
Old Dominion University
ODU Digital Commons
Electrical & Computer Engineering Theses &
Disssertations Electrical & Computer Engineering

Winter 2009

Wireless Personal Area Network-Based Assistance
for the Visually Impaired
Kurt Matthew Peters
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted
for inclusion in Electrical & Computer Engineering Theses & Disssertations by an authorized administrator of ODU Digital Commons. For more
information, please contact digitalcommons@odu.edu.

Recommended Citation
Peters, Kurt M.. "Wireless Personal Area Network-Based Assistance for the Visually Impaired" (2009). Doctor of Philosophy (PhD),
dissertation, Electrical/Computer Engineering, Old Dominion University, DOI: 10.25777/kfzn-q662
https://digitalcommons.odu.edu/ece_etds/117

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Old Dominion University

https://core.ac.uk/display/217298236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fece_etds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece?utm_source=digitalcommons.odu.edu%2Fece_etds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/117?utm_source=digitalcommons.odu.edu%2Fece_etds%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

WIRELESS PERSONAL AREA NETWORK-BASED ASSISTANCE

FOR THE VISUALLY IMPAIRED

by

Kurt Matthew Peters
M.S.E.E. December 1994, Air Force Institute of Technology

B.S.E.E. May 1990, United States Air Force Academy

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ELECTRICAL AND COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY
December 2009

Approved by:

Sacharia Albin (Director)

K..<Vijayan Asari (Me/nber)

MounirLaaoussi (Member)

ABSTRACT

WIRELESS PERSONAL AREA NETWORK-BASED ASSISTANCE
FOR THE VISUALLY IMPAIRED

Kurt Matthew Peters
Old Dominion University, 2009

Director: Dr. Sacharia Albin

In this dissertation, a system allowing a visually impaired person to interact with his

environment is developed using modern, low-power wireless communications

techniques. With recent advances in wireless sensor networks, open-source operating

systems, and embedded processing technology, low-cost devices have become practically

feasible as a personal notification system for impaired people. Additionally, text-to-

speech capabilities can now be employed without special application specific integrated

circuits (ASICs), allowing low-cost, general-purpose processors to fill a niche that once

required expensive semiconductors.

The system takes advantage of 802.15.4 and media access control (MAC) protocols

offered by the open source operating system TinyOS. Important characteristics of these

new standards that make them ideal for interface with humans are short range, low-

power, and open-source software. To facilitate research and development in use and

integration of such devices, we developed a hardware platform to allow exploration of

possible future network architectures with multiple options for interfacing with the user.

Our Visually Impaired Notification System (VESTS) allows unprecedented awareness of

the environment and has been simulated with multiple nodes using a modification of the

TinyOS "Dissemination" protocol. This dissertation outlines the hardware platform,

demonstration of a working prototype, and simulations of how the system would work in

its intended environment. We envision this system being used as a testbed allowing

further research of other communications and message-delivery techniques.

Additionally, the research has contributed directly to the TinyOS project and offered new

insight into power management in embedded systems. Finally, through the research

effort we were able to contribute to the open source movement and have produced

software in four languages used in three countries with over 1500 downloads.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Sacharia Albin, for his guidance and patience in

helping me complete this dissertation. We have overcome many hurdles including some

major changes in direction as the years passed.

I would like to acknowledge Dr. Mounir Laroussi, Dr. K. Vijayan Asari, and Dr. John

Cooper for their insights as committee members and helpful discussions in achieving the

goal of this research. I heartily thank my colleagues and my friends: Dr. Sachin Shetty

and Dr. Min Song, who have contributed both in material and knowledge to this effort.

I dedicate my work to my loving family, Traci, Mayah, and now, Dean, the last two

who were born while I was pursuing my PhD. Without their patience at the end, I would

have never been able to complete the work.

V

TABLE OF CONTENTS

Page

LIST OF TABLES vii

LIST OF FIGURES viii

INTRODUCTION 1

MOTIVATION AND SCOPE OF RESEARCH 1

WIRELESS PERSONAL AREA NETWORKS (WPAN) 4

LOW-POWER REVOLUTION 6

BRAILLE, HAPTICS, AND TEXT-TO-SPEECH 6

EXPLOITING OPEN SOURCE 7

RELATED WORK 10

ORGANIZATION 10

THEORY: LOW-POWER WIRELESS COMMUNICATIONS 12

OVERVIEW OF IEEE 802.15.4 12

LOW-POWER MAC IMPLEMENTATIONS 19

TRICKLE PROTOCOL 29

TINYOS AND OTHER LR-WPAN OPERATING SYSTEMS 32

HARDWARE DESIGN 40

CROSSBOW MICAZ 40

STARGATE 46

DAUGHTER-CARD, HARDWARE DESCRIPTION 48

TEXT-TO-BRAILLE TRANSLATION 64

TEXT-TO-SPEECH TRANSLATION 74

vi

Page

SIMULATION AND HARDWARE RESULTS 75

HARDWARE RESULTS 75

SIMULATION RESULTS 79

RESULTS AND DISCUSSION 88

CONCLUSION AND FUTURE WORK 89

CONCLUSION 89

FUTURE WORK 89

REFERENCES 94

APPENDICES 98

DAUGHTER CARD SCHEMATICS 98

DAUGHTER CARD GERBER 104

MSP430 SOURCE CODE 105

MICAZ NESC GRAPHVIS CODE DIAGRAM 121

MICAZ NESC SIMULATION CODE 122

MICAZ NESC LIVE CODE 128

FLOWCHART FOR PYTHON SIMULATION SCRIPT 134

PYTHON SCRIPTS 135

VITA 140

Vll

LIST OF TABLES

Table Page

1. Prevalence of blindness and low vision among adults 40 years
and older in the United States 2

LIST OF FIGURES

viii

Figure Page

1. Example of how a soldier equipped with a miniature netted
actuator (MNA) might benefit from this research 3

2. Star and peer-to-peer topology examples 5

3. PCB design flow with gEDA. KJWaves, the analog SPICE
waveform viewer, was created during this dissertation work and
has over 1500 downloads 9

4. Overlapping spectrum usage in the 2.4 GHz band, showing
802.15.4 and 802.11 (WiFi) coexistance 14

5. Symbol to chip values from the 802.15.4 standard for O-QPSK

at 2.5 GHz 15

6. PHY protocol data unit (PPDU) for the 2400 MHz band 16

7. Diagram demonstrating the relationship of the MAC frame to the
PHY packet 17

8. MAC protocol frame 18

9. From Ni, et al., (a) diagram showing the additional area gained
by node B rebroadcasting a message from node A. (b) graph of
the expected additional coverage after hearing k transmissions 21

10. Illustration of B-MAC, showing key feature of lengthening the
preamble to ensure the potential receive node wakes up in time
to detect a pending message 27

11. Short graphical history of wireless sensor networks showing

Crossbow MicaZ development 41

12. MicaZ description, from Crossbow documentation 42

13. Schematic of the 51 -pin connector taken from the MicaZ

schematics provided by Crossbow 44

14. 51-pin connector used on daughter card 45

15. Diagram showing key components of the daughter card and
connection to the MicaZ mote 45

Figure

16. Example of current (and thus power) consumption of the
MSP430 microcontroller in the four available low-power modes
(compared to active mode (AM)) 49

17. State machine running in daughter card microcontroller 52

18. Limitations in operating frequency based on supply voltage 52

19. Ratio of power consumption at 2.25 V over 2.75 V of the

MSP430 on the daughter card based on duty cycle 54

20. Alkaline battery capacity as a function of load current 55

21. Dropout voltage vs. load current for LDO regulator considered
for this project 58

22. Efficiency of the switching regulator with respect to load
current 59

23. Estimated battery life of the daughter card, alone, assuming a
choice of either the LDO or the switching regulator chosen 60

24. Configuration of switching regulator to allow for dynamic
voltage adjustment 61

25. Graph of output voltage vs. control resistor for Ri = 43 kQ and

i?2=10kQ 63

26. Actual performance of voltage switching on the daughter card 63

27. Standard or normal Braille cell dimensions for English Braille 66

28. Standard Braille characters with modifier prefixes 67

29. Bending element consisting of two piezoelectric crystals in
series configuration. The arrows in the crystals indicated the
direction of polarization 69

30. Calculated amount of deflection for an applied voltage of 18 V.
Note that the 'H' material was limited in available thicknesses
by the manufacturer 70

31. Piezoelectric driver circuit 72

32. Transient analysis of piezo driver circuit showing annotated
voltages (upper) and currents (lower) 73

X

Figure Page

33. Daughter card coupled with a mote transceiver 76

34. LEDs on daughter card displaying the "numeric prefix" in
Braille. Two Braille characters are displayed for numbers as
described in the previous chapter 78

35. Diagram of mote layout used in the simulation. Colors indicate
reception gain of each node from the base station. Node 0 is
considered the base station and the reception gain was set
arbitrarily for the base station to aid in graph auto-scaling 81

36. Percentage of messages received in ten transmissions from the
base station 87

37. Notional concept of application of geolocation capability 90

1

CHAPTER I

INTRODUCTION

MOTIVATION AND SCOPE OF RESEARCH

Sight is, arguably, the most valuable of the five senses. Low vision affects about 14

million people and is among the ten most common causes of disability in the United

States [1]. As life expectancy of the world's population increases, loss of vision will

become an ever-increasing problem. Severe visual impairment can result from conditions

such as age-related macular degeneration, cataracts, glaucoma, and diabetic retinopathy

[2]. "Blindness and low vision affect approximately one in 28 Americans older than 40"

[3]. As shown in Table 1, approximately a quarter of the population can expect some

visual impairment once they are over the age of 80. This dissertation applies advances in

the areas of haptics, wireless sensor networks, high-efficiency power supplies, and text-

to-speech technology in an attempt to improve the quality of life of the vision impaired.

The device produced by this research applies the technology mentioned above in a

miniature device, which can be worn by an individual to provide an interface to the

outside world. One could eventually imagine such a device integrated into a walking

stick or attached at the wrist. This technology could also apply, not only to someone

suffering from a physical affliction, but to someone undergoing task saturation who needs

added insight into his environment. For example, a soldier in an urban combat

environment might use information from unattended ground sensors (UGS) to provide

additional combat-related situational awareness (SA) such as detecting enemy proximity,

automatic vehicle identification, or multi-hop, long-distance messaging. Figure 1

T. Park and M. Lee, "Power Saving Algorithms for Wireless Sensor Networks on IEEE
802.15.4," IEEE Communications Magazine, vol. 46, no. 6, June 2008, pp. 148-155.

2

Age

(Years)

40-49

50-59

60-69

70-79

>80

Total

Blindness

Persons

51,000

45,000

59,000

134,000

648,000

937,000

(%)

0.1%

0.1%

0.3%

0.8%

7.0%

0.8%

Low Vision

Persons

80,000

102,000

176,000

471,000

1,532,000

2,361,000

(%)

0.2%

0.3%

0.9%

3.0%

16.7%

2.0%

All Vision

Persons

131,000

147,000

235,000

605,000

2,180,000

3,298,000

Impaired

(%)

0.3%

0.4%

1.2%

3.8%

23.7%

2.7%

Table 1. Prevalence of blindness and low vision among adults 40 years and older in

the United States [2].

shows how networked UGS could provide a combat soldier with unprecedented SA,

possibly reducing numbers of deployed soldiers. The soldier in the scenario cares about

his immediate surroundings, to ensure covert operations.

The goal of this research is to choose and implement an appropriate protocol and

produce a device that can receive disseminated information from multiple base stations or

peer devices. The received information provides added awareness of the environment

that, otherwise, might go unnoticed. Specifically, we are examining how a small set of

base stations, not limited in size, weight, or power, can transfer information periodically

to a group of subscribers who stand to benefit from the information. The information, by

its very nature, assumes close proximity to the base station for it to be of value. For

example, a user near a bus stop needs to know that a bus is in-bound, its destination, and

approximate arrival time. A patron to a vending machine may like to know relative

location, whether it is within walking distance, and what goods are available. A blind

3

person approaching a construction site might like to know of impending obstacles or

hazards and a recommended way to avoid them.

Figure 1. Example of how a soldier equipped with a miniature netted actuator

(MNA) might benefit from this research.

Although the soldier scenario, above, seems similar, it differs in that any node can

provide information to the soldier. The nodes sense information from the environment,

and the soldier's receiver collects that information for presentation. In essence, it is the

reverse of the "dissemination problem," in which a base station would like to disseminate

information, for example a code update, to all the nodes in its network. These two

problems, collection and dissemination, have received significant attention in the

literature with a proposed set of solutions. We will concentrate on the dissemination

problem in this dissertation.

4

WIRELESS PERSONAL AREA NETWORKS (WPAN)

Wireless personal area networks (WPAN) have achieved wide penetration in the

marketplace, for example, most cell-phones and many automobiles are equipped with

802.15.1 devices, or the IEEE standard based on Bluetooth. A separate standard in the

802.15 family, but distinct from Bluetooth, has not received as much public acceptance

yet, but is particularly designed for low-cost, low-bandwidth, low-power applications:

802.15.4. This technology is sometimes referred to as a low-rate, wireless personal area

network (LR-WPAN), and only includes a description of the media access control

(MAC) and physical (PHY) layers of the Open Systems Interconnection (OSI) stack

model.

Unlike Bluetooth, 802.15.4 affords the user low latency and low energy consumption

although sacrificing bandwidth. For instance, the node acquisition time for Bluetooth is

approximately three seconds, while 802.15.4 is 30 ms. The wake-up time for Bluetooth

is also three seconds, while it is 15 ms for 802.15.4. Bandwidth is significantly less than

Bluetooth's 1-3 Mbps; the maximum bandwidth for 802.15.4 devices is 250 kbps in the

868/915 MHz and 2.4 GHz channels (Note: before release of the 2006 standard, the

868/915MHz channels of operation were limited to 20 or 40 kbps) [4]. Additionally, as

shown in Figure 2, 802.15.4 has a flexible MAC layer allowing two topologies, Peer-to-

Peer and Star. The Peer-to-Peer MAC allows Mesh networking technology to be

employed where nodes forward messages to other nodes to reach a final destination.

Additionally, Mesh networking allows for self-healing where the network can

compensate for the loss of a node in real-time. Mesh networking compensates for the

lack of range when using low-power radios. A drawback of using Mesh connectivity is

that the aggregate data rate significantly decreases as more nodes are added due to

increased overhead costs of building routing tables and determining nearest neighbors.

Gupta, et al. indicate that this degradation is proportional to——, where n is the number

of nodes in a network [5,6].

Star Topology

PAN
Coordinator Q

Peer-to-Peer Topology

PAN
Coordinator

0 Full Function Device
O Reduced Function Device

* * Communication Flow

Figure 2. Star and peer-to-peer topology examples [4].

A sensor network protocol on top of 802.15.4 must support a variety of topologies,

with random placement of nodes, with various densities of devices. A simple broadcast

approach is: "Have every node in the network rebroadcast the message." This approach

consumes too much bandwidth, causing a "broadcast storm problem" [7]. Based on the

work of Ni, et al., [7] Levis, et al. [8] developed a protocol using "polite gossip" between

nodes. This "Trickle protocol" has become a core networking primitive for practical

dissemination of messages and code in a network [8]. We will examine the Trickle

protocol in detail in the next chapter.

6

LOW-POWER REVOLUTION

Nothing short of a low-power revolution has taken place in the last decade. Besides

1) shrinking transistor sizes and development of "high-k" materials to achieve lower

power consumption, 2) the advent and widespread use of buck-boost converters, 3) low-

power or sleep modes, multiple operating clock speeds and voltages, and 4) new

hardware capable of turning off portions of a chip not in use, techniques combining these

technologies into a single system are coming to the forefront in engineering system

design. Additionally, protocols synchronizing nodes to reduce listen time such as "low-

power listen modes" are being developed. We will discuss the three prevalent low-power

listening MACs in the next chapter. Our hardware platform takes advantage of each of

these advances to supply a system that is arguably capable of lasting years on two AA

batteries. Numerous commercial research platforms are available for both commercial

and academic use, including Crossbow Motes (MICA, MicaZ, iMote). These boards take

advantage of some of the hardware advances mentioned above, but require special

attention on the part of the programmer to implement low-power processing aggressively.

We combine the commercially available MicaZ mote with our board to create our

communications platform.

BRAILLE, HAPTICS, AND TEXT-TO-SPEECH

Obviously, once the information is sent to the wearer's Mote, the next obstacle is how

to deliver the message quickly, without the user having to divert their vision. In the case

of a visually impaired person, we need to deliver the message to someone with limited

ability to see. We review the prevailing literature examining proper placement, height,

force, and duration of dots that would be used in a Braille device. We then review our

7

design of circuitry to drive a piezo-electric transducer to manipulate individual dots.

Instead of Braille, a soldier in the scenario above, might, instead, receive a vibration on

his shoulder alerting him of a preset condition. Additionally, we implement the

Uncontracted (Grade 1) version of the English Braille American Addition developed

under the Braille Authority of North America (BANA) [9].

Given the low bandwidth available with 802.15.4, we ascertained that transmitting

voice would not be practical. Although, 802.15.4 specifies 250 kbps for node-to-node

communications, actual aggregate throughput is more on the order of 10-20 kbps,

especially when using a multi-hop network. Additionally, packets would have to be

reordered once received, increasing storage requirements for nodes that are already

memory starved. Instead, we examined availability of text-to-speech (TTS) technology.

Our first board uses a Winbond TTS integrated circuit (IC) that is at the end-of-life.

Digital signal processing has advanced to the degree that software-based TTS is now, not

only practical, but makes these kinds of custom chips obsolete. We will review some of

the available software-based TTS technologies in Chapter V.

EXPLOITING OPEN SOURCE

ELECTRONIC DESIGN A UTOMATION (EDA) SOFTWARE

All printed circuit boards were designed using open source software. Although

numerous open-source packages are available, we chose gEDA to design our printed

circuit boards [10]. gEDA provides all the tools necessary for analog and digital designs

except a VHDL synthesis tool and simulator. Figure 3 shows a typical design flow using

this EDA suite. We found the analog waveform viewer to be cumbersome and limited,

so we wrote our own viewer, KJWaves. KJWaves is available on sourceforge.net and

http://sourceforge.net

8

has had over 1500 downloads and has received support to translate it into four different

languages: English, Spanish, German, and Greek. A description of the design and

techniques we used are described in Chapter III.

TINYOS

Developed by University of California at Berkley as standard programming interface

for Motes, TinyOS has become accepted by the wireless sensor network community as a

research standard for implementing 802.15.4 designs [11]. Although not a "true"

operating system, TinyOS has an integrated scheduler and includes nesC application

programming interface (API). nesC is a C-like language developed for TinyOS that

allows the programmer to "wire" components using the nesC language constructs,

simplifying designs. TinyOS is completely open source, and help and fixes are

sometimes quickly available via the mail list. Additionally, tutorials and technical

explanations are located on the world-wide web. The work from this dissertation has

allowed contributions in source code for the I2C interface as well as improving the online

tutorials.

We use TinyOS version 2.x for this dissertation, which has implemented format

changes in the implementation of Active Message, the standard message construct

developed in the initial TinyOS 1.x. The new Active Message fixes flaws with TOS 1.x

like dropped packets due to the version 1.x scheduler implementation and allows easier

programming access to the MAC and Network layers.

9

Netlist Generation
gnetlist

Ana log /Dig ita
Smulation

ngspice, icarus

FCB Place
and Fbute

pcb

Oulput Analysis
KJV\feves,gwave

Prefab. Feview
gerbv

"lb Fab

Figure 3. PCB design flow with gEDA. KJWaves, the analog SPICE waveform

viewer, was created during this dissertation work and has over 1500 downloads.

TinyOS 2.x is used on a mote mated with our development board, which we call our

daughter card. We wrote custom nesC code to handle message creation and to transfer

the message via the I2C interface to our board via the standard Crossbow Mote 51 pin

connector. The nesC code integrates the dissemination algorithm called Trickle, which

was discussed above and will be discussed more in chapter II [8,12].

10

RELATED WORK

Lo, et al. have published a paper describing how they developed body-sensor network

hardware using mutli-sensor data fusion to monitor patients suffering from cardiovascular

disease [13,14]. They developed hardware compatible with both the MicaZ and Telos

motes devices based on the 802.15.4 standard. They found the standard provides both the

bandwidth and latency required for appropriate medical responses. Responses are

collected by a local PDA for information fusion. The PDA then transmits the data to a

central server. Additionally, they used TinyOS as their operating system.

Wood, et al., examined the use of wireless devices for monitoring patients in assisted-

living facilities [15]. Li, et al., have conducted significant research in the area of tactile

feedback using voice coil motors [16]. Voupyrouv's AmbientTouch uses layers of

piezoelectric to generate haptic feedback in PDAs [17]. Luk implemented an array of

piezoelectric strips to stretch skin, allowing different sensations to be felt under the

thumb [18]. Lee's Haptic Pen used a solenoid to simulate pressing down with a stylus

[19]. Evreinova's dissertation provides an excellent review of visualization technology

and the progression of improvements since the 1800's [20].

ORGANIZATION

This dissertation is divided into five chapters. We will review wireless sensor

networks, the 802.15.4 standard, available operating systems, the broadcast-storm

problem, and review of research related to solving it by implementing a dissemination

protocol in Chapter II. In Chapter III, we will describe the hardware platform developed

for this dissertation and interfaces to the MicaZ mote. In Chapter IV, we will

11

demonstrate results and experiments completed using the hardware. Finally in Chapter

V, we will present conclusions and recommendations for future research.

12

CHAPTER II

THEORY: LOW-POWER WIRELESS COMMUNICATIONS

The Visually Impaired Notification System (VENS) was developed as a hardware

platform to test dissemination of information to the visually impaired. In order to

understand the system, we must review how low-power techniques are applied not only

in hardware, but also in implementation of each layer in the OSI stack. As discussed in

Chapter I, communications in the system rely upon the IEEE 802.15.4 standard. The

operating system we used, TinyOS, allowed us to provide the application layer and adds

additional features to the 802.15.4 MAC. This chapter reviews 1) the IEEE 802.15.4

standard, 2) the theory behind the "broadcast storm problem," 3) two dominant MAC

protocols used in WPANs and the dissemination protocol called "Trickle" which attempts

to solve "the broadcast storm problem", and 4) operating system alternatives available for

WPANs.

OVERVIEW OF IEEE 802.15.4

IEEE 802.15.4 defines the MAC and PHY for low-rate WPANS. 802.15.4 was

initially approved in 2003 and later was updated in 2006 for a number of reasons,

including affording better spectrum usage, making clarifications, and simplifying

implementation making the standard more applicable to the market. The key to this

standard is low-bandwidth and low latency.

The PHY layer is discussed first below, since few modifications can be made to the

physical layer. Following discussion of the PHY layer, an overview of the 802.15.4

MAC layer is given. The MAC layer is flexible enough to implement a number of

13

experimental standards: e.g., low-power listen, S-MAC, B-MAC, and X-MAC, which

will then be discussed later in this chapter. The devices in this dissertation use the

B-MAC, but it is important to understand alternative and competing MAC standards.

To support low-power consumption, the standard has a link quality indication (LQI)

and the ability to perform energy detection (ED). Two different devices are specified: a

full-function device (FFD) and a reduced-function device (RFD). As implied by the

names, a FFD can perform any function in the network (PAN coordinator, coordinator, or

node), while a RFD can only communicate with a FFD and act as a leaf or end node. As

of the 2006 release of the standard, all communications take place in the industrial,

scientific, and medical (ISM) bands 868 MHz, 915 MHz, and 2.4 GHz [4]. Sixteen

channels are available in the 2.4 GHz band, 30 channels in the 915 MHz band, and 3

channels in the 868 MHz band. Data rates of 250, 100, 40, and 20 kbps are supported.

Finally, two addressing modes: 16-bit short and 64-bit IEEE addressing are supported.

It should be noted that since the specification works in the ISM band, devices can

receive interference from and give interference to other devices in the band. An example

of this is shown in Figure 4, where the 2.4 GHz band 802.15.4 channels are shown as

overlapping with channels specified in IEEE 802.11 (WiFi). For this reason, 802.15.4

includes an acknowledgement mechanism to ensure message transfers are reliable.

PHY LAYER OVERVIEW

The 802.15.4 PHY provides two services: the PHY data service and the PHY

management service. The PHY data service supports the transmission and reception of

PHY protocol data units (PPDUs) across the wireless channel. "The features of the PHY

are activation and deactivation of the radio transceiver, ED, LQI, channel selection, clear

14

channel assessment (CCA), and transmitting as well as receiving packets across the

physical medium" [4].

IEEE 802 IS 4
Channel spacmg

SMHz

Channel IS Channel 20
3405 MHz

IEEE 802 I t

Channels 25.26

3 MHz

25 MHz

Channel spacing

2425 MHz 2437 MHz 2450 MHz 2462 MHz 2475 2480
MHz M H z

Figure 4. Overlapping spectrum usage in the 2.4 GHz band, showing 802.15.4 and

802.11 (WiFi) coexistance [21].

The radio specification supports the following waveforms: binary phase-shift keying

(BPSK), amplitude shift keying (ASK), and offset quadrature phase-shift keying

(O-QPSK). We will only discuss the PHY in the 2400-2483.5 MHz band since this is the

band our device works in. This band solely uses O-QPSK. The O-QPSK waveform used

in 802.15.4 in the 2.4 GHz band uses 4-bit symbols for a total of 16 symbols. These 16

symbols are represented by 32-chips as shown in Figure 5. These nearly-orthogonal

chips are transferred at a rate of 2 Mchip/s and are broken into the in-phase and

quadrature phases of the waveform, 16 chips into each. All 32 chips (4 bits) are

transferred in 16 us yielding a bit rate of 250 kbps.

15

Data symbol
(decimal)

0

1

•y

3

4

5

6

7

8

9

10

11

12

13

14

15

Data symbol
(biuary)

(b0 bx b, b0

0000

1000

0100

1100

001 0

1010

01 10

1110

0001

1001

0101

1101

0011

1011

Oil 1

1111

Chip value*
(c0cx...C3ecjl)

11011001110000110101001000101 110

11101101100111000011010100100010

00101110110110011100001101010010

0010001011 1011011001110000110101

01010 01000 101110110110011100001 1

00110101001000101110110110011100

11000011010100100010111011011001

10011100001101010010001011101101

10001100100101100000011101111011

101110001 100100101100000011101 11

01111011 1000110010010110000001 11

01110111101110001100100101100000

0 000011101 11101110001100100101 10

01100000011101111011100011001001

10010 110000001110111101110001100

11001001011000000111011110111000

Figure 5. Symbol to chip values from the 802.15.4 standard for O-QPSK at 2.5 GHz

[4].

In order to understand the true aggregate data rate, we need to know how the data is

packetized and framed, that is, how much of each packet is data versus overhead. We

will first review the PHY packetization, and in the MAC section, how the actual data is

framed. Each MAC frame is encapsulated in a PHY packet called the PHY protocol data

unit (PPDU). The format of a PPDU is shown in Figure 6. The PPDU consists of a

preamble of four bytes (or octets) to allow receivers to synchronize to the incoming

message. The bits in the preamble field are binary zeros (the 32-chip sequence

representing those zeros is actually a pattern of ones and zeros). The start-of-frame

16

delimiter (SFD) is hexadecimal A7. The frame length indicates the number of bytes in

the PHY service data unit (PSDU) and is only seven bits long, indicating that the

maximum MAC frame size can be 127 bytes. For an acknowledgement packet, the

PSDU length will be five bytes, and for data and command packets, the PSDU length can

be from nine to 127 bytes. The PSDU is where the MAC frame resides as shown in

Figure 7.

Octets (bytes)

4

Preamble
(128 us)

1

Start-of-Frame
Delimiter (SFD)

Synchronization header (SHR)

1

Frame Length
(7 bits)

Reserved
(1 bit)

PHY Header (PHR)

VARIABLE

PHY service
data unit
(PSDU)

PHY Payload

Figure 6. PHY protocol data unit (PPDU) for the 2400 MHz band [4].

Transmitters must be capable of transmitting at least -3 dBm, or about 500 uW. Of

course, to keep power consumption as low as possible, transmit power is adjustable.

Additionally, receivers must be able to stand a signal as high as -20 dBm, or 10 uW. The

ED measurement is a power average taken over eight symbol periods and is reported in a

one-byte value. The LQI measurement is an estimate of the signal-to-noise ratio taken

for each received packet. It is also a one-byte value, highest being the best quality,

lowest is the worst quality. The radio reports this for each packet as received signal

strength indication (RSSI) which is a term used often in the literature.

17

Payload

Service Dat
S S (MHR) (MSDU)
o b MAC Header MAC Service Data Unit

,» PHY Header
$ (PHR)

MAC Protocol Data Unit (MPDU)

PHY Service Data Unit <PSDU)

Figure 7. Diagram demonstrating the relationship of the MAC frame to the PHY

packet [22].

Three methods are specified for performing a CCA:

1) CCA Mode 1: The CCA reports a busy medium if energy in the channel is above the

ED threshold, which is, at most 10 dB above the receiver sensitivity (which, in turn, must

be less than -85 dBm).

2) CCA Mode 2: The CCA reports a busy medium if a signal that has the same

modulation and spreading characteristics is detected.

3) CCA Mode 3: Any combination of Mode 2 and/or Mode 1 above.

As with ED, CCA detection is over eight symbol periods.

MAC LAYER OVERVIEW

The MAC layer uses carrier sense multiple access with collision avoidance (CSMA-

CA) in order to detect traffic on the radio channel and determine when it's appropriate to

transmit. To accomplish this, the MAC layer uses either the ED or CCA of the PHY

layer. Typically CCA is used to determine if a channel is busy and whether the device

needs to wait a random amount of backoff units to attempt to transmit again. The basic

unit for backing off is the unit backoff"period and is 20 symbols (10 bytes). ED is

18

typically used by a PAN coordinator to choose a relatively clear channel to operate.

Additionally, time slots can be allotted - called guaranteed time slots (GTSs) - to

accommodate devices that the designer/developer does not wish to compete for

bandwidth. The general MAC frame format is shown in Figure 8. The MAC footer

(MFR) contains a frame check sequence (FCS), which is a 16 bit cyclical redundancy

check (CRC).

Octets (bytes)

2

Frame
Control

1

Seq.
Num.

0/2

Dest.
PAN
ID

0/2/8

Dest.
Addr.

MAC Header (

0/2

Src.
PAN ID

0/2/8

Src.
Addr.

0-14

Aux.
Secu.
HDR

MHR)

VARIABLE

Payload

MAC
Payload

2

FCS

MFR

Figure 8. MAC protocol frame [4].

It can be seen that the minimum number of octets added by the MAC to the PSDU is

then nine bytes. This assumes the 16-bit source and destination addressing mode will be

used with no PAN coordination. Assuming the minimum overhead for the MAC Frame,

the PHY Packet overhead above, and maximum capacity for the PSDU (127) are used,

for every 118 (127-9) bytes transferred, 15 bytes of overhead are sent. This makes the

maximum transmission rate 221.8 kbps if the system could continually transmit packets

with no dead time in between. Of course, the assumption of no dead time and continuous

transmissions is not practical. Among other things, it does not account for

acknowledgements (transmissions to confirm the packet was received), which are five

bytes in length, plus the extra six bytes for the PHY packet. Additionally, the MAC

19

specifies the minimum interframe spacing (EFS) as 12 symbols and a minimum

contention access period (CAP) length of 440 symbols (at four bits per symbol, this is

220 bytes) if a PAN coordinator with super frame is used. If we assume one packet is

sent for each CAP, then the maximum aggregate data rate is more on the order of 134

kbps. The underlying point of this discussion is that if a user has a large amount of data

to transfer (greater than 118 bytes), then the specified bit rate of 250 kbps is not valid.

As implied by the Auxiliary Security Header field in Figure 8, the MAC has the

ability to encrypt transmissions using the Advanced Encryption Standard (AES) as its

core cryptographic algorithm. The encryption protection specified can protect the

confidentiality, integrity, and authenticity of MAC frames. The upper OSI layers set up

keys to use and security level while the MAC layer does the security processing. The

MAC layer will use the address of the message to retrieve the key associated with that

address. It will then use the key to process the frame according to the security suite

designated for the key being used. As can be seen, significant additional overhead is

encountered with encryption enabled (up to 14 additional bytes). Further discussion of

this is not in the scope of this research since we wish to disseminate messages that any

user can read.

LOW-POWER MAC IMPLEMENTATIONS

The goal of this research is to transmit messages across the PAN indicating essential

information about the environment to a visually impaired user. As mentioned in Chapter

I, perhaps the simplest broadcast approach is to have each node rebroadcast the message.

This approach consumes too much communication bandwidth, causing a broadcast storm

problem [7]. In this section, we will discuss the broadcast storm problem and outline

20

three MACs which have been implemented as an alternate to the 802.15.4 MAC to

overcome the problem. Finally, we will examine the Trickle protocol which was

available in TinyOS and implemented in this dissertation to transmit messages.

BROADCAST STORM PROBLEM

Ni, et al., [7] were one of the first to quantify the broadcast storm problem in depth.

Clearly, in any wireless network, optimal placement of devices ensuring 100% delivery,

but no coverage overlap, is extremely difficult. Additionally, some redundancy is desired

in wireless sensor networks (WSNs) because, should a device stop functioning due to

lock-up, battery being exhausted, or any other reason, the user would want the message to

be rerouted through a working node. In our circumstance and for mobile ad hoc networks

(MANETs), it's impossible to determine the layout a priori; therefore, the network, itself

has to determine the most appropriate nodes to use to minimize retransmissions, but also

do its "best effort" to ensure 100% of the working nodes have received the message. One

of the key aspects of Ni's paper is that the broadcast is considered "unreliable", in that no

acknowledgements are used. The network will make a best effort to ensure all nodes

receive a message, but 100% reliability is unnecessary. This is the case for our system as

well. Should a base station desire its message to be received by a greater number of

recipients than "best effort", a priority field can be used in message delivery and

robustness will occur at the expense of battery power.

Ni, et al. [7], start by examining the amount of redundancy that occurs by having all

nodes in a defined area transmit. They model the transmit areas of each node as a circle

with constant radius, r, as seen in Figure 9(a). As each new node is added, the additional

area covered for the new node can be calculated. The average gain for the second

21

transmission is only about 41%. In a realistic scenario, a node might listen for how many

times the same message was transmitted (the message would be tagged with a unique

identification number) and that would determine if it should transmit. Ni, et al.,

simulated this scenario and determined that if a node heard the same message greater than

or equal to four times, the "expected additional coverage" (EAC) for that node

transmitting was less than 0.05%, as seen in Figure 9(b). This interesting outcome shows

a practical limit on how a node should decide to retransmit or not.

(a)

3 5 7 9 11 13 15
No. of transmissions heard (&)

(b)

Figure 9. From Ni, et al. [7], (a) diagram showing the additional area gained by node

B rebroadcasting a message from node A. (b) graph of the expected additional

coverage after hearing k transmissions.

The second aspect of the broadcast storm problem examined in the paper is the

contention problem. This occurs when multiple users try to use the same spectrum at the

same time. Since the MAC performs a CCA before transmitting and then, if the channel

is busy, does a random back-off, it can be some time before a message is delivered if

22

many nodes are trying to transmit the same message. Examining Figure 9(a) more

closely; if another node, C, hears a message from A, and is going to contend with B, it

must be in the intersecting area. From this, they computed the likelihood of contention

for just two nodes as 59%. When the number of nodes becomes greater than five, the

likelihood of contention becomes greater than 80%. It's interesting to note that they use

only area to examine the likelihood of contention and not timing. For instance, if node C

has already attempted to transmit another message and had to back-off, when it's

necessary to transmit the repeated message, it might attempt it at a different time slot than

B. This is a large oversight in their analysis and is perhaps why contention is not

mitigated in their list of potential solutions.

They suggest four schemes for reducing redundancy, which simultaneously reduces

contention: 1) a counter-based scheme, 2) a distance-based scheme, 3) a location-based

scheme, and 4) a cluster-based scheme. Of these, the counter-based scheme is perhaps

the most important because it is essentially implemented in the Trickle protocol as part of

TinyOS implemented in this dissertation. Additionally, this scheme can be adjusted

using a priority field (as mentioned above), which would increase the counter threshold,

thus causing nodes to transmit more. (Note: this aspect of the counter-based scheme is

not mentioned in their paper.) The location and cluster-based scheme require either

external, power-hungry components or are too complicated for the computational power

available in the low-power devices typically used in LR-WPANs. Additionally, the

counter-based scheme performed almost as well as the location-based scheme and better

than the cluster-based scheme in terms of reaching more nodes, especially in sparse

clusters. Therefore, we will only review the counter and distance-based schemes.

23

The counter-based scheme performed better than the distance-based scheme in terms

of saved rebroadcasts and lower latency [7]. To implement the counter-based scheme, a

node would follow the following procedure.

SI: Message heard. Initialize counter. Set timer for random wait time. Go to S2.

S2: Wait; if time is up, go to S3. If message is heard again, increment counter. If

counter is < C, go to S2, else go to S4.

S3: Transmit message.

S4: Do not retransmit message.

The distance-based scheme uses the distance between the receiver and any message

re-transmitter (even the first host) as the metric to decide whether to transmit again. If

the distance is small, the additional coverage gained by retransmission is small. The user

chooses a minimum distance dmin to decide whether to retransmit. They assume signal

strength is a reasonable indicator of distance, which is a valid assumption. To implement

the distance-based scheme, a node would follow the following procedure.

SI: Message heard. Store distance measurement, dst0re- If dsU>re ^mtn, go to S4. Set

timer for random wait time. Go to S2.

S2: Wait; if time is up, go to S3. If message is heard again, go to SI.

S3: Transmit message.

S4: Do not retransmit message.

They conclude the paper with some suggestions for the counter threshold, C, and

minimum distance, dmtn. For sparse networks, where the number of neighbors average

about 2.4, all nodes that can be reached are never reached even for high counter

thresholds i.e., six. For medium and high-density networks, reachability approaches

24

100% for C>3. The values for minimum distance were chosen to make a comparison

between the two schemes by using their estimate for additional coverage for both

methods. Even so, the counter-based scheme saves more in terms of rebroadcasts

although the distance-based scheme did better in terms of reachability, especially in areas

with sparse sensor populations.

LOW-POWER LISTEN

Hill and Culler [23] developed the concept of using a "low power listen" (LPL) mode

to dramatically reduce power consumption in LR-WPANs. Their concept is simple but

requires synchronizing nodes on the network. Using their time-synchronization method

of tagging the sent data with a time stamp, and then comparing that to the time stamp at

the receiver, they claim to achieve synchronization between two nodes of 2 us. Initially,

they suggest that a node would be scheduled to wake up at certain times, turn on its radio

to listen, and listen for two packet lengths. This would allow the node to receive a packet

scheduled for some time between the start and end of the two-packet lengths. This can be

expensive in terms of power consumption with a duty cycle of 2.7%, especially if no

message is present most of the time.

To alleviate this problem, they suggest that the transmitter may transmit its carrier (or

preamble), only during a short time period if it has a message to send. It then can start

the message after this short time. If the devices are synchronized to 2 us, then the wake-

up tone could only be 4 JJ.S long. The receiver would use the ED feature to sample the

channel for a much shorter period than above to determine whether the node should

continue listening or "the wake up signal is present" [23]. If a four-second interval is

used, they perform the ED in 50 us yielding a very low duty cycle of 0.00125 [23]. This

25

method does not seem like it would be effective in a noisy environment but would be

extremely effective in an outdoor environment with little electronic in-band noise. The

energy-usage burden is transferred from the receiver to the sender which has to increase

its preamble time to ensure the receiver wakes up in time to listen.

BERKELEY MAC (B-MAC)

Largely based on the work of the two papers above, Polastre, et al., developed the

Berkeley or B-MAC [24]. Since idle listening consumes about the same power as

transmitting, the amount of time nodes spend in listening mode can be costly in terms of

network lifetime. Their MAC differs from other MACs in that, instead of supporting a

general set of workloads and large network traffic, the B-MAC is designed to be effective

specifically for small, low-duty cycle applications. They found that typically, wireless

nodes have a duty cycle of about 1%. The B-MAC can be reconfigured by the upper-

level application layer (OSI layer 7) to compensate for changing network conditions.

This can be accomplished, real-time, to optimize for parameters like energy consumption

to prolong network lifetime.

From reviewing previous work, Polastre claimed that time division multiple access

(TDMA) and ALOHA (A University of Hawaii MAC protocol where subscribers

transmit when they need to, and if the message does not make it through, they transmit

later) could not scale to large networks. Since then, modifications to the ALOHA

protocol include slotted ALOHA and ALOHA with preamble sampling. Polastre also

included WiseMAC, which met all of B-MAC developer goals, except having the ability

to be reconfigured based on changing demands of the network [24]. Polastre particularly

compares B-MAC with S-MAC, which is a low-power request to send/clear to send

26

(RTS/CTS) protocol developed with 802.11 (WiFi) in mind. Each active period, when

the radio wakes from the sleep mode to synchronize with neighbors and transmit

messages, is 115 ms wide, while the sleep period is random. The protocol includes an

adaptive sleep period where a neighbor "snoops" on other neighbor's packets and

immediately transmits it own message(s) after their transmission is complete (using

RTS/CTS). As the size of the network grows, the S-MAC must maintain an increasing

number of each neighbor's schedule. This makes S-MAC less practical for large sensor

networks considering the notorious lack of memory available in sensor devices. In

S-MAC we can see though that listening to neighbor's communications (snooping/

eavesdropping/gossiping) can have benefits in a low-power network.

We can see from some of the above discussion, where B-MAC's key features of

a. random delays (referred to as unit back-off from 802.15.4), b. forwarding delay

(counter-based scheme from broadcast storm paper), c. link-quality estimation (RSSI

from 802.15.4), and d. low-duty cycle through long preamble were developed. It should

be noted that B-MAC avoids synchronization by lengthening the preamble and making

the wake-up intervals (called "check time" by the authors) such that the radio always

wakes up in time to hear a preamble, as shown in Figure 10. B-MAC also implements an

improved CCA where it samples the channel at a time when it is assumed to be free,

applying an exponentially-weighted moving average to samples. This allows them to

create a better estimate of the noise floor and implement an outlier algorithm to more

efficiently determine if a channel is free.

27

time

Figure 10. Illustration of B-MAC, showing key feature of lengthening the preamble

to ensure the potential receive node wakes up in time to detect a pending message

[24].

When initially attempting to send a message, if the channel is occupied, instead of

using the 802.15.4 standard random back-off, B-MAC notifies the service (higher in the

OSI stack) sending the package. If the notification is ignored, then the standard back-off

is used. This gives the upper layer the ability to modify the standard back-off. After the

initial back-off, the CCA outliers algorithm is used and a "congestion back-off

notification message is sent to the service. Again, the upper layer service can ignore the

message or implement changes to adjust the fairness or available throughput of the

network.

Using the LPL technique, B-MAC periodically samples the channel. If activity is

detected, the radio stays on and receives the packet. After reception or a false positive,

the node goes back to sleep. Clearly LPL requires synchronization and/or the ability to

check the channel during the time of the PHY preamble. B-MAC chooses the latter,

adjusting the preamble size and "check time" (time between sampling the channel for a

message) based on density of the surrounding nodes. The length of the preamble and

time between checks is adjustable but typically ranges between 20-100 ms (which is

significantly longer than the 802.15.4 preamble specification in Figure 6), and the author

provides an algorithm to compute the check time, and thus, the preamble length based on

28

usage cases. Nodes do snoop on other messages in an attempt to determine how best to

synchronize with the parent node and determine network layout, but this is not formally

included in the B-MAC. This can allow dynamic reduction in the preamble size during

the lifetime of the network.

The authors provide two other insights and uses for the B-MAC: a. disabling the CCA

to allow implementation of a scheduling protocol at a layer above B-MAC and b. cycling

between long and short preambles in order to limit energy consumption. Polastre makes

a very compelling case on the utility of B-MAC for sensor networks and clearly

demonstrates the MAC's superiority over S-MAC and ALOHA. Although B-MAC is the

default MAC used in TinyOS and used in this dissertation, continued development has

occurred on low-power MACs. We describe one of the most promising below, X-MAC.

X-MAC

X-MAC was developed by the University of Colorado about two years after B-MAC

in their technical report CU-CS-1008-06 [25]. The authors considered the B-MAC

inferior because the long preamble "introduces excess latency at each hop, is suboptimal

in terms of energy consumption, and suffers from excess energy consumption at non-

target receivers" (an artifact from packet snooping) [25]. A large portion of energy

wasted when using the B-MAC occurs because the receiver has to wait until the end of a

long preamble to determine if the message is meant for it. If not snooping, this wastes

significant amount of energy by those nodes that are not the intended recipients. For

example, the worst case would occur if a receiver detects the preamble just as it is

beginning. It must wait the full preamble time to eventually listen to the message. If it is

29

a multi-hop message, the per-hop latency is increased and bounded by the preamble

length [25].

X-MAC goes back to a short preamble in an attempt to alleviate these problems.

First, Buettner, et al., embed address information of the target into the preamble so that

others that do not wish to snoop can go back to sleep (remember that the 802.15.4

preamble specification is for the preamble to consist symbols that are all 0's - repeating

chips of 11011001110000110101001000101110). Second, they strobe the preamble,

which allows the target recipient to notify the sender that it is awake (similar to a CTS

signal). Third, similar to B-MAC, they suggest an automated algorithm for adapting the

duty cycle of nodes to accommodate traffic density. It should be noted that the Trickle

protocol, description to follow, significantly relies on listening to others' transmissions,

making their first improvement of limited utility (since all nodes would want to snoop).

One of the key aspects of the X-MAC is that it can be supported across a broad range of

currently-available radios, without becoming non-compliant with the 802.15.4 PHY

specification [25]. Although Buettner, et al., did not compare X-MAC directly with

B-MAC, their method showed a significant improvement over the B-MAC

implementation of LPL.

TRICKLE PROTOCOL

Now that we have reviewed some of the various MAC layer protocols that are used in

LR-WPANs, we have to examine the means to achieve message dissemination most

effectively. Levis, et al., [8,26] have developed the "Trickle" protocol based on the ideas

in Ni's paper [7]. This scalable approach can consistently deliver messages or code

30

updates via a broadcast mechanism efficiently by using a "polite gossip" policy. Trickle

can also be used for route maintenance and neighbor discovery.

The purpose of Trickle is to ensure all nodes have the same version of software or

message (or "state") and resolve inconsistencies through local interactions with their

neighbors. A key aspect of the protocol is that new nodes do not receive the entire

history of updates, but, instead only the latest one. Similarly, if a node drops out for

some reason, it will miss intermediate messages/updates, and will only receive the latest

one. Key aspects to evaluate dissemination protocols are 1) how quickly they

disseminate messages (and how long it is until the last node receives an update), 2) how

reliably they are sent, 3) how much energy is consumed, and 4) how much bandwidth is

consumed (reduce redundant transmissions and number of messages). Additionally, De

Couto, et al., have shown that an effective metric to use to determine cost is "expected

transmissions" or ETX [26], and, indeed, this is the metric Levis uses. The ETX of a link

is the predicted number of transmissions required to successfully receive that packet at

the destination. The ETX of a route is defined as the total of all ETXs for each link [27].

In order to determine if a node has the same state, a node listens to transmissions

from its neighbors (mostly repeats of the broadcast message). If the "state" in the

neighbor's message doesn't match the node's current state, the node will communicate to

resolve the problem. If the states are the same between nodes, transmissions slow to a

"trickle", sending only a few packets per hour. Since the protocol only relies on local

broadcasts, instead of building large routing tables, it is robust enough to handle addition

and loss of nodes. The general algorithm in an unsynchronized network for Trickle is

below; notice the similarity to the counter-based algorithm from Ni, above.

31

SI: Initialize counter, c, to 0. Set timer for a random time in the range [% , *]•

Go to S2.

S2: Wait; if time is up, go to S3. If message is heard, either:

a. increment counter if message is consistent with current state and go to S2 or,

b. go to S4 if message with a different state is heard.

S3: If c < k, transmit message which contains metadata to detect inconsistent states.

Double r, but not greater thanzh. Go to SI.

S4: Choose T= X\. Note new state. Go to SI.

Note that k is the "redundancy constant" and was discussed in Ni's counter-based

scheme. As can be seen, Trickle dynamically adjusts r, the gossiping interval, based on

network conditions. If a new message is heard, it sets rto the lower limit r\, making a

transmission, or gossip, more likely. If the gossiping interval is small, more

communications have the potential to occur, and data propagates more quickly.

Additionally, this means higher energy consumption in the network. Levis suggests both

an upper and lower bound for z, % and T\, respectively. Notice that in S2b, the node will

go to the lower bound if it hears a node with either an older or newer state. In the case of

hearing an older state, the node will quickly respond with the new code. In the case of

hearing a newer state, the node will ensure other nodes within its range also get the new

message, having message transmission limited instead by the counter-based scheme.

We can see how this protocol is most compatible with the B-MAC described above

due to the necessity of snooping on neighbor's messages. The X-MAC protocol could be

modified to include the node's state (usually 4-11 bytes [8]) along with X-MAC's

32

broadcast address in each preamble packet. This should accomplish the same advantages

of X-MAC over B-MAC with the corresponding energy savings.

Levis notes that a node observes u\ k • log, / (d)\ transmissions over an interval for

a synchronized network (where timers start at the same time), where d is the network

density and PLR is the packet loss rate [8]. For an unsynchronized network, the number

of transmissions scale as 2k • 0\ log,, (d) I [27]. This is because, for an unsynchronized

network, a listening period of *A bounds the total transmissions in a lossless, single-hop

network to 2k because it is assumed that a single transmission during a listen period

prevents other nodes from transmitting in that time. Because of its utility and simplicity,

Trickle has become a "network primitive" in LR-WPANs and is implemented in many

projects [8].

TINYOS AND OTHER LR-WPAN OPERATING SYSTEMS

OVERVIEW OF TINYOS

TinyOS, developed by UC Berkely, has become the OS of choice for conducting

research in the area of LR-WPANS and wireless sensor networks [11]. Despite that,

numerous other operating systems and virtual machines have been developed. We will

only briefly touch on some of these other OS's at the end of this section since TinyOS is

used in this dissertation.

TinyOS is a scheduler for two predominant microcontrollers used in wireless sensor

networks, the Atmel Atmega 128L and the Texas Instruments MSP430. A port of the

code is in the works for the venerable 8051 microcontroller as well. It allows a

programmer to manage concurrent data flows among hardware devices and provides

33

modularized software components which represent hardware components or messaging

constructs. Using a simple run-to-completion, first-in-first-out concurrency model for

time-consuming tasks, TinyOS capitalizes on the underlying capabilities of the

microcontroller it resides on. Tasks are created which are associated with an event and

placed in the scheduler. When the task is complete, the software-defined event is

triggered by an interrupt from a timer, a peripheral, or an external device. This event-

based model relies on the robust hardware interrupt structure that microcontrollers

provide without blocking or polling while TinyOS ensures that the results of an interrupt

are assigned to the correct event for response. It allows the CPU to dispatch jobs to

peripherals, e.g., the direct memory access (DMA) controller or the inter-integrated

circuit (I2C) controller, and then go into a deep-sleep state to conserve energy. The CPU

is then awoken by an interrupt when the peripheral is complete.

Additionally, the developers have provided a bit-level simulation for TinyOS called

TinyOS Simulator (TOSSIM). Code created for TinyOS can be run in TOSSIM with

minimal modifications, if code is sufficiently simple and does not include any non­

supported external components. To run the code for this dissertation in TOSSIM, the I2C

components had to be disabled since those components were not supported in TOSSIM.

I2C module calls were replaced with debug statements to a file in the simulator. The

University of California at Los Angeles has another compiler for the Mica mote called

Avrora. It was not used or evaluated in this dissertation.

TinyOS is programmed using nesC (Networked Embedded System C) which allows

connecting of built-in and user-defined "components". The user defines, in code, the

interface between components and can instantiate components of their own. To increase

34

runtime efficiency, components are statically wired together to form the kernel based on

the interfaces specified between components. Two types of components are used in

nesC, and they may consist of interfaces, commands, and events:

- Modules which implement the application behavior (usually will contain the bulk

of the user's code) and

- Configurations which wire components together through interfaces.

This methodology creates a hierarchy where commands flow downwards and events

flow upwards. Since the OS is event-driven, tasks are created and "posted" to the

scheduler with the keyword "post" which the scheduler executes and then waits for

events. These events call commands but not vice-versa. Events, of course, can be

ignored. For instance, when sending a message, upon message transfer to the

transmitting radio, the interrupt response is a call to "SendDoneQ" which the user may

ignore.

IMPLEMENTATION OF NOTIFICATION SYSTEM

We used TinyOS on a Crossbow MicaZ Mote as the radio component with a custom-

designed daughter card for our notification system for the visually impaired. To further

mitigate the broadcast storm problem and to localize messages, we used the

Dissemination protocol included with TinyOS with a modification to limit the distance,

by limiting the number of hops, a message is allowed to propagate. Messages are then

forwarded to the daughter card for the human interface which is discussed in the next

chapter.

A snippet of code from the nesC application created for this dissertation is shown

below:

35

configuration EasyDisseminationAppC {}
implementation {

components EasyDisseminationC as App;
components DisseminationC;
components MainC;
App.Boot-> MainC.Boot;
App.DisseminationControl -> DisseminationC;

components ActiveMessageC;
App.RadioControl -> ActiveMessageC. SplitControl;

components new DisseminatorC(I2C_Dism_packet_t, 0x1234) as Dissl6C;
App.Value ->Dissl6C;
App.Update -> Dissl6C;

components LedsC;
App.Leds-> LedsC;

components new TimerMilliC() as Timerl;
components new TimerMilliC() as Timer2;
App.Timerl -> Timerl;
App.Timer2-> Timer2;

components new Atml28I2CMasterC() as I2CMaster;
App.I2CBasicAddr->I2CMaster.I2CPacket;
App.I2CResource -> I2CMaster.Resource;

The convention in nesC is to append a "C" after configuration files and an "M" after

modules. The "App" in the file name indicates the highest level in the hierarchy of an

application. It should, appropriately, also be a configuration wiring together underlying

components. In the code snippet above, we can see a few things:

1) In the first set of component declarations, the programmer can choose to use the actual

name of the component or redefine the name of the component for his particular

application using the keyword "as" followed by the new name. So the application code

we wrote to implement our messaging system is in the file EasyDisseminationC, but it is

referred to as App in the nesC code due to the assignment in line 3. This is also useful if

the programmer wishes to instantiate a number of different components (such as Timers).

36

2) The programmer can pass parameters, such as "I2C_Dism_packet_t, 0x1234" to the

DisseminatorC component above which allows modifying a component before it is

compiled. This allows components to be flexible, but one has to remember that more

modifications cannot be made at runtime.

3) After the component declarations, the new name for the component is wired to

application usage of the components using arrows: " ->" or equals "=".

All applications have a "Mzz'nC" which handles initializing the application. In the

above example, this component is "wired" to the application's "boot" component,

meaning that "MainC will be called when the microcontroller boots. In the application

there will be an event "void Boot.bootedQ" which contains the actual C code that the

application executes at boot time. The application's "bootedQ" section is below:

event void Boot.booted() {
int ii;
for (ii=0;ii<4;ii++) {

I2CMsgIn[ii].nodeid = TOS_NODE_ID;
I2CMsgIn[ii] .counter = 0;
I2CMsgIn[ii] .priority = 1;
I2CMsgIn[ii].numberhops = 0;

}
I2CMsgOut.nodeid = TOS_NODE_ID;
I2CMsgOut.counter = 0;
I2CMsgOut.priority = 1;
I2CMsgOut.numberhops = 0;
atomic {

busy = FALSE;
}
call Leds.set(LEDS_LEDO | LEDS_LED1 | LEDS_LED2);
call I2CResource.request();

}

This is an opportunity to request resources and set up initial conditions. We use the

I2C port first so we send a request at the end of initialization for its use. When the

microcontroller finishes setting up the port, it will call the event: I2CResource.granted().

37

This example demonstrates how code flows in a TinyOS application by calling

commands or posting tasks and waiting for responses through events, as described above.

Notice that three components: "TimerMilliC, DisseminatorC, Atml28I2CMasterC

are instantiated with the "new" command. "New" creates a realization of "virtualized

abstraction" or "generic component" which is a set of code that is reused by creating a

new, separate module for each instantiation. The programmer can send parameters to the

virtual component creating a customized static component for their application. Using

the keyword "new" will increase the size of the application because a separate component

will be created each time it is used. This is actually used in the TinyOS library

Dissemination to instantiate two receive-radio components, one for receiving data

messages and one for receiving probe messages.

The main message construct of TinyOS is the "Active Message" which follows a

TinyOS-defined C structure called message J:

typedef nxstruct messaget {
nx_uint8_t header[sizeof(message_header_t)];
nx_uint8_t data[TOSH_DATA_LENGTH];
nx_uint8_t footer[sizeof(message_footer_t)];
nx_uint8_t metadata[sizeof(message_metadata_t)];

} messaget;

Notice that the structure closely follows the MAC Frame in Figure 8. ActiveMessage

uses the macro "define" TOSHDATALENGTH to determine the MAC payload length

which defaults to 28 bytes. The ActiveMessage construct handles all underlying

communications allowing the user to call "Send" when a message needs to be sent and

receive the event sendDoneQ when transferring the message to the radio is complete. A

user with a custom application can modify the messaget structure (as is done in the

Dissemination library), but most will choose what we have done which is have our

38

structure fit within the "data" field in message J. We created our own structure to limit

the distance packets are sent from the base station:

typedef nxstruct easydis_packet_t {
nx_uintl6_t nodeid;
nx_uint8_t counter;
nx_uint8_t priority;
nx_uint8_t numberhops;
nx_uint8_t data[TOSH_DATA_LENGTH-5];

} I2C_Dism_packet_t;

We have added apriority field, which would allow the dissemination protocol to

increase the dispersion time for a broadcast packet (by immediately forcing selection of

ri) and a numberhops field to limit the distance from the base station by counting hops.

This structure is passed to DisseminatorC, which in-turn uses it as the data payload for

ActiveMessages. For further information on Dissemination refer to the documentation at

http://www.tinyos.net. Simulation and implementation results will be presented in

Chapter IV.

OTHER OPERATING SYSTEMS

TinyOS has limitations that have been addressed by a number of different add-ons,

communities, and universities. For instance, after linking, modifying the system is not

possible, which caused Culler, et al., to create Mate, a virtual machine for TinyOS that

allows new code segments to be created and downloaded to change the system during

runtime. In contrast, Contiki, developed by the Swedish Institute of Computer Science, is

a multi-tasking operating system that provides a dynamic structure which allows

programs and drivers to be replaced after deployment without relinking [28].

Additionally, the University of Colorado developed MANTIS, a multithread embedded

operating system which enables flexible and fast deployment of applications. With the

http://www.tinyos.net

39

key goal of ease for programmers, MANTIS uses classical layered multithreaded

structure and allows programmers to use C. Unlike TinyOS's FIFO structure, MANTIS

has a prioritized scheduler allowing tasks to be arranged based on importance [29].

Many other operating systems and schedulers are available, such as MagnetOS which

actually uses a Java virtual machine that includes static and dynamic components. The

static components rewrite the application in byte-code level and add instructions to the

original application. The dynamic components allow changes to be delivered as the

system is running. This small sampling of operating systems hopefully demonstrates the

growing research field of wireless netted sensors and WPANS. Small incremental

improvements are continually occurring including the next release of TinyOS which will

include safe memory execution and concurrent threads [30].

40

CHAPTER III

HARDWARE DESIGN

This chapter addresses the hardware designed for the Visually Impaired Notification

System (VINS). The following features we envisioned for the system:

1) interface directly with commercially available Crossbow MicaZ Mote working in

the 2.4 GHz band,

2) haptic feedback to the potential user in the form of 3x2 Braille,

3) visual feedback of Braille output,

4) text-to-speech (TTS) capability to allow visually impaired user to hear messages

being sent, and

5) consume a minimal amount of additional power over the MicaZ.

We first review the Crossbow MicaZ Mote and hardware interface capabilities and then

discuss our hardware implementation to implement the features above.

CROSSBOW MICAZ

Figure 11 shows the history of wireless sensor cards from DARPA's original program

inception in 1997. The Crossbow MicaZ and the Telos motes are based on the Atmel

128L and Texas Instrument's MSP430 microcontrollers, respectively, and are arguably

the most prolific devices used in research today. Numerous manufactures now make

radios and integrated microcontrollers for the 802.15.4 specification, some implementing

MAC protocols discussed in the previous chapter. We chose the MicaZ because of the

wide variety of input/output (I/O) available through its 51-pin, on-board connector.

-jaqAQ

SSON
/S13N

OlS
SN3Q

JSN

1S3N

05 t io i i j padxg

1ISN3S
oo

y

o
x>
co
CO

O

(50
S3

'%
O

J3
CO

CO

O

c
o
CO

g

o

o
to

• H

o

o
t/3

t-i

42

Once a concept is demonstrated, the entire validated design could eliminate unnecessary

ports and connectors yielding a much more compact, power-saving design.

Figure 12 shows a picture of the MicaZ mote along with a cartoon showing the major

components. The daughter card developed for this dissertation connects to the 51-pin

expansion connector. This connector has inputs to the eight-channel, ten-bit, on-board

analog-to-digital convertor (ADC) as well as 21 general purpose input/output (GPIO)

pins. Additionally, the connector allows access to the microcontroller's I2C and serial

peripheral interface (SPI) ports. The SPI port is shared with the on-board radio making it

necessary to ensure addressing commands are used to remove contention. Because of

this, we decided to use the I2C interface, also called "two-wire serial", to communicate

with our daughter card. The I2C interface allows up to 400kbps transfer speeds and can

address up to 128 devices. Programming the I C bus for both the MicaZ and the daughter

card will be discussed later.

Antenna

Microprocessor

Antenna
Connector

Expansion
Connector

Battery Pack

Figure 12. MicaZ description, from Crossbow documentation [32].

43

The provided schematic of the 51-pin connector is shown in Figure 13. Note that the

figure includes both male and female connector pin-out descriptions, despite the fact that

the MicaZ has no connector attached to J22. Instead, the battery holder is connected to

that side of the board. The male connector is provided at the top (J21) of the MicaZ,

while the user may remove the battery holder and solder their own connector on the pads

provided on the side of the battery holder. We removed the battery holder in our design,

and the daughter card sits where the battery holder would typically reside. Additionally,

we soldered another DF9B-51P-1V, 51-pin connector to the bottom of the MicaZ. These

modifications allow the daughter card to stay on the MicaZ during programming with the

Stargate board described next. This allowed for easy viewing of the onboard LEDs on

the Mote. Figure 14 shows the pin-out description of the DF9B-51S-1V, 51-pin

connector used on our daughter card (for full schematics, see Appendix A). It should be

noted that this is a mirror image of J21, and therefore, could not be connected to the

MicaZ directly through connector J21. Figure 15 shows a diagram of the connection

between the daughter card and MicaZ.

Additionally, we replaced the typical battery holder with a Digikey part number (P/N)

SBH-321AS-ND and a connector to the 1.25 mm on-board power connector (J4), P/N

W1720-ND. Due to clever power routing, the combination of daughter card and MicaZ

can be powered in one of three ways:

1) From a direct-current (DC) plug connected to a wall outlet through the Stargate

board,

2) From the battery pack connected to the MicaZ, or

44

3) From the same DC plug that powers the Stargate, connected to CONN202 on the

daughter card.

«»A10 T i

OF*-5lC'-1VlS4j X^

HO r l

N-|5 3; « •

Figure 13. Schematic of the 51-pin connector taken from the MicaZ schematics

provided by Crossbow [32].

45

J101

V5W*

—

—

_

1:
at

2

-
>g

—

i
2
3

4
S
a

T

1

a

ID

11

12

11

14
15

ID

IT

ia

19

20

21
33

23
24
39

20

LLl
X.

o
LU

H
IR

O

>
20
29

30
91

32

za
S4

39

IB

29

4»
41

42

49

44

41

40

4T

4a

49

95

91

Ĥ

LMICARXQ

UMICATXIJ

3

>v
— 1 1

CF9B-51S-1V

Figure 14. 51 -pin connector used on daughter card.

The daughter card's power distribution and conditioning system will be discussed in

more detail later.

Figure IS. Diagram showing key components of the daughter card and connection

to the MicaZ mote.

46

STARGATE

STARGATE DESCRIPTION

The Stargate board produced by Crossbow (P/N SPB400) is a Linux-based, single-

board computer that has peripheral interfaces for a variety of functions. It contains a

PCMCIA connector for a WiFi card and an Ethernet port, so it may connect a connected

sensor network to an enterprise network without a PC or server. It has a 51-pin connector

which allows it to use a Mica Mote to interface with the wireless sensor network.

Additionally, it has a type II compact flash (CF) slot which enhances its memory capacity

for network data storage and retrieval.

The Stargate has a 400 MHz , Intel PxA255 XScale processor based on ARM

technology. In this project, the device is solely used to program the MicaZ mote through

the UART port on the 51-pin connector. The procedure in the following section was used

to compile the nesC code, assign the mote ID, and program the mote.

PROGRAMMING MOTES USING THE STARGATE

These instructions assume the user has already configured the Stargate according to

the manual on the Stargate disk using minicom on your Linux host. That procedure

initially sets up a static IP address and Apache (a web server). Additionally, we assume

the user's nesC code has been compiled using the following command:

$ make micaz

To differentiate each Mote on the network, each should have a different identification

number, the Mote ED. Therefore the user must set the Mote ID before downloading to the

mote; this example sets it to one. For tinyOS 2.x we used tos-set-symbols instead of

47

set-mote-id; notice we appended the Mote ID to the end of the compiled file name for

easier accounting later.

tinyOS 1.x:
$ set-mote-id build/micaz/main.srecbuild/micaz/main.srec.out-1 1

tinyOS 2.x:
$ tos-set-symbols build/micaz/main.srec build/micaz/main.srec.out-1 TOS_NODE_ID=l

The secure copy (SCP) protocol allows the user to copy the mote image (with the

appropriate Mote ID applied) to the Stargate for programming the connected mote. The

following line copies the compiled nesC code, build/micaz/main.srec.out(-x), to the "/usr"

directory on the Stargate, using the "root" user's account. The root-user's password is

required to successfully connect.

$ scp build/micaz/main.srec.out root@<Stargate IP Address>:/usr

The response from the Stargate should look something like this:

user@host:/opt/tinyos-2.x/apps/BlinkToRadio/build/micaz

$ scp main.srec. * root@192.168.1.91 :/usr

root@192.168.1.91 's password:

main.srec.out-1 100% 26KB 26.4KB/s 00:00

main.srec.out-2 100% 26KB 26.4KB/s 00:00

Once the images are copied to the Stargate, the user can use the secure shell (SSH) to

connect protocol to the Stargate to write the image to the Mote. This line attempts to

connect to the device using user, "root", at <IP.Address>. The root password should then

be used to connect.

$ ssh -I root <IP.Address>

Stop xlisten-arm if running, since you need access to serial port for programming.

$ ps -A | grep xlisten-arm

mailto:root@192.168.1.91
mailto:root@192.168

48

$ kill <process id for xlisten-arm>

Change to the directory you stored the images.

$ cd /usr

Ensure the Mote is plugged into the Stargate 51-pin connector and execute:

$ uisp -dprog=sggpio -dpart=ATmegal28 —wrjuse_h=d9 —wrjuse_e=ff-erase —
upload if=main.srec.out[-x]

Once your motes are programmed, be sure to shutdown your Stargate before you turn it
off by executing:

$ shutdown -h now

DAUGHTER-CARD, HARDWARE DESCRIPTION

MICROCONTROLLER

The microcontroller used on the daughter card is the Texas Instruments

MSP430F1611. This 16-bit microcontroller was chosen for various low-power features

such as four low-power modes (LPMs) and the ability to wake up from a low-power

mode within 6 us. The microcontroller includes I2C, SPI, and universal

synchronous/asynchronous receiver/transmitter (USART) ports and 48 pins of GPIO.

Additionally, the processor can be run with supply voltages ranging from 1.8 to 3.6 Volts.

In low-power mode 3 (LPM3), the processor can keep the external 32768 Hz crystal alive

and receive interrupts at set timer intervals while consuming just 1.6 uA at 2.2 Volts (see

Figure 16). In LPM4, the processor can receive external interrupts (such as from the

MicaZ) and consume only 500 nA at 2.2 Volts.

49

340
N
X
2

o
o

1

LPMO

17]l . 2

LPM2 LPM3

V C C = 3V

VCC = 2.2 V

0.1 0.1

LPM4

Operating Modes

Figure 16. Example of current (and thus power) consumption of the MSP430

microcontroller in the four available low-power modes (compared to active mode

(AM)) [33].

Care was taken to configure all unused pins properly to ensure lowest power

consumption by following the MSP430 user's guide instructions, "Unused I/O pins

should be configured as I/O function, output direction, and left unconnected on the PC

board, to reduce power consumption" [33]. Additionally, other measures were taken to

ensure low power consumption as described below.

MICROCONTROLLER POWER MANAGEMENT

hi our design, we not only change the supply voltage based on the operation being

performed, but also ensure operations were performed quickly, returning the

microcontroller to the lowest power mode possible, in most cases LPM3. The processor

only goes active or to a higher-power mode when awoken by an interrupt either from the

I2C port or US ART. Figure 17 shows the state machine implemented in the

microcontroller. Very few operations actually required the processor to enter active

mode (AM) since the processor has a robust direct memory access (DMA) controller for

50

most peripherals. The processor only enters active mode to change states in the state

machine. Therefore, the processor is left in LMPO while the DMA transfers data to

memory for use by the microcontroller. In the case of debugging, the memory used to

store incoming messages from the I2C interface can be the same memory used to write

out to the UART, meaning that the processor is only awoken to transition between states,

and the two respective DMAs can handle all data transfer.

Two scenarios require higher voltages: use of the chosen text-to-speech (TTS) chip

and writing to onboard Flash non-volatile memory. Both of these require 2.7 V, and we

run the system at 2.75 V under these circumstances. When not performing these

functions, the chip runs at 2.25 V saving significant energy. Figure 18, taken from the

MSP430 data sheet for the microcontroller used on the daughter card, shows the

limitation in operating frequency based on applied voltage.

Power consumption scales linearly with frequency and with the square of voltage as

shown in Equation 1:

P*CV2
DDf +

VDD1Leakage (1)

Where VDD is the supply voltage,

/ is the frequency of operation,

heakage is the static leakage current, and

C is the gate capacitance of the transistors (or load capacitance).

51

Start Mode
(LMP3+GIE)

Mode=BIT2 |
Mode=BIT1

o

I2C Receiving
Data

(LMP04GIE)

Send Welcome
Message

Mode=BIT0
CLR LPM Wait for DMA

To Finish

Start-edge
Detected

Mode=BIT1 Receive
Echo RS-232

(LMP0-K3IE)

Mode=BIT3
Int-Disabled I2C Stop Condition

Received
(LMP0-K3IE) LU

_ l
I -

Figure 17. State machine running in daughter card microcontroller.

We run the chip at a frequency of 4.60 MHz which is 400 kHz below the maximum

allowable frequency at 2.20 V of 5.01 MHz. This somewhat unusual clock speed was

chosen to ensure the baud rate generator onboard the microprocessor could produce a

consistent 38400 bit rate for the RS-232 debug port. Three registers control the baud rate

of the UART: UBR0, UBR1, and UMCTL. UBR0 and UBR1 are the whole-number part

of the fraction of system clock to baud rate for the on-board, baud rate calculator, while

UMCTL is an additional modulation register that attempts to handle the fractional part of

the above ratio. By choosing an even multiple of 38400, the master clock needs no

additional modulation bits (UMCTL) since there is no fractional part of the clock rate to

baud rate. Below is the code used to set the registers:

52

f (MHz)

8.0 MHz

4.15 MHi

Supply voltage range,
F15x/16x/161x, during
program execution

Supply voltage range,
F15x/16x/161x,

during flash memory programming

1.8 V 2.7 V 3 V 3.6 V
Supply Voltage - V

Figure 18. Limitations in operating frequency based on supply voltage [33].

UBR01 =0x78; // 4.6MHz/38400
UBR11 =0x00; //
UMCTL1 = 0x00; //Modulation 4A

Since the microcontroller uses a RISC instruction set, keeping a constant clock

frequency does little to increase power consumption versus using clock throttling. The

amount of energy consumed by operating at the higher frequency is compensated by

returning to sleep mode a proportional amount of time earlier. It should be noted the

microcontroller uses a digitally controlled oscillator (DCO) with notoriously poor

accuracy. Periodically, we synchronize this oscillator to the MicroCrystal MS1V-T1K

32.768 kHz crystal in active mode in the microcontroller. This crystal is rated at 10.00

pF with +20/-20 parts per million (ppm) frequency tolerance. The crystal has a

temperature coefficient of: (T - 25C)2 • -0.025 , where T is the operating

temperature. Additionally, an external resistor was used to ensure added stability of the

DCO, called ROSC.

53

In Equation 1, C and/are essentially constant. We can quantify the amount of power

saved by changing voltage from 2.75 to 2.25 Volts (as opposed to running at 2.75 Volts

continuously), by examining the predicted current consumption provided by the

manufacturer, Texas Instruments:

I (AM) = W n + Kvs {Vcc - 3V) [33] (2)

where I(AM)[3V] is nominally calculated at 2.3 mA for a frequency of 4.6 MHz and Kvs

is the relationship of current consumption to supply voltage, supplied by the data sheet

uA
as210—. Therefore, the active mode current for 2.25 V is 2.142 mA, while for 2.75 V

V

is 2.248 mA. Additionally, we will assume the processor returns to LPM3 when all tasks

are performed. The current consumption in LPM3 at 2.25 V is approximately 1.4 |JA,

while it's approximately 2.2 uA at 2.75 V from interpolating values from the data sheet

[33]. Figure 19 shows the results of voltage scaling the microcontroller using the above

scheme. As shown in chapter II, we can expect duty cycles on the order of <5% for a

Mote using the MACs discussed. Since not all messages will necessarily wake the

daughter card, we can expect an even lower duty cycle for it. From the graph, we can see

the scheme performs best for lower duty cycles saving about 52% power at extremely

low duty cycles.

54

0.8

£ 0.75
B

E
^ 0.7
o
n.

a 0.65
o
U
<u

<£ 0.6
o
o
t i
«! 0.55

0-5
MO 5 1-10 4 110 3 0.01 0.1 1

Duty Cycle

Figure 19. Ratio of power consumption at 2.25 V over 2.75 V of the MSP430 on the

daughter card based on duty cycle.

Care was taken to ensure lowest power consumption on all pins by following the

MSP430 user's guide instructions, "Unused I/O pins should be configured as I/O

function, output direction, and left unconnected on the PC board, to reduce power

consumption."

POWER MANAGEMENT OF OTHER COMPONENTS

The system would likely be powered by two AA batteries, in parallel, generating 3 V

(1.5 V each). An Energizer ™ E91 Alkaline battery's capacity actually varies with load

or discharge current, as shown in Figure 20, so keeping load current as small as possible

is also important in increasing battery lifetime. In order to fully determine expected

battery capacity, we should account for each component on the daughter card. The

largest components to consume power are the light-emitting diodes, the voltage regulator,

I /

/U i '

I \ i i ; j
/ I] ;

J | I i :

55

the boost converter to drive the piezo transducers, the RS-232 driver, and the Winbond

WTS701 text-to-speech (TTS) integrated circuit (IC).

Milliamp-Hours Capacity
Continuous discharge to 0.8 volts at 21°C

U
25 100 250 500

Discharge (mA)

Figure 20. Alkaline battery capacity as a function of load current [34].

The Winbond TTS IC can be powered from 2.7 to 3.3 V, typically consuming 35 mA,

and has the capability of being placed into sleep mode using less the 1 uA. The board

has seven LEDs each biased with a 360 Q resistor. These LEDs consume approximately

1.8 to 2.2 mA each of current depending on the supply voltage. The power consumed by

the piezo-electric transducers is discussed later. Those transducers were not implemented

in this effort but were modeled and components were placed on the daughter card to drive

them. The choice of and design of the voltage regulator is in the next subsection.

We chose an RS-232 driver specifically designed for low-power operations, the

Maxim 3318E. They may be powered with voltages ranging from 2.25 to 3.0 V and have

an auto shutdown capability when no activity is detected for more than 30 seconds. The

device uses only 1-10 uA when in shutdown mode and 300 to 1000 |xA when in active

JVUV

56

mode. To achieve this, the part does not meet EIA-232 requirements for transmitter

voltage level which specifies ±5 V. The manufacturer states that the ±3.7-4.2 V output

voltage that the part achieves should function properly with most modern transceivers,

and, indeed, we noticed no problems with RS-232 functionality.

ACHIEVING VOLTAGE SWITCHING

As many hardware vendors profess, using a voltage regulator in a battery-powered

application has many advantages that offset the additional component cost incurred.

Those advantages include a more stable voltage level as battery voltage decreases,

increased battery life, and the ability to dynamically change voltage, as described above,

to conserve even more power. In order to efficiently lower the voltage, the designer

generally has two choices: a switching regulator or a low-dropout (LDO) regulator.

The switching regulator uses field-effect transistors (FET) to synchronously switch on

and off, charging an external inductor and capacitor to provide the appropriate voltage

level to the load. These devices, although relatively expensive, are extremely efficient,

usually achieving 85-95% efficiency when supplying a reasonable amount of current in

most applications. The trade-off when using these devices is that the rapid switching can

increase noise from the power supply causing the designer to use more robust decoupling

capacitors and choose parts with a high power-supply rejection ratio. Another draw-back

is their rapid drop in efficiency with low current loads.

LDO regulators are similar to traditional shunt regulators (similar to Zener diodes

being placed in parallel with the load) using a FET in place of a diode. The efficiency of

LDO regulators is proportional to the difference in voltage between the source and the

load as shown in Equation 3. "Low dropout" means that the regulator is more efficient

57

than traditional shunt regulators because they are designed for a much smaller difference

between source and load voltages. Of course, that means you must have an application

where the source (batteries in our case) voltage is close to the desired voltage. The best

efficiency that can be achieved, in our case of running at 2.25 V with two AA batteries,

would be given by Equation 3.

Where V0 and Vj are the output and input voltages respectively, I0 is the output current,

and IQ is the quiescent current. A LDO regulator considered for this project, the

TPS715xx, has a quiescent current of 3.2 uA. Assuming active mode, with current draw

ofI0» IQ, it would yield an efficiency of 75%. If we assumed that all LEDs are turned

off and all components are in sleep or LMP3 for the microcontroller, the load current

would be less than 50 uA. This yields an efficiency of about 70%. Figure 21 shows the

drop-out voltage with respect to output current for this regulator. Assuming all LEDs are

on, and the TTS IC is on, the output current would be close to 50 mA, yielding a dropout

of 0.4 V at room temperature. Unfortunately, this means the drop-out required to run at

2.75 V was too high to consider this component.

The switching regulator used in the daughter card design is the TITPS62200. The

efficiency of this switching regulator with respect to load current is shown in Figure 22.

As can be seen by the figure, when the daughter card is in sleep mode, consuming less

than 100 juA, this regulator can be less efficient than the LDO regulator. This is largely

due to the higher quiescent current. The no-load quiescent current is approximately

16 //A. Assuming a single LED is on with a 50% duty cycle when the card is in sleep

58

mode would correspondingly increase the load current and allow the regulator to boost

efficiency up to the 90% region. Additionally, if the mote board consumes more than a

few tens of micro Amps, the switching regulator would operate more efficiently.

DROPOUT VOLTAGE
vs

OUTPUT CURRENT
600

500
E

g, 400

•g
Z. 300
=3 g.
O

O 200

> 100

0

0 10 20 30 40 50
IOUT - Output Current - mA

Figure 21. Dropout voltage vs. load current for LDO regulator considered for this

project [35].

Performing a duty cycle vs. power consumption calculation will allow us to

determine approximately when selecting one type of regulator may be better than the

other. Figure 23 shows that the duty cycle would have to be greater than approximately

2% for the switching regulator to have a longer battery life than the LDO. This assumes

a minimum of sleep current drain (no LEDs on and low power consumption by the

Mote). Additionally, a battery capacity of 2700 mA-hr was used, referencing Figure 20.

In low duty-cycle applications, it becomes clear that the LDO regulator is more efficient

than using a switching regulator. We chose the switching regulator because the duty

cycle and load currents were not initially known, and the LDO regulator could not

59

support operations at the higher voltage required (2.75 V). Additionally, the switching

regulator has significantly less drop out, allowing operation when the batteries have lost

significant amounts of charge. Both regulators allow dynamically adjusting voltage

based on the mode of operation, but the LDO regulator would generate more heat in

active mode.

EFFICIENCY
vs

LOAD CURRENT

r
>> u c £

SE
UJ

0.010 0.100 1 10 100 1000
l[_ -Load Currant - mA

Figure 22. Efficiency of the switching regulator with respect to load current [36].

The switching regulator uses a voltage-divider circuit to determine the output voltage

as shown in Figure 24. The internal circuitry will automatically attempt to adjust the

output voltage to make the voltage at the feedback pin (FB) 0.5 V. In order to

dynamically change the output voltage, a resistor is added to the voltage divider and

connected to a GPIO pin on the microcontroller. This resistor is labeled Rcontmi in -

Figure 24. Ri and /?2 should be kept as large as possible to reduce quiescent current, but

I U U

95

90

85

80

75

70

65

60

55

50

45

40

V 0 - 1 . 8 V [I J [

I lllllll I -fe- : : : ' ^ = ::'!l > s I
V,=2.7V /,'jflx.-"'" \ I

I// Vi
ll///'ltd |
mf A ^' ™ ^ ^

w
/U V, - 5 V I

f i l l I K II t II t U t

60

less than 1 MQ to ensure stability. The output capacitors must be chosen based on the

voltage-divider resistors to ensure stable operation. Ri, R2, and Rcontroi were also chosen

from standard resistor values in the 1% tolerance range.

Estimated Battery Life

! ' I

MO 1 -10 1-10 0.01
Duty Cycle

—— LDO Regulator
"" * " Switching Regulator

0.1

Figure 23. Estimated battery life of the daughter card, alone, assuming a choice of

either the LDO or the switching regulator chosen. This assumes that all LEDs are

off during sleep mode and the device consumes 50 mA during active mode.

61

TPS62200

V|

C3
V, SW

GND

EN FB

L1
10 uH
' W W -±

R1 C1

R Control
- A / W

R2
C2

Figure 24. Configuration of switching regulator to allow for dynamic voltage

adjustment [modified from 36].

To accomplish this, we have two equations with three unknowns:

f

where Rp(Ra,Rb) =

' 2 . 7 5 —

V =
Y 1.2S

RqRb

R„ +R,

R,

KRp\R2,R Control)

f
Rp\R\ ^Control)

V R,

+ 1

+ 1

FB

FB

(4)

(5)

, is simply the equivalent resistance of two parallel

resistors, and VFB is the voltage at the input of the onboard comparator to be compared

with the input of the FB pin, nominally 0.5 V. Figure 25 shows these equations graphed

for R-i = 43 kQ and R2 — 10 kQ. A control resistor, Rcontroi, value of 200 kQ will yield

the values of 2.75 V and 2.25 V desired. This creates a quiescent current of at least 52

uA. Figure 26 shows oscilloscope output of the voltage supply when commanded by the

microcontroller. Page two of the schematics in the Appendix shows the final switching

regulator design, where R208, R209, and R210 are R1, R2, and Rcontroi respectively.

62

MOTE-TO-DAUGHTER-CARD INTERFACE

As shown in Figure 15, communications between the Mote and the Daughter-card

take place using the onboard I C bus. This relatively low-speed bus provides its own

clock in a master-slave configuration and has two addressing modes allowing either

•y

seven or ten-bit addresses. We only use the seven-bit addressing mode. Data on the I C-

bus can be transferred at rates of up to 100 kbit/s in the Standard-mode, up to 400 kbit/s

in the Fast-mode, or up to 3.4 Mbit/s in the High-speed mode [37]. The Mote is always

the Master on the bus and determines the transfer clock speed. We found that there were

two conflicting header files in the TinyOS 2.x release, named "Atml28I2C.h," causing a

compiler error. To get the compiler to work, we renamed the one in the

{$TOSROOT}/tos/chips/atml28 directory so the compiler would not recognize it.

Due to a flaw and non-standard address forming in implementing the I2C bus in

TinyOS, significant debugging was required to get it working. Since the address is only

seven bits, standard practice for address forming in software uses the lower seven bits of

the addressing byte. TinyOS was using the upper seven bits. So an address that should

be hexadecimal 0x48 when programmed on our daughter card microcontroller, and

according to standard I2C addressing, was actually interpreted as address 0x24 in

TinyOS. After placing the I C bus on an oscilloscope and solving the address-resolution

problem, we reviewed the source code for I C implementation to ensure it additionally

conformed to accepted norms. From this review, we found another flaw in the I C

implementation. In Atml28I2CMasterPacketP.nc [on line 333, shown below], there was

an error with setting the microcontroller for read/writing:

63

00

>

&
o

3.5

3.3

3.1

2.9

2.7

2.5

2.3

2.1

1.9

1.7

1.5

Graph of Output Voltage vs. Resistors

, . - . - - - " - " ' " " " 2 : 2 ?

50 100 150 200 250 300 350 400 450 500

Control Resistor Value

2.75 Voltage
2.25 Voltage

Figure 25. Graph of output voltage vs. control resistor for Rj = 43 kfl and

R2 = 10 kfi.

CD

2 1.5
o
>

0.5

2.5 f- + - - -

I

1-
-L

J.

1
1

1 1 1 1
1 1 1 1
1 1 1 1

1
1

1
1

r
T

T

1
1

1
1

1
1

1 1

1 1
1 1

1 1
1 1

1 1

1
1

1
1

1
1

1
1

1
1

^ , , — - v . . -

; _

fpii
1

1

1
1

1
1

1 2 3 4 5 6 7 8 9 10

time x 105

Figure 26. Actual performance of voltage switching on the daughter card.

64

if (reading == TRUE) {
call I2C.write((packetAddr & Oxfj) \ ATM128J2C_SLA_READ);

}
else

call I2C.write((packetAddr & Oxfj) \ ATM1'28_I2C_SLA WRITE);

In this code segment, ATM128_I2C_SLA_READ(0x00) is supposed to call I2C.write

with a "0" as the least significant bit (LSB) to enable read mode. Should packetAddr

contain an odd address (ending in ' 1'), then call I2C.write would always be in write

mode. This bug was fixed in the latest release of TinyOS due to our input to the mail-list.

Additionally, TinyOS was modified to standard addressing in later versions.

TEXT-TO-BRAILLE TRANSLATION

Since we envisioned the device to receive text messages from nearby sensors

equipped with IEEE 802.15.4 transceivers, the daughter card must be able to translate

received text to Braille. At this time, we consider the text to be encoded as standard

ASCII. We address a single 8-bit port from the microcontroller to drive a 3 by 2 set of

pins or vibrational devices to emulate Braille. These same pins drive six LEDs onboard

the daughter card to provide additional feedback to the user (should they maintain some

ability to see) and for debugging purposes. Additionally, the timing of addressing the

actuators allows for variation so, for instance, the Braille letter may be "scrolled in" from

the left, right, etc. to give the reader the illusion of running their hand over the text in a

certain direction. Finally, the level of actuation could be made variable allowing not only

for different pressures but also different heights. It should be noted that should the sensor

need to tell the transmitter it has received the message, acknowledgments can be turned

on in the 802.15.4 protocol.

65

According to the Braille Authority of North America (BANA), two grades of Braille

are typically used where Grade 2 allows the use of contractions to simplify word

representation [9]. Additionally, Braille ASCII and other variations on Braille exist, such

as increasing the standard cell from three rows by two columns to four rows by two

columns. We concentrated only on Grade 1 Braille using the standard 3x2 cell.

According to Gardner, Braille cell dimensions vary from country to country [38]. After

review of the literature available, we determined the dimensions in Figure 27 would

provide a user with a typical Braille experience [39]. Additionally, we determined that

presenting characters for about a quarter of a second per character to the reader is enough

time to identify the character. In fact, Foulke found that typically a single character could

be identified within 30-40 msec [40] while Flanigan quotes the optimal presentation time

to be 600 msec [41]. Flanigan used 300 msec as his "control" presentation time in his

experiments, so 250 msec in our system seemed like a reasonable trade between memory

buffer requirements and intelligibleness of the output.

ASCII TO BRAILLE

We chose Port four on the MSP430 to drive the Braille output and LEDs. Keeping

all I/O lines together in a contiguous port allows for a single microcontroller write for

each manipulation of the Braille cell. In order to determine the correct Braille cell to

display for each character, we assume two bytes are needed for each character and store

94, two-byte, values to translate from ASCII to Port 4 on the microcontroller. The

programmer can easily modify readout speed through the variable:

Mefine BRAILLE WRITE TIME 8192

66

-i: • • •

• • •

• • • •

f — ^ — f

a/b- 2.2-2.54 mm

c - 5.0 to 7.62 mm

Dot height- 0.25-0.53

Figure 27. Standard or normal Braille cell dimensions for English Braille [38,39].

As indicated, the current readout speed is 8192/32768 or 250 msec. We wanted to ensure

we chose a value for read-out speed commensurate with established research in the field

as described above. Two bytes were chosen since many characters require two Braille

cells for correct display; the most obvious being numerical characters. Figure 28 shows

the standard Braille English alphabet. Note that letters "a" through " j " may also

represent the numbers " 1 " through "0". The way the two uses are distinguished is

through the use of a prefix cell. A number sign, shown at the bottom of the figure,

precedes the corresponding letter cell to indicate a number. This means it may take 500

msec to display a single number. Similarly, the same is true for capital letters. It should

be noted that the code is written such that if only one cell is necessary to represent a

character, then only the second byte will be displayed, and the character will only be

displayed for 250 msec.

67

We chose to represent 94 total characters and variants based on the BANA standard

Braille codes [42]. Since memory is limited in the microcontroller, we limited the

characters stored to those in standard ASCII. Based on the layout of the LEDs, the

function convertASCIIToHWQ converts the incoming I2C data to the hardware mapping

of the I/O lines in Port four to the Braille cell.

ALPHABET AND NUMBERS

1

a
*•

2

b
• -
•

3

c
»•

4

d
*•
•

5

e
• '
» *

6

f
• •

7

g
•• ••

8

h
•

9

i
- a • -

0

J
• *•

k l m n o p q r s t

u v w x y z

• •

• «

• •

Example

number sign
capital sign

Figure 28. Standard Braille characters with modifier prefixes [9].

PIEZOELECTRIC BRAILLE DRIVER DESIGN

In order to provide enough force to stimulate the user's fingers, we decided to

investigate the use of piezoelectric transducers. The piezoelectric effect was first

68

discovered by Jacques and Pierre Curie in 1880. The effect occurs in asymmetric crystals

where compression along the "hemihedral axes produces electric polarization" [43].

Additionally, when the crystal is stretched in the same direction, the opposite electric

effect occurs. It was later discovered that a voltage applied across a piezoelectric crystal

produces either compression or expansion [44]. The crystal essentially is polarized with

positive and negative sides by applying a polarizing electric field while the crystal is

heated past the Curie temperature. The stretching effect can be increased by stacking

crystals either in series or parallel. A standard bending lever is shown in Figure 29. This

figure shows two elements in series. The crystals can be thought of as capacitors placed

together in series and electrically appear that way when integrated into electronic

circuitry.

Using equations 6 and 7 for parallel and series deformation, we calculated the amount

of lever action that could be achieved for two different piezoelectric materials designated

PSI-5A4E PIEZOCERAMIC, "A" (Navy Type II, Lead-Zirconate Titanate), and PSI-

5H4E PIEZOCERAMIC ,"H" (Navy Type VI, Lead-Zirconate Titanate) [45]. Note that

the Navy designations are defined in DOD-STD-1376A(SH) Ceramic Types I-VI. The

results in Figure 30 clearly show a parallel combination of material "H", using the

thinnest available material, yields the most deflection.

69

Fout

AXout

Figure 29. Bending element consisting of two piezoelectric crystals in series

configuration. The arrows in the crystals indicated the direction of polarization

[45].

AX
3L2Vd 31

outPar (6)

^ * outSerial ~ ^ * outPar (7)

Where T is the thickness of the piezoelectric stack,

d31 is the piezo "d" coefficient or Strain Produced / Electric Field Applied,

and the other variables are described in Figure 29.

We can see from the figure that it would be necessary to attach a mechanical lever to

achieve the 0.25 mm deflection necessary to simulate a Braille dot, making piezoelectric

motors difficult to implement as a Haptic device. It may be possible, though, for the user

to detect a vibrating pin instead of a stationary pin, so the electronic drive circuit created

allows for applying the drive voltage rapidly to provide a vibrational tactile response to

the user for experimentation.

70

Deflection of bending motor (um)

0.1

o

00

0.01

1-10

1-10

\ \

\
V

V
x

%

^_

— - —

—

1

1 1.5
Single film thickness (mm)

2.5 0.5

Parallel H
Parallel A
Series H
Series A

Figure 30. Calculated amount of deflection for an applied voltage of 18 V. Note that

the "H" material was limited in available thicknesses by the manufacturer.

The circuit designed for applying the signal to the highly-capacitive piezo material is

shown in Figure 31. Vpi or Vin is a voltage from an IO pin of the MSP430

microcontroller. This pin can be driven from an on-board pulse-width modulator (PWM)

peripheral, allowing variable output power to drive the capacitor. AVCC is 18 V provided

by a boost-convertor on the daughter card. When the Vin is low, X2 and X3 turn off,

causing a A Vcc to be applied to the gate of XI. This turns XI on, supplying A Vcc to the

piezo capacitor. When Vjn is high, X2 and X3 turn on, driving both the capacitor voltage

71

and the voltage at the gate of XI low. This circuit was modeled with ngspice, a free and

open-source version of Berkeley's Spice 3f5 [46]. Transistor models for ngpice were

downloaded from vender web sites and virtual ammeters (using voltage sources with 0 V)

were placed in the circuit to measure transient currents. The only difference between the

model and the daughter card design was changing A Vcc from 20 V in the simulator to

18 V on the daughter card.

The interface provided for the free and open-source ngspice package is totally text-

based and the recommended graphical interface was difficult to compile and build to

meet all of its Linux dependencies. As part of this project, we wrote a Java-based

interface to ngspice, called KJWaves, which does the following:

1) imports netlists generated from the schematic capture tool,

2) allows the user to add various additional analysis and mathematical functions, and

3) reads the resulting file and provides graphical display.

KJWaves has received support from the open-source community and now is available in

English, German, Spanish, and Greek. It has had over 1500 downloads from the

repository on sourceforge.net [47].

Figure 32 shows the output of the circuit for an input signal of:

VP1 Vin 0 PWL 0 2.75 24u 2.75 25u 0 49u 0 50u 2.75 74u 2.75 75u 0 99us 0 lOOus 2.75
124u 2.75 125u 0 149u 0 150u 2.75 174u 2.75 175u 0 199u 0 200u 2.75 249u 2.75 250u 0
299u 0 300u 2.75 349u 2.75 350u 0 399 0 400u 2.75

http://sourceforge.net

72

_ iVCC
. — ; DC 20V

9$ nthd4K>2ntl,

ntzd3l54n

Vn

VHIGHSIDE

A1 SPCE dhectlve

.TPAN1.OU4O0.OU

• «

K
Ammeter
VAMONSwiich

©"

X3 n«id4502nlt l

1X1

K

A l l I ll«zTtfcl

VAMHIghSlde

VSOURCE DRAIN

• • &

H"

1X2

•J\ Afrffifftw
2 VAMLowSlde

N

2

5
o

VCAP

ii_

z

Figure 31. Piezoelectric driver circuit.

This input signal was chosen to examine the frequency response of the circuit as well as

to determine if any voltage decay occurred in the holding voltage during operation. It's

interesting to see that the output voltage, in red, is delayed slightly as the voltage at the

gate of XI builds. Resistor Rl is in place to limit current draw by the piezo capacitor.

This resistor was chosen as a 1 W resistor instead of the standard l/8th W due to higher

current and voltage loads.

To achieve the voltage required for the deflection, an Analog Devices ADP1611 DC-

to-DC switching converter was chosen. This device is 90% efficient with the ability to

convert an input voltage of 2.5 V to 20 V with a switching frequency of 1.2 MHz. A

22 nF soft-start capacitor was chosen which makes the startup response time of the device

approximately 1.2 ms. The device is turned on an off through the use of the shutdown

73

pin connected to the microcontroller (to ensure the board is operating above 2.5 V before

turning on) and will draw about 10 nA in shutdown mode.

-0.025

IS :
18 j

17 | Sf
16 \ if
15! il

14 :

13 j

12 1
11 j
lOJ
9i

1

!
7 j
6

5

4

3

2

0

l
• I 1

;'/"
!>
,i
i j

1
1

j
j

i

i
. \

< r

I
3

j |
j
I
I
i

J

i

:
•

i

j

J i
j
i
i

J J

:r
i
i
(
t 1
j
1
j
i

j

I 1

/

,r

I

\
I
i j

1 |
]

50 75 100 125 ISO 175 200 225 250 275 300 325 350 375 400

micro sec

I — vsouTcedrain—vfn vtiigrtslde]

Transient Analysis

-vamonswitch#branch —vamlowside#branch —vamhighside#branch

Figure 32. Transient analysis of piezo driver circuit showing annotated voltages

(upper) and currents (lower).

74

TEXT-TO-SPEECH TRANSLATION

Finally, the daughter card adds a Winbond WTS701 text-to-speech (TTS) chip

connected to the microcontroller's SPI port. Although the MicaZ board has an SPI port

as well, it is used for communications with the radio, making contention on the port an

issue. The WTS701 comes in two varieties for male and female voices and will directly

drive external speakers. It does require an external 24.576 MHz crystal oscillator as well

as some external capacitors to function though. In standby, it consumes less than 1 uA,

and can be operated with voltages as low as 2.7 V.

This chip has been discontinued largely for of two reasons: 1) its high cost (it cost

over $35 US) and 2) many, if not all, of its functions can now be performed as efficiently

with a low-cost digital signal processor (DSP) coupled with a low-cost audio

amplifier/DAC. Therefore, we suggest, in a future design to replace much of the

functionality in both the TTS processor and the microcontroller to be performed in an on­

board DSP such as the Analog Devices Blackfin.

75

CHAPTER IV

SIMULATION AND HARDWARE RESULTS

This chapter describes results received with the actual hardware produced as well as

simulations demonstrating behavior with multiple nodes and a single base station. The

first section describes the hardware and results achieved by coupling the daughter card

with a mote. Both the simulation and hardware demonstration use the same code as

much as practical. The one exception is that the I2C port was simulated with debug

statements in the simulation since TOSSEVII2C supporting does not exist.

Packets were periodically sent from the base station at a rate long enough for the

furthest node available to receive data through multiple hops. In the simulation, number

of hops and message receive times were recorded to determine how effectively we

limited range and congestion by limiting the number of hops. In all, the hardware

worked as planned, but the simulation code required many runs to ensure the noise model

reflected a realistic environment. Simulation verified that the distance a message was

transmitted could be limited by limiting the number of hops. To demonstrate the ability

to disseminate base station messages while limiting the distance, we used TOSSEM with a

64 element grid with a spacing of four meters between nodes. To aid in debugging

message transmission, a linear "chain" was used to ensure maximum number of hops.

HARDWARE RESULTS

The Gerber files for the daughter card (see Appendix for the stacked Gerber image)

were sent to a printed circuit board (PCB) manufacturing house for fabrication. Once

received, all parts, such as the microcontroller and RS-232 transceiver, were populated by

76

hand and tested as they were placed. All parts used, except connectors, were surface-

mount. As mentioned in the previous chapter, in order to couple the daughter card with

the MicaZ mote, the battery holder on the mote had to be removed, and a 51-pin

connector was added to the back side. Figure 33 shows the daughter card mated with the

Mote micaZ.

Hardware demonstrations showed reception of the transmitted base-station message

through both the debug serial (RS-232) port to a PC (either running Window XP[TM] and

HyperTerminal or running Linux and minicom) and through the 3x2 Braille LEDs.

Figure 33. Daughter card coupled with a mote transceiver.

Three MicaZ motes were programmed with the Braille and daughter card interface

code. Node zero in the code was hard-coded as the base station and transmits a message

every I2C_SEND PERIOD MILLI milliseconds, which is set to 4096. This means that

the base station transmits a "new" message every four seconds. During that time,

receivers can receive a message and forward it on to their neighbor based on Trickle

77

(described in chapter II). When a node receives a new message, it will buffer it for

transmission to the Braille LEDs and output the buffered text through the serial port. The

standard Active Message packet was augmented with a payload of:

typedef nxstruct easydis_packet_t {
nx_uintl6_t nodeid;
nx_uint8_t counter;
nx_uint8_t priority;
nx_uint8_t numberhops;
nx_uint8_t data[TOSH_DATA_LENGTH-5];

} I2C_Dism_packet_t

where number of hops a packet takes and priority of the packet can be tracked as the

packet transgresses the network. It should be noted that TOSH DATALENGTH is

modified to be 100 bytes by specifying CFLAGS += -DTOSH_DATA_LENGTH=100 in

the Makefile. Typical data size in a TinyOS packet is 28 bytes. Key aspects of the

hardware test were that:

1) only new messages were presented to the user (despite the fact that the node could

receive the same message multiple times from its neighbors),

2) Braille output faithfully represented the text transmitted, and

3) serial port output reflected the same values sent over the base station.

Figure 34 shows the LEDS displaying text sent by the base station. Characters were

faithfully represented where each number was preceded by the appropriate number

prefix. The delay between Braille characters was approximately 250 ms.

Listing One shows the serial port output from the mote, through the I C bus, to

daughter card, and, finally, out the RS-232 port. The counter is incremented for each

new message sent from the base station. Two buffers are used in the software: 1) on

board the mote receiving and storing up to four messages and 2) onboard the daughter

78

card. Numerous, long, and/or quickly-changing messages can take too long to transcribe

to the Braille LEDs, and thus cause an overflow. This overflow mechanism was also

tested during hardware testing. Listing Two shows the output of the daughter card

through the RS-232 port when an overflow is received. The software recovers gracefully

once the buffer is emptied. A circular buffer is used so heap memory will not be

corrupted. On the other hand, the user will likely receive poorly transcribed information.

Figure 34. LEDs on daughter card displaying the "numeric prefix" in Braille. Two

Braille characters are displayed for numbers as described in the previous chapter.

Listing 1

MNS Braille Receiver
ver 0.1
<I2C Message counter: KI2C Message counter: 2
Local still alive.
<I2C Message counter: 3<I2C Message counter: 4
Local still alive.
<I2C Message counter: 5<I2C Message counter: 6
Local still alive.

79

<I2C Message counter: 7<I2C Message counter: 8
Local still alive.
<I2C Message counter: 9<I2C Message counter: 10
Local still alive.
<I2C Message counter: 11<I2C Message counter: 12

Listing 2

Local still alive.
<I2C Message counter: 30<I2C Message counter: 31
Local still alive.
<I2C Message counter: 32
Error: Buffer Overflow!
<I2C Message counter: 33
Error: Buffer Overflow!

SIMULATION RESULTS

SIMULATION DESCRIPTION

In the simulation, we assumed 64 nodes available to receive the message from the

base station which was hard-coded as node "0". Each node is running the TinyOS 2.1

Drip library which is the same as the Dissemination library used TinyOS 2.0.1. Version

2.1 includes two additional dissemination libraries using the Trickle protocol described in

chapter II, Dip and DHV. Nodes were separated by four meters, and the environment

was assumed a noisy office environment, using the "Meyer Heavy" noise file provided

with TinyOS, which sampled the spectrum at the Stanford Meyer library. This noise file

has a noise floor of approximately -98 dBm [48].

Figure 35 shows a diagram of the motes used in the simulation, including the order

and numbering of nodes distributed in simulation. Note that node zero is the base station,

and reception gain to it was arbitrarily assigned for proper scaling of the legend.

Assuming a noise floor of -98 dBm, we can see that a transmission from node 0 might at

best reach nodes 24, 17, 10, and 3. Nodes further out would have to receive the message

80

via an adjacent node hop. The simulation was first run with no modifications to the Drip

library to determine how long it takes to transfer a message to node 63. This allowed us

to determine how much simulation time is required to realistically determine if distance

can be limited by limiting hops and how to modify the library to limit the number of

hops.

In order to create the grid in Figure 35, the TinyOS program "LinkLayerModel.java"

was used. This propagation model creates a two "topology" files. One file lists the

physical layout of the motes while the other contains "gains" between each node, giving

an "RF layout." This file, which has the default name of linkgain. out, is imported into

each node in TOSSIM for a realistic layout. Listing Three shows the parameters file used

in LinkLayerModel that was used to create the topology used in the simulation. The link

between nodes is considered symmetric, in that transmitting to a node has the same gain

as receiving from that node.

The noise model applied to each mote is based on closest pattern matching (CPM).

CPM uses actual measured noise traces and creates a statistical model from it [49].

Therefore, every simulation will be different because the simulation works with a

probabilistic model of reception. TOSSIM develops conditional packet delivery

functions (CPDFs) which is the probability that a packet will be delivered successfully

given a certain number of successes or failures [49]. CPM, coupled with the propagation

model, produces a very realistic simulation environment for sensor networks.

81

Grid Layout Showing Gain from Base Station Node (0)

0 5 10 15 20 25 30

Figure 35. Diagram of mote layout used in the simulation. Colors indicate reception

gain of each node from the base station. Node 0 is considered the base station and

the reception gain was set arbitrarily for the base station to aid in graph auto-

scaling.

Listing 3

% 64 node grid topology is deployed with an internode distance of 4m and symmetric
links are assumed. The resulting configuration file is:
%
% Channel Parameters
%%%%%%%%%%%%%%%%%%%%%%
PATH_LOSS_EXPONENT = 4.7;
SHADOWING_STANDARD_DEVIATION = 3.2;
DO = 1.0;
PLDO = 55.4;

%%%%%%%%%%%%%%%%%%%%%%
% Radio Parameters
%%%%%%%%%%%%%%%%%%%%%%

82

NOISE FLOOR = -105.0;
S l l =0;
S22 = 0;
WHITE_GAUSSIAN_NOISE = 4;
%
% Topology Parameters
%
% available topologies :
%-GRID(l)
% - UNIFORM (2)
% - RANDOM (3)
% - FILE (4)
TOPOLOGY = 1 ;
GRIDJJNIT = 4.0;
NUMBER_OF_NODES = 64;

A Python script {testscript.py, see Appendix) was created to allow the user to run

TOSSIM specifying different topology files and run times. This script applies the

meyerheavy.txt noise file to each node and then runs TOSSIM writing debugging

messages to a file (which can be the screen when specified as std.out). An example

invocation of this script in Linux is:

nice -n 15 ./testscript.py -o output.txt -m 4 -s 5 -t linkgain.out

This invocation uses "nice" to ensure the user can run other programs as the simulation

runs (our simulations took about 3.5 hours on a 2.54 GHz Pentium 4). The switches "-m"

and "-s" is the time for the simulation to run in minutes and seconds, respectively. The

switch "-t" specifies the topology file created by LinkLayerModel.

Applying these models to our grid, the average message delivery time to the furthest

node was 23.47 seconds with a standard deviation of 9.32 seconds in ten simulation trials.

The typical number of hops to reach node 63 is about 9-10. A hop is defined as each time

a node receives a message. If a message was received, it is assumed it was received from

a hop, and, thus, the hop counter is incremented.

83

LIMITING HOPS

We then had to determine the best way to limit message transmissions once a

message had achieved a certain number of hops (and, thus, achieved a certain distance

from the base station). To accomplish testing of different hop-limitation modifications to

the Drip library, a linear chain of nodes was used to reduce simulation time. A number of

different library-modification scenarios were tried to limit radio transmissions, but since

the Trickle algorithm is designed to not only send probe messages, but also to send full

messages when the Trickle timer ended, limiting transmissions proved problematic.

Listing Four shows the parameters file used in LinkLayerModel that was used to

create the topology used representing the chain.

Listing 4

% 64 node chain topology is deployed with an internode distance of 4m and symmetric
links are assumed. The resulting configuration file is:
0 / . 0 / . 0 /
/o

% Channel Parameters
%%%%%%%%%%%%%%%%%%%%%%
PATH_LOSS_EXPONENT = 4;
SHADOWING_STANDARD_DEVIATION = 3.2;
DO = 2.0;
PL_D0 = 55.4;

%
% Radio Parameters
%
NOISEFLOOR = -88.0;
Sl l =0;
S22 = 0;
WHITE GAUSSIAN_NOISE = 4;
%
% Topology Parameters
0/.0/,0/ 0/0/ 0/0/ 0/0/ 0/0/,0/0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/

/o

% available topologies :
% - GRID (1)
% - UNIFORM (2)
% - RANDOM (3)

84

% - FILE (4)
TOPOLOGY = 4;
TOPOLOGYFILE = topochain.out

The two key implementation files for the Drip library are DisseminationEngine-

Imp.nc and DisseminatorP.nc. In Drip, two different messages are sent out, as described

in chapter II, a probe message and the actual data message. The data types for these are

defined as dissemination _probe messageJ and dissemination messaget, respectively.

The actual data message allows us to place our own structure in the data field of

dissemination message J. The same function, sendObject(uintl6_t key), is used to send

out both probe and data messages, but since the radio receiver is instantiated as two

separate components, probe messages and data messages are received in two separate

events in TinyOS. The event for data messages is Receive.receive(args) while the event

for probe messages is ProbeReceive.receive(args). We wanted to ensure that nodes far

from a base station would not receive messages that underwent too many hops, but as the

node moved closer to a base station, it would start receiving messages with lower hop

values.

To implement distance or hop-limiting, we first attempted to stop all transmissions

over a certain number of hops in DisseminationEnginelmp.nc in the send-function,

written in C, sendObject(uintl6j key). This proved problematic in that probe messages

used the same function without the payload overhead. We would have to add code to

determine the type of transmission to avoid segmentation faults since we cast the

"arbitrary payload" of the received message to our data structure (I2C_Dism_packet_t).

Indeed, the code worked until probe messages were sent, causing a segmentation fault.

85

Next we attempted to modify the reception code in the event Receive.receive(args)

(where we increment the number of hops upon message reception) to not forward on

messages to the disseminator cache function if they were over a certain hop limit. This

did little to limit traffic since the node's Trickle timer would fire because it would never

receive a "normalizing" message (that is, it would never know the nodes around it have

the same message, and after a while, would transmit the data message).

After the above unsuccessful attempts, we realized that radio message reception

occurred independently of whether the Disseminator component was running or not. In

other words, the radio will continue receiving messages with the Trickle timer disabled

and the Dissemination cache system off. We were able to limit the number of hops a

message took by disabling the Dissemination engine when the node receives messages

over a certain number of hops. Listing Five shows the modifications made to the event

Receive.receive(args). This code calls StdControl StartQ and StopQ which controls

turning the Dissemination engine and Trickle timers on and off, but leaves the radios

receive function normally (using low-power listen). The variable mrunning is set if the

Dissemination engine is running. Using a macro of LIMITHOPS allows the code to be

turned on and off by adding the macro in any header file.

Listing 5

event messaget* Receive.receive(messaget* msg,
void* payload,
uint8_t len) {

<snip>
#ifdefLIMIT_HOPS

errort result;
#endif
<snip>
#ifdef LIMIT HOPS

if (((I2C_Dism_packet_t*) dMsg->data)->numberhops >= HOPS_TO_ALLOW) {

86

result = call StdControl.stop();
} else {

if (Imrunning) {
result = call StdControl.start();

}
}

#endif

Using this code and propagation conditions, with a limit of three hops (HOPS_TO_

ALLOW =4), we would expect messages to go about as far as the ridge defined by nodes:

40, 35, 36, 28, 20, 13, and 5, refer to Figure 35. The processed results of 10 message

transmissions from the base station is shown in Figure 36. This demonstrated that

limiting hops can limit the nodes receiving messages, and thus, the distance messages

propagate. The figure shows that nodes 20, 27, and 34 were the furthest nodes reached.

Sample text output (Listing Six) of a particularly long-running simulation (five

minutes and 30 seconds in simulation time) is shown below. In this case, three different

messages were transmitted by the base station; the counter value indicates the message

version from the base station. The value in parenthesis after the word "DEBUG" is the

node number of the mote processing the received value.

Listing 6

DEBUG (8): Value Changed: I2C Message: I2C Message counter: 1
DEBUG (1): Value Changed: I2C Message: I2C Message counter: 1
DEBUG (16): Value Changed: I2C Message: I2C Message counter: 1
DEBUG (9): Value Changed: I2C Message: I2C Message counter: 1
DEBUG (2): Value Changed: I2C Message: I2C Message counter: 1
DEBUG (10): Value Changed: I2C Message: I2C Message counter: 1
DEBUG (25): Value Changed: I2C Message: I2C Message counter: 1
DEBUG (8): Value Changed: I2C Message: I2C Message counter: 2
DEBUG (17): Value Changed: I2C Message: I2C Message counter: 1
DEBUG (1): Value Changed: I2C Message: I2C Message counter: 2
DEBUG (2): Value Changed: I2C Message: I2C Message counter: 2
DEBUG (9): Value Changed: I2C Message: I2C Message counter: 2
DEBUG (16): Value Changed: I2C Message: I2C Message counter: 2
DEBUG (11): Value Changed: I2C Message: I2C Message counter: 2

87

DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG
DEBUG

10): Value Changed: I2C Message: I2C Message counter: 2
24): Value Changed: I2C Message: I2C Message counter: 2
17): Value Changed: I2C Message: I2C Message counter: 2
3): Value Changed: I2C Message: I2C Message counter: 2
9): Value Changed: I2C Message: I2C Message counter: 3
2): Value Changed: I2C Message: I2C Message counter: 3
17): Value Changed: I2C Message: I2C Message counter: 3
3): Value Changed: I2C Message: I2C Message counter: 3
1): Value Changed: I2C Message: I2C Message counter: 3
8): Value Changed: I2C Message: I2C Message counter: 3
10): Value Changed: I2C Message: I2C Message counter: 3
25): Value Changed: I2C Message: I2C Message counter: 3
11): Value Changed: I2C Message: I2C Message counter: 3
16): Value Changed: I2C Message: I2C Message counter: 3

Grid Layout Showing Percentage of Message Reception

Figure 36. Percentage of messages received in ten transmissions from the base

station. This is with hop-limiting enabled and set to three hops.

88

RESULTS AND DISCUSSION

We were successful in exploiting the capabilities of TinyOS to create hardware which

can be useful to someone suffering from visual impairment. The hardware provides the

capability to receive messages from a wireless mote and transcribe to a number of

different formats, including: LEDs, RS-232 port, SPI port to a text-to-speech IC, and

general-purpose 10 driving piezo-electric or other transducers. The software in the

daughter card provides the ability to operate in dense environments with minimal power

consumption. The software will gracefully degrade when faced with buffer overflows,

ensuring continued functionality. Additionally, a priority function is available which

allows for priority delivery of messages should the need arise.

To relieve congestion and prevent messages from being received too far away from a

relevant site, we were able to demonstrate the ability to limit reception distance by

limiting the number of hops a message takes in the network. Our simulation showed that

we can effectively limit messages received by the user based on number of hops a

message undergoes while preserving the power-saving features built into the Trickle

algorithm and low-power listen.

89

CHAPTER V

CONCLUSION AND FUTURE WORK

CONCLUSION

As the world population changes, more resources will be spent to ensure quality of

life for the elderly and those suffering from physical disabilities. This dissertation

provides the foundation for future work in using low-power, low-data rate wireless

protocols to provide new capabilities for people with disabilities to interact with their

surroundings. All designs were accomplished using open-source software to produce

what is essentially open-source hardware. Those who want to capitalize on this work can

load the design, make changes, and create new Gerber files to produce their own printed

circuit board (PCB) to meet their design needs and expand capabilities. This chapter

contains additional ideas for research as well as ways to apply current technology to

provide novel capabilities to the impaired.

FUTURE WORK

Geolocation capability is proving to be a ubiquitous capability that is establishing

itself as indispensible in personal devices. Significant research already is available to

determine the location of sensor nodes. Knowing precise sensor locations is particularly

useful when placing unattended ground sensors. For one of our purposes of developing

the VINS, providing critical information to the visually impaired, it is essential that the

user has relative position information with regards to obstacles and hazards. For

instance, since these wireless radios are so inexpensive, we could envision base stations

being placed on street signs. A blind person receiving information from a street sign base

90

station could receive, via Braille, distance and relative bearing (see Figure 37) as well as

the street name. Different proposed geolocation schemes can be investigated for the most

applicable to mobile nodes. Individual inertial navigation units such as accelerometers

and micro-electrical mechanical (MEMS)-base gyros could also be examined to

complement GPS. Signals from the sensor network would provide compensation for

gyro drift on such a device. This rudimentary inertial navigation system (INS) would be

especially useful indoors where GPS is not available.

Figure 37. Notional concept of application of geolocation capability.

91

Current code allows a certain set of mote addresses to be reserved for base stations.

Future work could include details about how multiple base stations affect receiver

performance. We can determine how the node would respond in a highly saturated

environment. Additionally, the base station code can be changed to detect new nodes that

enter its area and throttle its message transmission rate based on new-node traffic.

Since we're mainly working with dissemination, nodes carrying the same address are

likely not an issue. Nevertheless, having multiple nodes with the same identification

number may be a problem with the TinyOS Drip library because the sequence number (to

determine if a node has the same value) is based on node address. This issue should be

investigated in more detail.

We recommend investigating different uses of piezo transducers to provide haptic

feedback to a user. Future research should investigate the force required by a pin in a

Braille cell to determine if the piezo driver designed can provide, not only the deflection

required, but also the force. Additionally, since the transducers are piezo-electric, their

repetition frequency can be varied. It's possible that a vibrating pin may have a similar

effect as a stationary one. An experiment can be designed to determine if a piezo driver

running close to resonance might be able to provide sufficient feedback to a user while

minimizing energy required for large deflection.

We suggest that a change to the MAC protocol used can be investigated to determine

its impact on message delivery and energy consumption. As discussed in the third

section of Chapter II, the X-MAC actually is a more efficient MAC than the B-MAC

used because it puts information such as the destination address in the preamble. The

Drip Dissemination protocol sends probe messages with a short "sequence number"

92

representing the current state of data on the particular mote. A version of the X-MAC

could be investigated where the preamble contains the sequence number instead of

destination address. This could dramatically improve our dissemination capability. For

future work, we could implement a modified X-MAC to include the node's data-state in

the preamble where the probing nodes would examine the preamble, not just as a CCA,

but also to change the state of its trickle timer. This procedure would be used instead of

"snooping" and could significantly reduce energy consumption since shorter preambles

would be used than with the B-MAC.

Additionally, we did not use the "priority" field although we discussed how it could

aid in delivery of hazard warnings or important messages. Additional work could

implement a priority-based scheme where the Trickle protocol is modified to ensure more

robust message delivery. When a high-priority message is in the queue, the 75, value can

be reduced to increase the number of transmissions. We can investigate how priority

changes delivery time by varying trickle values in real time.

The current design actually uses two microcontrollers: the Atmel processor on the

mote and the MSP430 on the daughter card. If the TICC2530 radio is used, three

microcontrollers are used since it contains an 8051 core. Although these processors are

designed for low-power applications, we believe their functionality can be consolidated

into a single, more powerful processor. Additionally, the text-to-speech chip could easily

be replaced with a processor running Linux and resident text-to-speech software. For

instance, the Audio Desktop Reference Implementation and Networking Environment

(ADRIANE) is now being implemented as an accessibility add-on [50].

93

A single Analog Devices Blackfin DSP with and necessary CODEC and audio

amplifier would cost about a quarter of the cost of the Winbond WTS701. This DSP has

more than enough processing power to perform 100% of all functions of the current

system while running uCLinux [51]. It also has a sleep mode allowing the processor to

sleep with a mere 0.8 V supply. If the X-MAC discussed above was implemented in this

embedded Linux solution significant cost savings could be achieved. Additionally, the

necessary drivers would need to be created to interface with standard 802.15.4 radios

available.

94

REFERENCES

[1] Research to Prevent Blindness, http://www.rpbusa.org/rpb/eye_info/low_vision,
last visited 30 Oct 09.

[2] M.M. Whiteside, M.I. Walhagen, and E. Pettengill, "Sensory Impairment in
Older Adults," American Journal of Nursing, vol.106, no. 11, Nov. 2006, pp.
52-61.

[3] F.L. Ferris and J. M. Tielsch, "Blindness and Visual Impairment: A Public
Health Issue for the Future as Well as Today," Arch OphthalmolNo\. 122, Apr.
2004, pp. 451-452.

[4] IEEE Standard 802.15.4-2006, "Part 15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless
Personal Area Networks (WPANs)," 2006.

[5] P. Gupta, R. Gray, and P. Kumar, "An Experimental Scaling Law for Ad Hoc
Networks," Modeling and design of wireless networks. Conference, Denver CO,
ETATS-UNIS2001, Vol. 4531, Aug 2001, pp. 14-21.

[6] http://www.bbwexchange.corn/meshnetworks/meshnetwork_performance_analy
sis.asp, last visited Jan 2009.

[7] S. Ni, Y. Tsing, Y. Chen, and J. Sheu, "The Broadcast Storm Problem in a
Mobile Ad Hoc Network," Proc. Eighth ACMInt'l Conf. Mobile Computing
and Networking (MobiCom), 1999.

[8] P. Levis, E. Brewer, D. Culler, D. Gay, S. Madden, N. Patel, J. Polastre, S.
Shenker, R. Szewczyk, and A. Woo, "The Emergence of a Networking
Primitive in Wireless Sensor Networks," Communications ACM, vol. 51, no. 7,
July 2008, pp. 99-106.

[9] English Braille American Addition, developed under the Braille Authority of
North America, (BANA), American Printing House for the Blind, Louisville,
KY, 1994 (Rev. 2007).

[10] http://www.gpleda.org/, last visited Jan 2009.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, "System
architecture directions for networked sensors", Architectural Support for
Programming Languages and Operating Systems, ASPLOSIX, vol. 11, 2000,
pp. 93-104.

[12] P. Levis, Patel, D. Culler, and S. Shenker, "Trickle: a self-regulating algorithm
for code propagation and maintenance in wireless sensor networks," First

http://www.rpbusa.org/rpb/eye_info/low_vision
http://www.bbwexchange.corn/meshnetworks/meshnetwork_performance_analy
http://www.gpleda.org/

95

Symposium on Networked Systems Design and Implementation (NSDI '04),
2004, pp. 15-28.

[13] B. Lo, S. Thiemjarus, R. King, and G. Yang, "Body Sensor Network - A
Wireless Sensor Platform for Pervasive Healthcare Monitoring," 3r

International Conference on Pervasive Computing, May 2005.

[14] B. Lo and G. Yang, "Architecture for Body Sensor Networks," Perspective in
Pervasive Computing, Oct 2005, pp. 23-28.

[15] A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu, L. Fang, Z. He, S.
Lin, and J. Stankovic, "ALARM-NET: Wireless Sensor Networks for Assisted-
Living and Residential Monitoring," Technical Report CS-2006-13, Department
of Computer Science, University of Virginia (no date provided).

[16] K. Li, P. Baudisch, W. Griswold, and J. Hollan, "Tapping and Rubbing:
Exploring New Dimensions of Tactile Feedback with Voice Coil Motors," UIST
Oct. 2008.

[17] I. Poupyrev, S. Maruyama, and J. Rekimoto, "Ambient touch: designing tactile
interfaces for handheld devices," Proc. UIST '02, 2002, pp. 51-60.

[18] J. Luk, J. Pasquero, S. Little, K. MacLean, V. Levesque, and Hayward, V. "A
role for haptics in mobile interaction: initial design using a handheld tactile
display prototype," Proc. CHI '06, 2006, pp. 171-180.

[19] J. C.Lee, P. H. Dietz, D. Leigh, W. S. Yerazunis, and S. E. Hudson, "Haptic
pen: a tactile feedback stylus for touch screens," Proc UIST '04, 2004, pp. 291-
294.

[20] T. Evreinova, "Alterative Visualization of Textual Information for People with
Sensory Impairment," Dissertation, Department of Computer Sciences,
University of Tempere, 2005.

[21] Crossbow MICAz-Based ZigBee and WiFi Coexistance, Crossbow.
http://www.xbow.com, last visited Nov 2009.

[22] Zigbee Alliance, Inc., "Status of 802.15.4 and Zigbee," May 2004.

[23] J. Hill and D. Culler, "MICA: A Wireless Platform for Deeply Embedded
Networks," IEEE Micro, vol. 22, no. 6, Nov./Dec. 2002, pp. 12-24.

[24] J. Polastre, J. Hill, and D. Culler, "Versatile Low Power Media Access for
Wireless Sensor Networks," Sensys '04, (Nov 2004).

[25] M. Buettnew, G. Yee, E. Anderson, and R. Han, "X-MAC: A Short Preamble
MAC Protocol for Duty-cycled Wireless Sensor Networks," University of
Colorado at Boulder, Technical Report CU-CS-1008-06, 2006.

http://www.xbow.com

96

[26] P. Levis, N. Patel, S. Shenker, D. Culler, "Trickle: A Self-regulating Algorithm
for Code Propagation and Maintenance in Wireless Sensor Networks," UC
Berkeley, Tech Report Number CSD-03-1290, no date provided.

[27] D. De Couto, D. Aguayo, J. Bicket, R. Morris, "A High-throughput Path Metric
for Multi-hop Wireless Routing," MobiCom '03, Sep. 2003.

[28] A. Dunkels, B. Gronvall, T. Voigt, "Contiki - a Lightweight and Flexible
Operating System for Tiny Networked Sensors," Swedish Institute of Computer
Science, 2004.

[29] Sohraby, Kazem, Daniel Minoli, and Taieb Znati. "Medium Access Control
Protocols for Wireless Sensor Networks," Wireless Sensor Networks:
Technology, Protocols, and Applications. John Wiley & Sons. 2007.

[30] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr, "Efficient Memory
Safety for TinyOS," Proceedings of the 5th international conference on
Embedded networked sensor systems, Sydney, Australia, 2007, pp. 205-218.

[31] J. Polastre, R. Szewczyk, C. Sharp, and D. Culler, "The Mote Revolution: Low
Power Wireless Sensor Network Devices," Hot Chips 2004, Aug. 22-24, 2004.

[32] Crossbow MPR-MIB Users Manual, Revision B, PN: 7430-0021-07, June 2006.

[33] Texas Instruments, "MSP430xl61x Datasheet," SLAS368E, rev. Aug 2006.

[34] Energizer, "Product Datasheet for E91," http://data.energizer.com.

[35] Texas Instruments, "TPS715xx Datasheet, SLVS338P," rev. Nov. 2008.

[36] Texas Instruments, "TPS62200 Datasheet, SLVS417E," rev. May 2006.

[37] Philips Semiconductor, "The I C Bus Specification," document order number
9398 393 40011, Version 2.1, January 2000.

[38] J. Gardner, "Braille, Innovations, and Over-specified Standards," Department of
Physics, Oregon State University, 2005.

[39] J.C. Stevens, E. Foulke, and M. Patterson, "Tactile Acuity, Aging, and Braille
Reading," Journal of Experimental Psycology: Applied, vol. 2, no. 2, 1996, pp.
91-106. From site, http://www.braille.org/papers/.

[40] E. Foulke, "Investigative Approaches to the Study of Braille Reading," Journal
of Visual Impairment and Blindness, American Foundation for the Blind,
vol.73, no. 8, Oct.1979, pp. 298-308.

[41] P. Flanigan and E. Joslin, "Patterns of Response in the Perception of Braille
Configurations," Outlook, Oct. 1969.

http://data.energizer.com
http://www.braille.org/papers/

97

[42] BANA Braille Codes Update, Developed under the sponsorship of the Braille
Authority of North America, Effective January 1, 2008,
www.brailleauthority.org, 2007.

[43] S. Katzir, The Beginnings of Piezoelectricity: A Study in Mundane Physics,
Springer, 1st Ed. 2006.

[44] W. Cady, Piezoelectricity; An Introduction to the Theory and Applications of
Electromechanical Phenomena in Crystals, New York, Dover Publications
1964.

[45] Piezo Systems, Inc, http://www.piezo.com, last visited Jul. 2009.

[46] http://ngspice.sourceforge.net/index.html - last visited Aug. 2009.

[47] http:// sourceforge.net/projects/ kjwaves - last visited Aug. 2009.

[48] "TOSSIM Tutorial," http://docs.tinyos.net/index.php/TOSSIM, last visited Oct.
2009.

[49] Hyung Lee, A. Cerpa, and P. Levis, "Improving Wireless Simulation through
Noise Modeling," IPSN, Apr. 2007, pp. 21-30.

[50] K. Knopper, "The Adriane Desktop for the Sight Impaired," LinuxPro
Magazine, vol. 92, July 2008, pp. 59-63.

[51] http://www.uclinux.org/, last visited Oct. 2009.

http://www.brailleauthority.org
http://www.piezo.com
http://ngspice.sourceforge.net/index.html
http://
http://sourceforge.net/projects/
http://docs.tinyos.net/index.php/TOSSIM
http://www.uclinux.org/

98

APPENDICES

DAUGHTER CARD SCHEMATICS

99

8 S
*
&

.. s

1 1
a l
2 8

§ a
g 2

s y

5 g

5 = =

100

MUdl

M) •NOOUJ W

pesnun n ON ^

<^

aNoa

o a i

l a i

SWl

XQ±

IWN/1SH

/
N aSAH

0N9V

QNOQ

£9

re

99

99

iS

99

69

08

L9

39

E9

5 S
, +

101

m

11 s
8 ^ o 5 o l

II "

ss
Si

£

> > 1?

i -

• 1
H

£
g

I
m in

-'Will ^Wili

!' AAV Vr
5

O O O O v

- *

g
O =?

o

HH

. . .

«
o =?

o

1 E
3
8!
r^ a

iln
s «Y

A A \ ' v
' ' | S = S

5 §
O 3 5
Z3

ihH

D
A

T
A

IN
T

£

/\

r>

|I 1

- 1 L - i *

§
1 1
« s

p

^ ^

z
o

^
"~ •a

O

\

•

8
a
X

!M "
o

6

•

W
St
rr

™ "
O

6

•*
0

6

a s

"88J0 - a n tiMd

$>
09E

A/V
lOZU

A V

g c?

-H-

- w -
ZOSU 09E

90SU 09£

- w -

- w —
WOT

902U 09£

H)JU 09E

-A/V

l s

aO- -A/v-
^ o

AV

i *

-w w—
eoza eozu 09E

-£—w—
ZOZa ZOZU 09E

s

i i

a
z
§<
o a

102

50EU

§[—A/V-

3^

B £

s l s l s\ s | ss

2 i 8 8 g II S o o o o

T-tO

do

ll
•->

ZOEd

nee

3 ^

^Mw

5 S 8 S ST 8

ih^w-

14.

UJBU

>IEE

/\

Ds
8 X

103

^ - 1 - ^ V " iNV

a s
l*|i"Tl_ii Hi'-n-i.

/ \

iN
5 3

§ 3

2 o
iiii

r-^vV-

H
§ 3

iiii

| 3

i ! iiii

tr

DAUGHTER CARD GERBER

There a r e 10 different drill s i z e s used in this layout, 188 hole

Symbol Diam. (Inch) Count Plated?

i total

Title' (unknown) - Fabrication Drawing

Ruthor= Kurt Peters

Date= Tue Feb 13 15=13=14 2007 UTC

Maximum Dimensions' 4000 mils wide, 2250 mils high

Board outline is the centerline of this 10 mil rectangle - 0,0 to 4000 ,2250 mils

MSP430 SOURCE CODE

t=id3xmn3in

uia=8pow

CD
i i
CD

" O

o

C
O

+f
T?
C
o
O
o

0)

o

T5 LU

.1?
a> o

C£ d,

J

«• "S
1 - ®

cp^
II Lfl
a> •—
-o Q
O j ^ i

^ .E

i

LU

W O

Q9=

apoiAi

•a ct
o _ j
2 U

* MSP430F1611 - Braille translator - interface to MicaZ
*

* Description; Toggles LED at 0.25 sec interval
* DCO frequency used for SMCLK and set to 4 MHz by TI routine.
* I2C is used to communicate with Mote in Slave mode only
* RS-232 is used to echo input and outputs everything to Braille
* SPI is used to communicate with TTS chip
* ACLK = 32768 = TACLK, MCLK = SMCLK = DCO~ 4000k

/|\

MSP430F169/11

XIN|

I
RST XOUTI

Pi.4|-->LED
P2.2 j-->LOWVOLT

* Kurt Peters
* Old Dominion University
* February 2 007
* Built with CCE for MSP430 Version: 2.0.0.21
***/

#include "msp430xl6x.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "DCO_Library.h"

#define LowByte(i) ((uint8_t) i)
#define HiByte(i) ((uint8_t) (((uintl6_t) i) » 8))
/*
* This is the default payload size of a TinyOS 2.x packet
*/

#define TOSH_DATA_LENGTH 28
#define BRAILLE_BUFFER_LENGTH 0x80*4
#define BRAILLE_BUFFER_MASK 0x7F
/* This is the rate the Braille will be written */
#define BRAILLE_WRITE_TIME 8192
#define SPACE_SYMBOL 0x3F
#define SLAVE_I2C_ADDRESS 0x0048 // change to 0x24 to account
for a bug in TinyOS 2.0.2 for address 0x48
#define DELTA 1125 // 4608000 Hz

//TI__DCO_4MHZ // target DCO = 256* (4096) = 1048576 |
2097152

// the 4.8MHz allows 400kHz
I2C Master (if required)
typedef struct
{
uint8_t first;
uint8_t second;

} brailleStruct;

107

/*
* Prototypes for int services
* Timer A ISR
*/
interrupt void Timer_A(void);

// UART1 RX/TX ISR
interrupt void usartl_rx(void) ,-

// I2C Module ISR
interrupt void I2C_ISR(void);

//DMA Interrupt
interrupt void DAC_DMA_ISR(void);

// watchdog Interrupt
interrupt void watchdog_timer(void);

inline void configUARTlforRS232(void);
inline void configDMAToSendUARTl(void);
inline void configUART0forl2C(void);

inline void forceRS2320n(void);
inline void forceOnRS2320ff(void);
inline void setDVoltage(uint8_t DCOCTLVal, uint8_t DCOBCVal, uint8_t
P2Val);
//inline void setHighVoltage(void);
//inline void setLowVoltage(void);
brailleStruct convertASCIIToHW(uint8_t ASCIIin);
inline void sendUARTlMsg(const char *anyMSG, size_t length);

uintl6_t numberofseconds = 0;
volatile uint8_t mode = 0;
uint8_t braillehalf = 0;
/*
* Definition of modes
* bit - definition
* 0 - DMA Finished
* 1 - RS-232 Receive in progress
* 2 - RS-232 Start-edge Detect
* 3 - I2C Receive finished and stop condition received
* 4 - I2C Receiving Character
* 5 - Send Welcome Message
* 6 - NA
* 7 - overflow error

//brailleStruct
static char longBrailleBuffer[BRAILLE_BUFFER_LENGTH];
Static char I2CBuffer[BRAILLE_BUFFER_LENGTH];
/*
* index is the current position to write
* out the Braille code
* size is the number of bytes left
*

* size can be less than index when the
* buffer becomes circular

*/
uintl6_t indexBBWrite=0;
uintl6_t indexBBRead=0;
uintl6_t sizeBB=0;
uintl6_t sizeI2CB=0;

/*
* These constants are used to convert from the
* standard Braille cell (1-6) to a HW version.
* In our case, we read from rt to left starting from
* the bottom -- because our Port 4 is wired that
* way to the LEDs
*/

static const uint8_t andMatrix[] = {0x02,0x10,0x04,0x20,0x08,0x40};
static const int8_t shiftAmount[] = {-4,0,-1,3,2,6};
//static const char errorMSGDCO[] = {"Error with DC0\r\n"};
static const char repeatMSGf] = {"\r\nLocal still alive.\r\n"};
static const char errorMSGBB[] = {"\r\nError: Buffer Overflow!\r\n"};
static const char welcomemessage[] = {"\r\nMNS Braille Receiver\r\nver
0.1\r\n"};

/*
* BRAILLE Translation
* Goal is to just add '32' to the ASCII value
* Note: The function convertBToHW() is used to
* convert the cell to a HW representation
* From BANA - Braille Authority of North America
* English Braille American Edition 1994
* Revised 2002
*/

static const uintl6_t displayDigits [] = {
0x0000, // space

0x002C, // exclamation
0x004C, // " opening quote 3F34
0x1078, // # pound or "number follows'

0x0064, // $ dollar 3F32
0x0052, // % percent - note two-

0x005E, // & uses an and instead of

0x0008, // ' apostrophe 3F3D
0x006C, // (3F30
0x006C, //)
0x2828, // * - for math this could be

0x1058, // + dot 4 and 3-4-6 2F2C
0x0004, // , 3F37
0x0048, // - 3F3C
0x0064, // . 3F32
0x0018, // / 3F2D
0x7834, // 0 2823
0x7802, // 1 281F
0x7806, // 2 2817
0x7812, // 3 280F

2F28

characters needed 3305

amperstamp 04

2F28 3939

file://{"/r/nLocal
file://{"/r/nError
file://{"/r/nMNS

0x7832,
0x7822,
0x7816,
0x7836,
0x7826,
0x7814,
0x0024,
OxOOOC,
0x0046,
0x007E,
0x0038,
Ox004C,
0x0010,
0x4002,
0x4006,
0x4012,
0x4032,
0x4022,
0x4016,
0x4036,
0x4026,
0x4014,
0x4034,
Ox400A,
0x400E,
0x401A,
0x403A,
0x402A,
0x40lE,
Ox403E,
Ox402E,
Ox401C,
Ox403C,
Ox404A,
0x404E,
0x4074,
0x405A,
Ox407A,
0x406A,
0x406C,
0x0066,
0x6C08,
0x0030,
0x7070,
0x7010,
0x0002,
0x0006,
0x0012,
0x0032,
0x0022,
0x0016,
0x0036,
0x0026,
0x0014,
0x0034,
OxOOOA,
OxOOOE,

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

4
5
6
7
8
9

;
<
-
>
?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
W
X
Y
Z
[

280B
281B
2807
2803
2813
2827
3F33
3F35
3F16

3F29
3F34
1F21
3E1F
3E17
3E0F
3E0B
3E1B
3E07
3E03
3E13
3E27
3E23
3E1D
3E15
3E0D
3E09
3E19
3E05
3E01
3E11
3E25

or 2
backsl,
]
^

y

a
b
c
d
e
f
g
h
i

J
k
1

or 1

OxOOlA,
Ox003A,
0xO02A,
OxOOlE,
0x003E,
0x002E,
OxOOlC,
0x003C,
0x004A,
0x004E,
0x0074,
0x005A,
0x007A,
0x006A,
0x7054,
0x7066,
0x7076,
0x7030

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

m
n
o
P
q
r
s
t
u
V

w
X

y
z
{

!
{
~

};

//static char outMessage[] = { "Hello World\r\n" };
//char outMessage[] = "test RS-232";

void main(void) {

enum States {
Start_Mode,
I2C_Receiving_Data,
l2C_Stop_Received,
Wait_For_DMA_Finish,
Start_Edge_Received,
Receive_Echo_RS232,
Send_Welcome_Message};

uintl6_t result;
uintl6_t DCOerrors;
uint8_t DCOCTLLowVolt, DCOCTLHighVolt;
uint8_t DCOBClLowVolt, DCOBClHighVolt;

enum States current_state;
// enum States last_state = Start_Mode;

WDTCTL = WDT_ARST_1000 + WDTHOLD;
//WDTCTL = WDTPW + WDTHOLD; // Stop WDT
_disable_interrupts();
P1DIR = BIT0+BIT1+BIT2+BIT3+BIT4+BIT5;
P2DIR = BIT0+BIT1+BIT2+BIT3+BIT4+BIT6;
P3DIR = BIT0+BIT2+BIT4+BIT6; // P3.0,2,4-6

are inputs for I2C
P4DIR = BIT0+BIT1+BIT2+BIT3+BIT4+BIT5+BIT6;
P5DIR = BIT0+BIT1+BIT3+BIT4+BIT5+BIT6+BIT7;
P6DIR = OxFF; // P6.0-7 output

forceOnRS2320ff();
/* Initialize the settings for functions
DCOCTLLowVolt=OxDA;
DCOBClLowVolt=Ox86;
DCOCTLHighVolt=0xBB;
DCOBClHighVolt=0x86;

// Pi.0-5 output
// P2.0-4,6 output

outputs, 1 and 3 and 5

// P4.0-6 output
// P5.0,l,3-7 output

/* Configure DCO at both low and high voltage modes
* and record the values
* Set the SMCLK to P5.5 to see clock on O-scope
* Should be TP104 on board
*/
P5SEL |= BIT5;
/* This sets the DCO to use the external ROSC
* Resistor = 140k nom
*/

P2SEL |= BIT5;
BCSCTL2 |= DCOR; // Rose

/* Do high voltage first */
//setHighVoltage();
setDVoltage(DCOCTLHighVolt, DCOBClHighVolt, (P20UT & (-BIT2)));

DCOerrors=0;
// Set HW Clock to right Freq using TI asm routine

result = TI_SetDCO(DELTA);
if(result != TI_DCO_NO_ERROR) { // returned result was in

error
DCOerrors++;

}
DCOCTLHighVolt=DCOCTL;
DCOBClHighVolt=BCSCTLl;

/* Now do low voltage */
//setLowVoltage();
setDVoltage(DCOCTLLowVolt, DCOBClLowVolt, (P20UT | BIT2));

DCOerrors=0;
Set HW Clock to right Freq using TI asm routine
result = TI_SetDC0(DELTA);
if(result != TI_DCO_NO_ERROR) { // returned result was in

DCOerrors++;
}
DCOCTLLowVolt=DCOCTL;
DCOBClLowVolt=BCSCTLl;

/* Initialize all ports used */
configUARTlforRS232();
configDMAToSendUARTl();
configUARTOforl2C();

/* Turn off Braille outputs */
P40UT = OxFF;
CCTLO = CCIE; // CCRO interrupt enabled
CCRO = 32768»1; // after 1/2 second first CCRO will occur
TACTL = TASSEL_1 + MC_2; // ACLK, contmode <- ACLK i

32768 crystal
//setLowVoltage();

mode =0;
sizel2CB=l;
I2CBuffer[0] = 60;

//

error

112

current_state = Start_Mode;
forceRS2320n(); // Force the RS-

232 Max3318E on
/* Set HW Clock to right Freq using TI asm routine
if (DCOerrors>0){

result = TI_SetDCO(DELTA);
if(result != TI_DCO_NO_ERROR) { // returned result was

in error
sendUARTlMsg(errorMSGDCO, sizeof errorMSGDCO-1);

// DCOerrors++;
}

if(result == TI_DCO_SET_TO_SLOWEST) {
// returned result if DCO registers hit min

sendErrorMessage();
// trap the CPU if hit

}
else if(result ==

TI__DCCL.SET__TO_FASTEST) { // returned result if DCO registers hit max
sendErrorMessage() ;

// trap the CPU if hit
}
else if(result == TI_DCO__TIMEOUT_ERROR

) { // returned result if DCO takes >10000 loops
sendErrorMessage();

// trap the CPU if hit
}

}*/
sendUARTlMsg(welcomemessage, sizeof welcomemessage-1);

/* Play the welcome message */

while (1) {
switch(current_state) {

case Start_Mode:
// Starting up or wait for something to happen

if (mode&BIT4) { // Give I2C higher priority
current_state=I2C_Receiving_Data;

}
else if (mode&BIT2) {

// Start edge detected -- needed since we're using SMA clock
mode &= -BIT2;

// Clear BIT2 Saying we're in right state
current_state=Start_Edge_Received;

}
else if (mode&BIT5) {

P10UT A= BIT4;
// Toggle PI.4

current_state=Send_Welcome_Message;
} else {

forceOnRS2320ff();
_bis_SR_register(LPM3_bits + GIE) ;

}
break;
/* Transmitter Empty From here down */

case I2C_Receiving_Data:
// Receive of I2C in progress

/*
* Display the text received on I2C
*/

forceRS2320n();
// Force the RS-232 Max3318E on

while (I2CDCTL&I2CBUSY);
// Wait for I2C to become "idle"

mode &= -BIT4;
// Clear BIT4 Saying we're in right state

result = sizeI2CB;
sizel2CB = 1;

// Set to 0 in case wake up is something other than DMA
finished

sendUARTlMsg(I2CBuffer, (size_t) result); //
send received data out
// _enable_interrupts();

P10UT A= BIT4; // Toggle Pi.4
current_state=Wait_For_DMA_Finish;

break;
case Wait_For_DMA_Finish:

// Assuming DMA is transmitting
if (mode&BITO) {

mode &= -BITO;
if (mode & BIT7) {// Check overflow

mode &= -BIT7;
sendUARTlMsg(errorMSGBB, sizeof

errorMSGBB-1);
}
else {
current_state=Start_Mode;

while (!(UTCTL1 & TXEPT));
// Confirm no TXing before --> LPM3

}
} else {

_bis_SR_register(LPM0_bits +GIE);
// DMA wasn't finished, we were interrupted by something else

it will have to wait
}

// _bic_SR_register„on_exit (LPM4__bits) ;
// start DCO, CPU, and everything on exit

break;
case Start_Edge_Received:

if (mode&BITl) {
// Check to see if we're already echoed char

current_state=Receive_Echo_RS232;
} else {

_bis_SR_register(LPMO_bits + GIE);
}

break;
case Receive_Echo_RS232:

if (UTCTL1 & TXEPT) { // TX Empty
mode &= -BIT1;
if (mode & BIT7) {// Check overflow

mode &= -BIT7;

sendUARTlMsg(errorMSGBB, sxzeof
errorMSGBB-1);

current_state=Wait_For_DMA_Finish;
}
else {

current_state=Start_Mode;
}

}
break;
case Send__Welcome_Message:

/*
* Display the text received on I2C
*/

mode &= -BIT5; // Turn off Send Welcome Msg
forceRS2320n();
// Force the RS-232 Max3318E on
sendUARTlMsg(repeatMSG, sizeof repeatMSG-1); //

Send DMA test message through UARTl
current_state=Wait_For_DMA_Finish;

break;
default: _never_executed();

}
}

}

/*
* Timer AO interrupt service routine
*/

TIMERAO_ISR(Timer_A)
interrupt void Timer_A (void) {

brailleStruct displayBraille;
displayBraille.first=0;
displayBraille.second=0;
numberofseconds++;
TACTL = TASSEL_1 + MC_2; // ACLK, contmode
/*
* Now every blink will occur at
* BRAILLE_WRITE_TIME/327 68 or
* 0.25 of a second for 8192=BRAILLE_WRITE_TIME
*/

CCRO += BRAILLE_WRITE_TIME;

/* Toggles Braille lights
* P40UT = numberofseconds; // Change the braille lights to

count the number of seconds
*/
/*

* Really need to display both characters if the
* first isn't a "space"
* So first check if there's data in the buffer (sizeBB>0)
* If so, check whether mode.4 = 0 and not a space
* and write the first Braille Char
* If not, write the second Braille char and increment

*/
if (sizeBB>0) {

115

displayBraille =
convertASCIIToHW(longBrailleBuffer[indexBBRead]) ;

if (
(!(braillehalf&BIT4))&&(displayBraille.first!=SPACE_SYMBOL)){

P40UT = displayBraille.first;
braillehalf |= BIT4;

}
else {

P40UT = displayBraille.second;
sizeBB--;
indexBBRead++;
braillehalf &= -BIT4; // Clear bit 4 so we

start with the first one next time
}

/* Do a roll-over if we reached the end of the
buffer */

if (indexBBRead>BRAILLE_BUFFER_LENGTH-l) {
indexBBRead = 0;

}
/*

if (sizeBB<0) {
error - wrote more data than we should have
* to the Braille pad

sendUARTlMsg(errorMSGOF, sizeof errorMSGOF-1);
}

*/
}

/*
* Place code to test here

*/
if (numberofseconds>15) {

numberofseconds=0;
//P60UT ~= BIT1; // Toggle a test point
//P20UT A= BIT2; // Determine if voltage change is

working
//P10UT A= BIT4; // Toggle PI.4 - main pwer LED

mode |= BIT5; // set RS-232 need to check

xmit full
}
// WDTCTL = WDTPW+WDTCNTCL;

_bic_SR_register_on_exit(LPM4_bits + GIE); // start DCO,
CPU, and everything on exit
}

/*
* Force the RS-232 Chip on
* Assumed to be a Max3318E
*/

inline void forceRS2320n(void) {
P50UT |= BIT6;

}

/*

1

* Turn the Force on bit off
* Assumed to be a Max3318E
*/

inline void forceOnRS2320ff(void) {
P50UT &= -BIT6;

}

/*
* For a high voltage, we need to set the
* bit low, causing the resistor to be
* in parallel with the lower resistor
*/

inline void setDVoltage(uint8_t DCOCTLVal, uint8_t DCOBCVal, uint8_t
P2Val) {

DCOCTL= DCOCTLVal;
BCSCTL1= DCOBCVal;

P20UT = P2Val;
}

/*
* For a high voltage, we need to set the
* bit low, causing the resistor to be
* in parallel with the lower resistor
*

inline void setHighVoltage(uint8_t DCOCTLH, uint8_t DCOBCH) {
DCOCTL= DCOCTLH;
BCSCTL1= DCOBCH;

P20UT &= -BIT2;
}
*/

/*
* For a high voltage, we need to set the
* bit high, causing the top resistor
* to become "smaller".

inline void setLowVoltage(uint8_t DCOCTLH, uint8_t DCOBCH) {
DCOCTL = DCOCTLH;
BCSCTL1= DCOBCH;
P20UT |= BIT2;

}
*/

inline void configDMAToSendUARTl(void) {
DMACTLO = DMA0TSEL_10; // + DMAlTSEL_3; // UTXIFG1
DMAOSA = (unsigned int)welcomemessage; // Source block addres
DMAOSZ = sizeof welcomemessage-1; // Block size
DMAODA = (uintl6_t) &TXBUF1; // Dest single address
DMAOCTL = DMASRCINCR_3 + DMASBDB + DMALEVEL + DMAIE; // sngl,

inc src
//set up two DMA channels

/*DMA1SA = (unsigned int)&I2CDRB; // Source block address
DMA1SZ = 1; // Block size

117

DMAlDA = (uintl6_t) RS232Buffer; // Dest
single address

DMA1CTL = DMADT_4 + DMADSTINCR_3 + DMASBDB + DMAIE + DMAEN;
sngl, inc src

*/
return;

//

// DMA interrupt service routine

DACDMA_ISR(DAC_DMA_ISR)
interrupt void DAC_DMA_ISR(void) {

if (DMAOCTL & DMAIFG) {
DMAOCTL &= -DMAIFG;// Clear DMAO interrupt flag
mode |= BITO; // set RS-232 need to check xmit full
_bic_SR_register_on_exit(LPM4_bits+GIE); // start

DCO and everything
}

/*if (DMA1CTL & DMAIFG)
DMA1CTL &= -DMAIFG; // Clear DMAO interrupt flag

*/

inline void configUARTlforRS232(void) {
U1CTL
P3SEL
ME2 | =
U1CTL
UTCTL1

SMCLK, start edge

= SWRST;
= OxCO;
UTXE1 + URXE1;
= CHAR;
|= SSEL1

detect

//
SSELO

// Initialize USART state machine
// P3.6,7 = USARTl TXD/RXD

// Enable USARTl TXD/RXD
i-bit character (8N1 UART)

URXSE; // UCLK

//URCTL1 = 0;
UBR01 = 0x78;
UBRll = 0x00;
UMCTLl = 0x00;
U1CTL &= -SWRST;
IE2 |= URXIE1;
return;

//
//
//
//
//

// Receive normal
4.6MHZ/38400

Modulation 4A
Initialize USART
Enable USARTl RX

state machine
interrupt

}

USARTlRX_ISR(usartl_rx)
interrupt void usartl_rx (void) {

uint8_t conASCIIToBraille;

if(URXIFGl & IFG2) {// 0 Start-edge detected
// 1 char received
// RXBUF1 to TXBUFl

conASCIIToBraille = RXBUF1;
while (!(IFG2 & UTXIFG1)); // USARTl TX buffer ready?
TXBUFl = conASCIIToBraille;// Echo the character back out

longBrailleBuffer[indexBBWrite++]=conASCIIToBraille;
/* Do a roll-over if we reached the end of the buffer

if (indexBBWrite>BRAILLE_BUFFER_LENGTH-l) {
indexBBWrite = 0;

118

}
sizeBB++;
if (sizeBB>BRAILLE_BUFFER_LENGTH-l) {

/* error - received more than two packets worth
of data

* before writing anyout to the Braille pad
*/

//sizeBB = BRAILLE_BUFFER_LENGTH-1; //
since we have an overflow - use max size of buffer

mode |= BIT7; // set overflow flag
}

mode |= BIT1; // set RS-232 receive mode
_bic_SR_register_on_exit(LPM4_bits+GIE) ; // start

DCO
} else { // Start-edge detected

UTCTL1 &= -URXSE; // clear URXS
UTCTL1 |= URXSE; // enable SE again URXS
mode |= BIT2; // SSELO = 0, RX activity
_bic_SR_register_on_exit(LPM4_bits); // start

DCO - interupts enabled to echo asap
}

}

brailleStruct convertASCIIToHW(uint8_t ASCIIin) {
int ii=0;
uint8_t lowByte, highByte, tempByte;
brailleStruct twoToReturn;
twoToReturn.first=0;
twoToReturn.second=0 ;
/*
* Make sure the received ASCII is a character
* we're prepared for
*/

if (((uint8_t) ASCIIin) <32) {
tempByte=60; // < sign

}
else if (((uint8_t) ASCIIin) >126) {

tempByte=62; // > sign
}
else {

tempByte = ASCIIin-32;
}
lowByte = LowByte(displayDigits[tempByte]);
highByte = HiByte(displayDigits[tempByte]) ;
for(ii=0; ii<(sizeof andMatrix); ii++) {

if (shiftAmount[ii]<0) {
twoToReturn.first+=((highByte&andMatrix[ii]) « (-

l*shiftAmount[ii])) ;
twoToReturn.second+=((lowByte&andMatrix[ii]) « (-

l*shiftAmount[ii]));
}
else {

twoToReturn.first+=((highByte&andMatrix[ii])»shiftAmount[ii]);

twoToReturn.second+=((lowByte&andMatrix[ii])»shiftAmount[ii]);

119

}

}
twoToReturn.first|=0xC0;
twoToReturn.second|=0xC0;
twoToReturn.first =~twoToReturn.first;
twoToReturn.second=~twoToReturn.second;
return twoToReturn;

inline void sendUARTlMsg(const char *anyMSG, size_t length) {
DMAOSA = (unsigned int)anyMSG; // Source block address
DMAOSZ = length; // Block size
DMAOCTL |= DMAEN; // Send DMA test message

through UARTl
_enable_interrupts();

}

//
inline void configUART0forI2C(void) {

P3SEL |= OxOA;
//UOCTL |= SWRST;

machine I2CTRX Bit must be cleared
//UOCTL &= -CHAR;

addressing & 7 bit chars
UOCTL |= I2C + SYNC;// + SWRST;
UOCTL &= -I2CEN;
I2CTCTL |= I2CSSEL1+I2CSSEL0;
//I2CDR Register : I2CWORD and I2CTRX =0
I2COA = SLAVE_I2C_ADDRESS;
I2CIE = RXRDYIE;// + ARDYIE;

Register Access Ready interrupt (stop condition
UOCTL |= I2CEN;
return;

}

Select I2C pins
// Reset USART state

// 7 bit

// Recommended init procedure
// Recommended init procedure

// SMCLK

// Own Address is 048h
// Enable RXRDYIFG and

// Enable I2C

USART0TX_ISR(I2C_ISR)
interrupt void l2C_ISR(void)

uint8_t tempRCByte;
switch(I2CIV) {

case I2CIV_AL: break; //
case I2CIV_NACK: break; //
case I2CIV_OA: break; //
case I2CIV_ARDY:

// Register Access Ready - Receive stop condition
PlOUT A= BIT4;

// Toggle Pi.4
// mode |= BIT3;

// Set BIT3 Saying we're done receiving
break;
case I2CIV_RXRDY:

tempRCByte
//while (!

USARTl TX buffer ready?
//TXBUFl = tempRCByte;
I2CBuffer[sizeI2CB++]

Arbitration lost
No Acknowledge
Own Address

= I2CDRB;
;iFG2 & UTXIFG1!

I2C

//
//

Receive Ready
add data to buffer

//

// RXBUF1 to TXBUFl
tempRCByte;

longBrailleBuf fer [indexBBWrite++] = tempRCByte,-

if (sizel2CB > (BRAILLE_BUFFER_LENGTH-1)) {
mode |= BIT7;

// set overflow flag
sizeI2CB = BRAILLE_BUFFER_LENGTH-1; //

Buffer is linear
}
/* Do a roll-over if we reached the end of the buffer

*/
if (indexBBWrite> (BRAILLE_BUFFER_LENGTH-1)) {

indexBBWrite = 0;
// Buffer is circular

}
sizeBB++;
if (sizeBB>BRAILLE_BUFFER_LENGTH-l) {

/* error - received more than two packets worth
of data

* before writing anyout to the Braille pad
*/

mode |= BIT7; // set overflow flag
}
mode |= BIT4;

// Set BIT4 Saying we're receiving I2C

//while (!(UTCTL1 & TXEPT));// Confirm no TXing
before exit

break;
case I2CIV_TXRDY: break; // Transmit Ready
case I2CIV_GC: break; // General Call
case I2CIV_STT: break; // Start Condition
default: break; //_never_executed();

}
_bic_SR_register_on_exit(LPM4_bits); // start

DCO, CPU, and everything on exit
_bis_SR_register_on_exit(GIE); // start DCO,

CPU, and everything on exit
}

WDT_ISR(watchdog_timer)
interrupt void watchdog_timer(void) {

P10UT A= BIT4; // Toggle PI.4
}

MICAZ NESC GRAPHVIS CODE DIAGRAM

MICAZ NESC SIMULATION CODE

Header File: EasyDissemination.h

#ifndef EASY_DIS
#define EASY_DIS
// Uncomment out below to limit the hops in a simulation
ttdefine LIMIT_H0PS
enum {

I2C_SEND_PERI0D_MILLI = 61440, 111 minute * 2=122880
I2C_ADDRESS_T0_SEND = 0x0048,
BUFFER_LENGTH = 4 , // Note: this needs to be rad
COMMAND_NODE__MASK = 1,
HOPS__TO_ALLOW = 4

};

typedef nx_struct easydis__packet_t {
nx_uintl6_t nodeid;
nx_uint8_t counter;
nx_uint8_t priority;
nx_uint8_t numberhops;
nx_uint8_t data[TOSH_DATA_LENGTH-5];

} l2C_Dism_packet_t;

#endif

nesC Application File: EasyDisseminationApp.nc

configuration EasyDisseminationAppC {}
implementation {

components EasyDisseminationC as App;
components DisseminationC;
components MainC;
App.Boot-> MainC.Boot;
App.DisseminationControl -> DisseminationC;

components ActiveMessageC;
App.RadioControl -> ActiveMessageC.SplitControl;

components new DisseminatorC(l2C_Dism_packet_t, 0x1234) as
Dissl6C;

App.Value -> Dissl6C;
App.Update -> Dissl6C;

components LedsC;
App.Leds-> LedsC;

components new TimerMilliC() as Timerl;
components new TimerMilliC() as Timer2;
App.Timerl-> Timerl;
App.Timer2-> Timer2;

nesC Implementation File: EasyDisseminationC.nc

#include "EasyDissemination.h"
ttinclude <Timer.h>
ttinclude <stdlib.h>
#include <string.h>
//#include <I2C.h>
//ttinclude <Atml28l2C.h>

module EasyDisseminationC {
uses interface Boot;
uses interface DisseminationValue<I2C_Dism_packet_t> as Value;
uses interface DisseminationUpdate<I2C_Dism_j?acket_t> as Update;
uses interface Leds;
uses interface Timer<TMilli> as Timerl;
uses interface Timer<TMilli> as Timer2;

// uses interface Timer<TMilli> as Timer3;
//uses interface l2CPacket<Tl2CBasicAddr> as I2CBasicAddr;
//uses interface Resource as l2CResource;
uses interface StdControl as DisseminationControl;
uses interface SplitControl as RadioControl;

}

implementation {
uintl6_t addrl2C = I2C_ADDRESS_T0_SEND;
uint8_t counter = 32;
bool busy = FALSE;
uint8_t errcnt = 0;
uint8_t bufferlndex = 0;
uint8_t flag = 1;
I2C_Dism_packet_t I2CMsgIn[BUFFER_LENGTH];
I2C_Dism_packet_t l2CMsg0ut;
uint8_t buffer[2];
/* reverse: reverse string s in place
* found from internet
* compensate for fact of TOSSIM not using libc
*/
void reverse(char s[]) {

int c, i, j ;
for (i = 0, j = strlen(s)-l; i<j; i++, j--) {

c = s [i] ;
s [i] = s [j] ;
s[j] = c;

}
}
/* itoa: convert n to characters in s */
void itoafint n, char s[], int k) {

int i, sign;
if ((sign = n) < 0) /* record sign */

n = -n; /* make n positive */
i = 0;
do { /* generate digits in reverse order */

s[i++] = n % 10 + '01; /* get next digit */
} while ((n /= 10) > 0); /* delete it */

124

if (sign < 0)
s[i++] =

s[i] = '\0\-
reverse(s);

Requests I2C resource as soon as booted
</

{ event void Boot.booted()
int i i;
for (ii=0;ii<BUFFER_LENGTH;ii++)

I2CMsgIn[ii].nodeid
l2CMsgIn[ii].counter
I2CMsgIn[ii].priority
I2CMsgIn[ii].numberhops =

T0S_N0DE_ID;
0;
1
0

}
TOS_NODE_ID;
0;

l2CMsgOut.nodeid =
l2CMsg0ut.counter =
I2CMsg0ut.priority = 1;
I2CMsg0ut.numberhops = 0;
atomic {

busy = FALSE;
}
dbg("Boot,ShowCounter,WritePayload

%d at time: %s\n",TOS_NODE_ID,sim_time_string());
call Leds.set(LEDS_LED0 I LEDS_LED1 I LEDS_LED2

"Application booted.

call RadioControl.start();

event void RadioControl.startDone(error_t err) {
if (err '.= SUCCESS) {

call RadioControl.start();
} else {

call Timerl.startOneShot(2*I2C_SEND_PERIOD_MILLI)
call Leds.set(LEDS_LEDl);

}

event void Timerl.fired() {
call DisseminationControl.start();
if (T0S_N0DE_ID < COMMAND_NODE_MASK) {

call Timer2.startPeriodic(I2C_SEND_PERI0D_MILLI);
call Leds.set(LEDS_LED2);

}
else {

call Leds.set(LEDS_LED0);

}

task void ShowCounter() {
I2C_Dism_packet_t* l2CMsg;
if (TOS_NODE_ID < COMMAND_NODE_MASK) {

I2CMsg = &!2CMsg0ut;

dbg("ShowCounter", "Server node received message.
Sending back out.\n");

} else {
l2CMsg = &l2CMsgIn[bufferIndex];
dbg("ShowCounter", "Regular node received message

buffering: %d at time: %s\n",bufferlndex,sim_time_string());
dbg("ShowCounter", "Priority: %d - Hops: %d -

Counter %d .\n", I2CMsg->priority,I2CMsg->numberhops,I2CMsg->counter);
}

if (l2CMsg-
call

else
call

if (I2CMsg-
call

else
call

if (l2CMsg-
call

else
call

->counter & Oxl)
Leds.ledOOn();

Leds.ledOOff();
->counter & 0x2)
Leds.ledlOn();

Leds.ledlOff();
->counter & 0x4)
Leds.led20n();

Leds.led20ff();

task void ShowCounterServer() {
I2C_Dism_packet_t* I2CMsg;
I2CMsg = &I2CMsgOut;
dbg("ShowCounter", "Server node sending message. Counter:

%d\n",I2CMsg->counter);
}

* This fires the timer used to broadcast
* Characters across 802.15.4
*/
event void Timer2.fired() {

char buf[5];
char sentence[] = "I2C Message counter: ";
I2CMsgOut.data[0] = '\0'; // end with Null so we can do

a string concatenate
l2CMsgOut.counter=I2CMsgOut.counter+1;
// convert 123 to string [buf]
itoa(I2CMsg0ut.counter, buf, 10);
strncat((char*) (I2CMsg0ut.data), sentence,

T0SH_DATA_LENGTH-7);
//http: //www. delorie . com/djgpp/doc/libc/libc__881 .html#fn__S
strncat((char*) (l2CMsgOut.data), buf, TOSH_DATA_LENGTH-

strlen(sentence)-7);
dbg("WritePayload", "I2C Message sent by timer:

\"%s\"\n",(char *) (l2CMsgOut.data));
// show counter in leds
post ShowCounterServer();
// disseminate counter value
call Update.change(&!2CMsgOut);

}

/ * *
* Checks if address is the same sent and makes the I2C not busy
* and turns off LEDO to signal message sending is complete
* keeps a count of the errors for each write event and turns all

LEDs
* on if greater than 4
*/

task void I2CBasicAddrwriteDone() {
if (1) {

//if (addr == addrI2C) {
atomic {

busy = FALSE;
}
errcnt=0;

}
else {

errcnt++;
/* if there are more than for tries with failure

light the lights */
if (errcnt>4) {

call Leds.set(LEDS_LEDO | LEDS_LED1 |
LEDS_LED2);

}
else {

call Leds.set(errcnt);
}

}
return;

}

* This sends via I2C the payload message with a start and stop
* and lights LEDO to signal sending has started
* lights LEDl if there's a problem sending
*/

task void WritePayload() {
// This was created to allow for atomic reading of busy

I2C_Dism_packet_t* l2CMsg;
bool oldBusy;
atomic {

oldBusy = busy;
l2CMsg = &l2CMsgIn[bufferIndex];

}

if (!oldBusy) {
//buffer[0]=counter;

// i2c„flags_t flags, uintl6_t addr, uint8_t len, uint8_t*
data - Atml28l2CMasterPacketP.nc

dbg("WritePayload", "I2C Message out I2C port:
%s\n",(char *) (I2CMsg->data));

//dbg("WritePayload",(char *) (I2CMsg->data));
if (1) {

atomic {
busy = TRUE;

}
post l2CBasicAddrwriteDone();
atomic {

bufferlndex++;
bufferlndex &= BUFFER_LENGTH-1;

//BUFFER_LENGTH
}

//call Leds.ledOToggle(); // set red toggle
= green and yellow off

}
else {

call Leds.set(LEDS_LED1); // set green on =
red and yellow off

}
}
else { // BUSY

call Leds.set(LEDS_LED1|LEDS_LED0); // set green
and red on = yellow off

// repost because we're busy with old post
post WritePayload();

}

}

event void Value.changed() {
const I2C_Dism_packet_t* newVal = call Value.get();
//The above is a nonconstant pointer to data that cannot be

changed
I2CMsgIn[bufferlndex] = *newVal;
// show new counter in leds and write out I2C
if (TOS_NODE_ID >= COMMAND_NODE_MASK) {

dbg("WritePayload", "Value Changed: I2C Message:
%s\n",(char *) (newVal->data));

post ShowCounter() ;
post WritePayload();

}
}

event void RadioControl.stopDone(error_t err) {
}

}

MICAZ NESC LIVE CODE

nesC Application File: EasyDisseminationApp.nc

configuration EasyDisseminationAppC {}
implementation {

components EasyDisseminationC as App;
components DisseminationC;
components MainC;
App.Boot-> MainC.Boot;
App.DisseminationControl -> DisseminationC;

components ActiveMessageC;
App.RadioControl -> ActiveMessageC.SplitControl;

components new DisseminatorC(l2C_Dism_packet_t, 0x1234) as
Dissl6C;

App.Value -> Dissl6C;
App.Update -> Dissl6C;

components LedsC;
App.Leds-> LedsC;

components new TimerMilliC() as Timerl
components new TimerMilliC() as Timer2

// components new TimerMilliC() as Timer3
App.Timerl-> Timerl
App.Timer2-> Timer2

// App.Timer3-> Timer3

components new Atml28I2CMasterC() as l2CMaster
App.l2CBasicAddr-> I2CMaster.l2CPacket;
App.I2CResource -> !2CMaster.Resource;

nesC Implementation File: EasyDisseminationC.nc

#include "EasyDissemination.h"
#include <Timer.h>
#include <I2C.h>
#include <Atml28l2C.h>

module EasyDisseminationC {
uses interface Boot;
uses interface DisseminationValue<I2C_Dism__packet_t> as Value;
uses interface DisseminationUpdate<l2C_Dism_packet_t> as Update;
uses interface Leds;
uses interface Timer<TMilli> as Timerl;
uses interface Timer<TMilli> as Timer2;

// uses interface Timer<TMilli> as Timer3;
uses interface l2CPacket<TI2CBasicAddr> as l2CBasicAddr;
uses interface Resource as l2CResource;

uses interface StdControl as DisseminationControl;
uses interface SplitControl as Radio-Control;

}

implementation {
uintl6_t addrl2C
uint8_t counter
bool busy
uint8_t errcnt
uint8_t bufferlndex
uint8_t flag
l2C_Dism__packet_t I2CMsgIn[4]
l2C_Dism_packet_t l2CMsg0ut;
uint8_t buffer[2];

= I2C_ADDRESS_T0_SEND;
= 32;
= FALSE;
= 0;
= 0;

1;

/'
Requests I2C resource as soon as booted

'/
{

for

event void Boot.booted()
int ii;

(ii=0;ii<4;ii++) {
l2CMsgIn[ii].nodeid
I2CMsgIn[ii].counter
I2CMsgIn[ii].priority
!2CMsgIn[ii].numberhops =

T0S_N0DE_ID;
0;
1
0

}
T0S_N0DE_
0;

ID;

1;
0;

I2CMsg0ut.nodeid =
l2CMsg0ut.counter =
l2CMsgOut.priority
I2CMsgOut.numberhops
atomic {

busy = FALSE;
}
call Leds.set(LEDS_LED0 | LEDS_LED1
call l2CResource.request();

LEDS_LED2);

}

event void RadioControl.startDone(error_t err) {
if (err != SUCCESS) {

call RadioControl.start();
} else {

call Timerl.startOneShot(2*I2C_SEND_PERIOD_MILLI);
call Leds.set(LEDS_LED1);

}
}

* Once access to I2C is granted, turns
* yellow LED off and creates a 4 second timer
* to allow wait for MSP430 to set itself up for receiving
*/

event void l2CResource.granted(){
call RadioControl.start();
call Leds.set(LEDS_LED0);
return;

}

event void Timerl.fired() {
call DisseminationControl.start();
if (TOS_NODE_ID == 1) {

call Timer2.startPeriodic(I2C_SEND_PERIOD_MILLI);
call Leds.set(LEDS_LED2);

}
else {

call Leds.set(LEDS_LED0);
}
/ /call Timer3 . startPeriodic (I2C_SEND__PERI0D_MILLI»1) ;

task void ShowCounter() {
l2C_Dism_packet_t* l2CMsg;
if (TOS_NODE_ID == 1) {

I2CMsg = &I2CMsg0ut;
} else {

l2CMsg = &I2CMsgIn[bufferIndex] ;
}

if (I2CMsg->counter & Oxl)
call Leds.ledOOn();

else
call Leds.ledOOff();

if (l2CMsg->counter & 0x2)
call Leds.ledlOn();

else
call Leds.ledlOff();

if (l2CMsg->counter & 0x4)
call Leds.led20n();

else
call Leds.led20ff();

/ * *
* This fires the timer used to broadcast
* Characters across 802.15.4
*/
event void Timer2.fired() {

char buf[5];
l2CMsgOut.data[0] = '\0'; // end with Null so we can do

a string concatenate
I2CMsgOut.counter=I2CMsgOut.counter+1;
// convert 123 to string [buf]
//itoa(int value, char *string, int radix)
itoa(I2CMsgOut.counter, buf, 10);
strncat((char*) (I2CMsgOut.data), "I2C Message counter: ",

TOSH_DATA_LENGTH-7);
//http://www.delorie.com/djgpp/doc/libc/libc_881.html#fn_S
strncat((char*) (l2CMsg0ut.data), buf, TOSH_DATA_LENGTH-

27) ;
// show counter in leds
post ShowCounter();
// disseminate counter value
call Update.change(&!2CMsg0ut);

http://www.delorie.com/djgpp/doc/libc/libc_881.html%23fn_S

}

/ * *

* This fires off a single character with a start and stop
* and lights LEDO to signal sending has started
* lights LED1 if there's a problem sending

event void Timer3.fired() {
// This was created to allow for atomic reading of busy
bool oldBusy;
atomic {

oldBusy = busy;
}

if (!oldBusy) {
if (counter++ >=127) { // set back to

32
counter= 32;

}

buffer[0]=counter;
if (call I2CBasicAddr.write(I2C„START | I2C_ST0P,

addrI2C, 1,buffer) == SUCCESS) {
atomic {

busy = TRUE;
}
call Leds.ledOToggle(); // set red toggle =

green and yellow off
}
else {

call Leds.set(LEDS_LEDl); // set green on =
red and yellow off

}
}
else { // BUSY

call Leds.set(LEDS_LED1|LEDS_LED0); // set green
and red on = yellow off

}

}

*/

* This sends via I2C the payload message with a start and stop
* and lights LEDO to signal sending has started
* lights LED1 if there's a problem sending
*/

task void WritePayload() {
// This was created to allow for atomic reading of busy

I2C_Dism_packet_t* l2CMsg;
bool oldBusy;

atomic {
oldBusy = busy;

I2CMsg = &l2CMsgIn[bufferIndex];
}

if (!oldBusy) {
//buffer[0]=counter ;

// i2c__flags_t flags, uintl6_t addr, uint8_t len, uint8__t*
data - Atml28I2CMasterPacketP.nc

if (call I2CBasicAddr.write(I2C_START | I2C_ST0P,
addrl2C, (uint8_t) strlen((char *) (l2CMsg->data)),(uint8_t *) &I2CMsg-
>data[0]) == SUCCESS) {

atomic {
busy = TRUE;

}
//call Leds.ledOToggle(); // set red toggle

= green and yellow off
}
else {

call Leds.set(LEDS_LED1); // set green on =
red and yellow off

}
}
else { // BUSY

call Leds.set(LEDS_LEDl|LEDS_LED0); // set green
and red on = yellow off

// repost because we're busy with old post
post WritePayload();

}

}

event void Value.changed() {
const l2C_Dism_packet_t* newVal = call Value.get();

l2CMsgIn[bufferlndex] = *newVal;
// show new counter in leds and write out I2C
if (TOS_NODE_ID != 1) {

post ShowCounter();
if (post WritePayload()==SUCCESS) {

atomic {
bufferlndex++;
bufferlndex &= 0x03;

}
}

}
}

* Checks if address is the same sent and makes the I2C not busy
* and turns off LEDO to signal message sending is complete
* keeps a count of the errors for each write event and turns all

LEDs
* on if greater than 4
*/

async event void I2CBasicAddr.writeDone(error_t error, uintl6_
addr, uint8_t length, uint8_t* data) {

if (error == SUCCESS) {
//if (addr == addrI2C) {

atomic {
busy = FALSE;

}
errcnt=0;
//call Leds.led2Toggle(); // set yellow

toggle = red and green off
}
else {

errcnt++;
/* if there are more than for tries with failure

light the lights */
if (errcnt>4) {

call Leds.set(LEDS_LED0 | LEDS_LEDl |
LEDS_LED2);

}
else {

call Leds.set(errcnt) ;
}

}
return;

}

async event void l2CBasicAddr.readDone(error_t error, uintl6_t
addr,uint8_t length, uint8_t* data) {

return;
}

event void RadioControl.stopDone(error_t err) {
}

}

134

FLOWCHART FOR PYTHON SIMULATION SCRIPT

(START)

Process
Command Line

Arguments

Create Log File
and Assign Debug

Statements

Display
Settings

Information

1
Add Noise

Model

Add
Topography

File

Run
Simulation to
Input Time

PYTHON SCRIPTS

Simulation Script: testscript.py

#!//usr/bin/env python
from future import with__statement
import sys
import getopt
from TOSSIM import *
import time

def main(argv):
try:

opts, args = getopt.getopt(argv,
"ho:m:s:t:",["help","output=","minutes=","seconds=","topo="])

except getopt.GetoptError, err:
print(str(err))
usage()
sys.exit(2)

#Set default options should they not be specified
topoFileToUse="linkgain.out"

#r"/home/kurt/workspace/tossimwork/src/blinktoradio/linkgain.out
outputFileName = "output_ns.txt"
minutesToStop = 3
secondsToStop = 0

for opt,arg in opts:
if (opt in ("-h", "--help")):

usage()
sys.exit()

elif (opt in ("-o'\"—output")):
outputFileName = arg

elif (opt in ("-m","--minutes")):
minutesToStop = arg

elif (opt in ("-s","--seconds")):
secondsToStop = arg

elif (opt in ("-t","--topo")):
topoFileToUse = arg

tttimeToStop = ".".join((minutesToStop,secondsToStop))
timeToStop = float(minutesToStop)
tenthsOfMinutesToStop = float(secondsToStop)/60.0
timeToStop = timeToStop + tenthsOfMinutesToStop
print("Output file name is: %s"%outputFileName)
print("Simulation stop time is: %d minutes and %d

seconds."%(int(minutesToStop),int(secondsToStop)))
print("Topofile is %s"%topoFileToUse)

t = Tossimf[])
Set up channels to display results
debugFile=open(outputFileName,"w")

136

#t.addChannel("Boot", sys.stdout)
t.addChanne1("Boo t", debugF i1e)
t.addChannel("RadioCountToLedsC", debugFile)
t.addChannel("Dissemination", debugFile)
t.addChannel("ShowCounter", debugFile)
t.addChannel("WritePayload", debugFile)
t.timeStr()
#Print start time of sim to file
s=" ".join((time.strftime('%X %x %Z'),'\n'))
debugFile.write(s)
#get the radio and create a noise model
radiolist=t.radio()
try:

with open(r"/opt/tinyos-2.x/tos/lib/tossim/noise/meyer-
heavy.txt","r") as noise:

lines=noise.readlines()
except:

print("Major problem reading file for noise.")
sys.stderr.write("Topography file error.")
sys.exit()

print("Adding noise to nodes... please wait.")
for line in lines:

str=line.strip()
if (str!="") :

val=int(str)
for ii in range(0,64):

t.getNode(ii).addNoiseTraceReading(val)

#print("line %s is %s"%(it,line))
#if (it>10):
break
print("Creating noise models... please wait.")
for ii in range(0,64):

t.getNode(ii).createNoiseModel()

supposedly, by using with, this is not necessary:noise.close()
try:

with open(topoFileToUse,"r") as topo:
lines=topo.readlines()

except:
print("Problem reading in topography file.")
sys.stderr.write("Topography file error.")
sys.exit()

print("Adding topography... please wait.\n Skipping printing
gains...")

for line in lines:
topovals=line.strip().split()
if (len(topovals)>0):

if (topovals[0]=="gain"):
#print("node> %s : %s

%s"%(topovals[1],topovals[2],topovals[3]))

radiolist.add(int(topovals[1]),int(topovals[2]),float(topovals[3]))
print("Booting all nodes... please wait. Starting simulation.")
for ii in range(0,64):

m = t.getNode(i i)
numberOfSeconds=float(ii)/float(32)

m.bootAtTime(round(numberOfSeconds*t.ticksPerSecond())+4)
#time = numberofSeconds*t.tickPerSecond()
print("Running...")
#Run for only 3 minutes or less
hms=t.timeStr().split(':')
ss=hms[2] .split(' . ') #this just gives seconds part and not past

decimal in ss[0]
tenthsOfMinutesToStop = float(ss[0])/60 . 0
#Actual time in minutes and tenths of minutes
resTime=float(hms[1])+tenthsOfMinutesToStop #Combine to give a

decimal number
print resTime
oldNumSeconds=int(hms[1])
while (resTime<timeToStop):
#for ii in range(0,200000):

t.runNextEvent()
hms=t.timeStr().split(':')
ss=hms[2].split('.') #this just gives seconds part and not

past decimal in ss[0]
tenthsOfMinutesToStop = float(ss[0])/60.0
resTime=float(hms[1])+tenthsOfMinutesToStop #Combine to give a

decimal number
#print hms
#print("hms[1] is : %s"%hms[l])
if (int(hms[1])!=oldNumSeconds):

oldNumSeconds=int(hms[1])
print("Processing in simulation minute: %d."%oldNumSeconds)

#while (m.isOn()==0):
t.runNextEvent()
strvalue=('Simulation Ended at simulation time: ',t.timeStr(),'\n')
s=" ".join(strvalue)
debugFile.write(s)
s=" ".join((time.strftime('%X %x %Z,),'\n'))
debugFile.write(s)
print("Simulation Ended at simulation time: %s \n"%t.timeStr())
print("Local time is: %s \n"%time.strftime('%X %x %Z'))
debugFile.flush()
debugFile.close()

def usage():
print("Usage: ", sys.argv[0])
print("-h --help: This message.")
print("-o --output: the file for ouput messages. Can be std.out.

[output_ns.txt]")
print("-m --minutes: in minutes to stop: an integer for run time,

[default = 3]")
print("-s --seconds: in seconds to stop: an integer for run time,

[default = 0]")
print("-t --topo: topography file to use. This is the file with

\"gain\" as first")
print(" line items. [default= linkgain.out]")

if name == " main " :
main(sys.argv[1:])

Grid Plotting Script: plotnodelocations.py

#!//usr/bin/env python
from future import with_statement
#from future import print function
import sys
from matplotlib import *
from pylab import *
#ion()
tturns on interactive mode
supposedly, by using with, this is not necessarymoise.close()

try:
with

open(r"/home/kurt/workspace/tossimwork/src/blinktoradio/topology,out"
r") as topo:

topolines=topo.readlines()
except:

print("Problem reading in topography file.")
sys.stderr.write("Topography file error.")
sys.exit()

try :
with

open(r"/home/kurt/workspace/tossimwork/src/blinktoradio/linkgain.out"
r") as topo:

gainlines=topo.readlines()
except:

print("Problem reading in linkgains file.")
sys.stderr.write("Topography file error.")
sys.exit()

print("Adding topography... please wait.\n Skipping printing gains...
maxnode=0
gainsforZero=zeros(64,'f')
gainsforZero[0]=-70
for line in gainlines:

topovals=line.strip().split()
if (len(topovals)>0):

if (topovals[0]=="gain"):
if (int(topovals[1])>maxnode):

maxnode = int(topovals[1])
if (int(topovals[1])==0):

print("topovals[0]: %s topovals[2]:%s and topovals[3]
is %s"%(topovals[0],topovals[2] ,topovals[3]))

gainsforZero[int(topovals[2])]=float(topovals[3])
for ii in range(64) :

print("%d : %s"%(ii,gainsforZero[ii]))
print("Max node value is: %s"%maxnode);
x=zeros(64, 'f ')
y=zeros(64, 'f ')
z={}
for line in topolines:

topovals=line.strip().split()
if (len(topovals)>0):
x[int(topovals[0])]=(int(round(float(topovals[1]))))
y[int(topovals[0])]=(int(round(float(topovals[2]))))

print("node> %s :x= %d y=
%d"%(topovals[0],x[int(topovals[0])],y[int(topovals[0])]))

#z[[x[int(topovals[0])]],[y[int(topovals[0])]]]=
gainsforZero[int(topovals[0])]

#(int(topovals[1]),int(topovals[2]),float(topovals[3]))
print(len(y)," ",len(x)," ",len(gainsforZero))
xl=arange(0,32,4)
yl=arange(0,32,4)
X,Y=meshgrid(xl,yl)
print("printing x")
print(X)
#for jj in X:
for ii in Y:
print(jj)
print(ii)
#print("done with IJ")
#Z=func3(z,X,Y)
pcolor(X,Y,gainsforZero.reshape(8,8))
colorbar()
hold(True)
plot(x,y,ls='None',marker='*',ms=15,markerfacecolor='red')
axis([-l, 30, -1, 30])
grid(True)
for ii in range(64):

text(x[ii]+0.5,y[ii]+0.5,ii,fontsize=12)
title('Grid Layout Showing Gain from Base Station Node (0)')
show()

VITA

Kurt Matthew Peters
ECE department, KH 231
Old Dominion University

Norfolk, VA 23529

EDUCATION

B.S. Electrical Engineering, May 1990
United States Air Force Academy, Colorado Springs, Colorado

M.S. Electrical Engineering, December 1994
Air Force Institute of Technology, Wright-Patterson AFB, Ohio

Ph.D. Electrical Engineering, December 2009
Old Dominion University, Norfolk, Virginia

SELECTED PUBLICATIONS AND CONFERENCE PRESENTATIONS

1. Makhin Thitsa, Haider Ali, Feng Wu, Kurt Peters and Sacharia Albin, "Modeling the
Effect of Oxidation and Etching of Silicon Photonic Crystals", in Multiscale
Modeling of Materials, edited by R. Devanathan, M. J. Caturla, A. Kubota, A.
Chartier, S. Phillpot, Mater. Res. Soc. Symp. Proc. 978E, Warrendale, PA, 2007.

2. Kurt Peters and Sacharia Albin, 802.15.4 Based Visually Impaired Notification
System," Paper presented at ICST, New Zealand, November 2007.

3. K. Peters, M. Creighton, "Monitoring lithography product data for real-time focus
control", Microlithography World, Nov. 2004.

4. K. Peters, M. Creighton, "Practical Tips for Evaluation of Lithography Product Data
for Real Time Dose and Focus Control and Estimation of Optical Aberrations,"
Interface 2003, Paper 22, Sept. 2003.

5. K Peters, "Modeling and Simulation of NVS Lithography APC System with real-
world Parameters", 2003 Intel APC Summit, Best Paper Award, 2003.

PATENTS

1. Corning Inc. for Apparatus for Estimating Bit Error Rate by Sampling in WDM
Communication System - US Pub. Num. 6,295,614.

2. Orasee Inc. for Method for Scaling and Interlacing Multidimensional and Motion
Images - Intl. Pub. Num. WO 02/063560.

	Old Dominion University
	ODU Digital Commons
	Winter 2009

	Wireless Personal Area Network-Based Assistance for the Visually Impaired
	Kurt Matthew Peters
	Recommended Citation

	ProQuest Dissertations

