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ABSTRACT

STABILITY ANALYSIS OF JUM P-LINEAR SYSTEMS 
DRIVEN BY

FINITE-STATE MACHINES W ITH MARKOVIAN INPUTS

Sudarshan S. Patilkulkarni 
Old Dominion University, 2004 
Director: Dr. W. Steven Gray

A control system with a fault recovery mechanism in the feedback loop and with 

faults occurring in a non-deterministic manner can be modeled as a class of hybrid 

systems, i.e., a dynamical system switched by a finite-state machine or an autom aton. 

W hen the plant and controller are linear, such a system can be modeled as a jump- 

linear system driven by a finite-state machine with a random input process. Such 

fault recovery mechanisms are found in flight control systems and distributed control 

systems with communication networks. In these critical applications, closed-loop 

stability of the system in the presence of fault recoveries becomes an im portant issue.

Finite-state machines as mathematical constructs are widely used by computer 

scientists to  model and analyze algorithms. In particular, fault recovery mechanisms 

th a t are implemented in hardware with logic based circuits and finite memory can 

be modeled appropriately with finite-state machines. In this thesis, m athem atical 

tools are developed to  determine the mean-square stability of a closed-loop system, 

modeled as a jump-linear system in series with a finite-state machine driven by a 

random process. The random input process is in general assumed to  be any r-th  order 

Markov process, where r  >  0. While stability tests for a jump-linear system with a
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Markovian switching rule are well known, the main contribution of the present work 

arises from the fact th a t output of a finite-state machine driven by a Markov process 

is in general not Markovian. Therefore, new stability analysis tools are provided for 

this class of systems and demonstrated through Monte Carlo simulations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



“The whole is more than the sum of its parts” - constitutive charac­

teristics of a phenomenon are not explainable from the characteristics of 

the isolated parts alone, it is also the interconnection and the interrela­

tionship. -Ludwig Von Bertalanfiy, General System Theory.
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1

CHAPTER I 

INTRODUCTION

1.1 M otivation for this Research

Fault tolerance and recovery is a wide area of research in computer engineering, 

communications and controls [45]. System stability is always a  critical concern in con­

trol systems equipped with fault tolerance and error recovery mechanisms [1,52,58]. 

The main motivation for the research presented in this thesis is the need to  perform 

stability analysis of hybrid models for closed-loop digital control systems implement­

ing an error recovery algorithm as the fault tolerant technique and subjected to mul­

tiple upsets [16]. The mathematical model in this case is a  discrete-time, jump-linear 

system driven by a finite-state machine with Markovian inputs shown in Figure 1.1.

M arkovian V(k)  t Finite-State 8(k)  , Jum p-L inear
Dynamical

System

x ( k )  t
Exosystem Machine

Figure 1.1: The hybrid model under consideration.

A more precise m athematical description of the model is as follows. A Maxkov pro­

cess v  takes on symbols from the set £ /  =  {771, 772, ,  r)M} according to  a probability 

transition m atrix II/, by convention the column sums of IT/ are assumed to  be unity.
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2

The Markov process v  in tu rn  drives the finite-state machine A4 = { £ /, £,5, E 0 , S, cj}.

The sta te  of the machine, z(k ) ,  takes on values from the set E s = {ei, e2, . . . ,  ejv},

which is simply the collection of elementary vectors ej = [0 • • • CMM) • • • 0]T. The
j-th position

next state  function <5 : E / x £,§ 1—> Eg is a mapping of the form

z ( k  + 1) =  S„{k)z(k ) ,

where each N  x N  m atrix Sn, 77 €  E /, is a deterministic transition m atrix, i.e., a 

m atrix where each column contains exactly a single one and N  — 1 zeros. The output 

function u  : E / x Eg 1—> Eo is uniquely specified by

It assigns to each pair of input and state  symbol in £ /  x Eg an output symbol from 

the set Eo =  {£1, £2, • • • > Cl}- It can be written in the form

c(k) = Tv(k)z{k),

where c(k ) is a Boolean vector corresponding to 0(k)  =  & , i.e. a vector with exactly 

a single one at ij — th  position and L — 1 zeros. Here T„(k) is a L x  N  m atrix 

with exactly a single one and L  — 1 zeros in each column. Finally, the output from 

the machine, 6(k) = u (v { k ) ,z (k ) ) ,  is used to  drive an n-dimensional jump-linear 

dynamical system

x ( k  + 1) =  A e{k)x (k ) ,  (1.1)

where A(  €  Mnxn, ||A ||| <  00 with £ e  Eo- For conciseness, this hybrid model 

consisting of a jump-linear system driven by the output process 0  of a  finite-state
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3

machine M  with Markovian input v  will be denoted throughout this thesis by the 

notation (i / , M , A , 0 ). Although this hybrid model is applicable to  a wide variety 

of applications, two particularly motivating applications of interest will be described 

next. The first application is a networked control system equipped with a recovery 

mechanism for packet loss. The second example is a digital flight controller equipped 

with a recovery system to provide reliable operation in harsh environments where elec­

tromagnetic or particle radiation may be present. Both examples illustrate situations 

where the stability of the closed-loop system is a critical issue.

1.1.1 Networked Control Systems with Packet Dropout and 

Recovery

Networked control systems (NCS) are control systems with a communication net­

work in the feedback loop. They have found applications in unm anned aerial vehicle 

control systems, autom ated highway systems and many other distributed remote con­

trol applications [49]. In a NCS, a communication network can exist between the plant 

and the controller communicating a sensor signal and between the controller and the 

plant communicating a control signal. The output from the plant sensor gets encoded 

by a quantization, compression and coding technique into packets which are trans­

m itted to  the controller. But before the controller can process the data, it must be 

decoded to  recover the sensor signal. In this process, there can be quantization error 

an d  p acket loss d u e to  ch an nel con gestion . A  sim ilar s itu a tio n  ex is ts  for th e  con tro l 

signal being sent between the controller and the plant. Stability of such closed-loop

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

systems, assuming a deterministic rate of packet losses, have been studied by various 

researchers either by modeling them  as asynchronous dynamical systems [19] or as 

linearized hybrid systems [58].

r(k) +

Recovery System

yM) Decoder

Encoder

D/A

Controller

Quantizer

Channel
with

Packet
Dropout

Plant

Figure 1.2: Block diagram of a networked control system 

with packet dropout and recovery in the feedback path.

Suppose a network exists only between the plant sending the sensor signal and 

the controller as shown in Figure 1.1.1. Assume packets containing an encoded form 

of the sensor signal axe being dropped and the drop process is Markovian in nature. 

System stability in this case has been analyzed by introducing a Markovian jump- 

linear model [49,56]. In [33] an optimal controller was designed to  compensate for 

the packet losses under similar assumptions. Suppose the last known good packet is 

recovered from a buffer, using some typical recovery techniques like those in [25]. A 

simple example of one such recovery technique is shown in Figure 1.1.1. Here the 

packet drop process is modeled by the process v ,  where u(k)  =  A  denotes no loss of 

p ack ets (ab sen ce) an d  i s ( k )  =  E  d en otes  a p acket loss (ex isten ce). A s  lon g  as th ere  

is no loss of packets, the nominal control law is in operation and the closed-system
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system dynamics x (k )  are governed by the transition m atrix A 0. However, if there 

is a packet drop, the system enters a recovery mode, and a new control law comes 

into operation. In this situation, closed-loop system dynamics x ( k ) are now governed 

by the transition m atrix A%. Once there are no further packet losses, the system 

resumes its nominal operation. Thus the closed-loop system switches back and forth 

between two system param eters A 0 and A\  based on the packet loss process u  being 

under no loss (A) or loss (E ). Such a system behavior is known to be a jump- 

linear system. It is possible th a t although system param eter Ao is always stable 

during normal operation, the system param eter A i  is more likely to  be unstable 

during the packet loss and recovery. Hence, the knowledge of stability conditions 

for this system becomes critical. In case of a more complex recovery technique and 

Markovian characteristics for the packet loss process u,  the overall system behavior 

can be modeled as a jump-linear system driven by the finite-state machine with 

Markovian inputs, the one shown in Figure 1.1, stability analysis problem for which 

this thesis is specifically concerned.

1.1.2 Digital Flight Control Systems with Upset and Recov­

ery

Digital fly-by-wire aircraft with safety critical computer systems are required to 

operate reliably in harsh environments. The most commonly used fault-tolerant com­

p u tin g  tech n iq u es like tr ip le  m odu lar redundancy, error correctin g  co d es an d  o th ­

ers can help achieve this. These fault-tolerant systems, however, may not be suit-
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V(*) = E

V ( k )  = E

Recovery Mode
X ( k  + 1 )  =  A tX ( k )

N orm al Mode
J C ( *  + 1 )  =  A 0J C ( * )

Figure 1.3: A simple example illustrating recovery of 

packet loss in a NCS.

able to  handle correlated or common-mode faults like those produced for example 

in electromagnetic environments [18,40]. The design, validation, and verification of 

fault-tolerant systems th a t are subjected to  common-mode faults is an active area of 

research [2,22,32], Recently, more sophisticated techniques for error recovery using 

rollback and roll forward have been proposed in the fault tolerant community [45]. 

A technique th a t is being investigated to  address transient or soft common-mode 

fault is error recovery with multiple dual-lock-step processors together with new fault 

tolerant architectures and communication subsystems [21,22], An example is NASA 

Langley Research Center’s Recoverable Computer System (RCS), which is being used 

to  study recovery from transient faults introduced by high intensity electromagnetic 

radiation [35,36] and atmospheric neutrons [17]. As depicted in Figure 1.5, two mi­

croprocessors with their own memory, expected to be carrying the same data  are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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A/DD/A

Upset
G enerator

Plant

Recovery System

yc(k) P
Controller

Figure 1.4: Block diagram of a closed-loop digital flight- 

control system with error recovery in the feedback path.

executed and compared at every clock cycle. The error recovery technique imple-

Recovery
Trigger

CPU2CPUtMemory MemoryFault
Monitor

Processor
State
Data

Processor
State
Data

Protected Memory

Figure 1.5: Architecture of duplex fault control system

mented on the RCS is a variation of rollback recovery; it has the following steps: 

checkpointing, fault-tolerant comparison, rollback, and retry [43,46]. During a  check­

point, the state  of each microprocessor module is stored. W hen an upset is detected, 

rollback of both microprocessor modules to  a previous checkpoint takes place, and 

then the system is allowed to  proceed with normal execution. But once the execution 

of the normal control program is interrupted, the execution of a different control law
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takes place, one th a t has significantly different dynamics and is on a tim e scale th a t 

can alter the overall closed-loop dynamics of the flight control system. A stability 

analysis procedure for such a closed-loop system has been presented in [13-15,52] un­

der simplifying assumptions such as no new upset can occur during an active recovery 

process. This model is accurate for low radiation levels, but begins to  breakdown as 

the upset probability increases. The essential lim itation in this existing approach is 

th a t the jump-linear model employed does not perm it complex recovery algorithms 

to be easily encoded into the model’s structure.

The new class of hybrid model shown in Figure 1.1 and introduced in [16] can 

capture the essential behavior of a closed-loop digital control system implemented 

on an RCS to handle multiple upsets. The finite-state Markov process is used to 

characterize the upset generator which is supplying the random external disturbances 

to the control system. Typically, from the recovery system’s point of view, there are 

only two possible states: an upset is absent (A) or one exists (E). Upset statistics 

are completely determined by the transition probabilities and II£ |£ , which are 

assumed to  be known. In general, the upset generator can have more than  two states.

The finite-state machine models the recovery algorithms. Figure 1.6 shows a 

four state  recovery algorithm which is particularly well suited for persistent upset 

conditions. As long as an upset is absent the controller stays in the Normal (No) 

Mode and executes the nominal control law which produces the closed-loop dynamical 

system (A No) B Noj Cjvo)- But once an upset condition is detected, a rollback procedure 

is engaged. In the Reload (Rd) Mode the current value of the control is frozen 

in tim e and the system remains in this mode for N iu  time samples to  model the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1.6: A rollback recovery algorithm to handle persistent upsets.

delay encountered while the computer memory is reloaded with the last known good 

values stored in the checkpointing memory x c(k). Next, the system proceeds to  the 

Release (Rs)  Mode, where the last known good state  values are actually released 

into the control state  vaxiables. If no upset condition is present then at the next 

tim e instant, the execution of the nominal control law is resumed. But if an upset 

condition is detected, then the reload mode is re-entered since the current released 

state  values could have been corrupted. To prevent an unacceptably long release- 

reload loop, an Abort (Ab) Mode is available. It is entered only after N r s successive 

visits to the Release Mode. This fail-safe Abort Mode produces a penalty, however, 

by introducing N^b additional units of delay in the feedback path  before normal 

execution is restored. In general the to tal number of states in the finite-state machine 

is N  = l+(Nj{,i+l)NR3+NAb■ The overall effect of the recovery algorithm as a  filter for 

the control signals is shown in Figure 1.1.2 for the case where the ideal control signal
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Figure 1.7: A sinusoid filtered by rollback recovery 

where N Rs =  2, N Ab = 5, 11^^ =  0.6, and H.e \e  =  0.5.

is a sinusoid. While the persistent upset condition introduces significant distortion 

to  the signal, in many cases the slower time constants of the plant will low-pass filter 

the high frequency signal components introduced by the recovery algorithm. The 

open-loop system is represented as a discrete-time dynamical system

xp(k + l)  = A px p(k) +  B pup(k), xp(0) 

yP(k) CpXp{k).

Likewise, the nominal control law is assumed to  be realizable as a dynamical system 

with realization (A c, B c,C c). The jump-linear dynamical system is formed using the 

closed-loop models derived from the actions on the control signal in each recovery 

state. Hence, the state  equations of the closed-loop dynamical system are switched 

through the set of A  matrices: {Am,, A m , A Rs, A m }- It is the stability conditions 

this jump-linear dynamical system which is the main concern of this thesis.
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1.2 Literature R eview

The study and analysis of models involving an interconnection of a finite-state 

machine (finite autom ata) with a dynamical system having an uncountable infinite 

state space comes under the broad area of theory of hybrid systems. In general, the 

dynamical system component with the infinite state  space can be discrete or contin­

uous, linear or non-linear and deterministic or stochastic. Hybrid dynamical systems 

have found direct application in manufacturing, power, communication and transport 

systems [48]. A basic hybrid framework of interconnection for the interconnection of 

autom ata and linear systems was suggested by Edwardo Sontag in 1995 [51]. There 

a hybrid system assumed the form

X+ =  A qX  +  B qU 

q+ = 6(q ,h(x ,u)),  (1 .2 )

where x  is the state  of the dynamical system, q is the state  of the finite-state au­

tom aton, u  is the external input, h is a function which maps the external input and 

the sta te  of the dynamical system to a  symbol, S is the state  transition function for 

the autom aton and '+ ' denotes the evolution of the system in either continuous or 

discrete time. Sontag suggested this piecewise linear system formalism in a deter­

ministic setting and showed how several control problems can be solved with this 

formalism using tools from piecewise linear algebra. Since then the theory of hybrid 

systems has evolved in several directions. Stability of hybrid systems under deter­

ministic conditions has been studied by [6 ,57]. The class of hybrid systems where the 

sta te  evolution of the autom ata is coupled with the state evolution of a stochastic
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dynamical system (described by either a stochastic differential or difference equation) 

has been studied by various researchers including Hespanha [20], Hu et al. [24] and 

Tejada et al. [53].

The research in this thesis mainly focuses on the stability of class of the class of 

jump-linear systems whose switching rule is governed by the output of a  finite-state 

machine whose input is a Markovian random process. The hybrid model framework 

presented here is distinct from th a t given by the equation (1 .2 ) and the systems 

in [20,24,53] in the sense th a t the state evolution of the finite-state machine does not 

depend on the state  evolution of the jump-linear dynamical system, but only on its 

own sta te  and the external Markov input.

Jump-linear systems as a class of hybrid systems has been an active area of re­

search for several decades. The jump-lineax as model has found application in the 

areas of control ( power systems [55], tracking systems [39]) and communication [56]. 

The stability of jump-linear systems driven by Markov processes has been studied 

extensively by many researchers [8,27,42], Lyapunov based stability tests for jum p- 

linear systems whose switching rules are governed by independent identically dis­

tributed (also known as multinomial) processes and time inhomogeneous Markov 

processes appears in [10 , 11].

W hen a jump-linear system is driven by the output of a finite-state machine with 

Markovian input process, the output process of the finite-state machines is in general 

not a  Markov process. It belongs to  the more general class of random processes 

known as linear dependent processes [5,26]. Therefore the stability tests developed 

by various researchers for Markovian jump-linear systems cannot be directly applied.
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In addition, stability criteria for jump-linear systems whose switching rule is governed 

by linear dependent processes has not been explored. This thesis hence provides 

the stability conditions for jump-linear systems driven by the output of finite-state 

machines with i.i.d. and higher order Markov inputs.

1.3 Problem  Statem ent

The main research goals of this thesis are the following:

1. To characterize two random processes generated by a  finite-state machine 

driven by a Markov process of order r > 0. The random processes consid­

ered are: (i/, z )  resulting from the cross-product of input process and the state  

process from the given finite-state machine and, z ,  the state  process of the 

equivalent unifilar type finite-state machine of the given finite-state machine.

2. To develop necessary and sufficient conditions for the mean-square stability 

of the hybrid model under consideration, {v ,M .,A ,Q ).  More specifically, the 

hybrid model considered is the jump-linear system driven by minimal finite- 

sta te  machine th a t is of

(a) Moore type with an isomorphic state  to  output map

(b) Mealy type with an isomorphic state to  output map

(c) Moore or Mealy type with a non-isomorphic state  to  output map

(d) Unifilar type

(e) Non-unifilar type

and it is driven by a Markovian process order r  >  0, i.e., a  Markov process
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with an

(a) independent identical distribution (i.i.d. ) (r =  0 )

(b) first-order distribution (r =  1)

(c) higher order distribution (r >  1).

3. To test and validate the necessary and sufficient conditions for mean-square 

stability of the model on several examples using Monte Carlo type simulations.

1.4 Thesis Overview

The thesis is organized as follows. In Chapter 2, after a preliminary introduction 

to finite-state machines, Markov processes and stochastic matrices, the two random 

processes: (iz, z )  and z  are characterized. In Chapter 3, following appropriate defini­

tions of stability for jump-linear systems, conditions for the mean-square stability of 

the model ( is ,A 4 ,A ,0 )  are developed. The main stability results of Chapter 3 focus 

initially on the special case of a Moore type finite-state machine with an isomorphic 

s tate  to  output mapping, th a t is, each state  in Eg has a corresponding unique output 

symbol in £ 0 , specifically, L = N , uj(r), e,) =  u(ej) = £j for j  =  1 , . . . ,  N , TU(k) =  T  

and Au(ni,ej) =  In the later sections of Chapter 3, these results are extended to 

the more general case of non-isomorphic state to  output mapping and Mealy type 

finite-state machines. Mean-square stability of such models are further characterized 

by the Lyapunov exponent method. A brief discussion concerning numerical and com­

putational issues regarding the tests for mean-square stability conditions developed 

for {u, M , A , 9 )  is also provided. In Chapter 4, the theoretical results are demon-
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strated  by simulating several simple examples of closed-loop systems with recovery 

algorithms. In the final chapter, the main conclusions from this research are presented 

along with a discussion about the directions for future research.
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CHAPTER II 

THEORY OF FINITE-STATE MACHINES W ITH  

MARKOVIAN INPUTS

In this chapter, the class of finite-state machines used to model recovery algorithms 

is introduced. Elements of theory of Markov processes and stochastic matrices rele­

vant for our problem is briefly discussed. It is well known th a t Markov chains and 

finite-state machines with random input process are closely connected m athem ati­

cal entities [9,26,41], It is also known th a t the output of a finite-state machine, 0 , 

is in general not a Markov process. Instead, it belongs to  a more general class of 

random processes known as linearly dependent processes [26]. But it is possible to 

characterize certain random processes associated with the finite-state machines with 

Markovian inputs as Markovian. Such a characterization is essential for the stability 

analysis purpose of the system (v, A4, A, 0), and hence forms the main content of this 

chapter.

This chapter is organized in the following manner. In Section 2.1, the formal 

definition of a finite-state machine is provided, along with other relevant term s and 

concepts. In Section 2.2, the theory for discrete-time, finite-state Markov chains and 

the theory of stochastic matrices relevant for the problem under consideration are 

described. In Section 2.3 and 2.4, two im portant random processes associated with 

finite-state machines with Markovian inputs are introduced. It is shown th a t the 

joint processes of input and state of every finite-state machine and the state  process
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of class of finite-state machines known as unifilar type are in fact always Markovian.

2.1 Introduction to  the Theory of F in ite-S tate M a­

chines

In this section, definitions and terms from the finite-state machine theory will be 

introduced. Distinction will be made between Mealy type and Moore type machines, 

as well as, unifilar and non-unifilar type machines. A key result, useful in the stability 

analysis is the procedure to  derive a unifilar type finite-state machine from a given 

non-unifilar machine. Most of the discussion here is based on [5,31]. An excellent 

description of the algebraic approach to  the theory of finite-state machine can be 

found in [23,28].

A Mealy type finite-state machine is a five-tuple M. = { £ / ,£ s ,£ o ,< W } i where 

£ /  =  {771,772> - - • > Vm }  is the finite set of input symbols, £ $  =  { e i ,  e 2 , . . . ,  e n }  is the set 

of states, S o  =  {£i,£2> . . .  , £ l} is the set of output symbols, <5 : £ /  x £ 5  t—> £ 5 is the 

next sta te  map, and u  : £ ;  x  £ j  h  £ c  is the output map. A Moore type finite-state 

machine is the special case where the output function is u  : £ s  1—> So- Every Moore 

machine can be represented as a Mealy machine by assigning the output symbol in 

a m anner independent of the current input symbol. The following definitions are 

fundamental.

D e fin itio n  2 .1 .1 . A Moore type finite-state machine A i  = (£ /, £ 5, £ o 5 d,u) is said 

to have an isomorphic state to output mapping, i f  L = N and uj(ej) 1—> Ve  ̂ €

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

Eg and G E 0 . Similarly, a Mealy type finite-state machine is said to have an

isomorphic state to output mapping, i f  L  = N and u>{q,ej) >—► £j, Vr? £  E /, Vej G 

Eg, and G E<> Otherwise the mapping is said to be non-isomorphic.

Definition 2.1.2. [5] A  finite-state machine is completely specified, i f  fo r  every 

pair (rji,ej) g E / X  Eg, t/iere exists a next state ek G Eg such that 8(i]i,ej) =  e*. and 

/o r  eac/i state Cj £  Eg, f/iere exists an output £k G Eo sac/i that w(e,j) = £fe.

Definition 2.1.3. [5] Let J  be an arbitrary sequence of input symbols. Let Wj be 

the sequence of output symbols generated by J  with e, £  Eg as the initial condition. 

Then the two initial states ei,ej £  Eg are said to be equivalent, denoted as e* =  Cj, 

i f  fo r  all possible values o f input sequence J , it follows that W, =  W j.

The following lemma is a consequence of Definition 2.1.3.

Lemma 2.1.1. [5] The set of all equivalent states form  an equivalent class Ci, and 

the set o f equivalent classes form s a partition o f the state space Eg, i.e., (J4 Ci = Eg 

and Ci f]Cj  = 0, Vi, j .

Definition 2.1.4. [5] A finite-state machine is minimal, i f  every equivalent class 

Ci contains only one state e .̂

Let Ji be a  sequence of input symbols of length I, and A {Ji,6j) be the state  

transition function with initial state  ej.

D e fin itio n  2 .1 .5 . [5] A finite-state machine is s tro n g ly  connected , i f  fo r  any pair 

of states Cj, ek £  Eg there exists at least one input sequence Ji such that A (J;, ej) =  ek .
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D e fin itio n  2 .1 .6 . [5] Consider two finite-state machines M i  =  { £ /, Eg, S o , 

and M2 = {S/, Er , S0 , ^2,^2}- Let Ai(J/, ef), A 2(./;, f j )  be the respective transition 

functions o f the machines M \  and M 2 ■ The machines M i  and M 2 are said to 

be equivalent, i f  fo r  each state e* G S,§ there exists a state f j  G S t  such that 

A 1 (J;, Ci) =  A 2(J;, f j )  and, conversely, fo r  each state / ,  G St  there exists a state 

ej G S s such that A2(Jf,/i) = A 1(J;,eJ).

D e fin itio n  2 .1 .7 . [37] A finite-state machine M  =  (S /, E 5 , S o , 6, 0 ) is unifilar i f  

fo r  any fixed state em G E s, 8( r j i , em ) ^  em) whenever rji 7  ̂ rjj, otherwise, the 

finite-state machine is said to be non-unifilar.

T h e o re m  2 .1 .1 . Let M  =  (E /, Eg, Eo, <5, w) be an arbitrary non-unifilar finite-state  

machine. For any such finite-state machine M ,  there always exists a unifilar finite- 

state machine M  =  (E /, E 5 , Eo, d, u ) which is equivalent.

Proof: The proof is constructive and it is applicable to  both the cases of isomorphic

sta te  to  output mapping and non-isomorphic state  to  output mapping. The state  

transition and output mappings are assigned to  preserve the input-output mapping 

in order to produce an equivalent machine. Since M  is non-unifilar, there exists a 

pair of inputs symbols 17* and rjj and machine states e m and e; such th a t 6(rji, em ) — 

6( r j j , e m ) =  e t . Therefore, augment the machine’s state  space, E 5 , by replacing the 

sta te  ei with new states e;t and e*r  Define a corresponding transition map S, which 

is identical to  6 except now: S(rji, em ) =  e(t, 6(rjj, e m ) =  e(j, and <5(77, ejJ =  S(rj, e t j ) — 

8(rj, e[)  for all input symbols rj. Similarly, redefine the output function Cj to  be identical 

to  u  except a t the old state, ui(em ) =  u ( e m ) and at the new state  define u>(eit ) =
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(j(e^) =  uj(ei), so th a t the input and output relation is preserved. It is clear th a t 

the states and output symbols of the new machine can be re-indexed by the integers 

1 , 2 , . . . ,  iV + l, and the whole process above repeated if the new machine is not unifilar. 

Since the number of input symbols and machine states is finite, this procedure need 

only be repeated a finite number of times before a unifilar machine is produced. ■

2.2 Introduction to  D iscrete-T im e M arkov Processes  

and Stochastic M atrices

In this section, a brief description of the theory of homogeneous, discrete-time, 

finite-state Markov processes, Markov chains and stochastic matrices is given. Except 

where indicated, most of the presentation is based on [5,30,50].

Let (Q, F ,  P)  be the underlying probability space, where Q is the sample space,

J- is a <7-algebra on Q, and P  is a probability measure. At each tim e instance of 

k, u(k)  is a discrete random variable which takes on values Xj  e  0,1 < j  < n .  A 

homogeneous, discrete-time, finite-state r-th  order Markov process v  is a  random 

process which satisfies the property

P{ u( k )  = Xj\t/(k -  1) =  xh , v { k  -  2) =  x h , . . . ,  i/(0) =  xjk}

= P { v ( k )  =  x h \u(k  -  1) =  xh , u ( k  -  2) =  xh , . . . ,  i/ ( k - r )  = x jr},

for any 1 <  r < oo.

For an r-th  order Markov process v , consider a t each instance k, the two events 

{u(k) ,  u ( k  — 1) , . . . ,  v ( k  — r  +  1)} and { v ( k  — 1) , . . . ,  u( k  — r)}  as two consecutive
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states of another random process Ui a t instance k  and (k — 1), respectively. Thus, at

each instance k, V\(k)  £  p  x  . . .  x  Q. Then the random process tq  forms a first-order

r times
Markov process. Its transition probability can be derived in the following manner:

P { u x{k)\i/ i(k -  1)}

=  P{t / (k) ,  v ( k  -  1 ) , . . . ,  v ( k  -  r  +  l ) |i /{k  -  1), v{k  -  2 ) , . . . ,  v{k: -  r)}

_  P{u(k ) ,  u ( k  — 1) , . . . ,  u{k  — r +  1), u ( k  — r)}
P { v ( k  — 1) , . . . ,  v ( k  — r)}

=  P { u( k ) \ v ( k  — 1) , . . . ,  is(k — r)}.  (2.1)

A stochastic m atrix II is a specific class of nonnegative m atrix whose entries lie

between 0 and 1, and column sums equal 1. An entry [II] f . can be used to  denote

the transition probability from j- th  state  to i-th  state  of i ' i (k)  e  f t  x  . . . x  The

r times
following example illustrates these concepts for a second-order Markov process v.

E x a m p le  2 .2 .1 . Consider the second-order Markov process v  which takes its values 

from

£ /  =  {VuV2,rj3}-

Then the corresponding first-order Markov process takes its values from  the set 

x e 7 =  {r)im,viri2,'ni'n3,'n2Vi, m m , m m ,  w i , » , % % } •
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Using equation (2.1), its transition probability matrix has the following structure: 

P m lv m i P m \v m 2 P m \v im  0 0 0 0 0 0

0 0 0 Prji|»j2»)i Pi?i|j72»/2 P m \ m v 3  0 0 0

0 0 0 0 0 0 Prii\r)3rn Prji\V3V2 Pm\V3n3

Pv2\vim Pv2\viv2 Pn2\vi‘n3 0 0 0 0 0 0

0 0 0 Pfi 2|)j2»yi Pr]2 \T]2 T]2 Pri2\r)2T]3 0 0 0

0 0 0 0 0 0 Pt)2\V3V1 Pv 2\V3V2 Pv2\V3V3

Pv3\m m  Pv3\mv2 Pvslm rn  0 0 0 0 0 0

0 0 0 P n 3 \v 2 v i  P n 3 \v 2 n 2  P m l m ^  0 0 0

0 0 0 0 0 0 Pr)3\r}3T)i Pt)3\r}3i}2 Pri3\V3r)3

n =

□

A collection of states £  C f t  x  . . . x  Q is called an ergodic class if it has the

r times
property th a t once the Markov process enters this class it will never leave it in the 

future. The collection of states Ms, called the non-ergodic class, has the property th a t 

once the Markov process leaves this class, it never re-enters it in the future. Every 

finite-state Markov chain C contains a t least one ergodic class.

Let Di be a set of positive integers corresponding to  the state  i such th a t for only 

those integers m  G A ,  [nm]jj >  0, otherwise the quantity is zero. Then the greatest 

common divisor of all the elements of Di is called the period of the *-th sta te  and is 

denoted by d(i). All the states within the same ergodic class have the same period. 

If all the states in all the ergodic classes have period d =  1, then the chain is said to 

be aperiodic. If [ I I ] >  0 then the period of i-th  state  is 1. The following definition is
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essential.

D e fin itio n  2 .2 .1 . A finite-state Markov chain C and its transition probability matrix 

II are said to be m o n o d e s m ic  i fV  = £\ U M s, irrespective o f whether Ms is empty 

or not.

A monodesmic chain C with a non-ergodic class Ms 0 is said to  be reducible. 

There always exists a perm utation m atrix T  such th a t II can be put in the following 

canonical form:

n * R

0

In this case, the m atrix II is said to  be reducible. A monodesmic chain with Ms =  0 

is said to  be irreducible or ergodic. The m atrix II is referred to  as irreducible, and 

there always exists a positive integer m ji for each pair ( i , j )  such th a t [nmj*]jj >  0 .

D e fin itio n  2 .2 .2 . A stochastic matrix II is said to be p r i m i t i v e  i f  there exists a 

positive integer m  such that [IIm] >  0 fo r  all ( i , j ). The smallest integer m  satisfying 

this condition is called the i n d e x  o f  p r i m i t i v i t y .

An irreducible stochastic m atrix has period d =  1 if and only if it is primitive. 

The corresponding chain is called a regular chain. It is both ergodic and aperiodic. 

W hen [II] - >  0 for all ( i , j ) ,  denoted by II >  0 , II is obviously primitive with index 

of prim itivity m  = 1.

This section is concluded with a concise summary of the key results used in the 

next section. The first theorem gives eigen-structure characterizations of monodesmic 

matrices, irreducible matrices and primitive matrices. The next two theorems concern
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monodesmic stochastic matrices. They provide tests for the existence and uniqueness 

of the stationary vector of Yli/o- Corollary 2.2.2 will be used to  show th a t the condi­

tion pj >  0 is equivalent to  reachability.

T h e o re m  2 .2 .1 . Let II be a stochastic matrix. Then:

1. II is monodesmic i f  and only i f  II has a single eigenvalue at Ar =  1 [29, p. f]. 

The corresponding eigenvector q is unique to within a constant multiple [30, p. 

117].

2. II is irreducible i f  and only i f  II is monodesmic with q > 0 [30, pp. 100, 117]. 

(Here q >  0 means that every component o f q is positive.)

T h e o re m  2.2 .2 . [30, pp. 70-71, 117], I f  a stochastic matrix II is monodesmic and 

aperiodic then

lim I P  =  lim
n —► oo n —*oo

*

0 T)Ms

q, q, q, . . .  q

is a rank one matrix with rows of zeroes corresponding to the non-ergodic states and 

columns q corresponding to the unique stationary vector o f II.

C o ro lla ry  2 .2 .1 . [30, pp. 70-71] I f  a stochastic matrix II is prim itive then

lim IP
n —►oo Q, Q, Q,

where q > 0 is the unique stationary probability vector of II.
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T h e o re m  2.2 .3 . [30, pp. 100,117] I f  a stochastic matrix II is monodesmic and the 

ergodic class has period d >  1 then fo r  some 0 <  k <  1

lim ( k l  +  (1 -  k)n ) n q q . . .  q

where q is the unique stationary probability vector of II.

C o ro lla ry  2 .2 .2 . [30, p. 100] I f  a stochastic matrix  II is irreducible with period 

d > 1 then fo r  some 0 <  k  <  1

lim ( k l  +  (1 -  k)U )r' <? <7

where q >  0 is the unique stationary probability vector o f II, in which case fo r  any 

initial probability vector q0, lim„_>00(fc/ +  (1 — k)U.)nq0 — q.

2.3 Characterization of Random  Processes Gener­

ated by F inite-State M achines w ith  M arkovian  

Inputs

Two im portant types of random processes result from a finite-state machine when 

a Markovian input is applied. Each will be characterized in the following subsections. 

The first process is the cross-chain process p. It is obtained from the cross-product of 

the input process and the state process, namely (v , z ) . It takes symbols from E / x Es. 

The second process z  is obtained when the given finite-state machine is replaced by its 

equivalent unifilar type finite-state machine and driven by the original input. First,
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the notion of strongly connected finite-state machines for the deterministic input case 

is extended to  the case of Markovian inputs.

D e fin itio n  2 .3 .1 . A finite-state machine M. with Markovian input (Ei,  II j )  is said 

to be reachable i f  fo r  every initial state ej €  E s, there exists a finite sequence of 

input symbols from  E j which occurs with nonzero probability and drives the machine 

to any other state in Es.

A finite-state machine can be strongly connected under deterministic input con­

ditions, yet, it may not be reachable for certain Markovian inputs.

2.3.1 Cross-Chain of Input and State Process p — {u,z)

Given a finite-state machine M. = (E /, E s, Eo, S , u j ) ,  the Markov property of p  is 

ascertained first in the case of an independent identically distributed input process v, 

followed by the case when the input process v is Markovian of order r >  1. Finally, 

a first-order representation for the cross-chain process is provided when the input 

process v is Markovian of any order r  >  1.

T h e o re m  2.3 .1 . Consider a process p  =  (u, z ) , where v and z  are, respectively, the 

input process and state process of a finite-state machine M  = (E /, E s, Eo, A, oj) . I f  v 

is an independent identically distributed process independent o f the initial state o f the 

machine, 2 (0 ), then p  is a first-order Markov process.

Proof: Consider an event in the cr-algebra IF denoted by

{p{k),  p(k  — 1) , . . . ,  p(k  — m)},
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where r < m < k .  Precisely, this denotes the set of all outcomes th a t produce a  fixed 

but arbitrary  sequence p(k),  p(k — 1 ) , . . . ,  p(k — m). Now in the case where

z(i))  = (z ( i  + 1)), Vi =  k  — m , . . . ,  k  -  1 ,

it follows immediately th a t

P{p{k) ,  p ( k  -  1 p ( k -  to)} =  P{v( k) ,  u ( k  -  1 ) , . . . ,  v ( k  -  to), z ( k  -  to)}.

All other such events are impossible. Prom the assumption th a t u  is independent 

identically distributed and independent of z ( 0 ), it follows th a t i/ (k)  is independent 

of z ( k  — m ) for all 1 <  m  < k. Therefore,

P { p { k ) , p ( k  -  1 p ( k -  to)}

=  P{v ( k ) ,  z ( k  — to)|i^(A: — 1 ) , ,  v ( k  — m)}P{v>(k — 1 ) , . . . ,  v ( k  — to)}

=  P{ v ( k ) \ v ( k  — 1) , . . . ,  v ( k  — m ) } P { z ( k  — m) \ v ( k  — 1) , . . . ,  u{k  — m)} •

P { u ( k  — 1) , . . . ,  v ( k  — m)}

P{u(k ) ,  u ( k  — 1) , . . . ,  v ( k  — to)}
P { v ( k  — 1) , . . . ,  v ( k  — to)}

P { z ( k  — m ) , v { k  — 1) , . . . ,  u( k  — to)}. (2-2)

Using a similar argument it follows tha t

P { p( k  -  1), p(k  - 2 p ( k -  to)}

=  P{ u { k  — 1), i/(k — 2 ) , . . . ,  u{k — to), z ( k  — to)}. (2.3)

Dividing equation (2.2) by equation (2.3) gives for all 1 <  to <  k,

P{p{k) \p{k  -  1 p ( k -  m)} =  P{u( k ) \ v{k  -  1), u{k - 2 ) , . . . , u ( k -  to)}.
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However, v  is an i.i.d. process and hence for all 1 <  m  < k, the right hand side 

reduces to

P{u{k) \ v{k  — 1 ) , ,  u{k — to)} =  P{u(k)} .

Thus,

p { p ( k ) \ p ( k -  l ) , . . . , p { k - m ) }  = P { v ( k )}- 

Therefore p  is a first-order Markov process with transition probability

P{p(k) \p{k  ~  1)} =  P { ” {k)}. (2.4)

■

As an aside, note th a t p  is never an i.i.d. process since,

P { p ( k )} =  P{( u ( k ) , z ( k ) ) }

= P & W l z i t y P M k ) } ,

and v  is i.i.d.,

P{p( k ) }  = P{ u ( k ) } P { z ( k ) }

*  P M k ) } .

The following theorem characterizes the Markov property of the cross-chain pro­

cess p  — (v,  z )  when input process v  is Markovian of order r  >  1:

Theorem 2.3.2. [38] [44] Consider a process p  =  [v, z ) , where v  and z  are,

respectively, the input and state o f a finite-state machine M. = (£ /, 

u  is an r-th  order Markov process with r > 1, independent o f the initial state o f the 

machine, z ( 0), then p  is also an r-th  order Markov process.
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Proof: Consider an event denoted by

{p(k),  p ( k  — 1) , ,  p(k  — m)},

where r  < m  < k. Precisely, this denotes the set of all outcomes in f l  x . .. 0 . Now

r times
in the case where

z(i ))  = (z ( i  +  1)), Vi = k -  m , . . . ,  k -  1,

it follows immediately tha t

P{p(k ) ,  p(k  -  1 p ( k -  m )} =  P { v ( k ) , u { k  -  1 ) , . . . ,  u( k  -  m),  z ( k  -  m)} .

All other such events are impossible. From the assumption th a t u  is r -th  order

Markov and independent of z ( 0), it follows th a t u(k)  is independent of z ( k  — m)  for 

all r < m  < k. Therefore,

P{p{k) ,  p(k  -  1 p ( k -  m)}

=  P{is(k),  z ( k  — m) \ v ( k  — 1) , . . . ,  u{k — m ) } P { v { k  — 1) , . . . ,  u{k  — m )}

=  P{u{k) \u{k  — 1) , . . . ,  u{k — m ) } P { z ( k  — m) \ v{k  — 1) , . . . ,  u{k  — m) }  •

P { u ( k  — 1) , . . . ,  ts(k — m )}

P { u ( k ), v ( k  — 1) , . . . ,  u(k  — m)}
P { u ( k  — 1) , . . . ,  v ( k  — m)}

P { z ( k  — m),  u{k  — 1) , . . . ,  u{k — m)}.  (2-5)

Using a similar argument it follows tha t

P { p ( k -  1 ) , . . . ,  p ( k  -  m)}

= P {is(k  — 1) , . . . ,  u{k — m), z{k  — m)}. (2.6)
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Dividing equation (2.5) by equation (2.6) gives

P{p( k ) \ p (k  -  1 ) , . . . ,  p(k  -  m) }  = P { v ( k ) \ v ( k -  l),i/(fc -  2 ) , . . .  ,i/(fc -  m)}.

Finally, since again the input process v  is assumed to  be r-th  order Markov, for any 

m >  r:

P{p( k ) \ p (k  -  1 ) , . . . ,  p(k  -  m)} =  P{u{k) \ v{k  -  1), v ( k  -  2 ) , . . . ,  u{k  -  r)}

=  P{p{k) \p{k  -  1), p{k  - 2 p ( k -  r)} , (2.7)

and hence the proof. ■

A first-order Markov representation of the cross-chain process, which reduces the 

dimensionality of the transition m atrix is described in the following theorem. This 

theorem will be later used to derive the stability criterion when input process is 

Markov of order r  >  0, instead of the result in Theorem 2.3.2.

T h e o re m  2.3 .3 . [54] Consider a process p x =  ( y 1, z ) ,  where &q is the first-order 

representation o f the r-th  order input process v  and z  is the state process o f the 

finite-state machine M. = (£ /, £<?, T,0 ,d, w). I f  v  is an r-th  order Markov process 

independent o f the initial state o f the machine, z { 0 ), where r > 0 , then p l is a 

first-order Markov process.

Proof: If v  is an r-th  order Markov process, then the random process v \  with

i>i(k) = (i■'(k), v ( k  — 1 ) , . . . ,  u{k — r + 1)) €  S / x . .. Ej  forms a first-order Markov

r times
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process with transition probabilities

P { v 1{k)\ux{ k -  1)} =  P { v { k ) , . . . ,  u(k  — r + l ) \u(k  — 1 ) , ,  u{k  — r)}

P { u ( k ), v ( k  -  1 ) , . . . ,  u(k  -  r)}
P { u ( k -  l ) , . . . , v ( k - r ) }

= P { v { k ) \ v ( k - l ) , . . . , u ( k - r ) } .

Now by Theorem 2.3.2, for any first-order process u  with v{k)  G £ / ,  the random

process p  =  (u, z )  is a first-order Markov process with p(k)  G £ /  x £ 5 . Hence,

it follows th a t for the first-order Markov process u x with i ' i (k)  G £ /  x  . . .  £ / ,  the
^ '

r times
random process p 1 =  ( v x, z )  with p l (k) G  £ /  x  . . .  E /  x E g  is also a first-order Markov

r times
process with

p { p i ( k ) \ p i ( k ~  1)} =  P { v i ( k ) \ u x(k — 1)}

=  P{u( k ) \ u (k  — 1) , . . . ,  u( k  — r)} , (2.8)

and hence the proof. ■

2.3.2 State Process of a Non-Unifilar Finite-State Machine z

It is known th a t the state process z  of a non-unifilar type finite-state machine 

is in general not Markovian [41]. In this section however, it will be shown th a t 

the sta te  process of the non-unifilar finite-state machine driven by the i.i.d. process 

is Markovian. The corresponding transition probabilities for the process z  will be 

d erived  in term s o f  th e  tran sition  p rob ab ilities o f  th e  in p u t p rocess.

T h e o re m  2.3 .4 . Consider a finite-state machine M. = (£ /, Eg, Eq, 6, u ). I f  the
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input process v  is an i.i.d. process whose distribution is independent o f the initial 

state o f the machine, z ( 0), then the state process z  is a first-order Markov process.

Proof: Consider an event of the form { z ( k +l ) ,  z ( k ) , . . . ,  z ( k —m) }  where 0 <  m  <  k.

Let Cj  =  {rj : S(r], z ( j )) =  z ( j  +  1)} with k — m  < j  < k  be the set of input symbols 

of size 1 <  nj  <  M.  Notice that, if Cj =  0 for any k — m  < j  <  k, then the event 

never occurs. Hence,

P { z ( k  +  1), z ( k ) , . . . ,  z ( k  -  m )}

=  ^ 2  P { v ( k ) , v ( k - l ) , . . . , v ( k - m ) , z ( k - m ) } .
n&ck n ££<*— m )

Now for the event { z ( k ) , . . . ,  z ( k  — m)},

P { z ( k ) , . . . , z ( k - m ) }

. . .  P { v ( k - l ) , v ( k - 2 ) , . . . , v ( k - m ) , z ( k - m ) }
V€£(k-1) V€£(k-m)

Thus

P { z ( k  +  1), z ( k ) , . . . ,  z ( k  — m)}
P { z ( k ) , . . . , z { k - m ) }

52r,eck ■ • • E „ e % _m) p {u (k ) ’ k ~  !). • • • M k  ~  m),  z ( k  -  m)}
P i u (k - l ) , t ' { k - 2 ) , . . . , u ( k - m ) , z ( k - m ) }

Since u  is an i.i.d. process and its distribution is independent of z (0 ), for all 0 <  

m  < k, i■'(k) is independent of {u( k  — 1 ) , . . . ,  i/(k — m) }  and z ( k  — m).  Hence, u(k)  

is independent of the event { v ( k  — 1) , . . . ,  u{k — m), z ( k  — m)}, for all 0 <  m  <  k.
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Therefore the right hand side of equation (2.9) becomes

J2veck • • • E.>0 C(t_ro) P { v { k ) } P { v { k  -  1), v{k  - 2 ) , . . . ,  u ( k -  m),  z ( k  -  m )}

P ^ k ~  1)> u (k ~  2)> • • • ’ u (k ~  m )> z (k ~  m )>

=  ^2p M k)}-
r}€Ck

E^6C(fc_1) ~ • • E„€£(fc_m) P { " ( k  ~  !). U(k ~  2), ~ ' ' , " ( k  ~  m)> Z (k  ~ m)l
'E neclh_l) ■ • • E „ e c (fc_m) -  1), v {k  - 2 ) , . . . , v ( k -  m),  z { k  -  m)}

ri€Ck

Since this is true for all 0 <  m  <  k,

P{ z ( k  +  l) \z(k)} =  J2P M k)}, (2-10)
v e£jt

and hence the proof. ■

Now, we state  a well known related theorem due to  Davis [9]. This theorem is 

inverse of the previous theorem.

T h e o re m  2 .3 .5 . ( [9,26]) Every first-order Markov process with N  states and its 

transition probability II can be realized by driving a N  state Moore type finite-state 

machine with isomorphic state to output mapping driven by an i.i.d. process having 

at most N  x (N  — 1) input symbols. This also implies that every stochastic matrix 

of dimension N  can be written as a convex combination of at the most N  x (N  — 1) 

Boolean matrices.

Proof: Proof is the algorithm to achieve

n = ^
V

1. Let II =  II and initialize k = I.
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2. Find the nonzero minimum number in each column i of ft. If there is more 

than  one rriji for a certain column i, consider only one of them  as m ^.

■ T

0 0 . . .  1 . . .  0

3. Let pk = m in im um (m ji).

4. Form a m atrix Sk by replacing the each i th column with ej 

with 1 in the position of m,^.

5. Let ft =  ft — Pk^'k and increment k  by one.

6. Repeat the above procedure starting from step 2, till ft =  0.

Since there are only N 2 elements, there are a t the most N  x (N  — 1) number of 

iterations required to  achieve this and hence let M  < N  x (N  — 1) be the maximum 

number of pk and Sk used for the given II. Now, consider a Moore type finite- 

state  machine A4 =  {E/, E s, S o , <5, w} with input set E / =  {571, 772, . . .  ,Pm } , =

{ei, 6 2 , ■ ■ ■, ejv}, Eo =  {£1, £2, . . . ,  £/v}, with mapping 6  determined according to  S v = 

Sk and oj(ej) = £j. Apply an i.i.d. process as input v with probabilities pv = Pk to  the 

machine A4. By Theorem 2.3.4, the resulting output is a first-order Markov process 

governed by the transition probabilities II. ■
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2.3.3 State Process of a Unifilar Finite-State Machine z

In this section, it will be shown th a t the state process z  of any unifilar finite- 

state  machine when driven by Markovian input of order r > 0 is always Markovian. 

Following theorem explains this result.

T h e o re m  2.3 .6 . [37,44] Consider a unifilar finite-state machine

M. = (S i, E s, S o , S, u )

with input process v  and state process z .  I f  u  is an r-th  order Markov process, which 

is independent of the initial machine state z ( 0 ), with r  >  0 , then z  is an (r + 1 )-st 

order Markov process.

Proof: Consider an event of the form {z{k  +  1 ) , z ( k ) , . . . ,  z ( k  — m)} where r <

m  < k. Since M.  is assumed to  be unifilar, this event is equivalent to  the event 

{v{k),  u{k  - l ) , . . . , v { k -  m), z ( k  -  m)}, where u{j )  € Cj  =  {q : 6(v( j ) ,  z ( j ) )  =  

z ( j  +  1)}, k < j  < (k — m). Therefore,

P { z ( k  + 1), z ( k ) , . . . ,  z ( k  — to)} =  P{u{k) ,  u{k  — 1 ) , . . . ,  u( k  — m), z ( k  — m)}

and similarly,

P{z ( k ) ,  z {k  — 1 ) , . . . ,  z ( k  — m) }  = P { v ( k  — 1), u ( k  — 2 ) , . . . ,  u( k  — m ), z ( k  — m)}.

The assumption th a t u  is an r-th  order Markov process independent of z ( 0) implies 

th a t (i ' (k) ,  u{k  — 1) , . . . ,  v ( k  — m)} is independent of z ( k  — m ) when r < m  < k. 

Thus,

P { z ( k  +  1), z ( k ) , . . . ,  z ( k  — m)} _  P{u(k ) ,  u ( k  — 1 ) , . . . ,  v ( k  — m ) } P { z ( k  — m)} 
P{z ( k ) ,  z ( k  — 1 ) , . . . ,  z ( k  — m)} P { u ( k  — 1 ) , . . . ,  v ( k  — m ) } P { z ( k  — m) }
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or equivalently,

P { z ( k  +  l ) \ z(k) ,  z ( k  — 1 ) , ,  z ( k  — m) }  = P{v{k) \u{k  — 1) , . . . ,  u( k  — m)}.  

Finally, since v  is Markov process of order r, for every m  > r:

P { z ( k  + l ) \ z ( k ) , z ( k - l ) , . . . , z ( k - m ) }  = P{ u ( k ) \ v ( k  -  1 ) , . . . ,  v ( k  -  r)}

=  P { z ( k  + l ) \ z { k ) , . . . , z ( k - r ) } ,  

and hence the proof. ■

Observe tha t, when the input is an i.i.d. process then P { z ( k + l ) \ z ( k ) }  = P{is(k)},  

where v{k)  €  £*,. This is consistent with Theorem 2.3.4.

C o ro lla ry  2 .3 .1 . I f  z  is an (r +  1 )-th order process with z (k)  €  E s, then Z\ with

Z\(k)  =  (z ( k ), z ( k  — 1) , . . . ,  z{k  — r)) €  Es  x . . . ,  E s is a first-order Markov process.

r+1 times
Proof: The proof follows from applying equation (2.1) to the ( r + l)- th  order process

z .  The process Z\ then has the transition probabilities

P { z i ( k  + l)|£j(A;)} =  P { z ( k  + l ) \ z ( k ) , . . . , z ( k - r ) }

= P{ v { k ) \ v ( k  — 1) , . . . ,  u ( k  — r)}. (2.11)

In particular, note th a t when r  =  0, i.e., when the input is an independent i.i.d. 

process then for any given finite-state machine,

P { p ( k ) \ p ( k -  1)} =  P{u( k ) }

= P{Pi (k) \Pi (k -  1)}

p{*(fc + i)|*(fc)} =  £ p M *)}-
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W hen r  =  m  = 1 equation (2.7) gives for any given finite-state machine

P { p ( k ) \ p ( k -  1)} =  P{ v ( k ) \ u ( k  — 1)}, (2 .12)

and (2 .11) gives for a unifilar type finite-state machine

P { z ( k  + l ) \ z ( k ) , z ( k  — l )}  = P{v ( k ) \ u ( k  -  1)} (2.13)

=  P { z l ( k +  l)|Z!(fc)}

For r  >  1 for any given finite-state machine

P { p i ( k )\Pi(k ~  !)} =  P{u( k ) \ u (k  — 1) , . . . ,  v{k  — r)} 

and (2 .11) gives for a unifilar type finite-state machine

P{ z x ( k  + l ) \ z i {k)}  =  P { u { k ) \ v { k - l ) , . . . , u { k - r ) } .

2.4 Sum mary of K ey Points

In this chapter, elements of the theory of finite-state machines, the theory of 

Markov processes and stochastic matrices relevant to this research were briefly de­

scribed. In addition, two random processes associated with a finite-state machine

were characterized: the cross product of the input process and the sta te  process for

a finite-state machine and the state  process of a unifilar equivalent machine were 

characterized when the inputs were independent identically distributed process, a 

first-order Markov process and a higher order Markov process. It turns out th a t the 

cross-chain process and state  process of any finite-state machine is first-order Markov 

when the input process is independent identically distributed. W here as for first and
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higher order Markov inputs, the order of cross-chain process is the same as th a t of 

the input process. The output process of a unifilar equivalent finite-state machine 

is one order higher than  th a t of the input process. Table 2.1 summarizes these key 

results.

Table 2.1: Order of the cross-chain process for a finite-state machine and the state  

process for a unifilar machine for Markovian inputs of various order r.

Order of the 

input Markov 

Process

Order of the Cross-Chain 

Process of FSM

Order of the State 

Process of a Unifilar FSM

P Pi z Zl

r  =  0 1 1 1 1

r = 1 1 1 2 1

r > 1 r 1 r + 1 1
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CHAPTER III 

STABILITY ANALYSIS

3.1 Introduction

In this chapter, using the main results from Chapter 2, stability conditions for 

jump-linear systems driven by finite-state machines with Markov inputs are provided. 

The main approach is to develop the mean-square stability tests for the class of hybrid 

systems comprising of a jump-linear system driven by a Markovian cross-chain process 

p. Mean-square stability tests will also be developed for the class of hybrid systems 

comprising of a jump-linear system driven by a Markovian sta te  process of a unifilar 

finite-state machine, z .  Then, it will be shown using the tests developed for these 

specific classes of hybrid systems, th a t the mean-square stability conditions for a 

jump-linear system driven by an output process 0  of any finite-state machine (which 

in general may not be Markovian) can be synthesized.

This chapter is organized in the following manner. In the next section, the key 

assumptions about the model are stated, followed by various tests to  validate these 

assumptions in practice. It is followed by a section providing the main definitions 

for the stability of a jump-linear system currently used by various researchers in this 

field (specifically, in [3,8,11,13,27]). In the subsequent section, mean-square stability 

conditions for a jump-linear system driven by the cross-chain process p  = (is, 9) of 

the Moore type finite-state machine with isomorphic state to  output mapping will
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be developed. This is followed by the mean-square stability conditions for the jum p- 

linear system driven by the output process of a Moore type finite-state machine with 

isomorphic state  to  output mapping, 9, when input is an i.i.d. process and the 

output process of the Moore type unifilar finite-state machine with isomorphic state  

to  output mapping, 0, when input is Markovian of order r  >  1. The concept of A- 

equivalent systems is then introduced and their mean-square stability characteristics 

are related. A brief discussion will show how these stability tests can be extended 

to  systems comprising of Mealy type finite-state machines and finite-state machines 

with non-isomorphic state to output mappings using the concept of A-equivalency 

between two systems. In the next section, a brief discussion about the Lyapunov 

exponents, developed specifically in the context of Markovian jump-linear systems by 

Boukas e t al. [3], and their relationship with the mean-square stability of the  system 

9) is given. This chapter is concluded with an overview of the com putation 

and dimensionality issues with regards to new stability tests.

3.2 K ey M odel A ssum ptions

In this section, a set of assumptions on the model class of jump-linear system 

driven by the finite-state machines with Markov inputs is presented. Later in the 

section, tests to  validate these assumption will be provided. The tests are independent 

of the order of the Markovian input. Following model assumptions are essential for 

the stability theory under consideration:

1. The input process v  is either an independent identically distributed process or
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an irreducible Markov process of order r  with pv >  0 for all rj £ Ey.

2. The finite-state machine is Moore type with an isomorphic sta te  to  output 

mapping, strongly connected, minimal and completely specified.

3. The cross-chain process, p, has a unique stationary probability vector q.

4. The finite-state machine is reachable for the given input Markov process v  with 

11/ and hence the output probabilities >  0 for all £ G Eo always exist.

It is not necessary, in fact, for the finite-state machine always be a Moore type 

with an isomorphic state  to  output mapping. These type of machines are considered 

only as the initial focus. Many of the finite-state machine properties can be tested 

directly using the Definitions 2.1.2, 2.1.4 and 2.1.5 from Chapter 2. But, a set of 

theorems is needed to determine when the process (u, 9) has a unique stationary 

probabilities, when the finite-state machine is reachable under the given Markovian 

process and when the probabilities p^ are positive. The following example illustrates 

what can happen in practice when some of the assumptions do not hold.

Consider the finite-state machine M  =  (E/,  E.s , E0 , S,u)  shown in Figure 3.2, 

where E / =  {r?i,r?2}, E s =  {e i,e2,e 3,e 4}, and E0  =  {6 , 6 , 6 , 6 }- The next state 

mapping <5 is defined by

0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 1IIof IICN
of

0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 0
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%
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Figure 3.1: State diagram of a finite-state machine M. 

driven by a Markov process th a t results into two ergodic 

classes.

The output mapping is u>(ej) =  and the transition probability m atrix for the input 

process v  is

11/ =
0.6 1 

0.4 0

The resulting cross chain (u, 6) consists of two disjoint chains C\ and C2. C\ has 

the ergodic class S\ =  {(771, £1 ), (rji, £2), (t?2 , £2 )} and the non-ergodic class AfSl =  

{(%>&)}• The chain C2 has the ergodic class S2 = {(r)i,£s), (V i,U ), (% ,6 i)} and the 

non-ergodic class J\fe2 =  {(772, £i)}- The corresponding transition probability m atrix
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for (*/, 6) is given by

nI / O

-
0 0 0 0 0 1 0 0

0.6 0.6 0 0 0 0 0 1

0 0 0.6 0.6 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0.4 0.4 0 0 0 0 0 0

0 0 0.4 0.4 0 0 0 0

0 0 0 0 0 0 0 0

II//o  has an infinite number of stationary probability vectors, specifically, linear com­

bination of the following two stationary probability vectors:

n t

92

0.2857 0.4286 0 0 0 0.2857 0 0

0 0 0.4286 0.2857 0 0 0.2857 0

Furthermore, if the process is always initialized in only one of the two ergodic sets, 

then it will never be able to  enter the state  in the other ergodic cycle. This implies 

th a t for the particular II/, the machine is not reachable and = 0 for some £ e  So- 

The following tests provide sufficient conditions to ensure a  unique stationary vec­

tor q, reachability of the finite-state machine under a Markovian input with transition 

m atrix 11/  and p% > 0 for all £ €  E0 .

T h e o re m  3.2 .1 . For a given finite-state machine M. with Markovian input (E /, II/), 

the process (v , 0) is stationary with unique stationary probabilities i f  it is monodesmic.
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Proof: : If {v, 9) is monodesmic then II//o  is monodesmic, and by Theorem 2.2.2 

(when d = 1) or Theorem 2.2.3 (when d >  1) it follows directly th a t there exists a 

unique stationary vector q such th a t U1/0 Q — Q- ■

The next theorem provides an explicit test for the reachability of a finite-state 

machine M. with Markovian input (E /, II/). It also addresses the required assumption 

of >  0 .

T h e o re m  3.2 .2 . A finite-state machine M with Markovian input (E /, II/) is reach­

able and p j >  0 fo r  all £ € Eo, i f  the process {u, 0) is ergodic, i.e., i f  the transition 

probability matrix II/ / 0  is irreducible.

Proof: Since Ylj/o is irreducible, it follows from Corollary 2.2.1 (if d = 1) or

Corollary 2.2.2 (if d > 1), th a t a unique stationary probability q > 0 exists. Also, 

the unique stationary probability can be attained by any initial probability vector q0. 

Since p^ =  X^eE/ ^  follows th a t P4 >  0 for every £ € So- This implies th a t there 

exists a sequence of input symbols from S / which occurs with nonzero probability 

and drives the finite-state machine from any initial state to  any other sta te  in E 5 . 

This further implies M with Markovian input v is reachable, by definition. ■

As a consequence of Theorem 3.2.2 and the Definition 2.1.5, it follows th a t if the 

finite-state machine M. is reachable under the Markovian input v, then it is also 

strongly connected. Hence, it is sufficient to  simply test for the reachability property. 

The following theorem is viewed as the main result of this section. It ties together 

all the previous results of this section and provides a  single sufficient test for II//o  to 

validate the model assumptions.
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T h e o re m  3 .2 .3 . For a finite-state machine M  with Markovian input v , unique sta­

tionary probability vector q exists, the machine M  is reachable, and state probabilities 

Pt are all positive, i f  the process (is, 6) is ergodic, i.e., i f  the transition probability m a­

trix  IIj/o  is irreducible.

Proof: If I l//o  is irreducible, then it is also monodesmic. It follows th a t there exists

unique strictly positive stationary probabilities q ^ ) -  Prom Theorem 3.2.2, >  0 for

all £ € S o  and machine M. is reachable. This completes the proof. ■

3.3 D efinitions of Stability for Jump-Linear Sys­

tem s

Consider the jump-linear system

x (k  +  1) =  Ao(k)x(k)  (3.1)

with independent initial conditions 0 (0 ) and a:(0 ) =  x 0. 0  is a discrete-time random 

process with state  space £  having N  number of states. This jump-linear system will 

be denoted as {A, 6). The following definitions are frequently found in the stability 

literature for jump-linear systems.

D e fin itio n  3 .3 .1 . The jump-linear system (3.1) with discrete-time finite-state ran­

dom process 6 is said to be second-moment stable or mean-square stable, i f  

fo r  any x0 €  R" and any initial probability distribution ij: o f 0(0),

Jim £{l|aKfc)ll2} =  0
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D e fin itio n  3 .3 .2 . The jump-linear system (3.1) is said to be exponentially second-

m om ent stable, i f  fo r  any Xo G M” and any probability distribution o f 0(0), there 

exist constants a, (3 > 0 independent o f xo and such that

i?{||a:(A;)||2} <  n ||xo ||2 exp_/3A:, V/c >  0.

D e fin itio n  3 .3 .3 . The jump-linear system (3.1) is said to be stochastically second- 

m om ent stable, i f  fo r  any xo G R" and any probability distribution o f 0(0),

00

lim J ]£ { ||a :( f c ) ||2} <  oo.
k—*00 'k=0

D e fin itio n  3 .3 .4 . The jump-linear system (3.1) is said to be almost surely (asym p­

totically) stable, i f  fo r  any xo G K" and any probability distribution o f 0(0),

P (Jim ||*(fc)|| = 0 }  =  1.k—>oo

It is obvious th a t the stability definitions provided here can be used directly for 

the hybrid system (u,A4,A,0).  It is shown in [27] th a t for the jump-linear system 

(A, 0) with a finite-state time homogeneous Markov process 0, Definitions 3.3.1, 3.3.2 

and 3.3.3 are all equivalent. It is also shown th a t in this case, second-moment stability 

implies almost sure (asymptotic) stability, bu t the converse is not always true. Thus, 

in this chapter, after developing the tools to test for the mean-square stability of the 

system (v,M.,A,0),  as a corollary, it will be shown th a t these tools can also be used 

to test for the exponential second-moment stability and stochastic second-moment 

stability of the system (u, M,A ,0 )  even when 0 is not Markovian.
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The authors of [8] provide an alternate definition for mean-square stability in the 

case of a  finite-state tim e homogeneous process 0  and it has been consistently used 

by the researchers in [16,52]. The definition follows.

D e fin itio n  3 .3 .5 . The jump-linear system (3.1) is mean-square stable i f  fo r  any

initial condition « ( 0 ) and fo r  any initial state probability fo r  6(0) it follows that

||Q(fc)|| —► 0 as k  — oo,

where Q(k) E { x ( k ) x T(k)}, or equivalently,

Q(k)  —► 0 as k —► oo,

where Q(k)  2?{||a:(A;)||2} (cf. [3,52]).

This definition happens to be more practical in many cases. For example, the 

researchers in [16,52] found it is numerically more efficient to  compute the statistics 

of Q(k)  — trace(Q(k))  than  ||Q(A;)||. A clean mathematical proof showing Definition 

3.3.1 and Definition 3.3.5 are equivalent can be found in [52],

3.4 Stability Analysis o f the System  D riven by p

In this section, the stability analysis of a jump-linear system driven by the cross- 

product of the Markovian input and the output of a Moore type finite-state machine 

is considered. Mean-square stability tests for such a system, when the input process 

is i.i.d., first-order Markov and higher order Markov are provided.

Consider the hybrid system shown in Figure 3.2. Here the jump-linear system

x(k  + 1) =  Ap(k)x(k)
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v(k)

Jump-Linear
Dynamical

System

Finite-State
Machine

Markovian
Exosystem

Figure 3.2: A jump-linear system driven by the process p.

has a driving process p  =  (u, 0). It is comprised of the r-th  order input process v  and 

the corresponding output process 6  from a finite-state machine M .  This system will 

be denoted as (u, A4, A, p). An alternate representation is to consider the jump-linear 

system

x{h  +  1) =  A Pl{k)x{k)

th a t is being driven by the first-order Markov process p l =  ,0)  which is comprised

of the first-order representation of the r-th  order input process v  and the output 

process 0, with A Pl(k) =  A»(fc)- This system will be denoted as (v, M.,  A, p x). The 

following theorem provides the stability test for the system (v,A 4, A, pf)  when v  is 

an i.i.d. process.

T h e o re m  3 .4 .1 . The hybrid system ( u , M ,  A, pf)  is mean-square stable when v  is 

an i.i.d. whose probability distribution given by, n  =  [ pm pm • • • p,lM ]T is inde­

pendent o f the distribution o f 6(0) and the initial state o f the system  x (0 ), i f  and only 

i f  the matrix

•4) :=  (II//o  ® In2) diag(Ar)i^ 1 (g> A ni^ , . . . ,  A^M^ N <S) A rm ^N)

has a spectral radius less than one, where

IIi/o  =  (11/ (81 I n )  diag(Sm , . . . ,  S^M).
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With 11/ =  7T x  i  j  i  .

Proof: The claim follows directly from well known results in [8]. The transition

probability m atrix for the process p l5 namely II//o , is obtained from equation (2.4). 

■

The following theorem provides a test for mean-square stability conditions when u  is 

a  first-order Markov process.

T h e o re m  3 .4 .2 . The hybrid system ( u , M ,  A, p x) is mean-square stable when v  is 

a first-order Markov process whose initial distribution is independent o f 0(0) and the 

initial state of the system  x (0 ), i f  and only i f  the matrix

•A-i •= (IIjjo  ® In2) diag(Am ^  ® . . . ,  ® A vm4n )

has a spectral radius less than one, where

II i /o  = (11/ <8> I n ) diag(Sm , . . . , S VM).

Proof: Again the claim follows directly from well known results in [8]. The transition

probability m atrix for the process p x, namely II//o , is obtained from equation (2 .12). 

■

Next Theorem 3.4.2 is generalized below to  the case of a Markovian input of order 

r  >  1 .

T heorem  3.4 .3 . The hybrid system (v, A4, A, pj) is mean-square stable when u  is 

an r-th  order Markov process whose initial distribution is independent o f 0(0) and the
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initial state o f the system  :r(0 ), i f  and only i f  the matrix

•Ar •— (I I /r/ o  ®  In2) diag(A~fl^1 g  A~ll^ , . . . ,  A^MT̂ N g  A~t M r ) 

has a spectral radius less than one, where

ri/r /0  =  (II/r g  IN) diag(Ir g ( S m, . . . ,  SVM)) 

is the transition matrix of p x with p x(fc) e E ; x . . .  E  / x E  5 and II/r is the transition
' V '

r  times
matrix of the first-order representation iq  with U\{k) — 7  G E / x . . .  E / ; /o r  i/ie r-th

' -----------v -----------'
r  times

order Markovian input process v .

Proof: The proof is based on Theorem 2.3.3, th a t is, if u  is a Markov process of order

r , then p l €  E / x S /  xE g is a first-order Markov process. The transition probability 

r times
m atrix II/r/0  can be obtained from equations (2.8) and then apply the usual mean- 

square stability criterion for a first-order Markovian jump-linear case system in [8]. 

■

3.5 Stability A nalysis o f the System  D riven by 0

In this section, an alternative stability criterion is developed using jump-linear 

models driven by the output random process 6  of a unifilar finite-state machine. But 

the starting  point is the special case where 0  is generated using a non-unifilar machine 

with an i.i.d. input process. As stated in Theorem 2.3.4, when the input to  the finite- 

s ta te  machine v  is i.i.d., its output 0  is a first-order Markov process. Therefore, the 

stability criterion in this case is a straight forward application of the m ethod in [8], 

as given below.
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T h e o re m  3 .5 .1 . Consider a hybrid system (v , M ,  A, 9) comprising of a jump-linear 

system driven by a finite-state machine M, with an i.i.d. input process u . Input 

process v  has a distribution n = [ pm pm • •• PnM ]T that is independent o f the 

initial state o f the machine ^(0 ), the output 0 (0 ), and the initial state o f the system  

x(0). Then the system (ts, A4, A, 9) is mean-square stable i f  and only i f  the matrix

Bi := (n 0  <8> InA  diag{Aix <g> A ^ , . . . ,  A^N <g) A iN) 

has a spectral radius less than one, where

n G ^   ̂Pt)Sjj. 
nex,

Proof: From Theorem 2.3.4, a Moore finite-state machine with an isomorphic

state-to-output mapping, has an output process 6  which is a first-order Markov with 

transition probability as in equation (2.10), i.e., P { 9 ( k  + l ) \9(k)}  = ^2veCk P{v{k )} ,  

where £*, =  {r/ G E / : 8{u{k),0{k))  = 9(k  -I- 1)}. This implies directly th a t in term s 

of m atrix notation, IIo =  Pv^v- ■

Now consider the case of a hybrid system comprising of a jump-linear system 

driven by the output process 9  of a unifilar finite-state machine with Markovian 

input of order r >  1, as shown in Figure 3.5. The jump-linear system is referred by

x (k  + I) = Ag(k)x{k),

and the hybrid system is denoted as (u ,A 4 ,A ,9 ) .  Clearly, Theorem 3.5.1 is also 

applicable to  the system (v ,A 4 ,A ,9 )  with i.i.d. inputs.

The stability analysis of (u ,A 4 ,A ,9 )  for the case of a Markovian input of order
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Figure 3.3: A jump-linear system driven by the output 

process 9  of a unifilar finite-state machine.

r  =  1 will be treated  using a jump-linear system driven by a second-order Markov 

process. However, to avoid notational complexity, the higher order case will be treated  

using a  jump-linear system driven by the first-order representation of 9.

Theorem 3.5.2. Consider the hybrid system (u, M., A, 9), where 9 is generated by a 

unifilar finite-state machine A4 — (£ /, £ o , £ s , 5,w) with a first-order Markov input 

process v , which is independent o f the initial machine state z ( 0), the initial output 

0(0) and the initial state o f the system  x(0). Let Sv : T,s be the state transition

matrix fo r  a given input rj €  £ /  and w{ef) :i-> be the isomorphic state to output 

map. The system is mean-square stable i f  and only i f  the matrix

# 2  =  ( n 0 , 2  <8> In2) diag(Iff 0  ( A ^  0  ) , . . . ,  I„  0  0  A ^ ) )  (3.2)

has a spectral radius less than one, where IIo ,2 is a matrix o f size N 2 x N 2 composed 

o f elementary block matrices o f size N  x N  with each (J ,I ) - th  block matrix having 

components

, , P {£ j \£ i ,£ i }  =  P { V m h }  : 1 =  j ,  H v i ,e i )  =  ei, 5(rim,ei) =  e j
m o ,  2] j 4  =  <

I 0 : otherwise.

(Here N  = card(To) and, fo r  brevity, probabilities like P { u ( k  + 1) =  r}m\i'(k) = ry} 

are written as P{r)m\Vi}-)
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Proof: By Theorem 2.3.6, under the stated conditions, 9  is a second-order Markov

process. Observe tha t

Q(k)  =  E { x ( k ) x r (k)} = ^ Q i j i k ) ,
i,j

where

Qij(k) := E ^ x ( k ) x  (k ) l{e(fc)==| j}l{e(fe-i)=|J}} > 

and 1{.} denotes the Dirac function. Therefore,

Qij(k + 1) =  A ^.E  I * (k )x  (k) l{fli(*;+i)=^}l{a(fc)=^}| A ^

=  ^  ^x(k)xT(k) l{0(A :-(-l)= fi}-*-{0(fc)=C j} | ^ 7fc}  }

=  A ^ E  { x ( k ) * T (k) \ m =ij}P m v O ( k  ~  1)}} A \ ,

where T& denotes the cr-field generated by the random variables {9(1), x ( l )  : I = 

0 , 1 , . . . ,  A:}. In addition,

E { x ( k ) Z T(k) l {e{k)^ j}P m j A k -  1)}}

=  ^ 2  E  ^ x ( k ) x T (k) •
i

Therefore,

Qij(k  + 1) = ( ^ P m v & Q d k ) ^  A ? .

Now apply the column stacking operator vec operator to  produce 

Qij(k  +  1) :=  vec i i}Qji(k)A |
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Then it can be shown that

Q (k + 1) =  B2Q(k),  (3.3)

where

Q (k ) := Q h ( k )  ••• Q w ( k ) •" Qjri (k)  •••

Ho ,2 is obtained using equation (2.13) and B2 is as given in (3.2). Finally, the mean- 

square stability test for system (u ,M,A,  0) follows directly from the given spectral 

radius condition for the linear system (3.3). ■

Next Theorem 3.5.2 is generalized for a jump-linear system driven by the output 

process of a unifilar finite-state machine M. with Markovian input of any order r in 

the following manner:

Theorem 3.5.3. Consider the hybrid system (v, A4, A, 6), where 6 is generated by a 

unifilar finite-state machine M. =  (£ /, £ 0 , £ 5 , 6, ci) with an r-th  order Markov input 

process, which is independent o f the initial machine state z ( 0 ), the initial output 6(0) 

and the initial state o f the system  x(0). Let Sr) : £ s h-> £ s be the corresponding state 

transition matrix fo r  a given input rj £ £ / ,  w(ej) :i—► be the isomorphic state to 

output map. The system is mean-square stable i f  and only i f  the matrix

G r+ l — ( f f o , r - t - l  ®  In2 )  dlAlCj(  /  y . -  i;X : ( - 4 ^  ®  . 4 ^  )■  ■ . . , Ifij (£) ( A ;X : / ) ) )

has a spectral radius less than one, where IIo)r+i is a matrix o f size N^r+l'> x N^+O  

composed of elementary block matrices o f size N  x  N  with each (J , I ) - th block matrix
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having components

■ F { £ . / | £ t j  ! & 2  ) • • • > £ f r  }  =  P { j l m \ g h  ) • • • ) % - }  • 3 1

^Ir) ®/|—1 > ' ' ' ) {̂.Wh ®/l) ®i) )

0 : otherwise.

(Here N  = card(t,o ) and, fo r brevity, probabilities like P { v ( k  +  1) — rjm\is(k) = 

r)h,v(k  ~  1) =  eh , is(k - r )  = e ^ J  are written as P{gm\Vh,- ■ -,Vir+i}-)

Proof: Since the input to the Moore type finite-state machine is an r -th  order

Markov process, by Theorem 2.3.6, the output process 0  is a (r +  l)- th  order process. 

Now, consider the jump-linear system (A,Oi)  described by the equation:

x ( k  + 1) =  A §i{k)x(k) .  (3.4)

Let 6\  be the first-order representation of the (r +  l)- th  order process 6. Then 

its transition probabilities can be obtained from equation (2.11). It also implies 

=  ^e(k)- Finally, apply the standard results from [8] to  complete the proof. ■

3.6 Stability Equivalence

In this section, the mean-square stability conditions developed for the system 

(is, M A ,  and (is, Ad, A, 0) are employed to  develop a stability test for the main 

system of interest, (is, A4, A, 6). Later mean-square stability conditions developed for 

the case of Moore type finite-state machine with isomorphic state-to-output mapping 

are extended to  the case of Mealy type machines as well as machines with non­

isomorphic state-to-output mapping. Mean-square stability conditions developed for
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the system { y , M . , A , 0 )  will also be related with its exponentially second-moment 

property and stochastically second-moment property. In order to  relate the mean- 

square stability conditions of any two systems, the concept of A-equivalency is needed.

Definition 3.6.1. Two hybrid systems comprising o f jump-linear systems

x (k  +  1) =  As(k)x(k)

and

x ( k  + 1) =  A S{k)x(k) ,

driven by machines A4 and M ,  respectively, with the same Markov input process u , 

denoted as (u, M , A , 0 )  and (u, M , A , 9 )  respectively, are said to be A -e q u iv a le n t i f

Ae(k) =  Ag{ky

Note th a t A-equivalence does not imply th a t any A et necessarily be equal to  any 

A Sj, or th a t the processes 0  and 6  even take on the same symbols. But from a state  

evolution point of view, x{k)  = x (k )  for all k > 0 if x(0) = x(0). Based on the 

Definitions 2.1.6 and 3.6.1 the following claims are obvious.

Theorem 3.6.1. Consider the two systems (u, M ,  A, 6), ( u , M , A , Q )  with finite- 

state machines A4 =  { £ /, Eg, Eo, <$i, Wi} and M  =  {E/, E r , S o , <̂2, ^ 2}, respectively. 

The two systems { v ,M . ,A ,d )  and { v , M , A , Q )  are A-equivalent i f  the machines A4 

and M. are equivalent.

Theorem 3.6.2. Let (u, M ,  A, 6) and { v , M , A ,  6) be two A-equivalent systems with 

two jump-linear systems (A , 0) and (A, 6) driven by the finite-state machines M.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

and Mi respectively with the same Markovian input process v . Then (is, Mi, A, 0) is 

mean-square stable i f  and only i f  (is, Mi, A, 0) is mean-square stable.

The following result establishes the equivalency between the mean-square stability 

conditions of (is, Mi, A, p f)  and (is, Mi, A, 0):

T h e o re m  3.6 .3 . The hybrid system ( i s ,M i ,A ,p 1) with A nit̂  = A Vj^ =: A^, r]i,r]j € 

E / when input is i.i.d. or a first-order Markovian and A lt£ =  A 1.^ =: A^ fo r  all sym ­

bols t i ,  t j  £ E / X  E j , . . . ,  E i  when input is Markovian of order r >  1 is A-equivalent
^ V '

r  times
to a hybrid system (is, Mi, A, 6) with the jump-linear system driven only by the output 

process 6  o f the finite-state machine Mi with input v  of order r. Therefore, under 

these conditions ( i s ,M i ,A ,p 1) is mean-square stable if  and only i f  (is, Mi, A, 6) is 

mean-square stable.

Proof: The proof is just an application of Theorem 3.6.2. ■

The next theorem shows th a t any finite-state machine has a unifilar companion 

machine th a t produces an ^-equivalent jump-linear system. Therefore, Theorem 3.5.2 

can be applied to  this new system in order to  determine the mean-square stability 

of the original system (is, Ml, A, 0). There is, however, some overhead involved in 

determining the unifilar equivalent system as described in the proof.

T h e o re m  3 .6 .4 . Let Mi = (E /, E s, E0 , 8, oj) be an arbitrary non-unifilar finite- 

state machine with input is and output 0. For any corresponding hybrid system  

( i s , M , A , 0 ) ,  there always exists an A-equivalent system ( is ,Mi,A ,0 ) ,  where 6 is 

generated by a unifilar finite-state machine Mi =  ( E / , E s , E Q,S, Cb) with input is.
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Proof: The proof is constructive and based on the proof of Theorem 2.1.1 which

states th a t for every non-unifilar finite-state machine, there always exists an equiv­

alent unifilar type finite-state machine. However, the goal here is to  produce an A- 

equivalent system (i/, .M, A, 6) for the given system (u, M , A , 0 ) ,  rather than  merely 

preserving the input-output relationship for the finite-state machine. For the sake of 

clarity and completeness, steps in the proof for Theorem 2.1.1 are repeated.

Since M. is non-unifilar, there exists a pair of inputs symbols r)i and rjj and a 

machine state  em and e; such th a t 6(r]i,em ) =  S(r j j , em ) =  e/. Therefore, augment 

the machine’s state  space, Eg, by replacing the state  e; with new states and e^. 

Define a corresponding new transition map 6, which is identical to  8 except now: 

Hvu  em) =  e/,> em) =  % ,  and 8(t], eh ) =  8(rj, e t j ) = 8(rj, e t) for all input symbols

rj. Similarly, redefine the output function to to  be identical to  oj except, it maps 

to  £* and to  the output symbol £*, where k  is just the next available index for the 

new output symbol £ th a t avoids any duplication of symbols. Next define for every 

output symbol the transition m atrix A ^ =  A^k = A^ .  It can then be verified th a t 

the systems ( v , M . , A , 0 )  and A, 6) are A-equivalent, i.e.,

As(*(k)) =  Au(z (k))-

It is clear th a t the states and output symbols of the new machine can be re­

indexed by the integers 1, 2 , . . . ,  TV +  1, and the whole process above repeated if the 

new machine is not unifilar. Since the number of input symbols and machine states is 

finite, this procedure need only be repeated a finite number of times before a unifilar
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machine is produced. ■

Next consider a hybrid system ( v , M. , A,  0)  with a jump-linear system (A,0)  

driven by an output process 6  of a Moore type finite-state machine with non-isomorphic 

many-to-one mapping. Specifically, let Ad = {E/, Eg, Eo, d , w i t h  Eg =  {ei, e2, . . . ,  e^}, 

E o = {Cii <̂2, • • ■, Cl}) state  transition function (S : E j  x E / t-> Eg, output function 

&(ej) =  Co I = 1, ■ ■ ■, L. In order to determine the mean-square stability conditions 

of the system (u, Ad,  A, 0),  it will be shown th a t an A-equivalent system (v,  M . , A , 0 ) 

with a Moore finite-state machine having an isomorphic state-to-output m apping can 

always be produced. Hence, by Theorem 3.6.2 (u , Ad,  A, 0)  will be mean-square stable 

if and only if (i/, Ad, A, 0) is mean-square stable.

T h e o re m  3 .6 .5 . For every hybrid system (i/ , M , A , 0 )  with a jump-linear system  

{A, 0) driven by the output process 0  of a Moore type finite-state machine, Ad, having 

a non-isomorphic many-to-one state-to-output mapping, there always exists an A- 

equivalent system { v , M , A , 0 )  with a jump-linear system (A ,0 )  driven by the output 

process 0 o f a Moore type finite-state machine, M ,  with an isomorphic state-to-output 

map.

Proof: Consider a  new machine M. with the same state  set Eg =  Eg, the same state

transition function 6 = 5, and a new output set Eo = {Co C2, • • •, Civ} and new output 

function cj(ej) = Cj- Clearly, the new machine Ad is a Moore finite-state machine 

with an isomorphic state  to output mapping. Next define for each output symbol a 

transition m atrix = A ^e,) = =  A ^ , where u>(ej)  is the output function of

the finite-state machine Ad. This clearly implies th a t the system (u, JVl ,A,6)  with
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the jump-linear system {A, 9) driven by the output process 9  of finite-state machine 

M.  is A-equivalent to  the system (u, M , A , 9 ) ,  and thus the proof. ■

Recall th a t in the case of fault recovery applications, when system transition be­

havior is dependent on both the type of upset encountered and the current recovery 

state, the recovery algorithms can be modeled as Mealy type finite-state machines. 

For such systems, in the most general case with a non-isomorphic m apping between 

the states and outputs, the output function evolves according to  the expression 9{k)  =  

ui{v{k), z(k)) ,  and hence, the closed-loop system param eter A^t =  A Q(m êj). Therefore, 

now consider the hybrid system ( i ' , M , A , 9 )  with jump-linear system (A, 9)  driven 

by the output process 9  of a Mealy type finite-state machine with non-isomorphic 

state-to-output mapping M .  Let M  = {Ej, Eg, Eo, 6, u }  with Eg =  { e 1, e2, . . . ,  e N } ,  

Eo =  {£1, 62, • • • ,£ l} , state  transition function <5 : Eg x E / 1—> Eg, and output func­

tion Co(r)i, e f i  =  £(, I =  1 , . . .  , L. In order to  determine the mean-square stability 

conditions of the system (v, M ,  A, 9), it will be shown th a t an A-equivalent system 

( is ,AA,A ,9)  with a jump-linear system (A, 9)  driven by the Moore type finite-state 

machine M  with an isomorphic state-to-output mapping can always be produced.

T h e o re m  3 .6 .6 . For every hybrid system (v , M , A , 9 ) with a jump-linear system  

{A, 9) driven by the output process 9  o f a Mealy type finite-state machine, M ., having 

a non-isomorphic state-to-output mapping, there always exists an A-equivalent system  

(i / , M , A , 9 ) with a jump-linear system (A, 9) driven by the output process 9  o f a 

Moore type finite-state machine, A i ,  with an isomorphic state-to-output map.

Proof: Define a new machine M  with Eg =  {71, . . . ,  7mtv}, such th a t Eg is an
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isomorphism of £ /  x Eg, i.e., there exists an invertible map T  such th a t T(r]iem) =  7 .̂

Let Eo =  { £ 1 , £ 2 . • • - ,  £ m t v }  and output function u> : £ 5  1—> £ 0  be an an isomorphic 

m apping = £j. Clearly, the new finite-state machine Ad is a Moore finite-state 

machine with an isomorphic state-to-output mapping. Next define for each output 

symbol a transition m atrix A ^  = =  4 ( ^ ,e m) =  Agr  This implies th a t the

system (v,  Ad, A, 9) with the jump-linear system (A, 9) driven by the output process 

9  of Moore type finite-state machine, Ad, with an isomorphic s tate-to-output mapping 

is A-equivalent to  the system (u, Ad, A, 9), and hence the proof. ■

Now based on Theorem 3.6.3, 3.6.4, 3.6.5 and 3.6.6 following theorem is obvious, 

and summarizes the im portant contribution of this thesis. It is also illustrated in 

Figure 3.6.

Theorem 3.6.7. For any given hybrid system A, 9), there always exist A-

equivalent systems (v , Ad, A, p) and (u, jCi ,A,9) .  Therefore, the given system  (1/, Ad, A, 0) 

is mean-square stable i f  and only i f  its A-equivalent systems (u , Ad, A, p) and (u, M . , A , 9 ) 

are mean-square stable.

Now, using the concept of A-equivalency it is also possible to  relate the mean- 

square stability property of the system (u , M , A , 9 ), with its exponentially second- 

moment stability property and stochastically second-moment stability property.

Theorem 3.6.8. The hybrid system  (17 Ad, A, 9) with a jump-linear system driven 

by an arbitrary finite-state machine with Markovian input is mean-square stable i f  

and only i f  it is exponentially second-moment stable, i f  and only i f  it is stochastically 

second-moment stable.
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v(k)
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A -E quivalen t

0{k) x(k)V ( k )Markovian
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Jump-Linear
Dynamical
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Figure 3.4: A-equivalency of the systems (iv, AA, A, p ), (t», A4, A , 9) 

and (u , M , A , 9 ).

Proof: Proof is based on the result from [27] th a t for the system (v , A4, A, p x) with

Markovian p x, mean-square stability, exponential stability and stochastically second- 

moment stability property are equivalent. Initially, consider the system A, 6)

to  be mean-square stable. Then by Definition 3.3.1, for any x 0 €  Rra and any initial 

probability distribution of 0 (0 ),

lim £{||®(A;)||2} =  0 .
k—> oo

This implies th a t the corresponding A-equivalent system pf)  w ith Marko­

vian p 1 is mean-square stable and hence

lim £ { ||:e(A;)||2} =  0
k—* oo
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for every x 0 — x 0. Then by Theorem 1 of [27], it follows th a t there always exist 

constants a , (3 > 0 independent of x0 such th a t

£{ ||* (fc)||2} <  a ||x 0 ||2 exp~0k,V k  >  0.

This in tu rn  implies, for the A-equivalent system (u , M , A , 0 ) ,

£{||a;(A;)||2} <  a ||xo ||2 exp_,8fc,Vk > 0,for x0 =  ^o-

Hence the system ( u , M , A ,  0) is exponentially second-moment stable. In a similar 

m anner it follows th a t if the system ( i s ,M ,A ,  0) is exponentially second-moment 

stable, it implies th a t the corresponding A-equivalent system { v , M ,  A, p x) is expo­

nentially second-moment stable. Therefore A-equivalent systems (i/,A d,A , p x) and 

(i s , A 4 , A , 0 ) are mean-square stable. In a very similar manner equivalence between 

stochastically second-moment stability property and mean-square stability property 

of (u, M ,  A, 0)  can be ascertained. ■

3.7 Characterizing M ean-Square Stability v ia  the  

Second Lyapunov Exponent

The concept of Lyapunov exponents for characterizing the stability of dynamical 

systems originated in the seminal work by A. Lyapunov [34]. Later Arnold devel­

oped an extensive theory of Lyapunov exponents for random dynamical systems. In 

this context, Lyapunov exponents are functions th a t capture the essence of moment 

stability of random dynamical system. Thus, second Lyapunov exponent as given
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below was applied specifically to characterize the mean-square stability of Markovian 

jump-linear systems by Boukas et.al. in [3],

Definition 3.7.1. The second Lyapunov exponent fo r  a discrete-time jum p- 

linear system is defined as the function Xs(xo), given by,

Xs( x 0) = lim sup ilog[^{||a:(A;, *o,0(O))||2}], Xo ^  0. (3.5)
h —►oo fc

It has been shown in [3] and [52] that, for the discrete-time jump-linear system 

(3.1) driven by homogeneous first-order Markaov process 9, the second Lyapunov 

exponent is a constant number, given by As(®o) =  log(p(A)),  where p denotes the 

spectral radius of

v4. =  (11/ <8) /„  2) diag(A0 <8> A 0, . . . ,  A N <8 A n ),

with 11/ being the transition probability m atrix for the Markov process 9. From the 

Definition 3.7.1, it is clear th a t the second-moment of the given jump-linear system 

approaches the second Lyapunov exponent asymptotically. Therefore, the second 

Lyapunov exponent can be used as a  measure to  compare the robustness of mean- 

square stability of two jump-linear systems. Now, it is expected tha t, under the same 

set of initial conditions and identical Markov input conditions, the second Lyapunov 

exponent of three A-equivalent systems (y, M , A, 9), (ts, M ,  A, p x) and (u , M., A, 9) 

are equal. More formal theorem follows:

Theorem 3.7.1. Consider a fixed initial state z(0), and hence the fixed initial out­

put 9(0) of a given finite-state machine M. with the Markovian input v  of order r, 

whose initial distribution is independent o f x q. The second Lyapunov exponent Xs(xq)
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fo r  the system ( i / ,AA,A ,0 )  is equal to log(p(A )) =  log(p(Br+i)) when x 0 ̂  0, i f

(i/, Ad, A, Pi) and (u, M . ,A ,9 )  are A-equivalent to the system ( i / ,A4 ,A ,  6).

Proof: For the system (iv, Ad, A, p j  with Markovian p 1( based on the results in [3]

and [52],

K ( x o) =  lim sup|log[F ;{ ||® (A :,*o,P i(0))||2}], x 0 ±  0
fc—MX) &

=  log(A)

for any x 0 A  0. Whenever (u, Ad, A, p , ) is A-equivalent to  the system ( u , M , A , 0 ) ,  

for any x 0 = x 0 ^  0,

E { \ \ x ( k , x 0,. a ; ; ; 2} =  a?o,^(o))n2}

Therefore,

As(£c0) =  limsuplog[F^{||a;(fc, £c0, "v"^||2}],
fc—► oo &

= iog(p(A ))-

In a very similar fashion, under the conditions of A-equivalency between the systems 

(ts, Ad, A, 0)  and (i/, Ad, A, 0), it can be shown that

As (a:o) =  lim supilog[F?{||a;(A;,:Eo, “ [‘ ]]||2}], x 0 0
k —►oo ™

= log (p(Br+1)),

and hence the proof. ■
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3.8 D im ensionality Issues in the Tests for M ean- 

Square Stability of the System  (is,A4,A,0)

In this section, some dimensionality, and hence the computational issues, associ­

ated with the tests for mean-square stability of the system (i/, J A ,A ,  0) developed 

in the previous sections will be discussed. Observe th a t in general the numerical ef­

ficiency of mean-square stability conditions presented in the previous sections, more 

specifically the size of matrices Ar, Br+i are dependent on following factors: the num­

ber of input symbols M ,  the order of the Markovian input r , the number of states of 

the finite-state machine N , and the nature of the finite-state machine, whether it is 

unifilar or non-unifilar. The size of the m atrix A r, denoted as d im (A r) is M r x N x n 2. 

It is independent of whether the given machine is of type unifilar or non-unifilar.

If the given machine is of unifilar type, the dimension of dim (Br+1) =  N r+1 x  n 2 is 

independent of number of input symbols, and only depends on the number of states 

and the order of the Markovian input. Figure 3.8 shows th a t for M  < N , d im ( A r) < 

dim (Br+1). At M  = N , clearly they are equal. M  > N  is not possible since the 

given machine is already unifilar. Thus, it is always advantageous to  use cross-chain 

driven equivalent jump-linear system to determine the mean-square stability when 

given machine is already of unifilar type.

If the given machine is non-unifilar, dim (Br+i ) =  N (-r+1> x  n 2. Let p < M  be the 

bound on the number of input symbols th a t cause the same sta te  transition. Then the 

number of states in the equivalent unifilar type finite-state machine N  is dependent 

on p  and N . More precisely, (N  — 1) +  p < N  < pN . In the worst case, if p = M ,
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Figure 3.5: Plot of dim(Ar)  and dim (Br+j) for a unifilar finite-state

machine with N =5 for various number of inputs M .

then (N  — 1) +  M  < N  < M N . (The best case, of course is when N  = N  and 

it is already unifilar.) Figure 3.8 illustrates th a t in the non-unifilar case, there are 

situations when it is more advantageous to  use the stability criterion derived from 

an equivalent jump-linear system driven by the state  process from the corresponding 

unifilar type machine over the one derived from cross-chain driven equivalent jump- 

linear system. For example, clearly when r  =  2, p  =  2, M  =  10, the number of 

states in the non-unifilar machine is 5 and number of states in the equivalent unifilar 

machine is N  = N  — l + p  =  5 — 1 +  2, and hence dim{Bz) < d i m ( A 2).
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x104

—i— dim ( \itB_{r+1} )  =  \tilde{N) =  (N—1) + p 
dim ( \itB _{r+1}) =  \tilde(N} =  (N -2 )  +  2 p  
dim ( \itB _{r+1}) = \tilde{N} =  (N -3 )  +  3p  

- e -  d im ( \itB _{r+1}) = \tilde{N} =  (N -4 )  +  4 p  
  d im ( \lt A_{r+1} )  =  M Vtimes N =  10  M imes 5

3  -

0®=
P

Figure 3.6: Plot of d i m ( B r+i) for various values of N  and d i m ( A r ) ,

as p  varies for a given non-unifilar finite-state machine. M is fixed 

to  10 and r = 2.

3.9 Sum mary of K ey Points

In this chapter, key assumptions about the various components of the model under 

consideration were stated, and tests to  validate the assumptions were provided. Next, 

appropriate stability terms and definitions for a jump-linear system driven by an 

arbitrary  random process were introduced. Two approaches to  determine the mean- 

square stability of the jump-linear system driven by the output of a Moore finite-state 

machine with an isomorphic state-to-output mapping and a Markovian input were 

developed. The first approach was based on analyzing an equivalent jump-linear
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system driven by the input and the output of the finite-state machine, where as 

second approach was based on analysis of an equivalent jump-linear system driven 

by the output of a unifilar finite-state machine. Later, m ethods to  determine the 

mean-square stability of jump-linear systems with Mealy finite-state machines as well 

as machines with non-isomorphic state-to-output mapping were also demonstrated. 

Thus it was possible to  derive the mean-square stability conditions for a jump-linear 

system driven by any arbitrary finite-state machine with Markovian inputs of any 

order r. I t was also shown th a t the mean-square stability conditions are the same as 

those for exponential second-moment stability and stochastic second-moment stability 

of the system. Lyapunov exponents were then used to  characterize the mean-square 

stability of the system. A brief discussion of dimensionality and computational issues 

involved in using these results concluded this chapter.
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CHAPTER IV 

SIMULATION STUDIES

4.1 Introduction

In this chapter, the mean-square stability criteria for a hybrid model (is, A i ,  A, 6 ) 

are dem onstrated using three simple examples involving recovery algorithms. The 

first example is a recovery algorithm with two modes, where the recovery duration is 

fixed and the statistics of the upset process are varied. Three cases of upset models 

are considered: i.i.d., first-order and second-order Markov. The second example is 

similar to  the first one, but illustrates the mean-square stability property changes with 

respect to  a  variation in the recovery duration for the first-order Markov input. The 

th ird  example examines the mean-square stability of a closed-loop system employing 

the complex recovery algorithm shown in Figure 1.6 when the upset process is first- 

order Markov.

4.2 D em onstration Procedure for the M ean-Square 

Stability Criteria o f the System  (i/,A4,A,0)

T h ere  are tw o  m ain  step s  in volved  in  th e  d em on stra tion  p rocedu re of th e  mean- 

square stability criteria: producing a theoretical prediction of the stability boundary
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and then verifying the prediction via Monte Carlo simulation. The procedure can be 

further subdivided into the following steps:

1. Verify whether the assumptions in Theorem 3.2.3 needed to apply the mean- 

square stability tests are valid.

2. For a Markovian input of order r, produce plots of the spectral radii of Ar  

and Br+i as a function of the system param eters and identify the mean-square 

stability boundary.

3. Initialize the state  of the Markov chain, the initial state  of the finite-state 

machine, i.e., the initial mode of the recovery algorithm and the initial state  

of the closed-loop dynamical system, independently.

4. Simulate the Markov chain th a t models the upset process for a given transition 

probability m atrix II/.

5. Simulate the given recovery algorithm modeled as a finite-state machine.

6. Simulate the closed-loop dynamical system during each mode of the recovery 

cycle.

7. Compute the second moment Q of the state  of the closed-loop dynamical sys­

tem  by averaging at each instance k  over the given number of Monte Carlo 

runs.

8. Compare the statistics of Q with the expected theoretical results predicted 

using p(Ar) and p(Br+i).

9. Plot k  x log(p(Ar)) to characterize the mean-square stability prediction and 

compare it to  log(Q).
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4.3 Three Recovery System  Exam ples

In this section, three simple recovery examples implemented with scalar dynamics 

are given to  illustrate the mean-square stability tests developed in the previous chap­

ter. For the first two examples, a simple recovery algorithm is considered where the 

upsets are assumed to  be not affecting the recovery cycle and the system stays in the 

recovery mode for a specified duration. In the first example, upsets will be modeled 

as Markov processes of different orders and the resulting effect on the mean-square 

stability conditions is illustrated. In the second example, the effect of changing the re­

covery duration on mean-square stability is illustrated. The th ird  example illustrates 

the mean-square stability tests for the more complex recovery algorithm introduced 

in Chapter 1, Figure 1.6, where upsets are modeled as a first-order Markov process.

4.3.1 Recovery Example 1

Consider a closed-loop control system implemented on a recoverable computer. 

Perhaps the simplest model for such a system is shown in Figure 4.1. As long as 

there is no computer upset, the system operates in the normal mode, as per the 

dynamics

x (k  +  1) =  Aox(k).

As soon as an upset occurs, the recovery system places the computer in the recovery 

mode for a fixed duration of M r  — 2 clock cycles. During the recovery process the 

system dynamics are described by

x (k  +  1) =  A ix (k ).
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N orm al M ode
x(k  +1) = AoJt(ft) 

c(lc) = 0

Recovery M ode
X ( k  +  1 )=  Aj,c(fc)

c(k  + 1) = c(Jfc) + 1

Figure 4.1: A simple model for a recoverable computer control system.

Recovery M ode 1

:(& + !) = A^x(k)

A,E
A,E

Recovery M ode 2

x(k +1) = A. x(k

Figure 4.2: A finite-state machine representation of a recoverable computer control 

system.

After this duration, the nominal dynamics are restored. Here the counter, c(k), 

keeps track of the lapse-time for the recovery process. To model this system as a 

finite-state machine, a new machine state  must be introduced for each possible counter 

value. The sta te  diagram for such a machine is shown in Figure 4.2. It is clearly not
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unifilar. Specifically, M  =  (£ /, Es , £o ,£ ,w ) with £ /  =  { A ,E } ,  E s =  {e i,e2,e 3}, 

S o  =  {./Vo, /?i, f?2}, <5 is defined by

1 0 1

1

o 0 l

0 0 0 > sE — i 0 0

I"
" O 1

1

O

i

o l
i

o
and oj(ej) = £j. The corresponding jump-linear system is specified by setting A n 0 = 

Ao and A Rl = A r 2 =  A \. For the purpose of validation, assume the Markovian inputs 

to  the finite-state machine to  be either i.i.d., first-order or second-order Markov.

W hen the input v  is i.i.d. the stability Theorems 3.4.1 and 3.5.1 can be applied 

directly by setting A a<Nq = A EtNo = A 0 and A A]Rl =  A e ,^  =  A a,r2 =  A E,R2 = A v  

The system and simulation param eters are shown in Table A -l. The upset process is 

characterized by the probabilities which is varied between 0 and 1. The spectral radii 

of Ao and as a function of is plotted in Figure 4.3, which predicts the mean- 

square stability boundary to  be a t II#  =  0.5. Therefore two values of II#, 0.45 and 

0.55 were chosen for Monte Carlo simulation, predicting th a t the closed-loop system 

will be mean-square stable a t pE = 0.45 and not mean-square stable a t pE = 0.55. 

As shown in Figure 4.3.1, the simulations agree with the theoretical predictions. In 

addition, the second Lyapunov exponent number log10(p(A))) =  logio(p(#i)) is an 

asym ptote for the statistics logw (Q).

Now suppose, the upset process u  is modeled as a Markovian process of first-order. 

The system and simulation param eters are given in Table A-2. Assuming transition 

probabilities =  0.45, the spectral radius of A \  is plotted in Figure 4.3.1 as a 

function of B E\E. It predicts the mean-square stability boundary for the system to
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Figure 4.3: The spectral radius of Ao and S i as a function of IIE for the Recovery 

Example 1.

be a t n B1E =  0.35.

To illustrate the stability test in Theorem 3.5.2, an A-equivalent unifilar finite- 

sta te  machine is constructed as shown in Figure 4.3.1. The new machine M  =  

(E /, Es, Eo,S,u)) where 8  is defined to  duplicate the states ei with e ^ , e i2, and e3 

with new states e3l and e3a such th a t 8 '(A ,e 2) =  e3l, 8 '(E ,e 2) =  e32, S'(A, e3l) =  el l , 

8 '(E ,e 3l) = el2, 8 ' (A, e32) =  eXl, 8 '(E , e3a) =  ei2. The new sta te  set is therefore 

=  {ei i ! e i2)e2)e3i ,e 32} and the new output map is specified by: u ^ e i j  =  £i, 

w(ei2) =  &>, w(e2) =  £2, u (e3l) =  R 2, cj(e32) = (4. Finally, let Af- = A Nq = A 0, 

A ( 2 =  A Rl, = A r 2 =  A i, A ^  = A R2 =  A i, =  A No = A 0. A?- =  A No =  A 0.

Setting IT4|yi=0.45, a plot of the spectral radius of B 2 is also shown in Figure 4.3.1 

as a function of IIE|E. As expected, the two plots cross the stability boundary at
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Figure 4.4: The Monte Carlo generated statistic

logio(Q) f°r the Recovery Example 1 when the input 

is i.i.d. with n B =  0.45 and IIB =  0.55. The dotted line 

is k logio(p(Ai)) = k  Zoeho(p(#i)).

exactly the same value of He\e =  0.35. In fact the plots coincide exactly for all 

values of U e ,e ■ Two values of H E \e  were chosen for Monte Carlo simulation: 0.3 

(mean-square stable) and 0.4 (mean-square unstable). As shown in Figure 4.3.1, the 

simulations agree with the theoretical predictions and the second Lyapunov exponent 

log10(p(A i)) =  log10(p(f?2)) serves as an asymptote for the statistics log10(Q).

Finally, for the same example, assume v  is second-order Markov with =  0.7,

HA[AE = 0.4 and U A\e a  =  0.45. The system and simulation param eters are given in 

Table A-3. Varying H e\ee, the spectral radii of A 2 and B3 are shown in Figure 

4.3.1. Two values of H e \e e  were chosen for Monte Carlo simulation: 0.7 (mean- 

square stable) and 0.8 (not mean-square stable). As shown in Figure 4.3.1 shows, the
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Figure 4.5: A plot of the spectral radius of A i  and B2 versus n B|£ 

for the Recovery Example 1 when input u  is first-order Markov 

with W.A\A = 0.45.

simulations agree with the theoretical predictions.
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4.3.2 Recovery Example 2

In this section, the same recovery algorithm as in Recovery Example 1 is consid­

ered, however, the purpose here is to  determine the effect of the recovery duration on 

mean-square stability. The full state  diagram for the simplified recovery algorithm is 

shown in Figure 4.10. It consists of 1 +  M r  states: No, R \r . . ,  Rmr - W hen M r  =  1, 

the corresponding transition matrices are:

ei ej S E = e2 ex
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Recovery Mode 1
x(k  +1) = A x{k)

Normal Mode

x(k  +1) = A .x (k )

Recovery Mode 2

x(k  + l) = A x (k )
Recovery Mode 2

x(k  + 1) = A x (k )

Figure 4.6: A unifilar finite-state machine representation of a re­

coverable computer control system, 

when M r  =  2,

SA = ei e3 e\ 62 e3 ei

and when M R =  5,

SA = e3 e3 e4 e$ ei Sn  = e2 e3 64 65 e6 ei

The complete set of system and simulation param eters are summarized in Table A-4. 

Based on the dimensionality discussion of Section 3.9, for the given values of M r ,  

d i m ( A r )  <  d im (B (r+i ) ) . Hence, only the approach of using the jump-linear system 

driven by the cross-chain process is considered here. The plot of spectral radius
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Figure 4.7: The Monte Carlo generated statistic logw {Q) for the 

Recovery Example 1 when input is first-order Markovian with 

=  0.3 and =  0.4. The dotted line is k logw (p (A i)) = 

k log10(p(B2)).

of A i  as a function of transition probabilities I l£ |£ and stationary probabilities 

is shown in Figures 4.3.2 and 4.3.2, respectively. Clearly the more persistent the 

upset or the longer the recovery process, the more likely the closed-loop will not be 

mean-square stable. The particular case where IIbi# =  0.8 was simulated by Monte 

Carlo methods and the resulting statistic logi0(Q) is plotted over tim e for M r  =  1, 

2, and 5 as shown in Figure 4.3.2. As per the theoretical predictions, the closed-loop 

system implementing the recovery algorithm is mean-square stable for M r  = 1, but 

it is not mean-square stable when M r  =  2 and M r  = 5. The simulations agree with 

th e se  th eo re tica l pred ictions.
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Figure 4.8: The spectral radius of A 2 and S 3 as a function of Y I e \ e , e  

for the Recovery Example 1.

4.3.3 Recovery Example 3

The th ird  example is a closed-loop system with a controller th a t is implemented 

on a RCS with the persistent upset algorithm shown in Figure 1.6. The recovery 

algorithm has four modes, normal mode, reload mode, release mode and an abort 

mode. System is always in the normal mode as long as there is no upset, denoted 

by symbol A. As soon as an upset occurs, denoted by symbol E, the system goes to  

the reload mode. It stays in the reload mode for a fixed duration to  fetch the 

good da ta  previously stored. The system then enters the release mode. If an upset 

occurs during its visit to  the release mode, the system revisits the reload mode or 

else returns to  normal mode. However, the system is allowed to  revisit the reload
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Figure 4.9: The Monte Carlo generated statistic logw (Q) for the 

Recovery Example 1 when the input is second-order Markovian 

with U e \ e , e  — 0-7 and 0.8. The dotted line is k  l o g w { p ( A 2 ) )  =  

k  logw (p(B3)).

mode from the release mode only a fixed number of times N Ra after which it enters 

an abort mode for a possible emergency action by an external supervisor to  bring the 

system back to  its normal operation. The corresponding state  diagram is shown in 

Figure 4.3.3 when N Rd = N Rs = N^b = 1. The example will dem onstrate the effect of 

varying N ^b along with the persistence of upsets when N^b =  1)2 and 5. Again, based 

on the dimensionality issues in Section 3.9, for the various values of NAb considered, 

d im (A r ) <  dim(B(r+i)). Hence, only the approach of using the jump-linear system 

driven by the cross-chain process pl is considered here. The sta te  transition matrices
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V(k) = A

Normal Mode Recovery Mode 1 

x(k+l) =A„ x(k)
V(k) = E

Recovery Mode N, 

x(k+l) =A„ x(k)

Figure 4.10: The state  diagram for the algorithm in Recovery Example 2. 

in the case of N ^b =  1 are given by:

SA = e\ ez e\ e& e\ ei ,S E e<2 e-z e4 eb e$ e\

The sta te  transition matrices for N/& =  2 and N/& =  5, respectively are given by

SE =

e l  e 3 Cl 65  e l  e 7 Cl 

62 63 64 65 e 6 e-j e i

and

5a  =  

S E =

ei e3 ei 65 ei e7 e$ eg eio ei 

62 63 64 65 e6 e  ̂ e$ eg eio ej
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Figure 4.11: The spectral radius of A \  as a function of YIe \e  for the 

Recovery Example 2.

The system and simulation param eters when N Ab =  1,2 and 5 are given in Table A-

5. The corresponding spectral radii plots of A \  versus transition probabilities n e |£ 

and stationary probabilities Pe  are shown in Figures 4.3.3 and 4.3.3, respectively. 

The plots in these figures show th a t the lower the values of N m , the more robust 

is the closed-loop system with respect to  stability. The corresponding Monte Carlo 

simulation when =  0.3 and N Ab =  1,2 and 5 are shown in Figure 4.3.3. The 

simulations verify th a t the closed-loop system is mean-square stable when N Ab = 1, 

2, bu t not mean-square stable when N Ab =  5. It is in this m anner th a t these stability 

criteria can be used as design tools.
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Figure 4.12: The spectral radius of A i  as a function of Pe  for the 

Recovery Example 2 when M R =  1,2,5.

4.4 Sum mary of K ey Points

In this chapter, three recovery models were demonstrated using Monte Carlo simu­

lation and compared against the theoretical predictions made by via the mean-square 

stability criteria developed in the previous chapter. All the simulations agreed with 

the theoretical predictions, thus demonstrating the the mean-square stability tools 

derived. The three examples demonstrated the effect of persistent upsets and recov­

ery duration on the robustness of the stability of closed-loop system. In all three 

examples plots of Lyapunov exponents matched the plot of simulations of log(Q ) 

asymptotically as predicted in theory.

+■+',+■+

0 .4  0.5 0 .6  0 .7
P E

0 .8  0 .9
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Figure 4.13: The Monte Carlo generated statistic logw (Q) for the

Recovery Example 2 when T \-e \e  = 0.8 and M r  is variable. The 

dotted line is k logw (p(A i)).
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Normal Mode Reload Mode 1

x(k+l) =AMi x(k)

Release Mode 1 

x(k+l)»ABB| x(k)

v(k) = A
v(k) = E

Abort Mode Reload Mode 2

x(k-fl) = A^xCk) x(k+l) =AJW_ x(k)

v(k) = E

Release Mode 2

xOt+DaAfc x(k)

Figure 4.14: The state  diagram for the Recovery 

Example 3 when N Ab = 1.
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Figure 4.15: The spectral radius of A i  as a function of U e \e  f o r  the 

Recovery Example 3 when N^b = 1 ,2,5.
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Figure 4.16: The spectral radius of A i  as a function of p e  for the 

Recovery Example 3 when N^b =  1, 2,5.
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CHAPTER V  

FUTURE RESEARCH AND CONCLUSIONS

In this chapter, the main contributions of this thesis are summarized and prospects 

for future research are discussed.

5.1 Sum mary o f M ain Contributions

To summarize the main contributions of this research, as outlined in the problem 

statem ent of Chapter 1, two random processes generated by a  finite-state machine 

when driven by Markov inputs of order r  >  0 were characterized. It was shown 

th a t the random process (u, z ) resulting from the cross-product of input process and 

sta te  process is a first-order Markov process when the input is an i.i.d. process, and 

it is a Markov process of order r when input is a Markov process of order r. The 

sta te  process of the finite-state machine z  was shown to be first-order Markovian 

when input is i.i.d., and the state  process of the unifilar type finite-state machine z  

was shown to be Markovian of order r + 1 when input is Markovian of any order r. 

Based on these characterization, mean-square stability conditions were developed for 

the system ( v ,M .,A ,0 )  comprising of a jump-linear system driven by an arbitrary  

finite-state machine with the i.i.d. and higher order Markov processes as inputs. 

As a corollary, it was also shown th a t those mean-square stability conditions can 

also be used to  test for exponentially second moment stability and stochastic second 

moment stability of the system. Mean-square stability was further characterized using 

the concept of Lyapunov exponent. Finally, three recovery examples were simulated
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using Monte Carlo methods th a t dem onstrated the mean-square stability conditions 

developed.

5.2 D irections for Future Research

In this concluding section, some discussion about the directions for future research 

is provided. The directions discussed here are based on the advantages and limitations 

of the methodology presented in this thesis.

5.2.1 Curse of Dimensionality: Some Possible Solutions

W hen recovery algorithms, especially those with counters for providing a  fixed 

amount of delay in each mode, are modeled as finite-state machines with non-isomorphic 

mapping, it needs to  be investigated whether numerically more efficient testable sta­

bility conditions can be derived. Perhaps the answer lies in determining under what 

conditions the output of such a finite-state machine or some related process is Marko­

vian. Some conditions for Markovianness of such output process are given in [5,7,41], 

which may be helpful in producing numerically efficient tests. However the conditions 

are known to be very restrictive.

5.2.2 Jump-Linear Systems Driven by Cascaded Finite-State  

Machines with Markovian Inputs

A more general situation shown in Figure 5.2.2 a is recovery algorithm modeled 

as two or more finite-state machines in cascade. Since the cross-chain formed by the
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Markov input process v  and the state  process z  is known to be Markovian of the 

same order as the input, if there are c number of finite-state machines in cascade, it 

is expected th a t the process (i/, Z i , . . . ,  z c) will also be Markovian of the same order. 

And hence, it is conjectured th a t the tools presented here can also be used to  infer 

the mean-square stability property for the jump-linear systems driven by cascaded 

finite-state machines with Markovian inputs.

Jump-Linear
Dynamical

System
Finite-State

Machine
Finite-State

Machine
Markovian
Exosystem

y(k) e,(k) er(k) x(k)

Figure 5.1: A jump-linear system driven by cascaded finite-state

machines with a Markovian input.

5.2.3 Systems with Stochastic Recovery Algorithms

Another general situation shown in Figure 5.2.4 is when sta te  transitions in the 

recovery algorithm are probabilistic. Such algorithms can be modeled by probabilistic 

finite-state machines (stochastic autom ata). It is known th a t the cross-chain process 

formed by the input and state  process is again Markovian of the same order as tha t 

of Markovian input. Hence it is conjectured tha t the stability of hybrid models 

for recovery algorithms with probabilistic finite-state machines can be analyzed by 

extending the tools presented in this thesis in an appropriate manner.

Recovery algorithms with counters having random delays with known distributions 

also need to  be investigated. A reasonable hypothesis is: the resulting output process
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is semi-Markov. This would lead to  a study of jump-linear systems driven by semi- 

Markov processes.

x  (k)

Jump-Linear
Dynamical

System

Stochastic
Finite-State

Machine

Markovian
Exosystem

Figure 5.2: A jump-linear system driven by a stochastic finite-state 

machine with a Markovian input.

5.2.4 Recovery System Identification

A related problem arises as shown in Figure 5.2.4 when the exact nature of the 

recovery algorithm is unknown. By measuring the output sequence probabilities, it 

may be possible to  identify an approximation for the underlying finite-state machine 

[4,12,47], Then, using the state estimates, the stability criteria presented here can 

be applied.

M arkovian
I

Exosystem
V(k)  I

Unknown ! 
F inite-S tate j -

Figure 5.3: A jump-linear

9(k)

Jum p-L inear
Dynamical

System
X( k)

a  Markovian input.
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A PPEN D IX  A: TABLES OF SYSTEM AND SIMULATION  

PARAMETERS

Table A-l: The system and simulation param eters for the Recovery Example 1 when 

the input is i.i.d.

P a ram e te r Value

£ / {A ,E }

{ei, e2,. . . ,  ejv}

So {No, R i, R 2}

{Ajv0, A r ^ A r j } {0.999,1.001001,1.001001}

H a {0.45,0.55}

n  e {0.55,0.45}

1/(0) P(*/(0) = A ) = P( i/(0) =  E)

z( 0) ei

0(0) N0

x(0) uniform on [—0.05,0.05]

Monte Carlo runs 1000

number of samples 10001
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Table A-2: The system and simulation param eters for the Recovery Example 1 when 

the input is first-order Markov.

P a ram e te r Value

Ej {A ,E }

{ei,e2, . . . ,e,/v}

S o {7Vo,Ri,f?2}

{Ajv0, A rj,  A/e2} {0.999,1.001001,1.001001}

n  a a 0.45

n  e e {0.3,0.4}

v{Q) P(i/(0) =  A) =  P(i/(0) =  E)

*(0) ei

0(0) No

*(0) uniform on [—0.05,0.05]

Monte Carlo runs 1000

number of samples 10001
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Table A-3: The system and simulation param eters for the Recovery Example 1 when 

the input is second-order Markov.

P a ram e te r Value

Ej {A ,E }

£ 5 { e i , e 2 ,  • . .  , e w }

So {1Vo,R i ,1?2}

{An0,A Ri ,A R2} {0.999,1.001001,1.001001}

Ka \AA 0.7

ka \ae 0.4

ka \ea 0.45

n E\EE {0.7,0.8}

u{Q) P{u{0) = A) = P( i/(0) =  E)

m Cl

m N0

x(0) uniform on [—0.05,0.05]

Monte Carlo runs 1000

number of samples 10001
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Table A-4: The system and simulation param eters for the Recovery Example 2.

P a ram e te r Value

£ / {A ,E }

{ e i , e 2 , . . . , e i v }

So { N 0, R i , . .  . , R m r }

M r variable: 1,2,5

N M r  +  1

{A n , A Ri} {0.99,1.0112}

IIaa 0.45

n  e e 0.8

1/(0) P( i/(0) — E) = P( i/(0) =  A)

z(0) e i

0(0) No

*(0) uniform on [-0.05,0.05]

Monte Carlo runs 1000

number of samples 10001
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Table A-5: The system and simulation param eters for the Recovery Example 3.

Parameter Value

£ / {A ,E }

{ei,e2,.. .  ,e;v}

So {M>, Rdi, Rsi, Rd,2 , R s2 , 

A b i. . .  ,AbNAb}

{ANo , Aiidi, A rSi , A Abi} {0.99,1.039,0.96,1.08}

Nftd> Njis 1,2

Na b variable: 1,2,5

N NAb +  5

Uaa 0.6

n  ee 0.3

u(0) P( i/(0) = E) = P( i/(0) =  A)

z(0) ei

0(0) No

*(0) uniform on [—0.05,0.05]

Monte Carlo runs 1000

number of samples 10001
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A PPEN DIX  B: SIMULATION SOFTWARE

This appendix is a compilation of the the MATLAB® source code used for gen­

erating Markov chains, the theoretical prediction of stability boundary, as well and 

the simulation results for the three recovery examples in Chapter 4.

B - l G enerating Markov Chains

B - l . l  Independent Identically Distributed Process

G en_disc_iid: This program generates independent identically distributed process 

for the given distribution IIB and for the given number of samples Numsam.

“/.Here \Pi_E=pe

function N=Gen_disc_iid(pe,Numsam)

N(1,Numsam+l)=0; 

rand(’state’,sum(100*clock)); 

for jj=l:Numsam+l 

if unifrnd(0,l)<(l-pe)
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N(jj)=0;

else

N(jj)=l;

end;

end;

B-1.2 First-Order Markov Process

G en_disc_M arkov_first: This function generates a first-order two sta te  Markov 

process with two states (A,E) for the given transition probability m atrix characterized 

by transition probabilities IIAiA, n £ i£ and for the given number of samples Numsam.

The Markov chain is initialized at steady state  proabilities.

'/.Here transition probabilities \Pi_{A|A}=paa, \Pi_{E|E}=pee, stationary probabi 

function N=Gen_disc_markov_first(paa,pee,Numsam)

N(l,Numsam+l)=0;

pa=((l-pee)/((l-paa)+(l-pee))); 

pe=((l-paa)/((l-paa)+(l-pee)));

randC’state’,sum(100*clock));
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if unifrnd(0,l)<pa 

N(1)=0;

else

N(l)=l;

end;

for jj =2:l:Numsam+l

if N(jj-l)==0

if unifrnd(0,l)<paa 

N(jj)=0; 

else N(jj)=l; 

end;

else

if unifrnd(0,i)<pee 

N (jj)—l; 

else N(j j)=0; 

end;

end;

end;
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B-1.3 Second-Order Markov Process

G en_disc_M arkov_second: This function generates a second-order two sta te  Markov 

process of states (A,E) for the given transition probability m atrix characterized by

transition probabilities H a \a a , H a \a e , ^ a \e a  and H a \e e  and for the given number of

samples Numsam. The Markov chain is initialized at steady-state probabilities.

'/.Here $\Pi_{A| AA}=paaa$, $\Pi_{Al AE}=paae$, $\Pi_{A I EA}=paea$ and $\Pi_{A|EE> 

function N=Gen_disc_markov_second(paaa,paae,paea,paee,Numsam)

N(1,Numsam+1)=0;

Pi_I=[paaa paae 0 0;

0 0 paea paee;

1-paaa 1-paae 0 0;

0 0 1-paea 1-paee;];

p=null(Pi_I-eye(4)); 

p=p/sum(p);

randf’state’,sum(100*clock));

Uinit=unifrnd(0,1);
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if Uinit<p(l)

N(2)=0; N(1)=0; 

elseif Uinit <p(l)+p(2)

N(2)=0; N(l)=l; 

elseif Uinit < p(l)+p(2)+p(3) 

N(2)=l ; N(1)=0;

else

N(2)=l; N(l)=l;

end;

for jj=3:1:Numsam+l

if N (j j—1)==0 & N(jj-2)==0 

if unifrnd(0,l)<paaa 

N(jj)=0; 

else N(jj)=l; 

end;

elseif N(jj-1)==0 & N(jj-2)==1 

if unifrnd(0,l)<paae 

N(j j)=0; 

else N(j j)=1;
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end;

elseif N(jj-l)==l & N(jj-2)==0 

if unifrnd(0,l)<paea 

N(j j)=0; 

else N(jj)=l; 

end;

else

if unifrnd(0,l)<paee 

N(j j)=0; 

else N(jj)=l; 

end;

end;

end;

B-2 Recovery Exam ple 1

B-2.1 Program Code for Theoretical Prediction

p lo t_srscrip tA O : This program produces plots for the Recovery Example 1 when 

M r  =  2 ,  H r  v / s  spectral radius of Ao for the i.i.d. input.
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"/.System parameter in the normal mode 

A_0=0.999;

/.System parameter in the recovery mode 

A_1=1/A_0;

"/.Transition matrices for the finite-state machine

S_l= Cl 0 1;

0 0 0 ; 

0 1 0 ];

S_2=[0 0 1;

1 0  0 ; 

0 1 0 ];

"/.Varying paramaeter \Pi_{E|E}

pi_r_l=0.05:0.05:1;

sz=size(pi_r_ll,2); 

for jj=l:sz;
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Pi_I=[l-pi_r_l(jj) pi_r_l(jj); l-pi_r_l(jj) pi_r_l(jj)]; 

Pi_IO=kron(Pi_I, eye(3))*blkdiag(S_l,S_2);

sA0=kron(Pi_I0,eye(l))*blkdiag(A_0'‘2>A_l“2,A_1‘2,A_0'‘2,A_1"2,A_l“2); 

sr_scriptAl(jj)=max(abs(eig(sAO))); 

end;

'/.Plot \Pi_{E|E) v/s spectralradius (scriptAl) ; 

plot(pi_r_ll,sr_scriptAl, ’r*’);

title(strcat(’ Recovery Example 1’, ’ A_0= num2str(A_0),

’ A_i= num2str(A_l), ’\Pi_{aa}= ’,num2str(pi_r_00)));

plot_srscriptBl: This program plots variation in IIe  v / s  spectral radius of B \, when 

input is i.i.d..

"/.Fix \Pi_{A|A}=0.45

/(System parameter in the normal mode 

A_0=0.999;
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/.System parameter in the recovery mode 

A_1=1/A_0;

’/.Transition matrices for the finite-state machine

S_l=[l 0 1;

0 0 0 ; 

0 1 0 ] ;

S_2= [0 0 1;

1 0 0 ; 

0 1 0 ];

’/.Varying paramaeter \Pi_{E|E>

pi_r_l=0.05:0.05:1; 

pi_r_0=l-pi_r_ll;

sz=size(pi_r_l,2); 

for jj=l:sz;

Pi_I=[pi_r_0 pi_r_l(jj); pi_r_0 pi_r_l(jj)];
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Pi_0=(l-pi_r_l(jj))*S_l+pi_r_ll(jj)*S_2;

p lo t_ s rsc r ip tA l:  This program produces plots for the Recovery Example 1, TIe \e  

v /s  spectral radius of A i,  corresponding to  jump-linear system driven by cross-chain 

process p = (u, 6), when input is a first-order Markov process.

%Fix \Pi_{A|A A}=0.45 

pi_r_00=0.45;

•/.System parameter in the normal mode 

A_0=0.999;

•/.System parameter in the recovery mode 

A_1=1/A_0;

"/.State transition matrices

S_l=[l 0 1; 0 0 0; 0 1 0]; S_2=[0 0 1; 1 0 0; 0 1 0];

•/.Vary probability \Pi{A|E E>, \Pi{E|E E> 

pi_r_ll=0.05:0.05:1;
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sz=size(pi_r_ll,2); 

for jj=l:sz;

Pi_I=[pi_r_00 l-pi_r_ll(jj); l-pi_r_00 pi_r_ll(jj)];

Pi_IO=kron(Pi_I, eye(3))*blkdiag(S_l,S_2);

sAl=(kron(Pi_IO, eye(l)))*blkdiag(A_0"2, A_l~2, A_l~2, A_0‘2, A_l"2, A_l“2) 

sr_scriptAl(jj)=max(abs(eig(sAl)));

end;

%Plot pi_{E|E) v/s spectralradius(scriptAl); 

plot(pi_r_ll,sr_scriptAl, 'r*’);

title(strcat(JSimplified Recovery Example’, ’ A_0= ’,

num2str(A_0), * A_l= num2str(A_l), ’\Pi_{aa>= ’,num2str(pi_r_00)));

p lo t_ s rsc rip tB 2 : This program produces plots for the Recovery Example 1 when the 

input is a first-order Markovian, XIee v / s  spectral radius of B2 for fixed 11̂ ,a = 0.45, 

when input is first-order Markov process.

‘/.Fix \Pi_{A|A>=0.45
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p i_ r _ 0 0 = 0 .4 5 ;

A_0=0.999; A_1=1/A_0;

"/.Vary \Pi_{E|E>=0.45 

pi_r_ll=0.05:0.05:1;

sz=size(pi_r_ll,2);

for jj=l:sz;

Pi_I=[pi_r_00 l-pi_r_ll(jj); 

l-pi_r_00 pi_r_ll(jj)];

Pi_02_ll=zeros(5,5); 

Pi_02_12=zeros(5,5); 

Pi_02_13=zeros(5,5); 

Pi_02_14=zeros(5,5); 

Pi_02_15=zeros(5,5); 

Pi_02_21=zeros(5,5); 

Pi_02_22=zeros(5,5); 

Pi_02_23=zeros(5,5);
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Pi_02_24=zeros(5,5);

Pi_02_25=zeros(5,5);

Pi_02_31=zeros(5,5);

Pi_02_32=zeros(5,5);

Pi_02_33=zeros(5,5);

Pi_02_34=zeros(5,5);

Pi_02_35=zeros(5,5);

Pi_02_41=zeros(5,5);

Pi_02_42=zeros(5,5);

Pi_02_43=zeros(5,5);

Pi_02_44=zeros(5,5);

Pi_02_45=zeros(5,5);

Pi_02_51=zeros(5,5);

Pi_02_52=zeros(5,5);

Pi_02_53=zeros(5,5);

Pi_02_54=zeros(5,5);

Pi_02_55=zeros(5,5);

%Pi_02_ll(l,:)=[P(xl|xl,xl) P(xl|xl,x2) P(xl|xl,x3) 

,/.P(xl|xl,x4) P(xl|xl,x5)] ;

Pi_02_ll(l,:)=[pi_r_00 0 pi_r_00 pi_r_00 0] ;
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7.Pi_02_21(2, :)=[P(x2|xl,xl) P(x2|xl,x2) P(x2|xl,x3) 

"/,P(x2|xl,x4) P(x2|xl,x5)] ;

Pi_02_21(l,:)=[l-pi_r_00 0 l-pi_r_00 l-pi_r_00 0] ;

y.Pi_02_31(3, :) = [P(x3|xl,xl) P(x3|xl,x2) P(x3|xl,x3) 

y,P(x3|xl,x4) P(x3|xl,x5)] ;

Pi_02_31(l,:)=[0 0 0 0 0] ;

y.Pi_02_41(l, :) = [P(x4|xl,xl) P(x4|xl,x2) P(x4|xl,x3) 

y,P(x4|xl,x4) P(x4|xl,x5)] ;

Pi_02_41(l,:)=[0 0 0 0 0 ]  ;

%Pi_02_51(l,:)=[P(x5|xl,xl) P(x5|xl,x2) P(x5|xl,x3) 

%P(x5|xl,x4) P(x5|xl,x5)] ;

Pi_02_51(l,:)=[0 0 0 0 0 ]  ;

y.Pi_02_12(2, : ) = [P(xl |x2,xl) P(xl|x2,x2) P(xl|x2,x3) 

%P(xl|x2,x4) P(xl|x2,x5)] ;
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Pi_02_12(2, :)= [ 0 0 0 0 0 ] ;

,/,Pi_02_22(2, :) = [P(x2|x2,xl) P(x2|x2,x2) P(x2|x2,x3) 

°/.P (x21 x2, x4) P (x21 x2, x5) ] ;

Pi_02_22(2,:)=[0 0 0 0 0];

°/„Pi_02_32(2, :) = [P(x3|x2,xl) P(x3|x2,x2) P(x3|x2,x3) 

%P(x3Ix2,x4) P(x3|x2,x5)];

Pi_02_32(2,:)=[ l-pi_r_ll(jj) 0 0 0 l-pi_r_ll(jj)];

%Pi_02_42(2,:)=[P(x4|x2,xl) P(x4|x2,x2) P(x4|x2,x3) 

°/„P (x41 x 2 , x4) P (x41 x2, x5) ] ;

Pi_02_42(2,:) = Epi_r_11(jj) 0 0 0 pi_r_ll(jj)];

'/.Pi_02_52(2, :) = [P(x5|x2,xl) P(x5|x2,x2) P(x5|x2,x3) 

'/0P(x51x2,x4) P(x5|x2,x5)] ;

Pi_02_52(2,:)=[0 0 0 0 0];

”/.Pi_02_13(3, :) = [P(xl|x3,xl) P(xl|x3,x2) P(xl|x3,x3)
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%P(xlIx3,x4) P(xl1x3,x5)];

Pi_02_13(3,:)=[0 pi_r_00 0 0 0];

#/.Pi_02_23(3, :) = [P(x2|x3,xl) P(x2|x3,x2) P(x2|x3,x3) 

*/,P (x21 x3, x4) P (x21 x3, x5) ] ;

Pi_02_23(3,:)=[0 0 0 0 0];

’/.Pi_02_33(3, :) = [P(x3|x3,xl) P(x3|x3,x2) P(x3|x3,x3) 

7.P (x31 x3, x4) P (x31 x3, x5) ] ;

Pi_02_33(3,:)=[0 0 0 0 0];

%Pi_02_43(3,:)=[P(x4|x3,xl) P(x4|x3,x2) P(x4|x3,x3) 

%P(x4|x3,x4) P(x4|x3,x5)];

Pi_02_43(3,:)=[0 0 0 0 0];

%Pi_02_53(3,:)=[P(x5|x3,xl) P(x5|x3,x2) P(x5|x3,x3) 

°/.P(x5|x3,x4) P(x51x3,x5)] ;

Pi_02_53(3,:)=[0 l-pi_r_00 0 0 0];
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%Pi_02_14(4,:)=[P(xl|x4,xl) P(xl|x4,x2) P(xl|x4,x3) 

%P(xl|x4,x4) P(xlIx4,x5)];

Pi_02_14(4,:)=[0 l-pi_r_ll(jj) 0 0 0 ] ;

%Pi_02_24(4,:)=[P(x2|x4,xl) P(x2|x4,x2) P(x2|x4,x3) 

%P(x2Ix4,x4) P(x2Ix4,x5)];

Pi_02_24(4,:)=[0 0 0 0 0 ];

#/.Pi_02_34(4, :) = [P(x3|x4,xl) P(x3|x4,x2) P(x3|x4,x3) 

‘/.P (x31 x4, x4) P(x3Ix4,x5)];

Pi_02_34(4,: )= [0  0 0 0 0] ;

y.Pi_02_44(4,:) = [P(x4|x4,xl) P(x4|x4,x2) P(x4|x4,x3) 

*/,P (x41 x4, x4) P (x41 x4, x5) ] ;

Pi_02_44(4,:)=[0 0 0 0 0] ;

‘/.Pi_02_54(4, :)=[P(x5|x4,xl) P(x5|x4,x2) P(x5|x4,x3) 

°/.P (x51 x4, x4) P (x51 x4, x5) ] ;
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Pi_02_54(4,:)=[0 pi_r_ll(jj) 0 0 0];

%Pi_02_15(5,:)=[P(xl|x5,xl) P(xl|x5,x2) P(xl|x5,x3)

7,P (xl I x5, x4) P (xl | x5, x5) ] ;

Pi_02_15(5,:)=[0 0 0 0 0];

7oPi_02_25(5, :) = [P(x2|x5,xl) P(x2|x5,x2) P(x2|x5,x3)

J/.P (x21 x5, x4) P (x21 x5, x5) ] ;

Pi_02_25(5,:)=[0 0 pi_r_ll(jj) pi_r_ll(jj) l-pi_r_00];

%Pi_02_35(5,:)=[P(x3|x5,xl) P(x3|x5,x2) P(x3|x5,x3)

'/.P (x31 x5, x4) P (x31 x5, x5) ] ;

Pi_02_35(5,:)=[0 0 0 0 0];

*/,Pi_02_45(5, :) = [P(x4|x5,xl) P(x4|x5,x2) P(x4|x5,x3)

7.P (x41 x5, x4) P (x41 x5, x5) ] ;

Pi_02_45(5,:)=[0 0 0 0 0];
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‘/oPi_02_55(, :) = [P(x5|x5,xl) P(x5|x5,x2) P(x5|x5,x3)

%P(x5|x5,x4) P(x5Ix5,x5)];

Pi_02_55(5,:)=[0 0 l-pi_r_ll(jj) l-pi_r_ll(jj) pi_r_00];

Pi_02= [Pi_02_ll Pi_02_12 Pi_02_13 Pi_02_14 Pi_02_15; 

Pi_02_21 Pi_02_22 Pi_02_23 Pi_02_24 Pi_02_25;

Pi_02_31 Pi_02_32 Pi_02_33 Pi_02_34 Pi_02_35;

Pi_02_41 Pi_02_42 Pi_02_43 Pi_02_44 Pi_02_45;

Pi_02_51 Pi_02_52 Pi_02_53 Pi_02_54 Pi_02_55];

sB2=(kron(Pi_02, eye(l)))*blkdiag(eye(5)*A_0~2, eye(5)*A_l''2, 

eye(5)*A_l‘2, eye(5)*A_l~2, eye(5)*A_0~2);

veceig=abs(eig(sB2));

veceig(find(abs(eig(sB2))>2e-8))

sr_scriptB2 Cjj)=max(abs(eig(sB2)));

end;
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"/.Plot pi_{eta_2,eta_2) v/s spectralradius(scriptB2); 

plot(pi_r_ll,sr_scriptB2, ’ +

p lo t_ srsc rip tA 2 : This program takes second-order transition probabilities as input, 

in the form of its first-order representation (as a stochastic m atrix) and computes 

spectral radius of A i for the Recovery Example 1.

paaa=0.7; 

paae=0.4;

’/.‘/.Fix p_{\eta21 \eta2, \etal}=0.45 

a=0.45;

‘/.Vary probability \Pi{A|E E}, \Pi{E|E E} 

b=0.05:0.05:1;
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sz= s ize (b ,2 ) ;

'/.System parameter in the normal mode 

A_0=0.999;

'/.System parameter in the recovery mode 

A_1=1/A_0;

'/.Transition matrices for the finite-state machine 

S_l= Cl 0 1; 0 0 0; 0 1 0];

S_2=[0 0 1; 1 0 0; 0 1 0];

for jj=l:sz;

"/.Transition probability matrix for the second-order Markov process 

Pi_I=[paaa paae 0 0;

0 0 a l-b(jj);

1-paaa 1-paae 0 0;

0 0 1-a b(jj);]
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Pi_IO=kron(Pi_I, eye(3))*blkdiag(S_l,S_2,S_l,S_2); 

sA2=(kron(Pi_I0, eye(l)))*blkdiag(A_0~2, A_l~2, A_l~2, A_0“2J 

A_l~2, A_1~2,A_(T2, A_l~2, A_1“2,A_(T2, A_1‘2, A_l~2);

sr_scriptA2(j j)=max(abs(eig(sA2)));

end;

plot(b,sr_scriptA2, ’r*’); 

title(strcat(’Recovery Example', ’ A_0= 

num2str(A_0), ’ A_l= num2str(A_l), ’\Pi_{aa}= ’,num2str(a)));

plot_srscriptB3: This program produces plots for the Recovery Example 1, when 

the input is a second-order Markov process, for TiE\EE v /s  spectral radius of B 3 , given 

p i A \ A A  = 0 .7 , p i A \ A E  =  0.4  and p i A \ E A  =  0.45.

pi_000=0.7;

pi_001=0.4;

pi_010=0.45;

pi_100=0.3;
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p i_ 1 0 1 = 0 .6 ;

pi_110=0.55;

A_0=0.999; A_1=1/A_0;

b=0.05:0.05:1; 

sz=size(b,2);

for jj=l:sz

pi_011=l-b(jj); 

pi_lll=b(jj);

Pi_I= [pi_000 pi_001 0 0; 

0 0 pi_010 pi_011;

pi_100 pi_101 0 0;

0 0 pi_110 pi_lll];

Pi_03_lll=zeros(5,5); 

Pi_03_112=zeros(5,5); 

Pi_03_113=zeros(5,5); 

Pi_03_114=zeros(5,5);
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P i_ 0 3 _ 1 1 5 = z e r o s ( 5 ,5 ) ;

Pi_03_121=zeros(5,5); 

Pi_03_122=zeros(5,5); 

Pi_03_123=zeros(5,5); 

Pi_03_124=zeros(5,5); 

Pi_03_125=zeros(5,5);

Pi_03_131=zeros(5,5); 

Pi_03_132=zeros(5,5); 

Pi_03_133=zeros(5,5); 

Pi_03_134=zeros(5,5); 

Pi_03_135=zeros(5,5);

Pi_03_141=zeros(5,5); 

Pi_03_142=zeros(5,5); 

Pi_03_143=zeros(5,5); 

Pi_03_144=zeros(5,5); 

Pi_03_145=zeros(5,5);
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Pi_03_151=zeros(5,5) ; 

Pi_03_152=zeros(5,5); 

Pi_03_153=zeros(5,5); 

Pi_03_154=zeros(5,5); 

Pi_03_155=zeros(5,5) ;

Pi_03_211=zeros(5,5); 

Pi_03_212=zeros(5,5); 

Pi_03_213=zeros(5,5); 

Pi_03_214=zeros(5,5); 

Pi_03_215=zeros(5,5);

Pi_03_221=zeros(5,5); 

Pi_03_222=zeros(5,5); 

Pi_03_223=zeros(5,5); 

Pi_03_224=zeros(5,5); 

Pi_03_225=zeros(5,5);

Pi_03_231=zeros(5,5); 

Pi_03_232=zeros(5,5);
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Pi_03_233=zeros(5,5); 

Pi_03_234=zeros(5,5); 

Pi_03_235=zeros(5,5);

Pi_03_241=zeros(5,5); 

Pi_03_242=zeros(5,5); 

Pi_03_243=zeros(5,5); 

Pi_03_244=zeros(5,5); 

Pi_03_245=zeros(5,5);

Pi_03_251=zeros(5,5); 

Pi_03_252=zeros(5,5) ; 

Pi_03_253=zeros(5,5); 

Pi_03_254=zeros(5,5); 

Pi_03_255=zeros(5,5);

Pi_03_311=zeros(5,5); 

Pi_03_312=zeros(5,5); 

Pi_03_313=zeros(5,5); 

Pi_03_314=zeros(5,5); 

Pi_03_315=zeros(5,5);
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Pi_03_321=zeros(5,5); 

Pi_03_322=zeros(5,5); 

Pi_03_323=zeros(5,5); 

Pi_03_324=zeros(5,5); 

Pi_03_325=zeros(5,5);

Pi_03_331=zeros(5,5); 

Pi_03_332=zeros(5,5); 

Pi_03_333=zeros(5,5); 

Pi_03_334=zeros(5,5); 

Pi_03_335=zeros(5,5);

Pi_03_341=zeros(5,5); 

Pi_03_342=zeros(5,5); 

Pi_03_343=zeros(5,5); 

Pi_03_344=zeros(5,5); 

Pi_03_345=zeros(5,5);
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Pi_03_351=zeros(5,5); 

Pi_03_352=zeros(5,5); 

Pi_03_353=zeros(5,5); 

Pi_03_354=zeros(5,5); 

Pi_03_355=zeros(5,5);

Pi_03_411=zeros(5,5); 

Pi_03_412=zeros(5,5); 

Pi_03_413=zeros(5,5); 

Pi_03_414=zeros(5,5); 

Pi_03_415=zeros(5,5) ;

Pi_03_421=zeros(5,5); 

Pi_03_422=zeros(5,5); 

Pi_03_423=zeros(5,5); 

Pi_03_424=zeros(5,5); 

Pi_03_425=zeros(5,5);

Pi_03_431=zeros(5,5); 

Pi_03_432=zeros(5,5); 

Pi_03_433=zeros(5,5);
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Pi_03_434=zeros(5,5); 

Pi_03_435=zeros(5,5);

Pi_03_441=zeros(5,5); 

Pi_03_442=zeros(5,5); 

Pi_03_443=zeros(5,5); 

Pi_03_444=zeros(5,5); 

Pi_03_445=zeros(5,5);

Pi_03_451=zeros(5,5); 

Pi_03_452=zeros(5,5); 

Pi_03_453=zeros(5,5) ; 

Pi_03_454=zeros(5,5); 

Pi_03_455=zeros(5,5);

Pi_03_511=zeros(5,5); 

Pi_03_512=zeros(5,5); 

Pi_03_513=zeros(5,5); 

Pi_03_514=zeros(5,5); 

Pi_03_515=zeros(5,5);
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Pi_03_521=zeros(5,5); 

Pi_03_522=zeros(5,5); 

Pi_03_523=zeros(5,5); 

Pi_03_524=zeros(5,5); 

Pi_03_525=zeros(5,5);

Pi_03_531=zeros(5,5); 

Pi_03_532=zeros(5,5); 

Pi_03_533=zeros(5,5); 

Pi_03_534=zeros(5,5); 

Pi_03_535=zeros(5,5);

Pi_03_541=zeros(5,5); 

Pi_03_542=zeros(5,5); 

Pi_03_543=zeros(5,5); 

Pi_03_544=zeros(5,5); 

Pi_03_545=zeros(5,5);

Pi_03_551=zeros(5,5);
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P i_ 0 3 _ 5 5 2 = z e r o s ( 5 ,5 ) ;

Pi_03_553=zeros(5,5);

Pi_03_554=zeros(5,5);

Pi_03_555=zeros(5,5);

I  Pi_03_lll(l,:)=[P(xl|xl,xl,xl) P(xl|xl,xl,x2) P(xl|xl,xl,x3)

'/, P(xl |xl,xl,x4) P(xl|xl,xl,x5)3 ;

Pi_03_lll(l,:)=[pi_000 0 pi_000 pi_000 0] ;

%Pi_03_112(2,:)=[P(xl|xl,x2,xl) P(xl|xl,x2,x2) P(xl|xl,x2,x3) 

%P(xl|xl,x2,x4) P(xl|xl,x2,x5)] ;

Pi_03_112(2,:)=[0 0 0 0 0] ;

7«Pi_03_lll(l, 11:15) = [P(xl |xl,x3,xl) P(xl |xl,x3,x2) P(xl |xl,x3,x3) 

y.P(xl|xl,x3,x4) P(xl |xl,x3,x5)] ;

Pi_03_113(3,:)=[0 pi_000 0 0 0];

%Pi_03_lll(l,16:20)= [P(xl|xl,x4,xl) P(xl|xl,x4,x2) P(xl|xl,x4,x3) 

’/.P(xl |xl,x4,x4) P(xl |xl,x4,x5)] ;
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P i_ 0 3 _ 1 1 4 ( 4 ,: )= [0  p i_ 0 0 1  0 0 0 ] ;

y.Pi_03_lll (1,21:25) = [P(xl |xl ,x5,xl) P(xl|xl,x5,x2) P(xl |xl ,x5,x3) 

'/.P(xl Ixl,x5,x4) P(xl|xl,x5,x5)] ;

Pi_03_115(5,:)=[0 0 0 0 0] ;

°/.Pi_03_121 (2,26:30) = [P(xl Ix2,xl,xl) P(xl |x2,xl,x2) P(xl|x2,xl,x3) 

%P(xl|x2,xl,x4) P(xl|x2,xl,x5)] ;

Pi_03_121(l,:)=[0 0 0 0 0] ;

%Pi_03_121(2,:)=[P(xl|x2,x2,xl) P(xlIx2,x2,x2) P(xlIx2,x2,x3) 

“/.P(xl Ix2,x2,x4) P(xl Ix2,x2,x5)] ;

Pi_03_122(2,:)=[0 0 0 0 0] ;

y,Pi_03_121 (3,: ) = [P(xl |x2,x3,xl) P(xl Ix2,x3,x2) P(xl Ix2,x3,x3) 

°/.P(xlIx2,x3,x4) P(xl|x2,x3,x5)] ;

Pi_03_123(3,:)=[0 0 0 0 0] ;

y.Pi_03_121(4,: ) = [P(xl |x2,x4,xl) P(xl Ix2,x4,x2) P(xl Ix2,x4,x3) 

y.P(xl|x2,x4,x4) P(xl Ix2,x4,x5)] ;

Pi_03_124(4,:)=[0 0 0 0 0] ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



138

%Pi_03_121(5,:)=[P(xl|x2,x5,xl) P(xlIx2,x5,x2) P(xlIx2,x5,x3) 

%P(xlIx2,x5,x4) P(xl|x2,x5,x5)] ;

Pi_03_125(5,:)=[0 0 0 0 0] ;

7.Pi_03_131(l, :)=[P(xl|x3,xl,xl) P(xl|x3,xl,x2) P(xl|x3,xl,x3) 

%P(xl|x3,xl,x4) P(xl|x3,xl,x5)] ;

Pi_03_131(l,:)=[0 0 0 0 0] ;

% Pi_03_132(2,:)=[P(xl|x3,x2,xl) P(xl|x3,x2,x2) P(xlIx3,x2,x3) 

"/,P(xl Ix3,x2,x4) P(xl Ix3,x2,x5)] ;

Pi_03_132(2,:)=[pi_001 0 0 0 pi_001] ;

7. Pi_03_133(3, :) = [P(xl|x3,x3,xl) P(xl Ix3,x3,x2) P(xl Ix3,x3,x3) 

7.P(xlIx3,x3,x4) P(xl|x3,x3,x5)] ;

Pi_03_133(3,:)=[0 0 0 0 0] ;

7. Pi_03_134(4,:)=[P(xl|x3,x4,xl) P(x3|x3,x4,x2) P(x3|x3,x4,x3)

7.P(x3|x3,x4,x4) P(x3|x3,x4,x5)] ;

Pi_03_134(4,:)=[0 0 0 0 0] ;

7. Pi_03_135(5, :) = [P(xl|x3,x5,xl) P(x3|x3,x5,x2) P(x3|x3,x5,x3)

7.P(x31x3,x5,x4) P(x3|x3,x5,x5)] ;
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P i_ 0 3 _ 1 3 5 ( 5 ,: )= [0  0 0 0 0] ;

7. Pi_03_141(l,:)=[P(xl|x4,xl,xl) P(xl|x4,xl,x2) P(xl|x4,xl,x3) 

%P(xl|x4,xl,x4) P(xl|x4,xl,x5)] ;

Pi_03_141(l,:)=[0 0 0 0 0] ;

7. Pi_03_142(2,:)=[P(xl|x4,x2,xl) P(xlIx4,x2,x2) P(xlIx4,x2,x3) 

°/.P(xl Ix4,x2,x4) P(xl |x4,x2,x5)] ;

Pi_03_142(2,:)=[pi_011 0 0 0 pi_011] ;

7. Pi_03_143(3,:)=[P(xlIx4,x3,xl) P(xlIx4,x3,x2) P(xlIx4,x3,x3) 

*/.P(xl Ix4,x3,x4) P(xl | x4,xl,x5)] ;

Pi_03_143(3,:)=[0 0 0 0 0] ;

7. Pi_03_144(4, :) = [P(xl|x4,x4,xl) P(xl Ix4,x4,x2) P(xl Ix4,x4,x3) 

%P(xl|x4,x4,x4) P(xlIx4,x4,x5)] ;

Pi_03_144(4,:)=[0 0 0 0 0] ;

7. Pi_03_145(5,: ) = [P(xl |x4,x5,xl) P(xl Ix4,x5,x2) P(xl Ix4,x5,x3) 

7.P(xl Ix4,x5,x4) P(xl |x4,x5,x5)] ;

Pi_03_145(5,:)=[0 0 0 0 0] ;

7. Pi_03_151(l, :) = [P(xl|x5,xl,xl) P(xl |x5,xl,x2) P(xl |x5,xl,x3)
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%P(xlIx5,xl,x4) P(xl|x5,xl,x5)] ;

Pi_03_15i(l,:)=[0 O O O O ]  ;

"/. Pi_03_152(2, :) = [P(xl|x5,x2,xl) P(xl Ix5,x2,x2) P(xlIx5,x2,x3)

%P(xl|x5,x2,x4) P(xlIx5,x2,x5)] ;

Pi_03_152(2,:)=[0 0 0 0 0] ;

*/. Pi_03_153(3,: ) = [P(xl |x5,x3,xl) P(xl Ix5,x3,x2) P(xl |x5,x3,x3) 

y.P(xl|x5,x3,x4) P(xl Ix5,x3,x5)] ;

Pi_03_153(3,:)=[0 0 0 0 0] ;

% Pi_03_154(4,:)=[P(xlIx5,x4,xl) P(xlIx5,x4,x2) P(xl|x5,x4,x3) 

%P(xlIx5,x4,x4) P(xlIx5,x4,x5)] ;

Pi_03_154(4,:)=[0 0 0 0 0] ;

% Pi_03_155(5,:)=[P(xl|x5,x5,xl) P(xlIx5,x5,x2) P(xlIx5,x5,x3)

y.P(xl|x5,x5,x4) P(xl Ix5,x5,x5)] ;

Pi_03_155(5,:)=[0 0 0 0 0] ;

% Pi_03_211(l,:)= [P(x2|xl,xl,xl) P(x2|xl,xl,x2) P(x2|xl,xl,x3)

y.P(x2|xl,xl,x4) P(x2|xl,xl,x5)] ;

Pi_03_211(l,:)=[pi_100 0 pi_100 pi_100 0] ;
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% Pi_03_212(2,:)= [P(x2|xl,x2,xl) P(x2|xl,x2,x2) P(x2|xl,x2,x3) 

7,P(x2|xl,x2,x4) P(x2|xl,x2,x5)] ;

Pi_03_212(2,:)=[0 0 0 0 0 ]  ;

% Pi_03_213(3,:)= [P(x2|xl,x3,xl) P(x2|xl,x3,x2) P(x2|xl,x3,x3)

%P(x2|xl,x3,x4) P(x2|xl,x3,x5)] ;

Pi_03_213(3,:)=[0 pi_100 0 0 0];

7. Pi_03_214(4,:)= [P(x2|xl,x4,xl) P(x2|xl,x4,x2) P(x2|xl,x4,x3) 

7.P(x2|xl,x4,x4) P(x2|xl,x4,x5)] ;

Pi_03_214(4,:)=[0 pi_101 0 0 0];

% Pi_03_215(5,:)= [P(x2|xl,x5,xl) P(x2|xl,x5,x2) P(x2|xl,x5,x3) 

7.P (x21 xl, x5, x4) P(x2|xl,x5,x5)] ;

Pi_03_215(5,:)=[0 0 0 0 0] ;

7. Pi_03_253(3,:)= [P(x2|x5,x3,xl) P(x2|x5,x3,x2) P(x2|x5,x3,x3) 

7.P(x2|x5,x3,x4) P(x2|x5,x3,x5)] ;

Pi_03_253(3,:) = [0 pi_110 0 0 0];

7. Pi_03_254(4,:)= [P(x2|x5,x4,xl) P(x2|x5,x4,x2) P(x2|x5,x4,x3)

7.P(x 2 | x 5 , x4 , x4 )  P ( x 2 | x 5 , x4 , x 5 ) ]  ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



142

P i_ 0 3 _ 2 5 4 ( 4 ,: ) = [ 0  p i . l l l  0 0 0 ] ;

7. Pi_03_253(3,:)= [P(x2|x5,x5,xl) P(x2|x5,x5,x2) P(x2|x5,x5,x3) 

7.P(x21x5,x5,x4) P(x2|x5,x5,x5)] ;

Pi_03_255(5,:)=[0 0 pi_101 pi_101 pi_100];

7. Pi_03_321(l,:)= [P(x3|x2,xl,xl) P(x3|x2,xl,x2) P(x3|x2,xl,x3) 

7.P(x3|x2,xl,x4) P(x3|x2,xl,x5)] ;

Pi_03_321(l,:)=[pi_010 0 pi_010 pi_010 0];

7. Pi_03_325(l,:)= [P(x3|x2,x5,xl) P(x3|x2,x5,x2) P(x3|x2,x5,x3) 

7.P(x3|x2,x5,x4) P(x3|x2,x5,x5)] ;

Pi_03_325(5,:) = [0 0 pi_011 pi_011 pi_010];

7. Pi_03_421(l, :)= [P(x4|x2,xl,xl) P(x4|x2,xl,x2) P(x4|x2,xl,x3) 

7.P(x4|x2,xl,x4) P(x4|x2,xl,x5)] ;

Pi_03_421(l,:)=[pi_110 0 pi_110 pi_110 0];

7. Pi_03_425(l,:)= [P(x4|x2,xl,xl) P(x4|x2,xl,x2) P(x4|x2,xl,x3)

7.P(x41x2,xl,x4) P(x4|x2,xl,x5)] ;

Pi_03_425(5,:)=[0 0 pi_lll pi_lll pi_110];
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% Pi_03_532(l,:)= [P(x5|x3,x2,xl) P(x5Ix3,x2,x2) P(x35|x3,x2,x3)

%P(x5|x3,x2,x4) P(x5|x3,x2,x5)] ;

Pi_03_532(2,:)=[pi_101 0 0 0 pi_101];

% Pi_03_542(l,:)= [P(x5|x4,x2,xl) P(x5|x4,x2,x2) P(x5|x4,x2,x3)

,/,P(x5|x4,x2,x4) P(x5|x4,x2,x5)] ;

Pi_03_542(2,:)=[pi_lll 0 0 0 pi.lll];

% Pi_03_553(3,:)= [P(x5|x5,x3,xl) P(x5|x5,x3,x2) P(x5Ix5,x3,x3) 

*/,P(x51x5,x3,x4) P(x5|x5,x3,x5)] ;

Pi_03_553(3,:)=[0 pi_010 0 0 0];

% Pi_03_554(l,:)= [P(x5|x5,x4,xl) P(x5|x5,x4,x2) P(x5Ix5,x4,x3) 

7,P(x5|x5,x4,x4) P(x5|x5,x4,x5)] ;

Pi_03_554(4,:)=[0 pi.Oll 0 0 0];

% Pi_03_555(l,:)= [P(x5|x5,x5,xl) P(x5|x5,x5,x2) P(x5|x5,x5,x3)

%P(x5|x5,x5,x4) P(x5|x5,x5,x5)] ;

Pi_03_555(5,:)=[0 0 pi_001 pi_001 pi_000];

Pi_03_ll=[Pi_03_lll,Pi_03_112,Pi_03_113)Pi_03_114,Pi_03_115]; 

Pi_03_12=[Pi_03_121,Pi_03_122,Pi_03_123,Pi_03_124,Pi_03_125];
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Pi_03_13= [Pi_03_131,Pi_03_132,Pi_03_133,Pi_03_134,Pi_03_135]; 

Pi_03_14=[Pi_03_141,Pi_03_142,Pi_03_143,Pi_03_144,Pi_03_145]; 

Pi_03_15= [Pi_03_151,Pi_03_152,Pi_03_153,Pi_03_154,Pi_03_155];

Pi_03_21=[Pi_03_211,Pi_03_212,Pi_03_213,Pi_03_214,Pi_03_215]; 

Pi_03_22=[Pi_03_221,Pi_03_222,Pi_03_223,Pi_03_224,Pi_03_225]; 

Pi_03_23=[Pi_03_231,Pi_03_232,Pi_03_233,Pi_03_234,Pi_03_235]; 

Pi_03_24= [Pi_03_241,Pi_03_242,Pi_03_243,Pi_03_244,Pi_03_245]; 

Pi_03_25= [Pi_03_251,Pi_03_252,Pi_03_253,Pi_03_254,Pi_03_255];

Pi_03_31=[Pi_03_311,Pi_03_312,Pi_03_313,Pi_03_314,Pi_03_315]; 

Pi_03_32=[Pi_03_321,Pi_03_322,Pi_03_323,Pi_03_324,Pi_03_325]; 

Pi_03_33=[Pi_03_331,Pi_03_332,Pi_03_333,Pi_03_334,Pi_03_335]; 

Pi_03_34=[Pi_03_341,Pi_03_342,Pi_03_343,Pi_03_344,Pi_03_345]; 

Pi_Q3_35=[Pi_03_351,Pi_03_352,Pi_03_353,Pi_03_354,Pi_03_355];

Pi_03_41=[Pi_03_411,Pi_03_412,Pi_03_413,Pi_03_414,Pi_03_415]; 

Pi_03_42=[Pi_03_421,Pi_03_422,Pi_03_423,Pi_03_424,Pi_03_425]; 

Pi_03_43=[Pi_03_431,Pi_03_432,Pi_03_433,Pi_03_434,Pi_03_435]; 

Pi_03_44= [Pi_03_441,Pi_03_442,Pi_03_443,Pi_03_444,Pi_03_445]; 

Pi_03_45=[Pi_03_451,Pi_03_452,Pi_03_453,Pi_03_454,Pi_03_455];
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Pi_03_51= [Pi_03_511,Pi_03_512,Pi_03_513,Pi_03_514,Pi_03_515]; 

Pi_03_52= [Pi_03_521,Pi_03_522,Pi_03_523,Pi_03_524,Pi_03_525]; 

Pi_03_53=[Pi_03_531,Pi_03_532)Pi_03_533)Pi_03_534,Pi_03_535]; 

Pi_03_54=[Pi_03_541,Pi_03_542,Pi_03_543,Pi_03_544,Pi_03_545]; 

Pi_03_55= [Pi_03_551,Pi_03_552,Pi_03_553,Pi_03_554,Pi_03_555];

Pi_03=[blkdiag(Pi_03_ll, Pi_03_12, Pi_03_13, Pi_03_14, Pi_03_15); 

blkdiag(Pi_03_21, Pi_03_22, Pi_03_23, Pi_03_24, Pi_03_25);

blkdiag(Pi_03_31, Pi_03_32, Pi_03_33, Pi_03_34, Pi_03_35);

blkdiag(Pi_03_41, Pi_03_42, Pi_03_43, Pi_03_44, Pi_03_45);

blkdiag(Pi_03_51, Pi_03_52, Pi_03_53, Pi_03_54, Pi_03_55)];

m(jj)=max(max(Pi_03))

M(jj)= max(max(abs(eig(Pi_03)))); 

nzs(jj)= size(find(Pi_03),1);

sB3=(kron(Pi_03, eye(l)))*blkdiag(eye(25)=i<A_0~2, eye(25)*A_l~2, 

eye(25)*A_l',2J eye(25)*A_l~2, eye(25)*A_0~2) ;

sr_scriptB3(jj)=max(abs(eig(sB3,’nobalance')));

end;
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plot(b,sr_scriptB3, ’k+'l; 

hold on

B-2.2 Program Code for Monte Carlo Simulation

sim_recovery_exl: This code simulates Recovery Example 1, when the input is an 

i.i.d. process, a first-order Markov process or a second-order Markov process. Number 

of Monte Carlo runs M=1000, Number of sam ples=10001.

sim_recovery_exl(outputfname)

M=1000;

A_0=0.999; A_1=1/A_0;

’/."/.Number of Samples 

Numsam=10001;

S_l=[l 0 1; 0 0 0; 0 1 0];
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S_2=[0 0 1; 1 0 0; 0 1 0];

%i. i .d . 

order=0;

Pi_I=[0.55 0.55; 0.45 0.45];

runsim_exl(order,Pi_I);

*/»first-order Markov 

order=l;

Pi_I=[0.45 0.7; 0.55 0.3];

runsim_exl(order,Pi_I);

paaa=0.7; 

paae=0.4;

paea=0.45; 

paee=0.2;

'/.second-order Markov 

°/,order=2;
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P i_ I= [p a a a  paae 0 0;

0 0 paea paee;

1-paaa 1-paae 0 0;

0 0 1-paea 1-paee];

runsim_exl(order,Pi_I);

function runsim_exl(order,Pi_I) 

U  Time counters 

tickl = 0;

tick2 = 0;

ql=zeros(l,Numsam+l); 

Ql=zeros(l,Numsam+l); 

x=zeros(l,Numsam+l);

x0=0.3;

A_0=0.999; A_1=1/A_0; 

for i=l:M
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p_Ald)=0; 

p_A2(i)=0; 

p_A3(i)=0; 

p_El(i)=0; 

p_E2(i)=0; 

p_E3(i)=0;

p_A(i)=0;

p_E(i)=0;

tic;

randdstate’,sum(100*clock));

% Generate state vector initial conditions 

x(l)=unifrnd(l*norm(xO),2*norm(x0),size(xO,1),size(x0,2)); 

% Accumulate first-order moment 

ql(l) = ql(l) + norm(x(l));

Q1(1) = Ql(l) + norm(x(l)'*x(l));
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theta=zeros(l ,Numsam+l);

‘/.Generate i.i.d. process for given distribution $\Pi$

If order==0

N=Gen_disc_iid(Pi_I(2,2),Numsam); 

elseif order==l

N=Gen_disc_Markov_first(Pi_I(l,l),Pi_I(2,2).Numsam); 

else

N=Gen_disc_Markov_second(Pi_I(l,l),Pi_I(l,2),Pi_I(2,3),Pi_I(2,4).Numsam); 

end;

U=unifrnd(0,3);

if U<1

theta(l)=l;

A=A_0; 

elseif 1<U<2
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theta(l)=2; 

A=A_1; 

elseif 2<U<3

theta(l)=3;

A=A_1;

end;

rand(’state',sum(100*clock)); 

for k=l:Numsam

%Simulate closed-loop dynamics 

x(k+l)=A*x(k);

if N(k)==0

p_A(i)=p_A(i)+l;

else

p_E(i)=p_E(i)+l;

end;

if N(k)==0 & theta(k)==l 

theta(k+l)=l;
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A=A_0;

p_Al(i)=p_Al(i)+l;

elseif N(k)==0 k theta(k)==2 

theta(k+l)=3;

A=A_1;

p_A2(i)=p_A2(i)+l;

elseif N(k)==0 k theta(k)==3 

theta(k+l)=l;

A=A_0;

p_A3(i)=p_A3(i)+1;

end;

if N(k)==l k theta(k)==l 

theta(k+l)=2;

A=A_1;
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p_El(i)=p_El(i)+l;

elseif N(k)==l & theta(k)==2 

theta(k+l)=3;

A=A_1;

p_E2(i)=p_E2(i)+l; 

elseif N(k)==l & theta(k)==3 

theta(k+l)=l;

A=A_0;

p_E3(i)=p_E3(i)+l;

end;

%0/. Accumulate first moment

ql(k+l)= ql(k+l) + norm(x(k+l));

y,% Accumulate second moment

Ql(k+1)= Ql(k+1) + norm(x(k+l)’*x(k+l));

end;

y,% Mean First and Second Moments
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q=ql/M;

Q=Q1/M;

tickl=toc; 

tick2=tick2+tickl;

fprintf (’toe = %8.2f total time = ,/,8.2f\n’.tickl, tick2); 

end;

p_Alm=mean(p_Al)/Numsam; 

p_A2m=mean(p_A2)/Numsam; 

p_A3m=mean(p_A3)/Numsam; 

p_Elm=mean(p_El)/Numsam; 

p_E2m=mean(p_E2)/Numsam; 

p_E3m=mean(p_E3)/Numsam;

p_Am=mean(p_A)/Numsam; 

p_Em=mean(p_E)/Numsam;

y,7. Mean First and Second Moments 

q = ql/M;

Q= Ql/M;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



155

if order==0;

P i _ I = [ l - p e ( j j )  p e ( j j ) ] ’ * [1  1 ];

Pi_IO=(kron(Pi_I,eye( 3 ) ))*blkdiag(S_l,S_2);

sAl=(kron(Pi_I0,eye(l)))*blkdiag(A_0~2,A_l~2,A_l~2,A_Cr2,A_l‘2 >A_l~2); 

elseif order==l;

Pi_I0=(kron(Pi_I,eye( 3 ) ))*blkdiag(S_l,S_2);

sAl=(kron(Pi_I0,eye(l)))*blkdiag(A_0''2,A_l"2,A_l~2,A_0"2,A_l“2,A_l~2); 

else

Pi_I0=kron(Pi_I, eye(3 ))*blkdiag(S_l,S_2,S_1,S_2); 

sA2=(kron(Pi_I0, eye(l)))*blkdiag(A_0~2, A_l~2, A_l~2, A_0~2, 

A_l~2, A_l“2,A_0~2, A_l~2, A_l~2,A_0"2, A_l"2, A_l~2);

end;

sr_sAl=max(abs(eig(sAl)));
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subplot(2,1,2); 

hold on;

“/.plot the second Lyapunov exponent 

n=l:Numsam+l;

plot(n*loglO(sr_sAl),’r:’);

fname=strcat(,REl_',outputfname,num2str(pe*100),’_M_’,num2str(M), ,num2str(Nm 

save (fname);

B-3 Recovery Exam ple 2

B-3.1 Program Code for Theoretical Prediction

p lo t_ sr_ sc rip tA l_ M r2 : This program produces plots for the Recovery Example 

2, PIe\e v /s  spectral radius of A \  (i.e., using cross-chain process p  = (is, 6) when 

M r =  2.

“/.Fix \Pi_{A|A A>=0.45 

pi_r_00=0.45;

“/.System parameter in the normal mode 

A_0=0.99;
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’/.System parameter in the recovery mode 

A_l=l.0112;

’/.State transition matrices for the finite-state machines 

S_l=[l 0 1;

0 0 0 ;

0 1 0 ];

S_2=[0 0 1;

1 0  0 ;

0 1 0 ];

‘/.Vary probability \Pi{A|E E>, \Pi{E|E E> 

pi_r_ll=0.05:0.05:1;

sz=size(pi_r_ll,2);

for jj=l:sz;

pA (j j) = (1—pi_r_l1(j j))/(l-pi_r_ll(jj)+l-pi_r_00(jj)); 

PE(jj)=(l-pi_r_00(jj))/(l-pi_r_ll(jj)+l-pi_r_00(jj));
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Pi_I=[pi_r_00 l - p i _ r _ l l ( j j ) ; l -p i_r_00 p i _ r _ l l ( j j ) ] ;

Pi_IO=kron(Pi_I, eye(3))*blkdiag(S_l,S_2);

sAl=(kron(Pi_IO, eye(l)))*blkdiag(A_0"'2, A_l~2, A_l"2, A_0~2, A_l~2, A_l"2) 

sr_scriptAl(jj)=max(abs(eig(sAl)));

end;

“/.Plot pi_{eta_2,eta_2) v/s spectralradius(scriptAl) ; 

figure(1);

plot(pi_r_ll,sr_scriptAl, ’r*’);

title(strcat(’Simplified Recovery Example’, ’ A_0= ’, num2str(A_0),

’ A_l= ’, num2str(A_l), ’\Pi_{aa>= ’,num2str(pi_r_00))); 

figure(2); 

plot(PE,sr_scriptAl, ’r*’);

title(strcat(’ Recovery Example 2’, ’ A_0= ’, num2str(A_0),

’ A_l= ’, num2str(A_l), ’\Pi_{aa}= ’,num2str(pi_r_00)));

plot_sr_scriptAl_Mr3: This program produces plots for the Recovery Example 2,

IIjsib v /s  spectral radius of scriptA l (i.e., using cross-chain process p = (is, 0)) when
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M r  =  3.

"/.Fix \Pi_{A|A A}=0.45 

pi_r_00=0.45;

"/oSystem parameter in the normal mode 

A_0=0.99;

‘/.System parameter in the recovery mode 

A_l=l.0112;

‘/.State transition matrices for the finite-state machines 

S_l= [1 0 0 1;

0 0 0 0 ;

0 1 0  0 ;

0 0 1 0 ] ;

S_2= [0 0 0 1;

1 0 0 0 ;

0 1 0  0 ;

O O I O ] ;
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'/.Vary probability \Pi{A|E E>, \Pi{E|E E} 

pi_r_ll=0.05:0.05:1;

sz=size(pi_r_ll,2);

for jj=l:sz;

Pi_I=[pi_r_00 l-pi_r_ll(jj); l-pi_r_00 pi_r_ll(jj)];

PA Cj j) = (1—pi_r_l1(j j))/(l-pi_r_ll(jj)+l-pi_r_00(jj));

PE(j j) = (l-pi_r_00(j j))/(l-pi_r_11(j j)+l-pi_r_00(j j));

Pi_I0=kron(Pi_I, eye(3))*blkdiag(S_l,S_2);

sAl= (kron(Pi_I0, eye(l)))*blkdiag(A_(T2, A_l“2, A_l~2, A_1 

A_0~2, A_l~2, A_1~2,A_1~2);

sr_scriptAl(jj)=max(abs(eig(sAl)));

end;

"/.Plot pi_{eta_2,eta_2) v/s spectralradius(scriptAl); 

figur(l);

plot(pi_r_ll,sr_scriptAl, ’r*');
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title(strcatO Recovery Example 2’, ' A_0= ’, num2str(A_0),

’ A_l= ’, num2str(A_l), '\Pi_{aa}= ’,num2str(pi_r_00)));

figure(2);

plot(PE,sr_scriptA1, ’r*’);

title(strcatC’ Recovery Example 2 ’ , ’ A_0= num2str(A_0),

’ A_l= n\im2str(A_l), ’\Pi_{aa>= ’,num2str(pi_r_00)));

p lo t_ sr_ sc rip tA l_ M r5 : This program produces plots for the Recovery Example 2, 

IIj5|£7 v /s  spectral radius of scriptA l (i.e., using cross-chain process p =  ( u ) 6 ) )  when 

M r  =  5

"/.Fix \Pi_{A|A A}=0.45 

pi_r_00=0.45;

"/.System parameter in the normal mode 

A_0=0.99;

%System parameter in the recovery mode 

A_l=l.0112;

"/.State transition matrices for the finite-state machines 

S_l=[l 0 0 0 0 1;

0 0 0 0 0 0 ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



162

0  1 0  0  0  0 ;

0 0 1 0  0 0 ;

0 0 0 1 0 0 ;

0 0 0 0 1 0] ;

S_2= [0 0 0 0 0 1;

1 0  0 0 0 0 ;

0 1 0  0 0 0 ;

0 0 1 0 0 0 ;

0 0 0 1 0  0 ;

0 0 0 0 1 0] ;

‘/.Vary probability \Pi{A|E E}, \Pi{E|E E> 

pi_r_ll=0.05:0.05:1;

sz=size(pi_r_ll,2);

for jj=l:sz;

Pi_I=[pi_r_00 l-pi_r_ll(jj); l-pi_r_00 pi_r_ll(jj)]; 

PA(jj)=(l-pi_r_ll(jj))/(l-pi_r_ll(jj)+l-pi_r_00(jj)); 

PE(jj)=(l-pi_r_00(jj))/(l-pi_r_ll(jj)+l-pi_r_00(jj));
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Pi_IO=kron(Pi_I, eye(3))*blkdiag(S_l,S_2);

sAl=(kron(Pi_IO, eye(l)))*blkdiag(A_(T2, A_l~2, A_l~2, A_l~2, A_l~2, 

A_l"2, A_0~2, A_l"2, A_1“2,A_1“2, A_l~2);

sr_scriptAl(j j)=max(abs(eig(sAl)));

end;

'/.Plot pi_{eta_2,eta_2) v/s spectralradius(scriptAl); 

figure(1);

plot(pi_r_ll,sr_scriptAl, ’r*’);

title (strcatO Recovery Example 2 ’ , ’ A_0= num2str(A_0), ’ A_l= 

num2str(A_l), ’\Pi_{aa>= ’,num2str(pi_r_00)));

figure(2);

plot(PE,sr_scriptAl, ’r*’);

title(strcatO Recovery Example 2 ’ , ’ A_0= ’ , num2str(A_0), ’ A_l= 

num2str(A_l), ’\Pi_{aa>= ’,num2str(pi_r_00)));
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B-3.2 Program Code for Monte Carlo Simulation

sim_recovery_ex2: This program simulates Recovery Example 2 for the given num­

ber of recovery states M R =  3, =  0.45 and HE\E =  0.8.

sim_recovery_ex2(outputfname)

M=1000, Numsam=10000; 

paa=0.45 ; pee=0.8;

M_R=3;

A_0=0.99;

A_l=l.0112;

Vector of the chain’s states 

state=zeros(l,Numsam+l);

V/, Vector of the chain’s transitions 

numbers=state;

y.*/. Vector of the first-order moment. 

ql=state;

%% Vector of the second-order moment.

Ql=state;
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*/.'/. Vector of the mean first-order moment. 

q=state;

%% Vector of the mean second-order moment.

Q=state;

Time counters 

tickl = 0;

"/,% Number of zero states in the simulated chain 

tick2 = 0;

z = zeros(1,M);

Number of one states in the simulated chain 

o = zeros(1,M);

*/,% Number of zero to zero transferences in the sim. chain 

z2z = zeros(1,M);

%*/, Number of one to one transferences in the sim. chain 

o2o = zeros(1,M);

Number of zero to one transferences in the sim chain 

z2o = zeros(1,M);

VL Number of one to zero transferences in the sim chain 

o2t = zeros(1,M);

%“/, Probability of goingt from 0 to 0 

piOO = zeros(1,M);

Probability of goingt from 0 to 1
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piOl = z e r o s ( l .M ) ;

%y, Probability of goingt from 1 to 0 

pilO = zeros(l,M);

%“/, Probability of goingt from 1 to 1 

pill = zeros(l,M);

Norn = zeros(1,M);

Rid = zeros(1,M);

N2N = zeros(1,M);

N2R = zeros(l,M);

R2N = zeros(1,M);

R2R = zeros(1,M);

piNN = zeros(1,M);

piNR = zeros(1,M);

piRN = zeros(1,M);
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piRR = zeros(1,M); 

for k=l:M

fprintf(’loop M = '/.3d, tic...’,k);

N=Gen_di sc_markov(paa,pee,Numsam);

%N=N’;

Rec_state=zeros(l, Numsam+1);

'/. Equilibrium statistics of N: pk,PA,PE

zs=N==zeros(l,Numsam+1);

% The occurrence of N=0 

z(k)=dot(zs,zs);

nzs=N~=zeros(l,Numsam+1);

% The occurrence of N>0 

nz(k)=dot(nzs,nzs);
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os=N==ones(l,Numsam+1);

7. The occurrence of N=i 

o(k)=dot(os,os);

7 . Equilibrium state probabilities 

pkx(k,:)=[z(k) o(k)]/(Numsam+1);

7. Probability of disturbance absent (N=0)

PAx(k)=z(k)/(Numsam+1);

7 . Probability of disturbance exists (N>0)

PEx(k)=l-PAx(k);

7. Transitional statistics of N: pikkpl, pikkml, PAE, PEA

lszs=[zs(2:Numsam+1) 0]; 

lsnzs=[nzs(2:Numsam+1) 0];
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lsos= [os(2:Numsam+1) 0];

% Count the number of transition occurrences 

7, From mode N=0 to mode N=0 

z2z(k)=dot(zs.*lszs,zs.*lszs);

% From mode N=1 to mode N=1 

o2o(k)=dot(os.*lsos,os.*lsos);

% From mode N=0 to mode N=1 

z2o(k)=dot(zs.*lsos,zs.*lsos);

“/, From mode N=1 to mode N=0 

o2z(k)=dot(os.*lszs,os.*lszs);

% Calculate the corresponding transition rates 

if z(k)==0

pill(k)=nan;

pi00(k)=nan;

pi01(k)=nan;

pil0(k)=nan;

else

pi00(k)=z2z(k)/z(k); 

piO1(k)=z2o(k)/z(k);
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pil0(k)=o2z(k)/o(k); 

pill(k)=o2o(k)/o(k);

end

piaam=nanmean(piOO); 

piaem=nanmean(pi01); 

pieam=nanmean(pilO); 

pieem=nanmean(pill); 

piaasd=nanstd(piOO); 

pieesd=nanstd(pill); 

piaesd=nanstd(pi01); 

pieasd=nanstd(pilO);

PAm=nanmean(PAx);

PEm=nanmean(PEx);

PAsd=nanstd(PAx);

PEsd=nanstd(PEx);

State vector of the plant 

x=zeros(size(xO));

*/,% Consider the initial chain state and the initial conditions
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'/. Generate state vector initial conditions 

x=unifrnd(-l*norm(xO),norm(xO),size(xO,l),size(x0,2)); 

*/. accumulate first-order moment 

ql(l) = ql(l) + norm(x);

"/, accumulate second-order moment 

Qi(l) = Q1(1) + norm(x*x’);

c=0;

tic

for i=l:Numsam

if Rec_state(i)==0

x=A0*x;

if N(i)==0

Rec_state(i+1)=0;

else

Rec_state(i+l)=l;

end;

else

c=c+l;
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x=Al*x; 

if c < N_R 

Rec_state(i+l)=l; 

else

Rec_state(i+1)=0;

c=0;

end;

end;

%% Accumulate first moment 

ql(i)= ql(i) + norm(x);

"/,% Accumulate second moment 

Ql(i)= Ql(i) + norm(x’*x);

end;

Equilibrium statistics of N: pk,PA,PE

tickl=toc; 

tick2=tick2+toc;

Noms=Rec_state==zeros(1.Numsam+l);

'/, The occurrence of Rec_state=Nominal
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Nom(k)=dot(Noms,Noms);

Rlds=Rec_state“=zeros(1,Numsam+1);

7. The occurrence of Rec_state >0 

Rid(k)=dot(Rids,Rids);

7. Equilibrium state probabilities

pkx(k,:)=[Nom(k) Rid(k)]/(Numsam+1);

7. Probability of disturbance absent (N=0)

PNx(k)=Nom(k)/(Numsam+l);

7. Probability of disturbance exists (N>0)

PRx(k)=Rld(k)/(Numsam+1);

7. Transitional statistics of N: pikkpl, pikkml, PAE, PEA
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fprintf('toc = %8.2f total time = #/.8.2f \n’,ticki, tick2) ;

if (mod(k,100)==0) 

q = ql/k;

Q= Ql/k;

r/. Mean First and Second Moments 

N= N/k;

fname=strcat(’RE2_’,outputfname,’_’, 

num2str(k/100), , ’N_R’, , num2str(N_R), ,  

num2str(A0),’ ,num2str(Al),'paa.’,num2str(paa),

’_pee_’,num2str(pee),’_M_',num2str(M), ,num2str(Numsam),’.mat’

save (fname);

TL End of MonteccLrlo Rims 

end

'IX Mean First and Second Moments 

q = ql/k;
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Q= Ql/k;

N= N/k; 

if k<100

fname=strcat(’Recovery_Example_2_’,outputfname,

>’N_R’, , num2str(Mrd), ,num2str(A0),

,num2str(Al),’paa_’,num2str(paa),J_pee_',num2str(pee), 

’_M_’,num2str(M),’_ ’ ,num2str(Numsam),’.mat’);

save (fname);

end

end; 

f igure;

subplot(2,1,1);

plot(loglO(q(l:Numsam))); 

xlabel(’Samples’);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ylabelC’log.-ClO} (q)’);

title (strcatO Recovery Example 3_’, ’ A0= ’, num2str(A0),

Al= num2str(Al),

’ N_R= ’, num2str(N_R),’ p_{aa>= ’, num2str(paa), ’ p_{ee>= ’ 

num2str(pee), ' M = ’,num2str(M), 'Num of Samples = ’, 

num2str(Numsam)));

subplot(2,1,2);

plot(loglO(Q(1:Numsam))); 

xlabel(’Samples’); 

ylabel(,log_{10> trace(Q)’);

S_l= [1 0 0 1;

0 0 0 0 ;

0 1 0  0 ;

0 0 1 0 ];

S_2=[0 0 0 1;

1 0 0 0 ;

0 1 0  0 ;

0 0 1 0 ] ;
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Pi_IO=kron(Pi_I, e y e (3 ) )* b lk d ia g (S _ l ,S _ 2 ) ;

sAl=(kron(Pi_IO, eye(l)))*blkdiag(A_CT2, A_l~2, A_l"2, A_l~2, 

A_0~2, A_l~2, A_1~2,A_1~2);

"/.plot the second Lyapunov exponent 

hold on; 

n=l:Numsam+1;

plot(n*loglO(max(abs(eig(sAl)))),’r:’);

title(strcat(’RE2_’,outputfname, , ’ A0= num2str(A0), ’,

Al= num2str(Al), ’ N_R= num2str(N_R) , ' p_{aa}= ’, num2str(paa),

’ p_{ee>= ’,num2str(pee), ’ M = ’,num2str(M), ’Number of Samples = ’, 

num2str(Numsam)));

B-4 Recovery Exam ple 3

B-4.1 Program Code for Theoretical Prediction

plot_sr_scriptAl_NAb: This program produces theoretical plots for H e \e  v / s  spec­

tra l radius of A \  and Pe  versus spectral radius A \  for Recovery Example 3 when 

NAb =  1) 2 , 5 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



178

‘/.Fix P_{AA> 

pi_r_00=0.6;

pi_r_ll=0:0.05:1;

A0=0.99; Al=l.039; A2=0.96; A3=1.08;

N_Ab=[l 2 5]; 

for 1=1:3

if N_Ab(l)==l;

N=6; pl=,r*’;

S_0=[1 0 1 0  11;

0 0 0 0 0 0 ;

0 1 0 0 0 0 ;

0 0 0 0 0 0 ;

0 0 0 1 0  0 ;

0 0 0 0 0 0] ;

S_l= [0 0 0 0 0 1;

1 0  0 0 0 0 ;
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0  1 0  0  0  0 ;

0 0 1 0  0 0 ;

0 0 0 1 0 0 ;

0 0 0 0 1 0];

elseif N_Ab(l)==2

N=7; pl=’g+>

S_0=[1 0 1 0  1 0  1; 

0 0 0 0 0 0 0 ;

0 1 0  0 0 0 0 ;

0 0 0 0 0 0 0 ;

0 0 0 1 0 0 0 ;

0 0 0 0 0 0 0 ;

0 0 0 0 0 1 0] ;

S_1=[0 0 0 0 0 0 1; 

1 0  0 0 0 0 0 ;

0 1 0  0 0 0 0 ;

0 0 1 0 0 0 0 ;

0 0 0 1 0  0 0 ;

0 0 0 0 10  0 ;
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0  0  0  0  0  1  0 ] ;

e l s e i f  N_Ab(l)==5

N=10; p l = ,k x ’

S_0=[1 0 1 0  1 0  1 0  0 1; 

0 0 0 0 0 0 0 0 0  0 ; 

0 1 0 0 0 0 0 0 0  0 ; 

0 0 0 0 0 0 0 0 0  0 ; 

0 0 0 1 0 0 0 0 0  0 ; 

0 0 0 0 0 0 0 0 0  0 ; 

0 0 0 0 0 1 0 0 0  0 ; 

0 0 0 0 0 0 1 0 0  0 ; 

0 0 0 0 0 0 0 1 0  0 ; 

0 0 0 0 0 0 0 0 1  0] ;

S_1=[0 0 0 0 0 0 0 0 0 1 ;  

1 0 0 0 0 0 0 0 0  0 ; 

0 1 0 0 0 0 0 0 0  0 ; 

0 0 1 0 0 0 0 0 0  0 ; 

0 0 0 1 0 0 0 0 0  0 ; 

0 0 0 0 1 0 0 0 0  0 ;
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0 0 0 0 0 1 0 0 0 0  

0 0 0 0 0 0 1 0 0  0 ; 

0 0 0 0 0 0 0 1 0  0 ; 

0 0 0 0 0 0 0 0 1  0] ;

end;

szl=size(pi_r_00,2) ; 

sz2=size(pi_r_ll,2) ;

PA=zeros(szl*sz2,1) ; 

PE=zeros(szl*sz2,1) ;

k=l;

for i=l:szl 

for jj=l:sz2
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Pi_I=[pi_r_00(i) l-pi_r_00(i); l-pi_r_ll(jj) pi_r_ll(jj)]’; 

PA(k)=(l-pi_r_ll(jj))/(l-pi_r_00(i)+l-pi_r_ll(jj)); 

PE(k)=(l-pi_r_00(i))/(l-pi_r_00(i)+l-pi_r_ll(jj)); 

if N_Ab(l)==l 

N=6; pl=,r*’;

Pi_IO=kron(Pi_I, eye(N))*blkdiag(S_0,S_l);

sAl=(kron(Pi_IO,eye(size(AO,l)"2)))*(blkdiag(kron(A0,A0),kron(Al,Al), 

kron(A2,A2), kron(Al,Al), kron(A2,A2), kron(A3,A3),kron(A0,A0), 

kron(Al,Al),kron(A2,A2), kron(Al,Al), kron(A2,A2), kron(A3,A3)));

elseif N_Ab(l)==2 

N=7; pl=’g+’ ;

Pi_IO=kron(Pi_I, eye(N))*blkdiag(S_0,S_l);

sAl=(kron(Pi_I0,eye(size(AO,1)*2)))*(blkdiag(kron(AO,AO),kron(A1,Al),
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kron(A2,A2), kron(Al.Al),kron(A2,A2), kron(A3,A3), kron(A3,A3), 

kron(AO.AO),kron(Al,Al),kron(A2,A2), kron(Al,A1),kron(A2,A2), 

kron(A3,A3), kron(A3,A3)));

elseif N_Ab(l)==5 

N=10; pl=’ kx ’;

Pi_IO=kron(Pi_I,eye(N))*blkdiag(S_0,S_l);

sAl=(kron(Pi_I0,eye(size(AO,1)*2)))*(blkdiag(kron(AO,AO), 

kron(Al,Al),kron(A2,A2), kron(Al,Al),kron(A2,A2), 

kron(A3,A3), kron(A3,A3), kron(A3,A3), kron(A3,A3), 

kron(Ai,A1),kron(A2,A2), kron(A3,A3), kron(A3,A3), 

kron(A3,A3), kron(A3,A3), kron(A3,A3)));

end;

spectralrad(k)=max(abs(eig(sAl)));

k=k+l;

end;
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end;

figure(1); 

hold on;

plot(pi_r_ll,spectralrad,pl); 

xlabel(’\Pi_{EIE}’); 

ylabeK’XrhoCsAl) ’);

title(strcatORecovery Example 3 ’, ’ A0= 

num2str(Al), ’, A2= ’, num2str(A2),’, A3: 

N_{ab>= num2str(N_Ab(l)),’ p_{aa}=

grid on;

figure(2); 

hold on;

plot(PE, spectralrad.pl);

xlabel(’P_{E}’); 

ylabel(’\rho(sAl)’);

’, num2str(A0), ’ Al= ', 

= ’, num2str(A3),’ 

num2str(pi_r_00)));
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title(strcatC’Recovery Example 3 ’, ’ A0=’, num2str(A0), ’

Al=’, num2str(Al), *, A2= num2str(A2),*, A3= num2str(A3),’ 

N_{ab}= ’, num2str(N_Ab(l)),’ p_{aa}= ’, num2str(pi_r_00)));

grid on;

end;

end;

B-4.2 Program Code for Monte Carlo Simulation

sim_recovery_ex3:This program simulates Recovery Example 3 when N R =  1, 

N Rs =  2, N/u, = 1, M  =  1000, N u m sa m  =  10000 for transition probabilities of 

the Markov input IIa|a —  0.6 and YIE\E  =  0.3.

sim_recovery_ex3(outputfname)

A0=0.99;

Al=l.039;

A2=0.96;

A3=l.08;
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N_Rd=l;

N_Rs=2;

N_Ab=l; 

paa=0.6; 

pee=0.3;

M=1000;

Numsam=10000;

7.7. Vector of the chain’s states 

state=zeros(l.Numsam+l);

Vector of the chain’s transitions 

numbers=state;

7.7. Vector of the first-order moment.

ql=state;

7.7. Vector of the second-order moment.
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Ql=state;

7.7. Vector of the mean first-order moment.

q=state;

7.7. Vector of the mean second-order moment.

Q=state;

7.7. Time counters 

tickl = 0;

tick2 = 0;

7.7. Number of zero states in the simulated chain

z = zeros(1,M);

7.7. Number of one states in the simulated chain

o = zeros(l.M);

7.7. Number of zero to zero transferences in the sim. chain 

z2z = zeros(1,M);

7.7. Number of one to one transferences in the sim. chain 

o2o = zeros(1,M);

7.7. Number of zero to one transferences in the sim chain

z2o = zeros(1,M);

7.7. Number of one to zero transferences in the sim chain 

o2t = zeros(1,M);
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Probability of goingt from 0 to 0 

piOO = zeros(1,M);

11 Probability of goingt from 0 to 1 

piOl = zeros(l,M);

11 Probability of goingt from 1 to 0 

pi10 = zeros(1,M);

11 Probability of goingt from 1 to 1 

pill = zeros(l,M);

Norn = zeros(l.M);

Rid = zeros(l.M);

Rel = zeros(1,M);

Abrt = zeros(1,M);

for k=l:M

fprintf('loop M = %3d, tic...’,k);
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N=Gen_di sc_markov(paa, p e e , Numsam);

%N=N»;

Rec_state=zeros(l, Numsam+1);

% Equilibrium statistics of N: pk,PA,PE

zs=N==zeros(1,Numsam+1);

z(k)=dot(zs,zs); % The occurrence of N=0

nzs=N~=zeros(l,Numsam+1);

nz(k)=dot(nzs,nzs); % The occurrence of N>0

os=N==ones(l,Numsam+1);
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o(k)=dot(os,os); */. The occurrence of N=1

"/, Equilibrium state probabilities

pkx(k,:)=[z(k) o(k)]/(Numsam+1);

"/, Probability of disturbance absent (N=0)

PAx(k)=z(k)/(Numsam+1);

"/, Probability of disturbance exists (N>0)

PEx(k)=1-PAx(k);

% Transitional statistics of N: pikkpl, pikkml, PAE, PEA

lszs=[zs(2:Numsam+1) 0]; 

lsnzs=[nzs(2:Numsam+1) 0]; 

lsos=[os(2:Numsam+1) 0];

Count the number of transition occurrences 

°/. From mode N=0 to mode N=0 

z2z(k)=dot(zs.*lszs,zs.*lszs);

% From mode N=1 to mode N=1
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o2o(k)=dot(os.*lsos,os.*lsos);

% From mode N=0 to mode N=1 

z2o(k)=dot(zs.*lsos,zs.*lsos);

% From mode N=1 to mode N=0 

o2z(k)=dot(os.*lszs,os.*lszs);

% Calculate the corresponding transition rates 

if z(k)==0

pill(k)=nan;

pi00(k)=nan;

pi01(k)=nan;

pilO(k)=nan;

else

pi00(k)=z2z(k)/z(k); 

piOl(k)=z2o(k)/z(k); 

pil0(k)=o2z(k)/o(k); 

pill(k)=o2o(k)/o(k); 

end

piaam=nanmean(piOO); 

piaem=nanmean(pi01); 

pieam=nanmean(pilO); 

pieem=nanmean(pill);
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piaasd=nanstd(piOO) ; 

pieesd=nanstd(pill); 

piaesd=nanstd(pi01); 

pieasd=nanstd(pilO);

PAm=nanmean(PAx);

PEm=nanmean(PEx);

PAsd=nanstd(PAx);

PEsd=nanstd(PEx);

7.y. State vector of the plant 

x=zeros(size(xO));

%*/, Consider the initial chain state and the initial conditions: 

% Generate state vector initial conditions 

x=unifrnd(-l*norm(xO),norm(xO),size(xO,i),size(x0,2));

% accumulate first-order moment 

ql(l) = ql(1) + norm(x);

"/, accumulate second-order moment 

Ql(l) = Ql(1) + norm(x*x’);

c_2=0;
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c_3=0; 

tic

for i=l:Numsam

if Rec_state(i)==0

x=A0*x; 

if N(i)==0

Rec_state(i+1)=0;

else

Rec_state(i+l)=l;

end;

elseif Rec_state(i)==l 

x=Al*x;

Rec_state(i+1)=2;

elseif Rec_state(i)==2 

c_2=c_2+l; 

x=A2*x;
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if c_2 < Mrs 

if N(i)==0

Rec_state(i+1)=2;

else

Rec_state(i+l)=l;

end;

else

if N(i)==0

Rec_state(i+1)=0;

else

Rec_state(i+1)=3;

end;

c_2=0;

end;

else

c_3=c_3+l; 

x=A3*x; 

if c_3 < Mab 

Rec_state(i+1)=3; 

else

Rec_state(i+1)=0;
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c_3=0;

end;

end;

Accumulate first moment 

ql(i)= ql(i) + norm(x);

%’/. Accumulate second moment 

Ql(i)= Ql(i) + norm(x’*x);

end;

tickl=toc; 

tick2=tick2+toc; 

Noms=Rec_state==zeros(1,Numsam+1);

% The occurrence of Rec_state=Nominal 

Nom(k)=dot(Noms,Noms);

Rlds=Rec_state==ones(l,Numsam+1);

% The occurrence of Rec_state Reload 

Rid(k)=dot(Rids,Rids);
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7. The occurrence of Rec_state Release 

Rels= (Rec_state==2*ones(l,Numsam+1));

Rel(k)=dot(Reis,Reis);

7. The occurrence of Rec_state Abort 

Abrts=Rec_state==3*ones(l,Numsam+l);

Abrt(k)=dot(Abrts,Abrts);

% Equilibrium state probabilities

7. Probability of disturbance absent (N=0) 

PNx(k)=Nom(k)/(Numsam+l);

7. Probability of disturbance exists (N>0) 

PRx(k)=Rld(k)/(Numsam+l);

PRex(k)=Rel(k)/(Numsam+1);

PAbx(k)=Abrt(k)/ (Numsam+1);

7. Transitional statistics of N: pikkpl, pikkml, PAE, PEA 

end;
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PNm=nanmean(PNx);

PRm=nanmean(PRx);

PRem=nanmean(PRex);

PAbm=nanmean(PAbx);

PNsd=nanstd(PNx);

PRsd=nanstd(PRx);

PResd=nanstd(PRex);

PAbsd=nanstd(PAbx);

fprintf (’toe = ”/(8.2f total time = %8.2f \n’,tickl, tick2) ;

if (mod(k,100)==0)

7,7, Mean First and Second Moments

q = ql/k;

Q= Ql/k;

N= N/k;

fname=strcat(’Recovery_Example3,,num2str(k/100), ,’N_{Rs}’,

’_’,num2str(N_Rs), ,’Mab’, ,num2str(Mab), ,num2str(A0), ,

num2str(Al), ,num2str(A2), ,num2str(A3),’_paa_’,num2str(paa), 

’_pee_’,num2str(pee),’_M_’,num2str(M), , num2str(Numsam),’.mat’);
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save (fname); 

end

TL End of Montecarlo Runs 

%% Mean First and Second Moments 

q = ql/k;

Q= Ql/k;

N= N/k; 

if k<100

fname=strcat(’Recovery Example 3 ’.outputfname, , 

’N_R’ , ,num2str(N_Rs),

’_'.’N _ A b n u m 2 s t r ( N _ A b ) ,’_’,

num2str(A0), ,num2str(Al), ,

num2str(A2), ,num2str(A3),’_paa_’,num2str(paa),

’_pee_',num2str(pee),’_M_’,

num2str(M), ,num2str(Numsam),’.mat’);

save (fname);

end

end;

figure;

subplot(2,1,1);
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plot(loglO(q(l:Numsam))); 

xlabel(’Samples’); 

ylabel(’log_{10> (q)’);

title(strcat(’Recovery Example 3', ’ A0= ’, num2str(A0),

Al= num2str(Al), ’A2= ’, num2str(A2), 'A3= ’, num2str(A3),

’ N_{Ab}= num2str(N_Ab),’ p_{aa}= ’, num2str(paa), ’

p_{ee>= ’,num2str(pee), ’ M = ’,num2str(M),

’Num of Samples = ’, num2str(Numsam)));

subplot(2,1,2);

plot(loglO(Q(l:Numsam))); 

xlabel(’Samples’); 

ylabel(’log_{10} trace(Q)’);

title(strcat(’Recovery Example 3 ’, ’ A0= ’, num2str(A0),

Al= ’, num2str(Al), ’ N_{Ab}= ’, num2str(N_Ab),’ p_{aa}= ’, 

num2str (paa) , ’ p_{ee}= ’ ,num2str(pee) , ’ M = ’,num2str(M), ’

Num of Samples = ’, num2str(Numsam)));

subplot(2,1,2); 

bold on;

S_0=[1 0 1 0  11;
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0  0  0  0  0  0 ;

0 1 0  0 0 0 ;

0 0 0 0 0 0 ;

0 0 0 1 0  0 ;

0 0 0 0 0 0];

S_l= CO 0 0 0 0 1;

1 0  0 0 0 0 ;

0 1 0 0 0 0 ;

0 0 1 0 0 0 ;

0 0 0 1 0  0 ;

0 0 0 0 1 0];

Pi_IO=kron(Pi_I, eye(6))*blkdiag(S_0,S_l);

sAl=(kron(Pi_IO,eye(size(AO,l)‘'2)))*(blkdiag(kron(A0,A0),kron(Al,A1), 

kron(A2,A2), kron(Al,Al), kron(A2,A2), kron(A3,A3),kron(AO,AO), 

kron(Al.Al),kron(A2,A2), kron(Al,Al), kron(A2,A2), kron(A3,A3)));

'/.plot the second Lyapunov exponent 

n=l:Numsam+1;
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plot(n*logl0(max(abs(eig(sAl)))),’r:’);
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