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ABSTRACT

MODELING AND SIMULATION OF PHOTONIC CRYSTAL FIBERS AND 

DISTRIBUTED FEEDBACK PHOTONIC CRYSTAL FIBER LASERS

Feng Wu 

Old Dominion University, 2005 

Director: Dr. Sacharia Albin

A photonic crystal fiber (PCF) is comprised of a solid or air core surrounded by 

periodically arranged air holes running along the length of the fiber, which guides light in 

a fundamentally new way compared to conventional optical fibers, affecting almost all 

areas o f optics and photonics. To analyze the dispersion and loss properties of PCFs, a 

two-dimensional (2D) finite-difference frequency-domain (FDFD) method combined 

with the technique of perfectly matched layer (PML) is developed. The propagation 

constant and loss can be obtained with accuracies in the orders of ~10'6 and ~10‘3, 

respectively.

The Bragg fiber is a kind of PCF with alternate layers surrounding a solid or air core. 

To improve the performance of the above algorithm, a ID FDFD method in the 

cylindrical coordinates is proposed to fully utilize the rotational symmetry property of the 

Bragg fiber. In addition to improving the accuracy, this method reduces the computation 

region from 2D to a straight line, significantly relieving the computation burden. A 

second method, called Galerkin method, is also developed under cylindrical coordinates. 

The mode fields are expanded using orthogonal Laguerre-Gauss functions; and the 

method is accurate and stable. However, it cannot do the loss analysis.

For photonic-band-gap-guiding PCFs, the properties of the confined modes are 

closely related to the band structures of the cladding photonic crystals. Therefore, a third

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FDFD method using periodic boundaries is developed in a generalized coordinate system. 

Various lattice geometries are analyzed in the same manner, and the results are 

comparable to those obtained by the plane wave expansion method which is commonly 

used in the literature.

Finally, a theoretical model for analyzing distributed feedback (DFB) PCF lasers has 

been presented. Two structures are investigated: PCFs with triangular lattice (TPCF) and 

PCFs made of capillary tube (CPCF). The modeling and simulation of erbium-doped and 

erbium/ytterbium (Er/Yb) co-doped DFB lasers are aimed at finding suitable PCF 

geometry to achieve low threshold and high output power. Various steps involved in this 

model are: 1) the properties of PCFs are analyzed by the FDFD method; 2) the Bragg 

grating is investigated by coupled mode theory; 3) the coupled wave equations are solved 

by transfer matrix method; and 4) Er atom is modeled as a three-level medium while 

energy transfer between Yb and Er atoms is considered for Er/Yb co-doped fiber.

It is found that a CPCF laser with a smaller mode area is useful for lower-threshold 

applications and both of CPCF and TPCF lasers with larger mode areas are suitable for 

high-power operation. Simulation results for Er/Yb co-doped DFB PCF lasers have 

shown lower threshold and much higher output power and efficiency than Er doped 

lasers. Furthermore, it is found that the two outputs of a DFB PCF laser are identical 

when the phase shift is located in the middle of the grating. The output power is a 

function of the position of the phase shift, and one output could be increased by 46% at 

the expense of the other when the phase shift moves away from the center to an optimum 

position. This new DFB fiber laser has huge potential in communications, spectroscopy, 

and sensing applications.
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1

CHAPTER I 

INTRODUCTION

In this chapter, the background and scope o f the research are introduced. In section

1.1, a brief introduction about photonic crystal fiber (PCF) is given first, followed by an 

overview on the methods for modeling PCFs. Due to the unique symmetry property of 

Bragg fibers, the modeling methods are different and explored in this section also. In the 

last part of section 1.1, the development of the distributed feedback (DFB) PCF laser is 

introduced. In section 1.2, the scope of this research is described.

1.1. An overview

1.1.1 Photonic crystal fiber

With the advent o f the photonic crystals or photonic band gap (PBG) materials [1,2], 

a new concept in fiber optics called photonic crystal fiber (PCF) has come to the forefront 

in fiber research. Photonic crystal is an artificial material with periodically arranged 

structures that allow the researcher to tailor the dielectric constant. Within the photonic 

crystal, light propagation with certain wavelengths is forbidden, similar to a Faraday 

cage. The cladding of a PCF consists of periodically arranged air holes running through 

the whole length o f the fiber. Light is confined to a core area which is created for a 

specific purpose. For example, the core can be an air hole to guide high-power beams or 

a solid material for an index-guiding PCF. Fig. 1 shows two different confinement 

techniques, by index difference and PBG, allowed in a PCF. The index-guiding PCF has 

a solid core as shown in Fig. la. The PBG-guiding PCF may have an air core as shown 

in Fig. lb.
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(C) (d)
Fig. 1. Photonic crystal fibers with solid core (a) and air core (b) and microstructured fibers with high 

numeric aperture (NA) (c) and high nonlinearity (d). The SEM images are taken from Blaze Photonics.

The concept of photonic crystal fiber was proposed by Russell et al., and the fiber 

was fabricated in 1996 [3, 4], This new fiber is made of single material unlike the 

conventional fiber in which the core is doped with germanium to get higher refractive 

index. The light in PCF may still be guided by total internal reflection (TIR) as with 

conventional step-index fiber; but due to the unique structure of the cladding, the index- 

guiding PCF has its own unique properties. The light guiding mechanism may also be 

different than conventional fiber due to the creation of a PBG in cladding area, creating

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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forbidden wavelength bands. In this case, wavelengths within the PBG will be totally 

reflected by the cladding and confined in the core.

Because of their new structures, PCFs have several properties that conventional 

fibers can not provide, for example: 1) endless single-mode [5], 2) ultra-flattened 

dispersion [6, 7], and 3) super-continuum generation [8, 9]. Air-guiding PCF, where light 

is guided in the air region [10-13], has opened a new area that attracts more and more 

researchers. With the development of the PCF, some new types of fibers have been 

proposed for some special applications as shown in Figs. lc and Id. These fibers were

made by using a single material which is the same as PCF, but the air regions in the

cladding may not be periodically arranged. All of them can be called microstructured 

fiber (some prefer the name, holey fiber).

1.1.2. PCF Modeling methods

To understand the properties o f PCFs and design different PCFs for different 

applications, we need to model them first. In general, modeling PCFs takes advantage of 

the fact that the E and/or H field can be decomposed into longitudinal and transverse 

components in waveguides with invariant index profiles along the z-direction. The field 

confined to the fiber can be written as:

| ( x ,  y , z , t )  = (x, y ) + (x, v)}exp[- j{cot -  /fe)] ( 1 . 1 )

where % denotes E or H field, and the subscripts t and z denote, respectively, the

transverse and longitudinal components. /? is the propagation constant.

The full-vectorial Helmholtz equations can be obtained by substituting Eq. (1.1) into 

Maxwell’s equations:

(v,2 + kin2 -  p 2 )e, = -V, (e, • V, In n2) (1.2a)
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(v2 + k W  - P 2)h , = (V, x H,)x  V, ln«2 (1.2b)

(V? + kin1 -  p 1 )e2 = jpEt • V, In n1 (1,2c)

(v2 + k2n2 -  P1 )H Z = (V ,//z + j p H ,)■ V, Inn1 (1.2d)

The Helmholtz equations allow us to draw several important conclusions: it is possible to 

form an eigen-value problem using the transverse E or H components since Eqs. (1.2a-b) 

only contain the transverse components. However, this is not true for the z-components 

since they are coupled to the transverse components. When the index change is small and 

the coupled items on the right-hand side are omitted, (which is the scalar approximation), 

all four equations become the same, and an eigen-value problem can be formed for any E 

or H component.

In holey or microstructured fibers, the index contrast of the materials is generally 

high compared to the convention fiber, hence the scalar wave-analysis methods are not 

accurate to predict their propagation properties, and a full-vector approach is required. So 

far, a few full-vector methods have been used to characterize microstructured fibers, such 

as the plane-wave-expansion method (PWM) [6, 14-17], localized function method [18- 

21], beam-propagation method [22-25], fmite-element method (FEM) [26-31], and finite- 

difference method (FDM) in time domain [32-37] or frequency domain [38-40]. 

Specifically, a highly accurate semi-analytical multipole method [41] has been developed 

to model fibers with circular air hole inclusions. A brief review of these methods is given 

below.

The PWM for PCFs is an extension of modeling for photonic crystals. It assumes an 

infinite, periodic index profile and treats the unit cell or supercell by applying the Bloch 

boundary (periodic boundary) conditions. The eigen-matrix is a full matrix and the
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complexity is the same as the PWM for photonic crystals. It is adequate for index-guiding 

fibers with many periodic air holes in the cladding, however, the artificial periodic 

boundary condition and supercell approach are not very suitable for many real fiber 

structures with a finite number of air holes.

The localized function method is based on Galerkin’s method and has been widely 

used for waveguide analysis, both for scalar and vectorial problems. This method applies 

a set of localized orthogonal functions, such as sine/cosine [42], Laguerre-Gauss [43, 44] 

(for a one dimensional waveguide), and Hermite-Gauss [16, 18, 19, 21] (for the 2D 

problem), to approximate the unknown mode fields of the localized modes. When the 

mode is far away from the cut-off or well-confined, the mode fields can be approximated 

using tens or hundreds of functions. These methods generally involve integrations, which 

are computationally intensive, and convergence is generally a problem.

The FEM [26-31] is a powerful numerical tool for waveguide problems. It often 

combines the beam propagation method (described below) or simply solves the 

Helmholtz equation in the frequency domain by discretizing the region of interest into 

triangular cells, which is able to represent fine curved structures by denser cells. Hence, 

FEM can provide high accuracy, but the complexity of the implementing the algorithm is 

generally high.

The FDM using Yee’s mesh [45] is popular for electromagnetic problems. A 

compact-2D scheme is often used for waveguides invariant in the propagation direction. 

In the scheme, the derivatives in the propagation direction are analytically calculated. 

Compared to FEM, FDM is much easier to implement; yet, it offers a comparable 

accuracy. The FDM approach includes both a time domain (FDTD) and a frequency
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domain (FDFD) method. The compact-2D FDTD [32-37] method solves the eigen- 

frequency for a given propagation constant, and therefore is unable to process material 

dispersion. The FDFD approaches include those based on solving the Helmholtz equation 

[38, 39] or Maxwell’s equations [40] directly.

In practical holey fibers with air hole inclusions, the confinement (by either index 

guiding or PBG guiding) is not perfect due to the finite cladding; hence, the confinement 

loss is a significant characteristic of microstrucured fiber. It has been calculated using 

several methods, including the semi-analytical multipole method [41], Fourier expansion 

method [46], and FEM with anisotropic perfectly matched layers (PMLs) [28]. PWM and 

Hermite-Gauss methods have not been used for leakage loss calculations.

1.1.3. Bragg fiber Modeling methods

Fig. 2 schematically shows the cross-section of a Bragg fiber. The cladding consists 

o f alternate layers with high and low refractive indices. The Bragg fiber was first 

analyzed by Yeh et al. [47]. Since then, several numerical approaches have been used to 

analyze the modal properties in Bragg fibers [47-52], among which, the transfer matrix 

method (TMM) is most common. It obtains the band gap by searching for the fast 

increasing solutions [49]. The increasing numerical errors from layer to layer make it 

difficult to obtain the eigen-modes. In Ref. [50-52], periodic alternate layers were 

approximated by planar Bragg stacks using an asymptotic approximation of Bessel 

functions [50-52]; therefore, Bloch theorem can be used to overcome the weakness of 

transfer matrix method.

Another popular method for analyzing the Bragg fibers is the method of Chew [53] 

where 2x2 matrices are used rather than 4x4 as in TMM. In both methods, Bessel
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functions are used to represent the fields in each homogeneous layer and continuous 

boundary conditions for the tangential fields are employed to solve the Maxwell’s 

equations. Unfortunately, these methods are not suitable for structures with 

inhomogeneous layers.

Refractive
index

Fig. 2. Schematic diagram to show the cross-section o f the Bragg fiber.

The FDTD method was also used to analyze Bragg fibers [54], A proper initial field 

is needed to excite the specific modes, and a certain amount of iterations is required to do 

the Fourier transform, thus making the FDTD analysis tedious and time-consuming.

1.1.4. Distributed feedback PCF lasers

PCF is finding applications in both linear and nonlinear fiber optics fields. One of the 

most important applications in nonlinear fiber optics is the fiber laser. Continuous-wave 

(CW) single-frequency lasers are used widely in telecommunication, spectroscopy, and 

sensing. By introducing Bragg gratings into the fiber core, erbium (Er) doped fiber lasers
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are a good alternative to semiconductor lasers. Among these fiber lasers, phase-shifted 

DFB fiber lasers as shown in Fig. 3 are attractive due to compatibility with current fiber 

technology, compact size, reliability, and narrow linewidth.

End pumped

U  Ll ------------- J ----------► L2 •*

Fig. 3. Schematic diagram o f a distributed feedback fiber laser. A phase shift is introduced in the grating.

In recent years, both theory and applications have increased quickly to exploit those 

properties that cannot be provided by standard step-index fiber. One of them is that PCF, 

with properly designed parameters, can be single mode at wavelengths from ultraviolet 

(UV) to far-infrared (FIR) [5]. This property improves the pumping efficiency of the 

DFB fiber laser.

Conventional DFB fiber lasers are generally pumped by semiconductor lasers at 980 

nm. The laser operates at a wavelength in the long-haul fiber’s third communication 

window around 1550 nm. Since the pump propagates in multimode, certain amount of the 

pump power enters the cladding, while the fiber laser is essentially confined to the core. 

The overlap of the intensity distributions between pump and signal is poor. For PCF, both 

the pump and the signal operate in single mode, thus the overlap is highly improved and 

better pumping efficiency can be achieved.

Another important feature useful to fiber lasers is that the mode area of PCF could be 

adjusted in a relatively wide range while still ensuring single-mode operation [55]. Fiber
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lasers with small mode areas are interesting for low-threshold operation, whereas lasers 

with large mode area could yield high power.

By incorporating an ytterbium (Yb) doped core into a PCF, the first Yb-doped PCF 

laser was demonstrated at the University of Bath in 2000 [56]. This proved the huge 

potential of PCF for fiber laser applications. One year later, a group in Southampton 

University reported the first mode-locked Yb-doped PCF laser [57]. A Yb-doped fiber 

laser with double claddings was shown in the same year [58]. The double-cladding design 

provided efficiencies over 80% and output powers above 1 W. In 2002, an application of 

PCF in a femtosecond, Yb-fiber laser was demonstrated [59]. This fiber laser utilized the 

anomalous dispersion of PCF at 1 pm to form solitons. In 2003, a 2.3 m long, air-clad, 

Yb-doped large-mode-area PCF laser generated an output power Up to 80 W with a slope 

efficiency of 78% [60]. The first experimental report on a distributed Bragg reflector 

(DBR) PCF laser was presented by J. Canning et al. who employed two-photon 193 nm 

radiation to fabricate two Bragg gratings into the PCF [61]. Very recently, an Er-doped 

DFB PCf laser was demonstrated by the same group [62],

To date, there is a lack of numerical models that are capable of optimizing the DFB 

PCF laser design. Only one paper has proposed a model to simulate DFB PCF lasers [63]. 

Unfortunately, Er/Yb co-doped fiber lasers were not considered in the paper. Due to the 

small absorption cross-section of Erbium at 980 nm, a few cm-long fiber does not allow 

sufficient pump absorption, which consequently leads to low output power for Er-doped 

DFB lasers. On the other hand, Er/Yb co-doped DFB fiber lasers could obtain much 

higher output powers owing to the high absorption cross-section of Yb atom at 980 nm.
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Thus, Er/Yb co-doping is widely used in fabricating fiber lasers. It is necessary and 

meaningful to do more work on the modeling and simulation for this new DFB PCF laser.

1.2. Scope of research

The goal of my research is to find a model which is simple and suitable for different 

types o f PCFs. With the model combined with the coupled mode theory, the transfer 

matrix method, and the gain models for Er and Yb media, DFB PCF fiber lasers are 

simulated to find proper geometry and parameters for PCFs to achieve low threshold or 

high output power.

Compared with the other modeling methods discussed in the previous section, the 

FDFD method is appealing for several reasons: 1) material dispersion and material loss 

are easy to be incorporated into FDFD, 2) no second order derivatives are required, 3) the 

method is fast and accurate, mathematically simple and straightforward, 4) all six fields 

are obtained from the transverse E or H field, 5) different boundaries such as the Bloch 

boundary (periodic boundary) for PBG calculations [64-66] can be readily applied, and 6) 

sparse techniques can be used to reduce memory requirement and computation time. In 

chapter 2, a FDFD method combined with the PML technique is proposed for analyzing 

the dispersion and loss properties of PCFs.

The general method proposed in chapter 2 for PCFs is not efficient to analyze Bragg 

fiber due to the unique symmetry property. By fully utilizing the rotational symmetry 

property, another FDFD method is proposed that is combined with the PML technique in 

cylindrical coordinates. This method dramatically reduces the computational burden by 

simplifying the problem from two-dimensional (2D) to one-dimensional (ID). The FDFD 

method proposed for Bragg fibers is discussed in chapter 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

Since PBG-guiding PCFs guide light based on PBG effect, a FDFD method in a 

general coordinate system to calculate the band structures of photonic crystals is 

proposed. The details are demonstrated in chapter 4.

Finally, the DFB PCF lasers are modeled and simulated in chapter 5. The output 

characteristics of both Er/Yb co-doped and Er-doped DFB PCF lasers are analyzed by 

solving the classical coupled-wave equations [67] using the transfer matrix method [68]. 

The Er medium, in this case, is modeled as a three-level system. For Er/Yb co-doped 

medium, the energy transfer between Yb and Er atoms is considered
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CHAPTER II 

MODELING OF PHOTONIC CRYSTAL FIBERS

Photonic crystal fibers have been attracting more and more interests as they offer 

design flexibility in controlling the mode propagation properties. These fibers have some 

extraordinary properties, such as endless single mode propagation, special dispersion, and 

high or low nonlinear effects. Air-guiding fibers such as the air-core photonic band gap 

fibers or Bragg fibers are also of considerable interest. Reviews of photonic crystal fibers 

can be found in [69-71] and the references therein.

In this chapter, the compact-2D FDFD approach described in [40] for optical 

waveguides based on directly solving the Maxwell’s equations is employed to include the 

calculation of mode leakage loss due to the finite cladding. By applying the anisotropic 

PML layers, both the dispersion and loss properties can be evaluated in a single run. The 

method preserves all the advantages discussed in the overview section in Chapter I and is 

simple and straightforward. The curved profile at the media interface is studied carefully 

to increase both the accuracy and convergence of the complex propagation constant. The 

analysis method is given in section 2.1; a PCF with a single ring of air holes are 

numerically analyzed in section 2.2 along with the averaging technique at the media 

interface. Section 2.3 gives the conclusion and discussions.

2.1. Analysis method of FDFD with PML

The leakage loss of a mode can be represented by the imaginary part of its complex 

propagation constant. To model the leakage, an open boundary condition has to be used, 

which produces no reflection at the boundary. The PML is so far the most efficient 

absorption boundary condition for this purpose. The split-field PML proposed by
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Berenger [72] which is often used in FDTD algorithm cannot be applied in frequency 

domain methods such as the FEM and FDFD methods since it introduces non- 

Maxwellian equations. The equivalent nonsplit-field anisotropic PML [22, 73-79] has 

been proposed instead to simulate the open environment in these applications. The 

Maxwell equations for optical waveguide with anisotropic PML boundaries are expressed 

as:

j k 0s e rE = V x H  

-  j k 0s{irH  = V x E

s =

Sy/Sx
s x / s y

SxSy

(2.1)

(2 .2)

For exp(-jcot) convention which is used in this chapter:

, S ,  = 1 - (2.3)
J ( D E 0 J ( O E 0

where a  is the conductivity profile.

In the compact-2D scheme for waveguides, the z-derivatives are replaced by 

analytical expressions using Eq. (1.1), and other derivatives are replaced by finite 

differences in Yee’s mesh. Therefore, the curl equations (2.1) can be expressed in a 

matrix form:

(2.4a)
Sy f Sx £ rx \ E x 0 ~ j P l v y ' Ux

-A S x j  s  y £ ry Ey = j p l 0 ~Vx H y

SxSy£rz l E z . r y y Vx 0 J l z .

Sy / ^ x  Hrx H x 0 - j p l U y ' \ E X ~

A Sx / S y  Hry H y = j p i 0 - u x E y

s xs yf^rz A - U y Ux 0 1E X.

(2.4b)
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where the U and V are sparse matrices which are obtained in the same way as in [40, 64] 

using a zero boundary outside of the PML layers. There is no need to treat PML in a 

special way as in split-field scheme.

For simplicity, we assume:

£ rx =  s y / s x  £ rx 5 £  ry ~  s x j s  y  £ ry > £  n  =  s x s y £ rz ( 2 - 5 )

and

P 'rx = £ y / s x H rx  ,  P 'ry = S x / £ y  P r y  > P 'rz =  £ x £ y P r z  (2 -6 )

Substituting Eq. (2.4a) into Eq. (2.4b) and eliminating Hz as in [40], an eigen-value 

problem can be obtained for Ht:

Q xx Q xy  

Q yx Q yy

and similarly for Et:

Hx
= P ‘

Hx
H„

r p  p  i* xx 1 xy

P P
' E x '

E u = p 2

i

yx yy y . l  y j

where:

and

Pa  = n'v Vy n ' - ' U y + Uxe ' - Xvxe'rx + k \ ^ ' rx + k ? U Xe ’~x {vxVy -  Vy Vx \ i '~ xU y 

Pxy = + U xs ' - xVye'r y + r f U xs ' - [ {vy Vx - V xVy }M’- ]Ux

pyx = -p'rxvx̂ u y +uy£’: y xs’x +kQ1uy£'r:'{vxvy -v yvx]M'r:]uy

Pyy = n'rxVx^ V x + * o V , 4 y  + U y ^ V y K y  + k ? U  yS ?  { v / x ~ VxVy ^ ~ lU x 

Q x x  =  £ ' r y U y £ ' n V y  +  V x f l ^ U x j l ' rx  +  f a ' ^ ' r c  +  t f W n  X U  y  ~  U y U x

Q Xy  =  - e ' r y U y t n X  +  Vx ^ U y ^  +  k ? V x P n  ^ y U x  -  V x U y  ] s ' - ' V x

Qy x = - £[xU xe ^ V y + V n ' - ' U xM'r x + k ? V yfi ' - ' ^ xU y - V yUx \ '~ ' Vy

(2.7)

(2 .8)

(2.9a)

(2.9b)

(2.9c)

(2.9d)

(2.10a)

(2.10b)

(2.10c)
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In the absence of PML media, the equations given above are reduced to those 

obtained in [40]. Hence, we can validate our results by setting the thickness of PML 

layers to zero.

The waveguide is encompassed by PML layers followed by a layer of perfect electric 

conductor (PEC) or zero boundaries. The modes leaking out of the fiber will be absorbed 

efficiently by the PML with very small reflections; hence, the effect of the artificial 

boundary on the modes in the PCF will be minimized (especially for those well-localized 

guided modes).

2.2. Implementation of FDFD method

2.2.1 The example fo r  analysis

The PCF example in [41] is used in this chapter since the analytical results using 

multipole method are available for comparison. The PCF has a single ring of air holes (6 

holes) in glass fiber. The parameters used are: the lattice constant a = 6.75pm, the air 

hole radius r -  2.5pm, and the refractive index of the glass is 1.45. The material 

dispersion is omitted since it is trivial to include it in a compact-2D FDFD scheme. 

According to the multipole method, the accurate effective mode index at wavelength 

1.45pm would be 1.445395345+3.15xlO'8i.

This PCF has a symmetry of C6V (six-fold rotation symmetry and at least one plane 

of reflection symmetry), and the computation region can be reduced using the symmetry 

properties by applying a combination of PEC and PMC (perfect magnetic conductor) [80]. 

The PCFs with such symmetry supports eight mode classes. Fig. 4 shows the fiber profile 

and a quarter of the whole region used for computation of the third and fourth mode
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classes, which are degenerate pairs with a 90-degree rotation symmetry including the 

fundamental mode. Glass material is assumed to extend uniformly to infinity, and PML 

layers are used outside the computation region with a 2nd-order power law profile. The 

computation region is chosen to be 1.5a along both x and y directions and the thickness 

of the PML layers is 10% of the thickness of the inside area along x or y direction.

Zero180

PML
160

HO

120

100

PEC

20 40 60 8D 1Q0 120 140 160 180
x

Fig. 4. The PCF under study. A quarter o f  the PCF is used in calculation, which can obtain the third and 

fourth mode classes with a 90-degree rotation symmetry.

The computation region is discretized by a 2D Yee’s mesh. The curved interface 

crossing a cell is generally approximated using a staircase scheme or averaged using the 

effective index scheme. The averaging technique is shown to be very effective in 

increasing convergence and accuracy as in [40]. Considering two different media in the 

cell, the average dielectric constant in the cell can be evaluated as:

£  =  £ a f  +  £ b ( l ~  f )  ( 2 - 1 1 )

w here/is the fraction of the first material sa.
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By applying the boundaries shown in Fig. 4, we obtained the U and V matrices

' - 1  1 

- 1  1

i  - i

1 - l

,  V  =  —
- 1  1 

- 1

'  b y i  - l  

l

- 1 l

(2 . 12)

- 1 1

- 1  0

■ 1 

- 1  ■.

1

Ax - 1 0

- 1  •.

1

- 1

, V , - 1 - 
0 ,

0

0

- 1  1

(2.13)

where Ax and Ay are mesh size in x and y directions, respectively.

2.2,2. Convergence property

Fig. 5 shows the relative error of the calculated complex effective mode index of the 

fundamental mode with different number of grids. The real part of the effective mode 

index converges quickly to an accuracy of 10'5~10'6 even if a coarse mesh (for example, 

30x30) is used; the accuracy is sufficient to obtain group velocity dispersion and other 

parameters. However, the imaginary part converges rather slowly with a relative error in 

the range of 10’1 ~ 10'2 with almost 30% relative error using a 30x30 mesh. Though it 

converges to the true value with a fine mesh, the slow convergence is still not satisfactory.
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roajC£

- 0.3

250100 150
N

200

Fig. 5. The relative error o f  the calculated complex mode index o f  the fundamental mode. The y-axis is the 

relative error o f  the real and imaginary part o f  the mode index o f  the fundamental mode. Note the different 

scales o f the two y-axes.

2.2.3. Averaging technique fo r performance improvement

We found that the slow convergence of the imaginary part is due to the improper 

averaging technique at the interface of the two dielectric materials. It can be greatly 

improved using a more reasonable averaging technique at the interface. Our averaging 

scheme is shown in Fig. 6. en , Sry and srz are the averaged dielectric constant of the cell 

located at the same position as Ex, Ey and Ez.
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<
Fig. 6. The six field components and the discretization o f  the transverse index profile in the x-y plane. The

across the cells, and the dotted cells show the integration plane for Ex and Ey respectively.

First, we check the averaging technique using Ampere’s Law (the curl equation):

The integration area is the cell formed by the four surrounding H components as 

shown in Fig.7. It shows the intersection of the curved interface on the integration 

surface. In each of these surfaces, the E component is tangential to the interface and will 

be continuous across it, and the average of the E field is used for the value at the cell 

center. Taking Ez as an example:

E and H components are in red and blue colors respectively. The orange line denotes the curved interface

(2.14a)

(2.14b)

(2.14c)
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— (^ £ zAxAv)= <jH ■ dl and ez = fea + (l -  f)c h (2.15)

A
►

y •  Ez

Fig. 7. Calculation o f  Ex, Ey and Ez using Ampere’s law. The orange line denotes the dielectric boundary 

in the integration plane. From left to right are the integration cells for Ex, Ey and Ez respectively.

For ex in yz plane and ey in xz plane, the averaging is easy to do since the boundary 

is parallel to z direction and the integration cell shrinks to a line, which is shown in Fig. 6 

as the dotted cells.

Ex and Ey in the xy plane as shown in Fig. 6 are not tangential to the dielectric 

interface, and therefore will not be continuous across the dielectric boundary. As in Fig. 

7, when the integration surface for Ex moves along x in the cell on the xy plane, the 

interface will shift, and similar is the case for Ey. Since Ex and Ey are the average field 

values of the cell in xy plane, another average has to be taken and the averaged dielectric 

values are [37]:

=

=

1 ac+Ax_  r _______________
Ax *  eaf(x)+eb(l-f(x ))

dx
-l

_ f _______
Ay Jy eaf(y)+ eb(l- /(y ))

dy

(2.16)

(2.17)

The average rule described in Eqs. (2.11, 2.16-2.17) could also be derived as the 

classical rules for the evaluation of effective dielectric constants as described in Milton’s
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book [81]. The integration can be approximated well using a denser subcell mesh along x 

or y as the two dashed lines shown in Fig. 6. The same averaging procedure can be 

applied to magnetic materials with a profile of pr(r) and our FDFD algorithm is also 

applicable for these materials.

Since our averaging technique (Eqs. (2.15-2.17)) satisfies Ampere’s Law everywhere 

across the boundary, we introduced it to reduce the possible spurious modes by finite 

difference scheme. Surprisingly, it is found to be very effective to improve the accuracy 

and convergence of the imaginary part. The same fiber is calculated again with this 

averaging technique and the results are shown in Fig. 8 and Table 1.

x 10's J3.03

0.02

- 0.01

.02
200 250150

N
100

Fig. 8. The accuracy and convergence o f  the complex effective mode index using a more reasonable 

averaging technique. Note that the scale o f  the right y-axis is at least an order o f  magnitude smaller than the 

corresponding one in Fig. 5.
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The convergence and accuracy of the real part shown in the Fig. 8 are similar to 

those in Fig. 5 which was obtained using the previous averaging technique. However, the 

convergence and the accuracy of the imaginary part are increased at least by one order of 

magnitude, with an error of 2% for a very coarse 30x30 mesh. The accuracy can be 10'3 

for a moderately fine mesh.

Table 1. Calculated mode index ofthe fundamental mode. The accurate value is 1.445395345 + 3 .15x l0 '8i 

(by multipole method in [41])

N Real Imaginary N Real Imaginary

30 1.4453331 3.101x10'8 140 1.4453896 3.169xl0‘8

40 1.4453537 3.176xl0'8 150 1.4453915 3.176xl0'8

50 1.4453810 3.230xl0'8 160 1.4453914 3.172x10'8

60 1.4453807 3.148xl0'8 170 1.4453914 3.174xl0’8

70 1.4453841 3.166xl0‘8 180 1.4453913 3.170xl0'8

80 1.4453827 3.139xl0'8 190 1.4453920 3.174xl0"8

90 1.4453852 3.139xl0’8 200 1.4453927 3.173xl0’8

100 1.4453884 3.160xl0'8 230 1.4453932 3.177xl0'8

110 1.4453897 3.141 xlO'8 260 1.4453929 3.173xl0‘8

120 1.4453895 3.166xl0'8 300 1.4453937 3.178xl0'8

130 1.4453894 3.171xl0‘8

The converged imaginary part is still 1% larger than the accurate value, and it is due 

to the finite computation region. We have also varied the computation region to 1.8a and
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2.0a, and the systematic error has been found reduced at the cost of increased 

computation.

2.2.4. Mode field

Fig. 9 shows the calculated fundamental mode and 2nd-order mode of the mode class 

3 and 4 in the holey fiber. These modes are well confined by the single ring of the air 

holes and show the symmetries as discussed above. Once Hx and Hy (Ex and Ey) are 

solved, the other components can be obtained directly using Eqs. (2.4a-b).

H > 2 * V

150

100

50

150 150

o@o100 100

100 150100 150 5050

150

100

100 15050 50 100 150 50 100 150

Fig. 9. The mode field patterns o f  the fundamental mode (top three) and 2nd-order mode (bottom three) in 

the degenerate mode class 3 and 4.

2.2.5. Effect o f  dispersive and lossy/gain materials

The effect of dispersive material on the group velocity dispersion can be easily 

obtained by any algorithm including this method that solves eigen-value problems for the 

mode propagation constants at a given wavelength. This is achieved by replacing the
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dielectric constant with a wavelength dependent one. In addition, the total dispersion can 

be estimated using the sum of material dispersion and waveguide dispersion.

The propagation loss/gain induced by lossy/gain media is also o f interest in a 

waveguide since it is important for long haul transmission or laser applications. The 

compact-2D FDFD method is also capable of solving it, and no additional work is needed 

except that the real dielectric constant is replaced with a complex one whose imaginary 

part represents the loss/gain of the media; the calculated propagation constant would 

reflect the material loss. To separate the leakage loss from the material loss/gain, the 

PML layers are removed, leaving only the zero boundaries outside the computation 

region. The material loss in PCF has been analyzed in [82] using the Hermite-Gauss 

method and here we just verify their results for a standard fiber (a=2.2pm, cladding 

index=1.458, core index=1.475+in, and X= 1.55 pm). The results are shown in Table 2. 

Our FDFD is in excellent agreement with the localized function methods.

Table 2. The complex mode index with a lossy core material

n; 1(P 1(T 1(T2

Scalar [82] 1.465045+7.433 lx l  0‘6i 1.465037+7.4294x 10‘4i 1.464308+7.6918xl0‘3i

Vectorial [82] 1.464993+7.3805xl0'6i 1.464985+7.3835xl0'4i 1.464256+7.6446x 1 O'3 i

FDFD 1.464981+7.3752x 10'6i 1.464972+7.3782x 10'4i 1.464241+7.6398xl0'3i

2.2.6. Spurious modes

One problem encountered in our method is the introduction of spurious modes. It is 

known that some spurious modes are from the lack of tangential continuity for the finite 

difference of the curved dielectric boundaries [37], However, we did not observe such
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kind of spurious modes using our proper averaging technique. A major cause of the 

spurious modes in our method is the cladding modes due to the zero boundary or PML 

outside. Since the PML and zero boundary still reflect a very small part of energy back to 

the inside region, an artificial waveguide between the boundary and the air holes is 

formed. These modes are easily identified as spurious since they have much higher 

leakage loss. Fig. 10 shows the mode patterns of some spurious cladding modes obtained 

in our calculation. These modes are confined between the boundary and air holes and 

have very small power portions in the core region.
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Fig. 10. Some spurious cladding modes created by the artificial waveguide between the PML + zero 

boundary and the air holes. These modes are weak and highly lossy.
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2.3. Conclusion and discussions

In conclusion, we have used the compact-2D FDFD algorithm based on the direct 

solution of Maxwell’s equations to analyze leakage loss by introducing the anisotropic 

PML layers. It is found that the curved interface should be averaged according to 

Ampere’s Law in order to achieve a high accuracy and fast convergence in both the 

dispersion and leakage loss. Spurious modes are generated in the cladding area due to the 

artificial waveguide between the absorption boundary and the air holes. This method is 

highly accurate both for loss and propagation constant analysis; and both material 

dispersion and material loss can easily be incorporated into it.

This method is generally applicable for both index-guiding and band-gap-guiding 

PCFs, and not limited to PCF. But, its drawback should be pointed out that the dimension 

of matrices in this method is N2xN2, therefore the computation burden dramatically 

increases for large computation region. This situation happens when we investigate the 

loss property with the number of rings of air holes. However, the computation cost can be 

greatly reduced for certain type of PCF, e.g. the Bragg fiber which has circular symmetry.
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CHAPTER III 

MODELING OF BRAGG FIBERS

Confined modes in Bragg fibers were first analyzed by Yeh et al. [47]. Recently, 

these fibers have attracted much interest because of their extraordinary properties [48- 

52]. Low loss and tailorable dispersion have been achieved in the case of air-core Bragg 

fiber [54, 83]. High power guiding is possible with reduced nonlinear effects [84]. These 

fibers can support a truly single mode in a low-index air-core, leading to reduced 

absorption loss, material dispersion and nonlinear effects [48], The guiding of light in the 

low-index core is due to the photonic band gap produced by the periodic cladding, 

instead of the total internal reflection.

To date, there is no report about using localized function method to analyze the 

Bragg fibers under cylindrical coordinates. This inspired us to investigate a Galerkin 

method suitable for this purpose. In section 3.1, we propose a full vectorial Galerkin 

method to treat Bragg fibers or any circular symmetric fibers with arbitrary index profile. 

However, we found it cannot fully solve all the problems on Bragg fibers, e.g. the loss 

due to the finite number of alternating cladding layers. Therefore, following the same 

way in the previous chapter, we study the FDFD method again for Bragg fibers under the 

cylinder coordinates. The details of this FDFD method are presented in section 3.2. In 

section 3.3, standard step index and parabolic graded-index fibers are used first to verify 

the validity of this method. Subsequently, losses and field distributions of several air-core 

Bragg fibers are analyzed and compared with the results obtained by Chew’s method and 

TMM method; it is followed by dispersion analysis of high index core Bragg fibers with 

different core-index profiles. Section 3.4 provides the conclusions ofthe chapter.
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3.1. Galerkin method

The Galerkin method is stable and accurate, which makes use of a set o f orthogonal 

functions to approximate the guiding modes. In Ref. [85-88], the Galerkin method is used 

to solve the scalar wave equation for circular fibers with low index contrast. When index 

contrast is high, a full-vector treatment is needed.

3.1.1. Formulation

The full-vector Helmholtz wave equations for transverse fields under cylindrical 

coordinate can be expressed as [89]:

Guiding modes in circular symmetric fibers are classified as TE, TM, HE and EH 

modes. Equations given above can be simplified for TE and TM modes since they have 

only (Hz, Hr, E^) and (Ez, Er, H,),) components respectively. The hybrid HE and EH modes 

are not considered here.

For TE modes, 2^(r,^) = f{ r )  and Eq. (3.1b) becomes:

(3.1b)

(3.1a)

(3.1c)

- f + f o V 0 (3. Id)

(3.2)

For TM modes, H^(r,^>)= g(r) and Eq. (3.Id) becomes:
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The fiber is assumed to have an infinite uniform cladding, where all fields of guiding

finite everywhere and zero when r - » co, the mode fields can be approximated using a set 

of decaying orthogonal functions. This method is similar to Fourier transformation of the 

field, and our task here is to find the coefficients of each harmonic.

We assume that the core radius is a (from the origin to the cladding), and the core 

includes all microstructures. The index profile o f the fiber is n(r). The refractive indices 

o f the core and cladding are nc0 and nd (rico could be chosen arbitrarily if the core has 

micro-structures).

We define a dimensionless parameter:

where a  is an arbitrary positive number, which affects the convergence, accuracy and 

computation time. In our computation, a  is chosen to be a. Also, we define normalized 

profile function h{r), V number and normalized propagation constant b:

modes vanish in the region far away from the core. Since all fields of guiding modes are

x (3.4)

(3.5)

V2 could be negative if nco is chosen to be less than n^. h(r) is always zero in the cladding 

region. Inserting both Eqs. (3.4) and (3.5) into Eqs. (3.2) and (3.3), we get:

(3.6)

x  1------1— ( -------------------
dx dx 4 < 7 x

d 2g dg 1 [ V 2h - V 2b 1
 I---

dx 4
(3.7)
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Expanding the mode fields using orthogonal mth order (m=l for TE/TM modes) 

associated Laguerre-Gauss functions [90],

N - 1 N - 1

f ( x ) = J ] a i<pi{x), g(*)=  (3.8)
/=0 /=0

where rp(x) is the Laguerre-Gauss function, N  is the number of Laguerre-Gauss functions 

used.

Using the derivative and recurrence relation of Laguerre functions, Eq. (3.6) 

becomes:

~2  E a<I*” 2(J + 2i + M  + ' Z a'h(yf* / * (*)= a>(P>M  (3-9)v  i=o i=o i=o

Multiplying both sides of Eq. (3.9) by <Pj(x)  and integrating in the whole space from 0 to

oo, Eq. (3.9) forms a standard eigen-value problem [M][A]=b[A], where [A] is the 

coefficient vector and [M] is a square matrix with a dimension of'NxN.

The infinite integration can be evaluated analytically using the orthogonality of

Laguerre-Gauss functions. We only need to calculate the finite integration of h ^ f p ^ d x .

For TE mode, [M]=[Mi]+[Ni], and the matrix elements are given as below:

M\ ( / , / ) = -  [(2f + /w + 1)] (3.10)

M, (/ +1,/') = + lX* + m + 1) (3-n )

M l ( i - \ , i ) = - ~ y l i ( i  + m) (3.12)

N i ( * > j ) =  aj h ( j x / a ) p ^ j d x  (3.13)
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For TM modes, the term in Eq. (3.7) relating to d Inn2/dx  will become a finite 

integration from 0 to a. For step-index profiles, the integration becomes summations at 

the interfaces. In that case, [M]=[Mi]+[Ni]+[N2], and [N2 ] is given as below:

N 2 0'» ■/) = Z  A ln "  | Ll + " y 1 X % -  V i(i + \<Pj
2 \ 2 i + m + \ - x

(3.14)

where Xj indicates the locations of interfaces where index changes abruptly, and Ainn2 is 

the difference of Inn2 at the interfaces.

3.1.2. Step-index fibers

First, we verify our method using standard step-index fibers since their analytical 

solutions are available [89]. For a fiber with low index contrast, we use these parameters: 

1100= 1.455556, rici=l.'450745, a=4.0pm, A,=1.0|tm. For a fiber with high index contrast, 

these parameters are used: ncO=2.0, nci=1.0, a=4.0pm, X.=1.0(a.m. The values of 

normalized propagation constants b as defined in Eq. (3.5) obtained by both analytical 

and Galerkin methods (jV= 100) are listed in Table 3.

Table 3. Normalized propagation constant b for two step-index fibers with low and high index contrast.

Analytical Galerkin Relative error

TE: Low index constrast 0.169538 0.169553 8.8476x10’5

TE: High index contrast 0.992596 0.992488 -1.0881xl0’4

TM: Low index contrast 0.168882 0.168958 4.5002x1 O'4

TM: High index contrast 0.992341 0.992313 -2.8216x10'5

As seen from the table, the Galerkin method gives quite accurate normalized 

propagation constants. A larger N  gives more accurate results, but there is a tradeoff
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between the accuracy and computation time. The fields obtained by Galerkin and 

analytical methods are shown in Fig. 11 for both TE and TM modes and they also have 

an excellent agreement with the analytical results.

TM

—  A nalytical 
♦ G alerkin

q
.OW

-  0 .4I
High

60 2 3 4 5

Low

0.4

0.2
LU*

High

62 3 4 50
R a d iu s  ((im )

Fig. 11. Fields E* and Ĥ , o fT E 0i and TM0i respectively in two standard step index fibers with low and high 

index contrast (N=100).

3.1.3. Bragg fibers

Second, we apply our method to analyze the Bragg fiber discussed in Ref.[51]. It has 

an air core with a radius of 1 .Opm, and the cladding consists o f periodic alternate layers, 

with indices ni=3.0 and n2=1.5, thicknesses li=0.130pm and 12=0.265pm. The effective 

indices of confined modes of the Bragg structure are in the range of [0,1]. In our 

calculation, the core includes the air hole and several periods of alternate layers. An 

imaginary cladding with a refractive index close to zero outside the core is added to 

terminate the alternate layers and form an index-guiding waveguide for modes with 

neff>0. The true Bragg modes are little affected since the fields are close to zero at the
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imaginary cladding and they decay inside it. In Fig. 12, the dispersion curves for TE 

modes and the mode field of TEoi at 1.55 pm are shown with 8 periods of alternate 

layers. Both the dispersion curves and the mode field agree well with the results in Ref. 

[51] obtained by asymptotic method. The radiation modes as shown in Fig. 12 exist since 

they are confined by the imaginary cladding. When the number of layers increases in a 

fiber with microstructures, it generally takes more time to analyze since a larger N  is 

required to reach convergence. The total calculation time is about 5 minutes for iV~200 

on a PHI 500MHz computer for this example.

 A sym pto tic
G alerkin

0.5  
0 .45  

0.4< 
% 0 .35  

C 0 .3  
0 .25  

0.2

TE,

R ad ia tio n  M ode

1.55

Mp-m)

—  G alerkin 
♦ A sym pto tic

0.6

0.2

- 0.2
-0 .4 ,

R a d iu s  (p.m)

Fig. 12. The effective indices neff o f  TE modes in a Bragg fiber and the field o f  TE0| mode at A.-1.55pm

(N=200).

In conclusion, we have developed a full vectorial approach based on Galerkin 

method to solve circular symmetric fibers with arbitrary index profiles, including the 

Bragg fibers. Excellent agreement is achieved for both simple geometry (step-index fiber) 

and complex geometry (Bragg fibers). The dimension of the matrices involved in the
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calculation is NxN other than N2xN2 in the FDFD method described in the previous 

chapter. This reduces the memory requirement. However, on the other hand, to achieve 

high accuracy for a Bragg fiber with a large number of layers, a large N is needed. 

Although the important modes in Bragg fibers are TE modes, the solution of EH and HE 

modes should be included in the future for complete analysis.

3.2. Why 1D FDFD method?

The Galerkin method shown in the last section is accurate on dispersion analysis, but 

it does not provide any information on the loss property of a Bragg fiber. To include the 

loss analysis and overcome the drawbacks o f TMM mentioned in the overview section in 

Chapter I, I propose a FDFD method combining the PML technique in the following 

sections. It is based on solving eigen-value problems which is similar to that shown in the 

last chapter. It is suitable for Bragg fibers with arbitrary index profiles. Compared to 

FDTD method, the FDFD method does not require the initial fields and time iterations. 

Material absorption and dispersion can be introduced easily into the FDFD method. 

Moreover, a batch of modes can be analyzed in a single run.

The FDFD method has been shown to be as a mode solver with high accuracy and 

efficiency for photonic crystal fiber characterization in Chapter II. It is also efficient for 

band gap structure analysis [66, 91] which will be shown in Chapter IV. However, for 

circular waveguides with radially dependent indices, the 2D FDFD method is not 

efficient. Especially for Bragg fibers, the 2D FDFD method requires huge memory to 

deal with a moderate computation region. By employing the symmetry property in 

cylindrical coordinates, the mode analysis for the Bragg fiber can be reduced to a quasi- 

ID problem that can be solved more efficiently and accurately. In Ref. [92], Su et. al.

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.



35

proposed another finite difference method to calculate the propagation constants and 

cutoff frequencies of optical fibers with arbitrary permittivity profiles. An outgoing 

cylindrical wave was exploited as boundary in the outer homogeneous cladding just as in 

the case of TMM and Chew’s method. In the inner region, the vectorial wave equations 

were discretized in the equally spaced grids. A matrix equation was obtained for the 

fields on those grids. The final coefficient matrix is a function of propagation constant or 

wavelength, and the matrix equation is not in eigenvalue form. Therefore, an iterative 

search for zeros is needed to get the propagation constants for given wavelength or the 

wavelengths for given propagation constant.

To analyze the loss property, several different open boundary conditions are used in 

numerical calculations: outgoing wave in the uniform cladding [44, 53, 92], transparent 

boundary condition [93], and perfectly matched layer (PML) technique [94-96]. 

Anisotropic PML technique [79] has been introduce to full vetorial 2D modal solvers 

based on finite element method [94] and FDFD method [95] in Cartesian coordiants. In 

Ref [96], a PML layer with constant conductivity was applied around a step index fiber. 

With the complex coordinates stretching method [74, 78], the complex propagation 

constants could be calculated by solving the characteristic equations under complex 

cylindrical coordinates. But it has the same limitation as TMM and Chew’s method. In 

the following sections, we introduce the anisotropic PML into ID FDFD method in 

cylindrical coordinates to deal with arbitrary dielectric constant profiles. The loss due to 

the finite number of Bragg layers is analyzed without additional algorithm complexity by 

doing the finite differences directly in complex coordinates.
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3.3 .1D FDFD formulation

Let us consider the rotational symmetry of the waveguide with dielectric 

profile £•,. = s r ( r ) . All the guiding modes have the form of £ = %(r)exp[j(m<f> + pz-cot)]. is 

any component of the electric or magnetic field: Er, Ez, Hr, H# and Hz, m is the 

angular quantum number, /? is the propagation constant, and er is the relative dielectric 

constant which is radially dependent.) The Maxwell’s curl equations in cylindrical 

coordinates can be expressed as:

- jk 0£rer = jmhz -  j/3ĥ  (3.15a)

~ j k 0£re<t>= - r — ^ + jflhr (3.15b)

(3.15c)

j k 0hr = jmez -  jfie^ (3.15d)

. /V f y  = ~ r ~  +  j P e r (3.15e)

(3.15f)

and

er = rEr( r ) / yjju0/ £ 0 , = r E ^ r ) / > A = Ez( r ) / (3.16a)

hr = rHr(r ) , h. = rH^(r) , hz = H, (r ) (3.16b)

where is the free space impedance and ko is the wave number in free space.
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Fig. 13. Yee's ID lattice in cylindrical coordinates, (a) For hybrid and TM modes, (b) For hybrid and TE 

modes.

The Eqs. (3.15a) -  (3.15f) can be discretized by using 1-D Yee-cell as shown in Fig. 

13a to yield:

-  y V r r ( 'k r ( ')  = Jmhz(‘)~ }P h<^)

- jk0£rf ( /^  0)=~  [k  0) -  hz 0 -  0]+jpk  0)

-  A^zOKO) = “7  M »')- fyO -  0 ]-^ T hr(j)
rA  n

j k 0hr{i)= jtnez ( i ) -  j[ie^(i)

A<A 0 ) = -  k  O'+ 0  -  0)]+JPer 0)A

A A  0')=— + O-^O')]—r ^ eA)
r i+ O .A w+O.5

where r, = ( / - 0 .5 ) A , and A is the cell size.

Writing Eqs. (3.17a) -  (3.17f) in matrix form, we get

V 1
A  o

re-1Grr 0 0 0 - i P i jm l V

e* 0 o''br<f 0 J P I 0 - K h
_ez_ 0 0 brz[ - j m ® v* 0 A .

(3.17a)

(3.17b)

(3.17c) 

(3.17d) 

(3.17e)

(3.17f)

(3.18a)
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V
h6

i

A .
j k 0

0 - j f i l  jml
j p l  0 - U z 

- j m ®  U ,  0

(3.18b)

where I  is the square identity matrix. All other matrices will be explained later when we 

discuss the applied boundary conditions.

After some algebraic operation, we obtain the eigen-value problems for transverse 

fields:

 ̂hrQ r r  Qrcf)

Q tpr Q^nf)

Prr P,j,

hr

/V
= p ‘

r er
= p 2

er ’

. u e+. J et .

where:

Qrr = k l e rij>- m  er ten <b + VzUt - m  k0 VzU^£rz^  + m k0 Vz® U z£n ®

= kQ£rr + £ n Uz£r}V^ - m 2® + m 2kft1UA£rzV/, -  m 2k , 2® U 7£rlVA

Q rt = - m e r4e ^ V $ - m k^2VzU ^ %  + m V z® + m k02Vz® U z£;z V^

Q<jr = m£rrUz£-'® -  nr'k^QU z£~z<$> -mU^ + m \ 2U ^ 1<D 

Prr = ko£rr - m 2® + U ,£ ^ V as „  - m 2kn2U z£~'VA® + m 2kn2U z£^<&V7®'  z L r z Y Ab r r ~  m  * 0  u z c rz '

P*A = k%£rf  + VzU j , - m 1£rzx(b£r0 + m 2kQ2£r}VJJlh- m 2kn2£rz]<S>V7Ulh

Prip=-mUjl -mk02Uz£rzV/Jltl +mU ,£„&£,#+mk02Uz£rz'®VzUt 

Pm = mV,®-m£~JV.£rr+m2kn2£~r}Vllt® -m ikk2£^^V 7®

(3.19a)

(3.19b)

(3.20a)

(3.20b)

(3.20c)

(3.20d)

(3.20e)

(3.20f)

(3.20g)

(3.20h)

3.3.1. Boundary at r = 0

For hybrid modes (m*0), according to the definitions in Eqs. (3.16), all four 

transverse components (e r, hr, and h#)  vanish at r = 0. Also from Eqs. (3.15a) and
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(3.15d), hz and ez must be zero at the same point. Therefore, all the six components 

satisfy the zero boundary conditions at r = 0 .

For TM (TE) modes (m=0), only h<j» er, and ez (e^ hr, and hz) need be considered. 

The transverse components (h$ of TM and e# of TE modes) vanish. Again from Eqs. 

(3.15a) and (3.15d), the z components (ez of TM and hz of TE mode) could have nonzero 

values at the origin. Therefore, the lattice should be arranged in such a way that the 

transverse components are located at r = 0 to satisfy the zero boundary conditions. The 

lattice in Fig. 13a is suitable for TM mode analysis. In order to analyze TE mode, half a 

cell should be shifted to let be located at r = 0 as shown in Fig 13b. The equations for P 

and Q for the TE modes can be obtained by doing the exchanges: U o V  and 0<-»<b in 

Eqs. (3.22). Obviously, for m=0, the Eqs. (3.19a) and (3.19b) are reduced to:

for TM and TE modes.

The point at r=0 is treated as a boundary in this method, hence the nonzero 

components at r=0 cannot be calculated. However, they can be readily evaluated by 

Gauss’s law using the values of neighboring components [97, 98].

3.3.2. Closed boundary condition and effective index media

We can simply close the computation region with a perfectly conducting wall. Those 

matrices with dimension of NxN in Eqs. (3.18a) and (3.18b) are defined as follows (N is 

the total number o f  cells.):

2# ^  -  P 2^ , -  P 2e^ (3.21)

<S> = R f 2 , VZ = R , V ,  Va = R f ' v (3.22a)

® -  ^/+0.5 > Uz ~ Rl+O.sU > -  -fy+0.5̂ (3.22b)

where,
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0> j) rî i) t +0.5 (*>./) ri+0.5̂ ij

(3.22c)

The permittivity matrices are diagonal:

(3.22d).

For a cell including two different materials with dielectric constants ea and Sb, the 

effective permittivity is calculated as s = fa^ea+(\-fa)'X£b for tangential components and 

ez and £ = £a*£b/[fax£b+( 1 -fa)x £a\ for normal component er according to the effective- 

medium theory [99], where f a is the filling ratio.

3.3.3. Open boundary

To analyze the leakage loss of Bragg fiber, an anisotropic PML layer [79] is used to 

absorb all the outgoing radiation. The PML boundary was applied in cylindrical 

coordinates as in Ref. [98]. Here, to keep the formula general for both the closed and 

open boundary conditions, we use the complex coordinate stretching method [74, 78] by 

defining a complex radial variable

where, a  is the attenuation coefficient, rm is thickness of PML layer, and rp is the location

found that stable loss values are achieved when the attenuation coefficient a  is bigger 

than 100. In the other extreme, a  can not be too big as it can cause significant reflection. 

For the examples followed in this chapter, 16 PML layers are used along with a  = 200 

and n = 3.

r

r  > rp
(3.23)

of the interface between the inner region and the PML layer as shown in Fig. 14. We
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rN0 r, rp |— p. rm -

Fig. 14. Y ee’s lattice with open boundary.

All the formula for the closed boundary condition can be used for the open boundary 

condition as well by substituting r to r , and A, = ^ +05 - ^ _ 05 for Eqs (3.17b-3.17c) 

and A; =ri+] -?i for Eqs. (3.17e-3.17f).

3.4. Implementation of 1D FDFD method

3.4.1. Standard step index and graded-index fibers

First, the 1D-FDFD method is verified in the case of standard step index fiber, which 

has analytical result. The fiber parameters are the same as in Ref. [40]: core radius ro -  

3pm, wavelength X = 1.5pm, core refractive index nc0 = 1.45 and cladding refractive 

index nd = 1. The computing region is 2r0. The effective index of fundamental mode is 

calculated as listed in Table 4. Using the same numbers of grids, the current method 

provides better results than those calculated by the other methods [40]. This is because 

analytical calculation is used for the derivatives in the azimuthal direction. The error 

comes only from the difference approximation in the radial direction. Fig. 15 shows the 

convergence property of this algorithm. The relative error of the order of 10"7 is achieved 

when the 140 grids are taken in the computing region.
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Table 4. Calculated fundamental mode indices o f  a step-index fiber. The fiber parameters are: r0 = 3 pm, X 

= 1.5pm, core refractive index nco = 1.45 and cladding refractive index nc| = 1. The analytical solution is 

1.4386042.

x 10

-0.5

Number of grids in computing region Effective index (Current work)

30 1.4385851

60 1.4385982

1 2 0 1.4386026

240 1.4386038

480 1.4386041

-2.5
50 100 150

Number of grids in the computation reg

200 250

Fig. 15. Relative error vs. number o f  grids taken for computation.

To clarify the validity o f this method to inhomogeneous index profile, we analyze a 

graded-index fiber with parabolic-index core: core radius ro = 2 pm, the refractive index 

at the origin nc0 =1.45. The refractive-index distribution is given by

\ nca [l~ 2A(r/r0 )2 ]
n2(r):

K 0 - 2 A )

r < a  

r > a
(3.24)
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where, 2A =0.01 is taken for the example. The computing region is 10ro, and 100 points 

are sampled in each r0. The calculated normalized propagation constants of the 

fundamental modes are in good agreement with the first-order perturbation solutions of 

the vector wave equation [100] as shown in table 5. V is the normalized frequency. 

Meanwhile, the scalar wave approximation provides appreciable errors in the low 

frequency region.

Table 5. Calculated normalized propagation constant o f  fundamental mode o f  graded-index fibers with 

parabolic-index cores. The fiber parameters are: r0 = 2pm, refractive index in the origin nco = 1.45.

V Current work
First order perturbation 

vectorial solutions*

Exact scalar 

solutions*

2 . 0 0.150453 0.1505 0.2687

3.0 0.362329 0.3623 0.4025

4.0 0.506563 0.5066 0.5183

5.0 0.601524 0.6015 0.6051

6 . 0 0.666942 0.6669 0.6682

* The data in these two columns are taken from reference [100],

All the calculations are done in seconds on a P4 1,5GHz Pentium 4 computer. It is

• • 2 2clear that those NxN matrices greatly reduce the computation time compared to N xN 

matrices used in 2D FDFD method.

3.4.2. Air-core Bragg fibers

Next we apply the FDFD method to analyze air-core Bragg fibers that guide light 

due to the photonic band gap mechanism. We use the following parameters: an air core 

with a radius of 1.3278pm, and 16 pairs of high/low index materials. The indices of the
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materials are 1.49 and 1.17, the corresponding thicknesses are 0.2133 pm and 0.346 pm. 

This fiber has been investigated in Ref. [101] using Chew’s method [53].

The calculated effective indices and convergence with the number of grids in each 

thinner layer are shown in Table 6  and Fig. 16. The relative errors of the real part and the 

imaginary part of the effective index are of the order of 1 0 ' and 1 0 ' respectively, when 

60 grids are taken for each thinner layer. Also shown in Table 6  are the calculation times 

on a P4 1.5G computer using this FDFD method. The NxN matrices in Eqs. (3.19) & 

(3.20) greatly relieve the memory burden as compared to 2D FDFD method for Bragg 

fiber analysis. The sparse matrix can further reduce memory requirements in the analysis 

of structures with large dimensions.

Table 6. Calculated effective indices o f  TE/hybrid modes in Bragg fibers. The effective indices calculated 

using Chew’s method are 0.891067 + 1.4226x 10'8i and 0.805578+1.7392x 10*3i forTEoi and hybrid modes, 

respectively.

N*

Effective index of TEoi 

(m = 0 )

Effective index of hybrid mode 

( m = l )

Real Imaginary
Execution

time
Real Imaginary

Execution

time

15 0.891117 1.4432x1 O' 8 1.7 s 0.805781 1.7207xl0'J 2.3 s

2 0 0.891093 1.4328X10'8 2.5 s 0.805672 1.7261 x l O' 3 2 . 6  s

30 0.891080 1.4278x10'8 5.1 s 0.805623 1.7322xlO'J 5.2 s

60 0.891070 1.4236x10'8 18.1 s 0.805583 1.7375xl0'j 18.8 s

* N: Number o f  grids in each thinner layer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

x 10
0.015

0.01

0.005

Number of grids in each thinner layer

0.01
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-0.01 £

- 0.02
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Fig. 16. Convergence property for TE0) (upper) mode and hybrid mode (m = 1) (bottom) calculation.

When an effective index (propagation constant) is obtained as an eigen-value, the 

field distribution can be deduced from the corresponding eigen-vector. As a second 

example, Fig. 17 shows the normalized field distribution of TEoi mode for the 

Ominiguide fiber [83]. The FDFD results agree very well with those obtained by the
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transfer matrix method [44]. In Fig. 18, the normalized field distributions of hybrid 

modes (m = 1 and m = 4) are shown for a third Bragg fiber [54]. Both curves match the 

TMM results well. The mode corresponding to m = 4 has much larger oscillatory 

amplitude in the cladding compared to the m=l mode. Hence, the leakage loss of the m = 

4 mode is high and only the m = 1 mode will be guided farther in the fiber. Also, the 

effective index of the hybrid mode (m = 4) is higher than 1, implying that it is a surface 

mode. The field decays in both the air core and the cladding regions as shown in Fig. 18.

FDFD
TMM8 -

3

0.1

3
n

-*■UJ

- 0.1

radius (a)

Fig. 17. Electric field distribution for TE0i in an OmniGuide fiber with a large air core [83]. The radius o f  

the air core is r ~ 30a. The thicknesses o f  the layers with high and low indices (nhj = 4.6, niQ = 1.6) are fhi = 

0.22a and tio = 0.78a; a = 0.434 pm, the wavelength X = 1.55 pm. The bottom graph shows expanded 

amplitude to obtain the electric field variation in the periodic cladding. The core is surrounded by 17 layers. 

140 grids are taken for each bi-layer.
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Fig. 18. Field distributions o f  hybrid modes m = 1 and m = 4. The parameters o f  this fiber are: r  =

0.475 pm, X = 1.55 pm, nhi = 4.6, n|0 = 1.5, thi = 0.158 pm, t\0 = 0.032 pm [54]. The core is 

surrounded by 12 bi-layers. 120 grids are taken for each bi-layer. The calculated effective indices 

are: 0.6004 + 1.370 x 10'3i (m = 1) and 1.0675 + 5.753x 10'2i (m = 4). Computation time is about 8 

s on a P4 1,5G computer.

3.4.3. High index-core Bragg fibers

Next, this method is used to analyze high-index core Bragg fibers with a number of 

different core index profiles. We choose the same parameters of the air-core OminiGuide 

fiber for the Bragg reflection layers. However, the core radius is reduced to 2a to expel 

all the higher TE modes out of the band gap except TEoi. The refractive index of the core 

has the profile

«(0 = «cJ1 -(''Ao)“A] (3.25)

where, ro (=2a) is the core radius, A is the relative index difference within the core and 

the refractive index at the origin nco = 1.45. Fig. 19 shows the dispersion curves for
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different values of A and a. For homogeneous core index, the FDFD and TMM results 

are identical as shown by the top curve in Fig. 19. When A increases, the dispersion 

curves move downward because the reduced average refractive index forces the 

dispersion curve to move away from the dielectric band. The same situation occurs when 

a  changes from 2  to 1 corresponding to change in index profile from parabolic to linear. 

These results demonstrate a way to manipulate the dispersion curve of Bragg fibers by 

using different core index profiles.

1.1

1.05

1

uj 0.95

0.9

0.85
1.651.61.551.51.45

W avelength X (In nm)

Fig. 19. Dispersion curves for high-index core Bragg fibers with different core index profile. The FDFD 

and TMM results are overlapped for A = 0 which represents the step index core.

3.5. Conclusions

In summary, we presented a Galerkin method and a FDFD method for Bragg fiber 

analysis. Although the Galerkin method is not suitable for loss analysis, both methods are 

accurate for dispersion analysis. Specially, instead of using N 2 xN2 matrices as in 2D
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FDFD method, our 1-D FDFD method requires only NxN matrices. Hence, it is much 

more efficient to analyze the guiding mode propagation characteristics in circular 

waveguides, especially Bragg fibers that have radially dependent dielectric profiles. In 

the azimuthal direction, an analytical form is used for the derivatives in Maxwell’s 

equations instead of the difference approximation. Hence, this method could provide 

slightly higher accuracy than the 2D method. The numerical examples shown in the paper 

verify that the compact ID FDFD method using PML technique is accurate and suitable 

for propagation and loss analysis of Bragg fiber with finite number of layers.
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CHAPTER IV 

MODELING OF PHOTONIC BAND GAP MATERIAL

To fully understand the properties of a PBG-guiding PCF, the PBG structures of the 

PCF cladding needs to be determined first. PBG materials and devices have been under 

intense research for over a decade following the seminal papers [2, 102]. There are 

several methods for band structure analysis, such as the plane wave method (PWM) [103- 

105] and the FDTD [106-109] method. The PWM is able to provide complete and 

accurate information. However, the algorithm complexity is 0(N 3) and the computation 

is heavy for large problems. The order-N method based on FDTD can effectively reduce 

computation. It solves the Maxwell’s equations within the unit cell in time-domain by 

applying an initial field that covers all the possible symmetries; the eigen-modes are 

identified as the spectral peaks from the Fourier transform of the time-variant fields. The 

drawback of this method is that the accuracy depends on the number of iterations. There 

is also a possibility of losing true eigen-mode if the corresponding peak is too small, or 

resolution is too low. Moreover, spurious modes may arise from spectral noise. The 

FDFD method has been proposed for optical waveguide analysis [38-40], which is 

accurate and stable. In this chapter, it is shown that this technique can be applied in 

photonic band gap analysis and it is worth noting that an FDFD approach using 

Helmholtz equation has been shown in [6 6 ].

In the first section, the standard PWM still widely used to date is introduced. Then 

the FDFD algorithm under generalized coordinate system is derived and applied on 2D 

photonic crystals with two different geometries in the second section. The accuracy, 

convergence, and computation time in the FDFD method are compared with those
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obtained by PWM in section 4.3. In section 4.4, the out-of-plane band structure of the 

cladding of the photonic crystal fiber is analyzed.

4.1. PWM

The master equation widely used for PWM is for magnetic field:

V x - ^ r V x f f ( r )  = ^ r f f ( r)  (4.1)
£ (r) c

This is a standard eigen-value equation ®H = AH  with Hermitian operator 0 = V x - V x
£

and eigen-value A = a 2/c2 . For photonic crystals, the permittivity is a periodic function: 

£■(/•)=£(/• + /?,) (4.2)

where:

Ri =/|5, +l2a2 + /3a3 (4-3)

where lj, I2 , I3 are integers, and fi,,a 2 ,a 3 are the basis vectors in the primitive space. By 

applying the transverse condition

V • H{r)  = 0 (4.4)

and Bloch theorem, we can express the H field by a modulated function:

H{ r )=  S ^ V «(r)Sw
A=l ,2 ( 4 . j j

u(r) = u(r + R,)

where u(r) is a periodic function with the same period as the permittivity function, and

ek, and ek 2 are unit vectors perpendicular to the vector k and orthogonal to each other.

Taking Fourier transforms, we obtain

- ( x) = ^ £-|(g,Vg? (4.6)
£  G.
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H(r)=
G,,X

where £~'(g,.) and ,;l) are coefficients corresponding to G , :

G, = htbt +  h2b2 + h2b2

where bx,b1 ,b-i are basis vectors in the reciprocal space; h\, hi, hi are integers

(4.7)

(4.8)

b, = 2 7 1 - ^ 1 3 — ;bi = 2n  A  = 2
a. •  «2 x a, .......

a3 x a, 
a, • a2 x a3

a, x a2 
a, • a2 x a3

(4.9)

Substituting Eqs. (4.6) and (4.7) into the master Eq. (4.1), we get an eigen-value 

equation in an algebraic form

x I Jfc + g ||* + G'U”1 (g  -  G 'f  \  * e\  *2 * f 1 TJj
O'I II I \ - e x»e2 e,»e, JU ,

co2 V
c2 A .

(4.10)

In two-dimensional photonic crystal, k  vector is confined in the transverse (x-y) plane, 

the e, (e[ ) is always perpendicular to e2 ( e2), therefore, the hi and h2 components in Eq. 

(4.10) decoupled into two separate sets corresponding to TM and TE modes. The 

corresponding eigen-value Eqs are reduced from Eq. (4.10):

TM: x |^  + G||)t+Gjf-|(G-G')j1(G')=^-A,(G) (4.11)
c  I II I c

TE: + G')e:-| ( g - G ' ) i2( g ' ) = ^ - / ! 2(g ) . (4.12)
O' c

4 .2 . FDFD formulation

We consider nonconductive materials under generalized coordinates denoted by 

three unit basis vectors uq(x,y,z) (q = 1,2, 3). The Maxwell’s curl equations in complex 

form can be expressed as [109, 110]:

Vl)xH = jk0i(r )E V, x E = -jk 0£i(r)H , (4.13)

and the renormalized fields are:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

E ,= Q ,fijjroE, //, -Q iHi , (4.14)

where ko is the wave vector in free space, Q fs are the grid size along each direction. The 

e and fu are respectively the effective relative permitivity and permeability constants 

which are 3x3 tensors under the generalized coordinate system:

g. (') = eri(r)g, |«, -u2xu,| fi.(r)=t*ri(r)g,\ux - « 2 x *6 17 7 7 7 7 7 -- (4-15)

Qo is a constant introduced to be roughly equal to Qi's; xm3| is the volume of the

unit cell, eri (pn) is the relative dielectric constant (the relative permeability constant) at

the position where the electric field e, (the magnetic field H,) is located, g  is the metric 

tensor that can be obtained using the three unit vectors,

g~' =

U \ '  U \ U \ ’ U 2  U \ ' W3

u2-ut u2-u2 w2 -w3

w3 ■ M( w3 • u2 M3 • w3

(4.16)

and the length in generalized coordinate can be calculated using:

(4-17)

We use Yee’s mesh [45] and finite difference to replace the derivates in Maxwell’s 

curl equations [109, 110] and formulate them in matrix form using the approach 

described in [40]:

(4-18)
ei\ g.21 gfa'l 0 - u 3 Ui  - H  i

j k  o E2 = *21
P-i£-23 Vi 0 - U i H 2

Ei g3l‘ Sll *33 r u  2 U\ 0 Hi
L

A Hi =

Hi

Mil Mil Mil

©I

- E i E2

Mil Mil Mil Ei 0 ~Ex

Mil Mil Mil r v i E, 0
Ei
Ei

(4-19)
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where Uj and Vj are coefficient matrices formed according to the boundary conditions, 

and they are proportional to 1/ 0 ,.

An eigen-value problem in frequency-domain is formed for either E or H by 

eliminating H  or E  in Eqs. (4.18-4.19). For a given wave vector k, all the referred 

components outside the unit cell boundary can be obtained using Bloch’s periodic 

boundary condition:

where Ri can be an arbitrary lattice vector, and here it is limited in the unit cell or 

supercell.

Fig. 20. Yee's 2D mesh in general coordinates. The dotted components are at the boundaries.

A 2D Yee’s mesh under generalized coordinate system is shown in Fig. 20 for both 

TE and TM modes. E and H are arranged along two basis vectors ui and U2 ; U3 is 

coincident with the z direction. Since Q3 is infinite, U3 and V3 in the equation (4.18-4.19) 

are zero, and simple eigen-equations can be obtained. The lattice vector Ri in Eq. (4.20) is 

chosen to be aqttq, and aq is the dimension of the unit cell or supercell along direction q.

For TM modes, the eigen-equation is shown as follows:

H(r + R, )= exp(ik ■ Rj)H(r) E(r + R,) = exp(ik ■ R, )E(r) , (4.20)

Two-dimensional cases

o -> ^
TM : E 3 H , H 2 
TE: H 3 E , E 2
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klE, =ell^\(nl\V7 - r i v J - u f a X  • (4.21)

The fields E and H in the two dimensional grids are arranged row by row into column 

vectors. Subsequently the Bloch boundary conditions are applied to get the matrices U 

and V:

U l =  —  0

' - 1 1 ' 1
1

u x - 1  0

— I

1

1 0 1 V,
. K =  —

u x - 1 0 0
- 1

1

0 1 v,

u x - 1 - !  1

where

ux = exp(ik •«!«,), vx = -  exp(- ik ■ ^w,)

f / ,  =  —
Qz

- 1  1 

- 1  1

' I - 1  

1 - 1

- 1  1 Qi 1 - 1

Uy “ I '
Uy ' I V, 1

where

(4.22)

(4.23)

(4.24)

. (4.25)Uy = exp(ik-a2u2) ,  vy = - e x p ( - i k - a 2u2)

For TE modes, the eigen-equation is:

* 0  H, =  { e  (e;\u2 -  * - ' £ / , )-  V2(en'U2 -  e£ux )}h z .  (4.26)

The U and V matrices for TE mode are similar to those for TM modes and can be 

obtained by doing the exchange Ui OVi  and 1 1 2 ^ V2 in the equations (4.22-4.25) for TM 

modes.
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According to Eq. (4.21), only ^  is involved in TM mode. er is located at the same 

point as E3 , so no averaging is needed for er3 . For TE mode, the er is half a grid away 

from Ei and E2 and the averaging is needed for eri and er2 - The periodicity of er is applied 

for those grids outside the boundary.

4.3. Comparison between FDFD and PWM

4.3.1 Examples fo r  2D band gap

All matrices involved are sparse; hence we can apply sparse matrix techniques to 

save computation time and memory. We implemented the algorithm using MATLAB 

since it provides convenient tools for sparse matrix operation with minimal programming 

efforts. Here we show a few numerical examples using our FDFD method and compare 

against the PWM using the program similar to that in Ref. [111]. The first example is a 

2D square lattice with dielectric alumina rods in air: ea=8.9, Sb=1.0 and radius of the rod 

R=0.20a (a is the lattice constant). The second example is a 2D triangular lattice with air 

holes in dielectric GaAs materials: ea=1.0, Sb=13.0 and hole radius R=0.20a. For the 

square lattice ui=[l 0 0], u2=[0 1 0], and U3 = [ 0  0 1] and the metric [g] is a 3x3 identity 

matrix. For the triangular lattice, ui=[l 0 0], u2=[0 1/2 V 3 / 2 ] ,  and U3 = [ 0  0 1 ] and [g] is 

calculated by Eq. (4.4). We used sub-cell averaging techniques to smooth the transition at 

the interface and Eq. (4.5) is used for the rod profile transformation. The details of 

discretization and transformation of the cylindrical rod are shown in Ref. [111].
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Fig.21. The band structure for a 2D square lattice by FDFD (o) and PWM (-). 441 plane waves are used for 

PWM and mesh resolution is a/80 for FDFD. Upper: TM mode, Bottom: TE mode.
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Fig. 22. The calculated band structure o f  a triangular lattice by FDFD (o) and PWM (-). 441 plane waves 

are used for PWM and mesh resolution is a/80 for FDFD. Upper: TM, Bottom: TE.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

The TE/TM band gap for 2D square lattice and triangular lattice of the above 

examples are shown in Figs. 21 and 22, respectively. The FDFD results are indicated by 

‘o’ and PWM results are plotted as solid lines. The results from the two methods show 

excellent agreements.

In Table 7 we list the first five bands at k=0 for the 2D triangular lattice shown above 

using the two methods in order to compare their accuracy and computation time. The 

computation time is measured on a 2.4GHz mobile Celeron® notebook with 256MB 

memory. From the Table we see that FDFD can reach the same accuracy as PWM in a 

shorter time.

Table 7. Eigen-frequencies for the first five bands o f  TE wave (k=0) for a triangular

lattice with air holes in dielectric materials.

Band No: 1 2 3 4 5 Time (s)

PWM 4411 0 0.3240 0.3398 0.3399 0.3414 47.84

PWM 6251 0 0.3240 0.3399 0.3399 0.3414 105.66

PWM 9611 0 0.3240 0.3400 0.3400 0.3414 256.36

FDFD 402 0 0.3237 0.3395 0.3400 0.3418 3.29

FDFD 802 0 0.3240 0.3400 0.3402 0.3416 1 1 . 6 8

FDFD 1202 0 0.3240 0.3400 0.3402 0.3415 33.18

FDFD 1602 0 0.3240 0.3401 0.3402 0.3414 86.09

1: The number o f  plane waves, 2: the number o f  grids along each direction.

4.3.2 Convergence property

A convergence curve for the eigen-frequency of band 5 at k=0 is shown in Fig. 23 

versus the number of grids used along each direction. The computation time is also
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presented in the figure. The eigen-values converge to the accurate value at a moderate 

mesh size, for example, a/80. The computation time is highly dependent on the memory 

available on the computer. When the unit cell or supercell has symmetry properties, 

computation time could be saved by using part of the unit cell under proper boundary 

conditions [80].

0.5823

0.5822

0.5821

C! 0.582

0.5819

0.5818

0 .5 8 1 7
100 140 160 180 200120

N

Fig. 23. The convergence o f  eigen-frequency (the 5th band at k=0) and the computation time vs. the number 

o f  grids along each direction.

4.3.3 Defect mode

Next, we show a defect mode analysis using FDFD for the 2D square lattice of 

alumina rods in air as in the first example. A 5x5 supercell is selected and 200 grids are 

used along each direction. In this case, only the defect frequency is of interest since the 

band gap information is already known. Therefore we only have to find a certain number 

of eigen-frequencies of interest and the computation time is effectively reduced. The
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eigen-frequency obtained by FDFD is 0.3930. The mode field is shown in Fig. 24. Both 

results agree well with those by PWM and FDTD [111, 112].

200 
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20 40 60 80 100 120 140 160 180 200

Fig. 24. The Ez field o f  a defect mode in a 2D square lattice with alumina rods in air using a 5x5 supercell 

with the center rod removed. The rods are displayed as black circles.

4.4 Out-of-plane PBGs of the photonic crystal fiber cladding

Silica is the most widely used material to fabricate PCFs. The refractive index of 

silica is -1.45 which can not provide enough index contrast with air to form an in-plane 

band gap. However, it does have out-of-plane band gap under certain range of 

propagation constant /?. To analyze the out-of-plane band gap structure of the photonic 

crystal fiber, Eq. (4.10) should be employed for PWM. Also, we can not use Eqs. (4.21) 

and (4.26). Because C/ 3  and V3 are not zero now but Ui= Vy=jf3I (/ is the identity matix), 

the Maxwell’s Eqs. (4.18-4.19) do not de-coupled. We can still use the mesh shown in

...- Q

m / )

11)

0 ...O .-o
_ i________ i_i_______u _______1_____ ;___l_ _ l - J ________ L_
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Fig, 20, but the problem becomes to a pseudo 3D one. For this purpose, we rewrite the 

Maxwell’s Eqs. here again

(4.27)
£,2 0 " 0 - m V i  ‘

J K = £2i £22 0 m 0 - c / i h 2

A 0 0 A r u 2 £/. 0 A.
1

A tti' .̂"2 0 ’ 0 -m ^ '

y'̂ o = M22 0 m 0 -F, £ 2

^3 0 0 A r v 2 0 K
(4.28)

We can easily obtain the eigen-value equations by substituting Eq. (4.28) into (4.27) or 

vise versa.

(0O

■g
n
o
z

M X
In-plane wave vector k y/

Fig. 25. Out-of-plane band structure diagram o f a triangular photonic crystal with a 70% air-filling ratio. 

The propagation constant is fixed as |3a = 9.0. Refractive index o f  silica is 1.45.
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Fig. 25 shows an out-of-plane band structure for the cladding of a photonic crystal fiber 

with a triangular lattice. The filling ratio for this fiber is 70%. There is gap opened at 

around a normalized frequency koa = 9.0. This gap overlaps the air line p/ko = 1 which 

means the light can be guided in an air core. This result agree well with the published one 

[17].

4.5. Summary and discussion

In summary, a FDFD method for photonic band gap calculations is developed. This 

method is able to provide complete and accurate information about the band structure of a 

photonic crystal. The results of 2D TE/TM modes for two different geometries are 

compared with those obtained using plane wave method, and excellent agreement is 

achieved. By using a generalized coordinate system, various lattice geometries can be 

analyzed in the same manner. Moreover, out-of-plane band structure of the cladding 

photonic crystal of the photonic crystal fiber is analyzed. For this case, the general eigen

value equations should be used. With the band structure information combined with the 

propagation characteristics which can be analyzed by the methods described in the 

previous chapters, the design and analysis of PBG-guiding PCFs can be fulfilled without 

difficulty.
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CHAPTER V 

MODELING AND SIMULATION OF DISTRIBUTED FEEDBACK PHOTONIC 

CRYSTAL FIBER LASERS

In previous chapters, several models are proposed to analyze the propagation 

properties of PCFs. The FDFD method combined with PML technique can solve almost 

all linear problems of PCFs, such as dispersion and loss properties. In this chapter, a 

nonlinear device, DFB PCF laser, is discussed.

The chapter is organized as follows to simulate DFB PCF lasers. The formulas for 

Er-doped and Er/Yb co-doped DFB PCF laser are introduced in section 5.1. In section

5.2, the properties o f Er-doped DFB PCF lasers near the thresholds are analyzed, 

followed by the numerical results for the Er/Yb co-doped PCF lasers. Section 5.3 

concludes the chapter.

5.1. Model and Theory

The model presented here is developed based on Ref. [63]. This model investigates 

the output characteristics of DFB PCF lasers using FDFD method presented in the 

previous chapters, coupled-mode theory [13], the transfer-matrix approach [14], and gain 

models for Er and Er/Yb media. The electric field distribution is calculated using FDFD 

method. The coupled-mode theory is utilized to analyze the Bragg Grating, and transfer 

matrix method is employed to solve the coupled wave equations. The gain model of the 

Er medium uses a 3-level system and takes the transverse mode intensity distribution of 

the pump and signal into account. For Er/Yb co-doped medium, an energy transfer 

mechanism between Yb3+ and Er3+ is added into the gain model.
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5.1.1. Coupled mode theory and transfer matrix method

In a DFB PCF laser, distributed feedback is realized by inscribing a Bragg grating 

into the PCF. A phase shift is introduced into the grating for single wavelength output. To 

describe the behavior of the fiber Bragg grating (FBG), the well-known coupled-mode 

equations are employed [67]:

^  exp[y(2A/fe-*>)]£_+ 4  £+ (5.1)
dz 2

^ = -  = *exp[-y(2A/?z -*)]E+ -% E _  (5.2)
dz 2

where, E+ and E_ are the forward and backward electric field, respectively, g is the gain,

<|> is the phase of the grating, and k  the coupling constant (modulation strength).

A p  = p - p B, p B = ^ ~  (5.3)
A*

where, P is the propagation constant, and Ag is the period of the Bragg grating.

E+(0)

E (0) ^

->  E+(L) 

  E (L )

z = 0 z = L

Fig. 26. Schematic diagram o f a grating.

To solve the coupled mode equations, we use the transfer matrix method [6 8 ]. For a 

uniform grating shown in Fig. 26, we have

f E, (O)'' 
£ . ( 0)

(5.4)
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The elements of the F matrix are given as follows:

F\ i = [coshOZ,) + i A^ /  sinh(yL)]exp(;7?„£)

Fi2 = -^sinh(yL)exp[-/(^BZ, + </>)}

F2 \ = -  ̂ /  sinh(/Z,) exp[;(/?fl Z. + 0)]

F22 = [cosh(yL) -  ;'A^ /  s in h (^ )]e x p ( - i^ I )

(5.5a)

(5.5b)

(5.5c)

(5.5d)

where

A/?'= A/3 + ig, y 2 = k 2 -  (A/?’)2 (5.6)

and (j> is the phase of the grating at position z = 0 .

5.1.2. Gain model

R. Ri

W, W2

Fig. 27. Three-level energy level diagram for Erbium.

Er atom is modeled as a three-level medium as shown in Fig. 27. Ej is the ground 

level and Ei is the upper level o f the laser. Starting from the rate equations, we can get:

x = R u t  +  W X2tN,
N  1 + Ru t + Wn r  + W2It

g.< = \ p ( r ) f s(r)[x(r)<7es - { i - X { r ) e j a s] l 2r - a s

(5.7)

(5.8)

(5.9)
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m = -
r0)|£Q-)|2

(5.10)
j s r(r)\E(r)\2d 2r

where, gs and gp are the effective gains for signal and pump per unit length, respectively. 

a s and ap are the background loss in the fiber, p is the erbium concentration. X is the 

inversion factor, and /  is normalized field intensity distribution in the fiber. a e and o a are 

the emission and absorption cross-sections.

£V,+ Yb3 +

'9 /2

1 1 / 2

13 /2

15 /2

r65

Fig. 28. Energy level transitions for Er3+/Yb3+ systems.

To model Er/Yb co-doped medium, we need consider the energy transfer between 

the Yb and Er atoms as shown in Fig. 28 [113]. The effective gains are given by

*,(*) = - ^ 12(l-7V2)J d 2r - a ,  (5.11)

gp (z )  = \ N Ybf p{r)[cTfi, N fi - cr56(l -  iV6 ) ]  d 2 

-  \  N E r f p ( r ) < * n ( !  -  ^ 2 )  d 2'  -  a p

N  2 = r i +  . 1l r n +W*_ V '

Wn + Wn + Ri ,Nn Nl

(5.12)

(5.13)
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where, Nsr and Nyb are the Er and Yb concentrations.

5.1.3 Numerical method

In the grating region, the pump propagates through without reflection, and the pump 

power follows

£ jl

dz
— E- = a P, Sp1 p (5.15)

Meanwhile the signal is governed by Eqs (5.1) and (5.2). Since the transfer matrix 

method [67] used to solve these equations is valid only for a uniform grating, the whole 

grating is divided into several shorter ones. Each short grating is approximated by a 

uniform grating with constant k , y, g and^ as shown in Fig. 29. The transfer matrix 

method is applied for each of them. An initial guess solution is set to output E+(L) and 

zero to E.(L), then the output is adjusted during the repeating calculation cycles until the 

boundary condition, E+(0) = 0, is satisfied.

E ( 0 H

z = 0 z = L

Fig. 29. Segmentation diagram for modeling a distributed feedback laser.
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5.2. Numerical Results

Based on the model, our algorithm is realized using Matlab®. We verify the 

algorithm by calculating the output characteristics of DFB TPCF lasers with the same 

parameters used in Ref [63], and similar results are obtained. We then analyze the output 

characteristics both for Er doped and Er/Yb co-doped DFB CPCF lasers.

Fig. 30. Schematic diagrams o f  the cross section o f  a CPCF (left) and a TPCF (right). The solid red circles 

in the center represent the doped region.

The geometries of a CPCF and a TPCF are shown in Fig. 30. The red solid circles 

are the doped region. The ratio between the air hole diameter and the lattice constant d/a 

is 0.23. The refractive index of the silica was chosen to be 1.45. Lattice constants of 3.4, 

5.4, and 7.6 pm, were chosen to ensure both CPCFs and TPCFs work in single mode for 

both pump and signal wavelengths.

For lasers analyzed in this chapter, we assume that the period of the grating is chosen 

such that the detuning Ap is zero. A typical spectrum of the grating without amplification
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is shown in Fig.31. The sharp transmission peak located at Ap = 0 inside the reflection 

band is the lasing wavelength.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

-10
ApL

Fig. 31. The spectrum o f the grating (g = 0) with a phase shift n in the middle.

5.2.1. Er doped DFB PCF lasers

For Er doped DFB lasers, a three-level gain model as shown in Fig. 27 [63] is used. 

The outputs near the thresholds are shown in Fig. 32 as functions of the pump power. The 

parameters used in the simulation are listed in Table 8 . The comparison of the thresholds 

between CPCF and TPCF lasers is shown in Table 9. The threshold increases with the 

lattice constant due to the increased number of doped atoms which absorb more power to 

reach population inversion. An exception is the laser using TPCF with lattice constant of 

3.4 pm. This laser has higher threshold than that with lattice constant of 5.4 pm. This is 

because of the propagation loss. Furthermore, the comparison between TPCF and CPCF 

lasers with same lattice constant shows that DFB lasers using CPCF have lower threshold
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than TPCF lasers. This is due to the better confinement in the CPCF which is achieved by 

the extra interstitial air regions.

0.4 • ■ 3.4 jim; 
a * 5.4pm: 
t*7.6nny

a ■ 3.4 jim 
a ■ 5.4 Jim 
a ■ 7.6 pm

0.03
0.36

0.0290.3

£, 0.25 0.02

0.015

0.15
0.01

0.1

0.0050.06

Pump powar (mW)

Fig. 32. Output characteristics near the thresholds o f  Er doped DFB CPCF lasers (left) and TPCF lasers 

(right). N Er = 2 .6x1025 /m3. The radius o f  doped region is a/2, and signal propagation loss a  = 0.25 m'1.

Table 8. Parameters used in the simulations for Er-doped PCF lasers.

Param eter Value

a a : Er absorption cross section at 1560 nm 2.0x1 O' 25 m2

a e : Er emission cross section at 1560 nm 2.6x1 O' 25 m2

CTn : Er absorption cross section at 980 nm 2.0x1 O' 25 m2 [114]

X2 \ : Er spontaneous emission lifetime 11 ms [113, 114]

Table 9. Thresholds for DFB CPCF and TPCF lasers (NEr = 2 .6 x l0 25 / m \  k  = 110 m ' 1,  a  = 0.25 / m ,  and

the radius o f  the doped region is a/2.)

CPCF TPCF

Lattice constant a (pm) 3.4 5.4 7.6 3.4 5.4 7.6

Threshold (mW) 0.7 1.3 2.3 23.0 17.7 27.8
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Based on these results, it is found that the CPCF with a small mode area is useful for 

low threshold DFB fiber laser. The slope efficiency of DFB CPCF laser is very poor 

(~2%) near the threshold while TPCF is even worse due to the poorer intensity 

confinement. Er/Yb co-doped lasers have much better slope efficiencies.

5.2.2. Er/Yb co-doped DFB PCF lasers

To improve the performance of the DFB PCF laser, obviously, Er/Yb co-doping is an 

effective way. According to published experimental results, the ratio Nyb/Nnr should be in 

the range of 10 -  20 to ensure an efficient energy transfer from Yb3+ to Er3+ [114]. The 

parameters employed in the simulation are list in table 1 0 .

Table 10. Parameters used in the simulations for Er/Yb co-doped PCF lasers.

Param eter Value

cr12 : Er absorption cross section at 1560 nm 2 .0 x 1 0 ' 25 m2

(7 2 1 : Er emission cross section at 1560 nm 2.6x1 O’2 5  m2

cr13 : Er absorption cross section at 980 nm 2.0x10' 25 m2 [114]

X2 i : Er spontaneous emission lifetime 11 ms [113,114]

(7 5 6 : Yb absorption cross section 2.0x1 O' 2 5  m2 [114]

<7 6 5 : Yb emission cross section 5.0x1 O' 2 5  m2 [114]

i 6 5 : Yb spontaneous emission lifetime 1.5 ms [114]

R6 i : cross-correlation coefficient 5.0xl0 ' 21 m3/s [114]
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a. Output power vs. coupling constant k

The dependence of output power on coupling constant k  is calculated with and 

without background signal transmission loss. The results are shown in Fig. 33. The pump 

power is fixed at 100 mW in the calculation. In the case of loss, there is an optimal 

coupling constant where the output power reaches maximum for a fixed pump power. If 

the coupling constant is higher than this optimum, the output decreases. On the other 

hand, the output increases monotonically without loss when k changes from ~80 m’ 1 to 

200 m '1. These results are similar to those of DFB TPCF lasers in Ref [63]. Based on 

these results, we choose a coupling constant of 1 1 0  m ' 1 for the following calculations.

a = 3.4 nm 
a » 5.4 nm 
a ■ 7.6 jim

■ 100 mWp um p

1CL

i a  *  0 . 2 5  m '

I

180 200100 120
Coupling constant k  ( m '1)

140 160

Fig. 33. Output power as a function o f  coupling constant k for DFB CPCF lasers. A phase shift o f  n is 

introduced in the center o f  the grating. The background signal transmission loss a  = 0 and 0.25 m'1. Pump 

power is 100 mW. N Er = 2 .6 x l0 25 /m3, N Yb= 3 .2 5 x l0 26 /m3.

c. Output power vs. the phase shift position

Due to the configuration of the DFB fiber laser, both ends of the Bragg grating 

should have outputs. The results are shown in Fig. 34. The two outputs are identical if  the
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phase shift is located in the middle of the grating. And they are symmetric with the 

position of the phase shift relative to the middle of the grating. In most applications, we 

only need one output. Therefore, to increase one while suppressing another is important 

to obtain higher output power. The output power is not the highest when the phase shift is 

in the middle. The maximal output occurs when the phase shift moves away from the 

center to an optimal position. The output power could be improved by -46%  under the 

parameters shown in Fig. 34. This result is calculated for DFB CPCF laser with 3.4pm 

lattice constant using pump power o f 100 mW and coupling constant of 110 m '1.

right
lalt

-1 0 0  mWpump 
a  » 0.25 m'

k »  100  m'

b 15

Position of a phase shift n (cm)

Fig. 34. Output power at two ends o f  the Bragg grating as a function o f  the position o f  the phase shift for 

DFB CPCF laser with a lattice constant o f  3.4 pm. The pump power , the coupling constant, and signal 

propagation loss are 100 mW, 110 m'1, and 0.25 m'1. N Er = 2 .6 x l0 25 /m3, N Yb = 3 .2 5 x l0 26 /m3.

d. Intensity distribution within the Bragg grating

In DFB semiconductor lasers, the nonuniform intensity distribution is an important 

problem because it can lead to single mode instability through spatial hole burning effects 

[115]. The same situation will occur in DFB fiber laser. A sharp intensity peak located in
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the vicinity of the phase shift has been experimentally proven using a green fluorescence 

scanning technique [116]. The simulation result as shown in Fig. 35 agrees with the 

experimental result very well. This nonuniform intensity distribution will degrade the 

laser performance. Chirped DFB structure is preferred to reduce this peak [117, 118]. 

Another solution is to distribute the phase shift into several locations other than totally in 

a single place.

= 100 mWpump 

a  = 0.25 m" 

k =  110 m"1

0.9

0.8

0.7
£

I “
] 05a

§ 04 
Z

0.3

0.2

0.1

Position of a phase shift it (cm)

Fig. 35 Signal intensity distribution within the Bragg grating. The parameters used to calculate this profile 

are: k=1 10 m'1, the pump power = 100 mW, signal propagation loss a  = 0.25 m'1, and the phase shift o f  n 

is located at 2.5 cm. N Er = 2 .6 x l0 25 /m3, N Yb= 3 .2 5 x l0 26 /m3.

e. Output vs. pump power

Figs. 36 and 37 show the outputs as functions of the pump power. The coupling 

constant k  is chosen as 110 m ' 1 and the ratio of Nyt/Ngr kept as 12.5. The output 

characteristics near the thresholds are shown in Fig. 36 and Table 11. It is found that 

CPCF has lower thresholds than TPCF. Fig. 37 demonstrates the output characteristics 

for pump power ranging from 0 to 600 mW. For both CPCF and TPCF lasers, the
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saturation effect is obvious for fibers with smaller lattice constants. Furthermore, lasers 

using PCF with smaller lattice constants have higher output power near the threshold.

Eventually, lasers using PCF with larger lattice constants will catch up and have 

higher output power with the increase of the pump power. By increasing the doping 

concentration, the threshold increases. This means that more power is needed to achieve 

population inversion for higher concentration. The saturation is reduced with the higher 

doping concentration also. The output curve of laser with smaller lattice constant is closer 

to that of laser with larger lattice constant by increasing the doping concentration. The 

DFB laser using CPCF with lattice constant of 7.6 pm has the highest output power using 

high pump power (-120, -160, and -180 mW under 600 mW pump for three different 

doping concentrations) because of the largest doped region and better intensity 

confinement in the doped region than the TPCF laser. The slope efficiency far away from 

the threshold also increases with the doping concentrations. Based on these results, it’s 

obvious that the PCF laser with smaller mode area is suitable for low threshold 

application while the PCF laser with larger mode area is better for high power 

application.

Throughout this subsection, a phase shift of n is introduced in the center of the 

grating for all the lasers. The total output power should be doubled by adding two 

identical outputs together. For single output application, this output can be improved by 

shifting the position of the phase shift according to Fig. 34.
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Table 11. Thresholds for DFB CPCF and TPCF lasers ( k  = 110 m'1).

CPCF TPCF

Lattice constant (jam) 3.4 5.4 7.6 3.4 5.4 7.6

Radii of the doped 

region (pm)
1.7 2.7 3.8 1.7 2.7 3.8

Signal intensity confined 

in the doped region
85.7% 96.4% 98.7% 35.1% 46.1% 49.9%

Pump intensity confined 

in the doped region
96.5% 99.1% 99.7% 46.1% 50.9% 53.6%

Threshold (mW)

NEr = 3.0xl0 25 /m3 

NYb = 3.75xl02 6  /m3

0.2 0.4 0.7 0.2 0.4 0.8

Threshold (mW) 

NEr = 4.0x1025 /m3 

NYb ~ 5.0x10 2 6  /m3

0.3 0.6 1 0.2 0.5 0.8

Threshold (mW)

NEr = 5.0xl0 25 /m3 

NYb = 6.25xl026 /m3

0.4 0.9 1.6 0.2 0.5 0.9

Slope efficiency (%) 20-30 10-35
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a ■ 3.4 pm 
a " 5 . 4  p m : 

a “ 7.6 nm

4.6
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f
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a ■ 3.4 pm 
•  •  8 .4  p m
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1.6

0.6

Pump powar (mW)

a * 3.4 pm 
a ■ 5.4 pm 
a ■ 7.6 nm

4.5

4.6

3.5
£  3.6

2.5

1.5
1.6

0.60.5

Pump powar (mW)

a ■ 3.4 pm 
a ■ 6.4 pm 
a ■ 7.6 pm

i
t

a ■ 3.4 j»m 
a ■* 6.4 pm 
a »7.6 pm

2

Pump powar (mW)

Fig. 36. Output powers as functions o f  pump powers near the thresholds (signal propagation loss a  = 0.25 

m'1). Left column: DFB CPCF lasers, Right column: DFB TPCF lasers.
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Fig. 37. Output powers as functions o f  pump powers (signal propagation loss a  = 0.25 m'1.) Left column: 

DFB CPCF lasers. Right column: DFB TPCF lasers.

5.3. Conclusion and discussion

In summary, we incorporate a model for Er/Yb co-doped medium into couple 

wave equations. Combining the transfer matrix method, we simulate the Er/Yb co-doped 

DFB PCF lasers with a discrete phase shift n in the middle. There is an optimal coupling
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constant which can provide maximal output power. Observing the output variation as a 

function of the position of the phase shift, we found that the maximal output power is not 

obtained when the phase shift is located in the center of the grating. Furthermore, Er 

doped lasers are analyzed. CPCF lasers are found having lower threshold than TPCF with 

the same doped region and lattice constant. It’s obvious that the Er/Yb co-doped PCF 

laser has much higher output power and slope efficiency than the corresponding Er doped 

PCF laser.

In conclusion, due to the extra interstitial air region, CPCF could have better 

confinement than TPCF. The DFB laser using CPCF is good candidate for low threshold 

applications. Although the linewidth is not included, this modeling is still valuable for 

design work. In most practical fabrication process, the PCF is made by stacking method 

[70], the center rod doped with active material could easily be stacked with other pure 

glass or plastic tubes to form a preform. The distribution of the active atoms is easier to 

control in CPCF following the designed region shown in this chapter.
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SUMMARY AND CONCLUSION

In summary, a 2D FDFD method combined with PML technique has been proposed 

to analyze the dispersion and loss properties of PCFs. The FDFD method discretizes the 

Maxwell’s equations into an eigen-value problem. The PML forms the open boundaries 

of the computation region. By incorporating PML, the 2D FDFD method can deal with 

almost all the linear propagation problems of a PCF whose cross-section is invariant in 

the propagation direction.

To implement the method to analyze a real PCF, it is found that the permittivity 

averaging technique is very important for achieving high accuracy. A proper permittivity 

averaging technique should take 3D Yee’s cells into account other than 2D Yee’s cells at 

the interface between two different materials. Wit this averaging technique, the 

propagation constant and loss can be obtained with accuracies in the orders of ~ 1 0 ' 6  and 

~10‘3, respectively, for a moderately fine mesh. These accuracies are good enough to do 

further analysis such as group velocity dispersion.

Since this method is based on solving eigen-value problem, a batch of eigen-values 

for a given wavelength can be easily obtained in a single run. The eigen-values are the 

propagation constants of the confined modes and the corresponding eigen-vectors are the 

field distributions. Also, because of this feature, the dispersive and lossy materials can 

easily be analyzed using the FDFD method without any modification on the algorithm.

Although the PML is the best technique up to date to absorb the outgoing wave, it 

still cannot totally eliminate the reflection at the zero-boundaries as evidenced by the 

obtained spurious modes. The spurious modes are formed between the zero-boundaries 

and the air holes, and have much higher losses than the confined modes.
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The drawback of this method is that the computation becomes rigorous when a very 

large computation region is dealt with, e.g. when the loss is investigated as a function of 

number of air-hole rings. Although the symmetry property of the PCF can be utilized to 

reduce the computation region to a quarter or even smaller region, and sparse matrix 

technique can relieve the memory consumption, this shortcoming still cannot be 

overcome.

However, for a fiber with rotational symmetry, the problem can be really simplified 

from 2D to ID. Bragg fiber is such an example. Under cylindrical coordinates, not only 

the derivative in the propagation (z) direction, but also in the azimuthal (9 ) direction can 

be represented using analytical expressions other than the differences. These analytical 

expressions obviously improved the accuracy of the algorithm. Furthermore, the 

computation region is reduced from a 2D region to a straight line. This reduces the 

dimension of matrices involved in the algorithm from N2 xN2 to NxN, which will greatly 

relieve the computation burden. These merits have been proven using several examples in 

chapter 3. To analyze the loss property of Bragg fibers, the PML technique is employed 

again in the cylindrical coordinates. Other than the anisotropic PML implemented in the 

2D FDFD method described in chapter 2, a complex coordinate stretching method [74, 78] 

is used for this ID FDFD method. The advantage of this complex coordinate stretching 

method is that the formula of the algorithm can be kept general for both the closed and 

open boundary conditions. The loss due to the finite number of Bragg layers is analyzed 

without additional algorithm complexity by doing the finite differences directly in 

complex coordinates.
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A second, the Galerin method is also proposed to analyze the properties of Bragg 

fibers. In this method, the mode fields are expanded using orthogonal Laguerre-Gauss 

functions. Substituting the mode fields into Helmholtz wave equations for transverse 

fields under cylindrical coordinates, we obtained an eigen-value equation in matrix form 

again. The eigen-value is the normalized propagation constant, and the eigen-vector is the 

coefficients before Laguerre-Gauss functions. This method is accurate and stable which 

has been proven by couple of examples in chapter 3. However, this method cannot do the 

loss analysis like the PWM for the 2D PCFs. Moreover, only TE and TM modes are 

analyzed, the formula for hybrid modes is not developed yet. This work will be finished 

in the future.

It is found that the FDFD method is also suitable for PBG analysis by modifying the 

eigen-value equation. In chapter 4, a FDFD method is developed to analyze the band gap 

structures of photonic crystals. The eigen-value problem for band gap analysis has the 

eigen-value which is the wave number in vacuum (ko), and the eigen-vector which is the 

filed distribution same as for PCF analysis. According to Bloch theorem, for band gap 

analysis, the periodic boundaries should be adopted instead of using PML technique to 

form open boundaries. The comparison with PWM method given in chapter 4 shows that 

the FDFD method can provide complete and accurate information about the band 

structures of a photonic crystal. Furthermore, the formula has been given in a generalized 

coordinate which makes various lattice geometries that can be analyzed in the same 

manner. Another advantage not mentioned in chapter 4 is that the FDFD method can deal 

with a unit cell with arbitrary shape while keeping high accuracy.
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In chapter 5, a theoretical model of DFB PCF lasers has been presented. The output 

characteristics o f Er-doped and Er/Yb co-doped DFB PCF lasers are modeled and 

simulated in order to find suitable PCF geometry to achieve low threshold and high 

output power. In this model, the properties of PCFs are analyzed by the FDFD method; 

the coupled mode theory is used to analyze Bragg grating; the coupled mode equations 

are solved by transfer matrix method; and Er atom is modeled as a three-level medium 

while energy transfer between Yb and Er atoms is considered for Er/Yb co-doped fiber.

When comparing the output characteristics of DFB PCF lasers with different lattice 

constants, it is found that CPCF laser has a lower threshold than TPCF for the same 

lattice constant. Under high pumping power, both CPCF and TPCF lasers have 

comparable output power. Therefore, both of them are suitable in high-power 

applications. However, the TPCF laser with a larger mode area is more useful for high- 

power operation. Simulation results for Er/Yb co-doped DFB PCF lasers have shown 

much higher output power and efficiency than Er doped lasers. Furthermore, it is found 

that the two outputs o f a DFB PCF laser are identical when the phase shift is located in 

the middle of the grating. The output power is a function of the position of the phase 

shift, and could be increased by 46% when the phase shift moves away from the center to 

an optimum position. The non-uniform intensity distribution within the grating has also 

been shown with an intensity peak located at the position of the phase shift. These new 

DFB PCF lasers are still under investigation and will be commercially available in the 

near future. They will find their applications in communications, spectroscopy, and 

sensing fields.
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