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A B S T R A C T 

ON THE RADIUS OF CONVERGENCE OF 

INTERCONNECTED ANALYTIC NONLINEAR SYSTEMS 

Makhin Thitsa 
Old Dominion University, 2011 
Director: Dr. W. Steven Gray 

A complete analysis is presented of the radii of convergence of the parallel, prod

uct, cascade and unity feedback interconnections of analytic nonlinear input-output 

systems represented as Fliess operators. Such operators are described by convergent 

functional series, indexed by words over a noncommutative alphabet. Their gener

ating series are therefore specified in terms of noncommutative formal power series. 

Given growth conditions on the coefficients of the generating series for the compo

nent systems, the radius of convergence of each interconnected system is computed 

assuming the component systems are either all locally convergent or all globally con

vergent. In the process of deriving the radius of convergence for the unity feedback 

connection, it is shown definitively that local convergence is preserved under unity 

feedback. This had been an open question in the literature. 
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CHAPTER 1 

INTRODUCTION 

This chapter provides the motivation for the research described in this disserta

tion. Subsequently, the problem statement is presented followed by a chapter-by-

chapter outline of the document. 

1.1 MOTIVATION 

Most complex systems found in applications can be viewed as a collection of 

interconnected subsystems. Generally, an interconnection is said to be well-posed 

when the output signal and every internal signal is uniquely defined on some interval 

[t0,t0 + T], T > 0, when the inputs are, for example, Lebesgue measurable functions 

on the same interval. Sometimes additional properties like causality, continuity and 

regularity are also included as part of the definition of well-posedness [5, 34]. If 

one or more subsystems is nonlinear, a variety of sufficient conditions are available 

to ensure that an interconnected system is well-posed [1, 2, 31]. One example for 

feedback systems is the incremental small gain theorem, which imposes a bound on 

the Lp loop gain [5]. 

This dissertation focuses on a class of analytic nonlinear input-output sys

tems known as Fliess operators [14-16]. Such operators are described by func

tional series indexed by the set of words X* over the noncommutative alphabet 

X = {xo,Xi,...xm}. Their generating series are, therefore, specified in terms of 

noncommutative formal power series, the set of which is denoted by M.e((X)). (The 

set of all formal power series over a commutative alphabet X is denoted by M* [[X]].) 

A formal power series c is a mapping c : X* H-» Rf. The value of c at 77 G X* is 

denoted by (c, 77), and is called the coefficient of 77 in c. Specifically, one can formally 

associate with any series c G !Rf((X)) a causal m-input, ^-output operator, Fc, in 

the following manner. Let p > 1 and to < t\ be given. For a measurable function 

u : [to,ti] —>• Rm, define ||u||p = max{||u;||p : 1 < % < m}, where ||ui||p is the usual 

Lp-norm for a measurable real-valued function, Ui, defined on [to>^i]- Let L^^o^i] 

denote the set of all measurable functions defined on [to, ti] having a finite || • ||p norm 

and B™(#)[i0,*i] := {u G L™[t0,<i] : ||u||p < R}. Assume C[t0,*i] is the subset 
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of continuous functions in L™[£o,£i]. Define recursively for each 77 6 X* the map 

En : L]™[£o, £1] —> C[£o,£i] by setting E%\u\ = 1 and letting 

EXifj[u](t,t0) = / iti(r)Ejj[u](r,£o)dT, 
Jto 

where Xj G X, 77 G X*, and ito = 1. The input-output operator corresponding to c is 

the Fliess operator 

Fc[u]{t)= ^ ( c , ^ ) £ ; , H ( M o ) . 

If there exist real numbers Kc, Mc > 0 such that 

\(c,V)\<KcM^\n\\, V77GX*, (1.1.1) 

where |7y| denotes the length of the word 77, the series c is said to be locally convergent, 

and the set of all locally convergent formal power series is denoted by M.iLC((X)). 

(Here, \z\ := max, \zi\ when z G M.e.) In this case, Fc constitutes a well defined 

mapping from B™(R)[t0, t0 + T] into B$(S)[to, t0 + T] for sufficiently small R,T > 0, 

where the numbers p, q G [1,00] are conjugate exponents, i.e., 1/p + 1/q = 1 [20]. In 

particular, when p = 1, the series defining y — Fc[u] converges if 

m a x W T } < MA^nj ( 1 J 2 ) 

[6,8]. Let 7r : M.eLC((X}) —>• M+ U {0} take each nonzero series c to the smallest 

possible geometric growth constant Mc satisfying (1.1.1). In this case, M.eLC((X)) 

can be partitioned into equivalence classes, and the number 1/(MC(1 + m)) will be 

referred to as the radius of convergence for the class 7r_1(Mc). This is in contrast to 

the usual situation where a radius of convergence is assigned to individual series [25]. 

In practice, it is not difficult to estimate the minimal Mc for many series, in which 

case, the radius of convergence for n~1(Mc) provides an easily computed lower bound 

for the radius of convergence of c in the usual sense. Finally, given any measurable 

function u on [£Q, 00], let u[to, £1] denotes its restriction to the interval [rj0, £1]. Define 

the extended space L™e(£0) as 

££(*o) = {u : [£0,00) -> Rm : ultoM e L™[£0,£i],V£a G (£„,cx>)}. 

When c satisfies the more stringent growth condition 

\(c,T))\<KcMW, \/neX\ (1.1.3) 
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Fig. 1: The parallel connection of two Fliess operators 

-*y 

Fig. 2: The product connection of two Fliess operators 

the series Fc defines an operator from the extended space L™e(i0) into C[to, oo) [20]. 

Such generating series are called globally convergent series, and the set of all such 

series is denoted by R.eGC((X)). 

Given two input-output systems Fc and Fd, there are four fundamental system 

interconnections normally encountered in applications : the parallel connection, the 

product connection, the cascade connection and the feedback connection. For any 

admissible input, u, the parallel and product connections as shown in Figures 1 and 

2 are described, respectively, by 

y = Fc[u] + Fd[u], y = Fc[u]Fd[u}. 

The cascade connection depicted in Figure 3 is equivalent to 

y = Fc[Fd[u}}. 

Finally, the feedback connection as shown in Figure 4 is described by the solution y 

to the feedback equation 

y = Fc[u + Fd[y}}. 
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Fig. 3: The cascade connection of two Fliess operators 

K±> 

Fig. 4: The feedback connection of two Fliess operators 

It is known that the parallel, product and cascade connection of two locally con

vergent Fliess operators always yields another locally convergent Fliess operator [19]. 

The feedback connection is known to be well-posed in a certain sense, but it is not 

known at present whether it has a locally convergent Fliess operator representation. 

An important exception to this state of affairs is the self-excited case (u = 0) [19]. In 

addition, global convergence is preserved by the parallel and product connections but 

not in general by the cascade or feedback connection [18]. Little else is known about 

the subject. In particular, there is no proof that the unity feedback interconnection 

(that is, when F^ is replaced by the identity map i") preserves local convergence. 

Furthermore, the radius of convergence is not known for any of the four intercon

nections. As discussed in later chapters, the parallel connection is straightforward, 

and lower bounds are available in [32] for the product connection and in [19] for the 

cascade and self-excited feedback connections. However, these bounds are in general 

very conservative. Hence, the primary goal of this dissertation is to address these 

specific gaps in the literature. 
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1.2 PROBLEM STATEMENT 

The specific goals of this dissertation are to: 

1. Compute the radii of convergence of the parallel, product, cascade and unity 

feedback interconnections of input-output systems represented by Fliess oper

ators. The cases where the components are either all locally convergent or all 

globally convergent will be considered individually. 

2. Show that the unity feedback connection preserves local convergence. 

3. Provide for each interconnection specific examples under which the radius of 

convergence is achieved. 

1.3 DISSERTATION OUTLINE 

The remainder of this dissertation is organized as follows. In Chapter 2, the 

mathematical tools used to solve the main problems are presented. First, the basic 

theory of formal power series is introduced in the context of formal language theory. 

Then the basic interconnection theory for Fliess operators is reviewed. This includes 

the definitions of the composition and feedback products of formal power series. The 

goal of Chapter 3 is to calculate the radii of convergence for the parallel, product and 

cascade connection of two convergent Fliess operators. The case where the operators 

are locally convergent is considered first, followed by the globally convergent case. 

In Chapter 4, the radius of convergence is determined for the feedback connection. 

First, self-excited feedback systems are addressed. Subsequently, the analysis for the 

unity feedback case is presented. Again, separate analyses are done for closed-loop 

systems having components with locally convergent generating series and globally 

convergent generating series. Chapter 5 summarizes the conclusions and describes 

future work that could be done in this area. 
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C H A P T E R 2 

MATHEMATICAL PRELIMINARIES 

The generating series of Fliess operators are specified by noncommutative formal 

power series. Therefore, this chapter presents some basic definitions concerning these 

objects and describes a set of key operations one can apply to them. Specifically, 

connecting two Fliess operators in the parallel or product configuration is equivalent 

to adding or shuffling the corresponding generating series, respectively. Connecting 

them in a cascade or feedback fashion is equivalent to performing the composition 

product or feedback product, respectively, on the generating series. But first some 

notation and terminology from formal language theory is introduced. 

2.1 NOTATION A N D TERMINOLOGY FOR FORMAL P O W E R 

SERIES 

A finite nonempty set of noncommutmg symbols X = {XQ,X^,. .. ,xm} is called 

an alphabet. Each element of X is called a letter, and any finite sequence of letters 

from X, r] = xn • • • xlk, is called a word over X. The length of n, \n\, is the number 

of letters in 77, while \n\x is the number of times the letter x% appears in 77. The set 

of all words with length k will be denoted by Xk. Joining two words £, v G X* from 

end to end to form the new word 77 = £1/ is called catenation. The power rf means 

catenating 77 with itself 1 times. Furthermore, the empty word, 0, is an identity 

element for catenation, that is, 

077 = 770 = 77. 

The empty word 0 has length zero. The set of all words including the empty word 

will be denoted by X*. Since catenation is associative, X* forms a monoid under 

this product. 

Definition 2.1.1. Formal Power Series 

Given an alphabet X = {xo, xi,... ,xm}, a formal power series c is any mapping of 

the form 

c : X* -> Re. 
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The image of a word 77 G X* under c is denoted by (c, 77) and is called the coefficient of 

77 in c. Typically, c is represented as the formal sum c = Ylnex* (c> r?)?7- The collection 

of all formal power series over X is denoted by R^((X)}. The notation c < d means 

that the component series satisfy (c,. 7?) < (rft, 77) for all r\ G X* and i = 1, 2 , . . . , I. 

When (c. 77) G Rf, | (c, 77) | := max, 1 (cz, 77) | The definition of the catenation product 

can be extended to R((X)} as follows. 

Definition 2.1.2. Catenation Product 

The catenation product of two series c, d G R((X}) is 

(erf,77)= J2 (.c,0(d,v),vvex*. 
v=i" 

R((X)) forms an associative R-algebra under the catenation product with identity 

element 1. 

Definition 2.1.3. The Sum and Scalar Product 

The sum of two series c , d e l ' ( (X)) is defined as 

(c + d, 77) = (c, 77) + (rf, r?), V77 G X*, 

and the scalar product is given by 

(ac, 77) = a(c, 77), V77 G X*, a G M. 

With these definitions, M.e((X)} admits an R-vector space structure. The following 

theorem relates the sum of the generating series to the parallel connection of the 

corresponding Fliess operators. 

Theorem 2.1.1. [14] Given Fhess operators Fc and F^, where c,d G M.eLC((X)), the 

parallel connection Fc + Fj has the generating series c + d. That is, 

Fc + Fd = Fc+d. 

The local convergence is preserved under summation. 

The following set of definitions will be used throughout the dissertation. 

Definition 2.1.4. Left-Shift Operator 

Given any £ G X*, the corresponding left-shift operator on X* is defined as 

r 1 : X'->Re{(X)) 



(̂  0 : otherwise. 

This definition can be extended linearly as follows For any c € M.e((X)}, 

•nex-

In addition, £_i(-) denotes the left-shift operator £_1(-) applied i times. 

Definition 2.1.5. Support of a Formal Power Series 

The support of a formal power series c € M.e((X)) is denned as 

supp(c) := {17 e X * : ( c , 77)^0}. 

Definition 2.1.6. Order of a Formal Power Series 

The order of a formal power series c e M.e((X)) is denned as 

j , s f min{|?7| :?? Gsupp(c)} : c ^ O 
ord(c) = <̂  

(̂  00 : c = 0. 

The following theorem will be essential in computing the radius of convergence for a 

given interconnection. 

Theorem 2.1.2. [33] Let f(z) = YLn>oanz'n be analytic in some neighborhood of 

the origin in the complex plane. Suppose ZQ 7̂  0 is a singularity of f(z) having the 

smallest modulus. Given any e > 0, there exists an integer N > 0 such that for all 

n> N, 

\an\<(l/\z0\ + e)n. 

Furthermore, for infinitely many n, 

\an\ > {l/\z0\ - e)n . 

The following definition will be used extensively in the analysis of feedback systems 

in Chapter 4. 

Definition 2.1.7. Realization of a Fliess Operator 

A Fliess operator Fc defined on B™(R)[to,to + T] is said to be realized by a state 
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space realization when there exists a system of n analytic differential equations and 

£ output equations 
m 

z = 9o{z) + ^29i(z)uu 2(t0) = z0 (2.1.1) 
1 = 1 

y = h(z), (2.1.2) 

where each gt is an analytic vector field on some neighborhood W of ZQ, and h 

is an analytic function on W, such that (2.1.1) has a well defined solution z(t), 

te [t0,t0 + T] on W for any given input u € B™(R)[t0,t0 + T], and 

Fc[u](t) = h(z(t)), te [to,t0 + T] 

[15,20,23]. 

Let G = {go,9i, • • • ,gm}- It is well known that when Fc is realizable, the generating 

series c is related to the realization (G, h, z0) by 

(c,V) = Lg7ih(z0), Vr,eX*, (2.1.3) 

where the iterated Lie derivatives are defined by 

L9nh = L s n • '" L9,k
h> rn = xlk---xHe X* 

with L9t : h i->- dh/dz • gx and L@/i = /i [15,16,23]. The analyticity of G and h ensures 

that c is locally convergent [30]. 

2.2 SHUFFLE PRODUCT AND THE PRODUCT CONNECTION 

The central definition in this section is given below [3,14,28]. 

Definition 2.2.1. Shuffle Product 

The shuffle product of two words 77, £ G X* is defined as the R-bilinear mapping 

uniquely specified by the recursive definition 

= xt(r]' ^{x3i')) + x:i({xlri)^^), 

where 77 = xtrf, f = x ^ ' and I / U J 0 = 0LIJI' = ^, W G X * . This definition is extended 

linearly to any two series c, d € M((X)) by letting 

CLud= J ] (c,r))(d,£)r]uj£. 
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Given two series c,d £ R f((X)), the shuffle product Cwd is defined componentwise, 

i.e., the i-th component of cmd is (cujd.v)l = {clLudl,u) for any v £ X* and 

i = 1, 2 , . . . ,£. M.e({X)) forms a commutative and associative R-algebra under the 

shuffle product. For any c £ R^((X}}, the power cLuk is equivalent to shuffling the 

series c with itself k times and c1^0 = 1. The following properties and identities 

of shuffle product will be used extensively in the analysis presented in subsequent 

chapters. 

Lemma 2.2.1. [32] The following identities hold: 

1. For any x £ X, xLuk = k\ xk. 

M 
2. {c^d,u) = J2 Yl (c,r))(d,£){riuj£,v). 

1=0 , 6 X ' 
£ 6 X l " l - 1 

3. Yl (riuiZ,v)= 0"J\, i = 0,l , . . - ,IH-

Theorem 2.2.1. /#/ TTie left-shift operator acts as a derivation on the shuffle prod

uct, i.e., for all c, d £ R((X)) and any Xk E X 

X~^l(CLud) = X^1(c) Lud + CLLjiCfc1^). 

The following theorem relates the shuffle product of the generating series to the 

product connection of the corresponding Fliess operators. 

Theorem 2.2.2. [14,32] Given Fhess operators Fc and Fd, where c, d £ Re
LC((X)), 

the product connection FcFd has generating series c LU d. That is, 

" c± d -fcLud-

Furthermore, local convergence is preserved under the shuffle product. 

2.3 COMPOSITION P R O D U C T A N D THE CASCADE 

CONNECTION 

The composition product can be traced back to the work of Ferfera in [9,10]. The 

interpretation given below first appeared in [17,18] 
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Definition 2.3.1. Composition Product 

Let d G Rm((X)) and define the family of mappings 

Ac, : M.{(X)) -»• M((X)) : e ^ x0{dt w e), 

where i = 0 , 1 , . . . , m and do := 1. Assume .Dg is the identity map on R((X)). Such 

maps can be composed in an obvious way so that DXiXj := DXiDXj provides an R-

algebra which is isomorphic to the usual R-algebra on R((X}) under the catenation 

product. The composition product of a word 77 G X* and a series d G M.m((X)) is 

defined as 

(xlkxlk^1 • • • xn) od = DXtkDXtk x • • • DXli(1) = D„(l). 

v 

For any c G R^((X)) the definition is extended linearly as 

cod= ^ ( c , 77)^(1). 

From this definition, it is clear that the composition product is linear in its left 

argument, i.e., (ac + j3d) o e = a(c o e) + (3(d o e), where a, /3 G R, c, d G R^((X)}, 

and e G Rm((X)) . It is sometimes useful to express the composition product in the 

following alternative ways: 

(i) An arbitrary word 77 G X* can be written as 

„ _ ^.nk "fc-i r m r „.n0 
'/ ^ 0 lk 0 •" " x 0 *i 0 ' 

where i3 7̂  0 for j = 1 , . . . , k, and n0, n\,..., n^ > 0. Then it follows that 

77 O d = X^k + 1 [d,fc LUXJ*-1 + 1 K _ , u, • • - ^ 1 + 1 [dn u ^ 0 ] • • •]" 

(ii) For any word 77 G X*, one can uniquely associate a set of right factors 

{?7o, 771,..., ?7fc} by the iteration 

fij 4-1 no • / n 
IJi+l — X0 Xij + iVji Vo — XQ , 7J + l 7^ u , 

so t h a t 77 = Tifc w i t h k = \rj\ — ^ l ^ . T h e n , 77 o d = 77̂  o d, where 

77J+1 o d = x2J+1+1[dlj+1 LU (rj3 o d)] , 

a n d 770 o d = x^°. 
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The following lemma states some important properties of the composition product. 

Lemma 2.3.1. [9,19] For c, d <E Re{(X)) and e € Rm((X}) the following identities 

hold: 

1. 0 o c = 0. 

n>0 

3. (c Lu d) o e = (c o e) LU (d o e). 

An important observation is that the composition product induces a contraction on 

Rm((X)). To see this precisely, consider first the following definition. 

Definition 2.3.2. Ultrametric Space 

Given a set S, a function 6 : S x S —» M is called an ultrametric if it satisfies the 

following properties for all s, s', s" € 5: 

1. <J(s,sO > 0 

2. (5(s, s') = 0 if and only if s = s' 

3. tf(s,s') = <J(s',s) 

4. <J(s,s') < ma^{S(s,s"),5(s',s")}. 

The pair (5, S) is referred to as an ultrametric space. It is easily shown that every 

ultrametric space is a metric space. 

Theorem 2.3.1. [3] The M.-vector space Re((X}) with the mapping 

dist : Re((X)) x Re({X)} -»• R 

: (c, d) ^ aoni(c-d) 

zs an ultrametric space for any real number 0 < a < 1. 

Definition 2.3.3. Contractive Mapping 

Let (S, S) be a metric space. A mapping T : 5 —>• 5 is called a contractive mapping 

if there exists a real number 0 < a < 1 such that 

<J(T(s),T(s')) <a<J(s,s ') , s , s ' £ S . 
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Given any mapping T, a point s* G S is said to be a fixed point if T(s*) = s*. The 

following theorem gives a condition under which a fixed point exists and is unique. 

Theorem 2.3.2. [24] Let (5, S) be a complete nonempty metric space. Then every 

contractive mapping T '• S —> S has precisely one fixed point in S. 

Theorem 2.3.3. [19] For any c G Rm((X)) , the mapping c i—>• cod is a contractive 

map on Wn((X)) in the ultrametric sense. 

The following theorem states that local convergence is preserved under composi

tion. 

Theorem 2.3.4. [19] Suppose c G Re
LC((X)) and d G W£C{{X)) with growth con

stants Kc, Mc > 0 and Kd, Md > 0, respectively. Then cod G M.eLC((X)) Specifically, 

\(cod,u)\< Kc((<p(mKd) + 1)M)I"'(|H + 1)!, Vi/ G X*, 

where <f>(x) := x/2 + ^ /x 2 / 4 + x and M = max{M c ,Md}. (Here <j>(l) = cf)g := 

(1 + %/5)/2, the golden ratio. See Table 1 for some specific values of <f>(mKd) + I.) 

TABLE 1. Some specific values of <f>{mKd) + 1 

mKd 

0 

« 1 

1/2 

1 

» 1 

+00 

<f){mKd) + 1 

1 

~ y/mKd + 1 

2 

<f>g + l = <l>2
g 

w mKd 

+oo 

In light of (1.1 2) and the theorem above, a lower bound on the radius of conver

gence for co d is l/(cj)(mKd) + 1)M(1 + m). To date no example has been presented 

for which the radius of convergence corresponds exactly to this bound. Thus, it is 

believed that this result is conservative. In addition, it can be shown by a simple coun

terexample that global convergence is not always preserved under composition [7,9]. 
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However, if c and d are globally convergent, one would expect this stronger property 

to produce a correspondingly larger radius of convergence for cod. Finally, in much 

of the work to follow, the subset of M.e((X)) described below will be useful. 

Definition 2.3.4. [13,14] Exchangeable Series 

A series c G M.e((X)) is said to be exchangeable if for arbitrary v, £ G X* 

\v\x, = \Z\Xx,i = 0,l,---,m =*• (c,n) = ( c , £ ) . 

Theorem 2.3.5. If c £ M.e((X}) is an exchangeable series and d G M.m((X}) is 

arbitrary then the composition product can be written in the form 

oo 
c o d = E E (c,xr

0°---xr-)D:i(i)^.-.^D:Z(i). 

fc=0 r0, ,rm>0 

Proof: For fixed r% > 0, i = 0 , 1 , . . . , m define the polynomial 

X(r0,...,rm) = Y2 V-
Z=0,1, ,m 

Using the identity 

X(r0, ru ..., rm) = xr
0° LU X[* LU • • • UJ xr™ 

[6], observe that 

oo 

cod = Y^ E (c> *)) V ° d 

fc=0 ^ g X ' 5 

oo 

= E E ( c , ^ o ° . - - - a : ; m ) ^ ( r o , - . - , r m ) o d 
fc=0 r 0 , , r m > 0 

OO 

= E E ( c , x 5 D , . . . , x ^ ) ( x 5 ° o d ) u J - - - u J ( x ^ o d ) 

fc=0 »•„, , r m > 0 

OO 

= E E ( c , x S B
> . . . , x ^ ) Z ^ ( l ) u J - . - l i , I ? ^ ( l ) . 

fe=0 r0, , r m > 0 

The following theorem relates the composition product of the generating series to 

the cascade connection of the corresponding Fliess operators. 
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Theorem 2.3.6. [9,10,19] Given Fliess operators Fc and Fd, where c G M.eLC((X)) 

and d G M.™C((X)), the cascade connection Fc o Fd has generating series cod, that 

is, 

Fc° Fd = Fcod-

Furthermore, local convergence is preserved under the composition product. 

2.4 FEEDBACK PRODUCT AND THE FEEDBACK CONNECTION 

Consider two Fliess operators interconnected to form a feedback system as shown 

in Figure 4. The output y must satisfy the feedback equation 

y = Fc[u + Fd[y}} 

for every admissible input u. It was shown in [19, 21] that there always exists a 

generating series e so that y = -FeM- In which case, the feedback equation becomes 

equivalent to 

Fe[u] = Fc[u + Fdoe[u}}. (2.4.1) 

The feedback product of c and d is thus defined as c@d = e. Fe is the composition 

of two operators, namely, Fc and / + Fdoe- The latter is not realizable by a Fliess 

operator due to the direct feed term I. To compensate for the presence of this term 

the following definition of the modified composition product is needed. 

Definition 2.4.1. Modified Composition Product 

The modified composition product of c G M.e((X)} and d G Rm((X)} is defined as 

c5d= J2(C-V)DV(1), 

where 

DXx : K(PO) -> M((X)) :e^xle + x0(d4 LU e) 

with do := 0. 

Alternatively, the modified composition product can be expressed as follows. For any 

T] G X* and d G Rm((X}) 

n : J] = x% 

rjod={ x^xt(n'5d) + x^+1(dtuj(r]'5d)) : n = x^xjj, rf G X* 
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where n > 0. For c G Re((X)) and d G Rm((X)), the definition is extended linearly 

as 

cod = 2_] (c> T])rjod. 
vex* 

Theorem 2.4.1. [19] For any cGRe((X)) and d G Rm((X}), it follows that 

Fc6d[u] = Fc[u + Fd[u}}. 

The feedback equation (2.4.1) can be written in terms of the modified composition 

product as 

Fe[u] = Fc~o{doe)[u]. 

It was shown in [27, Corollary 2.2] that if Fc = Fd on any B™(R)[t0,t0 + T] then 

c = d. A similar uniqueness result for the formal case is described in [21]. Therefore, 

e = co(d o e). 

Theorem 2.4.2. [19, 26] For any c G Wn{(X)), the mapping d i—>• cod ŝ a contrac

tive map onRm((X)). 

Theorem 2.4.3. [21] For any c,de Rm((X)}, it follows that : 

1. e is the unique fixed point of the contractive iterated map 

S : e(k) i-> e(k + 1) = co(d o e(k)). 

2. c@d = e satisfies the fixed point equation 

e = c5(doe). (2.4.2) 

In the case of a unity feedback system, where the operator Fd in the feedback 

path is replaced by I, equation (2.4.2) reduces to e = coe. In the self-excited case, 

i.e., when u=0, equation (2.4.2) becomes e = (corf)oe. Thus, when cod is redefined 

as c, it reduces further to e = c o e. Moreover, since a self-excited feedback system 

can be described by Fc@d[0] = F(c@d)oQ[u], the generating series e = (c@d) o 0. Thus, 

e G Mm[[Xo]], where Xo = {XQ}. The next theorem states that local convergence of 

a self-excited unity feedback system is preserved. 
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Theorem 2.4.4. [19] Let c G W£C((X)) with growth constants Kc > 1 and Mc > 0. 

If e G Rm[[Xo]] satisfies e = c o e i/ien 

|(e,xj) | < # c 0 s ( ( m i f c ( 2 + <^) + l )M c ) ns nn! , n > 0, 

where SQ := 1/0S and s n + 1 = B(Cn) := 5Zfc=o G D ^ ' *-e-> s«+i> n — *-* *5 ^ e binomial 

transformation of the Catalan sequence. 

TABLE 2: Selected sequences from the OEIS concerning the local convergence of the 
feedback product in the self-excited case 

sequence 

s n + l 

OEIS number 

A000108 
A007317 

n = 0 , l , 2 , . . . 

1,1,2,5,14,42,132,429,1430,... 
1,2,5,15,51,188,731,2950,... 

The Catalan sequence is a sequence of natural numbers which appears in many 

counting problems. The n-th Catalan number is described as 

n — 1 \ n J 

The sequence s„+i, n > 0 is sequence number A007317 in the Online Encyclopedia 

of Integer Sequences (OEIS) [29] See Table 2 for the first few entries of both Cn, 

n > 0 and sn + i , n > 0. The asymptotic behavior of s„+1 , n > 0 is known to be 

Sn ~ , 5 
8V7TO3 

[22]. Therefore, for the single-input, single-output case 

\(e,x%)\<((3(Kc)Mc)
nn\, n > 0, 

where (3(KC) := i^c(10 + 5<f>g) + 5 for Kc > 1. For a self-excited unity feedback 

system, it follows from (1.1.2) with R = m = 0 that -Fe[0] is guaranteed to converge 

on at least the interval [0,1//3(KC)MC). But again no example has been presented 

to date for which this interval corresponds exactly to the interval of convergence. 

Little else is known concerning the local convergence of the closed-loop system, but 

as in the cascade connection, global convergence is known not to be preserved under 

feedback [9, 18]. However, a version of Theorem 2.4.4 tailored to the case where 

c G KQC({X)) should intuitively yield a larger interval of convergence for the closed-

loop system. Most importantly, when the input is nonzero, the question of whether 

or not the unity feedback system preserves local convergence remains open. 
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C H A P T E R 3 

THE RADIUS OF CONVERGENCE OF THE 

NONRECURSIVE CONNECTIONS (PARALLEL, 

P R O D U C T AND CASCADE) 

The goal of this chapter is to calculate the radius of convergence of the parallel, 

product and cascade connections of two convergent Fliess operators. The case where 

the component operators are locally convergent is considered first, followed by the 

globally convergent case. 

3.1 THE PARALLEL CONNECTION 

3.1.1 Local Convergence 

The analysis begins with the parallel connection shown in Figure 1, which can 

be considered as the simplest of all the interconnections. The following theorem is a 

prerequisite for proving the main theorem of this section. 

Theorem 3.1.1. Let X = {XQ,XI, ... ,xm}. Let c,d G R.£LC((X}), where each com

ponent of (c,rj) and (d,n) is KcM^\n\\, n G X* with KC,MC > 0 and KdMd
v]\n\l, 

n G X* with Kd,Md > 0, respectively. Ifb = c+ d, then the sequence (6j,Xo), k > 0 

has the exponential generating function 

/(so) := £(^4)fr 
fc=o K-

Kc | Kd 

1 - Mcx0 1 - Mdx0 

for any i = 1, 2 , . . . ,£. Moreover, the smallest possible geometric growth constant for 

b is 

M6 = max{M c ,Md}. 

Proof: There is no loss of generality in assuming I = 1. Observe for any v G Xn, 

n > 0 that 

(6,1/) = (c,u) + (d,u) 

= (KcM? + KdM2)n\. 
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Furthermore, (b,u) = (P,XQ), n > 0. The key idea is that f(t) is the zero-input 

response of F5. Specifically, 

f(t) = 5 > , 4 ) - = F5[0] 
fc=0 

= Fe[0] + Fj[0] 
00 00 

= ^KcM*tk + J2KdM%tk 

fe=0 fe=0 

= Kd I X d (3 11) 

1 - M c i 1-Afrft" k ' ' ; 

Since / is analytic at the origin, by Theorem 2.1.2 the smallest geometric growth 

constant for the sequence (b, XQ), n > 0, and thus for the entire formal power series b, 

is determined by the location of any singularity nearest to the origin in the complex 

plane, say x'0. Specifically, Mb = l/\x'0\, where it is easily verified from (3.1.1) that 

x'0 is the positive real number 
1 

0 max{Mc, Md)' 

This proves the theorem. • 

The following theorem describes the radius of convergence of the parallel connection 

of two locally convergent Fliess operators. 

Theorem 3.1.2. Let X = {xo,£i, • • • ,Xm}- Let c,d € M.eLC((X)) with growth con

stants Kc, Mc > 0 and K^ M& > 0, respectively. Ifb = c + d then 

\(b,u)\ <KhM^\v\\, veX* (3.1.2) 

for some Kb > 0, where 

Mft = max{M c ,Md}. 

Furthermore, no smaller geometric growth constant can satisfy ^3.1.2^, and thus the 

« * « . . / convergence, s 

max{Mc ,Md}(l + m)' 

Proof: First observe that 

\(c + d,u)\ < \(c,v)\ + \(d.is)\ 

< (ct, v) + {du v) 
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where c, d and b are defined as in Theorem 3.1.1 and i = 1,2, ...,£. In light of 

Theorem 3.1.1 and Theorem 2.1.2, (fej, v) is asymptotically bounded by Mfe |z/|!. Thus, 

some Kb > 0 can always be introduced such that 

{Kv)<KbMb
H\v\}, vex*. 

Furthermore, (6J,XQ), n > 0 is growing exactly at this rate. Thus, no smaller geo

metric growth constant is possible, and the theorem is proved. • 

3.1.2 Global Convergence 

In this section, the radius of convergence of the parallel connection of two globally 

convergent Fliess operators is calculated. The following theorem is a prerequisite for 

proving the main theorem of this section. 

Theorem 3.1.3. Let X = {XQ,XI, ... ,m}. Let c,d G M.QC({X)), where each com

ponent of (c, T?) and (J, rj) is KCM}?\ n G X* with Kc, Mc > 0 and KdMd
n\ n G X* 

with Kd, Md > 0, respectively. Ifb — c + d, then (bu v) < (bl, x0
u ) , v G X*, and the 

sequence (6J,XQ), k > 0 has the exponential generating function 

f(x0) = Kcexp(Mct) + Kdexp(Mdt) 

for any i = 1, 2 , . . . ,£. 

Proof: There is no loss of generality in assuming £ = 1. Observe for any v G Xn, 

n > 0 that 

(b,u) = {c,u) + {d,u) 

= KcM? + KdM2. (3.1.3) 

Thus, (b, u) = (b, XQ), n > 0. As in the local case, f(t) is the zero-input response of 

Ft,. Specifically, 

= FE[0] + FS[0] 

_ tk 

f(t) = 2 (6 . ,xg)^ = F5[0] 
fe=0 

^ KcM
k
ct

k ^ KdM
k
dt

k 

^ k\ I-" k\ 

= Kc exp{Mct) + Kd exp(Mdt). 
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Thus, the theorem is proved. • 

Now the main result of this section is presented. 

Theorem 3.1.4. Let X — {XQ,X\, ... ,xm}. Let c,d G M.eGC((X)) with growth con

stants Kc, Mc > 0 and Kd, Md > 0 respectively. If b = c + d then 

1(6,̂ )1 < (&.,4"')» ^ e x * , i = i,2,...,e, 

where the sequence (6j,Xo), k > 0 has the exponential generating function 

f(x0) = Kcexp(Mcx0) + Kdexp(Mdx0). 

Thus, the radius of convergence is infinity. 

Proof: The proof is perfectly analogous to the local case, and hence, is omitted. • 

From equation (3.1.3), it can be seen that global convergence is preserved in general 

under the parallel connection. In addition, the nearest singularity to the origin of 

the function / , say x'0, is at infinity. Thus, the smallest geometric growth constant 

of b is 

Mb = 1/141 = 0. 

This implies that the radius of convergence is infinite, and therefore Fj, defines an 

operator from the extended space L™ (to) into C[t0, oo). 

3.2 THE P R O D U C T CONNECTION 

3.2.1 Local Convergence 

In this section the radius of convergence of the product connection of two locally 

convergent Fliess operators will be calculated. The following theorem is a prerequisite 

for proving the main theorem of this section. 

Theorem 3.2.1. Let X = {xo,x\,... ,xm}. Let c,d € M.eLC((X)), where each com

ponent of (c,ri) and (d,rj) is KcM^\r)\\, n G X* with KC,MC > 0 and KdMd
vl\r)\\, 

n G X* with Kd,Md > 0, respectively. Ifb = ci±jd, then the sequence (bt,Xo), k > 0 

has the exponential generating function 

KcKd 
/(so) = 

(1 - Mcx0)(l - Mdx0) 
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for any i = 1,2,... ,£. Moreover, the smallest possible geometric growth constant for 

b is 

M6 = max{M c ,Md}. 

Proof: There is no loss of generality in assuming £ = 1. Observe for any u € Xn, 

n > 0 that 

n 

= J^KcM}j\KdM2->{n-j)\ £ (V^t,v) 
j = 0 r,exi 

(exn~3 

= £KeWJ\KdW->(n-j)l(") 
J=0 

71 

= KcKdY^MlMn
d-'n\. 

3=0 

Furthermore, b and the sequence (b, XQ), n > 0 have the same growth constants. 

Observe that /(£) is the zero-input response of Ff,. Specifically, 

/(t) = ] > > , x 0
f e ) - = FB[0] 

fc=0 

= *M0]Fj[0] 
oo oo 

= J2KcMctk^2KdM^tk 

k=0 k=0 

KcKd (3.2.1) 
( 1 - M c t ) ( l - M d i ) " 

Since / is analytic at the origin, Theorem 2.1.2 is applied to compute the smallest 

geometric constant. Specifically, Mb = l/\x'0\, where it is easily verified from (3.2.1) 

that the singularity nearest to the origin is the positive real number 

1 

0 max{Mc ,Md} 

This proves the theorem. • 

Now the main result of this section is presented. 



23 

Theorem 3.2.2. Let X = {XQ,XI,... ,xm}. Let c,d € M.eLC((X)) with growth con

stants Kc, Mc > 0 and Kd, Ma > 0, respectively. Ifb = cwd then 

| ( M I <KbM^\v\\, veX* (3.2.2) 

for some Kb > 0, where 

Mb = max{Mc ,Md}. 

Furthermore, no smaller geometric growth constant can satisfy (2>.2.2), and thus the 

radius of convergence is 
1 

max{Mc, Md}(l + m)' 

Proof: First observe that 
n 

\(c^d,v)\ < E E iMiifaoifa-e,") 
iexn-3 

n 

.7=0 7/exJ 

where c, d and 6 are defined as in Theorem 3.2.1 and i = 1, 2 , . . . , £. By Theorem 

3.2.1, and Theorem 2.1.2, (6t,^) is asymptotically bounded by Mb \v\\. Thus, some 

Kb > 0 can always be introduced such that 

(bt,v)<KbMb\\\,veX*. 

Furthermore, (6J,XQ), ra > 0 is growing exactly at this rate. Thus, no smaller geo

metric growth constant is possible, and the theorem is proved. • 

One observation is that the exponential generating functions in Theorem 3.1.1 and 

Theorem 3.2.1 have identical sets of singularities. Therefore, the minimal geometric 

growth constants for the generating series of the parallel and product connections 

are the same. As a result, for locally convergent component systems the two inter

connections have the same radius of convergence. 

3.2.2 Global Convergence 

In this section the radius of convergence of the product connection of two globally 

convergent Fliess operators will be calculated. The following theorem is a prerequisite 

for proving the main theorem of this section. 
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Theorem 3.2.3. Let X = {xo,Xi, ... ,m}. Let c,d G M.GC((X}), where each com

ponent of (c, 7?) and (d, n) is KCM^, n e X* with Kc, Mc > 0 and KdMd
nl, n € X* 

with Kd,Md > 0, respectively. Ifb = CLUJ, then (bz,u) < (bt,XQ ) , v G X*, and the 

sequence (&I,XQ); k > 0 has the exponential generating function 

/ (x 0) = KcKd exp[(Mc + Md)x0] 

for any i = 1,2,. .. ,£. 

Proof: There is no loss of generality in assuming I = 1. Observe for any v G Xn, 

n > 0 that 

n 

(CLUJ,I/) = Y^ Yl (c-n)&0(v^tv) 
£€Xn-3 

n 

= ^2KcM^cKdM^ J2 (V^M 
.7=0 , e » 

= j^KcM>cKdM
n

d->(n\ 

= KcKd(Mc + Md)
n. (3.2.3) 

Furthermore, b and the sequence (b, XQ), n > 0 have the same growth constants. 

Observe that f(t) is the zero-input response of Fg. Specifically, 

/(*) = $ > , x o
f e ) - = F5[0] 

fc=0 

= Fe[0]Fj[0] 

y > ifcMfofc ^ KdM
k
dt

k 

fe=0 fc=0 

= KcKdexp[{Mc + Md)t). 

This proves the theorem. • 

Now the main result of this section is presented. 

Theorem 3.2.4. Let X = {xo,xi , . . . , x m } . Let c,d G M.GC((X}) with growth con

stants Kc, Mc > 0 and Kd, Md > 0, respectively. Ifb = cu^d then 

\{b,u)\ <(k,4]), vex*, i = i,2,...,e, 
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where the sequence (6,,XQ), k > 0 has the exponential generating function f. 

/ (so) = KcKd exp[(Mc + Md)z0]. 

77ius, the radius of convergence is infinity. 

Proof: First observe that 

n 

(cLud,i/) = ^ 5 Z (c-v)(d,£)(r)uj£.u) 

j = 0 ,,eXJ 

n 

\(c^d,u)\ < J2 E IM)l|(d.Olfa-£»") 
.7=0 , e x J 

n 

= (K^), 

where c, d, b are defined as in Theorem 3.2.3, and i = 1,2, ...,£. In light of Theorem 

3.2.3, (bt,v) is bounded by (jbz,x0
v ), which has the exponential generating function 

/ . Therefore, the theorem is proved. • 

From equation (3.2.3), it can be seen that global convergence is preserved in general 

under the product connection. In addition, the nearest singularity to the origin of 

the function / , say x'0, is at infinity. Thus, by Theorem 2.1.2, the smallest geometric 

growth constant of b is 

Mb = 1/141 = 0. 

Hence, the radius of convergence is infinite, and therefore Ft, defines an operator from 

the extended space L™ (to) into C[to,oo). 

3.3 THE CASCADE CONNECTION 

3.3.1 Local Convergence 

The goal of this section is to calculate the radius of convergence of the cascade 

connection of two locally convergent Fliess operators. The analysis for this inter

connection is substantially more complex as compared to that for the parallel and 

product connections. A preliminary theorem and a lemma will be needed to prove 

the following main result. 
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Theorem 3.3.1. Let X = {x 0 ,x i , . . .,xm}. Let c G R[C((X)} and d G W£C((X)) 

with growth constants Kc, Mc > 0 and Kd, Md > 0, respectively. Ifb = cod then 

\{b,v)\<KbMb
H\v\\, veX* (3.3.1) 

for some Kb > 0, where 

Md 
Mb = 

Furthermore, no smaller geometric growth constant can satisfy ^3.3.lj, and thus the 

radius of convergence is 

1 L u u r ( 1 (Mc-Md 

mKdW I ——- exp Md(l + m) [ """•*" \mKd "'r \ mMcKd 

The following theorem and lemma are prerequisites for the proof of the main result 

above. 

Theorem 3.3.2. Let X = {xQ,xx,... ,xm}. Let c G Re
LC({X)) and d G R%C((X}), 

where each component 0/(0,77) is KcMc \n\\, r\ G X* with KC,MC > 0, and likewise, 

each component of (d,r/) is KdMd
v\n\\, n G X* with Kd,Md > 0. If b — cod, then 

the sequence (6J,XQ), k > 0 has the exponential generating function 

f( ) = Kc 
J {Xo> 1 - Mcx0 + {mMcKd/Md) ln(l - Mdx0) 

for any 1 = 1, 2 , . . . , L Moreover, the smallest possible geometric growth constant for 

b is 

l -™^w(sfcexp(S^))' 
where W denotes the Lambert W-function, namely, the inverse of the function 

g(W) = Wexp(W) (3.3.2) 

[41-

Proof: There is no loss of generality in assuming £ = 1 First observe that c is 

exchangeable, and thus, from Theorem 2.3.5 it follows that 

b = J2K*MC E k] 

fc=0 r o . >rm>o u 

OO 

^2KC(MC(X0 + mx0di)) ^ . 
fc=0 
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Note that the identity dx = d3 for every i,j = 1,2, ...,m has been used above. 

Shuffling both sides of this equation by MC(XQ + mxodi) yields 

6UJMC(XQ + mxodi) = 2_]KC(MC(XQ + ma^di)) i fc+i 

Adding Kc to both sides gives 

b = Kc + MclbLufao + rnxod!)]. (3 .3 .3) 

By inspection, (6,0) = Kc, (b,x0) = KCMC{\ + mKd) a n d (6, x j = 0 for z = 

1,2, . . . , m . Let (6, un) := max{(6, i/) : i/ G X " } . For any i/ G X n , n > 2 it fol

lows from (3.3.3) that 

n 

(6,z/) = Mc^ ^2 (b,v)(xo + mx0d1,^){r]Lu^u) 
1=0 r)£Xl 

n-1 
= McYl Yl (b,v)(xo + mx0d1^)(7]nj^^) 

«=0 nex* 

n - 1 

< Mc ^ ( 6 , i/J ^2 (xo + mx0Ji , x0^') (r? LUx0£', i/) 

n-2 

= Mc^(6,i/,) J ] (l + md1}0(»7^zoe» 
1 = 0 T7SX1 

{ ' E X " - ' " 1 

+Mc(6,z/n_!) J ^ (l + mdi,0) (77^X0,1'). 

In the first summation directly above, note that |£'| > 1, and thus, (1 + mdi,£') = 

m(d~i,£'). Consequently, 

n-2 

( M < M c ^ f r i / O m / Q M ^ - ' - ^ n - i - l ) ! ^ (r?mx0^,^) + 
1=0 T|£X' 

j / e x n - t - l 

(6, z/„_!)Mc(l + mA'd) ^ T (T?LUX0,J/) 

ra-2 

< McJ2(b,^)mKdM^-l-1](n-i-l)\ £ fa ^ £,«>) + 
1=0 i7£X! 

{ E X " - ' 

(Mn-OAf^l + mffd) ^ ( ^ £ , 1 / ) 

{ e x 
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n-2 , v 

= McYJ(b,vl)mKdM
(Jl-l-1\n-i-l)\(n) +(jb,vn-{)Mc(l + mKd)n. 

Note that the inequality above still holds when the left-hand side is replaced with 

(6, un). Now let an, n > 0 be the sequence satisfying the recursive formula 

n - 2 , v 

an = Mc^almKdM
{
d

n'l~1\n-i-l)\ ( " ) + an_xMc(l + mtfd)n. n > 2, 

where ao = Kc and a\ = KCMC(1 + mKd). Since the recursion above involves only 

positive terms, it follows that {b,vn) < an, Vn > 0. It is easily verified that the 

sequence an,n > 0 has the exponential generating function 

f(x0) = 
Kr 

1 - Mcx0 + (mMcKd/Md) ln(l - Mdx0)' 
(3.3.4) 

When all the growth constants and m are unity, an, n > 0 is the integer sequence 

number A052820 in [29]. See the first row of Table 3 for the first few entries. 

TABLE 3: Selected sequences from the OEIS for some cascade examples 

sequence 

an (local) 
bn (global) 

OEIS number 

A052820 
AOOOllO 

n = 0 ,1 ,2 , . . . 

1,2,9,62,572,6604,91526,... 
1,2,5,15,52,203,877,4140,... 

Next it will be shown that (co d, XQ) = an. It is sufficient to show that the zero-

input response of the cascade system represented by the Fliess operator Feod, shown 

in Figure 3 is equal to / . Clearly, 

Kd v1{t) = FdM = Y,KdM** = Y-±_ 
fc=0 Mdt 

From (3.3.3) observe 

c o d = Kc + (c o d) LLJ MC(XQ + mxodi). 
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Note that xo^i has the exponential generating function fQ VI(T) dr. Therefore, 

y(t) = F5[v}(t) = Fs[Fa[0]](t) = F5oS[0](t) 

= Kc + y(t)Mc(t + m v^dr) 

Kr 

1- Mc (t + m f* Viir) dr\ 

Kc 
1-MJ + (mMcKd/Md) ln(l - Mdt) 

= / ( * ) • 

This proves that for every n > 0 

(b,u)<(b,vn)<an = (b,x%), ueXn. 

Since / is analytic at the origin, the smallest geometric growth constant is M& = 

1/|XQ|, where it is easily verified from (3.3.4) that x'0 is the positive real number 

xQ 
1 

mKdW 
1 

mKr exp 
Mc-Md 

mMcKd 

This proves the theorem. • 

It is known that if u is analytic with generating series cu, then y = Fc[u] is 

also analytic [32], and its generating series is given by cy = c o cu [19,26,27]. In 

this situation, the following corollary is useful for estimating a lower bound on the 

interval of convergence for the output. 

Corollary 3.3.1. Let X = {xo,Xi,... ,xm} and XQ = {XQ}. Suppose c G M.eLC((X)) 

with growth constants Kc, Mc > 0 andcu £ Ric[[-^o]] with growth constants KCu, MCu, 

respectively. Then, cy = c o cu satisfies 

(cy,x
k
0)\<KCyM*yk\, k>0 

for some KCy > 0 and 

Mr = 
Mr. 

l-mKrW \rriKc exp 
/ Mc-M, -Mcu\\ 

cKCuJJ 

Thus, the interval of convergence for the output y = FCy [u] is at least as large as 

T=l/MCy. 
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The following lemma is also needed for proving the main result. 

Lemma 3.3.1. Let X = {x0, %i, • • •, xm} and c,d 6 M.e((X)) such that \c\ < d, where 

\c\ := Xlnex* l(c- 7?)l V- Then for any fixed £ 6 X* it follows that |£ o c\ < £ o d. 

Proof: The proof is by induction on k = |£| — |£| I0. Let £o = ^o° a n d £*; = 

x^x^x^'1 • • • xnXQ° for k > 0, where 1 < i3 < m. For k = 0, the claim is trivial 

since 

( 0 o c = x S o o c = i S ° = ^ o ( l = ^ o d. 

Assume now that |(£& OC,JJ)| < ( ^ o d. n) up to some fixed k > 0. Observe that 

5 w ° c = Xok+1+1(ctk+1^(£,koc)) 

(Zk+1oc,rj) = ( ^ + 1 ^ f e o c ) , x 0 " K + 1 + 1 ) ( ? j ) ) 

= E E k11tt)(&oC)i3)(a^,i0- (^+1)(,))I 

where n := |xo(,l'!+1+1)(r/)| > 0. Therefore, 

m+1oc,n)\ < E E |(cfc+1,a)||(efcoC)i9)|(auJ/3,a:o
(Bfc+1+1)(»7)) 

.7=0 QgxJ 
(3€X"-J 

< E E (C,a)(&odI/J)(aul|3)i0-( , ,wl+1)(I,)) 
J = 0 a e X J 

5 € X " - J 

Thus, the inequality holds for all k > 0, and the lemma is proved. 

Proof of Theorem 3.3.1: 

Since |d| < d, it follows from Lemma 3.3.1 that for any u G X* 

KMI < ElMJIIfaod,")! 

< ^ ^ M ^ l r ? ! ! (770 J, I/) 
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where b = cod and i = 1,2,. . . , L In light of Theorem 3.3.2, (6j, v) is asymptotically 

bounded by Mb \v\\. Thus, some Kb > 0 can always be introduced such that 

{b%,u)<KbMb
H\u\\. uGX*. 

Furthermore, (6,,XQ) is growing exactly at this rate. Thus, no smaller geometric 

growth constant is possible, and the theorem is proved. • 

Example 3.3.1. Let X = {xo,xx} and c,d e M.((X)) such that M = Mc = Md. 

Then 

M 
Mh = 

1 - KdW (1/Kd) 

« KdM 

when Kd 3> 1. This is consistent with Theorem 2.3.4 and Table 1. On the other 

hand, if Kd = 1 then Mb = (1 - W(1)) _ 1M = 2.3102M, which is less than the 

estimate (<f)g + 1)M = 2.6180M given by Theorem 2.3.4. Q 

Example 3.3.2. Suppose X = {x0,Xi} and b = c o d with c = J2vex* KcMc \r}\\ rj 

and d = J2veX, KdM^ |r?|! rj. The output of the cascaded system as shown in Figure 3 

is described by the state space system 

Zl = ^ ? ( 1 + Z2), 2l(0) = #c 

*2 = ^ 2 ( l + « ) , ^2(0) = ^ 

y = zx. 

A MATLAB generated zero-input response is shown in Figure 5 when Kc = 1, 

Mc = 2, Kd = 3 and M^ = 4. As expected from Theorem 3.3.2, the finite escape 

time of the output is tesc = l/Mj, = 0.1028. The output responses corresponding to 

the analytic inputs ui(i) = 1/1—t and U2(t) — 1/1 —t2, each having growth constants 

KCu = MCu = 1, are also shown in the figure. Their respective finite escape times 

are tesc = 0.08321 and tesc = 0.08377. Here u\ has the shortest escape time since its 

generating series 
oo 

cUl = y K\ XQ 

k=0 
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has all its coefficients growing at the maximum rate. Where as 

cU2 = Y(2k)\xl ,2fc 

/c=0 

has all its odd coefficients equal to zero. By Corollary 3.3.1, any finite escape time 

for the output corresponding to any analytic input with the given growth constants 

KCu, MCu must be at least as large as T = l/MCy = 0.05073. g 
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Fig. 5: Output responses of the cascaded system F5od- to various analytic inputs in 
Example 3.3.2 

3.3.2 Global Convergence 

A parallel analysis is done in this section to compute the radius of convergence 

of the cascade connection of two globally convergent Fliess operators. The following 

theorem contains the main result. 

Theorem 3.3.3. Let X = {x0,xu ... ,xm}. Let c e Re
GC{(X)) and d e K£C((X)) 

with growth constants Kc, Mc > 0 and Kd, Md > 0, respectively. Assume c and d are 

defined as in Theorem 3.3.4. If b = co d and b = c o d then 

K M I < ( W ) , v e x \ i = i , 2 , . . . , £ , 
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where the sequence (64,XQ), k > 0 has the exponential generating function 

(mKdeyLp(Mdx0) +Mdx0-mKd 

/<*») = « . « P ( ^ ^ 

Therefore, the radius of convergence is infinity 

An intermediate result is essential in proving the main theorem above. 

Theorem 3.3.4. Let X = {x0, xu..., xm}. Let c G Re
GC((X)) and d e R%C((X)), 

where each component of (c,rj) is KCMC , n E X* with KC,MC > 0, and likewise, 

each component of (d,rj) is KdMd , r\ £ X* with Kd, Md > 0. Ifb = cod, then 

(pi,v) < (bt,XQ ) , v G X*, and the sequence (6z,Xo), k > 0 has the exponential 

generating function 

, mKdexp(Mdx0) + Mdx0 - mKd f(xQ) = Kcexp 
Md/Mc 

for any i = 1,2,...,£. 

Proof: As in the local case, there is no loss of generality in assuming £ = 1. Using 

Theorem 2.3.5, observe that 

KcM
k
c ^ x ^ ( x m o r f ) - ™ 

" Z. k] 2^ K- roi -
k=0 r0, , r m > 0 

r0+ +rm=k 

_ ^ (Mc(xQ + mxpJi)) m 

- K c Z . jfci • 
fc=0 

Therefore, (b, 0) = Kc and 

. ^ (Me(x0 

( fc-1)! 
x_1(_} = ^£ ; (^ j ^)r^ m M e ( 1 + m 4 ) 

fc=i 

= &L±jMc(l + mdi). (3.3.5) 

By inspection, 

(x0\b),$) = KcMc(l + mKd) 

(xo^b^xo) = KcMcmKdMd + Kc(Mc(l + mKd))
2 

(xo\b),x.) = KcMcmKdMd, i = 1 ,2 , . . . ,m. 
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For any v G Xn, n > 2, it follows that 

it 

(x^(b),u) = MCJ2 E (M)(l + ™ « ) ( " - ^ ) 
1 = 0 »7€X ! 

n - 1 

+MC ^ ( & , W ) ( l + ™di ,0) (x o n>) 

+ M c ^ ( 6 , 0 ) ( l + mJ 1 , e ) (C^) 

n - l 
= M c E E (XQ'^WXI + ^ I ^ X W ^ , 

i = l V e x 1 - 1 

£6X" 

+MC J ] (xo-
1(6),7?')(l + mJ1,0)(xor?

/,^) + M c (6 ,0)m(J 1 ^) . 

Therefore, 

n - l 

( X Q 1 ^ ) , ! / ) < Mc^(xo1(6),7/,_1)mA:( iAfJ-* £ fa^M 
2 = 1 i )6X» 

j e x " - ' 

+(XQ HS), »M-i)Mc(l + mKd) + KcMcmKdM
n

d 

n - l 

= McY^^{b)^x_x)mKdM
n

d 

+(xu\b), »7n_i)Mc(l + mATd) + KcMcmKdMl 

Similar to the analysis in the previous section, let an, n > 0 be the sequence satisfying 

the recursive formula 

an = MCJ2at_xmKdM
n

d-
1 f . J + an_!Mc(l + milk) + KcMcmKdM2, n > 2, 

t = i ^ ' 

where a0 = KcMc(l + mKd) and a : = KcMcmKdMd + KC(MC(1 + mKd))
2. It follows 

that (xQl(b),vn) < a„, Vn > 0, and thus, (6, j/n) < 6„, Vn > 0, where 6n = an_i 

and 6o = Kc. It is easily verified that the sequence bn, n > 0 has the exponential 

generating function 

fmKdexp(MdXo) + Mdx0 - mKd\ fix,) = Kce,P ^ ^ ^ j . 
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When all the growth constants and m are unity, bn, n > 0 is the integer sequence 

number AOOOllO (shifted one position to the left) in the OEIS. These integers are 

called the Bell numbers. See the second row of Table 3 for the first few entries. 

Next it will be shown that (co d, XQ) = bn. It is sufficient to show that the zero-

input response of the cascade system represented by the Fliess operator F5od, shown 

in Figure 3 is equal to / . Clearly, 

vi(t) = F3l[0](t) = Y.K*M*k\ = K^MMdt). 
fc=0 

From (3.3.5) and the fact that x^ip) = 0, i = 1,2,. . . , m, it follows that 

y'(t) = Mcy{t)(l + mKdexp(Mdt)), y(0) = Kc. 

Solving this differential equation yields 

mKd exp(Mdt) + Mdt - mKd\ 

Md/Mc ) • 

Thus, for every n > 0 

( M < (Mn) < &n = (MS), »£Xn, 

and the theorem is proved. • 

Proof of Theorem 3.3.3 

Again from Lemma 3.3.1, it follows that for any v e X* 

|(6,i/)| < ^ | M ) | | ( w ^ ) l 

•n&x-

< J2 K-M^ (?) ° d, v) 
•q£X' 

= {Kv). 

By Theorem 3.3.4, (J>t, v) is bounded by (6t, XQ ), which has the exponential generat

ing function / . Thus, the theorem is proved. • 

It is worth noting that the Bell numbers (without any left shift), Bn, have the 

exponential generating function ee*-1. Their asymptotic behavior is 

£ n ~ n - 5 ( A ( n ) ) n + 3 e A ( n ) - n - 1 , 

y{t) = Kcexp 
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where A(n) = n/W(n). Thus, the Lambert W-function appears to also play a role 

in the global problem. It is also known that the Bell numbers play a central role 

in the analysis of function composition [11]. Most importantly, since the double 

exponential appearing in Theorem 3.3.4 has no finite singularities, as appeared in 

the local analysis in Section 3.3.1, the following main result is immediate. 

Theo rem 3.3.5. The cascade connection of two globally convergent Fhess operators 

has a radius of convergence equal to infinity. Therefore, the output of such a system 

is always well defined over any finite interval of time when u G L™e(to). 

It is important to understand that this theorem is not saying that the composite 

system has a globally convergent generating series in the sense of (1.1.3). If this were 

the case, then it would be possible to bound y(t) = Fcod[0] by a single exponential 

function rather than a double exponential function (see [20, Theorem 3.1]). Thus, 

the fastest possible growth rate for the coefficients of a cascade connection involving 

components with globally convergent generating series falls somewhere strictly in 

between the local growth condition (1.1.1) and the global growth condition (1.1.3). 

Example 3.3.3. Suppose X = {XQ,xi} and b = cod with c = Ylnex* KcMc V and 

d = ^„€x* KdM^ V- The output of the cascade system is described by the state 

space realization 

z\ = McZl(l + z2), Zl(0) = Kc 

z2 = Mdz2{l + u), z2{0) = Kd 

y = z\. 

A MATLAB generated zero-input response of this system is shown on a double 

logarithmic scale in Figure 6 when Kc = Mc = Kd = M& = 1. As expected from 

Theorem 3.3.4, this plot asymptotically approaches that of y(t) = t as t —> oo. • 

3.4 S U M M A R Y 

A complete analysis of the radius of convergence of the parallel, product and 

cascade connections of two analytic nonlinear input-output systems represented as 

Fliess operators has been presented. For the parallel and product connections, if 

the component systems are both locally convergent, then the radius of convergence 
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Fig. 6: Zero-input response of the cascade system FEoj in Example 3.3.3 on a double 
logarithmic scale and the function y(t) = t 

of the overall system was found to be the minimum of the radii of convergence of 

the component systems. If they are globally convergent, so is the overall system. 

Therefore, the radius of convergence of the overall system is infinite. For the cascade 

connection, if the component systems are both locally convergent, then the radius of 

convergence is finite and can be computed in terms of the Lambert W-function. A 

similar method was used in the case of analytic inputs to compute a lower bound on 

the interval of convergence of the output function. On the other hand, if both systems 

are globally convergent, then the radius of convergence was shown to be infinite, even 

though it is known that the global convergence property is not preserved in general. 

This means in particular that if the input is well defined and absolutely integrable 

over any finite time interval, then the output of the composite system is also well 

defined over the same interval. The Lambert W-function played an implicit role in 

the analysis of the global case. 
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C H A P T E R 4 

THE RADIUS OF CONVERGENCE OF THE FEEDBACK 

CONNECTION 

In this chapter, the radius of convergence is determined for the feedback connec

tion. First, self-excited feedback systems are addressed. Subsequently, the analysis 

for the unity feedback case is presented. In each case, separate analyses are done 

for closed-loop systems having components with locally convergent generating series 

and globally convergent generating series. 

4.1 THE SELF-EXCITED CASE 

As discussed in Chapter 2, the generating series e for the self-excited feedback 

interconnection of Fc and F^ shown in Figure 4 satisfies the identity e = (c o d) o e. 

Letting cod he, redefined as c, a unity feedback system involving Fc is characterized 

by e = c o e. Therefore, there is no loss of generality in assuming unity feedback in 

the self-excited case. 

4.1.1 Local Convergence 

The main result of this section is the following theorem. 

Theorem 4.1.1. Let X = {x0, x\,...,xm} and c G W£C{(X)) with growth constants 

Kc, Mc > 0. Ifee M.m[[XQ]] satisfies e = coe then 

\(e,x%)\<Ke(a(Kc)Mc)
nnl, n > 0, (4.1.1) 

for some Ke > 0 and 

a ^ = l-mKc\n(l + l/mKcy 

Furthermore, no geometric growth constant smaller than a(Kc)Mc can satisfy 4.1.1, 

and thus the radius of convergence is l/(a(Kc)Mc). 

Note that if m = 1, the function a(Kc) can be written as the series expansion 

about Kc = oo 

a(Kc) = ^ + 2Kc + 0 £ 
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It is easy to show that a(Kc) < f3(Kc) for all Kc > 1 and j3{Kc)/a{Kc) K 9 for Kc > 

1, where (3{KC) is defined in Theorem 2 4 4. Thus, Theorem 4 1 1 , which describes the 

radius of convergence in this case, constitutes an order of magnitude improvement 

over the lower bound given in Theorem 2.4.4. Before presenting the proof of this 

theorem, a variety of intermediate results are required involving exchangeable series. 

The following theorem characterizes the self-excited feedback connection of a Fliess 

operator having a particular type of exchangeable generating series. 

Theorem 4.1.2. Let X = {x0,Xi,... ,xm}. Suppose c € M.™C((X)}, where each 

component of (c, n) is KcMc\n\\, rj G X* with Kc, Mc > 0. Then each component of 

the solution e £ K^c[[Xo]] of the self-excited unity feedback equation e = coe has the 

exponential generating function 

/(so) = —f / , , ~l r „ . , , - ^ - I N V C4-1-2) 
m 

McXo-(l+mKc) + ^ ( - ^ ^ e x P 

In addition, the smallest possible geometric growth constant for e is 

Me = a{Kc)Mc, (4.1.3) 

where 

a{Kc 
l-mKc\n(l + l/mKc)' 

Proof: Since all the component series of c are identical, the same is true for e. 

Therefore, the focus will be a single component, say E\. First it is shown that e.\ 

must satisfy the shuffle identity 

e~\ = Kc + Mc[e~i w (XQ + mxo&i)]. 

Observe that from Theorem 2.3.5 and the shuffle product version of the binomial 

theorem it follows that 

-ei = {coe)x = ^KCM* £ ^ ! - ( 

fc=0 r0, , r m > 0 U m 

LU k 

Y Kc I Mc I x0 + Y^ xoe* 
fe=0 V \ i=l 
oo 

= y ^ Kc (Mc(x0 + mx0ei))' 
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Shuffling both sides of this equation by Mc(x0 + mx0ei) yields 

oo 

e1 m Mc(x0 + mx0ei) = ^ Kc(Mc(x0 + mxQei))' j fc+i 

k=0 

Adding Kc to both sides gives 

ei = Kc + Mc[e1Lu(x0 + mx0ei)]. (4.1.4) 

When written in terms of generating functions, (4.1.4) is equivalent to 

/ (x0) = KC + MC (x0f(x0) + mf / (£) d£ f(x0)\ , / (0) = Kc. 

A simple calculation shows that this equation is equivalent to 

Kef'(x0) = Mc (/2(x0) + m/3(x0)) , / (0) = Kc. (4.1.5) 

One can verify by brute force, since Mc is nonzero, that (4.1.2) is the solution of 

(4.1.5). Since f(xo) is analytic at xo = 0, the smallest geometric growth constant is 

determined by the location of its singularity nearest to the origin, x'Q € C. In which 

case, Me — 1/ |XQ|, where x'0 satisfies 

m 
i , vtr i 1 + m K c 
1 + W [ —— exp 

m i l . 

Mcx'Q - (1 + mKc = 0. 

Equation (4.1.3) and the subsequent identities then follow directly by solving this 

equation for x'0 via (3.3.2). • 

One additional technical lemma is needed before the proof of Theorem 4.1.1 can 

be presented. Given any series c G Mm((X)), it is convenient to define \c\ = 

2 eX' l(c' ^)l V m ^ n e l e m m a below. 

Lemma 4.1.1. Let X = {XQ,XI, ... ,xm}. Suppose c,c G R™C((X}) have growth 

constants KC,MC > 0, and specifically each component of c is KCMC \r]\\, r\ G X*. 

If e,e G Rm[[Xo]] satisfy, respectively, e = co e and e = coe then \et\ < e%, 

i = 1,2,. . . , m. 

Proof: Since the mapping d i-> cod is a contraction, it follows that if et(k) := (cofco0)l, 

k > 1 then et = limfc^ooe^A;). Likewise, one can define a sequence et(k) using 

c. It will first be shown by induction that \et(k)\ < ez(k), k > 1. Observe that 

e,(l) = E « > o ( c i o ) i o and e,(l) = E n>oK cM?n\x n
0 . Therefore, |e,(l)| < e,(l). 
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Now assume the claim holds up to some fixed k > 1. Then, using Lemma 3.3.1, for 

any £ <E X* 

5^( c*' ??)(7?o e(A ;) '0 |(e,(fc + l U ) | = |((coe(A:))„OI = 
776X* 

< £i(c»7)iifo°e(*u)i 
r)€X' 

< J2KcMM\r)\\(noe(k),0 
ri&X' 

= (e,(fc + l ) . 0 -

Thus, 

|e,(A;)| <e t(fc), A; > 1, 

and the initial claim is established. Next, by a property of the limit supremum, 

limsup|(ej(A:),£)| < l h n s u p ^ (£;),£). 
fc—>oo fc—»oo 

Since each sequence converges, it follows that \ez\ < e%. m 

Proof of Theorem 4.1.1: 

If e, c and e are defined as in Lemma 4.1.1 then \et\ < et, i = 1,2,... ,m. From 

Theorem 4.1.2, (e^Xg) is asymptotically bounded by (a(Kc)Mc)
n n\. In which case, 

|(e,,zS)| < (et,x%) < Ke (a(Kc)Mc)
n n\, n > 0, 

for some constant Ke > 0. This proves the theorem. • 

The following examples illustrate the main results of this section. 

Example 4.1.1. Let X = {xo,x\}. Suppose e satisfies e = coe with c = 

Y^,„6x* KcMc \rj\\ 77. This series is exchangeable, so by Theorem 4.1.2, Me = 

a(Kc)Mc. From (4.1.5) it follows that the output of the self-excited unity feedback 

system is described by the solution of the state space system 

y = z. 

MATLAB generated solutions of this system are shown in Figure 7 when Kc = Mc = 

1 and when Kc = 0.5, Mc = 2. As expected, the respective finite escape times are 
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Fig. 7: Outputs of the self-excited loop in Example 4.1.1 

tesc = 1 / Q ( 1 ) = 1 - ln(2) « 0.3069 and ieac = 2/a(4) « 0.2149, which in this case 

are the radii of convergence. Also, from (4.1.2) it follows when Kc = Mc = 1 that 

/ ( X o ) = l + W ( - 2 e x p ( x 0 - 2 ) ) 

= 1 + 2x 0 + 5xQ
2 + y x 0

3 + ^ " x o 4 + O(x0
5) -

The coefficients (e,XQ), n > 0 correspond in this case to OEIS sequence A112487 as 

shown in Table 4. rj 

TABLE 4: Selected sequences from the OEIS for feedback examples 

sequence 

(e, XQ) (Example 4.1.1) 
(e,XQ) (Example 4.1.4) 

OEIS number 

A112487 
A000629 

n = 0 ,1 ,2 , . . . 

1,2,10,82,938,13778,247210,... 
1,2,6,26,150,1082,9366,... 

Example 4.1.2. Let X = {£o,£i} and consider the case where e satisfies e = 

co e with c = X^n>on 'xi- This c *s a^ s o a n exchangeable series except here many 

of the coefficients have been zeroed out in comparison with the previous example. 
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Therefore, it is likely that the radius of convergence will be larger. In this special 

case, equation (4.1.5) reduces to 

f(x0) = f(x0), /(0) = 1, 

which has the solution 
/(xo) =

 TTW 
The singularity at x'0 = 1/2 implies that Me = 2 < 1/(1 - ln(2)) « 3.2589. So in fact 

the radius of convergence is 0.5, which is larger than 0.3069 obtained in the previous 

example. The function / is known to be the exponential generating function for the 

sequence (e,XQ) = (2n — 1)!!, n > 0. (The double factorial for a positive odd integer 

n is defined as nil = n(n — 2) • • • 1 and —1!! := 1.) Using an identity for the double 

factorial, it follows that 

(ex») = ( ^ ) ' _ " + l (2n)! 
{ , o ) 2nn\ 2" (n + l)n!n! 

2n 

Thus, the generating series for the feedback system is 

n=0 

The output of the corresponding self-excited unity feedback system is described by 

the solution of 

Z = z3, 2(0) = 1 

y = z. 

A MATLAB generated solution of this system is shown in Figure 8. As expected, it 

has a finite escape time of tesc = 1/Me = 0.5 > 1 — ln(2) « 0.3069. n 

Example 4.1.3. Consider the feedback system shown in Figure 4 with c = d = 

Y1V€X* M' V- Clearly c o d is locally convergent, but not exchangeable. Thus, only 

Theorem 4.1.1 applies. The output y of the feedback system with u = 0 is described 

by the state space system 

zx = zl{l + z2), 2 l(0) = l 

i 2 = z\, z2(0) = 1 

y = z2. 
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0 01 02 03 04 05 06 

Fig. 8: Output of the self-excited loop in Example 4.1.2 

The output y, as computed by MATLAB, is numerically indistinguishable from the 

Kc = Mc = 1 case shown in Figure 7 for Example 4.1.1. This is expected since 

e(k + 1) = c o e(k) and e(k + 1) = (c o c) o e(k) have the same fixed point. Hence, 

tesc = 1 - ln(2) « 0.3069. n 

4.1.2 Global Convergence 

The global analogue of Theorem 4.1.2 regarding self-excited systems is given next. 

Theorem 4.1.3. Let X = {xo, X\,. .., xm} and c G WQC{(X)) with growth constants 

Kc, Mc > 0. IfeE Rm[[X0}] satisfies e = coe then 

| ( e , ^ ) | < X e ( 7 ( ^ c ) M c ) " n ! , n > 0, (4.1.6) 

for some Ke > 0 and 

-r(Kc) 
l 

ln ( l + l /mi^ c ) ' 

Furthermore, no geometric growth constant smaller than j(Kc)Mc can satisfy ^4.1.6,), 

and thus the radius of convergence is l/(j(Kc)Mc). 
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It is known in general that global convergence is not preserved under feedback [18], 

but e is always at least locally convergent [19]. When m = 1, in light of the expansion 

the global growth condition on c gives a radius of convergence that is about twice 

that for the local case. The following theorem is essential for proving the main result. 

Theorem 4.1.4. Let X — {xo,xi,... ,xm}. Suppose c G WQC({X)), where each 

component of (c,r)) IS KCMC , r\ G X* with KC,MC > 0. Then each component of 

the solution e G K™c[[Xo]] of the self-excited unity feedback equation e — cog has the 

exponential generating function 

f( x = Kcexp{Mcx0) 
J{0} (l + mKc)-mKcexp(Mcx0)'

 { ' ' } 

In addition, the smallest possible geometric growth constant of e is 

Me = 7(Kc)Mc, (4.1.8) 

where 

]n(l + l/mKcy 

Proof: Without loss of generality, the focus is on the single component e~\. First it 

is shown that e~\ must satisfy the shuffle identity 

XQX{EX) = M c(l + mei)ujei. (4.1.9) 

Observe that from Theorem 2.3 5 and the shuffle product version of the binomial 

theorem it follows that 

KcM
k
c ^ I | x 0 - r o ( i m o e O ' 

e\ - 2^ k\ 2^ K- r i • 
fc=0 r0, ,rm>0 U 

_ K y > {Mc(x0 + mrcoej))' 

A;! 
fc=0 

Therefore, (el5 0) = Kc and 

-if-\ is X^ (Mc(x0 + mx0e1))LLlfc _ 
V ( e i ) = ^ c ^ (fc-1)! ^ M c ( l + m e i ) 

= e l u J M c ( l + mei). (4.1.10) 
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Therefore, 

^oH^i) = -Wc(l + me-y) Luei. 

Since Xg 1(ei) has the exponential generating / ' , equation (4.1.9) is equivalent to 

f'(x0) = Mc(f(x0) + mf\x0)), f(0) = Kc. (4.1.11) 

It can be verified directly, since Mc > 0, that the solution of this differential equation 

is 
, , v Kcexp(Mcx0) 

JKxo) - (! + mK^ _ mKc e x p(M c x 0 ) ' 

Since / is analytic at Xo = 0, the smallest geometric growth constant is again deter

mined from Theorem 2.1.2 by computing the location of the singularity nearest to 

the origin, x'0. In this case, Me = 1/ |x'0|, where x'0 is a root of 

(1 + mKc) — mKc ex.p(Mcxo) = 0. 

Equation (4.1.8) and the subsequent identities then follow from solving this equation 

for x'Q. • 

The following lemma is a global version of Lemma 4.1.1. Its proof is perfectly anal

ogous. 

Lemma 4.1.2. Let X = {XQ,XI, ... ,xm}. Suppose c,c G M!QC((X)) have growth 

constants KC,MC > 0, and specifically each component of c is KCMC•, r\ G X*. 

If e,e G Rm[[Xo]] satisfy, respectively, e — coe and e = c o e then \et\ < el; 

i = 1,2,... ,m. 

Proof of Theorem 4.1.3; 

If e, c and e are defined as in Lemma 4.1.2 then |e4| < e4, i = 1,2,. . . , m. The 

remainder of the proof is exactly analogous to that given for the local case. • 

The following examples illustrate the main results of this subsection. 

Example 4.1.4. Let X = {XQ,X\}. Suppose e satisfies e = c o e with c = 

£ „ g * . KcMJP1 n. From Theorem 4.1.4 it follows that Me = -y(Kc)Mc. From (4.1.11), 

the output of the self-excited unity feedback system is described by the solution of 

the state space system 

z = Mc{z + z2), z(0) = Kc 

y = z. 
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Fig. 9: Outputs of the self-excited loop in Example 4.1.4 

MATLAB generated solutions of this system are shown in Figure 9 when Kc = Mc = 

1 and when Kc = 4, Mc = 0.5. As expected, the respective finite escape times are 

tesc = 1/7(1) = ln(2) « 0.6931 and tesc = 2/7(4) « 0.4463. Note that these escape 

times are in fact about twice that of the respective cases in Example 4.1.1. Also, 

from (4.1.7) it follows when Kc = Mc = 1 that 

f(x0) = 
exp(xp) 

2 - exp(x0)' 

The sequence (e, XQ), n > 0 corresponds to OEIS sequence A000629 as shown in 

Table 4. n 

Example 4.1.5. Suppose X = {xo,x\} and consider the case where e satisfies 

e = co e with c = Yln>o xi- Following the steps in the proof of Theorem 4.1.4 with 

r0 = 0, the exponential generating function of e is found to satisfy 

f'(x0) = f(x0), /(0) = 1. 

Solving this equation directly yields 

f(x0) 
1 -XQ 
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Fig. 10: Output of the self-excited loop in Example 4.1.5 

The singularity at x'0 = 1 implies that Me = 1 < l / ln(2) « 1.4427. Thus, the 

radius of convergence is 1. The coefficients of e correspond to n\. The output of the 

self-excited unity feedback system is described by the solution of 

z = z2, z{0) = 1 

y = z. 

A MATLAB generated solution of this system is shown in Figure 10. It has the finite 

escape time tesc = 1/Me = 1 > ln(2) « 0.6931. • 

Example 4.1.6. Consider the feedback connection involving the globally convergent 

series c = x\ and d = ^2k>0 x\ as discussed in [18]. Fc@d has the state space realization 

i i = ziz2, 2i(0) = 1 

i 2 = Z! + u, z2(0) = 0 

V = z2. 

Setting u = 0, the natural response y satisfies y — yy = 0, y(0) = 0, y(0) = 1, which 
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has the solution 

y(t) = V2Un(-^j 

k (2k-1)1 

t3 t5 t7 t9 

" f + 3 ! + 4 ^ + 3 4 7 i + 4 9 6 9 ! + - ' 

for 0 < t < 7r/\/2 = tesc, where Bk denotes the fc-th Bernoulli number. Observe that 

cod = x0xl, and thus, Mcod = 1. In which case, tesc « 2.2214 > ln(2)/Mcod w 0.6931 

as expected by Theorem 4.1.3. The existence of tesc < 00 implies that c@d is not 

globally convergent. Therefore, this example illustrates the fact that the global 

convergence is in general not preserved under feedback. n 

4.2 THE U N I T Y FEEDBACK CASE 

4.2.1 Local Convergence 

Now the convergence analysis proceeds to the unity feedback case, where a 

nonzero input can be applied to the closed-loop system. The following theorem, 

which describes the radius of convergence of the unity feedback connection with a 

locally convergent component system, is the main result of this section. 

Theorem 4.2.1. Let X = {XQ, x\,..., xm} and c £ W£C((X)} with growth constants 

KC,MC > 0. Ife E Rm({X)) satisfies e = c5e then 

\(e,ri)\<Ke(a(Kc)Mc)W\Ti\\, n € X\ 

for some Ke > 0, where 

a(Kc) = X 

l-mKcln(l + l/mKc)' 

Furthermore, no geometric growth constant smaller than a(Kc)Mc can satisfy the 

inequality above, and thus the radius of convergence is 

1 

(l + m)a(Kc)Mc' 

The following lemmas are needed for the proof. 
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Lemma 4.2.1. Let X = {XQ,XI, ... ,xm}. The Fliess operator Fe : u —>• y having 

the state space representation 

z = A I z2 + mzz + z2 \~] u% J > z(0) = ZQ, 

y = z, 

where \,zo G R+ , /ias a generating series e G M((X)) whose coefficients satisfy the 

inequality 

0 < ( e , r ? ) < (e,xff), r, G X*. 

Proof: First observe that for the vector fields <7o(z) = ̂ {z2 + m^3) and (^(z) = Xz2, 

i = 1,2,... ,m, the Lie derivatives of h(z) = z consist of products of polynomials 

with non-negative coefficients. Therefore, using (2.1.3), 

0 < (e,n) = Lgrih(z0), VeX*. 

•x. For any k > 0, let r\k = x^°xnx^ 

derivative corresponding to the word ?7fcXQ1'c+1"r± is 

ikXQk, where 1 < 1-, < m. Then the Lie "j - ^ 

L 9 ™k+1 + l h _ L9 nk+1 + iL9nkh 

= 

= 

= 

= 

When evaluated at 2(0) = 

x0 

xO 

\(z2 + mz3)—Lg,ikh 

x*TzL*»\ + ^9 nk+i 
x0 

L9x"k+1 L9r,kx
 h + L9x"k+1 

x0 K x0 

L9nk+1
 h + L9xnk+1 

= ZQ, 

XmzZdzLg^k 

0 d 
Xmz — LQ h 

dz 9r)k 

Xmz -rL0„ h 
dz 9vk 

Lg nk+i+1h(zo) = Lgrik+ih(z0) + Lg 
I F O 

^mz3—Lgrikh{z0) 

Clearly, the second term on the right-hand side above also consists of products of 

polynomials with non-negative coefficients. Thus, it is strictly positive, and therefore, 

L9„k+1
h(zo) < Lg +1h(z0), k > 0. (4.2.1) 
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This inequality is used to complete the proof of the lemma. Specifically, it will be 

shown by induction on k that 

Lgrikh(zo) < Lg Mh(zo), k>0. 

The claim is trivially true when k = 0. Now, assume it is true up to some fixed 

k > 0. Then using (4.2.1), it follows that 

L9vk+MZ°^ ^ L9 nk+1 + M*o) 
*>kx

0 

= L9 „k n t + 1 + l M Z 0 ) 

kfc+ll 
L9 I ^ . J ^ O ) , 

where £& := r)k-\Xlkx^kXgk+1 . Therefore, the claim is verified for all k > 0, and the 

lemma is proved. • 

Lemma 4.2.2. Let X = {XQ, X±, . .. ,xm} and c,d G M.m((X)) such that \c\ < d. 

Then for any fixed £ G X* it follows that |£6c| < t;od. 

Proof: Let £o = XQ° and £& = X^X^XQ1"1 • • • xnXQ° for k > 0, where 1 < i3 < m. 

The proof is by induction on k. For k = 0 the claim is trivial since 

£05c = xl°oc = x%° = x%°5d = £05d. 

Assume now that |(£fc5c, w)\ < (£k°d, n) up to some fixed k > 0, and observe 

ik+ioc = x2k+1xlk+1 (£fe5c) + xlk+1+l (clk+1 LU (&°c)) . 

Therefore, 

(&+i°c,7j) = (xofc+1xlfc+1(a5c),r?) + (c,fc+1aJ(efeoc))Xo(nfc+1+1)(??)) 
71 

( a u . ^ X o ^ ^ W ) . 

«=0 c*ex* 
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In which case, 

l(&+i°c,n)| 

< 

< 

( 6 5 c , < 1 x 0 - ( n ' = + l ) ( r ? ) ) | + ^ J2 \(c>k+1,a)\\(Zkocj3)\. 
1=0 a£X* 

/3€X"-» 

( a ^ /3 ,x 0 - ( — + 1 ) ( ? ? ) ) 

1=0 cc€Xl 

0ex" 
= {£k+l°d,r]), 

where n := \x. -("fc+i+i) (77)1 > 0. Thus, the inequality holds for all k > 0, and the 

lemma is proved. 

Lemma 4.2.3. Let X = {XQ,XI,. . .,xm}. Suppose c,c G M.™C((X}) have growth 

constants KC,MC > 0, and specifically each component of c is KCMC \n\l, 77 G X*. 

If e, e G Km[[Xo]] satisfy, respectively, e = coe and e = coe then \et\ < ex, 1 = 

1,2, . . . ,m. 

Proof: Since the mapping d \-> cod is a contraction, it follows that if el(k) := (cofc60)z, 

k > 1 then et = lim^ooez(k). Likewise, one can define a sequence e%{k) using 

c. It will first be shown by induction that |e,(fc)| < el(k), k > 1. Observe that 

e.(l) = £„<=*. (c,,*?>7 a n d e,(l) = E ^ x ^ c M i 7 7 1 ^ ^ . Therefore, |e4(l)| < e,(l). 

Now assume the claim holds up to some fixed k > 1. Then, using Lemma 3.3.1, for 

any £ G X* 

(e,(A:+l),0| = |((c5e(fc)X,0l = 

< E 1(̂ )1 ifâ w.oi 

E^'7?)^5^)^) 

Thus, 

t,ex* 

< ^XcMi"l|r?|!(r76e(A;),£) 

= ( e # + !),£)• 

|e,(A;)| <e t(fc), /c > 1, 



53 

and the initial claim is established. Next, by a property of the limit supremum, 

limsup|(e4(A;),f) | < limsup(e,(fc),^). 
k—>oo k—>oo 

Since each sequence converges, it follows tha t |e t | < e%. m 

Finally, the following distributive property concerning the modified composition 

product will be important in the work tha t follows. It is the counterpart of the 

distributive property for the (regular) composition product [19]. 

L e m m a 4 .2 .4 . Let X = {xo, xi,. .., xm}. The modified composition product is dis

tributive to the left over the shuffle product, that is, 

(cuj<i)5e= (c5e)uj(d5e), c,d, e G Rm{(X)). 

Proof: Since the shuffle product is defined componentwise, and the modified com

position product is linear in its left argument, it is sufficient to assume m = 1 and 

show tha t 

(77wf)°e = (T?oe)uj(foe), 7],£eX*. 

Let k = |T?| + |£|. The claim is trivially t rue when at least one of the words is empty. 

Thus, the identity is t rue for k = 0 and k = 1. Assume it is t rue up to some fixed 

A; > 0. Let rj = xln' and £ = x3^' such tha t k + 1 = \r]\ + |£|. First consider the case 

when i j ^ O . Then 

( r?Lu^)oe = [2^(77 'LU£) + 2^(77 u_,£')]6e 

= [xt(ri'in^)]oe+[Xj(r]iij^)]oe 

= xt[(7?'uj^)6e] + x0(el I±J [(rj' Lu^)oe\) + x3[(r]Lu^)oe] + 

xo{ejm[(r)Lu£')oe]) 

= ^ [(77'oe) LU (foe)] + xQ[el m (77'oe) LU (foe)] + 

Xj [(rjoe) LU ( foe)] + x0[e3 LU (rjoe) UJ ( foe)] 

= xt[(rjoe) LU [x3{£'oe) + x0(e3 LU (foe))]] + 

xo[e% UJ (77'oe) LU [xj(£'oe) + x0(e3 LU (foe))]] 

x3[[xt(7]'oe) + x 0 (e t LU (77'oe))] LU (foe)] + 

x0[e3 LU [^(77'oe) + x0(e» LU (77'oe))] LU (foe)] 

= x, [(77'oe) LU x3(foe)] + xx[(77'oe) LuX0(ej UJ ( foe))] + 

Xo[ej LU (77'oe) LuXj(^'oe)] + 
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Xo[et LU (77'oe) LUXO^ LU (£'6e))] + Xj[x2 (77'oe) LU (£'oe)] + 

Xj[xo(et UJ {rj'oe)) LU (£'°e)] + Xo[ej LUX, (77'oe) LU (£'6e)] + 

xQ[e} LU x0(el LU (77'oe)) LU (foe)] 

= [xj (77'oe)] LU [x^ 'oe)] + [xl(77'oe)] LU [x0(ej LU (£'6e))] + 

[x0(et LU (77'oe))] LU [£j(£'oe)] + 

[x0(e8 LU (77'oe))] LU [x0(ej LU (foe))] 

= [x, (77'oe) + x0(e, LU (7?'5e))] LU [xj(€'oe) + x0(e3 LU (foe))] 

= (?75e)Lu(^5e). 

Thus, the identity holds for all 77, £ G X*. The cases when i ^ 0, j = 0 and z = j = 0, 

can be proved in a similar manner using the identity (xor))oe = Xo^oe). Therefore, 

the lemma is proved. • 

Proof of Theorem 4.2.1: 

Assume e is the solution of e = coe. Since all the components of c are identical, the 

focus will be on E\. Observe 

^ ( c o e h = Y^KcM
k
c Y, kl (xmoe)' 

fe=0 r 0' ,rm>0 r0! 

0 0 

i = i 

fe=0 

Mc I x0 + ^ x0ej + ^ 
\ i = i i= 

/ m 

Mc I x0 + mx0ei + 2 J 

LU fe 

Shuffling both sides of this equation by Mc (XQ + mx^ex + 5ZHi xi) yields 

Mc x0 + mx0ei + ^ : 
i = i 

ei LU Mc I Xo + mxoei + NJ x t J = V j ifc 

\ t = l / fc=0 

Adding ifc to both sides gives 

( m \ 

ei = Kc + eiuj Mc xo + mxoe! + \ . x« 

Therefore, 

Fei [u] = KC + McFSl [u] I Exo [u] + mFxoSl [u] + ] T EXi [u] ] . 

LU A:+l 

i = l 
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Set yi = Fei[u] and note that FSl[u] ^ 0 since yi(O) = Kc ^ 0. Then it follows that 

j/i (t) = # c + Mcyi(t) It + m J yi(T)dT + J2 J UZ(T) dr J , 

or equivalently, 

M, 
z = — U 2 + m z 3 + z 2 ^ u , , 2:(0) = ir c (4.2.2) 

Vi = 2- (4.2.3) 

Therefore, by Lemma 4.2.1, (e1;77) < (&I,XQ), 77 6 X*. But (S^XQ) < 

Ke(a(Kc)Mc)
nnl by Theorem 4.1.1. Using Lemma 4.2.3, \et\ < et, i = 1,2,... ,m. 

Hence, \(et,r])\ < Ke(a(Kc)Mc)^\ri\\, 77 G X*. From Theorem 4.1.2 and Exam

ple 4.1.1, c is the series for which each component of the corresponding feedback 

generating series e achieves exactly the growth rate Ke(a(Kc)Mc)^\ri\\. Thus, no 

smaller geometric growth constant is possible, and the theorem is proved. • 

The following corollary addresses a question that was left unresolved in [19]. 

Corollary 4.2.1. Let c G M.™C((X)). Then the generating series for the unity feed

back connection, namely the series e satisfying e = coe, is locally convergent. 

The final theorem in this section is useful for convergence analysis of feedback systems 

having analytic inputs. 

Theorem 4.2.2. Let c G M.™C((X)) with growth constants KC,MC > 0, and assume 

e satisfies e = coe. If cu G K^cH^o]] with growth constants KCu,MCu > 0 then 

cy = eo cu satisfies 

\{cy,x
k
Q)\<KCyM

k
Cyk\, k>0 

for some KCy > 0 and 

Mr. 
Mr_. 

1CU 

mK W f_L_ e x p (a(Kc)Mc-MCu\Y rnj\Cuvv ymKcu exp yma{Kc)McKcu j j 

Thus, the interval of convergence for the output y = FCy [u] is at least as large as 

T=l/MCy. 

Proof: The theorem is an immediate consequence of Theorem 4.2.1 and Corollary 

3.3.1. • 
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0 08 

Fig. 11: Output responses of the unity feedback system to analytic inputs in Example 
4.2.1 

Example 4.2.1. Let c = Ylnex* KcMc1 \n\\ rj and e = cde. The corresponding 

feedback system has the state space realization (4.2.2)-(4.2.3). By Theorem 4.2.1, 

the finite escape time of the zero-input response is tesc = ar^^M • By Theorem 4.2.2, 

any finite escape time for an output corresponding to an analytic input with growth 

constants KCu,MCu must be at least as large as T = l/MCy. A MATLAB generated 

solution of this system is shown in Figure 11 when Kc = 4 and Mc = 2. As predicted, 

tesc = a{K\)Mc = 0.0537 when u = 0. When KCu = MCu = 1 it follows that T = 0.0267 

as also shown in the figure. The output corresponding to the input u = 1/(1 — t) has 

tesc — 0.0472 > T as expected. For comparison, the u = — 1 response is also shown. 

• 

4.2.2 Global Convergence 

A parallel analysis is done next for the unity feedback case, where the compo

nent system has a globally convergent generating series. The main theorem below 

describes the radius of convergence. 

Theorem 4.2.3. Let X = {xo, £ i , . . . , xm} and c € WQC((X)} with growth constants 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

• 

• 

K(/ )=1 / (10 

H(/)=0 

H(0=l 

-

. 

, 

1 
• 

1 i 
• i 
• i 
1 i 

1 

i 
i 

i 
1 
1 

1 
1 

[ 

1 

\ i $ % 
i i / % 
1 / ! 

, i 



57 

KC,MC > 0. IfeG Rm((X}) satisfies e = c5e then 

|(e)7,)|<^e(7(ifc)Mc)l"l|7? |!, rjEX", 

for some Ke > 0, where 

l{Kc) = 
\n(l + l/mKc)' 

Furthermore, no geometric growth constant smaller than j(Kc)Mc can satisfy the 

inequality above, and thus the radius of convergence is 

1 

(l + m)>y(Kc)Mc' 

The following lemmas are essential in proving the main theorem above. 

Lemma 4.2.5. Let X = {XQ,X\,. .. ,xm}. The Fhess operator Fe : u i-» y having 

the state space representation 

X I z + mz2 + z ^ u% J , z(0) = z0, 
i = i 

where X,zo G M+
; has a generating series e G R((X)) whose coefficients satisfy the 

inequality 

0<(e ,77 )< ( e , ^ 1 ) , nEX*. 

Proof: First observe that for the vector fields go(z) = X(z + mz2) and gt(z) = Xz, 

the Lie derivatives of h(z) = z consist of products of polynomials with non-negative 

coefficients. Therefore, 

0 < {e,n) = Lgvh(zQ), neX*. 

For any k > 0, let rjk = XQ°XHXQ1 • • -xlkx^k. Then the Lie derivative corresponding 

to the word rjkX^k+1 is 

9 "k+ 
1kx0 

i+lh - Lg nk+i+1Lgtikh 

= L, 9 "fc+i 
' 0 

d 
Hz + mz )j-z

L9nk
h 

= L, 9 njfc + l 
" 0 

XzTzL**h + L9 »fc+l 

~~ -^9 "fc+i ^9-nkx h + Lg n fc+1 

Xmz2—L0n h 
dz 9vk 

d 
Xmz -z-L0„ h 

dz 9"k 

L9vk+l
 h + L9 »fc + i Xmz —L„ h 

dz 9nk 
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When evaluated at z(0) = zo, 

d 
Lg +1/i(^o) = Lg H^ + Lg 

1kxo x0 

X™z2-^L9r,kHZ0) 

Clearly, the second term on the right-hand side above also consists of the products of 

polynomials with non-negative coefficients. Thus, it is strictly positive, and therefore, 

L9r,k+1K
Z*) < L9 nfc+1+iM*o), k>0. (4.2.4) 

rlkxQ 

This inequality is used to complete the proof of the lemma Specifically, it will be 

shown by induction on k that 

Lgnkh{z0) < Lg MKzo), k>0. 
x0 

The claim is trivially true when k = 0. Now, assume it is true up to some fixed 

k > 0. Then using (4.2.4), it follows that 

Lgvk+ih(zo) < Lg nk+i+1h{z0) 
rikxQ 

= L9 nk nk + 1 + MZ0) 
Vk~lxik

x
0
 x0 

< Lg ](k]h(z0) 
x0 

— Lq . h(zo), 
Io 

where £fc := r}k-\xlkx^kx^h+1 . Therefore, the claim is verified for all k > 0, and the 

lemma is proved. • 

Lemma 4.2.6. Let X = {xo,xi,...,xm}. Suppose c,c 6 M.QC((X)) have growth 

constants KC,MC > 0, and specifically each component of c is KcMi , r\ G X*. 

If e, e G Rm[[X0]] satisfy, respectively, e = coe and e = coe then \et\ < e%, i = 

1,2 m. i_ , < - , . . . , J 

Proof: The proof is perfectly analogous to its local counterpart, Lemma 4.2.3. • 

Proof of Theorem 4.2.3; 

Assume e is the solution of e = coe. As in the local case, there is no loss of generality 
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in considering the single component e\. Observe 

oo 

ei 
KcM

k
c ^ nxQ

Luro (xmoe)< £^E*< k\ ^—' rn! rm\ 
k=0 r0, ,T-m>0 u m 

^ V^ (Me (x0 + >J t=1 X0ei + £,,= 1 x j ) 
" ^ k\ 

fc=0 

_ K v ^ (Mc (xp + mxpe! + Y^=\ x»)) ^ 

fc=0 

Therefore, (ei, 0) = Kc and 

-if-\ is V^ (Mc(x0 + mx0ei + ^™ 1 x l ) ) L ± j f e ' 1 _ 
x0 (ei) = ^ 2 ^ ( , _ ^ , LiJMc(l + me1) 

fc=i ^ ' ' 

= e\ L U M C ( 1 + me\). 

In which case, 

Xp^ei) = Mc(l + mei)Luei. (4.2.5) 

After applying the left-shift operation with respect to x% on e\, where i = 1, 2 , . . . , m, 

it follows that 

Kck(Mc(x0 + x^e)) UJ fc—1 m 

(ei) = 2 ^ JM L U M c x t x 0 + m x 0 e i + > y £» 
fc=0 ' \ 1=1 

0 0 
Kc(Mc(x0 + xt5e)) i f c 

= 2 ^ jfcj - M * 
fc=0 

= Mcex. (4.2.6) 

If 2 = FeJu] then (4.2.5) and (4.2.6) yield 

Fx-1{ei)[u] = Mcz(l+mz) (4.2.7) 

Fx-Hei)[u] = Mcz. (4.2.8) 
Therefore, 

d 
Jt -Fei[u] = Fx-1(gi)[«] + E ^ r ^ - o M -

i = i 

From (4.2.7) and (4.2.8), the following state space realization is obtained. 

z = Mc I z + mz2 + z ^^ u* 1 ' z (°) = Kc 

y = z. 
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Lemma 4.2.5 gives (ex, 77) < (e1,x{)'
?l), 77 G X*. But (eux%) < Ke(7(Kc)Mc)

nn\ 

by Theorem 4.1.3. Using Lemma 4.2.6, one has |e| < e. Hence, |(e,rj)\ < 

Ke(~/(Kc)Mc)
l7i\\r)\l, 7] e X*. From Theorem 4.1.4 and Example 4.1.4, c is the 

series for which the corresponding coefficients, (e, XQ), achieve exactly the growth 

rate Ke(j(Kc)Mc)^\ri\\. Thus, no smaller geometric growth constant is possible, and 

the theorem is proved. • 

4.3 S U M M A R Y 

A complete analysis of the radius of convergence of the unity feedback connection 

of an analytic nonlinear input-output system represented as a Fliess operator has 

been presented. First, the self-excited case was considered. If the component system 

is locally convergent, then the radius of convergence is finite and can be computed 

in terms of the Lambert W-function. Unlike the cascade connection, even if the 

component system is globally convergent, the radius of convergence of the overall 

feedback system is still finite. An explicit formula was derived for it. Surprisingly, 

the radius of convergence of the unity feedback systems with a non-zero input was 

found to be identical to that of the self-excited connection in both the local and global 

cases. In the process of computing the radii of convergence, it is shown definitively 

that local convergence is preserved under unity feedback. 
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C H A P T E R 5 

CONCLUSIONS AND F U T U R E RESEARCH 

This dissertation described the radius of convergence for the four fundamental in

terconnections of two convergent Fliess operators, specifically, the parallel, product, 

cascade and unity feedback connections. For either locally convergent or globally 

convergent subsystems, the radius of convergence for the composite system was com

puted explicitly. The results are summarized in Table 5. In the process, it was also 

shown that the unity feedback connection preserves local convergence, which was an 

open problem. A number of specific examples for which the radius of convergence is 

achieved were provided. It was found that the Lambert-W function plays a central 

role in computing the radii of convergence for the composition and feedback connec

tions. This suggests a direct connection to the combinatorics of rooted nonplanar 

labeled trees [4,12]. That aspect of the problem was not pursued in this disser

tation. However, future research could focus on a more fundamental combinatoric 

interpretation of the composition and feedback products of formal power series. This 

may give deeper insight into the analysis presented here and perhaps simplify some 

of the arguments used. In addition, one could continue to investigate the radius of 

convergence for other types of system interconnections. For example, the non-unity 

feedback system and interconnections involving component systems which have a 

mixture of locally convergent and globally convergent generating series. Many of the 

basic methods presented in the dissertation should apply to such problems. Finally, 

there are many practical engineering applications to which the analysis used here 

will be helpful. 
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TABLE 5: Radii of convergence for the four elementary system connections 

connection 

parallel 

product 

cascade 

unity feedback 

c,d€RZb<(*» 

1 
Md(l+m) 

I 
max{Mc ,Md}(l+m) 

1 
max{Mc,Md}(l+m) 

l - ™ * ^ f e e x p ( ^ ) ) l 
1 

M c ( l+m) 1 - mKcIn ( l + ^ ) ' 

Me«ScP)> 
oo 

oo 

oo 

Mc(l+m) m (^ + m X c J 
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