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ABSTRACT

FUZZY SYSTEM IDENTIFICATION BASED UPON A NOVEL 

APPROACH TO NONLINEAR OPTIMIZATION

Raymond Scott Starsman 
Old Dominion University, 2003 
Director: Dr. Oscar R. Gonzalez

Fuzzy systems are often used to model the behavior of nonlinear dynamical systems 

in process control industries because the model is linguistic in nature, uses a natural-language 

rule set, and because they can be included in control laws that meet the design goals. 

However, because the rigorous study of fuzzy logic is relatively recent, there is a shortage of 

well-defined and understood mechanisms for the design of a fuzzy system. One of the 

greatest challenges in fuzzy modeling is to determine a suitable structure, parameters, and 

rules that minimize an appropriately chosen error between the fuzzy system, a mathematical 

model, and the target system. Numerous methods for establishing a suitable fuzzy system 

have been proposed, however, none are able to demonstrate the existence of a structure, 

parameters, or rule base that will minimize the error between the fuzzy and the target system.

The piecewise linear approximator (PLA) is a mathematical construct that can be 

used to approximate an input-output data set with a series of connected line segments. The 

number of segments in the PLA is generally selected by the designer to meet a given error 

criteria. Increasing the number of segments will generally improve the approximation. If the 

location of the breakpoints between segments is known, it is a straightforward process to 

select the PLA parameters to minimize the error. However, if the location of the breakpoints 

is not known, a mechanism is required to determine their locations. While algorithms exist 

that will determine the location of the breakpoints, they do not minimize the error between 

data and the model. This work will develop theory that shows that an optimal solution to this 

nonlinear optimization problem exists and demonstrates how it can be applied to fuzzy 

modeling.

This work also demonstrates that a fuzzy system restricted to a particular class of 

input membership functions, output membership functions, conjunction operator, and
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defuzzification technique is equivalent to a piecewise linear approximator (PLA). 

Furthermore, this work develops a new nonlinear optimization technique that minimizes the 

error between a PLA and an arbitrary one-dimensional set of input-output data and solves the 

optimal breakpoint problem. This nonlinear optimization technique minimizes the 

approximation error of several classes of nonlinear functions leading up to the generalized 

PLA. While direct application of this technique is computationally intensive, several paths 

are available for investigation that may ease this limitation. An algorithm is developed based 

on this optimization theory that is significantly more computationally tractable. Several 

potential applications of this work are discussed including the ability to model the nonlinear 

portions of Hammerstein and Wiener systems.
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1

1.0 INTRODUCTION

In the past thirty-five years, fuzzy logic has grown in stature from a curious extension of 

Boolean logic into a powerful tool capable of solving problems of great complexity. The 

observation that fuzzy logic provides a mechanism through which some of the subtleties 

of human thought can be encoded, stored, utilized, and expressed powers the growth of 

the use of fuzzy logic in applications. Processes requiring human intervention and not 

yielding to solution through conventional techniques or even artificial intelligence 

methods are prime candidates for the use of fuzzy systems.

This work provides an analysis of a class of single-input fuzzy systems and develops 

several techniques applying this analysis to several nonlinear modeling problems. The 

extension of this analysis to multiple input dimensions is investigated, but several 

challenges remain.

1.1 Fuzzy Logic

Fuzzy logic was first formalized in [58] as a superset of Boolean logic capable of 

resolving the logical paradoxes stymieing traditional logic approaches. Control systems 

were among the first fields to accept fuzzy logic as a tool to be used in solving 

engineering problems. One of the first applications of fuzzy logic to control problems 

was discussed in [32] and provided the fertile ground for most future fuzzy control work.

The initial approach for fuzzy control system design focused on the ease of mapping 

linguistic commands to a fuzzy system [32], Linguistic designs are the result of encoding 

a human expert’s knowledge into a fuzzy system and were used to solve several difficult 

industrial control problems. This technique relies upon the ability of the expert to express 

his or her knowledge of a system’s dynamics in terms of fuzzy sets. While powerful, this 

technique has two key weaknesses: too many design variables and limited analysis tools. 

A hallmark of fuzzy systems is the flexibility in their representation. However, this 

flexibility yields a tremendous number of system variables that must be adjusted to tune 

performance. Manual tuning of even simple fuzzy systems can be a difficult and time-
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consuming process. Furthermore, there exists no comprehensive analysis regarding the 

stability and performance of fuzzy control systems. The only available results consider 

specific cases.

Numerous techniques have been developed in response to the problems with manual 

tuning. The Fuzzy Model Reference Learning Controller (FMRLC) [39] is one of several 

complete design procedures. Many other techniques make use of gradient descent [49], 

neural network approaches [29, 52], genetic algorithms [17], and other procedures [cf.

38] to automatically tune a fuzzy controller. The development of techniques for the 

analysis of fuzzy control systems is also vital to continued progress. The stability of 

several classes of fuzzy adaptive control systems is discussed in [36, 39, 56].

Fuzzy logic has been used not only in the direct design of controllers but also in indirect 

designs. In the latter case, fuzzy logic is first used for approximation and identification of 

the nonlinear systems. This is possible since fuzzy systems have been proven to be 

universal function approximators [26, 44, 55] which together with a dynamical 

component (such as time delays and recursion) can approximate dynamical systems. 

Radial basis functions [8], clustering [27], and others [12] are some of the techniques that 

have been applied to the dynamic system identification problem.

1.2 Fuzzy System Design Issues

While the use of fuzzy logic in system identification is well established, there remain a 

large number of unresolved issues. The goal of this work is to investigate a specific class 

of fuzzy systems and to develop a technique to determine the fuzzy system parameters 

based on a given error criteria. This class of fuzzy systems is useful for the solution of 

many problems and it contains only triangular membership functions that overlap 

perfectly (meaning that the apex of triangle n occurs at the same point as the base of 

triangles n-1 and n+1). This class also uses a fuzzy singleton output set and centroidal 

defuzzification.
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The fuzzy logic system designer is faced with a series of design decisions for which very 

little guidance is available. Decisions regarding the very nature of a fuzzy system are left 

to the whim of the designer. While the ambiguity of the structure of a fuzzy system was 

part of its early charm, engineers serious about the application of fuzzy logic to critical 

control problems require deeper understanding of the structural issue of fuzzy systems. A 

byproduct of this work will be a more complete exploration of a class of fuzzy systems 

that may then be used in an engineering environment backed by analysis.

By no means does this work answer all the questions associated with this single class of 

fuzzy systems. Rather, several basic questions are answered definitively and several paths 

are laid out for future work that will resolve some of the unanswered issues.

1.3 Piecewise-Linear Approximation

It is shown in this work that the specific fuzzy system described above, is equivalent to a 

Piecewise Linear Approximator (PLA). This equivalence makes it possible to use 

available results to identify a system with a PLA and then to map the PLA into a fuzzy 

system. The central issue in solving the identification problem is closely related to 

optimal knot placement for the PLA. The solution to the hitherto unsolved PLA optimal 

knot placement problem is the key contribution of this work. Several algorithms are 

developed that take advantage of this result and several basic fuzzy logic and control 

problems are investigated with this method.

Besides fuzzy systems, piecewise linear constructs are used in a number of fields and 

may benefit from this work.

1.4 Application to Engineering

Piecewise-linear analysis and approximators have found wide application within 

engineering. Piecewise linear constructions have the advantage of being able to model 

any continuous system as well as a formulation that is relatively easy to understand. Of 

particular note is the use of these techniques within the fields of circuit theory, nonlinear 

control, and nonlinear systems identification.
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Piecewise-linear analysis has been widely applied to the modeling of nonlinear 

characteristics of electronic devices and to study a large class of nonlinear resistive 

networks [9-11, 23-25, 28]. PLAs are used to express the circuits as a piecewise-linear 

system with linear boundaries and regions expressed as equations. A great deal of 

research has been conducted in this line of work resulting in a formal structure with an 

error-function similar to the one used in the nonlinear optimization problem in this work 

[9, 10,11,23,24],

Piecewise linear models are simple to use in the modeling of nonlinear circuits because 

the linear regions and boundaries can be directly determined by experiment. Otherwise, if 

the linear regions and boundaries are not known explicitly, it would not be as simple to 

use them. In this case, input-output data is the only information available and nonlinear 

system identification can be used. PLAs have also been used in nonlinear system 

identification of a large class of systems [6, 33, 37,48, 53]. The solution of the knots 

placement problem to be presented in this work, makes it also possible to use PLAs in 

nonlinear system identification.

The use of PLAs in nonlinear system identification is especially attractive when the 

nonlinear system consists of linear subsystems interconnected with static nonlinearities. 

Van Pelt and Bernstein [53] give a good summary with references to this general class of 

systems. Two special cases are the Wiener class of systems where the nonlinearity 

follows the linear subsystem and the Hammerstein class where the nonlinearity is ahead 

of the linear system. Both of these cases will be considered in this work.

An advantage of modeling nonlinear systems with PLAs is that there exist analysis 

results. Sontag in [50] analyzes the regulation problem of nonlinear systems modeled 

with PLAs. In [40] Petit compiles other known analytical results for closed-loop systems 

where the nonlinearities are modeled with PLAs. Since the equivalence between a class 

of fuzzy systems and PLAs is shown in this work, it will now be possible to analyze 

closed-loop systems that contain this type of fuzzy system.
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1.5 Problem Formulation

A key product of this work is the development of an identification technique for 

determining an optimal fuzzy model for static nonlinearities in Wiener and Hammerstein 

discrete-time systems. Constraints on the structure of the fuzzy system will be described 

and implementation will be discussed. The application of this technique to model higher- 

order systems will also be addressed.

1.6 Example Systems

Throughout this work, example systems will be used to enhance the discussion of various 

topics. Three examples are used to help cover the wide array of topics discussed within. 

The first example is a purely heuristic one primarily helpful in the development of fuzzy 

logic techniques. The other two examples are nonlinear systems useful in the discussion 

of the application of the techniques developed in this work in nonlinear systems 

identification.

1.6.1 Example 1

Consider the steering mechanism on a ship shown in Figure 1 where angles and angular 

rates increase in the clockwise direction. When the ship’s wheel (similar to the 

automotive steering wheel) is turned to the left, the ship’s rudder is turned a

Figure 1 -  Example fuzzy system.

corresponding amount to the left and, the turn rate of the ship decreases until a steady 

state turn rate is achieved based upon the angle of the rudder and the speed of the ship. 

When the wheel is turned to the right, the rudder is turned to the right and the ship’s turn
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rate increases until a new turn rate is achieved based upon the angle of the rudder and the 

speed of the ship. In this case, the inputs to this system are the amount the ship’s wheel is 

turned and the speed of the ship. The goal is to model the behavior of the ship in response 

to the input.

1.6.2 Example 2

Throughout this work, the simple discrete-time nonlinear system shown in Figure 2 is 

used as a sample system to illustrate the setup of a fuzzy system identifier and determine 

the parameters by solving a nonlinear optimization problem.

u(k)

r+
Z~1 sin(Tx(k-i))x(k-1)

x(k)

Figure 2 -  Sample Wiener nonlinear system.

This system is described by the following equation:

x(k)=sin(Tx(k-l)) + u(k) (1)
thwhere T is the time interval between samples, x(k) is the value of jc at the k sample, and 

u(k) is the value of the input u at the kxh sample. It is a nonlinear example with a single 

step delay for which the one-dimensional solution is completely presented in this work. 

This example corresponds to the Wiener class of systems.

While this example uses a continuous nonlinearity, the next example system will 

introduce a piecewise nonlinearity.
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1.6.3 Example 3

A third sample system is introduced for the purposes of comparing it to some of the 

results discussed in [53]. A representation of general nonlinear systems with a 

generalized Hammerstein model is shown in Figure 3. The generalization is introduced 

when the feedback static nonlinearity ho is not zero.

Un(lfK
u (k )-> f0 G(z-1) —+ m

I
ho

Figure 3 -  Sample Hammerstein nonlinear feedback model.

The example used in this work corresponds to the first example discussed in [53] and is a 

Hammerstein system where

_K 0.5992+ 0.5679z_1
G( z  ) = -----  i ------- ---— (2)

l-1 .706z +0.8521z

f o ( u ) =

u + 0.25 u < -0.25
0 -  0.25 < u < 0.25, and

u — 0.25 u>  0.25
(3)

ho=0. (4)

1.7 Overview

This work proceeds by first laying the foundation for Fuzzy Logic in Chapter 2 and 

Approximation in Chapter 3. Chapter 4 proves that an optimal piecewise linear 

approximator to a given set of input/output data exists and that a fuzzy system can be 

developed such that it behaves precisely as the piecewise linear approximator. Chapter 5 

uses the results in Chapter 4 to demonstrate the ability to optimally map a fuzzy system to
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a given set of data points. A sub-optimal algorithm is developed to overcome some of the 

computational intensity of the optimal mapping algorithm. This sub-optimal algorithm is 

applied to several different problems, most notably the approximation of a Wiener and 

Hammerstein nonlinear system. Future issues and additional research are outlined in 

Chapter 6.
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2.0 INTRODUCTION TO FUZZY LOGIC

Fuzzy (multi-valued) logic is an extension of the Boolean (two-valued) logic that can 

directly take into account the uncertainty present in many real world logical decisions 

[58], handling the subtleties and paradoxes that stymie conventional logic.

2.1 Basic Terms and Concepts

Only those fuzzy logic terms and concepts used in support of this work are described in 

this chapter. A more complete definition of fuzzy logic is available, for example, in [58] 

and [39].

The term ‘universe of discourse’ refers to the range of values assumed by any single 

property or state of a system.

2.1.1 Membership Function

A membership function (MF) is a mapping from universe of discourse in 91 to a number 

in the interval [0,1] representing the membership of the input value in the fuzzy output 

space. Typical fuzzy membership functions include the Gaussian, a triangle, and a 

trapezoid. The only limitation placed on the MFs is that their output be restricted to [0, 

1]. Figure 4 is an example of five typical MFs.

0.8

0.6

0.4

0.2

Figure 4 -  Sample membership functions.
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The degree to which a membership function responds to an input is referred to as it’s 

activation level. For example, the activation function of a triangular membership function 

with it’s left corner at dj, it’s center at d2 and it’s right comer at d$ could be described as:

x - d x

a(x) =

■d,
■ x + d 3

d3 - d 2

: d x < x < d 2

d2 < x d 2

0 : elsewhere

A special type of MF used in some applications is the fuzzy singleton [39], A fuzzy 

singleton at dj is defined as:

f l : x  = d. 
a (x )={ 1

[0: otherwise
The fuzzy singleton resembles the discrete-time delta function.

2.1.2 Fuzzy Set

A fuzzy set is a collection of membership functions related to a single property defined 

over the same universe of discourse. In Example 1, three variables are important in 

steering operations: wheel position, ship’s speed, and turn rate. Consequently, MFs 

would be defined for these three variables. To describe the position of the ship’s wheel, 

seven MFs could be selected to be {Hard Left, Left Full, Left Standard, Amidships, Right 

Standard, Right Full, Hard Right}. The ship’s speed in the forward direction can be 

described for steering purposes with only four MFs: {Stopped, Slow, Average, Fast}. The 

MFs defined for each variable form a fuzzy set. For convenience of notation, the 

activation levels of a fuzzy set are often written as a vector. For example, the ship’s 

wheel fuzzy set might be written as {0, 0, 0, 0.4, 0.6, 0, 0}. Note that more than one 

member of a fuzzy set can be activated simultaneously, a hallmark of fuzzy logic.
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A fuzzy set representing the ship’s wheel input is shown in Figure 5.

Hard Left Left Full Left
Standard

Amidships Right Right Full Hard Right 
Standard

0.5

-90 -60 -30 0  30
Ship’s  Wheel (degrees turned)

60 90

Figure 5 -  Membership functions for the position of ship’s wheel.

This set consists of 7 membership functions. The value of this set where the ship’s wheel

is turned to -15 degrees is expressed in vector form is {0, 0, 0.5, 0.5, 0 ,0 , 0} as only the 

3rd and 4th MF are activated, each to a level of 0.5. The real advantage of fuzzy logic is 

that a linguistic expression of a concept can be readily mapped to a quantitative 

representation. In the U. S. Navy, the command from the Conning Officer to the 

Helmsman to turn the ship to the right would be “Right Standard Rudder”. As shown in 

the figure above, this command has a fuzzy logic representation and can be understood as 

the fuzzy membership function.

2.1.3 Fuzzy Operations

Fuzzy logic operations are supersets of their Boolean counterparts. The most fundamental 

and commonly used are the AND, the OR, and the NOT functions. The fuzzy AND and 

fuzzy OR functions are often referred to as fuzzy conjunctions as they combine the inputs 

of multiple fuzzy variables. Whereas these operations are explicitly and uniquely defined 

in a Boolean logic environment, there are no such limitations in fuzzy logic.

Two definitions for the fuzzy AND operator are

• Fi(x,) AND F 2(x 2) AND ...AND Fn(xn) = m m (F i(X ]), F2(x2), ..., Fn(xn))

• F,(x,) AND F 2(x 2) AND ...AND Fn(xn) = F,(x,) • F2(x2) # ...#  Fn(xn).
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Two definitions for the fuzzy OR operator are

• Fi(xi) OR F 2(x 2) OR ...OR Fn(xn) = max(F/fe), F2(x2), Fn(xn))

• F ife )  OR F 2(x2) OR ...OR Fn(xn) = 1-(1 - F /fe))*  (/- F2fe )) *... •  (7- Fn(xn)).

The fuzzy NOT is a unary operator usually defined as

• NOT(Fife)) = 1- Fi(xj).

Note that if the fuzzy variables Fn(xn) were limited to the two logical values of 0 and 1 

(and hence converted into a Boolean representation), the above operations would all 

collapse to their Boolean counterparts.

2.1.4 Fuzzy Decisions

A fuzzy decision is a fuzzy IF-THEN conclusion drawn on one or more fuzzy sets. A 

typical fuzzy decision for the ship’s steering system is:

IF Ship’s Wheel IS Left Standard AND Speed IS Fast THEN Turn Rate IS Large Negative.

The arguments of the fuzzy conjunction are evaluated and the output membership 

function is activated to this level. In the ship steering example, consider the case where 

the fuzzy membership function for Left Standard in the Ship’s Wheel fuzzy set is 

activated to a degree of 0.6 and the Fast membership function in the Speed fuzzy set is 

activated to a degree of 0.8. The fuzzy IF-THEN rule above would yield the Large 

Negative membership function of the Turn Rate fuzzy set being activated to a degree 

equal to 0.8 AND 0.6. In the case where a multiplicative fuzzy AND is being used the 

Negative membership function would be activated to a degree of 0.48.

2.1.5 Rule Base

The rale base is the set of fuzzy decisions that specify the fuzzy output(s) for all relevant 

combinations of fuzzy sets from the input variables. Each rale is in the form of a fuzzy 

decision as described in Section 2.1.5. While the IF-THEN rales could be simply listed, a 

more convenient and readable notation is to build a table, an example of which is shown 

in Table 1 below.
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Table 1 - Fuzzy rule base for Example 1
Ship's Wheel \

Hard Left Left Full
Left

S tandard
A m idships

Right

S tandard

Right

Full

Hard 

R ight jS

yllllijiiiiiill S topped Zero Zero Zero Zero Zero Zero Zero

Sp
ee

d

Slow Negative Negative
Slight

Negative
Zero Slight Positive Positive Positive

Average
Large

Negative
Negative Negative Zero Positive Positive

Large

Positive

Fast
Large

Negative

Large

Negative
Negative Zero Positive

Large

Positive

Large

Positive

This table shows the ship’s steering example system with two input states (Ship’s Wheel 

and Speed). Each possible conjunction of the two input fuzzy sets on the table represents 

a separate IF-THEN rule, the conclusion of which is the activation of the fuzzy output 

variable specified at the intersection.

2.1.6 Defuzzification

Membership functions are used to convert real-valued inputs into fuzzy signals; 

Defuzzification reverses the process. Like the rest of fuzzy logic, there are many 

implementations of the defuzzification process. This work focuses on one of the more 

common implementations (the centroid) having specific features that will be taken 

advantage of in Chapters 4 and 5.

Because fuzzy MFs can and do overlap, usually there will be multiple conclusions 

derived from a single presentation of input data to a fuzzy rule base. For example, at a 

given instant the fuzzy rule base could produce the following output activations: 

Negative activated to 0.2 

Slight Negative activated to 0.7 

Zero activated to 0.5 

Zero activated to 0.1

In order to convert these results from a fuzzy value into a value useful to a conventional 

control system we must apply the defuzzification process.
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The defuzzification process used in this work uses the centroid calculation in order to 

find a weighted average of the activated output MFs. The centroid of the aggregated 

weighted output MFs is used as the defuzzified output. The equation for centroid 

calculation is:
M

^ j Ck \
y = i=i--------
X  M  

k =1

where M  is the number of activated output MFs, c* is the centroid of the kth output MF, 

and Ak is the area of the kth output MF.

As noted in Section 2.1.1, the fuzzy singleton is a special type of MF with its entire 

weight existing at a single point (c*). By definition the area under a singleton MF is equal 

to the level it is activated. This means that when fuzzy singleton k is activated to strength 

ak it’s area is equal to a&. Therefore, when fuzzy singletons are used as the output MFs, 

the centroid calculation equation becomes:
M

y = —u—  (5)
2 X
k =1

where ak is the activation level of the kth output MF.

2.1.7 Wiener System Example

For illustration consider Example 2, the Wiener nonlinear system. If the linear subsystem 

is known then there are only two variables of interest: the input and output of the 

nonlinearity. A universe of discourse is selected for each input variable as well as the size 

and shape of the MFs. In this example, this design is done by hand. The MFs selected for 

the input, x(k-l), are shown in Figure 6. In this case, the assignment is made without 

consideration for the behavior of the system. In any real application, the shape, number, 

and size of these MFs occupy a great deal of the designer’s time and is the focus of much 

of this research.
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Greatly Slightly
Negative Negative Negative

Slightly
Positive

Greatly 
Positive Positive

0.5

x(k-1)

Figure 6 -  Membership functions for sample system.

If a conventional output fuzzy set were being used to represent the output state, a similar 

set of output MFs would also be developed. In this work fuzzy singletons will be used. 

The fuzzy singleton set can be simply described by the centers of the singletons: {-0.9, - 

0.75, -0.3, 0.3, 0.75,0.9}.

The next step is to develop a rule base that will appropriately model the system.

Using the F( •) operator to denote the fuzzification of the state. A typical rule might be: 

IF F(x(k-1)) IS Slightly Negative THEN F(x(k)) IS - 0.1 

The -0.1 term in the above rule is the fuzzy singleton representation of the model output 

state. Because this is a single input state system, the rule base will consist of a rule for 

each of the MFs in the input fuzzy set, 6 rules in this example. Table 2 represents the six 

rules in tabular form as discussed above.

Table 2 - Fuzzy rule base for sample problem

Greatly

Negative
Negative

Slightly

Negative

Slightly

Positive
rO S IT IV C

Greatly

Positive

0.3 -0.75 -0.9 0.9 ).75 -0.3
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The final step in this example is to take the fuzzy singletons activated by the rule base 

and defuzzify them into a numeric output. The centroidal defuzzification given by (5) is 

used for this example.

Having laid out the fuzzy model for the example, the system can be simulated and the 

results compared with actual system. Consider the case where x(k-l )=0. At this point 

rules 3 and 4 are activated each at strength 0.5. The system is defuzzified by applying 

equation 5:

- 2 0 . 5  + 2-0.5 „
y = -----------------------= 0

0.5+ 0.5

Consider another case where x(k-l)=2. At this point only rule 4 is activated and at a 

strength of 1 yielding an output result of 1.0. The results of this approximation for -6, -4, 

... 6 are shown in Table 3 where x(k-l Jis the input signal, x(k)is the output of the actual 

system, xf(k)is, the output of the fuzzy system, and e(k) is the 1-norm error between the 

actual system and the approximated system.

Table 3 - Results of fuzzy 
approximation of sample system

x(k-1) x(k) xf(k) e(k)

-6 0.2794 0.3 0.0206
-4 -0.7568 -0.75 0.0068
-2 -0.9093 -0.9 0.058529

0 0.0 0.0 0.0
2 .9093 0.9 0.0993
4 0.7568 0.75 0.0068

6 -0.2794 -0.3 0.0206

These results demonstrate the ability of a simple fuzzy system to approximate a nonlinear 

system to a reasonable accuracy using simple heuristic parameter assignments.
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2.2 Fuzzy System

The term fuzzy system refers to any system that processes traditional input(s) through 

input fuzzy set(s), passes that result through a fuzzy rules set, and produces a traditional 

output with a defuzzifying mechanism. An nth dimension fuzzy system refers to a fuzzy 

system with n input dimensions. A block diagram of a typical fuzzy system is shown in 

Figure 7.

Fuzzifier DefuzzifierFuzzy R ule 
B ase

lnput(s>

Figure 7 -  Typical fuzzy system.

*■ O utpu t

2.3 Application to Control

Fuzzy logic has been extensively applied in control systems [56, 32, 39, 21, and 36]. The 

attractiveness stems from the ability to describe a system’s operation and control in 

heuristic terms that bridge the gap between system experts and control system designer. 

The use of fuzzy logic greatly expands the number of tools in the control designer’s 

toolbox and provides new solutions to many of the difficult challenges posed to the 

modern control engineer.

However, difficulties arise in applying fuzzy logic to a complex control problem. 

Numerous parameters must be set to complete a mapping between a fuzzy system and a 

real system. These parameters include the input membership function type and shape 

parameters, the output membership function type and shape parameters, and the 

relationship between fuzzy inputs and fuzzy outputs.

The determination of those parameters has traditionally been accomplished manually by 

tuning a fuzzy system’s parameters by hand to meet design specifications. However, this 

is a time-consuming and frustrating task for systems of any significant complexity.
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2.4 Open Issues

There are two pressing problems facing anyone designing a fuzzy control system. Firstly, 

the fuzzy sets that represent the system inputs must be designed. For low-order linear 

systems this is not too difficult and can be accomplished manually. However, for higher 

order nonlinear systems this becomes a tremendous challenge. Not only must the 

designer select an appropriate number of MFs for each input, but each MF must be 

shaped to properly represent the system and interact with the other fuzzy sets.

Next, the rule base must be developed which interconnects all of the members of the 

fuzzy sets and produces the ultimate system output. The number of rules activated is 

generally equal to:
N

II".M-l

where N  is the number of system inputs and Mn is the number of membership functions 

associated with input n. Clearly, this leads to an enormous number of rules for even a 

moderately complex system requiring some sort of automated and/or adaptive scheme.

2.5 Application as an Approximator

Fuzzy systems are capable of modeling the behavior of a nonlinear system as 

demonstrated in the example in Section 2.1.7. This similarity between fuzzy systems and 

mathematical approximation techniques is worthy of a more complete examination as 

application of approximation techniques may help overcome some of the difficulties of 

designing fuzzy systems. Before pursuing this similarity further, it is important to lay out 

the fundamental theories of approximation.
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3.0 INTRODUCTION TO FUNCTION APPROXIMATION

For the purposes of this work, function approximation is defined as the modeling of a 

function known only through a set of data points. The model is selected from a given 

class of function approximations based on the minimization of some error criteria or, at 

least, on the reduction of the error to a given tolerance.

Function approximation techniques are used in many different applications including:

• Extrapolation,

• Data reduction,

• Compression, and

• Function estimation [7, 46, and 14].

Approximation theory is the foundation upon which a good portion of this work is built. 

This section provides a brief introduction to this material.

3.1.1 Function Approximation

A function or system approximation problem contains three primary elements: (1) the 

function, system, or data to be approximated (/), (2) the set of approximation functions or 

systems (A), and (3) a measure of performance to select an approximation from A [42].

In this work, only functions that are continuous on an interval on the real line, 91,1 =[a, b] 

are considered. This set of functions is denoted by C[a, b] with norm

| | / |L  = sup|/(*)| •
x&l

3.1.2 Polynomial Approximation

The set of polynomials is often used to approximate functions. A generalized polynomial 

of the form:
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P(.X) = Y j a n8n(X) (6)
n= 0

where gn(x) e C[a, b], aneS i and N is the number of functions forming the generalized 

polynomial [46]. A simple polynomial is a subset of the generalized polynomial given in 

(6) where gn(x)=xn.

While generalized polynomials are useful in many applications, simple polynomials are 

often used “because they can be evaluated, differentiated, and integrated easily and in 

finitely many steps using just the basic arithmetic operations of addition, subtraction and 

multiplication” [13] and can approximate continuous functions within a finite error 

bound.

Theorem 1 (Weierstrass Approximation Theorem) [42]

Let f  be e  C[a, b]. To each e > 0 there corresponds a polynomial P such that 
|| f - P  |U < £ Thus | f(x)-P(x) | < eforallx e  [a, b].

The Weierstrass Approximation Theorem shows that there exists a polynomial that can 

approximate any continuous function to an arbitrary accuracy. In fact, a simple 

polynomial of degree N or greater can approximate a function with N noise-free samples 

exactly at each sample.

Theorem 2 (Uniqueness Theorem) [42]

Let A be a subspace of a normed linear space Si that is also a convex set. Then, 

for a llf  e  Si, there is at most one best approximation from A to f

The Uniqueness Theorem shows that, under certain circumstances, the best 

approximation is unique. As will be shown in the next chapter, the conditions of the 

Uniqueness Theorem are not met by the approximations used in this work.
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However, there are several significant problems with polynomial approximation to be 

discussed in the following subsections.

• A local perturbation in the function to be approximated can affect the global 

quality of the approximation [13]. In other words a change in behavior of the 

function isolated between two knots changes the resulting approximation over 

the entire range.

• Increasing the degree of the approximation function can decrease the accuracy 

of the approximation in the regions between the provided fit points [7]. This 

phenomenon is known as overfitting.

3.1.2.1 Local Perturbation Effects
Because all of the parameters of an approximating polynomial are determined by the 

entire set of data points, the addition of a data point for consideration in the 

approximation can have dramatic consequences on the entire polynomial approximation. 

The example in Figure 8 shows the function to be approximated in the solid line with the

0.5

Actual function 
Initial Approximation 
Modified Approximatior 
Initial Data Points 
Added Data Point-0.5 =■

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 8 -  Global effects of local perturbations on polynomial
approximations
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selected data points as red +s. The 4th degree polynomial approximation of the function 

calculated from the initial data points is shown as a dotted blue line. A data point is added 

to the initial set and is shown as a magenta circle. The approximation is recalculated to 

take this new point into account and the result is shown in the cyan dashed line. As this 

figure clearly illustrates, the entire approximation has been drastically changed by the 

addition of a single point.

3.1.2.2 Overfitting
An example of the overfitting problem is shown in Figure 9. This plot shows the root 

mean square error of the approximation of 0th through 9th degree polynomial to a sine 

curve from 0 to 3 perturbed by zero-mean Gaussian noise with a standard deviation of

0.05. The polynomials were fit to ten evenly spaced points and the error was calculated 

for each polynomial degree against the actual function.

10

0
10

•1
10 0 1 2 3 4 6 85 7 9

Polynomial Degree

Figure 9 -  Simple polynomial approximation error.
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From Figure 9, it is clear that the approximation error initially decreases as the 

polynomial degree is increased. However, at some point the approximation error 

increases as the polynomial begins to over fit the data and lose the general sense of the 

curve.

3.1.3 Piecewise Polynomial Approximation

The piecewise polynomial representation of an approximator was developed the 

susceptibility of the polynomial approximator to overfitting and local perturbations [7], 

Rather than fitting a single polynomial to the entire set of data, the approximation interval 

is broken into N-l subintervals and a low-degree polynomial is fit to each sub-interval. 

The N  breaks between polynomials are known in approximation parlance as knots.

Because the approximation is broken into intervals, the effect of perturbations in the input 

data is limited to intervals that are near the perturbations. Intervals that are distant from 

the perturbation remain unaffected. The overfitting problem is eased because the order of 

the polynomial does not have to be increased to account for higher order curves. Each 

interval is approximated with a relatively low-degree polynomial and global complexity 

is accounted for by increasing the number of regions.

Define D as a sequence of increasing points in /:

D={do ... d u : a=do<dj... <dn =bj.

D partitions I  into N  intervals where:

In—[d„.i, dn), n—1, ..., N.

Let p r,n(x) denote a polynomial function of degree r  on D where d n.i< K < d n and is zero 

everywhere else and where p r,n-i(dn- i)=  p r,n(dn-i)- This last condition ensures that the 

piecewise polynomial to be formed with these functions is continuous.

An r& dimensional piecewise polynomial approximator (PPA) is then defined as

PXX) = YaPr,n(.X) O)
n=1
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Theorem 1 indicates that a polynomial can be used to approximate a set of data points to 

arbitrary accuracy, with the degree of the polynomial being increased to reduce the error 

between the approximation and the input data set. In contrast, the bound on the accuracy 

of a PPA is dependent upon the spacing between the knots. Before proceeding to a 

characterization of this error, it is necessary to introduce two definitions.

Let h be the maximum spacing between knots

h = max d„ -  d„, (8)
n= \,...N

Additionally, the modulus of continuity is defined for a function f(x) with domain M and 

range P where M and P are metric spaces with distances po and p  respectively. The 

modulus of continuity is defined as:

OJf (S)= sup p{f{x^x2)) (9)

where xj and X2 e M. [47]

Theorem 3 [42]

The least maximum error between a function/ e  C[a, bj and its piecewise polynomial 

approximation Pfx) as defined in (1) satisfies the inequality 

m in||/ -  Pr L  < 0)f ( |  (r +1 )h)

where (Of •) is the modulus of continuity of f  defined in (9), h is the largest interval as 

defined in (8) and r is the degree of each piecewise polynomial.

Thus the error of a PPA approximation with a given degree (r) to a function/with a 

known or estimated modulus of continuity (of) is bounded by the maximum spacing 

between knots (h).

3.1.4 Piecewise Linear Approximation

The piecewise linear approximator (PLA) is a piecewise polynomial approximator of 

degree 1. This is the simplest PPA as it is a collection of connected line segments. 

Although the PLA is not smooth and its derivative is not continuous, this type of 

approximator may be used in cases where a smooth approximation is not required and 

can be used as a parameter finder for differentiable fuzzy systems.
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As a parameter finder, a satisfactory piecewise linear solution will be found. However, 

rather than placing and sizing triangular fuzzy MFs, differentiable MFs (typically based 

on exponential functions) could be set based on these parameters. This would yield a 

smooth fuzzy system based upon a similar solution in the piecewise linear case. Further 

research is required to address use of parameter finding algorithms derived from PLAs.

The PLA used in this work is

p ( x ) =

m N+ix ^ n+i • d N ^  x  < d N+l

(10)

where do< dj < ... < d^+i are the knots of the piecewise polynomial, mn is the slope of 

the «th segment, and bn is the y-intercept of the nlh segment. Theorem 3 applies to this 

subset and arms us with the knowledge that the PLA is capable of approximating any 

given data to an arbitrary degree.

While there exist mechanisms to determine the mn and bn parameters such that the 

resultant PLA optimally approximates a given set of input data, there is no known 

mechanism for determining the location of the knots of the PLA by minimizing a defined 

error condition [14]. Dierckx presents an algorithm for univariate and bivariate knot 

placement in [14]. While these algorithms provide a good fit of the curve or surface to 

data, the solutions are suboptimal and are limited to a maximum of two input variables.

3.2 Application to System Identification

Traditional system identification methods fall into two major categories: parametric 

identification where certain parameters of an unknown plant are modeled and non- 

parametric where physical response characteristics of the plant are modeled [20, 5]. For 

the purposes of this work, non-parametric system identification will be used with a fuzzy 

system modeling an unknown plant’s response characteristics. It is required that a system 

identifier emulate a given input/output mapping, which is precisely what an approximator
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does. This type of modeling is also called black-box modeling and is described in detail 

in [22],

3.3 Open Issues

While approximation is a well-studied topic, there remain several important open areas of 

research [14]. One of the key issues addressed in this work is the development of theory 

that addresses optimal breakpoint placement.

3.3.1 Multivariate Adaptive Knot Placement

As many systems in a discrete-time control systems context are multi-input, extensive 

research and development in the field of multivariate approximation needs to be 

conducted to support this work. Ultimately, a multivariate adaptive knot placement 

algorithm must be developed. While Dierckx presents a univariate and bivariate adaptive 

knot placement algorithm in [14], there are no results for the general multivariate case. 

Some initial investigation into multivariate knot placement is discussed in Appendix A.

3.3.2 Approximation of Dynamic Systems

A static system is defined as a system where the system output is dependent only upon 

the current input to the system. A system such as y=sin(x) is a static system.

A dynamic system is dependent upon the system inputs as well as the previous state(s) of 

the system. The Wiener sample system given by (1) and the Hammerstein sample 

systems given by (2), (3), and (4) presented in Chapter 1 are examples of dynamic 

systems. The techniques in this work are especially useful for modeling Wiener and 

Hammerstein systems where the nonlinearity can be approximated as a static mapping.
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4.0 OPTIMAL PARAMETER DETERMINATION OF ONE

DIMENSIONAL FUZZY SYSTEMS

4.1 Introduction

The optimal determination of parameters of a fuzzy system is a nonlinear problem. While 

a variety of parameter determination mechanisms exist, most do not provide optimal 

results. Instead they rely on heuristics, gradient descent, genetic algorithms or other 

techniques that are non-optimal in a nonlinear setting. The goal of this work is to 

optimally determine the parameters of a one-dimensional fuzzy system. The approach 

followed to meet this goal is to first establish a relationship between a fuzzy system and a 

PLA and then prove that the parameters of a PLA can be determined such that the error 

between the PLA and a set of input/output data points is minimized.

While there are algorithms for determining PLA parameters based upon a data set [14], 

the approximation error and optimality of the solution remain unexplored. This chapter 

develops the necessary theory to demonstrate the existence of an optimal solution to the 

parameter determination problem for PLAs and their extension to one-dimensional fuzzy 

systems.

As one-dimensional fuzzy systems are the simplest incarnation of fuzzy systems they are 

used for the initial study of the problem of fuzzy system structure and parameter 

determination. Besides having a single input variable these systems are simpler than all 

higher-order fuzzy systems as there is no need for a conjunction operator (a fuzzy AND 

or OR). These simple systems are investigated in order to develop the concepts necessary 

to study higher-order fuzzy systems. While the systems are simple, they are not trivial; 

the development of non-linear optimization techniques in order to solve the 

approximations is a complex problem that does not have an existing solution.

Of course, the ultimate goal of this research is to provide a general solution to the 

problem of A-dimensional fuzzy system parameter determination. This extension

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

introduces significant complexity to the solution of this problem and is discussed in 

Appendix A.

4.2 One-Dimensional Fuzzy Systems

For the purposes of this work, a special class of one-dimensional fuzzy systems will be 

used. They are restricted in the type of membership function, the nature of the MF 

overlap, and the type of output MF. While the restrictions limit some of the flexibility 

fuzzy system designers may be accustomed to, a framework is provided that permits a 

formal analysis, a benefit that more than compensates the loss of flexibility.

The one-dimensional fuzzy system shall be restricted in the following manner:

1. Triangular MFs will be used where the nth MF is given by:

where dn.i, dn, dn+i are the n-1, n, and n+1 breakpoints; do=-°° and 

4^+7=°°; and 1 <n < N .

A graphical representation of a set of arbitrarily selected triangular MFs is 

shown in Figure 10.

2. The output MF associated with input MF n is a fuzzy singleton.

d „ < x<  d n+l

4„_i < x < d n

(11)

0 elsewhere

1 _ | dj Qq dg djy_2 @N-1 dpj

0 ► x

Figure 10 -  Triangular membership functions with knots at 4*.
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The proceeding definition yields a set of overlapping triangles such that a maximum of 

two MFs are non-zero at any input value x and that the summed activation at any x is 

identically equal to one as illustrated in Figure 11 and proven in Lemma 1.

0.7.

0.3.

Input

Figure 11 -  Triangular membership functions.

Lemma 1.

In a one-dimensional fuzzy system with N  MFs given by (11) the sum of the 

activation strengths of all active MFs for any do ^x <du+i is one.

Proof:

Consider dn<x<dn+i where 0 < n < N. In this interval, only an(x) and an+i(x) are non-zero 

and equal to:

( ~ X  +  d n+1 )a„(x)
d n+i d n

d n+1 ~ d n

Summing the two activation functions active for any x in d < x < d  , gives:n n + 1

d n+ 1 d n d n+1 d n
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Now consider where x=dn. At these points, only an(x) is non-zero and is equal to:

a„(x) = ~ d ' + d-"
d n+i d n

an(x) = 1

From Lemma 1, the denominator in the centroid calculation equation (5) is always equal 

to one yielding the simplified centroid equation for defuzzification:

N

y (x )  = Y JCna n- (12)
n—1

4.3 Mapping Between One-Dimensional Fuzzy Systems and the PLA

This work rests upon the foundation of approximation theory and requires that a mapping 

from a fuzzy system of the form given above to a PLA of the form given in (10) exists.

Theorem 4.

A fuzzy system with MFs given by (11) and defuzzified by the centroid equation 

given in (12) is representable by the piecewise linear approximator given in (10).

Proof:

This theorem is proven by demonstrating that for all x: (a) the input/output representation 

of the fuzzy system consists of line segments between every breakpoint (dn) and (b) that 

the system is continuous at each dn. Equation (12) is simply a linear combination of 

weighted fuzzy MF activation levels. Therefore, in the nth, 0 <n <N, region in the one

dimensional input space x g  [dn, dn+i], equation (12) can be solved explicitly in the 

following manner:

at (jc) = 0 for i < n or i> n + 1
- x  + d„

an(x)=  "■ ”+1

«»+i W :

d n+, ~ d n (13)
x -d „
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Expanding (12) by substituting the activation functions solved in (13) yields:

( x )  _  C« + d n+1 ) ! Cn+l ( X ~ d n )

d n+i~ d n d n+l- d n 

Gathering like terms yields:

y(jc) = Cn+l ~---n- x + C"J "+l ~ Cn+'dn (14)
d n+\ ~  d n d n+J — d n

Equation (14) defines an affine mapping from the inputs x  is to the outputs y completing 

the first part of the proof. Continuity at each dn is demonstrated by testing the n-1 and the 

n segments around the point x=dn. The equation for the n-1 segment is derived from (14) 

and is:

y ( x ) =  £ n Z 5 t L d k  +  ~  G A -1
d — d , d — d ,n n - I  n n - \

(c —c ,)d +c ,d —c d  ,/  \    \  n n - \  )  n n - \  n n n~\

d n ~ d n_x

d n ~ d n_! 
y(x) = cn

Where x=dn the equation for the nth segment is:

y(^X) — C”+1 ~ Cn Cnd n+l ~  Cn+\dn
d „+l- d n " d n+l- d n

_ (c«+1 ~ Cn)dn c„dn+1 ~ c n+\dn 
d n+l~ d n d n+l- d n

y ix )= k £ ? K +
d n+i ~ d n d n+l- d n

y(x) = cn

Both the linearity of the system between breakpoints (dns) and the continuity of the 

system at the breaks is proven.

In order to prove the uniqueness of this solution, the representation of the PLA to the 

fuzzy system between any two adjacent breakpoints is examined. The representation of
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the fuzzy system in (14) from dn-j <x < dn can be made equivalent to the PLA line 

segment on dn.j <x < dn, y=mnx+bn, by equating the jc-coefficient and the constant 

coefficient parts and solving for cn and cn+i.

Cn+l - Cn= {d n+l - dn)mn

C n d n+X - C n+Xd n = { d n+X - d n ) b n

Since dn-i<dn, there exists a unique solution for cn and cn./. ■

Theorem 4 states that a class of one-dimensional fuzzy systems is essentially a 

continuous piecewise-linear function. This similarity indicates that results discovered for 

PLAs may be applied to fuzzy systems restricted as discussed earlier.

The goal of the next section is to demonstrate that, given an input/output set of data, a set 

of PLA parameters can be optimally determined. The solution of the PLA definition 

provides the position of the breakpoints do < di < ... < d^+; as well as the mns and bns 

from the equations for the N+I segments given in (10).

The final step in this work will be to show that an arbitrary PLA can be mapped to a 

fuzzy system. This work is discussed in Chapter 5.

4.4 Optimal Determination of a Piecewise-Linear Approximator from Data

In this section, the PLA shall be shown to be capable of being expressed in a single 

equation as a sum of shifted and scaled absolute value functions. Decomposing the PLA 

into simpler forms of one or two parameters will precede the concept of optimally 

determining the parameters of an TV-break PLA. Optimally determining the parameters of 

these simple components will illuminate the key concepts necessary to solve the general 

PLA problem.

A PLA is a series of connected line segments that represent some underlying function or 

set of data. A typical PLA is shown in Figure 12.
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i v

Figure 12 -  Typical PLA.

A simple piecewise expression of an TV-break PLA is: 

mxx + bl : x < d l

y(x) =
m2x + b2 :d l < x < d 2

mNx + bN :d N_x < x < d t 
mN+ix + bN+l:d N < x

(15)

where dn < dn+i where 1 <n < N. In order to satisfy the continuity requirement 

y(dn)=y(dn+i) where 1 <n < N. Evaluating (15) at each breakpoint yields:

^ -n d n ^ b f i—in  n+ id n b n+ j

where 1 <n < N.

Solving for bn+i yields:

b n  • / —  ( f i t n  \ i ) d n + b n

Therefore, with known m„ dn, and bi where i=l...N+l, n=l...N, the PLA is completely 

determined.

However, in order to optimally determine the parameters, it is useful to express the PLA 

in a single equation.
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Theorem 5.

A PLA with N  breakpoints given by (15) with known ra„ dn, and bj, where 

i=l...N+l, n=l...N, can always be stated in an equivalent form as:
N

y(x) = a0x + c + Y ,a n\ x - d n\ (16)
n=1

with a suitable choice o f ao, c, ai,..., a^, dj, ..., dn.

Proof.

Select an arbitrary n where l<h<N. The summation in (16) can be broken into two pieces 

around n and written as:
n N

y(x) = a0x + c + Y Jam\ x - d m\+ ^ a m\ x - d m\ (17)
m = l m=n+1

In the interval dn ^ x  <dn+i, the sign of each x-dm term does not change. Wherever m <n, 

the term x-dm is greater than 0 and wherever m > n, the term x-dm is less than 0.

Therefore, \x-dm\= x-dm for m <n and \x-dm\= -(x-dm) for m> n. Substituting into (17) 

yields:
n N

y(x) = a0x + c + J ^ a m{ x - d m) -  J ] a m{ x - d m) for d n < x < d n+l( 18)
m=l m=n+1

In the same interval, (15) reduces to:

y(x) = mn+lx + bn+l. (19)

Equating the coefficients in this interval of (18) and (19) yields:
n N

slope: a0 + J^a k - Y , ak=
&-1 k=n+l

n N

intercept: c - ^ ^ d ,  -  Y j akd k = K +i
k~1 k=n+\

By solving the N+l independent equations resulting from the N+l jc-coefficients a0, aj, 

aN are solved. The nature of the coefficients of the ak terms guarantees that these 

equations are independent and that a solution exists. Once the a* terms have been 

determined, they can be substituted into the constant-coefficient equations and these N+l 

independent equations provide a solution for c, dj, dN■ Again the shifting sign of the dk 

terms guarantees that these equations are independent and that a solution exists.
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Given the equation for an A-break PLA shown in (16), it is necessary to determine values 

for an and dn such that the equation yields a suitable approximation to a set of M  points 

{(jci, yi), (xm, yni)}- By Theorem 1, it has been shown that there exists a solution for an 

and dn such that the error between the approximant and the data points is minimized for a 

given set of data. This work does not meet the criteria of Theorem 2 that the metric space 

be strictly convex as the 1-norm for error functions is used. Therefore, the uniqueness of 

a solution is not guaranteed by Theorem 2.

The presence of the absolute value term(s) in (16) makes this a nonlinear optimization 

problem, which is generally difficult to solve. Whereas linear error hyper-surfaces are 

convex and yield a single minimum over the entire error space, nonlinear error hyper

surfaces may not be convex and may have many multiple local minima as well as one or 

more absolute minima. There are many techniques for nonlinear optimization such as 

branch and bound [35, 15], nonlinear least-squares, simulated annealing [30], clustering 

[12, 27], neural networks [59] and genetic algorithms [16], but they suffer from one or 

more problems:

• Getting trapped at local minimum and returning sub-optimal results

• Very slow convergence

• Many iterations required imposing a huge computational load

• Initial solution must be close to actual solution

The goal of this work is to determine whether a global optimization is possible for several 

specific classes of nonlinear functions, to develop analytical optimization techniques that 

guarantee a solution in a finite number of steps, and to examine several practical aspects 

of implementing the developed nonlinear optimization solution.

The remainder of this chapter investigates the first of these goals: the examination o f the 

existence of PLA parameters to minimize a given error criteria for a set of input/output 

data. The classes of nonlinear functions examined are those that make up the PLA 

described in (16). The central nonlinear function is the scaled and shifted absolute value 

function y=a\x-d\ where a is the scaling coefficient and d  is the shift coefficient. This
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function is initially broken into the two fundamental nonlinear components and each is 

investigated separately. These results are then applied to the solution of the scaled and 

shifted problem. Finally, the A-dimensional PLA problem is addressed.

4.4.1 Optimal Determination of a Shifted Absolute Value Function

A shifted absolute value function is given by: 

f ( x ,d )  = |x-<i|

where d e 9 t  shifts the break in the function from the origin along the x-axis. Given a set 

of data {(xi, yj), ..., (xM, yiu)}, an error function is defined:
M  M

E( d)  y m\ = T }\xm ~ d \ - y m\ (20)
m=1 m=1

The goal of the optimization is to find d  such that E(d) is minimized for a given set of 

data {{xi, yi), ..., (xM, } ’m ) }■

Consider a simple system with 6 evenly spaced points with random amplitudes as shown 

in Figure 13.

0.9

0.8

0.7

0.6>
0.5 1

0.4

0.3

i

-.....-
i

»
►

i>

<%

i
U' -̂1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

X

Figure 13 -  Sample data system for shifted absolute value function.
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The error function given in (20) is calculated with the data points given above and the 

results are shown in Figure 14.

Error
Terminals

-1.5 0.5-0.5

Figure 14 -  Error plot of shifted ABS function.

An important observation regarding the error function in (20) is that it is piecewise linear. 

The terminals between linear sections occur wherever d is a solution to the equations 

xm=d or \xm-d\=ym. Between any two adjacent terminals, E(d) is a line segment and, 

therefore, one terminal is the minimum for the line segment (if both terminals are equal, 

then the entire line segment is a minimum).

Theorem 6.

Given a set o f finite data points f(x/, yj), (xM, yM)j, an approximating function 

f(x, d)=\x-d\, and the error function defined in (20), the error is minimized at a 

point where d=xm or where d satisfies \xm-d\-ym where m=l...M.
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Proof.

Create a setA={xi,..., xmJ u  {xi - yj, xm - )’m} u  f  xj + yi, xm + yiuj where the 

elements of A  are the solution candidates for d. Sort A  such that On <0^+ 1 for all 

n=1...3M-J where oc,, is the n h element of A. In the region neither xm-d nor

\xm-d\-ym change sign for any m as sign changes can occur only where d=0Cn for all 

7<h<3M-7. Hence ||xm-d|-yOT| consists of a single line segment on cxn<d<a]lJrj for all m. 

Therefore, E(d) as calculated in (20) is also a line segment on On<d<o^+i and one (or 

both) of the endpoints {On, On+i) is the minimum of this line segment. Thus, the minimum 

of E(d), where aj<d<a3M, occurs at one of the 3M  points in A. The interior line segments 

are all accounted for by the points in A, however the segment endpoints at d=-°° and 

d = 0 0  are not included in A  and must be considered as potential minima of the error 

function. However, when d=-°° or d=°°, the term \xm-d\ is °° for all xm and hence the term 

is 0 0  for all m. Therefore, E(±°°)=°o. Considering E(d) as a collection of line 

segments where ai<d<0C3M, the minimum of this function is one of the endpoints of the 

interior segments.

■

This theorem shows that there are a finite number of solutions to the shifted absolute 

value optimization problem. In fact, the number of potential solutions is upper bounded 

by 3M where M  is the number of data points.
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The example below demonstrates the power of this theorem and the algorithms that can 

be developed from it. Consider the function y=sin(x)+cos(2x) where x  is sampled every 

half-unit from -2  to 2 as shown in Figure 15. This function was selected because it yields

Function to  be estim ated

O.J

- 1.5 - 0.5 0.5

Figure 15 -  Sample function.

an error function (20) with a local minimum in addition to the global minimum when 

approximated with a shifted absolute value function. A function/(x) has a local minimum 

at x/ iff(xi+a)>f(xi)for a e  (-£,€) where £ is a small positive real number. It is only 

locally minimum if there exists x such that f(xi)>f(x). Local minima trap gradient descent 

type algorithms and can fool them into believing they have achieved the global minimum 

when, in fact, they have been trapped in a local minimum. Most of these algorithms 

include local minimum discovery mechanisms, but there is never a guarantee that an 

algorithm has not been trapped.
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Evaluating the error function for -2<d<2 at intervals of 0.01 yields the results shown in 

Figure 16. This is the ‘brute-force’ method of solving a problem of this type. The

Error in estimation vs. Translation amount

1 8 - Local Minimum

A bsolute Minimum•;

- 1.5 - 0 .5  0  0.5
T ranslation am ount

Figure 16 -  PLA estimation of sample function.

function has a global minima at d=-0.56. However, there is also a local minima at 

d-0.58. While it can be applied reasonably effectively to a simple problem like this one, 

it quickly fails as the complexity and dimensionality of the problem grows. The results 

above demonstrate the nonlinear behavior of the function.

The proof of Theorem 6 suggests an algorithm for a single-pass numeric solution to this 

problem. The method is outlined as follows:

1. Form the set A  of solution candidates 

For each input data pair (xm, ym):

• Add an element equal to xm

• If ym> 0:

• Add an element equal to xm- ym

• Add an element equal to xm+ ym

2. Use (20) to calculate the error, substituting each element in A  for d.

3. The point with the lowest error is the global minima for the shifted absolute value 

function.

When this algorithm was performed on the data shown in Figure 15, d was found to be -

0.5609.

This first optimization algortihm illustrates the method with which the remaining PLA 

component functions are solved. First, a piecewise-linear representation of the error
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hypersurface is determined. The corners of each linear region are points, one of which 

must be the minimum for the piecewise-linear hypersurface. The smallest minimum error 

for the aggregation of the linear regions identifies the point minimizing the error function.

It has thus been shown that a global minimum exists for the error function given by (20) 

where an input/output data set is approximated by a shifted absolute value function. The 

next nonlinear approximator examined is a scaled absolute value.

4.4.2 Optimal Determination of a Scaled Absolute Value Function

A scaled absolute value function is given by: 

f i x ,a ) = a|x|

where a e S lscales the absolute value function. Given a set of data {(xj, yj), ..., ( x m ,  yiu)}, 

an error function is defined:
M  M

E(a) = ' Z \ f ( xm̂ a) - y m\ = E b M  -  y«| (21)
m - 1 m- 1

The goal of the optimization is to find an a such that E(a) is minimized for a given set of 

data {(x/, y,), ..., (xM, yiu)}■

As in (20) above, the error function in (21) is piecewise linear. The breaks between linear 

sections occur wherever xm is 0 or where xm satisfies the relationship a\xm\ =ym. Between 

these breaks, E(a) is a line segment and, therefore, one terminal is the minimum for the 

line segment.

Theorem 7.

Given a set o f finite data points {(xi, y j ) ,  ( x m ,  yin)}, an approximating function 

fix, a)=a\x\, and the error function defined in (2 1 ), the error is minimized at a 

point where xm = 0  or where a\xm\=ym.

Proof

Create a set A={0J u  { yi/xj, ..., y\/xM } u  { -yfixi, ..., -vm/xm } where the elements of A  

are solution candidates for a. Sort A  such that for all n=1...2M+l where (Xn is

the nth element of A. In the region ocn<a<ocn+i neither a\xm\ nor a\xm\-ym change sign for
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any m as sign changes can occur only d=ocn for all l<h<3M-l. Hence | a\xm\-ym | consists 

of a single line segment on 6^<a<£^+; for all m. Therefore, E(a) as calculated in (20) is 

also a line segment on <%<a<c^+/ and one (or both) of the endpoints (a,t, On+i) is the 

minimum of this line segment. Thus, the minimum of E(a), where 0Ci<a<a3M, occurs at 

one of the 2M  +1 points in A. The interior line segments are all accounted for by the 

points in A, however the segment endpoints at a=-°° and a=°° are not included in A  and 

must be considered as potential minima of the error function. However, when a=-°° or 

a-oot the term |a|jcm|-ym| is °ofor all m. Therefore, E(±°°)=°°. Considering E(a) as a 

collection of line segments where ai<a<a3M, the minimum of this function is one of the 

endpoints of the interior segments.

■

The next step in increasing the complexity of the nonlinear approximator is to combine 

the results of the previous two sections (Theorems 6 and 7) into a single scaled and 

shifted function.

4.4.3 Optimal Determination of a Scaled and Shifted Absolute Value 

Function

The previous two examples demonstrated the optimization of a non-linear function with a 

single variable being optimized. The next step is to examine an aggregate of the shifted 

and scaled functions and develop a non-linear optimization approach for this function of 

two variables.

A scaled and shifted absolute value function is given by: 

f ( x ,a ,d ) = n|x —d|

where a e 9 tscales the absolute value function and d e d ?shifts it along the jc-axis. Given a 

set of data {(xj, yj), ..., ( x m ,  y\t)}, an error function is defined:
M  M

E(a,d) = J ^ \ f ( x m,a ,d ) - y m\ = Y j \a\xm -  d\ -  ym| (22)
m- 1 m=1
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The goal of the optimization is to find an a and d such that E(a, d) is minimized for {(xu 

y i ) ,  .... (x m , y in ) } -  Unlike the previous examples, this yields a three-dimensional error 

surface rather than the two-dimensional error curve found in the previous two problems.

As in the previous two examples, the absolute value nonlinearity boundaries are formed 

at xm=d and at a\xm-d\=ym. The second boundary can be written as two equations where

ym=axm-ad and ym-ad-axm depending on the sign of the term xm-d. However, these two

equations are not linear in the two parameters that are the subject of the optimization, a 

and d. A new variable, b, is defined such that b=ad. Substituting, the three equations for 

the boundaries become:

axm ~ b
ym =axm~b  (23)

y m = b ~ axm

These equations are linear in a and b and specify 3M  lines that partition the a-b plane into 

some number of hypersegments. Between partitions given by (23) none of the arguments 

of the absolute value nonlinearities in (22) can change sign and, therefore, (22) can be 

rewritten as:
M

E(a,b) = J]±[{axm- b ) ± y m] (24)
m~ 1

where the ± represents a positive or negative sign that is fixed everywhere within the 

bounds given by (23). The error surface described in the bounded region described by 

(24) is linear in a and b everywhere in that region. The set of 3M  intersecting lines given 

in (23) provide a lattice work across the entire error surface and divide it into piecewise 

linear regions.
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An example of this is shown in Figure 17. Here, a region with six vertices is completely 

bounded by six lines.

Figure 17 -  Planar partitioning.

A useful property of a planar region completely bounded by lines is that the minimum of 

that region must occur at the intersection of two of the bounds.

Lemma 2.

Given a planar region P formed by the equation E(a,b)=C[ a + C2 b + C3 

completely bounded by Kplanes {dji a + c/2 / b = dsi, due a + ^2 at b = d^}- 

None o f the bounding planes can be parallel with P. E(a, b) is minimized on P at 

the intersections o f two o f the K bounding planes with the plane ci a + C2 b + c?.

Proof.

Assume the minimum occurs inside P but not on any of the bounding planes and is equal 

to ci a ’ + C2 b' + cj. Examine the point (a”, b ”) where a ”=a’-ejc i and b ”=b’-£i/c2 and 

£a>0 and £b>0. Because (a ’, b ’) are in the interior of P an £a and an £b can be found such 

that {a", b ”) is also in P. E(a”, b ”) = cj a ’ - £a + C2 b ’ - £b + C3 and is therefore less than 

the value at (a ’, b ’). In the case where ci is zero, a ” is set to a ’ and E(a”, b ”)= cj a ’ + C2 

b ’ - £b + C3 and is still less than E(a b ’). The same applies to the case where C2 is zero.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

In the case where both ci and C2 are zero, E(a, b) = c3 everywhere and the minimum 

occurs at every point in P. Therefore, the minimum must occur on one of the bounding 

planes.

Assume that the minimum occurs on the p th bounding plane, but not at an intersection 

with another bounding plane and is E(a’, b ’) = ci a ’ + C2 b ’ + c3 where a ’ and b ’ satisfy 

dip a ’ + d2Pb ’ = dip. Substituting the bound plane condition into the minimum equation 

yields E(a\ b ’) = cj a ’ + (c2 d3p - dJp a ’)/d2P + c3 which can be rearranged to E(a’, b ’) =

(ci - dip/d2p) a ’ + c2d3p/d2p + c3. Consider the point (a”, b ”) where a ”=a’ - d2P £/( c/ - 

djp) where £>0 and b ” resides on a corresponding location on the bounding plane. The 

minimum equation is written as E(a”, b ”) = (c/ - dip/d2P) a ’ - £+ C2d3p/d2P + c3. Because 

E(a”, b ”) < E(a’, b ’), (a’, b ’) cannot be the point that minimizes E(a,b). In the case 

where cj=dip, a ” is undefined. In this case, the substitution for b ’ would be used and 

provide the same result as above. In the case where C2 =d2P and C2 =d2P, the bounding 

plane and P are parallel in violation of the given constraint. Therefore, the minimum 

cannot be restricted to occur in the interior of P or on one of the edges of P. The 

minimum of P must occur on at least one of the vertices of P.
■

Having shown that a planar region completely bounded by planes has a minimum value 

occurring at one of the vertices, it is useful to examine the case where a region is not 

completely bounded but extends out to infinity.

Lemma 3.

Given a planar region P formed by the equation E(a,b)=C] a + C2 b + c3 partially 

bounded by Kplanes {du a + d2i b = d3i, ..., dm a + d3K b = dm}. Assume that 

planes 1 and 2  have only one intersection with any of the other K planes and 

therefore border the region P and extend unbounded. None o f the K planes can be 

parallel with P. E(a, b) is minimized on P at the intersections o f two o f the K  

bounding planes with the plane ci a + C2 b + c3 or at

Proof.
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Assume the minimum occurs inside P but not on any of the bounding planes and is equal 

to ci a ’ + C2 b ’ + c3. Examine the point (a”, b ”) where a ”=a’-ejc i and b ”=b’-£i/c2 and 

£a> 0 and £b>0. As in Lemma 2, this point is less than the assumed minima and therefore 

the minimum must be on one of the bounding planes. Assume the minimum is on 

bounding plane 1 or 2 (those planes extending to infinity). If E(a, b) -> as either of 

these planes extends towards infinity then the minimum of E(a, b) is -°°. If E(a, b) 

as both bounding planes extend toward infinity, than the minimum occurs at the 

intersection of two of the K  bounding planes as in Lemma 2.

■

A theorem can be developed along the same lines as Theorems 6 and 7 proving that the 

error function of the scaled and shifted absolute value function is minimized at an a and b 

satisfying (23) at one of the M  points in the input/output data set.

Theorem 8.

Given a set o f finite data points ((xi, yi), ..., ( x m ,  ysi)! and an approximating 

function f(x, a, d)=a\x-d\, the error function defined in (2 2 ) is minimized at a 

point where the bounding planes xm=d and a\xm-d\=ym intersect on the error 

surface.

Proof

Making the substitution b=ad the error function becomes that shown in (24) between 

each of the partitions formed by (23). This error function describes a planar surface 

piecewise linear between the 3M planes ym=axm-b, ym=-axm+b, or xm=d. If the minimum 

occurs within one of the regions completely bounded by the planes derived from (23), 

Lemma 2 dictates that the minimum occurs at one or more of the vertices of one of the 

regions bounded by the lattice. However, the error hypersurface may have regions that 

are only partially bounded and extend to infinity. By Lemma 3, the minimum at a 

partially bounded region either occurs at a vertex or is -<». However, the absolute value 

function in (22) dictates that the minimum is positive and therefore any unbounded 

region must have a finite minimum to be considered as the minimum. Therefore the
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minimum occurs at one of the vertices formed by the intersection of two of the 3M 

bounding planes where they intersect the error surface.

This theorem shows that the minimum of the error function given in (22) for a scaled and 

shifted absolute value function occurs at one of a finite number of points in the (a, d) 

plane. The possible number of solutions is upper bounded by the total number of 

potential intersections of the 3M  bounding planes or 3M(3M-1) where M  is the number of 

points in the input/output data set.

The scaled and shifted absolute value function is equivalent to a one-break PLA. The 

final step in developing this theory is extending this result to an TV-break PLA. Before 

proceeding there, it is necessary to examine an TV-dimensional piecewise-linear 

hypersurface and demonstrate that the global minimum always occurs at one of the 

vertices of the hypersurface.

4.4.4 Global Minimum of an TV-Dimensional Piecewise-Linear Hyperspace

Given an TV-dimensional Euclidean space and K N -l dimensional hyperplanes where the 

kih hyperplane is given by

11

*i
y = a'* x where a k = and x = •

_a k , N - 1 _ - X N - 1 _

where ye 91, a^„e 91, a*yK), and xne  91.

Define a hypersurface, P, bounded by the hyperplanes a ’* x V fc where

c,
£'(x) = c'x where c =

The vertices of P are the points x e  P where N -l of the bounding hyperplanes intersect.

Lemma 4.
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Given a hypersurface P formed by the equation E(x)=c’x where c e  9? N1 and 

xe iK  N_1 completely bounded by K hyperplanes { a f x , a ^ ’x }. None o f the 

bounding hyperplanes can be parallel with P. E(x) is minimized on P at the 

intersections o f N -l o f the K bounding hyperplanes with the hyperplane c ’x.

Proof.

Assume the minimum occurs inside P but not on any of the bounding planes and is equal 

to x=z. Examine the point z where z = z - A where

—  c  ^  0
cn " : n — l . . .N - I ,  en > 0
0 cn = 0

Because z is in the interior of P a A can be found such that z is also in P. E(z.) = c’(z-A) 

and is therefore less than E(z) except where c=0 in which case y  is a constant (and 

therefore minimum) everywhere. Therefore, the minimum must occur on one of the 

bounding hyperplanes.

'* 1  '

c

A =

A -i_

where 8 n — -

Next, assume that the minimum occurs at x= z which lies in P on the &th bounding 

hyperplane, but not at an intersection with another bounding hyperplane. Because z lies 

on the kth bounding hyperplane, it must satisfy c’z = a*’z. Consider a point z where z = z 

- A where

' 2' 4  '
A = • where Sn = ■

A - i .

£ n a k,n

0

c„ * 0

C. = 0

:n = \ . . . N - l , £ n > 0

Because z remains on the bounding hyperplane and E(z) = c’ z -  c’A is always less than 

c’z, the minimum of E(x) must lie at the intersection of at least two of the bounding hyper 

planes. This logic can be continued until the minimum is shown to exist at one of the 

intersections of N-l of the bounding hyperplanes with P yielding a point in the A/*h 

dimensional space.
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While this proves that the minimum occurs at a vertex, it does not prove that this 

minimum is unique. It is possible for the minimum to occur at multiple vertices and the 

hypersurfaces that connect them.

Lemma 5.

Given a hypersurface P formed by the equation E(x)=c’x  where c e  N1 and 

jceSt N1 partially bounded by K hyperplanes { a f x , a ^ x  }. None o f the 

bounding hyperplanes can be parallel with P. E(x) is minimized on P either at 

the intersections o f N -l o f the K bounding hyperplanes with the hyperplane c ’x  or 

approaches

Proof.

Assume the minimum occurs inside P but not on any of the bounding planes and is equal 

to x=z. Examine the point z where z = z - A where

—  c * 0
cn n :n = l . . . N - l , e n >0 
0 c „ = 0

Because z is in the interior of P a A can be found such that z is also in P. E(z) = c’(z-A) 

and is therefore less than E(z) except where c=0 in which case y is a constant (and 

therefore minimum) everywhere. Therefore, the minimum must occur on one of the 

bounding hyperplanes.

'  4  "

A = where Sn = •

1 1

Next, assume that the minimum occurs at x= z which lies in P on the ktb bounding 

hyperplane, but not at an intersection with another bounding hyperplane. Because z lies 

on the ktb bounding hyperplane, it must satisfy c’z = a*’z. Consider a point z where z = z 

- A where

" 4  '

A = : where dn = •

A - i .

^ n a k,n

Cn
0 C. =  0

: n = 1...N - l ,  en > 0

Because z remains on the bounding hyperplane and E(z) = c’ z -  c’A is always less than 

c’z, the minimum of E(x) must lie at the intersection of at least two of the bounding hyper 

planes. This logic can be continued until the minimum is shown to exist at one of the
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intersections of N-2 of the bounding hyperplanes with P yielding a ray in the /Vth 

dimensional space. If E(\) <*>as the ray then the minimum occurs where the ray

intersects the next bounding plane. If the E(x) -> -°°as the ray -> oothen the minimum is

-  CO,

u
Lemmas 4 and 5 provide the tools necessary to analyze a piecewise linear function in 

and provide other criteria when searching this space for the minimum of this function.

4.4.5 Optimal Determination of a Piecewise-Linear Approximator

In Theorem 5 it was shown that a PLA could be expressed as:

N ao ~ d r
f(x ,a ,d ,c )  = a0x + c + r£ j an\ x - d n\ , a - : , d = •

n=1
_aN _ i 1

where ao, c e  iff are coefficients of an affine translation, an e  Si (n= l, N) scales the

absolute value function and dn e  9 t (n= l, N) shifts it along the x  axis. Given a set of 

data {(xj, y i ) ,  . . . ,  ( x m ,  an error function is defined:
M

£(a,d,c) = ^ | / ( * m,a ,d ,c )- ym\
m=1 

M

m=1

From this equation, E(a, d, c) yields a 2A+2-dimensional piecewise linear hypersurface. 

The goal of the optimization is to find an a, d, and c such that £fa, d, c) is minimized for 

the given set of data.

The hypersurfaces that partition the error hyperspace given by (26) are formed wherever 

xm=dn or aoxm + c + aj\xm-di\+...+ aN\xm-dN\=ym are satisfied. The second boundary 

condition can be written as aoxm + c ±[aixm-aidi]±[.,.]±[a^xm-aNdN] =ym which in turn 

yields 2N equations, each with a different perturbation of the ± signs. However, these 

equations are not linear in an and dn. A new variable, bn, is defined where bn=an dn. 

Substituting, the boundary equations become:

/  \a  be —d/  i L » \ m |J O n + c ~ y n
n=1
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a n X n , ~ b n = 0
/V

a„x + c + > ± a x  — b h0 m /  i — I n m  n J y*

N  equations 

2 n equations
(27)

n=1

These equations are linear in an, bn, and c. Anywhere between these boundaries, equation 

(26) can be written as:

(28)

where the ± represents a positive or negative sign that is fixed everywhere within the 

given boundary. The error surface described in the bounded region described by (28) is 

linear in a, b, and c everywhere in that region. The intersecting lines given in (27) bound 

each linear region.

M
r

~ N
-i h

£(a,b, c) =  ]T(±) 7  ±  (a x —b )/  j — \  n m n / + « o  xm+ c - y m , b =
m~\

- _ « - l -
P n _

Theorem 9.

Given a set o f finite data points {(xi, yfi, ( x m ,  )’m)J, a piecewise linear 

approximating function in the form o f (25) where N  is the number o f breaks and 

the error function defined in (26), the error is minimized at a point where 2N+1 

o f the 2n+N boundary equations intersect with the error function.

Proof.

The 2N+2 dimensional piecewise-linear hypersurface defined by the error function (26) 

is made up of some number of completely bounded hyperplanes with an outer border of 

partially bounded hyperplanes. Assume the minimum occurs in one of the partially 

bounded regions. Lemma 5 shows that the minimum of a partially bounded linear region 

occurs either at a vertex or at -<». Because the error function in (26) is constructed with 

absolute value functions, the minimum this function can achieve is 0. Therefore, the 

minimum cannot occur at -oo and must therefore occur at a vertex. Should the minimum 

fall within the one of the bounded regions in this structure, the minimum point will occur 

at one of the vertices where the boundary functions intersect with the error surface by 

Lemma 4.
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This theorem states that the minimum of an iV-break piecewise linear function is always 

found at one of a finite number of points in a 2N+2 -dimensional space. This bounds the 

number of possible solutions to the optimization problem as well as suggesting possible 

algorithms to solve the optimization.

4.5 Conclusion

This chapter began with a formalization of a specific class of fuzzy system and a proof 

that this class was equivalent to an iV-dimensional PLA. An optimization algorithm was 

developed for a shifted absolute value function, a scaled absolute value function, and a 

shifted and scaled absolute value function in preparation for development of the general 

PLA optimization theory. Finally, a proof of the optimization of an A-dimensional PLA 

was developed. A proof of this nature has not been hitherto developed and is a novel 

contribution of this work.

The next chapter examines these results from a practical perspective and develops several 

algorithms that can be used in various applications including control systems.
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5.0 APPLICATIONS AND ALGORITHMS

Having developed a mechanism for nonlinear optimization of a class of functions, it is 

useful to examine how these results can be applied to existing problems. This chapter 

first examines several simple nonlinear approximation problems and applies the above 

results to optimally fit a PLA to a set of data. An alternative (and non-optimal) algorithm 

is discussed that provides significantly improved performance and it is applied to 

problems of greater complexity. A simple system identification and adaptive control 

problem is discussed. Finally, this technique is applied to a Hammerstein system 

identification problem.

5.1 Optimal Determination of a PLA from Data

A method to minimize the error function given by (28) of the approximation of a set of 

input/output data by an A-break PLA is readily induced from Theorem 9. The method 

consists of the following steps:

1. Select the number of breakpoints, A, in the PLA. Selecting an A that is too 

large will result in an approximation that may overfit the input data. Selecting 

an A that is too small results in an approximation that cannot satisfactorily fit 

the data.

2. Provide M  data points that are to be approximated.

3. Form the M(N+2n) equations forming the linear boundaries as in (27).

4. Initialize the lowest error to

5. Select every possible combination of 2N+2 of the equations formed above. 

Solve each combination for a, b, aO, c, and the error.

6. Calculate the error of the function using equation (28).

7. If the error is lower than the previous best, store a, b, aO, and c.

8. Once all possible combinations are tried, the stored a, b, aO, and c minimize 

the error function (28).

The above algorithm was coded in MATLAB and is included in Appendix B.
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This method was tested with a set of data taken from a true PLA function with a=[0.5,

0.75], d=[-l 3], a0=0.25, and c=-1.75. Five data points from this function [(-3, 3), (-1, 1), 

(1, 1), (3, 1), (5, 4)] were presented to the method above with the goal of finding a PLA 

with two breakpoints (N=2). The method found M(N+2n) or 30 boundary equations. The 

boundary equations were examined in all possible combinations of 2N+2 equations 

yielding 593,775 possible vertices. Of these nearly six hundred thousand systems of 

equations, more than 92% were found to be singular, to have an element of a equal to 

zero, or to be poorly ordered (an+i<dn).

The algorithm determined the correct values of the coefficients and produced the plot 

shown in Figure 18 where the line is the PLA produced form the data and the circles are 

the initial data points. Clearly the determination of the coefficients is optimal and the 

error is zero.

2.5

-3 •2 •1 0 1 2 4 53

Figure 18 -  PLA estimation of 5 points.
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The same five points were fed to the algorithm, this time with the y-axis values perturbed 

by Gaussian random noise of magnitude of 0.1 and standard deviation of 1. The purpose 

of this is to examine the fitting of a 2-break PLA to points that cannot be perfectly 

approximated. The algorithm determined coefficients such that the error was 0.0814. The 

coefficients found were a=[ 0.5552, 0.6897], d=[ -1.0000, 3.0000], <20=0.1833, and c=- 

1.7422. The result of this is shown in Figure 19.

3.5

2.5

0.5

-3 -2 •1 0 1 2 3 4 5

Figure 19 -  PLA estimation of 5 points 
perturbed by noise.

While these examples are trivial, they demonstrate the capability of the algorithm to 

optimally fit a PLA to given data given only the number of breaks.

Additionally, this result can be compared to the error bound guaranteed by Theorem 3. 

Recall that the theorem bounded the error by (r+1) h) where r, the degree of the 

polynomial used in the PLA, is /; h, the maximum distance between breaks, is in this 

case 2, and the modulus of continuity, 0)f(2 ) for the 2-break PLA is approximately 3. 

Therefore, the actual error of the function is several orders of magnitude less than the 

bound.

5.2 Solution Complexity and Complexity Reduction

As the number of data points (M) and the number of segments in the approximation (AO 

increases so do the number of vertices. The number of vertices are upper-bounded by 

selecting 2N+2 out of the M[N+2n] possible equations or:
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( 2N + 2 \
V = M N  + 2N

V _

The number of simultaneous systems of equations grows rapidly with the number of data 

points (M) included and explodes exponentially as additional breaks (N) are added. The 

table below shows the number of vertices associated with a system with a given number 

of segments and data points.

Table 4 - Number of error surface vertices for a given problem

Number of Vertices
Number of Breaks

1 2 3 4 5 6 7 8 9 10
8 10626 12271512 6.428E+10 2.274E+15 7.534E+20 2.905E+27 1.464E+35 1.015E+44 9.831 E+53 1.332E+65
16 194580 927048304 1.943E+13 2.692E+18 3.458E+24 5.167E+31 1.015E+40 2.76E+49 1.055E+60 5.666E+71
32 3321960 6.43E+10 5.395E+15 2.96E+21 1.498E+28 8.818E+35 6.84E+44 7.368E+54 1.119E+66 2.393E+78
64 54870480 4.282E+12 1.438E+18 3.141E+24 6.311E+31 1.475E+40 4.545E+49 1.949E+60 1.18E+72 1.007E485
128 891881376 2.795E+14 3.755E+20 3.273E+27 2.621 E+35 2.441 E+44 3E+54 5.133E+65 1.24E+78 4.232E+91
256 1.438E+10 1.806E+16 9.71 E+22 3.382E+30 1.081E+39 4.019E+48 1.973E+59 1.349E+71 1.303E+84 1.777E+98
512 2.31 E+11 1.162E+18 2.498E+25 3.478E+33 4.444E+42 6.601 E+52 1.295E+64 3.539E+76 1.367E+90 7.45E+104
1024 3.704E+12 7.453E+19 6.411E+27 3.569E+36 1.824E+46 1.083E+57 8.495E+68 9.283E+81 1.434E+96 3.13E+111

From this table, it is clear that even small problems are far too computationally intense to 

solve in this direct manner (a 6-segment line and 128 data points has over 2 X 1035 

vertices). However, there may be means to dramatically simplify this problem and reduce 

the computations required into a reasonable realm. For example, if the above problem 

was partitioned into two hyperspaces of 64 data points on 3-segment lines, the two 

solutions have under 5 X 1012 vertices, still a tremendous number but much more 

manageable.

5.3 Descent Technique of Parameter Determination

While the theory presented to this point provides an optimal determination of parameters 

from a nonlinear error function, the cost, in terms of complexity, is tremendous for all but 

the simplest problems. There are several means for dealing with cost of solving this 

nonlinear optimization problem.

1. Develop novel methods for solving this type of problem that greatly 

reduce computational complexity.
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2. Develop a method that trades guaranteed optimality for computational 

reduction.

The development of methods for more efficiently solving the nonlinear optimization 

problem is a significant effort in itself and beyond the scope of this work. However the 

development of a more practical method of arriving at good, if not optimal, solutions to 

these problems is a critical step in the development of examples demonstrating the utility 

of this work. Therefore, a technique fulfilling this requirement will be examined.

5.3.1 Descent Algorithm

Consider a space, S, in where there exist K  hyperplanes. The intersection of N  of these 

hyperplanes determines a point, P, in S. Leaving this point are N  hyperlines resulting 

from the intersection of every combination of N-l of the N  hyperplanes that intersect to 

form P. Each of the N  hyperlines is intersected at a point by, at most, K-N hyperplanes 

(not including intersections at P).

Figure 20 -  Descent example.
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Consider the case shown in Figure 20 where N=2 and K - 6 . The algorithm begins by 

randomly selecting a node (node 1 in this case). Note that this node is created from the 

intersection of lines A and B. First the errors of the nodes formed by the intersection of 

line A with other lines are checked (nodes 1, 2, 3, 4, and 5) and the error calculated with 

(28). Next the nodes on line B are checked (nodes 6, 7, 8, and 9) and the error calculated. 

The lowest error is saved and that node is set as the central node and the above algorithm 

repeated. For this example, assume that node 4 was found to be the node with lowest 

error. Since the nodes on line A have already been checked and found to have a higher 

error than node 4, only the nodes on line C need to be checked (nodes 10 and 11). For 

this example, assume that node 4 had a lower error than nodes 10 or 11. The algorithm 

would terminate and return node 4 as the local minimum. Because it is likely for nodes to 

go unchecked (node 12 in this example), this algorithm does not guarantee the return of 

an absolute minimum.

While this method does not guarantee the discovery of the absolute minimum, it does 

guarantee the discovery of a local minimum. This simple example doesn’t truly 

demonstrate the significant decrease in computational complexity as there were only two 

dimensions in the problem’s input space. However, savings in computation rise 

exponentially with an increase in problem dimension and yield dramatic savings.

The tradeoff for this savings the lack of an optimality guarantee as this algorithm can be 

trapped in a local minimum. However, there is a built-in local-minimum avoidance 

routine as the nodes checked around the local minimum are widely distributed throughout 

the problem space.

In more general terms the descent algorithm is:

1. Select the number of breakpoints, N, of the PLA.

2. Select a node (an intersection of N  hyperplanes) and calculate the error 

using (28). Save this value as the minimum error.

3. For each intersection of N-l of the hyperplanes forming the node perform 

the following:
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a. Determine the intersection with each of the K  hyperplanes not part 

of the original node selection.

b. Calculate the error of each intersection using (28).

c. If the lowest error is less than the previously saved minimum error, 

replace the minimum error with this value and save the intersecting 

planes that produced this error.

4. If the minimum error is lower than the error from step 1, the solution has 

been improved and using the saved intersecting planes as the selected 

node, repeat step 1. If no improvement is made in error then this algorithm 

has found at least a local minimum error and the process is complete.

The end result of this algorithm is the discovery of a node that produces a lower error 

than any other node that exists on any hyperline emanating from the node. While this 

does not guarantee a global minimum, as does the exhaustive search algorithm described 

earlier, it dramatically reduces computational complexity. Additionally, several 

significant improvements over the gradient descent techniques used in backpropagation 

neural networks are offered:

• While it is possible for this method to become trapped at a local minimum, 

this method has an integral mechanism built right into the algorithm that 

searches both near and far from the node of interest for lower-error 

solutions. Unlike the backpropagation neural network, local minimum 

avoidance sub-algorithms (such as ‘shaking’ or the momentum 

coefficient) are not introduced.

• A neural network training scheme must continually examine a test data set 

in order to ensure the network is not overtraining on the training data. In 

contrast, the fuzzy system will continue to fit the training data until it has 

achieved the lowest error possible. The quality of the fit and any 

possibility of overtraining are determined solely by the number of breaks 

sleeted by the designer in the piecewise linear approximation of the 

input/output data set.
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• The fuzzy system has a single adjustable parameter, the number of breaks 

(AO- Neural networks have many adjustable parameters (learning 

coefficient, momentum coefficient, number of hidden layers, number of 

neurons in hidden layers, neuron transfer function, etc) and the proper 

determination of these parameters is critical to the convergence and 

performance of the network.

5.4 Comparison of a Fuzzy System with a Neural Network

The data used to train the systems was problem data taken from 0 to 4 inclusively every

0.25 units. The function output was the result of the Boolean expression (x<l) OR (x>3) 

perturbed by zero-mean normally-distributed noise with a standard deviation of 0.1. This 

data is shown in Figure 21.
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Figure 21 -  Noise perturbed example data.

X

]  ................— 1 I " " —

X
X

j :

X

X

X
a :

i

f ...........x .............

:

:
:

*

i _______

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

5.4.1 The Neural Network Results

A three-layer feedforward neural network was trained using the Levenburg-Marquardt 

technique to learn the pattern of the above data. A network with 7 hidden neurons was 

found to be sufficient for this problem and the network was trained for a thousand 

iterations. The result of this training was generated with the MATLAB code shown in 

Appendix C is shown in Figure 22. From this plot, it can be seen that the network has

0.5

y

-0.5

x Training 
Learned

—  Full
—  Actual

-1.5
0 0.5 1 1.5 2.5 3 3.5 42

X

Figure 22 -  Neural net approximation of data.

learned the training data well (dashed line) and there is only small error when looking 

only at the training data. However, the network has been over-trained on the training data 

and has lost much of it’s ability to generalize the function (solid line) and varies 

considerably from the original function (long dashed line).
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5.4.2 The Fuzzy System Results

A single-input fuzzy system was trained using the descent technique described in this 

section with 4 breakpoints. The end result of this algorithm is the determination of the 

unknown coefficients of a PLA in the form given by (25). While this form can be used 

directly to determine the output of this system, the ultimate goal of this work is to use the 

PLA to determine the parameters of a fuzzy system and there are several advantages for 

doing so:

1. Heuristic information can be extracted from the fuzzy system and used to 

gain deeper understanding of the underlying system.

2. The fuzzy system offers a significant computational reduction as only 2N 

membership functions are active for any input datum whereas M j » M2 0  

... *Mn elements are active in the PLA case where Mn are the number of 

breakpoints in the nth dimension.

While the existence of the mapping from PLA to fuzzy system was established earlier in 

this work, the actual mechanics of that transformation have yet to be discussed.

Between any two apexes of the fuzzy MFs dn and dn+1 the output of the fuzzy system is 

given in (12). Since the activation strength of the two active MFs must sum to one, the 

resultant output of the fuzzy system for dn<x<dn+i is:

x - d n dn+, - x
v  —  7   5-------- 1- 7  _2±!____

- 4 , <29>

Similarly, the PLA given by (25) where dn<x<dn+1 is equivalent to:

n N

y = a0x + c + J ] a n( x - d n) -  Y j an(dn - x )  (30)
n=1 n=n+ 1

The algorithm has provided all the unknown coefficients in (30). The only remaining 

effort is to determine the z n coefficients in (29).
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At this point, it is important to note that it is possible that this algorithm returned 

breakpoints that are contained within the domain of our data set (dj>xo or cIn<xm). For 

the fuzzy system to be effective all the way across our data set, we must add MFs to 

either end of the fuzzy set, creating a breakpoint at the minimum and maximum extent of 

the input data set. Furthermore, these breaks (do and dN+i) must be added without 

affecting the PLA solution. The solution to this problem is to add a break at the smallest 

value of the input data set and set it’s corresponding a value to 0. Similarly a break is 

added at the largest input value of the training set with it’s corresponding a set to 0. This 

has the desired effect of adding breaks at both extremities of the data and also not 

affecting the PLA solution (because the a ’s are 0).

The first two MFs have apexes at do and di and corresponding output weights of zo and zu 

Since the fuzzy set equation for any d o < x< d i  must be equivalent to the PLA equation 

over the same interval, the coefficient of x  and the constant coefficient of both (29) and

(30) must be equal yielding the following pair of equations:

By definition, the breaks, dn, are not permitted to be superimposed on one another and 

d0zkii and therefore (31) has unique solutions for z.o and zi- From here it is straightforward 

to continue down the chain and solve for all of the MF weights, zn, completing the 

transformation of a PLA into a Fuzzy System. Consider the point where 

d„ < x < dn+i where n> 1 and zn has been determined (either through (31) or a previous 

recursion of this method). The jc-coefficients of (29) and (30) can be equated yielding:

This method was encoded in MATLAB and included in Appendix D. The fuzzy system 

was trained to the data and was able to learn the pattern and the result is shown in Figure

(31)

„=1 " " d l - d 0 dx- d 0

n N

Zn+1 = Z n +(dH+1 - d n) a0 + Y .a-nd m ~ (32)

23.
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Figure 23 -  Fuzzy system approximation of data.

The training data are indicated by x’s, and the actual function is shown by a long dashed 

line. The response across the full domain is shown as a solid line. The vertical lines 

indicate the error between the approximation and the training data set. The very nature of 

this approximation technique ensures that a fuzzy system with an appropriate number of 

breaks cannot be overtrained. The approximation improves with each successive training 

iteration and finds a minimum at the 39th iteration. Figure 24 shows the history of the 

error over all the iterations.
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Figure 24 -  Error vs. iteration for fuzzy training.

By the 15th iteration, the approximation has found a near-minimum point and continues 

for 24 additional iterations refining the solution.

5.5 Indirect Adaptive Control of a Wiener System

Consider the simple nonlinear, discrete-time system Wiener system shown in Figure 2. 

The goal is to design a control system that will provide a means to have the output of this 

system follow an input reference signal. For this example, an indirect adaptive control 

scheme is used to control this Wiener nonlinear plant. A diagram of the control scheme is 

shown in Figure 25.
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r(k)

u(k)
i r

x(k-1)z-1

Fuzzy
Model

Figure 25 -  Fuzzy IAC controller of a Wiener system

The first step in solving this problem is to train the fuzzy model to approximate the input- 

output pattern of the nonlinear plant using the descent method described earlier.

5.5.1 Training the Fuzzy System

The first step in the training process is to determine a suitable value of N  (the number of 

breaks in the PLA that will approximate the system over a given region. For the purposes 

of this effort, it is assumed that x(k) is bounded on [-3, 3]. Inspection of the input/output 

data set indicates that a reasonable selection for N  might be as low as two. Increasing N  

can improve the approximation quality but the computational intensity of solving the 

fuzzy system will also be increased. The results for N=2, 3, 4 are shown in Figure 26.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67
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Figure 26 - Fuzzy approximation of sin function,

This figure demonstrates how the approximation is improved as N  is increased. The 

approximation was performed for N  e [1,6] and several performance metrics were 

gathered.

Min
_  10 Error

Number of Breaks

Figure 27 -  Fuzzy approximation error.

» * •

—mm»m  Seconds Per Iteration 
mmmmm Number of Iterations

I I

Number of Breaks

Figure 28 -  Fuzzy performance 
parameters.
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The total error of the approximated system for a given number of breaks calculated with

(26) is shown in Figure 27. As expected, the error between the fuzzy system and the 

input/output data decreases as breaks are added. However, there is a cost-benefit tradeoff 

with adding breaks. The approximation improvement slows asymptotically to 0 whereas 

the computation cost grows exponentially. Additionally, adding excessive breaks is akin 

to overtraining a neural network system. With a large number of breaks, the PLA will too 

closely follow the training data and any noise contained therein.

Several performance statistics for the descent technique are shown in Figure 28. The 

horizontal axis is N  as it increases from 1 to 6. The vertical axis represents the units 

appropriate to the data displayed. As predicted, the time and FLOP count increase 

exponentially relative to the number of breaks. This fairly simple problem with 30 input 

data points and 6 breaks took almost three hours to compute. Clearly significant 

algorithmic improvement is required before this method is useful for non-trivial 

problems. All runs were performed on a WindowsME PC running MATLAB 5.2 with 

128M of RAM and a 500 MHz Pentium III processor.

The resultant error of the three approximations can also be compared with the upper 

bound given by Theorem 3. Because this method is not optimal, there is no guarantee that 

the resultant error between the approximation, s, and the original function,/, will be less 

than the bound. In each case, the order of the PLA (r) is 1 simplifying the argument to the 

modulus of continuity in Theorem 3 to C0f(h).

Table 5 - Approximation error bound comparison

Number of breaks h (largest distance 
between breaks)

(O/ih) (Error bound) Maximum Error

2 2.9 2 0.5

3 2.4 1.9 0.4

4 2 1.7 0.2
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Table 5 shows that in each case, the maximum error between the approximation and the 

function is better than the upper bound of the least maximum error. This provides an 

empirical indication that this algorithm is providing good results for this example.

5.5.2 Indirect Adaptive Control Results

Given the discrete-time Wiener nonlinear system: 

x(k)=sin(Tx(k-l) )+u(k) 

and a reference signal, r(k), a control system is designed to permit the system to follow 

the reference signal. This is done by creating a control input such that: 

u(k)=r(k)-m(x(k-l)) 

where m( •) is the fuzzy model of the nonlinear system.

The system was simulated with a unit step reference signal. The response of the system 

was simulated with both a linear model (u(k)=r(k)-0.1x) and the fuzzy model (u(k)=r(k)- 

m(O.lx)) and the results are shown in Figure 29.
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Figure 29 -  Fuzzy IAC response to unit step.
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The fuzzy system performance is excellent with a steady state error of less than 1 %, 

whereas the linear model has an error exceeding 10%. While the performance of the 

fuzzy system was very good for this simple example, there remains a great deal of work, 

both in the refinement of an algorithm for the learning phase of the fuzzy system as well 

as methods for incorporating the fuzzy system into an adaptive control scheme. The 

excellent performance of the fuzzy system is not intended to be indicative of the 

performance of this type of fuzzy system in an indirect adaptive control scheme, but 

rather to demonstrate the potential benefits this method promises.

5.6 A Hammerstein System Identification Example

As discussed in Chapter 1, nonlinear systems can sometimes be separated into a linear 

and a static nonlinearity which is useful in analysis. Systems of the Hammerstein type 

shown in Figure 3 are among the most common mechanisms for modeling nonlinear
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systems. The Hammerstein sample system given in Chapter 1 where the linear portion of 

the system is given in (2), the nonlinear feedforward portion is given in (3) and the 

nonlinear feedback portion is given in (4) was solved using a technique discussed in [53]. 

This section will solve the same problem with the fuzzy system identification mechanism 

described in Chapter 4.

5.6.1 Preliminaries

It is assumed that the system input u(k) and the system output y(k) for k=l..K, where K  is 

the number of data points available, are provided. The application of the fuzzy logic 

technique developed in this work to the Hammerstein system identification problem 

requires several steps.

1. Estimate the structure of the linear portion of the system, G (z!).

2. Estimate the output of the nonlinearity fo( •), u„(k).

3. Using the input and output of the nonlinearity fo(•), u(k)and un(k) 

respectively, approximate it with the descent technique described earlier in 

this chapter.

Two approaches to the solution of this problem are discussed below. The first assumes 

the availability of an exact representation of the linear system (a completed step 1 above) 

and the second discusses a more complete Hammerstein problem solution.

5.6.2 Hammerstein System Solution with a Known Linear System

In a case where the linear portion of the Hammerstein system is predetermined either 

through another identification technique or a priori knowledge of the system the fuzzy 

logic solution to the nonlinearity is straightforward. As step 1 from the previous section is 

already completed, the next step is to estimate the output of the nonlinearity. A simple 

mechanism is to simply run the given output data, y(k), through an inverse of the known 

linear system, G (z1)- Zero-mean white Gaussian measurement noise with a magnitude of 

0.1 was added to this output signal. Having acquired the nonlinearity output, the fuzzy 

logic descent algorithm presented earlier in this Chapter can be used to identify the 

nonlinear system which produces the signal un(k) when provided u(k). Given that a 

deadzone nonlinearity was expected, the number of breakpoints, N, was selected to be 2.
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The results of this approximation are shown in Figure 30.
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Figure 30 -  Approximation of nonlinearity in a Hammerstein system.

The solid line is the actual response of the nonlinearity. The dots are the training data 

recovered from the original Hammerstein system with the measurement noise applied. 

The dashed line is the fuzzy approximation of the nonlinearity derived by the descent 

method described earlier. This figure demonstrates that the fuzzy system is able to very 

closely approximate a nonlinearity given in a Hammerstein system.

Often, the linear portion of the system will not be explicitly available but will have to be 

approximated. This situation is investigated in the next section.
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5.6.3 Hammerstein System Solution with an Unknown Linear System

The section demonstrates a more complete application of the fuzzy logic technique 

developed in this work to the Hammerstein system identification problem. The previous 

section assumed that the linear structure of the Hammerstein model was known. This 

section develops a more complete identification method that includes identification of an 

unknown linear component.

For the purpose of this work, a least-squares identifier was used to estimate a linear 

system from the input/output data provided. The system output was perturbed by zero- 

mean Gaussian white noise of magnitude 0.01. Because there is a nonlinearity present, it 

is expected that the linear system will not be well identified. This identification was 

conducted and yielded:

_  _u  0.398+ 0.3812z_1
) —------------- ]--------------- 7

l-1 .689z +0.8399z
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A plot of this linear estimate versus the original nonlinear system is shown in Figure 31.

Actual output 
Linear model outpul

20 30 40 50 60 70 80 90 100

Figure 31 -  Linear model versus original nonlinear Hammerstein system.

The linear model exhibits significant deviations from the nonlinear system and has a 

mean square error of 0.41.
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Having derived a linear model, the next step is to estimate the output of the nonlinearity. 

This is accomplished in the same manner as the previous section, except using the linear 

model derived in the previous step to estimate the nonlinearity output. With this output 

estimated, the fuzzy system can be trained on the input/output signals. The plot of the 

fuzzy approximation of the dead zone nonlinearity is shown in Figure 32.
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Recovered training signal 
Actual input

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

Figure 32 -  Fuzzy approximation of deadzone nonlinearity.

The solid line represents the response of the original dead zone nonlinearity. The dots 

represent the estimated nonlinearity output as determined by running the original output 

signal through an inverse model of the estimated linear system. The dashed line 

represents the response of the fuzzy system approximation of the nonlinearity. While the 

recovered nonlinearity output signal does not match the actual nonlinearity, the fuzzy 

system is able to leam the recovered signal very well.
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As a final check, the output of the initial system was compared to the output of the 

system with the fuzzy system model of the nonlinearity and the linear estimate of G d 1). 

The responses of these two systems are shown in Figure 33.
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Figure 33 -  Comparison of actual Hammerstein system with approximated
system.

The solid line represents the response of the actual Hammerstein system whereas the 

dotted line shows the response of the fuzzy identifier. The result is a good approximation 

of the system, far superior to that shown in Figure 31. The mean square error of this 

approximation is 0.13. As a comparison, the solution used in [53] resulted in a mean 

square error of 0.82 against the training signal. Thus this PLA-based technique has shown 

almost an order of magnitude improvement over the original method.

Actual system response 
Model response
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5.7 Conclusion

This chapter examined several applications of the theory developed in Chapter 4. An 

initial implementation based upon an exhaustive search of the solution space was 

presented and shown to be computationally intractable in its current form. An algorithm 

based upon a descent technique was developed and applied to several different types of 

problems. The descent technique was compared to backpropagation neural networks and 

the relative strengths and weaknesses discussed.

The descent algorithm was also applied to both sample systems introduced in Chapter 1. 

The descent algorithm demonstrated the ability to approximate a simple nonlinear 

dynamic system and the ability to tune the quality of approximation with N, the number 

of breaks, was discussed.

An indirect adaptive control scheme was developed for the Wiener system example 

presented in the Introduction. It was shown that the fuzzy model of this system could be 

used to provide a satisfactory result in this IAC example. The maximum approximation 

error for this sample system was compared to the error bound provided by Theorem 3 and 

found to perform better than the bound.

Finally, a system identification algorithm was developed for a Hammerstein system and 

demonstrated that the fuzzy logic system could be trained to approximate a Hammerstein 

system.

Chief among the outstanding issues is the high computational complexity present in the 

algorithms developed above. Reducing this complexity is critical to further application of 

this method. Many applications involve multiple inputs but Chapter 4 addresses only 

single-input systems. The next chapter examines higher order systems and the issues 

involved with extending this theory to cover them.
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6.0 FUTURE APPLICATIONS, RESEARCH, AND CONCLUSIONS

Virtually any aspect of fuzzy logic can draw from this work to help form and adapt fuzzy 

systems to meet specific requirements. The fuzzy system identification theory and 

methods described here can be used to support fuzzy control systems implementations, 

some of which have been introduced here. Furthermore, these techniques support the use 

of fuzzy systems in decision support and other artificial intelligence applications.

While the results of this work are powerful, additional research is required in order to 

more completely and fully utilize these techniques. In particular, research into multi

dimensional extensions, algorithmic improvements, and extensions to smooth 

membership functions is necessary.

6.1 Fuzzy System Development from Input Data

The simplest and most direct application of this work is to train a fuzzy system to learn 

the input-output mapping of a system. As demonstrated in the examples, the method 

described in this work is capable of learning a given input-output mapping to an arbitrary 

degree of closeness, controlled solely by the choice of N, the number of breaks.

Besides the superficial result of developing a system model, other advantages include the 

ability to build a fuzzy model of a system that provides a linguistic description of the 

operation of a system. This could be of great use in trying to understand the underlying 

principles of operation of complex multi-dimensional systems.

6.2 System Identification

Fuzzy logic has been applied to system identification in many different ways [21, 36, 38, 

39, 52, 56]. In its most obvious manifestation, a fuzzy system could observe the inputs to 

an unknown system as well as an output and learn the mapping over time. However, in 

this work, the fuzzy learning mechanism is applied to a batch learning process where all 

the input-output data is provided at once.
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6.3 Adaptive Control

A simple example of one-dimensional Indirect Adaptive Control was presented in 

Section 5.5. However, this barely scratches the surface of the potential applications of 

this method in the field of adaptive control. This method could also be applied to more 

sophisticated adaptation mechanisms and provide an analytic approach to the 

implementation of fuzzy logic in control systems.

6.4 Application to Surveys

Surveys are often used to gather information from people about a topic to help determine 

a thought process that led them to make a certain decision. Conventional statistical 

techniques are often used to process that data and they generally use a linear combination 

of some set of functions to determine how much different factors affect the ultimate 

decision. This technique offers the possibility of using an inherently nonlinear system to 

provide a mapping of this human decision system and provide a linguistic explanation of 

the decision process. In other words, besides just modeling a system, the fuzzy system 

offers insight into why the system is working the way it is.

6.5 Algorithmic Improvements

One of the most immediately important follow-up topics to this work is the improvement 

of the algorithm with which the fuzzy system is trained. Two algorithms were used in 

support of this work. The first was a ‘brute-force’ method that checked each vertex on the 

error surface and selected the best one. While this method provides a guaranteed optimal 

solution, the computational complexity involved is overwhelming for all but the most 

simple problem. The second method developed is a descent technique whereby a solution 

is iteratively improved until some local minimum is reached. While this method does not 

produce a guaranteed optimal solution, it reduces the computational requirements many 

orders o f magnitude. Nonetheless, even the descent technique becomes too demanding 

before any truly significant problems can be tackled.

A complete and in-depth review of the mechanisms used to arrive at solutions with this 

method is required. There are probably techniques that will significantly reduce the
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computational complexity of both the full-optimization as well as the descent technique. 

Discovery and implementation of improved techniques will make this mechanism 

realizable in a meaningful application.

6.5.1 On-Line Learning

One possible avenue of improving algorithm performance is to implement some method 

of on-line learning.

6.6 Complexity Reduction

Besides strict algorithmic improvements, which are probably necessary for the long term 

usefulness of this technique, there are other mechanisms to reduce complexity and 

thereby improve performance.

One that has already been briefly examined is the partitioning of the solution space. 

Because the complexity of this process is exponential, dividing the problem into two 

pieces provides a drastic performance gain. For multidimensional problems, this gain 

becomes even greater if multiple dimensions can be partitioned. The challenge that arises 

in these cases is where to create the partition(s).

In some cases, the partition selection is natural. If a system has a set point around which 

it operates, that point is a natural one at which to insert a breakpoint and partition the 

problem into two halves.

Many control system problems offer another very natural way of partitioning a problem. 

Any system that is symmetric can immediately be partitioned around the axis of 

symmetry. Consider a two-input system where each input has five breakpoints. This 

fuzzy system will have 35 adjustable parameters. However, if the system is symmetric in 

both input dimensions, this number is reduced to 15 adjustable parameters. Considering 

that the number of vertices increases exponentially by the number of adjustable 

parameters, this improvement is tremendous.
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6.7 Quantized Inputs

Some systems, particularly survey type questions, have inputs that are quantized. Typical 

of these are answers given on a scale of 1 through 5 or other multiple-choice questions 

often found on surveys. While this method will work well on results that are quantized 

over many different levels, inputs quantized over 5 or even ten levels will have a 

roughness that will not be easily learned by the fuzzy system. A fuzzy system that can 

handle the discontinuities present in quantized systems is required.

6.8 Alternate Input Membership Functions

The input MFs used in the development of this theory were restricted triangular 

membership functions that yielded the piecewise linear approximator necessary for the 

development of the Theorem 9. However, real systems are generally not discontinuous in 

the first derivative as are the PLAs. It would be desirable to extend this theory to a system 

that was smooth. There are several avenues available to investigate these features. The 

first would be to examine input MFs that were constructed of parabolic pieces vice linear 

pieces. These pieces can be used to construct a piecewise approximator whose pieces are 

made up of 2-degree curves vice the 1-degree curves used by the PLA.

A second method is to convert the triangular membership functions set by the methods 

described herein and use them to determine parameters of a similar, but curved MF (such 

as the exponential). While the optimality of the solution would be lost, some smoothness 

would be gained that might better approximate real systems.

6.9 Error Bound

As discussed in Theorem 3, the maximum error of a PLA is fairly conservatively 

bounded by a function relating to the modulus of continuity of the function to be 

approximated and the maximum space between breaks. A better error bound that relies 

primarily upon the number of breaks of the system needs to be developed.
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6.10 Multi-Input Systems

Many applications of fuzzy logic will require systems with multi-dimensional inputs. 

This work applies immediately to single input systems. Further effort is required to 

extend this to multi-dimensional systems. A beginning of this effort is included as 

Appendix A.

6.11 Conclusions

This work was driven by the need to use a fuzzy system to approximate an arbitrary 

nonlinear function given a set of input-output data. While there exist a number of 

algorithms that can perform this function, this work focused on a method that was based 

on a technique to determine parameters of a piecewise linear approximator that would 

optimally minimize the error between the approximator and the given data. The end goal 

of this work was to apply this result to the identification of a Wiener and a Hammerstein 

nonlinear system.

In the course of this work several important results were uncovered:

1) A set of parameters exists that minimize the error between a piecewise linear 

approximator and an arbitrary set of input-output data points.

2) This set of optimal parameters exist among a finite set of possible parameters.

3) An algorithm was designed that takes advantage of this optimality result but trades the 

optimality guarantee for a massive decrease in computational complexity.

4) This algorithm was applied to the identification of a Wiener and a Hammerstein 

system and provided excellent results.
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APPENDIX A TWO-DIMENSIONAL FUZZY SYSTEMS AS 

APPROXIMATORS

This Appendix extends the theory developed in Chapter 4 from single-dimensional fuzzy 

systems to two-dimensional systems. The primary challenge introduced is the inclusion 

of a fuzzy conjunction as part of the fuzzy consequence. Several different approaches to 

solving this problem are investigated and the difficulties are discussed. A more promising 

path is opened and discussed.

A.l Two-Dimensional Fuzzy Systems

At first glance extending the results from one-dimensional to two-dimensional fuzzy 

systems would involve a straightforward extension of the mechanism worked out for the 

single dimensional case. However, two (and higher) dimensional fuzzy systems require 

an operation not required in the single dimension case; that of the fuzzy conjunction. A 

one-dimensional fuzzy if-then statement can be written as:

IF x THEN y

where x and y  are a fuzzy input and output respectively. However two and higher 

dimensional system must be written as:

IF x, AND x2  AND ... AND xN THEN y 

where x/, x2, xn are the fuzzy inputs, y  is the fuzzy output, and N  is the number of 

inputs to the system. In order to convert these into a higher order PLA, the fuzzy 

conjunction operator (AND) must be accounted for.

A.2 Two-Dimensional Fuzzy Systems with a Product Conjunction

Consider the two-dimensional fuzzy system constructed of two input fuzzy sets, each of 

the form shown in Figure 10. The vertices of the MFs of the first fuzzy set are given by 

du, d/2 , ..., diN, where Ni is the number of MFs in the first fuzzy set. Likewise the 

vertices of the second fuzzy set are given by d2 y, c/22, ..., d2 i\fe where A2  is the number of 

MFs in the second fuzzy set. The fuzzy consequence matrix contains members cu, ..., 

cn,n2 where member cnln2 is associated with the intersection of the MFs whose vertices are 

dni and dn2.
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For any dinl<Ki<din,+i and there are at most four consequences active: cnm,

Cni+m, cnin2+i, and cn,+in2+i. By expanding the summation, (5) is reduced to:

anm2 is the result of the fuzzy conjunction between the fuzzified value of xj and X2- Using 

the product operator for the fuzzy conjunction yields:

Just as in the one-dimensional case, with X] and x2 bounded between two apexes the 

following is true:

/l„1+l(* l)=1~ /!«,(*!) 

f  2«2+l (•X2 ) ~ 1 — f l n 2 ( X 2 )
Given this, and substituting the symbol f j  for f j n,(xj) and / 2  f o r /^ fo j  the denominator of 

(33) simplifies to:

W|+lW2"fl JZ|+lW2"bl (33)
^ nxn2 2+1 ^ « i+ l« 2 +l

anin2 = / l « ,^ |) / 2 „ 2 (*2) (34)

The function f i ni(xj) is the value of the n / h triangle where d !n ,<>C j<d /n,+ i and is equal to:

(35)

Likewise, the function / 2 „2(*2 ) 's the value of the n2th triangle where J 2 «2-^ 2 -^ 2 n2+; and is 

equal to:

(36)

= / , / 2 + a - / 1) / 2 + / 1 ( i - / 2 ) + o - / i ) a - / 2 )

= f j i + f i ~  / , / 2 + A -  f j 2 + 1  -  A  -  h + f i f i (37)

=  1

Thus (33) becomes:

Wj+lWj+l Wj+1/1 2+ 1
(38)
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Substituting (35) and (36) into (39) and further substituting this into (38) yields:

y : n l n 2

' ~ x \ + dul+̂
{ J ^— x2 + d 2 ( ! 2 + 1

^n\+\n2

f  J ^
X l d ln l

( _ x +([ ^
x 2 X  u 2n2+l

y d ln l+l ~d\n, , v d 2n2¥l ~  d 2n2 , ^i«,+i ~ d \ , v^ 2 « 2 + 1 ~ d 2„2 ^

Xl
" ntn2 + 1

+1
^  J ^X2 2n2

v dUi+l d Ui J ^  2 2̂ + 1
- d In-

+  Cnj+ ] « 2 +1

2 J

x \ d u.

+

V  j  ^X2 d 2„2

\ d  i«,+i i/ij j\^d 2n2+\ l2n.■2 /

Expanding the products and gathering like terms yields:

(C«1«2 Cn,+1 « 2 Cn1n2+1 Cn,+ln2+l )*p2

( c nin2 d

(_ Cnln2dlnl+l + Cn,+ln2̂ ln,
2n2+l + Cn1+1«2<̂2«2+1 + C«,n2+1̂ 2n2 Cn1+ln2+1̂ 2n2

^  n^2  +1 ^ 1 / t ]  +1 ^*«j +1«2n2+\d\nl ) * 2

C nln 2 d l n l + l d 2 n2 +l Cn,+ln2<̂l«1 ̂ 2«2+l 

— Cn,n2+l̂ ln,+1̂ 2n2 + Ĉ +lnj+l̂ ln, ̂ 2«2

(39)

This function is collinear in x/ and X2 and everywhere continuous and is therefore suitable 

for transformation into a form similar to that in the one-dimensional case.

A.3 Transformation of Two-Dimensional Fuzzy Systems into Piecewise 

Linear Approximators

The first step in the transformation is to determine a suitable form for the PLA system as 

was done in the one-dimensional case. The form is constrained in that it must be:

• Continuous,

• Linearizable,

• Capable of matching the fuzzy logic function above, and

• Containing the same number of independent variables (N]N2 cnln2, N/ d]nj, and 

N2 d2n2 terms) as (39).

A function meeting these criteria is:

V, N 2

/ o  = x z x P i  - d lmi \\x2 - d 2
mj=l m2=l (40)
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For any given din,<ki<dinI+i and the signs of x/-dhn andX2-d2m are known

and (40) can be rewritten as:

/(') = Z  Z  ̂  1*1 “ A*2 ~ J2mJ - Z Z a mim i 1*1 ~ A*2 ~ <*2mJ
/nj=lm2=l m1=lm2=«2 *f'l

v, « 2 . . . Vj w2

~ Z Z amim2 V*1 _ A*2 — ̂ 2m2 )+ Z Z a»«i»i2 v"1 _ ̂ 1">1 A*2 ~ ̂ 2m2 j
m j=«j+1 m2 =1 mj =«j+1 m2=n2+1

Cross-multiplication yields:

/(■) — Z  ̂ ^ i a m1m2X l X 2 a mlm2^ 2m2 X l a m1m2 ^ lm ,  X 2 a mim2^ ' lm i ^ 2m2
m]=l m2=l 
«i n2

~  Z Z a mlm2 x i x 2 ~  a m,m2 ^ 2m2 X l ~  a mlm2 ^ 1  m, X 2 ^m ,m 2 ^ ln i !  ^ 2m2
m1=l/n2=n2+l 

V, n2
_ Z ’̂ j a mim2 X \ X 2 ~  a mim2 (^ 2 m 2 X \ ~  a m]m2<̂ \ m l X 2 ^  a mxm1 ^ '\m l (^ 2 m 1 (̂ l)

mi=nj+l m2=l 
A T , W 2

Z ~~ ~ X 2 2̂m-
mi=«i+l m2=n2+l

In order to apply Theorem 9 to this system, (41) must be expressed as a system linear in 

it’s adjustable parameters and the number of parameters in the linearized system must be 

the same as in (40) which has A^+A^+ZV/'A^ adjustable parameters.

Herein lies the primary obstacle to solving this problem. Some sort of transformation 

must be performed on this equation (or some other equation suitable for representing the 

2  dimensional fuzzy system) to allow it to be described with the appropriate number of 

parameters.

A.4 Two-Dimensional Fuzzy Systems with a Min Conjunction

An alternative to the product fuzzy-AND operator is the min(*) function. Instead of (39) 

being used for the activation function, the following equation is used:

V 2 = min(/ini (*■). fm 2 (*2)) (42)
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Unlike the product case discussed above, the mint*) function does not reduce the 

denominator of the centroid calculation (33) to one. Instead, the denominator is a 

nonlinear function of xj and X2 given below.

denom = a^  + a^  + an<+ln2 + a „ i + l B 2 + 1

= min(/l«, (*1 ). fm 2 (x2 ))+ (*1 I  fln^x (X2 ))
+ min(/i„,+i O i). / 2 „ 2 (x2))+ min( / , „ i+ 1  (x,), / 2 „ 2 + 1  (x2))

A plot of this denominator function for a typical two-dimensional system is shown in 

Figure 34.

2 -h

1 .8 -

1.6 -

1 .4 -

1 .2 -

1 a  
4

Figure 34 -  Denominator of centroid calculation of 2D fuzzy system with
min(») fuzzy-AND.

The presence of this non-constant denominator term greatly complicates analysis. In 

order to simplify the system, a brief study in the feasibility of developing an alternate 

defuzzification equation that did not yield a denominator was conducted. The first case 

examined was one in which the denominator of (33) was set to one (mirroring what
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occurs with product fuzzy-AND defuzzifier discussed above). This modification resulted 

in a significant impairment in the ability of the system to model given data. A plot of the 

response of a fuzzy system with a min(«) fuzzy AND operation is shown in Figure 35 

both with and without the denominator term from the defuzzifier. The artifacts from the 

missing denominator are clearly apparent. Furthermore, the magnitude of the artifacts 

grows as min(x/, x2) gets further from zero. Essentially, this simplified system has lost its 

ability to approximate generalized systems. In order to counteract this loss, an 

examination was made as to whether an approximation could be made of these artifacts 

that would not include the complexity of the variables in the denominator.

Figure 35 -  Difference between min-fuzzy systems with and without the
denominator.

It is noted that wherever xi=d]ni orx2=d2n2, the denominator of the defuzzification 

equation (33) is one and therefore the difference between the standard and the simplified 

methods is zero. The error is at a maximum wherever both x/and x2 are equidistant from 

two adjacent breakpoints and is equal to:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

^ n , n 2+l ^ n , « 2+l ^ n , + l «2 ^ n , + l «2 ^ w ^ l / i j + l ^ ^ + l d j + l
^ r o r -  2  (4 3 )

At a point equidistant between two breakpoints:

«̂!«2 «̂!rt2+i ^«1+lrt2 Ĥl+1/12+1 9.5 (44)

Substituting (44) into (43) yields:

E r r o r ^  =  0 . 2 5 ^  +  c n|„2+! +  c„ i+1„2 +  c„ i+1„2+1) (45)

Therefore, the error in the region <7/„/<x/<<://„/+/, d2n2^ 2^d2n2+] varies from 0 where 

Xj=d!nl, xj —d;„i+1, x2=d2n2, or X2=d2n2+1 to (45) where xi=(djni+j-djni)/2 and 

X2=(d2n2+i-d2n2)/2. A model of this error is:

e m =  0 -2 5 ( C «,n2 +  C n,«2+1 +  C n,+1«2 +  C « ,+ l" 2+ l ) ( a « ,«2 +  a «i«2+ l +  <lnl + in 1 +  a n,+ ln 2+ l “  * )

This model perfectly approximates the error between the simplified model and the 

original defuzzification equation at its minimum (xi=dini, xi=dini+i, x2=d2n2, or 

X2 =d2n2+j) and at its maximum (X]=(dini+i-d]nI)/2 and x2=(d2n2+]-d2n2)/2) and is a linear 

interpolation between them. The simplified defuzzification equation resulting from 

subtracting (46) from the simplified defuzzification equation (33) modified with its 

denominator set to one) is:

y  ft |^ 2 /(|/J2 +1 ̂  / J j +1 ^*/Z|+1 rt2 +1/I2  ̂ ^  Wj+1H2 +1 ̂  Mj+1W2+1

0.25(cni„2 +cni„2+1 +cni+1„2 + c „ i + 1 „ 2 + 1  )(a n [ „ 2 + a n i „ 2 + 1  + « „ 1 + , „ 2 + «„1+i„2+i - 1 )

Expanding the product and gathering the an/n2 terms yields:

y = (o.75cnin2 -0 .25cni„2+1 -0.25c„i+1„2 -0.25c„i+1h2+1 +

( - 0 - 2 5 c „ , „ 2 +0.75cnini+l -0 .2 5 c„i+1„2 -0.25c„i+1„2+1)ani„2+1 +

( - ° - 2 5 c „ in 2  - 0.25cnn 2 + 1  +0.75c „ i + 1 „ 2 -0 .25cni+l„2+l)ani+ln2 +
(-0- 2 5cn i „ 2 -0 .25cfli„2+1 -0.25c„i+1„2 + 0.75cn i + 1 „ 2 + 1 ]af l i + l n 2 + 1  +

0.2 5(c, „ 2 + ^ n 1n2+ 1 ^ 'n l + ln2
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Substituting (42) yields:

J  = ( 0 - 7 5 c „ , „ 2 -  0.25cK „ 2 + 1 -0.25c„i+lfl2 -  0.25c ni+Ui+l )min(/llti (xx), f 2ni(x2))+

(- 0-25cni„2 + 0.75c„ _ „ 2 + 1  -  0.25c„i+1„2 -  0.25cni+1„2+1 )min(/ln| (*,), f 2tli+] (x2))+ <47) 

(-0.25c„|K2 ~0.25cni„2+1 +0.75c „ i + 1 „ 2 -0.25c„i+1„2+1)min(/lni+1( ^ ) , / 2„2(x2))+ 

(-0.25c„iIl2 -0 .25cHi„2+1 -0.25c„]+ln2 +0.75c„i+1„2 +1 )min(/1„i+1 (x1 ) , / 2 „2 +1 (x2))+ 

0.25(cB[„2 +

The arguments of the min function above always produce an affine result in both xi or x2  

as can be seen from the definitions of the component functions given in (35) and (36). 

Therefore, the results of this simplified defuzzification function provide both a reasonable 

approximation and one that is piecewise-linear.

The difference in output of the original min-inference given by equation (33) and that of 

the simplified model is shown in Figure 36.

0.4

0.2

- 0.2

-0.4

4 -4

Figure 36 -  Difference between original and simplified min-inference results.
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An interesting result is that the simplified min-inference model more closely 

approximates the product-inference defuzzifier than it does the original min-inference 

defuzzifier. The difference between the product-inference defuzzifier and the simplified 

min-inference defuzzifier is shown in Figure 37.

It is clear that the product-inference defuzzifier is more closely approximated than the 

min-inference defuzzifier. This result is applicable to this particular fuzzy system and 

further examination is required before it can be applied to fuzzy systems in general.

The code used to develop these plots is included as Appendix E.

0.05
..•■■A"

-0.05-

Figure 37 - Difference between simplified min-inference and product inference
defuzzifiers
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A. 5 Implications and Applications

The most important revelation from the previous section is that the 2 dimensional fuzzy 

system can be constructed to yield a piecewise linear error function. This allows 

application of Theorem 9 to prove that the error must occur at one of a finite number 

points in the solution space.

Rewriting the equation for a 2-dimensional PLA given in (47) by substituting (35) and

(36) yields:

f  ( X m l ’ X m 2 ,’ d i „ l ->dX n + l, d 2n  ̂ i d 2n^ + l , C n^  ,C „ 1+In2 ,  c  ni„2+\ > C n i+\n2+\ )  —

(0 -7 5 c «,«2 - 0 . 2 5 c „,„2+i - 0 . 2 5 c „i+1„2 -0.25c„i+1„2+1)mi 

( - 0 -2 5 c n,«2 +0.75cn i „ 2 + 1  - 0 . 2 5 c „i+1„2 -0 .25cni+1„2+1)

X1 ~ d X n,

d,
x 2 d 2 „2

 ̂ lrtj+ 1 1 /t] 2 /i2 + 1

/
2  n

+

min 2 2̂ + 1

( - ° - 2 5 c nini - ° - 2 5 c ntn1+i + 0.75cni+lll2 -  0.25c ni+lri2+x)mm

 ̂ l«i+l l«j 2 /i2 + 1 2 /i

+<3.- .1 XX 1 < +l * * 2  ^ln7

(-0.25cni„2 -0.25c„ill2+1 -0.25c„i+ln2 +0.75c„]+1„2+1) 

0.25(c„,„2 +

min

y d\n{+\ l̂n, ^ 2 n2+l ^ 2 n2 y

*1 "I" ^ln,+l _  -^2 ^2«2+l

1/ij+l 1/ij 2 /i2 + 1 2 /i

+

+
!2 y

The error function for a two dimensional PLA is defined as:

e =
in

I
m=l

V, V2
y  m ^  ^  f  (Xml ’ Xm2 ’ ^lnx ’ ^ln,+l ’ ^ 2n2 » ^ 2«2+ l» C/i[n2 ’ ^n^lnj ’ <'n,«2+l ’ <'n1+l«2+1 ^

=1 /!-)=!«l=l «2
( 4 8 )

where/ ( *)is the function given in (47) substituting (35) and (36).

Extending the techniques developed in Chapter 5 to work on higher order system requires 

further research. Those techniques took advantage of particular structures of the solution, 

most notably the intersecting hyperplanes to develop the descent algorithm. The 2- 

dimensional case also results in intersecting hyperplanes, but also has a series of 

hypersegments that are not accounted for in the original descent algorithm. Further work
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is required to resolve this and develop a workable algorithm for this and higher-order 

cases.

A. 6 Conclusion

This Chapter demonstrated that 2 dimensional fuzzy system can be expressed in a manner 

such that a piecewise linear error function can be developed. This opens this class of 

fuzzy systems to analysis using the tools developed in Chapter 4. However, applying 

these systems to practical problems still requires significant further research.
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APPENDIX B MATLAB PROGRAM TO OPTIMALLY DETERMINE 

A PLA FROM DATA

x= -5:2:5;
y=sin(x)+sin(2*x); 
y=(x-1) .a2 ; 
y = [5 3 1 1 1 3] ;
y= [16 10 4 6 8 14] ;
x= -3:2:5;
y= [3 1 1 1 4]% +.1* randn(1, length(x) ) ;
N=2; %N is number of breaks
M=length(x); %M is the number of data points 
A=[];
B= [] ;
%Form hyperplanes bounding linear regions 
for n=l:N

Apre=zeros(1, 2*(n-l));
Apost=zeros(1, 2*(N-n)); 
for m=l:M

A=[A; 0 0 Apre x(m) -1 Apost];
B=[B; 0];

end
end
signs= [] ; 
for n=l:2*N

signs=[signs; de2bi(n-l,N)];
end
tempsigns= [] ; 
for nl=l:N 

for n2=l:2
tempsigns=[tempsigns signs(:,nl)];

end
end
signs=tempsigns; 
signs=2*signs-1; 
signs=[ones(2*N,2) signs]; 
for m=l:M

tempx=[x(m) 1] ; 
for n=l:N

tempx=[tempx x(m) -1];
end
tempxm=[]; 
for n=l:2AN

tempxm=[tempxm; tempx];
end
A=[A; tempxm.*signs];
B=[B; ones(2*N,1)*y(m)];

end

%Solve for vertices 
NumBounds=length(A)
NumVertices=nchoosek(NumBounds,N*2+2)
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eqs=nchoosek(1:NumBounds,N*2+2) ;
BestErr=lelOO;
SingSolns=0;
NonFeasibleSolns=0;
BadlyOrderedSolns=0; 
for k=l:length(eqs) 

tempeqs=eqs(k,:);
TempA=[];
TempB=[];
for kl=l:length(tempeqs)

TempA=[TempA; A(tempeqs(kl),:)];
TempB=[TempB; B(tempeqs(kl))];

end
if det(TempA)==0

SingSolns=SingSolns+l; 
else

soln=inv(TempA)*TempB; 
a= [] ; 
b= [] ;
for n=l:N+l 

if n==l
a0=soln(1); 
c=soln(2); 

else
b= [b soln(2*n)] ; 
a=[a soln(2*n-l)];

end
end
if min(abs(a))>0 

al=a(1:N-1); 
a2=a(2:N);
if min(a2-al)<0 & N>1

BadlyOrderedSolns=BadlyOrderedSolns+l; 
else

d=b./a; 
err=0; 
for m=l:M

temperr=aO*x(m)+c; 
for n=l:N

temperr=temperr+a(n)*abs(x(m)-d(n));
end
err=err+abs(temperr-y(m));

end
if err<BestErr

[tempeqs a d c err]
BestErr=err;
Besta0=a0;
Bestc=c;
Besta=a;
Bestd=d;

end
end

else
NonFeasibleSolns=NonFeasibleSolns+l;

end
end

end
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BestaO
Bestc
Besta
Bestd
BestErr
%Percentage of poor solns
(SingSolns+NonFeasibleSolns+BadlyOrderedSolns)/length(eqs) 
xt= [] ; 
yt= [] ;
for xtemp=x(1):.1:x(end)

ytemp=BestaO*xtemp+Bestc; 
for n=l:N

ytemp=ytemp+Besta(n)*abs(xtemp-Bestd(n));
end
xt=[xt xtemp]; 
yt=[yt ytemp];

end
plot(x,y,'r 1,xt,yt,'b')
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APPENDIX C MATLAB PROGRAM TO TRAIN A NEURAL 

NETWORK TO A GIVEN SYSTEM

% Set up the problem 
clear; 
nntwarn off 
load xordata 
Hidden = 7;

% Initialize the network
[wl,bl,w2,b2] = initff(x,Hidden,'t a n s i a y , 'purelin');

% Train the network using Levenburg-Marquardt
df =10; % Frequency of progress displays (in epochs).
me = 1000; % Maximum number of epochs to train.
eg = 0.01; % Sum-squared error goal.
tp = [df me eg];
[wl,bl,w2,b2,ep,tr] = trainlm(wl,bl,'tansig!,w2,b2,'purelin',x,y,tp);

% Plot the results 
PlotNNXor
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APPENDIX D MATLAB PROGRAM TO TRAIN A PLA-LIKE 

FUZZY SYSTEM TO GIVEN DATA

% Initialize the data
%x=0:.25:4; % Non-noisy xor
%y=x>3 | x<1;
hold off
load xordata
N=4; %N is number of breaks
M=length(x); %M is the number of data ooints 
A=[];
B=[] ;
ErrHist= [] ;
ElapsedFlops= [];
ElapsedSecs= [] ; 
flops (0);

%Form hyperplanes bounding linear regions 
for n=l:N

Apre=zeros (1, 2*(n-l));
Apost=zeros(1, 2 * (N-n)); 
for m=l:M

A=[A; 0 0 Apre x(m) -1 Apost];
B=[B; 0];

end
end
signs= [] ; 
for n=l:2^N

signs=[signs; de2bi(n-l,N)];
end
tempsigns=[]; 
for nl=l:N 

for n2=l:2
tempsigns=[tempsigns signs(:,nl)];

end
end
signs=tempsigns ; 
signs=2*signs-l; 
signs=[ones(2^N,2) signs]; 
for m=l:M

tempx=[x(m) 1]; 
for n=l:N

tempx=[tempx x(m) -1];
end
tempxm= [] ; 
for n=l:2^N

tempxm=[tempxm; tempx];
end
A=[A; tempxm.*signs];
B=[B; ones(2AN,1)*y(m)];

end
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%Find initial feasible solution 
NumBounds=length(A)
Dimension=N*2+2;
NumVertices=nchoosek(NumBounds,Dimension) 
while Dimension>0

tempeqs=fix(rand([1 Dimension] )*NumBounds)+1;
TempA= [] ;
TempB= [] ;
for kl=l:length(tempeqs)

TempA=[TempA; A(tempeqs(kl), :) ] ;
TempB= [TempB; B (tempeqs (kl) ) ] ,-

end
[aO, c, a, d, success]=solvesystem(TempA, TempB, N); 
if success>0 

break
end

end

% Find the best aO, c, a, and d
BestErr=CalcGeneralizedError(aO, c, a, d, x, y);
BreakSet=0;
NewEqs=l:NumBounds;
NewEqs=NewEqs';
Templ=ones([NumBounds 1] ) ;
BestEqsNew=tempeqs;
Passes=0;
StartTime=now; 
flops(0); 
while BreakSet==0 

Passes=Passes+l;
BreakSet=l;
ImprovedError=0;
NumEqs=rows(BestEqsNew); 
if NumEqs>5

TempEqs=BestEqsNew(1,:); 
for EqNum=2:5

TempEqs=[TempEqs; BestEqsNew((EqNum-1)*round(NumEqs/5),:)];
end
BestEqsNew=TempEqs;
NumEqs=5;

end
[length(ErrHist) BestErr rows(BestEqsNew)] 
if BestErr<inf

ErrHist=[ErrHist; BestErr];
end
BestEqs=BestEqsNew; 
for EqNum=l:NumEqs

BestEqsl=BestEqs(EqNum,:);
TempEqsExtended=Templ*BestEqsl; 
for dim=l:Dimension

TempNewEqs=[TempEqsExtended(:,1:dim-l) NewEqs 
TempEqsExtended(:,dim+1:end)];

for eqnum=l:NumBounds
tempeqs=TempNewEqs(eqnum,:); 
if sum(tempeqs~=BestEqsl)>0 

TempA=[];
TempB= [] ;
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for kl=l:length(tempeqs)
TempA=[TempA; A(tempeqs(kl), : ) ] ;
TempB=[TempB; B(tempeqs(kl))];

end
[aO, c, a, d, success]=solvesystem(TempA, TempB, N ) ; 
if success>0

TempErr=CalcGeneralizedError(aO, c, a, d, x, y); 
if TempErr<BestErr 

BreakSet=0;
ImprovedError=l;
BestEqsNew=tempeqs;
BestErr=TempErr;
Besta0=a0;
Bestc=c;
Besta=a;
Bestd=d;

end
if TempErr>BestErr & TempErr<BestErr*l.00001 %Handle

error plateaus
Duplicate=0;
for k=l:rows(BestEqsNew)

if sum(tempeqs~=BestEqsNew(k,:))==0 
Duplicate=l;

end
end
if Duplicate==0 

BreakSet=0;
BestEqsNew=[BestEqsNew; tempeqs];

end
end

end
end

end
end
plotxor 
pause(1)

end
ElapsedFlops=[ElapsedFlops flops];
ElapsedSecs=[ElapsedSecs (now-StartTime)*86400];

end

% Gather the data and plot
ElapsedTime=(now-StartTime)*86400
SecsPerIteration=ElapsedTime/length(ErrHist)
BestaO
Bestc
Besta
Bestd
BestErr

PlotXor
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APPENDIX E MATLAB PROGRAM TO COMPARE DIFFERENT 2- 

DIMEN SION AL FUZZY SYSTEM IMPLEMENTATIONS

dl=[-3 - 1 0  2 3]; %x~axis breakpoints 
d2= [-4 -1 0 3 4] ; %y-axis breakpoints 
c =  [-4 -2 -1 -.5 0; loutput fuzzy singletons 

- 3 - 1  -.5 0 .5;
-2 -.5 0 .5 2;
-.5 0 .5 1 3;
0 . 5 1 2 4 ] ;

Step=. 05 ; 
xl=-3:step:3; 
x2=-4:step:4;
%Prepare the activation functions for xl 
for kl=l:length(xl) 

nl = l ;
while xl(kl)>dl(nl) & nl<length(dl)-1 

nl=nl+l;
end
if xl(kl)<dl(nl) 

nl=nl-1;
end
Nl(kl)=nl;
all(kl)= (xl(kl)-dl(nl))/(dl(nl+1)-dl(nl)); 
al2 (kl) = (dl (nl+1) -xl (kl) ) / (dl (nl + 1) -dl (nl) ) ;

end
%Prepare the activation functions for x2 
for k2=l:length(x2) 

n2 = l;
while x2(k2)>d2(n2) & n2<length(d2)-1 

n2=n2+l;
end
if x2 (k2) <d2 (n2) 

n2 =n2-1;
end
N2(k2)=n2 ;
a21 (k2) = (x2 (k2) -d2 (n2) ) / (d2 (n2 + l) -d2 (n2) ) ; 
a22 (k2) = (d2 (n2 + l) -x2 (k2) ) / (d2 (n2 + l) -d2 (n2) ) ;

end
%Defuzzify to find y using 4 different methods.
% y l : min-conjunction with centroidal defuzzification 
yl=sum (c___i j *min (al_i , a2__j ) ) /sum (min (al_i, a2__j ) )
% y 2 : min-conjunction with simplified centroidal defuzzification (no 
denominator) y2=sum (c__i j *min (al_i, a2___j ) )
% y3: product-conjunction with centroidal defuzzification 
y3=sum (c_i j *al_i*a2__j ) ) /sum (al_i*a2__j )
% y4: min-conjunction with adjusted simplified centroidal 
defuzzification y4=sum(c_ij*min(al i , a2 j ) ) —
. 2 5*sum (c__i j ) *sum (min (al_i, a2 J  ) ) 
for kl=l;length(xl) 

for k2=l:length(x2) 
nl=Nl(kl); 
n2=N2(k2);
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y2(kl,k2)=c(nl,n2)*min(al2(kl) ,a22(k2))+c(nl + 1,n2)*min(all(kl) ,a22(k2) ) 
+c(nl,n2+l)*min(al2(kl),a21(k2))+c(nl+1,n2+l)*min(all(kl),a21(k2));

y3(kl, k2)=c(nl,n2)*al2(kl)*a22(k2)+c(nl + l,n2)*all(kl)*a22 (k2)+c (nl,n2 + l 
)*al2(kl)*a21(k2)+c(nl+l,n2+l)*all(kl)*a21(k2);

actsum(kl,k2)=min(all(kl),a21(k2))+min(al2(kl),a21(k2))+min(all(kl),a22 
(k2))+min(al2(kl),a22(k2));

adjust(kl,k2)=.25*(c(nl,n2)+c(nl+l,n2)+c(nl,n2+l)+c(nl+l,n2+l))*(actsum 
(kl,k2)-1); 

end
end
yl=y2./actsum; 
y4=y2-adjust; 
mesh(xl,x2,y3') 
xlabel('x l ') 
ylabel('x 2 ')
title('a) Plot of product-conjunction with centroid defuzz'); 
pause
mesh(xl,x2,actsum') 
xlabel('x l ') 
ylabel('x 2 ')
title('b) Plot of denominator of centroid defuzz'); 
pause
mesh(xl,x2,y l ') 
xlabel('x l ') 
ylabel('x 2 ')
title('c) Plot of min-conjunction with centroid defuzz'); 
pause
mesh(xl,x2,y2') 
xlabel('x l ') 
ylabel('x2')
title('d) Plot of min-conjunction with simplified defuzz'); 
pause
mesh(xl,x2,(yl-y2)') 
xlabel('x l ') 
ylabel('x 2 ')
title('e) Plot of difference between min-conjunction defuzz methods'); 
pause
mesh(xl,x2,-adjust1) 
xlabel('x l ') 
ylabel('x 2 ')
title('f) Plot of adjustment between defuzz methods'); 
pause
mesh(xl,x2,yl-y2-adjust') 
xlabel('x l ') 
ylabel(1x 2 ')
title('fl) Plot of difference between adjustment and error'); 
pause
mesh(xl,x2,y 4 ') 
xlabel('x l ') 
ylabel('x 2 ')
title('g) Plot of min-conjunction with simplified defuzz (adjusted)'); 
pause
mesh(xl,x2,(y3-y4)')
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xlabel(1x l ') 
ylabel(1x 2 ')
title('h) Plot of difference between adjusted method and product-
conjunction');
pause
xlabel('x l ') 
ylabel(1x 2 ') 
mesh(xl,x2,(yl-y4)')
title('i) Plot of difference between adjusted method and min- 
conjunction1 ) ;
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