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ABSTRACT

GENERATING SERIES FOR INTERCONNECTED NONLINEAR SYSTEMS
AND THE FORMAL LAPLACE-BOREL TRANSFORM

Yaqin Li
Old Dominion University, 2004
Director: Dr. W. Steven Gray

Formal power series methods provide effective tools for nonlinear system analysis. For
a broad range of analytic nonlinear systems, their input-output mapping can be described
by a Fliess operator associated with a formal power series. In this dissertation, the inter-
connection of two Fliess operators is characterized by the generating series of the composite
system. In addition, the formal Laplace-Borel transform of a Fliess operator is defined and
its fundamental properties are presented. The formal Laplace-Borel transform produces an

elegant description of system interconnections in a purely algebraic context.

Specifically, four basic interconnections of Fliess operators are addressed: the parallel,
product, cascade and feedback connections. For each interconnection, the generating series
of the overall system is given, and a growth condition is developed, which guarantees the
convergence property of the output of the corresponding Fliess operator.

Motivated by the relationship between operations on formal power series and system
interconnections, and following the idea of the classical integral Laplace-Borel transform,
a new formal Laplace-Borel transform of a Fliess operator is proposed. The properties
of this Laplace-Borel transform are provided, and in particular, a fundamental semigroup
isomorphism is identified between the set of all locally convergent power series and the set

of all well-defined Fliess operators.

A software package was produced in Maple based on the ACE package developed by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



iii

the ACE group in Université de Marne-la-Vallée led by Sébastien Veigneau. The ACE
package provided the binary operations of addition, concatenation and shuffle product on
the free monoid of formal polynomials. In this dissertation, the operations of composition,
modified composition, chronological products and the evaluation of Fliess operators are
implemented in software. The package was used to demonstrate various aspects of the new

interconnection theory.
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CHAPTER 1

INTRODUCTION

The connection between algebraic combinatorics and nonlinear control theory has been
increasing steadily since the 1960’s. One of the uniting branches is the Chen-Fliess series and
the associated formal power series methods used in nonlinear system analysis. The formal
power series approach was advocated by Fliess in [18-23] and motivated by the iterated
path integrals proposed by Chen in [7-15]. The iterated path integral approach possesses
rich algebraic structures, thus providing a natural algebraic representation of functional
expansions for the outputs of dynamic systems. There are two classical ways to describe
systems: the input-output representation and the state space representation. For a broad
range of analytic systems, the input-output mapping can be described by a so called Fliess
operator, which is written in terms of iterated integrals and an associated formal power
series. In this dissertation, the main class of systems considered is all analytic systems
that can be represented by Fliess operators. To ensure that a Fliess operator represents
a well-defined system, its associated formal power series must be locally convergent in the
sense that the output of the Fliess operator converges over a finite interval.

In control system applications, systems are interconnected in a variety of ways. Un-
derstanding the nature of these interconnections is important for both system analysis and
control design. For a large-scale system, it is convenient to first decompose it into subsys-
tems, and then to analyze the whole system by considering the subsystem interconnections.
For linear systems, some beautiful and complete results for the interconnections are now
standard subjects [35], however, the interconnections of nonlinear systems are not so well

understood, see for example, [1,63,65,69,70]. Our specific interest in this dissertation is
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(a) Parallel connection (b) Product connection

(d) Feedback connection

(c) Cascade connection
Figure 1.1: Elementary system interconnections.

the interconnection of analytic input-output systems represented as Fliess operators. The
four basic interconnections considered are the parallel, product, cascade and feedback con-
nections, as shown in Figure 1.1. A fairly complete algebraic theory can be constructed to
describe these interconnections.

The classical Laplace-Borel transform plays an essential role in the analysis and design
of linear time-invariant systems. For a linear time-invariant system, the output response can
be described by the convolution integral involving the impulse response and the input signal.
Applying the classical Laplace-Borel transform maps this convolution integral expressed in
the time domain to a purely algebraic expression in the frequency domain. In this way, a
linear time-invariant system can be completely characterized by the Laplace transform of

its impulse response, normally called the transfer function of the system. For proper linear
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systems, the transfer function can be expanded as a Laurent series. Using this idea of series
representation, the classical integral Laplace-Borel transform will be generalized to the class
of analytic nonlinear systems that can be described by Fliess operators. By introducing
this formal Laplace transform, the iterated integral in the time domain is mapped into
an algebraic expression in terms of formal power series, therefore providing an elegant
approach to nonlinear system representation. More specifically, in linear system analysis,
the Laplace transform of an analytic signal can be represented by its Laurent series in
the frequency domain, which is a formal power series. A linear time-invariant system can
also be characterized by the Laurent series expansion of its transfer function, which can
be viewed as a series representation of the system. Thus, the Laplace-Borel transform of a
linear system is really the mapping of a linear convolution operator to a formal power series
representation.

Motivated by the series representation and the Laplace-Borel transform for signals and
systems in the linear case, the basic idea is to generalize these concepts to the nonlinear
setting. The formal Laplace-Borel transform of a signal was generalized to the nonlinear
case by Fliess in [20,23], but a formal transform of a system is not so straightforward. In
linear system analysis, a system can be described by its impulse response, which is also a
signal. Therefore, the same notion of the Laplace-Borel transform of a signal can be directly
applied to produce the transform of a linear system. However, in the nonlinear case, this
approach is not possible. Therefore, an appropriate definition for the formal transform of
the nonlinear input-output dynamics is needed. Another objective of this dissertation is to
apply the formal Laplace-Borel transform to interconnected systems to provide a compact
series representation for the composite systems. The well-known isomorphism between time

domain and frequency domain in the linear case is also generalized to the nonlinear setting.
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1.1 Motivation

A linear system example is considered first to illustrate the basic concepts more clearly.
Let the space of inputs u be the set of measurable real-valued functions u(t) € R™, and
the space of outputs y be a set of measurable functions where y(t) € R¢. A causal linear
input-output system is then the mapping F : © — y defined by the convolution integral

involving its impulse response H(t,7) and the system input u(t):
¢
y(t) = Flu](t) = [ H(t,7)u(r)dr, t>to. (1.1)
to

If each component function of H is real analytic, then on some set D = {(¢,7) € R? : 5 <

T <t < t9+ T}, each column of H, H; can be represented by its Taylor series centered at

(T’ to),

> t—7)"2 (1 — to)™

Ht,r)= Y c(ng,i,nl)( —

ny,ne=0

—, (1.2)
nyt

where each coefficient c(ng,4,7;) € Rf. Substituting equation (1.2) into equation (1.1) and

using the uniform convergence of the series on D, it follows that

o m t(f— e . n
y(t) = Zz();c(ng,i,nl)/to (t ngl) uz(T)( nf?) dr. (1.3)

To see the mathematical structure underlying this series representation more clearly, define

formally ug(t) = 1 and let

t

Ei[u](t, to) = / wi(r)dr, i=01,-,m.
to
Observe that
Eolul(t, to) = t — to,

and define recursively

Boolul(t, to) = /tt Eolul(r to)dr = (t_;g)f
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After n; iterated integrations,

(t — to)"l
Eo.q [u](t, to) = !l
ny
Select any ¢ = 1,2,--- ;m and define
Fio.0 [ul(t to) /t (T)Eo..0 [u](T, to)dr /tu T (1.4)
0 ,t0) = wi (T , = (7)) ——dr. .
$.0---0 0 o 1 0---0 0 o i nl!

ny "1

Now integrate expression (1.4) once more and apply integration by parts,

AL%@ = dedr

(r - to)

Eoz‘w[u](t, to)

n1

dr.

t (t — T)ui(7)

After applying the previous step ng times inductively, the iterated integral will be

t—7)" T —to)™
Boagofulisto) = [ L w0 o
o N2 ny!
no ny
Therefore, series (1.3) can be expressed alternatively as
y(t) = Z ZC("M "1)E0 0300, [u](t, to). (1.5)
ni,no=0i=1 "2 n

This example suggests an alternative way to index the summations appearing in (1.5).
Define the set of index symbols I = {0,1,...,m} as an alphabet, and any finite sequence
over the alphabet I is a word. Let I* be the set of words igxig_1 - --4; with length k over
alphabet I, where i, € I for 1 <r < k. For k =0, I° denotes the set whose only element is
the empty word ¢ and I* = U I* denotes the set of all words over I. Let n be an arbitrary

k>0
word in I* and define the mapping

c(ng,i,m1) : n= 00400

(C’ 77) = nz ™M (16)

0 . otherwise.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Then the series (1.5) has a more compact expression

y(t) = Y _ (c;m)Eqlul(t, to)- (1.7)

ne I*

In fact, for any mapping of the form ¢ : I* — R¢, an input-output operator F, associated
with ¢ can be defined using (1.7). Specifically, for an arbitrary formal power series of the

form

c= Y (e,

ne I*

where 1 = igip_1---4; € I*, and (c,n) € RY, the unique input-output operator F : u — y
is defined by

Fc[uJ = Z (C: 77) Eﬂ[“]? (18)

ne I*

which is referred to as a Fliess operator [20,23]. The formal power series is called the
generating series of the Fliess operator. The set of all formal power series over the alphabet
I is denoted by Rf < I>>. Fliess operators can be regarded as series in a finitely generated
free algebra called the Fliess algebra. A Fliess operator can be completely characterized by
its generating series. In order for the formal summation in the Fliess operator definition
to represent a well-defined system, the coefficients of the series are generally assumed to

satisfy the following growth condition [20,21,23,33,34,60]
[(e,m)| < KMMnjt, k>0, (1.9)

for some finite real numbers K, M > 0. Here |n| denotes the number of symbols in 7. It was
proven in [28] that if a formal power series has coefficients satisfying the growth condition
in (1.9), the output of the Fliess operator converges absolutely and uniformly on a finite
time interval when the inputs are restricted to an open ball in L, space. If a series satisfies
(1.9), it is said to be locally convergent. The set of all locally convergent formal power series

is denoted by R < I:>.
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In many applications, input-output systems are interconnected in different ways. Given
two well-defined Fliess operators F, and Fj, Figure 1.1 shows four elementary intercon-
nections. One of the general goals of this dissertation is to describe in a unified manner
the generating series for each elementary interconnection, and conditions under which they
are locally convergent. Some partial results about the local convergence property of in-
terconnected systems have been obtained using a state space approach. If ¢ and d both
have finite Lie rank (see [60]), in addition to being locally convergent, then the mappings
F. and F; each have a finite dimensional analytic state space realization, and therefore
so does each interconnected system. The classical literature then provides that the corre-
sponding generating series can be computed by successive Lie derivatives [21] and must be
locally convergent [60]. But whether this rank condition is necessary to ensure the local
convergence of the interconnected system does not appear in the present literature. For
those locally convergent systems that do not have a finite Lie rank, and therefore are not
realizable by a finite dimensional, analytic, affine in the control state space system, does
there exist a generating series for each possible interconnection? If so, how does one obtain
the generating series? Are the new generating series for the composite systems also locally
convergent? These problems are fundamental to those who wish to use this model class in
applications. The parallel connection is the trivial case, and the product connection was
analyzed in [23,66]. But the analysis of these connections can be applied to the study of the
cascade and feedback interconnections. In [17], Ferfera showed that for a single-input-single-
output (SISO) system (i.e., £ = m = 1), there always exists a generating series c o d such
that y = F,[Fy{u]] = Feoq[u], but a multi-variable version of this composition product is not

available in the literature, nor are any results about local convergence. Generating series
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for the feedback interconnection is an entirely new problem. For the feedback equation
y = Felu+ Falyl], (1.10)

whether there exists a generating series c@d such that y = F.qq[u] and y satisfies (1.10) is
not known. When F, is linear, the formal solution to the feedback equation (1.10) can be

written as

y = Felul|+ F.oFyo Fyu]+---

It is not immediately clear whether this series converges in any manner, and in particular,
converges to another Fliess operator. When F, is nonlinear, the problem is further com-
plicated by the fact that operators of the form I + F;, where I denotes the identity map,
never have a Fliess operator representation. One of the main goals in this dissertation is to
describe the existence and local convergence of the formal power series for the multi-variable
cascade and feedback connections.

The classical Laplace-Borel transform provides a powerful tool for the analysis of signals

as well as linear time-invariant systems. The one-sided integral Laplace-Borel transform pair
th <Ly g (s1)kHL

naturally suggests a definition for the formal Laplace-Borel transform of a formal power

series in one variable:

4 REX> oR<KX>
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where the alphabet is X = {z¢}, ¢ is a series with coefficients (¢,¢) = 0, and
(& 28y = k! (c,2f), Yk >0.

This formal Laplace-Borel transform naturally suggests a transform pair for analytic signals.
Any analytic signal has a power series expansion in the time domain. By applying the
Laplace transform to every term in the power series, a Laurent series representation of
the signal in the frequency domain can be obtained. The transform, therefore, provides a
transformation between different series representation of analytic signals, one in the time
domain and one in the frequency domain. As discussed earlier, the idea can be applied to
analytic linear systems. As a linear time-invariant input-output system can be completely
characterized by its impulse response, which is also a signal itself, the Laplace transform
of a system is simply its transfer function. For nonlinear systems, however, the situation is
more complicated as the usual procedure for determining the Laplace transform of a signal
can not be directly applied to such a system. In this setting, the formal Laplace-Borel
transform for analytic signals was first used by Fliess in [20, 23] and later by Minh in [44]
to represent the input and output of a Volterra operator, which in turn produced a type
of symbolic calculus for computing the output response of a nonlinear system given various
inputs. What is absent in this framework, however, is the explicit notion of computing
the formal transform of the input-output system represented by a Fliess operator. Thus,
another general goal of the dissertation is to define this type of transform. In this way,
the formal Laplace-Borel transform provides an alternative interpretation of the symbolic

calculus proposed by Fliess [23] when combined with the notion of the composition product.
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1.2 Literature Survey

The idea of representing functional expansions by formal power series of non-commutative
variables comes from the interaction of two areas: algebraic combinatorics and iterated in-
tegral theory. The formal power series method in computer algebra dates back to the early
1960’s when introduced by Schiitzenberger as a generalization of automata and formal lan-
guages [16,55-57]. The theory of the iterated integral was proposed by Chen in the late
1950’s. In [7], Chen defined a formal power series in m non-commutative indeterminates as-
sociated with each path in the m-dimensional Euclidean space, R™, for an iterated integral,
and then generalized the definition to an arbitrary m-dimensional differentiable manifold
in [8]. The theory of iterated integrals was later applied by Chen to discover new relation-
ships in the algebraic structure of loop spaces [13,14]. Motivated by the theory of iterated
integrals and their rich algebraic structures, Fliess first applied the formal power series rep-
resentation in 1973 to give a theory of realization for bilinear systems [18] and later in 1974
a more general realization theory for nonlinear systems [19]. In [23], the representation of
a system output by a type of symbolic calculus involving iterated integrals was introduced.
Specifically, a formula for computing the solution of a differential equation with a forcing
function was given in terms of a functional expansion. The input-output operator defined
in this particular fashion was further developed in [20,21,60,66,67). In [28] it was shown
that if the growth condition on the coefficients of the formal power series (1.9) is satisfied,
the input-output mapping constitutes a well-defined operator whose domain lies in a ball
in L? space while the range lies in a ball in L7 space, where 1/p + 1/¢ = 1. In addition,
Sklyar and Ignatovich expressed the input-output mapping of an affine system as a series
of nonlinear power moments, which corresponds to selecting different basis for the Fliess

algebra [58].
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Formal power series methods are also connected with other techniques in nonlinear
system analysis. A few examples are the free Lie-algebraic techniques, combinatorics on
words, and the differential geometric methods. The free Lie algebra dates back to the
beginning of the twentieth century in the work of Campbell, Baker and Hausdorff on the
exponential mapping in a Lie group described by the Campbell-Baker-Hausdorff formula (2,
5,29]. Subsequently, extensive work has been done in free Lie algebras and their application
to nonlinear control theory [4,8,9,20,40,52,61]. Sussmann provides an expansion of Chen
series as a product of exponentials in a P. Hall basis [62]. The exponential product expansion
dramatically simplifies some hard analytic results, as shown by Kawski and Sussmann in
[40].

The algebraic structure of formal power series also involves combinatorics on words,
a field that has grown separately within several branches of mathematics, such as group
theory, and the areas of automata and formal languages [3,16,43,55-57]. Much literature
is also devoted to the shulffle algebra [3,43,49,52], and its connection to the multiplication
of two systems [21,66]. The set of formal power series with the operations of concatenation
and shuffle forms a Hopf algebra. The duality of the concatenation and shuffle implies two
bialgebra structures on the set of formal power series [43,52]. The algebraic nature of the
composition product in this setting has not been explored.

Differential geometry has been used extensively in nonlinear control since the 1970’s
[31,32,46], a brief overview of which is given by Respondek in [51]. Since the natural state
space of many engineering systems is a differentiable manifold, the differential geometric
methods has proven to be very elegant and powerful. There is extensive research involving
the state space realization of nonlinear systems over a differentiable manifold [6,19,21,31,33,

46,60,67]. The different notions of controllability and observability of nonlinear systems are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

also addressed in this setting. In [60], the existence and uniqueness of minimal realizations
of a nonlinear system was studied. In [66], a precise correspondence was established between
realizability of input-output operators and the existence of high order differential equations
involving the derivatives of inputs and outputs. It was shown in [68] that the order of the
input-output equation satisfied by a nonlinear system is no less than the minimal dimension
of any observable realization of the system.

System interconnections have interested control theorists for decades. Willems studied
interconnections in the context of system behaviors, which does not distinguish explicitly
the direction of signal flow [63,69,70]. An explicit direction of signal flow, however, must
be predetermined for cascades. In [22], Fliess provides an interpretation of the cascade
decomposition in a state space setting using the joint notions of foliation and ideals of
transitive Lie algebras. The approach Rugh applied in [53] is to consider the Volterra-
Wiener type nonlinear systems as compositions of feedback-free interconnections of linear
dynamics and static nonlinear elements. In [39], Kawski proposed a possible approach
to nonlinear state space system feedback interconnection using the chronological algebra.
In [17], Ferfera produced explicitly the generating series for cascaded interconnection of two
Fliess operators in the SISO case, and showed that there always exists a series ¢ o d such
that y = Fe[Fylu]] = Feoq[u]-

The classical integral Laplace-Borel transform provides an elegant way to analyze linear
systems. The generalization of this transform also provides the possibility of algebraic rep-
resentation of nonlinear systems, which, in turn, enables the solution of nonlinear problems
by recursive computer algebraic procedures. Since the 1950’s, much effort has been devoted
to the extension of the linear system techniques to nonlinear system analysis, and some

notable success has been achieved. The formal Laplace-Borel transform was used by Fliess
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in [20] to represent the input and output signals of a nonlinear analytic system, which in
turn produced a type of symbolic calculus for computing the output response of a non-
linear system given various control inputs. Later, Lamnabhi proposed a way to compute
the output response of a nonlinear system by a generalization of the Heaviside operational
calculus in [41]. In [21,23], the formal Laplace-Borel transform of the input and output
signals was used to solve a nonlinear differential equation with forcing functions, and the
non-commutative indeterminates in a formal power series representation were compared to
the association of variables developed by Mitzel and Rugh [45], and the Fliess representa-
tion was compared to the nonlinear high order transfer function representation proposed
in [53]. In [44] Minh viewed the system output signal as a function parameterized by the
indeterminates of input signals and introduced an evaluation transformation to compute the
temporal output response of the system given different inputs. In [59], Sternin and Shat-
alov described a formal Laplace-Borel transformation over the single-variable alphabet and
used it to reconstruct resurgent functions. What is absent in all of these approaches, is an
explicit notion of the transform of the input-output operator to characterize the nonlinear

input-output system.

1.3 Problem Statement

The main goal of this dissertation is to address the following problems:

1. To describe in a unified manner the generating series for the four elementary system
interconnections: the parallel, product, cascade and feedback connections. In each
case, the generating series for the composite system is to be produced, and a growth

condition on the coefficients of the generating series is also provided, when one exists.
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2. To provide a definition of the formal Laplace-Borel transform of a Fliess operator, to
characterize its basic properties, and to apply the formal Laplace-Borel transform in

the analysis of system interconnections.

3. To characterize the algebraic structures of the set of formal power series and the set of
Fliess operators with respect to system interconnection and the formal Laplace-Borel

transform.

1.4 Dissertation Outline

The dissertation is organized as follows. In Chapter II, the basic terminologies regarding
formal power series are reviewed, as well as some useful operations over the set of formal
power series. In this chapter, the definition of the composition product in the multi-variable
setting is given by generalizing an existing definition for a single variable composition prod-
uct, and its set of known properties is expanded. The algebraic structure of the formal power
series is studied in the presence of the concatenation, shuffle and composition products.

Chapter 111 is devoted to the interconnections of Fliess operators. Specifically, the formal
definition of a Fliess operator is introduced, and the four basic interconnections of two Fliess
operators are described in a unified manner: the parallel connection, product connection,
cascade connection and feedback connection. In each case, the corresponding generating
series is produced, and a growth condition is provided, when one exists. The analysis
starts with the three non-recursive system interconnections and the corresponding binary
operations on formal power series. Based on the analysis of the non-recursive connections,
the feedback connection is then addressed. A new binary operation, the feedback product is

introduced and characterized. A modified composition product is also defined in the process.
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Motivated by the correspondence between operations on formal power series and system
interconnections, in Chapter IV, a nonlinear extension of the classical integral Laplace-
Borel transform is proposed: the formal Laplace-Borel transform of a Fliess operator. The
properties of this transform are further explored, and its applications to system analysis
are illustrated. The formal Laplace-Borel transform provides an alternative interpretation
of the symbolic calculus introduced by Fliess et al. in [23] to compute the output response
of analytic nonlinear systems. In particular, using the concept of the formal Laplace-Borel
transform and the composition product, an explicit relationship is derived between the
transforms of the input and output signals of a nonlinear system. Finally, it is shown that
the formal Laplace-Borel transform provides an isomorphism between the semigroup of all
convergent Fliess operators under composition, and the semigroup of all locally convergent
formal power series under the composition product.

The main purpose of Chapter V is to provide a software implementation of the main
operations described in the previous chapters. An implementation package in Maple is
presented based on the ACE package developed by the ACE group in Université de Marne-
la-Vallée led by Sébastien Veigneau. The ACE package provides building blocks for the
binary operations on the free monoid of formal polynomials, such as the concatenation
product and the shuffle product. In this software package, the following binary operations
are implemented: the chronological product, composition product and modified composition
product, as well as the left and right shift operators, the degree, order, and metric function
in the space of formal polynomials. The results in previous chapters are illustrated by
command line examples using the software.

Chapter VI summarizes the main conclusions of this dissertation and gives some ideas

for future research.
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CHAPTER II

FORMAL POWER SERIES

2.1 Introduction

In this chai:)ter, the basic terminology regarding formal power series is introduced, and
the necessary tools are developed for the analysis in subsequent chapters. Specifically, a set
of definitions concerning formal power series are introduced; four operations over the set
of formal power series are given: the concatenation, shuffle, chronological and composition
products, and their properties are characterized. The basic definitions for formal power
series and the shuffle product are mainly from the classical literature, e.g., [43]. The defini-
tion and properties regarding the chronological product are from [37,38]. Much research has
been done on the shuffle algebra [3,43,52], while the algebraic properties of the composition

product are unavailable in the literature.

2.2 Definition of Formal Power Series

It is customary in combinatorics to refer to a set of indeterminates as an alphabet. Its
elements are called letters. A word over the alphabet X = {z¢,z1,...,2;n} is a finite
sequence of letters x;,x;, -+ x;, where z;, € X,V1 < r < mn. The number of letters
contained in a word is called the length of the word and is denoted by | -]. The word with
zero length is the empty word and is denoted by ¢. The set of words z; x;, , ---z;, with
length n, is denoted by X™. When n = 0, X° = {g}. The set of all words over the alphabet

Xis X*:= U X*. A formal language is any subset of X*.
k>0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17
Definition 2.2.1. A formal power series over an alphabet X is any mapping of the form
c: X* = RE
and the set of all such mappings is denoted by RE< X >.

Definition 2.2.2. For a formal power series, c, the image of a word 1 € X* under c,
denoted by (c,n), is called the coefficient of nn in c. The coefficient (c,0) is called the

constant term of c¢. If the constant term is 0, the formal power series is called proper.

In this dissertation, a formal power series ¢ € R¢ < X >, is represented by the natural

formal summation in the following:

c=Y (emn.

neEX™

Definition 2.2.3. The support of c is the set of words

supp(c) = {n € X* : (c,n) # 0}.
The order of c is defined by

inf{n] : n € supp(c)} : c£0
ord(c) :=
o0 : ¢=0.
From the definition, the order of an improper series is always 0. The set of all formal power

series with finite support is called the set of all formal polynomials, and will be denoted by

R<X>.

Definition 2.2.4. Given an arbitrary set S, for any c,d € S, define a mapping f : Sx S —

R*T U {0}. The function f is called an ultrametric if it satisfies the following properties:
1. fle,d)=0

2. fle,d)=0 <= c=d
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3. fle,d) =dist(d,c)
4. fle,d) <max{ f(c,e), f(d,e) }.

Definition 2.2.5. [3] The function dist(-,-) over the set R < X > is defined by

dist : RIgX>»x RE«X>» — RtU{0}
(C, d) — O.ord(c—d)7

where o € (0,1) is an arbitrary constant.

The function dist(-,-) can be verified to have all the four properties in Definition 2.2.4,
therefore dist(-,-) forms an ultrametric over the set R¢<« X >. Clearly the last property is

stronger than the triangle inequality, therefore an ultrametric is always a metric.

Theorem 2.2.1. [3] The set of all formal power series R* < X > forms a complete metric

space under the ultrametric dist(-,-).

Proof: To prove completeness, one needs to prove that every Cauchy sequence in R < X >

is convergent. Let {c,} be a Cauchy sequence in R < X >, then
Ve > 0, 3 an integer N such that for any n,m > N, dist(cp, cn) < €.
From the definition of dist(-,-), then, ord(c, — ¢m) > log, €. Therefore,
Vn € X" such that |n| <log, €, (cn,n) = (¢m,n) for sufficiently large n and m.

Thus for any word 7, {(cn,n)} is a Cauchy sequence in R¢. Since R is complete, {(c,,7n)}
converges to a vector in Rf, which will be denoted as (c,n). Let c := 2 _nex~(c;mm, clearly

dist(cn,c) — 0 and ¢ € RE<« X >. Therefore R < X > is complete. [ |

R« X > is a vector space. With the ultrametric defined over the set RE< X >

in Definition 2.2.5, the space (R¢< X >, dist) is a bounded metric space, as the metric
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dist(c,d) < 1forall ¢, d € R® < X >>. From the definition, it is easy to see that dist(c,d) = 1

if and only if (¢,8) # (d, ).

2.3 Operations on Formal Power Series

In this section, four operations over the set of formal power series will be introduced:
the concatenation, shuffle, chronological and composition products. The four operations
provide a natural way to characterize the algebraic structures of the formal power series.
The operations will also facilitate future analysis of the system interconnections. For each
operation, the definition used in this dissertation is presented, in addition to some other
existing alternative definitions in the literature. The properties of each operation are de-

scribed, along with various relationships between the four operations.

2.3.1 Concatenation Product

The concatenation of two words is defined as the following.

Definition 2.3.1. [3] The concatenation of two words n, £ € X* is the mapping
C . X*xX*—-X*
(m,€) — né.
For any word nn € X™*,
ng=on=rn.
Hence, the empty word, g, is the neutral element for the concatenation operation. Intu-

itively, any inverse operator should involve removing one word from the other. The following

shift operators can be used for this purpose.
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Definition 2.8.2. [3] For any x; € X, the left shift, mi"l (), of a word n is defined as

/

~ n o ifp=aim
T ) =
0 : otherwise.
The left concatenation inverse of a word can be written in terms of the left shift, specifically

7 (m¢) = & Vn,& € X*. Symmetrically, the right shift operator can be defined in the

following way.
Definition 2.3.3. [/ For any x; € X, the right shift, (-)x;!, of a word is defined as

n o ifn=nz

0 : otherwise.
Straightforwardly, the right inverse of the concatenation of two words can be written using
the right shift operator, (€n)n~! = &, Vn, £ € X*. The shift operations can be extended

naturally to the formal power series as follows.

Definition 2.3.4. For any ¢ € REX >, Va; € X, the left shift operator .’L'i—l () of a

formal power series ¢ is

it () =) () z; (),

nex*

and the right shift operator is

@z =Y (em) (.

nex*
The concatenation product of two formal power series can be obtained by extending

Definition 2.3.1 in the following way. This operation is frequently called the Cauchy product

of two series.

Definition 2.3.5. [/3] The concatenation product of two formal power series c,d €
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R« X > is the mapping
C @ R«X>» xRgX>» -R<«X>»

cd — ZnGX* an Ew(cv 6)(d7 ¢')77

The unit formal power series, 1, the support of which consists of only the empty word, g, is
the identity element for the concatenation product. In the case of formal power series and
formal polynomials, the following operation is usually viewed as a type of concatenation

inverse.

Definition 2.3.6. [3/ The star operator applied to a formal power series c € RK X >

is defined as

¢ = Zc" =(1-¢)7}

n>0

where ¢ denotes the concatenation power.

If the formal power series ¢ is not proper, that is, the constant term (¢, @) # 0, it is always
possible to write ¢ = (c,#)(1 — ¢/). Then it follows that there exists a ¢! € R« X >
such that under concatenation product cc™! =1 and ¢~'¢ = 1. A formal power series ¢ is
invertible if and ouly if it is not proper [3]. Specifically, the concatenation inverse of ¢ can

be written as

1
"~ (¢9)

(1-c) = (). (2.1)

The fundamental properties of the catenation product are summarized in the following

theorem.

Theorem 2.3.1. Let X = {xo,z1, -+ ,Zm}. Forallc,d, e e RKX >, and o, B € R, the

following identities hold:
1. Bilinearity (ac + Bd)e = a(ce) + B(de)

c(ad + Be) = afcd) + B(ce)
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2. Associativity  (cd)e = c(de) = cde
3. Identity  The identity element for concatenation product C is the unit series 1.
4. Left shift  (£v) le=v7! (f‘l(c))

a:i_l(cd) = aci—l(c)d+ (c, Q))xi_ld

z; ' (¢*) = 7 (e)e*

5. Invertibility A formal power series ¢ is invertible if and only if it is not proper. The
inverse of ¢ is given in (2.1). For a mononomial, i.e., a word, the left (right) inverse

can be determined by the left (right) shift.

Proof: The properties 1,2, and 3 are straightforward. The proofs for the left shift and

invertibility can be found in [3, p. 13]. u

2.3.2 Shuffle Product
The shuffle product of two words is defined recursively using the concatenation product.

Definition 2.3.7. [283, 49, 50] For two arbitrary letters x;, x;, € X and two words n, § €

X*, the shuffle product is defined recursively by
(zjn) w (xx€) = zj[nw k] + Tk [z 10 €],
withg wp =0 and £ ug =gl =¢E.

In this dissertation, Definition 2.3.7 is used for all the proofs and analysis. An alternative
definition is given in [43], where the recursion is done from the right. It can be easily verified
that the shuffle product of two words 5. € is a formal polynomial composed of words each

having length of |n| + |£|. Therefore, for a fixed v € X*, the coefficient

(nw&v) =0 if |n+ |¢} # v,
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The shuffle product of two words can be viewed as a mixing of the letters of the two words
which preserves the order of the letters in each word. In [43], the shuffle product of two

words is defined as a summation over a subset of X* in the following.

Definition 2.3.8. [/3] For two arbitrary words n, £ € X*, the shuffle set of two words

is the subset of X* defined by

Spwe = {h|h=aibrazbs---anby, n >0,

ai,bi € X*, n=a102- - an, E = brby---bp}.

The shuffle product is the summation over the shuffle set of the two words, which is also

called the characteristic polynomial of the shuffle set.

The definition of the shuffle product of two words can be extended to two formal power

series in the following manner.

Definition 2.3.9. [28] For any two series ¢,d € RK X >, the shuffle product of ¢ and
d is defined by

cwd= " (e;n)(dE)nuwé.

n,EeX*

For vector valued series, the shuffle product is defined in a componentwise fashion. Specifi-

cally, for any two series ¢,d € RE<« X >, the shuffle product of ¢ and d is defined by

(CLUd)i: Z (Ciaﬁ)(di»f)ﬂwﬁa

nEEX™

where (cwd);, ¢; and d; are the i-th components of cw d, ¢ and d, respectively.

The Hopf algebra structure of the set of all formal polynomials R<X> also suggests a

definition of the shuffle product as the adjoint of the diagonal map [43,52]. The set R<X>
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has an associated scalar product given by

(,-) : R<X>xR<X>—-R

(p.0) —~ D B)(am).

neXx*

The shuffle product of two formal polynomials can be viewed as a bilinear mapping

shuffle : R<X> @ R<X> — R<X>

P®G—pug.
The diagonal mapping is the co-product associated with the algebra R< X >

A RKX>» — R<X>R<X>

¢ Z (uwv)u®w.
u,veEX*

For any letter x;, the co-product A(z;) = z; ® 6 + 8 ® ;.

Definition 2.3.10. [/3, 52/ For any ¢ € RK X >, the shuffle product of two formal

polynomials p, ¢ € R<X> is the adjoint of the diagonal map defined by

(c7p‘-‘—‘q) = (A(C),p@ Q)'

The concatenation product of two formal polynomials can also be viewed as a bilinear

mapping

concatenation : R<X>® R<X> — R<X>

P& g+ pg.

Let A’ denote the adjoint of the concatenation product, then Vr € R« X >,

(pg,r)=(Pp®q,A(r)).
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This implies that for any series, the co-product associated with the algebra R« X > is

A REX > — R<X>@R<X>

cr Z (c,uv)u @ v.

u,veEX*

It is shown in [52] that there is a duality between the two bialgebra structures on R« X >

via the following theorem.

Theorem 2.3.2. [52] The adjoint of the shuffle product A is a homomorphism for the
concatenation product. The adjoint of the concatenation product A’ is a homomorphism for

the shuffle product. That is, Ve, d € R« X >,

Alcd) = Ale) A(d)

Allcwd) = Ac)wA(d).

Some basic properties of the shuffle product are given below. From the duality of the con-
catenation and shuffle products, there exists a symmetric relationship between the properties

of the shuffle product and those of the concatenation product.

Theorem 2.3.3. Let X = {z¢,x1, -+ ,Tm}. Forallc,d, e e RKX >, and a, B € R, the

following identities hold:

1. Bilinearity (ac+ Bd) we = alcwe) + B(dwe)

cuw (ad+ fe) = acwd) + Blcwe)

2. Commutativity cwd=dwc
3. Associativity (cwd)we=cw(dwe)

4. Identity  The identity element for the shuffle product is the unit series 1.
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5. Left shift 27 (cwd) = (&7 e) wd + e (x5 1d)
Right shift  (cwd)a; = (cz;b) wid+ e (dz] ).
Proof: Properties 1-4 can be verified by straightforward (although tedious) combinatorial
calculations using Definition 2.3.7.
5. The left shift property of the shuffle product can also be proven using Definition 2.3.7
(see [66]). The first step is to prove the identity for two words. Let n,£ € X*. If either
n = ¢ or £ = ¢, the identity is straightforward. Otherwise, when 7 and £ are nonempty,

then
i (we) =y (@ ) = o7 (0 wE) + a7 k(s §).
Applying the left shift operator gives
1+ ifi=j
0 i if i#3]
and therefore,
ot (nw€) = (27 'n) wé +nw (@76).

Next, for any ¢,d € R« X >,

M ewd) = Y (e,n)(d, &z (w)

n,LEX*

= Y (en)(d8) (&7 n) wé+nuw (2719))
m,8eX™

= Y (end&) (@' mwe) + Y (en)(d,€) (nw (7€)
n,EeX" mEEX™

= Y (ezn)(d, & mwd+ > (en)(d,m) (nwl)
n,£eX* n,E€EX*

= (z; ') wd+ cwi (z771d).

The right shift property can be justified by an analogous procedure. ]
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2.3.3 Chronological Product

A chronological product on a vector space C (over the field R) is a bilinear operator

% : C' x C +— C which satisfies the chronological identity
ax(bxc)=(axb)xc+ (bxa)*c foralla, b, c e C. (2.2)

A chronological product on R« X 3> is defined recursively using the concatenation product

[36-38,40]. The right chronological product is described below.
Definition 2.3.11. [36]/ The right chronological product of a non-empty word n €
X*\{g} with a letter z; € X is defined as

1% Tp = NT4.

For two non-empty words n and &x;, the right chronological product is defined recursively

using the chronological identity
nx€xy=(m*&)*xx;+ (§*n) *;
= (n*x &+ Exn)x;
withnxo¢ =0 and g xn =r1.

The definition of the right chronological product of two formal power series can be obtained

in the following manner.

Definition 2.3.12. [86] For any two series ¢,d € RKX > with either (c,¢) # 0 or

(d,#) # 0, the right chronological product is defined as

cxd= Y (e,n)(d,E)n*¢.

n,8EX™

It can be verified that Definition 2.3.12 satisfies the chronological identity (2.2). Similarly,

one can define the left chronological product in the following manner.
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Definition 2.3.13. [37] The left chronological product of a non-empty word n €

X*\{8} with a letter x; € X is defined as

n * T; = Iin.

For two non-empty words n and x;&, the left chronological product is defined recursively

using the chronological identity
nxz;€ = (nx&) *xxj+ (£ ¥ ) * z
=zj(nx{+§*m)
withn*xs=n andg*n =0.

From the definition, it is immediate that for a word with a single letter x;, the chrono-

logical power is equal to the concatenation power, i.e.,

i = (e (@ R mg) R wg) R ) KT =TTy X = T
N - g N—_—
n copies of x; n

The fundamental properties of the chronological product are given in the following theorem.

Theorem 2.3.4. For allc, d, e € RK X >, and a, § € R, the following identities hold for

both the left and the right chronological products:
1. Bilinearity (ac+ Bd)yxe =alcxe)+ p(d=*e)
c* (ad+ Be) = alcxd) + B(cxe)
2. Symmetrization [36] cxd+dxc=cwd
3. Variation of the chronological identity cx* (d*e) = (cwd)*e.

Proof: Here only the explicit proofs for left chronological product are given. The properties
of the right chronological product can be proven in an analogous fashion.

1. The bilinearity property follows directly from the definition of the chronological product.
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2. To prove the symmetrization property of the left chronological product of two formal
power series, the symmetrization of two words is first proven. Let 5, £ € X* with |n|+|¢] > 1,
that is, n and £ can not both be empty words. Then it will be shown by induction that
nx€+Exn=nwE When [n|+|£| = 1, there are two cases: n =z;, { =gandn =9, { = z;.
By the definition of the left chronological product, ¢; xg+g*z; = z; + 0 =x; = z; L@
and ¢ *x; + ;%6 = 0+ x; = z; = ¢ ;. Now suppose the symmetrization property holds
for any 7 and £ such that || + |¢| < k. Consider two arbitrary words 7 and £ such that
7| + |€| = k + 1. For the nontrivial case when % and £ are both nonempty, applying the

definition of left chronological product gives

7% &+ Ex 7 =17* (;€) + &+ (xxT)
= 7% (§ *a;) + & * (7 * x)
=&+ &) xaj+ (Exi +i7 % &) x
= zj(7wé) + ax( wiy) = (2;€) w (k7

=qwé.
Therefore, for any formal power series ¢ and d it follows that

cxd+dxc= Y (c,n)(dEn*E+ > (&) (emE*n

n,6€X* n,EX*

= 3 (em@dEm=E+Exn)

n,EeX*

= Y (@n@ 0w
n, {EX*

=cwd.

8. Applying the symmetrization property and the chronological identity gives the identity
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in part 3. m

The chronological power of a formal power series ¢ € R« X > is defined as c¢** =

(---((c*c)*c)x---)*c. An interesting observation by Kawski is that the shuffle power

~
n copies of ¢

of a formal polynomial can be represented in terms of the chronological power [38]. The

result is also true for formal power series.
Lemma 2.3.1. For any c € RK X >, it follows that c™'™ = nlc*".,

Proof: The proof is adapted from the inductive procedure in [38]. The equality is trivially
true when n = 0,1. For n > 2, one must first show that ¢ x ¢*®*~1) = (n — 1) - ¢*. This,

too, is trivially true when n = 1,2. Now suppose this identity holds up to n — 2. Then

cre N —cx (D we) = (ex ™) wct (D xc)xe

- (TL—-2) .C*(n—l)*c_*_c*n: (n_ 1)'c*n.

Next, it is shown inductively that ¢ ™ = n!c** for n > 2. When n = 2, by the symmetriza-
tion property, ¢"/2 = c* ¢+ ¢ * ¢ = 2¢*2. So suppose the identity holds up to some n — 1.

Then employing the previous identity

¢ =cw ((:L“ ("_1)) =cu ((n — 1)!c*("_1)>

=(n-1lcw (c*("_l)) =(n—1)! (c* ((;*(n—l)) + (c*(n—l)) % c)
= (n= Dl (1) e ™)

=nlc*™.
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2.3.4 Composition Product

The composition product of two formal power series is defined recursively in terms of
the shuffle product and concatenation. A definition of the composition product over an
alphabet X = {xo,x;} first appeared in [17]. The definition is expanded here to formal

power series over an arbitrary finite alphabet.

Definition 2.3.14. [2/-27] The composition product of a word n € X* with a formal

power series d € RM <« X > is

n e, =0, Vi#FO
nod=

m8+1[di L (77I © d)] = xgxiﬂ/, n=>0, # 0
where ||y, denotes the number of symbols in n equivalent to x;, and d; : £ — (d,€); is the

i-th component of d.

Consequently, if

n = ap T, Ty Ty, - T Ty g, (2.3)
where i; # 0 for j = 1,...,k, it follows that
nod=a™* dy wal N dy w2 dy, wal] ).
Alternatively, for any 7 € X* of the form (2.3) one can uniquely define a set of right factors
{mo,m, ..., m} of n by the iteration
M1 = 2o @i s Mo = g%, i #0, (2.4)

so that 7 = m with & = |n| — |n|g. In this setting nod = n o d where 141 0d =
2541

zo’ ' diy .y wi (nj 0 d)] and no = 2°.

Theorem 2.3.5. [2/-27] Given a fized d € R™ < X >, the family of series {nod : n € X*}

is locally finite, and therefore summable.
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Proof: Given an arbitrary n € X* expressed in the form (2.3), it follows directly that

k
ord(nod) =mng+k+ Y n;+ord(d)

i=1

[nl=Inl=q
=W+ Y ord(d). (2.5)
j=1
Hence, for any £ € X*,
I4&) = {neX":(nodg) #0}

C {neX*:ord(nod) <}
[n]=1nlzg
= {neX*:Inl+ Y ord(d,) <}
j=1

Clearly this latter set is finite, and thus I4(¢) is finite for all £ € X*. This fact implies

summability [3]. [

Definition 2.3.15. [2/-27] The composition product of two formal power series ¢ €

Rl X> andd e RM" <« X > is

cod= Z(c,n)nod. (2.6)

nex*
The locally finite property ensures that the composition product of two series is well-defined.
The summation can also be written using the set of all right factors as described in equa-

tion (2.4). Equation (2.4) suggests a way to decompose a formal power series ¢, which leads

to the definition of homogenous series.

Definition 2.3.16. [24, 25,27 Any ¢ € RE< X > can be written unambiguously in the
form

c=c+tcr+e2+---,

where ¢, € R < X > has the defining property that € supp(cy) only if |n|—|nlz, = k. Some
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of the series ¢y, may be the zero series. When cg = 0, ¢ is referred to as being homogeneous.

When ¢, =0 fork =0,1,...,1 — 1 and ¢; # 0 then ¢ is called homogeneous of order .

Let X' be the set of all words of length i in X*. For each word € X*, the j-th right

factor, 7;, has exactly j letters not equal to xg. Therefore, given any v € X™:

4

(codwv)=>" > (e,n)(mjodyv). (2.7)
z’]:o nj ext
i2j
The second summation is understood to be the sum over the set of all possible j-th right
factors of words of length ¢. This set has a familiar combinatoric interpretation. A com-
position of a positive integer N is an ordered set of positive integers {ai,as,...,ax} such
that N = a3 + ag + - -+ + ax. (For example, 3 has the compositions 1 +1+1,1+2,2+1

and 3). For a given N and K, it is well known that there are Cx(N) = (%j) possible

compositions. Now each factor n; € X ¢ when written in the form
= mgjmijxgj_lxij—l - @g i, 2,
maps to a unique composition of ¢ + 1 with j + 1 elements:
i+1=(no+1)+(ni+1)+ -+ (nj+1).

Thus, there are exactly Cjy1(i + Dmd = (;)mJ possible factors n; in X ¢ and the total

number of terms in the summations of equation (2.7) is ((m 4+ 1)+ — 1)/m ~ (m + 1),

Other elementary properties concerning the composition product are summarized in the

following lemma.

Lemma 2.3.2. For any c € REK X > and d € R™® < X >, the following identities hold:
1. co0=cp:= ), 5o(c,25) 73-

2. cpod=cy. (In particular, lod =1.)
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8. col=cyp:=3 cx(c;n) a:g”. (Therefore, co 1 = c if and only if cg = c.)

4. (xgc)od = zf(cod).
5. If ¢ is homogeneous, then lim, .o ¢°™ = 0 in the ultrametric sense of Definition 2.2.5.

Proof: Item 1-4 follows directly from the definition of the composition product. Only item
5 needs to be justified.

5. From equation (2.5), it is easy to see that

ord(ng o d) > |nk| + k - ord(d).

Therefore,
ord(ckod) > min |n| + k- ord(d) > ord(c) + k - ord(d).
nesupp(ck)
If ¢ is homogenous, then ¢ = ¢; + c2 + - - -. Therefore,
ord(co ¢) > min {ord(c; o ¢),ord(caoc), - ,ord(cpoc), -}

> min {ord(c) + ord(c), ord(cg) + 20rd(c),-- - ,ord(cs) + n - ord(c),-- -}
> min {ord(c1),ord(ca), - ,ord(cyp),- -} + ord(c)
= ord(c) + ord(c)
= 2 ord(c).
Now suppose ord(c®*) > k ord(c) holds up to some fixed k. Observe that
ord(c***t ) > ord(c) + ord(c®F) > (k + 1) - ord(c).

Therefore, ord(c°™) > n - ord(c) holds for any n > 0. Since ¢ is homogenous, ord(c) is at

least greater than 1. Thus, ord(c®® — 0) > n or equivalently, dist(c°",0) < ¢™. Finally,
0 < lim dist(c™,0) < lim o™ =0,

n—o0 n—oo

that is to say, lim,_,, ¢°® = 0 in the ultrametric sense of Definition 2.2.5. ]
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Example 2.3.1. Suppose ¢ = %—wo:rlcco - %xlx(z) and d = x( then cod = 0. That is, it is

possible to have ¢ o d = 0, where both ¢ and d are not zero. 0

The composition product can be written in terms of the left chronological product. If

n = xzgz;7', then by Definitions 2.3.13 and 2.3.14,

no d= .’I,'g+1[di Lid (77, o d)]
= xgxold * (' o d) + (0 o d) x dy]
= x5 [di * ((n o d) * z0)]

:\(---(di*((n'od)*xo)*mo)*---)*xq

n+1 copies of zg

= @g[d; * zo(n o d)]. (2.8)

Therefore, the composition product of a word n € X* with a formal power series d &

R™« X > can be written as

n © o nle, =0, Vi#0
nod=
xg[dl * :1:0(771 o d)] on= xgmin/a n>0, 1 # 0.
The following theorem states that the composition product on Ré< X > x R® <« X > is

continuous in its left argument. (Right argument continuity will be addressed later.)

Theorem 2.3.6. [2{-27] Let {c;}i>1 be a sequence in RE< X > with lim;_ .o, ¢; = c. Then

lim; ,oo(c; 0d) = cod for any d € R®" <K X > in the ultrametric sense of Definition 2.2.5.

Proof: Define the sequence of non-negative integers k; = ord(c; — ¢) for ¢ > 1. Since c is
the limit of the sequence {c;};>1, {ki}i>1 must have an increasing subsequence {k;, }. Now

observe that

dist(c;od,cod) = gordl(ei—c) od)
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and
ord((c;; —c)od) = ord Z (ci; —¢,m)mod
nEsupp(ci; —c)
> inf ord(nod)
nesupp(cij —c)
7= nlzo
= inf + ord(d;.
. L LY
2 kij .
Thus, dist(ci, o d,cod) < o™ for all j > 1, and limj e ¢; 0 d = c o d. n

Some algebraic properties of the composition product are summarized in the following

theorem.

Theorem 2.3.7. For any c¢,d,e € R« X> and a, 3 € R, the following identities hold:
1. Linearity (ac+pPd)oe=a(coe)+B(doe)
2. Distributivity over shuffle (cwd)oe= (coe)w(doe)
3. Associativity (cod)oe=co(doe).

Proof: Only the associativity property is nontrivial.
3. The first step is to prove that for all n € X*, (nod)oe =no(doe). The proof is by

0

induction. For n = 1y = z3° and using the definition of the composition product

(mod)oe = (zp’od)oe=zy°ce=uxp’,

mo(doc) = xfe.

Therefore, (oo d)oe =ng o (doe). Now suppose associativity holds up to 7 as defined in

(24) For Mk+1 = xgk—*ﬂxikﬁ,lnk?
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(Mk+10d)oe = (:Egk+1$ik+177k © d) ce
= (a5 [ (0 D)) o
= 2 ([diyyy i (s 0 )] 0 )
= 2 [diy,y 0 s (e 0 d) 0 )]
= 2g* " [(doe)iy, w(mko (doe))]

— mgk+1xik+lnk o(doe)

Mo o (doe).

Il

Therefore,

(codyoe=| S (emmod|oe= 3 (emnodyoe

nex* nex*

= Y (emno(doe) =co(doc).

neXx*

In general, co (d+¢e) # cod+ coe, but for series whose support is a subset of
L = {xp*z;x(°|no, ny € N}, which are called linear series, this is a valid identity. This is

illustrated in the following example.

Example 2.3.2. Consider the alphabet X = {xo,x1}, series ¢ = 22 and d = e. Then

co(d+e) =z o (2d) = xo [2d 1 20(2d))]

= 4.’1,‘0 [d L :E()d] = 2(.’13()d) o 2.
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However,
cod+coe=2(cod)=2(z?0d)
= 2z [d w xod] = (xod) 2
Now for the linear series ¢1 = Y, . ~o(c, 25" 2izp°)2g T:i%0° = 3o, ex~(¢,m)m, observe
that

mo(d+e)=zyzzg®o(d+e)= x6”+1 ((d+ €)s wi2p°]
"1“ [(di wag®) + (eswzg?)] = ”1+1(di wzg®) + :c6'1+1(ei wxg®)
=mod+meoe.

Therefore,

cro(d+e)= Z(cl m) (m o (d+e))

mex*
=Y (c,m)mod)+ D (cr,m)(moe)
mex* mex*

=ciod+cioe.

The composition product is not commutative in general. But in the next example, the
linear series ¢ € R« X > of the form ¢ = 37 54(c, 25" z1)xp" 71 is shown to commute under
composition with another such series.

Example 2.3.3. Let X = {20,21}, ¢ = ), 5o(c, zgz1)zgz1 and d =, - o(d, 2§'x1)25 1.

Then the compositions of the two linear series ¢ and d are

cod=3 (emmod= Y (eafar)efd

nex* n>0
= Z (c, zBx1)(d, 2Fa )2l ™y,
n,m>0
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and

doc= d,n)noc= d, 'z )z e
0 0

nex+* m>0

= Y (dagz)(c,zfz)ag " oy,
n,m>0

Clearly cod = doc. Also note that the composition product of the linear series produces

the convolution sum {35]. 0

Given a fixed ¢ € R™ « X >, consider the mapping R" <« X > — R" <« X > :d + cod.
The goal is to show that this mapping is always a contraction on R™ < X > i.e., that

dist(cod,coe) < dist(d,e), Vd,e e R"<K X >,
so that fixed point theorems can be applied in later analysis [30,47,48,54]. Consider the
following lemma.
Lemma 2.3.3. [2/-27] For any ¢;, € R« X >,
dist(cy o d,cp 0e) < o - dist(d,e), Vd,e € R"< X >,

where ¢ s a formal power series with the defining property that n € supp(cy) only if
In] — Inlze = k as in Definition 2.3.16.

Proof: The proof is by induction for the nontrivial case where ¢ # 0. First suppose k = 0.
From the definition of the composition product it follows directly that n od = n for all

n € supp(cp). Therefore,

cood= Y (commod= Y (co,n)n=co,

n€supp(co) n€supp(co)
and
dist(cood,cooe) = dist(co,c0) =0
< oY dist(d,e).
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Now fix any k£ > 0 and assume the claim is true for all ¢g,cy,...,cx. In particular, this
implies that

ord(cgpod —cpoe) > k+ord(d —e). (2.9)

For any j > 0, words in supp(c;) have the form 7; as defined in (2.4). Observe then that

crprod—cryroe= Y (Ckr1,Mht1) Mhr1 ©d— (Ces1, Tht1) Ter1 O €
Ne+1E€EX*

= Z (Ckt1,Mk+1) [mOnk+l+1[dik+1 w [ng o d]] — x0nk+1+l[eik+1 L [nk © 6]]]
M sMe+1EX*

= Z (Cht1,Mk+1) [monk+1+1[dik+1 w g o d]] — 370"k+1+1[dik+1 w e o €]] +
Mo Mh4-1 €X*

nk+1+1[

.’Eonk+1+1[dik+1 wi [ 0 e“ — %o Cigpr W [nk © 6]]]

= > (okttomer) [w™  diy,, wimk o d — i o )]+
Mok 1 EX*

wonk+1+1[(dik+1 - eik+1) s 1 © e]]]

using the fact that the shuffle product distributes over addition (componentwise). Next,

applying the identity (2.5) and the inequality (2.9) with ¢ = 7, it follows that

ord(cgr10d —cpyr0€e) > min { inf g1 + 1+ ord(d) + k + ord(d — e),
Me+1E5upp(Crt1)

inf Ngt1 + 1+ ord(d —e) + |n| + k - ord(e)}

Nt 1€8upp(Cri1)

k+ 1+ ord(d—e),

v

thus,
dist(cpr1 0d,cppy0e) < o®tl . dist(d,e).

Hence, dist(cy o d, ¢t 0e) < o - dist(d, e) holds for any k > 0. [ |

Applying the above lemma leads to following result.
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Lemma 2.3.4. [2/-27] If c € R" < X > then for any series ¢ € R™ < Xo>>,
dist((ch+c)od,(cg+c)oe) =dist(cod,coe), Vde e RT"KX>. (2.10)
If ¢ is homogeneous of order 1 > 1 then
dist(cod,coe) < ot - dist(d,e), Vd,e € R® <X >. (2.11)
Proof: The equality is proven first. Since the ultrametric dist is shift-invariant:
dist((ch +c)od,(ch+c)oe) =dist(chod+cod,choe+coe)

=dist (cp+cod,cy+coe)
=dist(cod,coe).
The inequality is proven next by first selecting any fixed [ > 1 and showing inductively
that it holds for any partial sum Ei:? c; where k > 0. When k = 0, Lemma 2.3.3 implies

that

dist(ciod,cioe) < o' - dist(d, e).
If the result is true for partial sums up to any fixed & then using the ultrametric property
dist(d,e) < max{dist(d, f),dist(f,e)}, Vd,e,f e R"<X >,
it follows that
I4+k+1 I4+k+1
dist (( Z ci> od, ( Z ci> oe)
i=l i=l

I+k I+k
= dist ((Z Ci) od+ ¢i4x+1 0 d, <Z ci) oe+ Clykt1 © e)

i=l 1=l

I+k I+k
< max {dz’st ((Z ci> od+ g1 0d, (Z ci> od+ Cpyk+1 © e) ,

1=l 1=l

I+k I+k
dist ((Z ci> od+ Ccl4k+1 086, (Z ci) oe+ Clpky1 © e) }
i=l i=l
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I+k I+k
== max {dist(chH od, i1 0€),dist <(Z ci) od, (Z c,-) o e) }
1=l =)

< max {(fl+k+1 -dist(d, e), o - dist(d, e)}
< ot - dist(d, e).
Hence, the result holds for all £ > 0. Finally the lemma is proven by noting that ¢ =

limg— oo Zﬁi_"f ¢; and using the left argument continuity of the composition product proven

in Theorem 2.3.6 and the continuity of the ultrametric dist(-,-).

The main result regarding the contractive mapping is the following.

Theorem 2.3.8. [24-27] For any ¢ € R" « X > the mapping d — cod is a contraction

on R« X >.

Proof: Choose any series d,e € R™ <« X >». If ¢ is homogeneous of order [ > 1 then the

result follows directly from equation (2.11). Otherwise, observe that via equation (2.10):

0 . 9)
dist(cod,coe) =dist ((Z Ci) od, <Z Ci) ° 6)
=1 =1

< o - dist(d,e)

< dist(d, e).

An immediate consequence of the contractive mapping property is the right continuity

of the composition product in the ultrametric sense.

Theorem 2.3.9. [2/-27] Let {d;}i>1 be a sequence in R™ K X > with lim; .o d; = d.

Then lim;_,(cod;) =cod for allc e R X >>.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43
Proof: The proof follows directly from the property of the contractive mapping.

lim dist(cod;,cod) < lim dist(d;,d) = 0.
1— 00

1—00

2.4 Algebraic Structures of Formal Power Series

Using the properties of various operations over the set of formal power series R™ < X >,

a summary of the algebraic structures of R™ « X > is given in the following theorem.

Theorem 2.4.1. Let R™ « X > be the set of formal power series with the four operations
defined over R™ « X >>: addition, concatenation, the shuffle product and the composition

product. The following statements are true:

1. (R™< X >,+) is a vector space.

[\

. (R <« X >, +) is a commutative group.

w

. (R™m<« X >,C) is a monoid with the identity ¢z =1 = g.

4. (R™M <« X >, w) is a commutative monoid with the identity cz =1 = .

5. (R« X >, 0) is a semigroup.

6. (R« X >, +, w) is a commutative ring.

7. (R« X >,+, w) is an R-algebra.

8. (R™ <« X >,+, w) is an integral domain.

Proof: Statements 1, 2 and 3 are straightforward. Statement 4 can be justified by the com-

mutativity property in Theorem 2.3.3, and statement 5 can be proven by the associativity
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in Theorem 2.3.7. Statement 6 follows statement 2 and 4. Statement 7 can be justified
from statement 6 and the bilinearity property of the shuffle product in Theorem 2.3.3. The
proof for 8 was provided in [66, Lemma 2.1.1]. It is included here for completeness.

The following is to show that given any ¢, d € R™ <« X >, one has cud # 0 when-
ever ¢ # 0 and d # 0. To prove this, first order all the words n = x;, x4, ---x;, € X*

lexicographically, then take two nonzero series ¢, d and let

21 =Ty Tip - T

m

and

22 = X5 &gy Ty

n

be the smallest words in the support of ¢ and d, respectively. Let

=2y Tty Ty

be the smallest word in the support of 21 wi 29. Then the coefficient of £ in ¢ d is:

(cwd, &)= > (c,m)(c,m)(me wm, €).

Mk, MEX™*

As £,z and 29 are the smallest words on the support of ¢wd, ¢ and d respectively, one

obtains

(cwd,§) = (¢, 21)(d, 22) (210 22, §),
which is nonzero since (¢, z1), (d, z2) and (21 w22, £) are all nonzero. ]

In general, (c,+,0) can NOT form a ring, as the composition product is not right
distributive over addition, i.e., co (d + €) # cod + c o e. Nevertheless, for the subspace of

linear series, the right distributivity holds, therefore, (¢jinear, +,©) forms a ring.
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CHAPTER III

INTERCONNECTION OF ANALYTIC NONLINEAR SYSTEMS

3.1 Introduction

In this chapter, a class of nonlinear input-output operators known as Fliess operators
is introduced. Each Fliess operator can be characterized by a formal power series. The
formal power series must be locally convergent to ensure that the Fliess operator represents
a well-defined system. The main problem of interest in this chapter is the interconnection of
two Fliess operators. Four fundamental interconnections are presented in a unified fashion:
the parallel, product, cascade and feedback connections. In each interconnection, the key
issues considered are: What is the generating series for the composite system? Do the
interconnected systems still have well-defined Fliess operator representations? In particular,
is the local convergence property preserved under system interconnections?

The chapter is organized as follows. First, the definition of a Fliess operator is given,
and the local convergence property of its generating series is introduced. In Section 3
the local convergence property of a formal power series is addressed under the shuffle and
composition products. In Section 4, the four fundamental system interconnections are
analyzed primarily by applying the results of Section 3. The system interconnections are
divided into two groups: three nonrecursive connections: the parallel, product and cascade
connections; and the feedback connection, which is recursive in nature. Specifically, the
cascade connection of two Fliess operators is shown to be always locally convergent, and

the feedback connection is always input-output locally convergent.
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3.2 Definition of Fliess Operator and Generating Series

Let X = {xg,71,...,Zm} denote an alphabet of m + 1 letters, and X* the set of all
words over X. For each ¢ € RE« X >, one can formally associate a corresponding m-
input, f-output operator £, in the following manner. Let p > 1 and @ < b be given. For
a measurable function u : [a,b] — R™, define |jull, = max{|lu;|lp : 1 < i < m}, where
||ui|lp is the usual Ly-norm for a measurable real-valued function, u;, defined on [a,b]. Let
L[a,b] denote the set of all measurable functions defined on [a,b] having a finite || - |,
norm and By*(R)a,b] := {u € L*[a,b] : |lul, < R}. With to,T € R fixed and T' > 0, define
inductively for each 7 € X* the mapping E, : LT*[to,to + T| — Clto, to + T with E, = 1,

and

t

Buy oy o [0l o) = / Ui (7) ey, (7 o)
to

where ug(t) = 1.

Definition 3.2.1. The Fliess operator corresponding to a formal power series c € RE< X >

ts an input-oulput operator

Flul(t) = 3 (c,n) Bylul(t, to).

nex*

The formal power series ¢ is called the generating series of the Fliess operator.

All Volterra operators with analytic kernels, for example, are Fliess operators. In the
classical literature where these operators first appeared {20,21,23, 33, 34, 60|, it is gener-
ally assumed that the coefficients of the generating series c satisfies the following growth

condition

l(e,m)| < KMWM[pt,  Ype X, (3.1)

where |z| = max{|z1|,|22|, ..., |z} for z € R, and |n| denotes the length of 7.
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The following theorem states that the growth condition on the coefficients of ¢ in (3.1)

ensures that the output F[u] converges uniformly and absolutely on a finite interval.

Theorem 3.2.1. [28] Suppose c € RE <« X > satisfies the growth condition in (3.1). Then

there exists R > 0 and T > 0 such that for each u € BT*(R)[to,to + T}, the output

y(t) = Felul(t) = ) (e, m)Eqlul(t, to)

neXx*
is absolutely and uniformly convergent on [to,to + T'|. Furthermore, the function y(t) is

absolutely continuous on [to,to + 1.
In light of the above convergence theorem, the following definition is given.

Definition 3.2.2. A formal power series is said to be locally convergent if its coefficients

satisfy the growth condition in (8.1).

The set of all locally convergence series in R¢ < X > is denoted by Ri() < X >, and the set
of Fliess operators with locally convergent generating series is denoted by F. In [28] it is
shown that any F, € F constitutes a mapping from By*(R)[to, to + 1] into BL(S)to, to+T)
for sufficiently small R, S, T > 0, where the numbers p,q € N* are conjugate exponents,

ie, 1/p+1/q =1 with (1,00) being a conjugate pair by convention.

3.3 Local Convergence of Formal Power Series under Com-
position

In this section, the local convergence property of formal power series is considered under
the composition product. As the composition product is defined recursively using shuffle

product and concatenation, it is necessary to start from the local convergence property of
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the shuffle product. It is a point of reference and provides some important insight. The

following theorem was proven in [66].

Theorem 3.3.1. [66] Suppose ¢,d € Rpc <X > with growth constants K.,M, and

K4, My, respectively. Then cud € Rpo < X > with
l(cwd,v)] < KKgMWM(|u| +1)!, Yve X, (3.2)
where M = max{ M., My}.
Noting that n + 1 < 2" n > 0, equation (3.2) can be written more conventionally as
Hewd,v)| < KKq2MPI!, Yve X*.

The result is easily extended to the multi-variable case by the componentwise definition of
the shuffle product on Ré< X >, i.e., for all ¢,d € REK X >, define the i*" component
(cwd,v); = (¢ wdi,v), Vv € X*,i=1,2,...,£, with ¢; and d; denote the i** components
of ¢ and d, respectively. The corresponding growth constants are K, = max;{K,,}, M, =
max;{M,, }, etc. The specific goal here is to show that co d is also locally convergent when
the series ¢ and d are locally convergent, and to produce an inequality analogous to (3.2).

The basic properties of the shuffle product given below are essential.

Lemma 3.3.1. [66] For c,d e R« X > and any v € X*:

1 (Cu_|d,l/): Z (Cvé)(d7£)(£“—’§_7’/)

£€eX~
v
=Y ¥ (@OWHEwEY)
= Eeé)fl)'fllvi
2 >, (éwf—w)=<|';l>, 0<i<y.
gext
fexlvi—i
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Identity 2 in this theorem is actually an inequality (<) in [66]. It also appears (unproven)
in the context of counting subwords in [43, p. 139]. So a proof of this slightly stronger result

is in order.

Proof of Identity 2: For any fixed v € X* and i =0

Y EwEn= Y Er=1= ('g').

£ex0 feXxlvl
Eex1”|
A similar analysis hold when ¢ = |v|. For the case where 0 < i < |v], an inductive proof on

the length of |v| will work. When || =0 or |v| = 1, the claim is trivial. When |v| = 2 and

i =1,1ie.,0<i<|v] =2, note that

Z (Ewév) = Z (2% + Tz, v) =2 = G)

§7E€X $,1—IEX

Next suppose the identity 2. holds up to some fixed |v| = n — 1 > 0. Clearly when |v| =n
and either i = 0 or i = n, the identity is true. So assume that 0 < ¢ < n. Define v = 21/,

ze€ X,V e X" and 6,, =1 for £ = z € X and zero otherwise. Then observe that

Z (5'—'—'571/) = Z (z—l(gmé)’yl)

tex? gext
éexn—i EEX"‘i
= Y EEHEN+ Y (Ewai@)Y)
xeX z€X
glex‘i——l §€Xi
fexn—i fexn—i-l
= Z 5wz(£lu—'£_7 VI) + Z ézz(gLUEI,VI)
x€eX xeX
ﬁlexi—l Eexi
fexn—i gexn—i-1
= Z (glmg,y/)_{_ Z (gl-uglal/)
Elexi—l ~ Eexi
EEX”'i glexnfi~l

= ) + , =1.1]
i—1 % 1
where in general £71(-) denotes the left shift operator in X*. Therefore, the identity is true

for all |v| > 0. [

Now given any 1 € X* of the form n = x{*z;, x* 'zi,_, -+ 25 i, 75°, the set of right
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factors {no,m, ...,k } defined by (2.4) produces a corresponding family of real-valued func-

tions:

1
Tlo(n) | 0||’ nZO

1
Spy(n) = 7—=——"5p(n), n=|m|=1
(n)nl-i—l
i”l]
Sy (n) = (n)n]+1 Z Spya(n=(nj+1)—d), n>nl >4, 2<5 <k,

where (n); = n!/(n — i)! denotes the falling factorial. The next two lemmas form the core

of the local convergence proof for the composition product.

Lemma 3.3.2. [24] Suppose ¢ € RS oKX > and d € RT; < X > with constants K., M,

and Ky, My, respectively. Then
(cod,v)| < K¢y (Kq) MM)!, Vv e X, (3.3)

where M = max{M., My}, and {{n(Kq)}n>0 is the set of degree n polynomials in Kq

n
Ya(Ka) = D> D KjSy(m)lnll, n>0.
17.7:0 "leXi
>3

Proof: The proof has two main steps. It is first shown that for any integer [ > 0 and any

n € X* with |n| <! and right factors {no,n1,...,7} as defined in equation (2.4), that
[(nj 0 d, )] < KGMG ™M [t S, (1) (3.4)

for all 0 < j < k and |n;| < [v] < 1. (Note that (n; od,v) = 0 and S,,(|v|) is simply not
defined when |v| < |n;].) This is shown by induction on j. The case j = 0 < [ is trivial.
When j = 1 < I, the left shift operator x, (mtl) (xgl"'l)"l is employed. Specifically,

for any v with |n1]| < |v| <1 and containing the left factor x01+1 (otherwise the claim is
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trivial):
|(m o d,v)| = |(25" (di, wap®),v)

= |(diy w2y ™ 1))
|

V/

= Z (diuf)(gu—‘xgoﬂ/)

gexv'l-no

< Y (KaMYEN (€ wape, ) (since 0 < €] < 1)
gexv'l-no

, !
< KMy (| - ng)!(|71:0|>

= KaM; ™M us,, (v)).

Now assume that the result holds up to some fixed j where 1 < j < k— 1. Then in a similar

fashion for |n; 1| < |v| <L
- 1
(1341 0 dy )| = |(diyy 10 (m 0 d), 55"V (w))
\_\,___J

l/l

1|

- Z Z z,+1,§)(’l7j0d,§_)(§m£—,1/) .

gexi
ex“’ =t

Since (nj o d,€) = 0 for |€] < |n;l, it follows using the coefficient bounds for d (because

0<|¢] <1—(j+1)) and Lemma 3.3.1 (since |n;]| < |€] < — (nj1 + 1)) that

/|11 _ o i i
yodml< 350 3 (KMl - (KM ™ M EL S, 08D ) (6w &)
Y ki
) |+ —In;] I ,I
= ey z'(|u|—z>'sm<1u|-z>( )
=0

=1

> S (vl = (njar +1) — )

— Kj+1M_|77j+1'M|V| ]
d d d | | (lVl ng1+1 prs

j+1 p r =10
= KM M ) S, ().
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Hence, the claim is true for all 0 < j < k.
In the second step of the proof, the claimed upper bound on (¢ o d,v) is produced in
terms of the polynomials 1, (Ky). Since 5 € I4(v) only if |n| < |v|, and using the inequality

(3.4), it follows that

|¥|

lcod ) =D D (enj)(n;0d,v)

,"7.720 nj ext
i>j

v}

<30S (MMl - (KM M) S, ((v))
1,J=0 n;ex?
(]

=K, "[)IUI(Kd) Miylll/"

Lemma 3.3.3. [24] For each right factor n; of a given word n € X*, the following bound

apply:
1+ a)""|’7f|+j

0<S,, < .
W)= g

for any a > 0 and all n > |n;|.

Proof: The proof is again by induction. The j = 0 case is trivial. When j = 1 observe that

1
() = Gyl

R

(I"71|)n1+1|770|!

1

~iml!

< (1+a> (1+a)"‘|"1|, n> ml.

a |1 |!
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Now suppose the lemma, is true up to some fixed j > 1, then

1 n~=|n;+1}

S 8= (g1 +1) )

Sp. i (n) = ——
"7]+1( ) (n)nj+l+1 pars

1 n=|nj 41 (1 + @)=+ D) =)= In; |+

ST & Tl

n]+1+1 i=0

l"]]+1|

Z (1+ @)l p > g
=0

(14 a)rImiil+it+t

a1 nj 4!

(1+a)
- 04]!?7]+1|!

So the result holds for all j > 0. n

The main local convergence theorem for the composition product is below.

Theorem 3.3.2. [24] Suppose c € RS, <X > andd € RT < X > with growth constants

K., M. and K4, My, respectively. Then cod € ]RZLC<<X>> with
(cod,v)| < K((¢(mKa) + M)y + 1)1, Vv e X*,

where ¢(x) := x/2++/x2/4 + = and M = max{M,, My}. If mKy4 > 1, the growth condition

approaches K (mK M)P(|u| + 1)1, that is
l(cod,v)] S Ke(mE MW (v + 1)), Vv e X*

Proof: In light of Lemma 3.3.2, the goal is to show that for all n > 0: ¥, (Ky) < (¢p(mKy) +

1)™(n + 1). Observe that applying Lemma 3.3.3 gives for any o > 0:

Z Z K] 1+a Im|+J
’J OW]EXL
i>j
n i . 1 i—7
K2\’ 1 v
<a+ar> Y () (—m 9 (=)
=0 <o ¥i « + o
=(1+a)"y B,
i=0
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where 3 := mKy/a + 1/(1 + a). Setting 3 = 1 corresponds to letting a = ¢(mKy), and
the first inequality of the theorem is proven. To produce the second inequality, simply note
that in general mKy < ¢(mKy) + 1 with mKy ~ ¢(mKy) + 1 when mKy > 1. (Some
notable values of ¢(mKy) + 1 are given in Table 3.1.) Here ¢4 denotes the Golden Ratio

(14++5)/2=1.618....... m

Table 3.1: Specific values of p(mKy) + 1.

mKy d(mKy) +1
0 1

<1 ~ vmKg+1
1/2 2

1 | gg+1=¢2=205

>1 ~mKy

400 -+00

Example 8.3.1. In some cases, the coeflicient boundaries given in Theorem 3.3.2 are
conservative, i.e., smaller growth constants can be produced by exploiting particular features
of the series under consideration. For example, when ¢ € Ry <« X > is a linear series of the
form ¢ = 37, 5o(c,2521) 2571, it can be shown directly, by writing the composition product

as a convolution sum and using the fact that > p_, (Z)—l < 3 for any n > 0, that

l(cod,v)| < K.KqMM|y|!, Yve X*.
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Example 3.3.2. Let X = {x,21}, and suppose ¢ = Y, o(k!)? x¥. Then according to

Lemma 2.3.2, co0 = 0 and 1 o ¢ = 1. That is, it is possible that c o d can be locally
convergent even when ¢ or d is not. |

This last example of the composition product motivates the following definition.

Definition 3.3.1. A series ¢ € R« X > is input-output locally convergent if for

every ¢, € R < Xo>> it follows that cocy € ]RZLC<<X0 >, where Xo = {xo}.

It is immediate that every locally convergent series is input-output locally convergent, but

the converse claim is only known to hold at present in certain special cases.

Lemma 3.3.4. [24] Let c € RE< X > be an input-output locally convergent formal power

series with non-negative coefficients. Then c is locally convergent.

Proof: Set ¢, = 1 and let K, M be the growth constants for the series co 1. Then from

Lemma 2.3.2, property 3,

|(co1,z3)| = max E (ci,m) < KM™n!, Vn >0.
2
nexn

Thus, |(¢,n)| = max;(c;,n) < KM" n! for all n > 0. [

Lemma 3.3.5. [24] Let c € RE< X > be an input-output locally convergent linear series
of the form ¢ = ijo(c,méxij) méxij, where i; € {1,2,...,m} for all j > 0. Then c is

locally convergent.

Proof: Again set ¢, =1 and let K, M be the growth constants for the series co 1. Then
(o 1,25)| = max|(ci, @ ~wi,)| < KM™n,
2

and the conclusion follows. =
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3.4 System Interconnections

In this section, the interconnections of two Fliess operators are considered. The four
elementary interconnections of interest are parallel, product, cascade and feedback connec-
tions, as shown in Figure 1.1. In the case of the cascade and feedback connections it is
assumed that £ = m. Given two locally convergent Fliess operators F, and Fy, the general
goal of this section is to describe in a unified manner the generating series for each ele-
mentary interconnection and the conditions under which each series is locally convergent.
The analysis starts with the three nonrecursive interconnections: the parallel, product and
cascade connections, then the feedback connection is characterized with the aid of the non-

recursive results.

3.4.1 The Nonrecursive Connections

In this section, the generating series are produced for the three nonrecursive intercon-
nections, and the growth condition for each generating series is derived. The main results

concerning the three nonrecursive interconnections are given in the following theorem.

Theorem 3.4.1. [24] If c,d € ]R‘LC K X > then each nonrecursive interconnected input-
output system shown in Figure 1.1 (a)-(c) has a Fliess operator representation generated by

a locally convergent series as indicated:
1. Fo+Fy=F. 4
2. Fe-Fg=Fcud

8. F.o Fy = F.oq, where £ = m.
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Proof: 1. Observe that

Feu)(t) + Faful(t) = Y [(e,n) + (d:m)] Eyul(t, to)

nex*

= c+d[u](t)'

Since ¢ and d are locally convergent, define M = max{M,., My}. Then for any n € X* it

follows that
[(c+d,n)| = |(c,n) + (dyn)]
< (K. + Kg) MMy,

or ¢+ d is locally convergent.
2. In light of the componentwise definition of the shuffle product, it can be assumed without

loss of generality that £ = 1. Therefore,

Folul(t)Falul(t) = Y (e, m)Eylul(t,to) ) (c,&)Eelul(t, to)

nex* ceEX™

= Y (e:n)(d,€) Eylu](t, to) Ee[ul(t, to)
n,fEX*

= Z (Cvn)(daé) Enu.;{[’&](t,tg)
n,feX*

= cmd[u](t)'

Local convergence of ¢ d is provided by Theorem 3.3.1.
3. Tt is first shown by induction that Fy o Fy = Fq for any n € X* and d € R" <X >,
Choose any 1 € X*, and let {r;} be the corresponding set of right factors defined in (2.4).

Clearly,

Fﬂj [u](t) = E”Ij [u)(t, %0)

Falul(t) = ) (d, &) Ee[ul(t, to),

fe X+

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and therefore,
(Fy; © Fylu])(t) = Ey; [Falull (¢,%0)-

The following result follows directly from the definition of the composition product:

(Eno © Falu])(t) = Eno[u](t,t0) = Fo[u](t)

= ano d[u] (t)

Now assume the claim holds up to some fixed factor 7;. Then

(Enjy 0 Falu)(®) = E go0g s [Falu]](t,0)
n 4 times

- / [ By ) By Rl )

0

nj+1 +1 times

= / / (U]od)[ ](7’1) dTl...dTnj+1+1
to to

nJ+1+1 times

- Fxo -zo [ di (njod)][u](t)

Jj+1
njp1tl times

= Fy.i0alul(t).

Thus, the claim holds for 1 = 7;41 and, by induction, for n = ng, Yk > 0. Finally,

(Feo Falul)(t) = ) (c,m)EylFalu](t, to)

neX*

>~ (e,n) Fyoalul(t)

nex*

_ Z (c,n) Z (nod,v)E,[u](t, to)}
neEX* veX*

=2 [Z (e:m)(nod, V)} Ey[u](t, to)
veX* |nex*

= Z (Cod,l/) Eu(tatO)
veXx+

= Feod[u](t).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58



59

Local convergence of ¢ o d was proven in Theorem 3.3.2.

Two examples are considered in the following. The first involves a series which is
locally convergent but does not have a finite Lie rank. In the second example, both series
have a finite Lie rank. Using their corresponding state space realizations, it is possible to
determine by simulation the finite escape-time for the cascade realization. This number
can be compared against the known lower bound derived from the growth constants of cod

computed in Theorem 3.3.2.

Example 3.4.1. [24] Let X = {zo,z1}, and ¢ be the formal power series with coefficients

1 : =8, §eX”
(e,m) =
0 : otherwise.
It is trivially locally convergent. The claim is that the Lie rank of ¢ is not finite. Let £(X)

denote the usual Lie algebra defined in terms of the Lie bracket on X*: [n,&] = n& — &n.

For any n = x;, - - x;, € X* define the iterated Lie bracket

[77] = [xik’ [xikfw ct [Iiwxh] e ”

It is shown in [46, p. 79] that {[n] : » € X*} is a spanning set for £(X) when viewed as
a linear space. The Hankel matrix for ¢ is H. = diag(l,1,...) when its components are
indexed by X* x X* [19]. The elements of X* are assumed to be ordered lexicographically.
Now the support of any given polynomial [] € £(X) is contained in X, Likewise, the
series H.([n]) also has its support in X", Hence the dimension of H.(£(X)) can not be
finite, and F, has no finite dimensional state space realization. Never the less, co ¢ is

well-defined and locally convergent. 0
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Example 3.4.2. [24] Let X = {xo,z1}, ¢ = ) 450 K MFE' 2% and d = 2 k>0 K MYk ¥,
where K., M. > 0 and K4, My > 0 are arbitrary constants. It is easily verified that the

state space systems
Ze = Mztue, 2.(0)=1 iy = Mg22ug, 24(0) =1
Yo = Kezc Ya = Kaza

realize the operators F, : u. — y. and F. : ug +— yq, respectively, for sufficiently small

inputs and intervals of time. Letting z = [¢ 2J]7 it follows directly that Fi.q is realized
by

o= f()+g(=)u,  2(0)=11]7 (3.5)

y = h(2), (3.6)
where

KM, 2224 0

f(z) = ) g(Z) = ) h(z) = Kzc.
0 Mdzg

The first few coefficients of ¢, d and cod are given in Table 3.2 along with the upper bounds
on the coeflicients of c o d predicted by Theorem 3.3.2. Since these upper bounds hold for
any series ¢ and d with the given growth constants, they can be conservative in specific
cases.

In [28] it is shown that given any series ¢ € R¢ < X >, where X = {xg,71,...,Zm}
and |(c,v)| < K.MY |, Vv e X*, if

1

TN oro—
max{”“’”h }— (TI’L+ 1)2Mc’

then F.[u] converges absolutely and uniformly on [0, T]. The result still holds if one has the

slightly more generous growth condition |(c,v)| < K. M (lv] + 1)!I. For a constant input
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Table 3.2: Some coefficients (c, v), (d,v), (cod,v) and upper bounds for (cod,v) in Exam-

ple 3.4.2 assuming Ky > 1.

v (¢, V) (d,v) (cod,v) upper bounds for {co d,v)
o K. Ky K. K.
o 0 0 Ke(K4M.) K(K4M)
1 KM, | KqMy 0 Ko(KqM)
x3 0 0 Ko (KgM_)? 2! K (K4M)? 2!
To1 0 0 Ko(K4M.)M; K (KqM)2 2!
7120 0 0 0 Ko(K4M)? 2!
22 | K.M22! | KyM22! 0 K (KqM)2 2!
3 0 0 K (K4M,)3 3! K (KqM)3 3!
22z 0 0 Ko (KqgMo)2My 2? K.(K4M)3 3!
ToZ1To 0 0 K (KgM)2 My 2 K (K M)® 3!
xox? 0 0 K (KgM)M32 2 K (KqM)3 3!
7178 0 0 0 K (K4M)® 3!
T1ToTy 0 0 0 K (K4M)3 3!
T3z 0 0 0 K (K M)3 3!
z3 K.M323! | KgM33! 0 K (KqM)? 3!
u(t) = @ where |G| > 1, define
T = e .
(m + 1)2M_|u|

(3.7)

Then it follows from Theorem 3.3.2 that Fooq[@] will always be well-defined on at least the

interval [0, Tinax), where

Tmax -

1
4Mcod|ﬂ|

and M.oq = (¢(Ky) + 1) max{M,., My}. Four specific cases are described in Table 3.3. Here
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each Tax is compared against the finite escape time, tesc, of the state space system (3.5)-

(3.6) with u(t) = @ = 1, which is determined numerically (see Figure 3.1). In each case,

the value of Tiax < tese, but as expected Thax is conservative in these examples since the

upper bounds for the coefficients (c o d,v) are conservative.

Table 3.3: Tiax and tes for specific examples of ¢ o d with @ = 1.

Case | K. | M. | K4 Md Meod Tmax tese tesc/Tmax
1 10 5 5 5 34.3 | 0.0073 | 0.0362 4.96
2 5 10 5 5 68.5 | 0.0036 | 0.0190 5.21
3 5 5 10 5 59.6 | 0.0042 | 0.0190 4.53
4 5 5 5 10 | 68.5 | 0.0036 | 0.0329 9.02

200 .

|

180 :

160 :

!

140 :

120 :

= !

:§ 100 :

80 | :

o

o

60 [

Co

0 o

o

20 Lo
0005 001 oo l0.1'12 0% 003 lo.c;st': 004 0045 005

Figure 3.1: The output of Fyo4lu] when u(t) =

t

@ =1 for Cases 1-4.
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3.4.2 The Feedback Connection

Given any c,d € R}, < X >, the general goal of this section is to determine when there
exists a y which satisfies the feedback equation (1.10), and in particular, when does there
exist a generating series e so that y = F.[u] for all admissible inputs «. In the latter case,

the feedback equation becomes equivalent to
Felu] = Felu + Fyoe[u]], (38)

and the feedback product of ¢ and d is defined by c@Qd = e. It is assumed throughout that
m > 0, otherwise the feedback connection is degenerate. An initial obstacle in this analysis
is that Fp is required to be the composition of two operators, F, and I + Fy.., where the
second operator can never be represented by a Fliess operator due to the direct feed term
I. This does not prevent the composition from being a Fliess operator, but to compensate

for the presence of this term a modified composition product is needed.

Definition 3.4.1. [2/] For any n € X* and d € R™" < X > the modified composition

product is defined as

n D |nley =0, Vi#0O
néd=
xfxi(n 5d) +2f M d; w (i 8d)] : n=abzm, n>0, i#0.

For c e REK X > and d € R® < X >, the definition is extended as

cdd= Z (e,m)nad.

neEX*

Analogous to the composition product, the following theorem ensures that the modified

composition product of two series is always well-defined.

Theorem 3.4.2. [24] Given a fired d € R™ K X >, the family of series {ndd:n € X*}

is locally finite, and therefore summable.
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Proof: Given an arbitrary n € X* expressed in the form (2.3), it follows directly that

k
ord(ndd) > ord(nod) =no+k+ Z n; + ord(di,-)
j=1
7117z
= |n| + Z ord(d;;). (3.9)

J=1

Hence, for any £ € X*,

(&) = {neX*:(ndd&) #0}
C {neX*:(nodg) #0}
C {neX*:ord(nod) <|¢]}

|7l|—|77|10

= {neX*:l+ Y ord(dy) <[]}

i=1
Clearly this latter set is finite, and thus I3(£) is finite for all £ € X*. This fact implies

summability [3]. ]
From Definition 3.4.1, the modified composition product is left distributive. Neverthe-
less, it is not right distributive, i.e.,
(c+d)de=cde+dde
co(d+e)#cdd+cde.

The modified composition product is not associative, either. That is, (c5d)Se # ¢S (dde).

This can be illustrated by the following counterexample.

Example 3.4.3. For a linear series ¢1 = ), . so(e1, 25" zi20° )2 zi25°, a series dp =
) -

Emo 2O(do,a:{)'”b):cg‘, and an arbitrary series e, the modified composition product

C]6(d05e) =c¢19dg =c1 + ¢y 0dp,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

while
(c18do)de=(c1+c1odg)de
=c10e+ (c1odp)de
=c+croe+codp.
Therefore, the modified composition product is not associative. 0

Theorem 3.4.3. Let {c;}i>1 be a sequence in R™ <KX > with lim;_.ooc; = ¢. Then

lim;_,00(c; 6d) = ¢ d for all d € R™ < X > in the ultrametric sense.

Proof: Define the sequence of non-negative integers k; = ord(e; — ¢) for i > 1. Since c is
the limit of the sequence {¢;};>1, {ki}i>1 must have an increasing subsequence {k;; }. Now
observe that

dist(c; 5d,c5d) = gordl(ei—e) 5d)

and

ord((ci; —¢)&d) = ord Z (ci; —¢,m)ndd

7 Esupp(ci;—c)

> inf ord(ndd)
n Esupp(cij _‘c)

> inf ord(nod)
7 €supp(cs; —c)

[ —=Inlxq

inf  Inl+ Y ord(dy)

n €supp(ci; —c) =

> k.

Thus, dist(c;; 5d,cod) < o¥ii for all 7 >1, and lim;_.ooc; 0d = ¢S d. [ |

Similar to the contractive mapping property of the composition product, it can be

verified that the mapping R« X > — R« X > : d — ¢3d is always a contraction on
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R™« X > for a given ¢ € R« X >, i.e.,
dist(cdd,cde) < dist(d,e), Vd,e e R"< X >.

The procedure to prove the contractive mapping of the modified composition product is
a minor variation of previous results concerning the composition product, in particular,

Lemma, 2.3.3, Lemma 2.3.4 and Theorem 2.3.8.

Lemma 3.4.1. For any ¢, € R™ <« X >, where ¢ is a formal power series with the defining

property that n € supp(ck) only if n| — ||z, = k as in Definition 2.3.16,
dist(cy 5d,c e) < o - dist(d,e), Vd,e € R* <X >,

Proof: The proof is by induction for the nontrivial case where ¢ # 0. First suppose k = 0.
From the definition of the modified composition product it follows directly that néd = n

for all € supp(cy). Therefore,

C()ad: Z (00577)775d= Z (6077])?72007

nEsupp(co) nesupp(co)
and
dist(co 8d,co de) = dist(cg,c0) =0
<dY. dist(d, e).
Now fix any £ > 0 and assume the claim is true for all ¢g,c1,...,cx. In particular, this

implies that

ord(c, dd —c, 8€) > k + ord(d — e). (3.10)

For any j > 0, words in supp(c;) have the form 7; as defined in (2.4). Similar to the
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composition product, observe then that

Cry18d—cpr18e= Y (Chr1,Mht1) Mot 54 — (Chy1s Mhr1) Mey1 Se
N1 €X™

= > (krumen) (@™ @i, (e 3d —ni S e)+
Mo Mk +1€X*

"lk+1+l[ 5

o iy w0 (M S d) = €ipyy 0 (e 3 e)]]

= Z (Ck+17 77k+1) [xonk+1mik+1 (77k od - Nk o e) + -’Eon’”‘lﬂ

M Me+1E€EX™

iy oy o (r 3d) — diy o (i 5 )] + [diyyy v (kB ) — €4y w (e )]

ney1+1

= Y (ka1 Mrt1) [0™ M @iy, (i 3d — Mk S €) + 3o
NiesMk+1E€X*

[dik+1 wingdd—mde) + xOnk+l+1[(dik+1 - eik+1) w (e S e)”

using the fact that the shuffle product distributes over addition (componentwise). Next,

applying the inequalities (3.9) and (3.10) with ¢ = ng, it follows that
ord(cky1 8d — ¢gy1 8€) > min { inf ng+1 + 1+ k+ ord(d — e),
Ni+1€5upp(Cr+1)

inf N1 + 1+ ord(d;,,,) + k + ord(d - e),
ﬂk+1€supp(ck+1)

inf N1 + 1+ ord(d;,,,—e;,,,) + ord(mg Se)}

M1 Esupp(chy1)

> min { inf ng+1 + 1+ k+ord(d —e),
Nk+1€5upp(Cchy1)

inf g1 + 1 +ord(di,,,) + k +ord(d —e),

Mk+1€3upp(Cr41)
inf npsr + 1+ ord(diy, —ei,y) + el + k- ord(e)}
Nhog 1 €5uPP(Cry1)
>k+1+ord(d—e),

thus,

dist(cpiy 6d,cpyp1 5e) < oP - dist(d,e).
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Hence, dist(cy, 5d,ci 5e) < o® - dist(d, e) holds for any k > 0. n
Applying the above lemma leads to the following result.

Lemma 3.4.2. If c € R™ <K X > then for any series ¢, € R™ < Xo>
dist((ch + c)5d, (ch + ¢) 5e) = dist(cdd,cde), Vd,e € RPK X >. (3.11)
If ¢ is homogeneous of order [ > 1 then
dist(c3d,cde) < ot - dist(d,e), Vd,e € R*"< X >. (3.12)
Proof: The equality is proven first. Since the metric dist is shift-invariant:

dist((cy+¢)3d,(ch+c)de) = dist (chG5d+cdd,chde+coe)
=dist (c +cdd,cy+cde)

=dist(c3d,cde).

The inequality is proven next by first selecting any fixed > 1 and showing inductively that

it holds for any partial sum Ziif ¢; where k > 0. When k& = 0 Lemma 3.4.1 implies that
dist(c;5d,c;6e) < ot - dist(d, e).

If the result is true for partial sums up to any fixed & then using the ultrametric property

dist(d,e) < max{dist(d, f),dist(f,e)}, Vd,e,f e R"<K X >,
it follows that

I+k+1 I+k+1
dist (( > ci> 5d, (Z ci> ae)
i=l i=l

I+k l+k
ey dZSt ((ZQ]) 6d+Cl+k+1 6d7 <261> 66+ cl+k+1 66)

1=l 1=l
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4k I+k
S max {dzst ((2 Ci) 6d -+ Cl+k+1 o Cl, (Z Ci) o d + Cl+k;+1 o e) s

1=l 1=l

I+k I+k
dist ((ZCZ> od+ ciyky1 Oe, (Zcz> Se+ Cuik+1 6e> }
1=l 1=l
I+k I+k
= max {dist(cl+k+1 od,ciipe1 0€), dist ((Z ci> ad, (Z ci> 5 e) }
1=l i=l

< max {ol+k+l - dist(d,e), o - dist(d, e)}
< ot - dist(d, e).
Hence, the result holds for all ¥ > 0. Finally the lemma is proven by noting that ¢ =

limg_ o Ziﬂc ¢; and using the left argument continuity of the modified composition product

proven in Theorem 3.4.3 and the continuity of the metric dist(-,-). |
Now, the result regarding the contractive mapping is readily given from Lemma 3.4.1 and
Lemma 3.4.2.

Theorem 3.4.4. [24] For any ¢ € R™ KX > the mapping d — cod is a contraction on

R <X >.

Proof: Choose any series d,e € R® <« X>>. If ¢ is homogeneous of order [ > 1 then the

result follows directly from equation (3.12). Otherwise, observe that via equation (3.11):

dist(cdd,cde) = dist ((Z ci) od, (Z ci> 56)
=1 =1

<o -dist(d,e)

< dist(d,e).

Following the identical procedure as for the composition product, the right argument con-

tinuity of the modified composition product can be readily obtained from the contractive

mapping property.
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Theorem 3.4.5. Let {d;}i>1 be a sequence in R™ <X > with lim; .ocd; = d. Then

lim; ,o(c3d;) =cdd for allce RM K X >.
Proof: From the contractive mapping property of the modified composition product,

lim dist(cdd;,c6d) < lim dist(d;,d) = 0.
1— 00 1—00

The following theorem states that there is a system interconnection corresponding to the

modified composition product, as shown in Figure 3.2.

Figure 3.2: The modified composition interconnection.

Theorem 3.4.6. [2{] For anyc € RELC<<X>> and d € R}, < X >, it follows that
F,s4lu] = F.lu + Fylul]
for all admissible u.

Proof: The result is verified directly by inserting the direct feed term into the proof of

Theorem 3.4.1, part 3. n

The first main result for the analysis of the feedback interconnection is given next.

Theorem 3.4.7. [24] Let c¢,d be fizred series in R™" << X >, Then:
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1. The mapping

S @ R"<X>» -R"<KX>

€ = €41 = C o (d o ei) (3.13)
has a unique fized point in R™ < X >, c@Qd = lim;_, €;, which is independent of ey.
2. If ¢, d and c@d are locally convergent then F.qq satisfies the feedback equation (3.8).

Proof:

1. The mapping S is a contraction since by Theorems 2.3.8 and 3.4.4,

dist(S(e;), S(e;)) < dist(d o e;, doej)

< dist(e;, €;).
Therefore, the mapping S has a unique fixed point c@d that is independent of e, i.e.,
cQd = ¢ 3 (d o (cQd)). (3.14)
2. From the stated assumptions concerning ¢, d and ¢Qd it follows that

Feaglu] = Fes(do(cad))[u]

= Fe[u + Fy[Feaqlu]]]

for any admissible u. [ |

Example 3.4.4. If either one of the subsystems in a feedback connection is a system with
a generating series over the alphabet Xg = {zo}, that is, the output y(¢) is a function
independent of the input u(t). Then the feedback connection degenerates to a modified

composition connection.

1. cg@d =¢ydd =g
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2. C@do = C5d0.

In this case, there is no information actually transmitted in the feedback path. 0

Example 3.4.5. Suppose ¢ is a linear series and d is arbitrary. Then cQd = lim;_, €,

where

€+l = Ca(doei)

=c+(cod)oe;.
If ¢ and d are both linear, setting ey = c gives

0
cQd =c+ Z(c od)*oc, (3.15)
k=1
Using the associativity property of the composition product, the feedback product
cQd = Zco (doc)™ = coZ(doc)‘m,
n>0 n>0
where ¢°* denotes k copies of ¢c composed k—1 times. Since (c, ¢) = 0, applying Lemma 2.3.2

part 5 gives

((cod)*,v) =0, Yk > |v].

Hence,
v|-1

(cQd,v) = (c,v) + Z ((cod)*oc,v).
k=1

Now,

C@d:Zco(doc)"k:coZ(dOC)ok

k>0 k>0
=Z(cod)°koc= Z:(co<1)°’c oe.
k>0 k>0
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This is analogous to the transfer function representation of the feedback connection in the

linear time-invariant case

GQH =G(1-HG)™' =G> (HG)*
k>0

=(1-GH)"'G=) (GH)'G.
k>0

Example 3.4.6. A special class of feedback system is the unity feedback system. If the
external input signal u(t) = 0, the self-excited loop is described by e = limg—o0oc™ 0 0,
where c is the generating series for the open-loop system. Consider the system as shown in

Figure 3.3 with the initial condition y(0) = 1.

Figure 3.3: Self-excited loop for Example 3.4.6.

The open-loop system has the following state space realization

Compare to the standard form of state space representation
i = f(z) + g(z)u, 2(0) =20

y = h(z),
one obtains f = 0, g = 1, h = 22 and 29 = 1. The generating series ¢ of the open-loop

system can be obtained by recursive computation of the Lie derivatives from the state
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space realization by (c,n) = Lg, h(2(0)) for n € X*. In this specific case, the support of c is
{@,21,2%}, and the corresponding coefficients are

n=g, Lg,h(2(0)) = 2(0) =1

n=z1, Lg, h(2(0)) =22(0) =2

n =z, ng%h(z(O)) = LyLgh(2(0)) = 2.
Therefore ¢ = 1 + 2x1 + 222 = (1 + x1) w (1 + z1). It can be verified by induction that the

generating series for the self-excited loop is

= lim ¢* 00 = 4 1)1z,
¢= lim ™o Z%(z—# Vg

Therefore, the output

it = Flul() = 2+ 10 = =

i>0 (1

An obvious question is whether c@d is always locally convergent, or at least input-output
locally convergent, when both ¢ and d are locally convergent. The local convergence of ¢
and d guarantees that the feedback system in Figure 1.1(d) is at least well-posed in the
sense described in [1,65] since £, and Fy are well-defined causal analytic operators. That is,
there is a sufficiently small T > 0 and R > 0 such that for any u € BJ*(R)[to, to + T, there
exists a y € By*(R)[to,to + T'] which satisfies the feedback equation (1.10). But whether
y = Fraqlu] on some ball of input functions of nonzero radius over a nonzero interval of
time is not immediate. The following example shows that R7}, < X >> is not a closed subset

of R™ <« X > in the ultrametric topology.

Example 3.4.7. [24] Let X = {zo,z1} and consider the sequence of polynomials in

ei=x1+2221 22 + 3831 ad 4+ patital, i1
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Clearly,

e:= lim e; = » Kkl af
k>0

is not locally convergent. O

The central issue is whether such an example can be produced by repeated compositions
of a locally convergent series. It will be first shown that the answer to this question is no.
Then the more general case described by equation (3.13) is examined. This leads to the main
conclusion that the feedback product of two locally convergent series is always input-output
locally convergent.

Observe first that if e = c o e then it follows using the definition of the composition
product that e must have the form e = ano(e,m{)’) z¢. Furthermore, since e appears on
both sides of the expression e = coe, it is possible to express by repeated substitution each
coefficient (e, z%) in terms of the coefficients {(c,v) : |v| < n}. For example, if X = {xo, 21},

the first few coeflicients of e are:

(e,0) = (¢, 9)
(e,20) = (¢,20) + (¢, 8)(c, 21)
(e,23) = (¢, 25) + (¢, m0) (¢, 1) + (¢, ) (¢, 21)* + (¢, ) (¢, Box1) + (¢, 8) (¢, Z120)
+ (¢,9)*(c, 2})
(e,23) = (¢,23)(c, 1) + (¢, z0)(c, 1)? + (c,0) (¢, 23) + (c,0) (¢, %1) (¢, mox1 )+
(¢, 0)(c,x1) (e, z120) + (¢, 0)2(c, 1) (¢, 22) + (¢, z0) (¢, o1+
(¢, 9)(c,x1) (e, zom1) + 2(c, To) (¢, T120) + 2(c, 8) (¢, x1) (¢, T120)+

3(05 Q)(C, wO)(Ca .’L‘%) + 3(C> ¢)2(Cv ml)(c’ wflz) + (C, :1"8) + (cv ¢) (C7 CL'(z)xl)_*'
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(Ca ¢)(C7 mOxIxO) + (C, ¢)2(C7 mox%) + (C, (Z))(C, $1.’L’%) + (C’ ¢)2(C, :1311'0.?71)+

(Cv ¢)2(C’ 3;‘%.’1:()) + (C7 ¢)3(C7 37:1;)

If ¢ is locally convergent with growth constants K., M, then

(e, 9)] < Ko
(e, z0)| < Ke(Ke+ )M,

3 5
(eoad)l < Ko ($K2+ Fro 1) a2

, 7 35 16
l(e,z3)] < K. (51(3 + EKE + ?Kc + 1) M3 3!

This suggests that a variation of the inequality (3.3) is possible, namely that
(e, 28)] < Ke Yn(Ke) MPnl, ¥ >0,

where each 1, (K.) is a polynomial in K, of degree n. The following lemma establishes the

claim using a family of polynomials of the form

n

Pn(Ke)= > Y KI5, (Ke,n)n;ll, n>0. (3.16)
Z,]=0 njEXi
0>
Given a fixed n, any word n; with |n;| < n in the innermost summation has a corresponding

set of right factors {no,n1,...,n;}. Each function S”,,j (K¢, n) is a polynomial in K,. When

7 >0, gnj (K¢, n) is computed iteratively using its right factors and the previously computed

polynomials {¢g(K), ¥1(K.), ..., ¥n_1(K.)}:
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~ 1
S‘Uo(Kcv”) =T, n2 |770| >0

ol
- 1 - -
Sm(Kc,n) = m ¢n—|m|(Kc) Sno(Kc,n% n>ml>1

1

_ 1 n-lml| B
Spy (Keym) = Yi(Ke) Sy (Keyn — (ng +1) —d), n 2> |n2| > 2

(n)n‘2+1 i=0
; 1 n=lnjl 5
Sy, (Keyn) = ——— Z Yi(Ke) Sy (Keyn — (nj +1) —d), n>|n;| >4, 2<j<n.

It is easily verified that
deg (S, (Ke,n)) =
- |771| : Jj>0

so that as expected using equation (3.16)

deg(¢n(Kc)) = pax o+ (n—i)=n.

See Table 3.4 for the case where m = 1.

Table 3.4: The first few polynomials S’nj (K.,n) and ¥ (K.) when m = 1.

n 75 5’,,0 (Keyn),. .. ,.S~’,,j (Keon) 15,,(1(0)
0 o So(Ke,0) = 1 1
To Seo (K1) =1
1 K. +2
T S4(Ks 1) =1, Sg (Ko, 1) =1
x3 gm(z)(Kc,Q) =1
Tory Sp(Key2) =1, Spye, (Ke,2) = 1
2 [] o1 c 2 %KCZ + SKC + 3
T1Zxo S&,’()(I(c12) - ]’ k. .’tll‘o(K072) = %
x? Sp(Ke,2) =1, 8o, (Ke,2) = 3K+ 1, 5,2(Ko,2) = 3
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Lemma 3.4.3. [2{] Let ¢ € R(x <X > with the growth constants K., M., and e €

R™ &« X > such thate = coe. Then
e,d)| < Ko (Ke) MM nl, VY > 0. 3.17
0 c

Proof: The proof has some elements in common with that of Lemma 3.3.2, except here it
is not assumed a priori that e is locally convergent. The basic approach employs nested
inductions. The outer induction is on n. It is clear from the discussion above that the claim
holds when n = 0, n = 1 and n = 2 for m = 1. A similar calculation can be done for
arbitrary m > 1. Now suppose equation (3.17) holds up to some fixed n — 1 > 1. Given

any 7;, where |n;] < n, it will first be shown by induction on j (the inner induction) that
(nj o e, ag)| < KM MP 0t 8, (Keym), 0<j<n. (3.18)
The j = 0 case is straightforward. Suppose j = 1. Then 0 <n — |m| <n -1 and

((m o e,f)] = | (a5 (o3 wa?), o)

— 1
= (eil Luwgo,.’tg (na+ ))‘

- n—{m| n—lm|  ng n—(ni+1)
= (8i1,$0 )(.’L‘O wz?, xg

n— (n1 +1)
n—|m| )

IA

(Kc Py (K ) MEIMl(n — |711|)!) (

= K M;mIM? n! S, (K., n).

Now assume the inequality (3.18) holds up to some fixed j, where 1 < j < n — 1. Then

0<n—ns1| Sn—(j+1) and
410 0,25)1 = ‘(eiﬁl wi ;0 e),mg_(nj+l+1))‘
n—(n;41+1)

- Z (eijﬂ?mé) (77]‘ 0 e,xg_(nj+l+1)"i) ( n— (41 + 1) ) .

Pt n— (nj+1 +1)—14
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Since (771' o e,:cg_(nj“H)_i) = 0 when n—(nj+1+1)—i < |n;| or equivalently i > n—|n;41],

it follows using the coefficient bound (3.17) for e (because 0 < i < n~1) and the bound (3.18)

for n; o e that

n—|n;41] _
(jsroev) < 3 (chpi(Kc)Mg i!) (KgM; sl gy =i ¥ D=2 (g + 1) — i) -
=0
= . n—{njy+1
Snj (Kc,n - (nj-i-l + 1) - Z)) <'I‘L _ (Tl(‘.:1++ 1) z ’L)
7
n=|nj+1|

> i) Sy (Keyn = (njy1 + 1) —4)

— KgJ’lMC_I"”lle nl
(n)n]‘+1+1 i—0

i+1 9 r— 541l &
:Kg+ M7 ME 0l S,

j+1(

K¢, n).

Hence, the claim is true for all 0 < 7 < n.

To complete the outer level induction, observe that

(e, z5)| = [(c 0 €, 25)]

=13 3 @n)yoe.ap)

4,j=0 4 ex?
2]

n
<y (KCMC"”'mjl!) (Kg'M;'"f'MgL n! 5’,,].(Kc,n))

1,j=0 njexi
2]
< K, "zn(Kc) Mcn n!.

Therefore, the inequality (3.17) holds for all n > 0. [

This result now makes the following theorem concerning the local convergence of e

possible.

Theorem 3.4.8. [24] If c € RT,, <X > with growth constants K., M, and e = coe then

e € RT <X >. Specifically, when K. > 1 then

(e, z3)| < K.(2mK M.)" n!, Vn>0.
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Proof: To prove the local convergence of e, note there is no loss of generality in assuming

that K. > 1. The claim then follows from Lemma 3.4.3 by showing that when K, > 1:
Un(K.) < (2mK)"™, Yn > 0.

The n = 0 case is trivial. When n > 1, ¢~n(KC) can be approximated by its highest order
term, specifically, its degree n term. This corresponds to those terms in equation (3.16)
where 1 <i=j <n:
~ n . -~
Un(Ke) = > KL > S (Ke,m) j!
Jj=1 njeXi
n
=Y (mK.y 8,1 (Keym) !
j=1
n .
~ m]')'j,n .7‘ Ktrzla
j=1
where each S’mjl (K¢, n) has been approximated by its highest order term ~;,Ke It is
easily verified using the definition of Smj (K¢, n) that the coefficients v;, can be computed
1

successively by

n

1

— oy, Al
Y41 = n+1 Jz_;m Yim J:
1 n+l-j i
Tintl = 7 ('Yj—l,n + Z (Z m* k!) 'Yj—l,n—i) y 25J<n
=1 k=1
1
Tnt+1ln+l = m Tn,ns

with 71,1 = 1. In which case,
Un(Ke) = (n+ Dyp1 KZ, n > 0.

Another inductive argument shows that (n + 1)1 n41 < (2m)", n > 0. (See also Table 3.5

and Figure 3.4.) Thus, the theorem is proven. ]
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Table 3.5: Some leading coefficients of 'z[)n(Kc)

m (n+7n+1, 7 >0

1| 1,1,1.5,2.5,4.375,7.875,14.4375,26.8125,50.2734,94.9609,. . .

2 | 1,2,6,20,70,252,924,3432,12870,48620,184756,705432,. . .

3 | 1,3,13.5,67.5,354.375,1913.625,10524.9375,58638.9378,. . .

90

—= log(in+1)y, )
log({2m)";

80

70 m=3.
col

m=2

50}

a0t

30 m=1
20|

104

o 1
[ 5 10 15 20 25 30 35 40 45 50

Figure 3.4: The growth of log((n + 1)y1,n+1) and log((2m)™) for m = 1,2, 3.

The final step of the analysis is to use Theorem 3.4.8 to address the input-output local

convergence of the feedback product.

Theorem 3.4.9. [24] If c,d € R <X > then cQd is input-output locally convergent.

Specifically, when K., K4 > 1 then
((c@d) 0 b, xD) < K ((2m)*K(Kp + Kz)M)" n!

for any b € RT, <« Xo> and where M = max{Mpy, M., My}.
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Proof: Select any series b € R, < Xo>>. If follows from equation (3.14) that

(c@d)ob = (cd(do(cQd)))ob

=co(b+d)o ({(cQd)ob).

Since b, ¢ and d are all locally convergent, Theorem 3.4.8 implies that (c@d) o b is always
locally convergent, and therefore c@d must be input-output locally convergent. To produce
the given growth condition for the output series, first replace ¢ in Theorem 3.4.8 with
co (b+ d) and note that K o414y = K. The assumption that K. > 1 ensures that the

growth estimate in this theorem applies. Next, since K4 3> 1, Theorem 3.3.2 provides that
M o(p+q) = 2m(Kp + Kg) max{ My, M, Mq},

using the fact that |v| + 1 < 2! for all v > 0. This produces the desired result. ]

Example 3.4.8. [24] For any c,d € Rl(; <X >, a self-excited feedback loop can be
described by Fraq[0] = Flead)joo[t] = Ficaq),[u] (c.f. Lemma 2.3.2, property 2.). In this case
(c@d)g = lim;_, o €;, where €;11 = (cod) o¢;. Using the m = 0 version of equation (3.7)
(since the closed-loop system has in effect no external input) and Theorem 3.4.8, F.qq[u]

will converge at least on the interval [0, Tyy,x ), where

1 1
M(c@d)o KeodMeod ( )

Tmax

For example, when cod = 1+ it is easy verified that (c@d)o = 3 > xk so that F.gq[0](t) =
et for t > 0. In this case, Tynax = 1 is very conservative. When cod = 1 + 2x; + 23:% it
follows that (c@d)o = Y 45o(k + 1)! 2§ and Feaal0](t) = 1/(1 —t)? for 0 < ¢ < 1. Here

Tmax = 0.5 is less conservative. 0
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Example 3.4.9. [24] Reconsider the state space systems in Example 3.4.2. The operator
F,aq[u] then has the analytic state space realization:

Kndzzzd Mczg
f(z) = ; 9(z) = , h(z) = Keze
KchZczg 0

near z(0) = [1 1]T. The first few coefficients of c@d are given in Table 3.6.

Table 3.6: Some coefficients (¢, v), (d,v) and (c@d,v) in Example 3.4.9.

v (¢,v) (d,v) (c@d, v)
? K. Ky K,
o 0 0 K.KqM,
T KM, KqMy KM,
aj 0 0 Ko((KaM.)? 2! + K KgM:My)
ToT1 0 0 K K M2 2!
T1To 0 0 K KqM2 2!
x? K:M22! | KgM3 2! K M2 2!
xd 0 0 K (KgM.)3 3!+ K (K4M.)> My 7+ K2K M M3 2!)
xdzy 0 0 K ((KgM.)*M, 3! + K. KqM2 M, 3)
To1Zo 0 0 K ((KgM.)2M, 3! + K. KgM2 Mgy 2)
ToT? 0 0 K K4M3 3!
zyal 0 0 K (KgM)?M, 3! + K. KaM2M,)
T1ToZ1 0 0 K K M3 3!
z3ig 0 0 K K M3 3!
xd K.M33! | KM} 3! K M3 3!

Since c@d is a non-negative series in this case, local convergent and input-output local
convergence are equivalent. Setting u(t) = @ = 1 is equivalent to letting b = 1 in Theo-

rem 3.4.9. Therefore, using equation (3.7) (again with m=0) and the growth condition from
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Theorem 3.4.9, a lower bound on the finite escape time for this system is

1 1
Magor 4K (Kq+1)M’

Tmax =

Four specific cases of Tihayx are given in Table 3.7 and compared against the numerically
determined escape times shown in Figure 3.5. The conservativeness in this estimate has in

some sense accumulated when compared to the cascade connection in Example 3.4.2. 0

Table 3.7: Tinax and tes. for specific examples of (c@d) o 1.

Case | Ko | Mc | Kq | Mg | Mcadjor | Tmax tesc | tese/Tmax
1 10| 5 5 5 1200 0.000833 | 0.01281 15.37
2 5110 5 5 1200 0.000833 | 0.01205 14.46
3 5 5 110 5 1100 0.000909 | 0.01266 13.93
4 5 5 5 110 1200 0.000833 | 0.01281 15.37

o 0005 001 oot 00z

Figure 3.5: The output of F.qq[u] when u(t) = 4 = 1 for Cases 1-4.
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CHAPTER IV

FORMAL LAPLACE-BOREL TRANSFORM

4.1 Introduction

In this chapter, the formal Laplace-Borel transform pair for a Fliess operator is defined
and related to existing notions of the classical Laplace-Borel transform. Then, using the
composition product, the formal Laplace-Borel transform is applied to characterize the
dynamics of input-output systems and the cascade interconnection of analytic nonlinear
systems. An explicit relationship is derived between the formal Laplace-Borel transforms of
the input and output signals of a Fliess operator. This result provides an efficient alternative
interpretation of the symbolic calculus introduced by Fliess to compute the output response
of nonlinear analytic systems [23]. Finally, the formal Laplace-Borel transform is shown to
be an isomorphic mapping between various algebraic structures on the set of all convergent
Fliess operators and the set of all locally convergent formal power series under the addition,
the shuffle and the composition products.

The chapter is organized as follows. In Section 2, the notion of a formal Laplace-
Borel transform of a Fliess operator is defined. Then its basic properties are explored
and illustrated by a set of examples. In the section that follows, the relationship between
the composition product and the formal Laplace-Borel transform is developed, and the
idea is applied to the cascade interconnection of systems. In Section 4, combined with
the composition product, the formal Laplace-Borel transform is applied to characterize the

input-output dynamics of analytic systems. This theory provides a compact interpretation
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of the symbolic calculus proposed by Fliess [23]. In the last section, the formal Laplace-
Borel transform is presented as an isomorphic mapping between the sets Ry < X > and
F, which provides a generalization of the time domain and frequency domain duality in

linear system analysis.

4.2 Definition and Properties of the Formal Laplace-Borel
Transform

In this section, the definition of the formal Laplace-Borel transform of a Fliess operator ,
is presented, and some basic properties are characterized. Many of the properties of the
formal Laplace-Borel transform in the present nonlinear context have counterparts in the
classical Laplace-Borel transform widely used in linear analysis. In linear time-invariant
system analysis, a causal homogeneous input-output mapping is expressed in terms of a

convolution of the system impulse response h(t) with the input signal

t
y(t) = / h(t — T)u(r)dr.

to

This mapping can also be uniquely characterized by the Laurent series of its system transfer
function H(s) = L{h(t)} = Y s0hes™ . Given an input-output Fliess operator defined
on a set of admissible inputs, the following lemma ensures that its associated generating

series is unique.

Lemma 4.2.1. [66, Corollary 2.2.4] Suppose ¢ and d are both locally convergent power
series. Let ur be the set of essentially bounded measurable funciions u : [0,T] — R™. If

EF,=Fyon somevy ={u€ur:||ulleo <1}, T >0, then c=d.

So throughout this chapter it is always assumed that the set of admissible inputs are at

least within the set v, therefore, the following definition is well-posed.
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Definition 4.2.1. [42] Let X = {xg9,x1,...,Zm}. The formal Laplace transform on

F is defined as

F.—c.
The corresponding formal Borel transform is

c— F..

To present the basic properties of the formal Laplace-Borel transform, a generalized

series, the Dirac series is artificially introduced in the following definition.

Definition 4.2.2. A Dirac series, 8, is a generalized series with the defining property
that Fs|u] = u for all bounded measurable inputs w € vp. Each component of the Dirac

series, 0; has the property that Fj,[u] = u; for any 1 <i < m.

It is easy to see that the Dirac series, 4, is the identity element for the composition product,
that is cod = § o ¢ = ¢. Each component ¢; has the property that (J; o ¢,n) = (¢,n); for
any 1 < i < m, where (¢, n); is the #** component of (c,7) € R™. Similar to the generalized
Dirac function, the Dirac series has the property that xo(d; wic) = z;c. Some of the basic

properties of Laplace-Borel transform are stated in the following theorem.

Theorem 4.2.1. [42] Let X = {zo,x1,...,Zm}. Given anyc,d € RT, KX > and scalars

a, 8 € R, the following identities hold:

1. Linearity ZslaF. 4+ BFy) = ac+ Bd

By [ac + Bd] = aF, + BFy
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2. Multiplication

zf [Fc~Fd] =cuwd

ﬂf [Cu.]d] :Fc-Fd

3. Scalability of input

£ FaOll = Y ake,

£>0

Bs > aFex| = Fla()),
k>0

where ¢ = ¢y +c¢1 +co + -+ as in Definition 2.5.16.
4. Integration
ZLr [IMF] = xpc
By lxgc] = I"F,
where I™(-) is the nt" integration operator and

t T1 Tn-1
I"F [u] := / / - / F.[ul(ry) dmpp - - - dT2 dT1.
0 Jo 0

5. Differentiation
m
Z; |[DF] = xal(c) + Z 0 w (581-_1(0))
i=1

By [w(;l(c) + > Giw (27 ()

i=1

= DF,

If 23 is a left factor of c then

% [D"F] = 25"(c)

By (25" ()] = D"F,
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where D(-) is the differentiation operator with DF¢[u] := % F.[u], while D"(-) is the

nth differentiation operator and D"Fylu] := 4= Fi[u].

6. Concatenation of inpuls

&£ [F[#20)] 20))] = E(C, mel/

nex* pr=n

Solem) Y purv| = [F [#20)] @),

nEX* pr=n
where #2(-) is the concatenation of two copies of control signal of the following form
u(T) f 0< <t

(#2(w)) (1) = (ufu)(r) =

u(r—t) if t<T <2

The result can be generalized to the concatenated control signal consisting of n repeated

inputs as follows

L F# Ol = Y (em) Y viwvew - wy

neX* Vive - Un=1

By | Y (em) Y viwrmw - wm| = F[# ()] (n()).

nexX* ViV vn=n

Proof: The three properties of linearity, integration and scalability of inputs are straight-
forward. The multiplication property follows from results in the literature [17,44,66]. The
properties that need to be justified are the differentiation property and the concatenation
of inputs.

5. Proof of the differentiation property

It was shown in [66] that the first derivative of a Fliess operator is

d m
Fful(t) = Fyo lul(®) + 3 w1 (1)
i=1
Applying the formal Laplace-Borel transform to this equality gives the first pair of equations.
Now if zg is a left factor of ¢, then le_l(c)[u](t) =0 fori = 1,2,--- ,m. In this case

S F[u)(t) = Fmal(c) [u](£). Proceeding inductively, the second pair of equations follows.
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6. Proof of the concatenation of inputs

It was proven in [66] that for the concatenated input signal

u(T) fo<r<t
(uffv) (1) =
vir—t) if t<7<T,
the Fliess operator
Folufo)(r+8) = > (cn) Y EL)(7)E,[u)(®). (4.1)

neEX* pv=n
In (4.1), let w = v and ¢t = 7, then
F [u#u) (2t) = F. [#°(u)] 20) = Y (e;m) Y Eplul(t)Eulu](2)-
nex* pr=n
Next apply the formal Laplace-Borel transform, the identity is proven. The more general

case of n concatenated inputs can be derived by induction. [ |

Example 4.2.1. [42] Let X = {xg, 71,22} and F.[u](t) = exp [fot ui(t) + uQ(t)dt]. Observe
that F, can be expanded as

Rl =Y - (/Otu1(t)+u2(t) dt)n

n>0

= / (s (1) + ua(my)] / s (m2) + a(m2)] -

n>0

Tn—-1
/ [ul(Tn)+u2(Tn)] dry -+ - d7o d71.
0

Therefore,
ff[FC] = Z(ml + 3’32)” = (I1 + xg)*.
n>0
(See also [66, Example 2.3.9] for discussion related to this example.) 0

Other formal Laplace-Borel transform pairs are given in Table 4.1.
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Table 4.1: Some formal Laplace-Borel transform pairs.

2!

F, & [Fe]
F.:u—1 1
Fo:uw—t? n! zf
F :uw ( i (".,1) ’t’) at (1 —axo)™

n
(ft() =1 ul] (T)dT) (‘Til + 3.';'@'2 + 4+ x’l:k)n
U Zn>0 p fto J =1 uzj T)d’r ZnZO an(xil + T, 4.4 xik)n
‘t —k )
Fc C U eJ‘O Ej:I ui; (r)dr (Iil + i, 4ot xik)*

’to ZJ 1 uij (T)dr Ty +Tig+ o+ Tiy
[1—(mi1 +$i2 +"'+$ik )]2

F,: qut i ki (T)dre

. t k ) 1
F,:uw cos (fto D i1 i (T)dT) e e L
. . t k i Tiy +Tig+ Ty
Fy:ursin (fto D j=1 Ui (T)dT) TH(@s, Ty ¥ T )2

Example 4.2.2. [42] Let X = {xg,1,...,Zm}. Suppose F. has the generating series
c= Znex* n, and F¢ is given for some fixed word £ € X*. Then
Zf|Fe - Fg) = Ly [Fe] w Zy[F]

=CLJJ§

-5 (o)~

vex*

where (Z) denotes the binomial coefficients over words in X* (see [43, p. 127]). 0
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Example 4.2.3. From the linearity and multiplication property of the formal Laplace-
Borel transform, analytic functions of Fliess operator can be put in direct correspondence

with analytic functions of formal power series, specifically,

Zf Zan{Fc}” = Zancm" e Zan nl ™™,

n>0 n>0 n>0

Some examples are given below:

cLLlTL
gf {ch} :Z nl

n>0

ZLy{cosF.} = Z —({% cwm
n>0

- (-1)" (2n+1)
L {sinF,} = E —— T
= (2n + 1)!

4.3 The Formal Laplace-Borel Transform and the Composi-
tion Product

The composition product of two series ¢ € Rf<« X > and d € R™® <K X > over an
alphabet X = {zg,x1,...,2;,} is defined recursively in terms of the concatenation and
the shuffle product. The composition product is associative, i.e., (cod)oe = co (doe),
hence (R™ < X >, 0) forms a semigroup (Without loss of generality, it is assumed £ = m in
this section). It was shown in Theorem 3.3.2 that the composition of two locally convergent
formal power series is always locally convergent, therefore the set R7 <X > is closed under

composition, and (R} < X >, 0) forms a semigroup. Similarly, over the set of convergent
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Fliess operators JF, the composition of two convergent Fliess operators is still a well-defined
Fliess operator. Applying the formal Laplace transform produces the generating series
for the cascaded Fliess operators, which is the composition product. Specifically, for any

ceRé <X > and d € RE, <X >,
Feo Fy = Feod- (42)

In the next theorem it is shown that the formal Laplace-Borel transform provides an iso-

morphism between the two semigroups (R} < X >,0) and (#,0).

Theorem 4.3.1. [/2] Let X = {xo,71,...,Zm}. For any c € R{, <X > and d €

R <X >
Ly (Fe 0 Fg) = L5(F,) o L5 (Fy)
Bi(cod) = Bs(c)o By(d).
Proof: The proof is straightforward. For any well-defined F, and Fy,

ZLi(FeoFy) = L(Feoq) =cod

= L (Fe) o L5 (Fy).

Conversely, for any locally convergent ¢ and d, the composition product is still locally

convergent. Applying the formal Borel transform gives

Bi(cod) = Feog = Fo0 Fy

= By(c) o By (d).

The isomorphism between the two semigroups (F,o) and (R}, < X >, 0) is illustrated

in Figure 4.1.
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(Fc’Fd)'o—" FooFg= Feq

.uAfT l:/f f/fl T,ux,

(c,d) —— cod
Figure 4.1: The isomorphism between the semigroups (F, o) and (R7}\ < X >,0).

Example 4.3.1. Consider the linear time-invariant system y(t) = fot h(t —7)u(r)dr, where
h is analytic at ¢ = 0. Then y = Fi[u] with (c,zkz1) = h(¥)(0), k > 0 and zero otherwise.

Letting u(t) = Y x50 (cu, ) t*/E! then it follows that y(t) = 3,50 (cy, 25) t*/n!, where

cy = cocy

= Z(c, akzi) zfx o ey

k>0
k k+1
= Z(C, CUQCC]) ‘TO+ Cy.
£>0
Therefore,
n—1
k -1-k
(Cyaxg) - Z(C,iL’O.’IIl) (Cu7w3 )’ n 2> 13
k=0
which is just the conventional convolution sum. 0

Example 4.3.2. [42] Let X = {zo, 1,22}, Felu|(t) = cos (fot u1(t) +uz(t)dt) and d €

R%C < X >. Defining

Felu](t) = (Feo Fa)[u](t)

ot
= cos [ Falull) + Futil).
0
the formal Laplace-Borel transform of F, is then

LpFe]l =cod = Z(—l)i(xl +x2)% o d.

i>0
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Example 4.3.3. [42] Let X = {zo,z1,...,Zm} and ¢ € R\, K X >. It is easily verified

by induction that for n > 1,

1
w?oc=m(xoci)m", i=1,2,---,m. (4.3)

Applying the formal Laplace-Borel transform to both sides gives

3 lat o = By | i(anc) "]

1

Tl

_ % Uothi[u](T) dr]n.

[ lzoci]]"

Example 4.3.4. [42] First consider the linear ordinary differential equation

Ty() 5, 490§ dul)

A A R~ T
with zero initial conditions. Integrate both sides of the equation n times and assume there
exists a ¢ € Rpo < X > such that y(t) = F;[u](t). Then after applying the formal Laplace-
Borel transform, the equation becomes

n—1 n—1
o+ Z a; $8—1~1x1 oc= Z b; xg—l-—zwl
=0 =0

%

n—1 n—1
1 +Zai zy tle= Zbi p

g

Therefore,

n—1 “lp-1
c=|1+ E a; zy " E b; :cg'l"xl.
=0 =0
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Rephrased in the language of the integral Laplace transform, this is equivalent to
n-1l -1 /n1 1
Y(s) = <1 +) a Sn_i) (Z bi8n—_;> Uls)
i=0 1=0
n—1 ‘ -1 /p1 .
= <s" + Z aisl> (Z bis‘) U(s).
i=0 i=0

Now consider the nonlinear differential equation

n— : k n—1 .
dy(t) = diy(t) i e, diu(t)

with zero initial conditions. Again integrate both side of the equation n times and assume

y(t) = F,[u](t). Applying the formal Laplace-Borel transform gives

k

n-1 n—1
é+ Zai ;1:6’_1—’9:1 oc+ Zpi wg_lxl(cwz) = Zbi :1:6‘_1_’3:1
i=0 i=0

i=2
n—1 k n—1
(1 + Z a; xﬁ") c+ Zpi :cg_l:lcl(cLIJ Y = E b; xg_]'_ixl.
=0 =2 i=0

As in [23], a recursive procedure can be applied to solve the algebraic equation iteratively
so that

c=_C + C9 4+ .-
with
n—1 “lpa '
¢ = (1 + Z a; xg—z) Z b; w(r)z—l—le
=0 =0

and for n > 2

n—1 -1
=11+ E a; xy " :cg_l:cl E Pj E Cyp L Cyy L+ * W Gy
i=0

j=2 VIZI,...,ujzl
u1+1/2—+---+u]-=n
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4.4 Symbolic Calculus for the Output Response of Fliess Op-

erators

In [20,23,41], a symbolic calculus was developed to compute the output response of an
analytic nonlinear system represented by a Volterra operator. It is known that all Volterra
operators with analytic kernels are Fliess operators. the formal Laplace-Borel transform
pair between the composition product of formal power series and the composition of Fliess

operators in Theorem 4.3.1 provides the link to the symbolic calculus.

Theorem 4.4.1. [4/2] Let F, be a Fliess operator with ¢ € RS , < X >, and y = F.[u] with
u analytic. If ¢, denotes the formal Laplace transform of the input u then y is analytic with

Laplace transform cy = co cy.

Proof: The analyticity of y follows from [66, Lemma 2.3.8]. The identity follows from

equation (4.2). Specifically, for any admissible input w:

Felv) = y = F[Fe,[v]]

= FCOCu [U] .

Then by [66, Corollary 2.2.4] it follows that ¢y, = co¢y. |

Theorem 4.4.1 provides a compact interpretation of the symbolic calculus of Fliess by
applying the relationship between the composition product and the formal Laplace-Borel
transform in Theorem 4.3.1. Lemma 2.3.2 suggests some formulae for computing certain
system output responses using the formal Laplace-Borel transform. The zero input response
of a system is always its natural response. For a system with a generating series in only
one letter zg, the output response is independent of the system input, that is, the formal

Laplace transform of the output response y is always identical to the generating series of
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the input-output system. Lemma 2.3.2 part 9 provides a formal Laplace-Borel transform
approach to compute the unit step response of nonlinear systems. As the formal Laplace
transform of the unit step signal is ¢, = 1, therefore the formal Laplace transform of the
output y is given by replacing each variable z;(i # 0) in the generating series of ¢ by xzy,

'"‘. The following examples further illustrate

that is, ¢y = col = ¢g = 3 y.(c,n)
the application of the formal Laplace-Borel transform in computing the output response of

analytic nonlinear systems.

Example 4.4.1. [42] Consider a simple Wiener system as shown in Figure 4.2 where

z(0) = 0.

Figure 4.2: A simple Wiener system.

The mapping u — y can be written as
o ¢l [o.¢]
y(t) = S (Ba, ZEmmn wl(®) = 3 7! Eaplul(t).
n=0 n=0

Therefore y = F.[u] where ¢ = 3, .,n!2zF. When u(t) = t"™/m!, for example, the formal

Laplace transform of u is ¢, = z]'. From Theorem 4.4.1 and equation (4.3) it follows that

1 |
——0

< (m+ 1)
Consequently,
o o] o0
m+ 1 ! t(m+1)n t(m+1)n 1
v® =2 (m+1)‘" (m+Dn) ~ & m+r 1 i
n=0 n=0 ’ ~ tmFL)!
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Example 4.4.2. Consider a linear time-invariant system with the generating series ¢ =

> n>0(6 zgx1)xfz1. Suppose the input to the system is u(t) = cos(wt). Then the output

response of the system can be computed by the formal Laplace-Borel transform as follows.

The generating series for the input cosine signal is ¢, = £ [cos(wt)] = W, therefore,

by Theorem 4.4.1, the generating series for the output response is

n n
Cy =COoCy, = E (¢, zgz1)xHT1 © 1
n>0
n+1

n>0 1+ (wxo)

Applying the Borel transform, the output response y(t) is

4.5

y(t) = Bs eyl ()
xn-{-l
= %f Z(C xo.’L'l Tm

n>0

B (c,zfx1) (n+ 1w
- Z W— cos | wt — ~—2—

n>0

S (i
+ Z C’moxl)z +1)|wn 21t

n>0, n even

DI

n>0, n odd

n—1

——z

1
+ (wzo)?

(¢, 2g21) Z (21)|wn+1 it

(4.4)

2i+1

The Isomorphisms Induced by the Formal Laplace-Borel

Transform

For all ¢ € R <« X >, the associated operator F, is a well-defined Fliess operator. As

has been discussed in earlier chapters, many binary operations can be defined over the set
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F: addition, multiplication, the composition and modified composition. The collection of
Fliess operators F, with these basic operations, has the algebraic structures described in

the following theorem.

Theorem 4.5.1. The following statements are true:

1. (F,+) is a commutative group.

2. (F,-) is a commutative monoid, the identity of which is Fy = 1.

3. (F,o) is a semigroup.

4. (F,+,") is a commutative ring.

5. (F,+,-) is an R-algebra.

6. (F,+,-) is an integral domain.

Proof: Statement 1,2 and 3 are straightforward. The proofs for statement 4, 5 and 6 follow

analogously to the proofs for Theorem 2.4.1. [ ]

Observe that (F,+,0) can NOT form a ring, as the composition product is not right dis-

tributive over addition, i.e., Fpo (Fg+ F,) # F.o0 Fy+ F, o Fp.

Theorem 4.5.2. Under the formal Laplace-Borel transform, the following statements are

true:

1. (R« X >, +) and (F,+) are isomorphic commutative groups.

2. (RX >, w) and (F,-) are isomorphic commutative monoids, the identity of which

is cg =1 =90 and F; = 1 respectively.

3. (R X >,0) and (F,o) are isomorphic semigroups.
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4. R« X >, +, w) and (F,+, ) are isomorphic commutative rings.

5. R« X >, +, w) and (F,+,-) are isomorphic R-algebras.

6. (RKX >, +,w) and (F,+,-) are isomorphic integral domains.

Proof:

The proofs follow directly from Theorem 2.4.1 and Theorem 4.5.1. [ |
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CHAPTER V

IMPLEMENTATION PACKAGE IN MAPLE

5.1 Introduction

The main purpose of this chapter is to provide a software implementation of the main
tools described in the previous chapters. Based on the ACE package developed by the ACE
group in Université de Marne-la-Vallée led by Sébastien Veigneau [64], an implementation
package in Maple is presented. The ACE package provides some binary operations on
the free monoid of formal polynomials, such as the concatenation product and the shuffle
product. The general purpose of this chapter is to demonstrate the implementation of
the basic operations involved in the previous chapters over the set of formal polynomials:
the lett and right chronological product, the composition product, the modified composition
product, and also some other operations such as the degree and order of a formal polynomial,
the ultrametric distance between two formal polynomials, etc. Examples are provided to
illustrate the usage of the commands, and also to demonstrate some of the properties related

to these operations. A user guide as well as the source code is provided in the appendices.

5.2 Operations on Formal Polynomials

The main binary operations involved in the analysis are addition, concatenation, the
shuffle, chronological, composition and modified composition products. Three fundamental
operations: addition, concatenation and the shuffle product are available in the ACE pack-

age. Those fundamental operations provide the building blocks for other operations. The
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following examples demonstrate the basic operations over the set of formal polynomials.

Example 5.2.1. The following two commands are applied to determine the degree and

order of a formal polynomial.

> FreeDegree (2xw[1]+2+w[2,3,4]);

gives the degree of the formal polynomial

3

> FreeOrder (2*w[1]+2*+w[2,3,4]);

computes the order of the formal polynomial

1

The command ‘FreeDist’ is used to compute the ultrametric distance between two formal

polynomials. For example,

> FreeDist(w[0,1], w[0,1]1+2*w[2,3,4,5], sigma);

0,4

Examples involving the left shift and right shift operators are given below.
> FreeLShift(w[1,2], wl[1,2,3,4,5]+w[0,1]+w[1,2]);

w34,5 + W]
> FreeRShift(w[1,2,3,4,5]+w[0,1]1+3*w[4,5], w[4,5]);

w1,2,3 + 3w”

The composition and the modified composition products are illustrated next. For the single-
output case, use FreeCompose(c, [d]) for the composition product and FreeModCompose(c,

[d]) for the modified composition product. The return value is a scalar formal power series.
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> FreeCompose (w[1,2]+2*w[0,1], [w[1],w[2,0,3]1);

w0,1,0,2,0,3 T 00,0,1,2,0,3 + W0,0,2,0,1,3 + W0,0,2,1,0,3 + W0,0,2,0,3,1 + 2wo0,1

> FreeModCompose (w[1,2]+2*w[0,1], [w[1],w[2,0,31]1);

w2 -+ w1,0,2,0,3 + Wo0,1,02,0,3 + Wo,1,2 + wo,0,1,2,0,3 T W0,0,2,0,1,3 + Wo,21

+wo,0,2,1,0,3 T 10,0,2,0,3,1 + 2wo,1 + 2wo 0,1

For the multi-output case, the commands FreeComposeMIM0 and FreeModComposeMIMO are

used, respectively. For the multi-output case, the return value is a row vector. For example,

> FreeComposeMIMO([w[1,2]+2*w[0,1], w[1], [w[1],w[2,0,3]1);

w,1,0,2,0,3 T W0,0,1,2,0,3 + 00,0,2,0,1,3 + w0,0,2,1,0,3 + W0,0,2,0,3,1 + 2wo0,0,1, Wo,0,1 + Wo,1,0

> FreeModComposeMIMO([w[1,2], w[1,01], [w[1],w[2,311);

w12 + w1,0,2,3 T W0,0,2,3,1 + Wo,1,2 + Wo,0,2,1,3 T Wo,1,02,3 + W0,0,1,2,3 + Wo,2,1

wi,0 + Wo,0,1 + Wo,1,0

Example 5.2.2. The following examples illustrate the properties of the chronological, com-
position, and modified composition products.
A verification of the symmetrization of the left and right chronological products is con-

sidered first.

> aal:=FreelLChro(w[1,2,3],w[4,5]})+FreelL.Chro(w[4,5],w[1,2,3]);
> bbl:=FreeShuffle(w[1,2,3],w[4,5]1);

> evalb(aal=bbl);
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The left chronological product would be

aal = wys5123+Wi1523+ We1235 + Wa 1253+ W14253
+w124,35 +W14235 T W1,4523 + W12345 + W1,2,453

bbl = wss5123+ w1523+ Wa1235+Wa1253+ W14253
Twi 24,35+ Wi14235 +Wi14523 +W12345 +W1,2453

true.

> aa2:=FreeRChro(w[1,2,3],w[4,5])+FreeRChro(w[4,5],w[1,2,3]);
> bb2:=FreeShuffle(w[1,2,3],wl[4,5]1);

> evalb(aa2=bb2);

The right chronological product would be

aa2 = wy5123+W41523+ WL12,35 + Wa1253 T W1,4253
+w124,35 +W1,4235 +W14523 +W12345 +W1,2453

bb2 = w123+ w1523+ Ws1235+ Wa 1253+ W1 4253
+w124,35 +W14,235 +W14523 +W12345 + Wi2453

true.

The next example illustrates the associativity of the composition product.

> aa3:=FreeCompose (FreeCompose (w[1,0,2]+2*w[0,1], [w[1],w[2,0,3]11),
fwl1l,wl2],w[31]):
> bb3:=FreeCompose(w[1,0,2]+2+w[0,1], [FreeCompose(w[1], [wl[1],w[2],w[311),
FreeCompose (w[2,0,3], [w{1]l,w[2],w[31]) 1):

> evalb(aal=bbil);
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true

The modified composition product is not associative. The following is an example.

> aa4:=FreeModCompose (FreeModCompose (w[1,0,2]+2%u[0,1],
[ wl1], w[2,0,311), [wl1l,wl2],w[3] 1):
> bb4:=FreeModCompose( w[1,0,2]+2*xw[0,1], [ FreeModCompose(w[1],
[wl1l,w[2],w[3]1]1), FreeModCompose(w[2,0,3], [w[1],w{2],w[311) ] ):

> evalb(aad=bb4);

false.

5.3 Operations on Fliess Operators

Operations on F include computing the output of a Fliess operator given a formal
polynomial ¢ and an input vector of time functions u(¢). In the following examples, the
basic properties of the formal Laplace-Borel transform are illustrated. The first example
illustrates how to compute the output response of a Fliess operator for a given input. For
a multi-input-single-output Fliess operator, use Fliess(c, ut). For multi-input-multi-

output case, use FliessMIMO(c, ut).

Example 5.3.1. Consider a 3-input, l-output nonlinear system with the generating se-
ries ¢ := x| Toxs + 2xox1x9T2xoxs. Let the input signal applied to the system be ut :=

[cos(t), cos(2t), cos(3t)]. Then the following commands implement this model:

> ut := [cos(t), cos(2 t), cos(3 t)};

> Fliess(w[1,2,3]+2*w[0,1,0,2,0,3], ut);
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The corresponding output is

—1/240sin(4t) — 1/360sin(6t) — 1/24sin(2t) — 1/12¢ + 1/5sin(t) — 1/72 cos(2t) + 1/36¢

—1/7200 cos(4t) — 1/16200 cos(6t) + 79/900 cos(t) + 1/324 cos(3t) — 199/2592.
For multi-output case, the command FliessMIMO is applied. For example, the command

> c:=[wl1,1], w[1,2], wl[1,31];
> FliessMIMO(c, ut);
gives the output vector

—1/2cos(t) +1/2,

—~1/12 cos(3t) — 1/4 cos(t) + 1/3,

-—1/24 cos(4t) — 1/12cos(2t) + 1/8_

In the following examples, the basic properties of the formal Laplace-Borel transform

are demonstrated.

Example 5.3.2. First consider the isomorphism between (Rpo < X >, ) and (F,-) in

Theorem 4.5.2. Applying the following commands

> gt := [t, t72, t73];

> al:

Fliess(FreeShuffle(w[1,0]+2*w[1,2,3],w[1,2,1]),gt);

> bil:

Fliess(wl[1,01+2*w[1,2,3],gt)*Fliess(w[1,2,1],gt);

> evalb(ai=expand(bl));
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gives
e 1 10 1 16
al =35t + ssa0°
11 1
1:= — (=t + —)¢7
b= 75 (38 + 156)

true.

Next, an illustration of the correspondence between the derivative of the output of a Fliess
operator and the left shift operator is provided, as well as the correspondence between the

integral and the concatenation with zy in Theorem 4.2.1.

> a2:=diff (diff (Fliess(w[0,0,1,0]+2*w[0,0,2,3], ut),t),t);
> b2:= Fliess(FreelLShift(w[0,0],w[0,0,1,0]+2*w[0,0,2,3]),ut);

> evalb(a2=b2);

The following illustrates the equivalence:

a2 = 2/3 cos(t) + tsin(t) — 3/5 — 1/15 cos(5t)

b2 = 2/3 cos(t) + tsin(t) — 3/5 — 1/15 cos(5t)

true

For the integration property of the formal Laplace-Borel transform, the commands

> a3:=int(Fliess(w([1,0]+2*w[2,3], ut),t)-
eval(int(Fliess(w[1,0]+2*w[2,3] ,ut),t),t=0);
> b3:= Fliess(FreeConcat (w[0],w[1,0]+2*w([2,3]),ut);

> evalb(a3=b3);
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produce
a3 := 5/3sin(t) — t cos(t) - 3/5t — 1/75sin(5¢t)
b3 := 5/3sin(t) — tcos(t) — 3/5¢t — 1/75sin(5¢t)

true

The isomorphism between the two semigroups (R< X >, 0) and (F, o) is illustrated by the

following.

> ad:=Fliess(FreeCompose(w[1,2,3], [w[1l,w[2,2],w[3,3,3]1]1),ut);
> b4:=Fliess(w[1,2,3], FliessMIMO( [ w([1], w[2,2], w[3,3,3]] ,ut)) ;

> evalb(ad=b4);

The result below demonstrates that the Fliess operator of the composition product is the

composition of Fliess operators.

o= Egsla'gfﬁsm(ﬁt) 11664tcos(t) - 4141172t B 582216688 sin(12t) + 166560 466560 sin(5)
_188161—76995 Sin(8t) + 11(1564 () - 2485832 Sin(2t) = 279936 770036 (%)
+ﬁ% sin(4t) + 67_9??11—13_6 sin(14t) — ﬁ%ﬁ sin(10t)
o= 1'9"551;% sin(6t) - 11(1364“’05(0 - 41z1172t B 582216688 sin(126) + 4661560 sin(5t)
_@%@ siu 11(1564 sin(t) - 2485832 sin(2t) = 2791936 sin(3t)
+7Z(32419£)—60 sin(4t) + m sin(14t) — m sin(10t)
true.

The following sequence of demands demonstrate that the modified composition product is

corresponding to the modified composition connection, as shown in Theorem 3.4.6.

> a6:=Fliess(FreeModCompose(w(1,2,3], [w[1],w[2,2]1,w[3,3,3]11), ut);

> b6:=Fliess(w[1,2,3], ut+FliessMIMO( [ w[1], w[2,2], w{3,3,31], ut));
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> evalb(a6=b6);

The outcome of this procedure is

110

ab = 4661560 cos(5t) + m cos(14t) — 6_5%%%916 sin(6t) — 11(1364tcos(t - 1%3282292
+3_£1)}3%60_Z(5 cos(6t) — ;7—%;1;:3——2(—) cos(4t) — 6—40_411%{%@ cos(12t) — ﬁ34793_—78% sin(12¢)
+466560 sin(5t) — 17735/188116992 cos(8t) — T;;’% cos(10t) + 11(1364t sin(t)
+36;10863()6548810 182133292 sin(8) + 4808832050 sin(t) 2141;80352 sin(2¢) - 9313112 sin(3¢)
_%g%a n(4t) — 12396401810 s(t) 21408683312 cos(2t) — 273{1)36 cos(3t)
+m sin(14¢) + 1_827—'6517_766 sin(10t)

b6 = 166560 cos(5t) + m cos(14t) — 6;—373:83—2-6 sin(6t) — 11é64t cos(t) — 1%’)2822—94
+§$—ig—ig§6 s(6t) — 722;1320 s(4t) — GTME;—:;@ cos(12t) — T?JQP}W sin(12+)

4661560 sin(5t) — 17735/188116992 cos(8t) — M';;TGO cos(10t) + 11(1364tsin(t)
+36;10863Oc;18810 + 18:332392 n(8t) + 48088320430 in(t) - 221822),52 sin(2t) — 9313112 sin(3t)
_%g% sin(4¢) — 12325%% cos(t) + 215868?;312 cos(2t) — 27921)36 cos(3t)
+m sin(14¢) + 1_847251% sin(10¢)
true.
0O
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

6.1 Main Conclusions

The main contributions of this dissertation are: the development of a growth condition
for the local convergence property of interconnected Fliess operators in the cascade and
feedback interconnections, the definition of the formal Laplace-Borel transform of a Fliess
operator, and the description of the algebraic structures of the set of formal power series
and the set of Fliess operators behind the formal Laplace-Borel transform.

The four basic interconnections of analytic nonlinear systems represented by Fliess op-
erators are described in a unified manner. The corresponding generating series for cascaded
Fliess operators in the multi-variable case are given in Definition 2.3.14. The composition
product of two locally convergent formal power series is shown to still be locally convergent,
and a growth condition for the coefficients is given in Theorem 3.3.2. The generating series
for the feedback connection of two Fliess operators is shown in Theorem 3.4.7 to be always
well defined and in Theorem 3.4.9 it is proven to be at least input-output locally convergent.

The definition of the formal Laplace-Borel transform of a Fliess operator is given in
Definition 4.2.1, and its basic properties are presented in Theorem 4.2.1. By combining the
idea of the formal Laplace-Borel transform with the composition product, it is shown in
Theorem 4.3.1 that the formal Laplace-Borel transform provides an isomorphism between
the semigroup of all convergent Fliess operators under composition, and the semigroup of all

locally convergent formal power series under the composition product. This result provides
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a generalization of the time domain and frequency domain isomorphism in the linear case.
Specifically, an explicit relationship is derived between the formal Laplace-Borel transforms
of the input and output signals of a Fliess operator in Theorem 4.4.1. This result provides a
compact interpretation of the symbolic calculus introduced by Fliess et al. [23] to compute
the output response of nonlinear systems.

Finally, a set of isomorphic algebraic structures for the set of formal power series and the
set of Fliess operators is described in Theorem 4.5.2 with the aid of the system interconnec-

tion theory and the formal Laplace-Borel transform theory developed in this dissertation.

6.2 Future Research

Among the many ideas for future research, a logical next step would include a deeper
understanding of the algebraic structure of Rpo <« X >, the properties of Laplace-Borel
transform, and how they are related in the framework of system interconnections. For
example, it is already known that the system interconnections corresponding to addition,
the shuflle, composition and feedback products are the four elementary interconnections
shown in Figure 1.1. However, the corresponding interconnection for the concatenation
product is still not clear. There exists certain duality between the shuffle algebra and
concatenation when viewed as the linear mappings on a tensor product space [52]. In
addition, the property of the formal Laplace-Borel transform concerning the concatenation
of inputs in Theorem 4.2.1 also suggests some connection between the shuffle and the
concatenation [62,66].

Another interesting idea would be to further develop the algebraic properties of the com-
position product. There has been considerable research results on the structure of the shuffle

algebra [3,43,52]. From Definition 2.3.14, the composition product is clearly connected to
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the shuffle and concatenation. Equation (2.8) also suggests an alternative definition of the
composition product in terms of the left chronological product. The algebraic properties
of the chronological product has been studied in [36, 38,40]. Therefore, the relationships
between the composition and chronological products as well as the shuffle product, can
provide some insight into the algebraic properties of the composition product.

In the definition of the formal Laplace-Borel transform of a Fliess operator in Chapter
IV, the set of admissible inputs is assumed to lie within the L., space. Can this admissible
set of inputs be expanded to the L; space? The expansion seems possible in current setting.

The properties of the formal Laplace-Borel transform and their applications in system
analysis is another important topic. Most of the properties of linear integral Laplace-Borel
transform have some counterparts in the nonlinear setting. For example, the linearity
property is identical to that for the linear system case, and the property concerning the
scalability of inputs is analogous to the time scaling property in the linear integral Laplace-
Borel transform. Therefore, it is natural to explore other possible corresponding properties
in the context of Fliess operators and formal power series. For example, what are the
properties corresponding to the time-shift and frequency-shift properties in the integral
Laplace-Borel transform? Furthermore, what new properties can be identified using the
formal Laplace-Borel transform that only arise in the nonlinear setting?

The local convergence property of the feedback product is not yet perfectly character-
ized. In Theorem 3.4.9, the feedback product is proven to be always input-output locally
convergent. In some special cases, input-output local convergence guarantees local con-
vergence, as shown in Lemma 3.3.4 and Lemma 3.3.5. Whether this input-output local
convergence always implies local convergence is still not completely understood.

The formal Laplace-Borel transform is a tool to analyze nonlinear systems using their
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generating series. In the linear case, the Laplace-Borel transform corresponds to frequency
domain analysis of linear systems. In [53], the frequency response of a nonlinear system is
characterized by association of variables. In the current setting, the generating series of a
Fliess operator plays a similar role to the transfer function. Therefore, a very interesting
future topic in nonlinear system analysis would be to show how this generating series ap-
proach can provide an alternative interpretation to the frequency response analysis of the

nonlinear systems represented by Fliess operators.
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APPENDIX

SOFTWARE IMPLEMENTATION IN MAPLE

A.1 Overview

This appendix provides a user guide to the software implementation package presented

in this dissertation. To set up the software implementation, first follow these two steps:

Installation of Maple and ACE package : After installation of Maple, download the
ACE package from http://phalanstere.univ-mlv.fr/~ace/, follow the instruc-

tions to install ACE package;

Load the FreePoly.mws file : Open in the workspace the FreePoly.wms developed in

this dissertation, and load the procedures.

The procedures developed in this dissertation can be divided in two categories:

Operations over R<X> : This category includes a set of Maple procedures to calculate
and display operations over the set of formal polynomials. The binary operations
include the left and right shift operators, the left and right chronological products,
the composition product, the modified composition product, and also the ultrametric
distance between two formal polynomials. The unary operations include the length

of a word, the degree and order of a formal polynomial.

Operations over F : The operations over the set of Fliess operators mainly involve the

calculation of the output response of a Fliess operator given different inputs.
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A.2 Syntax Description

The syntax of the procedures are listed as follows.
“FreeLength: to calculate the length of a word”

Syntax FreeLength(n::indexed) where
e 7 is a word of the form wlijis - - - ig)

“FreeDegree: to calculate the degree of a formal polynomial”

Syntax FreeDegree(c) where
e ¢ is a formal polynomial over the alphabet w[0],w[1],--- ,w[m]

“FreeOrder: to calculate the order of a formal polynomial”

Syntax FreeOrder(c) where
e ¢ is a formal polynomial over the alphabet w[0], w[1], - ,w[m]

“FreeDist: to calculate the ultrametric distance between two formal polynomials”

Syntax FreeDist(c, d, o) where
e ¢, d are two formal polynomials over the alphabet w[0], w(1],--- ,w[m]
e o is the parameter used in the ultrametric. It can be a symbol or a numeric value.

“FreeLShift: Left shift operation of a formal polynomial by a word”

Syntax FreeLShift(7::indexed, ¢) where

e 7 is a word

e cis a formal polynomial over the alphabet w[0],w(1], - ,w[m)]

“FreeRShift: Right shift operation of a formal polynomial by a word”

Syntax FreeRShift(c, 7::indexed) where
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e cis a formal polynomial over the alphabet w([0],w(1],--- ,w[m]

e 7 is a word

“FreeChro: Left chronological product of two formal polynomials”

Syntax FreeChro(c, d) where

e ¢, d are two formal polynomials over the alphabet w[0],w[1],- - - ,w[m]

“FreeRChro: Right chronological product of two formal polynomials”

Syntax FreeRChro(c, d) where

e ¢, d are two formal polynomials over the alphabet w[0], w[1],-- -, w[m]

“FreeLChro: Left chronological product of two formal polynomials”

Syntax FreeLChro(c, d) where

e ¢, d are two formal polynomials over the alphabet w[0], w[1],--- , w[m]

“FreeCompose: Composition product of a formal polynomial with an array of formal
polynomials”

Syntax FreeCompose(c, d::list) where

e cis a scalar formal polynomial over the alphabet w[0],w[1],--- ,w[m]

e d is an array of formal polynomials of the form [op Z,0p 2, ---, op m]

“FreeComposeMIMO: Composition product in MIMO case: composition of two arrays
of formal polynomials ”

Syntax FreeComposeMIMO({c::list,d::list) where

e ¢ and d are both arrays of formal polynomials of the form [op I,0p 2, ---, op m]
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“FreeModCompose: Modified composition product of a formal polynomial with an array
of formal polynomials”

Syntax FreeModCompose(c, d :: list) where

e cis a scalar formal polynomial over the alphabet w[0], w[1],--- ,w[m]

e d is a list of formal polynomials of the form [op 1,0p 2, ---, op m]

“FreeModComposeMIMO: Modified composition product in the MIMO case”

Syntax FreeModComposeMIMO(¢::list,d ::list) where

e ¢ and d are both arrays of formal polynomials of the form [op 1,0p 2, ---, op m]

“Fliess: Output of a Fliess operator associated with a formal polynomial supplied with an
input as an array of time domain functions [u1(t),- -, um(t)]”;

Syntax Fliess(c, w:: list) where

e ¢ is a scalar formal polynomial over the alphabet w([0],w[1],--- ,w[m]

e wu is an array of time domain functions of the form [u;(t), ua(t), -« , um(t)]

“FliessMIMO: Output of a Fliess operator associated with a generating polynomial with
input as an array of time domain functions [u1(t), - ,um(t)] in the MIMO case”;

Syntax FliessMIMO (¢ :: list, w ::list) where

e cis an array of formal polynomials over the alphabet w[0], w[1],--- , w[m)]

e v is an array of time domain functions of the form [u;(¢), ua(t), - , um(t)]
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A.3 Source Code for Operations on Formal Polynomials

with(FREE) :
with(combinat) :
## The FREE (ACE) and COMBINATORICS algebraic package over the free monoid

### FreeLength(eta::indexed)

FreeLength := proc(eta::indexed)

description "Length of a word in the free monoid";
local length;
length:= nops{eta);

return length;

end proc:

FreeDegree := proc(c)
description "Degree of a polynomial in the free monoid";
local degree, tmpdeg, i;

degree:=0;

if (c=0) then
return degree;
end if;

if type(c,indexed) then
return FreeLength(c);
else
if type(c,‘+‘) then
for i to nops(c) do
if type(op(i,c),indexed) then
tmpdeg:=FreeLength(op(i,c));
if degree< tmpdeg then
degree:=tmpdeg;

end if;
else
if type(op(i,c),*‘) then
tmpdeg:=FreeLength(op(2,0p(i,c)));
if degree< tmpdeg then
degree:=tmpdeg;
end if;
end if
end if;
end do;
return degree;
end if;
end if;

if type(c,‘*‘) then
degree :=FreeLength(op(2,c));
return degree;

end if;

end proc:

#i#  FreeOrder(c)

FreeOrder := proc(c)
description "Order of a polynomial/series in the free monoid";
local order, tmpord, ij;

VVVVVVVVVVVVVYVVYVVVVVVVYVYVVVVVVVYVVVVVVVVVYVVVVVVYVVVYVYVVVVVVVVVVVVVVVVYVYV
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order:=infinity;

if (c=0) then
return order;
end if;

if type(c,indexed) then
return FreeLength(c);
else
if type(c,‘+‘) then
for i to nops(c) do
if type(op(i,c),indexed) then
tmpord:=FreeLength(op(i,c));

if order > tmpord then
order :=tmpord;

end if;
else
if type(op(i,c),‘**) then
tmpord:=FreeLength(op(2,0p(i,c)));
if order > tmpord then
order :=tmpord;
end if;
end if;
end if;
end do;
return order;
end if;
end if;

if type(c,‘*‘) then
order :=FreeLength(op(2,¢c));
return order;

end if;

end proc:

### FreeDist(c,d, sigma)

FreeDist := proc(c, d, sigma)
description "The distance between two formal polynomials in the ultrametric sense";
local dist;

dist:=sigma” (FreeOrder(c-d));
return dist;

end proc:

### FreelLShiftWord(eta::indexed, xi::indexed)

FreeLShiftWord := proc(eta::indexed, xi::indexed)
description "Left shift operation of a word by amother word";

local i, tmplshiftword;
tmplshiftword := 0;

if nops(eta) > nops(xi) then
return 0;
else
for i from 1 to nops(eta) do
if op(i, eta) <> op(i, xi) then
return O;
else
tmplshiftword := wlop(i+l..nops(xi), xi)];
end if;

VVVVVVVVYVVVVVVVVYVVVVVVVVVVVVVVVVVVYVVVVVVVVVVVVVVVVVVVVYVVVVVYVYVVYVVVVVYVVYVYV

end do;
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return tmplshiftword;
end if;
end proc:

### FreeLshift(eta::indexed, c)

FreeLShift := proc(eta::indexed, c)

description "Left shift operation of a formal polynomial by a word";
local i, tmplshift;

tmplshift := 0;

if type(c,indexed) then
return FreelLShiftWord(eta, c) ;

VVVVVVVVVVVVVVVVVVVVYVVYV

else
if type(c, ‘*‘) then
return op(1,c)*FreeLShiftWord(eta, op(2,c));
else
if type(c, ‘+‘) then
for i to nops(c) do
if type(op(i,c),indexed) then
tmplshift := tmplshift +
FreeLShiftWord(eta, op(i,c)) ;
> else
> if type(op(i,c),‘*‘) then
> tmplshift := tmplshift+op(l,op(i,c))
*FreeLShiftWord(eta,op(2,0p(i,c)));
end if;
end if;
end do;
end if;
return tmplshift;
end if;
end if;
end proc:

### FreeRshiftWord(xi::indexed, eta::indexed)

FreeRShiftWord := proc(xi::indexed, eta::indexed)
description "Right shift operation of a word by another word";

local i, tmprshiftword;
if nops(xi) < nops(eta) then
return 0;
else
for i from 1 to nops(eta) do
if op(nops(xi)+1-i, xi) <> op(nops(eta)+1-i, eta) then
return 0;
else
tmprshiftword := wlop(l.. (nops(xi)-i), xi));
end if;

end do;
return tmprshiftword;
end if;
end proc:

### FreeRshift(c, eta::indexed)

FreeRShift := proc(c, eta::indexed)

description "Right shift operation of a formal polynomial by a word";
local i, tmprshift;

tmprshift := 0;

VVVVVVVYVVVVVVVVVVVVYVVVVVVVVVVVVVVVVVYVVVYVYyV
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>
> if type(c,indexed) then
> return FreeRShiftWord(c, eta );
> else
>
> if type(c, ‘*‘) then
> return op(l,c)*FreeRShiftWord(op(2,c), eta);
> else
> if type(c,‘+‘) then
> for i to nops(c) do
> if type(op(i,c),indexed) then
> tmprshift := tmprshift +
FreeRShiftWord(op(i,c),eta) ;
> else
> if type(op(i,c), ‘*‘) then
> tmprshift := tmprshift+op(1,op(i,c))
*FreeRShiftWord (op(2,0p(i,c)),eta);
end if;
end if;
end do;
end if;
return tmprshift;
end if;
end if;
end proc:

### FreeRChroWord(eta::indexed,xi::indexed)

FreeRChroWord := proc (eta::indexed, xi::indexed) option remember;
description "Right chromological product of two words";
local i, prefix, affix, result, xiprime, tmp;

if nops(eta) = 0 then

return xi
end if;
if nops(xi) = O then
return 0
else
i=1;
for i to nops(xi) do
xiprime := wlop(1l .. nops(xi)-i,xi)];
affix := wlop(nops(xi),xil)];
tmp := FreeRChroWord(eta,xiprime)+FreeRChroWord (xiprime,eta);
result := FreeConcat(tmp,affix);
return result;
end do
end if
end proc:

### FreeLChroWord(eta::indexed,xi::indexed)

FreeLChroWord := proc (eta::indexed, xi::indexed)
local i, prefix, affix, result, xiprime, tmp;

option remember;

description "Left chronological product of two words";

if nops(eta) = O then
return 0
end if;

if nops(xi) = O then
return eta
else

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVVVVVVYVVYV
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i:=1;

for i to nops(xi) do
xiprime := wlop(i+l .. nops(xi),xi)];
prefix := wlop(1l,xi)];
tmp := FreeLChroWord(eta,xiprime)+FreeLChroWord(xiprime,eta);
result := FreeConcat(prefix,tmp);
return result;

end do

end if

end proc:

### FreeChroWord(eta::indexed,xi::indexed)

FreeChroWord := proc (eta::indexed, xi::indexed)
option remember;
description "Left chronological product of two words";

printf (" *%* Left Chronological product by default. \n");
printf(" *** For right Chronological product, use FreeRChroWord(eta::indexed, xi::indexed)");

return FreeLChroWord(eta, xi)

end proc:

### FreeRChroWord2Poly(eta::indexed, d)

FreeRChroWord2Poly := proc (eta::indexed, d)

option remember;

description "Right chronological product of a word with a polynomial;
local i, chroprod;

chroprod := 0;

if type(d,indexed) then return FreeRChroWord(eta,d);
else
if type(d,‘+‘) then
for i to mops(d) do
if type(op(i,d),indexed) then
chroprod := chroprod+FreeRChroWord(eta, op(i,d))

else
if type(op(i,d),‘*‘) then
chroprod := chroprod+op(l,op(i,d))*FreeRChroWord(eta, op(2,op(i,d)))
end if;
end if;
end do;
return(chroprod) ;
end if;
end if;

if type(d, ‘*‘) then
chroprod:=op(1,d)*FreeRChroWord(eta, op(2,d));
return chroprod;

end if;

end proc:

### FreeLChroWord2Poly(eta::indexed, d)

FreeLChroWord2Poly := proc (eta::indexed, d)

option remember;

description "Left chromological product of a word and a polynomial";
local i, chroprod;

chroprod := 0;

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVVYVYVVVVVYVVVVVVVYV

if type(d,indexed) then return FreeLChroWord(eta,d);
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else
if type(d,‘+‘) then
for i to nops{(d) do
if type(op(i,d),indexed) then
chroprod := chroprod+FreelChroWord(eta, op(i,d))

else
if type(op(i,d),‘*) then
chroprod := chroprod+op(1,op(i,d))*FreeLChroWord(eta, op(2,o0p(i,d)))
end if;
end if;
end do;
return(chroprod) ;
end if;
end if;

if type(d,‘*‘) then
chroprod:=op(1,d)*FreeLChroWord(eta, op(2,d));
return chroprod;

end if;

end proc:

### FreeChroWord2Poly(eta::indexed, d)

FreeChroWord2Poly:= proc (eta::indexed, d)
option remember;
description "Left chronological product of a word and a polynomial®;

printf (" *x* Left Chronological product by default. \n");
printf (" *¥x  For the Right Chronological product, use FreeRChroWord2Poly(c, d)");

return FreeLChroWord2Poly(eta, d)

end proc:

### FreeRChro(c, d)

FreeRChro := proc (c, d)
option remember;
description "Right chronological product of two polynomials';
local i, chroprod;
chroprod := 0;

if type(c,indexed) then return FreeRChroWord2Poly(c,d);
else
if type(c,‘+‘) then
for i to nops(c) do
if type(op(i,c),indexed) then
chroprod := chroprod+FreeRChroWord2Poly(op(i,c),d)

else
if type(op(i,c),‘*‘) then
chroprod := chroprod+op(1,op(i,c))*FreeRChroWord2Poly(op(2,0p(i,c)),d)
end if;
end if;
end do;
return{chroprod) ;
end if;
end if;

if type(c,‘*‘) then
chroprod:=op(1,c)*FreeRChroWord2Poly(op(2,¢),d);
return chroprod;

end if;

end proc:

VV VYV VVVVVVVVYYVYVVY¥VVVVYVYYVYYVVYVVVYVVYVVVYVYYVYVVYVVVYVVYVVYVYVVYVYVVVVYVYVVYVYVYVYVVVVVYVYVVYVYVYVY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

### FreeLChro(c, d)

FreeLChro := proc (c, d)
option remember;
description "Left chronological product of two polynomials";
local i, chroprod;
chroprod := 0;

if type(c,indexed) then return FreeLChroWord2Poly(c,d);
else
if type(c,‘+‘) then
for i to nops(c) do
if type(op(i,c),indexed) then
chroprod := chroprod+FreeLChroWord2Poly(op(i,c),d)

else
if type(op(i,c),‘**‘) then
chroprod := chroprod+op(1,op(i,c))*FreeLChroWord2Poly (op(2,0p(i,c)),d)
end if;
end if;
end do;
return(chroprod);
end if;
end if;

if type(c, ‘*‘) then
chroprod:=op(1,c)*FreeLChroWord2Poly(op(2,c),d);
return chroprod;

end if;

end proc:

### FreeChro(c, d)

FreeChro := proc (c, d)
option remember;
description "Left chronological product of two polynomials";

printf(" *x* Left Chronological product by default. \n");
printf (" *%x  For the Right Chronological product, use FreeRChro(c, d)");

return FreeLChro(c, d)

end proc:

### FreeComposeWord2Poly(eta: :indexed,d::1list)

FreeComposeWord2Poly := proc(eta::indexed,d::list)

option remember;

local i, prefix, result, etaprime, tmp;

description "Composition product of a word with a formal polynomial";

if nops(eta) = O then return eta; end if;
for i from 1 to nops(eta) do
if op(i,eta) = O then result:=eta;
else
prefix:=FreeConcat(w[0],wlop(1..(i-1),eta)]);
etaprime:= wlop(i+l..nops(eta), eta)l;
tmp:=FreeShuffle(op(op(i,eta),d),
FreeComposeWord2Poly(etaprime,d));

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYYVYVVVVVVVVVVVVVVVVVYVYV

> result:=FreeConcat (prefix, tmp);
> return result;

> end if;

> end do;

>

> end proc:
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### FreeCompose(c,d::1list)

FreeCompose := proc (¢, d::list)

option remember;

description "Composition product of a scalar formal polynomial and
an array of formal polynomials in the free algebra";
local comprod, ij;

comprod := 0;

if type(c,indexed) then return FreeComposeWord2Poly(c,d);
else
if type(c,‘+‘) then
for i to nops(c) do
if type(op(i,c),indexed) then
comprod := comprod+FreeComposeWord2Poly(op(i,c¢),d);

VVVVVVVVVVVVVYVVVVYVYVYVYVY

else
if type(op(i,c),‘*‘) then
comprod := comprod+op(l,op(i,c))*
FreeComposeWord2Poly (op(2,0p(i,e)),d);
end if;
end if;
end do;
return(comprod) ;
end if;
end if;

if type(c, ‘*‘) then
comprod:=op(1,c)*FreeComposeWord2Poly (op(2,c),d);
return comprod;

end if;

end proc:

HHRH R ERH B RHRHR R
### FreeComposeMIMO(c::1list, d::1list)
HERAGRBRRRRHHHA R
FreeComposeMIMO := proc (c::list, d::list)
# option remember;
description "Composition product for MIMD case";
local tmp, i, dim; dim:=nops(c);

tmp := [seq(07i,i=1..dim)];

for i from 1 to nops(c) do

tmp[i] := FreeCompose(op(i,c), d);

end do;

return tmp;

end proc:

### FreeModComposeWord2Poly(eta::indexed,d::list)

FTTETET TR TR TR T

FreeModComposeWord2Poly := proc(eta::indexed,d::list)

option remember;

description "Modified composition product of a word with an array of formal polynomials";
local i, prefixl, prefix2, result, etaprime, tmp;

if nops(eta) = O then return eta; end if;
for i from 1 to nops(eta) do
if op(i,eta) = 0 then
result:=eta;
else
prefixl:=wlop(l..i,eta)];
prefix2:=FreeConcat(w[0],wlop(1..(i-1),etal)]);
etaprime:= wlop(i+1..nops(eta), eta)l;
tmp:=FreeShuffle (op(op(i,eta),d),

YV V¥V VVVY¥VVY VVYVYVYVVYVVVVYVYVVVVVYVVYVYVYVVVYVYVYVVYVYVYVYYVYVYVYVY
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FreeModComposeWord2Poly (etaprime,d));
result:=FreeConcat (prefix1,FreeModComposeWord2Poly
(etaprime,d))+FreeConcat (prefix2, tmp);

v

return result;
end if;
end do;

end proc:

### FreeModCompose(c,d::1list)

FreeModCompose := proc (c, d::list)

option remember;

description "Modified composition product of two polynomials in the free algebra";
local comprod, i; comprod := 0;

if type(c,indexed) then
return FreeModComposeWord2Poly(c,d);
else
if type(c,‘*‘) then
comprod:=op(1,c)*FreeModComposeWord2Poly (op(2,c),d);
return comprod;
end if;

if type(c,‘+‘) then
for i to nops(c) do
if type (op(i,c),indexed) then
comprod := comprod+FreeModComposeWord2Poly(op(i,c),d);
else
if type(op(i,c), ‘*‘) then
comprod := comprod+op(1,op(i,c))*
FreeModComposeWord2Poly(op(2,0p(i,c)),d);
end if;
end if;
end do;
return(comprod) ;
end if;
end if;

VVVVVVVVVVVYVVVYVVVVVVVVYVVVVVVYV

end proc:

### FreeModComposeMIMO(c::list, d::1list)

FreeModComposeMIMO := proc (c::list, d::list)
# option remember;
description "Modified Composition product for MIMO case”;
local tmp, i, dim; dim:=nops(c);

tmp := [seq(07i,i=1..dim)];

for i from 1 to nops(c) do

tmp[i] := FreeModCompose(op(i,c), d);

end do;

return tmp;

end proc:

VVVVVVVVVVVVVVVVVVVVVVVYV
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A.4 Source Code to Calculate Output Response of a Fliess
Operator

### FliessWord(eta::indexed,u::1list)

FliessWord := proc(eta::indexed, u::list)

option remember;

description "Output of a Fliess operator associated with a generating word
applied to a time domain input vector u(t)";

VvV V.V V VYV

local i, etaprime, tmp, result;

if nops(eta) = O then
return 1;
end if;
for i from 1 to nops(eta) do
etaprime:= wlop(i+1..nops(eta), etall;
if op(i,eta) = 0 then
result:=int( FliessWord(etaprime,u), t) -
eval{(int( FliessWord(etaprime,u), t),t=0);
return result;

VV V V VVVVVYV

v v

else
result:=int( ulop(i,eta)]*FliessWord(etaprime,u),t)-
eval(int(ulop(i,eta)]*FliessWord(etaprime,u), t),t=0);
return result;
end if;
end do;

v

end proc:

VvV V V V V YV

### Fliess(c, u::list)

Fliess := proc (c, u::list)

> option remember;

> description "Output of a Fliess operator associated with a generating polynomial
supplied with input as a time domain function vector u(t)";

>

> local tmpsum, i; tmpsum := O;

>

> if type(c,indexed) then

> return FliessWord(c,u);

> else

> if type(c,‘*‘) then

> tmpsum:=op(1,c)*FliessWord(op(2,¢),u);

> return tmpsum;

> end if;

>

> if type(c,‘+‘) then

> for i to nops(c) do

> if type(op(i,c),indexed) then

> tmpsum := tmpsum+FliessWord(op(i,c),u)

> else

> if type(op(i,c), ‘*‘) then

> tmpsum := tmpsumtop(l,op(i,c)) *
FliessWord(op(2,0p(i,c)),u);

> end if;

> end if;

> end do;

> return(tmpsum) ;

> end if;

> end if;

>

> end proc:

>

>
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>
> ### FliessMIMO(c::1ist, u::list)
> N N
> FliessMIMO := proc (c::list, u::list)
> description "Output of a Fliess operator in MIMO case";
>
> local tmp, i, dim; dim:=nops{c); dim;
tmp := [seq(0°i,i=1..dim)]; tmp;
for i from 1 to nops(c) do
tmp[i] := Fliess(op(i,c), u);
end do;
> return tmp;
>
> end proc:
>

>
>
>
>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



138

CURRICULUM VITAE
YAQIN LI

DEGREES:

University of Science and Technology of China (USTC), Hefei, China

Master of Engineering (Control Theory and Control Engineering), July 2001
Bachelor of Science (Automatic Control), July 1998

Bachelor of Science {Economics and Management Science), July 1998

ACADEMIC AWARDS:

Best Paper of the Session Award, International Conference on Computer, Communi-
cation and Control Technologies (CCCT’03), Orlando, FL, 2003

Outstanding Ph.D. Student Research Award, ECE Department, ODU, 2002
Microsoft Research Institute President Fellowship, USTC, 2001

Shing-Tung Yau Fellowship, USTC, 2001

HUAWEI Scholarship, USTC, 2000

HUAXIN Scholarship, USTC, 1996

Star River Scholarship, USTC, 1995

PUBLICATIONS:

Conference Papers

1.

Yaqin Li and W. Steven Gray, The Formal Laplace-Borel Transform, Fliess Operators
and the Composition Product, Proc. 36*" IEEE Southeastern Symposium on System
Theory (SSST’04), Atlanta, Georgia, U.S.A., March 14-16, 2004, pp. 333-337.

. Yaqin Li, Min Song and W. Steven Gray, A Self-Adaptive Predictive Congestion Con-

trol Model for Extreme Networks, Proc. 2003 International Conference on Computer,
Communication and Control Technologies (CCCT’03), Orlando, Florida, U.S.A., July
31-August 2, 2003, pp.327-332.

. W. Steven Gray and Yaqin Li, Generating Series for Nonlinear Cascade and Feedback

Systems, Proc. 415" IEEE Conference on Decision and Control (CDC’02), Las Vegas,
Nevada, U.S.A., December 10-13, 2002, pp. 2720-2725.

. W. Steven Gray and Yaqin Li, Fliess Operators in Cascade and Feedback Systems,

Proc. 2002 Conference on Information Sciences and Systems (CISS’02), Princeton,
New Jersey, U.S.A, March 20-22, 2002, pp. 173-178.

W. Steven Gray and Yaqin Li, Interconnected Systems of Fliess Operators, 2002
International Symposium on the Mathematical Theory of Networks and Systems
(MTNS’02), South Bend, Indiana, U.S.A., August 12-16, 2002.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



139

Journal Papers

1. W. Steven Gray and Yagqin Li, Generating Series for Interconnected Analytic Nonlin-
ear Systems, SIAM Journal on Control and Optimization, to appear.

2. Sifu Li, Zifu Xu and Yaqin Li, A Predictive Control with Wiener Model Nonlinear
System Based on the Laguerre-RBF Combined Model (in Chinese), Information and
Control, vol. 30, no. 4, August 2001, pp. 305-308.

3. Sifu Li, Yaqgin Li and Zifu Xu, An Extension to Laguerre Model Adaptive Predictive
Control Algorithm (in Chinese), Journal of USTC, vol. 31, no. 1, January 2001, pp.
92-98.

4. Sifu Li, Jun Qian and Yaqin Li, The Predictive Control Based on Laguerre Function
for a Class of Nonlinear Systems (in Chinese), Journal of USTC, vol. 30, no. 5,
October 2000, pp. 548-553.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



	Generating Series for Interconnected Nonlinear Systems and the Formal Laplace-Borel Transform
	Recommended Citation

	ProQuest Dissertations

