
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Summer 2004

Stability Analysis of Jump-Linear Systems Driven by Finite-State Stability Analysis of Jump-Linear Systems Driven by Finite-State

Machines with Markovian Inputs Machines with Markovian Inputs

Sudarshan S. Patilkulkarni
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Aerospace Engineering Commons, Electrical and Computer Engineering Commons, and the

Systems Engineering Commons

Recommended Citation Recommended Citation
Patilkulkarni, Sudarshan S.. "Stability Analysis of Jump-Linear Systems Driven by Finite-State Machines
with Markovian Inputs" (2004). Doctor of Philosophy (PhD), Dissertation, Electrical & Computer
Engineering, Old Dominion University, DOI: 10.25777/dghh-yv38
https://digitalcommons.odu.edu/ece_etds/118

This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU
Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations
by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.odu.edu%2Fece_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.odu.edu%2Fece_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/118?utm_source=digitalcommons.odu.edu%2Fece_etds%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

STABILITY ANALYSIS OF JUMP-LINEAR SYSTEMS DRIVEN BY

FINITE-STATE MACHINES WITH MARKOVIAN INPUTS

by

Sudarshan S. Patilkulkarni
B.E. E.C. June 1996, K arnatak University, Dharwad, India

M.E. E.E. December 2000, Old Dominion University, Norfolk, Virginia

A Dissertation Subm itted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ELECTRICAL ENGINEERING

OLD DOMINION UNIVERSITY
August 2004

Approved by:

W. Steven Gray (Director)

Oscar R. Gonzalea^Member)

Linda L. Vahala (Member)

Naik (Member)Dayanam

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

STABILITY ANALYSIS OF JUM P-LINEAR SYSTEMS
DRIVEN BY

FINITE-STATE MACHINES W ITH MARKOVIAN INPUTS

Sudarshan S. Patilkulkarni
Old Dominion University, 2004
Director: Dr. W. Steven Gray

A control system with a fault recovery mechanism in the feedback loop and with

faults occurring in a non-deterministic manner can be modeled as a class of hybrid

systems, i.e., a dynamical system switched by a finite-state machine or an autom aton.

W hen the plant and controller are linear, such a system can be modeled as a jump-

linear system driven by a finite-state machine with a random input process. Such

fault recovery mechanisms are found in flight control systems and distributed control

systems with communication networks. In these critical applications, closed-loop

stability of the system in the presence of fault recoveries becomes an im portant issue.

Finite-state machines as mathematical constructs are widely used by computer

scientists to model and analyze algorithms. In particular, fault recovery mechanisms

th a t are implemented in hardware with logic based circuits and finite memory can

be modeled appropriately with finite-state machines. In this thesis, m athem atical

tools are developed to determine the mean-square stability of a closed-loop system,

modeled as a jump-linear system in series with a finite-state machine driven by a

random process. The random input process is in general assumed to be any r-th order

Markov process, where r > 0. While stability tests for a jump-linear system with a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Markovian switching rule are well known, the main contribution of the present work

arises from the fact th a t output of a finite-state machine driven by a Markov process

is in general not Markovian. Therefore, new stability analysis tools are provided for

this class of systems and demonstrated through Monte Carlo simulations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“The whole is more than the sum of its parts” - constitutive charac­

teristics of a phenomenon are not explainable from the characteristics of

the isolated parts alone, it is also the interconnection and the interrela­

tionship. -Ludwig Von Bertalanfiy, General System Theory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

Setting and achieving a higher academic goal is insurmountable w ithout adequate

moral, emotional and financial support. Supervisors, coworkers, friends, family and

institutions make us what we are.

Dr. W. Steven Gray, my advisor, whose immense patience, support, wisdom and

advice is the foremost contribution in my achievement. Dr. Oscar R. Gonzalez’s

subtle comments during our many discussions have always been an eye-opener. Dr.

Dayanand Naik, Dr. Linda Vahala, Dr. Sacharia Albin and Dr. Steven Zahorian have

all provided me valuable assistance along the way.

I am indebted to Prof. Anand Kumar and Prof. B. N. Devaraj, my mentors during

my undergraduate years a t S.D.M. College of Engineering in Dharwad, India. They

instilled in me a passion for electrical engineering, especially in the area of signals

and systems.

I am also grateful for the support of my co-workers: Adeel Jafri, James Barkley,

Alicia Hoffler, Mark Adams, Hong Zhang, Li Yaqin and Heber Zapana-Herencia.

Special thanks to Arturo Tejada who has provided me with coffee, food and lodging

along with the moral support whenever I was in need.

Old Dominion University has provided me with valuable course-work, a good

library and a supportive academic environment.

This research was supported by the NASA Langley Research Center under grants

NCC-1-392, NCC-1-03026 and NNL04AA03A, and by the National Science Founda­

tion under grant CCR-0209094. I wish to acknowledge the support of these organi­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

zations.

Finally, the love and warmth of my family: Vinayak, Vani, Vallabh, Vasuki, father

and belated mother have been my guide. Moral and emotional support of Preethi and

many other friends whom I have met during the course of my graduate studies, whose

names I am unable to list here due to lack of space, cannot be left unacknowledged.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT .. iii

LIST OF T A B L E S .. viii

LIST OF F I G U R E S .. ix

I. INTRODUCTION ... 1
1.1 M otivation for this R e se a rc h ... 1

1.1.1 Networked Control Systems with Packet Dropout and Recovery 3
1.1.2 Digital Flight Control Systems with Upset and Recovery . . . 5

1.2 Literature R ev iew ... 11
1.3 Problem S ta te m e n t .. 13
1.4 Thesis O verview .. 14

II. THEORY OF FINITE-STATE MACHINES WITH MARKOVIAN
INPUTS ... 16
2.1 Introduction to the Theory of Finite-State M achines.............................. 17
2.2 Introduction to Discrete-Time Markov Processes and Stochastic Matrices 20
2.3 Characterization of Random Processes Generated by Finite-State Ma­

chines with Markovian I n p u t s .. 25
2.3.1 Cross-Chain of Input and State Process p = (is, z) 26
2.3.2 S tate Process of a Non-Unifilar Finite-State Machine z 31
2.3.3 S tate Process of a Unifilar Finite-State Machine z 35

2.4 Summary of Key P o i n t s .. 37

III. STABILITY A N A L Y S IS .. 39
3.1 In tro d u c tio n ... 39
3.2 Key Model A ssu m p tio n s ... 40
3.3 Definitions of Stability for Jump-Linear S y s tem s 45
3.4 Stability Analysis of the System Driven by p ... 47
3.5 Stability Analysis of the System Driven by 6 ... 50
3.6 Stability E q u iva lence .. 55
3.7 Characterizing Mean-Square Stability via the Second Lyapunov Expo­

nent ... 63
3.8 Dimensionality Issues in the Tests for Mean-Square Stability of the

System (u , M . , A , 0) 66
3.9 Summary of Key P o i n t s ... 68

IV. SIMULATION STUDIES 70
4.1 In tro d u c tio n ... 70

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viii

4.2 Demonstration Procedure for the Mean-Square Stability Criteria of the
System (i / ,M ,A ,0) ... 70

4.3 Three Recovery System E x a m p le s ... 72
4.3.1 Recovery Example 1 .. 72
4.3.2 Recovery Example 2 .. 77
4.3.3 Recovery Example 3 .. 80

4.4 Summary of Key P o i n t s .. 84

V. FUTURE RESEARCH AND C O N C L U S IO N S................................ 89
5.1 Summary of Main C ontribu tions.. 89
5.2 Directions for Future R esearch ... 90

5.2.1 Curse of Dimensionality: Some Possible S o lu tio n s 90
5.2.2 Jump-Linear Systems Driven by Cascaded Finite-State Ma­

chines with Markovian I n p u t s ... 90
5.2.3 Systems with Stochastic Recovery A lg o r ith m s 91
5.2.4 Recovery System Identification .. 92

APPENDIX A: TABLES OF SYSTEM AND SIMULATION PA­
RAMETERS ..101

APPENDIX B: SIMULATION S O F T W A R E ... 106
B -l Generating Markov C h a in s .. 106

B -l.l Independent Identically Distributed P r o c e s s 106
B -l.2 First-Order Markov P r o c e s s .. 107
B -l.3 Second-Order Markov P ro c e s s ... 109

B-2 Recovery Example 1 .. I l l
B-2.1 Program Code for Theoretical P re d ic tio n I l l
B-2.2 Program Code for Monte Carlo S im u la tio n 146

B-3 Recovery Example 2 .. 156
B-3.1 Program Code for Theoretical P re d ic tio n 156
B-3.2 Program Code for Monte Carlo S im u la tio n 164

B-4 Recovery Example 3 .. 177
B-4.1 Program Code for Theoretical P re d ic tio n 177
B-4.2 Program Code for Monte Carlo S im u la tio n 185

V I T A ..202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table Page

2.1 Order of the cross-chain process for a finite-state machine and the state
process for a unifilar machine for Markovian inputs of various order r. 38

A -l The system and simulation param eters for the Recovery Example 1
when the input is i.i.d.. 101

A-2 The system and simulation parameters for the Recovery Example 1
when the input is first-order Markov... 102

A-3 The system and simulation param eters for the Recovery Example 1
when the input is second-order Markov.. 103

A-4 The system and simulation param eters for the Recovery Example 2. . 104

A-5 The system and simulation param eters for the Recovery Example 3. . 105

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page

1.1 The hybrid model under consideration... 1

1.2 Block diagram of a networked control system with packet dropout and
recovery in the feedback pa th .. 4

1.3 A simple example illustrating recovery of packet loss in a NCS 6

1.4 Block diagram of a closed-loop digital flight-control system with error
recovery in the feedback pa th .. 7

1.5 Architecture of duplex fault control s y s te m .. 7

1.6 A rollback recovery algorithm to handle persistent upsets...................... 9

1.7 A sinusoid filtered by rollback recovery where N Rs = 2, AOtb = 5,
Ua \a = 0 .6 , and IIe |e = 0.5.. 10

3.1 State diagram of a finite-state machine M. driven by a Markov process
th a t results into two ergodic classes... 42

3.2 A jump-linear system driven by the process p ... 48

3.3 A jump-linear system driven by the output process 6 of a unifilar finite-
state machine... 52

3.4 A-equivalency of the systems (v,M, A, p), 6) and (v>, A4, A, 6). 62

3.5 Plot of dim(Ar) and dim(Br+1) for a unifilar finite-state machine with
N =5 for various number of inputs M .. 67

3.6 Plot of dim(J3r+i) for various values of N and dim(Ar), as p varies for
a given non-unifilar finite-state machine. M is fixed to 10 and r = 2. . 68

4.1 A simple model for a recoverable computer control system 73

4.2 A finite-state machine representation of a recoverable computer control
system.. 73

4.3 The spectral radius of Ao and B\ as a function of II£ for the Recovery
Example 1... 75

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xi

4.4 The Monte Carlo generated statistic logw (Q) for the Recovery Example
1 when the input is i.i.d. with = 0.45 and Ilf; = 0.55. The dotted
line is k log10(p (A i)) = k log10(p(Bi)) ... 76

4.5 A plot of the spectral radius of A \ and B2 versus Ue \e for the Recovery
Example 1 when input v is first-order Markov with IIA|A = 0.45. . . . 77

4.6 A unifilar finite-state machine representation of a recoverable computer
control system .. 78

4.7 The Monte Carlo generated statistic logw (Q) for the Recovery Example
1 when input is first-order Markovian with IIf;|f; = 0.3 and I l^ f ; = 0.4.
The dotted line is k logw(p(Ai)) = k fo<7io(p(^2))..................................... 79

4.8 The spectral radius of A 2 and #3 as a function of He\e,e for the Re­
covery Example 1.. 80

4.9 The Monte Carlo generated statistic log\o(Q) for the Recovery Exam­
ple 1 when the input is second-order Markovian with He \e ,e = 0.7 and
0.8. The dotted line is k logi0(p(A2)) = k logio(p(Bz)) 81

4.10 The state diagram for the algorithm in Recovery Example 2....... 82

4.11 The spectral radius of A i as a function of IIe |e for the Recovery Ex­
ample 2 83

4.12 The spectral radius of A \ as a function of p s for the Recovery Exam­
ple 2 when M r — 1 ,2 ,5 ... 84

4.13 The Monte Carlo generated statistic logw {Q) for the Recovery Ex­
ample 2 when IIei# = 0.8 and M r is variable. The dotted line is
k log10(p{Ai)) ... 85

4.14 The state diagram for the Recovery Example 3 when N Ab = 1... 86

4.15 The spectral radius of A i as a function of IIe |e for the Recovery Ex­
ample 3 when N Ab = 1 ,2 ,5 87

4.16 The spectral radius of A i as a function of pe for the Recovery Exam­
ple 3 when NAb = 1 ,2 ,5 .. 87

4.17 The Monte Carlo generated statistic logw(Q) for the Recovery Ex­
ample 3, when n ^ ie = 0.3 and N Ab is variable. The dotted line is
k log10(p (A i)) ... 88

5.1 A jump-linear system driven by cascaded finite-state machines with a
Markovian input.. 91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xii

5.2 A jump-linear system driven by a stochastic finite-state machine with
a Markovian input.. 92

5.3 A jump-linear system driven by an unknown finite-state machine with
a Markovian input.. 92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

CHAPTER I

INTRODUCTION

1.1 M otivation for this Research

Fault tolerance and recovery is a wide area of research in computer engineering,

communications and controls [45]. System stability is always a critical concern in con­

trol systems equipped with fault tolerance and error recovery mechanisms [1,52,58].

The main motivation for the research presented in this thesis is the need to perform

stability analysis of hybrid models for closed-loop digital control systems implement­

ing an error recovery algorithm as the fault tolerant technique and subjected to mul­

tiple upsets [16]. The mathematical model in this case is a discrete-time, jump-linear

system driven by a finite-state machine with Markovian inputs shown in Figure 1.1.

M arkovian V(k) t Finite-State 8(k) , Jum p-L inear
Dynamical

System

x (k) t
Exosystem Machine

Figure 1.1: The hybrid model under consideration.

A more precise m athematical description of the model is as follows. A Maxkov pro­

cess v takes on symbols from the set £ / = {771, 772, , r)M} according to a probability

transition m atrix II/, by convention the column sums of IT/ are assumed to be unity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

The Markov process v in tu rn drives the finite-state machine A4 = { £ /, £,5, E 0 , S, cj}.

The sta te of the machine, z(k) , takes on values from the set E s = {ei, e2, . . . , ejv},

which is simply the collection of elementary vectors ej = [0 • • • CMM) • • • 0]T. The
j-th position

next state function <5 : E / x £,§ 1—> Eg is a mapping of the form

z (k + 1) = S„{k)z(k) ,

where each N x N m atrix Sn, 77 € E /, is a deterministic transition m atrix, i.e., a

m atrix where each column contains exactly a single one and N — 1 zeros. The output

function u : E / x Eg 1—> Eo is uniquely specified by

It assigns to each pair of input and state symbol in £ / x Eg an output symbol from

the set Eo = {£1, £2, • • • > Cl}- It can be written in the form

c(k) = Tv(k)z{k),

where c(k) is a Boolean vector corresponding to 0(k) = & , i.e. a vector with exactly

a single one at ij — th position and L — 1 zeros. Here T„(k) is a L x N m atrix

with exactly a single one and L — 1 zeros in each column. Finally, the output from

the machine, 6(k) = u (v { k) ,z (k)) , is used to drive an n-dimensional jump-linear

dynamical system

x (k + 1) = A e{k)x (k) , (1.1)

where A(€ Mnxn, ||A ||| < 00 with £ e Eo- For conciseness, this hybrid model

consisting of a jump-linear system driven by the output process 0 of a finite-state

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

machine M with Markovian input v will be denoted throughout this thesis by the

notation (i / , M , A , 0). Although this hybrid model is applicable to a wide variety

of applications, two particularly motivating applications of interest will be described

next. The first application is a networked control system equipped with a recovery

mechanism for packet loss. The second example is a digital flight controller equipped

with a recovery system to provide reliable operation in harsh environments where elec­

tromagnetic or particle radiation may be present. Both examples illustrate situations

where the stability of the closed-loop system is a critical issue.

1.1.1 Networked Control Systems with Packet Dropout and

Recovery

Networked control systems (NCS) are control systems with a communication net­

work in the feedback loop. They have found applications in unm anned aerial vehicle

control systems, autom ated highway systems and many other distributed remote con­

trol applications [49]. In a NCS, a communication network can exist between the plant

and the controller communicating a sensor signal and between the controller and the

plant communicating a control signal. The output from the plant sensor gets encoded

by a quantization, compression and coding technique into packets which are trans­

m itted to the controller. But before the controller can process the data, it must be

decoded to recover the sensor signal. In this process, there can be quantization error

an d p acket loss d u e to ch an nel con gestion . A sim ilar s itu a tio n ex is ts for th e con tro l

signal being sent between the controller and the plant. Stability of such closed-loop

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

systems, assuming a deterministic rate of packet losses, have been studied by various

researchers either by modeling them as asynchronous dynamical systems [19] or as

linearized hybrid systems [58].

r(k) +

Recovery System

yM) Decoder

Encoder

D/A

Controller

Quantizer

Channel
with

Packet
Dropout

Plant

Figure 1.2: Block diagram of a networked control system

with packet dropout and recovery in the feedback path.

Suppose a network exists only between the plant sending the sensor signal and

the controller as shown in Figure 1.1.1. Assume packets containing an encoded form

of the sensor signal axe being dropped and the drop process is Markovian in nature.

System stability in this case has been analyzed by introducing a Markovian jump-

linear model [49,56]. In [33] an optimal controller was designed to compensate for

the packet losses under similar assumptions. Suppose the last known good packet is

recovered from a buffer, using some typical recovery techniques like those in [25]. A

simple example of one such recovery technique is shown in Figure 1.1.1. Here the

packet drop process is modeled by the process v , where u(k) = A denotes no loss of

p ack ets (ab sen ce) an d i s (k) = E d en otes a p acket loss (ex isten ce). A s lon g as th ere

is no loss of packets, the nominal control law is in operation and the closed-system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

system dynamics x (k) are governed by the transition m atrix A 0. However, if there

is a packet drop, the system enters a recovery mode, and a new control law comes

into operation. In this situation, closed-loop system dynamics x (k) are now governed

by the transition m atrix A%. Once there are no further packet losses, the system

resumes its nominal operation. Thus the closed-loop system switches back and forth

between two system param eters A 0 and A\ based on the packet loss process u being

under no loss (A) or loss (E). Such a system behavior is known to be a jump-

linear system. It is possible th a t although system param eter Ao is always stable

during normal operation, the system param eter A i is more likely to be unstable

during the packet loss and recovery. Hence, the knowledge of stability conditions

for this system becomes critical. In case of a more complex recovery technique and

Markovian characteristics for the packet loss process u, the overall system behavior

can be modeled as a jump-linear system driven by the finite-state machine with

Markovian inputs, the one shown in Figure 1.1, stability analysis problem for which

this thesis is specifically concerned.

1.1.2 Digital Flight Control Systems with Upset and Recov­

ery

Digital fly-by-wire aircraft with safety critical computer systems are required to

operate reliably in harsh environments. The most commonly used fault-tolerant com­

p u tin g tech n iq u es like tr ip le m odu lar redundancy, error correctin g co d es an d o th ­

ers can help achieve this. These fault-tolerant systems, however, may not be suit-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

V(*) = E

V (k) = E

Recovery Mode
X (k + 1) = A tX (k)

N orm al Mode
J C (* + 1) = A 0J C (*)

Figure 1.3: A simple example illustrating recovery of

packet loss in a NCS.

able to handle correlated or common-mode faults like those produced for example

in electromagnetic environments [18,40]. The design, validation, and verification of

fault-tolerant systems th a t are subjected to common-mode faults is an active area of

research [2,22,32], Recently, more sophisticated techniques for error recovery using

rollback and roll forward have been proposed in the fault tolerant community [45].

A technique th a t is being investigated to address transient or soft common-mode

fault is error recovery with multiple dual-lock-step processors together with new fault

tolerant architectures and communication subsystems [21,22], An example is NASA

Langley Research Center’s Recoverable Computer System (RCS), which is being used

to study recovery from transient faults introduced by high intensity electromagnetic

radiation [35,36] and atmospheric neutrons [17]. As depicted in Figure 1.5, two mi­

croprocessors with their own memory, expected to be carrying the same data are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

A/DD/A

Upset
G enerator

Plant

Recovery System

yc(k) P
Controller

Figure 1.4: Block diagram of a closed-loop digital flight-

control system with error recovery in the feedback path.

executed and compared at every clock cycle. The error recovery technique imple-

Recovery
Trigger

CPU2CPUtMemory MemoryFault
Monitor

Processor
State
Data

Processor
State
Data

Protected Memory

Figure 1.5: Architecture of duplex fault control system

mented on the RCS is a variation of rollback recovery; it has the following steps:

checkpointing, fault-tolerant comparison, rollback, and retry [43,46]. During a check­

point, the state of each microprocessor module is stored. W hen an upset is detected,

rollback of both microprocessor modules to a previous checkpoint takes place, and

then the system is allowed to proceed with normal execution. But once the execution

of the normal control program is interrupted, the execution of a different control law

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

takes place, one th a t has significantly different dynamics and is on a tim e scale th a t

can alter the overall closed-loop dynamics of the flight control system. A stability

analysis procedure for such a closed-loop system has been presented in [13-15,52] un­

der simplifying assumptions such as no new upset can occur during an active recovery

process. This model is accurate for low radiation levels, but begins to breakdown as

the upset probability increases. The essential lim itation in this existing approach is

th a t the jump-linear model employed does not perm it complex recovery algorithms

to be easily encoded into the model’s structure.

The new class of hybrid model shown in Figure 1.1 and introduced in [16] can

capture the essential behavior of a closed-loop digital control system implemented

on an RCS to handle multiple upsets. The finite-state Markov process is used to

characterize the upset generator which is supplying the random external disturbances

to the control system. Typically, from the recovery system’s point of view, there are

only two possible states: an upset is absent (A) or one exists (E). Upset statistics

are completely determined by the transition probabilities and II£ |£ , which are

assumed to be known. In general, the upset generator can have more than two states.

The finite-state machine models the recovery algorithms. Figure 1.6 shows a

four state recovery algorithm which is particularly well suited for persistent upset

conditions. As long as an upset is absent the controller stays in the Normal (No)

Mode and executes the nominal control law which produces the closed-loop dynamical

system (A No) B Noj Cjvo)- But once an upset condition is detected, a rollback procedure

is engaged. In the Reload (Rd) Mode the current value of the control is frozen

in tim e and the system remains in this mode for N iu time samples to model the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.6: A rollback recovery algorithm to handle persistent upsets.

delay encountered while the computer memory is reloaded with the last known good

values stored in the checkpointing memory x c(k). Next, the system proceeds to the

Release (Rs) Mode, where the last known good state values are actually released

into the control state vaxiables. If no upset condition is present then at the next

tim e instant, the execution of the nominal control law is resumed. But if an upset

condition is detected, then the reload mode is re-entered since the current released

state values could have been corrupted. To prevent an unacceptably long release-

reload loop, an Abort (Ab) Mode is available. It is entered only after N r s successive

visits to the Release Mode. This fail-safe Abort Mode produces a penalty, however,

by introducing N^b additional units of delay in the feedback path before normal

execution is restored. In general the to tal number of states in the finite-state machine

is N = l+(Nj{,i+l)NR3+NAb■ The overall effect of the recovery algorithm as a filter for

the control signals is shown in Figure 1.1.2 for the case where the ideal control signal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

2

! e

A&W

A b [—

- | ----------- r -

; Op Op Q<JP<3QQD<3QBP QBBO' O GHQBHp : QE> G(£<aQB^<&QBBBBBDQ: GEE> OOp

10 20 30 40 50 90 100

SRs - O O G O O S <30 G O O O G O

0 10 20 30 40 50

Q Q © (TV ©

70 60 90 100

4
w
SO)

3
-4

60 70 90 1000 20 30 40 o so,Samples
8010

Figure 1.7: A sinusoid filtered by rollback recovery

where N Rs = 2, N Ab = 5, 11^^ = 0.6, and H.e \e = 0.5.

is a sinusoid. While the persistent upset condition introduces significant distortion

to the signal, in many cases the slower time constants of the plant will low-pass filter

the high frequency signal components introduced by the recovery algorithm. The

open-loop system is represented as a discrete-time dynamical system

xp(k + l) = A px p(k) + B pup(k), xp(0)

yP(k) CpXp{k).

Likewise, the nominal control law is assumed to be realizable as a dynamical system

with realization (A c, B c,C c). The jump-linear dynamical system is formed using the

closed-loop models derived from the actions on the control signal in each recovery

state. Hence, the state equations of the closed-loop dynamical system are switched

through the set of A matrices: {Am,, A m , A Rs, A m }- It is the stability conditions

this jump-linear dynamical system which is the main concern of this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

1.2 Literature R eview

The study and analysis of models involving an interconnection of a finite-state

machine (finite autom ata) with a dynamical system having an uncountable infinite

state space comes under the broad area of theory of hybrid systems. In general, the

dynamical system component with the infinite state space can be discrete or contin­

uous, linear or non-linear and deterministic or stochastic. Hybrid dynamical systems

have found direct application in manufacturing, power, communication and transport

systems [48]. A basic hybrid framework of interconnection for the interconnection of

autom ata and linear systems was suggested by Edwardo Sontag in 1995 [51]. There

a hybrid system assumed the form

X+ = A qX + B qU

q+ = 6(q ,h(x ,u)), (1 .2)

where x is the state of the dynamical system, q is the state of the finite-state au­

tom aton, u is the external input, h is a function which maps the external input and

the sta te of the dynamical system to a symbol, S is the state transition function for

the autom aton and '+ ' denotes the evolution of the system in either continuous or

discrete time. Sontag suggested this piecewise linear system formalism in a deter­

ministic setting and showed how several control problems can be solved with this

formalism using tools from piecewise linear algebra. Since then the theory of hybrid

systems has evolved in several directions. Stability of hybrid systems under deter­

ministic conditions has been studied by [6 ,57]. The class of hybrid systems where the

sta te evolution of the autom ata is coupled with the state evolution of a stochastic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

dynamical system (described by either a stochastic differential or difference equation)

has been studied by various researchers including Hespanha [20], Hu et al. [24] and

Tejada et al. [53].

The research in this thesis mainly focuses on the stability of class of the class of

jump-linear systems whose switching rule is governed by the output of a finite-state

machine whose input is a Markovian random process. The hybrid model framework

presented here is distinct from th a t given by the equation (1 .2) and the systems

in [20,24,53] in the sense th a t the state evolution of the finite-state machine does not

depend on the state evolution of the jump-linear dynamical system, but only on its

own sta te and the external Markov input.

Jump-linear systems as a class of hybrid systems has been an active area of re­

search for several decades. The jump-lineax as model has found application in the

areas of control (power systems [55], tracking systems [39]) and communication [56].

The stability of jump-linear systems driven by Markov processes has been studied

extensively by many researchers [8,27,42], Lyapunov based stability tests for jum p-

linear systems whose switching rules are governed by independent identically dis­

tributed (also known as multinomial) processes and time inhomogeneous Markov

processes appears in [10 , 11].

W hen a jump-linear system is driven by the output of a finite-state machine with

Markovian input process, the output process of the finite-state machines is in general

not a Markov process. It belongs to the more general class of random processes

known as linear dependent processes [5,26]. Therefore the stability tests developed

by various researchers for Markovian jump-linear systems cannot be directly applied.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

In addition, stability criteria for jump-linear systems whose switching rule is governed

by linear dependent processes has not been explored. This thesis hence provides

the stability conditions for jump-linear systems driven by the output of finite-state

machines with i.i.d. and higher order Markov inputs.

1.3 Problem Statem ent

The main research goals of this thesis are the following:

1. To characterize two random processes generated by a finite-state machine

driven by a Markov process of order r > 0. The random processes consid­

ered are: (i/, z) resulting from the cross-product of input process and the state

process from the given finite-state machine and, z , the state process of the

equivalent unifilar type finite-state machine of the given finite-state machine.

2. To develop necessary and sufficient conditions for the mean-square stability

of the hybrid model under consideration, {v ,M .,A ,Q). More specifically, the

hybrid model considered is the jump-linear system driven by minimal finite-

sta te machine th a t is of

(a) Moore type with an isomorphic state to output map

(b) Mealy type with an isomorphic state to output map

(c) Moore or Mealy type with a non-isomorphic state to output map

(d) Unifilar type

(e) Non-unifilar type

and it is driven by a Markovian process order r > 0, i.e., a Markov process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

with an

(a) independent identical distribution (i.i.d.) (r = 0)

(b) first-order distribution (r = 1)

(c) higher order distribution (r > 1).

3. To test and validate the necessary and sufficient conditions for mean-square

stability of the model on several examples using Monte Carlo type simulations.

1.4 Thesis Overview

The thesis is organized as follows. In Chapter 2, after a preliminary introduction

to finite-state machines, Markov processes and stochastic matrices, the two random

processes: (iz, z) and z are characterized. In Chapter 3, following appropriate defini­

tions of stability for jump-linear systems, conditions for the mean-square stability of

the model (is ,A 4 ,A ,0) are developed. The main stability results of Chapter 3 focus

initially on the special case of a Moore type finite-state machine with an isomorphic

s tate to output mapping, th a t is, each state in Eg has a corresponding unique output

symbol in £ 0 , specifically, L = N , uj(r), e,) = u(ej) = £j for j = 1 , . . . , N , TU(k) = T

and Au(ni,ej) = In the later sections of Chapter 3, these results are extended to

the more general case of non-isomorphic state to output mapping and Mealy type

finite-state machines. Mean-square stability of such models are further characterized

by the Lyapunov exponent method. A brief discussion concerning numerical and com­

putational issues regarding the tests for mean-square stability conditions developed

for {u, M , A , 9) is also provided. In Chapter 4, the theoretical results are demon-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

strated by simulating several simple examples of closed-loop systems with recovery

algorithms. In the final chapter, the main conclusions from this research are presented

along with a discussion about the directions for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

CHAPTER II

THEORY OF FINITE-STATE MACHINES W ITH

MARKOVIAN INPUTS

In this chapter, the class of finite-state machines used to model recovery algorithms

is introduced. Elements of theory of Markov processes and stochastic matrices rele­

vant for our problem is briefly discussed. It is well known th a t Markov chains and

finite-state machines with random input process are closely connected m athem ati­

cal entities [9,26,41], It is also known th a t the output of a finite-state machine, 0 ,

is in general not a Markov process. Instead, it belongs to a more general class of

random processes known as linearly dependent processes [26]. But it is possible to

characterize certain random processes associated with the finite-state machines with

Markovian inputs as Markovian. Such a characterization is essential for the stability

analysis purpose of the system (v, A4, A, 0), and hence forms the main content of this

chapter.

This chapter is organized in the following manner. In Section 2.1, the formal

definition of a finite-state machine is provided, along with other relevant term s and

concepts. In Section 2.2, the theory for discrete-time, finite-state Markov chains and

the theory of stochastic matrices relevant for the problem under consideration are

described. In Section 2.3 and 2.4, two im portant random processes associated with

finite-state machines with Markovian inputs are introduced. It is shown th a t the

joint processes of input and state of every finite-state machine and the state process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

of class of finite-state machines known as unifilar type are in fact always Markovian.

2.1 Introduction to the Theory of F in ite-S tate M a­

chines

In this section, definitions and terms from the finite-state machine theory will be

introduced. Distinction will be made between Mealy type and Moore type machines,

as well as, unifilar and non-unifilar type machines. A key result, useful in the stability

analysis is the procedure to derive a unifilar type finite-state machine from a given

non-unifilar machine. Most of the discussion here is based on [5,31]. An excellent

description of the algebraic approach to the theory of finite-state machine can be

found in [23,28].

A Mealy type finite-state machine is a five-tuple M. = { £ / ,£ s ,£ o ,< W } i where

£ / = {771,772> - - • > Vm } is the finite set of input symbols, £ $ = { e i , e 2 , . . . , e n } is the set

of states, S o = {£i,£2> . . . , £ l} is the set of output symbols, <5 : £ / x £ 5 t—> £ 5 is the

next sta te map, and u : £ ; x £ j h £ c is the output map. A Moore type finite-state

machine is the special case where the output function is u : £ s 1—> So- Every Moore

machine can be represented as a Mealy machine by assigning the output symbol in

a m anner independent of the current input symbol. The following definitions are

fundamental.

D e fin itio n 2 .1 .1 . A Moore type finite-state machine A i = (£ /, £ 5, £ o 5 d,u) is said

to have an isomorphic state to output mapping, i f L = N and uj(ej) 1—> Ve ̂ €

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Eg and G E 0 . Similarly, a Mealy type finite-state machine is said to have an

isomorphic state to output mapping, i f L = N and u>{q,ej) >—► £j, Vr? £ E /, Vej G

Eg, and G E<> Otherwise the mapping is said to be non-isomorphic.

Definition 2.1.2. [5] A finite-state machine is completely specified, i f fo r every

pair (rji,ej) g E / X Eg, t/iere exists a next state ek G Eg such that 8(i]i,ej) = e*. and

/o r eac/i state Cj £ Eg, f/iere exists an output £k G Eo sac/i that w(e,j) = £fe.

Definition 2.1.3. [5] Let J be an arbitrary sequence of input symbols. Let Wj be

the sequence of output symbols generated by J with e, £ Eg as the initial condition.

Then the two initial states ei,ej £ Eg are said to be equivalent, denoted as e* = Cj,

i f fo r all possible values o f input sequence J , it follows that W, = W j.

The following lemma is a consequence of Definition 2.1.3.

Lemma 2.1.1. [5] The set of all equivalent states form an equivalent class Ci, and

the set o f equivalent classes form s a partition o f the state space Eg, i.e., (J4 Ci = Eg

and Ci f]Cj = 0, Vi, j .

Definition 2.1.4. [5] A finite-state machine is minimal, i f every equivalent class

Ci contains only one state e .̂

Let Ji be a sequence of input symbols of length I, and A {Ji,6j) be the state

transition function with initial state ej.

D e fin itio n 2 .1 .5 . [5] A finite-state machine is s tro n g ly connected , i f fo r any pair

of states Cj, ek £ Eg there exists at least one input sequence Ji such that A (J;, ej) = ek .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

D e fin itio n 2 .1 .6 . [5] Consider two finite-state machines M i = { £ /, Eg, S o ,

and M2 = {S/, Er , S0 , ^2,^2}- Let Ai(J/, ef), A 2(./;, f j) be the respective transition

functions o f the machines M \ and M 2 ■ The machines M i and M 2 are said to

be equivalent, i f fo r each state e* G S,§ there exists a state f j G S t such that

A 1 (J;, Ci) = A 2(J;, f j) and, conversely, fo r each state / , G St there exists a state

ej G S s such that A2(Jf,/i) = A 1(J;,eJ).

D e fin itio n 2 .1 .7 . [37] A finite-state machine M = (S /, E 5 , S o , 6, 0) is unifilar i f

fo r any fixed state em G E s, 8(r j i , em) ^ em) whenever rji 7 ̂ rjj, otherwise, the

finite-state machine is said to be non-unifilar.

T h e o re m 2 .1 .1 . Let M = (E /, Eg, Eo, <5, w) be an arbitrary non-unifilar finite-state

machine. For any such finite-state machine M , there always exists a unifilar finite-

state machine M = (E /, E 5 , Eo, d, u) which is equivalent.

Proof: The proof is constructive and it is applicable to both the cases of isomorphic

sta te to output mapping and non-isomorphic state to output mapping. The state

transition and output mappings are assigned to preserve the input-output mapping

in order to produce an equivalent machine. Since M is non-unifilar, there exists a

pair of inputs symbols 17* and rjj and machine states e m and e; such th a t 6(rji, em) —

6(r j j , e m) = e t . Therefore, augment the machine’s state space, E 5 , by replacing the

sta te ei with new states e;t and e*r Define a corresponding transition map S, which

is identical to 6 except now: S(rji, em) = e(t, 6(rjj, e m) = e(j, and <5(77, ejJ = S(rj, e t j) —

8(rj, e[) for all input symbols rj. Similarly, redefine the output function Cj to be identical

to u except a t the old state, ui(em) = u (e m) and at the new state define u>(eit) =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

(j(e^) = uj(ei), so th a t the input and output relation is preserved. It is clear th a t

the states and output symbols of the new machine can be re-indexed by the integers

1 , 2 , . . . , iV + l, and the whole process above repeated if the new machine is not unifilar.

Since the number of input symbols and machine states is finite, this procedure need

only be repeated a finite number of times before a unifilar machine is produced. ■

2.2 Introduction to D iscrete-T im e M arkov Processes

and Stochastic M atrices

In this section, a brief description of the theory of homogeneous, discrete-time,

finite-state Markov processes, Markov chains and stochastic matrices is given. Except

where indicated, most of the presentation is based on [5,30,50].

Let (Q, F , P) be the underlying probability space, where Q is the sample space,

J- is a <7-algebra on Q, and P is a probability measure. At each tim e instance of

k, u(k) is a discrete random variable which takes on values Xj e 0,1 < j < n . A

homogeneous, discrete-time, finite-state r-th order Markov process v is a random

process which satisfies the property

P{ u(k) = Xj\t/(k - 1) = xh , v { k - 2) = x h , . . . , i/(0) = xjk}

= P { v (k) = x h \u(k - 1) = xh , u (k - 2) = xh , . . . , i/ (k - r) = x jr},

for any 1 < r < oo.

For an r-th order Markov process v , consider a t each instance k, the two events

{u(k) , u (k — 1) , . . . , v (k — r + 1)} and { v (k — 1) , . . . , u(k — r)} as two consecutive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

states of another random process Ui a t instance k and (k — 1), respectively. Thus, at

each instance k, V\(k) £ p x . . . x Q. Then the random process tq forms a first-order

r times
Markov process. Its transition probability can be derived in the following manner:

P { u x{k)\i/ i(k - 1)}

= P{t / (k) , v (k - 1) , . . . , v (k - r + l) |i /{k - 1), v{k - 2) , . . . , v{k: - r)}

_ P{u(k) , u (k — 1) , . . . , u{k — r + 1), u (k — r)}
P { v (k — 1) , . . . , v (k — r)}

= P { u(k) \ v (k — 1) , . . . , is(k — r)}. (2.1)

A stochastic m atrix II is a specific class of nonnegative m atrix whose entries lie

between 0 and 1, and column sums equal 1. An entry [II] f . can be used to denote

the transition probability from j- th state to i-th state of i ' i (k) e f t x . . . x The

r times
following example illustrates these concepts for a second-order Markov process v.

E x a m p le 2 .2 .1 . Consider the second-order Markov process v which takes its values

from

£ / = {VuV2,rj3}-

Then the corresponding first-order Markov process takes its values from the set

x e 7 = {r)im,viri2,'ni'n3,'n2Vi, m m , m m , w i , » , % % } •

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

Using equation (2.1), its transition probability matrix has the following structure:

P m lv m i P m \v m 2 P m \v im 0 0 0 0 0 0

0 0 0 Prji|»j2»)i Pi?i|j72»/2 P m \ m v 3 0 0 0

0 0 0 0 0 0 Prii\r)3rn Prji\V3V2 Pm\V3n3

Pv2\vim Pv2\viv2 Pn2\vi‘n3 0 0 0 0 0 0

0 0 0 Pfi 2|)j2»yi Pr]2 \T]2 T]2 Pri2\r)2T]3 0 0 0

0 0 0 0 0 0 Pt)2\V3V1 Pv 2\V3V2 Pv2\V3V3

Pv3\m m Pv3\mv2 Pvslm rn 0 0 0 0 0 0

0 0 0 P n 3 \v 2 v i P n 3 \v 2 n 2 P m l m ^ 0 0 0

0 0 0 0 0 0 Pr)3\r}3T)i Pt)3\r}3i}2 Pri3\V3r)3

n =

□

A collection of states £ C f t x . . . x Q is called an ergodic class if it has the

r times
property th a t once the Markov process enters this class it will never leave it in the

future. The collection of states Ms, called the non-ergodic class, has the property th a t

once the Markov process leaves this class, it never re-enters it in the future. Every

finite-state Markov chain C contains a t least one ergodic class.

Let Di be a set of positive integers corresponding to the state i such th a t for only

those integers m G A , [nm]jj > 0, otherwise the quantity is zero. Then the greatest

common divisor of all the elements of Di is called the period of the *-th sta te and is

denoted by d(i). All the states within the same ergodic class have the same period.

If all the states in all the ergodic classes have period d = 1, then the chain is said to

be aperiodic. If [I I] > 0 then the period of i-th state is 1. The following definition is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

essential.

D e fin itio n 2 .2 .1 . A finite-state Markov chain C and its transition probability matrix

II are said to be m o n o d e s m ic i fV = £\ U M s, irrespective o f whether Ms is empty

or not.

A monodesmic chain C with a non-ergodic class Ms 0 is said to be reducible.

There always exists a perm utation m atrix T such th a t II can be put in the following

canonical form:

n * R

0

In this case, the m atrix II is said to be reducible. A monodesmic chain with Ms = 0

is said to be irreducible or ergodic. The m atrix II is referred to as irreducible, and

there always exists a positive integer m ji for each pair (i , j) such th a t [nmj*]jj > 0 .

D e fin itio n 2 .2 .2 . A stochastic matrix II is said to be p r i m i t i v e i f there exists a

positive integer m such that [IIm] > 0 fo r all (i , j). The smallest integer m satisfying

this condition is called the i n d e x o f p r i m i t i v i t y .

An irreducible stochastic m atrix has period d = 1 if and only if it is primitive.

The corresponding chain is called a regular chain. It is both ergodic and aperiodic.

W hen [II] - > 0 for all (i , j) , denoted by II > 0 , II is obviously primitive with index

of prim itivity m = 1.

This section is concluded with a concise summary of the key results used in the

next section. The first theorem gives eigen-structure characterizations of monodesmic

matrices, irreducible matrices and primitive matrices. The next two theorems concern

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

monodesmic stochastic matrices. They provide tests for the existence and uniqueness

of the stationary vector of Yli/o- Corollary 2.2.2 will be used to show th a t the condi­

tion pj > 0 is equivalent to reachability.

T h e o re m 2 .2 .1 . Let II be a stochastic matrix. Then:

1. II is monodesmic i f and only i f II has a single eigenvalue at Ar = 1 [29, p. f].

The corresponding eigenvector q is unique to within a constant multiple [30, p.

117].

2. II is irreducible i f and only i f II is monodesmic with q > 0 [30, pp. 100, 117].

(Here q > 0 means that every component o f q is positive.)

T h e o re m 2.2 .2 . [30, pp. 70-71, 117], I f a stochastic matrix II is monodesmic and

aperiodic then

lim I P = lim
n —► oo n —*oo

*

0 T)Ms

q, q, q, . . . q

is a rank one matrix with rows of zeroes corresponding to the non-ergodic states and

columns q corresponding to the unique stationary vector o f II.

C o ro lla ry 2 .2 .1 . [30, pp. 70-71] I f a stochastic matrix II is prim itive then

lim IP
n —►oo Q, Q, Q,

where q > 0 is the unique stationary probability vector of II.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

T h e o re m 2.2 .3 . [30, pp. 100,117] I f a stochastic matrix II is monodesmic and the

ergodic class has period d > 1 then fo r some 0 < k < 1

lim (k l + (1 - k)n) n q q . . . q

where q is the unique stationary probability vector of II.

C o ro lla ry 2 .2 .2 . [30, p. 100] I f a stochastic matrix II is irreducible with period

d > 1 then fo r some 0 < k < 1

lim (k l + (1 - k)U)r' <? <7

where q > 0 is the unique stationary probability vector o f II, in which case fo r any

initial probability vector q0, lim„_>00(fc/ + (1 — k)U.)nq0 — q.

2.3 Characterization of Random Processes Gener­

ated by F inite-State M achines w ith M arkovian

Inputs

Two im portant types of random processes result from a finite-state machine when

a Markovian input is applied. Each will be characterized in the following subsections.

The first process is the cross-chain process p. It is obtained from the cross-product of

the input process and the state process, namely (v , z) . It takes symbols from E / x Es.

The second process z is obtained when the given finite-state machine is replaced by its

equivalent unifilar type finite-state machine and driven by the original input. First,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

the notion of strongly connected finite-state machines for the deterministic input case

is extended to the case of Markovian inputs.

D e fin itio n 2 .3 .1 . A finite-state machine M. with Markovian input (Ei, II j) is said

to be reachable i f fo r every initial state ej € E s, there exists a finite sequence of

input symbols from E j which occurs with nonzero probability and drives the machine

to any other state in Es.

A finite-state machine can be strongly connected under deterministic input con­

ditions, yet, it may not be reachable for certain Markovian inputs.

2.3.1 Cross-Chain of Input and State Process p — {u,z)

Given a finite-state machine M. = (E /, E s, Eo, S , u j) , the Markov property of p is

ascertained first in the case of an independent identically distributed input process v,

followed by the case when the input process v is Markovian of order r > 1. Finally,

a first-order representation for the cross-chain process is provided when the input

process v is Markovian of any order r > 1.

T h e o re m 2.3 .1 . Consider a process p = (u, z) , where v and z are, respectively, the

input process and state process of a finite-state machine M = (E /, E s, Eo, A, oj) . I f v

is an independent identically distributed process independent o f the initial state o f the

machine, 2 (0), then p is a first-order Markov process.

Proof: Consider an event in the cr-algebra IF denoted by

{p{k), p(k — 1) , . . . , p(k — m)},

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

where r < m < k . Precisely, this denotes the set of all outcomes th a t produce a fixed

but arbitrary sequence p(k), p(k — 1) , . . . , p(k — m). Now in the case where

z(i)) = (z (i + 1)), Vi = k — m , . . . , k - 1 ,

it follows immediately th a t

P{p{k) , p (k - 1 p (k - to)} = P{v(k) , u (k - 1) , . . . , v (k - to), z (k - to)}.

All other such events are impossible. Prom the assumption th a t u is independent

identically distributed and independent of z (0), it follows th a t i/ (k) is independent

of z (k — m) for all 1 < m < k. Therefore,

P { p { k) , p (k - 1 p (k - to)}

= P{v (k) , z (k — to)|i^(A: — 1) , , v (k — m)}P{v>(k — 1) , . . . , v (k — to)}

= P{ v (k) \ v (k — 1) , . . . , v (k — m) } P { z (k — m) \ v (k — 1) , . . . , u{k — m)} •

P { u (k — 1) , . . . , v (k — m)}

P{u(k) , u (k — 1) , . . . , v (k — to)}
P { v (k — 1) , . . . , v (k — to)}

P { z (k — m) , v { k — 1) , . . . , u(k — to)}. (2-2)

Using a similar argument it follows tha t

P { p(k - 1), p(k - 2 p (k - to)}

= P{ u { k — 1), i/(k — 2) , . . . , u{k — to), z (k — to)}. (2.3)

Dividing equation (2.2) by equation (2.3) gives for all 1 < to < k,

P{p{k) \p{k - 1 p (k - m)} = P{u(k) \ v{k - 1), u{k - 2) , . . . , u (k - to)}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

However, v is an i.i.d. process and hence for all 1 < m < k, the right hand side

reduces to

P{u{k) \ v{k — 1) , , u{k — to)} = P{u(k)} .

Thus,

p { p (k) \ p (k - l) , . . . , p { k - m) } = P { v (k)}-

Therefore p is a first-order Markov process with transition probability

P{p(k) \p{k ~ 1)} = P { ” {k)}. (2.4)

■

As an aside, note th a t p is never an i.i.d. process since,

P { p (k)} = P{(u (k) , z (k)) }

= P & W l z i t y P M k) } ,

and v is i.i.d.,

P{p(k) } = P{ u (k) } P { z (k) }

* P M k) } .

The following theorem characterizes the Markov property of the cross-chain pro­

cess p — (v, z) when input process v is Markovian of order r > 1:

Theorem 2.3.2. [38] [44] Consider a process p = [v, z) , where v and z are,

respectively, the input and state o f a finite-state machine M. = (£ /,

u is an r-th order Markov process with r > 1, independent o f the initial state o f the

machine, z (0), then p is also an r-th order Markov process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

Proof: Consider an event denoted by

{p(k), p (k — 1) , , p(k — m)},

where r < m < k. Precisely, this denotes the set of all outcomes in f l x . .. 0 . Now

r times
in the case where

z(i)) = (z (i + 1)), Vi = k - m , . . . , k - 1,

it follows immediately tha t

P{p(k) , p(k - 1 p (k - m)} = P { v (k) , u { k - 1) , . . . , u(k - m), z (k - m)} .

All other such events are impossible. From the assumption th a t u is r -th order

Markov and independent of z (0), it follows th a t u(k) is independent of z (k — m) for

all r < m < k. Therefore,

P{p{k) , p(k - 1 p (k - m)}

= P{is(k), z (k — m) \ v (k — 1) , . . . , u{k — m) } P { v { k — 1) , . . . , u{k — m)}

= P{u{k) \u{k — 1) , . . . , u{k — m) } P { z (k — m) \ v{k — 1) , . . . , u{k — m) } •

P { u (k — 1) , . . . , ts(k — m)}

P { u (k), v (k — 1) , . . . , u(k — m)}
P { u (k — 1) , . . . , v (k — m)}

P { z (k — m), u{k — 1) , . . . , u{k — m)}. (2-5)

Using a similar argument it follows tha t

P { p (k - 1) , . . . , p (k - m)}

= P {is(k — 1) , . . . , u{k — m), z{k — m)}. (2.6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Dividing equation (2.5) by equation (2.6) gives

P{p(k) \ p (k - 1) , . . . , p(k - m) } = P { v (k) \ v (k - l),i/(fc - 2) , . . . ,i/(fc - m)}.

Finally, since again the input process v is assumed to be r-th order Markov, for any

m > r:

P{p(k) \ p (k - 1) , . . . , p(k - m)} = P{u{k) \ v{k - 1), v (k - 2) , . . . , u{k - r)}

= P{p{k) \p{k - 1), p{k - 2 p (k - r)} , (2.7)

and hence the proof. ■

A first-order Markov representation of the cross-chain process, which reduces the

dimensionality of the transition m atrix is described in the following theorem. This

theorem will be later used to derive the stability criterion when input process is

Markov of order r > 0, instead of the result in Theorem 2.3.2.

T h e o re m 2.3 .3 . [54] Consider a process p x = (y 1, z) , where &q is the first-order

representation o f the r-th order input process v and z is the state process o f the

finite-state machine M. = (£ /, £<?, T,0 ,d, w). I f v is an r-th order Markov process

independent o f the initial state o f the machine, z { 0), where r > 0 , then p l is a

first-order Markov process.

Proof: If v is an r-th order Markov process, then the random process v \ with

i>i(k) = (i■'(k), v (k — 1) , . . . , u{k — r + 1)) € S / x . .. Ej forms a first-order Markov

r times

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

process with transition probabilities

P { v 1{k)\ux{ k - 1)} = P { v { k) , . . . , u(k — r + l) \u(k — 1) , , u{k — r)}

P { u (k), v (k - 1) , . . . , u(k - r)}
P { u (k - l) , . . . , v (k - r) }

= P { v { k) \ v (k - l) , . . . , u (k - r) } .

Now by Theorem 2.3.2, for any first-order process u with v{k) G £ / , the random

process p = (u, z) is a first-order Markov process with p(k) G £ / x £ 5 . Hence,

it follows th a t for the first-order Markov process u x with i ' i (k) G £ / x . . . £ / , the
^ '

r times
random process p 1 = (v x, z) with p l (k) G £ / x . . . E / x E g is also a first-order Markov

r times
process with

p { p i (k) \ p i (k ~ 1)} = P { v i (k) \ u x(k — 1)}

= P{u(k) \ u (k — 1) , . . . , u(k — r)} , (2.8)

and hence the proof. ■

2.3.2 State Process of a Non-Unifilar Finite-State Machine z

It is known th a t the state process z of a non-unifilar type finite-state machine

is in general not Markovian [41]. In this section however, it will be shown th a t

the sta te process of the non-unifilar finite-state machine driven by the i.i.d. process

is Markovian. The corresponding transition probabilities for the process z will be

d erived in term s o f th e tran sition p rob ab ilities o f th e in p u t p rocess.

T h e o re m 2.3 .4 . Consider a finite-state machine M. = (£ /, Eg, Eq, 6, u). I f the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

input process v is an i.i.d. process whose distribution is independent o f the initial

state o f the machine, z (0), then the state process z is a first-order Markov process.

Proof: Consider an event of the form { z (k +l) , z (k) , . . . , z (k —m) } where 0 < m < k.

Let Cj = {rj : S(r], z (j)) = z (j + 1)} with k — m < j < k be the set of input symbols

of size 1 < nj < M. Notice that, if Cj = 0 for any k — m < j < k, then the event

never occurs. Hence,

P { z (k + 1), z (k) , . . . , z (k - m)}

= ^ 2 P { v (k) , v (k - l) , . . . , v (k - m) , z (k - m) } .
n&ck n ££<*— m)

Now for the event { z (k) , . . . , z (k — m)},

P { z (k) , . . . , z (k - m) }

. . . P { v (k - l) , v (k - 2) , . . . , v (k - m) , z (k - m) }
V€£(k-1) V€£(k-m)

Thus

P { z (k + 1), z (k) , . . . , z (k — m)}
P { z (k) , . . . , z { k - m) }

52r,eck ■ • • E „ e % _m) p {u (k) ’ k ~ !). • • • M k ~ m), z (k - m)}
P i u (k - l) , t ' { k - 2) , . . . , u (k - m) , z (k - m) }

Since u is an i.i.d. process and its distribution is independent of z (0), for all 0 <

m < k, i■'(k) is independent of {u(k — 1) , . . . , i/(k — m) } and z (k — m). Hence, u(k)

is independent of the event { v (k — 1) , . . . , u{k — m), z (k — m)}, for all 0 < m < k.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

Therefore the right hand side of equation (2.9) becomes

J2veck • • • E.>0 C(t_ro) P { v { k) } P { v { k - 1), v{k - 2) , . . . , u (k - m), z (k - m)}

P ^ k ~ 1)> u (k ~ 2)> • • • ’ u (k ~ m)> z (k ~ m)>

= ^2p M k)}-
r}€Ck

E^6C(fc_1) ~ • • E„€£(fc_m) P { " (k ~ !). U(k ~ 2), ~ ' ' , " (k ~ m)> Z (k ~ m)l
'E neclh_l) ■ • • E „ e c (fc_m) - 1), v {k - 2) , . . . , v (k - m), z { k - m)}

ri€Ck

Since this is true for all 0 < m < k,

P{ z (k + l) \z(k)} = J2P M k)}, (2-10)
v e£jt

and hence the proof. ■

Now, we state a well known related theorem due to Davis [9]. This theorem is

inverse of the previous theorem.

T h e o re m 2 .3 .5 . ([9,26]) Every first-order Markov process with N states and its

transition probability II can be realized by driving a N state Moore type finite-state

machine with isomorphic state to output mapping driven by an i.i.d. process having

at most N x (N — 1) input symbols. This also implies that every stochastic matrix

of dimension N can be written as a convex combination of at the most N x (N — 1)

Boolean matrices.

Proof: Proof is the algorithm to achieve

n = ^
V

1. Let II = II and initialize k = I.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

2. Find the nonzero minimum number in each column i of ft. If there is more

than one rriji for a certain column i, consider only one of them as m ^.

■ T

0 0 . . . 1 . . . 0

3. Let pk = m in im um (m ji).

4. Form a m atrix Sk by replacing the each i th column with ej

with 1 in the position of m,^.

5. Let ft = ft — Pk^'k and increment k by one.

6. Repeat the above procedure starting from step 2, till ft = 0.

Since there are only N 2 elements, there are a t the most N x (N — 1) number of

iterations required to achieve this and hence let M < N x (N — 1) be the maximum

number of pk and Sk used for the given II. Now, consider a Moore type finite-

state machine A4 = {E/, E s, S o , <5, w} with input set E / = {571, 772, . . . ,Pm } , =

{ei, 6 2 , ■ ■ ■, ejv}, Eo = {£1, £2, . . . , £/v}, with mapping 6 determined according to S v =

Sk and oj(ej) = £j. Apply an i.i.d. process as input v with probabilities pv = Pk to the

machine A4. By Theorem 2.3.4, the resulting output is a first-order Markov process

governed by the transition probabilities II. ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

2.3.3 State Process of a Unifilar Finite-State Machine z

In this section, it will be shown th a t the state process z of any unifilar finite-

state machine when driven by Markovian input of order r > 0 is always Markovian.

Following theorem explains this result.

T h e o re m 2.3 .6 . [37,44] Consider a unifilar finite-state machine

M. = (S i, E s, S o , S, u)

with input process v and state process z . I f u is an r-th order Markov process, which

is independent of the initial machine state z (0), with r > 0 , then z is an (r + 1)-st

order Markov process.

Proof: Consider an event of the form {z{k + 1) , z (k) , . . . , z (k — m)} where r <

m < k. Since M. is assumed to be unifilar, this event is equivalent to the event

{v{k), u{k - l) , . . . , v { k - m), z (k - m)}, where u{j) € Cj = {q : 6(v(j) , z (j)) =

z (j + 1)}, k < j < (k — m). Therefore,

P { z (k + 1), z (k) , . . . , z (k — to)} = P{u{k) , u{k — 1) , . . . , u(k — m), z (k — m)}

and similarly,

P{z (k) , z {k — 1) , . . . , z (k — m) } = P { v (k — 1), u (k — 2) , . . . , u(k — m), z (k — m)}.

The assumption th a t u is an r-th order Markov process independent of z (0) implies

th a t (i ' (k) , u{k — 1) , . . . , v (k — m)} is independent of z (k — m) when r < m < k.

Thus,

P { z (k + 1), z (k) , . . . , z (k — m)} _ P{u(k) , u (k — 1) , . . . , v (k — m) } P { z (k — m)}
P{z (k) , z (k — 1) , . . . , z (k — m)} P { u (k — 1) , . . . , v (k — m) } P { z (k — m) }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

or equivalently,

P { z (k + l) \ z(k) , z (k — 1) , , z (k — m) } = P{v{k) \u{k — 1) , . . . , u(k — m)}.

Finally, since v is Markov process of order r, for every m > r:

P { z (k + l) \ z (k) , z (k - l) , . . . , z (k - m) } = P{ u (k) \ v (k - 1) , . . . , v (k - r)}

= P { z (k + l) \ z { k) , . . . , z (k - r) } ,

and hence the proof. ■

Observe tha t, when the input is an i.i.d. process then P { z (k + l) \ z (k) } = P{is(k)},

where v{k) € £*,. This is consistent with Theorem 2.3.4.

C o ro lla ry 2 .3 .1 . I f z is an (r + 1)-th order process with z (k) € E s, then Z\ with

Z\(k) = (z (k), z (k — 1) , . . . , z{k — r)) € Es x . . . , E s is a first-order Markov process.

r+1 times
Proof: The proof follows from applying equation (2.1) to the (r + l)- th order process

z . The process Z\ then has the transition probabilities

P { z i (k + l)|£j(A;)} = P { z (k + l) \ z (k) , . . . , z (k - r) }

= P{ v { k) \ v (k — 1) , . . . , u (k — r)}. (2.11)

In particular, note th a t when r = 0, i.e., when the input is an independent i.i.d.

process then for any given finite-state machine,

P { p (k) \ p (k - 1)} = P{u(k) }

= P{Pi (k) \Pi (k - 1)}

p{*(fc + i)|*(fc)} = £ p M *)}-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

W hen r = m = 1 equation (2.7) gives for any given finite-state machine

P { p (k) \ p (k - 1)} = P{ v (k) \ u (k — 1)}, (2 .12)

and (2 .11) gives for a unifilar type finite-state machine

P { z (k + l) \ z (k) , z (k — l)} = P{v (k) \ u (k - 1)} (2.13)

= P { z l (k + l)|Z!(fc)}

For r > 1 for any given finite-state machine

P { p i (k)\Pi(k ~ !)} = P{u(k) \ u (k — 1) , . . . , v{k — r)}

and (2 .11) gives for a unifilar type finite-state machine

P{ z x (k + l) \ z i {k)} = P { u { k) \ v { k - l) , . . . , u { k - r) } .

2.4 Sum mary of K ey Points

In this chapter, elements of the theory of finite-state machines, the theory of

Markov processes and stochastic matrices relevant to this research were briefly de­

scribed. In addition, two random processes associated with a finite-state machine

were characterized: the cross product of the input process and the sta te process for

a finite-state machine and the state process of a unifilar equivalent machine were

characterized when the inputs were independent identically distributed process, a

first-order Markov process and a higher order Markov process. It turns out th a t the

cross-chain process and state process of any finite-state machine is first-order Markov

when the input process is independent identically distributed. W here as for first and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

higher order Markov inputs, the order of cross-chain process is the same as th a t of

the input process. The output process of a unifilar equivalent finite-state machine

is one order higher than th a t of the input process. Table 2.1 summarizes these key

results.

Table 2.1: Order of the cross-chain process for a finite-state machine and the state

process for a unifilar machine for Markovian inputs of various order r.

Order of the

input Markov

Process

Order of the Cross-Chain

Process of FSM

Order of the State

Process of a Unifilar FSM

P Pi z Zl

r = 0 1 1 1 1

r = 1 1 1 2 1

r > 1 r 1 r + 1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

CHAPTER III

STABILITY ANALYSIS

3.1 Introduction

In this chapter, using the main results from Chapter 2, stability conditions for

jump-linear systems driven by finite-state machines with Markov inputs are provided.

The main approach is to develop the mean-square stability tests for the class of hybrid

systems comprising of a jump-linear system driven by a Markovian cross-chain process

p. Mean-square stability tests will also be developed for the class of hybrid systems

comprising of a jump-linear system driven by a Markovian sta te process of a unifilar

finite-state machine, z . Then, it will be shown using the tests developed for these

specific classes of hybrid systems, th a t the mean-square stability conditions for a

jump-linear system driven by an output process 0 of any finite-state machine (which

in general may not be Markovian) can be synthesized.

This chapter is organized in the following manner. In the next section, the key

assumptions about the model are stated, followed by various tests to validate these

assumptions in practice. It is followed by a section providing the main definitions

for the stability of a jump-linear system currently used by various researchers in this

field (specifically, in [3,8,11,13,27]). In the subsequent section, mean-square stability

conditions for a jump-linear system driven by the cross-chain process p = (is, 9) of

the Moore type finite-state machine with isomorphic state to output mapping will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

be developed. This is followed by the mean-square stability conditions for the jum p-

linear system driven by the output process of a Moore type finite-state machine with

isomorphic state to output mapping, 9, when input is an i.i.d. process and the

output process of the Moore type unifilar finite-state machine with isomorphic state

to output mapping, 0, when input is Markovian of order r > 1. The concept of A-

equivalent systems is then introduced and their mean-square stability characteristics

are related. A brief discussion will show how these stability tests can be extended

to systems comprising of Mealy type finite-state machines and finite-state machines

with non-isomorphic state to output mappings using the concept of A-equivalency

between two systems. In the next section, a brief discussion about the Lyapunov

exponents, developed specifically in the context of Markovian jump-linear systems by

Boukas e t al. [3], and their relationship with the mean-square stability of the system

9) is given. This chapter is concluded with an overview of the com putation

and dimensionality issues with regards to new stability tests.

3.2 K ey M odel A ssum ptions

In this section, a set of assumptions on the model class of jump-linear system

driven by the finite-state machines with Markov inputs is presented. Later in the

section, tests to validate these assumption will be provided. The tests are independent

of the order of the Markovian input. Following model assumptions are essential for

the stability theory under consideration:

1. The input process v is either an independent identically distributed process or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

an irreducible Markov process of order r with pv > 0 for all rj £ Ey.

2. The finite-state machine is Moore type with an isomorphic sta te to output

mapping, strongly connected, minimal and completely specified.

3. The cross-chain process, p, has a unique stationary probability vector q.

4. The finite-state machine is reachable for the given input Markov process v with

11/ and hence the output probabilities > 0 for all £ G Eo always exist.

It is not necessary, in fact, for the finite-state machine always be a Moore type

with an isomorphic state to output mapping. These type of machines are considered

only as the initial focus. Many of the finite-state machine properties can be tested

directly using the Definitions 2.1.2, 2.1.4 and 2.1.5 from Chapter 2. But, a set of

theorems is needed to determine when the process (u, 9) has a unique stationary

probabilities, when the finite-state machine is reachable under the given Markovian

process and when the probabilities p^ are positive. The following example illustrates

what can happen in practice when some of the assumptions do not hold.

Consider the finite-state machine M = (E/, E.s , E0 , S,u) shown in Figure 3.2,

where E / = {r?i,r?2}, E s = {e i,e2,e 3,e 4}, and E0 = {6 , 6 , 6 , 6 }- The next state

mapping <5 is defined by

0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 1IIof IICN
of

0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

%

/ \

(jL j

Figure 3.1: State diagram of a finite-state machine M.

driven by a Markov process th a t results into two ergodic

classes.

The output mapping is u>(ej) = and the transition probability m atrix for the input

process v is

11/ =
0.6 1

0.4 0

The resulting cross chain (u, 6) consists of two disjoint chains C\ and C2. C\ has

the ergodic class S\ = {(771, £1), (rji, £2), (t?2 , £2)} and the non-ergodic class AfSl =

{(%>&)}• The chain C2 has the ergodic class S2 = {(r)i,£s), (V i,U), (% ,6 i)} and the

non-ergodic class J\fe2 = {(772, £i)}- The corresponding transition probability m atrix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

for (*/, 6) is given by

nI / O

-
0 0 0 0 0 1 0 0

0.6 0.6 0 0 0 0 0 1

0 0 0.6 0.6 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0.4 0.4 0 0 0 0 0 0

0 0 0.4 0.4 0 0 0 0

0 0 0 0 0 0 0 0

II//o has an infinite number of stationary probability vectors, specifically, linear com­

bination of the following two stationary probability vectors:

n t

92

0.2857 0.4286 0 0 0 0.2857 0 0

0 0 0.4286 0.2857 0 0 0.2857 0

Furthermore, if the process is always initialized in only one of the two ergodic sets,

then it will never be able to enter the state in the other ergodic cycle. This implies

th a t for the particular II/, the machine is not reachable and = 0 for some £ e So-

The following tests provide sufficient conditions to ensure a unique stationary vec­

tor q, reachability of the finite-state machine under a Markovian input with transition

m atrix 11/ and p% > 0 for all £ € E0 .

T h e o re m 3.2 .1 . For a given finite-state machine M. with Markovian input (E /, II/),

the process (v , 0) is stationary with unique stationary probabilities i f it is monodesmic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

Proof: : If {v, 9) is monodesmic then II//o is monodesmic, and by Theorem 2.2.2

(when d = 1) or Theorem 2.2.3 (when d > 1) it follows directly th a t there exists a

unique stationary vector q such th a t U1/0 Q — Q- ■

The next theorem provides an explicit test for the reachability of a finite-state

machine M. with Markovian input (E /, II/). It also addresses the required assumption

of > 0 .

T h e o re m 3.2 .2 . A finite-state machine M with Markovian input (E /, II/) is reach­

able and p j > 0 fo r all £ € Eo, i f the process {u, 0) is ergodic, i.e., i f the transition

probability matrix II/ / 0 is irreducible.

Proof: Since Ylj/o is irreducible, it follows from Corollary 2.2.1 (if d = 1) or

Corollary 2.2.2 (if d > 1), th a t a unique stationary probability q > 0 exists. Also,

the unique stationary probability can be attained by any initial probability vector q0.

Since p^ = X^eE/ ^ follows th a t P4 > 0 for every £ € So- This implies th a t there

exists a sequence of input symbols from S / which occurs with nonzero probability

and drives the finite-state machine from any initial state to any other sta te in E 5 .

This further implies M with Markovian input v is reachable, by definition. ■

As a consequence of Theorem 3.2.2 and the Definition 2.1.5, it follows th a t if the

finite-state machine M. is reachable under the Markovian input v, then it is also

strongly connected. Hence, it is sufficient to simply test for the reachability property.

The following theorem is viewed as the main result of this section. It ties together

all the previous results of this section and provides a single sufficient test for II//o to

validate the model assumptions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

T h e o re m 3 .2 .3 . For a finite-state machine M with Markovian input v , unique sta­

tionary probability vector q exists, the machine M is reachable, and state probabilities

Pt are all positive, i f the process (is, 6) is ergodic, i.e., i f the transition probability m a­

trix IIj/o is irreducible.

Proof: If I l//o is irreducible, then it is also monodesmic. It follows th a t there exists

unique strictly positive stationary probabilities q ^) - Prom Theorem 3.2.2, > 0 for

all £ € S o and machine M. is reachable. This completes the proof. ■

3.3 D efinitions of Stability for Jump-Linear Sys­

tem s

Consider the jump-linear system

x (k + 1) = Ao(k)x(k) (3.1)

with independent initial conditions 0 (0) and a:(0) = x 0. 0 is a discrete-time random

process with state space £ having N number of states. This jump-linear system will

be denoted as {A, 6). The following definitions are frequently found in the stability

literature for jump-linear systems.

D e fin itio n 3 .3 .1 . The jump-linear system (3.1) with discrete-time finite-state ran­

dom process 6 is said to be second-moment stable or mean-square stable, i f

fo r any x0 € R" and any initial probability distribution ij: o f 0(0),

Jim £{l|aKfc)ll2} = 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

D e fin itio n 3 .3 .2 . The jump-linear system (3.1) is said to be exponentially second-

m om ent stable, i f fo r any Xo G M” and any probability distribution o f 0(0), there

exist constants a, (3 > 0 independent o f xo and such that

i?{||a:(A;)||2} < n ||xo ||2 exp_/3A:, V/c > 0.

D e fin itio n 3 .3 .3 . The jump-linear system (3.1) is said to be stochastically second-

m om ent stable, i f fo r any xo G R" and any probability distribution o f 0(0),

00

lim J]£ { ||a :(f c) ||2} < oo.
k—*00 'k=0

D e fin itio n 3 .3 .4 . The jump-linear system (3.1) is said to be almost surely (asym p­

totically) stable, i f fo r any xo G K" and any probability distribution o f 0(0),

P (Jim ||*(fc)|| = 0 } = 1.k—>oo

It is obvious th a t the stability definitions provided here can be used directly for

the hybrid system (u,A4,A,0). It is shown in [27] th a t for the jump-linear system

(A, 0) with a finite-state time homogeneous Markov process 0, Definitions 3.3.1, 3.3.2

and 3.3.3 are all equivalent. It is also shown th a t in this case, second-moment stability

implies almost sure (asymptotic) stability, bu t the converse is not always true. Thus,

in this chapter, after developing the tools to test for the mean-square stability of the

system (v,M.,A,0), as a corollary, it will be shown th a t these tools can also be used

to test for the exponential second-moment stability and stochastic second-moment

stability of the system (u, M,A ,0) even when 0 is not Markovian.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

The authors of [8] provide an alternate definition for mean-square stability in the

case of a finite-state tim e homogeneous process 0 and it has been consistently used

by the researchers in [16,52]. The definition follows.

D e fin itio n 3 .3 .5 . The jump-linear system (3.1) is mean-square stable i f fo r any

initial condition « (0) and fo r any initial state probability fo r 6(0) it follows that

||Q(fc)|| —► 0 as k — oo,

where Q(k) E { x (k) x T(k)}, or equivalently,

Q(k) —► 0 as k —► oo,

where Q(k) 2?{||a:(A;)||2} (cf. [3,52]).

This definition happens to be more practical in many cases. For example, the

researchers in [16,52] found it is numerically more efficient to compute the statistics

of Q(k) — trace(Q(k)) than ||Q(A;)||. A clean mathematical proof showing Definition

3.3.1 and Definition 3.3.5 are equivalent can be found in [52],

3.4 Stability Analysis o f the System D riven by p

In this section, the stability analysis of a jump-linear system driven by the cross-

product of the Markovian input and the output of a Moore type finite-state machine

is considered. Mean-square stability tests for such a system, when the input process

is i.i.d., first-order Markov and higher order Markov are provided.

Consider the hybrid system shown in Figure 3.2. Here the jump-linear system

x(k + 1) = Ap(k)x(k)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

v(k)

Jump-Linear
Dynamical

System

Finite-State
Machine

Markovian
Exosystem

Figure 3.2: A jump-linear system driven by the process p.

has a driving process p = (u, 0). It is comprised of the r-th order input process v and

the corresponding output process 6 from a finite-state machine M . This system will

be denoted as (u, A4, A, p). An alternate representation is to consider the jump-linear

system

x{h + 1) = A Pl{k)x{k)

th a t is being driven by the first-order Markov process p l = ,0) which is comprised

of the first-order representation of the r-th order input process v and the output

process 0, with A Pl(k) = A»(fc)- This system will be denoted as (v, M., A, p x). The

following theorem provides the stability test for the system (v,A 4, A, pf) when v is

an i.i.d. process.

T h e o re m 3 .4 .1 . The hybrid system (u , M , A, pf) is mean-square stable when v is

an i.i.d. whose probability distribution given by, n = [pm pm • • • p,lM]T is inde­

pendent o f the distribution o f 6(0) and the initial state o f the system x (0), i f and only

i f the matrix

•4) := (II//o ® In2) diag(Ar)i^ 1 (g> A ni^ , . . . , A^M^ N <S) A rm ^N)

has a spectral radius less than one, where

IIi/o = (11/ (81 I n) diag(Sm , . . . , S^M).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

With 11/ = 7T x i j i .

Proof: The claim follows directly from well known results in [8]. The transition

probability m atrix for the process p l5 namely II//o , is obtained from equation (2.4).

■

The following theorem provides a test for mean-square stability conditions when u is

a first-order Markov process.

T h e o re m 3 .4 .2 . The hybrid system (u , M , A, p x) is mean-square stable when v is

a first-order Markov process whose initial distribution is independent o f 0(0) and the

initial state of the system x (0), i f and only i f the matrix

•A-i •= (IIjjo ® In2) diag(Am ^ ® . . . , ® A vm4n)

has a spectral radius less than one, where

II i /o = (11/ <8> I n) diag(Sm , . . . , S VM).

Proof: Again the claim follows directly from well known results in [8]. The transition

probability m atrix for the process p x, namely II//o , is obtained from equation (2 .12).

■

Next Theorem 3.4.2 is generalized below to the case of a Markovian input of order

r > 1 .

T heorem 3.4 .3 . The hybrid system (v, A4, A, pj) is mean-square stable when u is

an r-th order Markov process whose initial distribution is independent o f 0(0) and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

initial state o f the system :r(0), i f and only i f the matrix

•Ar •— (I I /r/ o ® In2) diag(A~fl^1 g A~ll^ , . . . , A^MT̂ N g A~t M r)

has a spectral radius less than one, where

ri/r /0 = (II/r g IN) diag(Ir g (S m, . . . , SVM))

is the transition matrix of p x with p x(fc) e E ; x . . . E / x E 5 and II/r is the transition
' V '

r times
matrix of the first-order representation iq with U\{k) — 7 G E / x . . . E / ; /o r i/ie r-th

' -----------v -----------'
r times

order Markovian input process v .

Proof: The proof is based on Theorem 2.3.3, th a t is, if u is a Markov process of order

r , then p l € E / x S / xE g is a first-order Markov process. The transition probability

r times
m atrix II/r/0 can be obtained from equations (2.8) and then apply the usual mean-

square stability criterion for a first-order Markovian jump-linear case system in [8].

■

3.5 Stability A nalysis o f the System D riven by 0

In this section, an alternative stability criterion is developed using jump-linear

models driven by the output random process 6 of a unifilar finite-state machine. But

the starting point is the special case where 0 is generated using a non-unifilar machine

with an i.i.d. input process. As stated in Theorem 2.3.4, when the input to the finite-

s ta te machine v is i.i.d., its output 0 is a first-order Markov process. Therefore, the

stability criterion in this case is a straight forward application of the m ethod in [8],

as given below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

T h e o re m 3 .5 .1 . Consider a hybrid system (v , M , A, 9) comprising of a jump-linear

system driven by a finite-state machine M, with an i.i.d. input process u . Input

process v has a distribution n = [pm pm • •• PnM]T that is independent o f the

initial state o f the machine ^(0), the output 0 (0), and the initial state o f the system

x(0). Then the system (ts, A4, A, 9) is mean-square stable i f and only i f the matrix

Bi := (n 0 <8> InA diag{Aix <g> A ^ , . . . , A^N <g) A iN)

has a spectral radius less than one, where

n G ^ ̂Pt)Sjj.
nex,

Proof: From Theorem 2.3.4, a Moore finite-state machine with an isomorphic

state-to-output mapping, has an output process 6 which is a first-order Markov with

transition probability as in equation (2.10), i.e., P { 9 (k + l) \9(k)} = ^2veCk P{v{k)} ,

where £*, = {r/ G E / : 8{u{k),0{k)) = 9(k -I- 1)}. This implies directly th a t in term s

of m atrix notation, IIo = Pv^v- ■

Now consider the case of a hybrid system comprising of a jump-linear system

driven by the output process 9 of a unifilar finite-state machine with Markovian

input of order r > 1, as shown in Figure 3.5. The jump-linear system is referred by

x (k + I) = Ag(k)x{k),

and the hybrid system is denoted as (u ,A 4 ,A ,9) . Clearly, Theorem 3.5.1 is also

applicable to the system (v ,A 4 ,A ,9) with i.i.d. inputs.

The stability analysis of (u ,A 4 ,A ,9) for the case of a Markovian input of order

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

x (k)v(k) Jump-Linear
Dynamical

System

Unifilar
Finite-State

Machine

Markovian
Exosystem

Figure 3.3: A jump-linear system driven by the output

process 9 of a unifilar finite-state machine.

r = 1 will be treated using a jump-linear system driven by a second-order Markov

process. However, to avoid notational complexity, the higher order case will be treated

using a jump-linear system driven by the first-order representation of 9.

Theorem 3.5.2. Consider the hybrid system (u, M., A, 9), where 9 is generated by a

unifilar finite-state machine A4 — (£ /, £ o , £ s , 5,w) with a first-order Markov input

process v , which is independent o f the initial machine state z (0), the initial output

0(0) and the initial state o f the system x(0). Let Sv : T,s be the state transition

matrix fo r a given input rj € £ / and w{ef) :i-> be the isomorphic state to output

map. The system is mean-square stable i f and only i f the matrix

2 = (n 0 , 2 <8> In2) diag(Iff 0 (A ^ 0) , . . . , I„ 0 0 A ^)) (3.2)

has a spectral radius less than one, where IIo ,2 is a matrix o f size N 2 x N 2 composed

o f elementary block matrices o f size N x N with each (J ,I) - th block matrix having

components

, , P {£ j \£ i ,£ i } = P { V m h } : 1 = j , H v i ,e i) = ei, 5(rim,ei) = e j
m o , 2] j 4 = <

I 0 : otherwise.

(Here N = card(To) and, fo r brevity, probabilities like P { u (k + 1) = r}m\i'(k) = ry}

are written as P{r)m\Vi}-)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

Proof: By Theorem 2.3.6, under the stated conditions, 9 is a second-order Markov

process. Observe tha t

Q(k) = E { x (k) x r (k)} = ^ Q i j i k) ,
i,j

where

Qij(k) := E ^ x (k) x (k) l{e(fc)==| j}l{e(fe-i)=|J}} >

and 1{.} denotes the Dirac function. Therefore,

Qij(k + 1) = A ^.E I * (k)x (k) l{fli(*;+i)=^}l{a(fc)=^}| A ^

= ^ ^x(k)xT(k) l{0(A :-(-l)= fi}-*-{0(fc)=C j} | ^ 7fc} }

= A ^ E { x (k) * T (k) \ m =ij}P m v O (k ~ 1)}} A \ ,

where T& denotes the cr-field generated by the random variables {9(1), x (l) : I =

0 , 1 , . . . , A:}. In addition,

E { x (k) Z T(k) l {e{k)^ j}P m j A k - 1)}}

= ^ 2 E ^ x (k) x T (k) •
i

Therefore,

Qij(k + 1) = (^ P m v & Q d k) ^ A ? .

Now apply the column stacking operator vec operator to produce

Qij(k + 1) := vec i i}Qji(k)A |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

Then it can be shown that

Q (k + 1) = B2Q(k), (3.3)

where

Q (k) := Q h (k) ••• Q w (k) •" Qjri (k) •••

Ho ,2 is obtained using equation (2.13) and B2 is as given in (3.2). Finally, the mean-

square stability test for system (u ,M,A, 0) follows directly from the given spectral

radius condition for the linear system (3.3). ■

Next Theorem 3.5.2 is generalized for a jump-linear system driven by the output

process of a unifilar finite-state machine M. with Markovian input of any order r in

the following manner:

Theorem 3.5.3. Consider the hybrid system (v, A4, A, 6), where 6 is generated by a

unifilar finite-state machine M. = (£ /, £ 0 , £ 5 , 6, ci) with an r-th order Markov input

process, which is independent o f the initial machine state z (0), the initial output 6(0)

and the initial state o f the system x(0). Let Sr) : £ s h-> £ s be the corresponding state

transition matrix fo r a given input rj £ £ / , w(ej) :i—► be the isomorphic state to

output map. The system is mean-square stable i f and only i f the matrix

G r+ l — (f f o , r - t - l ® In2) dlAlCj(/ y . - i;X : (- 4 ^ ® . 4 ^)■ ■ . . , Ifij (£) (A ;X : /)))

has a spectral radius less than one, where IIo)r+i is a matrix o f size N^r+l'> x N^+O

composed of elementary block matrices o f size N x N with each (J , I) - th block matrix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[[no .r+ lb /L

55

having components

■ F { £ . / | £ t j ! & 2) • • • > £ f r } = P { j l m \ g h) • • •) % - } • 3 1

^Ir) ®/|—1 > ' ' ') {̂.Wh ®/l) ®i))

0 : otherwise.

(Here N = card(t,o) and, fo r brevity, probabilities like P { v (k + 1) — rjm\is(k) =

r)h,v(k ~ 1) = eh , is(k - r) = e ^ J are written as P{gm\Vh,- ■ -,Vir+i}-)

Proof: Since the input to the Moore type finite-state machine is an r -th order

Markov process, by Theorem 2.3.6, the output process 0 is a (r + l)- th order process.

Now, consider the jump-linear system (A,Oi) described by the equation:

x (k + 1) = A §i{k)x(k) . (3.4)

Let 6\ be the first-order representation of the (r + l)- th order process 6. Then

its transition probabilities can be obtained from equation (2.11). It also implies

= ^e(k)- Finally, apply the standard results from [8] to complete the proof. ■

3.6 Stability Equivalence

In this section, the mean-square stability conditions developed for the system

(is, M A , and (is, Ad, A, 0) are employed to develop a stability test for the main

system of interest, (is, A4, A, 6). Later mean-square stability conditions developed for

the case of Moore type finite-state machine with isomorphic state-to-output mapping

are extended to the case of Mealy type machines as well as machines with non­

isomorphic state-to-output mapping. Mean-square stability conditions developed for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

the system { y , M . , A , 0) will also be related with its exponentially second-moment

property and stochastically second-moment property. In order to relate the mean-

square stability conditions of any two systems, the concept of A-equivalency is needed.

Definition 3.6.1. Two hybrid systems comprising o f jump-linear systems

x (k + 1) = As(k)x(k)

and

x (k + 1) = A S{k)x(k) ,

driven by machines A4 and M , respectively, with the same Markov input process u ,

denoted as (u, M , A , 0) and (u, M , A , 9) respectively, are said to be A -e q u iv a le n t i f

Ae(k) = Ag{ky

Note th a t A-equivalence does not imply th a t any A et necessarily be equal to any

A Sj, or th a t the processes 0 and 6 even take on the same symbols. But from a state

evolution point of view, x{k) = x (k) for all k > 0 if x(0) = x(0). Based on the

Definitions 2.1.6 and 3.6.1 the following claims are obvious.

Theorem 3.6.1. Consider the two systems (u, M , A, 6), (u , M , A , Q) with finite-

state machines A4 = { £ /, Eg, Eo, <$i, Wi} and M = {E/, E r , S o , <̂2, ^ 2}, respectively.

The two systems { v ,M . ,A ,d) and { v , M , A , Q) are A-equivalent i f the machines A4

and M. are equivalent.

Theorem 3.6.2. Let (u, M , A, 6) and { v , M , A , 6) be two A-equivalent systems with

two jump-linear systems (A , 0) and (A, 6) driven by the finite-state machines M.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

and Mi respectively with the same Markovian input process v . Then (is, Mi, A, 0) is

mean-square stable i f and only i f (is, Mi, A, 0) is mean-square stable.

The following result establishes the equivalency between the mean-square stability

conditions of (is, Mi, A, p f) and (is, Mi, A, 0):

T h e o re m 3.6 .3 . The hybrid system (i s ,M i ,A ,p 1) with A nit̂ = A Vj^ =: A^, r]i,r]j €

E / when input is i.i.d. or a first-order Markovian and A lt£ = A 1.^ =: A^ fo r all sym ­

bols t i , t j £ E / X E j , . . . , E i when input is Markovian of order r > 1 is A-equivalent
^ V '

r times
to a hybrid system (is, Mi, A, 6) with the jump-linear system driven only by the output

process 6 o f the finite-state machine Mi with input v of order r. Therefore, under

these conditions (i s ,M i ,A ,p 1) is mean-square stable if and only i f (is, Mi, A, 6) is

mean-square stable.

Proof: The proof is just an application of Theorem 3.6.2. ■

The next theorem shows th a t any finite-state machine has a unifilar companion

machine th a t produces an ^-equivalent jump-linear system. Therefore, Theorem 3.5.2

can be applied to this new system in order to determine the mean-square stability

of the original system (is, Ml, A, 0). There is, however, some overhead involved in

determining the unifilar equivalent system as described in the proof.

T h e o re m 3 .6 .4 . Let Mi = (E /, E s, E0 , 8, oj) be an arbitrary non-unifilar finite-

state machine with input is and output 0. For any corresponding hybrid system

(i s , M , A , 0) , there always exists an A-equivalent system (is ,Mi,A ,0) , where 6 is

generated by a unifilar finite-state machine Mi = (E / , E s , E Q,S, Cb) with input is.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

Proof: The proof is constructive and based on the proof of Theorem 2.1.1 which

states th a t for every non-unifilar finite-state machine, there always exists an equiv­

alent unifilar type finite-state machine. However, the goal here is to produce an A-

equivalent system (i/, .M, A, 6) for the given system (u, M , A , 0) , rather than merely

preserving the input-output relationship for the finite-state machine. For the sake of

clarity and completeness, steps in the proof for Theorem 2.1.1 are repeated.

Since M. is non-unifilar, there exists a pair of inputs symbols r)i and rjj and a

machine state em and e; such th a t 6(r]i,em) = S(r j j , em) = e/. Therefore, augment

the machine’s state space, Eg, by replacing the state e; with new states and e^.

Define a corresponding new transition map 6, which is identical to 8 except now:

Hvu em) = e/,> em) = % , and 8(t], eh) = 8(rj, e t j) = 8(rj, e t) for all input symbols

rj. Similarly, redefine the output function to to be identical to oj except, it maps

to £* and to the output symbol £*, where k is just the next available index for the

new output symbol £ th a t avoids any duplication of symbols. Next define for every

output symbol the transition m atrix A ^ = A^k = A^ . It can then be verified th a t

the systems (v , M . , A , 0) and A, 6) are A-equivalent, i.e.,

As(*(k)) = Au(z (k))-

It is clear th a t the states and output symbols of the new machine can be re­

indexed by the integers 1, 2 , . . . , TV + 1, and the whole process above repeated if the

new machine is not unifilar. Since the number of input symbols and machine states is

finite, this procedure need only be repeated a finite number of times before a unifilar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

machine is produced. ■

Next consider a hybrid system (v , M. , A, 0) with a jump-linear system (A,0)

driven by an output process 6 of a Moore type finite-state machine with non-isomorphic

many-to-one mapping. Specifically, let Ad = {E/, Eg, Eo, d , w i t h Eg = {ei, e2, . . . , e^},

E o = {Cii <̂2, • • ■, Cl}) state transition function (S : E j x E / t-> Eg, output function

&(ej) = Co I = 1, ■ ■ ■, L. In order to determine the mean-square stability conditions

of the system (u, Ad, A, 0), it will be shown th a t an A-equivalent system (v, M . , A , 0)

with a Moore finite-state machine having an isomorphic state-to-output m apping can

always be produced. Hence, by Theorem 3.6.2 (u , Ad, A, 0) will be mean-square stable

if and only if (i/, Ad, A, 0) is mean-square stable.

T h e o re m 3 .6 .5 . For every hybrid system (i/ , M , A , 0) with a jump-linear system

{A, 0) driven by the output process 0 of a Moore type finite-state machine, Ad, having

a non-isomorphic many-to-one state-to-output mapping, there always exists an A-

equivalent system { v , M , A , 0) with a jump-linear system (A ,0) driven by the output

process 0 o f a Moore type finite-state machine, M , with an isomorphic state-to-output

map.

Proof: Consider a new machine M. with the same state set Eg = Eg, the same state

transition function 6 = 5, and a new output set Eo = {Co C2, • • •, Civ} and new output

function cj(ej) = Cj- Clearly, the new machine Ad is a Moore finite-state machine

with an isomorphic state to output mapping. Next define for each output symbol a

transition m atrix = A ^e,) = = A ^ , where u>(ej) is the output function of

the finite-state machine Ad. This clearly implies th a t the system (u, JVl ,A,6) with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

the jump-linear system {A, 9) driven by the output process 9 of finite-state machine

M. is A-equivalent to the system (u, M , A , 9) , and thus the proof. ■

Recall th a t in the case of fault recovery applications, when system transition be­

havior is dependent on both the type of upset encountered and the current recovery

state, the recovery algorithms can be modeled as Mealy type finite-state machines.

For such systems, in the most general case with a non-isomorphic m apping between

the states and outputs, the output function evolves according to the expression 9{k) =

ui{v{k), z(k)) , and hence, the closed-loop system param eter A^t = A Q(m êj). Therefore,

now consider the hybrid system (i ' , M , A , 9) with jump-linear system (A, 9) driven

by the output process 9 of a Mealy type finite-state machine with non-isomorphic

state-to-output mapping M . Let M = {Ej, Eg, Eo, 6, u } with Eg = { e 1, e2, . . . , e N } ,

Eo = {£1, 62, • • • ,£ l} , state transition function <5 : Eg x E / 1—> Eg, and output func­

tion Co(r)i, e f i = £(, I = 1 , . . . , L. In order to determine the mean-square stability

conditions of the system (v, M , A, 9), it will be shown th a t an A-equivalent system

(is ,AA,A ,9) with a jump-linear system (A, 9) driven by the Moore type finite-state

machine M with an isomorphic state-to-output mapping can always be produced.

T h e o re m 3 .6 .6 . For every hybrid system (v , M , A , 9) with a jump-linear system

{A, 9) driven by the output process 9 o f a Mealy type finite-state machine, M ., having

a non-isomorphic state-to-output mapping, there always exists an A-equivalent system

(i / , M , A , 9) with a jump-linear system (A, 9) driven by the output process 9 o f a

Moore type finite-state machine, A i , with an isomorphic state-to-output map.

Proof: Define a new machine M with Eg = {71, . . . , 7mtv}, such th a t Eg is an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

isomorphism of £ / x Eg, i.e., there exists an invertible map T such th a t T(r]iem) = 7 .̂

Let Eo = { £ 1 , £ 2 . • • - , £ m t v } and output function u> : £ 5 1—> £ 0 be an an isomorphic

m apping = £j. Clearly, the new finite-state machine Ad is a Moore finite-state

machine with an isomorphic state-to-output mapping. Next define for each output

symbol a transition m atrix A ^ = = 4 (^ ,e m) = Agr This implies th a t the

system (v, Ad, A, 9) with the jump-linear system (A, 9) driven by the output process

9 of Moore type finite-state machine, Ad, with an isomorphic s tate-to-output mapping

is A-equivalent to the system (u, Ad, A, 9), and hence the proof. ■

Now based on Theorem 3.6.3, 3.6.4, 3.6.5 and 3.6.6 following theorem is obvious,

and summarizes the im portant contribution of this thesis. It is also illustrated in

Figure 3.6.

Theorem 3.6.7. For any given hybrid system A, 9), there always exist A-

equivalent systems (v , Ad, A, p) and (u, jCi ,A,9) . Therefore, the given system (1/, Ad, A, 0)

is mean-square stable i f and only i f its A-equivalent systems (u , Ad, A, p) and (u, M . , A , 9)

are mean-square stable.

Now, using the concept of A-equivalency it is also possible to relate the mean-

square stability property of the system (u , M , A , 9), with its exponentially second-

moment stability property and stochastically second-moment stability property.

Theorem 3.6.8. The hybrid system (17 Ad, A, 9) with a jump-linear system driven

by an arbitrary finite-state machine with Markovian input is mean-square stable i f

and only i f it is exponentially second-moment stable, i f and only i f it is stochastically

second-moment stable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

v(k)
0(k)

Jump-Linear
Dynamical

System

Finite-State
Machine

Markovian
Exosystem

A -E quivalen t

Markovian V(Jfe) Finite-State 0(k) f Jump-Linear
Dynamical

System

x(k) f
Exosystem Machine

A -E quivalen t

0{k) x(k)V (k)Markovian
Exosystem

Unifilar
Finite-State

Machine

Jump-Linear
Dynamical

System

Figure 3.4: A-equivalency of the systems (iv, AA, A, p), (t», A4, A , 9)

and (u , M , A , 9).

Proof: Proof is based on the result from [27] th a t for the system (v , A4, A, p x) with

Markovian p x, mean-square stability, exponential stability and stochastically second-

moment stability property are equivalent. Initially, consider the system A, 6)

to be mean-square stable. Then by Definition 3.3.1, for any x 0 € Rra and any initial

probability distribution of 0 (0),

lim £{||®(A;)||2} = 0 .
k—> oo

This implies th a t the corresponding A-equivalent system pf) w ith Marko­

vian p 1 is mean-square stable and hence

lim £ { ||:e(A;)||2} = 0
k—* oo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

for every x 0 — x 0. Then by Theorem 1 of [27], it follows th a t there always exist

constants a , (3 > 0 independent of x0 such th a t

£{ ||* (fc)||2} < a ||x 0 ||2 exp~0k,V k > 0.

This in tu rn implies, for the A-equivalent system (u , M , A , 0) ,

£{||a;(A;)||2} < a ||xo ||2 exp_,8fc,Vk > 0,for x0 = ^o-

Hence the system (u , M , A , 0) is exponentially second-moment stable. In a similar

m anner it follows th a t if the system (i s ,M ,A , 0) is exponentially second-moment

stable, it implies th a t the corresponding A-equivalent system { v , M , A, p x) is expo­

nentially second-moment stable. Therefore A-equivalent systems (i/,A d,A , p x) and

(i s , A 4 , A , 0) are mean-square stable. In a very similar manner equivalence between

stochastically second-moment stability property and mean-square stability property

of (u, M , A, 0) can be ascertained. ■

3.7 Characterizing M ean-Square Stability v ia the

Second Lyapunov Exponent

The concept of Lyapunov exponents for characterizing the stability of dynamical

systems originated in the seminal work by A. Lyapunov [34]. Later Arnold devel­

oped an extensive theory of Lyapunov exponents for random dynamical systems. In

this context, Lyapunov exponents are functions th a t capture the essence of moment

stability of random dynamical system. Thus, second Lyapunov exponent as given

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

below was applied specifically to characterize the mean-square stability of Markovian

jump-linear systems by Boukas et.al. in [3],

Definition 3.7.1. The second Lyapunov exponent fo r a discrete-time jum p-

linear system is defined as the function Xs(xo), given by,

Xs(x 0) = lim sup ilog[^{||a:(A;, *o,0(O))||2}], Xo ^ 0. (3.5)
h —►oo fc

It has been shown in [3] and [52] that, for the discrete-time jump-linear system

(3.1) driven by homogeneous first-order Markaov process 9, the second Lyapunov

exponent is a constant number, given by As(®o) = log(p(A)), where p denotes the

spectral radius of

v4. = (11/ <8) /„ 2) diag(A0 <8> A 0, . . . , A N <8 A n),

with 11/ being the transition probability m atrix for the Markov process 9. From the

Definition 3.7.1, it is clear th a t the second-moment of the given jump-linear system

approaches the second Lyapunov exponent asymptotically. Therefore, the second

Lyapunov exponent can be used as a measure to compare the robustness of mean-

square stability of two jump-linear systems. Now, it is expected tha t, under the same

set of initial conditions and identical Markov input conditions, the second Lyapunov

exponent of three A-equivalent systems (y, M , A, 9), (ts, M , A, p x) and (u , M., A, 9)

are equal. More formal theorem follows:

Theorem 3.7.1. Consider a fixed initial state z(0), and hence the fixed initial out­

put 9(0) of a given finite-state machine M. with the Markovian input v of order r,

whose initial distribution is independent o f x q. The second Lyapunov exponent Xs(xq)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

fo r the system (i / ,AA,A ,0) is equal to log(p(A)) = log(p(Br+i)) when x 0 ̂ 0, i f

(i/, Ad, A, Pi) and (u, M . ,A ,9) are A-equivalent to the system (i / ,A4 ,A , 6).

Proof: For the system (iv, Ad, A, p j with Markovian p 1(based on the results in [3]

and [52],

K (x o) = lim sup|log[F ;{ ||® (A :,*o,P i(0))||2}], x 0 ± 0
fc—MX) &

= log(A)

for any x 0 A 0. Whenever (u, Ad, A, p ,) is A-equivalent to the system (u , M , A , 0) ,

for any x 0 = x 0 ^ 0,

E { \ \ x (k , x 0,. a ; ; ; 2} = a?o,^(o))n2}

Therefore,

As(£c0) = limsuplog[F^{||a;(fc, £c0, "v"^||2}],
fc—► oo &

= iog(p(A))-

In a very similar fashion, under the conditions of A-equivalency between the systems

(ts, Ad, A, 0) and (i/, Ad, A, 0), it can be shown that

As (a:o) = lim supilog[F?{||a;(A;,:Eo, “ [‘]]||2}], x 0 0
k —►oo ™

= log (p(Br+1)),

and hence the proof. ■

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

03

03

08

66

3.8 D im ensionality Issues in the Tests for M ean-

Square Stability of the System (is,A4,A,0)

In this section, some dimensionality, and hence the computational issues, associ­

ated with the tests for mean-square stability of the system (i/, J A ,A , 0) developed

in the previous sections will be discussed. Observe th a t in general the numerical ef­

ficiency of mean-square stability conditions presented in the previous sections, more

specifically the size of matrices Ar, Br+i are dependent on following factors: the num­

ber of input symbols M , the order of the Markovian input r , the number of states of

the finite-state machine N , and the nature of the finite-state machine, whether it is

unifilar or non-unifilar. The size of the m atrix A r, denoted as d im (A r) is M r x N x n 2.

It is independent of whether the given machine is of type unifilar or non-unifilar.

If the given machine is of unifilar type, the dimension of dim (Br+1) = N r+1 x n 2 is

independent of number of input symbols, and only depends on the number of states

and the order of the Markovian input. Figure 3.8 shows th a t for M < N , d im (A r) <

dim (Br+1). At M = N , clearly they are equal. M > N is not possible since the

given machine is already unifilar. Thus, it is always advantageous to use cross-chain

driven equivalent jump-linear system to determine the mean-square stability when

given machine is already of unifilar type.

If the given machine is non-unifilar, dim (Br+i) = N (-r+1> x n 2. Let p < M be the

bound on the number of input symbols th a t cause the same sta te transition. Then the

number of states in the equivalent unifilar type finite-state machine N is dependent

on p and N . More precisely, (N — 1) + p < N < pN . In the worst case, if p = M ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

2000
dim (A)

+ dlm(BrJ1800

1600

1400

1200

1000

8 00

6 00

4 00

200

N um ber of input sym bo ls M

Figure 3.5: Plot of dim(Ar) and dim (Br+j) for a unifilar finite-state

machine with N =5 for various number of inputs M .

then (N — 1) + M < N < M N . (The best case, of course is when N = N and

it is already unifilar.) Figure 3.8 illustrates th a t in the non-unifilar case, there are

situations when it is more advantageous to use the stability criterion derived from

an equivalent jump-linear system driven by the state process from the corresponding

unifilar type machine over the one derived from cross-chain driven equivalent jump-

linear system. For example, clearly when r = 2, p = 2, M = 10, the number of

states in the non-unifilar machine is 5 and number of states in the equivalent unifilar

machine is N = N — l + p = 5 — 1 + 2, and hence dim{Bz) < d i m (A 2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

x104

—i— dim (\itB_{r+1}) = \tilde{N) = (N—1) + p
dim (\itB _{r+1}) = \tilde(N} = (N -2) + 2 p
dim (\itB _{r+1}) = \tilde{N} = (N -3) + 3p

- e - d im (\itB _{r+1}) = \tilde{N} = (N -4) + 4 p
 d im (\lt A_{r+1}) = M Vtimes N = 10 M imes 5

3 -

0®=
P

Figure 3.6: Plot of d i m (B r+i) for various values of N and d i m (A r) ,

as p varies for a given non-unifilar finite-state machine. M is fixed

to 10 and r = 2.

3.9 Sum mary of K ey Points

In this chapter, key assumptions about the various components of the model under

consideration were stated, and tests to validate the assumptions were provided. Next,

appropriate stability terms and definitions for a jump-linear system driven by an

arbitrary random process were introduced. Two approaches to determine the mean-

square stability of the jump-linear system driven by the output of a Moore finite-state

machine with an isomorphic state-to-output mapping and a Markovian input were

developed. The first approach was based on analyzing an equivalent jump-linear

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

system driven by the input and the output of the finite-state machine, where as

second approach was based on analysis of an equivalent jump-linear system driven

by the output of a unifilar finite-state machine. Later, m ethods to determine the

mean-square stability of jump-linear systems with Mealy finite-state machines as well

as machines with non-isomorphic state-to-output mapping were also demonstrated.

Thus it was possible to derive the mean-square stability conditions for a jump-linear

system driven by any arbitrary finite-state machine with Markovian inputs of any

order r. I t was also shown th a t the mean-square stability conditions are the same as

those for exponential second-moment stability and stochastic second-moment stability

of the system. Lyapunov exponents were then used to characterize the mean-square

stability of the system. A brief discussion of dimensionality and computational issues

involved in using these results concluded this chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

CHAPTER IV

SIMULATION STUDIES

4.1 Introduction

In this chapter, the mean-square stability criteria for a hybrid model (is, A i , A, 6)

are dem onstrated using three simple examples involving recovery algorithms. The

first example is a recovery algorithm with two modes, where the recovery duration is

fixed and the statistics of the upset process are varied. Three cases of upset models

are considered: i.i.d., first-order and second-order Markov. The second example is

similar to the first one, but illustrates the mean-square stability property changes with

respect to a variation in the recovery duration for the first-order Markov input. The

th ird example examines the mean-square stability of a closed-loop system employing

the complex recovery algorithm shown in Figure 1.6 when the upset process is first-

order Markov.

4.2 D em onstration Procedure for the M ean-Square

Stability Criteria o f the System (i/,A4,A,0)

T h ere are tw o m ain step s in volved in th e d em on stra tion p rocedu re of th e mean-

square stability criteria: producing a theoretical prediction of the stability boundary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

and then verifying the prediction via Monte Carlo simulation. The procedure can be

further subdivided into the following steps:

1. Verify whether the assumptions in Theorem 3.2.3 needed to apply the mean-

square stability tests are valid.

2. For a Markovian input of order r, produce plots of the spectral radii of Ar

and Br+i as a function of the system param eters and identify the mean-square

stability boundary.

3. Initialize the state of the Markov chain, the initial state of the finite-state

machine, i.e., the initial mode of the recovery algorithm and the initial state

of the closed-loop dynamical system, independently.

4. Simulate the Markov chain th a t models the upset process for a given transition

probability m atrix II/.

5. Simulate the given recovery algorithm modeled as a finite-state machine.

6. Simulate the closed-loop dynamical system during each mode of the recovery

cycle.

7. Compute the second moment Q of the state of the closed-loop dynamical sys­

tem by averaging at each instance k over the given number of Monte Carlo

runs.

8. Compare the statistics of Q with the expected theoretical results predicted

using p(Ar) and p(Br+i).

9. Plot k x log(p(Ar)) to characterize the mean-square stability prediction and

compare it to log(Q).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

4.3 Three Recovery System Exam ples

In this section, three simple recovery examples implemented with scalar dynamics

are given to illustrate the mean-square stability tests developed in the previous chap­

ter. For the first two examples, a simple recovery algorithm is considered where the

upsets are assumed to be not affecting the recovery cycle and the system stays in the

recovery mode for a specified duration. In the first example, upsets will be modeled

as Markov processes of different orders and the resulting effect on the mean-square

stability conditions is illustrated. In the second example, the effect of changing the re­

covery duration on mean-square stability is illustrated. The th ird example illustrates

the mean-square stability tests for the more complex recovery algorithm introduced

in Chapter 1, Figure 1.6, where upsets are modeled as a first-order Markov process.

4.3.1 Recovery Example 1

Consider a closed-loop control system implemented on a recoverable computer.

Perhaps the simplest model for such a system is shown in Figure 4.1. As long as

there is no computer upset, the system operates in the normal mode, as per the

dynamics

x (k + 1) = Aox(k).

As soon as an upset occurs, the recovery system places the computer in the recovery

mode for a fixed duration of M r — 2 clock cycles. During the recovery process the

system dynamics are described by

x (k + 1) = A ix (k).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

N orm al M ode
x(k +1) = AoJt(ft)

c(lc) = 0

Recovery M ode
X (k + 1)= Aj,c(fc)

c(k + 1) = c(Jfc) + 1

Figure 4.1: A simple model for a recoverable computer control system.

Recovery M ode 1

:(& + !) = A^x(k)

A,E
A,E

Recovery M ode 2

x(k +1) = A. x(k

Figure 4.2: A finite-state machine representation of a recoverable computer control

system.

After this duration, the nominal dynamics are restored. Here the counter, c(k),

keeps track of the lapse-time for the recovery process. To model this system as a

finite-state machine, a new machine state must be introduced for each possible counter

value. The sta te diagram for such a machine is shown in Figure 4.2. It is clearly not

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

unifilar. Specifically, M = (£ /, Es , £o ,£ ,w) with £ / = { A ,E } , E s = {e i,e2,e 3},

S o = {./Vo, /?i, f?2}, <5 is defined by

1 0 1

1

o 0 l

0 0 0 > sE — i 0 0

I"
" O 1

1

O

i

o l
i

o
and oj(ej) = £j. The corresponding jump-linear system is specified by setting A n 0 =

Ao and A Rl = A r 2 = A \. For the purpose of validation, assume the Markovian inputs

to the finite-state machine to be either i.i.d., first-order or second-order Markov.

W hen the input v is i.i.d. the stability Theorems 3.4.1 and 3.5.1 can be applied

directly by setting A a<Nq = A EtNo = A 0 and A A]Rl = A e ,^ = A a,r2 = A E,R2 = A v

The system and simulation param eters are shown in Table A -l. The upset process is

characterized by the probabilities which is varied between 0 and 1. The spectral radii

of Ao and as a function of is plotted in Figure 4.3, which predicts the mean-

square stability boundary to be a t II# = 0.5. Therefore two values of II#, 0.45 and

0.55 were chosen for Monte Carlo simulation, predicting th a t the closed-loop system

will be mean-square stable a t pE = 0.45 and not mean-square stable a t pE = 0.55.

As shown in Figure 4.3.1, the simulations agree with the theoretical predictions. In

addition, the second Lyapunov exponent number log10(p(A))) = logio(p(#i)) is an

asym ptote for the statistics logw (Q).

Now suppose, the upset process u is modeled as a Markovian process of first-order.

The system and simulation param eters are given in Table A-2. Assuming transition

probabilities = 0.45, the spectral radius of A \ is plotted in Figure 4.3.1 as a

function of B E\E. It predicts the mean-square stability boundary for the system to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

1.001

1.0005

0.9995

0.1 0 2 0.3 0.4 0.6 0.7

Figure 4.3: The spectral radius of Ao and S i as a function of IIE for the Recovery

Example 1.

be a t n B1E = 0.35.

To illustrate the stability test in Theorem 3.5.2, an A-equivalent unifilar finite-

sta te machine is constructed as shown in Figure 4.3.1. The new machine M =

(E /, Es, Eo,S,u)) where 8 is defined to duplicate the states ei with e ^ , e i2, and e3

with new states e3l and e3a such th a t 8 '(A ,e 2) = e3l, 8 '(E ,e 2) = e32, S'(A, e3l) = el l ,

8 '(E ,e 3l) = el2, 8 ' (A, e32) = eXl, 8 '(E , e3a) = ei2. The new sta te set is therefore

= {ei i ! e i2)e2)e3i ,e 32} and the new output map is specified by: u ^ e i j = £i,

w(ei2) = &>, w(e2) = £2, u (e3l) = R 2, cj(e32) = (4. Finally, let Af- = A Nq = A 0,

A (2 = A Rl, = A r 2 = A i, A ^ = A R2 = A i, = A No = A 0. A?- = A No = A 0.

Setting IT4|yi=0.45, a plot of the spectral radius of B 2 is also shown in Figure 4.3.1

as a function of IIE|E. As expected, the two plots cross the stability boundary at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

1.4

1.2

2000 4000 6000 8000 10000 12000

<;

gT 1.5

1.4

1.3
2000 4000 6000k 8000 10000 12000

Figure 4.4: The Monte Carlo generated statistic

logio(Q) f°r the Recovery Example 1 when the input

is i.i.d. with n B = 0.45 and IIB = 0.55. The dotted line

is k logio(p(Ai)) = k Zoeho(p(#i)).

exactly the same value of He\e = 0.35. In fact the plots coincide exactly for all

values of U e ,e ■ Two values of H E \e were chosen for Monte Carlo simulation: 0.3

(mean-square stable) and 0.4 (mean-square unstable). As shown in Figure 4.3.1, the

simulations agree with the theoretical predictions and the second Lyapunov exponent

log10(p(A i)) = log10(p(f?2)) serves as an asymptote for the statistics log10(Q).

Finally, for the same example, assume v is second-order Markov with = 0.7,

HA[AE = 0.4 and U A\e a = 0.45. The system and simulation param eters are given in

Table A-3. Varying H e\ee, the spectral radii of A 2 and B3 are shown in Figure

4.3.1. Two values of H e \e e were chosen for Monte Carlo simulation: 0.7 (mean-

square stable) and 0.8 (not mean-square stable). As shown in Figure 4.3.1 shows, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

1.0007

1 .0006

1.0005

1 .0004

1 .0003

1.0002

1.0001

0.9999

0 9998
0 0.1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

nE|E

Figure 4.5: A plot of the spectral radius of A i and B2 versus n B|£

for the Recovery Example 1 when input u is first-order Markov

with W.A\A = 0.45.

simulations agree with the theoretical predictions.

* Spectra l rad ius of Af
+ S pec tra l rad iu s of B2

*

*

*

4
*

*

*
t

*

4
*

*
It

4
*

J_________ I_________ I_________ I_________ I_________ I__________I__________L

4.3.2 Recovery Example 2

In this section, the same recovery algorithm as in Recovery Example 1 is consid­

ered, however, the purpose here is to determine the effect of the recovery duration on

mean-square stability. The full state diagram for the simplified recovery algorithm is

shown in Figure 4.10. It consists of 1 + M r states: No, R \r . . , Rmr - W hen M r = 1,

the corresponding transition matrices are:

ei ej S E = e2 ex

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

Recovery Mode 1
x(k +1) = A x{k)

Normal Mode

x(k +1) = A .x (k)

Recovery Mode 2

x(k + l) = A x (k)
Recovery Mode 2

x(k + 1) = A x (k)

Figure 4.6: A unifilar finite-state machine representation of a re­

coverable computer control system,

when M r = 2,

SA = ei e3 e\ 62 e3 ei

and when M R = 5,

SA = e3 e3 e4 e$ ei Sn = e2 e3 64 65 e6 ei

The complete set of system and simulation param eters are summarized in Table A-4.

Based on the dimensionality discussion of Section 3.9, for the given values of M r ,

d i m (A r) < d im (B (r+i)) . Hence, only the approach of using the jump-linear system

driven by the cross-chain process is considered here. The plot of spectral radius

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

- 0.<

-0 .7

<i
g -0.72

-0.74

-0.76
2000 4000 6000 6000 10000 12000

-0.!
- 0.1

- 0.1<CL
-0.64

- 0.1

-0.7
2000 4000 6000k 6000 10000 12000

Figure 4.7: The Monte Carlo generated statistic logw {Q) for the

Recovery Example 1 when input is first-order Markovian with

= 0.3 and = 0.4. The dotted line is k logw (p (A i)) =

k log10(p(B2)).

of A i as a function of transition probabilities I l£ |£ and stationary probabilities

is shown in Figures 4.3.2 and 4.3.2, respectively. Clearly the more persistent the

upset or the longer the recovery process, the more likely the closed-loop will not be

mean-square stable. The particular case where IIbi# = 0.8 was simulated by Monte

Carlo methods and the resulting statistic logi0(Q) is plotted over tim e for M r = 1,

2, and 5 as shown in Figure 4.3.2. As per the theoretical predictions, the closed-loop

system implementing the recovery algorithm is mean-square stable for M r = 1, but

it is not mean-square stable when M r = 2 and M r = 5. The simulations agree with

th e se th eo re tica l pred ictions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

1.0007

1.0006

1.0005

1.0004

1.0003

1.0002

1.0001

0.9999

0.9998

0.9997
0.1 0.40.2 0.3 0.6 0.7 0.8

Figure 4.8: The spectral radius of A 2 and S 3 as a function of Y I e \ e , e

for the Recovery Example 1.

4.3.3 Recovery Example 3

The th ird example is a closed-loop system with a controller th a t is implemented

on a RCS with the persistent upset algorithm shown in Figure 1.6. The recovery

algorithm has four modes, normal mode, reload mode, release mode and an abort

mode. System is always in the normal mode as long as there is no upset, denoted

by symbol A. As soon as an upset occurs, denoted by symbol E, the system goes to

the reload mode. It stays in the reload mode for a fixed duration to fetch the

good da ta previously stored. The system then enters the release mode. If an upset

occurs during its visit to the release mode, the system revisits the reload mode or

else returns to normal mode. However, the system is allowed to revisit the reload

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

- 0.6

-0 .7

"”o

s
- 0.1

-0 .9

2000 4000 8000 120006000 10000

-0 .45

-0 .5

-0 .55< O
o

- 0.6S
-0 .65

-0 .7
2000 4000 8000 120006000 10000

k

Figure 4.9: The Monte Carlo generated statistic logw (Q) for the

Recovery Example 1 when the input is second-order Markovian

with U e \ e , e — 0-7 and 0.8. The dotted line is k l o g w { p (A 2)) =

k logw (p(B3)).

mode from the release mode only a fixed number of times N Ra after which it enters

an abort mode for a possible emergency action by an external supervisor to bring the

system back to its normal operation. The corresponding state diagram is shown in

Figure 4.3.3 when N Rd = N Rs = N^b = 1. The example will dem onstrate the effect of

varying N ^b along with the persistence of upsets when N^b = 1)2 and 5. Again, based

on the dimensionality issues in Section 3.9, for the various values of NAb considered,

d im (A r) < dim(B(r+i)). Hence, only the approach of using the jump-linear system

driven by the cross-chain process pl is considered here. The sta te transition matrices

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

V(k) = A

Normal Mode Recovery Mode 1

x(k+l) =A„ x(k)
V(k) = E

Recovery Mode N,

x(k+l) =A„ x(k)

Figure 4.10: The state diagram for the algorithm in Recovery Example 2.

in the case of N ^b = 1 are given by:

SA = e\ ez e\ e& e\ ei ,S E e<2 e-z e4 eb e$ e\

The sta te transition matrices for N/& = 2 and N/& = 5, respectively are given by

SE =

e l e 3 Cl 65 e l e 7 Cl

62 63 64 65 e 6 e-j e i

and

5a =

S E =

ei e3 ei 65 ei e7 e$ eg eio ei

62 63 64 65 e6 e ̂ e$ eg eio ej

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

1.025

1.02

1.015

1.01

S' 3
1.005

0.99&-

0 .99

m r = 1
+ ■ M r = 2

* . M r = 5

. . - - X ‘ • 1 °
c • ' ' * '

< ' ’ ' *

• • x ■'
■ X ■ '

. . - x - • • °
■ -x- ■ ' . . . - X ' ' ' '

+

+-•'
K

„ • + •• H
h . ■ ■+ H!--■■ + -

+

^ *
• : :+ : •• • H

,,
_ *■

It r * .

r
r

<-------- * -- i ~ ~ ■*

_J__________ I__________ I__________ I__________ I__________ L.
0.1 0 .2 0 .3 0 .4 ^ . 5 0 .6 0.7 0 .8 0 .9 1

Figure 4.11: The spectral radius of A \ as a function of YIe \e for the

Recovery Example 2.

The system and simulation param eters when N Ab = 1,2 and 5 are given in Table A-

5. The corresponding spectral radii plots of A \ versus transition probabilities n e |£

and stationary probabilities Pe are shown in Figures 4.3.3 and 4.3.3, respectively.

The plots in these figures show th a t the lower the values of N m , the more robust

is the closed-loop system with respect to stability. The corresponding Monte Carlo

simulation when = 0.3 and N Ab = 1,2 and 5 are shown in Figure 4.3.3. The

simulations verify th a t the closed-loop system is mean-square stable when N Ab = 1,

2, bu t not mean-square stable when N Ab = 5. It is in this m anner th a t these stability

criteria can be used as design tools.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

1 .025 r

‘ mr=1!
1-0 2 -

-X- MR = 5

1 .015 - _ ; — ------------- *

1.01 -

S j< *■:*"*" - +
t **=■ \ ^ - - ' \
1 .005 -

0 .995 - ■ ■

0 .9 9 ---------------- 1---------------- 1----------------- 1---------------- 1---------------- 1---------------- 1----------------- 1
0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

PE

Figure 4.12: The spectral radius of A i as a function of Pe for the

Recovery Example 2 when M R = 1,2,5.

4.4 Sum mary of K ey Points

In this chapter, three recovery models were demonstrated using Monte Carlo simu­

lation and compared against the theoretical predictions made by via the mean-square

stability criteria developed in the previous chapter. All the simulations agreed with

the theoretical predictions, thus demonstrating the the mean-square stability tools

derived. The three examples demonstrated the effect of persistent upsets and recov­

ery duration on the robustness of the stability of closed-loop system. In all three

examples plots of Lyapunov exponents matched the plot of simulations of log(Q)

asymptotically as predicted in theory.

+■+',+■+

0 .4 0.5 0 .6 0 .7
P E

0 .8 0 .9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

: -5

1 0 0 0 2000 3000 4000 5000
M„=2

6000 9000 100007000 8000

£10<o
f o

-10
1000 2000 3000 4000 5000 6000

Md=5
7000 8000 9000 10000

<o

-20
1000 2000 3000 4000 6000 7000 8000 9000 10000

Figure 4.13: The Monte Carlo generated statistic logw (Q) for the

Recovery Example 2 when T \-e \e = 0.8 and M r is variable. The

dotted line is k logw (p(A i)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

Normal Mode Reload Mode 1

x(k+l) =AMi x(k)

Release Mode 1

x(k+l)»ABB| x(k)

v(k) = A
v(k) = E

Abort Mode Reload Mode 2

x(k-fl) = A^xCk) x(k+l) =AJW_ x(k)

v(k) = E

Release Mode 2

xOt+DaAfc x(k)

Figure 4.14: The state diagram for the Recovery

Example 3 when N Ab = 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

1.08

1.06

1.04

N.

-*— *— +----- „-----* — * _ -# ~

X

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1
nE|E

Figure 4.15: The spectral radius of A i as a function of U e \e f o r the

Recovery Example 3 when N^b = 1 ,2,5.

* 1.04
*S

+ V = 2
* Nto = 5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Pe

Figure 4.16: The spectral radius of A i as a function of p e for the

Recovery Example 3 when N^b = 1, 2,5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

-3 0

-4 0
2000 3000 4000 5000 6000 7000 6000 9000 10000

-2

-4

-6

-1 0
1000 2000 3000 4000 5000 6000 7000 9000 100006000

<o 20

-2 0
1000 2000 3000 4000 5000k 6000 7000 8000 9000 10000

Figure 4.17: The Monte Carlo generated statistic

logio(Q) for the Recovery Example 3, when IIe \e = 0.3

and NAb is variable. The dotted line is k logw (p(A \)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

CHAPTER V

FUTURE RESEARCH AND CONCLUSIONS

In this chapter, the main contributions of this thesis are summarized and prospects

for future research are discussed.

5.1 Sum mary o f M ain Contributions

To summarize the main contributions of this research, as outlined in the problem

statem ent of Chapter 1, two random processes generated by a finite-state machine

when driven by Markov inputs of order r > 0 were characterized. It was shown

th a t the random process (u, z) resulting from the cross-product of input process and

sta te process is a first-order Markov process when the input is an i.i.d. process, and

it is a Markov process of order r when input is a Markov process of order r. The

sta te process of the finite-state machine z was shown to be first-order Markovian

when input is i.i.d., and the state process of the unifilar type finite-state machine z

was shown to be Markovian of order r + 1 when input is Markovian of any order r.

Based on these characterization, mean-square stability conditions were developed for

the system (v ,M .,A ,0) comprising of a jump-linear system driven by an arbitrary

finite-state machine with the i.i.d. and higher order Markov processes as inputs.

As a corollary, it was also shown th a t those mean-square stability conditions can

also be used to test for exponentially second moment stability and stochastic second

moment stability of the system. Mean-square stability was further characterized using

the concept of Lyapunov exponent. Finally, three recovery examples were simulated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

using Monte Carlo methods th a t dem onstrated the mean-square stability conditions

developed.

5.2 D irections for Future Research

In this concluding section, some discussion about the directions for future research

is provided. The directions discussed here are based on the advantages and limitations

of the methodology presented in this thesis.

5.2.1 Curse of Dimensionality: Some Possible Solutions

W hen recovery algorithms, especially those with counters for providing a fixed

amount of delay in each mode, are modeled as finite-state machines with non-isomorphic

mapping, it needs to be investigated whether numerically more efficient testable sta­

bility conditions can be derived. Perhaps the answer lies in determining under what

conditions the output of such a finite-state machine or some related process is Marko­

vian. Some conditions for Markovianness of such output process are given in [5,7,41],

which may be helpful in producing numerically efficient tests. However the conditions

are known to be very restrictive.

5.2.2 Jump-Linear Systems Driven by Cascaded Finite-State

Machines with Markovian Inputs

A more general situation shown in Figure 5.2.2 a is recovery algorithm modeled

as two or more finite-state machines in cascade. Since the cross-chain formed by the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

Markov input process v and the state process z is known to be Markovian of the

same order as the input, if there are c number of finite-state machines in cascade, it

is expected th a t the process (i/, Z i , . . . , z c) will also be Markovian of the same order.

And hence, it is conjectured th a t the tools presented here can also be used to infer

the mean-square stability property for the jump-linear systems driven by cascaded

finite-state machines with Markovian inputs.

Jump-Linear
Dynamical

System
Finite-State

Machine
Finite-State

Machine
Markovian
Exosystem

y(k) e,(k) er(k) x(k)

Figure 5.1: A jump-linear system driven by cascaded finite-state

machines with a Markovian input.

5.2.3 Systems with Stochastic Recovery Algorithms

Another general situation shown in Figure 5.2.4 is when sta te transitions in the

recovery algorithm are probabilistic. Such algorithms can be modeled by probabilistic

finite-state machines (stochastic autom ata). It is known th a t the cross-chain process

formed by the input and state process is again Markovian of the same order as tha t

of Markovian input. Hence it is conjectured tha t the stability of hybrid models

for recovery algorithms with probabilistic finite-state machines can be analyzed by

extending the tools presented in this thesis in an appropriate manner.

Recovery algorithms with counters having random delays with known distributions

also need to be investigated. A reasonable hypothesis is: the resulting output process

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

is semi-Markov. This would lead to a study of jump-linear systems driven by semi-

Markov processes.

x (k)

Jump-Linear
Dynamical

System

Stochastic
Finite-State

Machine

Markovian
Exosystem

Figure 5.2: A jump-linear system driven by a stochastic finite-state

machine with a Markovian input.

5.2.4 Recovery System Identification

A related problem arises as shown in Figure 5.2.4 when the exact nature of the

recovery algorithm is unknown. By measuring the output sequence probabilities, it

may be possible to identify an approximation for the underlying finite-state machine

[4,12,47], Then, using the state estimates, the stability criteria presented here can

be applied.

M arkovian
I

Exosystem
V(k) I

Unknown !
F inite-S tate j -

Figure 5.3: A jump-linear

9(k)

Jum p-L inear
Dynamical

System
X(k)

a Markovian input.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[1] B. Adimi-Sadjadi, “Stability of networked control systems in the presence of

packet losses,” in Proc. 4%nd IEEE Conference on Decision and Control, Maui,

Hawaii, 2003, pp. 676-681.

[2] F. B. Bastani, “Relational programs: an architecture for robust real-time safety-

critical process-control systems,” Annals o f Software Engineering, vol. 7, no. 1,

pp. 5-24, 1999.

[3] K. Benjelloun, E. K. Boukas, and P. Shi, “Robust stochastic stability of discrete­

tim e linear systems with Markovian jumping param eters,” in Proc. 36th IE E E

Conference on Decision and Control, San Diego, California, 1997, pp. 559-564.

[4] D. Blackwell and L. Koopmans, “On the identifiability problem for functions of

Markov chains,” Annals o f Mathematical Statistics, vol. 28, no. 4, pp. 1011-1015,

1957.

[5] T. L. Booth, Sequential Machines and Automata Theory. John Wiley & Sons,

Inc., New York, 1967.

[6] M. Branicky, “Multiple Lyapunov functions and other analysis tools for switched

and hybrid systems,” IEEE Trans. Automatic Control, vol. 43, pp. 475-482, 1998.

[7] C. J. Burke and M. Rosenblatt, “A Markovian function of a Markov chain,” The

Annals of Mathematical Statistics, vol. 29, no. 4, pp. 1112-1122, 1958.
93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

[8] O. L. V. Costa and M. D. Fragoso, “Stability results for discrete-time linear

systems with Markovian jumping param eters,” J. Mathematical Analysis and

Applications, vol. 179, no. 1, pp. 154-178, 1993.

[9] A. M. Davis, “Markov chains as random input autom ata,” American M athemat­

ical Monthly, vol. 68, no. 3, pp. 264-267, 1961.

[10] Y. Fang, “Stability analysis of linear control systems with uncertain param eters,”

Ph.D. dissertation, Case Western University, Cleveland, Ohio, 1994.

[11] Y. Fang and K. A. Loparo, “Stochastic stability of jum p linear systems,” IEEE

Transactions on Automatic Control, vol. 47, no. 7, pp. 1204-1208, 2002.

[12] E. J. Gilbert, “On the identifiability problem for functions of finite Markov

chains,” Annals o f Mathematical Statistics, vol. 30, no. 3, pp. 688-697, 1959.

[13] O. R. Gonzalez, W. S. Gray, A. Tejada, and S. Patilkulkarni, “Stability analysis

of electromagnetic interference upset recovery methods,” in Proc. fOth IE E E

Conference on Decision and Control, Orlando, Florida, 2001, pp. 4134-4139.

[14] O. R. Gonzalez, A. Tejada, and W. S. Gray, “Analytical tools for the design

and verification of safety critical control systems,” in Proc. 2001 International

Conference on Lightning and Static Electricity, Seattle, W ashington, 2001, pp.

2938-1-10.

[15] O. R. Gonzalez, A. Tejada, and W. S. Gray, “Analysis of design trade-offs in

rollback recovery methods for fault tolerant digital control systems,” in Proc.

2002 American Control Conference, Anchorage, Alaska, 2002, pp. 4801-4806.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

[16] W. S. Gray, S. Patilkulkarni, and O. R. Gonzalez, “Stochastic stability of a

recoverable computer control system modeled as a finite-state machine,” in Proc.

2003 American Control Conference, Denver, Colorado, 2003, pp. 2240-2245.

[17] W. S. Gray, H. Zhang, and O. R. Gonzalez, “Closed-loop performance measures

for flight controllers subject to neutron-induced upsets,” in Proc. 4 2 nd Confer­

ence on Decision and Control, Maui, Hawaii, 2003, pp. 2465-2470.

[18] K. Hagbae and K. G. Shin, “Modeling of externally-induced/common-cause

faults in fault-tolerant systems,” in Proc. 13th Digital Avionics Systems Con­

ference, Phoenix, Arizona, 1994, pp. 402-407.

[19] A. Hassibi, S. P. Boyd, and J. How, “Control of asynchronous dynamical systems

with rate constraints on events,” in Proc. 38th IEEE Conference on Decision and

Control, Orlando, Florida, 1999, pp. 1345-1351.

[20] J. Hespanha, “Hybrid stochastic systems: application to communication net­

works,” in Lecture Notes in Computer Science, R. Alur and G. Pappas, Eds.

Springer-Verlag, New York, 2004, vol. 2993, no. 12, pp. 387-401.

[21] R. Hess, “Computing platform architectures for robust operation in the presence

of lightning and other electromagnetic threats,” in Proc. 16th Digital Avionics

Systems Conference, vol. 1, New York, 1997, pp. 4.3-9-16.

[22] R. Hess, “Options for aircraft function preservation in the presence of lightning,”

in Proc. International Conference on Lightning and Static Electricity, Toulouse,

France, Paper No. 106, 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

[23] W. M. L. Holkombe, Algebraic Automata Theory. Cambridge University Press,

New York, 1982.

[24] J. Hu, J. Lygeros, and S. Sastry, “Towards hybrid stochastic systems,” in Lecture

Notes in Computer Science, Pittsburgh, Pennsylvania, 2000, vol. 1790, pp. 160-

173.

[25] W. Huang and E. McCluskey, “Transient errors and rollback recovery in LZ com­

pression,” in International Symposium on Dependable Computing, Los Angels,

California, 2000, pp. 128-135.

[26] W. H. Jerm ann, “Measurement of linearly dependent processes,” Ph.D. disser­

tation, University of Connecticut, Connecticut, 1967.

[27] Y. Ji, H. J. Chizeck, X. Feng, and K. A. Loparo, “Stability and control of discrete­

tim e jum p linear systems,” Control Theory and Advanced Technology, vol. 7,

no. 2, pp. 247-270, 1991.

[28] R. E. Kalman, P. L. Falb, and M. A. Arbib, Mathematical System Theory.

McGraw-Hill Inc., New York, 1969.

[29] S. Karlin and H. M. Taylor, Second Course in Stochastic Processes. Springer-

Verlag, New York, 1981.

[30] G. Kemeny and L. J. Snell, Finite Markov Chains. Springer-Verlag, New York,

1976.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

[31] Z. Kohavi, Switching And Finite Automata Theory. McGraw-Hill Inc., New

York, 1978.

[32] J. Lala and R. Harper, “Architectural principles for safety-critical real-time ap­

plications,” vol. 82, no. 1, pp. 25-40, 1994.

[33] Q. Ling and M. D. Lemmon, “Optimal dropout compensation in networked con­

tro l systems,” in Proc. f2 n d Conference on Decision and Control, Maui, Hawaii,

2003, pp. 670-675.

[34] A. M. Lyapunov, Stability o f Motion: General Problem. Taylor and Francis,

Co., London, UK, 1992.

[35] M. Malekpour and W. Torres, “Characterization of a recoverable flight control

computer system,” in Proc. 1999 IEEE International Conference on Control

Applications, Kohala Coast, Hawaii, 1999, pp. 1519-1524.

[36] M. Malekpour and W. Torres, “Characterization of a flight control computer with

rollback recovery,” in Proc. 19th Digital Avionics Systems Conference, Philadel­

phia, Pennsylvania, 2000, pp. 3.C.4-1-8.

[37] D. Marculescu and R. Marculescu, “Information-theoretic bounds for switching

activity analysis in finite-state machines under temporally correlated inputs,”

in Proc. 33rd IEEE Asilomar Conference on Signals, Systems, and Computers,

Pacific Grove, California, 1999.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

[38] D. Marculescu, R. Marculescu, and M. Pedram, “Steady-state probability esti­

m ation in finite-state machines considering higher-order tem poral effects,” Uni­

versity of Southern California, Tech. Rep. CENG97-19, 1997.

[39] M. Mariton, Jump-Linear Systems in Automatic Control. Marcel-Decker, New

York, 1990.

[40] P. S. Miner, V. A. Carreno, M. Malekpour, and W. Torres, “A case-study ap­

plication of rtca do-254: Design assurance guidance for airborne electronic hard­

ware,” in Proc. 19th Digital Avionics Systems Conference, vol. 1, Philedelphia,

Pennsylvania, 2000, pp. 1.A. 1-1-8.

[41] D. Moorehead, “The analysis and synthesis of probability transform ers,” Elec­

tronics Research Laboratory, University of California, Berkely, California, Tech.

Rep. 65-06, 1965.

[42] T. Morozan, “Optimal stationary control for dynamic systems with perturba­

tions,” Stochastic Analysis and Applications, vol. 1, no. 2, pp. 299-325, 1983.

[43] R. Narasimhan, D. J. Rosenkrantz, and S. S. Ravi, “Early comparison and de­

cision strategies for datapaths th a t recover from transient faults,” IE E E Trans­

actions on Circuits & Systems I-Fundamental Theory & Applications, vol. 44,

no. 5, pp. 435-438, 1997.

[44] S. Patilkulkarni, H. Herencia-Zapana, W. S. Gray, and O. R. Gonzalez, “On the

stability of jump-linear systems driven by finite-state machines with Markovian

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

inputs,” in Proc. 2004 American Control Conference, Boston, Massachusettes,

2004, pp. 2534-2539.

[45] D. K. Pradhan, Fault-Tolerant Computer System Design. Prentice Hall, Inc.,

New-Jersey, 1995.

[46] A. Ranganathan and S. Upadhyaya, “Performance evaluation of rollback-

recovery techniques in computer programs,” IEEE Transactions on Reliability,

vol. 42, no. 2, pp. 220-226, 1993.

[47] S. Rudich, “Inferring the structure of a markov chain from its ou tpu t,” in Proc.

26th Annual Symposium on Foundations o f Computer Science, Portland, Oregon,

1985, pp. 321-325.

[48] A. Schaft and H. Schumacher, “An introduction to hybrid dynamical systems,”

in Lecture Notes in Control and Informational Sciences. Springer-Verlag, Hei­

delberg, New York, 2000, vol. 251.

[49] P. Seiler and R. Sengupta, “Analysis of communication losses in vehicle control

problems,” in Proc. 2001 American Control Conference, Arlington, Virginia,

2001, pp. 1491-1496.

[50] E. Seneta, Non-Negative Matrices and Markov Chains. Springer Series in Statis­

tics, New York, 1981.

[51] E. D. Sontag, “Interconnected autom ata and linear systems: A theoretical frame­

work in discrete-time,” in Hybrid Systems: 3, Verification and Control. Springer-

Verlag, New York, 1995, pp. 436-448.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

[52] A. Tejada, “Analysis of error recovery effects on digital flight control systems,”

M aster’s thesis, Old Dominion University, Norfolk, Virginia, 2002.

[53] A. Tejada, O. R. Gonzalez, and W. S. Gray, “Towards analysis of jum p linear

systems with state-dependent and stochastic switching,” in Proc. 2004 American

Control Conference, Boston, MA, 2004, pp. 1893-1898.

[54] G. N. Tsertsvadze, “Certain properties of stochastic autom ata and certain m eth­

ods for synthesizing them ,” Automation and Remote Control, vol. 24, no. 3, pp.

341-352, 1963.

[55] A. S. Willsky and B. C. Levy, “Stochastic stability research for complex power

systems,” Messachusetts Institute of Technology, Boston, Massachusetts, Tech.

Rep. ET-76-C-01-2295, 1979.

[56] L. Xiao, A. Hassibi, and J. How, “Control with random communication delays

via a discrete-time jum p system approach,” in Proc. 2000 American Control

Conference, vol. 3, Chicago, Illinois, 2000, pp. 28-30.

[57] H. Ye, A. Michel, and L. Hou, “Stability theory for hybrid dynamical systems,”

IE E E Trans. Automatic Control, vol. 43, pp. 461-474, 1998.

[58] W. Zhang, M. S. Branicky, and S. Phillips, “Stability of networked control sys­

tem s,” IEEE Control Systems Magazine, vol. 21, no. 1, pp. 84-99, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

A PPEN D IX A: TABLES OF SYSTEM AND SIMULATION

PARAMETERS

Table A-l: The system and simulation param eters for the Recovery Example 1 when

the input is i.i.d.

P a ram e te r Value

£ / {A ,E }

{ei, e2,. . . , ejv}

So {No, R i, R 2}

{Ajv0, A r ^ A r j } {0.999,1.001001,1.001001}

H a {0.45,0.55}

n e {0.55,0.45}

1/(0) P(*/(0) = A) = P(i/(0) = E)

z(0) ei

0(0) N0

x(0) uniform on [—0.05,0.05]

Monte Carlo runs 1000

number of samples 10001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

Table A-2: The system and simulation param eters for the Recovery Example 1 when

the input is first-order Markov.

P a ram e te r Value

Ej {A ,E }

{ei,e2, . . . ,e,/v}

S o {7Vo,Ri,f?2}

{Ajv0, A rj, A/e2} {0.999,1.001001,1.001001}

n a a 0.45

n e e {0.3,0.4}

v{Q) P(i/(0) = A) = P(i/(0) = E)

*(0) ei

0(0) No

*(0) uniform on [—0.05,0.05]

Monte Carlo runs 1000

number of samples 10001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

Table A-3: The system and simulation param eters for the Recovery Example 1 when

the input is second-order Markov.

P a ram e te r Value

Ej {A ,E }

£ 5 { e i , e 2 , • . . , e w }

So {1Vo,R i ,1?2}

{An0,A Ri ,A R2} {0.999,1.001001,1.001001}

Ka \AA 0.7

ka \ae 0.4

ka \ea 0.45

n E\EE {0.7,0.8}

u{Q) P{u{0) = A) = P(i/(0) = E)

m Cl

m N0

x(0) uniform on [—0.05,0.05]

Monte Carlo runs 1000

number of samples 10001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

Table A-4: The system and simulation param eters for the Recovery Example 2.

P a ram e te r Value

£ / {A ,E }

{ e i , e 2 , . . . , e i v }

So { N 0, R i , . . . , R m r }

M r variable: 1,2,5

N M r + 1

{A n , A Ri} {0.99,1.0112}

IIaa 0.45

n e e 0.8

1/(0) P(i/(0) — E) = P(i/(0) = A)

z(0) e i

0(0) No

*(0) uniform on [-0.05,0.05]

Monte Carlo runs 1000

number of samples 10001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

Table A-5: The system and simulation param eters for the Recovery Example 3.

Parameter Value

£ / {A ,E }

{ei,e2,.. . ,e;v}

So {M>, Rdi, Rsi, Rd,2 , R s2 ,

A b i. . . ,AbNAb}

{ANo , Aiidi, A rSi , A Abi} {0.99,1.039,0.96,1.08}

Nftd> Njis 1,2

Na b variable: 1,2,5

N NAb + 5

Uaa 0.6

n ee 0.3

u(0) P(i/(0) = E) = P(i/(0) = A)

z(0) ei

0(0) No

*(0) uniform on [—0.05,0.05]

Monte Carlo runs 1000

number of samples 10001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

A PPEN DIX B: SIMULATION SOFTWARE

This appendix is a compilation of the the MATLAB® source code used for gen­

erating Markov chains, the theoretical prediction of stability boundary, as well and

the simulation results for the three recovery examples in Chapter 4.

B - l G enerating Markov Chains

B - l . l Independent Identically Distributed Process

G en_disc_iid: This program generates independent identically distributed process

for the given distribution IIB and for the given number of samples Numsam.

“/.Here \Pi_E=pe

function N=Gen_disc_iid(pe,Numsam)

N(1,Numsam+l)=0;

rand(’state’,sum(100*clock));

for jj=l:Numsam+l

if unifrnd(0,l)<(l-pe)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

N(jj)=0;

else

N(jj)=l;

end;

end;

B-1.2 First-Order Markov Process

G en_disc_M arkov_first: This function generates a first-order two sta te Markov

process with two states (A,E) for the given transition probability m atrix characterized

by transition probabilities IIAiA, n £ i£ and for the given number of samples Numsam.

The Markov chain is initialized at steady state proabilities.

'/.Here transition probabilities \Pi_{A|A}=paa, \Pi_{E|E}=pee, stationary probabi

function N=Gen_disc_markov_first(paa,pee,Numsam)

N(l,Numsam+l)=0;

pa=((l-pee)/((l-paa)+(l-pee)));

pe=((l-paa)/((l-paa)+(l-pee)));

randC’state’,sum(100*clock));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if unifrnd(0,l)<pa

N(1)=0;

else

N(l)=l;

end;

for jj =2:l:Numsam+l

if N(jj-l)==0

if unifrnd(0,l)<paa

N(jj)=0;

else N(jj)=l;

end;

else

if unifrnd(0,i)<pee

N (jj)—l;

else N(j j)=0;

end;

end;

end;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B-1.3 Second-Order Markov Process

G en_disc_M arkov_second: This function generates a second-order two sta te Markov

process of states (A,E) for the given transition probability m atrix characterized by

transition probabilities H a \a a , H a \a e , ^ a \e a and H a \e e and for the given number of

samples Numsam. The Markov chain is initialized at steady-state probabilities.

'/.Here $\Pi_{A| AA}=paaa$, $\Pi_{Al AE}=paae$, $\Pi_{A I EA}=paea$ and $\Pi_{A|EE>

function N=Gen_disc_markov_second(paaa,paae,paea,paee,Numsam)

N(1,Numsam+1)=0;

Pi_I=[paaa paae 0 0;

0 0 paea paee;

1-paaa 1-paae 0 0;

0 0 1-paea 1-paee;];

p=null(Pi_I-eye(4));

p=p/sum(p);

randf’state’,sum(100*clock));

Uinit=unifrnd(0,1);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

if Uinit<p(l)

N(2)=0; N(1)=0;

elseif Uinit <p(l)+p(2)

N(2)=0; N(l)=l;

elseif Uinit < p(l)+p(2)+p(3)

N(2)=l ; N(1)=0;

else

N(2)=l; N(l)=l;

end;

for jj=3:1:Numsam+l

if N (j j—1)==0 & N(jj-2)==0

if unifrnd(0,l)<paaa

N(jj)=0;

else N(jj)=l;

end;

elseif N(jj-1)==0 & N(jj-2)==1

if unifrnd(0,l)<paae

N(j j)=0;

else N(j j)=1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

end;

elseif N(jj-l)==l & N(jj-2)==0

if unifrnd(0,l)<paea

N(j j)=0;

else N(jj)=l;

end;

else

if unifrnd(0,l)<paee

N(j j)=0;

else N(jj)=l;

end;

end;

end;

B-2 Recovery Exam ple 1

B-2.1 Program Code for Theoretical Prediction

p lo t_srscrip tA O : This program produces plots for the Recovery Example 1 when

M r = 2 , H r v / s spectral radius of Ao for the i.i.d. input.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

"/.System parameter in the normal mode

A_0=0.999;

/.System parameter in the recovery mode

A_1=1/A_0;

"/.Transition matrices for the finite-state machine

S_l= Cl 0 1;

0 0 0 ;

0 1 0];

S_2=[0 0 1;

1 0 0 ;

0 1 0];

"/.Varying paramaeter \Pi_{E|E}

pi_r_l=0.05:0.05:1;

sz=size(pi_r_ll,2);

for jj=l:sz;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

Pi_I=[l-pi_r_l(jj) pi_r_l(jj); l-pi_r_l(jj) pi_r_l(jj)];

Pi_IO=kron(Pi_I, eye(3))*blkdiag(S_l,S_2);

sA0=kron(Pi_I0,eye(l))*blkdiag(A_0'‘2>A_l“2,A_1‘2,A_0'‘2,A_1"2,A_l“2);

sr_scriptAl(jj)=max(abs(eig(sAO)));

end;

'/.Plot \Pi_{E|E) v/s spectralradius (scriptAl) ;

plot(pi_r_ll,sr_scriptAl, ’r*’);

title(strcat(’ Recovery Example 1’, ’ A_0= num2str(A_0),

’ A_i= num2str(A_l), ’\Pi_{aa}= ’,num2str(pi_r_00)));

plot_srscriptBl: This program plots variation in IIe v / s spectral radius of B \, when

input is i.i.d..

"/.Fix \Pi_{A|A}=0.45

/(System parameter in the normal mode

A_0=0.999;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

/.System parameter in the recovery mode

A_1=1/A_0;

’/.Transition matrices for the finite-state machine

S_l=[l 0 1;

0 0 0 ;

0 1 0] ;

S_2= [0 0 1;

1 0 0 ;

0 1 0];

’/.Varying paramaeter \Pi_{E|E>

pi_r_l=0.05:0.05:1;

pi_r_0=l-pi_r_ll;

sz=size(pi_r_l,2);

for jj=l:sz;

Pi_I=[pi_r_0 pi_r_l(jj); pi_r_0 pi_r_l(jj)];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

Pi_0=(l-pi_r_l(jj))*S_l+pi_r_ll(jj)*S_2;

p lo t_ s rsc r ip tA l: This program produces plots for the Recovery Example 1, TIe \e

v /s spectral radius of A i, corresponding to jump-linear system driven by cross-chain

process p = (u, 6), when input is a first-order Markov process.

%Fix \Pi_{A|A A}=0.45

pi_r_00=0.45;

•/.System parameter in the normal mode

A_0=0.999;

•/.System parameter in the recovery mode

A_1=1/A_0;

"/.State transition matrices

S_l=[l 0 1; 0 0 0; 0 1 0]; S_2=[0 0 1; 1 0 0; 0 1 0];

•/.Vary probability \Pi{A|E E>, \Pi{E|E E>

pi_r_ll=0.05:0.05:1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

sz=size(pi_r_ll,2);

for jj=l:sz;

Pi_I=[pi_r_00 l-pi_r_ll(jj); l-pi_r_00 pi_r_ll(jj)];

Pi_IO=kron(Pi_I, eye(3))*blkdiag(S_l,S_2);

sAl=(kron(Pi_IO, eye(l)))*blkdiag(A_0"2, A_l~2, A_l~2, A_0‘2, A_l"2, A_l“2)

sr_scriptAl(jj)=max(abs(eig(sAl)));

end;

%Plot pi_{E|E) v/s spectralradius(scriptAl);

plot(pi_r_ll,sr_scriptAl, 'r*’);

title(strcat(JSimplified Recovery Example’, ’ A_0= ’,

num2str(A_0), * A_l= num2str(A_l), ’\Pi_{aa>= ’,num2str(pi_r_00)));

p lo t_ s rsc rip tB 2 : This program produces plots for the Recovery Example 1 when the

input is a first-order Markovian, XIee v / s spectral radius of B2 for fixed 11̂ ,a = 0.45,

when input is first-order Markov process.

‘/.Fix \Pi_{A|A>=0.45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

p i_ r _ 0 0 = 0 .4 5 ;

A_0=0.999; A_1=1/A_0;

"/.Vary \Pi_{E|E>=0.45

pi_r_ll=0.05:0.05:1;

sz=size(pi_r_ll,2);

for jj=l:sz;

Pi_I=[pi_r_00 l-pi_r_ll(jj);

l-pi_r_00 pi_r_ll(jj)];

Pi_02_ll=zeros(5,5);

Pi_02_12=zeros(5,5);

Pi_02_13=zeros(5,5);

Pi_02_14=zeros(5,5);

Pi_02_15=zeros(5,5);

Pi_02_21=zeros(5,5);

Pi_02_22=zeros(5,5);

Pi_02_23=zeros(5,5);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

Pi_02_24=zeros(5,5);

Pi_02_25=zeros(5,5);

Pi_02_31=zeros(5,5);

Pi_02_32=zeros(5,5);

Pi_02_33=zeros(5,5);

Pi_02_34=zeros(5,5);

Pi_02_35=zeros(5,5);

Pi_02_41=zeros(5,5);

Pi_02_42=zeros(5,5);

Pi_02_43=zeros(5,5);

Pi_02_44=zeros(5,5);

Pi_02_45=zeros(5,5);

Pi_02_51=zeros(5,5);

Pi_02_52=zeros(5,5);

Pi_02_53=zeros(5,5);

Pi_02_54=zeros(5,5);

Pi_02_55=zeros(5,5);

%Pi_02_ll(l,:)=[P(xl|xl,xl) P(xl|xl,x2) P(xl|xl,x3)

,/.P(xl|xl,x4) P(xl|xl,x5)] ;

Pi_02_ll(l,:)=[pi_r_00 0 pi_r_00 pi_r_00 0] ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

7.Pi_02_21(2, :)=[P(x2|xl,xl) P(x2|xl,x2) P(x2|xl,x3)

"/,P(x2|xl,x4) P(x2|xl,x5)] ;

Pi_02_21(l,:)=[l-pi_r_00 0 l-pi_r_00 l-pi_r_00 0] ;

y.Pi_02_31(3, :) = [P(x3|xl,xl) P(x3|xl,x2) P(x3|xl,x3)

y,P(x3|xl,x4) P(x3|xl,x5)] ;

Pi_02_31(l,:)=[0 0 0 0 0] ;

y.Pi_02_41(l, :) = [P(x4|xl,xl) P(x4|xl,x2) P(x4|xl,x3)

y,P(x4|xl,x4) P(x4|xl,x5)] ;

Pi_02_41(l,:)=[0 0 0 0 0] ;

%Pi_02_51(l,:)=[P(x5|xl,xl) P(x5|xl,x2) P(x5|xl,x3)

%P(x5|xl,x4) P(x5|xl,x5)] ;

Pi_02_51(l,:)=[0 0 0 0 0] ;

y.Pi_02_12(2, :) = [P(xl |x2,xl) P(xl|x2,x2) P(xl|x2,x3)

%P(xl|x2,x4) P(xl|x2,x5)] ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

Pi_02_12(2, :)= [0 0 0 0 0] ;

,/,Pi_02_22(2, :) = [P(x2|x2,xl) P(x2|x2,x2) P(x2|x2,x3)

°/.P (x21 x2, x4) P (x21 x2, x5)] ;

Pi_02_22(2,:)=[0 0 0 0 0];

°/„Pi_02_32(2, :) = [P(x3|x2,xl) P(x3|x2,x2) P(x3|x2,x3)

%P(x3Ix2,x4) P(x3|x2,x5)];

Pi_02_32(2,:)=[l-pi_r_ll(jj) 0 0 0 l-pi_r_ll(jj)];

%Pi_02_42(2,:)=[P(x4|x2,xl) P(x4|x2,x2) P(x4|x2,x3)

°/„P (x41 x 2 , x4) P (x41 x2, x5)] ;

Pi_02_42(2,:) = Epi_r_11(jj) 0 0 0 pi_r_ll(jj)];

'/.Pi_02_52(2, :) = [P(x5|x2,xl) P(x5|x2,x2) P(x5|x2,x3)

'/0P(x51x2,x4) P(x5|x2,x5)] ;

Pi_02_52(2,:)=[0 0 0 0 0];

”/.Pi_02_13(3, :) = [P(xl|x3,xl) P(xl|x3,x2) P(xl|x3,x3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

%P(xlIx3,x4) P(xl1x3,x5)];

Pi_02_13(3,:)=[0 pi_r_00 0 0 0];

#/.Pi_02_23(3, :) = [P(x2|x3,xl) P(x2|x3,x2) P(x2|x3,x3)

*/,P (x21 x3, x4) P (x21 x3, x5)] ;

Pi_02_23(3,:)=[0 0 0 0 0];

’/.Pi_02_33(3, :) = [P(x3|x3,xl) P(x3|x3,x2) P(x3|x3,x3)

7.P (x31 x3, x4) P (x31 x3, x5)] ;

Pi_02_33(3,:)=[0 0 0 0 0];

%Pi_02_43(3,:)=[P(x4|x3,xl) P(x4|x3,x2) P(x4|x3,x3)

%P(x4|x3,x4) P(x4|x3,x5)];

Pi_02_43(3,:)=[0 0 0 0 0];

%Pi_02_53(3,:)=[P(x5|x3,xl) P(x5|x3,x2) P(x5|x3,x3)

°/.P(x5|x3,x4) P(x51x3,x5)] ;

Pi_02_53(3,:)=[0 l-pi_r_00 0 0 0];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

%Pi_02_14(4,:)=[P(xl|x4,xl) P(xl|x4,x2) P(xl|x4,x3)

%P(xl|x4,x4) P(xlIx4,x5)];

Pi_02_14(4,:)=[0 l-pi_r_ll(jj) 0 0 0] ;

%Pi_02_24(4,:)=[P(x2|x4,xl) P(x2|x4,x2) P(x2|x4,x3)

%P(x2Ix4,x4) P(x2Ix4,x5)];

Pi_02_24(4,:)=[0 0 0 0 0];

#/.Pi_02_34(4, :) = [P(x3|x4,xl) P(x3|x4,x2) P(x3|x4,x3)

‘/.P (x31 x4, x4) P(x3Ix4,x5)];

Pi_02_34(4,:)= [0 0 0 0 0] ;

y.Pi_02_44(4,:) = [P(x4|x4,xl) P(x4|x4,x2) P(x4|x4,x3)

*/,P (x41 x4, x4) P (x41 x4, x5)] ;

Pi_02_44(4,:)=[0 0 0 0 0] ;

‘/.Pi_02_54(4, :)=[P(x5|x4,xl) P(x5|x4,x2) P(x5|x4,x3)

°/.P (x51 x4, x4) P (x51 x4, x5)] ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

Pi_02_54(4,:)=[0 pi_r_ll(jj) 0 0 0];

%Pi_02_15(5,:)=[P(xl|x5,xl) P(xl|x5,x2) P(xl|x5,x3)

7,P (xl I x5, x4) P (xl | x5, x5)] ;

Pi_02_15(5,:)=[0 0 0 0 0];

7oPi_02_25(5, :) = [P(x2|x5,xl) P(x2|x5,x2) P(x2|x5,x3)

J/.P (x21 x5, x4) P (x21 x5, x5)] ;

Pi_02_25(5,:)=[0 0 pi_r_ll(jj) pi_r_ll(jj) l-pi_r_00];

%Pi_02_35(5,:)=[P(x3|x5,xl) P(x3|x5,x2) P(x3|x5,x3)

'/.P (x31 x5, x4) P (x31 x5, x5)] ;

Pi_02_35(5,:)=[0 0 0 0 0];

*/,Pi_02_45(5, :) = [P(x4|x5,xl) P(x4|x5,x2) P(x4|x5,x3)

7.P (x41 x5, x4) P (x41 x5, x5)] ;

Pi_02_45(5,:)=[0 0 0 0 0];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

‘/oPi_02_55(, :) = [P(x5|x5,xl) P(x5|x5,x2) P(x5|x5,x3)

%P(x5|x5,x4) P(x5Ix5,x5)];

Pi_02_55(5,:)=[0 0 l-pi_r_ll(jj) l-pi_r_ll(jj) pi_r_00];

Pi_02= [Pi_02_ll Pi_02_12 Pi_02_13 Pi_02_14 Pi_02_15;

Pi_02_21 Pi_02_22 Pi_02_23 Pi_02_24 Pi_02_25;

Pi_02_31 Pi_02_32 Pi_02_33 Pi_02_34 Pi_02_35;

Pi_02_41 Pi_02_42 Pi_02_43 Pi_02_44 Pi_02_45;

Pi_02_51 Pi_02_52 Pi_02_53 Pi_02_54 Pi_02_55];

sB2=(kron(Pi_02, eye(l)))*blkdiag(eye(5)*A_0~2, eye(5)*A_l''2,

eye(5)*A_l‘2, eye(5)*A_l~2, eye(5)*A_0~2);

veceig=abs(eig(sB2));

veceig(find(abs(eig(sB2))>2e-8))

sr_scriptB2 Cjj)=max(abs(eig(sB2)));

end;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

"/.Plot pi_{eta_2,eta_2) v/s spectralradius(scriptB2);

plot(pi_r_ll,sr_scriptB2, ’ +

p lo t_ srsc rip tA 2 : This program takes second-order transition probabilities as input,

in the form of its first-order representation (as a stochastic m atrix) and computes

spectral radius of A i for the Recovery Example 1.

paaa=0.7;

paae=0.4;

’/.‘/.Fix p_{\eta21 \eta2, \etal}=0.45

a=0.45;

‘/.Vary probability \Pi{A|E E}, \Pi{E|E E}

b=0.05:0.05:1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

sz= s ize (b ,2) ;

'/.System parameter in the normal mode

A_0=0.999;

'/.System parameter in the recovery mode

A_1=1/A_0;

'/.Transition matrices for the finite-state machine

S_l= Cl 0 1; 0 0 0; 0 1 0];

S_2=[0 0 1; 1 0 0; 0 1 0];

for jj=l:sz;

"/.Transition probability matrix for the second-order Markov process

Pi_I=[paaa paae 0 0;

0 0 a l-b(jj);

1-paaa 1-paae 0 0;

0 0 1-a b(jj);]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

Pi_IO=kron(Pi_I, eye(3))*blkdiag(S_l,S_2,S_l,S_2);

sA2=(kron(Pi_I0, eye(l)))*blkdiag(A_0~2, A_l~2, A_l~2, A_0“2J

A_l~2, A_1~2,A_(T2, A_l~2, A_1“2,A_(T2, A_1‘2, A_l~2);

sr_scriptA2(j j)=max(abs(eig(sA2)));

end;

plot(b,sr_scriptA2, ’r*’);

title(strcat(’Recovery Example', ’ A_0=

num2str(A_0), ’ A_l= num2str(A_l), ’\Pi_{aa}= ’,num2str(a)));

plot_srscriptB3: This program produces plots for the Recovery Example 1, when

the input is a second-order Markov process, for TiE\EE v /s spectral radius of B 3 , given

p i A \ A A = 0 .7 , p i A \ A E = 0.4 and p i A \ E A = 0.45.

pi_000=0.7;

pi_001=0.4;

pi_010=0.45;

pi_100=0.3;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

p i_ 1 0 1 = 0 .6 ;

pi_110=0.55;

A_0=0.999; A_1=1/A_0;

b=0.05:0.05:1;

sz=size(b,2);

for jj=l:sz

pi_011=l-b(jj);

pi_lll=b(jj);

Pi_I= [pi_000 pi_001 0 0;

0 0 pi_010 pi_011;

pi_100 pi_101 0 0;

0 0 pi_110 pi_lll];

Pi_03_lll=zeros(5,5);

Pi_03_112=zeros(5,5);

Pi_03_113=zeros(5,5);

Pi_03_114=zeros(5,5);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

P i_ 0 3 _ 1 1 5 = z e r o s (5 ,5) ;

Pi_03_121=zeros(5,5);

Pi_03_122=zeros(5,5);

Pi_03_123=zeros(5,5);

Pi_03_124=zeros(5,5);

Pi_03_125=zeros(5,5);

Pi_03_131=zeros(5,5);

Pi_03_132=zeros(5,5);

Pi_03_133=zeros(5,5);

Pi_03_134=zeros(5,5);

Pi_03_135=zeros(5,5);

Pi_03_141=zeros(5,5);

Pi_03_142=zeros(5,5);

Pi_03_143=zeros(5,5);

Pi_03_144=zeros(5,5);

Pi_03_145=zeros(5,5);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

Pi_03_151=zeros(5,5) ;

Pi_03_152=zeros(5,5);

Pi_03_153=zeros(5,5);

Pi_03_154=zeros(5,5);

Pi_03_155=zeros(5,5) ;

Pi_03_211=zeros(5,5);

Pi_03_212=zeros(5,5);

Pi_03_213=zeros(5,5);

Pi_03_214=zeros(5,5);

Pi_03_215=zeros(5,5);

Pi_03_221=zeros(5,5);

Pi_03_222=zeros(5,5);

Pi_03_223=zeros(5,5);

Pi_03_224=zeros(5,5);

Pi_03_225=zeros(5,5);

Pi_03_231=zeros(5,5);

Pi_03_232=zeros(5,5);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

Pi_03_233=zeros(5,5);

Pi_03_234=zeros(5,5);

Pi_03_235=zeros(5,5);

Pi_03_241=zeros(5,5);

Pi_03_242=zeros(5,5);

Pi_03_243=zeros(5,5);

Pi_03_244=zeros(5,5);

Pi_03_245=zeros(5,5);

Pi_03_251=zeros(5,5);

Pi_03_252=zeros(5,5) ;

Pi_03_253=zeros(5,5);

Pi_03_254=zeros(5,5);

Pi_03_255=zeros(5,5);

Pi_03_311=zeros(5,5);

Pi_03_312=zeros(5,5);

Pi_03_313=zeros(5,5);

Pi_03_314=zeros(5,5);

Pi_03_315=zeros(5,5);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

Pi_03_321=zeros(5,5);

Pi_03_322=zeros(5,5);

Pi_03_323=zeros(5,5);

Pi_03_324=zeros(5,5);

Pi_03_325=zeros(5,5);

Pi_03_331=zeros(5,5);

Pi_03_332=zeros(5,5);

Pi_03_333=zeros(5,5);

Pi_03_334=zeros(5,5);

Pi_03_335=zeros(5,5);

Pi_03_341=zeros(5,5);

Pi_03_342=zeros(5,5);

Pi_03_343=zeros(5,5);

Pi_03_344=zeros(5,5);

Pi_03_345=zeros(5,5);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pi_03_351=zeros(5,5);

Pi_03_352=zeros(5,5);

Pi_03_353=zeros(5,5);

Pi_03_354=zeros(5,5);

Pi_03_355=zeros(5,5);

Pi_03_411=zeros(5,5);

Pi_03_412=zeros(5,5);

Pi_03_413=zeros(5,5);

Pi_03_414=zeros(5,5);

Pi_03_415=zeros(5,5) ;

Pi_03_421=zeros(5,5);

Pi_03_422=zeros(5,5);

Pi_03_423=zeros(5,5);

Pi_03_424=zeros(5,5);

Pi_03_425=zeros(5,5);

Pi_03_431=zeros(5,5);

Pi_03_432=zeros(5,5);

Pi_03_433=zeros(5,5);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pi_03_434=zeros(5,5);

Pi_03_435=zeros(5,5);

Pi_03_441=zeros(5,5);

Pi_03_442=zeros(5,5);

Pi_03_443=zeros(5,5);

Pi_03_444=zeros(5,5);

Pi_03_445=zeros(5,5);

Pi_03_451=zeros(5,5);

Pi_03_452=zeros(5,5);

Pi_03_453=zeros(5,5) ;

Pi_03_454=zeros(5,5);

Pi_03_455=zeros(5,5);

Pi_03_511=zeros(5,5);

Pi_03_512=zeros(5,5);

Pi_03_513=zeros(5,5);

Pi_03_514=zeros(5,5);

Pi_03_515=zeros(5,5);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

Pi_03_521=zeros(5,5);

Pi_03_522=zeros(5,5);

Pi_03_523=zeros(5,5);

Pi_03_524=zeros(5,5);

Pi_03_525=zeros(5,5);

Pi_03_531=zeros(5,5);

Pi_03_532=zeros(5,5);

Pi_03_533=zeros(5,5);

Pi_03_534=zeros(5,5);

Pi_03_535=zeros(5,5);

Pi_03_541=zeros(5,5);

Pi_03_542=zeros(5,5);

Pi_03_543=zeros(5,5);

Pi_03_544=zeros(5,5);

Pi_03_545=zeros(5,5);

Pi_03_551=zeros(5,5);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

P i_ 0 3 _ 5 5 2 = z e r o s (5 ,5) ;

Pi_03_553=zeros(5,5);

Pi_03_554=zeros(5,5);

Pi_03_555=zeros(5,5);

I Pi_03_lll(l,:)=[P(xl|xl,xl,xl) P(xl|xl,xl,x2) P(xl|xl,xl,x3)

'/, P(xl |xl,xl,x4) P(xl|xl,xl,x5)3 ;

Pi_03_lll(l,:)=[pi_000 0 pi_000 pi_000 0] ;

%Pi_03_112(2,:)=[P(xl|xl,x2,xl) P(xl|xl,x2,x2) P(xl|xl,x2,x3)

%P(xl|xl,x2,x4) P(xl|xl,x2,x5)] ;

Pi_03_112(2,:)=[0 0 0 0 0] ;

7«Pi_03_lll(l, 11:15) = [P(xl |xl,x3,xl) P(xl |xl,x3,x2) P(xl |xl,x3,x3)

y.P(xl|xl,x3,x4) P(xl |xl,x3,x5)] ;

Pi_03_113(3,:)=[0 pi_000 0 0 0];

%Pi_03_lll(l,16:20)= [P(xl|xl,x4,xl) P(xl|xl,x4,x2) P(xl|xl,x4,x3)

’/.P(xl |xl,x4,x4) P(xl |xl,x4,x5)] ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

P i_ 0 3 _ 1 1 4 (4 ,:)= [0 p i_ 0 0 1 0 0 0] ;

y.Pi_03_lll (1,21:25) = [P(xl |xl ,x5,xl) P(xl|xl,x5,x2) P(xl |xl ,x5,x3)

'/.P(xl Ixl,x5,x4) P(xl|xl,x5,x5)] ;

Pi_03_115(5,:)=[0 0 0 0 0] ;

°/.Pi_03_121 (2,26:30) = [P(xl Ix2,xl,xl) P(xl |x2,xl,x2) P(xl|x2,xl,x3)

%P(xl|x2,xl,x4) P(xl|x2,xl,x5)] ;

Pi_03_121(l,:)=[0 0 0 0 0] ;

%Pi_03_121(2,:)=[P(xl|x2,x2,xl) P(xlIx2,x2,x2) P(xlIx2,x2,x3)

“/.P(xl Ix2,x2,x4) P(xl Ix2,x2,x5)] ;

Pi_03_122(2,:)=[0 0 0 0 0] ;

y,Pi_03_121 (3,:) = [P(xl |x2,x3,xl) P(xl Ix2,x3,x2) P(xl Ix2,x3,x3)

°/.P(xlIx2,x3,x4) P(xl|x2,x3,x5)] ;

Pi_03_123(3,:)=[0 0 0 0 0] ;

y.Pi_03_121(4,:) = [P(xl |x2,x4,xl) P(xl Ix2,x4,x2) P(xl Ix2,x4,x3)

y.P(xl|x2,x4,x4) P(xl Ix2,x4,x5)] ;

Pi_03_124(4,:)=[0 0 0 0 0] ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

%Pi_03_121(5,:)=[P(xl|x2,x5,xl) P(xlIx2,x5,x2) P(xlIx2,x5,x3)

%P(xlIx2,x5,x4) P(xl|x2,x5,x5)] ;

Pi_03_125(5,:)=[0 0 0 0 0] ;

7.Pi_03_131(l, :)=[P(xl|x3,xl,xl) P(xl|x3,xl,x2) P(xl|x3,xl,x3)

%P(xl|x3,xl,x4) P(xl|x3,xl,x5)] ;

Pi_03_131(l,:)=[0 0 0 0 0] ;

% Pi_03_132(2,:)=[P(xl|x3,x2,xl) P(xl|x3,x2,x2) P(xlIx3,x2,x3)

"/,P(xl Ix3,x2,x4) P(xl Ix3,x2,x5)] ;

Pi_03_132(2,:)=[pi_001 0 0 0 pi_001] ;

7. Pi_03_133(3, :) = [P(xl|x3,x3,xl) P(xl Ix3,x3,x2) P(xl Ix3,x3,x3)

7.P(xlIx3,x3,x4) P(xl|x3,x3,x5)] ;

Pi_03_133(3,:)=[0 0 0 0 0] ;

7. Pi_03_134(4,:)=[P(xl|x3,x4,xl) P(x3|x3,x4,x2) P(x3|x3,x4,x3)

7.P(x3|x3,x4,x4) P(x3|x3,x4,x5)] ;

Pi_03_134(4,:)=[0 0 0 0 0] ;

7. Pi_03_135(5, :) = [P(xl|x3,x5,xl) P(x3|x3,x5,x2) P(x3|x3,x5,x3)

7.P(x31x3,x5,x4) P(x3|x3,x5,x5)] ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

P i_ 0 3 _ 1 3 5 (5 ,:)= [0 0 0 0 0] ;

7. Pi_03_141(l,:)=[P(xl|x4,xl,xl) P(xl|x4,xl,x2) P(xl|x4,xl,x3)

%P(xl|x4,xl,x4) P(xl|x4,xl,x5)] ;

Pi_03_141(l,:)=[0 0 0 0 0] ;

7. Pi_03_142(2,:)=[P(xl|x4,x2,xl) P(xlIx4,x2,x2) P(xlIx4,x2,x3)

°/.P(xl Ix4,x2,x4) P(xl |x4,x2,x5)] ;

Pi_03_142(2,:)=[pi_011 0 0 0 pi_011] ;

7. Pi_03_143(3,:)=[P(xlIx4,x3,xl) P(xlIx4,x3,x2) P(xlIx4,x3,x3)

*/.P(xl Ix4,x3,x4) P(xl | x4,xl,x5)] ;

Pi_03_143(3,:)=[0 0 0 0 0] ;

7. Pi_03_144(4, :) = [P(xl|x4,x4,xl) P(xl Ix4,x4,x2) P(xl Ix4,x4,x3)

%P(xl|x4,x4,x4) P(xlIx4,x4,x5)] ;

Pi_03_144(4,:)=[0 0 0 0 0] ;

7. Pi_03_145(5,:) = [P(xl |x4,x5,xl) P(xl Ix4,x5,x2) P(xl Ix4,x5,x3)

7.P(xl Ix4,x5,x4) P(xl |x4,x5,x5)] ;

Pi_03_145(5,:)=[0 0 0 0 0] ;

7. Pi_03_151(l, :) = [P(xl|x5,xl,xl) P(xl |x5,xl,x2) P(xl |x5,xl,x3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

%P(xlIx5,xl,x4) P(xl|x5,xl,x5)] ;

Pi_03_15i(l,:)=[0 O O O O] ;

"/. Pi_03_152(2, :) = [P(xl|x5,x2,xl) P(xl Ix5,x2,x2) P(xlIx5,x2,x3)

%P(xl|x5,x2,x4) P(xlIx5,x2,x5)] ;

Pi_03_152(2,:)=[0 0 0 0 0] ;

*/. Pi_03_153(3,:) = [P(xl |x5,x3,xl) P(xl Ix5,x3,x2) P(xl |x5,x3,x3)

y.P(xl|x5,x3,x4) P(xl Ix5,x3,x5)] ;

Pi_03_153(3,:)=[0 0 0 0 0] ;

% Pi_03_154(4,:)=[P(xlIx5,x4,xl) P(xlIx5,x4,x2) P(xl|x5,x4,x3)

%P(xlIx5,x4,x4) P(xlIx5,x4,x5)] ;

Pi_03_154(4,:)=[0 0 0 0 0] ;

% Pi_03_155(5,:)=[P(xl|x5,x5,xl) P(xlIx5,x5,x2) P(xlIx5,x5,x3)

y.P(xl|x5,x5,x4) P(xl Ix5,x5,x5)] ;

Pi_03_155(5,:)=[0 0 0 0 0] ;

% Pi_03_211(l,:)= [P(x2|xl,xl,xl) P(x2|xl,xl,x2) P(x2|xl,xl,x3)

y.P(x2|xl,xl,x4) P(x2|xl,xl,x5)] ;

Pi_03_211(l,:)=[pi_100 0 pi_100 pi_100 0] ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

% Pi_03_212(2,:)= [P(x2|xl,x2,xl) P(x2|xl,x2,x2) P(x2|xl,x2,x3)

7,P(x2|xl,x2,x4) P(x2|xl,x2,x5)] ;

Pi_03_212(2,:)=[0 0 0 0 0] ;

% Pi_03_213(3,:)= [P(x2|xl,x3,xl) P(x2|xl,x3,x2) P(x2|xl,x3,x3)

%P(x2|xl,x3,x4) P(x2|xl,x3,x5)] ;

Pi_03_213(3,:)=[0 pi_100 0 0 0];

7. Pi_03_214(4,:)= [P(x2|xl,x4,xl) P(x2|xl,x4,x2) P(x2|xl,x4,x3)

7.P(x2|xl,x4,x4) P(x2|xl,x4,x5)] ;

Pi_03_214(4,:)=[0 pi_101 0 0 0];

% Pi_03_215(5,:)= [P(x2|xl,x5,xl) P(x2|xl,x5,x2) P(x2|xl,x5,x3)

7.P (x21 xl, x5, x4) P(x2|xl,x5,x5)] ;

Pi_03_215(5,:)=[0 0 0 0 0] ;

7. Pi_03_253(3,:)= [P(x2|x5,x3,xl) P(x2|x5,x3,x2) P(x2|x5,x3,x3)

7.P(x2|x5,x3,x4) P(x2|x5,x3,x5)] ;

Pi_03_253(3,:) = [0 pi_110 0 0 0];

7. Pi_03_254(4,:)= [P(x2|x5,x4,xl) P(x2|x5,x4,x2) P(x2|x5,x4,x3)

7.P(x 2 | x 5 , x4 , x4) P (x 2 | x 5 , x4 , x 5)] ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

P i_ 0 3 _ 2 5 4 (4 ,:) = [0 p i . l l l 0 0 0] ;

7. Pi_03_253(3,:)= [P(x2|x5,x5,xl) P(x2|x5,x5,x2) P(x2|x5,x5,x3)

7.P(x21x5,x5,x4) P(x2|x5,x5,x5)] ;

Pi_03_255(5,:)=[0 0 pi_101 pi_101 pi_100];

7. Pi_03_321(l,:)= [P(x3|x2,xl,xl) P(x3|x2,xl,x2) P(x3|x2,xl,x3)

7.P(x3|x2,xl,x4) P(x3|x2,xl,x5)] ;

Pi_03_321(l,:)=[pi_010 0 pi_010 pi_010 0];

7. Pi_03_325(l,:)= [P(x3|x2,x5,xl) P(x3|x2,x5,x2) P(x3|x2,x5,x3)

7.P(x3|x2,x5,x4) P(x3|x2,x5,x5)] ;

Pi_03_325(5,:) = [0 0 pi_011 pi_011 pi_010];

7. Pi_03_421(l, :)= [P(x4|x2,xl,xl) P(x4|x2,xl,x2) P(x4|x2,xl,x3)

7.P(x4|x2,xl,x4) P(x4|x2,xl,x5)] ;

Pi_03_421(l,:)=[pi_110 0 pi_110 pi_110 0];

7. Pi_03_425(l,:)= [P(x4|x2,xl,xl) P(x4|x2,xl,x2) P(x4|x2,xl,x3)

7.P(x41x2,xl,x4) P(x4|x2,xl,x5)] ;

Pi_03_425(5,:)=[0 0 pi_lll pi_lll pi_110];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

% Pi_03_532(l,:)= [P(x5|x3,x2,xl) P(x5Ix3,x2,x2) P(x35|x3,x2,x3)

%P(x5|x3,x2,x4) P(x5|x3,x2,x5)] ;

Pi_03_532(2,:)=[pi_101 0 0 0 pi_101];

% Pi_03_542(l,:)= [P(x5|x4,x2,xl) P(x5|x4,x2,x2) P(x5|x4,x2,x3)

,/,P(x5|x4,x2,x4) P(x5|x4,x2,x5)] ;

Pi_03_542(2,:)=[pi_lll 0 0 0 pi.lll];

% Pi_03_553(3,:)= [P(x5|x5,x3,xl) P(x5|x5,x3,x2) P(x5Ix5,x3,x3)

*/,P(x51x5,x3,x4) P(x5|x5,x3,x5)] ;

Pi_03_553(3,:)=[0 pi_010 0 0 0];

% Pi_03_554(l,:)= [P(x5|x5,x4,xl) P(x5|x5,x4,x2) P(x5Ix5,x4,x3)

7,P(x5|x5,x4,x4) P(x5|x5,x4,x5)] ;

Pi_03_554(4,:)=[0 pi.Oll 0 0 0];

% Pi_03_555(l,:)= [P(x5|x5,x5,xl) P(x5|x5,x5,x2) P(x5|x5,x5,x3)

%P(x5|x5,x5,x4) P(x5|x5,x5,x5)] ;

Pi_03_555(5,:)=[0 0 pi_001 pi_001 pi_000];

Pi_03_ll=[Pi_03_lll,Pi_03_112,Pi_03_113)Pi_03_114,Pi_03_115];

Pi_03_12=[Pi_03_121,Pi_03_122,Pi_03_123,Pi_03_124,Pi_03_125];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pi_03_13= [Pi_03_131,Pi_03_132,Pi_03_133,Pi_03_134,Pi_03_135];

Pi_03_14=[Pi_03_141,Pi_03_142,Pi_03_143,Pi_03_144,Pi_03_145];

Pi_03_15= [Pi_03_151,Pi_03_152,Pi_03_153,Pi_03_154,Pi_03_155];

Pi_03_21=[Pi_03_211,Pi_03_212,Pi_03_213,Pi_03_214,Pi_03_215];

Pi_03_22=[Pi_03_221,Pi_03_222,Pi_03_223,Pi_03_224,Pi_03_225];

Pi_03_23=[Pi_03_231,Pi_03_232,Pi_03_233,Pi_03_234,Pi_03_235];

Pi_03_24= [Pi_03_241,Pi_03_242,Pi_03_243,Pi_03_244,Pi_03_245];

Pi_03_25= [Pi_03_251,Pi_03_252,Pi_03_253,Pi_03_254,Pi_03_255];

Pi_03_31=[Pi_03_311,Pi_03_312,Pi_03_313,Pi_03_314,Pi_03_315];

Pi_03_32=[Pi_03_321,Pi_03_322,Pi_03_323,Pi_03_324,Pi_03_325];

Pi_03_33=[Pi_03_331,Pi_03_332,Pi_03_333,Pi_03_334,Pi_03_335];

Pi_03_34=[Pi_03_341,Pi_03_342,Pi_03_343,Pi_03_344,Pi_03_345];

Pi_Q3_35=[Pi_03_351,Pi_03_352,Pi_03_353,Pi_03_354,Pi_03_355];

Pi_03_41=[Pi_03_411,Pi_03_412,Pi_03_413,Pi_03_414,Pi_03_415];

Pi_03_42=[Pi_03_421,Pi_03_422,Pi_03_423,Pi_03_424,Pi_03_425];

Pi_03_43=[Pi_03_431,Pi_03_432,Pi_03_433,Pi_03_434,Pi_03_435];

Pi_03_44= [Pi_03_441,Pi_03_442,Pi_03_443,Pi_03_444,Pi_03_445];

Pi_03_45=[Pi_03_451,Pi_03_452,Pi_03_453,Pi_03_454,Pi_03_455];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

Pi_03_51= [Pi_03_511,Pi_03_512,Pi_03_513,Pi_03_514,Pi_03_515];

Pi_03_52= [Pi_03_521,Pi_03_522,Pi_03_523,Pi_03_524,Pi_03_525];

Pi_03_53=[Pi_03_531,Pi_03_532)Pi_03_533)Pi_03_534,Pi_03_535];

Pi_03_54=[Pi_03_541,Pi_03_542,Pi_03_543,Pi_03_544,Pi_03_545];

Pi_03_55= [Pi_03_551,Pi_03_552,Pi_03_553,Pi_03_554,Pi_03_555];

Pi_03=[blkdiag(Pi_03_ll, Pi_03_12, Pi_03_13, Pi_03_14, Pi_03_15);

blkdiag(Pi_03_21, Pi_03_22, Pi_03_23, Pi_03_24, Pi_03_25);

blkdiag(Pi_03_31, Pi_03_32, Pi_03_33, Pi_03_34, Pi_03_35);

blkdiag(Pi_03_41, Pi_03_42, Pi_03_43, Pi_03_44, Pi_03_45);

blkdiag(Pi_03_51, Pi_03_52, Pi_03_53, Pi_03_54, Pi_03_55)];

m(jj)=max(max(Pi_03))

M(jj)= max(max(abs(eig(Pi_03))));

nzs(jj)= size(find(Pi_03),1);

sB3=(kron(Pi_03, eye(l)))*blkdiag(eye(25)=i<A_0~2, eye(25)*A_l~2,

eye(25)*A_l',2J eye(25)*A_l~2, eye(25)*A_0~2) ;

sr_scriptB3(jj)=max(abs(eig(sB3,’nobalance')));

end;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

plot(b,sr_scriptB3, ’k+'l;

hold on

B-2.2 Program Code for Monte Carlo Simulation

sim_recovery_exl: This code simulates Recovery Example 1, when the input is an

i.i.d. process, a first-order Markov process or a second-order Markov process. Number

of Monte Carlo runs M=1000, Number of sam ples=10001.

sim_recovery_exl(outputfname)

M=1000;

A_0=0.999; A_1=1/A_0;

’/."/.Number of Samples

Numsam=10001;

S_l=[l 0 1; 0 0 0; 0 1 0];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

S_2=[0 0 1; 1 0 0; 0 1 0];

%i. i .d .

order=0;

Pi_I=[0.55 0.55; 0.45 0.45];

runsim_exl(order,Pi_I);

*/»first-order Markov

order=l;

Pi_I=[0.45 0.7; 0.55 0.3];

runsim_exl(order,Pi_I);

paaa=0.7;

paae=0.4;

paea=0.45;

paee=0.2;

'/.second-order Markov

°/,order=2;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

P i_ I= [p a a a paae 0 0;

0 0 paea paee;

1-paaa 1-paae 0 0;

0 0 1-paea 1-paee];

runsim_exl(order,Pi_I);

function runsim_exl(order,Pi_I)

U Time counters

tickl = 0;

tick2 = 0;

ql=zeros(l,Numsam+l);

Ql=zeros(l,Numsam+l);

x=zeros(l,Numsam+l);

x0=0.3;

A_0=0.999; A_1=1/A_0;

for i=l:M

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

p_Ald)=0;

p_A2(i)=0;

p_A3(i)=0;

p_El(i)=0;

p_E2(i)=0;

p_E3(i)=0;

p_A(i)=0;

p_E(i)=0;

tic;

randdstate’,sum(100*clock));

% Generate state vector initial conditions

x(l)=unifrnd(l*norm(xO),2*norm(x0),size(xO,1),size(x0,2));

% Accumulate first-order moment

ql(l) = ql(l) + norm(x(l));

Q1(1) = Ql(l) + norm(x(l)'*x(l));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

theta=zeros(l ,Numsam+l);

‘/.Generate i.i.d. process for given distribution Π

If order==0

N=Gen_disc_iid(Pi_I(2,2),Numsam);

elseif order==l

N=Gen_disc_Markov_first(Pi_I(l,l),Pi_I(2,2).Numsam);

else

N=Gen_disc_Markov_second(Pi_I(l,l),Pi_I(l,2),Pi_I(2,3),Pi_I(2,4).Numsam);

end;

U=unifrnd(0,3);

if U<1

theta(l)=l;

A=A_0;

elseif 1<U<2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

theta(l)=2;

A=A_1;

elseif 2<U<3

theta(l)=3;

A=A_1;

end;

rand(’state',sum(100*clock));

for k=l:Numsam

%Simulate closed-loop dynamics

x(k+l)=A*x(k);

if N(k)==0

p_A(i)=p_A(i)+l;

else

p_E(i)=p_E(i)+l;

end;

if N(k)==0 & theta(k)==l

theta(k+l)=l;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

A=A_0;

p_Al(i)=p_Al(i)+l;

elseif N(k)==0 k theta(k)==2

theta(k+l)=3;

A=A_1;

p_A2(i)=p_A2(i)+l;

elseif N(k)==0 k theta(k)==3

theta(k+l)=l;

A=A_0;

p_A3(i)=p_A3(i)+1;

end;

if N(k)==l k theta(k)==l

theta(k+l)=2;

A=A_1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

p_El(i)=p_El(i)+l;

elseif N(k)==l & theta(k)==2

theta(k+l)=3;

A=A_1;

p_E2(i)=p_E2(i)+l;

elseif N(k)==l & theta(k)==3

theta(k+l)=l;

A=A_0;

p_E3(i)=p_E3(i)+l;

end;

%0/. Accumulate first moment

ql(k+l)= ql(k+l) + norm(x(k+l));

y,% Accumulate second moment

Ql(k+1)= Ql(k+1) + norm(x(k+l)’*x(k+l));

end;

y,% Mean First and Second Moments

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

q=ql/M;

Q=Q1/M;

tickl=toc;

tick2=tick2+tickl;

fprintf (’toe = %8.2f total time = ,/,8.2f\n’.tickl, tick2);

end;

p_Alm=mean(p_Al)/Numsam;

p_A2m=mean(p_A2)/Numsam;

p_A3m=mean(p_A3)/Numsam;

p_Elm=mean(p_El)/Numsam;

p_E2m=mean(p_E2)/Numsam;

p_E3m=mean(p_E3)/Numsam;

p_Am=mean(p_A)/Numsam;

p_Em=mean(p_E)/Numsam;

y,7. Mean First and Second Moments

q = ql/M;

Q= Ql/M;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

if order==0;

P i _ I = [l - p e (j j) p e (j j)] ’ * [1 1];

Pi_IO=(kron(Pi_I,eye(3)))*blkdiag(S_l,S_2);

sAl=(kron(Pi_I0,eye(l)))*blkdiag(A_0~2,A_l~2,A_l~2,A_Cr2,A_l‘2 >A_l~2);

elseif order==l;

Pi_I0=(kron(Pi_I,eye(3)))*blkdiag(S_l,S_2);

sAl=(kron(Pi_I0,eye(l)))*blkdiag(A_0''2,A_l"2,A_l~2,A_0"2,A_l“2,A_l~2);

else

Pi_I0=kron(Pi_I, eye(3))*blkdiag(S_l,S_2,S_1,S_2);

sA2=(kron(Pi_I0, eye(l)))*blkdiag(A_0~2, A_l~2, A_l~2, A_0~2,

A_l~2, A_l“2,A_0~2, A_l~2, A_l~2,A_0"2, A_l"2, A_l~2);

end;

sr_sAl=max(abs(eig(sAl)));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

subplot(2,1,2);

hold on;

“/.plot the second Lyapunov exponent

n=l:Numsam+l;

plot(n*loglO(sr_sAl),’r:’);

fname=strcat(,REl_',outputfname,num2str(pe*100),’_M_’,num2str(M), ,num2str(Nm

save (fname);

B-3 Recovery Exam ple 2

B-3.1 Program Code for Theoretical Prediction

p lo t_ sr_ sc rip tA l_ M r2 : This program produces plots for the Recovery Example

2, PIe\e v /s spectral radius of A \ (i.e., using cross-chain process p = (is, 6) when

M r = 2.

“/.Fix \Pi_{A|A A>=0.45

pi_r_00=0.45;

“/.System parameter in the normal mode

A_0=0.99;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

’/.System parameter in the recovery mode

A_l=l.0112;

’/.State transition matrices for the finite-state machines

S_l=[l 0 1;

0 0 0 ;

0 1 0];

S_2=[0 0 1;

1 0 0 ;

0 1 0];

‘/.Vary probability \Pi{A|E E>, \Pi{E|E E>

pi_r_ll=0.05:0.05:1;

sz=size(pi_r_ll,2);

for jj=l:sz;

pA (j j) = (1—pi_r_l1(j j))/(l-pi_r_ll(jj)+l-pi_r_00(jj));

PE(jj)=(l-pi_r_00(jj))/(l-pi_r_ll(jj)+l-pi_r_00(jj));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

Pi_I=[pi_r_00 l - p i _ r _ l l (j j) ; l -p i_r_00 p i _ r _ l l (j j)] ;

Pi_IO=kron(Pi_I, eye(3))*blkdiag(S_l,S_2);

sAl=(kron(Pi_IO, eye(l)))*blkdiag(A_0"'2, A_l~2, A_l"2, A_0~2, A_l~2, A_l"2)

sr_scriptAl(jj)=max(abs(eig(sAl)));

end;

“/.Plot pi_{eta_2,eta_2) v/s spectralradius(scriptAl) ;

figure(1);

plot(pi_r_ll,sr_scriptAl, ’r*’);

title(strcat(’Simplified Recovery Example’, ’ A_0= ’, num2str(A_0),

’ A_l= ’, num2str(A_l), ’\Pi_{aa>= ’,num2str(pi_r_00)));

figure(2);

plot(PE,sr_scriptAl, ’r*’);

title(strcat(’ Recovery Example 2’, ’ A_0= ’, num2str(A_0),

’ A_l= ’, num2str(A_l), ’\Pi_{aa}= ’,num2str(pi_r_00)));

plot_sr_scriptAl_Mr3: This program produces plots for the Recovery Example 2,

IIjsib v /s spectral radius of scriptA l (i.e., using cross-chain process p = (is, 0)) when

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

M r = 3.

"/.Fix \Pi_{A|A A}=0.45

pi_r_00=0.45;

"/oSystem parameter in the normal mode

A_0=0.99;

‘/.System parameter in the recovery mode

A_l=l.0112;

‘/.State transition matrices for the finite-state machines

S_l= [1 0 0 1;

0 0 0 0 ;

0 1 0 0 ;

0 0 1 0] ;

S_2= [0 0 0 1;

1 0 0 0 ;

0 1 0 0 ;

O O I O] ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'/.Vary probability \Pi{A|E E>, \Pi{E|E E}

pi_r_ll=0.05:0.05:1;

sz=size(pi_r_ll,2);

for jj=l:sz;

Pi_I=[pi_r_00 l-pi_r_ll(jj); l-pi_r_00 pi_r_ll(jj)];

PA Cj j) = (1—pi_r_l1(j j))/(l-pi_r_ll(jj)+l-pi_r_00(jj));

PE(j j) = (l-pi_r_00(j j))/(l-pi_r_11(j j)+l-pi_r_00(j j));

Pi_I0=kron(Pi_I, eye(3))*blkdiag(S_l,S_2);

sAl= (kron(Pi_I0, eye(l)))*blkdiag(A_(T2, A_l“2, A_l~2, A_1

A_0~2, A_l~2, A_1~2,A_1~2);

sr_scriptAl(jj)=max(abs(eig(sAl)));

end;

"/.Plot pi_{eta_2,eta_2) v/s spectralradius(scriptAl);

figur(l);

plot(pi_r_ll,sr_scriptAl, ’r*');

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

title(strcatO Recovery Example 2’, ' A_0= ’, num2str(A_0),

’ A_l= ’, num2str(A_l), '\Pi_{aa}= ’,num2str(pi_r_00)));

figure(2);

plot(PE,sr_scriptA1, ’r*’);

title(strcatC’ Recovery Example 2 ’ , ’ A_0= num2str(A_0),

’ A_l= n\im2str(A_l), ’\Pi_{aa>= ’,num2str(pi_r_00)));

p lo t_ sr_ sc rip tA l_ M r5 : This program produces plots for the Recovery Example 2,

IIj5|£7 v /s spectral radius of scriptA l (i.e., using cross-chain process p = (u) 6)) when

M r = 5

"/.Fix \Pi_{A|A A}=0.45

pi_r_00=0.45;

"/.System parameter in the normal mode

A_0=0.99;

%System parameter in the recovery mode

A_l=l.0112;

"/.State transition matrices for the finite-state machines

S_l=[l 0 0 0 0 1;

0 0 0 0 0 0 ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

0 1 0 0 0 0 ;

0 0 1 0 0 0 ;

0 0 0 1 0 0 ;

0 0 0 0 1 0] ;

S_2= [0 0 0 0 0 1;

1 0 0 0 0 0 ;

0 1 0 0 0 0 ;

0 0 1 0 0 0 ;

0 0 0 1 0 0 ;

0 0 0 0 1 0] ;

‘/.Vary probability \Pi{A|E E}, \Pi{E|E E>

pi_r_ll=0.05:0.05:1;

sz=size(pi_r_ll,2);

for jj=l:sz;

Pi_I=[pi_r_00 l-pi_r_ll(jj); l-pi_r_00 pi_r_ll(jj)];

PA(jj)=(l-pi_r_ll(jj))/(l-pi_r_ll(jj)+l-pi_r_00(jj));

PE(jj)=(l-pi_r_00(jj))/(l-pi_r_ll(jj)+l-pi_r_00(jj));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

Pi_IO=kron(Pi_I, eye(3))*blkdiag(S_l,S_2);

sAl=(kron(Pi_IO, eye(l)))*blkdiag(A_(T2, A_l~2, A_l~2, A_l~2, A_l~2,

A_l"2, A_0~2, A_l"2, A_1“2,A_1“2, A_l~2);

sr_scriptAl(j j)=max(abs(eig(sAl)));

end;

'/.Plot pi_{eta_2,eta_2) v/s spectralradius(scriptAl);

figure(1);

plot(pi_r_ll,sr_scriptAl, ’r*’);

title (strcatO Recovery Example 2 ’ , ’ A_0= num2str(A_0), ’ A_l=

num2str(A_l), ’\Pi_{aa>= ’,num2str(pi_r_00)));

figure(2);

plot(PE,sr_scriptAl, ’r*’);

title(strcatO Recovery Example 2 ’ , ’ A_0= ’ , num2str(A_0), ’ A_l=

num2str(A_l), ’\Pi_{aa>= ’,num2str(pi_r_00)));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

B-3.2 Program Code for Monte Carlo Simulation

sim_recovery_ex2: This program simulates Recovery Example 2 for the given num­

ber of recovery states M R = 3, = 0.45 and HE\E = 0.8.

sim_recovery_ex2(outputfname)

M=1000, Numsam=10000;

paa=0.45 ; pee=0.8;

M_R=3;

A_0=0.99;

A_l=l.0112;

Vector of the chain’s states

state=zeros(l,Numsam+l);

V/, Vector of the chain’s transitions

numbers=state;

y.*/. Vector of the first-order moment.

ql=state;

%% Vector of the second-order moment.

Ql=state;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

*/.'/. Vector of the mean first-order moment.

q=state;

%% Vector of the mean second-order moment.

Q=state;

Time counters

tickl = 0;

"/,% Number of zero states in the simulated chain

tick2 = 0;

z = zeros(1,M);

Number of one states in the simulated chain

o = zeros(1,M);

*/,% Number of zero to zero transferences in the sim. chain

z2z = zeros(1,M);

%*/, Number of one to one transferences in the sim. chain

o2o = zeros(1,M);

Number of zero to one transferences in the sim chain

z2o = zeros(1,M);

VL Number of one to zero transferences in the sim chain

o2t = zeros(1,M);

%“/, Probability of goingt from 0 to 0

piOO = zeros(1,M);

Probability of goingt from 0 to 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

piOl = z e r o s (l .M) ;

%y, Probability of goingt from 1 to 0

pilO = zeros(l,M);

%“/, Probability of goingt from 1 to 1

pill = zeros(l,M);

Norn = zeros(1,M);

Rid = zeros(1,M);

N2N = zeros(1,M);

N2R = zeros(l,M);

R2N = zeros(1,M);

R2R = zeros(1,M);

piNN = zeros(1,M);

piNR = zeros(1,M);

piRN = zeros(1,M);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

piRR = zeros(1,M);

for k=l:M

fprintf(’loop M = '/.3d, tic...’,k);

N=Gen_di sc_markov(paa,pee,Numsam);

%N=N’;

Rec_state=zeros(l, Numsam+1);

'/. Equilibrium statistics of N: pk,PA,PE

zs=N==zeros(l,Numsam+1);

% The occurrence of N=0

z(k)=dot(zs,zs);

nzs=N~=zeros(l,Numsam+1);

% The occurrence of N>0

nz(k)=dot(nzs,nzs);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

os=N==ones(l,Numsam+1);

7. The occurrence of N=i

o(k)=dot(os,os);

7 . Equilibrium state probabilities

pkx(k,:)=[z(k) o(k)]/(Numsam+1);

7. Probability of disturbance absent (N=0)

PAx(k)=z(k)/(Numsam+1);

7 . Probability of disturbance exists (N>0)

PEx(k)=l-PAx(k);

7. Transitional statistics of N: pikkpl, pikkml, PAE, PEA

lszs=[zs(2:Numsam+1) 0];

lsnzs=[nzs(2:Numsam+1) 0];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

lsos= [os(2:Numsam+1) 0];

% Count the number of transition occurrences

7, From mode N=0 to mode N=0

z2z(k)=dot(zs.*lszs,zs.*lszs);

% From mode N=1 to mode N=1

o2o(k)=dot(os.*lsos,os.*lsos);

% From mode N=0 to mode N=1

z2o(k)=dot(zs.*lsos,zs.*lsos);

“/, From mode N=1 to mode N=0

o2z(k)=dot(os.*lszs,os.*lszs);

% Calculate the corresponding transition rates

if z(k)==0

pill(k)=nan;

pi00(k)=nan;

pi01(k)=nan;

pil0(k)=nan;

else

pi00(k)=z2z(k)/z(k);

piO1(k)=z2o(k)/z(k);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pil0(k)=o2z(k)/o(k);

pill(k)=o2o(k)/o(k);

end

piaam=nanmean(piOO);

piaem=nanmean(pi01);

pieam=nanmean(pilO);

pieem=nanmean(pill);

piaasd=nanstd(piOO);

pieesd=nanstd(pill);

piaesd=nanstd(pi01);

pieasd=nanstd(pilO);

PAm=nanmean(PAx);

PEm=nanmean(PEx);

PAsd=nanstd(PAx);

PEsd=nanstd(PEx);

State vector of the plant

x=zeros(size(xO));

*/,% Consider the initial chain state and the initial conditions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

'/. Generate state vector initial conditions

x=unifrnd(-l*norm(xO),norm(xO),size(xO,l),size(x0,2));

*/. accumulate first-order moment

ql(l) = ql(l) + norm(x);

"/, accumulate second-order moment

Qi(l) = Q1(1) + norm(x*x’);

c=0;

tic

for i=l:Numsam

if Rec_state(i)==0

x=A0*x;

if N(i)==0

Rec_state(i+1)=0;

else

Rec_state(i+l)=l;

end;

else

c=c+l;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

x=Al*x;

if c < N_R

Rec_state(i+l)=l;

else

Rec_state(i+1)=0;

c=0;

end;

end;

%% Accumulate first moment

ql(i)= ql(i) + norm(x);

"/,% Accumulate second moment

Ql(i)= Ql(i) + norm(x’*x);

end;

Equilibrium statistics of N: pk,PA,PE

tickl=toc;

tick2=tick2+toc;

Noms=Rec_state==zeros(1.Numsam+l);

'/, The occurrence of Rec_state=Nominal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

Nom(k)=dot(Noms,Noms);

Rlds=Rec_state“=zeros(1,Numsam+1);

7. The occurrence of Rec_state >0

Rid(k)=dot(Rids,Rids);

7. Equilibrium state probabilities

pkx(k,:)=[Nom(k) Rid(k)]/(Numsam+1);

7. Probability of disturbance absent (N=0)

PNx(k)=Nom(k)/(Numsam+l);

7. Probability of disturbance exists (N>0)

PRx(k)=Rld(k)/(Numsam+1);

7. Transitional statistics of N: pikkpl, pikkml, PAE, PEA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fprintf('toc = %8.2f total time = #/.8.2f \n’,ticki, tick2) ;

if (mod(k,100)==0)

q = ql/k;

Q= Ql/k;

r/. Mean First and Second Moments

N= N/k;

fname=strcat(’RE2_’,outputfname,’_’,

num2str(k/100), , ’N_R’, , num2str(N_R), ,

num2str(A0),’ ,num2str(Al),'paa.’,num2str(paa),

’_pee_’,num2str(pee),’_M_',num2str(M), ,num2str(Numsam),’.mat’

save (fname);

TL End of MonteccLrlo Rims

end

'IX Mean First and Second Moments

q = ql/k;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

Q= Ql/k;

N= N/k;

if k<100

fname=strcat(’Recovery_Example_2_’,outputfname,

>’N_R’, , num2str(Mrd), ,num2str(A0),

,num2str(Al),’paa_’,num2str(paa),J_pee_',num2str(pee),

’_M_’,num2str(M),’_ ’ ,num2str(Numsam),’.mat’);

save (fname);

end

end;

f igure;

subplot(2,1,1);

plot(loglO(q(l:Numsam)));

xlabel(’Samples’);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ylabelC’log.-ClO} (q)’);

title (strcatO Recovery Example 3_’, ’ A0= ’, num2str(A0),

Al= num2str(Al),

’ N_R= ’, num2str(N_R),’ p_{aa>= ’, num2str(paa), ’ p_{ee>= ’

num2str(pee), ' M = ’,num2str(M), 'Num of Samples = ’,

num2str(Numsam)));

subplot(2,1,2);

plot(loglO(Q(1:Numsam)));

xlabel(’Samples’);

ylabel(,log_{10> trace(Q)’);

S_l= [1 0 0 1;

0 0 0 0 ;

0 1 0 0 ;

0 0 1 0];

S_2=[0 0 0 1;

1 0 0 0 ;

0 1 0 0 ;

0 0 1 0] ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

Pi_IO=kron(Pi_I, e y e (3))* b lk d ia g (S _ l ,S _ 2) ;

sAl=(kron(Pi_IO, eye(l)))*blkdiag(A_CT2, A_l~2, A_l"2, A_l~2,

A_0~2, A_l~2, A_1~2,A_1~2);

"/.plot the second Lyapunov exponent

hold on;

n=l:Numsam+1;

plot(n*loglO(max(abs(eig(sAl)))),’r:’);

title(strcat(’RE2_’,outputfname, , ’ A0= num2str(A0), ’,

Al= num2str(Al), ’ N_R= num2str(N_R) , ' p_{aa}= ’, num2str(paa),

’ p_{ee>= ’,num2str(pee), ’ M = ’,num2str(M), ’Number of Samples = ’,

num2str(Numsam)));

B-4 Recovery Exam ple 3

B-4.1 Program Code for Theoretical Prediction

plot_sr_scriptAl_NAb: This program produces theoretical plots for H e \e v / s spec­

tra l radius of A \ and Pe versus spectral radius A \ for Recovery Example 3 when

NAb = 1) 2 , 5 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

‘/.Fix P_{AA>

pi_r_00=0.6;

pi_r_ll=0:0.05:1;

A0=0.99; Al=l.039; A2=0.96; A3=1.08;

N_Ab=[l 2 5];

for 1=1:3

if N_Ab(l)==l;

N=6; pl=,r*’;

S_0=[1 0 1 0 11;

0 0 0 0 0 0 ;

0 1 0 0 0 0 ;

0 0 0 0 0 0 ;

0 0 0 1 0 0 ;

0 0 0 0 0 0] ;

S_l= [0 0 0 0 0 1;

1 0 0 0 0 0 ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

0 1 0 0 0 0 ;

0 0 1 0 0 0 ;

0 0 0 1 0 0 ;

0 0 0 0 1 0];

elseif N_Ab(l)==2

N=7; pl=’g+>

S_0=[1 0 1 0 1 0 1;

0 0 0 0 0 0 0 ;

0 1 0 0 0 0 0 ;

0 0 0 0 0 0 0 ;

0 0 0 1 0 0 0 ;

0 0 0 0 0 0 0 ;

0 0 0 0 0 1 0] ;

S_1=[0 0 0 0 0 0 1;

1 0 0 0 0 0 0 ;

0 1 0 0 0 0 0 ;

0 0 1 0 0 0 0 ;

0 0 0 1 0 0 0 ;

0 0 0 0 10 0 ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

0 0 0 0 0 1 0] ;

e l s e i f N_Ab(l)==5

N=10; p l = ,k x ’

S_0=[1 0 1 0 1 0 1 0 0 1;

0 0 0 0 0 0 0 0 0 0 ;

0 1 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 ;

0 0 0 1 0 0 0 0 0 0 ;

0 0 0 0 0 0 0 0 0 0 ;

0 0 0 0 0 1 0 0 0 0 ;

0 0 0 0 0 0 1 0 0 0 ;

0 0 0 0 0 0 0 1 0 0 ;

0 0 0 0 0 0 0 0 1 0] ;

S_1=[0 0 0 0 0 0 0 0 0 1 ;

1 0 0 0 0 0 0 0 0 0 ;

0 1 0 0 0 0 0 0 0 0 ;

0 0 1 0 0 0 0 0 0 0 ;

0 0 0 1 0 0 0 0 0 0 ;

0 0 0 0 1 0 0 0 0 0 ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 ;

0 0 0 0 0 0 0 1 0 0 ;

0 0 0 0 0 0 0 0 1 0] ;

end;

szl=size(pi_r_00,2) ;

sz2=size(pi_r_ll,2) ;

PA=zeros(szl*sz2,1) ;

PE=zeros(szl*sz2,1) ;

k=l;

for i=l:szl

for jj=l:sz2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

Pi_I=[pi_r_00(i) l-pi_r_00(i); l-pi_r_ll(jj) pi_r_ll(jj)]’;

PA(k)=(l-pi_r_ll(jj))/(l-pi_r_00(i)+l-pi_r_ll(jj));

PE(k)=(l-pi_r_00(i))/(l-pi_r_00(i)+l-pi_r_ll(jj));

if N_Ab(l)==l

N=6; pl=,r*’;

Pi_IO=kron(Pi_I, eye(N))*blkdiag(S_0,S_l);

sAl=(kron(Pi_IO,eye(size(AO,l)"2)))*(blkdiag(kron(A0,A0),kron(Al,Al),

kron(A2,A2), kron(Al,Al), kron(A2,A2), kron(A3,A3),kron(A0,A0),

kron(Al,Al),kron(A2,A2), kron(Al,Al), kron(A2,A2), kron(A3,A3)));

elseif N_Ab(l)==2

N=7; pl=’g+’ ;

Pi_IO=kron(Pi_I, eye(N))*blkdiag(S_0,S_l);

sAl=(kron(Pi_I0,eye(size(AO,1)*2)))*(blkdiag(kron(AO,AO),kron(A1,Al),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

kron(A2,A2), kron(Al.Al),kron(A2,A2), kron(A3,A3), kron(A3,A3),

kron(AO.AO),kron(Al,Al),kron(A2,A2), kron(Al,A1),kron(A2,A2),

kron(A3,A3), kron(A3,A3)));

elseif N_Ab(l)==5

N=10; pl=’ kx ’;

Pi_IO=kron(Pi_I,eye(N))*blkdiag(S_0,S_l);

sAl=(kron(Pi_I0,eye(size(AO,1)*2)))*(blkdiag(kron(AO,AO),

kron(Al,Al),kron(A2,A2), kron(Al,Al),kron(A2,A2),

kron(A3,A3), kron(A3,A3), kron(A3,A3), kron(A3,A3),

kron(Ai,A1),kron(A2,A2), kron(A3,A3), kron(A3,A3),

kron(A3,A3), kron(A3,A3), kron(A3,A3)));

end;

spectralrad(k)=max(abs(eig(sAl)));

k=k+l;

end;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

end;

figure(1);

hold on;

plot(pi_r_ll,spectralrad,pl);

xlabel(’\Pi_{EIE}’);

ylabeK’XrhoCsAl) ’);

title(strcatORecovery Example 3 ’, ’ A0=

num2str(Al), ’, A2= ’, num2str(A2),’, A3:

N_{ab>= num2str(N_Ab(l)),’ p_{aa}=

grid on;

figure(2);

hold on;

plot(PE, spectralrad.pl);

xlabel(’P_{E}’);

ylabel(’\rho(sAl)’);

’, num2str(A0), ’ Al= ',

= ’, num2str(A3),’

num2str(pi_r_00)));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

title(strcatC’Recovery Example 3 ’, ’ A0=’, num2str(A0), ’

Al=’, num2str(Al), *, A2= num2str(A2),*, A3= num2str(A3),’

N_{ab}= ’, num2str(N_Ab(l)),’ p_{aa}= ’, num2str(pi_r_00)));

grid on;

end;

end;

B-4.2 Program Code for Monte Carlo Simulation

sim_recovery_ex3:This program simulates Recovery Example 3 when N R = 1,

N Rs = 2, N/u, = 1, M = 1000, N u m sa m = 10000 for transition probabilities of

the Markov input IIa|a — 0.6 and YIE\E = 0.3.

sim_recovery_ex3(outputfname)

A0=0.99;

Al=l.039;

A2=0.96;

A3=l.08;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

N_Rd=l;

N_Rs=2;

N_Ab=l;

paa=0.6;

pee=0.3;

M=1000;

Numsam=10000;

7.7. Vector of the chain’s states

state=zeros(l.Numsam+l);

Vector of the chain’s transitions

numbers=state;

7.7. Vector of the first-order moment.

ql=state;

7.7. Vector of the second-order moment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187

Ql=state;

7.7. Vector of the mean first-order moment.

q=state;

7.7. Vector of the mean second-order moment.

Q=state;

7.7. Time counters

tickl = 0;

tick2 = 0;

7.7. Number of zero states in the simulated chain

z = zeros(1,M);

7.7. Number of one states in the simulated chain

o = zeros(l.M);

7.7. Number of zero to zero transferences in the sim. chain

z2z = zeros(1,M);

7.7. Number of one to one transferences in the sim. chain

o2o = zeros(1,M);

7.7. Number of zero to one transferences in the sim chain

z2o = zeros(1,M);

7.7. Number of one to zero transferences in the sim chain

o2t = zeros(1,M);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188

Probability of goingt from 0 to 0

piOO = zeros(1,M);

11 Probability of goingt from 0 to 1

piOl = zeros(l,M);

11 Probability of goingt from 1 to 0

pi10 = zeros(1,M);

11 Probability of goingt from 1 to 1

pill = zeros(l,M);

Norn = zeros(l.M);

Rid = zeros(l.M);

Rel = zeros(1,M);

Abrt = zeros(1,M);

for k=l:M

fprintf('loop M = %3d, tic...’,k);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

189

N=Gen_di sc_markov(paa, p e e , Numsam);

%N=N»;

Rec_state=zeros(l, Numsam+1);

% Equilibrium statistics of N: pk,PA,PE

zs=N==zeros(1,Numsam+1);

z(k)=dot(zs,zs); % The occurrence of N=0

nzs=N~=zeros(l,Numsam+1);

nz(k)=dot(nzs,nzs); % The occurrence of N>0

os=N==ones(l,Numsam+1);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

o(k)=dot(os,os); */. The occurrence of N=1

"/, Equilibrium state probabilities

pkx(k,:)=[z(k) o(k)]/(Numsam+1);

"/, Probability of disturbance absent (N=0)

PAx(k)=z(k)/(Numsam+1);

"/, Probability of disturbance exists (N>0)

PEx(k)=1-PAx(k);

% Transitional statistics of N: pikkpl, pikkml, PAE, PEA

lszs=[zs(2:Numsam+1) 0];

lsnzs=[nzs(2:Numsam+1) 0];

lsos=[os(2:Numsam+1) 0];

Count the number of transition occurrences

°/. From mode N=0 to mode N=0

z2z(k)=dot(zs.*lszs,zs.*lszs);

% From mode N=1 to mode N=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

o2o(k)=dot(os.*lsos,os.*lsos);

% From mode N=0 to mode N=1

z2o(k)=dot(zs.*lsos,zs.*lsos);

% From mode N=1 to mode N=0

o2z(k)=dot(os.*lszs,os.*lszs);

% Calculate the corresponding transition rates

if z(k)==0

pill(k)=nan;

pi00(k)=nan;

pi01(k)=nan;

pilO(k)=nan;

else

pi00(k)=z2z(k)/z(k);

piOl(k)=z2o(k)/z(k);

pil0(k)=o2z(k)/o(k);

pill(k)=o2o(k)/o(k);

end

piaam=nanmean(piOO);

piaem=nanmean(pi01);

pieam=nanmean(pilO);

pieem=nanmean(pill);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192

piaasd=nanstd(piOO) ;

pieesd=nanstd(pill);

piaesd=nanstd(pi01);

pieasd=nanstd(pilO);

PAm=nanmean(PAx);

PEm=nanmean(PEx);

PAsd=nanstd(PAx);

PEsd=nanstd(PEx);

7.y. State vector of the plant

x=zeros(size(xO));

%*/, Consider the initial chain state and the initial conditions:

% Generate state vector initial conditions

x=unifrnd(-l*norm(xO),norm(xO),size(xO,i),size(x0,2));

% accumulate first-order moment

ql(l) = ql(1) + norm(x);

"/, accumulate second-order moment

Ql(l) = Ql(1) + norm(x*x’);

c_2=0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193

c_3=0;

tic

for i=l:Numsam

if Rec_state(i)==0

x=A0*x;

if N(i)==0

Rec_state(i+1)=0;

else

Rec_state(i+l)=l;

end;

elseif Rec_state(i)==l

x=Al*x;

Rec_state(i+1)=2;

elseif Rec_state(i)==2

c_2=c_2+l;

x=A2*x;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194

if c_2 < Mrs

if N(i)==0

Rec_state(i+1)=2;

else

Rec_state(i+l)=l;

end;

else

if N(i)==0

Rec_state(i+1)=0;

else

Rec_state(i+1)=3;

end;

c_2=0;

end;

else

c_3=c_3+l;

x=A3*x;

if c_3 < Mab

Rec_state(i+1)=3;

else

Rec_state(i+1)=0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

195

c_3=0;

end;

end;

Accumulate first moment

ql(i)= ql(i) + norm(x);

%’/. Accumulate second moment

Ql(i)= Ql(i) + norm(x’*x);

end;

tickl=toc;

tick2=tick2+toc;

Noms=Rec_state==zeros(1,Numsam+1);

% The occurrence of Rec_state=Nominal

Nom(k)=dot(Noms,Noms);

Rlds=Rec_state==ones(l,Numsam+1);

% The occurrence of Rec_state Reload

Rid(k)=dot(Rids,Rids);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

196

7. The occurrence of Rec_state Release

Rels= (Rec_state==2*ones(l,Numsam+1));

Rel(k)=dot(Reis,Reis);

7. The occurrence of Rec_state Abort

Abrts=Rec_state==3*ones(l,Numsam+l);

Abrt(k)=dot(Abrts,Abrts);

% Equilibrium state probabilities

7. Probability of disturbance absent (N=0)

PNx(k)=Nom(k)/(Numsam+l);

7. Probability of disturbance exists (N>0)

PRx(k)=Rld(k)/(Numsam+l);

PRex(k)=Rel(k)/(Numsam+1);

PAbx(k)=Abrt(k)/ (Numsam+1);

7. Transitional statistics of N: pikkpl, pikkml, PAE, PEA

end;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

197

PNm=nanmean(PNx);

PRm=nanmean(PRx);

PRem=nanmean(PRex);

PAbm=nanmean(PAbx);

PNsd=nanstd(PNx);

PRsd=nanstd(PRx);

PResd=nanstd(PRex);

PAbsd=nanstd(PAbx);

fprintf (’toe = ”/(8.2f total time = %8.2f \n’,tickl, tick2) ;

if (mod(k,100)==0)

7,7, Mean First and Second Moments

q = ql/k;

Q= Ql/k;

N= N/k;

fname=strcat(’Recovery_Example3,,num2str(k/100), ,’N_{Rs}’,

’_’,num2str(N_Rs), ,’Mab’, ,num2str(Mab), ,num2str(A0), ,

num2str(Al), ,num2str(A2), ,num2str(A3),’_paa_’,num2str(paa),

’_pee_’,num2str(pee),’_M_’,num2str(M), , num2str(Numsam),’.mat’);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

198

save (fname);

end

TL End of Montecarlo Runs

%% Mean First and Second Moments

q = ql/k;

Q= Ql/k;

N= N/k;

if k<100

fname=strcat(’Recovery Example 3 ’.outputfname, ,

’N_R’ , ,num2str(N_Rs),

’_'.’N _ A b n u m 2 s t r (N _ A b) ,’_’,

num2str(A0), ,num2str(Al), ,

num2str(A2), ,num2str(A3),’_paa_’,num2str(paa),

’_pee_',num2str(pee),’_M_’,

num2str(M), ,num2str(Numsam),’.mat’);

save (fname);

end

end;

figure;

subplot(2,1,1);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

199

plot(loglO(q(l:Numsam)));

xlabel(’Samples’);

ylabel(’log_{10> (q)’);

title(strcat(’Recovery Example 3', ’ A0= ’, num2str(A0),

Al= num2str(Al), ’A2= ’, num2str(A2), 'A3= ’, num2str(A3),

’ N_{Ab}= num2str(N_Ab),’ p_{aa}= ’, num2str(paa), ’

p_{ee>= ’,num2str(pee), ’ M = ’,num2str(M),

’Num of Samples = ’, num2str(Numsam)));

subplot(2,1,2);

plot(loglO(Q(l:Numsam)));

xlabel(’Samples’);

ylabel(’log_{10} trace(Q)’);

title(strcat(’Recovery Example 3 ’, ’ A0= ’, num2str(A0),

Al= ’, num2str(Al), ’ N_{Ab}= ’, num2str(N_Ab),’ p_{aa}= ’,

num2str (paa) , ’ p_{ee}= ’ ,num2str(pee) , ’ M = ’,num2str(M), ’

Num of Samples = ’, num2str(Numsam)));

subplot(2,1,2);

bold on;

S_0=[1 0 1 0 11;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 0

0 0 0 0 0 0 ;

0 1 0 0 0 0 ;

0 0 0 0 0 0 ;

0 0 0 1 0 0 ;

0 0 0 0 0 0];

S_l= CO 0 0 0 0 1;

1 0 0 0 0 0 ;

0 1 0 0 0 0 ;

0 0 1 0 0 0 ;

0 0 0 1 0 0 ;

0 0 0 0 1 0];

Pi_IO=kron(Pi_I, eye(6))*blkdiag(S_0,S_l);

sAl=(kron(Pi_IO,eye(size(AO,l)‘'2)))*(blkdiag(kron(A0,A0),kron(Al,A1),

kron(A2,A2), kron(Al,Al), kron(A2,A2), kron(A3,A3),kron(AO,AO),

kron(Al.Al),kron(A2,A2), kron(Al,Al), kron(A2,A2), kron(A3,A3)));

'/.plot the second Lyapunov exponent

n=l:Numsam+1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 1

plot(n*logl0(max(abs(eig(sAl)))),’r:’);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0 2

CURRICULUM VITA

for

SUDARSHAN S. PATILKULKARNI

D E G R E E S :

-Masters of Electrical Engineering, Old Dominion University, Norfolk, Virginia,

USA, December 2000.

-Bachelors of Engineering (Electronics Sc Communication), K arnataka University,

Dharwad, Karnataka, India, July 1996.

A C A D E M IC A W A R D S:

-2000, Old Dominion University Fellowship from the College of Engineering.

P R O F E S S IO N A L C H R O N O L O G Y :

-January 2000 to Present: G raduate Research Assistant in Systems Research Lab,

Departm ent of Electrical Sc Computer Engineering,

Old Dominion University

Director: Dr. W. Steven Gray

Main field: Stochastic System Theory, Hybrid Systems

-January 1999 to December 1999: Graduate Research Assistant in Speech Lab,

Departm ent of Electrical Sc Computer Engineering,

Old Dominion University

Director: Dr. Stephan Zahorian

Main field: Signal Processing, Speech Recognition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

203

PUBLICATIONS:

1. S. Patilkulkarni, H. Herencia-Zapana, W. S. Gray and O. R. Gonzalez, “On

the Stability of Jump-Linear Systems Driven by Finite-State Machines with

Markovian Inputs,’ Proc. 2004 American Control Conference, Boston, MA,

2004, pp. 2534-2539.

2. W. S. Gray, S. Patilkulkarni and O. R. Gonzalez, “Stochastic Stability of a

Recoverable Computer Control System Modeled as a Finite-State Machine,”

Proc. 2003 American Control Conference, Denver, CO, 2003, pp. 2240-2245.

3. W. S. Gray, S. Patilkulkarni and O. R. Gonzalez, “Towards Hybrid Models of

Recoverable Computer Control Systems,” Proc. 21st Digital Avionics Systems

Conference, Irvine, CA, 2002, pp. 13.C.2.1-13.C.2.8.

4. O. R. Gonzalez, W. S. Gray, A. Tejada and S. Patilkulkarni, “Stability Analysis

of Electromagnetic Interference Upset Recovery M ethods,” Proc. 40th IEEE

Conference on Decision and Control, Orlando, FL, 2001, pp. 4134-4139.

5. O. R. Gonzalez, W. S. Gray, A. Tejada and S. Patilkulkarni, “Stability Analysis

For Upset Recovery Methods For Electromagnetic Interference,” Proc. 20th

Digital Avionics Systems Conference, 2001, Daytona, FL, pp. 1.C.4.1-1.C.4.9.

6. O. R. Gonzalez, W. S. Gray and S. Patilkulkarni, “Analysis of Memory Bit

Errors Induced by Electromagnetic Interference in Closed Loop Digital Flight

Control Systems,” Proc. 19th Digital Avionics Systems Conference, 2000, Philadel­

phia, PA, pp. 3.C.5.1-3.C.5.9.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. W. S. Gray, O. R. Gonzalez and S. Patilkulkarni, “Stability of Control Systems

Subject to Jum p Linear Random Perturbations,” Proc. 39th IE E E Conference

on Decision and Control, 2000, Sydney, Australia, pp. 1154-1159.

8. S. A. Zahorian, S. Patilkulkarni, M. Karnjanadecha and C. Brewton, “Speech-

to-Text Translation for Indexing and Searching of Audio/Visual M aterials for a

Digital Library,” Proc. 2000 World Multiconference on Systemics, Cybernetics

and Informatics, Image, Acoustic, Speech and Signal Processing, P art II, SCI

2000/ISAS 2000, Vol. VI., Orlando, FL.

9. M. D. Lee, S. Patilkulkarni, G. D. Capabianco, “Effects of Age and Consis­

tency on Performance Audio Search,” CAC 2000, Poster Session, Georgia Tech,

A tlanta, GA, 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Stability Analysis of Jump-Linear Systems Driven by Finite-State Machines with Markovian Inputs
	Recommended Citation

	tmp.1553693895.pdf.Bxair

