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ABSTRACT
GENERATING SERIES FOR INTERGONNECTED NONLINEAR SYSTEMS 

AND THE FORMAL LAPLACE-BOREL TRANSFORM

Yaqin Li 
Old Dominion University, 2004 
Director: Dr. W. Steven Gray

Formal power series methods provide effective tools for nonlinear system analysis. For 

a broad range of analytic nonlinear systems, their input-output mapping can be described 

by a Fliess operator associated with a formal power series. In this dissertation, the inter

connection of two Fliess operators is characterized by the generating series of the composite 

system. In addition, the formal Laplace-Borel transform of a Fliess operator is defined and 

its fundamental properties are presented. The formal Laplace-Borel transform produces an 

elegant description of system interconnections in a purely algebraic context.

Specifically, four basic interconnections of Fliess operators are addressed: the parallel, 

product, cascade and feedback connections. For each interconnection, the generating series 

of the overall system is given, and a growth condition is developed, which guarantees the 

convergence property of the output of the corresponding Fliess operator.

Motivated by the relationship between operations on formal power series and system 

interconnections, and following the idea of the classical integral Laplace-Borel transform, 

a new formal Laplace-Borel transform of a Fliess operator is proposed. The properties 

of this Laplace-Borel transform are provided, and in particular, a fundamental semigroup 

isomorphism is identified between the set of all locally convergent power series and the set 

of all well-defined Fliess operators.

A software package was produced in Maple based on the ACE package developed by
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Ill

the ACE group in Universite de Marne-la-Vallee led by Sebastian Veigneau. The ACE 

package provided the binary operations of addition, concatenation and shuffle product on 

the free monoid of formal polynomials. In this dissertation, the operations of composition, 

modified composition, chronological products and the evaluation of Fliess operators are 

implemented in software. The package was used to demonstrate various aspects of the new 

interconnection theory.
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CHAPTER I

INTRODUCTION

The connection between algebraic combinatorics and nonlinear control theory has been 

increasing steadily since the 1960’s. One of the uniting branches is the Chen-Fliess series and 

the associated formal power series methods used in nonlinear system analysis. The formal 

power series approach was advocated by Fliess in [18-23] and motivated by the iterated 

path integrals proposed by Chen in [7-15]. The iterated path integral approach possesses 

rich algebraic structures, thus providing a natural algebraic representation of functional 

expansions for the outputs of dynamic systems. There are two classical ways to describe 

systems; the input-output representation and the state space representation. For a broad 

range of analytic systems, the input-output mapping can be described by a so called Fliess 

operator, which is written in terms of iterated integrals and an associated formal power 

series. In this dissertation, the main class of systems considered is all analytic systems 

that can be represented by Fliess operators. To ensure that a Fliess operator represents 

a well-defined system, its associated formal power series must be locally convergent in the 

sense that the output of the Fliess operator converges over a finite interval.

In control system applications, systems are interconnected in a variety of ways. Un

derstanding the nature of these interconnections is important for both system analysis and 

control design. For a large-scale system, it is convenient to first decompose it into subsys

tems, and then to analyze the whole system by considering the subsystem interconnections. 

For linear systems, some beautiful and complete results for the interconnections are now 

standard subjects [35], however, the interconnections of nonlinear systems are not so well 

understood, see for example, [1,63,65,69,70]. Our specific interest in this dissertation is
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(c) Cascade connection (d) Feedback connection

Figure 1.1: Elementary system interconnections.

the interconnection of analytic input-output systems represented as Fliess operators. The 

four basic interconnections considered are the parallel, product, cascade and feedback con

nections, as shown in Figure 1.1. A fairly complete algebraic theory can be constructed to 

describe these interconnections.

The classical Laplace-Borel transform plays an essential role in the analysis and design 

of linear time-invariant systems. For a linear time-invariant system, the output response can 

be described by the convolution integral involving the impulse response and the input signal. 

Applying the classical Laplace-Borel transform maps this convolution integral expressed in 

the time domain to a purely algebraic expression in the frequency domain. In this way, a 

linear time-invariant system can be completely characterized by the Laplace transform of 

its impulse response, normally called the transfer function of the system. For proper linear
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systems, the transfer function can be expanded as a Laurent series. Using this idea of series 

representation, the classical integral Laplace-Borel transform will be generalized to the class 

of analytic nonlinear systems that can be described by Fliess operators. By introducing 

this formal Laplace transform, the iterated integral in the time domain is mapped into 

an algebraic expression in terms of formal power series, therefore providing an elegant 

approach to nonlinear system representation. More specifically, in linear system analysis, 

the Laplace transform of an analytic signal can be represented by its Laurent series in 

the frequency domain, which is a formal power series. A linear time-invariant system can 

also be characterized by the Laurent series expansion of its transfer function, which can 

be viewed as a series representation of the system. Thus, the Laplace-Borel transform of a 

linear system is really the mapping of a linear convolution operator to a formal power series 

representation.

Motivated by the series representation and the Laplace-Borel transform for signals and 

systems in the linear case, the basic idea is to generalize these concepts to the nonlinear 

setting. The formal Laplace-Borel transform of a signal was generalized to the nonlinear 

case by Fliess in [20,23], but a formal transform of a system is not so straightforward. In 

linear system analysis, a system can be described by its impulse response, which is also a 

signal. Therefore, the same notion of the Laplace-Borel transform of a signal can be directly 

applied to produce the transform of a linear system. However, in the nonlinear case, this 

approach is not possible. Therefore, an appropriate definition for the formal transform of 

the nonlinear input-output dynamics is needed. Another objective of this dissertation is to 

apply the formal Laplace-Borel transform to interconnected systems to provide a compact 

series representation for the composite systems. The well-known isomorphism between time 

domain and frequency domain in the linear case is also generalized to the nonlinear setting.
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1.1 M otivation

A linear system example is considered first to illustrate the basic concepts more clearly. 

Let the space of inputs u  be the set of measurable real-valued functions u{t) G M™, and 

the space of outputs ^  be a set of measurable functions where y(t) G A causal linear 

input-output system is then the mapping F  : u  y  defined by the convolution integral 

involving its impulse response H{t,T)  and the system input u{t):

y{t) = F[u]{t) ^  f  H{t,r)u{T)dT, t> to -  (1.1)
Jto

If each component function of H  is real analytic, then on some set D = {{t, t ) G E? : to <

T < t < to + T},  each column of iL, Hi can be represented by its Taylor series centered at

(t  ô),

H>(t,r)= £  (L2)
n'2 \ n\\ni ,722=0

where each coefficient c{n2 , i ,n i )  G M̂ . Substituting equation (1.2) into equation (1.1) and 

using the uniform convergence of the series on D, it follows that

^  ^  . f H t -  / s ( t  -  *o)"' 7 /y ( t ) =  ^ c ( n 2 ,* ,n i) /  ------- j— Ui(r)--------j dr. (1.3)
771,722=0 i=i ■̂‘0

To see the mathematical structure underlying this series representation more clearly, define 

formally uo{t )  = 1 and let

Ei[u]{t,tQ) = /  Ui{T)dr, i =  0, l , - - - , m .
Jto

Observe that

Eo[u]{t,to) = t - t o ,

and define recursively

{t -  t o f
Eoo[u]{t , to)  ^  [  Eo[u]{T, to)dT =  

J t o
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After n \  iterated integrations,

{t -  tor^
n\\E^o^[u\{t,to) —

ni

Select any i =  1, 2, • ■ • , m and define

f t  f t  U  _
Eto...o[u]{t,to) = /  Ui{T)Eo-o{u](T,to)dT ^  /  Ui(T) j dr. (1.4)

^  J t o

Now integrate expression (1.4) once more and apply integration by parts,

Â oio-o M( ,̂io) = /  /  — ^-^^d^dr
J t o  J t o' to J t o  ^1 '

i r - t o T t
[  {t-T)Ui{T)-

J t o
dr.

After applying the previous step ri2 times inductively, the iterated integral will be

/■* (t -  r l "2 (r _
Eo...oio-o[u\{t,to) = /  --------j— U i(r)------ j dr.

J t o  t i 2 \  n i l
n i  n i

Therefore, series (1.3) can be expressed alternatively as

oo m

y(i) = c(tz2 , i, ni)£(o^o i o^o]M](t, tp). (1.5)
i=l ni n\

This example suggests an alternative way to index the summations appearing in (1.5). 

Define the set of index symbols /  =  { 0 ,1 ,... ,m } as an alphabet, and any finite sequence 

over the alphabet 7 is a word. Let be the set of words ikik-i ■ ■ - i\ with length k over 

alphabet 7, where v  G .f for 1 <  r  < /c. For A: =  0, 7° denotes the set whose only element is

the empty word 0 and I* = [ ^ 7 ^  denotes the set of all words over 7. Let rj be an arbitrary
k >0

word in I* and define the mapping

(c,v) =  <

c{n2 , i ,n \ )  : r /=
U2 "1 (1-6 )

0 : otherwise.
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Then the series (1.5) has a more compact expression

2/W  =  X ]  (1-7)
rjG I*

In fact, for any mapping of the form c : /* i—> K^, an input-output operator Fc associated 

with c can be defined using (1.7). Specifically, for an arbitrary formal power series of the 

form

c = X!]
7?e/*

where rj = ik ik-i  • ■ - i\ G /*, and (c,77) G the unique input-output operator Fc : u  y  

is defined by

Fc[u] =  X ]  ( c , v )E r , lu ] ,  (1 .8)
rj& I*

which is referred to as a Fliess operator [20,23]. The formal power series is called the 

generating series of the Fliess operator. The set of all formal power series over the alphabet 

I  is denoted by Fliess operators can be regarded as series in a finitely generated

free algebra called the Fliess algebra. A Fliess operator can be completely characterized by 

its generating series. In order for the formal summation in the Fliess operator definition 

to represent a well-defined system, the coefficients of the series are generally assumed to 

satisfy the following growth condition [20,21,23,33,34,60]

|(c,r/)| <  A:m W|t/|!, fc> 0 , (1.9)

for some finite real numbers K , M  > 0 . Here |?7| denotes the number of symbols in y. It was 

proven in [28] tha t if a formal power series has coefficients satisfying the growth condition 

in (1.9), the output of the Fliess operator converges absolutely and uniformly on a finite 

time interval when the inputs are restricted to an open ball in Lp space. If a series satisfies 

(1.9), it is said to be locally convergent. The set of all locally convergent formal power series 

is denoted by
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In many applications, input-output systems are interconnected in different ways. Given 

two well-defined Fliess operators Fc and Figure 1.1 shows four elementary intercon

nections. One of the general goals of this dissertation is to describe in a unified manner 

the generating series for each elementary interconnection, and conditions under which they 

are locally convergent. Some partial results about the local convergence property of in

terconnected systems have been obtained using a state space approach. If c and d both 

have finite Lie rank (see [60]), in addition to being locally convergent, then the mappings 

Fc and F^ each have a finite dimensional analytic state space realization, and therefore 

so does each interconnected system. The classical literature then provides tha t the corre

sponding generating series can be computed by successive Lie derivatives [21] and must be 

locally convergent [60]. But whether this rank condition is necessary to ensure the local 

convergence of the interconnected system does not appear in the present literature. For 

those locally convergent systems that do not have a finite Lie rank, and therefore are not 

realizable by a finite dimensional, analytic, affine in the control state space system, does 

there exist a generating series for each possible interconnection? If so, how does one obtain 

the generating series? Are the new generating series for the composite systems also locally 

convergent? These problems are fundamental to those who wish to use this model class in 

applications. The parallel connection is the trivial case, and the product connection was 

analyzed in [23,66]. But the analysis of these connections can be applied to the study of the 

cascade and feedback interconnections. In [17], Ferfera showed that for a single-input-single

output (SISO) system (i.e., £ = m  = 1), there always exists a generating series c o d  such 

that y — FclFdlu]] = Fcodlu], but a multi-variable version of this composition product is not 

available in the literature, nor are any results about local convergence. Generating series
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for the feedback interconnection is an entirely new problem. For the feedback equation

y = F,[u + Fd{y]], (1-10)

whether there exists a generating series c@d such tha t y — Fc@d[n] and y  satisfies (1 -10) is 

not known. W hen Fc is linear, the formal solution to the feedback equation (1.10) can be 

written as

y = Fc[u] +  Fc o Frf o Fc[u] H-----

It is not immediately clear whether this series converges in any manner, and in particular, 

converges to another Fliess operator. When Fc is nonlinear, the problem is fm ther com

plicated by the fact that operators of the form I  +  F^, where I  denotes the identity map, 

never have a Fliess operator representation. One of the main goals in this dissertation is to 

describe the existence and local convergence of the formal power series for the multi-variable 

cascade and feedback connections.

The classical Laplace-Borel transform provides a powerful tool for the analysis of signals 

as well as linear time-invariant systems. The one-sided integral Laplace-Borel transform pair

k\

naturally suggests a definition for the formal Laplace-Borel transform of a formal power 

series in one variable:

i f /  :

: c c

c I—> c,
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where the alphabet is X  =  {a::o}) c is a series with coefficients (c, 0 ) =  0 , and

(c ,4 + ^ ) =  fc! (c,4) ,  VA;>0.

This formal Laplace-Borel transform naturally suggests a transform pair for analytic signals. 

Any analytic signal has a power series expansion in the time domain. By applying the 

Laplace transform to every term in the power series, a Laurent series representation of 

the signal in the frequency domain can be obtained. The transform, therefore, provides a 

transformation between different series representation of analytic signals, one in the time 

domain and one in the frequency domain. As discussed earlier, the idea can be applied to 

analytic linear systems. As a linear time-invariant input-output system can be completely 

characterized by its impulse response, which is also a signal itself, the Laplace transform 

of a system is simply its transfer function. For nonlinear systems, however, the situation is 

more complicated as the usual procedure for determining the Laplace transform of a signal 

can not be directly applied to such a system. In this setting, the formal Laplace-Borel 

transform for analytic signals was first used by Fliess in [20,23] and later by Minh in [44] 

to represent the input and output of a Volterra operator, which in turn produced a type 

of symbolic calculus for computing the output response of a nonlinear system given various 

inputs. W hat is absent in this framework, however, is the explicit notion of computing 

the formal transform of the input-output system represented by a Fliess operator. Thus, 

another general goal of the dissertation is to define this type of transform. In this way, 

the formal Laplace-Borel transform provides an alternative interpretation of the symbolic 

calculus proposed by Fliess [23] when combined with the notion of the composition product.
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1.2 Literature Survey

The idea of representing functional expansions by formal power series of non-commutative 

variables comes from the interaction of two areas: algebraic combinatorics and iterated in

tegral theory. The formal power series method in computer algebra dates back to the early 

1960’s when introduced by Schiitzenberger as a generalization of autom ata and formal lan

guages [16,55-57]. The theory of the iterated integral was proposed by Chen in the late 

1950’s. In [7], Chen defined a formal power series in m  non-commutative indeterminates as

sociated with each path  in the m-dimensional Euclidean space, M"*, for an iterated integral, 

and then generalized the definition to an arbitrary m-dimensional differentiable manifold 

in [8]. The theory of iterated integrals was later applied by Chen to discover new relation

ships in the algebraic structure of loop spaces [13,14]. Motivated by the theory of iterated 

integrals and their rich algebraic structures, Fliess first applied the formal power series rep

resentation in 1973 to give a theory of realization for bilinear systems [18] and later in 1974 

a more general realization theory for nonlinear systems [19]. In [23], the representation of 

a system output by a type of symbolic calculus involving iterated integrals was introduced. 

Specifically, a formula for computing the solution of a differential equation with a forcing 

function was given in terms of a functional expansion. The input-output operator defined 

in this particular fashion was further developed in [20,21,60,66,67]. In [28] it was shown 

that if the growth condition on the coefficients of the formal power series (1.9) is satisfied, 

the input-output mapping constitutes a well-defined operator whose domain lies in a ball 

in space while the range lies in a ball in space, where 1/p + 1/q = 1. In addition, 

Sklyar and Ignatovich expressed the input-output mapping of an affine system as a series 

of nonlinear power moments, which corresponds to selecting different basis for the Fliess 

algebra [58].

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



11

Formal power series methods are also connected with other techniques in nonlinear 

system analysis. A few examples are the free Lie-algebraic techniques, combinatorics on 

words, and the differential geometric methods. The free Lie algebra dates back to the 

beginning of the twentieth century in the work of Campbell, Baker and Hausdorff on the 

exponential mapping in a Lie group described by the Campbell-Baker-Hausdorff formula [2, 

5,29]. Subsequently, extensive work has been done in free Lie algebras and their application 

to nonlinear control theory [4,8,9,20,40,52,61]. Sussmann provides an expansion of Chen 

series as a product of exponentials in a  P. Hall basis [62]. The exponential product expansion 

dramatically simplifies some hard analytic results, as shown by Kawski and Sussmann in 

[40].

The algebraic structure of formal power series also involves combinatorics on words, 

a field tha t has grown separately within several branches of mathematics, such as group 

theory, and the areas of autom ata and formal languages [3,16,43,55-57]. Much literature 

is also devoted to the shuffle algebra [3,43,49,52], and its connection to the multiplication 

of two systems [21,66]. The set of formal power series with the operations of concatenation 

and shuffle forms a Hopf algebra. The duality of the concatenation and shuffle implies two 

bialgebra structures on the set of formal power series [43,52]. The algebraic nature of the 

composition product in this setting has not been explored.

Differential geometry has been used extensively in nonlinear control since the 1970’s 

[31,32,46], a brief overview of which is given by Respondek in [51]. Since the natural state 

space of many engineering systems is a differentiable manifold, the differential geometric 

methods has proven to be very elegant and powerful. There is extensive research involving 

the state space realization of nonlinear systems over a differentiable manifold [6,19,21,31,33, 

46,60,67]. The different notions of controllability and observability of nonlinear systems are
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also addressed in this setting. In [60], the existence and uniqueness of minimal realizations 

of a nonlinear system was studied. In [66], a precise correspondence was established between 

realizability of input-output operators and the existence of high order differential equations 

involving the derivatives of inputs and outputs. It was shown in [68] tha t the order of the 

input-output equation satisfied by a nonlinear system is no less than the minimal dimension 

of any observable realization of the system.

System interconnections have interested control theorists for decades. Willems studied 

interconnections in the context of system behaviors, which does not distinguish explicitly 

the direction of signal flow [63,69,70]. An explicit direction of signal flow, however, must 

be predetermined for cascades. In [22], Fliess provides an interpretation of the cascade 

decomposition in a state space setting using the joint notions of foliation and ideals of 

transitive Lie algebras. The approach Rugh applied in [53] is to consider the Volterra- 

Wiener type nonlinear systems as compositions of feedback-free interconnections of linear 

dynamics and static nonlinear elements. In [39], Kawski proposed a possible approach 

to nonlinear state space system feedback interconnection using the chronological algebra. 

In [17], Ferfera produced explicitly the generating series for cascaded interconnection of two 

Fliess operators in the SISO case, and showed that there always exists a series c o d  such 

that y =  Fc[Fd[u]] = Fcod[u]-

The classical integral Laplace-Borel transform provides an elegant way to analyze linear 

systems. The generalization of this transform also provides the possibility of algebraic rep

resentation of nonlinear systems, which, in turn, enables the solution of nonlinear problems 

by recursive computer algebraic procedures. Since the 1950’s, much effort has been devoted 

to the extension of the linear system techniques to nonlinear system analysis, and some 

notable success has been achieved. The formal Laplace-Borel transform was used by Fliess
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in [20] to represent the input and output signals of a nonlinear analytic system, which in 

turn  prodnced a type of symbolic calculus for computing the output response of a non

linear system given various control inputs. Later, Lamnabhi proposed a way to compute 

the output response of a nonlinear system by a generalization of the Heaviside operational 

calculus in [41], In [21,23], the formal Laplace-Borel transform of the input and output 

signals was used to solve a nonlinear differential equation with forcing functions, and the 

non-commutative indeterminates in a formal power series representation were compared to 

the association of variables developed by Mitzel and Rugh [45], and the Fliess representa

tion was compared to the nonlinear high order transfer function representation proposed 

in [53]. In [44] Minh viewed the system output signal as a function parameterized by the 

indeterminates of input signals and introduced an evaluation transformation to  compute the 

temporal output response of the system given different inputs. In [59], Sternin and Shat- 

alov described a formal Laplace-Borel transformation over the single-variable alphabet and 

used it to reconstruct resurgent functions. W hat is absent in all of these approaches, is an 

explicit notion of the transform of the input-output operator to characterize the nonlinear 

input-output system.

1.3 Problem  Statem ent

The main goal of this dissertation is to address the following problems:

1. To describe in a unified manner the generating series for the four elementary system 

interconnections: the parallel, product, cascade and feedback connections. In each 

case, the generating series for the composite system is to be produced, and a growth 

condition on the coefficients of the generating series is also provided, when one exists.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



14

2. To provide a definition of the formal Laplace-Borel transform of a Fliess operator, to 

characterize its basic properties, and to apply the formal Laplace-Borel transform in 

the analysis of system interconnections.

3. To characterize the algebraic structures of the set of formal power series and the set of 

Fliess operators with respect to system interconnection and the formal Laplace-Borel 

transform.

1.4 D issertation  O utline

The dissertation is organized as follows. In Chapter II, the basic terminologies regarding 

formal power series are reviewed, as well as some useful operations over the set of formal 

power series. In this chapter, the definition of the composition product in the multi-variable 

setting is given by generalizing an existing definition for a single variable composition prod

uct, and its set of known properties is expanded. The algebraic structure of the formal power 

series is studied in the presence of the concatenation, shuffle and composition products.

Chapter III is devoted to the interconnections of Fliess operators. Specifically, the formal 

definition of a Fliess operator is introduced, and the four basic interconnections of two Fliess 

operators are described in a unified manner: the parallel connection, product connection, 

cascade connection and feedback connection. In each case, the corresponding generating 

series is produced, and a growth condition is provided, when one exists. The analysis 

starts with the three non-recursive system interconnections and the corresponding binary 

operations on formal power series. Based on the analysis of the non-recursive connections, 

the feedback connection is then addressed. A new binary operation, the feedback product is 

introduced and characterized. A modified composition product is also defined in the process.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



15

Motivated by the correspondence between operations on formal power series and system 

interconnections, in Chapter IV, a nonlinear extension of the classical integral Laplace- 

Borel transform is proposed: the formal Laplace-Borel transform of a Fliess operator. The 

properties of this transform are further explored, and its applications to system analysis 

are illustrated. The formal Laplace-Borel transform provides an alternative interpretation 

of the symbolic calculus introduced by Fliess et al. in [23] to compute the output response 

of analytic nonlinear systems. In particular, using the concept of the formal Laplace-Borel 

transform and the composition product, an explicit relationship is derived between the 

transforms of the input and output signals of a nonlinear system. Finally, it is shown that 

the formal Laplace-Borel transform provides an isomorphism between the semigroup of all 

convergent Fliess operators under composition, and the semigroup of all locally convergent 

formal power series under the composition product.

The main purpose of Chapter V is to provide a software implementation of the main 

operations described in the previous chapters. An implementation package in Maple is 

presented based on the ACE package developed by the ACE group in Universite de Marne- 

la-Vallee led by Sebastien Veigneau. The ACE package provides building blocks for the 

binary operations on the free monoid of formal polynomials, such as the concatenation 

product and the shuffle product. In this software package, the following binary operations 

are implemented: the chronological product, composition product and modified composition 

product, as well as the left and right shift operators, the degree, order, and metric function 

in the space of formal polynomials. The results in previous chapters are illustrated by 

command line examples using the software.

Chapter VI summarizes the main conclusions of this dissertation and gives some ideas 

for future research.
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CHAPTER II

FORMAL POWER SERIES

2.1 Introduction

In this chapter, the basic terminology regarding formal power series is introduced, and 

the necessary tools are developed for the analysis in subsequent chapters. Specifically, a set 

of definitions concerning formal power series are introduced; four operations over the set 

of formal power series are given: the concatenation, shuffle, chronological and composition 

products, and their properties are characterized. The basic definitions for formal power 

series and the shuffle product are mainly from the classical literature, e.g., [43]. The defini

tion and properties regarding the chronological product are from [37,38]. Much research has 

been done on the shuffle algebra [3,43,52], while the algebraic properties of the composition 

product are unavailable in the literature.

2.2 D efinition o f Formal Power Series

It is customary in combinatorics to refer to a set of indeterminates as an alphabet. Its 

elements are called letters. A word over the alphabet X  = { x o ,x i , . . .  ,Xm}  is a finite 

sequence of letters Xi^Xi^-' -Xi^ where G X, V 1 < r  < n. The number of letters 

contained in a word is called the length of the word and is denoted by j • j. The word with 

zero length is the empty word and is denoted by 0 . The set of words Xi^Xi^_^ ■ ■ - Xi  ̂ with 

length n, is denoted by X ” . When n =  0, X^ =  {0 }. The set of all words over the alphabet

X  is X* := X^. A formal language is any subset of X*.
k>0
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D efin itio n  2.2.1. A fo rm a l pow er series  over an alphabet X  is any mapping of the form

c : X * - ^

and the set of all such mappings is denoted by

D efin ition  2.2.2. For a formal power series, c, the image of a word rj G X* under c, 

denoted by {c,r]), is called the coefficien t of p in a. The coefficient (c, 0 ) is called the 

con stan t te rm  of a. I f  the constant term is 0, the formal power series is called proper.

In this dissertation, a formal power series c G is represented by the natural

formal summation in the following:

c =

D efin itio n  2.2.3. The support of c is the set of words

supp{c) := { g e X *  ■. [c,r]) ^  0 }.

The order of c is defined by

inf{|?7| : t] G supp{c)} : c ^  0
ord{c) <

00 : c =  0 .

Prom the definition, the order of an improper series is always 0. The set of all formal power 

series with finite support is called the set of all formal polynomials, and will be denoted by 

M<X>.

D efin itio n  2.2.4. Given an arbitrary set S, for any c,d G S, define a mapping f  : S  x S  

U {0}. The function f  is called an ultrametric i f  it satisfies the following properties:

1- f { c , d ) >Q

2. f{c,  d) — 0 c = d
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3. f{c,  d) = dist{d, c)

4- f {c,d)  <max { f { c , e ) , f { d , e ) } .

D efin ition  2.2.5. [3] The function dist{-, •) over the set is defined by

dist : - + K+U {0 }

where cr G (0 , 1) is an arbitrary constant.

The function dist{-, ■) can be verified to have all the four properties in Definition 2.2.4, 

therefore dist{-, •) forms an ultrametric over the set Clearly the last property is

stronger than  the triangle inequality, therefore an ultrametric is always a metric.

Theorem  2.2.1. [3] The set of all formal power series ^  forms a complete metric

space under the ultrametric dist{-,-).

Proof: To prove completeness, one needs to prove that every Cauchy sequence in 

is convergent. Let {c„} be a Cauchy sequence in » ,  then

Ve >  0, 3 an integer N  such that for any n ,m  > N , dist{cn, Cm) < e.

Prom the definition of dist{-, ■), then, ord{cn — Cm) > log^ e. Therefore,

V ?7 e  X*  such that \r]\ < log^ e, (c„, rj) = {cm,r]) for sufficiently large n  and m.

Thus for any word rj, is a Cauchy sequence in R^. Since R^ is complete, {(cn,^?)}

converges to a vector in R^, which will be denoted as (c,77). Let c clearly

d i s t {cn ,  c) —> 0 and c G R ^ - c X T h e r e f o r e  R ^ - CX»  is complete. ■

R^<CX;S> is a vector space. W ith the ultrametric defined over the set R^<§CX;» 

in Definition 2.2.5, the space < ^ X ^ ,d i s t )  is a bounded metric space, as the metric
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dist{c, d) < I for all c, c? G <C X  » .  Prom the definition, it is easy to see tha t dist{c, d) = I 

if and only if (c, 0 ) ^  (d, 0 ).

2.3 O perations on Formal Power Series

In this section, four operations over the set of formal power series will be introduced: 

the concatenation, shuffle, chronological and composition products. The four operations 

provide a natural way to characterize the algebraic structures of the formal power series. 

The operations will also facilitate future analysis of the system interconnections. For each 

operation, the definition used in this dissertation is presented, in addition to some other 

existing alternative definitions in the literature. The properties of each operation are de

scribed, along with various relationships between the four operations.

2.3.1 Concatenation Product

The concatenation of two words is defined as the following.

D efin ition  2.3.1. [3] The concatenation  of two words r], G X* is the mapping

C : X* x X *  X*

■

For any word rj G X*,

Tj0 =  0Tj — rj.

Hence, the empty word, 0 , is the neutral element for the concatenation operation. Intu

itively, any inverse operator should involve removing one word from the other. The following 

shift operators can be used for this purpose.
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D efin ition  2.3.2. [3] For any Xi G X ,  the left sh ift, (•), of a word rj is defined as

rj' : i f  T] ~  XiT)'
; =

0 : otherwise.

The left concatenation inverse of a word can be written in terms of the left shift, specifically 

= Cl Symmetrically, the right shift operator can be defined in the

following way.

D efin ition  2.3.3. [3] For any Xi G X ,  the righ t shift, (•) of a word is defined as

rj' : a  rj — rj'xi
iv)xi ;=

Straightforwardly, the right inverse of the concatenation of two words can be written using 

the right shift operator, =  Ci C ^ The shift operations can be extended

naturally to the formal power series as follows.

D efin itio n  2.3.4. For any c S Vxj G X , the left shift operator xG^ (•) of a

formal power series c is

and the right shift operator is

 ̂ := (f v ) iv)Xi ^
V€X*

The concatenation product of two formal power series can be obtained by extending 

Definition 2.3.1 in the following way. This operation is frequently called the Cauchy product 

of two series.

D efin itio n  2.3.5. [43] The concatenation  product of two formal power series c ,d  G
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M <C X  ̂  is the mapping

C : R < X >  X R < X > R < X >

: cd ^ E r ,€ X - 1 2 r ,=  i4^^0id,^p)V-  

The unit formal power series, 1, the support of which consists of only the empty word, 0 , is

the identity element for the concatenation product. In the case of formal power series and

formal polynomials, the following operation is usually viewed as a type of concatenation

inverse.

Definition. 2 .3 .6 . [3] The s ta r  operator applied to a formal power series c G 

is defined as

c * : = ^ c ” := ( l - c ) - l ,
n>0

where c" denotes the concatenation power.

If the formal power series c is not proper, that is, the constant term  (c, 0 ) ^  0, it is always 

possible to write c =  (c,0)(1 — c'). Then it follows that there exists a c~^ G R < ^ X »  

such that under concatenation product cc~^ =  1 and c“ ^c =  1. A formal power series c is 

invertible if and only if it is not proper [3]. Specifically, the concatenation inverse of c can 

be written as

c - i  =  ^ ( l - c ' ) - '  =  7 ^ ( c ' r .  (2 .1)
(c,0 ) '  (c,0 ) '

The fundamental properties of the catenation product are summarized in the following 

theorem.

T h e o rem  2.3.1. Let X  ~  {xq, x \, • • • , Xm}- For all c, d, e € R<c:X!2 >, and a , G R, the 

following identities hold:

1. Bilinearity {ac +  /3d)e =  a(ce) +  (3{de)

c{ad + (3e) =  a{cd) +  /3(ce)
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2. Associativity {cd)e = c{de) = ode

3. Identity The identity element for concatenation product C is the unit series 1.

4- Left shift {^i')~^c =

xf^{cd) — xf^{c)d  + {c,0)x~^d 

^  x f \ c ) c *

5. Invertibility A formal power series c is invertible if  and only if  it is not proper. The

inverse of c is given in (2.1). For a mononomial, i.e., a word, the left (right) inverse

can be determined by the left (right) shift.

Proof: The properties 1,2, and 3 are straightforward. The proofs for the left shift and 

invertibility can be found in [3, p. 13]. ■

2.3.2 Shuffle Product

The shuffle product of two words is defined recursively using the concatenation product.

Definition 2.3.7. [23,49, 50] For two arbitrary letters Xj, x/. € X  and two words r/, ^ £ 

X*, the shuffle product is defined recursively by

(xjT]) LU (xkO =Xj[V '^  +  XkiXjP LU ,̂ ],

with 0 LLi0 =  0 and ^ u j0 =  0 lu^ =  4 .

In this dissertation. Definition 2.3.7 is used for all the proofs and analysis. An alternative 

definition is given in [43], where the recursion is done from the right. It can be easily verified 

that the shuffle product of two words T]uj$, is a formal polynomial composed of words each 

having length of \t]\ +  j ]̂. Therefore, for a fixed u £ X*, the coefficient

(t7uj^,z^) =  0 if |7?j +  1̂1 ^  n.
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The shuffle product of two words can be viewed as a mixing of the letters of the two words 

which preserves the order of the letters in each word. In [43], the shuffle product of two 

words is defined as a summation over a subset of X*  in the following.

D efin itio n  2 .3.8. [43] For two arbitrary words t], ^ € X * , the shu ff le  se t  o f  tw o words

is the subset of X* defined by

SrjujS, — { h \ h  = aibia2b2 ■ ■ ■ Onhn, « >  0 ,

ai'^bi G X  , Tj =  a\tt2 ■ ■ ■ Ojij f  — b\b2 ' ' '

The shu ff le  product is the summation over the shuffle set of the two words, which is also 

called the characteristic polynomial of the shuffle set.

The definition of the shuffle product of two words can be extended to two formal power 

series in the following manner.

D efin ition  2.3.9. [23] For any two series c,d £ 1R^X;3>, the shu ff le  p roduc t of c and 

d is defined by

CLud= ^  {c,T]){d,^)r]Lu^.

For vector valued series, the shuffle product is defined in a componentwise fashion. Specifi

cally, for any two series c, d G the shuffle  product of c and d is defined by

{c iud)i=  (ci,r]){di,f,)riLu^,

where (cmd)*, Ci and di are the i-th components o fcu jd ,  c and d, respectively.

The Hopf algebra structure of the set of all formal polynomials M<X> also suggests a 

definition of the shuffle product as the adjoint of the diagonal map [43,52]. The set M<X>
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has an associated scalar product given by

(• , •) : E < X >  X E < X >  ^  E

The shuffle product of two formal polynomials can be viewed as a bilinear mapping

sh u ff le  : E < X >  ®E<-X’> —> E < X >

: p q 1-^ p LU q.

The diagonal mapping is the co-product associated with the algebra E  X  »

A ; E < A > E < A >  ig)E<X>

: c I—> (c, uluv) u iSi V.
u , v € X *

For any letter Xi, the co-product A (a;*) =  Xj ® 0 4- 0  (8 a:,.

D efin itio n  2.3.10. [43, 52] For any c G E < A » ,  the shuffle product of two formal 

polynomials p, q G E < X >  is the adjoint of the diagonal map defined by

{c,pujq) = (A (c),p®  5 ).

The concatenation product of two formal polynomials can also be viewed as a bilinear 

mapping

concatenation : E < X >  ® R <A > —» E < X >

: p® qe-^pq .

Let A ' denote the adjoint of the concatenation product, then V r G E<?C A^>,

{pq,r) = (p ® g ,A '(r)).
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This implies tha t for any series, the co-product associated with the algebra is

A ' : - + K < X > ® K < X >

: c I—> ( c , u v ) u ^ v .
u , v £ X *

It is shown in [52] that there is a duality between the two bialgebra structures on M <g; X  

via the following theorem.

Theorem 2.3.2. [52j The adjoint of the shuffle product A  is a homomorphism for the

concatenation product. The adjoint of the concatenation product A ' is a homomorphism for  

the shuffle product. That is, y  a, d G M < C X ^,

A{cd) =  A(c) A(c?)

A ' ( c L u d )  =  A ' ( c ) lu  A ' ( d ) .

Some basic properties of the shuffle product are given below. From the duality of the con

catenation and shuffle products, there exists a symmetric relationship between the properties 

of the shuffle product and those of the concatenation product.

Theorem 2.3.3. Let X  =  { x q ,  x i ,  - ■ ■ , Xm}- For all c, d, e G R<§:X and a, j3 g R ,  the

following identities hold:

1. Bilinearity + p d ) n j e ^  a{c m e) -|- /3(d m e)

c LU {ad -I- (3e) =  a(c  lu d) -|- (3{c m e)

2. Commutativity cu jd  = d iuc

3. Associativity (c l l j  d) l u  e =  c  l u  (d l u  e)

4 . Identity The identity element for the shuffle product is the unit series 1.
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5. Left shift x~^ (c m d) =  (xf^c)  m c? +  c lu (x~^d)

Right shift (c uj d)x~^ ~  uj d +  c m (dxf^).

Proof: Properties 1-4 can be verified by straightforward (although tedious) combiuatorial 

calculations using Definition 2.3.7.

5. The left shift property of the shuffle product can also be proven using Definition 2.3.7 

(see [66]). The first step is to prove the identity for two words. Let £ X*. If either 

— 0  or ^ =  0 , the identity is straightforward. Otherwise, when rj and ^ are nonempty, 

then

iiAXk^') = xf^Xj{r)' LU^) + xf^XkivLu^ ') .

Applying the left shift operator gives

1 : i f  i = j
X -  X j  =  <

0 : i f  i y ^ j ,

and therefore,

Next, for any c, d € K-C A

x ~ \ c u j d ) =  {c,rj){d,^)x-\r]uj^)

v,iex*

rt,ieX' v,iex-

= Y  + Y  (o»7)(d,xiO (^?uj^)

=  (x~^c) ujd + clu (x^^d).

The right shift property can be justified by an analogous procedure. ■
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2.3.3 Chronological Product

A chronological product on a vector space C  (over the field K) is a bilinear operator 

* : C X C I—)• C  which satisfies the chronological identity

a* {h* c) = {a*b) * c + {h* a) * c for all a, b, c & C. (2.2)

A chronological product on M A  »  is defined recursively using the concatenation product 

[36-38,40]. The right chronological product is described below.

Definition 2.3.11. [36] The right chronological product of a non-empty word rj G

A *\{0 } with a letter X{ ^  X  is defined as

T ] * X i ^  rjXi .

For two non-empty words g and ^xj, the right chronological product is defined recursively 

using the chronological identity

g  * ^ X j  =  { g  * * X j  +  ( C * v )  * X j

— { g * ( ,  +  g ) x j

with g * 0 — 0  and 0 *g  = g.

The definition of the right chronological product of two formal power series can be obtsiined 

in the following manner.

Definition 2.3.12. [36] For any two series c ,d  G with either (c,0 ) ^  0 or

{d, 0 ) 7̂  0, the n gh t chronological product is defined as

c * d =  ^  {c ,g ){d ,O v*^-

It can be verified that Definition 2.3.12 satisfies the chronological identity (2.2). Similarly, 

one can define the left chronological product in the following manner.
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Definition 2.3.13. [37j  The left chronological product of a non-empty word rj e  

X*\{0} with a letter Xi £ X  is defined as

r i * X i ^  XiT].

For two non-empty words rj and xj^ , the left chronological product is defined recursively 

using the chronological identity

rj * Xj^ — {‘>1 * 0 * +  (C * ’?) *

with Tj * 0  = T] and 0  * rj = 0 .

Prom the definition, it is immediate that for a word with a single letter Xi, the chrono

logical power is equal to the concatenation power, i.e.,

=  (• • • * Xi) * Xi) *■■■)* Xi = XiXi -J-Xi^ = x".
n copies of Xi a

The fundamental properties of the chronological product are given in the following theorem.

T h e o re m  2.3 .4 . For all a, d, e G M-CX !3>, and a , /3 G M, the following identities hold for  

both the left and the right chronological products:

1. Bilinearity [ac -f fid) * e ~  a[c* e) + fi[d* e)

c * [ad fie) — a(c * d) +  fi[c * e)

2. Symmetrization [36] c* d-\- d* c = CLud

3. Variation of the chronological identity c * [d * e) — [cw d) * e.

Proof: Here only the explicit proofs for left chronological product are given. The properties 

of the right chronological product can be proven in an analogous fashion.

1. The bilinearity property follows directly from the definition of the chronological product.
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2. To prove the symmetrization property of the left chronological product of two formal 

power series, the symmetrization of two words is first proven. Let 77, ^ G X*  with |77| +  |^| >  1, 

that is, 77 and ^ can not both be empty words. Then it will be shown by induction tha t 

77>i=̂ +  ̂ *77 =  r} ij_j When I77I + 1̂ | — 1, there are two cases: rj — Xi, ^ = 0  and t] — 0 , ̂  = Xi.

By the definition of the left chronological product, Xi * 0  + 0  * X{ — Xi + 0 = Xi =  a;* lu 0

and 0  * Xi + Xi * 0  = 0 + Xi = Xi — 0  LU Xi- Now suppose the symmetrization property holds 

for any 77 and ^ such tha t I77I +  |^| < k. Consider two arbitrary words 77 and ^ such that 

1̂1 +  1̂1 =  +  1. For the nontrivial case when fj and ^  are both nonempty, applying the

definition of left chronological product gives

= {Xj^') + ^ *  {XkT)')

=  77 *  *  X j )  *  X k )

=  +  i '  * f l ) *  X j  +  *  fj' +  7)' *  * X k

=  X j { f j  LU f )  +  a : f c ( ^ L u  f ] ' )  =  { X j ^ ' )  LU { X k v ' )

Therefore, for any formal power series c and d it follows that

c * d + d * c =  ^  {c,ri){d,C)ri*^+ ^  {d,^){c,r])^ * t]
»7,?ex*

=  C l

3. Applying the symmetrization property and the chronological identity gives the identity
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in part 3. ■

The chronological power of a formal power series c G is defined as c*” =

(• • • ((c * c) * c) • • •) * c. An interesting observation by Kawski is tha t the shuffle power    -
n  copies o f c

of a formal polynomial can be represented in terms of the chronological power [38]. The 

result is also true for formal power series.

L em m a 2.3.1. For any c G K-C A  it follows that c =  n! c*” .

Proof: The proof is adapted from the inductive procedure in [38]. The equality is trivially 

true when n =  0,1. For n > 2, one must first show that c * =  (n — 1) • c*” . This,

too, is trivially true when n — 1,2. Now suppose this identity holds up to n — 2. Then

C * — C *  Me c) =  (c * * C +  * c )  * c

=  (n -  2 ) ■ * c +  c™ ^  (n -  1) • c*” .

Next, it is shown inductively that c =  n! c*” for n >  2. When n =  2, by the symmetriza

tion property, o '^^  =  c*c+c=i=c =  2c*^. So suppose the identity holds up to some n — 1. 

Then employing the previous identity

(cL^ (” -!) )  = c u j  

=  (n -  1)! c LU = { n -  1)! (c  * * c)

=  ( n ~ l ) ! ( ( n - l ) - c ™  +  c*")
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2.3.4 Composition Product

The composition product of two formal power series is defined recursively in terms of 

the shuffle product and concatenation. A definition of the composition product over an 

alphabet X  — {.to,xi} first appeared in [17]. The definition is expanded here to  formal 

power series over an arbitrary finite alphabet.

D efin ition  2 .3.14. [24^27] The com position product of a word t] G X* with a formal 

power series d G M"*^ X ^  is

V ■ \v\xi = 0 , Vi 7̂  0

XQ'^^[diuj{r]'o d)] ; ij — XQWit]', n >  0, i ^ O

where \r]\xi denotes the number of symbols in rj equivalent to Xi, and di : ^ (d,^)i is the

i-th component of d.

Consequently, if

V =  ■ ■ ■ XQ^Xi,XQ°, (2.3)

where ij ^  0 for j  =  1 , . . . ,  A:, it follows that

r j o d ^  x ^ ' ^ ' ^ ^ l d i ^  u j  • ■ ■ X Q ^ ' ^ ^ [ d i ^  L ua jQ ® ] • • • ] ] .

Alternatively, for any t] G X*  of the form (2.3) one can uniquely define a set of right factors 

{t]o, rji ,. . . ,  T]k} of T] by the iteration

%+i =  T)o = ij+i 7̂  0, (2.4)

so that T] — Tjk with k = \rj\ — \t]\xq- In this setting p o d  = Pk ° d where pj+i o d = 

[4q+i UJ (pj o d)j and po = Xq°.

T heorem  2.3.5. [24-27] Given a fixed d G !3>, the family of series {pod : p G X*}

is locally finite, and therefore summable.
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Proof: Given an arbitrary rj G X*  expressed in the form (2.3), it follows directly that

k
ord{r] o d) — no + k + ^  nj + ord[di.)

j= i
H -\v\xq

=  1^1+ X !  ord{di.). (2.5)
j= i

Hence, for any ^ G X*,

IdiO ■■= { v & X *  : { r ,o d ,0 ^ 0 }

C  {77 e  X* : ord{r] o d) < |^|} 

l»?|-kho
=  { v ^ X * : \ r ] \ +  ^  ord{di.) < \^\}.

j= i

Clearly this latter set is finite, and thus Id{C) is finite for all ^ G X*. This fact implies 

summability [3]. ■

D efin ition  2.3.15. [24-27] The com position  product of two formal power series c G 

"C X  »  and d G R™ -C X  »  is

c o d — ^ ( c ,  77) 7/0 d. (2.6)
■nex*

The locally finite property ensures that the composition product of two series is well-defined. 

The summation can also be written using the set of all right factors as described in equa

tion (2.4). Equation (2.4) suggests a way to decompose a formal power series c, which leads 

to the definition of homogenous series.

D efin itio n  2.3.16. [24, 25, 27] Any a G R^<§cX;3> can he written unambiguously in the

form

C =  Co +  Cl - f  C2 -I ,

where G R^<gCX;s> has the defining property thatrj G supp{ck) only 7/|t7| —jr/lxo =  k. Some
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of the series may be the zero series. When co = 0, c is referred to as being hom ogeneous.  

When Cfe =  0 for k = 0 ,1 , . . .  , l — 1 and ci 0 then c is called hom ogeneous  o f  o rder  I.

Let X® be the set of all words of length i in X*. For each word rj e  X®, the j - th  right 

factor, T]j, has exactly j  letters not equal to xq. Therefore, given any v  e  X*:

FI
{ c o d , r ) = Y ,  (c,Vj){Vj°d,u).  (2.7)

i j = 0  'ijSX*

The second summation is understood to be the sum over the set of all possible j- th  right 

factors of words of length i. This set has a familiar combinatoric interpretation. A com

position of a positive integer N  is an ordered set of positive integers { a i,a 2 , . . . ,  o k } such 

that N  == oi +  02 +  • • • +  Ok- (For example, 3 has the compositions 1 +  1 +  1, 1 +  2, 2 + 1

and 3). For a given N  and K ,  it is well known that there are Ck {X) = ( ^ l | )  possible

compositions. Now each factor pj 6  X®, when written in the form

. . . ^ n i  no 
'13 — 0 *̂ *1*̂ 0 ’

maps to a unique composition of f +  1 with j  +  1 elements;

i +  1 =  (no +  1) +  {n\ +  1) +  • • • +  {rij +  1).

Thus, there are exactly (7j+i(i +  l)m^ = if^mP possible factors gj in X®, and the total 

number of terms in the summations of equation (2.7) is ((m +  1)FI+^ — l ) /m  ~  (m +  1)I®̂L 

Other elementary properties concerning the composition product are summarized in the 

following lemma.

L em m a 2.3.2. For any c G M ^ -c X ^  and d G M ® " < c X the following identities hold:

1 . coO = c o := J 2 ^>oic,xl^)xl^.

2. cqo d — cq. (In particular, 1 o d — 1.)
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3. CO 1 = cjL Yhn&x* ■ (Therefore, c o l  = c i f  and only i f  cq = c.)

4 - (xqc) o d = Xq(c o d).

5. I f  c is homogeneous, then lim„^ooC°” — Q in the ultrametric sense of Definition 2.2.5.

Proof: Item 1-4 follows directly from the definition of the composition product. Only item 

5 needs to be justified.

5. From equation (2.5), it is easy to see that

ord{r]k o d) > |% | +  A: • ord{d).

Therefore,

ord{ck o d )>  min \r]\ + k ■ ord{d) > ord{ck) + k • ord{d).
r j£ su p p {c k )

If c is homogenous, then c == ci +  C2 +  • • •. Therefore,

ord{c o c) > min {ord(ci o c), ord{c2 o c), • ■ • , ord{cn o c), • • • }

> min {ord(ci) +  ord(c),ord{c2 ) + 2 ord(c), • • • , ord{cn) +  n ■ ord{c), • • • }

> min {ord(ci), ord(c2), • ■ • , ord{Cn), • • • } +  ord{c)

= ord{c) +  ord(c)

= 2 ord{c).

Now suppose ord(c°^) > k ord{c) holds up to some fixed k. Observe that

> ord{c) +  ord{c°'^) >  (fc +  1) • ord{c).

Therefore, ord{c°^) >  n ■ ord{c) holds for any n >  0. Since c is homogenous, ord{c) is at 

least greater than 1. Thus, ord{c°" — 0) >  n or equivalently, disf(c°” ,0) <  ct” . Finally,

0 <  lim dist(c°^,0 ) < lim cr” =  0 ,n^oo n—»oo

that is to say, lim„^oo c°" =  0 in the ultrametric sense of Definition 2.2.5. ■
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E x am p le  2.3.1. Suppose c =  ^xqX\Xq — \ x \Xq and d = xq then co  d = 0. T hat is, it is

possible to have co d = 0 , where both c and d are not zero. q

The composition product can be written in terms of the left chi'onological product. If

T] =  XQXir]', then by Definitions 2.3.13 and 2.3.14,

T]o d ^  ° ^)\

=  XQXo[di *  {v j '  o d) + ( t ] '  o  d) *  di]

=  Xq [di* {{t]' od)  *xo)]

^  (■■■{di* ({?]' o d) * xo) * xo) * ■ ■ ■) * xo
'------------------------- V------------------------- '

n + 1  copies o f xq

= Xo[di * XQ(r)'O d)]. (2.8)

Therefore, the composition product of a word t] G X*  with a formal power series d £ 

M™ <C X  3> can be written as

7] o d  =  <
V ■ \v\xi = 0 , Vi ^  0

x^ ld i  * xo{rj' o d)] ; 7] = XQXiTj', n > 0, i ^  0.

The following theorem states that the composition product on <C X  :§> x M"* X  3 > is 

continuous in its left argument. (Right argument continuity will be addressed later.)

T h e o rem  2.3.6. [24-27] Let {cj}j>i he a sequence in Tuith limj_>oo c» =  c- Then

limi_>oo(ct o d) =  c o d  for any d G in the ultrametric sense of Definition 2.2.5.

Proof: Define the sequence of non-negative integers ki =  ord{ci — c) for i >  1. Since c is 

the limit of the sequence {ci}i>\, {fci}j>i must have an increasing subsequence {kij}. Now 

observe that

dis t ia  o d, c o d) =
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and

\
ord{{cij ~  c )od )  =  ord ^  {ci- -  c , tj) tj o d

■n£supp{ci.  - c )

> inf ord{r] o d)
r i€ su p p { c i .  - c )

/

in/ M + ̂ĵ iTTni/'.• _/11

> ki..

ri&supp(ci -̂c)

Thus, dist(ci - o d ,co  d) < a^'i for all j  >  1, and limj_>oo Ci o d — c o d. ■

Some algebraic properties of the composition product are summarized in the following 

theorem.

T h e o rem  2.3.7. For any c,d ,e  G and a,/9 G M, the following identities hold:

1. Linearity {ac F (3 d) o e = a {c o  e) + P {do e)

2. Distributivity over shuffle (c m d) o e =  (c o e) m (d o e)

3. Associativity {co d) o e = co {do e).

Proof: Only the associativity property is nontrivial.

3. The first step is to prove that for all rj G X*, {go d) o e — g o {do e). The proof is by

induction. For g  = g o  — Xq° and using the definition of the composition product

(rjo o d) o e =  {x q° o  d) o  e =  Xq° o  e =  Xq° , 

go o {doe) = Xq®.

Therefore, (tjq o d) o e = go o {doe). Now suppose associativity holds up to g^ as defined in

(2.4). For 77fe+i =  Xg'^+^Xii^^^gk,
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o e

{rjk+i o d ) o e  = o d) o e

=  [di,^^ iu {r]k o d)]'^

= a:o^+'"^  ̂ LU (r/fc o d)] o e)

^  aro''+i'^^ o e LU ((% o d) o e)]

=  [(d o LU (rjk o{do  e))]

=  a;o'‘+^Xi^^i% o(doe)

=  ?7A;+i o (<^oe).

Therefore,

{co d) o e = j ^  (c,T/)r/ o c? o e =  ^  (c,77)(77o c?) o e
\r ;e x *  /  »7eX*

=  (c,77)77 o {do e) = CO {do e).
vex*

In general, c o {d + e) 7  ̂ c o d  +  c o e ,  but for series whose support is a subset of 

L = {xQ^XiXQ°lno,ni G N}, which are called linear series, this is a valid identity. This is 

illustrated in the following example.

E x am p le  2.3.2. Consider the alphabet X  = {a;o,a:i}, series c = x^ and d = e. Then

co {d+ e) = Xi o {2 d) = xq [2d ujxo(2d)j 

=  4xq [d LU xod] =  2 (a;od)
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However,

CO d + CO e = 2{c o d) — 2{x\ o d)

— 2x0 [d LU Xod] — {x(jd) ^

Now for the linear series ci =  a;Q^XiXo®)xo^XjXo“ =  observe

that

?7i o (c? +  e) =  XQ̂ XjXo® o[d + e) =  Xq̂ "*"̂  [{d + e)i uj Xq®]

=  x ”^+' [{di^x^°) +  i a u j x ^ ) ]  =  x^^+'K  mx^o) +  x^i+ '(ei UJX^«)

=  ?7i o d  +  r/1 o e.

Therefore,

Cl o (d +  e) =j ^  (ci, ??i) im o {d +  e)) 
viex*

X ]  (ci,m)(»7i +  X ]  (ci>m)(’7i oe)
mGX- mex*

Cl o  d  +  Cl o  e .

□

The composition product is not commutative in general. But in the next example, the 

linear series c G 1R<CX» of the form c =  Z^„i>o(c,Xo^xi)xo^xi is shown to commute under 

composition with another such series.

E xam ple 2.3.3. Let X  = {xo,xi}, c =  IZ„>o(c,xg^Xi)xgxi and d — Yim>o(d,xloXi)x'^xi. 

Then the compositions of the two linear series c and d are

c o d =  X .  (o; v)'n ° d = X !(c , XQXi)xo'^^d
r^ex* rt>0

=  X  (c,a:Sxi)(d,xS»xi)x”+™+ixi,
n, m > 0
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and

d o c =  {d,T])r] o c =  ' ^  { d , x ^ x i ) x ^  ' "c„m+l^
U <5 v l/Q  ij-y

t}€X* ^ ^ 0

=  y2  {d,x^xi){c,XQXi)xQ. n + m + l XJ .
n , m > 0

Clearly c o d = d o c. Also note that the composition product of the linear series produces 

the convolution sum [35]. □

Given a fixed c G M™ < ^ X ^ ,  consider the mapping -C X  : d fr^ cod.

The goal is to show that this mapping is always a contraction on i.e., that

dist{c o d ,c o e )  < dist{d, e), Vd, e G R ™ ^ X

so that fixed point theorems can be applied in later analysis [30,47,48,54]. Consider the 

following lemma.

Lem m a 2.3.3. [24~27j For any G < ^ X ^ ,

dist{ck o d, Cfc o e) < • dist(d, e),  Vd, e G R™ -CX

where Cfc is a formal power series with the defining property that t] G supp{ck) only if  

1̂1 “  IdUo = h as in Definition 2.3.16.

Proof: The proof is by induction for the nontrivial case where Cfc ^  0. First suppose k = 0. 

From the definition of the composition product it follows directly that rj o d  = rj for all 

T] G supp(co). Therefore,

c o o d =  ( c o , v ) v ° d =  (coi'd) »? =  Co,
ri&supp{co) r jGsupp{co)

and

dist{co o d,co o e) =  dist{co, cq) =  0 

< ■ dist{d,  e).
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Now fix any k > 0 and assume the claim is true for all c q , c i , . . . , Cfc. In particular, this 

implies that

ord(ck o d  — Cfeoe)>fc +  ord(d — e). (2-9)

For any j  > 0, words in supp{cj) have the form ijj as defined in (2.4). Observe then that

Cfc+i o d -  Ck+i o e =  (cfe+i, % + i) o d -  (cfc+i ,r]k+i) Vk+i ° e

=  Y 2  (Cfc+i,%+i) LU [r]k o d]] -  xo”'=+''^Meifc+i [% o e];
Vk,Vk+l^X-*

= Y 1  (Cfe+i,%+i) LU od]] -  LU [r/fe o e]
vk,nk+i^x*

xo”*=+i+̂ [dĵ _̂ i LU [rjk o e]] -  lu [pk o e]]]

=  Y 2  {(^k+i,r)k+i) [x<3'^^'~'~^[dk+i^[Vkod-r]koe]]+
Vk,Vk+l&^*

-e i k+i ) ^ [ Vkoe] ] ]

using the fact that the shuffle product distributes over addition (componentwise). Next, 

applying the identity (2.5) and the inequality (2.9) with Cfc =  rjk, it follows that

ord(cfc+i o d — Cfc+i o e) > min < inf nfe+i +  1 +  or’d(d) +  A; +  ord(d — e),
t>?fc+ies«pp(cfc+i)

inf Ufe+i +  1 +  ord{d — e) +  1%! +  k ■ ord{e)
Vk+i^supp(ck+i)

> k + 1 + ord{d — e),

thus,

dist{ck+i o d, Cfc+i o e) <  ■ dist(d,e).

Hence, dist{ck ° d, o e) < cr* • dist{d, e) holds for any A; > 0.

Applying the above lemma leads to following result.
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L em m a 2.3.4. [24-27] I f  c & »  then for any series Cq G R"*<c;Xo»,

dist((cQ + c) o d, (c() + c) o e) = dist(c o d ,co  e), Md,e G M™ 'S>. (2-10)

I f  c is homogeneous of order I > 1 then

dist{co d ,co  e) < ■ dist{d,e), Vc/, e € (2-H)

Proof: The equality is proven first. Since the ultrametric dist is shift-invariant:

dist{{cQ +  c) o d, ( c q  +  c )  o  e) =  dist [ c q o  d +  co d,(^) o e +  c o e)

= dist (cq +  c o cZ, Cq +  c o e)

=  dist {co d ,co  e ) .

The inequality is proven next by first selecting any fixed I > 1 and showing inductively

that it holds for any partial sum Cj where A: >  0. When k — 0, Lemma 2.3.3 implies

that

dist{ci o d,c io  e) <  cr* ■ dist{d, e).

If the result is true for partial sums up to any fixed k then using the ultrametric property

dist{d,e) < max.{dist{d, f ) ,d is t{ f ,e ) } ,  V d, e , / e

it follows that

/  / l+k+l  \  / l+k+l  \  \

d is t  I 1 X I ° ( X  I °  ̂)

/  / i+k \  n +k  \

=  dis t  I I X ° ̂  ° ( X i j  o e + ci+k+i o e j

( ( \  \  ^
< max < dist I I X  ) ° d P  ci+k+i ° d, I X  ° d + Q+^+i o e

/  / l + k  \  / l + k  \

d is t  I I X *^0 °  ^  ^  Q +fc+1 o  e ,  I X I °  ^ +  C/+/C+1 °  e
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=  max |dist(c/+fe+i o d, ci+k+i ° e),dist  ^  o d, ° }

< max ■ dist{d, e),a^ ■ dist{d, e ) |

<  (ĵ  • dist{d, e).

Herxce, the result holds for all A: >  0. Finally the lemma is proven by noting th a t c =  

linik-yoo Y l^ i^  Cj and using the left argument continuity of the composition product proven 

in Theorem 2.3.6 and the continuity of the ultrametric dist{-, ■).

■

The main result regarding the contractive mapping is the following.

T h e o rem  2.3.8. [24~27] For any c G M*” 3> the mapping d\-^ co  d is a contraction 

on ]R "*<X > .

Proof: Choose any series d,e G If c is homogeneous of order I > 1 then the

result follows directly from equation (2.11). Otherwise, observe tha t via equation (2.10):

dist{c o d ,co  e) =dist ( ( Cj j o d, I c, 1 o .
\  \ /=i  /  \ /=i

<  a ■ dist{d, e)

< dist{d,e).

An immediate consequence of the contractive mapping property is the right continuity 

of the composition product in the ultrametric sense.

T h e o rem  2.3.9. [24~27] Let {di}i>i be a sequence in with limi_oo<^i d-

Then limi^oo(c o d*) =  c o d for all c G
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Proof: The proof follows directly from the property of the contractive mapping.

lim dist{c o d i,co  d) < lim dist{di, d) — 0.

2.4 A lgebraic Structures o f Formal Power Series

Using the properties of various operations over the set of formal power series R™ < ^ X ^ ,  

a summary of the algebraic structures of -C X  ;:§> is given in the following theorem.

T heorem  2.4.1. Let R’” <g;X ̂  be the set of formal power series with the four operations 

defined over R ™ < I C X a d d i t i o n ,  concatenation, the shuffle product and the composition 

product. The following statements are true:

1. (R™<cX +) is a vector space.

2 . (R™ +) is a commutative group.

3. (R™<CX ̂ , C )  is a monoid with the identity c j  =  1 =  0 .

4. (R™<CX Ljj) is a commutative monoid with the identity c j  — 1 — 0 .

5. (R"* <CX:», o) is a semigroup.

6 . (R"® < C X +,  Lij) is a commutative ring.

7. (R"®<g;X ^>, + , Lu) is an R-algebra.

8 . (R”® - c X , m ) is an integral domain.

Proof: Statements 1, 2 and 3 are straightforward. Statement 4 can be justified by the com

mutativity property in Theorem 2.3.3, and statement 5 can be proven by the associativity
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in Theorem 2.3.7. Statement 6 follows statement 2 and 4. Statement 7 can be justified 

from statement 6 and the bilinearity property of the shuffle product in Theorem 2.3.3. The 

proof for 8 was provided in [6 6 , Lemma 2.1.1]. It is included here for completeness.

The following is to show that given any c, d £ R’” -CXS>, one has c m d  7  ̂ 0 when

ever c 7  ̂ 0 and d ^  0. To prove this, first order all the words ry =  Xi^Xi^ ■ ■ -Xi .̂ € X* 

lexicographically, then take two nonzero series c, d and let

— Xi^Xi2 ■ • ■ Xi^

and

Z2 = Xj^ Xj2 ■ • ■ Xj^

be the smallest words in the support of c and d, respectively. Let

^ ^  Xi^xi2 ■ ■ ■ Xl^^^

be the smallest word in the support of 2:1 lu 22- Then the coefficient of ^ in c l u  d is:

( c L u d ,^ )^  (c,T]k){c,rii){r]kLuT)i,^).

As Zi and Z2 are the smallest words on the support of c lu d, c and d respectively, one 

obtains

(cLud,0 =  {c,Zi){d,Z2){ziLuZ2,0,

which is nonzero since (c, zi), (d, 22) and {z\ lu 2 2 ,0  nonzero. ■

In general, (c, +, o) can NOT form a ring, as the composition product is not right 

distributive over addition, i.e., c o ( d 4-e) ^  co  d-\- co  e. Nevertheless, for the subspace of 

linear series, the right distributivity holds, therefore, (c/,„ear!+> °) forms a ring.
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CHAPTER III

INTERCONNECTION OF ANALYTIC NONLINEAR SYSTEMS

3.1 Introduction

In this chapter, a class of nonlinear input-output operators known as Fliess operators 

is introduced. Each Fliess operator can be characterized by a formal power series. The 

formal power series must be locally convergent to ensure tha t the Fliess operator represents 

a well-defined system. The main problem of interest in this chapter is the interconnection of 

two Fliess operators. Four fundamental interconnections are presented in a unified fashion: 

the parallel, product, cascade and feedback connections. In each interconnection, the key 

issues considered are: W hat is the generating series for the composite system? Do the 

interconnected systems still have well-defined Fliess operator representations? In particular, 

is the local convergence property preserved under system interconnections?

The chapter is organized as follows. First, the definition of a Fliess operator is given, 

and the local convergence property of its generating series is introduced. In Section 3 

the local convergence property of a formal power series is addressed under the shuffle and 

composition products. In Section 4, the four fundamental system interconnections are 

analyzed primarily by applying the results of Section 3. The system interconnections are 

divided into two groups: three nonrecursive connections: the parallel, product and cascade 

connections; and the feedback connection, which is recursive in nature. Specifically, the 

cascade connection of two Fliess operators is shown to be always locally convergent, and 

the feedback connection is always input-outpnt locally convergent.
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3.2 D efinition o f F liess Operator and G enerating Series

Let X  — {xq, x \  ̂ . . .  ,Xm} denote an alphabet of m +  1 letters, and X*  the set of all 

words over X .  For each c G one can formally associate a corresponding m-

input, ^-output operator Fc in the following manner. Let p  >  1 and a < b he given. For 

a measurable function u : [a,6] —+ M”*, define |lu||p =  max{||uj||p : 1 < i <  m },  where

||ui||p is the usual Lp-norm for a measurable real-valued function, Ui, defined on [a,b]. Let 

L'^\a,b] denote the set of all measurable functions defined on [a, 6] having a finite || • ||p 

norm and B^{R)[a,  6] {u G b] : ||u||p <  R}.  W ith to ,T  G R fixed and T  > 0, define 

inductively for each t] G X*  the mapping : L^{to,to + T] C[to, to + T] with £^0 =  1, 

and

[w](L fo) — /  Ui^{T)Exi^_^...Xij^[u]{T,to) dx, 
J to

where uo{t) =  1 .

D efin ition  3 .2.1. The Fliess operator corresponding to a formal power series c G 

is an input-output operator

Ec[u]{t) ^  ^  (c,p)£p[u](t,to).

The formal power series c is called the generating series of the Fliess operator.

All Volterra operators with analytic kernels, for example, are Fliess operators. In the 

classical literature where these operators first appeared [20,21,23,33,34,60], it is gener

ally assumed that the coefficients of the generating series c satisfies the following growth 

condition

|(c,p)| < £MI"I|77|!, Vr/GA*, (3.1)

where \z\ =  rnax{|2i | , |z2 | > • • •, l^ l̂} for ^ G R^, and jpj denotes the length of rj.
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The following theorem states that the growth condition on the coefficients of c in (3.1) 

ensures tha t the output Fc[v\ converges uniformly and absolutely on a finite interval.

T h e o rem  3.2.1. [28] Suppose c G satisfies the growth condition in (3.1). Then

there exists R  > 0 and T  > 0 such that for each u G B'^{R)[to, to + T], the output

y{t) = Fc[u]{t) =  {c,r])E,^[u]{t,to)
ri£X*

is absolutely and uniformly convergent on [to, to +  T\. Furthermore, the function y(t) is 

absolutely continuous on [to,to + T].

In light of the above convergence theorem, the following definition is given.

D efin itio n  3 .2.2. A formal power series is said to be locally convergen t i f  its coefficients 

satisfy the growth condition in (3.1).

The set of all locally convergence series in is denoted by S>, and the set

of Fliess operators with locally convergent generating series is denoted by F .  In [28] it is 

shown that any Fc & F  constitutes a mapping from B^{R)[to, to + T] into Bg{S)[to, to+T]  

for sufficiently small R , S , T  > 0, where the numbers p, g G N+ are conjugate exponents, 

i.e., 1 /p  + l /q  = 1 with (1 , oo) being a conjugate pair by convention.

3.3 Local Convergence o f Formal Power Series under Com 

position

In this section, the local convergence property of formal power series is considered under 

the composition product. As the composition product is defined recursively using shuffle 

product and concatenation, it is necessary to start from the local convergence property of
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the shuffle product. It is a point of reference and provides some im portant insight. The 

following theorem was proven in [66].

Theorem  3.3 .1 . [6 6 ] Suppose c,d £ growth constants Kc,Mc and

Kd, Md, respectively. Then c w d  £ 3> with

\ { c ^ d ,u ) \< K c K d M \‘'\{\t^\ + l)\, y n e X * ,  (3.2)

where M  — niax{Me,Md}.

Noting tha t n  +  1 <  2", n > 0, equation (3.2) can be written more conventionally as

j(cLud,iy)l < XcKd(2M)l‘'>jiyl!, £ X * .

The result is easily extended to the multi-variable case by the componentwise definition of 

the shuffle product on i.e., for all c,d £  define the component

(c LU d, u)i — [c iiud i,v ) , \ /  u £ X*, i = 1 ,2 , . . .  ,1, with Cj and di denote the components 

of c and d, respectively. The corresponding growth constants are Kc = maxj{it'c-}. Me = 

maxj{Mc.}, etc. The specific goal here is to show that co d is also locally convergent when 

the series c and d are locally convergent, and to produce an inequality analogous to (3.2). 

The basic properties of the shuffle product given below are essential.

Lem m a 3.3 .1 . [6 6 ] For c,d £ and any v £ X * :

1 . (cLud,z/)= ^  {c,^){d,^){^Lu(,iy)

kl

i=0 (ex*

(ex'-
fexkl-®
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Identity 2 in this theorem is actually an inequality (<) in [66]. It also appears (unproven) 

in the context of counting subwords in [43, p. 139]. So a proof of this slightly stronger result 

is in order.

Proof of Identity 2: For any fixed u £ X*  and z =  0

X]  ̂= (o*
fGxWI

A similar analysis hold when i = jî j. For the case where 0 <  z <  [i/'j, an inductive proof on 

the length of jẑ j will work. When \u\ =  0 or \u\ = 1, the claim is trivial. W hen \u\ = 2 and 

z =  1, i.e., 0 <  z <  jẑ l =  2, note that

^  UJ iz) =  ^  {xx +  xx, zz) =  2 =  P  
x,xG.X

Next suppose the identity 2. holds up to some fixed jzzj =  rz — 1 > 0. Clearly when jzzj n 

and either z =  0 or z =  n, the identity is true. So assume that 0 <  z <  n. Define zz =  z v ' , 

z £ X ,  u' £ and 8xz =  1 for .x =  2: G X  and zero otherwise. Then observe that

xEX x£X
4'ex*“i

=  X ^ x z i f , ' + X LJj '̂,zz')
x€X xex

(ex*
ieX^-i ^l;zxn-i-l

=  X X
^/ex*-i _ i€Xi
lex"-* {'ex"-z-i

rz — 1 \ /rz — 1 \ /rz
^ - i ) n  i ) = [ i

where in general /~^(-) denotes the left shift operator in X*. Therefore, the identity is true 

for all jizj > 0 .  ■

Now given any r] £ X*  of the form rj = x^'‘xi^x^'‘ right
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factors ■ ■ ■ i%} defined by (2.4) produces a corresponding family of real-valued func

tions:

1
Srioin) =  1̂ ,  n  > 0 

1

^  n - \ V i \

Srij (n) = ^  (n -  {rij -t-1) -  i), n >  \r]j\ > j , 2 < j <  k,
(n)nj+\ ^ 0

where (n)* =  n\/{n  — i)! denotes the falling factorial. The next two lemmas form the core 

of the local convergence proof for the composition product.

L em m a 3.3 .2 . [24] Suppose c G and d G with constants Kc,Mc

and Kd, M^, respectively. Then

\{co d ,u ) \< K ,i:^ ^ \{K d )M \% \\ ,  (3.3)

where M  = max{Me, Md}, and {'t[n{Xd)}n>o is the set of degree n polynomials in Kd

i f n { K d )  =  Y 1  l % | ! ,  n >  0 .

* J= 0  Vj^xi

Proof: The proof has two main steps. It is first shown that for any integer I > 0 and any 

T] G X*  with \g\ < I and right factors {rjo,rji, . . . , % }  as defined in equation (2.4), that

\ i V j o d , u ) \  <  W\\Sr,^iW\)  (3 .4)

for all 0 <  j  <  fc and \rjj\ < \u\ < I. (Note that {gj o d,if) = 0 and 5^ .̂(|i^|) is simply not 

defined when |iv| <  |r/j|.) This is shown by induction on j .  The case j  =  0 < i is trivial. 

When j  =  1 <  fc the left shift operator Xq := (a;o^'^^)“  ̂ is employed. Specifically,

for any u with |?7i | <  |«̂ | < I and containing the left factor (otherwise the claim is
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trivial):

\{r]iod,u)\=  LuXo°),z/)

<  ^  { K d M f m { ^ ^ x ^ ^ \ v ' )  (since 0 <  1̂1 < 0
^g^|i.'|-no

< K d M Y ^ - " \ \ u ' \ - n o ) \

Now assume that the result holds up to some fixed j  where 1 < j  < k — 1. Then in a similar 

fashion for |r7j+i |  <  \v\ < I:

\ { V j + i o d ,  I/)I LU (r/j o d), Xq V ) )

y \
Y 1  Y 1  i d i ^ + i^ o i v j ° d ,o i ^ '^ ^ d
i=0  ( e x ‘ 

lexl"'!-*

Since (rjj o d,^) — 0 for |^| < \rij\, it follows using the coefficient bounds for d (because 

0 < Id ^   ̂ “  (j +  1)) Lemma 3.3.1 (since jr̂ jj <  |d  <   ̂^  (^j+ i +  1)) that

W'\-\vj\ _ _|(,7,+1 od,*.)| < E E ■ (/̂ M̂,-l''̂ lM̂I|d!5,.(|d)) (?-d̂ 0
i =0  {ex*

{ 6 X l " ' l ” *

i=0

^  W\-\vi\
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Hence, the claim is true for all 0 < j  < k .

In the second step of the proof, the claimed upper bound on (c o d, u) is produced in 

terms of the polynomials tpn{I^d)- Since r] G Id{i^) only if \r)\ < |i/|, and using the inequality

(3.4), it follows that

\{co d,v)\  =
*J=0 Vjexi 

i > j

W\

i , j = 0  r t j SXi

L em m a 3.3 .3 . [24j  For each right factor r)j of a given word rj G X * , the following bound 

apply:

0 < Sr,. (n) <
(1 +  a)^-M +3  

ai\r]j\\

for any a  >  0 and all n  > \pj\.

Proof: The proof is again by induction. The j  = 0 case is trivial. W hen j  =  1 observe that

Sviin) =
1

< , n >  \rji I

<

(n)„i+i|?7o|!
1

(lml)m+il%|! 
1

i m | !
l  +  a \  +

a lm|!
, n  >  \ v i \ .
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Now suppose the lemma is true up to some fixed j  > 1 ,  then

Sr,j+i (n) -  X I  ~  +  1) -  *)

^  1 "'”̂ +^1 (1 _|_ Q,)(«-K+i+i)-d-l'7jl+J
. 1 ^+ j=0

«-|»?3 + ll

E (1
<

(n)nj+i+i a^Vjl'-

(1 + ay

(1 +  a ) ”“ l’?j+il+J+i
a^+^T]j+i\\

So the result holds for all j  > 0.  ■

The main local convergence theorem for the composition product is below.

Theorem  3.3.2. [84] Suppose c 6 ^  and d 6 3> with growth constants

Kc, Me and K^, M^, respectively. Then co d £ with

\ { c o d , i y ) \ < K c { { ( [ { m K d )  +  l ) M p { \ n \  +  l ) \ ,  \ / v  ^  X * ,

where 4>(x) := x l2 + \J x ? l^  +  x  and M  = max{Mc, Md}. I fm K d  3> 1, the growth condition

approaches Kc{mKdM }''}\u\  +  1 )!, that is

\{cod,v)\ < K c {m K d M p { \v \  + 1)!, Vr. G X*.

Proof: In light of Lemma 3.3.2, the goal is to show that for all n  >  0: ipn{Kd) < {(f>{mKd) +

l)" (n  +  1). Observe that applying Lemma 3.3.3 gives for any a  > 0:

M K d )  < E  E  —
« J = 0  V j S X '

” * M y m K d y  f  1

j = 0  j = 0s ( i + » ) " E E v i ; v ~ ;  i r r r ;

(i +  a r E / 3 '>
i = 0
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where (3 := m K d /a  +  1/(1 +  a). Setting ( 3 = 1  corresponds to letting a  = (l){mKd), and 

the first inequality of the theorem is proven. To produce the second inequality, simply note 

that in general m Kd < 4>{mKd) +  1 with mKd ^  (f>{mKd) + 1 when mKd  1- (Some 

notable values of cj){mKd) + 1 are given in Table 3.1.) Here (j)g denotes the Golden Ratio

(1 +  V̂ ) / 2  =  1.618..........  ■

Table 3.1: Specific values of (f){mKd) +  1.

mKd (j){mKd) +  1

0 1

<  1 ~  \ /m K d + 1

1 /2 2

1 +  1 -  ^

»  1 mKd

+  00 +  00

E x am p le  3 .3.1. In some cases, the coefficient boundaries given in Theorem 3.3.2 are 

conservative, i.e., smaller growth constants can be produced by exploiting particular features 

of the series under consideration. For example, when c G M L c ^ - ^ ^ i s a  linear series of the 

form c =  X^„>o(C) XqX\) XqXi , it can be shown directly, by writing the composition product 

as a convolution sum and using the fact tha t Xyfc=o (fc)  ̂ <  3 for any n >  0 , that

CO d,v)\<KcKdM \''\\v \\,  y ^ e x * .

□
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Example 3.3.2. Let X  = {xo,xi}, and suppose c =  I3fc>o(^0^ ^i- Then according to 

Lemma 2.3.2, c o 0 =  0 and 1 o c =  1. That is, it is possible tha t c o d  can be locally 

convergent even when c or d is not. □

This last example of the composition product motivates the following definition.

Definition 3.3.1. A series c G is input-output locally convergent i f  for

every Cu G it follows that co  c„ G where Xq — {xq}.

It is immediate tha t every locally convergent series is input-output locally convergent, but 

the converse claim is only known to hold a t present in certain special cases.

Lemma 3.3.4. [24] Let c G R ^< C X ^ be an input-output locally convergent formal power 

series with non-negative coefficients. Then c is locally convergent.

Proof: Set c„ == 1 and let K , M  be the growth constants for the series c o l .  Then from 

Lemma 2.3.2, property 3,

|(c o 1, Xo)l =  max ^  {ci,rj) < K M ^  n\, V n > 0 .
* r/eX”-

Thus, |(c, r))\ = maxj(cj,r/) <  K M ^  n\ for all n  >  0. ■

Lemma 3.3.5. [24] Let c G R ^ - c X ^  be an input-output locally convergent linear series 

of the form c — where ij G { 1 ,2 ,... ,m} for all j  > 0. Then c i

locally convergent.

Proof: Again set c„ =  1 and let K, M  be the growth constants for the series c o l .  Then

|(co l,^^)! =  m ax|(ci,a;o“ ^Xj„)| < K M "‘n\, 
i

and the conclusion follows.

ts
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3.4 System  Interconnections

In this section, the interconnections of two Fliess operators are considered. The four 

elementary interconnections of interest are parallel, product, cascade and feedback connec

tions, as shown in Figure 1.1. In the case of the cascade and feedback connections it is 

assumed that I  = m. Given two locally convergent Fliess operators Fc and F^, the general 

goal of this section is to describe in a unified manner the generating series for each ele

mentary interconnection and the conditions under which each series is locally convergent. 

The analysis starts with the three nonrecursive interconnections: the parallel, product and 

cascade connections, then the feedback connection is characterized with the aid of the non- 

recursive results.

3.4.1 The Nonrecursive Connections

In this section, the generating series are produced for the three nonrecursive intercon

nections, and the growth condition for each generating series is derived. The main results 

concerning the three nonrecursive interconnections are given in the following theorem.

T h e o rem  3.4.1. [24] I f  c,d  e  then each nonrecursive interconnected input-

output system shown in Figure 1.1 (a)-(c) has a Fliess operator representation generated by 

a locally convergent series as indicated:

1. Fc 4- Frf =  Fc+d

2. Fc ■ Fd = Fcujd

3. FcO Fd = Fcodt where i  = m.
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Proof: 1. Observe that

Fc[u]{t) + Fd[u]{t) =  ^  [(c,ry) +  (d,r?)] E^[u]{t,to)
rt€X*

= Fc+d[u]{t).

Since c and d are locally convergent, define M  = max{Mc, Md}- Then for any r} G X*  it 

follows that

l(c +  d,r/)| =  \{c,T]) + {d,r])\

< (Kc + K d )M \% \\ ,

or c +  d is locally convergent.

2. In light of the componentwise definition of the shuffle product, it can be assumed without 

loss of generality tha t £ = 1. Therefore,

Fc[u]{t)Fd[u]{t) = (c,r])Er,[u]{t,to) ^
rjex-

=  Y  EvHit,to)E^[u\{t,to)

ri,^ex*

= Fc^d{u]{t).

Local convergence of cuj d is provided by Theorem 3.3.1.

3. It is first shown by induction that Fj^o Fd = for any r] G X*  and d G R”*

Choose any r] G X*, and let {r]j} be the corresponding set of right factors defined in (2.4). 

Clearly,

E„j[u]{t,to)

Fd[u]{t) = ^  (d ,O F^M (t,to ),
4ex*
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and therefore,

{Fr,.  O F d [ u ] ) { t )  =  E n j  [Fd[u]] {t ,  t o ) .

The following result follows directly from the definition of the composition product:

{P'rio °  ~  , t o )  =  Fj jg[u]{t )

— Frioo d['^]{'t) ■

Now assume the claim holds up to some fixed factor rjj. Then

°  ^ d [ u ] ) { t )  =  E  Xi^^-^ri j[Fcl[u]]{t , to)

times

p t  pT2
^  " I  Pdi.^.^[u]iri)Erjj[Fd[u]]{n,to)dn...dTn^_^^^+i 

Jto Jtn
nj-i- 1  +  1 tim es 

rt mn  j ‘T2

= /  ■■■/ ^d^,..iu{0jod)[u]{'ri)dn...dTnj+i+l
Jta Jta
r i j + i+ l  tim es

—  F  XO---XO ltj (??jOrf)jM(^)

tim es

“  ^Vj+l°d[u]{t).

Thus, the claim holds for r/ =  ijj+i and, by induction, for r) — r]k,\/ k > 0. Finally,

{ F c O  F d [ u ] ) { t )  ^  ^  { c ,T } ) E r , [ F d [ u] ] { t , t o )  
vex*

=  X] iFV)Fv°d[u]{t) 
vex*

= X
vex*

=  E
v^X*

X {r] o d,u)E^[u]{t,to)
u€X*

X  (c ,v){v°d,iy)
vex*

E,y[u]{t,to)

=  {cod, u) Ei,{t,to) 
u & X *

=  FcodlMit)-
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Local convergence of co d was proven in Theorem 3.3.2.

■

Two examples are considered in the following. The first involves a series which is 

locally convergent but does not have a finite Lie rank. In the second example, both series 

have a finite Lie rank. Using their corresponding state space realizations, it is possible to 

determine by simulation the finite escape-time for the cascade realization. This number 

can be compared against the known lower bound derived from the growth constants of c o d 

computed in Theorem 3.3.2.

E x am p le  3 .4.1. [24] Let X  — {xo ,xi} ,  and c be the formal power series with coefficients

1 : v =
( C ,  7?) =  <

0 : otherwise.

It is trivially locally convergent. The claim is tha t the Lie rank of c is not finite. Let C{X)  

denote the usual Lie algebra defined in terms of the Lie bracket on X*\ [r/,^] =

For any t] = ■ ■ ■ Xi  ̂ ^  X*  define the iterated Lie bracket

[v] = - - ■ ■]].

It is shown in [46, p. 79] that {[77] : 77 € X*} is a spanning set for C{X)  when viewed as 

a linear space. The Hankel matrix for c is Tic = diag{\, 1 , . . . )  when its components are 

indexed by X* x X* [19]. The elements of X* are assumed to be ordered lexicographically. 

Now the support of any given polynomial [77] G >C(X) is contained in Xl '̂L Likewise, the 

series ’Hc{[ri\) also has its support in X^’̂ L Hence the dimension of 'Hc{C{X)) can not be 

finite, and Fc has no finite dimensional state space realization. Never the less, c o c is 

well-defined and locally convergent. □
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E x am p le  3 .4.2. [24] Let X  =  {xq ,x i} ,  c = Y^kX)KcM^k\ x \  and d = J2k>o ^d.XI^k\ xf, 

where Me > 0 and Md > 0 are arbitrary constants. It is easily verified th a t the 

state space systems

ic =  Mczluc, 2c(0 ) =  1 Zd = Mdzjud, Zd{0) =  1

V c  ~  X cZ q y d  —  X d Z d

realize the operators Fc : Uc yc and Fc : Ud yd, respectively, for sufficiently small 

inputs and intervals of time. Letting 2 =  [z j zj]'^ it follows directly tha t Fcod is realized 

by

(3.5)

(3.6)

where

KriM^z^z^ 0
h{z) =  KcZc

The first few coefficients of c, d and cod  are given in Table 3.2 along with the upper bounds 

on the coefficients of c o d predicted by Theorem 3.3.2. Since these upper bounds hold for 

any series c and d with the given growth constants, they can be conservative in specific 

cases.

In [28] it is shown that given any series c G where X  = { x o , x \ , . . .  ,Xm}

and |(c, i )̂\ < K cMI’'̂  \ty\\, Wî g X*, if

then Fc[u] converges absolutely and uniformly on [0,7’]. The result still holds if one has the 

slightly more generous growth condition \{c,v)\ < K cM]^^ ([r/l +  1)!. For a constant input

^  =  f {z) + g{z) u, z(0 ) ^  [

y =  h{z),

(  . \ /  \
KdMcZpd 0

/ ( ^ )  = , 9{z) =
[  0 y
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Table 3.2: Some coefficients {c,i/), {d,^), {cod,u)  and upper bounds for (cod, i/ ) in Exam

ple 3.4.2 assuming 1.

V (c,iy) {d,iy) (c o d, v) upper bounds for (c o d, v)

0 Kc Kd Kc Kc

Xq 0 0 Kc{KdMc) Kc(KdM)

X\ KcMc KdMd 0 KciKdM)

Xq 0 0 K c { K d M c f  2! K c { K d M f  2!

XoXi 0 0 Kc{KdMc)Md KciKdM)^  2!

X\Xq 0 0 0 KciKdM)^ 2!

x\ KcM^ 2! KdMj2\ 0 KciKdM)^ 2!

xl 0 0 Kc{KdMcf  3! K c { K d M f  3!

XqXi 0 0 KciKdMcfMd  22 K c i K d M f  3!

XoXiXq 0 0 Kc(KdMcfMd  2 K c { K d M f  3!

XoXi 0 0 Kc{KdMc)Mj  2 K c i K d M f  3!

X\xl 0 0 0 K c { K d M f  3!

X\XqXi 0 0 0 K c i K d M f  3!

x \ xq 0 0 0 K c i K d M f  3!

x\ KcM^ 3! KdMl  3! 0 K c i K d M f  3!

u{i) ~  u where |u| >  1, define

T ------------------------̂ max — / I 1 \o 71̂  I -I(m +  iyM c\u\
(3.7)

Then it follows from Theorem 3.3.2 that Fcod[u] will always be well-defined on at least the 

interval [0 ,T(nax)) where

1T  —m ax . ,  ,  1 - 14Mcod\u\

and Mcod = i4>{Kd) +  1) max{Mc, Md}. Four specific cases are described in Table 3.3. Here
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each Tmax is compared against the finite escape time, tgsc, of the state space system (3.5)-

(3.6) with u{t) — u — I, which is determined numerically (see Figure 3.1). In each case, 

the value of Tmax < tesa hut as expected Tmax is conservative in these examples since the 

upper bounds for the coefficients (c o d, v) are conservative. □

Table 3.3: T„iax and tgsc for specific examples of c o d with u — 1.

Case Kc Me Kd Md Mcod Tmax tesc iesc/Traax

1 10 5 5 5 34.3 0.0073 0.0362 4.96

2 5 10 5 5 68.5 0.0036 0.0190 5.21

3 5 5 10 5 59.6 0.0042 0.0190 4.53

4 5 5 5 10 68.5 0.0036 0.0329 9.02

200

180

160

140

120

im illf
0.005 0.045 0.050.02 0.025 0.03 0.035 0.040 0.01 0.015

Figure 3.1: The output of FcodW] when u(t) =  a  =  1 for Cases 1-4.
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3.4.2 The Feedback Connection

Given any c, d G the general goal of this section is to determine when there

exists a y  which satisfies the feedback equation (1 .10), and in particular, when does there 

exist a generating series e so that y — Fe\u] for all admissible inputs u. In the latter case, 

the feedback equation becomes equivalent to

Fe[u]  =  Fc[u  +  Fdoe[u]], (3.8)

and the feedback product of c and d is defined by c@d — e. It is assumed throughout tha t 

m > 0 , otherwise the feedback connection is degenerate. An initial obstacle in this analysis 

is that Fg is required to be the composition of two operators, Fg and I  +  F^oe, where the 

second operator can never be represented by a Fliess operator due to the direct feed term 

/ .  This does not prevent the composition from being a Fliess operator, but to compensate 

for the presence of this term a modified composition product is needed.

D efin ition 3.4.1. [24] For any y  G X* and d G the m odified  com position

product is defined as

I V ■ \v\xi = 0 , V* 7  ̂0
r } o d =  i

I od) + [di m [t]' 5 d)] : rj = x^XiT]', n >  0, i ^  0.

For c G A3> and d G the definition is extended as

c o d =  (c,r[) pod .  
n&x*

Analogous to the composition product, the following theorem ensures tha t the modified 

composition product of two series is always well-defined.

Theorem  3.4.2. [24] Given a fixed d G R™<C A the family of series {r)od :r]G  A*} 

is locally finite, and therefore summable.
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Proof: Given an arbitrary rj G X*  expressed in the form (2.3), it follows directly that

k
ord{r] od) > ord{rj o d) ~  uq + k + rij + ord(di.)

f=i
\v\-\n\xo

=  1̂ 1+  Y 1  (3-9)
j= l

Hence, for any ^ e  X*,

m )  {T 7G X *: (775d ,O ^0}

C  {77 G X* : (7?od ,^ ) /O }

C  {r; G X* : ord{i] o d) < |^|}
\v\-\v\xQ

= e  X* : |r/| +  ^  ord{di.) < |^|}.
J=l

Clearly this latter set is finite, and thus Id{f) is finite for all ^ G X*. This fact implies 

summability [3]. ■

Prom Definition 3.4.1, the modified composition product is left distributive. Neverthe

less, it is not right distributive, i.e.,

(c +  d ) o e  =  c o e  +  d o e  

c o (d  +  e) CO d + CO e.

The modified composition product is not associative, either. T hat is, (cod) oe 7  ̂ co (doe).  

This can be illustrated by the following counterexample.

E x am p le  3 .4.3. For a linear series c\ =  ̂ ^  series do =

5Zmo>o(^0 ’^™)^tT> arbitrary series e, the modified composition product

Cl o (do o e) =  Cl o do =  Cl +  Cl o do.
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while

(ci odo) oe  — (ci +  Cl oc?o) o e

=  Cl 5 e +  (c i o do) o e

=  Cl +  Cl o e +  Cl o do-

Therefore, the modified composition product is not associative. □

T h e o rem  3.4.3. Let {ci}j>i be a sequence in with limj_,oo Cj =  c. Then

limj^oo(ci od) = c o d  for all d S ^  in the ultrametric sense.

Proof: Define the sequence of non-negative integers ki — ord{ci — c) for i >  1. Since c is 

the limit of the sequence {cj}i>i, must have an increasing subsequence {fcq}. Now

observe that

di s t (c i5d ,c5d)

and

ord[[ci■ — c)od) ■= ord
( \

X ]  {Cî  -  c,T]) r]5d
y?j e s u p p i a .  - c )  y

>  inf ord(ri o d)
J? e s u p p ( c i .  - c )

> inf ord{rj o d)
1} € s u p p { c i . - c )

l»? |-|»?U o

i n f  A v \ +  y ]  ord{diriesupp{ci.-c)

> k i , .

Thus, dist{ci^ 5 d ,cod)  < for all j  >  1, and limj_ooCiod = cod .  ■

Similar to the contractive mapping property of the composition product, it can be 

verified tha t the mapping E™ <^X:s>:d^-^ c o d  is always a contraction on
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»  for a given c € W ^< ^X  i.e.,

dist{c o d, c o e) < dist{d,e), Vd, e G R”*-cX:§>.

The procedure to prove the contractive mapping of the modified composition product is 

a minor variation of previous results concerning the composition product, in particular. 

Lemma 2.3.3, Lemma 2.3.4 and Theorem 2.3.8.

L em m a 3.4.1. For any Cfc G where is a formal power series with the defining

property that g G supp{ck) only if  \r]\ — \ti\xq = k as in Definition 2.3.16,

di.st{ck od, Cfc o e) < cr̂  ■ dist{d, e), Vd, e G ~S>.

Proof: The proof is by induction for the nontrivial case where Cfc ^  0. First suppose k = 0. 

Prom the definition of the modified composition product it follows directly tha t rj od  = rj 

for all Tj G supp{co). Therefore,

c o 5 d =  (co,77)??od= ' Y  ico ,v )v  = co,
r te s u p p (c o )  rjGsupp{co)

and

dist{cQ o d, Co o e) =  dist{co, cq) =  0 

< (T° ■ dist{d, e).

Now fix any k > 0 and assume the claim is true for all cq, c i , . . . ,  Cfc. In particular, this 

implies that

ord{ck od — Cfcoe)>fc +  ord{d — e). (3.10)

For any j  > 0, words in supp{cj) have the form rjj as defined in (2.4). Similar to the
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composition product, observe then that

Cfe+i od -c fc+ i  oe =  ^  (cfe+i,r/fc+i) rjfc+i od -  (cfc+i,r?fe+i) rjfe+i oe
'?fc+l€:A'*

== Y 1  (cfc+i,%+i)

xo”'‘+i+^[dj^+i LU (7/fc 5d) -  LU (% oe)]]

=  Y 1  (ck+i,Vk+i) [xo"'^+‘xj^+i(r?fc5d-77fc5e)+a;o"'''+^'''^
%,%+iex*

[c?i,+i oj (%  5 d) -  m (%  5 e)] +  m  (r/fc 5 e) -  m (%  5 e)]] 

=  (cfc+i,%+i) N " ‘̂ +^a;ij^+i(%oci-%oe) +  xo"‘̂ +'+^

[dik+i { V k ° d - r ] k 5 e ) +  xo"'‘+'+^ [(di.^^ -  ) m (t?*, 5 e)]]

using the fact tha t the shuffle product distributes over addition (componentwise). Next, 

applying the inequalities (3.9) and (3.10) with =  r)k, it follows that

ord{ck+\ o d — Cfc+i o e) > min < inf Ufc+i +  1 +  fc +  ord{d — e),
[Vk+l^supp(ck+i)

inf Ufc_|_i +  1 +  ord(dj^_^j) + k + ord{d -  e),
r/k+iesupp(ck+i)

inf rifc+i +  1 +  ord{di^^^-ei^^^) +  ord{rjk 5 e)
Vk+i^supp(ck+i)

> minin < inf rifc+i +  1 +  fc +  ord(d — e),
\,Vk+l^supp{ck+\)

inf nfc+i +  1 +  ord(djj,^J + k + ord{d — e),
Pk+l^supp{ck+i)

inf Hk+i +  1 +  ord{dii^_̂  ̂ -  J  +  |%| +  fc • ord(e)
% + iesUpp(CA;+l)

> fc +  1 +  ord{d — e).

thus,

dist{ch+i o d, Cfc+i o e) <  ■ dist{d, e)
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Hence, dist{ck o d, Cfc o e) < ■ dist{d, e) holds for any A; >  0. ■

Applying the above lemma leads to the following result.

L em m a 3.4.2. I f  c e  then for any series Cq G

dist{{cQ + c) o d, {cq + c) o e) = d is t{cod ,co  e), Vd, e G E ™ ^ A » .  (3-H)

I f  c is homogeneous of order I > 1 then

dist(co d ,co  e) < a ' '■ dist{d,e), Vd, e G A 2 >. (3-12)

Proof: The equality is proven first. Since the metric dist is shift-invariant:

dist{{cQ +  c) o d, (cq +  c) o  e) =  dist (cg o d +  c 5 d, c() o e +  c o e)

=  dist (cq +  c 5 d, Cq +  c o e)

=  dist (c o d, c o e ) .

The inequality is proven next by first selecting any fixed I > 1 and showing inductively tha t 

it holds for any partial sum Cj where A; >  0. When A: =  0 Lemma 3.4.1 implies tha t

dist{ci o d, c; o e) < (T* • dist{d, e).

If the result is true for partial sums up to any fixed k then using the ultrametric property

dist{d, e) < max{dfst(d, / ) ,  dist{f, e)}, V d , e , f  G R '” <C A

it follows that

/  / l+ k+ l  \  / l+ k+ l  \
oe

/  /l+k+l \  /l+k+l \
dist X ]  j  ° XZ j

/  /l+k \  /l+k \
=  dist I^X^ a j  5 d +  Ci+k+i o  d, ( X ^ C i j 0 e +  Q+fc-f-i o e
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+  c/+fc+i ° e J  , 

oe +  ci+k+i oe >

{
/  /l+k \  /l+k \

dist I I Cj I od + c/+fc+i o d, I Cj j od

/  /l+k \  /l+k \
dist I ( X ]  ° ^ ° I

\  \  \
), dist I I 2 ^ Cj od, I 2 ^ Cj 1 oe I

l^i+fc+i , (jl . dist{d, e ) |

max ^dist{ci+k+i ° d, ci+k+i ° e

<  max •

< (7* ■ dist{d, e).

Hence, the result holds for all A: >  0. Finally the lemma is proven by noting tha t c =  

limk^ao ej and using the left argument continuity of the modified composition product 

proven in Theorem 3.4.3 and the continuity of the metric dist{-, ■). ■

Now, the result regarding the contractive mapping is readily given from Lemma 3.4.1 and 

Lemma 3.4.2.

T h e o rem  3.4.4. [24] For any c G E ™ the mapping d c o d  is a contraction on

Proof: Choose any series d, e G If c is homogeneous of order I > 1 then the

result follows directly from equation (3.12). Otherwise, observe tha t via equation (3.11):

dist{c o d ,c o e )  — dist j I Cj j o d, I (
OO

\ci \ oe
1=1 /  \;= i

<  a ■ dist{d, e)

< dist{d, e).

Following the identical procedure as for the composition product, the right argument con

tinuity of the modified composition product can be readily obtained from the contractive 

mapping property.
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T h e o re m  3.4 .5 . Let be a sequence in <^X ̂  with limj_>ooC î =  d. Then

limj_oo(codIi) = c o d  for all c G R™<CX

Proof: Prom the contractive mapping property of the modified composition product,

lim d i s t { c o d i , c o d )  < lim d i s t { d i , d )  =  0 .

The following theorem states that there is a system interconnection corresponding to the 

modified composition product, as shown in Figure 3.2.

Figure 3.2: The modified composition interconnection.

T h e o rem  3.4.6. [2 f ]  For a n y  a G a n d  d  G i t  follows t hat

F c 5 d[u] =  F c[u  +  Fd[u]\

for all admissible u.

Proof: The result is verified directly by inserting the direct feed term into the proof of 

Theorem 3.4.1, part 3. ■

The first main result for the analysis of the feedback interconnection is given next. 

T h e o rem  3.4.7. [24] Let c,d be fixed series in R™<CX3>. Then:
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1. The mapping

S  :

: a  € i + i  = c o {d O a )  (3.13)

has a unique fixed point in M™ ■C.X' :s>, c@d — linii_>oo e*, which is independent of cq.

2. I f  c, d and c@d are locally convergent then Fc@d satisfies the feedback equation (3.8). 

Proof:

1. The mapping S' is a contraction since by Theorems 2.3.8 and 3.4.4,

dist{S(ei), S{ej)) < dist{do Ci,do ej)

< d i s t {e i ,  ej).

Therefore, the mapping S has a unique fixed point cMd that is independent of cq, i.e.,

c@d = c o (d o [c@d)). (3-14)

2. Prom the stated assumptions concerning c, d  and c@d  it follows that

Fc@d['^] ~  - ^ c  5 ( d o ( c @ ( i ) ) M

^  F c [ u  +  P d [ P c @ d M ] ]

for any admissible u.  ■

E x am p le  3 .4.4. If either one of the subsystems in a feedback connection is a system with 

a generating series over the alphabet X q =  {â o}) that is, the output y ( t )  is a function 

independent of the input u{ t) .  Then the feedback connection degenerates to a modified 

composition connection.

1. co@d  =  Co o d  =  Co
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2. c@do =  codo-

In this case, there is no information actually transm itted in the feedback path. □

E x am p le  3.4.5. Suppose c is a linear series and d  is arbitrary. Then c@d =  lim j_.ooei, 

where

Cj+i = c o ( d o e i )

=  C +  {c O d) O Bi-

If c and d  are both linear, setting cq =  c gives

OO

c@d — c +  y ^ ( c  o d)°^ o c, (3.15)
fc=i

Using the associativity property of the composition product, the feedback product

c@d — CO (do  c)°” = CO o c)°".
n > 0  n > 0

where c°^ denotes k copies of c composed k — 1 times. Since (c, 0 ) =  0, applying Lemma 2.3.2 

part 5 gives

((c o z/) =  0, Vfc>|^ ' | .

Hence,
kl-i

(c@d, u) = (c. I/) + ^  ((c o d)°^ o c,p). 
k=l

Now,

c@d — CO (do c)°^ = CO '^^ (d  o c)°^ 
k>0 k>0

=  o  d ) ” ' '  O  C  =  I O  d y o c.
k>0 I fc>0
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This is analogous to the transfer function representation of the feedback connection in the 

linear time-invariant case

G @ H  = G{1 -  H G ) - ^  =
k>0

=  (1 -  G H ) - ^ G  =  ' ^ ( G H ) '^ G .
k>0

□

E x am p le  3 .4 .6 . A special class of feedback system is the unity feedback system. If the 

external input signal u{t) — 0 , the self-excited loop is described by e == limk-><xC°'^ ° 0 , 

where c is the generating series for the open-loop system. Consider the system as shown in 

Figure 3.3 with the initial condition j/(0) =  1.

u=0 J -►

Figure 3.3: Self-excited loop for Example 3.4.6.

The open-loop system has the following state space realization

z — u, z{0) = 1

y =

Compare to the standard form of state space representation

i; =  f { z )  -h g{z)u, 2;(0 ) =  zq 

V =  h{z),

one obtains f  = 0, g = 1, h = z'  ̂ and zo = 1- The generating series c of the open-loop 

system can be obtained by recursive computation of the Lie derivatives from the state
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space realization by (c, rj) =  Lg^h{z{0)) for rj £ X*. In this specific case, the support of c is 

{0 ,x i ,X i} ,  and the corresponding coefficients are

T) = 0, Lg^h{z{0)) =  2(0) =  1

ri =  x i ,  Lg^  ̂h { z {0 ) )  =  22 (0 ) 2

V = Lg2h(z(0)) = LgLgh(z(0)) = 2.Xi

Therefore c =  1 +  2 x i  +  2 xf  =  (1 +  x i )  m (1 +  xi).  It can be verified by induction th a t the 

generating series for the self-excited loop is

e =  lim c°^ o 0 =  (i -t- l)!a;o. 
fc—»oo 'i>0

Therefore, the output

2/(t) =  FeM (t) =  ^ ( i  +  l ) ! j J =  ^
ii ( 1 - t y

i > 0  ' '  '

□

An obvious question is whether c@d is always locally convergent, or at least input-output 

locally convergent, when both c and d are locally convergent. The local convergence of c 

and d guarantees tha t the feedback system in Figme 1.1(d) is a t least well-posed in the 

sense described in [1,65] since Fc and are well-defined causal analytic operators. T hat is, 

there is a sufficiently small T  > 0 and R >  0 such tha t for any u £ B'^{R)[to, to+  T], there 

exists a y £ B'^{R)[to,to + T] which satisfies the feedback equation (1.10). But whether 

y  =  Fc@dW\ on some ball of input functions of nonzero radius over a nonzero interval of 

time is not immediate. The following example shows tha t K™c ^  closed subset

of E ”® <C A  3> in the ultrametric topology.

E x am p le  3.4.7. [24] Let X  =  {xo ,x \}  and consider the sequence of polynomials in

Ci — x\ + 2^2 \ x \  + 2> \ x \  + ■ ■ ■ + i^i \ x \ ,  i > 1 .
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Clearly,

e :=  lim  e* =  k^k\ x \
i —>00

k > 0

is no t locally  convergent. □

T h e  cen tra l issue is w heth er such an  exam ple can  be p roduced  by re p e a te d  com positions 

of a locally  convergent series. I t  will be  first show n th a t  th e  answ er to  th is  q u estio n  is no. 

T h en  th e  m ore general case described  by equa tion  (3.13) is exam ined. T h is leads to  th e  m ain  

conclusion th a t  th e  feedback p ro d u c t of tw o locally  convergent series is alw ays in p u t-o u tp u t 

locally  convergent.

O bserve first th a t  if e =  c o e th e n  it  follows using th e  defin ition  of th e  com position  

p ro d u c t th a t  e m ust have th e  form  e =  53„>o(e,a;o)iCo. F u rtherm ore , since e ap p ea rs  on 

b o th  sides of th e  expression e =  c o e , i t  is possib le to  express by  rep ea ted  su b s titu tio n  each 

coefficient (e, xj}) in  te rm s of th e  coefficients {(c, z/) : |/̂ | <  n}. For exam ple, if  X  =  { x q , x i} ,  

th e  first few coefficients of e are:

(e ,0 ) =  (c,0)

(e ,xo ) =  (c ,xo) +  (c ,0 )(c ,a ;i)

(e,Xo) =  (c,xl) +  { c , x q ) { c , x i )  + {c ,0 ){ c ,x i f  + (c,0 ){c,xoxi) +  (c ,0 ) (c ,x ix o )  

+  ( c ,0 f{ c ,x j )

( e , x l )  =  {c , x l ) { c , Xi )  + ( c , X o ) { c , X i f  +  (c,0)(c, . xf )  + ( c , 0) ( c , Xl ) (c , XoXl )  +  

( c , 0 ) ( c , x i ) ( c , x i x o )  + ( c , 0 ) ^ ( c , x i ) ( c ,  Xi )  +  (c, xo)(c,a:oa;i)+  

( c , 0 ) ( c , x i ) ( c , x o x i )  + 2(c , xo) ( c , x i Xo)  +  2 (c ,0 )(c ,a ;i)(c ,x ia ;o ) +  

3( c , 0 ) ( c , x o ) ( c , x i )  + 3 ( c , 0 f ( c , x i ) ( c , x j )  +  (c,Xo) +  ( c , 0 ) ( c , XoXi )+
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{ c , 0 ) { c , X q X i X q )  +  {c,0)^(c,Xoxj) +  (c, 0)(c, Xi^q) +  (c, 0)^(c, XiXoXi) +  

( c ,0 f{c ,x jxo )  + (c,0 f { c , x l )

If c is locally convergent with growth constants Kc, Me then

|(e ,0 )| <  Kc 

\ { e , x o ) \ < K c { K c  +  l ) M c  

\ i e , x l ) \ < K c ( i K ^  + ^K c + l ] M '^ 2 \

lie, xg)| < Kc r~Kl +  ^ K l  +  f  +  1 ) M̂c 3!

This suggests that a variation of the inequality (3.3) is possible, namely that

\ i e ,x ^ ) \< K c ^ n { K c )M ^ n \ ,  Vn > 0,

where each t/jniKc) is a polynomial in Kc of degree n. The following lemma establishes the 

claim using a family of polynomials of the form

■ M K c ) = f 2  ^cSr,j{Kc,n)\r]j\\, n > 0 .  (3.16)
*J=0 rijeXi 

i> j

Given a fixed n, any word r]j with \r]j\ <  n  in the innermost summation has a corresponding 

set of right factors {rjo, r j i , . . . ,  r/j}. Each function Sr^.{Kc, n) is a polynomial in Kc- When 

j  > 0 , Srfj (Kc, n) is computed iteratively using its right factors and the previously computed 

polynomials {■î o(ETc), ^^i(E'c), • ■ • ,^n-i(K c)}:
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Sr,o{Kc,n) =  1̂ ,  n > |r?o| >  0

S n A ^c ,n )  =  i>n-\ni\{Kc) Sr,g{Kc,n), rt >  |r7i| >  1
[n) n i + l

n-\m\

(^)ri2+l
'^i{Kc) Sr^^{Kc,n-{n2 + l ) - i ) ,  n >  |t?2 | >  2

i= 0

2 ' '
Snj{Kc,n) = — ------ ^  ^i{Kc) Sr,^_^{Kc,n- {nj +  1) -  i), n >  \r]j\ > j , 2 < j <

{n)nj + l

It is easily verified that

(ieg{Sr^.{Kc,n)) = < 

so that as expected using equation (3.16)

n.

0 : j  = 0

n - \ V j \  ■ j > 0 ,

deg{-ijjn{Kc)) =  max j  + {n -  i) ^  n.
0 < j < i < n

See Table 3.4 for the case where m  = 1.

Table 3.4: The first few polynomials Sr,^{Kc,n) and when m =  1.

n m ^vo n),. ■. ,Sfjj {K^, ii) M K c )

0 0 S^(Ke,0) =  l 1

,-ro S^,{Kc,l) = l
t hTc + 2

:ri S^{Kc,l) = 1, S^,{Kc,l) = 1

7-2Xq 4 .(7 f„ 2 )  =  i

XqXi S^{K,,2) = 1, 4„x.(7fo,2) = i
2 1^2 + 37f, + 3

Xi Xq 5^„(/fe,2) = l, = i

x'f S^{Kc.a) = 1, S,AKc,2) = \ K ,  + l, S,2{Kc,2) = i
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L em m a 3.4.3. [24] Let c G growth constants Kc,Mc, and e €

K "*<C X ^ such that e = co e. Then

\{e,x^)\ < Kc i>n{Kc) M ^ n \ ,  Vn > 0. (3.17)

Proof: The proof has some elements in common with tha t of Lemma 3.3.2, except here it 

is not assumed a priori that e is locally convergent. The basic approach employs nested 

inductions. The outer induction is on n. It is clear from the discussion above tha t the claim 

holds when n =  0, n =  1 and n =  2 for m =  1. A similar calculation can be done for 

arbitrary m >  1. Now suppose equation (3.17) holds up to  some fixed n — 1 > 1. Given 

any rjj, where |r/j| <  n, it will first be shown by induction on j  (the inner induction) that

1(77,- o e,xlS)\ < K iM c  n! S^,{Kc,n), 0  <  j  <  n.

The j  =  0 case is straightforward. Suppose j  — 1. Then 0 < n  — |77i | < n —1 and

(3.18)

„no

<

U J  Xq'' , Xq

( p .^ e , i , X Q  I l . r .0  o j X q I

( x ,  V ^ „ _ | , q ( X c )  -  |77i | ) ! ) n -  \r)i\

= n\ Sr,,{Kc,n).

Now assume the inequality (3.18) holds up to some fixed j ,  where 1 < j  <  n — 1. Then 

0  < n  — |t?j+i I < n — (j +  1) and

i(r;j+i o e,x^)|  =  m {rjj o e ) ,x l  |

n - ( n j + i + l )

Y .  K + 1 ’4 )  ( 7]j o e, Xq
i= 0

, n - K  + : + l ) - A  /  n -  (Uj + I + 1 )

/  \ n  — (uj+i +  1) -  7
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Since (rjj o €,Xq — 0 when n - ( r t j + i +  1) — * < \r)j\ or equivalently z >  n —|77j+i | ,

it follows using the coefficient bound (3.17) for e (because 0 < « < n —1) and the bound (3.18) 

for 7]j o e that

(n -  (rzj+i +  1) -  -i)! •
i=0

-|%+d
K l+ iM ,  n! ^ ------ V  ^i{K ,)  S^. {K,, n -  (n ,+i +  1) -  z)

Wnj+i+l

n! (Ke, n).

Hence, the claim is true for all 0 <  j  <  n.

To complete the outer level induction, observe that

|(e ,a ;o ) | =  |( c o  e , x ” ' '>■̂0 ;

<

Y h
i,j=0

i> j

n
{K i

*j'=0 »)j6X»
{Kc,n))

< Kc M K c )  M ” n l

Therefore, the inequality (3.17) holds for all n > 0. ■

This result now makes the following theorem concerning the local convergence of e 

possible.

T h e o rem  3.4.8. [24] I f  c ^  »  with growth constants Kc, Me and e — c o e  then

e S Specifically, when K c ^  1 then

\{e,x^^)\ < Kc{2mKcMcT n\, Vn > 0.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



80

Proof: To prove the local convergence of e, note there is no loss of generality in assuming 

that Kc ;s> 1. The claim then follows from Lemma 3.4.3 by showing tha t when Kc ^  1:

^/in(Kc) <  (2m K cr, Vn > Q.

The n =  0 case is trivial. When n >  1, ifniKc) can be approximated by its highest order 

term, specifically, its degree n  term. This corresponds to those terms in equation (3.16) 

where 1 <  * =  j  <  n:

1 = 1 Vj€X3
n

S^:^{Kc,n) j\
1=1

\

1̂=1 /

where each 5^j(K c,n) has been approximated by its highest order term 7j_„K” ^^. It is 

easily verified using the definition of S^j{Kc,n)  th a t the coefficients can be computed 

successively by

7 l , n + l  — — n

('^■1-1,« + i ' i l  k\ I 71-1,n -i I , 2 < j < n

1
7 r ) , + l , n + l  — I 7  ' ) n , n i  n + 1

with 7 ip =  1. In which case,

i^„(Kc) w (n +  1)71,n+1 K'^, n  > 0.

Another inductive argument shows that (n +  l ) 7 i_„+i <  (2m)” , n  > 0. (See also Table 3.5 

and Figure 3.4.) Thus, the theorem is proven. ■
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Table 3.5: Some leading coefficients of rpn(Kc)-

m ( n +  l ) 7 i.„+i, n  >  0

1 1,1,1.5,2.5,4.375,7.875,14.4375,26.8125,50.2734,94.9609,...

2 1,2,6,20,70,252,924,3432,12870,48620,184756,705432,...

3 1,3,13.5,67.5,354.375,1913.625,10524.9375,58638.9378,...

70

m=2 ^
50

30

16 20 25 30

Figiire 3.4: The growth of log((n +  1)71 ,n+i) and log((2m)” ) for m =  1,2,3.

The final step of the analysis is to use Theorem 3.4.8 to address the input-output local 

convergence of the feedback product.

T h e o rem  3.4.9. [24j I f  c,d & then c@d is input-output locally convergent.

Specifically, when Kc,Kd ^  1 then

{{c@d) o b,xl^) < Kc{{2mfKc{Kb +  K d )M T  n\

for any b G cmd where M  =  max{M(,, Me, Md}.
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Proof: Select any series b G If follows from equation (3.14) that

(c@d) oh = {co (do  (c@d))) o b

— CO [b + d) o ((c@d) o b).

Since b, c and d are all locally convergent, Theorem 3.4.8 implies tha t (c@d) o b is always 

locally convergent, and therefore c@d must be input-output locally convergent. To produce 

the given growth condition for the output series, first replace c in Theorem 3.4.8 with 

CO (b + d) and note that K^o{b+d) ~  ^c-  The assumption that Kc ^  I ensures tha t the 

growth estimate in this theorem applies. Next, since ^  1, Theorem 3.3.2 provides that

Mco[b+d)  =  2 m (X 6  -I- K d )  m ax{M b, M d ) ,  

using the fact tha t |î | -f 1 < 2l'̂ l for all u > 0 . This produces the desired result. ■

Example 3.4.8. [24] For any c,d G a self-excited feedback loop can be

described by Fc@rf[0] =  F(c@d)oo[ ]̂ - (̂c@d)o[̂ ] Lemma 2.3.2, property 2.). In this case

(c@d)o = lim i^ooSi, where e^+i =  (co d) o a .  Using the m =  0 version of equation (3.7) 

(since the closed-loop system has in effect no external input) and Theorem 3.4.8, Fc@d[u] 

will converge at least on the interval [0 ,Tmax)5 where

T m ax =  TT =  77 • (3.19)
Xt{c@d)o K c o d X Ico d

For example, when cod =  l+ x i  it is easy verified tha t (c@d)o =  X̂ fc>o ^Lat Fc@d[0](t) =  

e* for t > 0. In this case, Tmax =  1 is very conservative. When c o d  — 1-1- 2x1 +  2xj it 

follows tha t (c@d)o =  Ylk>oi^ +  ^)- F’c@4[0](t) =  1/(1 — f)^ for 0 < t <  1. Here

Lmax =  0-5 is less conservative. □
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Example 3.4.9. [24] Reconsider the state space systems in Example 3.4.2. The operator

Fc@d[u] then has the analytic state space realization:

'  K ^M .zIza  ^  ^
f ( z )  ^

KcMdZczj\

, 5(^)

/

McZ^

\ 0
, h{z) =  KcZc

iiQ&v 2 (0 ) =  [1 1]^. The first few coefficients of c@d are given in Table 3.6.

Table 3.6: Some coefficients {c,u), (d,!/) and {c@d,v) in Example 3.4.9.

1/ (c,i/) {d, u) {c@d, u)

0 K c K d K c

Xo 0 0 K c K d M c

Xi K c M c K d M d K c M c

X q 0 0 Kc { [ KdMc f  2! +  K c K d M c M d )

XqXi 0 0 K c K d M ^  2!

XiXo 0 0 K c K d M ^  2!

™ 2Xi K c M ^  2! K d M j  2! K c M ^  2!

X q 0 0 K c { { K d M c f  3! +  K c { K d M c f M d  7 -f K ^ K d M c M j  2!)

XqXi 0 0 K c ( { K d M c f M c  3! +  K c K d M ^ M d  3)

XqXi Xo 0 0 K c { { K d M c f M c  3! +  K c K d M ^ M d  2)

Xoxj 0 0 KcKdM^  3!

X i X ' g 0 0 K c i i K d M c f M c  3! +  K c K d M ^ M d )

Xi XqX i 0 0 KcKdM^  3!

xjxo 0 0 K c K d M ^  3!

7-3Xl K c M ^  3! K d M l  3! K c M ' ^  3!

Since c@d is a non-negative series in this case, local convergent and input-output local 

convergence are equivalent. Setting u{t) =  ti =  1 is equivalent to letting fc =  1 in Theo

rem 3.4.9. Therefore, using equation (3.7) (again with m =0) and the growth condition from
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Theorem 3.4.9, a lower bound on the finite escape time for this system is

1 1
Tmax =

M{c@d)ol ^Kc{Kd + 1)M  

Four specific cases of Tmax are given in Table 3.7 and compared against the numerically 

determined escape times shown in Figure 3.5. The conservativeness in this estimate has in 

some sense accumulated when compared to the cascade connection in Example 3.4.2. jj

Table 3.7: T^ax and tgsc for specific examples of (c@d) o 1.

Case Md ^(c@d)ol T̂ m a x êac tesc /  ̂ ^ m a x

1 10 5 5 5 1200 0.000833 0.01281 15.37

2 5 10 5 5 1200 0.000833 0.01205 14.46

3 • 5 5 10 5 1100 0.000909 0.01266 13.93

4 5 5 5 10 1200 0.000833 0.01281 15.37

60
—  C ase 1
—  C ase 2
—  Case 3 
  Case 4

20

0.015 0.020.005 0.01 t

Figure 3.5: The output of Fc@rf[a] when u(t) =  a  =  1 for Cases 1-4.
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CHAPTER IV

FORMAL LAPLACE-BOREL TRANSFORM

4.1 Introduction

In this chapter, the formal Laplace-Borel transform pair for a Fliess operator is defined 

and related to existing notions of the classical Laplace-Borel transform. Then, using the 

composition product, the formal Laplace-Borel transform is applied to characterize the 

dynamics of input-output systems and the cascade interconnection of analytic nonlinear 

systems. An explicit relationship is derived between the formal Laplace-Borel transforms of 

the input and output signals of a Fliess operator. This result provides an efficient alternative 

interpretation of the symbolic calculus introduced by Fliess to compute the output response 

of nonlinear analytic systems [23]. Finally, the formal Laplace-Borel transform is shown to 

be an isomorphic mapping between various algebraic structures on the set of all convergent 

Fliess operators and the set of all locally convergent formal power series under the addition, 

the shuffle and the composition products.

The chapter is organized as follows. In Section 2, the notion of a formal Laplace- 

Borel transform of a Fliess operator is defined. Then its basic properties are explored 

and illustrated by a set of examples. In the section that follows, the relationship between 

the composition product and the formal Laplace-Borel transform is developed, and the 

idea is applied to the cascade interconnection of systems. In Section 4, combined with 

the composition product, the formal Laplace-Borel transform is applied to characterize the 

input-output dynamics of analytic systems. This theory provides a compact interpretation
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of the symbolic calculus proposed by Fliess [23]. In the last section, the formal Laplace- 

Borel transform is presented as an isomorphic mapping between the sets lR./,c <C and 

which provides a generalization of the time domain and frequency domain duality in 

linear system analysis.

4.2 D efinition and Properties o f th e Formal Laplace-Borel 

Transform

In this section, the definition of the formal Laplace-Borel transform of a Fliess operator 

is presented, and some basic properties are characterized. Many of the properties of the 

formal Laplace-Borel transform in the present nonlinear context have counterparts in the 

classical Laplace-Borel transform widely used in linear analysis. In linear time-invariant 

system analysis, a causal homogeneous input-output mapping is expressed in terms of a 

convolution of the system impulse response h{t) with the input signal

r*
'to

This mapping can also be uniquely characterized by the Laurent series of its system transfer

y{t) = f  h{t — t )u {t )(1t . 
Jtn

function H{s) = jSf{/i(t)} =  Given an input-output Fliess operator defined

on a set of admissible inputs, the following lemma ensures that its associated generating 

series is unique.

L em m a 4.2 .1 . [6 6 , Corollary 2.2.4} Suppose c and d are both locally convergent power 

series. Let u t  he the set of essentially bounded measurable functions u : [0,T] ^  R™. I f  

Fc — Fd on some £ u t  ■ liw||oo < 1}; T  > 0, then a = d.

So throughout this chapter it is always assumed that the set of admissible inputs are at 

least within the set i"r, therefore, the following definition is well-posed.
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D efin ition  4 .2.1. [42] Let X  = {xq ,x i, . . .  ,Xm}- The form al Laplace transform  on

^  is defined as

: F c ^  c.

The corresponding form al Borel transform  is

: Fc-

To present the basic properties of the formal Laplace-Borel transform, a generalized 

series, the Dirac series is artificially introduced in the following definition.

D efin ition 4 .2 .2 . A D irac series, S, is a generalized series with the defining property 

that =  u for all hounded measurable inputs u G v t -  Each component of the Dirac

series, Si has the property that F^fiu] =  Uj for any \ < i < m.

It is easy to see tha t the Dirac series, <5, is the identity element for the composition product, 

that is c o S = S o c = c. Each component Si has the property tha t (Si o c,rj) = (a, r/)i for 

any 1 <  i < m, where (c,r})i is the component of (c,r]) G M™. Similar to the generalized 

Dirac function, the Dirac series has the property tha t xo(Si mc) = XiC. Some of the basic 

properties of Laplace-Borel transform are stated in the following theorem.

T heorem  4.2 .1 . [42] Let X  = { x o ,x i , . . .  ,Xm}- Given any c, d G X ^  and scalars

a ,P  g M., the following identities hold:

1. Linearity ^  -f /Id

Sdj [ac -f j3d] — aFc + [3Fu
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2. Multiplication

M’f  [î c ■ Fd\ = cu jd  

[cLud] = Fc - Fd

3. Scalability of input

k>0

'^a '^C k
fc>0

where c = cq + ci + C2 + ■ ■ ■ as in Definition 2.3.16.

4 . Integration

^ ;[7 " F e ]= x S c  

%  [x^c] =  r F c

where / ” (■) is the n integration operator and

ft fTl fTn-l
I ^ F M  := n Ti rr

Jo
Fc[u]{Tn) dTn--- dT2 d n .

5. Differentiation

\F>Fc] =  Xq ^(c) +  UJ (x. ^(c))
i = l

+  He))
i = l

= DFc

I f  Xq is a left factor of c then

[D^Fc] = Xo "(c) 

[xo"(c)] =  D^Fc
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where D { - )  is the differentiation operator with D F c [ u \  ^ F c [ u ] ,  while !?” (■) is the 

differentiation operator and D^Fc[u] ^F c[u ] .

6 . Concatenation of inputs

[Fe [#2(0] (2(.))] -
riex* pî =V

%
riex* P’̂=V

where #^(-) is the concatenation of two copies of control signal o f the following form

[Fc [#"(•)] (2(-))j ,

(#^(w)) (t ) = {u ffu ffr)  = <
u {t ) i f  0 r  < t

u {t  — t) i f  t  < T < 2 t .

The result can be generalized to the concatenated control signal consisting of n  repeated

inputs as follows

■^f \Fc [#"(•)] («(•))] =  E  E  LU t-2 ^  • UJ
n^x* viU2-vn='n

= F e [ m ]  (n(-)).

Proof: The three properties of linearity, integration and scalability of inputs are straight

forward. The multiplication property follows from results in the literature [17,44,66], The 

properties tha t need to be justified are the differentiation property and the concatenation 

of inputs.

5. Proof of the differentiation property

It was shown in [66] that the first derivative of a Fliess operator is 

d
j F c [ u \ { t )  =

i = l

Applying the formal Laplace-Borel transform to this equality gives the first pair of equations. 

Now if Xo is a left factor of c, then F^~i^^^{u]{t) =  0 for i =  1,2, • • • , m. In this case 

^Fc[u]{t) = F^-i^^^[u](t). Proceeding inductively, the second pair of equations follows.
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6 . Proof of the concatenation of inputs

It was proven in [66] that for the concatenated input signal

(u # n )  (r) =
u {t ) if 0 < T < t

v { t  — t) i f  t  < T < T,

the Fliess operator

Fc [uĤ v] ( r  +  t) =  ^  {c,ri) ^  Ep[v]{T)E^[u]{t). 
V&X* pv=u

(4.1)

In (4.1), let tt =  n and t = t , then

Fc [u#u] {2t) = Fc [#2(n)] (2t) = J ]  (c, t?) ^  Ep[u]{t)E,[u]{t).
T)€X * p i'= V

Next apply the formal Laplace-Borel transform, the identity is proven. The more general 

case of n  concatenated inputs can be derived by induction. ■

E x am p le  4 .2 .1 . [42] Let X  — {xq, xi, X2} and Fc{u]{t) — exp ui(t ) + U2(t)dt 

that Fc can be expanded as

. Observe

dt

Therefore,

^ c [ w ] ( 0  =  ( /  U l ( t )  -^ W 2 (f)
n>o” ‘

=  ^  /  [(w i(ti) +  W2(ri)] f  [u i {t2) +  U2{t2)] ■ ■
Jo

fTn-l
/  [ u i  ( r „ )  -h U2 ( r „ ) ]  d T n - ■■ d r 2 d r i .

Jo

■^f\.Fc] =  +  2:2) "  =  (x i  4- X2)*.
n > 0

(See also [66, Example 2.3.9] for discussion related to this example.)

Other formal Laplace-Borel transform pairs are given in Table 4.1.

□
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Table 4.1: Some formal Laplace-Borel transform pairs.

Ff. ; 111—> 1

F c ' . u ^ n \  X q

Fr, : u I E n - l  ( n - l )  „ a t1=0 j! a  1 I e (1 -  axoY

F c'.u

F c - u ^  E„>o /̂/o E l l  UiYr)dT E n > 0  ® n ( ^ n  +  X i 2 +  ■ ■ ■ F  X i i^ Y

Fr '■ u \-^  e'̂ ‘0 ']SL E L i  “i, F)dr (Xjj +  x,2 H-------h Xif )̂

r .  : » «  /.I  E l ,  (r)dr F

F r  : l+{xi^+Xi.2 -\ hXî )̂

F, : u ^  sin E l l

E x am p le  4.2.2. [42] Let X  = {xq, x i , . . .  ,Xm}- Suppose Fc has the generating series

c =  E r 7€X* F^ is given for some fixed word ^ e  X*.  Then

J^ f [Fr-F^]=F^f [Fr]^^f [F^]

=  Clu^

-  ^  I .  1 11,

uex*

where (K) denotes the binomial coefficients over words in X*  (see [43, p. 127]). □
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E x am p le  4 .2 .3 . From the linearity and multiplication property of the formal Laplace- 

Borel transform, analytic functions of Fliess operator can be put in direct correspondence 

with analytic functions of formal power series, specifically.

/ Y . ^ u{FcY
n > 0

Some examples are given below:

=  ^  a„c ^  a„ n! (
n > 0  n > 0

n\
n > 0

n > 0
2n)\

( ~ ^ ) ”  „ L u ( 2 n + l )

□

4.3 The Formal Laplace-Borel Transform and th e C om posi

tion  Product

The composition product of two series c E <C X »  and d E M™ -C X »  over an 

alphabet X  = { x q , x i ,  . . .  ,Xm} is defined recursively in terms of the concatenation and 

the shuffle product. The composition product is associative, i.e., { c o  d) o e = c o  (d o e), 

hence (M™ -CX 3>, o) forms a semigroup (Without loss of generality, it is assumed £ = m  in 

this section). It was shown in Theorem 3.3.2 that the composition of two locally convergent 

formal power series is always locally convergent, therefore the set <C X  3> is closed under 

composition, and forms a semigroup. Similarly, over the set of convergent
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Fliess operators T ,  the composition of two convergent Fliess operators is still a well-defined 

Fliess operator. Applying the formal Laplace transform produces the generating series 

for the cascaded Fliess operators, which is the composition product. Specifically, for any

c G and d G

FcO Fd = Fcod- (4-2)

In the next theorem it is shown that the formal Laplace-Borel transform provides an iso

morphism between the two semigroups °) (•^ ’ °)-

T h e o rem  4.3 .1 . [42] Let X  = {x( j , x \ , . . .  ,Xm}- For any c G ^  A ::§> and d G

^ f { F c o F d ) = ^ f { F , ) o ^ j { F d )

SSf{cod) =FS f { c ) o^ f { d ) .

Proof: The proof is straightforward. For any well-defined Fc and F^,

^ f { F c o F d ) = ^ f { F , , d ) = c o d  

= ^ f { F , ) o ^ f { F d ) .

Conversely, for any locally convergent c and d, the composition product is still locally 

convergent. Applying the formal Borel transform gives

% ( c  od)  = Feed ^  FcoFd  

=  t^f{c) o ^ f ( d ) .

The isomorphism between the two semigroups {F,o)  and o) is illustrated

in Figure 4.1.
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{Fc, Fd) — —̂ >■ FcoFd — Fcod 

-^f -i"/ ’ %

(c, d) — —̂>■ c o d

Figure 4.1: The isomorphism between the semigroups {F,o)  and

E x am p le  4 .3.1. Consider the linear time-invariant system y{t) = h{t — t )u {t ) d r , where 

h is analytic a t t =  0. Then y = Fc[u] with (c, cCgXi) =  h^^\0), k > 0  and zero otherwise. 

Letting u{t) = J2k>oi'^'n^^o) then it follows tha t y{t) — X^„>o(cj/, â o) Ff n \ ,  where

C-jy   C O  Cli

= Y 1 ^FXoXi ) xqXi O I
fc>0

=  ]^(c,XoXi)a:o+^c„.
fc>0

Therefore,
n —1

( c y , a ; o )  == X ^ ( c , X o X i )  ( c„ , X q  ̂ '" ) ,  n > l ,

k=0

which is just the conventional convolution sum. g

E x am p le  4 .3.2. [42] Let X  =  { x o ,x i , X 2}, Fc[u]{t) — cos u \ { t )  + U2 { t ) d i j  and d  G 

< ^ X ^ .  Defining

Fc[u]{t )  =  { F c o F d ) [ u ] { t )

= cos Fd^[u]{t )  +  F d ^[ u] { t ) d t ^  ,

the formal Laplace-Borel transform of Fc is then

Fff[Fc] — c o d  = ^ ( - l ) * ( x i  -f X2 )̂ * o d. 
i> 0

□
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E x am p le  4 .3.3. [42] Let X  = {xq, x \, . . .  ,Xm} and c G It is easily verified

by induction tha t for n  >  1,

x "  O C = - ^ ( x o C i ) i  =  l,2 , 
n!

(4.3)

Applying the formal Laplace-Borel transform to both sides gives

[x^ o c] =  % —iixQCi)'
TV.

= — [^f[xQCi]Y

n\ [  F'ci[u]{T)Jo dr

□

E x am p le  4 .3 .4 . [42] First consider the linear ordinary differential equation

dJy{t) , ^  d}y{t) _  ^  , d!-u{t)
dt^ dt^

i = 0  i= 0

with zero initial conditions. Integrate both sides of the equation n  times and assume there 

exists a c S M L C '^ A ^  such that y{t) = Fc[u](t). Then after applying the formal Laplace- 

Borel transform, the equation becomes

Therefore,

n - l n —1

(5 +  ^  aiXQ  ̂ *a;i I o c =  ^  6j Xq  ̂ ®xi 
^ i = o  /  i = 0

/  n —1 \  n —1
T—1—i-"Xi.

i = 0 1 = 0

c =
n —1 \   ̂ n —1

n —i ' ^ h x ^   ̂ ‘x i.
i= 0 i = 0
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Rephrased in the language of the integral Laplace transform, this is equivalent to

\  2 = 0  /  \ i = 0  /

Now consider the nonlinear differential equation

(Pyit) d^yU) , (Pu(t)

2= 0  i = 2  2=0

with zero initial conditions. Again integrate both side of the equation n  times and assume 

y{t) — Fc[u]{t). Applying the formal Laplace-Borel transform gives

( n —1 \  k  n —1

6 +  ''^aiXQ~^~'‘xi  I  o c - | - ^ p t X Q ~ ^ a ; i ( c ' - ^ ® )  =  bj

2 = 0  /  i = 2  2=0

( n —1 \  k  n —1

1 Xq“ * I c +  Xo“ ^x i(c^* ) =

i = 0  /  i = 2  i = 0

As in [23], a  recursive procedure can be applied to solve the algebraic equation iteratively 

so that

C =  Cl  +  C2  +  • ■ •

with
n—1 \   ̂n—1

•̂ 1 =  ( 1 +  X I  ^0 J  X ]  ^0 ^
V i=0 /  i=0

and for n  >  2

/  n—1 \  ^
Cn= 1 -t ^  ai X^“ ^X1 Y ,P j  X I

\  2=0 /  j =2
i'l + t'2 '̂ ht'j=n

Ciij  ̂ LU Ci,2 LU ■ ■ ■ LU C l,. .

□
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4.4 Sym bolic Calculus for th e O utput R esponse o f F liess Op

erators

In [20,23,41], a symbolic calculus was developed to compute the output response of an 

analytic nonlinear system represented by a  Volterra operator. It is known that all Volterra 

operators with analytic kernels are Fliess operators, the formal Laplace-Borel transform 

pair between the composition product of formal power series and the ciomposition of Fliess 

operators in Theorem 4.3.1 provides the link to the symbolic calculus.

T h e o rem  4.4.1. [42] Let Fc be a Fliess operator with c G and y  =  Fc[u\ with

u analytic. I f  c„ denotes the formal Laplace transform of the input u then y is analytic with 

Laplace transform Cy = co Ca-

Proof: The analyticity of y follows from [66, Lemma 2.3.8]. The identity follows from 

eqnation (4.2). Specifically, for any admissible input v:

F c M  = y =  Fc[FcM]

— FcoCu [̂ ] •

Then by [66, Corollary 2.2.4] it follows tha t C y = C o c«. ■

Theorem 4.4.1 provides a compact interpretation of the symbolic calculus of Fliess by 

applying the relationship between the composition product and the formal Laplace-Borel 

transform in Theorem 4.3.1. Lemma 2.3.2 suggests some formulae for computing certain 

system ot.xtput responses using the formal Laplace-Borel transform. The zero input response 

of a system is always its natural response. For a system with a generating series in only 

one letter .tq, the output response is independent of the system input, that is, the formal 

Laplace transform of the output response y is always identical to the generating series of
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the input-oixtput system. Lemma 2.3.2 part 3 provides a formal Laplace-Borel transform 

approach to compute the unit step response of nonlinear systems. As the formal Laplace 

transform of the unit step signal is c„ =  1, therefore the formal Laplace transform of the 

output y  is given by replacing each variable Xi{i ^  0) in the generating series of c by xq, 

that is, Cy — c o I ~  cn following examples further illustrate

the application of the formal Laplace-Borel transform in computing the output response of 

analytic nonlinear systems.

E x am p le  4 .4.1. [42] Consider a simple Wiener system as shown in Figure 4.2 where

2(0) =  0.

J 1 - z

Figure 4.2: A simple Wiener system.

The mapping u y can be written as

(X)  OO  CO

n = 0  n = 0  n = 0

Therefore y = Fc[u] where c =  When u{t) — Im \, for example, the formal

Laplace transform of u is c„ =  x™. From Theorem 4.4.1 and equation (4.3) it follows tha t

OO  OO

c, =  ^  „! X? o xS- =  5 : ( x r ')  -  "  =  E
n = 0  n = 0  « = 0

Consequently,

(m +  1)!” ((m +  l)n)! ^ ( m - t - 1 ) ! ” i —
1 = 0  ^ /  vv /  /  '' > ^  ( m + l ) !

□
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E x am p le  4 .4.2. Consider a linear time-invariant system with the generating series c — 

Sn>o(*^> Suppose the input to the system is u{t) — cos(cut). Then the output

response of the system can be computed by the formal Laplace-Borel transform as follows. 

The generating series for the input cosine signal is c„ =  JCf [cos(o;t)] =  therefore,

by Theorem 4.4.1, the generating series for the output response is

Cy ^  C O  C u ^  ' Y ^ { c , X q X i ) x q X i  O ^ ------- —

n > 0  V ^ X q )

r.W+1

n>0

Applying the Borel transform, the output response y{t) is

y{t) =  [Cy\ (t)

=

(4.4)
ra>0 ^

2  —  1

+ y  (c, y  ^  f2i+i^  V 1 0 ly (2f
I, n  e v e n  z = 0  ^

n —1

( - 1) ^
\C, XqXX) 2_^ -

n > 0 , n  odd

n —1 
2

2i
+  y  *̂̂’^0^ 1) y /2^\[^n+i-2i ^

n > 0 ,  n  od d  2=0

□

4.5 The Isom orphism s Induced by th e Formal Laplace-Borel 

Transform

For all c G M lc C  the associated operator Fc is a well-defined Fliess operator. As 

has been discussed in earlier chapters, many binary operations can be defined over the set
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T \  addition, multiplication, the composition and modified composition. The collection of 

Fliess operators T , with these basic operations, has the algebraic structures described in 

the following theorem.

T h e o re m  4.5.1. The following statements are true:

1 . is a commutative group.

2 . (iF, •) is a commutative monoid, the identity of which is F0 = 1 .

3. {F, o) is a semigroup.

4 . {F,+, - )  is a commutative ring.

5. {F, +  , •) is an M.-algebra.

6 . {F, +  , •) is an integral domain.

Proof: Statement 1,2 and 3 are straightforward. The proofs for statem ent 4, 5 and 6 follow 

analogously to the proofs for Theorem 2.4.1. ■

Observe that {F, + , o) can NOT form a ring, as the composition product is not right dis

tributive over addition, i.e., Fc o (Fa -f Fc) ^  Fc o F^ + Fc o Fg.

T h e o rem  4.5 .2 . Under the formal Laplace-Borel transform, the following statements are 

true:

1. -f) and {F,+)  are isomorphic commutative groups.

2 . Lu) and (F,-) are isomorphic commutative monoids, the identity of which

is c j — 1 = 0  and F0 = 1 respectively.

3. (M <C 2f^,o) and {F,o) are isomorphic semigroups.
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Ĵ . (M ^X :§> ,+ , Lu) and (^ ,4 -,-)  are isomorphic commutative rings.

5. (M <C X », + , LU) and {!F, + , •) are isomorphic R-algebras.

6 . (E -C X  » ,  + , LU ) and {J^, + , •) are isomorphic integral domains.

Proof:

The proofs follow directly from Theorem 2.4.1 and Theorem 4.5.1.
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CHAPTER V

IMPLEMENTATION PACKAGE IN MAPLE

5.1 Introduction

The main purpose of this chapter is to provide a software implementation of the main 

tools described in the previous chapters. Based on the ACE package developed by the ACE 

group in Universite de Marne-la-Vallee led by Sebastien Veigneau [64], an implementation 

package in Maple is presented. The ACE package provides some binary operations on 

the free monoid of formal polynomials, such as the concatenation product and the shuffle 

product. The general purpose of this chapter is to demonstrate the implementation of 

the basic operations involved in the previous chapters over the set of formal polynomials: 

the left and right chronological product, the composition product, the modified composition 

product, and also some other operations such as the degree and order of a  formal polynomial, 

the ultrametric distance between two formal polynomials, etc. Examples are provided to 

illustrate the usage of the commands, and also to demonstrate some of the properties related 

to these operations. A user guide as well as the source code is provided in the appendices.

5.2 O perations on Formal Polynom ials

The main binary operations involved in the analysis are addition, concatenation, the 

shuffle, chronological, composition and modified composition products. Three fundamental 

operations: addition, concatenation and the shuffle product are available in the ACE pack

age. Those fundamental operations provide the building blocks for other operations. The
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following examples demonstrate the basic operations over the set of formal polynomials.

E x am p le  5.2.1. The following two commands are applied to determine the degree and 

order of a formal polynomial.

> F reeD egree(2*w [l]+2*w [2,3 ,4]) ;

gives the degree of the formal polynomial

3

> F ree0 rd e r(2 * w [l]+ 2 * w [2 ,3 ,4 ]);

computes the order of the formal polynomial

1

The command ‘FreeDist’ is used to compute the ultrametric distance between two formal 

polynomials. For example,

> F reeD ist(w [0 ,1 ] ,  w [0 ,l]+ 2 * w [2 ,3 ,4 ,5 ] , sigm a);

Examples involving the left shift and right shift operators are given below.

> F re e L S h if t(w [ l ,2 ] , w [ l ,2 ,3 ,4 ,5 ] +w[0,1 ] +w [l.2 ] ) ;

Ŵ3,4,5 +  Wl]

> F re e R S h ift(w [l,2 ,3 ,4 ,5 ]+ w [0 ,l]+ 3 * w [4 ,5 ] , w [4 ,5 ]);

Wi 2̂,3 + 3tC[]

The composition and the modified composition products are illustrated next. For the single

output case, use FreeCompose ( c , [d ]) for the composition product and FreeModCompose ( c , 

[d ]) for the modified composition product. The return value is a scalar formal power series.
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> FreeCompose(w[l,2 ] +2*w[0 ,1 ] , [w [l] ,w [ 2 ,0 ,3 ] ] ) ;

1,0,2,0,3 +  1̂’0,0,1,2,0,3 +  100,0,2,0,1,3 +  10o,o,2,1,0,3 +  10o,o,2,0,3,l +  2 li;o ,0 ,l

> FreeModCompose(w[l,2 ]+2*w[0 ,1 ] , [w [l] ,w [ 2 ,0 ,3 ] ] ) ;

1111,2 +  101,0,2,0,3 +  100,1,0,2,0,3 +  10o,l,2  +  100,0,1,2,0,3 +  100,0,2,0,1,3 +  10o,2,l 

+ 100 ,0 ,2 ,1 ,0 ,3  +  100,0,2,0,3,1 +  2 w q ,1 +  2 u io ,0 ,l

For the multi-output case, the commands FreeComposeMIMO and FreeModComposeMIMO are 

used, respectively. For the multi-output case, the return value is a row vector. For example,

> FreeComposeMIMO( [w [l,2 ] +2*w[0,1 ], w [ l ] , [w [ l] ,w [2 ,0 ,3 ] ] ) ;

100,1,0,2,0,3 +  100,0,1,2,0,3 +  100,0,2,0,1,3 +  100,0,2,1,0,3 +  100,0,2,0,3,1 +  2100,0 ,1 , 100,0,1 +  100,1,0

> FreeModComposeMIM0([w[l,2], w [ l ,0 ] ] ,  [w [ l] ,w [2 ,3 ] ] ) ;

-1 T
101,2 +  101,0,2,3 +  100,0,2,3,1 +  100,1,2 +  100,0,2,1,3 +  100,1,0,2,3 +  100,0,1,2,3 +  100,2,1

10l,0 +  100,0,1 +  100,1,0

□

E x am p le  5.2.2. The following examples illustrate the properties of the chronological, com

position, and modified composition products.

A verification of the symmetrization of the left and right chronological products is con

sidered first.

> a a l :=FreeLChro(w[ 1 ,2 ,3 ] ,w [4 ,5 ])+ F reeL C hro(w [4 ,5 ],w [l,2 ,3 ] ) ;

> b b l:= F re e S h u ff le (w [ l,2 ,3 ] ,w [4 ,5 ] ) ;

> e v a lb (a a l= b b l) ;

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



105

The left chronological product would be

a a l  ; =  u;4_5_i,2,3 +  '*^4,1,5 ,2,3 +  w ;4,i,2,3,5 +  W^4,l,2,5,3 +  'W l,4,2,5,3

+U^1,2,4,3,5 +  4i’l,4 ,2 ,3 ,5  +  4^1,4,5,2,3 +  W l,2,3,4,5 +  'Wl^2,A,5,3 

b b l  : =  U ;4,5,i,2 ,3  +  U^4,l,5,2,3 +  ^ 4 ,1 ,2 ,3 ,5  +  ^ 4 ,1 ,2 ,5 ,3  +  «^1,4,2,5,3

+ W ll,2 ,4 ,3 ,5  +  U^l,4,2,3,5 +  ^4'1,4,5,2,3 +  W^l,2,3,4,5 +  U^l,2,4,5,3

true.

> aa2:=FreeR Chro(w [l,2 , 3 ] ,w [4 ,5 ])+ F reeR C hro(w [4 ,5 ],w [l,2 ,3 ] ) ;

> b b 2 := F reeS h u ffle (w [l,2 ,3 ] ,w [4 ,5 ]) ;

> evalb (aa2= bb2);

The right chronological product would be

a a 2  : =  1114,5 ,1 ,2,3  +  1114,1,5,2,3  +  1114,1,2 ,3,5  +  1114,1,2 ,5,3  +  in i,4 ,2 ,5 ,3

+ 1111,2 ,4 ,3,5  +  1111,4 ,2 ,3,5  +  1111,4 ,5,2,3  +  1111,2 ,3 ,4,5  +  n ’1 ,2 ,4 ,5,3

652 : =  1114,5 ,1,2,3  +  U l4 ,l,5 ,2 ,3  +  H l4,l,2 ,3 ,5  +  H l4,l,2 ,5 ,3  +  1Hl,4,2,5,3

+ H ll,2 ,4 ,3 ,5  +  1111,4,2,3,5 +  K ll,4 ,5 ,2 ,3  +  1Hl,2,3,4,5 +  1Hl,2,4,5,3

true.

The next example illustrates the associativity of the composition product.

> aa3:=FreeCompose(FreeCompose(w[l,0 ,2 ] +2*w[0,1 ] , [w [ l] ,w [2 ,0 ,3 ] ] ) ,

[w [l] ,w [2 ],w [3 ]]) :

> bb3:=FreeC om pose(w [l,0 ,2]+ 2*w [0,l], [FreeCompose(w[ 1 ] , [w [l] ,w [2 ] ,w [3 ]] ) ,

FreeC om pose(w [2,0,3], [w [l] ,w [2 ],w [3 ]]) ] ) ;

> e v a lb (a a l= b b l) ;
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true

The modified composition product is not associative. The following is an example.

> aa 4 :=FreeModCompose(FreeModCompose(w [1 ,0 ,2 ]+2*w[0 ,1 ] ,

[ w [ l ] ,  w [2 ,0 ,3 ] ] ) ,  [w[l] ,w[2] ,w[3] ] ) :

> bb4:=FreeModCompose( w [i,0 ,2 ]+ 2 * w [0 ,l] , [ FreeModCompose(w[1 ],

[w[l] ,w[2] ,w [3 ]]) ,  FreeModCompose(w[ 2 ,0 ,3 ] ,  [w[l] ,w[2] ,w [3]] ) ] ):

> evalb (aa4= bb4);

false.

□

5.3 O perations on Fliess O perators

Operations on include computing the output of a Fliess operator given a formal 

polynomial c and an input vector of time functions u(t).  In the following examples, the 

basic properties of the formal Laplace-Borel transform are illustrated. The first example 

illustrates how to compute the output response of a Fliess operator for a given input. For 

a multi-input-single-output Fliess operator, use F l ie s s ( c ,  u t ) .  For multi-input-multi- 

output case, use FliessMIMOCc, u t ) .

E x am p le  5.3.1. Consider a 3-input, 1-output nonlinear system with the generating se

ries c := X1X2X3 + 2xoa:i®o3;2a;oa;3. Let the input signal applied to the system be ut  : =  

[cos(t), cos(2t), cos(3t)]. Then the following commands implement this model:

> u t := [ c o s ( t ) ,  cos(2  t ) , cos(3  t ) ] ;

> F l ie s s (w [ l ,2 ,3 ] + 2 * w [0 ,l ,0 ,2 ,0 ,3 ] , u t ) ;
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The corresponding output is

-1 /2 4 0 sin(4t) -  1/360sin(6t) -  l/24sin(2t) -  l/1 2 t +  l/5 s in (t)  -  l/72cos(2t) +  l/36t^ 

-l/7200cos(4 t) -  1/16200 cos(6t) +  79/900 cos(t) +  1/324 cos(3t) -  199/2592.

For m ulti-output case, the command FliessMIMO is applied. For example, the command

> c: = [ w [ l , l ] ,  w [ l ,2 ] ,  w [ l ,3 ] ] ;

> FliessMIMOCc, u t ) ;

gives the output vector

- l /2 c o s ( t)  -F 1/2,

— l/12cos(3t) — l/4cos(t) -f 1/3,

T/24cos(4t) — l/12cos(2t) + 1/8

□

In the following examples, the basic properties of the formal Laplace-Borel transform 

are demonstrated.

E x am p le  5.3.2. First consider the isomorphism between lu ) and in

Theorem 4.5.2. Applying the following commands

> g t := [ t ,  t ‘ 2 , t~ 3 ] ;

> a l:=  F l ie s s (F re e S h u f f le (w [ l ,0 ]+ 2 * w [ l ,2 ,3 ] ,w [ l ,2 ,l ] ) , g t ) ;

> b l:=  F l ie s s ( w [ l ,0 ] + 2 * w [ l ,2 ,3 ] ,g t ) * F l ie s s ( w [ l ,2 , l ] ,g t ) ;

> e v a lb (a l= e x p a n d (b l)) ;
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gives

a l  := ^  ^ ^ 1 6
210 8820

bi 1 ( 1 ^ 3 +  _L^9v7 
70^3 126 '

true.

Next, an illustration of the correspondence between the derivative of the output of a Fliess 

operator and the left shift operator is provided, as well as the correspondence between the 

integral and the concatenation with xq in Theorem 4.2.1.

> a2:=diff(diff(Fliess(w[0,0,1,0]+2*w[0,0,2,3], ut),t),t);

> b2:= Fliess(FreeLShift(w[0,0],w[0,0,1,0]+2*w[0,0,2,3]),ut);

> evalb(a2=b2);

The following illustrates the equivalence:

a2 2/3cos(t) +  tsin(t) — 3/5 — l/15cos(5t)

62 := 2/3cos(t) +  tsin(t) — 3/5 — l/15cos(5t)

true

For the integration property of the formal Laplace-Borel transform, the commands

> a3:=int(Fliess(w[l,0]+2*w[2,3], ut),t)-

evaldnt(Fliess(w[l,0] +2*w[2,3] ,ut) ,t) ,t=0);

> b3:= Fliess(FreeConcat(w[0],w[1,0]+2*w[2,3]),ut);

> evalb(a3=b3);
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produce

a3 := 5/3sin(i) — tcos{t) — 3/5t — l/75sin(5t)

63 := 5/3sin(i) — tcos{t) — 2>/bt — l/75sin(5i) 

true

The isomorphism between the two semigroups (R<§cX;», o) and o) is illustrated by the 

following.

> a4:=Fliess(FreeCompose(w[1,2,3], [w[l],w[2,2],w[3,3,3]]) ,ut);

> b4:=Fliess(w[l,2,3], FliessMIMOC [ w[l], w[2,2], w[3,3,3]] ,ut)) ;

> evalb(a4=b4);

The result below demonstrates tha t the Fliess operator of the composition product is the

composition of Fliess operators.

13 1 1 1  1
a4 :=    s in (6 t) tcos(t)  H--------- 1 ----------------- sin(12t)-H------------ sin(5t)

19595520  ̂  ̂ 11664  ̂ ’ 41472 58226688  ̂ ’ 466560  ̂ ’
67 . /„ N 1 ■ , \ 5 . 1 .

-  1 8 8 1 1 ^  +  I S S  “ “ (*) -  248832 ^  279936
29 1 1

+  7464960 +  6793II36 “  16796160
13 1 1 1  1

“  I9595520™ <“ > ~ n ^ ‘ ' ' “ <‘> + W -  582266^

- 1 8 8 ^  +  u k  “  24I 32  ^  “ “ P '*
29 1 1

+  7464960 +  6793U36 “  1 6 7 9 ^

true.

The following sequence of demands demonstrate that the modified composition product is 

corresponding to the modified composition connection, as shown in Theorem 3.4.6.

> a6:=Fliess(FreeModCompose(w[1,2,3], [w[l],w[2,2],w[3,3,3]]), ut);

> b6;=Fliess(w[l,2,3], ut+FliessMIMO( [ w[l], w[2,2], w[3,3,3]], ut));
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> eva lb (a6= b6);

The outcome of this procedure is

1 1 17239 1 1229
u6 :=   cos(5f) H----------------cos(14f) —  ̂  ̂ sin(6f) —  ̂  ̂„„:tcos(t) —

466560  ̂  ̂ 67931136  ̂ ’ 6531840  ̂ ’ 11664  ̂ ’ 13824
114169 24449 197 73

+  39191040 -  74649OT '  640493568 “  213497856
1 83 1

+  4 ^ ” ” <“ ) '  17735/188116992 co,(8() -  <=os(10() +

6060581 17285 , , 88303 , , 11405 , 11 . ,
+  3 4 8 ^  +  i s s n ^  *'” <“ ) +  4S240 “ ” <*> "  2 4 8 ^  “  93Sl2

37699 , , 29411 , , 10631 , 31
^  74649W “ "<*> ^  136080 +  248832 '  2 7 9 9 ^

+  67951136 +  1847*̂ 57760
1 1 17239 1 1229

“  466560' “ <“ >+ 6793u B “  6531840™^^^^
114169 , 24449 , 197 , 73 . ,

_l------------- cos(6 t)--------------- cos(4 t)----------------- cos(12f)------------------- sm(12t)
39191040  ̂ ’ 7464960  ̂ ’ 640493568  ̂ ' 213497856  ̂ ^

t r u e .

+  4 6 ^ “ “ <“ > ■  17735/188116992c«(8t) - - ^ - ^ — cos(lOt) +  YI^fsi„(t)

6060581 17285 . , 88303 . , , 11405 . 11 . ,
"^34836480 188116992 408240 ^ 248832  ̂~  93312

37699 . , 29411 , , 10631 , 31

1 . 7. , S 61

37699 . , 29411 , , 10631 , 31--------- sm(4f)---- c o s ( t ) 4------- cos(2f)----------cos(3f)7464960  ̂’ 136080  ̂’ 248832  ̂ ’ 279936  ̂ ^

H----------sin(14f) H----------- sin(lOf)67931136  ̂  ̂ 184757760  ̂ ’

□

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



I l l

CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

6.1 M ain Conclusions

The main contributions of this dissertation are: the development of a growth condition 

for the local convergence property of interconnected Fliess operators in the cascade and 

feedback interconnections, the definition of the formal Laplace-Borel transform of a Fliess 

operator, and the description of the algebraic structures of the set of formal power series 

and the set of Fliess operators behind the formal Laplace-Borel transform.

The four basic interconnections of analytic nonlinear systems represented by Fliess op

erators are described in a unified manner. The corresponding generating series for cascaded 

Fliess operators in the multi-variable case are given in Definition 2.3.14. The composition 

product of two locally convergent formal power series is shown to still be locally convergent, 

and a growth condition for the coefficients is given in Theorem 3.3.2. The generating series 

for the feedback connection of two Fliess operators is shown in Theorem 3.4.7 to be always 

well defined and in Theorem 3.4.9 it is proven to be a t least input-output locally convergent.

The definition of the formal Laplace-Borel transform of a Fliess operator is given in 

Definition 4.2.1, and its basic properties are presented in Theorem 4.2.1. By combining the 

idea of the formal Laplace-Borel transform with the composition product, it is shown in 

Theorem 4.3.1 that the formal Laplace-Borel transform provides an isomorphism between 

the semigroup of all convergent Fliess operators under composition, and the semigroup of all 

locally convergent formal power series under the composition product. This result provides
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a generalization of the time domain and frequency domain isomorphism in the linear case. 

Specifically, an explicit relationship is derived between the formal Laplace-Borel transforms 

of the input and output signals of a Fliess operator in Theorem 4.4.1. This result provides a 

compact interpretation of the symbolic calculus introduced by Fliess et al. [23] to compute 

the output response of nonlinear systems.

Finally, a set of isomorphic algebraic structures for the set of formal power series and the 

set of Fliess operators is described in Theorem 4.5.2 with the aid of the system interconnec

tion theory and the formal Laplace-Borel transform theory developed in this dissertation.

6.2 Future Research

Among the many ideas for future research, a logical next step would include a deeper 

understanding of the algebraic structure of the properties of Laplace-Borel

transform, and how they are related in the framework of system interconnections. For 

example, it is already known that the system interconnections corresponding to addition, 

the shuffle, composition and feedback products are the four elementary interconnections 

shown in Figure 1.1. However, the corresponding interconnection for the concatenation 

product is still not clear. There exists certain duality between the shuffle algebra and 

concatenation when viewed as the linear mappings on a tensor product space [52]. fn 

addition, the property of the formal Laplace-Borel transform concerning the concatenation 

of inputs in Theorem 4.2.1 also suggests some connection between the shuffle and the 

concatenation [62,66].

Another interesting idea would be to further develop the algebraic properties of the com

position product. There has been considerable research results on the structure of the shuffle 

algebra [3,43,52]. FVom Definition 2.3.14, the composition product is clearly connected to
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the shuffle and concatenation. Equation (2.8) also suggests an alternative definition of the 

composition product in terms of the left chronological product. The algebraic properties 

of the chronological product has been studied in [36,38,40]. Therefore, the relationships 

between the composition and chronological products as well as the shuffle product, can 

provide some insight into the algebraic properties of the composition product.

In the definition of the formal Laplace-Borel transform of a Fliess operator in Chapter 

IV, the set of admissible inputs is assumed to lie within the Too space. Can this admissible 

set of inputs be expanded to the L\ space? The expansion seems possible in current setting.

The properties of the formal Laplace-Borel transform and their applications in system 

analysis is another important topic. Most of the properties of linear integral Laplace-Borel 

transform have some counterparts in the nonlinear setting. For example, the linearity 

property is identical to that for the linear system case, and the property concerning the 

scalability of inputs is analogous to the time scaling property in the linear integral Laplace- 

Borel transform. Therefore, it is natural to explore other possible corresponding properties 

in the context of Fliess operators and formal power series. For example, what are the 

properties corresponding to the time-shift and frequency-shift properties in the integral 

Laplace-Borel transform? Furthermore, what new properties can be identified using the 

formal Laplace-Borel transform that only arise in the nonlinear setting?

The local convergence property of the feedback product is not yet perfectly character

ized. In Theorem 3.4.9, the feedback product is proven to be always input-output locally 

convergent. In some special cases, input-output local convergence guarantees local con

vergence, as shown in Lemma 3.3.4 and Lemma 3.3.5. W hether this input-output local 

convergence always implies local convergence is still not completely understood.

The formal Laplace-Borel transform is a tool to analyze nonlinear systems using their
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generating series. In the linear case, the Laplace-Borel transform corresponds to frequency 

domain analysis of linear systems. In [53], the frequency response of a nonlinear system is 

characterized by association of variables. In the current setting, the generating series of a 

Fliess operator plays a similar role to the transfer function. Therefore, a very interesting 

future topic in nonlinear system analysis would be to show how this generating series ap

proach can provide an alternative interpretation to the frequency response analysis of the 

nonlinear systems represented by Fliess operators.
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APPENDIX

SOFTWARE IMPLEMENTATION IN MAPLE

A .l  O verview

This appendix provides a user guide to the software implementation package presented

in this dissertation. To set up the software implementation, first follow these two steps;

In s ta lla tio n  o f M ap le  a n d  A C E  package : After installation of Maple, download the 

ACE package from h t tp : / /p h a la n s te r e .u n iv - m lv .f r /~ a c e / , follow the instruc

tions to install ACE package;

L oad th e  F reeP oly .m w s file : Open in the workspace the PreePoly.wms developed in 

this dissertation, and load the procedures.

The procedures developed in this dissertation can be divided in two categories;

O p e ra tio n s  over M<X> : This category includes a set of Maple procedures to calculate

and display operations over the set of formal polynomials. The binary operations 

include the left and right shift operators, the left and right chronological products, 

the composition product, the modified composition product, and also the ultrametric 

distance between two formal polynomials. The unary operations include the length 

of a word, the degree and order of a formal polynomial.

O p e ra tio n s  over J- : The operations over the set of Fliess operators mainly involve the

calculation of the output response of a Fliess operator given different inputs.
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A .2 Syntax D escription

The syntax of the procedures are listed as follows.

“PreeLength: to calculate the length of a word”

Syntax FreeLength(?7::indexed) where

•  T] is a word of the form w [iii2 ■ ■ - ik]

“PreeDegree: to calculate the degree of a formal polynomial”

Syntax PreeDegree(c) where

• c is a formal polynomial over the alphabet u;[0], • • • , w[m]

“PreeOrder: to calculate the order of a formal polynomial”

Syntax PreeOrder(c) where

•  c is a formal polynomial over the alphabet m[0], u;[l], ■ • • , w[m]

“PreeDist; to calculate the ultrametric distance between two formal polynomials” 

Syntax PreeDist (c, d, a) where

• c, d are two formal polynomials over the alphabet tt;[0],u;[l], • • ■ ,w[m]

•  a is the parameter used in the ultrametric. It can be a symbol or a numeric value.

“PreeLShift; Left shift operation of a formal polynomial by a word”

Syntax PreeLShift(r/::indexed, c) where

•  77 is a word

•  c is a formal polynomial over the alphabet u;[0],r(;[l], ■ ■ ■ ,w[m]

“PreeRShift: Right shift operation of a formal polynomial by a word”

Syntax PreeRShift(c, //“indexed) where
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• c is a formal polynomial over the alphabet m[0], m[l], • ■ ■ , w[m]

•  r; is a word

“FreeChro: Left chronological product of two formal polynomials”

Syntax PreeChro(c, d) where

•  c, d are two formal polynomials over the alphabet m[0],r(;[l], • • • ,w[m]

“FreeRChro: Right chronological product of two formal polynomials”

Syntax FreeRChro(c, d) where

• c, d are two formal polynomials over the alphabet m[0], m[l], • • • , w[m]

“FreeLChro: Left chronological product of two formal polynomials”

Syntax FreeLChro(c, d) where

•  c, d are two formal polynomials over the alphabet m[0],u;[l], • • ■ ,w[m]

“FreeCom pose: Composition product of a formal polynomial with an array of formal 

polynomials”

Syntax PreeCompose(c, d:dist) where

•  c is a scalar formal polynomial over the alphabet ra[0],rc[l], ■ ■ • ,w[m]

• d is an array of formal polynomials of the form \op l,op 2 , • • •, op m]

“FreeC om poseM IM O : Composition product in MIMO case: composition of two arrays 

of formal polynomials ”

Syntax FreeComposeMIMO(c::list,d:;list) where

•  c and d are both arrays of formal polynomials of the form [op l,op 2, • • •, op m]
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“FreeM odC om pose: Modified composition product of a formal polynomial with an array 

of formal polynomials”

Syntax PreeModCompose(c, d l i s t )  where

• c is a scalar formal polynomial over the alphabet ?n[0],i(;[l], • • • ,w[m]

• d is a list of formal polynomials of the form [op l,op 2 , • • •, op m]

“FreeM odC om poseM IM O : Modified composition product in the MIMO case”

Syntax FreeModComposeMIMO(c::list,d::list) where

•  c and d are both arrays of formal polynomials of the form [op l,op 2 , • • •, op m]

“Fliess; O utput of a Fliess operator associated with a formal polynomial supplied with an 

input as an array of time domain functions [ui{t), ■ ■ ■

Syntax Fliess(c, u :;list) where

• c is a scalar formal polynomial over the alphabet u;[0],u;[l], • • • ,w[m]

•  tt is an array of time domain functions of the form [u\{t),U2 {t), ■ ■ ■ ,u„t(f)]

“FliessM IM O : Output of a Fliess operator associated with a generating polynomial with 

input as an array of time domain functions ['Ui(t), • • • in the MIMO case” ;

Syntax FliessMIMO(c:: list, M::list) where

• c is an array of formal polynomials over the alphabet w[0], u;[l], ■ • • , w[m]

•  ti is an array of time domain functions of the form [u\(t),U2 {t), ■ ■ ■
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A ,3 Source Code for O perations on Formal Polynom ials
>
> with(FREE):
> with(combinat):
> ## The FREE (ACE) and COMBINATORICS algebraic package over the free monoid
>
> ###########################
> ### FreeLength(eta::indexed)
> ###########################
> FreeLength :» proc(eta::indexed)
> description "Length of a word in the free monoid";
> local length;
> length:= nops(eta);
>
> return length;
>
> end proc:
>
> ##########################
> ### FreeDegree(c)
> ##########################
> FreeDegree proc(c)
> description "Degree of a polynomial in the free monoid";
> local degree, tmpdeg, i;
>
> degree:=0;
>
> if (c=0) then
> return degree;
> end if;
>
> if type(c,indexed) then
> return FreeLength(c);
> else
> if type(c,^+‘) then
> for i to nops(c) do
> if type(op(i,c),indexed) then
> tmpdeg:=FreeLength(op(i,c));
> if degree< tmpdeg then
> degree:*tmpdeg;
> end if;
> else
> if type(op(i,c),'**) then
> tmpdeg:“FreeLength(op(2,op(i,c)));
> if degree< tmpdeg then
> degree:“tmpdeg;
> end if;
> end if
> end if;
> end do;
> return degree;
> end if;
> end if;
>
> if type(c,‘*‘) then
> degree :*FreeLength(op(2,c));
> return degree;
> end if;
>
> end proc:
>
> ########################
> ### FreeOrder(c)
> ########################
> FreeOrder := proc(c)
> description "Order of a polynomial/series in the free monoid";
> local order, tmpord, i;
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>
> order:=infinity;
>
> if (c=0) then
> return order;
> end if;
>
> if type(c,indexed) then
> return FreeLength(c);
> else
> if type(c,^+‘) then
> for i to nops(c) do
> if type(op(i,c),indexed) then
> tmpord:®FreeLength(op(i,c));
> if order > tmpord then
> order :“tmpord;
> end if;
> else
> if type(op(i,c),**‘) then
> tmpord:=FreeLength(op(2,op(i,c)));
> if order > tmpord then
> order:“tmpord;
> end if;
> end if;
> end if;
> end do;
> return order;
> end if;
> end if;
>
> if type(c,‘*‘) then
> order :=FreeLength(op(2,c));
> return order;
> end if;
>
> end proc:
>
> ########################
> ### FreeDist(c,d, sigma)
> ########################
> FreeDist :=* proc(c, d, sigma)
> description "The distance between two formal polynomials in the ultrametric sense";
> local dist;
> dist :=sigma'* (FreeOrder (c-d) ) ;
> return dist;
>
> end proc:
>
> ############################
> ### FreeLShiftWordCeta::indexed, xi::indexed)
> ############################
> FreeLShiftWord := proc(eta::indexed, xi::indexed)
> description "Left shift operation of a word by another word";
>
> local i, tmplshiftword;
> tmplshiftword := 0;
>
> if nops(eta) > nops(xi) then
> return 0;
> else
> for i from 1 to nops(eta) do
> if op(i, eta) <> op(i, xi) then
> return 0;
> else
> tmplshiftword := w[op(i+l..nops(xi), xi)];
> end if;
>
> end do;
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> return tmplshiftword;
> end if;
> end proc:
>
> ############################
> ### FreeLshift(eta::indexed, c)
> ############################
> PreeLShift :* proc(eta::indexed, c)
> description "Left shift operation of a formal polynomial by a word";
> local i, tmplshift;
> tmplshift ;= 0;
>
> if typeCc,indexed) then
> return FreeLShiftWord(eta, c) ;
> else
>
> if type(c,‘*‘) then
> return op(l,c)*FreeLShiftWord(eta, op(2,c));
> else
> if type(c,*+‘) then
> for i to nops(c) do
> if type(op(i,c),indexed) then
> tmplshift := tmplshift +

FreeLShiftWordCeta, op(i,c)) ;
> else
> if type(op(i,c), **0 then
> tmplshift := tmplshift+op(l,op(i,c))

♦FreeLShiftWord(eta,op(2,op(i,c)));
> end if;
> end if;
> end do;
> end if;
> return tmplshift;
> end if;
>
> end if;
>
> end proc:
>
> ############################
> ### FreeRshiftWordCxi:'.indexed, eta:: indexed)
> ############################
> FreeRShiftWord :* proc(xi::indexed, eta::indexed)
> description "Right shift operation of a word by another word";
>
> local i, tmprshiftword;
> if nops(xi) < nops(eta) then
> return 0;
> else
> for i from 1 to nops(eta) do
> if op(nops(xi)+l“i, xi) <> op(nops(eta)+l-i, eta) then
> return 0;
> else
> tmprshiftword := w[op(l..(nops(xi)-i), xi)];
> end if;
>
> end do;
> return tmprshiftword;
> end if;
> end proc:
>
> ############################
> ### FreeRshift(c, eta::indexed)
> ############################
> PreeRShift := proc(c, eta::indexed)
> description "Right shift operation of a formal polynomial by a word";
> local i, tmprshift;
> tmprshift := 0;
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>

> if type(c,indexed) then
> return FreeRShiftWord(c, eta );
> else
>

> if type(c,^*‘) then
> return op(l,c)*FreeRShiftWord(op(2,c), eta);
> else
> if type(c,'+‘) then
> for i to nops(c) do
> if type(op(i,c),indexed) then
> tmprshift :» tmprshift +

FreeRShiftWord(op(i,c)»eta) ;
> else
> if type(op(i,c),‘*0 then
> tmprshift ;= tmprshift+op(l,op(i,c))

*FreeRShiftWord(op(2,op(i,c)),eta);
> end if;
> end if;
> end do;
> end if;
> return tmprshift;
> end if;
>

> end if;
>
> end proc:
>
> ########################
> ### FreeRChroWordCeta::indexed,xi::indexed)
> ########################
> FreeRChroWord := proc (eta::indexed, xi::indexed) option remember;
> description "Right chronological product of two words";
> local i, prefix, affix, result, xiprime, tmp;
>
> if nops(eta) = 0 then
> return xi
> end if;
> if nops(xi) ® 0 then
> return 0
> else
> i := 1;
> for i to nops(xi) do
> xiprime :« w[op(l .. nops(xi)~i,xi)];
> affix w[op(nops(xi),xi)];
> tmp := FreeRChroWord(eta,xiprime)+FreeRChroWord(xiprime,eta);
> result :* FreeConcat(tmp,affix);
> return result;
> end do
> end if
>
> end proc:
>
> ########################
> ### FreeLChroWord(eta::indexed,xi::indexed)
> ########################
> FreeLChroWord :® proc (eta::indexed, xi::indexed)
> local i, prefix, affix, result, xiprime, tmp;
> option remember;
> description "Left chronological product of two words";
>
> if nops(eta) = 0 then
> return 0
> end if;
>
> if nops(xi) = 0 then
> return eta
> else
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> i :* 1;
> for i to nops(xi) do
> xiprime := wCop(i+l nops(xi),xi)];
> prefix := w[op(l,xi)];
> tmp := FreeLChroWord(eta,xiprime)+FreeLChroWord(xiprime,eta);
> result ;= FreeConcat(prefix,tmp);
> return result;
> end do
> end if
>
> end proc:
>
> ########################
> ### FreeChroWord(eta::indexed,xi::indexed)
> #####«##################
> FreeChroWord := proc (eta::indexed, xi::indexed)
> option remember;
> description "Left chronological product of two words";
>
> printf(" *** Left Chronological product by default. \n");
> printfC ♦** For right Chronological product, use FreeRChroWord(eta::indexed, xi::indexed)");
>
> return FreeLChroWord(eta, xi)
>
> end proc:
>
> «#######################
> ### FreeRChroWord2Poly(eta::indexed, d)
> ########################
> FreeRChroWord2Poly :» proc (eta::indexed, d)
> option remember;
> description "Right chronological product of a word with a polynomial";
> local i, chroprod;
> chroprod := 0;
>
> if type(d,indexed) then return FreeRChroWord(eta,d);
> else
> if type(d,*+‘) then
> for i to nops(d) do
> if type(op(i,d),indexed) then
> chroprod :* chroprod+FreeRChroWord(eta, op(i,d))
> else
> if type(op(i,d),**‘) then
> chroprod := chroprod+op(l,op(i,d))*FreeRChroWord(eta, op(2,op(i,d)))
> end if;
> end if;
> end do;
> return(chroprod);

> end if;
>
> if type(d,'*‘) then
> chroprod:*op(l,d)*FreeRChroWord(eta, op(2,d));
> return chroprod;
> end if;
>
> end proc:
>
> ########################
> ### FreeLChroWord2Poly(eta:;indexed, d)
> ########################
> FreeLChroWord2Poly := proc (eta::indexed, d)
> option remember;
> description "Left chronological product of a word and a polynomial";
> local i, chroprod;
> chroprod := 0;
>
> if type(d,indexed) then return FreeLChroWord(eta,d);
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> if type(d/ + ‘) then
> for i to nops(d) do
> if type(op(i,d),indexed) then
> chroprod := chroprod+FreeLChroWord(eta, op(i,d))
> else
> if type(op(i,d),‘*0 then
> chroprod := chroprod+op(l,op(i,d))*FreeLChroWord(eta, op(2,op(i,d)))
> end if;
> end if;
> end do;
> return(chroprod);
> end if;
> end if;
>
> if typeCd/*') then
> chroprod;=op(1,d)*FreeLChroWord(eta, op(2,d));
> return chroprod;
> end if;
>
> end proc:
>
> ########################
> ### FreeChroWord2Poly(eta::indexed, d)
> ########################
> FreeChroWord2Poly:= proc (eta::indexed, d)
> option remember;
> description "Left chronological product of a word and a polynomial";
>
> printf(" *** Left Chronological product by default. \n");
> printf(" *** For the Right Chronological product, use FreeRChroWord2Poly(c, d)");
>
> return FreeLChroWord2Poly(eta, d)
>
> end proc:
>
> #«######################
> ### FreeRChro(c, d)
> ########################
> FreeRChro := proc (c, d)
> option remember;
> description "Right chronological product of two polynomials";
> local i, chroprod;
> chroprod :« 0;
>
> if type(c,indexed) then return FreeRChroWord2Poly(c,d);
> else
> if type(c,‘“*'0 then
> for i to nops(c) do
> if type(op(i,c),indexed) then
> chroprod := chroprod+FreeRChrotford2Poly(op(i,c),d)
> else
> if type(op(i,c),*♦‘) then
> chroprod := chroprod+op(i,op(i,c))*FreeRChroWord2Poly(op(2,op(i,c)) ,d)
> end if;
> end if;
> end do;
> return(chroprod);
> end if;
> end if;
>
> if type(c,‘*‘) then
> chroprod:=op(l,c)*FreeRChroWord2Poly(op(2,c),d);
> return chroprod;
> end if;
>
> end proc:
>
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> ####«###################
> ### FreeLChro(c, d)
> ########################
> FreeLChro proc (c, d)
> option remember;
> description "Left chronological product of two polynomials";
> local i, chroprod;
> chroprod ;» 0;
>
> if type(c,indexed) then return FreeLChroWord2Poly(c,d);
> else
> if type(c,^+‘) then
> for i to nops(c) do
> if tjrpe(op(i,c),indexed) then
> chroprod := chroprod+FreeLChroWord2Poly(op(i,c),d)
> else
> if type(op(i,c),^*‘) then
> chroprod := chroprod+op(l,op(i,c))*FreeLChroWord2Poly(op(2,op(i,c)) ,d)
> end if;
> end if;
> end do;
> return(chroprod);
> end if;
> end if;
>

> if type(c,^*‘) then
> chroprod:=op(l,c)*FreeLChroWord2Poly(op(2,c),d);
> return chroprod;
> end if;
>
> end proc:
>
> ########################
> ### FreeChro(c, d)
> ########################
> FreeChro := proc (c, d)
> option remember;
> description "Left chronological product of two polynomials";
>
> printfC Left Chronological product by default. \n");
> printfC’ *** For the Right Chronological product, use FreeRChro(c, d)");
>

> return FreeLChro(c, d)
>
> end proc:
>
> ########################
> ### FreeComposeWord2Poly(eta::indexed,d::list)
> ########################
> FreeComposeWord2Poly := proc(eta::indexed,d::list)
> option remember;
> local i, prefix, result, etaprime, tmp;
> description "Composition product of a word with a formal polynomial";
>
> if nops(eta) = 0 then return eta; end if;
> for i from 1 to nops(eta) do
> if op(i,eta) * 0 then result:=eta;
> else
> prefix:“FreeConcat(w[0],w[op(l..(i-1),eta)]);
> etaprime:= w[op(i+l..nops(eta), eta)];
> tmp:=FreeShuffle(op(op(i,eta),d),

FreeComposeWord2Poly(etaprime,d));
> result:=FreeConcat(pref ix,tmp);
> return result;
> end if;
> end do;
>

> end proc:
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>
> ########################
> ### FreeCompose(c,d::list)
> ########################
> FreeCompose :* proc (c, d::list)
> option remember;
> description "Composition product of a scalar formal polynomial eind
> an array of formal polynomials in the free algebra";
> local comprod, i;
>
> comprod := 0;
>
> if type(c,indexed) then return FreeComposeWord2Poly(c,d);
> else
> if type(c,‘+‘) then
> for i to nops(c) do
> if type(op(i,c),indexed) then
> comprod := comprod+FreeComposeWord2Poly(op(i,c),d);
> else
> if type(op(i,c), *̂̂ ) then
> comprod := coraprod+op(l»op(i,c))*

FreeComposeWord2Poly(op(2,op(i,c)),d);
> end if;
> end if;
> end do;
> return(comprod);
> end if;

>

> if type(c,‘*‘) then
> comprod:»op(1,c)*FreeComposeWord2Poly(op(2,c),d);
> return comprod;
> end if;
>

> end proc:
>

> ########################
> ### FreeComposeMIMO(c::list, d::list)
> ########################
> FreeComposeMIMO :* proc (c::list, d::list)
> # option remember;
> description "Composition product for MIMO case";
> local tmp, i, dim; dim:=nops(c);
> tmp [seq(0'‘i,i~l. .dim)] ;
> for i from 1 to nops(c) do
> tmp[i] ;* FreeCompose(op(i,c), d);
> end do;
> return tmp;
>
> end proc:
>
> ########################
> ### FreeModComposeWord2Poly(eta:;indexed,d;:list)
> ########################
> FreeModComposeWord2Poly := proc(eta::indexed,d::list)
> option remember;
> description "Modified composition product of a word with an array of formal polynomials";
> local i, prefixl, prefix2, result, etaprime, tmp;
>

> if nops(eta) = 0 then return eta; end if;
> for i from 1 to nops(eta) do
> if op(i,eta) = 0 then
> result;=eta;
> else
> prefixl:=w[op(i..i,eta)];
> pref ix2:=*FreeConcat (w[0] , w[op(l. . Ci-1) ,eta)] ) ;
> etaprime:= w[op(i+i..nops(eta), eta)];
> tmp:=FreeShuffle(op(op(i,eta),d),
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FreeModCoraposeWord2Poly(etaprime,d));
> result:=FreeConcat(pref ixl,FreeModComposeWord2Poly

(etaprime,d))+FreeConcat(pref ix2,tmp);
> return result;
> end if;
> end do;
>

> end proc:
>
> ########################
> ### FreeModCompose(c,d::list)
> ########################
> FreeModCompose := proc (c, d::list)
> option remember;
> description "Modified composition product of two polynomials in the free algebra";
> local comprod, i; comprod 0;
>

> if type(c,indexed) then
> return FreeModComposeWord2Poly(c,d);
> else
> if type(c,‘*‘) then
> comprod:=op(1,c)*FreeModComposeWord2Poly(op(2,c),d);
> return comprod;
> end if;
>

> if type(c,^+‘) then
> for i to nops(c) do
> if type (op(i,c),indexed) then
> comprod := comprod+FreeModComposeWord2Poly(op(i,c),d);
> else
> if type(op(i,c),‘*‘) then
> comprod := comprod+op(l,op(i,c))*

FreeModComposeWord2Poly(op(2,op(i,c)),d);
> end if;
> end if;
> end do;
> return(comprod);
> end if;
> end if;
>
> end proc:
>
> ########################
> ### FreeModComposeMIMO(c:‘.list, d::list)
> ########################
> FreeModComposeMIMO := proc (c::list, d::list)
> # option remember;
> description "Modified Composition product for MIMO case";
> local tmp, i, dim; dim:=nops(c);
> tmp := [seq(0'‘i,i=l. .dim)] ;
> for i from 1 to nops(c) do
> tmpCi] :* FreeModCompose(op(i,c), d);
> end do;
> return tmp;
>

> end proc:
>
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A .4 Source Code to  C alculate O utput R esponse o f a F liess 
Operator

> ########################
> ### FliessWordCeta::indexed,u::list)
> ########################
> FliessWord ;= proc(eta::indexed, u::list)
> option remember;
> description "Output of a Fliess operator associated with a generating word

applied to a time domain input vector uCt)";
>

> local i, etaprime, tmp, result;
>
> if nops(eta) = 0 then
> return 1;
> end if;
> for i from 1 to nops(eta) do
> etaprime:= w[op(i+i..nops(eta), eta)];
> if op(i,eta) = 0 then
> result:=int( FliessWord(etaprime,u), t) -

eval(int( FliessWord(etaprime,u), t),t=0);
> return result;
> else
> result:*int( u[op(i,eta)]*FliessWord(etaprime,u),t)-

eval(int(u[op(i,eta)]*FliessWord(etaprime,u), t),t*0);
> return result;
> end if;
> end do;
>

> end proc:
>

######################«#
### Fliess(c, u::list)
##################«#####
Fliess :* proc (c, u::list)
> option remember;
> description "Output of a Fliess operator associated with a generating polynomial

supplied with input as a time domain function vector u(t)";
>

> local tmpsum, i; tmpsum := 0;
>

> if type(c,indexed) then
> return FliessWord(c,u);
> else
> if type(c,^*‘) then
> tmpsum:=op(l,c)*FliessWord(op(2,c),u);
> return tmpsum;
> end if;
>

> if type(c,'+') then
> for i to nops(c) do
> if type(op(i,c),indexed) then
> tmpsum := tmpsum+FliessWord(op(i,c),u)
> else
> if type(op(i,c),‘»‘) then
> tmpsum :* tmpsum+op(l,op(i,c)) ♦

FliessWord(op(2,op(i,c)),u);
> end if;

> end do;
> return(tmpsum);
> end if;
> end if;
>

> end proc:
>

>
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> ###«####################
> ### FliessMIMO(c;‘.list, u::list)
> ########################
> FliessMIMO := proc (c::list, u::list)
> description "Output of a Fliess operator in MIMO case";
>
> local tmp, i, dim; dim:*nops(c); dim;
> tmp :® [seq(0'‘i,i=l. .dim)] ; tmp;
> for i from 1 to nops(c) do
> tmp[i] := Fliess(op(i,c), u);
> end do;
> return tmp;
>
> end proc:
>
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