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ABSTRACT

THE CLUSTER MULTIPOLE ALG O R ITH M  FOR FAR-FIELD COMPUTATIONS.

Rakesh R. Patel 
Old Dominion University, Norfolk, VA. July, 1998.

Director: Dr. James F. Leathrum Jr.

Computer simulations o f W-body systems are beneficial to study the overall 

behavior o f a number o f physical systems in fields such as astrophysics, molecular 

dynamics, and computational flu id dynamics. A new approach for computer simulations 

o f A-body systems is proposed in this research. The new algorithm is called the Cluster 

Multipole Algorithm (CMA). The goals o f the new algorithm are to improve the 

applicability to non-point sources and to provide more control on the accuracy over 

current algorithms. The algorithm is targeted to applications that do not require 

rebuilding the data structure about the system every time step due to current limitations in 

the construction o f the data structure. Examples o f slowly changing systems can be found 

in molecular dynamics, capacitance, and computational fluid dynamics simulations. As 

the data structure development is improved, the new algorithm w ill be applicable to a 

wider range o f applications.

The C M A exhibits the flex ib ility  o f both Appel's algorithm and the Fast 

M ultipole Method (FMM) without sacrificing the order o f computation (O(A0) for "well 

structured"  clusters. The CM A provides more control on the accuracy o f computations 

as compared to both the FMM and Appel’ s algorithm resulting in enhanced performance.
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A  set o f requirements are imposed on the data structures which are applicable, to 

maintain O(N) computation. However, the algorithm is capable o f handling a wide range o f 

data structures beyond the FMM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To My Parents. Sister, and Wife.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



vi

ACKNOWLEDGEMENTS

I would like to thank my advisor. Dr. James Leathrum Jr.. for his support, direction, and 
encouragement to achieve this milestone. I would also like to thank my committee for 
their support and assistance: Dr. John Stoughton, Dr. Chester Grosch. and Dr. Martin 
Meyer. Dr. Andrew Appel was also helpful in providing insight into his work.

Special thanks goes to Dr. Vishnu Lakdawala for his insightful discussions 
throughout my graduate career at ODU and to Dr. Roland Mielke for believing in me and 
giving me an opportunity to be an instructor for the very first time.

I would also like to thank all EE and CS faculty for their excellent instructions 
during my graduate courses. Also, thanks to all EE graduate students for making my life 
enjoyable.

Du.ing my entire graduate studies, my fam ily’s support and patience was 
unmatchable. Special thanks to my parents for getting me this far and to my wife for 
believing in me. I would like to dedicate this work to my parents, sister, and wife, whose 
sacrifice and support during this endeavor is unimaginable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

ABSTRACT........................................................................................................................................................... ii

ACKNOWLEDGEMENTS................................................................................................................................ vi

LIST OF FIGURES.............................................................................................................................................ix

LIST OF TABLES................................................................................................................................................ x

CHAPTER 1........................................................................................................................................................... 1

INTRODUCTION..................................................................................................................................................1

1.1. Ba c k g r o u n d .......................................................................................................................................................................I
1.2. O b je c t iv e  o f  Re s e a r c h ................................................................................................................................................ 5
1.3. O u t l in e  o f  T hesis .............................................................................................................................................................8

CHAPTER 2 ...........................................................................................................................................................9

N-BODY ALGORITHMS................................................................................................................................... 9

2.1. Ba c k g r o u n d ...................................................................................................................................................................... 9
2.2. Co m p u t a t io n a l St r u c t u r e ........................................................................................................................................9

2.2.1. D iscrete Time Step E r r o r ......................................................................................................................................12
2.3. D ir e c t  C o m p u t a t io n ................................................................................................................................................... 13
2.4. A ppel 's A l g o r it h m ....................................................................................................................................................... 15
2.5. Fa s t  M u l t ip o l e  M e t h o d  ( F M M ) .............................................................................................................................19

2.5.1. A Igorithm  D e sc rip tio n ............................................................................................................................................21
2.5.2. In te raction  L is t Im provem ents ............................................................................................................................ 29
2.5.J. G r id  S tructure R equ irem ents .............................................................................................................................. 30
2.5.4. The Adaptive F M M ................................................................................................................................................ 30

2.6. Es s e l in k 's A l g o r it h m ................................................................................................................................................ 33
2.7. Ba r n e s -H u t  M e t h o d ...................................................................................................................................................34

CHAPTER 3 ........................................................................................................................................................ 37

THE CLUSTER MULTIPOLE ALGORITHM.............................................................................................37

3.1. In t r o d u c t io n ................................................................................................................................................................. 37
3.2. L im it a t io n s  o f A pp el 's a l g o r it h m  a n d  t h e F M M ............................................................................................40

3.2.1. N on-P o in t Source A p p lica tio n s ...........................................................................................................................40
3.2.2. A c c u ra c y ....................................................................................................................................................................43

3.3. T h e  C lu s te r -M u l t ip o l e A l g o r it h m ..................................................................................................................... 45
3.3.1. A lg o r ith m .................................................................................................................................................................. 45

3.4. D a t a  St r u c t u r e ........................................................................................................................................................... 52
3.4.1. Requirements ............................................................................................................................................................ 53
3.4.2. The CM A C lustering Process .............................................................................................................................. 55

3.5. T im e  Co m p l e x it y ........................................................................................................................................................... 56
3.5.1. Data S truc tu re .......................................................................................................................................................... 56
3.5.2. A lg o r ith m .................................................................................................................................................................. 57

3.6. A p p l ic a b il it y  t o N o n -Po in t  So u r c e  A p p l ic a t io n s ........................................................................................ 58

CHAPTER 4 ........................................................................................................................................................ 59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



viii

SIMULATION RESULTS................................................................................................................................59

4.1. In t r o d u c t io n ............................................................................................................................................................... 59
4.2. Ba c k g r o u n d ..................................................................................................................................................................59
4.3. C o m p a r is o n  o f  t h e C M A  w it h  t h e  F M M ...........................................................................................................60

4.3.1. F M M  Results................................................................................................................................................................................... 61
4.3.2. Appel Algorithm s Results........................................................................................................................................................62
4.3.3. CMA Results.....................................................................................................................................................................................63

4.4. I n t e r a c t io n  L ist  A n a l y s is .....................................................................................................................................66

CHAPTERS.......................................................................................................................................................69

CONCLUSION.................................................................................................................................................. 69

5.1. C o n c lu s  IONS...................................................................................................................................................................69
5.2. F u t u r e  Re s e a r c h ........................................................................................................................................................ 70

REFERENCES.................................................................................................................................................. 72

APPENDIX A .................................................................................................................................................... 76

ALTERNATIVE GRID STRUCTURES FOR THE FAST MULTIPOLE METHOD..........................76

A .i. In t r o d u c t io n ............................................................................................................................................................... 76
A .2. C ir c l e  o f  Co n v e r g e n c e ..........................................................................................................................................77
A .3. G r id  St r u c t u r e  Re q u ir e m e n t s ........................................................................................................................... 78

A.3.1. Bounded Number o f Particles Per B ox ...........................................................................................................................79
A.3.2. Bounded Size o f the Interaction L is t ................................................................................................................................SO
A.3.3. Separation o f Convergence C irc les ................................................................................................................................. 81
A.3.4. Bounded Parent-Child Relationship ................................................................................................................................82
A.3.5. Bounded Number o f N ear Neighbors ...............................................................................................................................82

A.4. T w o -D im e n s io n a l G r id  St r u c t u r e s ..................................................................................................................83
A.4. / .  Square G r id ...................................................................................................................................................................................84
A.4.2. Triangular G r id ........................................................................................................................................................................... S5
A.4.3. Hexagonal G r id ...........................................................................................................................................................................88
A.4.4. Comparison o f G rid  Structures........................................................................................................................................... 93
A.4.5. Formation o f Other G rid  Regions .................................................................................................................................... 94

A.5. T h r ee -D im e n s io n a l G r id  St r u c t u r e s .............................................................................................................. 95
A.5.1. Cube....................................................................................................................................................................................................96
A.5.2. Tetrahedron ....................................................................................................................................................................................96
A.5.3. Other Structures........................................................................................................................................................................... 97

BIOGRAPHY.................................................................................................................................................... 98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I X

LIST OF FIGURES

F ig u r e  l . l .  A n  A p p r o x im a t io n  o f  a G roup o f  Pa r t ic l e s  by  a  S in g l e  Pa r t ic l e ..........................................2
F ig u r e  1.2. Re l a t iv e  S iz e  a n d  D is ta n c e  Be t w e e n  G roups  D ic t a t e  A p p r o x im a t io n  Ru l e s ................... 4
F ig u r e  2.1. A  C l a s s ic a l N -B o d y  Pr o b le m ................................................................................................................. 11
F ig u r e  2.2. Ps e u d o -C o d e  for  t h e  D irect  a l g o r it h m ..........................................................................................14
F ig u re  2.3. Two C lu s te r s  o f  P a r t ic le s  in Appel's A lg o r i t h m ........................................................................16
F ig u r e  2.4. Pse u d o -C o d e  for t h e  A ppel 's a l g o r it h m .........................................................................................18
F ig u r e 2.5. W e l l -Se p a r a te d n e s s  in  t h e F M M ......................................................................................................... 20
F ig u r e  2.6. H ie r a r c h ic a l  G r id  for t h e  F M M ...........................................................................................................22
F ig u r e  2.7. C ircles  o f  C o n v e r g e n c e . ......................................................................................................................... 23
F ig u r e  2.8. I n t e r a c t io n  L is t  for  t h e  F M M ............................................................................................................... 24
F ig u r e  2.9. C o m p o u n d in g  o f  t h e  I n t e r a c t io n  L ists D u r in g  t h e  T ree W a l k ............................................. 25
F ig u r e 2.10. Pse u d o -C o d e  fo r  t h e F M M .................................................................................................................. 27
F ig u r e  2.11. Pa r e n t a l  In t e r a c t io n  L ist...................................................................................................................28
F ig u r e 2 .I2 . A D iv is io n  o f C ells  for th e  A d a p t iv e  F M M ................................................................................. 32
F ig u r e  3.1. A n  Ex a m p l e  o f  a  N o n -Po in t  So u r c e .................................................................................................... 4 1
F ig u r e 3.2. A  G a u s s ia n  G r id  Str u c tu r e ....................................................................................................................54
F ig u r e  4.1. E rror  v e r s es  T im e  Pl a n e  for t h e  O r ig in a l  Sq u a r e  G r id  F M M ...............................................61
F ig u r e 4.2. E rror  ver ses  T im e  Pl a n e  for A ppel 's A l g o r it h m  for  V ario us  V alues  o f 5 .....................62
F ig u r e 4.3. E rror  v e r s es  T im e  Pl a n e  for t h e C M A : U n if o r m  D is t r ib u t io n ............................................ 64
F ig u r e 4.4. T he  U n if o r m  C M A  Results  for H ig h e r  V a l u e s  o f 8 ....................................................................66
F ig u r e 4.5. I n t e r a c t io n  L is t  for 8 =  0.44...................................................................................................................68
F ig u r e  4.6. I n t e r a c t io n  L is t  for 8 =  0.50...................................................................................................................68
F ig u r e  A. I . T he  Se p a r a tio n  Betw een  the  C ircles o f C o n v e r g e n c e  an d  th e  Inter p r e ta tio n  o f c .... 78 
F ig u r e  a .2. a  tw o -d im e n s io n a l  tr ia ng ula r  g r id . D iffer en t  lin e  patterns ar e  used  to  represent

the  parent-c h il d  r e la t io n s h ip ............................................................................................................................... 85
F ig u r e  A.3. T he  in t e r a c t io n  list for box  b is d e n o ted  b y  th e  d a r k  boxes................................................... 87
F ig u r e  A.4. A  t r ia n g u l a r  g r id  using  isosceles t r ia n g l e s .................................................................................. 88
F ig u r e  A.5. A  tw o -d im e n s io n a l  h e xa g o n a l  g r id .....................................................................................................89
F ig u r e  a .6. Al t e r n a t iv e  pa rent-c h il d  relationships  for  t h e  h e xa g o n a l  g r id ..........................................90
F ig u r e  A.7. A  m o d if ie d  pa r e n t -c h il d  relationship  for t h e  h e x a g o n a l  g rid ................................................ 91
F ig u r e  A.8. T he  c ir c l e  o f  co n v er g e n c e  for th e  proposed  parent-c h il d  relatio nship ........................... 91
F ig u r e  A.9. T he  bo xes  d r a w n  using  th ic k  u n es  a r e  in  t h e  in ter a c tio n  list o f  th e  bo x  b ...................... 93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



X

LIST OF TABLES

T a b l e 4. I . Re l a t io n s h ip B e t w e e n  5  a n d  Sep a r a tio n  in  Bo x e s .........................................................................65
T a b le  A. I. A c o m p a r is o n  b e t w e e n  t h r e e  tw o -d im e n s io n a l  g r id s ..............................................................94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I

CHAPTER 1 

INTRODUCTION

1.1. Background

A new algorithm is devised fo r the solution o f the N-body problem which is better suited 

to non-point source applications. The goals o f the new algorithm are to improve the 

applicability to non-point sources and to provide more control on the accuracy over 

current algorithms. The algorithm is O(A0 for “ well structured”  clusters.

The study o f physical systems by particle simulation is called the "many-body" or 

"N-body" problem. The studies involve computing the interaction o f many bodies with 

each other. Such studies are conducted in celestial mechanics, plasma physics, 

electrostatics, molecular dynamics, and flu id mechanics, as well as semiconductor device 

simulation [20], As an example, the simulation for celestial mechanics or molecular 

dynamics finds the trajectories o f each particle over some time interval, given the initia l 

position, the initia l velocity, the external force, and the nature o f the forces that the 

particles exert on each other.

The number o f particles used for such studies is quite large. It is estimated that to 

get insight into three-dimensional turbulent flow, about one m illion particles are needed 

[20]. Thus, such simulations require intensive and prolonged computations involving on 

the order o f 1012 body to body interactions for one time step o f the computation. Thus, 

the question o f efficiency is o f great interest.
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There are two strategies that can be applied in the quest for more knowledge from 

bigger and better particle simulations. One can use the brute force approach: simple 

algorithms on bigger and faster machines. This classical approach to the N-body problem 

calculates the interaction between all possible pairs o f particles through a direct 

summation o f all pairs. This approach is termed the direct method or the Particle- 

Particle method as it computes all particle-particle interactions explicitly. However, the 

computationally intensive nature o f the N-body simulations makes this approach not a 

viable option for large N-body simulations.

Equivalent
particle

Far enough 
away

Point of 
evaluation

Group of
particles

Figure 1.1. An Approximation o f a Group o f Particles by a Single Particle.

The second approach is to try to develop better algorithms that can solve problems 

to a desired accuracy using much less computational power. In 1687. Isaac Newton gave 

a powerful insight into the nature o f physical systems: I f  the magnitude o f interaction 

between particles falls o ff rapidly with distance, then the effect o f a large group of 

particles may be approximated by a single equivalent particle, i f  the group o f particles is
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far enough away from the point at which the effect is being evaluated, as shown in Figure

1.1. The hierarchical application o f this insight implies that the farther away the particles, 

the larger the group that can be approximated by a single particle (see Figure 1.2). 

Although Newton arrived at his powerful insight in the context o f gravitation, 

hierarchical N-body methods based on it have found increasing applicability in various 

problem domains. Two situations arise again and again in a variety o f particle 

algorithms:

1. Local computation o f short-range interactions.

2. Computing global sums for long-range interactions.

Ultimately, the most powerful method w ill be a combination o f these two approaches - a 

sophisticated algorithm running on a parallel machine. However, a problem with this 

approach is that the implementation o f complicated numerical and computational 

methods on parallel computers is d ifficu lt.
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Large group not far 
enough away

small group 
far enough 
away

particle

Large group far 
enough away

Figure 1.2. Relative Size and Distance Between Groups Dictate Approximation Rules.

A  number o f hierarchical algorithms have been developed in the last two decades 

to improve the complexity o f the computation. These algorithms are based on the fact 

that many physical systems exhibit a large range o f scales in their information 

requirements, in both space and time. A point in the physical domain requires 

progressively less information from parts o f the domain further away from it. 

Hierarchical algorithms exploit the range o f spatial scales to propagate information 

through the domain. Hierarchical multipole methods have become prevalent in molecular 

dynamics [6, 10, 37] and gravitational physics [18, 28] and have been introduced into the 

fields o f capacitance calculation [29, 30, 31, 32], computational fluid dynamics [9, 35. 

40], and electromagnetics [12]. The methods use multipole expansions which define the
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effect o f bodies w ithin a region on points sufficiently well separated from the region. The 

expansions are exact w ith infin ite series for computations, accuracy is selected based on 

the number o f terms retained in the expansions. The direct algorithm is exact for a 

moment in time, but is actually an approximation over time as discrete time steps are 

used. The hierarchical algorithms are approximations o f the direct algorithm which in 

itself is exact for given particle positions, but inexact when used w ith the discrete time 

steps.

Several algorithms have been developed based on multipole methods: the Fast 

Multipole Method (FM M ) [14, 15], the Adaptive Fast M ultipole Method (AFM M ) [14], 

the Barnes and Hut algorithm (BH A) [3. 4], the Cell Multipole Method (CM M ) [10], the 

Preconditioned GMRES algorithm with Adaptive Multipole Acceleration (PAM A) [30], 

and the Parallel Multipole Tree Algorithm  (PMTA) [5. 7]. A ll o f the methods utilize 

multipole expansions to describe the effect o f bodies (i.e. particles, astrophysical bodies, 

etc.) w ithin a sphere on points distant from the sphere, where the influence diminishes as 

a function o f distance. A hierarchical structure groups bodies together based on 

proxim ity to allow definition o f multipole expansions for each group. The multipole 

expansions are then used to compute the effect o f the bodies in a group on distant bodies.

1.2. Objective of Research

The FMM reduces the time complexity for the simulation o f N-body systems to 0((V). 

However, the FMM is not well suited for applications with non-point sources. Also, the
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accuracy o f the FM M  is dependent on the shape, size, and separation o f the boxes in its data 

structure. The FM M  provides no flexibility in the above parameters.

A new approach for computer simulations o f N-body systems is proposed in this 

research. The new algorithm is called the Cluster Multipole Algorithm (CMA). The 

goals o f the new algorithm are to improve the applicability to non-point sources and to 

provide more control on the accuracy over current algorithms. The algorithm is targeted 

to applications which do not require rebuilding the data structure about the system every 

time step due to current limitations in the construction o f the data structure. Therefore, the 

systems under study must have minimal changes in position over time. Examples of 

slowly changing systems can be found in capacitance and computational flu id dynamics 

simulations, as well as some molecular dynamics simulations. As the data structure 

development is improved, the new algorithm w ill be applicable to a wider range o f 

applications. The 2-dimensional version o f the algorithm is considered for easier 

illustration and simpler implementation to study its characteristics. However, the 

algorithm is fu lly  applicable to 3-dimensional applications.

The C M A combines the clustering process o f Appel [ I ] and the multipole method 

o f Greengard and Rokhlin [14]. The CMA exhibits the flex ib ility  o f both the Appel and 

Greengard methods without sacrificing the order o f computation (O(N)) for "well 

structured" clusters (found in the Greengard method and the Appel method for well 

formed particle distributions [1, 15]). The C M A provides more control on the accuracy o f 

computations as compared to both the FMM and Appel’s algorithm. The accuracy o f the
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CM A can be controlled by two independent parameters, the accuracy measure 5. defining 

the degree o f separation o f clusters, and the number o f multipole terms, p.

The benefits o f the CM A over the other two algorithms are presented. The CMA 

also provides insight into Greengard and Rokhlins algorithm, actually providing a 

performance improvement to the existing algorithm. To prove the usefulness o f the 

CMA. the algorithm has been implemented and the results are compared w ith the FMM 

results.

The FM M  is well suited to uniform distributions in square regions, but is not well 

suited to non-uniform distributions or irregular shapes. The Adaptive FM M . developed 

by Greengard and Rokhlin. targets non-uniform distributions [14. 15]. In case of non- 

uniform systems, failure to maintain the locality o f data creates the potential o f increased 

communication overheads in parallel implementations and degrades the running time o f the 

problem. An approach is presented to find alternative grid structures for the FMM which 

maintain the locality o f data within the structure to reduce communication. Once such a 

grid is found, the standard FMM can be applied to solve a class o f non-uniform N-body 

problems. Also, a number o f well-defined geometrical shapes, such as triangles, squares, 

and hexagons, are analyzed for their usefulness to the FMM or a similar hierarchical 

algorithm.
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1.3. Outline of Thesis

In Chapter 2, several widely known N-body algorithms are described as a basis o f this 

research. A  complete description o f the Cluster Multipole Algorithm (CMA) is given in 

Chapter 3. The algorithm and data structure time complexity is also derived. Chapter 4 

provides a detailed comparison between the CM A and the FM M  using simulation results, 

followed by the concluding remarks in Chapter 5. A detailed analysis o f alternative grid 

structures for the FMM is given in the Appendix A.
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CHAPTER 2 

N-BODY ALGORITHMS

2.1. Background

The study o f physical systems by particle simulation is called the “ many-body" or the "N- 

body" problem. Several algorithms for N-body problems are discussed in this Chapter. 

The first is the direct algorithm which computes the interaction between all particle pairs 

directly. The other (hierarchical) algorithms are approximations of the direct algorithm: 

Appel's algorithm [1], the Fast Multipole Method [14], Esselink's algorithm [13], and 

Bames-Hut algorithm [4], The direct algorithm is exact for a moment in time, but is 

actually an approximation over time as discrete time steps are used. The hierarchical 

algorithms are approximation o f the direct algorithm which in itself is exact for given 

particle positions, but inexact when used with the discrete time steps (Section 2.2.1).

2.2. Computational Structure

Increasingly popular hierarchical algorithms are based on the following fundamental 

insight into the physics o f many natural phenomena: Many physical systems exhibit a 

large range o f scales in their information requirements, both in space and time. A  point in 

the physical domain requires progressively less information from parts o f the domain that 

are further away from it. Hierarchical algorithms exploit the range o f spatial scales to 

efficiently propagate global information through the domain. Prominent among these
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algorithms are N-body methods, multigrid methods, domain decomposition methods, 

multi-level preconditioners, and adaptive mesh-refmement algorithms [8],

The classical N-body method models a physical domain as a system o f N discrete 

bodies and studies the evolution o f this system under the influences exerted on each body 

by all other bodies. Hierarchical methods use spatial approximation where a group o f 

particles may be approximated by a single equivalent particle i f  the group is far enough 

away from the point at which its effect is being evaluated. The farther away the particles, 

the larger the group that can be approximated.

A classical N-body problem models a particle as a point mass. The time period 

for which the physical system’s evolution is studied is discretized into time-steps. Every 

time-step involves several phases o f computation, such as computing forces and 

potentials and updating particle properties such as position. The computation phase is by 

far the most time-consuming in typical applications, and hierarchical methods are used to 

speed up this phase. Figure 2.1 depicts a pictorial view o f a classical N-body problem.
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Figure 2.1. A Classical N-Body Problem.

The hierarchical methods build a tree-structured, hierarchical representation o f 

physical space and compute interactions by traversing the tree. The tree representing 

physical space is the main data structure. The structure o f the tree changes across time- 

steps. since the particle distribution and its bounding box change w ith time. The root o f 

the tree represents this bounding box, which contains all the particles in the system. The 

tree is built by recursively subdividing space cells until some termination condition is 

met. This condition is usually specified as the maximum number o f particles allowed per 

cell. Refer to [14] for a discussion o f boundary conditions.
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2.2.1. Discrete Time Step Error

A classical N-body problem discretizes the evolution o f a physical system into hundreds 

or thousands o f time steps. This discretization introduces approximations into any 

numerical calculation o f the N-body problem.

Because the N-body problem cannot be done in closed form, the calculation must 

be done numerically. That is. at each time t, the gravitational forces o f each mass on each 

o f the others may be computed by Newton's laws. Using the inverse square force law. an 

approximation to the true acceleration and velocity o f each particle over a time dt can be 

computed. By many iterations o f this method, the position of each particle after an 

arbitrary length o f time may be found.

Using a "naive”  algorithm, the acceleration acting upon each particle is computed 

at each iteration. Using acceleration, a modified velocity over the next time increment is 

computed, and then the position o f each particle at the end of the time increment is 

computed by using

I"new =  r 0|d + V dt, ( 2 . 1 )

where r, v. and dt are position vector, velocity vector, and time increment, respectively. 

The time increment dt must be made small enough that the accelerations do not greatly 

change between t and t + dt. As the time step dt is decreased, the error from the 

discretization is reduced. Also, the decrease in time step results in an increased 

computation time to simulate a fixed length o f time.
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2.3. Direct Computation

Direct N-body computations involve computing the force component for all body-body 

pairs in the system, and summing them for each body to get the total force on the body. 

Using electrostatics as an example and starting with Coulomb’s law. the electrostatic 

force between two particles is

F  = r ^ V .  (2.2)
4iter~

where q\ and qz are the charges on the particles and r is the distance between the particles. 

For N particles, the force on a single particle j  resulting from the other N -l particles is

J = [ - 2  N '  < 2 ’ 3 14*£  r -

where r,j is the distance between the particle j  and z',h charge. The potential at the / h 

particle can be obtained from

0 , = - ^ X — • j=  K 2  N. (2.4)
47te “  r

The total number o f interactions computed is N(N-1). When computing the force, 

the symmetry o f the force between two particles ( Ftt = —F ) can be used to reduce the

amount o f computation. Thus, in order to calculate the forces acting on all N particles. 

N(N-l)/2 interactions must be computed. Figure 2.2 shows pseudo-code for the direct 

algorithm.
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Comment: The vector force[iJ is the sum o f all forces acting on particle i.

for i from 1 to N do 
force[i] = 0 
force[jJ = 0 
for j  from 1 to 1 do

temp = force computed between particles i and j  
force[i] += temp 
forcefj]  -= temp

Figure 2.2. Pseudo-Code for the Direct Algorithm.

This O(A^) process is unacceptable when looking at systems o f m illions o f 

bodies, and is even d ifficu lt for thousands o f bodies. Applications such as molecular 

dynamics require repeated evaluation o f these forces for thousands o f time steps. This 

makes the direct computation with a m illion particles impractical on current computer 

systems in a reasonable amount o f time. However, this is the base case the ensuing 

algorithms are compared to. This method makes no assumptions about the geometry o f 

the system. Consequently, it is easy to adapt to a variety o f applications and can fo llow  

gross changes in shape and radial profile. It should be noted though that for dynamic 

systems where the bodies have a large degree o f motion, the direct computation error over 

time could be large due to the discretization error. It is an exact computation given 

knowledge o f the current positions o f the bodies, but as bodies move over some time 

period At, the movement produces an error component which is a function o f At.

One approach to improving the speed o f the direct algorithm is to develop special 

purpose architectures. One example is the GRAPE (G RAvity PipE) processor [21]. The
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GRAPE processor recognizes that the x-. y-. and z-directions can be computed in parallel. 

It has also been recognized, though not implemented, that several GRAPEs may be 

placed in parallel for greater performance. For collisionless systems, where less accuracy 

is required, the data length was optimized. The GRAPE designers were able to reduce 

most arithmetic operations to 8 bit floating point formats, though position data requires a 

16 bit fixed point format and as a result, the accumulated force maintains a 48 bit fixed 

point format to avoid overflow [21]. The 8 b it operations are performed by using a 

lookup table stored in a logarithmic format. Computations are performed by passing the 

particle positions through a pipeline, accumulating the results for the force on a particle at 

the end.

2.4. Appel’s Algorithm

Appel's algorithm is an attempt to improve the computational complexity o f the direct 

algorithm by using a monopole approximation o f a cluster o f particles. Appel’ s algorithm 

is briefly described in this Section. A detailed version can be found in [1]. The algorithm 

is based on the approximation that the calculation o f force between two clusters o f 

particles can be accomplished by considering them as a point mass rather than computing 

all the individual forces between all their constituent particles, provided that the two 

clusters are sufficiently far apart.

The algorithm employs the process o f forming groups (or subsets) o f particles (or 

any other object), based on a set o f predefined rules. These groups are called clusters.
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The algorithm may adapt itself to the distribution o f particles, thus providing a “ natural" 

clustering i f  the clustering algorithm is optimal. When two clusters o f bodies are 

sufficiently distant from each other, each cluster is approximated by a point mass at the 

center o f gravity w ith a mass equal to the sum o f masses o f all particles w ithin the cluster. 

This approximation is then used to compute the forces between the clusters. A 

predefined user controllable parameter, called 5, is an input to the algorithm. This 

parameter determines two clusters for which an approximation w ill be made. 

Consequently, 8 controls the accuracy o f the algorithm and is defined later.

n , bodies n bodies

Figure 2.3. Two Clusters o f Particles in Appel's Algorithm.

Consider the arrangement o f masses shown in Figure 2.3. which we w ill assume 

to be a subset o f the panicles in a many-body simulation. To compute the interaction o f 

each particle on every other particle, we may break the computation into three parts: those 

interactions between two particles in the left-hand cluster (intra-cluster interaction), those 

interactions between two particles in the right-hand cluster (intra-cluster interaction), and 

the interaction between two particles from different clusters (inter-cluster interaction).
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The inter-cluster interaction may be approximated by considering each cluster a point 

mass, thus computing only one interaction. The number o f computations required to 

calculate the inter-cluster interaction has thus been reduced from (m m) to (ni + m), the 

intra-cluster calculation remains unchanged.

The selection o f an appropriate data structure is important to provide easier 

clustering process. A  binary tree is used in [1], The binary tree associates "near" 

particles or clusters to form new clusters hierarchically. The leaves o f a binary tree are 

particles and internal nodes are clusters o f particles. The root o f the tree contains all 

bodies or particles in the system. Every node has an associated mass, position, and the 

approximate radius o f the cluster. A  mass for the internal node is equal to the sum o f the 

masses o f its two child nodes and a position equal to the center o f mass o f its child nodes. 

The tree is formed such that nearby subclusters are the children o f the same cluster. This 

is done to improve the efficiency o f the algorithm.

The approximation can be applied for two clusters whose radii are small relative 

to their separation. I f  dr\ and dr2 are the radii and r  is the distance between two clusters, 

then the approximation can be applied i f  dr\ /  r < 5 and dr2 /  r < 5. where 5 is some fixed 

criteria for accuracy. I f  5 is set to zero, then the algorithm w ill recur to the individual 

particles (since dr\ = dr2 = 0), and no approximations w ill be made. This is equivalent to 

the direct computation. For any non-zero value o f 5. the computed results are 

approximations to the exact results. As the value o f 5 increases, more approximations 

w ill be made. Consequently, the accuracy decreases with improved performance. The
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parameters dr\ and dri are stored in the tree. I f  the accuracy criterion is not satisfied (that 

is. i f  the clusters are large and close together), then the calculation o f the interaction o f 

each o f the two subclusters o f one cluster with each o f the two subclusters o f the other 

cluster must be made.

Comment: Appel’s algorithm.
Comment: ComputeAccel computes intra-cluster interactions, 
procedure ComputeAccel(B) 

i f  B is not a leaf 
then ComputeAccel(B|ef,.Chiid)

ComputeAccel(Bnghi-chiid)
TwoCluSter( B|eft-child' Bnght-child)

Comment: TwoCluster computes inter-cluster interactions, 
procedure TwoCluster(A, B) 

d = rB - rA.
i f  (drA / d > 8) and (drA > drB) 
then TwoCIuster(Aieft-chiid* B)

TwoCluster(Angh,.child. B) 
else i f  drB / d > 5 
then TwoCluster(A. B|efi.chiid)

TwoCluster(A. Bnght-child) 
else compute AccelA 

_____________compute AccelB____________________

Figure 2.4. Pseudo-Code for the Appel’ s Algorithm.

The algorithm is composed o f two recursive procedures, namely ComputeAccel 

and TwoCluster. which compute intra-cluster (local) interactions and inter-cluster 

interactions respectively. Figure 2.4 shows pseudo-code for the algorithm. The 

algorithm begins at the root o f the binary tree and traverses the tree recursively to look for 

the clusters for which the approximation can be applied. I f  the approximation cannot be 

applied, then the calculation o f the interaction o f each o f the two subclusters o f one
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cluster with each o f the two subclusters o f the other cluster must be made (inter-cluster 

interactions). However, in some cases the interaction of one cluster w ith the two 

subclusters o f the other cluster can be made. The leaves of the tree (particles) always 

meet the accuracy criterion.

The average height o f a binary tree is logA(. For each of N particles, an 0 (log  N) 

operation is required. Therefore, the computation o f forces on all particles require 0 (N  

log N) time. However, Esselink showed that Appel's algorithm is O(A0 when used with 

well formed structures, as described in Section 2.6.

It is hard to analyze errors introduced by Appel’ s algorithm because o f the 

arbitrary structure o f the tree. It is unclear how to estimate the errors caused by the 

process o f approximating clusters o f particles together as single pseudo-particles, because 

clusters can take more or less arbitrary shapes and sizes. However, the error is 

programmable by adjusting 5.

2.5. Fast Multipole Method (FMM)

The Fast Multipole Method (FMM) addresses the O(NlogN) time complexity o f Appel’s 

algorithm by using multipole approximations o f groups o f particles. The FM M  also 

provides an improved error analysis as compared to Appel’ s algorithm. An overview of 

the FM M  is presented in this Section. The FM M  uses a recursive decomposition o f the 

computational domain into a tree structure (a quad tree for 2-dimensions and an octal tree 

for 3-dimensions). It approximates particles in a cell o f the tree by an equivalent series
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expansion about a point in the cell for use when computing the effect o f the particles on a 

distant point in space. The approximation is done by a higher-order series expansion 

about the geometric center o f the cell. This series expansion is called the multipole 

expansion. The number o f terms used in a multipole expansion determines the accuracy 

o f the algorithm (an infinite expansion is exact). The use o f the hierarchical data 

structure and a series o f approximations provide a means to perform the N-body problem 

in O(N) time.

The FMM determines "well-separatedness”  o f two cells based on their lengths and 

the distance between them. A cell is considered far enough away or "well-separated”  

from another cell b i f  its separation from b is greater than the length o f b. Figure 2.5 

shows the concept o f well-separatedness in the FMM. Here, cells A  and C are well- 

separated from each other. Cell D is well-separated from cell C.

Figure 2.5. Well-Separatedness in the FM M .
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2.5.1. Algorithm Description

The reader is referred to [14. 15. 16] for a complete description of the fast multipole 

algorithm. We begin w ith a computational box - a unit square in two dimensions, a unit 

cube in three - in which are contained all interacting particles o f interest. We next define 

a hierarchy o f grids (in two dimensions: in three dimensions we have a comparable 

hierarchy o f cubic meshes) as in Figure 2.6. The 0th level is the original computational 

box itself; in two dimensions each successive grid level is obtained by dividing each cell 

o f the previous level into four subcells (in three dimensions, each cell is divided into 

eight subcells). The grid is subdivided until each cell on the finest grid level has fewer 

than a predefined maximum number o f particles per cell. The original algorithm calls for 

the maximum level o f refinement L to be such that there is on average one particle per 

grid cell on the finest grid level, thus L = log* N  for a system o f N  particles.
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Figure 2.6. Hierarchical 
Grid for the FMM.

The algorithm uses two passes over the tree. The first is an upward pass which 

calculates a multipole expansion (0 ) about each box's center. Each <t> is a power series 

which describes the effect o f the particles w ithin a particular box on distant particles. The 

expansion converges for all particles outside the circle (the sphere in three dimensions) 

containing the particles forming the expansion. This circle is called the circle o f  

convergence (see Figure 2.7). The series is exact w ith an infinite number o f terms, and 

arbitrary accuracy can be obtained by truncating to p  terms. The truncation to a finite 

number o f terms in the series expansions introduces error into the calculation [11]. The 

further the evaluation point is from the center o f the circle, the greater is the accuracy. 

The 0's at the finest grid level are computed from the particles within the box. Each 

parent’s 0 is then determined by combining its children’s 0 ’s walking up the tree as shown 

in Figure 2.6.
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Figure 2.7. Circles o f Convergence.

Once the upward pass is complete, a downward pass calculates a local expansion 

(y) about each box's center. Each \p is a Taylor expansion, also with p  terms, which 

describes the effect o f all particles distant from the box on the particles within the box. 

Nearby boxes must be excluded in the computation o f y  at each level for convergence. 

The n/ o f a box is computed by including the parent’s y, and also including a conversion 

o f the <i>’s o f boxes which are distant from the box o f interest, but which are not included 

in the parent’s y, to a local y  term. The set o f boxes whose <t>’ s are used to compute a 

given box’s y  is called the interaction list. o f which an example is given in Figure 2.8 for 

a 2-dimensional structure. Here, the empty boxes are near neighbors and the light shaded 

boxes are the interaction list. Greengard defines the interaction lis t for a box i to be those 

boxes on the same grid level as i which are not included in the computation o f / ’ s parent’s
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V and are also more than one box (2 boxes for three dimensions) away from i. Figure 2.9 

demonstrates how the interaction lists are compounded during the tree walk to compute 

the v  o f a box on the finest grid level (level 4 for this example). Note that due to the 

interaction lists, levels 0 and 1 are irrelevant to the computation since the interaction lists 

o f boxes on these levels are empty. It w ill be shown that other definitions o f the 

interaction list are possible which improve the performance o f the algorithm.
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Figure 2.8. Interaction List for the FM M .
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Figure 2.9. Compounding o f the Interaction Lists During the Tree Walk.
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When both passes over the tree are complete, the v 's  on the finest grid level are 

used to calculate the potential or force due to all distant particles on the particles w ithin 

each box. In turn, the effect o f particles in near neighbor boxes on the finest grid level, 

which are excluded from the interaction list, is computed explicitly using direct 

computation. The maximum number o f near neighbor boxes in two dimensions is 8; in 

three dimensions, the maximum is 24. The final result from the direct summation is 

summed with the distant term for the final force exerted on each particle. The efficiency 

o f the FMM is a function o f the number o f particles per leaf cell in the tree and the 

number o f terms in the expansions. Figure 2.10 shows the algorithm in pseudo-code 

format.

There are a total o f O(A0 boxes in the tree, and each box requires an 0(1) 

operation for both the upward and downward passes. Therefore, the total order o f 

computation is O(N) w ith a constant o f proportionality dependent on p. the degree o f 

expansions, where p  is chosen to achieve a given accuracy. The speed of the algorithm 

can be improved by reducing the size o f the interaction list as discussed in the next 

Section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

Comment: Initialization
Choose a level o f refinement n = ["logj N~|. a precision £, and set p = ["- log(£)l.
Comment: Upward Pass 
for i from 1 to 4" do

Form a p-term multipole expansion <J)n. i
end for
for I from n -1 to 0

for / from 1 to A1
Form a p-term multipole expansion 0 i., by shifting the center o f each child 

box's expansion to the current box center and adding them together, 
end for

end for
Comment: Downward Pass
Set v|/" | | = i|f 12 = v ' i .3 = y ’ i.4 = (0, 0. 0. 0)
for / from 1 to n -1

for i from 1 to A1
Convert the multipole expansion <j>i.j o f each box j  in the interaction list o f box 
i to a local expansion about the center o f box i (iytemp)-
V l.  i =  V  I. i V tem p

end for
for i from 1 to A1

Expand vi. i about the children's box centers to form the expansion v ’ i+i. ] for 
/ ’ s children.

end for
end for
for i from 1 to 4"

Convert the multipole expansion <t>n.j o f each box j  in the interaction list o f box i to a 
local expansion about the center o f box i (v|/,cmp).
V n. i =  V  n. i +  Vternp

end for
for / from 1 to 4n

For each particle pj located at the point zj in box /, calculate v)/n. t(z0.
end for
for i from 1 to 4"

For each particle pj in box /. directly compute interactions with all other particles 
w ithin the box and its near neighbors (vdircct(Zj))-

end for
for i from 1 to 4n

For each particle pj in box i, v t0Iai(z,) = \|/dirca(Zj) + Vn. i(zj).
end for

Figure 2.10. Pseudo-Code for the FMM.
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2.5.2. Interaction List Improvements

The interaction list has been studied as to methods o f improvement [23. 41]. The 

complexity o f the algorithm remains O(N). but the constant o f proportionality is 

improved. Each possible interaction list has a different degree o f accuracy and speed. 

Consider the interaction list shown in Figure 2.8. Note that there are 20 boxes in the 

interaction list whose parents have all children also included in the interaction list. 

Instead o f converting each child separately, an approximation is to convert the parent's 

multipole expansion to the local expansion o f the box o f interest (since the parent box's 

multipole expansion includes the multipoles o f all 4 children). This creates a new 

interaction list, called the parental interaction list, as shown in Figure 2.11. The size o f 

the interaction list is reduced from 27 to 12, and an even greater improvement is found in 

three dimensions where the interaction list size reduces from 875 to 189. Some accuracy 

is sacrificed since the circles o f convergence are not as well separated as the children's 

circles. However, by reducing the size o f the interaction lists, speed is significantly 

improved, allowing p  to be adjusted to compensate for the introduced error. Note that the 

performance is definitely improved when considering computations for a given accuracy,

i.e. selecting p  to provide the desired accuracy [23]. The parental interaction list can be 

computed by using two loops, one over the boxes on the same grid level as the box o f 

interest and one on the parent’s grid level.
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2.5.3. Grid Structure Requirements

For an N-body solution using the FM M  which converges with O(N) time complexity, the

grid structure must meet certain criteria. The FM M  requirements are given as follows:

1. The grid regions should be constructed so as to have an upper lim it on the number of 

particles in each leaf box. This is necessary to maintain the O(N) time complexity for 

the direct portion o f the FMM.

2. A  grid structure must exhibit an upper bound on the size o f the interaction list. This 

is necessary to maintain O(N) time complexity. This also ensures well bounded 

communication overhead when parallelized because the data required for computation 

is well bounded both in amount and proxim ity in the data structure.

3. Each grid region in the interaction list must be sufficiently separated from the region 

under consideration to allow for convergence to a solution. This requires that circles 

o f convergence which encompass the complete area o f each individual box should not 

overlap. The better the separation, the more accurate the approximations.

4. There must an upper lim it on the number o f near neighbors for each box in the tree. 

This is necessary to ensure O(N) time complexity for the direct portion o f the FMM.

2.5.4. The Adaptive FMM

The FM M  is well suited to uniform distributions in square regions, but is not well suited

to non-uniform distributions or irregular shapes. To address this problem, the adaptive
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FM M  (AFM M ) was created. A detailed description o f the AFM M  is given in [15]. The 

A FM M  subdivides the grids on each level depending on the density o f particles in each 

box (Figure 2.12). In this way, the work is concentrated in regions which require it due to 

a higher density o f particles. In other words, we do not use the same number o f levels for 

all parts o f the computational box. Generally, this would result in a large number o f empty 

boxes at finer levels o f the procedure. To eliminate these empty boxes, some integer s > 0 

is fixed, and at every level o f refinement we subdivide only those boxes that contain more 

than s charges. A t every level o f refinement, a table o f non-empty boxes is maintained, so 

that once an empty box is encountered, it is completely ignored by the subsequent process.
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Figure 2.12. A Division o f Cells for the Adaptive FMM.

The interaction list is not as simple as in the case of the uniform FMM. The 

interaction list now may traverse many levels in the hierarchy. We now have four lists 

based on where the box lies in the hierarchical grid. The management o f these four lists 

is more complicated than the interaction list in the FM M . but at the benefit o f a more 

flexible algorithm. The computational complexity o f the AFM M  remains O(A0 

independent o f the statistics o f distribution.
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The FMM structure parallelizes well as the load is easily balanced and all boxes in 

the interaction list are found a finite distance away in the structure thus reducing 

communication. The AFM M  structure is not as well defined. It is not as easy to manage 

the trade-off between a balanced load and communication [25. 38].

2.6. Esselink’s Algorithm

Esselink proved that Appel's algorithm is 0(Af) when used with a well formed 

hierarchical grid tree structure such as one used in the FMM. In fact. Esselink showed 

that with the FMM structure. Appel's algorithm is just a subset o f the FMM. Esselink’s 

algorithm [13] uses the same procedures used by Appel’s algorithm: however, it uses a 

hierarchical cubic grid structure instead o f a binary tree. The root o f the structure is a unit 

cube which contains the problem domain. In three dimensions, the cubic root cluster is 

divided into eight cubic subclusters to maintain the shape o f all clusters. Each o f these 

subclusters is further divided into eight subclusters and the process is repeated until all 

the clusters at the lowest level contain at most one particle. A homogeneous distribution 

o f particles is assumed and the number o f particles is a power o f eight. A similar 

structure is used for two dimensions except a square is used, and the square is subdivided 

into four children instead o f eight.

The algorithm begins at the root and traverses the structure recursively to look for 

the clusters for which the approximation can be applied. I f  the radius o f two clusters 

divided by the distance does not exceed a given accuracy criterion 5, the approximation is
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applied. Otherwise the two clusters are spliced into their subclusters and the algorithm is 

called recursively. This process is repeated until the computations for all clusters at the 

lowest level o f the tree are completed.

Two procedures, called ComputeAccel and TwoNode. are used to perform the 

computation. The TwoNode procedure calculates the force exerted by the particles in one 

cluster on the particles in the other cluster and vice versa. I f  possible, an approximation 

is applied as described previously. ComputeAccel recursively splits a given cluster into 

eight clusters and calls TwoNode for each pair o f child clusters. Esselink showed that the 

total number o f calls to ComputeAccel and TwoNode is O(N) when 5 is non-zero. 

Therefore, the algorithm is linear in the number o f particles for a homogeneous 

distribution. In case o f a non-homogeneous distribution, it can take advantage o f natural 

clustering. In summary, Esselink proved that certain clustering techniques, namely the 

hierarchical grid tree structure used in the FM M . produce O(jV) time when applied to 

Appel’ s algorithm.

2.7. Barnes-Hut Method

In the Barnes-Hut method [4], the force-computation phase within a time-step is 

expanded into three phases:

1. Building the tree: The current positions o f the particles are used to determine the 

dimensions o f the root cell o f the tree. The tree is then built by adding particles one 

by one into in itia lly  empty root cell and subdividing a cell into its four children (eight
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in three dimensions) as soon as it contains more than one particle. The result is a tree 

whose internal nodes are space cells and whose leaves are individual particles. Empty 

cells resulting from a cell subdivision are ignored. The tree extends to more levels in 

regions that have high particle densities, which results in an adaptive algorithm.

2. Computing cell centers o f mass: An upward pass is made through the tree, starting at 

the leaves, to compute the centers o f mass o f internal cells from the centers o f mass of 

their children. The expected computational complexity o f this phase is O(N) since the 

expected number o f cells in the tree is O(N).

3. Computing forces: The tree is then used to compute the forces acting on all the 

particles. This phase consumes well over 90% o f the sequential execution time in 

typical problems.

Since N particles are being loaded into an in itia lly  empty tree and since the 

expected height o f the tree when the ith particle is being inserted is log i. the expected

.V
computational complexity is ^ ( I o g / ) =  Nlog N. The tree is traversed once per particle

i = i

to compute the net force acting on that particle. The force-computation algorithm for a 

particle P starts at the root o f the tree and conducts the fo llow ing test recursively for every 

cell it visits: I f  the cell’ s center o f mass is far enough away from P. the entire subtree 

under that cell is approximated by a single “ particle" at the ce ll’ s center o f mass, and the 

force that this center o f mass exerts on the particle is computed. I f  the center o f mass is 

not far enough away from the particle, the cell must be “ opened" and each o f its subcells 

visited. A cell is determined to be far enough away i f  the condition l/d < 9 is satisfied.
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where / is the length o f a side o f the cell, d  is the distance o f particle P from center o f 

mass o f the cell, and 0 is a user-defined parameter used to control the accuracy o f the 

computed forces (similar to 8 for Appel’ s algorithm). In this way. a particle P traverses 

more levels o f those parts o f the tree which represent space that is physically close to it 

and groups other particles at a hierarchy o f length scales. The complexity o f this phase 

typically scales as (1/0“ ) log N for realistic values o f 0 [17].

The Barnes-Hut method directly computes only particle-particle or particle-cell 

interactions. The accuracy and speed o f the algorithm are dependent on a user-adjustable 

parameter 0. which corresponds to 5 o f Appel’ s algorithm. As the value o f 0 increases, 

more approximations are made, thus causing a decrease in accuracy with improved 

performance. The Barnes-Hut algorithm is inherently adaptive: It does not make any 

assumptions about the distribution o f particles. The mathematics o f the Barnes-Hut 

algorithm is the same both in two and three dimensions.
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CHAPTER 3 

THE CLUSTER MULTIPOLE ALGORITHM

3.1. Introduction

A new approach for computer simulations o f N-body (multi-body) systems is presented. 

Current approaches to simulating N-body systems are based on approximating far field 

effects, generally by use o f a hierarchical data structure and expansion series to 

approximate the effect o f a set o f bodies on a distant point in space. Consequently, these 

approaches are called hierarchical methods. The accuracy can be controlled by varying 

the number o f terms in the expansion series. Generally, these methods are suitable for 

point sources. The goals o f the new algorithm are to improve the applicability to non

point sources and to provide more control on the accuracy over current algorithms. The 

algorithm is targeted to applications which do not require rebuilding the data structure 

about the system every time step due to current limitations in the construction o f the data 

structure (this is a topic for future research). Examples o f slowly changing systems can 

be found in molecular dynamics, capacitance, and computational flu id dynamics 

simulations. As the data structure development is improved, the new algorithm w ill be 

applicable to a w ider range o f applications. The new algorithm, called the Cluster 

Multipole Algorithm  (CMA), combines the clustering process o f Appel and the multipole 

method o f Greengard and Rokhlin. The C M A  exhibits the flexib ility  o f both the Appel 

and fast multipole methods without sacrificing the order o f computation (O(AO) for “ well
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structured”  clusters as found in the FMM. The accuracy o f the C M A  can be controlled by 

two independent parameters, the accuracy measure 5 and the number o f multipole terms, 

p. The CM A also provides insight into Greengard and Rokhlin ’s algorithm, actually 

providing a performance improvement to the existing algorithm.

Appel’ s algorithm, while not a multipole algorithm, is the hierarchical algorithm 

which initiated the ensuing research in multipole algorithms. It creates clusters o f objects 

based on their size and position. Here objects may be particles, galaxies, or molecules. A  

monopole approximation, based on total mass and the center o f gravity o f a set o f bodies, 

is applied i f  two clusters are small as compared to their separation. Two problems w ith 

Appel’s algorithm are:

1. Its complexity has not been proven (actually, it is believed to be O(NlogN) and O(N) 

for specific cases).

2. The use o f the monopole approximation lim its its accuracy while maintaining 

performance.

Alternatively, the FM M  uses a fixed predefined hierarchical grid structure over the region 

under consideration. The fixed structure restricts the applicability o f the algorithm to 

non-point sources as the bodies may not be fully contained w ith in  a grid region. Also the 

result o f the Greengard method is dependent on the shape, size, and relative separation o f 

the underlying grid structure. This research defines the characteristics o f the FMM for the 

definition o f new structures.
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The Cluster-Multipole Algorithm (CM A) eliminates the disadvantages o f Appel’ s 

algorithm and the FM M  by combining the benefits o f both. The interaction list o f the 

FMM is improved by incorporating a more general controlling parameter for the 

interaction list. This results in the improved performance for a given accuracy. The 

research is presented in two dimensions for sim plicity and clarity, both in computation 

and in visual presentation. However, the C M A is easily extended to three dimensions 

with the same benefits. The work also uses point sources as examples to allow direct 

comparisons between algorithms, though it is currently best suited to non-point source 

applications.

The C M A  attempts to provide a more general structure for non-point sources and 

more control on the accuracy o f the computation. Examples o f non-point sources are the 

panels used to describe the topologies o f circuits in capacitance calculations [31. 29. 30. 

32] or airframes in panel methods for computational flu id dynamics (CFD) [24].

First, a brief description o f the problems associated with Appel’ s and Greengard's 

methods are presented to provide the reasoning for the development o f the CMA. The 

CM A is then described as a solution to those problems. For any algorithm, the 

availability o f an appropriate data structure is important. Consequently, the process for 

building a necessary data structure is described. Then, the order o f the algorithm along 

with the amount o f computation time required to create the data structure is presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

Finally, a section describing how the C M A addresses the lim itations o f Appel’ s and 

Greengard’ s methods is presented.

3.2. Limitations of Appel’s algorithm and the FMM

The algorithms described in Chapter 2 have proven valuable for point source 

applications. However, there is always the desire to map algorithms into alternative 

application areas as well as to improve the performance o f the algorithms. This section 

demonstrates the problems with the Appel’ s and Greengard's algorithms which the 

proposed algorithm addresses.

3.2.1. Non-Point Source Applications

Appel’s and Greengard’s algorithms have been widely used in simulations involving 

point sources, such as molecular dynamics and gravitational physics. However, work has 

been done to use non-point sources in FM M  simulations in the form o f panel methods for 

CFD [2, 24], There is a fundamental flaw in utilizing the FMM w ith  non-point source 

applications in that a body may not be totally enclosed within the sphere o f convergence 

about a box in the hierarchical grid.

The general approach to including panels in the FM M  is to locate panels in grid 

boxes based on the center o f mass o f the panel as demonstrated in Figure 3.1. The center 

o f mass constitutes a single point to allow inclusion in the grid structure, but this does not
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ensure that the panel w ill be enclosed within the sphere o f convergence. The effect o f a 

panel extending beyond the sphere o f convergence o f the box is to actually extend the 

radius o f the sphere o f convergence. This obviously reduces the accuracy o f the 

algorithm when applied to panel methods.

Figure 3.1. An Example o f a Non-Point Source.

One solution to the problem is to keep the size o f the grid boxes large enough 

compared to the size o f the panels to reduce the probability that a panel w ill extend 

beyond the sphere o f convergence. This works on the sides o f the boxes, but it is s till 

possible to extend beyond the sphere i f  the panel is located at the comer o f the box where 

the sphere o f convergence actually comes in contact w ith the box and the effectiveness o f 

the FMM is still reduced. Therefore, it is desirable to develop an algorithm with high
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accuracy, but no dependence on the rigid grid structure o f the FMM. Appel’s algorithm 

obviously has the latter characteristic, but accuracy is limited by the approximation used. 

A  goal o f the proposed algorithm is to allow greater flexib ility  in the formation o f the 

sphere o f convergence, while still allowing a sufficient separation between groups of 

bodies for approximations to ensure a high level o f accuracy. This requires greater 

flex ib ility  in the definition o f the interaction list for the FMM and more accuracy than the 

monopole definition o f Appel’ s algorithm.

3.2.1.1. 3-D Capacitance Extraction

An example o f non-point sources can be found in 3-D capacitance extraction problems 

[29. 30. 31. 32]. In the design o f high-performance integrated circuits and integrated 

circuit packaging, there are many cases where accurate estimates o f the capacitance of 

complicated three-dimensional structures are important for determining final circuit 

speeds or functionality. Tw o examples o f complicated three-dimensional structures for 

which capacitance strongly affects performance are dynamic memory cells and the chip 

carriers commonly used in high density packaging. In these problems, capacitance 

extraction is made tractable by assuming that the conductors are ideal and are embedded 

in a piecewise-constant dielectric medium. Then to compute the capacitances. Laplace's 

equation is solved numerically over the charge-free region, with the conductors providing 

boundary conditions.
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Although there are a variety o f numerical methods that can be used to solve 

Laplace’ s equation, for three-dimensional capacitance calculations the usual approach is 

to apply a boundary-element technique to the integral form o f Laplace’s equation [33. 

36]. In these approaches the surfaces or edges o f all the conductors are broken into small 

panels or tiles and it is assumed that on each panel /. a charge. q„ is uniformly or 

piecewise linearly distributed. The potential on each panel is then computed by summing 

the contributions to the potential from all the panels using Laplace's equation Green’s 

functions. In this way. a matrix o f potential coefficients, P. relating the set o f n panel 

potentials and the set o f n panel charges is constructed. The resulting nxn system of 

equations must be solved to compute capacitances. Typically. Gaussian elimination or 

Cholesky factorization is used to solve the system of equations, in which case the 

number o f operations is order n \  Clearly, this approach becomes computationally 

intractable i f  the number o f panels exceeds several hundred, and this lim its the size o f the 

problem that can be analyzed to one with a few conductors.

Panel methods used for CFD computation are comparable to capacitance 

extraction problem. Both problems share sim ilar issues.

3.2.2. Accuracy

The algorithms discussed in Chapter 2 are all approximations o f the direct algorithm. As 

such, the relative accuracy o f the algorithms is important. Any algorithm which can
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improve the run time o f a simulation for a given accuracy is a benefit, given that the 

accuracy is acceptable. The problems with the accuracy o f Appels algorithm and the 

FMM are discussed in this section.

Appels algorithm suffers from two primary problems: the difficulty of 

constructing an appropriate hierarchical data structure and the lim ited approximation 

made for a group o f bodies. However, Appels algorithm is very flexible in that once a 

hierarchical data structure is determined, the measure to determine which groups to 

consider as approximations is very flexible. Therefore, the proposed algorithm attempts 

to maintain that flexib ility.

Conversely, the FM M  provides an arbitrarily accurate approximation o f a group of 

bodies based on the number o f expansion terms, but a little  freedom in selecting which 

groups are considered for approximation. In fact, little work has been done to study the 

true effect o f the interaction list on accuracy [23. 41]. It has just been assumed that the 

regularly formed interaction lists are the best available. The proposed algorithm allows 

the study of interaction lists in terms o f the distance criterion utilized in Appel's 

algorithm.

The C M A attempts to take the accuracy benefits from both algorithms and 

combine them into a single algorithm. The algorithm should be flexible in the formation 

o f interaction lists, and yet highly accurate in the approximation o f a group of bodies. In
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addition, the improvement o f the algorithms ability to handle non-point source 

applications makes it attractive for N-body simulation.

3.3. The Cluster-Multipoie Algorithm

The inability o f the FM M  in handling bodies which were not points in space, such as 

panels, was the driving force for the development o f the Cluster Multipole A lgorithm  

(CMA). The C M A uses a more general approach to determine the interaction list. It is 

not mandatory to have a fixed grid structure with the constraints imposed by the FMM. 

In effect, a grid structure o f any shape and size can be used to form “ virtual”  clusters. It 

employs the hierarchical data structure o f the FM M  and the criteria o f Appel’s algorithm 

to determine a set o f interaction lists which are unique for each hierarchical data structure 

and set o f bodies.

3.3.1. Algorithm

For a given distribution o f particles or objects, a suitable grid (data) structure is 

formed with a view point o f load balancing and data locality to minimize communication 

in a parallel implementation. Currently for use in panel methods, the data structure is 

created by hand w ith clustering based on components or functionality such as wing, 

cockpit, etc. for an airframe. Eventually the process w ill be automated, a subject for 

future research requiring integration with the current strategies for generating the panels.
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(One possible automated process would be to still insert into the grid based on the center 

o f mass, but to recompute the radius o f the sphere o f convergence based on the actual 

panels in a given grid. i.e. each box could have a different radius.) The radius o f the 

circle o f convergence o f each box (cluster) is then computed and stored in the data 

structure. The formation o f the data structure is crucial to maintain O(N) time 

complexity. The data structure must be formed so as to have an upper lim it on

• the size o f the interaction list.

• the number o f particles in each cluster.

• the number o f near neighbor clusters, and

• the number o f child clusters.

These bounds are necessary to allow O(A0 time complexity for given distributions of 

bodies as discussed in Chapter 2.

The next step is to compute the interaction list for each cluster in the data 

structure. The interaction list for cluster i is defined as a list o f clusters which are 

contained w ithin i's parent, parent’s near neighbors, and near neighbors themselves, and 

which satisfy the condition

radius o f cluster i and j  /  distance between clusters i and j  < 5, (3.1)

for cluster j  in the interaction list, where 5 is the accuracy criteria from Appel’s algorithm. 

The value o f 5 is inversely proportional to the accuracy. When 8 = 0, the solution is
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equivalent to the direct computation. As the value o f 5 increases, more approximations 

are made. When the FMM data structure is used. 5 = 0.3535 is equivalent to a minimum 

o f one box separation, and 8 = 0.235 corresponds to a two box separation. 5 provides a 

high resolution in terms o f the separation o f boxes in the FMM. In other words, the C M A 

can have any amount o f separation between the clusters to include them in the interaction 

list. This is in contrast to the FM M  in which the separation can only be an integer 

multiple o f boxes.

After the interaction lists are computed and stored, the rest o f the algorithm 

remains the same as the FM M  (the complete description is given below). The multipole 

expansions at the center o f all clusters are computed during upward pass and the local 

expansions are computed in the downward pass. In the final step, the interactions o f 

particles w ithin near neighbors are computed using the direct method. The upper bound 

on the size o f the interaction list is dependent on the maximum number o f children (O  

and maximum number o f near neighbors (n ). Specifically, the upper bound is given by

nC - (n+1). (3.2)

The CM A applied to particle potentials can then be described by the following: 

Initialization:

Choose a level o f refinement n = Tlogc N l (where C is the maximum number o f children), 

an accuracy criteria 5, a precision e, and set p  = f-  log(£)~|.
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Upward Pass:

Step I: Multipole expansions at the finest level

Form multipole expansions 0 o f potential field due to particles in each cluster about the 

cluster center c at the finest grid level using

Here, m is the number o f charges with potentials q\ located at points c„ t i l  < r. and Izl > r. 

The multipole expansion describes the potential field due to all particles w ithin a 

particular cluster on all distant particles.

Step 2: Multipole expansions at all coarser levels

Form a multipole expansion about the center o f each cluster at all coarser mesh levels, 

each expansion representing the potential field due to all particles contained in one 

cluster. This is done by shifting the center o f each child cluster's expansion to the current 

cluster center using

0(c) = Qlog(c) + £ — . (3-3)

where

m m —f] -
Q = ^ q i  and a t = £ — p - (3.4)

(3.5)
i = i  '■

where

(3.6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

( I  \
and adding them together. Here are the binomial coefficients. Co is the center o f a

child cluster and R is the radius o f a child cluster, c is any point outside the current 

(parent) cluster, i.e. Id > R + kol.

Downward Pass:

Step 3: Local expansions at all coarser levels

Form a local expansion Vjr about the center o f each cluster at each grid level / < n-1. The 

local expansion describes the field due to all particles in the system that are not contained 

in the current cluster or its nearest neighbors. This is done by converting the muitipole 

expansion o f each cluster j  in the interaction list o f cluster ibox to a local expansion V)s 

about the center o f the cluster ibox using

Here, zo is the center o f a cluster j  in the interaction list o f ibox and R is the radius o f the 

cluster j . z is any point w ithin ibox and Id < R. The local expansions are added together, 

and the result is added to the initial local expansion. Once the local expansion is obtained

p

(3.7)

where

(3.8)

and

(3.9)
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for a given cluster, it is shifted to the centers o f the cluster's children, thus forming the 

initial local expansion for the clusters at the next level. The shifting is done by using

Here. Co is the center o f the parent cluster and c is any point in a child cluster.

Step 4: Local expansions at the finest level

Compute interactions at the finest grid level by converting the multipole expansion o f 

each cluster j  in the interaction list o f cluster ibox to a local expansion about the center o f 

cluster ibox, adding these local expansions together, and adding the result to the initial 

local expansion. Local expansions at the finest grid level are now available. They can be 

used to generate the potential or force due to all particles outside the near neighbor 

clusters at the finest level.

Step 5: Local expansions at each particle

Evaluate local expansions at particle positions to obtain the potential or force due to 

distant particles using Equation 3.10. Here. c0 is the center o f the cluster in which a 

particle is located and r  is the location o f a particle. At the end o f this step, the effect o f 

all distant particles on each particle in the system is known. These are called far-field 

interactions.

Step 6: Potentials due to near neighbor particles

(3.10)
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For every particle in ibox. compute interactions with all other particles w ithin the cluster 

and its near neighbors directly. These are called near-field interactions.

Step 7: Total potentials

For every particle in each cluster, add direct (near-field) and far-field terms together. 

Summarizing.

• Create the hierarchical data structure for the clusters.

• Create the interaction list based on the input parameter 8.

• Perform the upward pass over the tree, creating a multipole expansion about the 

center o f each cluster.

• Perform the downward pass over the tree, creating a local expansion about the center 

o f each cluster.

• For each body, compute the far-field force term from the corresponding local 

expansion.

• For each body, compute the near-field force term from the bodies in near neighbor 

clusters and add far-field and near-field terms together.

Thus, it is the data structure which provides the algorithmic improvement, not the 

tree walk. However, the upper bounds discussed earlier allow the time complexity to 

remain O(A0. The upward pass maintains O(A0 time complexity as a result o f the bound 

on the number of children, while the downward pass is maintained by the bound on the
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number o f children and the size o f the interaction lists. Finally, the last step (computing 

the forces from bodies in near neighbors) is maintained by the bound on the number o f 

bodies in each cluster and the number o f near neighbors. As a result, the CM A is O(A0 

for a given distribution o f bodies, independent o f the number o f bodies. However, i f  

increasing the number o f bodies changes the distribution, the O(A0 time complexity may 

not hold.

The accuracy o f the C M A can be controlled by two independent parameters: 5 and 

p. Each parameter can be changed independent o f the other. This provides a better 

control to manage the trade-off between the accuracy and computation time. An increase 

in the value o f 5 causes an increase in the size o f the interaction list. In other words, more 

approximations w ill be made in the computation which decreases the accuracy with 

increase in performance. As the value o f p  is increased the accuracy increases with 

decrease in performance. The value o f 5 and p can be selected appropriately to suit the 

application requirements.

3.4. Data Structure

An appropriate data structure is critical for an N-body algorithm. In general, the order o f 

the algorithm is dependent on the nature o f the data structure used. The data structure 

provides major algorithmic improvements, and is crucial to maintain O(A0 time
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complexity. The basic requirements o f the data structure used by the algorithm are 

described, followed by the clustering process.

3.4.1. Requirements

For an N-body solution using the C M A. which converges with O (N) time complexity on a 

serial system, the data structure must meet certain criteria. These requirements, derived 

from the FM M  (though not exp lic itly  stated), are given as follows:

1. The data structure should be constructed so as to have an upper lim it on the number o f 

particles in each cluster. This is necessary to maintain the O(N) time complexity for 

the direct portion o f the C M A.

2. A structure must exhibit an upper bound on the size o f the interaction list. This 

ensures well bounded communication overhead when the algorithm is parallelized 

because the data required for computation is well bounded both in amount and 

proximity in the data structure. This is also necessary to maintain the O(N) time 

complexity.

3. Each region (cluster) in the interaction list must be sufficiently separated from the 

region under consideration to allow for convergence to a solution. This requires that 

circles o f convergence which encompass the complete area o f each individual cluster 

should not overlap.
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4. There must be an upper lim it on the number o f near neighbors o f each cluster in the 

tree. This is necessary to ensure O(N) time complexity for the direct portion o f the 

CMA.

5. There must be an upper bound on the number o f children for each cluster. This 

ensures that the size o f the interaction list is bounded.

An example o f a grid which does not satisfy these requirements is shown in 

Figure 3.2. A  detailed description on the construction o f this grid structure can be found 

in [34],

Figure 3.2. A Gaussian Grid Structure.
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3.4.2. The CMA Clustering Process

The tree structure o f the FM M  is formed by recursively dividing a system into smaller 

groups o f particles. Each group may contain a number o f physical entities which may be 

in motion. Therefore, the FM M  structure is rebuilt every time-step to ensure its 

correctness. Appel’s algorithm uses a predefined accuracy criteria to form a binary tree 

o f clusters o f particles. In general, an n-ary tree structure can be formed. The CM A uses a 

hierarchical grid tree structure o f the FM M  and the criteria o f Appel’ s algorithm to form 

the interaction list.

The tree structure o f the C M A  is formed using a process sim ilar to that o f Appel's 

algorithm, whereas the computation process is similar to the FM M . In the CMA. the 

clusters are formed as a function o f the system structure and they may reflect the system's 

characteristics. This is important for some applications such as the molecular dynamics 

(M D) o f solids and aircraft simulations. In the MD simulation o f solids, molecules 

describe physical entities o f the system. In the aerodynamics noise and force simulation, 

panels are used to describe surface parameters o f an aircraft. The spatial relationship 

between the molecules and panels do not change with time because o f the tight bonds 

among them. Consequently, the rebuilding o f the tree on every time step is not required. 

This is possible because o f the nature o f the application domain.

The creation o f clusters is currently done by hand. This process is not claimed to 

be O(N). However, since the structure building process is not repeated every time step.
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the impact on the overall order o f the algorithm, i f  any. is minimal. To find the order o f 

the structure building process is a candidate for future research.

3.5. Time Complexity

An analysis o f the CM A time complexity is given in this section. The time complexity o f 

the C M A can be divided into two parts: the time required to create the data structure and 

the time spent on actual computation. The creation o f the data structure consists o f 

creating the complete tree and computing the interaction list for each cluster. The 

computation of the algorithm time complexity does not take into account the computer 

system, language used, and implementation.

3.5.1. Data Structure

The time complexity for the creation o f the complete data structure is determined in this 

section. It is shown that i f  the construction o f the tree is O(A0. then the interaction list 

can be computed in O(N). This makes the CM A applicable to a FM M  data structure in 

O(N) time.

Assume that we have an algorithm for constructing the tree structure which 

requires O(iV) time. The interaction lists can be calculated in O(jV) time using this 

process provided that there is an upper bound on their size. For the data structure used by 

the CMA, the interaction list is determined by examining parent and parent’s near 

neighbors and their direct children. The upper bound on the size o f the interaction list is
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dependent on the maximum number o f children and maximum number o f near neighbors. 

I f  there is an upper bound on the near neighbor list (n) and the number o f children (C). 

then the upper bound on the size o f the interaction list is given by K = nC - (n+I). 

Therefore, O(K) comparisons are made for each cell, resulting in a total o f O(KN) or 

O(A0 comparisons for the whole structure (Here, it is assumed that there are a total of 

O(jV) boxes in the tree, a necessity to construct the tree in O(AZ) time. This is true when 

structures similar to the one used in the FM M  are used. I f  different structures are used, 

the total number o f boxes w ill be approximately O(N)). Thus, i f  the structure can be built 

in O(A0 time, then the whole process is O(A0- A t this time, the construction o f the 

structure is assumed to be a function o f the problem domain.

3.5.2. Algorithm

A brief analysis o f the algorithmic time complexity for the C M A  is given below:

Step 1 order Np Each particle contributes to one expansion at 
the finest level.

Step 2 order N /r At the /lh level. Cl shifts involving p 1 work 
per shift must be performed, where C is the 
maximum number o f children.

Step 3 order < (K + l) .N /r K is the upper bound in the size o f the 
interaction list for each cluster.

Step 4 order < K N /r There are at most K clusters in the 
interaction list and N boxes total.

Step 5 order Np One /7-term expansion is calculated for each 
particle.

Step 6 order (M + l)  N VJ2 kn is a bound on the number o f particles per 
cluster at the Finest level and M  is an upper 
bound on the number o f near neighbors.

Step 7 order N Adding near neighbor terms to far field 
terms.
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Therefore, the total running time is

T (p. K, M . kn, N) = N (2a-p  + b/?:  + c ( K + l) p 1 + d K p ' + 0.5 e (M + l)  kn + f), (3.11)

where a through f  are constants, p  is predefined for accuracy, and thus can be considered 

a constant.

3.6. Applicability to Non-Point Source Applications

The C M A  was originally developed w ith the use o f panel methods in mind. It was 

previously mentioned how the accuracy o f the FMM was lim ited with use o f panel 

methods. The C M A addresses those issues. The CMA provides a level o f flexib ility  to 

the definition o f an interaction list and near neighbors by ensuring that groups o f bodies 

are sufficiently separated to allow accurate approximations. The removal o f the reliance 

on a rig id  grid structure allows the groupings to be made on the relationship o f panels to 

each other instead o f their relationship w ith a grid structure. This provides sufficient 

fle x ib ility  to make the CM A advantageous for use in panel methods. Current work is 

incorporating the CMA into a panel code. The work is based on a hand definition of the 

hierarchical grid structure and the grouping o f the panels. Once this definition can be 

automated, the CM A w ill be a useful tool in CFD codes. Even without the mapping into 

panel methods, the CMA provides a benefit over the FMM, even when applied to the 

FM M  data structure.
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CHAPTER 4

SIMULATION RESULTS

4.1. Introduction

The results o f the Cluster Multipole Algorithm  (CM A) are compared to the Fast 

Multipole Method (FM M ) and Appel’s algorithm using the FMM data structure. The

the other algorithms and even suggest an improvement to the FMM.

4.2. Background

To properly compare algorithms, the relationship o f execution time versus error is 

considered. For a given acceptable error (selected within the algorithms by the 

appropriate parameters 5 and p ), the best execution time w ill be that which executes the 

fastest. The error (rms) equation used is

result obtained by fast methods (FMM or CM A). This measure of error was originally 

used by Greengard and Rokhlin [14]. It is used to provide a better comparison between 

the CM A and the FM M  results. Note that it ignores error introduced by time 

discretization. In all plots, the log o f the error E  is used for clarity.

simulation results show the benefits o f the C M A when applied to problems well suited to

(4.1)

where R,</ is the potential at the <‘h particle obtained by the direct method and Rif is the
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The direct method is exact given that all particle positions are known accurately, 

i.e. it is exact for a single time step. The C M A and FM M  are approximations to the direct 

method. The accuracy o f the C M A  can be controlled by two independent parameters: 5 

and p. Each parameter can be changed independent o f the other. This provides a better 

control to manage the trade-off between the accuracy and computation time. An increase 

in the value o f 8 causes a decrease in the accuracy with increase in performance. As the 

value o f p  is increased the accuracy increases with decrease in performance.

4.3. Comparison of the CMA with the FMM

The results o f the implementation o f the FMM. Appel's algorithm, and the C M A using a 

square grid with a uniform distribution o f particles are presented in this section. The 

purpose is to demonstrate the benefit o f the CM A over the FM M  for a problem domain 

where the FMM is well suited. As a side effect, it w ill be shown using the CMA that a 

new interaction list should be considered for use in the FMM.

The FMM is implemented in its original form (using Greengard and Rokhlin's 

interaction list definition). The C M A is implemented on the same hierarchical data 

structure for a range o f values o f 8 and p  to identify an appropriate interaction list. 

Appel’s algorithm is implemented using the FMM data structure for a range o f values of 

5 for p  = 0. The algorithms are applied to a system o f 10,000 uniform ly distributed 

particles and a hierarchical data structure w ith six grid levels. The number o f levels does 

affect performance and must be appropriately selected.
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4.3.1. FMM Results
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Figure 4.1. Error verses Time Plane for the Original Square Grid FMM.

The accuracy and execution time o f the FM M  are dependent on the number o f terms (p ) 

in the multipole and local expansions. To study the effect o f p  on accuracy and total time, 

the FM M  is implemented using Greengard’s interaction list (Figure 2.5). The value o f p  

is varied from 0 to 22 in increments o f 2. p  = 0 is also considered as a special case, which 

is equivalent to a monopole approximation (the approximation used by Appel). A plot o f 

the absolute error versus time for the range o f values o f p is shown in Figure 4.1. 

Obviously, the error is maximum and the execution time minimum at p = 0 (right end o f 

the graph) and the execution time is maximum and the error minimum at p -  22 (left end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of the graph). The accuracy improves until some value o f p after which it remains almost 

constant due to the limitations o f the floating point representation, however the execution 

time continues to increase. For a given range o f accuracy and time, an appropriate value 

of p can be determined using this graph.

4.3.2. Appel Algorithm’s Results
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-14 -12 -10 -8 -6 •2 0-4

Error (log(E))

Figure 4.2. Error verses Time Plane for Appel’s Algorithm for Various Values o f 5.

Appel’ s algorithm uses monopole approximation, which is equivalent to p  = 0 for the 

FMM. To study the effect o f 5 on accuracy and execution time, Appel’ s algorithm is 

implemented using the FMM data structure. The value o f 8 is varied from 0.05 to 0.60 

keeping p = 0. A  plane o f the absolute error versus time for the range o f values o f 8 is
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shown in Figure 4.2. As the value o f 5 increases, the error increases and the execution 

time decreases. This is because the clusters get closer together as 5 increases and more 

approximations are made.

4.3.3. CMA Results

The CM A is implemented using the square hierarchical grid to generate the clusters used 

in the algorithm. To observe the effect o f 5 and p on accuracy and computation time, a 

number o f simulations are run for various sets o f values o f 8 and p. The values o f the 

absolute error and total execution time are computed and plotted for each set o f 5 and p. 

Figure 4.3 shows a graph for several values o f 5 (each line) w ith varying p  for a uniform 

distribution. The value o f 5 increases from top to bottom o f the graph and the value o f p 

increases from right to left. 5 is varied from 0.05 to 0.25 in increments o f 0.05 and p  is 

varied from 0 to 8 (p = 0. 1, 2. 4. 6, and 8). As 5 increases, the distance between two 

clusters for which an approximation is made decreases. Consequently, more 

approximations are made w ith  the increase in 5. improving the performance and 

degrading the accuracy for a constant p.
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Figure 4.3. Error verses Time Plane fo r the CM A: Uniform Distribution.

The value o f 5 corresponding to a one box separation in the interaction list is equal 

to V2/4 = 0.3535. To observe the effect o f higher values o f 5. four values o f 5 in the 

range between 0.36 and 0.55 are selected and plotted as shown in Figure 4.4. The values 

o f p are ranged from zero to ten by twos. For 5 = 0.55 and above, the error in 

computation is large, and there is essentially no improvement in the accuracy w ith the 

increase in p. This is because clusters are too close to each other to allow p to have any 

effect on the accuracy. 5 = 0.44 appears to be optimal for accuracy better than four digits
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since it provides a minimum simulation time for log errors less than -4. However, for 

lesser accuracy. 5 = 0.50 is better. It should be noted that the C M A timing results for 5 = 

0.36 matches with the FMM (one box separation) results. This value o f 5 matches with 

the theoretical value o f 5 = 0.3535 for the original FM M . Table 1 shows the relationship 

between 5 and box separation.

Table 4.1. Relationship Between 5 and Separation in Boxes.

m i
0 0 Direct

0.25 ’ 0.707

0.5 0.471

1 0.3535 Original FMM

1.5 0.283

2 ’ 0.235

3 0.177

4 0.141
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Figure 4.4. The Uniform CM A Results for Higher Values o f 8.

4.4. Interaction List Analysis

The results from the C M A are used to propose a more appropriate interaction list for the 

FMM. The interaction list resulted from different values o f 5 are presented which can be 

incorporated into the FM M . The interaction lists for 5 = 0.44 and 5 = 0.50 are shown in 

Figures 4.5 and 4.6 respectively. A box with dark shading is a box o f interest, boxes with 

light shading are in the interaction list, and boxes w ith no shading are near neighbors.
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Large boxes in the interaction list correspond to parent boxes (as used in the parental 

interaction list). The size o f the interaction lists are 24 and 18 respectively. The 

interaction list for 5 = 0.36 is same as the FM M  interaction list. The C M A provides 

insight into the interaction list, demonstrating that while the parental interaction list o f 

Figure 2.8 is better than Greengard and Rokhlin's original interaction list in Figure 2.5. a 

compromise is actually superior. For log errors less than -4, the interaction list in Figure 

4.5 is appropriate, and for errors greater than -4. the interaction list in Figure 4.6 is 

appropriate. Thus the C M A  proves beneficial simply in its interaction list analysis 

providing improved interaction lists for the FMM.
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Figure 4.5. Interaction List for 5 = 0.44.

Figure 4.6. Interaction List for 5 = 0.50.
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CHAPTER 5 

CONCLUSION

5.1. Conclusions

The Cluster Multipole Algorithm (CM A) provides generalization to the Fast Multipole 

Method (FM M ). It provides greater fle x ib ility  than the FMM and it is easily adaptable to 

different hierarchical structures. The C M A  quantifies the restrictions on the data 

structures. Also, the abstract definition o f the interaction list results in the improved 

FMM results.

The Cluster Multipole Algorithm utilizes the best features o f Appel's algorithm 

and the Fast M ultipole Method to provide an algorithm which has higher performance for 

a given accuracy. The C M A is well suited to non-point sources and provides more 

control on the accuracy over current algorithms. The CM A exhibits the fle x ib ility  o f both 

the Appel and fast multipole methods w ithout sacrificing the order o f computation (O(N)) 

for “ well structured" clusters found in the Greengard method and the Appel method for 

well formed particle distributions. The accuracy o f the CM A can be controlled by two 

independent parameters, the accuracy measure 5 and the number o f multipole terms, p. 

The algorithm has been demonstrated to have higher performance than both Appel’s 

algorithm and the FM M  when applied to a problem with the hierarchical data structure 

used in the FMM. In fact, the CM A has demonstrated that the interaction list utilized in
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the FM M  is not the optimal interaction list. The C M A provides two alternative 

interaction lists for use depending on the desired accuracy.

The C M A  also improves the ability to handle non-point source applications by 

removing the requirement on the rigid grid structure of the FM M  and providing a better 

approximation o f a group o f bodies than Appel’s algorithm. Therefore, while currently 

lim ited in the definition o f the hierarchical data structure, the C M A is better suited to 

non-point source applications since the hierarchical data structure remains unchanged 

during the computation. Examples o f non-point sources are the panels used to describe 

the topologies o f circuits in capacitance calculations and airframes in panel methods for 

computational flu id dynamics (CFD).

5.2. Future Research

The C M A targets applications which do not require rebuilding the data structure about 

the system every time step due to current limitations in the construction of the data 

structure. This is a topic for future research. Examples o f slowly changing systems can 

be found in molecular dynamics, capacitance, and computational flu id dynamics 

simulations. As the data structure development is improved, the new algorithm w ill be 

applicable to a wider range o f applications.

Future research may be directed to an approach o f developing a grid structure which 

closely approximates the distribution under study. The idea is to maintain the locality o f 

data within the structure to reduce communication in parallel implementations. The grid is
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then adjusted to satisfy the criteria placed on the grid by the FMM. These criteria include a 

given separation o f grid regions for convergence and maintaining the O(A0 time complexity 

in serial computation. Once such a grid is found, the standard FM M  can be applied to solve 

a class of non-uniform N-body problems.

For panel methods, 5 tends to iterate over the system several times without the 

structure o f the system changing radically. Therefore. 8 could be dynamically varied at each 

iteration so that performance increases as 5 iterates. A value o f 5 could be iteratively found 

by using sensitivity derivatives o f the algorithm parameters.

Traditionally, the error analysis o f N-body force computations involves only the 

magnitude o f the force. The direction o f the force along w ith its magnitude should be 

taken into account during future error analysis.
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APPENDIX A 

ALTERNATIVE GRID STRUCTURES FOR THE FAST MULTIPOLE 
METHOD

A .I. Introduction

The original Fast Multipole Method (FM M ) was developed using a square grid in two- 

dimensions and a cube in three-dimensions. A ll the particles o f interest are contained 

w ithin the grid. The grid structures with other regular shapes have not been considered. 

This Appendix focuses on the development o f alternative grid structures, suitable to the 

FM M . with different shapes o f a region under consideration. Consequently, for a given 

uniform N-body system with a well-defined region, the corresponding grid structure may 

be used. In [26] we presented an approach o f developing a grid structure which closely 

approximates the distribution under study. Specifically, a grid structure was developed 

for a circular region with the gaussian distribution o f particles. A similar approach is 

taken to form grid structures for other shapes with the uniform distribution. The 

objective is to develop grid structures which maintain the criteria imposed by the FMM. 

Triangular and hexagonal regions are considered for the grid development. Other regular 

shapes, such as pentagon and octagon, could not be arranged adjacent to one another to 

form a continuous two-dimensional structure.
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An outline o f the presentation is given as follows. First, a circle o f convergence is 

defined and its effect on the truncation error is described. Second, the grid structure 

requirements set by the FMM are described. Third, two-dimensional square, triangular, 

and hexagonal structures are introduced, which is followed by a short section for the 

corresponding three-dimensional structures. Finally, a comparison between various two- 

dimensional structures is made, along with the extension to other shapes for the grid.

A.2. Circle of Convergence

The smallest circle which encloses a given box is called the circle o f convergence. For a 

given number o f terms (p) in the expansions, the truncation error is dependent on the 

distance between the center o f the circle o f convergence o f a given box and the closest 

point in the circle in the interaction list. In turn, the accuracy of the algorithm is 

dependent on the minimum separation between convergence circles [14]. Specifically, 

the accuracy improves as c increases, where c is the ratio o f the distance from the center 

o f one circle to the closest point in the other circle and the radius o f the circle. Refer to 

Figure A. 1 for a pictorial interpretation o f c. For a given number o f terms in the 

multipole expansion, a higher value o f c indicates a lower truncation error. It is shown in

[14] that for any p > max[2. 2c/c-l], the error in the downward pass due to a p-term 

truncated series is bounded by
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A(4e(p + c)(c+ 1)+ c: ), I p+i
c(c-1) < - r .c

78

( A . l )

a =5>, i.
r = / (A.2)

and e is the base o f  natural algorithms. Thus, the truncation error for the local expansion 

is also o f the order o f c'p.

c =-

Figure A. 1. The Separation Between the Circles o f Convergence and the Interpretation o f c. 

A.3. Grid Structure Requirements

For an N-body solution using the FMM, which converges with O(N) time complexity on 

a serial system, the grid structure must meet certain criteria. The FMM requirements are 

listed as follows:
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1. Bounded number o f particles in each box.

2. Bounded size o f the interaction list.

3. Sufficient separation o f the grid regions to allow for convergence.

4. Bounded parent-child relationship.

5. Bounded number o f near neighbors.

These criteria are explained in regard to the O(N) time complexity.

A.3.1. Bounded Number of Particles Per Box

The last step o f the FM M  uses the direct method in which the interactions with all 

particles within the box and its near neighbors are directly computed. Obviously, the 

computation requirement o f this step is dependent on the number o f particles in each box 

at the finest level and the number o f near neighbors. Consequently, to maintain 0( N) 

time complexity for the direct portion o f the FMM. the maximum number o f particles in 

the finest grid level must not increase indefinitely with the problem size N. In particular,

the maximum should be well-bounded for all N. Let kn be an upper bound on the number

o f particles per box at the finest grid level. Since the interactions must be computed 

w ithin the box and its eight nearest neighbors, the computation is o f the order o f 9Nkn for 

all particles. However, using Newtons third law the computation can be halved. 

Therefore, it is clear that to maintain O(M) complexity o f the overall algorithm, the grid
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structure must be constructed so as to have an upper bound on the number o f particles per 

box.

In this Appendix it is assumed that only uniform particle distributions are 

considered. Consequently, provided all grid regions have the same area, an upper bound 

on the number o f particles per box in the finest grid level is possible. This is the case for 

a ll grids considered in this work, thus all proposed grids w ill meet this criterion.

A.3.2. Bounded Size of the Interaction List

In the downward pass o f the algorithm, a local expansion about the center o f each box is 

obtained by including interactions with boxes in the interaction list. This is done by 

converting the multipole expansion o f each box in the interaction list to a local expansion 

at the center o f the box (Equation 3.7). and accumulating these local expansions. Clearly, 

the amount o f work required for this step is dependent on the size of the interaction list. 

Specifically, the computation is bounded by 27 Np 1 since the maximum interaction list 

size is 27 boxes.

When the algorithm is parallelized, the boxes in the interaction list may be 

assigned to several different processors, and the multipole expansion data has to be sent 

to these processors in order to compute the local expansion. To reduce this 

communication overhead, the interaction list must be kept to a minimum. Also, the 

boxes in the interaction lis t tend to reside away from the given box as interaction list 

increases. Consequently, data required for computation w ill increase both in amount and
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proxim ity w ith the increase in interaction list size, which w ill, in turn, cause higher 

communication overhead in a parallel implementation.

Therefore, to ensure a well-bounded communication overhead (in parallel version) 

and O(A0 computation time (in serial version), the interaction list size must be well- 

bounded and localized [ 16.41 ].

A.3.3. Separation of Convergence Circles

For a given box. a convergence circle is the smallest circle containing the box (Figure 

A. 1). The rate o f convergence o f the algorithm is dependent on the minimum separation 

between convergence circles [14]. As defined earlier, c is a measure o f the separation 

between two circles o f convergence. For a given acceptable expansion truncation error, a 

higher value o f c indicates that a fewer number o f terms (p ) in the expansion need to be 

computed, reducing the p: term in performance. Thus, higher values o f c are beneficial to 

the total run time o f the algorithm. Geometrically speaking, c is a measure o f how well a 

circle can enclose a box o f a given shape; the better the fit, the higher the value o f c. Grid 

structures w ith shapes o f boxes which f it  nicely into the circle should possess better 

convergence properties.

There exists a trade-off between the separation o f convergence circles and the 

interaction list size. The separation can be increased by considering that all interaction 

list boxes be separated by at least two boxes from the box o f interest. The more separated 

the boxes, the more accurate the expansion, which results in better accuracy for a fixed p.
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However, the two box separation also has a very large number o f boxes in the interaction 

list. Specifically, the interaction list size increases to a maximum o f 75 boxes (as 

compared to 27 boxes for one box separation) in two dimensions. In three dimensions, 

the interaction list increases potentially to a maximum o f 875 boxes (as compared to 189 

boxes for one box separation). Any increase in the size o f the interaction list slows the 

algorithm.

A.3.4. Bounded Parent-Child Relationship

The parent-child relationship for the grid structure must be bounded in amount and 

proximity. There must be an upper bound for the number o f children o f any parent to 

maintain 0(A0 time complexity. Bounded parent-child relationship ensures that the 

interaction list is also bounded.

A.3.5. Bounded Number of Near Neighbors

The number o f near neighbors must be bounded to ensure an upper bound on the 

computation in the final step o f the FMM. Since the number o f particles in each box and 

the number o f near neighbors are bounded, the time spent in the direct portion (final step) 

o f the FM M  is also bounded.
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A.4. Two-Dimensional Grid Structures

In this section, various two-dimensional grid structures are introduced. These structures 

can be used as alternatives to the square grid fo r the corresponding shapes o f the region 

under consideration. For the corresponding shapes o f the region, these structures 

eliminate empty boxes in the grid hierarchy, which would be present i f  the square grid 

were used. Also, a proper combination o f these structures enables us to consider regions 

w ith other shapes.

In two dimensions, let us define the space occupier to be an object o f any shape, 

the replicas o f which, i f  arranged together, can f i l l  (occupy) a given surface without 

leaving a gap (object w ith a different shape) in the surface. A  space occupier which can 

f i l l  itself is called a self-occupier or regular space occupier. The self-occupiers are best 

suited for the two-dimensional FMM grids, although a space occupier may be used with 

added complexity. Sample space occupiers are squares, triangles, and hexagons. The 

square and triangular grids are more suitable for the FM M  than the hexagon because each 

shape is a self-occupier. Consequently, a hexagonal grid requires a special handling, as 

w ill be demonstrated.

First, the original square grid is described to aid in the comparison w ith other 

structures. The triangular and hexagonal grids are presented as alternatives to the square 

grid for the corresponding shapes o f the region under consideration. A comparison
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between these grid structures is made, and other variations o f these grid structures are 

derived.

A.4.1. Square Grid

As described in the previous section, the FMM was developed using a uniform square 

grid in two dimensions. A  portion o f the square grid is shown in Figure A. 1. The square 

is a self-occupier. I f  each box has sides o f length 2s, the radius o f the convergence circle 

for each box is - J l s . The distance from the center o f one circle to the closest point in the 

circle for the closest box in the interaction list is at least (4 - y f 2 ) s  = 2.5857s. However, 

note that the closest a particle can be is at a distance 3s. which is much greater than the 

distance to the circle. The circles are separated by ( 4 -  2>[2)s = 1.1715s while the boxes

(4 —s/2)
are separated by 2s. The value o f c = — -j=—  = 1.828, and the truncation error using p-

term expansions is o f the order o f c'p (Equations 3.4 and A. 1). I f  the accuracy £ is fixed, 

we choose p  = |~-log( (£)"|, and the interactions need to be computed only by means o f

expansions for clusters o f particles which are contained in well-separated boxes. The 

square can f i l l  its own region with squares. The notion o f the square grid can be extended 

to the rectangular grid by combining a number o f adjacent squares and forming 

rectangles.
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Summarizing, the interaction list size is bounded by 27 (can be reduced to 12 [23. 

42]). the convergence circles are separated by a minimum o f 1.1715s for all boxes in the 

interaction list, the number o f children o f each box is bounded by four, and the number o f 

near neighbors is bounded by eight. Therefore, the square grid satisfies all the grid 

requirements.

A.4.2. Triangular Grid

Figure A.2. A two-dimensional triangular grid. Different line patterns are used to represent
the parent-child relationship.

A  two-dimensional grid for a triangular region is proposed in this section. The two- 

dimension triangular grid is compared to the square grid w ith respect to the interaction 

list size, the number o f near neighbors, the parent-child relationship, and the value o f c.

I f  a region o f interest for a given problem is triangular (assumed to be equilateral), 

we begin with a computational region which is an equilateral triangle centered at the 

origin. It contains all N particles o f the system under consideration. By dividing a 

triangle into four equal sized triangles (by connecting mid-points o f all sides) at each
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level, a hierarchy o f meshes (grids) similar to the one for the square grid can be formed. 

(Note that the triangle is a self-occupier.) Grid level i+1 is obtained from level i by 

subdividing each region (triangle) into four equal parts, as shown in Figure A.2. Here, 

level 0 corresponds to the triangle with solid lines, level I after the triangle w ith chain 

lines are added, and level 2 after the triangles w ith dotted lines are added. It is evident 

that the triangular grid has a proper parent-child relationship required by the FM M . and is 

bounded by four children.

For two boxes A  and B to be well separated in the triangular grid it is sufficient 

that their boundaries do not touch with each other. Figure A.3 shows the interaction list 

for box b. The interaction list size is 39. though it can be reduced to 18 using techniques 

described in [23, 42]. The number o f near neighbors is 12. which increases computation 

at the final step. Each box has four children as in case o f the square grid. I f  each side o f

s
a triangle is o f length s, then the radius o f convergence circle is - j= . The distance from

the center o f one circle to the closest point in the circle o f the closest triangle in the

•J l -  1 r -mteraction list is — s = 0.95s. Therefore, the value o f c =V7 -  I = 1.6457. Note that
s

•J l - 2
the circles are separated by — -j=— s = 0.3728s. The value o f c is smaller as compared to

V3

that o f the square grid, which indicates that a square fits better than a triangle in the circle, 

and more terms in the expansions are needed to achieve a desired precision. The
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triangular grid satisfies all grid requirements outlined before, and consequently, can be 

used as an alternative to the square grid for uniform distribution o f particles w ithin a 

triangular region. Also, there is an added benefit o f the triangular grid. The center o f one 

child box is the same as its parents center. Therefore, one parent-child relationship 

requires no translations, and consequently, only three translations are required instead o f 

four. This reduces the amount o f computation by some extent.

_ A

Figure A.3. The interaction list for box b is denoted 
by the dark boxes.

Since children are formed by connecting midpoints o f parents sides, the children 

w ill have same proportions as their parent, allowing them to be subdivided. In general, a 

triangle o f any shape can be divided into proportionate children. Since the circle o f 

convergence must enclose the triangle, the distance from center o f mass to the farthest 

point gives its radius. However, as we deviate from equilateral triangles, the convergence 

circles become closer (circles may overlap).
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Figure A.4. A triangular grid using isosceles 
triangles.

As a special case, i f  the grid shown in Figure A .2 is horizontally contracted, it 

forms a grid with isosceles triangles as shown in Figure A.4. The convergence circles 

now overlap as shown. This grid still has a regular structure and a parent-child 

relationship, and may be used for the FMM. For triangular grids, equilateral triangles are 

most suited because the separation is better than any other triangular shapes.

A.4.3. Hexagonal Grid

Another alternative to the two-dimensional square grid for uniform distributions is the 

hexagonal grid. The grid structure is made up o f regular hexagons, which are arranged as
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shown in Figure A.5. Here, the computational region is a unit regular hexagon (thick 

dotted lines), which is subdivided into seven hexagons (thick solid lines) which are 

completely contained within their parent box. It is evident that the hexagon is not a self

occupier. The diamond-shaped spaces at six comers o f the hexagon create gaps, as 

shown in Figure A.5. Each diamond box is really a one-third portion o f the hexagon 

which is formed at the common point o f three adjacent parent hexagons. Subsequently, 

six hexagons at the comers o f the parent box (thick lines) are also shared by its two 

neighbors.

Figure A.5. A two-dimensional hexagonal 
grid.

Alternatively, the parent hexagon may be selected as shown by thick dotted lines 

in Figure A.6. However, each box now has 13 children, and the interaction list increases 

because the area o f the parent box is much larger. Therefore, the first parent-child 

relationship is more suitable. Another alternative for the parent is shown by thick solid
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lines in Figure A.6. This relation is better than the other, because the interaction list is 

smaller since each box has only three children as compared to 13.

Figure A .6. Alternative parent-child
relationships for the hexagonal grid.

For the parent-child relationship proposed in Figure A .5. the consideration o f the 

diamond boxes by themselves as special cases increases the interaction list size, reduces 

the separation between convergence circles, and adds an extra complexity in the grid 

division process. One alternative to this problem is to redefine the parent-child relation 

as shown in Figure A.7. Here, the hexagon drawn w ith thick dotted lines constitutes a 

parent by forming a group o f nine children. In effect, the two partial hexagons at top 

comers o f the parent are also included in the parent. In the next grid level each child 

hexagon is divided into nine smaller hexagons w ith  the same pattern. This creates a 

smaller extended hexagon which extends beyond its parent and its parent’s parent. In the
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subsequent levels, a chain o f smaller and smaller hexagonal children is formed as shown 

in Figure A. 8.

Figure A.7. A  modified parent-child relationship 
for the hexagonal grid.

Figure A.8. The circle o f convergence for the 
proposed parent-child relationship.
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I f  the length o f each side o f a regular hexagon is s. then the upper bound on the 

radial length o f the chain o f boxes can be found using the series

Consequently, the upper bound on the total radial length o f the box is 6s + 1.5s = 7.5s. 

After some geometrical analysis, the radius o f the circle o f convergence is found to be 

bounded by 3.6524s. The distance between the center o f one circle and the center o f the 

closest box in the interaction list is 9s. Therefore, the value o f c = 1.4641. Although the 

value o f c is less than that for the square grid, the distance between two closest circles o f 

convergence is 1.6952s which is greater than the corresponding distance for the square 

grid. Also, the distance between circles o f convergence improves at finer grid levels. A t 

the finest grid level, where each box is exactly a hexagon, the circles o f convergence are 

most accurate. These indicate a better fit o f the hexagon into a circle, and consequently, 

better convergence properties o f the hexagonal grid.

The interaction list is defined as a set o f boxes which are well separated from the 

given box and which are the children o f its parent and parent’s neighbors. Figure A.9 

shows the interaction list for a box b in the hexagonal grid. The interaction list size is 56, 

and the number o f near neighbors are six.

(A.3)

which is bounded by s= 1.5s. Here. L is the maximum number o f arid levels.
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Figure A.9. The boxes drawn using thick lines 
are in the interaction list o f the box b.

In summary, for the hexagonal grid the interaction list size is bounded by 56, the 

convergence circles are separated by a m inimum o f 1.6952s for all boxes in the 

interaction list, the number o f children o f each box is bounded by nine, and the number o f 

near neighbors is bounded by six. Subsequently, the hexagonal grid satisfies all the grid 

requirements.

A.4.4. Comparison of Grid Structures

A comparison o f various two-dimensional grids discussed previously is made in this 

section. The parameters o f interest for comparison are the separation ratio c, the number 

o f terms p in expansions, the order c'p o f truncation error, the interaction lis t size, and the 

number o f near neighbors. The values o f these parameters for the triangular, square, and 

hexagonal grids are shown in Table A .I.
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Grid Distance
between
circles

c 2c
^ c - l

c p Interaction
List

Near
Neighbors

Triangular 0.3728s 1.6457 5.0974 0.0789 39 12

Square 1.1715s 1.8284 4.4142 0.0696 27 8

Hexagonal 1.6952s 1.4641 6.3094 0.0902 56 6

Table A .I. A comparison between three two-dimensional grids.

In the discussion o f the FMM. it was pointed out that the increase in the interaction list 

and near neighbors causes an increase in the amount o f computation. The hexagonal grid 

is more accurate than other grids for the same p because o f a higher separation o f circles. 

In other words, for a given accuracy, a smaller value o f p  can be used with the hexagonal 

grid. I f  using small p, being able to use p less by one can overcome other deficits such as 

bigger size o f the interaction list. Also, a smaller number o f near neighbors reduces the 

computation in the direct portion o f the FMM.

Summarizing, when selecting a grid structure for a given problem, the trade-off 

between the interaction list size, the number o f near neighbors, and the value o f p  must be 

observed.

A.4.5. Formation of Other Grid Regions

We may combine boxes o f the same shape to form a box with a different shape. For 

example, a rectangle can be formed by combining adjacent squares and a hexagon can be
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formed using triangles. Consequently, a combination o f different shapes may be used in 

the grid structure. In turn, the regions w ith other shapes can be handled by dividing them 

into either the square, triangular, or hexagonal structure. For example, a rectangular 

region can be handled by forming the square grid and a hexagonal region can be handled 

by forming the triangular grid within it. For a circular region, the hexagonal grid is best 

suited since it better approximates the circle than the square or triangle does. Similarly, 

for the given region a proper shape o f the grid boxes may be selected.

A.5. Three-Dimensional Grid Structures

Three-dimensional grid structures are introduced in this section. Conceptually, any three- 

dimensional space filler  may be used as a grid structure for the FM M . A  space Filler is 

defined as a cell whose replicas together may f i l l  all o f three-dimensional space [27]. 

However, the analysis o f a structure becomes more complex i f  the structure is not a 

regular space filler  (a space fille r which can f i l l  itself). The regular space fillers are best 

suited to three-dimensional grids. The cube is the only regular space fille r [27], In this 

section, the original cube structure is described first. The three-dimensional counterpart 

o f the triangular grid (tetrahedron) is discussed next, although it is not a regular space 

filler. Structures w ith  other shapes are d ifficu lt to analyze for the interaction list, the 

separation between convergence spheres, and the parent-child relationship because o f 

their irregularity. Therefore, they are not considered in this Appendix. This section w ill
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demonstrate that the cube is by far the most suitable three-dimensional grid structure for 

the FMM.

A.5.1. Cube

In three dimensions, the FM M  computational box is a cube with sides of unit length. 

Each cube is divided into eight children at each level in the grid hierarchy. I f  the length 

o f each side o f cube is s. then the radius o f the smallest sphere which encloses cube is 

0.866s. The distance from the center o f one sphere to the closest point in the other sphere 

in the interaction list is at least (2-0.866)s = 1.134s. Therefore, c = 1.134/0.866 = 1.3094. 

which is smaller than its two-dimensional counterpart. In general, three-dimensional 

structures have less separation o f the spheres o f convergence, and therefore, poor 

convergence properties as compared to their corresponding two-dimensional structures. 

Also, the size o f interaction list is much larger in three-dimensions (875 as compared to 

27 boxes in two dimensions), the reason being poor convergence properties forcing more 

separation.

A.5.2. Tetrahedron

A tetrahedron may be considered as a three-dimensional counterpart o f the triangular grid. 

It is important to note that tetrahedra are not regular space fillers. In other words, a given 

tetrahedron cannot be divided into a number o f tetrahedra o f the same shape and size. For 

simplicity, we w ill assume that all tetrahedra in the grid have equal sides. I f  the length o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

each side o f a tetrahedron is s. then the radius o f the smallest sphere enclosing it is

0.5442s. Since a cube fits better than a tetrahedron in the sphere, the separation o f the 

spheres is less in case o f the tetrahedron. To increase the separation, we need two box 

separation for the interaction list as used for the cube. Overlapping spheres o f 

convergence and irregularly sized structure are major pitfalls o f the tetrahedron.

A.S.3. Other Structures

Three-dimensional structures such as octahedron, dodecahedron, and icosahedron have 

regular polygons o f a single species as their faces. However, these structures are very 

complex to analyze and are irregular space fillers. The visual interpretations o f such grid 

structures are d ifficu lt to picture and understand. Also, the interaction list, the parent- 

child relationship, and the separation o f convergence spheres are d ifficu lt to manage and 

calculate. The complexity o f such three-dimensional structures is evident from that o f the 

two-dimensional hexagonal structure. Therefore, these three-dimensional structures are 

not considered for a detailed analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98

BIOGRAPHY

Rakesh R. Patel was bom in Baroda. India on October 2. 1970. He achieved the first rank 
during the second, third, and final years o f undergraduate studies and obtained his B.E. in 
Electronics in 1991. He was awarded a gold medal for this outstanding academic 
achievements. Then he came to the Unites States to attend Old Dominion University 
where he received his MS in Electrical Engineering in 1993. His Master’s thesis was 
entitled “ Resource Utilization Model For The Algorithm To Architecture Mapping 
Model". He has been working as a Component Design Engineer at Intel Corp. since 
1995.

Mr. Patel has co-authored the fo llow ing  articles with Dr. James Leathrum:

1. R. Patel and J. Leathrum. 1994. “A Gaussian Grid Structure fo r  the Fast Multipole 
A l g o r i t h m Proceedings o f the H igh Performance Computing Conference, 
September 1994. pp. 237-245.

2. R. Patel and J. Leathrum, "A Grid Structure fo r  Non-uniform N-body Simulations on 
Parallel Computer Systems using the Fast Multipole Algorithm.'' PCAT-94.

3. R. Patel and J. Leathrum. "A Gaussian Grid fo r  Parallel Implementations o f N-body 
Problems Using the Fast Multipole A lg o r i th m SC-94.

4. J. Leathrum and R. Patel. ”Development o f  a Grid Structure for Non-Uniform N-Body 
Problems,'' Simulation Multi-Conference: High-Performance Computing, A p r il-1994. 
pp. 297-302.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



IMAGE EVALUATION 
TEST TARGET (Q A -3 )

*

✓

<y <?> Jb

/ ,
%

1.0

l . l

L i  1 2.8 

L.
L. I -
If

I 23

2.0

1.8

1.25 1.4 1.6

15 0 m m

6 "

IM/4GE . Inc
1653 East Main Street 
Rochester. NY 14609 USA 
Phone: 716/4824)300 
Fax: 716/288-5989

0 1993. Applied Image. Inc.. All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	The Cluster Multipole Algorithm for Far-Field Computations
	Recommended Citation

	tmp.1553692817.pdf.WsB74

