. 13)

a

Each of the sets of Eqs. (A. 11-13) is equivalent to the electrical transmission line 

equation (refer to the circuits shown in Fig. 1)

dV a
~z~ — - L — +- oa  a  sa „dv 

a

(A-I4)

with the following analogies (Table A.I):
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Table A.I. The analogies between the acoustic transmission line and the electrical transmission line.

Acoustic Transmission Line Electrical Transmission Line

Variables/Constants Symbols Units Variables/Constants Symbols Units

Negative Stress -Tj Nnfz Voltage V V

Particle Velocity Ui ms' 1 Current I A

Body Force per Unit 

Volume
Ft Nm' 3

Source Voltage per 

Unit Length
” , V

Mass per Unit 

Volume
P kgm' 3

Inductance per Unit 

Length
L H/m

Inverse Stiffness 

Coefficient
m2N*1

Capacitance per Unit 

Length
C F/m

Inverse Damping 

Coefficient
m2N*ls' 1

Conductance per 

Unit Length
G Q 'V

The last pair ( 7 ^  and G) in the list appears when the loss is considered. In this case, 

the transmission line equations for both acoustic and electrical variants are

d  d
& (- T‘ )= - p a u' +F‘ 

( CJ, + 'i!» T l ' X  =  1C l OZ Cl

(A. 15)

and

cV M
—  = - L — +vs 
dz 6 t (A.I6 )
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Fig. A. I. Transmission line section of infinitesimal length.

3. TRAVELING WAVE SOLUTIONS

In the source-free medium, the traveling plane wave o f the transmission line can be 

solved from Eq. (A. 14) to be

V = V0e‘̂ \  (A. 17)

and

where

k = Q}( LC 1/2

I +• jeaC /  G

The characteristic impedance of the line is defined as:

V Lea L t/,
Z0 = 7  = — = ( - m +ja>CIG)v\

By analogy, the traveling acoustic plane wave in a  source free medium is:

— Tj=  AeJ(tt**iz>,

(A. 18)

(A.19)

(A.20)

(A.21)
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and

where

k = co( P l^  - r~ - (A.23)
I +  JO iT jjj /  Cy

The acoustic characteristic impedance is

(AJ4)

The intention to bring in this transmission line representation o f an acoustic medium 

in our work was to: first, understand more deeply the physics o f the acoustic field; and 

second, use PSPICE software to model the propagation of acoustic waves in media. Note 

that for a lossy acoustic medium, its equivalent transmission line has the lossy resistance 

in series with the shunt capacitance. However, PSPICE uses a lossy transmission line 

model where the lossy resistance is in parallel with the shunt capacitance. Therefore, the 

existing lossy transmission line in the library of the PSPICE cannot be used to model a 

lossy acoustic medium, hi this work, we have used the FFT method to incorporated 

acoustic losses in the samples.
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APPENDIX B 

MATLAB PROGRAMS

The following are the list and descriptions of some Matlab scripts that have been used 

to produce partial results and figures presented in this dissertation. Detailed descriptions 

and comments can be found in the scripts.

1. Analy_th.m: Calculate the temperature distribution in a solid initiated by a laser 

pulse using the RG model.

2. Ave.m: a function. Return the linear smoothing result of a signal with the 

specified window size.

3. Denoising.m: Apply wavelet shrinkage method with both hard and soft 

thresholds to denoise an experimental signal.

4. H2o_a.m: Determine the optical absorption coefficient of water at wavelength 

1 0 .6 pm from experimental data by other authors using our spectral ratio 

technique.

5. Pvc_ajn: Determine the optical absorption coefficient of PVC material at 

wavelength 337nm from experimental signals under the free and an constrained 

boundary using the spectral ratio technique.

6 . Scope.m: a function. Read a data file generated by the Lab VIEW program 

scope.Ub. Return the time, signal, and comments in three arrays.
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7. Stft.m: Calculate the short-time Fourier transform and continuous wavelet 

transforms with Morlet wavelets and DOG2 wavelets of an experimental 

signal.

8 . Tline712jn: Apply the FFT method to calculate the OA signal generated in a 

two-layer PVC sample (the first layer is 1.0mm and the second layer is 0.5mm) 

by the Nd:YAG laser and detected by the 20MHz Panametrics piezoelectric 

transducer. Compare the calculated result with the experimental one.

9. T_wave.m: Numerical solution to the temperature distributions in the solid and 

in the adjacent fluid caused by a laser pulse with finite pulse width.

10. Yag715.m: Apply the FFT method to calculate the OA signal generated in a 

1.5mm thick PVC sample by the NdrYAG laser and detected by the 20MHz 

Panametrics piezoelectric transducer. Compare the calculated result with the 

experimental one.
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APPENDIX C 

LAB VIEW PROGRAMS

The digital oscilloscope (Tektronix TDS 380) can communicate with a computer 

through either a GPIB interface or a serial cable. Lab VIEW programs have been written 

to provide the user interface to control the digital scope through a computer. All 

Lab VIEW programs are stored in a library named "scope.llb”. Two main applications are 

included in the library, one utilizing the GPIB interface and the other for the serial cable. 

All the rest files in the library are Sub Vis used in the two applications.

For a complete reference of commands for the communication and control of the 

digital scope, some of which have been used in these Lab VIEW Vis, one should see the 

user manual -  "TDS 340A, TDS 360 & TDS 380 Digital Real-Time Oscilloscopes 

Programmer Manual (Tektronix No. 070-9442-02)".

Program List and Description of "scope.llb”

1. SCOPE_GPIB.VI, Main VL Application utilizing the GPIB interface.

2. SCOPE_SERIES.VL Main VL Application utilizing the serial cable.

3. asc2bin.vi, SubVI, Interpret the string returned from the scope with a header, and 

extract real data into a  numerical array.
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4. channeLvi, SubVI, Based on user’s channel selection, generate a command to set an 

active channel and a command to obtain the current time axis setting for the selected 

channel.

5. Extract Numbers.vi, SubVI (Provided by National Instruments), Convert numbers in 

a string into a numerical array.

6 . GPIB Error Report.vi, SubVI (Provided by National Instruments), Report GPIB 

errors.

7. GPIB_read.vi, SubVI, Send a read command to the scope through the GPIB interface.

8 . GPIB_write.vi, SubVI, Send a write command to the scope though the GPIB 

interface.

9. Ioad_graph.vi, SubVI, Load a data file from disk and display the waveform.

10. select_to_save.vi, SubVI, Write the user selected portion of a waveform into an array 

(ready for save).

11. serial_read.vi, SubVI, Send a read command to the scope through the serial cable.

12. serial_write.vi, SubVT, Send a write command to the scope through the serial cable.

13. smooth.vi, SubVL Smooth the waveform using a rectangle smoothing window whose 

size is specified by the user.

14. Ver_scale.vi, SubVL Get the vertical scale for the current channel.
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