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ABSTRACT

P r e d ic t io n  o f  In t e r f e r e n c e  P a t h l o s s  in s id e  C o m m e r c ia l  A ir c r a f t  
U s in g  M o d u l a t e d  F u z z y  L o g ic  a n d  N e u r a l  N e t w o r k s

Madiha Jamil Jafri 
Old Dominion University, 2007 

Director: Dr. Linda Vahala

Although several modeling techniques have been used to model indoor radio 

wave propagation and coupling patterns, to date no efficient model exists that calculates 

indoor-outdoor radio wave propagations on commercial aircraft. Due to the complexity 

of an aircraft structure, with the additive introduction of creeping wave phenomenon and 

unknown back-door propagation values from the exterior aircraft antenna to the avionics 

bay, numerical modeling approaches using Method of Moments (MoM) or Finite 

Difference Time Domain (FDTD) prove too complex with limitations. This dissertation 

presents an expert neuro-fuzzy (NF) model for Interference pathloss (IPL) predictions 

inside an Airbus 320 (A320) airplane, for radio systems from 75 to 1585 MHz. This 

novel model generates IPL pattern through fuzzy logic, incorporating linear expert 

knowledge into the patterns. The model also uses feed-forward neural networks to derive 

meanings from complicated or imprecise data, extract patterns and detect trends in the 

IPL data that are too complex to be noticed by either humans or other computer 

techniques. Unlike previous approaches, the model presented is robust in incorporating 

both low to high band frequencies. It is also computationally efficient and reliable.
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1

CHAPTER 1 

INTRODUCTION TO MODELING TECHNIQUES AND PROBLEM STATEMENT

Mathematical modeling has been used to describe relationships among the 

observed variables from a system for decades [1]. It is an extremely useful tool for 

studying different types of observable processes in nature and to link observations 

together into some pattern [1, 2]. In this dissertation, a novel combination of neural 

networks and fuzzy logic (neuro-fuzzy model) is proposed, which is applied to the 

modeling of electromagnetic interference (EMI) onboard commercial aircraft. The 

proposed neuro-fuzzy model has a wide application area; however, EMI patterns inside 

the aircraft are selected to be modeled to help scientists and engineers better understand 

the electromagnetic wave propagation phenomenon due to portable electronic devices 

(PEDs) inside commercial aircraft. This research should assist in understanding coupling 

characteristics due to PED emissions with aircraft systems in order to assist in making 

better rules and regulations regarding the use of PEDs on aircraft. A few numerical 

techniques, previously used for modeling the EMI problem, are also reviewed and 

conclusions have been presented to consider why these techniques are not as effective for 

the application of concern.1

1.1 Review and Evaluation of General Computational Modeling 

Techniques
Computer techniques have revolutionized the way in which electromagnetic 

problems are analyzed. Antenna and microwave engineers rely heavily on computer 

methods to analyze and help evaluate new designs and design modifications. Computer 

methods for analyzing problems in electromagnetics generally fall into one of three 

categories: analytical techniques, numerical techniques and expert systems. Analytical 

techniques make simplifying assumptions about the geometry of a problem in order to 

apply a closed-form (or table look-up) solution. Numerical techniques attempt to solve 

fundamental field equations directly; subject to the boundary constraints posed by the 

geometry. Expert systems do not calculate the fields directly; rather, they estimate values 

for the parameters of interest based on a rules database. Analytical techniques can be

1 MLA Handbook format is followed in this dissertation.
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2

useful tools when the important EM interactions of the configuration can be anticipated. 

However, most EM problems of interest are too unpredictable to be modeled using this 

approach.

Numerical techniques generally require more computation than analytical 

techniques or expert systems, but they are very powerful EM analysis tools. Without 

making a priori assumptions about which field interactions are the most significant, the 

numerical techniques analyze the entire geometry provided as input. They calculate the 

solution to a problem based on a full-wave analysis. A number of different numerical 

techniques for solving electromagnetic problems are available. Each numerical technique 

is well-suited for the analysis of a particular type of problem. The following sections 

outline the four major numerical modeling techniques that have been used to analyze 

EMI source configurations with some success.

Each of the techniques discussed below is best-suited to analyze different 

configurations. No one technique can be used to model all EMI sources; however, each 

of these techniques can be applied to a number of EMI source configurations. Two or 

more of these techniques, collectively, represent a potentially powerful set of tools for the 

EMI engineer. These four major techniques have been extended to form other new 

techniques to fit more focused objectives. To limit the scope of this dissertation, these 

extended techniques (the Generalized multipole technique [3], Conjugate gradient 

method [4], Boundary element method [5], Uniform theory of diffraction [6], to name a 

few) will not be discussed in this study. The following sections discuss the major 

numerical techniques, followed by a discussion of the last type of modeling technique, 

called expert systems, which includes Fuzzy Logic and Neural Networks.

1.1.1 Finite Element Methods

The Finite Element Methods (FEM) have been in use for many years for a variety 

of applications and have been recently applied to some EMC problems [7-11]. These are

a volum e-based technique w here the solution space is split into sm all elem ents, referred 

to as the finite element mesh . The field in each element is approximated by low order 

polynomials with unknown coefficients. These approximation functions are substituted 

into a variational expression derived from Maxwell’s equations, and the resulting system
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3

of equations is solved to determine the coefficients. Once these coefficients are 

calculated, the fields are then determined within each element.

The major advantage that FEM have over other modeling techniques stems from 

the fact that the electrical and geometrical properties of each element can be defined 

independently. This permits the problem to be set-up with a large number of small 

elements in regions of complex geometry and fewer, larger elements in relatively open 

regions. Thus, it is possible to model configurations that have complicated geometries 

and many arbitrarily-shaped dielectric regions in a relatively efficient manner. 

Commercial FEM codes are available that have graphical user interfaces (GUIs) [12].

The FEM are well-suited for shielding applications with apertures. However, as 

volume-based techniques, these are not well-suited for applications with long wires or 

applications with long distances between the model and the measurement location. In the 

complex and large aircraft structure, the entire volume must be broken into smaller 

elements causing the memory requirements to far exceed normal computer resources 

(less than 3 GB in memory). Therefore, FEM are not considered to be a possible 

modeling option for the EMC problem for this dissertation.

1.1.2 Method of Moments

Like FEM analysis, the method of moments (MoM) is a technique for solving 

complex integral equations by reducing them to a system of simpler linear equations. In 

contrast to the variational approach of the FEM, however, MoM employs a technique 

known as the method of weighted residuals. The concept of MoM was largely 

popularized by Harrington [13]. The technique commonly uses a full-wave frequency- 

domain approach whereby the radio frequency (RF) currents are found everywhere on a 

metal structure due to a specified source. Once the currents are known, the radiated 

fields can be found by summing the contribution from each current element.

MoM techniques applied to integral equations are not very effective when applied 

to arbitrary configurations w ith com plex geom etries or inhom ogeneous dielectrics. T hey  

are also not well-suited for analyzing the interior of conductive enclosures. 

Nevertheless, MoM techniques do an excellent job of analyzing a wide variety of 

important three-dimensional electromagnetic radiation problems with long-wires or in 

applications with appreciable distances to the observation point. Several non-commercial
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general-purpose MoM computer programs are available [5, 13-16]. The MoM technique 

is more applicable to EMC study onboard large aircraft, and will, therefore, be studied in 

more detail in later chapters.

1.1.3 Finite-Difference Time Domain Method

The finite-difference time domain (FDTD) method has become very popular for 

EMI and EM coupling (EMC) problems over the past few years. FDTD is a full-wave, 

volume-based approach, where the volume of space containing the problem is partitioned 

into small cubes, and Maxwell’s equations are solved directly using a central difference 

scheme. The FDTD utilizes a time-stepping, or “leap frog”, approach where inputs are 

time-sampled analog signals. The region being modeled is represented by two 

interleaved grids of discrete points. One grid contains the points at which the magnetic 

field is evaluated, while the second grid contains the points at which the electrical field is 

evaluated [17].

In the FDTD method, because the basic elements are cubes, curved surfaces on a 

scatterer must be stair-cased. For many configurations, this does not present a problem; 

however, for configurations with sharp, acute edges, an adequately staircased 

approximation may require a very small grid size. This can significantly increase the 

computational size of the problem. Therefore, the FDTD technique is not practical for 

applications with long wires or applications with long distances between the source and 

the measurement location because of the amount of computer memory required. 

However, due to the partitioning into small cubes, the material parameters (conductivity, 

permeability and permittivity) can be specified as necessary. The inside of the enclosure 

can be as complex as necessary. The possibility of computing EM propagation in a 

complex cavity makes FDTD a good candidate for the EMC problem in this dissertation; 

therefore, it will be studied in more detail in later chapters.

1.1.4 Transmission Line Matrix Method
The T ransm ission Line M atrix (TLM ) m ethod is similar to the FD T D  m ethod in  

terms of its capabilities, but its approach is unique. A general overview of the TLM 

method and a two-dimensional TLM code is provided in a book by Hoefer [18]. Like 

FDTD, analysis is performed in the time domain and the entire region of the analysis is 

gridded. Instead of interleaving the E-field and H-field grids, however, a single grid is
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established and the nodes of this grid are interconnected by virtual transmission lines. 

These coupled transmission lines are used to solve for voltages and currents within the 

transmission line structure. Once the final solution is found, the voltages and currents are 

converted into electrical and magnetic fields .

Although TLM can be used for aperture modeling (as in the case of FDTD), it is 

best suited for applications where direct connection of lumped circuit elements are 

needed (as in the case of printed circuit boards). The TLM method is not well-suited for 

applications with long wires or long distances between the source and the measurement 

location for the same reason as the FDTD technique. Due to the lack of applicability to 

EMC-related computation on aircraft, the TLM method will not be further discussed.

1.1,5 Fuzzy Logic

The concept of Fuzzy Logic was conceived by Lotfi Zedah [20] who presented a 

way of processing data by allowing partial set membership rather than crisp set 

membership. Fuzzy Logic is a problem-solving control system methodology that can be 

implemented in hardware, software, or a combination of both. Fuzzy Logic’s approach to 

control problems mimics how a person would make decisions, only much faster.

The four-step fuzzy reasoning procedures employed by applications include 

fuzzification, which establishes the fact base of the fuzzy system. It identifies the input 

and output of the system and then identifies the appropriate if-then rules and uses raw 

data to derive a membership function. At this point, one is ready to apply fuzzy logic to 

the system. As inputs are received by the system, inference, the second step, evaluates all 

if-then rules and determines their truth values. If a given input does not precisely 

correspond to an if-then rule, then partial matching of the input data is used to interpolate 

an answer. The third step is composition, which combines all fuzzy conclusions obtained 

by inference into a single conclusion. Different fuzzy rules might have different 

conclusions, so it is necessary to consider all rules. There are a number of composition 

m ethods available. The final step o f  defuzzification  converts the fuzzy  value obtained  

from composition into a “crisp” value; this process is often complex since the resulting 

fuzzy set might not translate directly into a crisp value. Defuzzification is necessary, 

since controllers of physical systems require discrete signals [21].
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Expert systems are often discarded for EMC modeling due to the complexity of 

EM wave propagation phenomenon. Tayarani [22] was able to successfully predict the 

input impedance of a monopole antenna using fuzzy logic. Furthermore, fuzzy logic was 

successfully used to replace the traditional FEM approach in a cylinder rubber 

compression problem [9]. The prediction of complex impedance along with replacement 

of traditional analytical techniques provides a promising future for using fuzzy logic to 

predict EMC propagation phenomenon on large aircraft from measured data. 

Furthermore, EMC wave propagation has been predicted successfully using Fuzzy logic 

in the Master’s thesis of Jafri [23], The model proposed in this dissertation requires an 

extensive understanding of fuzzy logic by the reader; therefore, more details on the 

concept of fuzzy logic can be found in Appendix B.

1.1.6 Neural Networks

Neural Networks (NNs) are another form of expert system and process 

information in a similar way the human brain does. With the remarkable ability to derive 

meanings from complicated or imprecise data, the NNs can be used to extract patterns 

and detect trends that are too complex to be noticed by either humans or other computer 

techniques. A trained neural network can be thought of as an "expert" in the category of 

information it has been given to analyze. This expert can then be used to provide 

projections given new situations of interest and answer "what if" questions. The network 

is composed of a large number of highly interconnected processing units (neurons) 

working in parallel to solve a specific problem. It has great ability to learn and then 

generalize. These two most important properties make neural networks good candidates 

to solve complex, large-scale problems [24, 25],

In the work reported in reference [26], full wave electromagnetic models of 

microwave components are replaced with NNs, which map devices’ physical and 

geometrical parameters (inputs) to devices’ S-parameters (outputs) through training. This 

successfu l m apping, along w ith other related w ork [27, 28], provides a promising future 

for the use of NNs for EMC wave propagation modeling. The reader is expected to be 

knowledgeable about the functionality of NNs and how they are implemented in 

MATLAB’s Neural Networks Toolbox. A brief overview of NN functionality can be 

found in Appendix C.
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1.2 Introduction to EMI Phenomenon onboard Aircraft

A major contribution of this dissertation is a comparative analysis of numerical 

models with expert systems and to effectively generate the best modeling technique to be 

used for predicting EMC patterns onboard commercial aircraft due to the radiation from 

PEDs. The following sections provide the reader with an overview of various portable 

electronic devices and their assessment of electromagnetic interference with aircraft 

antenna systems.

1.2.1 Classification of Portable Electronic Devices (PEDs)

A PED is any electronic device that is capable of receiving, storing or transmitting 

information without a permanent wired link. PEDs can be classified as either intentional 

or non-intentional transmitters. Intentional transmitters must transmit a signal to 

accomplish their function; therefore, they are designed to radiate energy [29]. Typical 

examples of intentionally transmitting PEDs are cellular phones, wireless local-area 

networks (such as Bluetooth and IEEE 802.11), personal area networks, Citizens-Band 

two-way radios, remote control toys, and two-way pagers [30].

The non-intentional transmitters, on the other hand, do not need to transmit a 

signal to accomplish their function; however, like any electrical device, they emit some 

level of electromagnetic radiation [31]. Therefore, unintentional transmitters only 

generate spurious emissions at arbitrary frequencies as a result of their electric and 

electronic parts. Non-intentional transmitters include portable computers such as laptop 

computers and personal organizers. Some other examples are system receivers, tape 

recorders, CD players, handheld TVs, electric shavers, game players, cameras, MP3 

players, DVD players and camcorders [30],

Medical devices, such as hearing aids, heart pacemakers, blood pressure monitors, 

electronic-device-embedded man-made human organs, and other human-body- 

monitoring sensors and devices are typically non-intentionally transmitting PEDs. 

H ow ever, m edical d evices w ith  w ireless technology, such as RF-activated infusion

pumps which can only be programmed by means of a remote RF transmitter, would be 

classified as intentional transmitters when the remote is being used [30],
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1.2.2 Review of Rules and Regulations of PEDs on Aircraft

In the US, regulations and recommendations on airborne use of PEDs are 

established by the Federal Aviation Administration (FAA), the Federal Communication 

Commission (FCC) and the Requirements and Technical Concepts for Aviation (RTCA), 

[30]. The FAA is a government agency responsible for regulating aviation. Its mission is 

to secure the safety, security, and efficiency of aviation systems during operations partly 

through the issuance of Federal Aviation Regulations (FARs). The FAA regulation on 

the airborne operation of PEDs is described in FAR Section 91.21 [32-34], FAR Section 

91.21 was initially established in May, 1961, to prohibit the operation of portable 

frequency modulated radio receivers aboard US-carrier and US-registered aircraft. Later, 

laptop computers, electronic games and CD players became items of concern. In the last 

fifteen years, cell-phone usage onboard aircraft has become an item of further concern. 

In 1993, the FAA issued an Advisor Circular (AC 91.21-1) (revised in 2000, and again in 

2006), which provided guidance to the airlines in establishing compliance to FAR 91.21, 

as well as recommended procedures for airlines and test criteria for manufacturers [35],

The FCC establishes, and is in charge of, all policies used in governing interstate 

and international communications by radio, television, wire, satellite and cable. The 

Federal Communication Regulations (FCRs) are established to obtain maximum 

effectiveness from the use of the systems in connection with the safety of life and 

property. The FCRs also apply to the operation of PEDs, if the operation imparts or 

potentially imparts any negative effect on the operational efficiency of the nation’s 

communication network. The associated regulation is the US code of Federal Regulation 

(Title 47, Part 22, Subpart H), which states that cell phones, installed in or carried 

onboard airplanes, must not be used while such airplanes are airborne. Therefore, the 

FCC prohibits the use of cellular phones on board aircraft while airborne [33, 34, 36].

The RTCA is a private, non-profit organization that develops consensus based 

recom m endations regarding com m unications, navigation, surveillance, and air-traffic 

management issues. RTCA serves as a federal advisory committee, and provides its 

recommendations as the basis of the policy, program and regulatory decision by the FAA. 

The RTCA released its first report regarding PEDs in 1963 (DO-119) [37], followed by a 

revised second report in 1988 (DO-199) [38]. In 1992, the US government requested that
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the RTCA resolve outstanding questions on PEDs to ensure air safety. The government 

specified that unnecessary restrictions should not be placed on untested PEDs, and it 

sought to gain an understanding of multiple effects and emissions from intentional 

radiators, such as remote-control devices and cell phones [30], In 1996, the committee 

issued its report (DO-233), which made the recommendation of modifying FAR 91.21 so 

that the use of any PED is prohibited on airplanes during any critical phase of flight; and 

so that the use of any PED having the capability to intentionally transmit electromagnetic 

energy is prohibited in an airplane at all times, unless testing has been conducted to 

ascertain its safe use. Furthermore, the report recommended additional research and PED 

testing efforts, as well as in increasing public awareness campaign on the potential 

hazards from PEDs [39].

1.2.3 Threat Assessment Overview of PEDs on board Aircraft

Despite the existence of various authorities responsible for putting limitations on 

the use of PEDs on aircraft, passengers still question the existence of an interference 

problem onboard aircraft due to the use of PEDs. The electromagnetic emissions from 

the passenger-carried PEDs on commercial airplanes have been reported as being 

suspected or sometimes confirmed as being responsible for anomalous events during 

flight. The operation of PEDs produces electromagnetic emissions that can interfere with 

the airplane systems.

There are a number of databases which have been established to collect potential 

or actual accident information involving aircraft. The best known is FAA’s Aviation 

Safety Reporting System (ASRS), run by NASA, wherein avionics problems that may 

have resulted from the influence of passenger electronic devices are recorded [40]. The 

incidents in ASRS are submitted voluntarily, and the information provided by the 

reporter is not investigated further.

Figure 1 summarizes the incident entries in the ASRS by the year. Using the 

ASRS database, this figure has been updated from the figure presented in Strauss’ work 

which included incidents reported up to year 2000 [41], One of the important limitations 

of the reported incidents includes the lack of knowledge about underreporting. 

Underreporting can be influenced by reports being filed elsewhere, the event not being 

recognized as interference, or the flight crew not attaching significance to the event.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

E
OJ

toS
13
Q>
■ co
C l
gja:

Figure 1. Interference to Avionics from PEDs: ASRS Entries By Year [41].

As analyzed by Strauss, the peak entry in the figure first appears in 1993, 

coinciding with Congressional interest that prompted RTCA DO-233. Entries declined 

over the next few years, coinciding with airlines’ adoption of policies that require 

passengers to turn off PEDs below 10,000 ft. After 1996, the trend appears to increase, 

possibly due to the increasing number of flights, consumer electronic proliferation, aging 

aircraft systems, and/or passenger non-compliance with airline policies.

Table 1 provides a sampling of suspected cases of PED interference, along with 

the systems affected and the suspected device up to year 1999 from [41]. The most cited 

combination of PED-Avionics interference was from cellular phones affecting the VOR 

navigation system. Cellular phones and laptops computers were involved in the 4 most 

frequent combinations.

Table 1. Summary of Suspected Cases of PED Interference [41],

Cellular Phones -  VOR 20
Laptop -  VOR 15
Cellular Phones -  Navigation 9
Laptop -  Navigation 9
Electronic Game -  VOR 8
Cellular Phone -  ILS 6
Cellular Phone -  Aircraft radio 6
AM/FM Radio -  VOR 6
AM/FM Radio -  Navigation 5
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The analysis presented in this section confirms that there is indeed proof of the 

presence of interference onboard commercial aircraft due to passengers’ use of PEDs. 

Since the interference phenomenon is hazardous and difficult, if not impossible, to 

replicate during flight, it is crucial to understand the problem more critically to possibly 

locate where the probability of interference due to PEDs is the highest onboard aircraft.

1.3 Dissertation Objectives and Scope

The major objectives of this study may be separated into two parts. Part I is an 

inverse modeling approach, involving the building of a system model through analysis of 

the measured data. The measured data includes interference pathloss (IPL) data, obtained 

through the cooperative agreement between NASA Langley Research Center, Eagles 

Wing Incorporated, United Airlines and Delta Airlines. This type of data is used because 

it provides a good understanding of coupling throughout the airplane. The measurement 

of IPL data is also standardized throughout the aviation industry. IPL data collection has 

been previously published in various references by the author [23, 27, 28, 42, 43]. The 

detailed technique of obtaining IPL data is also included in Appendix A of this 

dissertation. Chapter 2 of the dissertation includes a detailed graphical analysis of the 

IPL data collected to date on Boeing 737 (B737), B757, Airbus 319 (A319) and A320. 

The details in chapter 2 will enable the reader to comprehend and gain ‘expert 

knowledge’ on the EMI phenomenon on selected aircraft as well as become introduced to 

the various challenges which need to be resolved before modeling the EMI patterns.

Part II of the objectives involve the neuro-fuzzy modeling of the IPL data inside 

aircraft using combinatory modeling approaches of fuzzy logic and neural networks. In 

order to achieve these objectives, chapter 3 includes an overview of previous techniques 

used for modeling the EMI phenomenon and provides the advantages as well as 

limitations of these techniques. This chapter then proposes the novel architecture of 

neuro-fuzzy model which overcomes many of the limitations of previous models. The 

neuro-fuzzy model is then evaluated in chapter 4 by comparing the actual IPL patterns in 

chapter 2 to the simulated and predicted results from the model. The final chapter 

summarizes the contributions in this study for researchers, as well as includes proposed 

improvements which shall further assist in understanding and prediction with EMI 

phenomenon onboard commercial aircraft.
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1.4 Problem Assumptions, Conditions and Contributions

All modeling techniques are based on some assumptions; some are large while 

others are smaller and more reasonable. When evaluating the model, the practicality of 

the assumptions for the model must be compared to the validity of the model’s output 

with actual measured results. The neuro-fuzzy model proposed in this study is based 

upon the following assumptions:

1. The measured IPL data is accurate and within acceptable levels of experimental 

error.

2. The trends observed in the measured IPL data are accurate and repeatable if 

verified with further experimental trials.

3. Aircraft dimension and characteristics (i.e. number and location of doors and 

windows) are available to be used during modeling.

4. Aircraft antenna position and characteristics (i.e. location and polarization 

characteristics) are available to be used during modeling.

After accepting the above assumptions, the model is developed under the following 

conditions and requirements:

1. The model shall be computationally efficient, producing results in less than an 

hour on a standard laptop (instead of a supercomputer).

2. The model shall be reliable, producing repeatable results.

3. The model shall utilize the expert knowledge of EMI engineers, who have 

analyzed IPL data extensively and have made expert observations that may not be 

summarized in simple calculations.

4. The model shall be accurate, predicting IPL patterns that resemble the measured 

IPL patterns closely, including matching the mean, minimum and maximum IPL 

values in decibels.

5. The model shall have a broad spectrum prediction capability, being able to predict 

IPL patterns for system s operating in both low  and high-band frequencies.

The work presented in this dissertation along with the proposed model is based on the 

following contributions:

1. The extensively collected IPL data is presented for the first time as part of 

Appendix D, which includes raw IPL data values on B737, B757, A319 and A320
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along with the calibration values used before using the data for modeling. This 

data can be studied in numerous further studies.

2. A detailed methodology for collected IPL data is presented in Appendix A, which 

may be used by EMI researchers to further collect IPL data in a similar manner, 

so that the results may be comparable.

3. The collected IPL data is presented graphically for the first time in one 

comprehensive study, so that expert knowledge can be gained and IPL patterns 

among different aircraft structure and antenna systems may be compared.

4. The first effective model is proposed in this study that satisfies all the 

requirements set above including: efficiency, reliability, incorporation of expert 

information, accuracy as well as lack of dependency on operating frequencies.
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CHAPTER 2 

DATA ANALYSIS OF ELECTROMAGNETIC INTERFERENCE ON AIRCRAFT

After a brief introduction to the functionality of the common PEDs as well as the 

rules and regulations placed by agencies on airlines and PED manufacturers, it is 

important to understand the relationship between the PEDs relative to the aircraft radio 

systems that may possibly be affected. As mentioned in the previous chapter, the use of 

PEDs is often prohibited onboard aircraft due to their electromagnetic emissions, which 

may interfere with the avionics systems, most commonly radio navigation and 

communications. The next few sections provide a brief overview of the aircraft structure 

and the currently known reasons on why it becomes vulnerable to PED-related emissions

2.1 Reasons for Vulnerability of Aircraft systems due to PED-related 

Emissions

The problem of PED interference increases due to the aluminum air-frame of the 

aircraft, which can act as a shield, a resonant cavity, or a phased array. The radiation 

from the PEDs can couple to the avionics through the antennas, the wiring, or directly 

into the receiver of the aircraft [44]. Statistical reports presented in the Introduction 

chapter show that the navigation systems are the most vulnerable to PED-related 

emissions from within the aircraft’s fuselage.

The navigation systems are vulnerable for two reasons: they have parts devised to 

detect and act on signals coming from the ‘outside’ and they are radio-based systems, 

which are particularly susceptible to low levels of interference. Since the aircraft control 

systems are located entirely within the aircraft, they are shielded from absolutely any 

signals not coming from one of their own devices. The control systems are also not 

radio-based, but are based entirely on electrical signals conducted through wires, similar 

to most computer networks. Navigation avionics, on the other hand, must have some 

designed sensitivity to environmental radio signals in order to perform their function 

[33],

According to Bruce Nordwall, the antennas of radio-based avionics may be 

affected by electromagnetic field intensities of as small as a microvolt per meter. But 

being outside the aircraft, the antennas get some protective attenuation from the fuselage 

of radiation originating inside the aircraft. Non-radio signals generally have higher signal
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levels, and so are less susceptible to low interference levels [33]. According to Dave 

Walen, manager of electromagnetic effects for Boeing Commercial Airplane Group, 

“these are the instruments that we cannot harden because they are built to receive very 

small signals. We rely on those sensitive receivers to pick up small signals in space and 

that is the primary concern we have with carry-on electronic devices.” [44]

The hull of the metal aircraft forms an effective electromagnetic boundary 

between the outside and the inside of an aircraft. Electromagnetic signals find it hard to 

get in, or to get out. That is why the navigation and the radio antennae on the aircraft 

need to be placed outside the aircraft hull. But while outside, they must be sensitive. The 

navigation electronics inside the hull can be in principle just as well and securely shielded 

as control avionics, because there is no need at all for navigation systems to be sensitive 

to the electromagnetic signals coming from the inside of the aircraft. However, there are 

many reasons for these systems to be insensitive because there are many other electronics 

working in the same area as well [33],

Once the antennas have picked up the signals, they run through coaxial cables to 

communications or navigation receivers generally located below the floor of the cockpit. 

The output of those receiver boxes then goes to cockpit indicators or to other computers 

in the plane, or both. Most navigation signals, for example, go to a cockpit indicator and 

also to the autopilot computers. The wires that connect the receivers to the indicators or 

computers are twisted, shielded pairs, or twisted, shielded triples, depending on whether 

the signal is digital or analogue.

Often the wires from the antennas to the receivers run along the fuselage inside 

the aircraft skin, passing less than a meter from a PED wielding passenger. The thin sheet 

non-conducting material that forms the inside of the passenger compartment, typically 

fibreglass, offers no shielding whatsoever between the PED and the wiring. Boeing's 

Walen confirmed to Spectrum that wires critical to the functioning of the aircraft are 

generally shielded. American Airlines’ Degner believes that because the cables are so 

well shielded most of the interference from PEDs is due to radiation that the antennas 

pick up, and then transmit to the cockpit instruments or the navigation computers [44].

Shielding could be damaged during servicing or could degrade over time. Figure 

2 shows a detailed view of a fuselage during maintenance. The effectiveness of shielding
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also depends upon good grounding. This is difficult to maintain over time because of the 

nature of aluminum’s surface chemistry: aluminum oxidizes rapidly in air, thereby 

increasing the resistance of the electrical connection to ground. In that case, the wires 

could pick up interfering signals directly. Even with shielding in mint condition, 

electromagnetic interference can still couple to the aircraft's navigation or communication 

systems. Although the aluminum skin of the aircraft forms an excellent electromagnetic 

shield, it has holes through which the radiation can escape. In airliners, the greatest 

leakage of signals is through the windows as well as the doors [44].

Figure 2. Interior View of an Aircraft Fuselage During Maintenance [44].

2.2 Introduction to Aircraft Schematics and Details

For this research, testing was performed on out-of-service, United - Boeing 737 

(B737) and Boeing 757 (B757) series as well as Delta -  Airbus 319 (A319) and Airbus 

320 (A320) series. As a standard, the left half of all aircraft, when facing the cockpit of 

the plane, is referred to as the “port” side of the aircraft as usually the left side is used by 

passengers for boarding and leaving the plane. The right side of the aircraft is referred to 

as the starboard side, which is usually not used by passengers for boarding purposes.

The B737-200 aircraft has four exit doors. Two of the doors are located in the 

front side of the aircraft, referred to as LI and R1 in this paper. The other two doors are 

located in the rear of the aircraft near the tail, referred to as L2 and R2. LI and L2 are 

located on the port side, while R1 and R2 are located on the starboard side. There are 

also two emergency exits located near the wings of the aircraft; these are referred as LE
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and RE for exits on port and starboard side, respectively. The emergency exits are located 

at window #16 of both port and starboard side of the aircraft on a standard B737.

Figure 3 [45] shows the locations of all the exit doors as well as emergency exits 

on a B737. Also shown in this figure are the port side exits 1, 3 and 5 and the starboard 

side exits 2, 4 and 6. The B737 aircraft has 32 windows on each side of the aircraft, 

including the window for the emergency exit. As explained in Chapter 2, the greatest 

emissions from PEDs is thought to leak out toward the aircraft systems through the doors 

and windows of the aircraft; therefore, it is necessary to know the exact locations of the 

doors and windows to analyze the electromagnetic patterns thoroughly.

(2) / .......® .................... ;■ i.6;

Figure 3. Interior Schematic of B737 [45].

Figure 4, Figure 5 and Figure 6 show the exit configurations for B757, A319 and A320, 

respectively [45].

Figure 4. Interior Schematic of B757 [45].

fi)

Figure 5. Interior Schematic of A319 [45].
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Figure 6. Interior Schematic of A320 [45].

For measuring IPL data, the aircraft systems considered included the systems 

mentioned in Table 2 along with their operating frequencies. Figure 7 shows the 

approximate locations and detailed antenna shapes of GS, TCAS, VHF and the LOC, 

while the possible locations of GPS are pointed out in Figure 8 for B737 systems.

Table 2. Aircraft Systems of Concern with Operating Frequencies.

MB 75
LOC-L 108.1 -  111.95
VOR 108-117 .95
VHF-L 1 1 8 -1 3 7
VHF-R 1 1 8 -1 3 7
VHF-C 1 1 8 -1 3 7
GS 3 2 8 .6 -335 .4
DME-L 9 6 2 -  1213
DME-R 9 6 2 -1 2 1 3
ATC-T/U 1030
ATC-B/L 1030
TCAS-U 1090
TCAS-L 1090
GPS 1575±2
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Figure 7. Antenna Locations on B737 (3-D).
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Figure 8. Possible Antenna Locations for GPS on B737.

As shown in Figure 7, GS is located in the nose of the aircraft; the TCAS is 

located directly on top of the second window of the aircraft, on the center of the fuselage. 

Figure 8 shows two possible locations of the GPS system, behind the TCAS 

approximately on top of window #9. As shown in the figure, unlike TCAS, the GPS 

antenna is not installed along the top centerline of the aircraft, but instead, is slightly 

offset to the starboard side of the airplane. VHF is located behind the GPS antenna on 

top of the emergency exit, or window 16. Finally, the LOC system is installed on the tip 

of the tail of the aircraft. In some aircraft, the LOC is installed in the nose of the aircraft, 

along with the GS antenna; however, in B737, the system is installed in the tail. Figure 9, 

Figure 10, Figure 11 and Figure 12 show the antenna configurations, along with exit 

locations, for B737 (repeat), B757, A319 and A320, respectively.
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Figure 9. Antenna Locations of B737.
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Figure 10. Antenna Locations on B757.
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Figure 11. Antenna Locations for A319.
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Figure 12. Antenna Locations for A320.
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2.3 Aircraft Systems of Concern

Table 3 provides a list of avionics systems that are of concern in the event of 

interference along with their operational frequencies. Out of the possible aircraft systems 

mentioned in Table 3, most at risk are those that have antennas located at various points 

outside the skin of the aircraft to pick up the navigation and communication signals. The 

highlighted systems will be studied in the research. In general, manufacturers of the 

systems listed in the table are responsible for designing immunity into their products. 

According to Bennett Kobb, editor of Spectrum Guide, “there can be substantial 

differences in the level of interference immunity between what is technically possible, 

what is cost effective, and what is reasonable for policy makers to expect from 

manufacturers. ” [44]

In terms of functionality of the major systems, OMEGA navigation, at the low 

end of the frequency spectrum, is used to determine aircraft position through ground- 

based transmitters. VOR, or the VHF omnidirectional range finder, is a radio beacon that 

is used to navigate from point to point. The Glide slope system is used during landings. 

Above 1 GHz is the DME (distance-measuring equipment), which gauges the space 

between the aircraft and a ground-based transponder and is used throughout the flight, 

from take-off to landing. Also in the spectrum above 1 GHz are TCAS (Traffic Alert 

Collision Avoidance System), GPS (Global Positioning System), and cockpit weather 

radar systems [44],

Among the systems listed above, all avionics systems are susceptible to 

interference from high levels of electromagnetic radiation. Some systems, however, are 

more susceptible than others. As mentioned in previous section, for addressing 

susceptibility, avionics systems can be divided into two broad classifications, radio-based 

and non-radio. The radio-based systems have an antenna where on-channel field 

intensities of only microvolts per meter can be a serious interference threat. Non-radio 

system s do have signals traveling betw een  their com ponents’ parts. The signal levels are, 

however, significantly greater than those received by the radio-based systems and the 

susceptibility to low levels of interference is significantly reduced. On the other hand, 

the radio systems antennas are mounted outside of the aircraft and their susceptibility to 

interference from radiating devices inside the aircraft benefits from the attenuation of the
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aircraft fuselage. Interconnecting wires that may serve as ingress points for non-radio 

systems are inside the fuselage and can be very close to PED radiators and receive much 

higher field intensity.

Table 3. Aircraft Systems of Concern in the Event of Interference [34],

More Susceptible Less Susceptible
Glide Slope LORAN-C ADF
(329 -  335 MHz) (100 kHz) (1 9 0 -2 0 0 0  kHz)
Localizer MODE-S Autopilot
(1 0 8 -1 1 2  MHz) (1030 MHz) (non-radio)
TCAS MLS EFIS
(1030, 1090 MHz) (5031 -5 0 9 1  MHz) (non-radio)
VOR SATCOM (1) Flux Gate Compass
(1 0 8 -1 1 8  MHz) (1545-1555 MHz) (non-radio)
GPS SATCOM (2) Low-Freq. Wx Map
(1575 MHz) (1610-1626 .5  MHz) (50 kHz)
VHF COMM SATCOM (3) NAV Computers
(1 1 8 -  137 MHz) (1645.5 -  1655.5 MHz) (non-radio)
DME, (TACAN) Marker Beacon Radio Altimeter (GPX)
(978-1215 MHz) (75 MHz) (4.3 GHz)
ATCRBS XPDR Whether Radar
(1030 MHz) (9.375 GHz)
OMEGA HF
( 1 0 - 1 4  kHz) (2 MHz -  30 MHz)

2.4 Coupling Phenomenon to Aircraft Systems

The common PEDs operate at frequencies from a few tens of kilohertz for AM 

radios to greater than 3 Gigahertz for laptop computers. When the harmonics of these 

signals are taken into account, the emitted frequencies cover nearly the entire range of 

navigation and communication frequencies used on the aircraft. The frequency and 

intensity of the radiation also depend on the mode in which the device is being operated. 

Also, different types of avionics have different sensitivities, making the likelihood of 

interference very random and unpredictable. A radiation source may cause total 

destruction of a navigation signal on one channel while nearby channels are completely 

unaffected. Another type of signal may be sensitive to the modulation of the signal or to 

the number of individual radiators [44]. Experim entation by D evereux, et. al., show ed  

effective vulnerability of major navigation systems (VOR, VHF, Glide slope and GPS) 

due to low powered RF sources located in passenger cabin, baggage compartments, 

avionics and cargo bay areas .
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Interestingly, the technology of cellular phones poses a threat to the phone 

technology on ground level, as it is based on the small local ground based receptions 

called cells. Cell phone networks are such that a cell phone user is served by just one 

cell, and when reaching the boundary of that cell, the signal gets ‘handed over’ to the 

next cell which the user is about to enter. The topology of the coverage is based on the 

assumption that the user is on or near ground, and it is a technical assumption on which 

the entire system is based that a user will be within ‘sight’ of just one cell, except when 

nearing a cell boundary. When in an aircraft, however, the user is within radio ‘sight’ of 

many cells, simply because of the very high altitude. An attempted call or reception from 

an aircraft would activate many, if not all cells, in the local area, which ‘breaks’ the 

technology. It causes many transmission problems, and the network system is disturbed 

[33],

2.5 Graphical Representation of Collected IPL Data

IPL data was collected on B737, B757, A319 and A320. Please refer to Appendix 

A: IPL Measurement Overview, for measurement methodology and other details. This 

section includes detailed plots of the collected IPL data on the four aircraft type. Each 

plot includes IPL data collected on a particular aircraft (i.e. B737, B757, A319 or A320), 

for a selected aircraft system of concern (i.e. GS, VHF, TCAS etc.). Multiple trials of IPL 

data was collected for every system on each aircraft type. For instance, IPL data for GS 

was collected on six different B737s. These different airplane numbers can be identified 

using the aircraft nose number (i.e. 1989, 1883, 1879, 1991, 1907, and 1994 for B737). 

These nose numbers are systematically assigned by the airline manufacturer and do not 

correspond to the year of manufacturing, or age of aircraft. Furthermore, these nose 

numbers vary from being 3 to 4 digits among the four aircraft types. In each of the plots 

below, the IPL data is represented in “pathloss” (dB). The unit of pathloss is inversely 

proportional to the amount of coupling. Therefore, in the regions on low pathloss, high 

coupling exists between the transmit antenna location (simulated PED) and the aircraft 

system of concern (GS, GPS etc). Thus, the study is concerned more with areas of low 

pathloss, or high coupling.

Raw IPL values for all systems on all four aircraft (B737, B757, A319 and A320) 

are included in Appendix D. The raw values need to be calibrated using the calibration
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factors, also reported in Appendix D, by adding the total calibration factor (row 7 in the 

“Correction Factors” section) to each of the raw measurement for the corresponding 

column. The appendix includes measurements for both horizontal and vertical 

polarization for each system; however, only the dominant polarizations will be discussed 

in the following sections.

Figure 13 shows calibrated IPL data measured on B-737 for GS. GS is a 

horizontally polarized system; therefore, only the horizontal polarization is plotted. 

Recall that during IPL measurement, data was measured for both horizontal and vertical 

polarization for each system, however, it has been verified that the lowest regions of 

pathloss are found in the dominant polarization measurements for the particular system of 

concern [42]. In the plot, the x-axis represents the window locations inside the aircraft 

(from window 1 to window 33, in this case). The y-axis represents the pathloss value in 

dB. GS is located in the nose of B737. Interestingly, it can be noticed that the pathloss 

values in the front of the aircraft are lowest, and increase as the distance from the antenna 

increases. Also, it is important to note that there exists a pathloss deviation of about 7 dB 

among the 7 trials plotted. The similar sloping trend in the deviation among trials shows 

that although the IPL data is repeatable, there exist room for error in measurement due to 

change in equipment, aircraft nose number, or even change in testing personnel.

Figure 14 shows IPL patterns for the vertical polarization of TCAS on B737. 

TCAS is located on top of window 2 of the aircraft. Similar to GS, it can be observed 

that the pathloss is lower in the front of the aircraft (near window 2) and increases toward 

the rear of the aircraft. The IPL patterns in repeatable through various trials; however, a 

deviation of about 5 dB exists among the trials.

Figure 15 shows the IPL pattern for various trials on the VHF system for B737. 

VHF is a vertically polarized system. A noticeable trend of decreasing pathloss pattern 

exists near the location of antenna (window 16). The pathloss is the lowest near window 

16 and increases as the distance from  antenna location increases. H ow ever, there exists a

very large deviation among the various trials (as large as 25 dB!). Due to the large 

deviation, the results for VHF may not be considered for modeling purposes.
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Figure 13. IPL Data for GS-L in Horizontal 
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Figure 14. IPL Data for TCAS-U in Vertical 
Polarization (B737).
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Figure 16. IPL Data for LOC-L in Horizontal 
Polarization (B737).

Figure 16 shows IPL patterns for LOC on B737. LOC is a horizontally polarized 

system as is mounted on the tail of B737. Unlike previous systems, where the lowest 

pathloss occurred closest to the location of the system antenna, the lowest pathloss for 

LOC actually exists near window 16, or the emergency exit of B737. This phenomenon 

can be explained by the fact that LOC is a horizontally polarized system, whereas, the
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closest exit to LOC is located almost vertically from the tail; therefore, causing no 

coupling. Furthermore, it can be observed that the lowest pathloss in fact occurs to the 

closest, most leaky, entrance into the aircraft (in horizontal direction), which turns out to 

be the emergency exit (or window 16). As the distance from the antenna increases 

toward the front of the aircraft, the pathloss value also increases. Although a similar 

trend is observed among all trials, two trials (1997 and 1994) deviate significantly from 

the remaining trials. These two trials will not be considered in modeling due to their 

deviation.

Figure 17 shows IPL patterns for GS on B757. Compared to B737, B757 is a 

much longer aircraft. Therefore, it can be observed, that unlike the GS results for B737, 

B757’s GS shows lesser deviation from front to rear of the aircraft. Although, similar to 

the IPL results from GS on B737, the results here again show the lowest pathloss values 

in the front of the aircraft, closest to the location of GS. Furthermore, it can be observed 

that there exists very minor deviation in the front IPL values, however, the deviation 

among the three trials increases to about 10 dB in the rear of the aircraft. This IPL plot 

also provides a good example to observe difference between a 3-digit and 4-digit nose 

numbers (6706 vs. 690 as an example). B757 #690 was a slightly smaller aircraft, with 

two lesser windows that B757 #6706 and B757 #6707. To account for this difference, 

the IPL value in the last window of B757 #690 has been duplicated thrice to attain equal 

number of windows. This method of duplication will be repeated for all aircraft of 

similar types, but different nose numbers in order to attain equal number of windows for 

each trial of every system.

IPL data for B757’s LOC is plotted in Figure 18. Similar to the results in B737, 

there exit large deviation among the three trials of B757 data (about 12 dB). However, 

this deviation is not significant enough and therefore, this data will be considered for 

modeling purposes. Unlike B737, LOC for B757 is located in the nose of the aircraft, 

alongside G S. H ow ever, unlike the coupling patterns for B 7 5 7 ’s G S, the pathloss values 

for LOC are the lowest near the emergency exits of B757, located on windows 21 and 22. 

This shows that the emergency exits are more leaky than the main exits of B757.
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Figure 17. IPL Data for GS-L in Horizontal Figure 18. IPL Data for LOC-L in Horizontal
Polarization (B757). Polarization (B757).

Figure 19 shows the results for B757’s TCAS, located on top of window 2 of the 

aircraft. Similar to the TCAS results for B737, the two trials show the lowest pathloss 

near the front of the aircraft in vertical polarization, increasing as approaching the rear. 

Again, the increasing trend in B757 is not as prominent as the trend observed in B737, 

which has a shorter fuselage.

Figure 20 shows only one trial of the IPL data measured on the lower TCAS for 

B757. This second TCAS is located approximately below the 5th window of the aircraft 

and is also vertically polarized. The lowest pathloss exists near the front exit of the 

aircraft, increasing as approaching the rear windows. It is also observed that the pathloss 

decreases again when approaching the second exit (near window 15), increases again to 

follow the overall trend. This phenomenon again emphasizes the leakiness of the main 

aircraft exits.

Figure 21 and Figure 22 shows the IPL patterns for ATC-U and ATC-L systems, 

respectively, on B757. A T C -L  is a vertically polarized system  and is located  

approximated on top of the 8th window in B757. The lowest pathloss in the three trials 

indeed occurs closest to window 8 and increases elsewhere as the distance from the 

window to system increases. A large deviation is observed between the trials for B757 

#690 and B757 #6707. The two measurements for B757 #690 correspond to the
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individual IPL measurements taken at the port and starboard side of the aircraft. Similar 

to GPS, ATC-L is installed slightly off-centered from the centerline of the fuselage. To 

be exact, ATC-L is installed slightly on the port side of the centerline, while ATC-R is 

installed on the starboard side.

The IPL patterns for DME-L for B757 are included in Figure 23. DME-L is a 

vertically polarized system and is located under window 13 of the aircraft. The results 

from DME vary slightly between trials and show very little trend in pathloss value due to 

the location of the system. Figure 24 includes IPL patterns for MB on B757. MB is a 

horizontally polarized system and is located underneath window 14 of the aircraft. Unlike 

other systems, there is much variation in IPL values from window to window in MB. 

Also, there exists a trend of low pathloss values in the beginning of the aircraft (near the 

installed system), to increasing values in the aft of the aircraft. Due to the polarization 

effect, the increasing trend occurs more slowly in MB than observed in vertically 

polarized systems.
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Figure 19. IPL Data for TCAS-U in Vertical Figure 20. IPL Data for TCAS-L in Vertical
Polarization (B757). Polarization (B757).
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Figure 21. IPL Data for ATC-U in Vertical 
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Figure 23. IPL Data for DME-L in Vertical 
Polarization (B757).

Figure 24. IPL Data for MB in Horizontal 
Polarization (B757).
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Figure 25. IPL Data for DME-R in Vertical Figure 26. IPL Data for GPS-L in Vertical
Polarization (B757). Polarization (B757).

Figure 25 shows the IPL patterns for DME-R on B757. DME-R is also a 

vertically polarized system and is approximately installed beneath window 15 of the 

aircraft. Similar to the results for DME-L on B757, there are no trends observed in the 

IPL pattern. Also, the deviation among the three trials is very insignificant.

The IPL patterns for GPS-L on B757 are presented in Figure 26 and Figure 27. 

Unlike all other systems, GPS is a circularly polarized system, increasing the likelihood 

of coupling with both horizontal and vertical emissions. Therefore, Figure 26 includes 

IPL pattern for measurements taken in the dual-ridge horn being in vertical position, 

while the dual-ridge horn is in horizontal polarization in the IPL pattern presented in 

Figure 27. GPS-L is located slightly on top of window 15 of the aircraft. Very little 

trend of low to high pathloss can be observed in vertical polarization plot, where the 

pathloss increases slightly as the distance from antenna increases. However, no such 

trend is observed in the graph for horizontally held dual-ridge horn. Furthermore, there 

exists must deviation, about 20 dB, in both vertical and horizontal representation of 

pathloss fo GPS-L. Due to these deviations, GPS will not be considered for modeling 

purposes.

Figure 28 shows the IPL patterns for VHF-R on B757, approximately located 

under window 16 of the aircraft. There exist slight trend in the IPL patterns for the three
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trials. There also exists large deviation of about 10 dB after window 16 of the aircraft. 

Although VHF-R is located very close to exit 2 of the aircraft, unlike the VHF results in 

B737, very minor trend of decreased pathloss can be observed near the second exit 

(windows 14-16). These results can also suggest that the systems installed at the bottom 

of the fuselage do not couple as greatly as the systems installed on the top of the fuselage.

100 100
6707
6707
6706
6709

677
690
660

90

80

70

60

50

40

0 10 20 4030 50 0 10 20 30 40 50
Seat Numbers Seat Numbers

Figure 27. IPL Data for GPS-L in Hoizontal Figure 28. IPL Data for VHF-R in Vertical
Polarization (B757). Polarization (B757).
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Figure 29. IPL Data for VHF-L in Vertical Polarization (B757).
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The IPL patterns for VHF-L in B757 are summarized in Figure 29. VHF-L is 

located approximately on top of window 19 on the fuselage. Similar to the VHF pattern 

in B737, a decreased level of pathloss is observed near windows 18 through 22, while the 

levels of pathloss increase as the distance from antenna increases. There also exists 

insignificant deviation among the three trials reported.

Figure 30 includes IPL patterns for B757’s VHF-C, which is approximately 

located beneath window 45 of the aircraft. Similar to other VHF systems, VHF-C is also 

vertically polarized. The lowest levels of coupling are observed near the rear exit of the 

aircraft. The trend of low to high pathloss occurs from the aft of the aircraft going 

forward. Minor deviation among the three trials exist in the aft measurements, however, 

these deviations increased to about 15 dB around the front few window measurements.

Similar to B737’s LOC, B757’s VOR is located on the tip of the tail. The IPL 

measurements from VOR are recorded in Figure 31. VOR is also a horizontally 

polarized system. The lowest pathloss values are not observed at the aft windows, but are 

instead recorded near the emergency exits of the aircraft. There is minor deviation in IPL 

measurements among the three trials.
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Figure 30. IPL Data for VHF-C in Vertical 
Polarization (B757).

Figure 31. IPL Data for VOR-L in Horizontal 
Polarization (B757).
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Figure 32 includes the IPL pattern for A319’s GS-L. A319 is structurally very 

similar to B737; however, as observed, the patterns for GS-L for the two aircraft types 

are quiet dissimilar. There exists a much lesser increasing pathloss trend from the front 

to aft of the aircraft. This may signify the fact that the exits on A319 are better shielded 

than the exits on B737; therefore, causing greater signal loss from transmission by 

simulated PED inside the aircraft to reception by aircraft antenna.

Figure 33 includes the IPL pattern for LOC-L on A319. As observed even the 

port and starboard repetitions vary by 5-10 dB; therefore decreasing the repeatability of 

these measurements. Furthermore, there is no significant trend observed as the IPL 

values deviate from one window to the next throughout the aircraft. Therefore, the IPL 

results from this system will not be considered in the modeling.

The IPL results for A319’s DME-L are plotted in Figure 34. DME-L is located at 

the bottom centerline of the fuselage, approximately between the nose and the first exit of 

the aircraft. Although DME-L is a vertically polarized system, an increasing trend from 

low to high pathloss is observed from the first to the last window of A319. In previous 

systems, it was typical for vertically polarized systems to have a dominant effect of low 

pathloss close to the system, with a sharply increasing trend of higher pathloss as the 

distance increased. So although the trend of greater pathloss exists, as distance from 

antenna increase, the trend seems in increase much slower than observed in other 

systems. Perhaps, the position of the system at the bottom of the fuselage, instead of the 

top can account for the slowly increasing trend.

Figure 35 shows IPL pattern for VHF-L on A319. VHF-L is a vertically

polarized system located on top of the first exit of the aircraft. Low pathloss is observed 

not only in the front, but also near the emergency exit (window 14) of the aircraft. 

Similar trend of low pathloss near emergency exit has been observed in B737 and B757 

data for VHF systems.

The IPL patterns for A 3 1 9 ’s A T C -B  are plotted in Figure 36. A T C -B  is a 

vertically polarized system and is located at the bottom centerline of the fuselage, beneath 

window 2. Similar to A319’s DME-L, ATC-L shows very slow increasing trend in 

pathloss from front to rear of the aircraft. Again, this smooth transition may be due to the 

antenna’s placement at the bottom of the fuselage, instead of the top.
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Figure 32. IPL Data for GS-L in Horizontal 
Polarization (A319).
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Figure 33. IPL Data for LOC-L in Horizontal 
Polarization (A319).
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Figure 34. IPL Data for DME-L in Vertical 
Polarization (A319).

Figure 35. IPL Data for VHF-L in Vertical 
Polarization (A319).

The A319’s ATC-T is located on top of the 3rd window of the aircraft. The IPL

pattern for ATC-T is presented in Figure 37. There exists greater than 10 dB variation 

between measurements on the port versus starboard sides in the two trials. Furthermore, 

no trend of low to high pathloss can be observed. There is a slight increase in pathloss 

from the front to the rear of the aircraft in the IPL measurements taken on the starboard 

side.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pa
th

lo
ss

 
(d

B)

35

Figure 38 includes IPL patterns for VHF-R on A319, located at the bottom 

centerline of the fuselage near window 21. As observed in the figure, the lowest pathloss 

indeed occurs near window 21, increasing as approaching the front of the aircraft. The 

trend also increases in pathloss values toward the rear of the aircraft; however, low 

pathloss is again encountered near the rear exit of the aircraft. The front exit of the 

aircraft also shows lower pathloss, or higher coupling values. There also exists very 

insignificant deviation among the two trials on VHF-R.
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Figure 36. IPL Data for ATC-B in Vertical Figure 37. IPL Data for ATC-T in Vertical
Polarization (A319). Polarization (A319).

Figure 39 includes IPL patterns for A319’s VHF-C, located on top of the fuselage 

near window 24. Similar to VHF-R, low pathloss values are observed near window 24 and 

the trend of pathloss increases as the distance from the antenna increases. However, unlike 

VHF-R, there is a significant drop in pathloss observed near the emergency exit of the 

aircraft (window 14). This difference may be due to the existence of VHF-R at the bottom 

of the fuselage, while VHF-C exists at the top of the fuselage.

A320 is a larger aircraft that A319 with tw o em ergency exits. Figure 40 show s the 

IPL pattern measured for GS-L on A320. Similar to B757, low pathloss values are observed 

near the front windows of the aircraft. Again, a trend of increasing pathloss values exists 

until the rear of the aircraft. Also, there is very minor deviation between the port and 

starboard measurements, proving the repeatability of the data.
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Figure 38. IPL Data for VHF-R in Vertical 
Polarization (A319).
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Figure 39. IPL Data for VHF-C in Vertical 
Polarization (A319).

The IPL pattern for A320’s LOC is presented in Figure 41. Similar to GS, LOC is 

also installed in the nose of the aircraft and is horizontally polarized. As observed in 

A319’s LOC pattern, there exists a slowly increasing pathloss pattern from the front to 

rear of the arcraft. Also, there is a drop in pathloss value near the emergency exit of the 

aircraft (windows 17 and 18). There is also a significant deviation of about 10 dB 

between the two trials near the emergency exits; however, this data will still be 

considered for the modeling due to very small deviation between the two trials 

throughout the remaining aircraft.

The IPL results for A320’s DME-L are plotted in Figure 42. Similar to A319, 

A320’s DME-L is located at the bottom centerline of the fuselage, approximately 

between the nose and the first exit of the aircraft. An increasing trend from low to high 

pathloss is observed from the first to the last window of A320. There is also very small 

deviation in pathloss data between the two trials.

A320’s VHF-L is located on top of the first exit of the aircraft. Figure 43 shows 

the IPL pattern for VHF-L in A320. Similar to previous systems, VHF-L, due to being 

vertically polarized, shows lowest pathloss values near the first exit, and the trend of low 

to high pathloss appears as the distance from the antenna increases. Furthermore, there
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exists a drop in pathloss near windows 16 through 19, which shows existence of greater 

coupling near the emergency exits.
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Figure 40. IPL Data for GS-L in Horizontal 
Polarization (A320).
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Figure 41. IPL Data for LOC-L in Horizontal 
Polarization (A320).
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Figure 42. IPL Data for D M E-L in Vertical 
Polarization (A320).
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Figure 43. IPL Data for VHF-L in Vertical 
Polarization (A320).

Figure 44 shows the IPL pattern for ATC-T on A320. Similar to A319, the ATC- 

T on A320 is located approximately on top of the second window of the aircraft. A trend 

of low to high pathloss is again observed in the IPL pattern from the front of the aircraft
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to the rear. However, there exists unwanted deviation (more than 10 dB) between the 

measurements from the port and starboard sides.
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Figure 44. IPL Data for ATC-T in Vertical 
Polarization (A320).
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Figure 45. IPL Data for ATC-B in Vertical 
Polarization (A320).

The IPL patterns for A320’s ATC-B are presented in Figure 45. ATC-B is located 

at the bottom centerline of the fuselage beneath window 1. Similar to ATC-T, an 

increasing trend of pathloss values is observed from the front to the rear of the aircraft. 

There is no significant drop in pathloss observed at the emergency exits of A320.

Figure 46 shows the IPL pattern for A320’s GPS-L in vertical polarization. 

Recall that GPS is actually a circularly polarized system. In A320, GPS-L is installed 

approximately before the first exit, on top of the fuselage. In the IPL pattern for vertical 

polarization, there exists an increasing trend from low to high pathloss values from the 

first to the last window. Figure 47 shows the IPL pattern for A320’s GPS-L in horizontal 

polarization. A similar increasing trend can also be observed in the plot with horizontal 

polarization. Although the increasing trends agree with our previous graphical analysis 

on the relationship of IPL patterns based on the location of exits and antenna location, 

GPS-L will not be considered for modeling due to its circularly polarized characteristics.

The VHF-C system is located near window 30 on top of A320’s fuselage. Figure 

48 shows the IPL patterns obtained for VHF-C on A320. Similar to previous VHF-C 

patterns, there exist low pathloss at windows closest to the location of the antenna. The
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pathloss increases as the distance from transmitting source to aircraft antenna increases. 

Furthermore, low pathloss values are again observed near the emergency exits and rear 

exit of the aircraft.
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Figure 46. IPL Data for GPS-L in Vertical Figure 47. IPL Data for GPS-L in Horizontal
Polarization (A320). Polarization (A320).
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Figure 48. IPL Data for VHF-C in Vertical Polarization (A320).

Figures 49, 50, 51 and 52 show a summary of all IPL patterns for all systems 

measured for B737, B757, A319 and A320 respectively. Only mean IPL values for the 

repeated trials are shown. The purpose of these plots is to comprehend the range of
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pathloss values for each aircraft. The pathloss values for almost all systems reside 

between 50 dB to 80 dB in all four aircraft types.
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Figure 49. Mean IPL Data for All Systems in B737.

mp

aJ
CL

100

90

80

70

60

50

40

 —  g s -l

 LOC-L
 TCAS-U
 TCAS-L
 ATC-U
 ATC-L
— —  DME-L
 MB
 DME-R
 GPS-Lv
 GPS-Lh
 VHF-R
  VHF-L
 VHF-C
 VOR-L

10 20 30
Seat Numbers

40 50

Figure 50. Mean IPL Data for All Systems in B757.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

80

75

70

65

60

£  55

50

45

40

35

0 5 10 15 20 25
S e a t Numbers

— —  g s -l

 LOC-L
 DME-L
 VHF-L
 ATC-B

 ATC-T
 VHF-R

 VHF-C

Figure 51. Mean IPL Data for All Systems in A319.

100

mTJ

o_

■ GS-L
■ LOC-L
■ DME-L
■ VHF-L
■ ATC-T
■ ATC-B 

GPS-Lv
' GPS-Lh 
VHF-C

10 20 30
S eat Numbers

Figure 52. Mean IPL Data for All Systems in A320.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

CHAPTER 3 

METHODOLOGY

One of the major objectives of this dissertation was to effectively model the IPL 

patterns for all systems on various aircraft types. As mentioned in the introduction, 

modeling can be performed using either analytical, numerical or expert system 

techniques. Analytical techniques make simplifying assumptions about the geometry of a 

problem in order to apply a closed-form (or look-up table) solution. Numerical 

techniques attempt to solve fundamental field equations directly, subject to the boundary 

constraints posed by the geometry. Expert systems do not calculate the fields directly, 

but instead estimate values for the parameters of interest based on a rules database.

To date, there exists no model which effectively predicts IPL values at every 

window location of various aircraft for each antenna system. Limited success has been 

achieved by some investigators [46-48], Georgakopoulos et al. use FDTD to model IPL 

levels at a selected window. They compare their results to a scaled-model of B757 

(rectangular structure with slits for windows). Although they did not compute an overall 

IPL pattern on all windows, the coupling values on a selected window compared well 

with actual measurements on the mock-up aircraft between 2.5 to 3 GHz frequency 

ranges. Devereux, et. al., first attempt to use MoM to simulate IPL on windows of a 

mock-up aircraft for VHF; however, due to limited computational resources, they 

perform the same task using FDTD. The results are comparable to the IPL patterns 

recorded for VHF antenna and are promised to be accurate for frequency ranges less than 

300 MHz. Unlike other methods, Vahala, et. al., use a high speed multiple scattering 

approach by solving the Maxwell’s equations in the parabolic form. The results of their 

simulation are comparable to the real IPL data in high frequencies (greater than 1 GHz).

Due to the novelty of this problem, analytical, numerical as well as expert-system 

based approaches are discussed in this section to finalize which technique will produce 

the “best” model for the IPL predictions. As mentioned in Appendix A: IPL 

Measurement Overview, measurement of the IPL values at each window in both 

horizontal and vertical polarization is a very time consuming and expensive task. 

Therefore, the “best” model for IPL prediction shall eliminate the need for data
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collection. The model shall be the most efficient in terms of predictability speed, as well 

as cost effective. Intuitively, the predicted IPL patterns by the model shall resemble the 

actual IPL data. Finally, the initial set-up and analysis of output shall be user-friendly to 

produce fastest and most accurate IPL results. The next few sub-sections discuss the 

possible numerical techniques which are applicable to this research and have been used 

previously. Finally, the reasoning behind and the methodology of the final IPL 

prediction design using expert systems is discussed.

3.1 Overview of Techniques used for EMI prediction inside Commercial 

Aircraft

Numerical and analytical methods can be useful for understanding the 

phenomenon displayed in the plotted IPL data in chapter 2. Both the normative behavior 

and the seeming irregularities can be supported. The actual modeling can be broken into 

several parts, specifically [50]:

1. Characterizing the energy fields inside aircraft compartments containing a source

2. Characterizing the real or effective source at windows or other apertures

3. Determining the fields, currents and path loss at or near the aircraft’s external 

surface on the path from apertures to antenna locations

4. Determining the field levels in the avionics compartments from sources in other 

internal compartments as well as outside but nearby the aircraft

The code and models must be validated to ensure that the results are in the correct 

order of magnitude (± 6 to 10 dB) [50]. The basic objective is to simulate the effects of 

an electromagnetic source within the aircraft cabin, determine the amount of leakage 

through the windows of the cabin, and the amount of interference received by external 

aircraft antennas or internal avionics. This is a very complex problem to model since the 

frequencies of interest cover the range of below 100 MHz to often above 3 GHz. The 

aircraft cabin are often multiple wavelengths and resonance effects must be included in 

the sim ulation [50].

Analytical techniques are useful for small-structure modeling. Therefore, these 

techniques can not be used for the case of large passenger aircraft such as B737, B757, 

A319 or A320. Assuming a frequency of 3 GHz, a sample radius of these aircraft type is 

about 4 meters, leading to a commercial aircraft to be approximately 40 wavelengths in
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diameter and greater than 300 wavelengths in length (assuming a minimum length of 

about 30 meters). Therefore analytical techniques are not applicable for an application of 

this scale.

A table that includes a list of available codes and a short summary of their 

features can be found in [50]. The following few sections summarize a few numerical 

techniques and how they can or cannot be applied to this application.

3.1.1 Far Field Techniques

Far-field techniques, such as ray tracing and geometric theory of diffraction are 

used extensively for radar cross section and antenna pattern determination [51-54], 

These techniques all require the distance to be many wavelengths from the source, and 

assume plane-wave fields. Larger aircraft structures qualify for these techniques in the 

high frequencies (3 GHz). However, when considering smaller frequencies, i.e. 100 

MHz, the diameter of the aircraft can be as small as % of a wavelength in diameter or 10 

wavelengths in length. Furthermore, the window apertures (sources of leakage) are even 

smaller in the above calculated wavelengths. Therefore, far-field techniques are not 

appropriate for smaller frequencies of this application.

Vahala et al. extend ray tracing to a quasi-ray tracing algorithm by using a multi­

scattering approach. Instead of a direct solution to Maxwell’s equations, they utilize the 

multiscattering formalism that solves a stochastic parabolic wave equation. The solution 

of the stochastic parabolic equation for complex problems dramatically reduces the 

computational time by many orders of magnitude. The algorithm takes into account only 

forward scattering and is therefore not compromised by the usual divergences that arise 

from ray crossings in the traditional ray tracing approach. In the algorithm, backscatter 

effects are deemed negligible and the axial propagation direction of the wave down the 

fuselage becomes the time coordinate in the resulting parabolic wave equation [46, 55, 

56]. The results from this multi-scattering approach match well with actual measured 

IPL data and are attained com putationally fast; how ever, the algorithm  is lim ited to high  

frequencies (greater than 1 GHz) and involves modeling the complex interior of the 

aircraft, including the dielectric properties of interior apertures (i.e. seats).
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3.1.2 Method of Moments

The MoM is a commonly used full-wave frequency domain approach whereby the 

RF currents are found everywhere on a metal structure due to a specified source. Figure 

53 shows an example of current calculation along a selected direction on a simulated 

sphere [57]. Notice that the currents converge to almost 0 near the pole of the sphere. 

Assuming that the E-field is coming out of the converging pole of the sphere, there is no 

component normal to the surface: i.e., there exists no charge along this meridian. 

Therefore, there would be zero current running tangentially along the zero charge 

meridian, having time invariant vanishing electric field.

/
Figure 53. Schematic of Current Calculation Using Method of Moments.

The purpose of this example is to show that MoM is very useful for applications 

with long wires or appreciable distances to the observation point; however, MoM is not 

appropriate for problems involving leakage through apertures, since the currents are 

assumed to be constant closer to sharply curved surfaces [58]. Therefore, in the case of 

indoor to outdoor propagation, the MoM technique will not be able to transition smoothly 

from inside to outside through window apertures. However, MoM can be an excellent 

technique to be used for outdoor coupling on a smooth metal fuselage.

Devereux, et al., used an example of a reduced size aircraft model (shown in 

Figure 54) to determine the RF pathloss between windows in the passenger compartment 

and the various VHF and UHV receive antennas on the outside of an aircraft. In their 

design, the windows were considered to be the source of the RF energy, so the model’s 

domain was only on the outside of the aircraft [47].
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A MoM model of the aircraft cylinder was created using a wire mesh frame 

(depicted in Figure 56) containing over 4000 wire segments. The MoM simulations 

were performed on both a personal computer (PC) and a Silicon Graphics Inc. (SGI) 

Onyx Workstation [47]. Due to limited memory of the PC; however, only a 2000 

segment, 1/3 section of the cylinder with windows, shown in Figure 56, was used to 

compare results to the full model operating on the Onyx. Devereuxm, et al., reported low 

similarity between the full versus sectional modeled results from PC and Onyx. 

Furthermore, the full MoM model simulated using Onyx took an excessive time to run; 

therefore, causing the designers to look toward using FDTD for more promising results.

Antenna
Locations Antenna

Locations

Windows

Wire Grid 
Mesh

Windows

Aircraft
Cylinder

Figure 55. Wire Mesh Representation for
Figure 54. Reduced Aircraft Model. Method of Moments.

Wire Grid 
Mesh

Windows

Vertical Polarized 
Source in Window

Figure 56. Reduced Wire Mesh Representation for Method of Moments.

3.1.3 The Finite-Difference Time Domain Method

The FDTD approach has become very popular over the last few years for EMI 

and EMC applications. FDTD is a full-wave, volume-based approach where the volume
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of space containing the problem is partitioned into small cubes, and the Maxwell’s 

equations are solved directly using a central difference scheme. The electric and 

magnetic fields are solved directly using a leap frog approach, where the field 

components are offset in time and space to ensure greater accuracy in approximating their 

derivatives. FDTD is a time domain method, so by using a fast Fourier transform on the 

FDTD results, a wide range of frequencies can be solved with one FDTD simulation [48, 

50, 59, 60],

Devereux et al. used the FDTD model to predict normalized coupling values on 

the aircraft’s modeled cylinder previously presented in Figure 54. The FDTD 

computational domain was broken into 10 cm cubed cells, providing accurate results at 

frequencies up to 300 MHz. Figure 57 shows the results for VHF in vertical polarization 

(with the antenna placed on top of window #7). Figure 58 shows the results for VHF in 

horizontal polarization. The several trials in both figures refer to the various frequencies 

in the frequency band of VHF (1 1 6 -1 3 8  MHz) [50].

The model predicts the greatest coupling directly beneath the mounted antenna in 

vertical polarization, while the coupling is lowest in horizontal polarization underneath 

the installed system. The advantage of this technique is the obvious ability to effectively 

predict the pathloss values in a scaled aircraft; however, the disadvantage is the limitation 

of the model to low frequencies. If the modeled frequencies are increased to be greater 

than 300 MHz, this would increase the computational time extensively. Furthermore, an 

extension of the cylindrical fuselage to include nose and tail of the aircraft, to analyze 

nose-mounted and tail-mounted systems, will further increase the computational time 

perhaps even reducing the ability to effectively compute coupling values for frequencies 

up to 300 MHz.
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Figure 57. VHF Prediction in Vertical Polarization using FDTD [53].
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Figure 58. VHF Prediction in Horizontal Polarization using FDTD [53].

Georgakopoulos et al. extended the applicability of using FDTD on higher 

frequencies by creating cell sizes of 2.5 mm in a rectangular mock-up model of the 

aircraft, shown in Figure 59. With the selected cell size, they expected the FDTD 

simulations to provide accurate results up to 9 GHz. This simulation, however, yields a 

very large computational domain of 620 x 80 x 96 cells and required 114 MB just for 

electric and magnetic field computations [48]. Therefore, simulating this problem 

requires a very large amount of computational resources, memory as well as time.
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Especially the memory issue is more restrictive since if the required memory is not 

available, then the simulation can not be performed.

The results of the FDTD model matched measured results closely for up to 5 

GHz. Georgakopoulos et al. further extended their model to a hybrid FDTD model, 

where they used different grid sizes in selected parts of the simulated fuselage [48]. The 

new results were similar in accuracy as the original FDTD model; however, the hybrid 

technique utilized lesser computational memory (48 MB instead of 114 MB in the 

original model). It is important to note that in order to attain the full IPL pattern 

throughout the entire simulated aircraft, the FDTD simulations need to be performed at 

each window location. Therefore, the computational time is to be multiplied by the 

number of windows.

Figure 59. Rectangular Aircraft Model.

Modeling results by Georgakopoulos et al. and Devereux et al. show successful 

IPL predictions on a down-scaled version of an aircraft. Although the predictions are 

accurate, the computation time and resources requirement for the simulations is 

extensive. Therefore, FDTD will not be considered for modeling purposes in this 

dissertation.

3.1.4 Fuzzy Logic
Modeling of IPL patterns onboard B737 using fuzzy logic has been accomplished 

in the Master’s thesis [23]. The idea of fuzzy logic was applicable for this application 

due to the presence of patterns in the pathloss data due to the location of the antenna, 

aircraft doors and emergency exits. These patterns are summarized for each system in
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Chapter 2. Three rules were created using these patterns: in particular, coupling values 

were expected to increase

a. as the distance from antenna decreases,

b. as the distance from aircraft’s main exit and emergency exit decreases,

c. as the distance from the windows decreases [This is because the IPL pattern is 

predicted for the entire aircraft, instead of just window locations] [43],

The modeling results seemed very comparable to the actual measured results as depicted 

in Figure 60 (top and bottom, respectively).

10 12 1A  16 18 20 22 2-4 26 28 30

I
74 o S  1 0  1 2  1 A  1 6  1 8  2 0  2 2  2 4  2 6  2 8  3 0

Figure 60. IPL Pattern Prediction (top) for VHF-L using Fuzzy Logic.

Compared to numerical techniques, fuzzy logic was computationally very 

efficient, providing results within seconds after inputting the location of aircraft doors, 

windows and antenna. The results were also very comparable to actual data after 

defuzzification (not shown in the figure) in both low to high frequencies (VHF to TCAS). 

However, the model assumed a rectangular fuselage, similar to the work by 

Georgakopoulos et al. [48]; therefore eliminating the capability of modeling systems 

mounted on the nose or tail of the aircraft. Fuzzy logic will be extended in this work to 

include rules for systems mounted on the nose and tail of all aircraft.
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3.1.5 Neural Networks

Recent work by Jafri et al. include EPL predictions on B757, A319 and A320 

using feed forward neural networks [27, 28]. Figure 61 shows a sample predicted output 

for A320’s VHF-L. The green lines represent the training data patterns using by neural 

networks for training. The solid red lines represent the actual IPL data to be predicted by 

the NN, while the dashed red line represents the IPL patterns predicted by NN. In the 

case for VHF-L, the predicted IPL pattern followed actual data accurately; however, the 

prediction was not as comparable for other systems (i.e. DME, LOC etc.).
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Figure 61. IPL Pattern Prediction for VHF-L using Neural Networks.

NNs are another faster alternative to other numerical techniques such as MoM and 

FDTD. While they take longer time to simulate (due to training) than fuzzy logic, a 

typical training and prediction session takes around 5 minutes to complete on a standard 

PC. Similar to fuzzy logic, NNs have been able to model aircraft systems in all 

frequencies (from low to high), instead of being limited to some frequency range. For the 

particular application of IPL prediction, modeling results were obtained relative to actual 

IPL values in dB for the first time, compared to the normalized values obtained in 

previously mentioned techniques. Due to all these advantages, NNs will be studied again 

in this work; however, further enhancements to the NN structure will be considered to 

improve the modeling on other systems.
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3.2 Selected Model’s Design Detail

Due to the success of previous modeling using fuzzy logic and neural networks, 

these approaches will be enhanced and used together for a more effective modeling of 

IPL data on aircraft. Previous results from fuzzy logic validated well with measured data; 

however, the overall pattern lacked the non-linear effects found in the overall IPL 

patterns. Similarly, the results from neural networks also validated well with actual IPL 

data, in terms of an overall mean and standard deviation; but, the neural networks 

incorporated the non-linear relationships more than the simple linear ones for the 

locations of doors and antenna. Both models are computationally efficient; therefore, a 

modulated architecture was utilized to incorporate linear and expert knowledge in the 

model using the fuzzy logic module, while incorporate the non-linear, unobservable 

knowledge in the model using feed forward neural networks. The model should satisfy 

the following objectives:

1. Model should be efficient, user-friendly, and require minimal inputs.

2. Model should utilize expert knowledge gained from analysis of IPL patterns.

3. The output IPL pattern predictions should match well with the measured IPL data 

in both low and high frequencies.

4. The output IPL pattern predictions should be scaled appropriately (in dB), and not 

normalized.

5. Model should be computationally efficient.

The following sections go over the proposed architecture and details of the new Neuro- 

Fuzzy model (NFM).

3.2.1 Input Data Selection

An important step in modeling is to select appropriate inputs. As desired by the 

first objective of this model, minimal input should be used to produce an effective IPL 

pattern for the selected aircraft system of concern. Therefore, only the data most readily 

available for most aircraft was selected as the inputs o f the model. These inputs included:

1. Aircraft’s Length: The length, width and height of the aircraft are obtainable 

through most manufacturer websites. Figure 62, Figure 63, Figure 64, and Figure 

65 include the basic schematics for B737, B757, A319 and A320 respectively. 

Using these schematics, the length was measured in centimeters for accuracy
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purposes and used as the first input to the NFM. Width and height of the aircraft 

were not considered in the model due to the similarity of these values among the 

four aircraft of concern. These characteristics may be added in future work to 

increase prediction effectiveness on smaller or larger aircraft types. Also, unlike 

previous models, the length characteristics of the aircraft were acquired using a 

1:1 scale.

2. Number of windows: Inputting the proper number of windows was needed for 

final IPL predictions. The number of windows varied among all four aircraft; 

therefore, this characteristic was needed for proper IPL pattern alignment on the 

x-axis of IPL plots. The number of windows were also used for indexing 

purposes for reading in actual IPL data for training purposes.

3. Number of Major exits: As observed in the plotted IPL patterns, the number and 

locations of doors had significant effect on the coupling levels. This number of 

major exits only referred to exits on the port side of the aircraft, and did not take 

into account the exits located on the starboard side. Among the four aircraft of 

concern in this application, only B757 had 3 major exits, while B737, A319 and 

A320 had 2 exits each on the port sides.

4. Location of Exit 1: Using the CAD schematics provided in Figure 62, Figure 63, 

Figure 64 and Figure 65, the locations of the first exit were determined using 

careful approximations. The actual values of the exits may also be obtained from 

the manufacturers; however, they are not specified in the CAD drawings available 

for public use. The first exit corresponded to the exit closest to the nose or cockpit 

of the aircraft.

5. Location of Exit 2: Similar to the previous input, the location of the second exit is 

also specified by making careful measurement approximations.

6. Location of Exit 3: B757 has three main exits, while B737, A319 and A320 all 

have on ly  tw o exits on the port sides. Therefore, based on the value of input 

number 3, the last exit was carefully approximated if a third major exit was 

present in the aircraft of concern. The last exit corresponded to the exit closest to 

the tail of the aircraft. For the aircraft with no third exit, the value of the second
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exit was duplicated in this entry to have consistent number of inputs for the fuzzy 

logic.

7. Number of Emergency Exits: The IPL values were not only getting influenced by 

the location of the main exits, but from the emergency exits as well. Therefore, 

this entry determined the number of emergency exits in the aircraft of concern. 

For example, B737 and A319 have one emergency exit, while B757 and A320 

have two emergency exits each on the port sides.

8. Location of Emergency Exit 1: The location of emergency exit 1 was determined 

through approximation from the schematics in Figure 62, Figure 63. Figure 64 

and Figure 65 again.

9. Location of Emergency Exit 2: If a second exit existed (for the cases of B757 and 

A320), this value was calculated using the CAD schematics. However, for 

systems with one emergency exit, the value of the first emergency exit was 

duplicated for this entry for input consistency purposes.

10. Location of Antenna System fx-direction): The location of the antenna played a 

very significant role in determining the trends in the IPL patterns. Although the 

locations of antenna are not specified in the CAD schematics, this information 

was acquired during real-time testing. For example, for B737, it was determined 

that VHF-L was located on top of window 16 etc. Therefore, for this entry, the 

locations of the antenna systems were determined by approximating the distance 

on the closest relative window to the antenna (either below or above the antenna). 

For nose and tail mounted systems, the distances were approximated through the 

CAD schematics. This particular entry included measurement of the antenna 

system with respect to the nose of the aircraft in the x-direction (i.e. horizontal 

distance from nose toward tail).

11. Location of Antenna System (v-direction): Some antennas are mounted on top of 

the fuselage, w h ile  others are m ounted on the bottom. Therefore, this entry 

determined the location of the antenna systems in the y-axis, or vertical direction. 

The centerline (y=0) was determined to be the centerline of the fuselage. 

Therefore, if the radius of an aircraft was 200 cm, then systems along the fuselage 

may be mounted on +200 cm, or -200 cm, for top or bottom mounts, respectively.
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For nose and tail mounted system, these values were calculated to be different 

than just the radius of the aircraft.

12. Start Frequency of Antenna System: In the IPL plots, it was observed that systems 

with high operating frequencies (such as TCAS, DME, ATC) did not vary much 

in pathloss values from the front to the rear of the aircraft, while systems like 

VHF appeared to show much more dependence on their mounting location. 

Although clear conclusions could not be made due to the high variation in some 

datasets, the operating frequencies were considered to be important inputs for 

determining pathloss. Therefore, this entry included the start frequency used to 

perform the IPL measurements. This entry was not solely the operating frequency 

(as some systems operate on a single frequency, such as TCAS (1090 MHz)), but 

instead, it was the start frequency of the sweep preformed during testing. For 

example, the frequency sweep for TCAS was 1080 to 1100 MHz; therefore, 

making this entry 1080 MHz as the start frequency for TCAS.

13. Stop Frequency of Antenna System: The stop frequency for all systems was 

assigned to this entry.

14. Dominant Polarization of Antenna System: Antenna polarization has a large 

effect on the pathloss pattern. Therefore, polarization was depicted in this entry 

using Boolean logic. For example, this entry was 0 for systems with horizontal 

polarizations, and 1 for systems with vertical polarizations. Since GPS was not 

considered in this modeling, circular polarization assignment was not of concern, 

although another value (such as 0.5) can easily represent circular polarization 

type.
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Figure 62. Auto-CAD Drawings of B737 [61].
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Figure 63. Auto-CAD Drawings of B757 [62].
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Figure 64. Auto-CAD Drawings of A319 [63]
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Figure 65. Auto-CAD Drawings of A320 [64],
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3.2.2 Neuro Fuzzy Model: System Architecture

Neural networks and fuzzy logic have been applied individually to predict IPL 

data in previous work [23, 27, 28, 43]. Although the results were promising, the two 

stand-alone models had weaknesses. In the fuzzy model, although the linear relationships 

such as pathloss influence from the locations of doors and antenna locations were 

incorporated - the non-linear relationships, such as random noise and unknown structural 

influences, were not included. Although the final predicted IPL patterns showed the 

increasing trends, and the peaks and valleys in the pathloss values nevertheless they did 

not match the real-world IPL data closely when more noise and other unknown external 

factors were included. Similarly, the neural networks as a stand alone model predicted the 

IPL pattern well for many systems; however, for the outputs that were inaccurate, there 

was very little user-control to make the model better.

The overall system architecture for the newly proposed Neuro-Fuzzy Model 

(NFM) is depicted in Figure 66. Neural Networks and Fuzzy logic were combined to 

input expert, or linear, knowledge as well as un-known, or non-linear, characteristics into 

the IPL pattern prediction. The expert knowledge was incorporated into the first module 

of the model using fuzzy logic and smaller neural networks. The second module 

incorporated the unknown non-linear patterns into the IPL pattern using the outputs from 

the linear model as well as training from real IPL data using neural networks. The 

following sections include details of the two modules.

3.2.3 Neuro-Fuzzy Models’ Linear IPL Predictions

Incorporation of linear characteristics in IPL patterns was performed using expert 

knowledge in fuzzy logic. Briefly, a set of rules were created to relate the effect of the 

antenna and exit locations on IPL patterns on various systems of concern. Then the 

aircraft and system characteristics, described in section 3.2.1, were input and applied to 

the set of rules. The output from the rules were then combined and then passed onto the 

defuzzification  m odule, w hich  used a sm all artificial neural network to first determine the 

minimum and maximum IPL value for the system of concern, then defuzzified the fuzzy 

IPLvalues into crisp values using the predicted minimum and maximum values. The crisp 

IPL values for the aircraft and system of concern were then reduced to be sent over to the 

Neural networks for non-linear characteristics’ incorporation. The flowchart in Figure 67
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outlines this algorithm while the following subsections go into the detail of each process 

in the flowchart.

E xpert K now ledge . Start

Aircraft/Antenna
Characteristics

I Aircraft/ Antenna 
i Knowledge

Defusy IPL

IPL Data 
{Training [tnin. m ax])

Defuzzy IPL
Aircraft/ A n ten n a  14, 

K now ledge Incorporation j 
of Non-Linear i 
Characteristics 1IPL Data 

(Training) Stop 2)Predicted IPL

Neural
Networks

Neural
Networks

Inference/
Composition

Defuzzification

Composition

Fuzzification
(Rules)

Inference

Data Reduction

Fuzzification

Reducer

Defuzzification

Figure 66. Detailed System Architecture for Neuro Fuzzy Model. Figure 67 Flowchart for
Linear Module of NFM.

3.2.3.1 Distance Calculations for Fuzzification

As mentioned earlier, IPL patterns are heavily dependent on the location of the 

doors, windows and aircraft antennas. Therefore, before initiating the modeling process, 

the distance and angle calculations were performed to locate the doors, windows and 

aircraft antenna systems relative to each other. In this module, aircraft characteristics 

(summarized in Table 4) were used as inputs to calculate distances and angles of each 

aircraft window to doors and antenna locations. The calculations that needed to be 

performed included: distances from each window to all exits (main and emergency exits), 

distances from all windows to antenna system of concern, angle from all windows to the 

antenna system  o f  concern.
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Table 4. Aircraft Characteristics for B737, B757, A319 and A320.

Aircraft Length (cm) 2954 4697 3383 3750

Number of Windows 33 53 32 40

Number of Exits 2 3 2 2

Exit 1 location 491 580 767 780

Exit 2 location 2333 1400 2810 3050

Exit 3 location 2333 4127 2810 3050

Number of E. Exits 1 2 1 2

Emergency Exit 1 loc. 1250 2036 1604 1002

Emergency Exit 2 loc. 1250 2080 1604 1709

Aircraft system loc. (x) 200 -> 2900 200 4600 200 3383 200 ->3750

Aircraft system loc. (y) 0 ^  812.5 -200.5 ->931.5 -206.8 -> +206.8 -206.8 ->+206.8

Op. freq. (start, MHz) 108 -> 1080 108 -> 1565 108->1565 108->1565

Op. freq. (stop, MHz) 118 -> 1100 118 -> 1585 118->1585 118-> 1585

System’s dominant pol. H (0) or V (1) H (0) or V (1) H (0) or V (1) H (0) or V (1)

The four aircraft of concern vary in length and, therefore, in the number of 

windows. For computational feasibility and speed, it was convenient to make uniform or 

identical. Instead of discarding data from larger aircraft to equate number of windows to 

smaller aircraft, data padding was utilized. B757 had the most number of windows (53). 

Therefore, all other aircraft were padded to equate to 53 windows each. Padding was 

performed by concatenation of the IPL value at the last window, 53-n times, where n 

equals the number of windows for the aircraft of concern. For example, A320 has 40 

windows, so the IPL value at window number 40 was concatenated 13 times (53-40) for 

imaginary window numbers 41 to 53.

Before proceeding with any calculations, the location of each window needed to 

be determined in centimeters (cm). The locations of windows were determined by fitting 

the “number of windows” between the first and last exit locations for the aircraft of 

concern. In B737, for example, 33 windows needed to fit between exit 1 and exit 2, 

which were at 491 cm and 2333 cm, respectively.
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w in_ gap
(list _ exit3 -  dist _ exilx

(1)num. win +1

dist _ win(i ) = dist _ exitx + z; x win _ gap (2)

In equation (1), win_gap represented the gap between the windows, dist_exitn is the 

distance from the measurement position to exit n and num_win is the total number of 

windows in the aircraft of concern. In equation (2), dist_win is the distance in centimeter 

for each window relative to the front of the aircraft, i represents the window number and 

loops from window number 1 to the total number of windows, num_win.

The window gaps for the “imaginary” padded windows were determined by using 

the last window location of B757 and the last exit on the aircraft of concern. The 

calculation of distance from windows to exit locations required a linear subtraction 

between the locations of each window and exit of interest. For example, the distance from 

the mth window to the nth exit (dist_win2exitm:„) could be calculated as follows:

dist _ win2exitm n - 1dist _ winm -  dist _ exitn | (3)

Next, distance from windows to antenna locations needed to be calculated. 

Previous modeling techniques [48, 50] have used rectangular fuselage shapes for easier 

computations; however a more precise circular fuselage was used in this modeling 

scheme. Electromagnetic waves creep along the surface of a metallic fuselage, therefore, 

following a circular/elliptical path toward the antenna system of concern [65]. The most 

computationally effective method to calculate the distance for the wave to creep from the 

window to the antenna of interest was to use the perimeter of an ellipse. A cylindrical 

fuselage, when traced at an angle, forms a cylinder. A better description is included in 

Figure 68.

f f i o o 0 0 0 0 0 0 0 0  0

J
Figure 68. Distance Calculations from Window to Antenna, Fuselage Mounted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

To calculate the distance from a window to an antenna on top or bottom of the 

fuselage, the perimeter of the ellipse (magenta) needs to be calculated for a quarter path 

(green arrow). The minor axis (shown to be shorter, going into the page) represents the 

radius of the aircraft and cuts through the window at which the distance needs to be 

calculated, while the major axis (shown to be longer, from the center of the cabin to the 

antenna) increases or decreases based on the angle between the window and antenna. A 

quarter of the perimeter (in green) was calculated using the Ramanujan I perimeter 

formula of an ellipse [66]:

Here D  represents the calculated distance from the aircraft antenna to test window; while 

a and b are major and minor axis (respectively) of the ellipse. The angle, /? in Figure 68 

will be discussed later. For the systems installed on the top or bottom of the cylindrical 

fuselage (i.e. not in nose or tail), the minor axis, b, is simply the radius of the aircraft. The 

major axis, a, on the other hand needs to be calculated at every window location. Looking 

at Figure 68 again, the major axis, a, is approximately the hypotenuse of aircraft’s radius 

and the distance between the test window and the window underneath the antenna 

location. Therefore, a can be calculated as follows, where wintest is the location of test 

window with respect to the x-axis, in cm, and winantenna is the location of the window 

underneath the location of the antenna.

The calculation of distance between window and antenna is relatively easier and 

more accurate for systems mounted on the cylindrical fuselage; however, for systems 

mounted on nose or tail of the aircraft, more approximate methods need to be used. 

Figure 69 shows calculation of distance from a window location to antenna mounted in 

the nose. Again, the distance, D, will be calculated using a quarter of the perimeter of the 

ellipse. Due to a limited 2-dimensional drawing, it is more difficult to visualize an 

elliptical fitting on the aircraft for a nose-mounted system. Although the ellipse is shown 

to be slightly at a positive angle, in reality, it should be parallel to the horizon. Due to 

cargo bays at the bottom of the fuselage, the windows in the aircraft are not exactly in the 

center of the fuselage; however, the details of exact window locations relative to the y-

(4)

a - *Jr2 + (wintest — winantenna ) (5)
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axis were not know in time. If the windows were modeled to be slightly higher than the 

center of the fuselage, then the slight positive tilt in the ellipse would be accurate.

0 0 0 D Q 0 Q 0 0 0 0 Q 0 0

Figure 69. Distance Calculations from Window to Antenna, Nose Mounted.

In the simple assumption of windows being in the center of the fuselage, the minor axis, 

b, of the ellipse will again be the radius of the aircraft. The major axis, a, will be the 

distance from the nose of the aircraft to the tested window:

a = \wintest-w in amenna | (6)

The calculation of distance using an ellipse for nose-mounted systems will produce 

approximately accurate results for windows closer to the nose of the aircraft; however, 

for the windows in the rear, the major axis of the ellipse will need to be elongated while 

the minor axis (radius of the aircraft) will remain the same. The elongated ellipse will 

not trace the nose of the aircraft as well as a wider ellipse and will therefore, introduce 

errors. These errors for the rear windows are not of a concern for this application since 

the pathloss patterns for nose mounted systems only affect the windows closest to the 

first exit of the aircraft, and not those near the rear.

Lastly, Figure 70 shows the needed calculations to attain distance from a window 

to an aircraft system mounted on the tail of the aircraft. In the CAD drawings of B737, 

B757, A319 and A320, it can be observed that the last exit door of the aircraft is almost 

always under the beginning of the tail slope (as depicted in Figure 62). Therefore, the 

distance from a test window to the tip of the tail is the summation of Di and D2. D/ is 

calculated using the same methodology of how distance from test window to antennas 

mounted on the top or bottom of the fuselage is attained. This time; however, a
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“temporary” antenna is placed on top of the last exit of the aircraft. Therefore, b is still 

the radius of the aircraft while, the major axis, a, is now:

D2 is the hypotenuse of the tail, calculated by taking the square root of the sum of tail’s 

height and the distance between the antenna location and the last exit. Recall that 

system’s height, or the y-axis measurements, reported in Table 4 assume that the axis 

(y=0) is at the centerline of the fuselage. Therefore, the height reported for systems 

mounted on the tail not only includes actual height of the tail, but also includes radius of 

the aircraft (centerline, y=0, to top of the fuselage). So D2 can be calculated as follows:

D2 — yj{antennax — winexih )2 + (r -  antennay )2 (9)

In equation 9, antennax is the location of the antenna along of the fuselage in the x 

direction (in cm), while antennay is the location of the antenna in the y-axis (in cm) 

relative to the nose of the aircraft. Finally, the distance from test window to the antenna 

is the summation of D/ and D2.

(7)

Therefore, Dj is:

(8)

Figure 70. Distance Calculations from Window to Antenna, Tail Mounted.
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After calculating the distances, the last calculations of concern are the angles 

between the aircraft systems and the test window. These angles will be used to make 

predictions on the effect of polarization on pathloss values. For example, pathloss is 

lowest for vertically polarized systems immediately below the installed system (small 

angle); while systems with horizontal polarizations couple better at larger distances. 

Please observe the P ’s pointed out in Figure 68, Figure 69 and Figure 70. The P in Figure 

68 and Figure 70 are calculated using same technique; therefore, only two P ’s, instead of 

three, will be calculated: one for systems mounted on the nose, while the other for 

systems mounted on either the fuselage, or the tail of the aircraft.

For systems mounted on the fuselage or tail of the system, P can be calculated as 

follows using simple trigonometry:

P  = tan 1n wintest-w in antenS (10)

For systems mounted on the nose of the aircraft, P can be calculated as follows:
/  \

P  -  tan -i
Vi w in ^ - w in antenna \ J

( 11)

Using the distances and angles calculated for all windows, relative to all systems, the next 

step is to create and then apply the fuzzy rules.

3.2.3.2 Fuzzification: Generation of Rules

After observing the pathloss patterns presented in chapter 2, three main rules 

could be devised for Fuzzification. The first rule relates pathloss patterns from windows 

relative to the distance of the test window to the aircraft exits. The second rule applies 

expert knowledge from observing patterns due to the location of the aircraft antenna 

relative to the test window. The final rule takes into account the polarization of the tested 

system and how it affects the pathloss patterns. Before going over the rules, it is 

important to understand the difference between “pathloss” and “coupling” and how these 

two wordings are related. Coupling is simply the inverse of pathloss; it is obtained by a 

simple negation of pathloss values. For example, if a pathloss value is 65 dB, the relative 

coupling value will be -65 dB. A low pathloss value means that the loss of power 

between transmitting and receiving station was low (i.e. amount of power radiated was 

close to the amount of power received). A high pathloss on the other hand, implies high
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loss of power between radiating and receiving stations (i.e. amount of power radiated was 

much more than the power actually received). The concept of coupling is simply the 

inverse, where a low coupling means more power loss, while a high coupling means less 

power loss between the transmitting and receiving stations.

The fuzzy rules were created using coupling values, instead of pathloss, because 

during composition, only the use of coupling values show the needed additive effect. For 

example, if we were to use pathloss, instead of coupling, a system located close to the 

first exit of the aircraft would show low (0) pathloss near the front of the aircraft, and 

high (1) pathloss near the end. This same system would show low (0) pathloss near the 

antenna location (closest to first exit), and high (1) pathloss as the distance increases. 

Just using these two rules, composition, or linear addition, of them will produce low 

(0+0) pathloss for the front of the aircraft and a high (1+1) pathloss for the rear of the 

aircraft. The value of 0 is not as descriptive, in fact, it does not even ensure that pathloss 

was low in that region due to two rules, instead of one. Therefore, fuzzy rules were made 

using the concept of coupling. For the same example, coupling would be high (1) in the 

front of the aircraft (due to the distance from exit and antenna), and low (0) in the rear of 

the aircraft. The summation of rules for composition will now yield very high (1+1) 

coupling for the front of the aircraft and low (0) coupling for the rear.

The first rule encapsulated the effect on coupling based on the location of aircraft 

exits relative to the test window. As observed in the pathloss patterns in chapter 2, both 

the emergency exits, and the major aircraft exits played an important role in pattern 

prediction. Two separate rules were generated for main exits and emergency exits. Main 

aircraft exits were found to be leaking (high coupling) and the trend would taper off 

slowly. Emergency exits were found to be leaky at precisely their locations, with a sharp 

decreasing trend in coupling as the distance from the emergency exit was increased. 

Figure 71 and Figure 72 show the rules for main and emergency exits, respectively. X- 

axis show s the distance in cm , w h ile  the y-axis show s fuzzified  coupling values from  0 to 

1, where 1 is high coupling and 0 is low coupling. The distances were determined by 

first calculating the gaps between the windows, and then applying the fact that for main 

doors, the highest coupling was found around 2 window locations near the exit, and the 

coupling tapered down to zero as the distance increased to 5 windows. For emergency
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exits, high coupling values were noticed at the emergency exit and around the first 

surrounding windows (left and right direction). These coupling levels dropped to zero 

after about 3 windows.

These rules were generated using MATLAB’s Z-shaped built-in membership 

function (zmf), with the following properties:

x < a

Here, a and b are distance values mentioned in reference to the number of windows.

The second rule takes into account the effect of coupling based on the location of 

the antenna system of concern. This rule needed to be split into three sub-rules for 

systems mounted on the nose, fuselage, and tail, respectively. Figure 73 shows the fuzzy 

rule created for systems mounted on the nose of the aircraft using MATLAB’s ZMF. The 

coupling leve ls  are high (1) near the first tw o w indow s o f  the aircraft, and the levels  

decrease to zero after four windows. The distance from the nose to the first exit of the 

aircraft is appended to the window locations and is thus taken into consideration. Figure 

74 shows the coupling levels relative to antenna systems mounted on the main cylindrical 

fuselage of the system. For fuselage mounted systems, coupling patterns were observed

500 1000 1500 2000 2500 3000 3500 4000 4500500 1000 1500 2000 2500 3000 3500 4000 4500

Distance (cm)
Distance (cm)

Figure 71. Fuzzy Rule la: Coupling with 

respect to location of Main Exits.

Figure 72. Fuzzy Rule lb: Coupling with 

respect to location of Emergency Exits.

( 12)

0, x >b
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to be high near the first window of the mounting location. The coupling levels are 

observed to taper off to zero after three windows. Rule 2b is also created using 

MATLAB’s ZMF. Finally, Figure 75 shows the coupling levels relative to antennas 

mounted on the tail of the aircraft. The tail mounted systems (all horizontally polarized) 

were interesting because they showed no coupling near the tail of the aircraft, but showed 

more coupling effects near the emergency exits, or the wings of the aircraft. So as seen 

in the rule, low coupling is observed near the location of the antenna, then coupling 

increases from zero at the first window to maximum (1) near 7th to 12th windows, and 

then tapers back down to zero coupling after 16th window. Rule 2c was implemented 

using MATLAB’s Pi-shaped built-in membership function (PIMF), instead of ZMF.
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Figure 73. Fuzzy Rule 2a: Coupling with 

respect to location of Antenna, nose mounted.

Figure 74. Fuzzy Rule 2b: Coupling with respect 

to location of Antenna, fuselage mounted.
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Figure 75. Fuzzy Rule 2c: Coupling with respect to location of Antenna, tail mounted.
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The last fuzzy rule was made with respect to the polarization of the system of 

interest. It was observed that vertical polarized systems tapered off in coupling levels 

quickly, while horizontally polarized systems decreased in coupling more slowly. Figure 

68, Figure 69 and Figure 70 refer to the original schematics where the angle, /?, was not 

previously discussed. For the systems mounted on the nose of the system, with vertical 

polarization (non-existent case), there would be zero coupling throughout the aircraft. 

For the systems mounted on the nose of the aircraft with horizontal polarization (see 

Figure 69), the coupling would be high when the angle, /?, will be maximum, and will 

decrease, when the angle decreases for the rear windows (i.e. major axis of the ellipse 

increases). Therefore, in the rule for nose-mounted horizontally polarized systems (see 

Figure 76), coupling is predicted to be maximum at the angle of 0 radians, and tapers off 

to 0 after n/4 radians. The angles were multiplied by a constant value of 100 due to 

MATLAB limitations; therefore, the x-axis in the rule is between 0 and - 160, instead of 

0 to z  12 or 1.57.

For systems mounted on the fuselage or tail of the aircraft with dominant vertical 

polarization, the coupling was maximal at angle, /? of 0, and decreased to zero coupling 

after an angle of t c /4 radians (see Figure 77). Finally, for the systems mounted on the 

fuselage or tail or the aircraft with dominant horizontal polarization, coupling was 

observed to be the least when then angle, ft, was close to 0 . However, the coupling 

increased as /? increased from t c /4 to n il  (see Figure 78). For a tail mounted system, this 

rule may predict that the coupling is highest at the front of the aircraft (based on highest 

/?), however, the second rule relative to the distance from antenna, will assist in tapering 

the coupling down to zero as the distance from the antenna increased.
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Figure 76. Fuzzy Rule 3a: Coupling with respect Figure 77. Fuzzy Rule 3b: Coupling with respect

to Antenna Polarization, nose mounted, to Antenna Polarization, tail/fuselage mounted,

horizontal. vertical.
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Figure 78. Fuzzy Rule 3c: Coupling with respect to Antenna 

Polarization, tail/fuselage mounted, horizontal.

3.2.3.3 Inference: Application of Rules on Calculations

The fuzzy rules, created in the previous section, need to be developed only once. 

Then the process of inference is used to send the calculated distances (from section 

3.2.3.1) into the fuzzy rules. Fuzzified IPL values are assigned based on the distance or 

angle of the input. For example, Figure 79 shows how inference takes place on fuzzy 

rule 3, which predicts coupling values based on the angle of the antenna, mounted on the 

fuselage or tail in horizontal polarization). If the angle is 1.2 radians (or 120, when 

multiplied by a factor of 100), then the coupling value is determined to be 0.5. If the
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angle is 1.4 radians, then the coupling value is about 0.87 etc. Using this technique, the 

fuzzified coupling values are determined for all distances and angles calculated in the 

previous sections.

Rule3: Coupling wrt Angle with Antenna (fuselage/tail horizontal)

0.9

0.7

0.3

0.2

0 20 40 60 80 100 120 140 160
Angle (rad*100)

Figure 79. Demonstration of Fuzzy Inference.

3.2.3.4 Composition: Summation of Fuzzified Outputs

Composition is a simple step in fuzzy logic in which the fuzzified outputs from 

inference for each rule are added linearly. This linear addition incorporates the effects of 

all rules into a final fuzzy coupling pattern. In this step, the fuzzified coupling levels are 

then inverted for pathloss representation (for easier comparison with the measured IPL 

data presented in Chapter 2). Pathloss representation will be used in the remaining 

procedure for pathloss prediction.

3.2.3.5 Defuzzification: Conversion from Fuzzified to Crisp Outputs

During defuzzification, the fuzzified IPL values (ranging between 0 and 4) are 

traced to actual (crisp) IPL values (ranging between 45 dB to 90 dB). In previous work 

[23], defuzzification was performed using linear mapping of the same minimum and 

maximum values for all systems. This caused a limitation of the model because as 

observed in the real data, every system has a particular range of minimum and maximum 

IPL value and cannot be mapped to any static minimum and maximum values.
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Therefore, in the newly proposed NFM, a small neural network was utilized to learn the 

minimum and maximum IPL values from training data to be used for defuzzification.

MATLAB’s Neural Network library was utilized to implement the neural network 

structure [67]. A three node input layer, a five node hidden layer and a two node output 

layer was created using the feed forward algorithm (see Appendix C for more technical 

details on Neural networks). Figure 80 shows the basic neural network structure used to 

predict the minimum and maximum IPL values for the system of interest. Log-sigmoid 

transfer functions were used in both hidden and output layer to capture the non-linear 

characteristics of the IPL data. Tan-sigmoid was not used because the input data (aircraft 

length, start and stop frequencies) being sent through the neural networks is always 

positive. The output minimum and maximum pathloss values are also positive.

Aircraft Lengtfr

IHZf
[ £  h-(~7] ► Maximum IPL

Minimum IPL

Start Frequency

Stop Frequency-

Input Hidden Output
Layer Layer Layer

Figure 80. NN for prediction of Minimum and Maximum IPL values.

In the beginning of the simulation, measured IPL data was divided into training 

and test data. In real world simulation, there will only be training data, and no test data to 

compare predictions with. For each aircrafts’ particular system, three characteristics of 

the training data were sent through the input layer. Without any previous training or 

knowledge of the data, neural network predicted random minimum and maximum IPL 

values. These predicted IPL values were then compared to actual minimum and 

maximum IPL values in the training data and back propagation was used to update the 

weight matrix in each layer of the neural network. Then the remaining sets of training 

data was sent through the neural networks, with the weights being updated at every 

iteration of learning.

After all training data was passed through; the aircraft characteristics for the 

system to be tested were passed through. Using the trained weights, the neural networks
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predicted the minimum and maximum IPL values for the test system. The predicted IPL 

values were used to determine the slope and intercept values for a linear transfer 

equation. This transfer function was used to defuzzy the fuzzy IPL values from section 

3.2.3.3 into crisp IPL values in dB.

3.2.3.6 Data Reduction

One major objective of this new modeling algorithm was to obtain a 

computationally efficient design. The output of the defuzzification module yielded in 

arrays of 53 IPL values for every system of all four aircraft. Although all 53 values could 

be sent to the next module, neural networks, for incorporation of non-linear patterns, 

however, for efficiency purposes, only every 5th value was sent to the next module. The 

number 5 was selected because most exits fell around this number, i.e. emergency exit at 

window 16 for B737 etc. (please see results in next chapter for more detail). Therefore, 

every 5th window of all aircraft contained some useful information of the IPL pattern.

3.2.4 Neuro-Fuzzy Model’s Non-linear IPL predictions

Defuzzified data from every 5th window, along with the original 14 aircraft and 

antenna characteristics were available to determine the non-linear patterns in IPL 

prediction. Every 5th window in a 53 window airplane (padded) yielded 11 IPL 

measurements. So in total, 11 and 14, or 25 inputs were available to determine the IPL 

pattern on a needed aircraft’s selected system. A neural network with 25 nodes in the 

input layer, 30 nodes in the hidden layer and 26 nodes in the output layer was proposed. 

Tan-sigmoid transfer functions were used between the hidden and output layer to 

incorporate the non-linear characteristics in the data. Unlike log-sigmoid function, tan- 

sigmoid function takes both positive and negative values into consideration when 

learning. The 25 inputs from all training data were first passed through the neural 

networks to update the weights. Then the 25 inputs for the test data were sent in and the 

predicted IPL pattern was acquired.
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CHAPTER 4 

RESULTS AND EVALUATION OF NFIS EMI MODEL

The modulated NFM was successfully implemented using MATLAB [67]. The 

collected IPL data was first tabulated in EXCEL and calibrated using the measured 

correction factors. Aircraft systems to be modeled were selected as testing data, while 

other data was used as training data. The selected data was sent through the linear and 

non-linear sections of NFM. The mean of predicted outputs for the selected systems 

deviated from true output by 1 dB and 3 dB, respectively. Although further 

improvements are suggested, the model was successful in achieving the most accurate 

IPL predictions relative to real-world data in a timely efficient manner. Detailed results 

are included in the following sections.

4.1 IPL Data Collection

Extensive IPL data was collected onboard B737, B757, A319 and A320 in 2002, 

2004, 2005 and 2005, respectively. This data was measured under cooperative agreement 

between NASA Langley Research Center, Eagles Wings Inc., Delta Airlines and United 

Airlines. All measurements were obtained on in-service aircraft, made available for a 

few hours due to minor maintenance reasons. Data was successfully collected on GS, 

TCAS, VHF and LOC-L for B737; GS, LOC, TCAS-U, TCAS-L, ATC-U, ATC-L, 

DME-L, MB, DME-R, GPS-L, VHF-R, VHF-L, VHF-C and VOR for B757; GS, LOC< 

DME-L, VHF-L, ATC-B, ATC-T, VHF-R and VHF-C for A319; and GS, LOC, DME-L, 

VHF-L, ATC-T, ATC-B, GPS and VHF-C for A320. This data is available for further 

studies in Appendix D. To perform an IPL measurement, the team measured the RF 

power loss between the calibrated signal source and a spectrum analyzer, via the entire 

length of test cables plus the aircraft cable, plus the free space loss between the reference 

antenna and the aircraft antenna. To obtain a calibrated IPL measurement, test cable 

losses were measured separately by connecting the two ends of the test cables to the input 

and output of the spectrum analyzer, and subtracting this loss, in dB, from the raw 

measurement. These calibration factors are also included in the Appendix and must be 

used with the tabulated raw data for final IPL measurements.
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4.2 Training Data Selection

Although all collected IPL data was used to train the NFM, only two systems 

from an aircraft were selected as test sets to be modeled. Previous work [50, 56] showed 

limitations in modeling systems from both low and high frequencies. Therefore, a system 

was selected from the low and high end of the frequency spectrum to prove NFM’s 

ability to predict pathloss for a full frequency spectrum of concern. Table 5 shows the 

availability of measured data for each system on the four aircraft along with their 

operating frequencies. The data available on each aircraft is marked with (0).

Table 5. Available IPL Data.

MB 75
LOC-L 108.1-111.95 0 0 0 0
VOR 108-117 .95 0
VHF-L 1 1 8 -1 3 7 0 0 0 0
VHF-R 1 1 8 -1 3 7 0 0
VHF-C 1 1 8 -1 3 7 0 0 0
GS 3 2 8 .6 -335 .4 0 0 0 0
DME-L 9 6 2 -1 2 1 3 0 0 0
DME-R 9 6 2 -1 2 1 3 0
ATC-T/U 1030 0 0 0
ATC-B/L 1030 0 0 0
TCAS-U 1090 0 0
TCAS-L 1090 0
GPS 1575+2 0 0

It was desired to model the system with the greatest amount of pathloss data 

available on all aircraft. Only LOC-L, VHF-L and GS were measured on all four aircraft 

types. All three of these systems operate at low frequency. Out of the three, VHF-L was 

selected as the test system for comparability purposes with other models. No data was 

available on all four aircraft for systems operating at high frequency. The possible 

system options, where the data was at least collected on three out of four aircraft, were 

DME-L and ATC-T/U or ATC-B/L. DME-L was selected instead of ATC because its 

stop frequency is slightly higher than ATC’s operating frequency. Also, the location of 

DME in B757 is different than that in A319 and A320 (mounted near the nose, vs. on the 

fuselage); therefore, it was interesting to observe the impact of location on pathloss 

prediction.
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After selecting the system, the system’s aircraft needed to be selected. The 

objective of this modeling was to predict coupling on a system without knowing the 

coupling patterns on any other system on the same aircraft. This objective shows the 

real-world application of this research, where it will be desired to model a particular 

system on a brand new aircraft type, without needing to take time-consuming 

measurements on it for any other system. Therefore, B757 was not a good aircraft to be 

used for testing purposes, because that would require that none of the measurements from 

B757 systems be included in training of the NFM causing too much loss of useful data. 

Between A319 and A320, A320 was selected due to its uniqueness in structure from 

B737, B757 as well as A319. A319 is very similar in structure to the B737, while the 

B757 and A320 are different and unique. In conclusion, the systems selected to be 

modeled were A320’s YHF-L in the low frequency and A320’s DME-L in the high 

frequency and none of A320 systems were used during training.

4.3 NFIS Model Results and Evaluation

Before training the model for prediction, the training data needs to be made 

uniform with each other. For example, data from all aircraft needed to be padded to fit 

the data length of the longest aircraft (B757, 53 windows). Then the locations of all 

windows relative to the length of the aircraft needed to be determined in cm. Figure 81 

shows the padding and distance results relative to window locations for B737 data. The 

lower x-axis represents the number of windows in the data. Originally, B737 has 33 

windows and is 2954 cm in length; however, as required, data padding was performed on 

each system of B737 to achieve a total length of 53 windows, or 4697 cm. The upper x- 

axis represents the locations of the windows in centimeters. For example, window 

number 20 is located at 2000 cm. The y-axis represents the pathloss values in dB. Figure 

82, Figure 83 and Figure 84 show the padding and distance calculations for B757, A319 

and A320, respectively. In real-world simulation, on an aircraft with unknown pathloss 

values, sim ilar padding and distance calculations w ould be performed based on the 

number of windows and the length and exit location characteristics of the test aircraft.
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Determining the locations of all windows relative to the front of the aircraft 

enabled proper calculations for distance and angle measurements, needed for fuzzy logic. 

The following two sections go over the step by step results for A320’s VHF-L and DME- 

L.

4.3.1 IPL Prediction: A320 VHF-L

The 14 aircraft and antenna characteristics for A320, VHF-L were used to 

calculated the needed distances from the main exits, emergency exits, system’s antenna 

as well as the angles from the system’s antenna. In A320, VHF-L is located on top of the 

first main exit of the aircraft, between GPS and ATC-T. It is a vertically polarized 

system. Figure 85 shows the fuzzified pathloss pattern for VHF-L. Again, the x-axis 

represents the window locations, while the y-axis represents fuzzified pathloss value (not 

in dB). The model was able to successfully encapsulate the effect on pathloss due to 

main and emergency exits as well as show the increasing pathloss trend from front to aft 

of the aircraft, which was observed in real IPL data. This figure is obtained after the 

process of fuzzification, inference as well as composition.

Next, the process of defuzzification was applied to adjust the y-axis of Figure 85 

from fuzzy IPL values to crisp IPL values which depict the real pathloss values more 

closely (in dB). For defuzzification, the three inputs (aircraft length, systems start and 

stop frequencies) were sent as inputs to neural networks for training. Only inputs from 

B737, B757 and A319 was used for training. Then the three characteristics for A320’s 

VHF-L were sent as inputs to determine the minimum and maximum predicted IPL 

values for the system. Figure 86 shows the minimum and maximum pathloss values for 

actual and predicted IPL patterns. The results are remarkably similar and only vary by 1 

and 2 dB between actual and predicted values.
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Figure 87 shows the linear interpolation of the fuzzified IPL pattern into crisp 

values using the predicted minimum and maximum values. The actual IPL data is also 

plotted on the same graph. Although the overall pattern is not comparable, the fuzzy 

module is capable of successfully incorporating the effect of the first exit and the 

emergency exits (near windows 17 and 18) into the overall pattern. The effect of antenna 

location is also incorporated due to the most decreased predicted pathloss in the front of 

the aircraft, where VHF-L is mounted.
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The defuzzified pattern was then reduced (only recorded at every 5th window) and 

sent to the non-linear module of NFM. The original 14 characteristics of all aircraft 

systems were also sent to the non-linear module. Figure 88 shows the pathloss 

predictions for A320 VHF-L. IPL data from two actual trials of VHF-L calculations is 

reported in red, while the predicted IPL pattern for VHF-L is reported in blue. Although 

the overall IPL pattern until window 33 follows the correct increasing pathloss trend 

(with low pathlosses near the exits), the rear of the fuselage is very poorly predicted. 

Also, there is much variance in the overall data.

Figure 89 shows the actual versus predicted IPL data on a larger scale by 

including all training data used by NN before prediction. The training data is represented 

in green, the actual two trials for VHF-L are represented with dashed red lines, while the 

predicted IPL pattern for VHF-L is represented in a solid red line. The mean, variance, 

standard deviation and minimum pathloss values are also reported below the figure for 

both the mean of the real data as well as the predicted data. Although much variation 

existed in the previous figure, the overall means of real versus predicted data only vary 

by about 0.1 dB. The minimum IPL value predicted by neural networks is about 2.4 dB 

higher than the actual minimum value.

Finally, Figure 90 shows the actual VHF-L patterns (mean) for all four aircraft. 

As observed, although VHF-L measurements were present for B737 and B757, the 

system was installed in the middle of the fuselage, instead of the front, like A320 and 

A319. Therefore, the pathloss patterns from B737 and B757 was not as helpful for 

training purposes and the A320 predictions were probably made using the IPL pattern 

from A319 data for VHF-L. There is as much as dB difference in IPL values between 

A319 and A320 data in some locations. Therefore, overall, the neural networks did a 

very acceptable job in predicting the IPL pattern for VHF-L in A320, after learning the 

IPL patterns from systems installed on other aircraft types.
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Figure 90. Mean IPL Patterns for VHF-L from all Aircraft (B737, B757, A319, A320).

4.3.2 IPL Prediction: A320 DME-L

In A320, DME-L is located on the bottom of the fuselage between the nose and 

the first main exit of the aircraft, between GS and ATC-B. It is a vertically polarized 

system. Figure 91 shows the fuzzified pathloss pattern for DME-L. The model was able 

to successfully encapsulate the effect on pathloss due to main and emergency exits as 

well as due to the location of the antenna.

Next, the process of defuzzification was applied to adjust the y-axis of Figure 91 

from fuzzy IPL values to crisp IPL values which depict the real pathloss values more 

closely (in dB). Figure 92 shows the minimum and maximum pathloss values for actual 

and predicted IPL patterns attained through neural networks. The results only vary by 2 

and 4 dB between actual and predicted values. Figure 93 shows the linear interpolation of 

the fuzzified IPL pattern into crisp values using the predicted minimum and maximum 

values. The actual IPL data is also plotted on the same graph.
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Figure 93. Defuzzified and Real IPL Pattern for DME-L (A320).

The defuzzified pattern was then reduced (only recorded at every 5th window) and 

sent to the non-linear module of NFM. The original 14 characteristics of all aircraft 

systems were also sent to the non-linear module. Figure 94 shows the pathloss 

predictions for A320 DME-L. IPL data from two actual trials of DME-L calculations is 

reported in red, while the predicted IPL pattern for DME-L is reported in blue. Unlike 

results for VHF-L, the predicted IPL path, in terms of accuracy and trend matched the 

real DME-L very closely. There are two sharp drops near the emergency exits of the 

aircraft.
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Figure 95 shows the actual versus predicted IPL data on a larger scale by 

including all training data used by NN before prediction. The training data is represented 

in green, the actual two trials for DME-L are represented with dashed red lines, while the 

predicted IPL pattern for DME-L is represented in a solid red line. The mean, variance, 

standard deviation and minimum pathloss values are also reported below the figure for 

both the mean of real data as well as predicted data. Although not much variation exists 

for DME-L, unlike VHF-L, the overall means of real versus predicted data for DME-L 

vary by about 2 dB. The minimum IPL value predicted by neural networks is about 1.5 

dB higher than actual minimum value.

Finally, Figure 96 shows the actual DME-L patterns (mean) for all three aircraft. 

As observed, the DME-L measurements for B757 and A319 were about 5 to 7 dB lesser 

than the pathloss values for A320. Perhaps the sharp decreases in the predicted IPL 

pattern for VHF-L may be due to forcing similarity in pattern from other systems. 

Therefore, overall, the neural networks again did a very acceptable job in predicting the 

IPL pattern for VHF-L in A320, after learning the IPL patterns from systems installed on 

other aircraft types.
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Figure 94. Actual vs. Predicted IPL for DME-L (A320).
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4.4 Comparison and Conclusion on EMI Modeling Techniques

In general, the NFM model produced very acceptable results. The model was 

created using MATLAB and was simulated on a personal laptop (Dell XPS M1210) with 

Intel Duo Centrino Processor (1.86 GHz) and 2 GB of RAM. One round of simulation 

(approximation of IPL values on all windows for a particular system of interest) took 

about 15 minutes to run and predict the needed IPL pattern. The overall results for DME- 

L matched the actual data comparably; however, the results for VHF-L were not as 

favorable. The general mean, minimum and maximum pathloss values were successfully 

predicted for both systems.

Devereus et al used FDTD to simulate a similar problem on a scaled cylindrical 

fuselage. They were able to achieve accurate results for systems with operating 

frequencies less than 300 MHz. The reported weakness of their approach was the time it 

took to perform one simulation along with the frequency range due to limited 

computational ability. The exact time or processing speed used for the model were not 

reported in their publications [50],

Georgakopoulos et al also used FDTD to find out the pathloss value of one 

window at a time. Due to the need for a single computation (one window), they were 

able to incorporate all frequency ranges in their modeling (from 100 MHz to 6 GHz). 

Unfortunately, they also reported excessive computation time as the weakness of their 

model. For IPL pattern prediction problem for the entire length of fuselage, their model 

would have to be simulated individually for each window location, with minimum 

pathloss recorded every time. Georgakopoulos et al compared their predicted pathloss 

values with the measured values on a scaled model of a rectangular fuselage [48].

Vahala et al used a unique approach of multiscattering where they solved the 

traditional Maxwell’s equations in the parabolic form. Instead of pathloss values on 

windows only, they performed calculations on the entire interior of the fuselage, 

including w indow s. T hey reported fast com putation speed; how ever, w ith prediction  

limits for systems with frequency bands of greater than 1 GHz. The results by Vahala et 

al are from the study that compare predicted IPL values to actual measurements from real 

aircraft, instead of modeled or scaled aircraft [55].
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Although the results from the other three above mentioned techniques were 

comparable to real pathloss data, the models were limited either due to computation 

speed, or frequency range. The NFM successfully overcame these limitations and 

predicted pathloss patterns accurately and efficiently without a big computational 

demand. Although NFM did provide variation in the predicted IPL pattern for VHF-L, 

the overall results provide a promising future for this model in electromagnetic 

propagation prediction needs.
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CHAPTER 5

CONTRIBUTIONS AND FURTHER RECOMMENDATIONS

This chapter briefly outlines the final conclusions and contributions of this study. 

The first section lists the contributions of NFM to the real-world problem of 

electromagnetic interference. The second section includes a brief overview of the 

cascaded model structure with its advantages. The third summarizes NFM design and 

provides guidelines on using NFM over other types of numerical modeling techniques. 

The last point goes over the application of this model to real world interference 

predictions. Recommendations on future work are listed at the end of the chapter.

5.1 Summary of the Contributions

Contributions are summarized and listed:

1. This study explored the capability of the soft computing techniques in conjunction 

with linear numerical methods. It provides a proof of the ability of the novel 

combination to identify, model, simulate and provide meaningful information for 

complex electromagnetic wave propagation phenomenon.

2. The first cascaded model, with linear fuzzy logic module and nonlinear neural 

network module, for prediction of pathloss across all windows of an aircraft for 

systems operating in either low or high band is presented. It provides a model 

with better performance.

3. The first model of interference pathloss predictions using real IPL data and actual 

aircraft characteristics, instead of scaled is successfully incorporated.

4. This study presents and demonstrates an efficient NFM designing strategy. It 

includes graphical analysis, fuzzy inductive reasoning, and parametric 

optimization through neural network training.

5. The results provides new insights into the coupling phenomenon in terms of rule 

surface, similarity and individual difference between various aircraft systems and 

their coupling patterns.

6. This study presents and demonstrates a new way to solve electromagnetic 

problems by using expert systems instead of numerical techniques. It provides 

many potential application opportunities.
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5.2 Conclusions about the Model Structure

Nonlinear soft computing techniques are capable of identifying, modeling, 

simulating and providing meaningful information about complex electromagnetic 

coupling phenomenon onboard aircraft due to wireless devices. Rather than purely linear 

assumption, or exclusive nonlinear modeling techniques, the effective combination of 

both the linear and nonlinear techniques could present the complex dynamics with higher 

accuracy. Using the same technology, other systems could be modeled.

The following are the characteristics of this combined model structure. The final 

model is a cascaded structure of Fuzzy (linear) model and Neural network (non-linear) 

model. It is based on our hypothesis from expert knowledge that the measured pathloss 

consists of linear intrinsic mechanisms and nonlinear noisy inputs. Fuzzy logic is an 

expert system technique specified in efficiently modeling linear predictions. Here, it is 

used to interpret the linear effects on pathloss values due to the location of aircraft exits 

as well as effects from angle and aircraft system’s polarization. Neural network is a non­

linear modeling technique aimed to model complex, unclear or vague systems with self­

learning ability. The resulting analysis shows that this hybrid model not only has the 

capability to model the pathloss pattern, but also has better generalization properties than 

the previous numerical techniques.

Therefore, proposing and testing this novel cascaded model structure is one of 

main contributions of this work to the field of modeling and simulation of 

electromagnetic propagation, which can even extend to other complex systems. We feel 

that it is important to implement soft computing techniques, which are intelligent, self­

learning, and robust, into electromagnetic systems, which are nonlinear, complex, 

unclear, and expert-subjective.

5.3 Conclusion about NFM

Although the use of neural networks and fuzzy logic together in modeling is not a 

new  concept, the technique has not been applied to com plex electrom agnetic system s.

The results show that proper designing of fuzzy rules can generate a NFM system with 

good performance. The contribution of our study is that an effective prediction tool using 

NFM is investigated. The study includes extensive graphical analysis of IPL data, fuzzy 

inductive reasoning, and parametric optimization through neural network training.
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Comparison with the previous model illustrates both advantages and 

disadvantages of NFM. Our study shows that NFM has fewer parameters and less 

computational load compared to traditional numerical techniques, although the final 

pathloss predictions for the tested systems are not as precise as those found through 

FDTD analysis [48]. Also, NFM, in general, has less sensitivity with respect to pathloss 

patterns from other systems, is capable of learning from and modeling complex systems, 

and can be easily interpreted to provide meaningful results. As a consequence, it paves a 

broad way to real-world implementation. Hopefully, our contribution in modeling 

electromagnetic propagation dynamics could assist in better designing the future aircraft 

to decrease the threat to aviation systems due to PEDs.

5.4 Conclusion about Applications Domain

As mentioned earlier, the use of NFM over standard numerical techniques is not 

only advantageous because of the linear and nonlinear cascaded structure, incorporation 

of large frequency band, but also because unlike other models, NF model incorporated 

expert knowledge about the system. The fuzzy rule base could be interpreted easily by 

physiological meanings. The disadvantage of NFM modeling approach is that this 

modeling approach needs pre-training process, therefore, requiring as much data as 

possible for the most effective prediction. Also, the model can become computationally 

extensive, but more accurate, if the number of nodes in the neural networks is increased 

to include more inputs.

The model can be used to understand the effects of antenna locations along with 

their polarizations on the coupling patterns inside an aircraft. It can assist aircraft 

manufacturers in creating better designs with least locations of coupling inside the 

aircraft by changing the locations of antennas and exits. Although the overall IPL pattern 

across all windows did not match the actual IPL pattern exactly, the model was able to 

predict the minimum and maximum IPL values very precisely. The minimum IPL value 

is o f  m ost concern w hen assessing safety issues and creating rules on the approved  

amount of coupling with antenna systems. The NFM can also be used to predict coupling 

patterns in other complex domains, such as buildings.
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5.5 Recommendation for Future Work

Our original motivation of this study was to predict the pathloss patterns for 

selected systems inside a commercial aircraft using a computationally efficient model 

which yielded comparable results. The developed method met the basic objectives; 

however, the following major areas need to be further investigated.

1. The model should be further verified for other systems on A320 besides VHF-L 

and DME-L.

2. The location of the aircraft wing has also been determined to play a large role in 

the overall coupling pattern. Therefore, in future work, a new rule needs to be 

added to the fuzzy rules which incorporated the location of the wing and its effect 

on pathloss pattern. This would require additional inputs of wing locations from 

the aircraft schematics.

3. Mitigation work has been studied in previous work [23], however, due to limited 

time, it was not incorporated in modeling. The effects of shielding should be 

included in the fuzzy model and should effectively predict shielding’s effect on 

pathloss values throughout an aircraft.

4. B737, B757, A319 and A320 are aircraft of similar structure. Much more IPL 

data has been recorded for much smaller aircraft, such as regional jets. The model 

should be verified and improved after testing the IPL results from smaller aircraft.

5. The modeled developed in this study should be incorporated in a user-friendly 

software, which should contain a database of all IPL values ever collected. The 

software will be more effectively utilized by interested agencies, instead of 

stepping through the code currently written.

In summary this study is just a beginning step of applying the expert knowledge-based 

techniques to electromagnetic propagation phenomenon. The initial results are very 

promising, and provide an insight for future work.
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Appendix A: IPL Measurement Overview

To address the interference issue, NASA entered into a cooperative agreement 

with United Airlines, Delta Airlines and Eagles Wings Incorporated to conduct additional 

Interference Pathloss (IPL) measurements and to address several technical issues. One 

issue was to measure additional IPL data using a thorough and consistent set of 

procedures. IPL is the measurement of the radiated field coupling between passenger 

cabin locations and aircraft communication and navigation receivers, via their antennas 

and is required for assessing the threat of PEDs to aircraft radios. IPL data is very 

dependent upon airplane size, the interfering transmitter position within the airplane, and 

the location of the particular antenna for the aircraft system of concern. Systems 

considered were the instrument landing system Glideslope (GS), Traffic Alert and 

Collision Avoidance System (TCAS), VHF Communication Systems (VHF), instrument 

landing system Localizer (LOC), Marker Beacon (MB), Distance Measuring Equipment 

(DME), Air Traffic Control (ATC), VHF Omniranging System (VOR), and Global 

Positioning System (GPS) [42].

Another issue concerned aircraft-to-aircraft repeatability. This repeatability issue 

resulted in measurements on six similar B737, seven similar B757, two similar A319 and 

four similar A320 aircraft. NASA provided measurement instrumentation, data 

acquisition and test control software development and support, and staff. EWI was tasked 

to lead the overall effort and to conduct analysis. While the actual aircraft were made 

available by United Airlines and Delta Airlines during independent trips to Victorville, 

CA, San Francisco, CA and Atlanta, GA.

IPL measurements were conducted on the nineteen airplanes for VOR/LOC, VHF 

Comm., GS, TCAS, and GPS, DME, ATC and MB systems. The interference source, 

simulated with dipole, bi-conical and dual-ridge horn antennas, was positioned to radiate 

toward each of the w indow s and the door exits on one side of the aircraft. W hen taking 

IPL measurements, it was assumed that for PEDs interference problems, the interference 

source is located within the passenger cabin, and the victims are aircraft radio receiver 

systems. A common path of PED interference is through the windows or door seams, 

along the aircraft body, and into the aircraft antennas. The interference signal picked up
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by the antennas is channeled back into the receivers to potentially cause interference if 

they are higher than the receiver interference thresholds. Figure A .l shows an illustration 

of typical radio receiver interference coupling paths. The signals are transmitted through 

the windows and doors of the aircraft, and creep along the aluminum surface of the 

fuselage to reach the antenna system of the aircraft.

Figure A.2 shows a basic setup for conducting IPL measurements. IPL data was 

taken by radiating a low powered continuous wave (CW) test signal, frequency- 

synchronized to the spectrum analyzer sweep and fed to the test transmitting antenna via 

a double-shielded RF cable. The spectrum analyzer, laptop computer controller, and 

preamplifiers were located inside the aircraft. The spectrum analyzer input cable was 

connected to the aircraft radio receiver rack cable in the avionics equipment bay.

To perform an IPL measurement, the team measured the RF power loss between 

the calibrated signal source and a spectrum analyzer, via the entire length of test cables 

plus the aircraft cable, plus the free space loss between the reference antenna and the 

aircraft antenna. Swept CW was preferred over discrete frequency measurement, 

according to RTCA/DO-233. A pair of test cables were used to connect the instruments 

to the aircraft antenna cable and to the transmit antenna. An amplifier (optional) was used 

to increase the signal strength depending upon the capability of the tracking source and 

the path loss level. Sometimes, a preamplifier is needed in the receive path near the 

spectrum analyzer for increased dynamic range; however, in this particular setup, the pre­

amplifier was internal to the spectrum analyzer.

Aircraft Antenna

W in d o w s an d  D o o rs

Figure A. 1. Illustration of Typical Radio Receiver Interference Coupling Paths.
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Figure A.2. Illustration of Instrumentation setup for IPL measurements.

Table A.I. Aircraft System and Measurement Antenna Characteristics.

Aircraft
Systems

Spectrum
(MHz)

Measurement 
Frequency Range 
(MHz)

Transmit 
Antenna Type

Free-Space 
Antenna Gain 
(dBd)

MB 75 7 0 - 8 0 Bicon -19.32
LOC 108.1 -  111.95 1 0 8 -118 Dipole +1.25
LOC 108.1-111.95 1 0 8 -1 1 8 Bicon -12.85
VOR 108-117.95 1 0 8 -118 Bicon -12.85
VHF 1 1 8 -1 3 7 1 1 6 -1 3 8 Dipole +0.05
VHF 1 1 8 -1 3 7 116 -1 3 8 Bicon -10.9
GS 328.6-335 .4 325 -  340 D ipole +0.25
GS 328.6-335 .4 325 -  340 Bicon +1.03
DME 9 6 2 -  1213 9 6 0 -  1215 Bicon +5.32
ATC 1030 1020 -  1040 Dual-Ridge Horn +4.85
TCAS 1090 1080-1100 Dual-Ridge Horn +5.26
GPS 1575+2 1565 -  1585 Dual-Ridge Horn +7.5
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For most systems, IPL was defined by the ratio (in dBm), or the difference in dB, 

between the power radiated from the transmit antenna to the power received in the 

avionic bay’s receiver. For GPS testing, however, IPL was defined to be the differences 

in power between transmit antenna and aircraft antenna only. The antennas used in the 

measurement include dipoles for frequencies in the GS band and below, and a dual-ridge 

horn antenna for the frequencies in the TCAS band and above. Due to obstacles in the 

plane, such as seats, walls, windows etc, it was considered best not to correct for the free 

space antenna gain in the definition for IPL. However, free-space antenna gains, as 

provided by the antenna manufacturers, are shown in Table A .l that can be used to factor 

in the transmit antenna free-space gain, if so desired. As shown in table A .l, a transmit 

antenna was used to simulate an interference source. The tuned dipole or biconnical 

transmit antenna was used for measurements in MB, LOC, VOR, VHF and GS bands, 

and a dual-ridge horn antenna was used for measurements in the DME, ATC, TCAS, and 

GPS bands.

Testing Details

This section includes a step-by-step procedure of conducting IPL measurements, 

used by Delta Airlines. The procedure includes the instrumentation needed, as well as 

the detailed connections and set-up.

The following instruments and cables are required to perform IPL measurements, 

please refer to figure A.3 for the pictures of the parts defined below:

a. Laptop Computer with HP VEE Path Loss Measurement Software.

b. Spectrum Analyzer. Used Agilent E4407B ESA-E Series Spectrum Analyzer in 

this write-up.

c. Calibration Cable

d. Power Amplifier with SMA Power-Amp Cable and Power Supply

e. 2 Coaxial cables for Aircraft Antenna and Transmit Antenna

f. Transmitting Antenna (i.e. B iconical, D ipole, Horn etc.)
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Figure A.3: Instrumentation required for IPL Measurements.

Instrumentation Set-up

In the testing procedure, the laptop will be used to capture screen shots from the 

spectrum analyzer as well as for storing data.

After powering up the laptop using the power supply, enter the username and 

password. (Sticker on computer keyboard) From desktop, launch 

“PathLossMeas_SA_AutoDownload_ver3.0.1” by double clicking on the icon. As shown 

in Figure A.4, connect the 120VAC cable to the spectrum analyzer. Using another set of 

cable, connect laptop’s PCMCIA-GPIB card (National Instruments) with the spectrum 

analyzer’s HP-IB parallel port. Turn the Spectrum Analyzer on by using the power 

button on the lower left comer on the front panel. Let the Spectrum Analyzer perform 

initial alignments automatically. Calibrate the Spectrum Analyzer by using the 

Calibration cable shown in figure A.5. Connect one end of the calibration cable to “Input 

50£T’ while the other end to “AMPTD ref out” connector on the front panel of the

spectrum analyzer. Go to “[Systems2” “alignments ”̂ -> “align now” -> “All”

' Boxed names refer to physical soft buttons found on the front panel of the Spectrum Analyzer 
’ Underlined names refer to options available on the display screen of the Spectrum Analyzer.
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Figure A.4. Illustration of Laptop to Spectrum Analyzer connection

Window

Figure A.5. Illustration for Spectrum Analyzer’s Calibration.
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Test Cable Loss (TCL) Measurements:

After setting up the spectrum analyzer, a TCL measurement needs to be 

performed for each system tested. TCL Measurements are necessary to observe the 

power loss incurred in the double shielded RF Cables. This procedure must be performed 

every time for each system of the aircraft during testing, i.e. VHF, TCAS etc.

Set the Start and Stop frequencies for the system of concern. Please refer to table 

A .l for aircraft systems and their frequency bands. For example, VOR ranges from 108 

MHz to 118 MHz: Go to “Frequency” “Start Freq” -> “[l] §  |8j” -> “MHz” to set 

starting frequency. Similarly, go to “Stop Freq” “[l] §] § ” -> “MHz” to set the stopping

frequency. Turn the Source on by going to “|Source|” -> “on”. Make sure that the Source 

“Amplitude” is -10  dBm. If not, then change to “[l] joj”  “-dBm”

Set the reference to 0 dBm and attenuation to “auto” by going to “|Amplitude|” and 

changing the “R e f’ to “§ ” -> “dBm”: and “Atten” to “Auto” on the display screen. Go to

View/Tracef’ -A “ClearWrite” to begin the tracing of the signal on the spectrum

analyzer. Perform peak search to calculate and record the TCL Measurement by pressing

“Peak Search”.

TCL Measurement = Source Amplitude -  (result)

Where the Source Amplitude was set to -10  dBm in this case, and the “result” is found 

from the peak search above. Therefore, if the “result” was -11.19 dBm, then TCL = -10 -  

(-11.19) = 1.19 dBm.
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IPL Measurements

The following section includes the connections are necessary to perform the IPL 

measurements:

Using Figure A.6 as a summary, connect an SMA Power-amp cable from “RF out 

50Q” connector on the spectrum analyzer to the input of the Power Amp. Then connect a 

double-shielded RF cable from the output of the Power-amp to the transmitting antenna. 

Connect the power supply to the power-amp4.

To Aircraft Receiver

Figure A.6. Complete hook-up of Spectrum Analyzer with power-amp, coaxial cables, transmitting

antenna and laptop computer.

Connect a double-shielded RF cable from the “Input 50H” connector of the 

spectrum analyzer to the receiver of the aircraft, usually located in the avionics bay. 

Before proceeding to measuring and recording IPL Measurements, make sure to change 

the following settings on the spectrum analyzer: Go to “Source” “Amplitude” “fjl

4
*** Caution: Make sure that steps 1 and 2 above are performed before performing this step! ***
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-> “-dBm”. Also make sure that the “R e f’ under “Amplitude” is “-10 dBm” while the

“Atten” is “0 dBm Manual .,5

Take IPL Measurement by going to “[View/Trace” -> “ClearWrite” and

performing “|Peak Search1”

To capture the data in the laptop, please refer to the screen shot in figure A.7. 

Begin by clicking on the check box next to “Enter Data Dir & Filename Root” . In the 

pop-up directory, find the folder named which will be used to store all data collected 

during testing. Open the folder, enter test name and click “save”. On the original screen 

(in figure 2.8), observe that the software should have identified the type of spectrum 

analyzer connected to the system (in this case, “E4407B” on the right hand column). 

Click on the check box next to “Change File Index Number” whenever it needs to be set. 

Initially, indexing begins at 1, and automatically increments upon each recording; 

therefore, use this feature if an erroneous measurement was occurred and data needed to 

be retaken.

Finally, click on the check box next to “Download & Record Trace”. This step 

should result in the capture of the screen currently on the spectrum analyzer (after

View/Tracq” “ClearWrite” -> “(Peak Search)” was performed on the spectrum

analyzer). Observe that the software confirms the start and stop frequency as well as 

records the maximum frequency measured by the spectrum analyzer, denoted by “Marker 

Amp” (in this case, -11.16 dBm).

5 Side Note: The source amplitude is set to -10 dBm because the power amplifier ZHL-42W has a gain of 
approximately 37 dB across all frequencies possible. The power amplifier also only has a power output 
capability of around 27 dBm. Therefore, to make sure that the actual power output remains less than 27 
dBm (which can possibly be as high as 37 dBm), we set the source amplitude to 10 dBm, instead of leaving 
it at 0 dBm.
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Figure A.l. Illustration of HP VEE Path Loss Measurement Software.

Summary of Steps for Measuring IPL Data

The measurement process for each system on each aircraft typically involved the 

following steps:

1. Conduct 1-meter path loss measurement. IPL was measured with the transmit 

antenna positioned one meter from the aircraft antenna. This simple step 

established a baseline measurement and helped detect any excessive aircraft 

antenna cable loss. Excessive cable loss could indicate possible signs of connector 

corrosion in the path. These data were not needed to compute the IPL.

2. Configure the spectrum analyzer to the proper reference level, resolution 

bandwidth, attenuation level and desired measurement frequency band. Configure 

the tracking source to track the frequency sweep of the spectrum analyzer. Set the 

tracking source output to desired power level.

3. M easure test cable and aircraft cable “through” losses.

4. Position the transmit antenna at a desired location, typically near a window or 

door. Point the antenna to radiate toward a window or door seam.

5. Clear spectrum analyzer’s trace. Set spectrum analyzer to “Trace Max Hold” and 

sweep continuously across the desired measurement band.
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6. Scan the transmit antenna slowly along the door seam, while the spectrum 

analyzer is still set at “Trace Max Hold”. No scanning was needed at the windows 

due to small window sizes.

7. Record trace and the peak marker value. For systems that experience narrowband 

peaks caused by strong local transmitters such as LOC, position the marker at the 

peak of the broadband envelope while avoiding the narrowband peaks. Record 

data at this marker location.

8. Change polarization and repeat from step 2 so that both vertical and horizontal 

polarizations of the transmit antenna are included.

9. Relocate the transmit antenna to another window/door and repeat from step 4.

Post processing involved removing the measured system “through” loss from the

total path loss data. The system loss includes the effects of test cable losses, amplifier 

gains, and other types of losses/gains in the measurement path. For step 1 above, please 

refer to Figure A.8 for an illustration of a 1-meter path loss measurement near a B737 

VOR/LOC antenna located in the tail. A 1-meter path loss measurement was conducted 

to check the integrity of the aircraft antenna path. The results were not used to calculate 

IPL and are not reported in this document.

mwz'i

Figure A.8. Illustration of 1-meter path loss measurement near B737 VOL/LOC Antenna.
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Figure A.9 shows a measurement being conducted with the transmit antenna at a 

window, and the computer and software used for data acquisition (detailed steps provided 

in previous sections). Although the testing instruments and computers were located 

within the passenger cabin, spurious emissions from these equipment are too low to cause 

significant error in measurement.

Figure A.9. Illustration of various phases of testing performed by the test team.
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Appendix B: Fuzzy Logic System Definition

Here, we briefly review basic concepts of fuzzy sets and fuzzy logic theoretical 

operations [20, 21].

Definition B .l (Fuzzy set): For an assumed universe of discourse, X, a fuzzy set, 

A in X is specified by its membership function, j lA ,

f iA : X  —»[0,1].

Thus, each element, x in set X has a degree of membership in set A which takes one 

value between 0 and 1. A fuzzy set may be viewed as a generalization of the concept of 

an ordinary set (that is, a crisp set), whose membership value takes on 0 or 1 only.

The fuzzy membership functions for fuzzy sets can have many different shapes, 

depending on definition. Figure B .l illustrates some of the possible membership 

functions, we have: (a) the T-function: an increasing membership function with straight 

lines; (b) the L-function: a decreasing function with straight lines; (c) the A-function: a 

triangular function with straight lines; (d) the singleton: a membership function with a 

membership function value 1 for only one value and the rest is zero, (e) the Gaussian 

function: a membership function with guassian distribution curve. There are many other 

possible functions such as trapezoidal, sigmoidal or even arbitrary.

Definition B.2 (Support, Center, Fuzzy singleton) The support of a fuzzy set F is 

the crisp set of all points xe U such that |^f(x) >0. The center of a fuzzy set F is the point 

x eU  at which |1f(x) achieves its maximum value. If the support of a fuzzy set F is a 

single point in U at which |If(x)=1 , then f is called a fuzzy singleton.

Definition B.3 (Intersection, Union, Complement) Let A and B be two fuzzy sets 

in U. The intersection A n  B of A and B is a fuzzy set in U with membership function 

defined for all xe U by

Vx e  U : jU c = min JU A(x) , jUB ( x )
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Figure B.l .  Examples of Membership Functions.

Definition B.3 (Intersection, Union, Complement) Let A and B be two fuzzy sets 

in U. The intersection A n  B of A and B is a fuzzy set in U with membership function 

defined for all xe U by

Vx  e  U : / /  c = min

The union of A u  B of A and B is a fuzzy set in U with the membership defined for all 

x eU  by
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Vx e U : fi c = max

The complement of A is a fuzzy set in U with the membership function defined for all 

xeU  by

V xe U =1 ~MA(X)

In more general terms, we're defining what is known as the fuzzy intersection or 

conjunction (AND), fuzzy union or disjunction (OR), and fuzzy complement (NOT).

Definition B.4 (Fuzzy rule base) a fuzzy rule base, an extraction of an expert’s 

knowledge, consists of a collection of fuzzy IF-THEN rules in the following form:

R(L): IF xi is F iL and .. ..and x„ is FnL, THEN y is GL

Where F;L and GL are fuzzy sets in U; c  R and Vcz R respectively. X = (xi...xn )T eU ) 

x ... x Un and ye V are linguistic variables. Let M be the number of fuzzy IF-THEN 

rules in the form of (B.5) in the fuzzy rule base; that is L=l,2, .. .M. The x_and y are the 

input and output to the fuzzy logic system, respectively. Basic pure fuzzy inference is 

composed from fuzzy rules shown in Figure B.2.

Fuzzy rule base

Fuzzy sets in U

I
Fuzzy inference Engine

Fuzzy sets in V

Figure B.2. Basic configuration of pure logic system.

Definition B.5 (Fuzzifier, Defuzzifier) the fuzzifier performs a mapping from a 

crisp point x= (xi,...xn )T e U  into a fuzzy set A, in U. There are at least two possible 

choices of this mapping. We introduce the most popular one.
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Non singleton fuzzifier: (iA(x) =1. The |Ia(x’) decrease from 1 as x ’ moves away

from x, for example, p.A(x’) =exp[ - ] ,  where a 2 is a parameter
<7

characterizing the shape of |iA(x’).

The defuzzifier performs a mapping from fuzzy sets in V to a crisp point ye V. There are 

several possible choices of this mapping. We introduce the most popular one.

• Center of gravity defuzzifier:

_ jy-MA(y)dy 
Vc jMA(y)dy

Figure B.3 shows the process of two rules execution union before defuzzification.

Rule 1

Rule 2

A a ? /v /

Figure B.3. Centriod Defuzzification diagram.

A fuzzy inference system shown in Figure B.4 consists of the fuzzifier, the fuzzy 

inference engine and the defuzzifier. Fuzzifer maps crisp points into fuzzy sets in U, and 

defuzzifier maps fuzzy sets in V to crisp points. In a fuzzy inference engine, fuzzy logic 

operations are used to combine the fuzzy IF-THEN rules in the fuzzy rule base into a 

mapping from  input fuzzy  sets in U  to output fuzzy sets in  V.

There are two types of fuzzy inference. The most popular one, which we are 

referring to so far, is known as Mamdani’s fuzzy inference. The other is the so-called 

Sugeno, or Takagi-Sugeno-Kang fuzzy inference.
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Definition B.6 (Mamdani-type inference) A type of fuzzy inference in which the 

fuzzy sets from the consequent of each rule are combined through the aggregation 

operator and the resulting fuzzy set is defuzzified to yield the output of the system.

Fuzzy 
sets in V

Fuzzy 
sets in U

x in U y in V

Figure

Fuzzifier Defuzzifier

Fuzzy
rule
base

Fuzzy
inference

engine

B.4. Basic configuration of fuzzy logic system with fuzzifer and defuzzifier.

Definition B.7 (Sugeno-type inference) A type of fuzzy inference in which the 

consequent of each rule is a linear combination of the inputs. The output is a weighted 

linear combination of the consequents.

A typical fuzzy rule in a zero-order Sugeno fuzzy model has the form 

if x is A and y is B then z = k, where A and B are fuzzy sets in the antecedent, 

while k is a crisp constant in the consequent. The defuzzifier is defined by weighted 

average method usually in terms of next equation.

n

2 > , z ,

output = —---------- W; is the ith weight; N is the number of rules

2 > ,
1=1

These two types are similar in many respects. In fact the first two parts of the 

fuzzy process, fuzzifying the inputs and applying the fuzzy operator, are exactly the 

same. The main difference between Mamdani-type of fuzzy inference and Sugeno-type is 

that the output membership functions are only linear or constant for Sugeno-type fuzzy 

inference.
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Appendix C: Neural Networks Definition

A simple neuron is an information-processing unit that is fundamental to the 

operation of a neural network. The block diagram of Figure C .l shows the model of a 

neuron, which forms the basis for designing neural networks. Here we identify three 

basic elements of the neuronal model [24, 67]:

1. A set of synapses or connecting links, each of which is characterized by a weight 

or strength of its own as Wid.

2. An adder for summing the input signals, weighted by the respective synapses of 

the neuron;

3. An activation function tp(-) for limiting the amplitude of the output of a neuron. 

The activation function is also referred to as squashing function in that it squashes 

the permissible amplitude range of the output signal to some finite value. There 

are various types of activation functions, such as threshold function, piecewise- 

linear function, and sigmoid function.

Bias bk

Activation
function

Outputx2
Input J 
signals

Figure C.l.  Nonlinear model of a neuron.

The neuronal model of Figure C .l also includes an externally applied bias, 

denoted by bk. It has the effect o f  increasing or low ering the net input of the activation 

function. In mathematical term, we may describe a neuron k by the following pair of 

equations:
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uk = 2y kjxj
j=i

y k = <p(uk + b k)

where x i ,x 2, . . . , x m are the input signals; Wki, wk2,..,wkm are the synaptic weights of neuron 

k; Uk is the linear combination output due to the input signals, bk is the bias, cp(-) is the 

activation function, and yk is the output signal of the neuron.

The manner in which the neurons of a neural network are structured is intimately 

linked with the learning algorithm used to train the network. Here we introduce some 

fundamentally different classes of architecture of neural networks.

1. Single-layer feed forward networks: In a layered neural network the neurons are 

organized in the form of layers .In the simplest from of layered network, we have 

an input layer of source nodes that projects onto an output layer of neurons. It is 

illustrated in Figure C.2 for the case of four nodes in both input and output layers.

2. Multilayer feed forward networks: In the multilayer network there are one or 

more hidden layers, whose computation nodes are correspondingly called hidden 

neurons. The function of hidden layer neurons is to intervene between the external 

input and network output in some useful manner. An example is shown in Figure 

C.3.

3. Recurrent networks: A recurrent neural network distinguishes itself from a feed 

forward neural network in that it has at least one feedback loop. For example, a 

recurrent network may consist of a single layer of neurons with each neuron 

feeding its output back to the inputs of all the other neurons, as illustrated in 

Figure C.4.

t o

Input layer of Output layer
source nodes of neurons

Figure C.2. Feed forward network with single layer of neurons.
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Input layer of Hidden layer Output layer
source nodes

Figure C.3. Feed forward network with one hidden layer and one output layer.

Unit-delay
operators

Figure C.4. Recurrent network.

The property that is of primary significance for a neural network is the ability of 

the network to learn from its environment and to improve its performance through 

learning. Learning is a process by which the free parameters of a neural network are 

adapted through a process of stimulation by the environment in which the network is 

embedded. The type of learning is determined by the manner in which the parameter 

changes take place. There is no unique learning algorithm. In fact, a great diverse variety 

of learning algorithms are implemented in practical applications. Learning algorithms fall 

into two broad categories: supervised learning, and unsupervised learning. The popular
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supervised algorithms include perceptions, back propagation, least mean square error 

(LMS) algorithm and Radial basis function memory-based learning. The most used 

unsupervised learning algorithms are competitive learning and information-theoretic 

principles. Details can be found in related books.
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Appendix D: Measured IPL Data

The following sections include IPL data from all four aircraft types (B737, B757, 

A319 and A320) for all systems of concern. Data for Vertical polarization is reported 

before horizontal polarization for each aircraft type. It is crucial to notice the 

polarizations noted in the first column of all tables (underlined). Each column includes 

the correction factors, IPL data, along with aircraft and system characteristics for each 

measurement. In order to use the recorded IPL data for further studies, one must add the 

total calibration value (recorded in the 7th row in the “Correction Factors” section) to the 

individual window IPL measurements. It is also critical to note that the recorded values 

represent pathloss and are therefore positive. If using the notation of coupling, then the 

final value to be used will need to be negated.
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<1\ — n r - 1989" *1883 1885 ' 1575” 189V" “ 1997” i 9 5 ~ ' "1879”
9r syjitm u s “ OS OS |s) u s US u s “ OS TCAS-T 'TCAB " reAs ' I CAB "TCAB

ID Is 15 u 15 u u u
c Rrs-Amp 0 ” 35 25 25 25 0 0 0 25 25 25 0
a a T tu -9.6 -9.8 ""■SB -2.8 -11.5 ■ftft -57 -9.8 -9.8 -8.5 —-11.5 -11.53

ACL fi­ 0 0 0 0 0 0 0 0 0 0 0
o k pwr-Amp ll a 0 u 0 0 "" 0 a 0 0 0 0
o Tx-Oaln 0.25 0.25 0.25 0.25 0.25 0.25 0.25 5.26 5.26 5.26 5.26 5.26

Total 1)40 30.45 30.45 ■22.45 T3./6 -0.30 -0.40 10.4b 20,46 21.7b IB. 7b -b.27
Wnt 1 bz.o nn.y 4U.U Jfct.a /'/.a 5U.5 36.9 u r n — " ay.tr- bb.8
win 2 61.8 36.2 34.7 49.0 41.8 73.8 78.7 47.8 36.5 40.2 42.0 65.8
win 3 "59.0 TOT 34.7 50.7' 4b.a / / .  0 m .f 52.3 40.0 40.3 44.2 69.3
win 4 "T T B 37.2 36.0 'S2.3 " 49.8 78.1 77.4 "35.7 39.2 42.5 45.0 69.9
win 5 10.3 40.0 34.0 54.5 41.7 13 :8 f  (ft 13"2 39.0 42.7 46.8 —72.0
win 6 56.3 39,2 45 3 51.8 43.8 61.2 77.9 57.3 40,3 46.8 45 5 74.6
win 7 56.5 38,0 36.5 53.2 40.3 81.4 ttl.3 58.2 i s :  0 46.2 52.8 74.1
win 8 58.0 39.5 39.8 52.8 41.3 77.0 78.0 55.3 45.5 44.5 '56.2 76.5
wins 63.2 41.8 46.5 52.3 42.3 77.6 79.5 "58.5 46.0 45.0 1 3  8 85.0

e win 10 62.7 41.0 39.5 57.7 48.5 60.4 78.9 63.0 46.0 51.8 52.7 78.0

se:
win 11 61.8 T8.5 41.2 54.0 49.0 81.0 737 58.3 46.5 49.7 55.5 83.6
win 12 ■50.7 42.3 39.2 54.8 46.0 7 7.9 81.1 "s et '" T S 7 5U.3 ' 51 3 75.2

2 win 13 61.0 42.7 46.8 58.2 42.8 81.8 83.4 58.3 46.5 50.2 52.6 76.9
a. win 14 &y.3 38.5 4b.O 53.0 48.3 76.9 959 60.0 49.7 1 2 .3 1 7 .2 ""785 1
n win 15 62.7 42.0 38.3 58.5 46.3 79.3 78.2 58.3 48.8 53.7 57.5 1 7 .7
? win 16 53.7 4U.U 39.2 bo.5 16.3 76.7 1 5 .2 59.8 1 7 1 43.3 422 1 5 .2
> win 17 45.2 43.3 57.7 52.3 81.3 86.5 58.5 44.5 51.0 55.2 80.0

win 18 52.2 T il 5 43.2 61.3 49.8 93.5 84.5 58.0 49.2 44.7 57.8 77./
Q win 18 62.7 39.8 44 0 57.8 49.7 79.6 81.8 62.2 52.3 5 /3 53 7 79.9

win 20 64.4 '46.7 12.2 56.7 51.0 85.2 83.0 59.5 49.4 55.2 50.5 85.5
win 21 63.3 38.7 44.0 58.7 bl.0 94.u 83.4 62.7 50.3 55.4 56.7 bo.o

I■a
win 22 65.2 43.7 442 67.8 I 51.2 82.5 82.2 60.7 48.7 55.0 553' 80.6
win 23 57.2 44,2 46.5 66.8 52.0 85.1 H O 64.3 bd.o 55.2 53.8 84.1

* win 24 67.0 47 8 44.0 64.2 54 5 85.5 82 4 66.5 50.0 bs.8 58.8 84.2
win 25 68.3 45.8 38.0 57.8 53.5 82.1 "53.4 68.0 51.3 56.5 60 0 63.1
win 26 65.2 43.2 46.0 55.7 "5l.7 86.8 88.2 66.2 48.0 "S4.S 563 82.1
win 27 69.3 40.8 44.7 59.2 52.0 84.6 1 7 0 53.2 5U.8 b4.2 IS .'S 1 5 1
win 28 64.5 45.2 44.7 57,3 i t ? 89.1 §1.9 61.0 50.8 S4.7 57.7 81.9
win 28 58.5 T il 46.7 61.2 54.7 82.4 87.5 64.2 15)2 52.5 54 5 82.2
win 30 7o.o 45.8 41.0 58.5 54.0 86.5 86 3 65.8 51.5 60.2 62.5 85.2
win 31 67.2 47 7 44.5 62.7 52.5 87.8 §1.4 68.8 52.5 54.8 59.0 85.6
Win32 66.7 52.0 38.7 61.0 51.0 14.5 9I.S 99.7 52.3 56.0 57.5 83.3
win 33 bB.b B1.8 i s : / ta.u 52.7 85.6 1 9  b 18. U 56. 7 bb.U 61.U Oil ft
Lentfh 2yt4 yyb4 5954 “ 2954 2944 2y44 'Jyo4
Wins 33 S3 33 33 44 33 44 “ 34 43 44 33 33

(A Exits 2 2 2 ~5 2 2 2 2 ~ 2 2 2 2
Exttf 491 491 491 491 491 491 491 491 491 491 491 491
Exit2 2333 2633 2933 29.33 2433 2543 2343 2333 2333 2333 2333 2333

r, Exit3 2333 2333 2333 2333 2343 2333 2333 2333 2333 2333 2333 2333
s Em Exits 1 1 1 1 1 1 1 1 1 1 1 1
£ EmExl 1555 1250 12bo 1250 “ I "T250 1 5 0 1 1250 125U 1250 1250 1250 1250

EmEx2 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250
« X-IOC 200 200 200 2(J(J ' 100 “ "200 " I TOO' “ 1 68U 680 66U 1 8 0  ' T 8 0

y-loc 0 0 0 0 1 0 0 200.5 200.5 290.5 209.5 200.5
< start (Hz) 32s 325 32b 326 125 125  i 325 1U8U 1 8 0 1 1080 1080 1080

stop (Hz) 446 346 340 340 440 340 340 1100 1100 nOo 1100 1160
poi (v/n; u u U ~D “ u U " —O' ■I i i 1 I

B737: Vertical Polarization Data.
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fi £s 5£ o fc re
O  tLU

" I D — 1959 ■ la a a 11 1T O 1879 1989
ICAS VHM V H M " V H M VHF-T "VHF VHF LUC l u c  b y LUC

TX*PWf 15 u u 1.5 b lb 10 u
Prt-Amp 6 a 0 25 25 26 25 0 0 25 25 25

TCL - 11.2 -9.3 -9.8 13.8 -9.8 -0.2 -1.7 -3.4 -  ^ 3-  - -9.8 -3.8 -9.8
ACL 0 a 0 0 0 1.7 0 4.9 0 0 0 0

Pwr-Amp "[) a 0 a 0 0 0 fl u 0 0
.. 0  -

Tx-Qain 5.26 0.05 -10.9 0.05 -10.9 0.05 0.05 0.05 0.05 1.25 -12.85 1.25
lOtai 5.2b -6.7 16.26 4.3 26.55 23.3b T U b -3.15 31.4b " 1/.36 16.4b
win 1 OTTf U.H bU7 47.7 4 b .3 40.ll 44.0 yy. l UU 45.0 01.b T 1 H
win 2 68.9 57.3 63.3 50.0 47.7 40.3 46.6 70.4 72.1 48.8 52.5 53.5
win 3 67.8 53,8 61.5 47.2 49.3 41.3 37.4 /4.2 73"0 49.5 49.0 63.8
win 4 ? r s 51.3 62.8 44.8 46.7 46.3 42.3 86.7 73.8 49.0 52.3 84.0
w in s 7 0 56.S 82.3 48.7 43.5 4217 42.8 70.3 73.1 50.5 52.7 60.0
w in s 72.8 65.7 60.0 46.0 48.2 44.5 4 2 8 69.7 74.7 50.7 50. S ' 83.2
win 7 76.8 67.0 68.0 45.2 ■" 435 ' 41.3 33.3 69.6 71.1 46.0 44.7” “ 55.2
win 8 81.7 59.0 57.7 43.3 4 3 7 44.0 38.8 70.8 70.0 48.3 55 5 63.3
w in s 76.1 59.2 65.3 3 3 7  - 41.8 35:8 38.5 707 89.2 " 397.. 54.2 63.0

win 10 79.9 59.5 60.2 39.0 42.8 39.2 36.71 72.4 70.4 41.5 49.0 89.3
win 11 m 55.2 “ S7.3 40.8 39.8 37.0 37.0 65.6 85.5 48.2 52 3 60.7
win 12 8 21 "64.2 66.0 33.7 37.3 41.3 37.3 "88.4 69.8 45.U 09./ t o o
win 13 76.5 49.8 56.3 40.3 34.3 37.5 32.8 64.1 68.1 59.2 53.3 54.5
win 14 7 0 51.2 53.5 78.8 38.3 38.0 3 / 3 "83.9 6 /.6 48.8 b i t ) 46.3
win 15 86.1 43.7 51.0 36.7 33.0 33.2 34.3 58.3 64.1 50.3 54.2 61.3
win 16 82"6 44.3“ 53.3 33.2 31.0 307 "28.5™ “55.2 63.U 40.0 06.3 56.5
win 17 76.4 47.6 33.5 37.5 34.0 467 39.6 " S '2 65.3 49.2 47.0 84.6
win 18 30.5 45.8 52.2 78 .0  - 36.0 35.6 " 35.2"" T 2 .7 '  5T5" ' 4 87 ' 47.7 61.8
win 19 82.6 50.7 52.8 39.0 38.0 37.0 41.3 66.5 67.9 41.2 47.7 81.O
win 20 8 l .3 48.5 52.2 39.2 34.4 37.8 39.7 66.9 69.2 52.0 46.2 55.7
win 21 86.5 4 f.'i 53.3 39.8 3y.5 35.8 36.0 62.7 8 71 4 3 7 45.0 36.2
w in 22 82.7 53.8 54.7 40.7 40.5 38.8 41.2 71.8 70.6 39.5 47.3 65.0
win 23 82 2 53.8 68.3 41.7 39.2 43.0 36.5 to o 68.4 51 ./ 55.U 53.3
win 24 81.0 55.8 56.8 42.5 41.5 43.2 40.8 67.8 72.1 48.0 45 7 64.3
win 25 83.9 b/.o “ 58.3 12.3 44.3 44.2 45.0 /4.8 75.9 ' 4 4 7 44.2 56.8
win 26 85.7 58.2 58.8 42.0 41.3 40.7 36.5 63,5 74.0 41.0 45.5 52.0
win 27 strs- 1 &t>.3 64.2 47.8 46.8 43.7 417 74.3 74.9 41.0 45.0 S2.2
win 28 w a 5 s . r sa.7 45.5 47.0 44.5 41.0 77.8 74.5 50.2 47 7 56.1
win 29 86.4 M.'i 69.5 17.2 1 4 07 39.3 43.2 69.8 73" 1 41.8 43.7 49.8
win 30 83.9 “ S2.0 49.2 41.3 43.8 48.3 69.7 72.3 3 7 7 ” 42.5 53.8
win 31 81.5 60.0 60.8 45.2 44.0 49.7 42.7 71.4 74.5 45.7 46 5 52.0
Win32 82.1 69.5 48.0 43.5 47.2 41.3 /2.o 73.8 46.2 45.7 48.0
wiH 33 «y.u 43.2 “ K2./ 46.5 37.8 437 ' 4 b . / 70.9 /U .4 3 /n 44.5 b2 /
L e n a in 2yb4 r T 9 5 4 " 2964 29t>4 2y54 2y04 TtyM “ 2954 2954 2954
Wins 33 & 33 43 33 44 34 43 33 33 33 53
Exits 2 2 2 2 2 2 2 2 2 2 2 2
Exitl 491 491 491 491 491 491 491 491 491 491 491 491
£xit2 2333 2333 2333 2333 2333 2343 2333 2333 2333 2338 2333 "2333
Exit3 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333 2333

Em Exits 1 1 1 1 1 1 1 1 1 1 1 1
EmExi 1250 125C5 1250 1250 125U 1250 1250 1250 1250 125 7 1230 1250
EmEx2 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250
x-loc 880" 12513 1250 T230 1250 1250 1260 1260 " I25T 2900 2900 2900 "
y-ioc 200.5 lOO. 5 200.5 200.5 200.5 200.5 200.5 200.5 200.5 812.5 812.5 812.5

s ta rt (Hz) 10B0 115 1 1S 116 116 116 116 '116 fTS" 116 108 108
s top  (Viz) i i  aa 1& 138 fSS 158 148 138 138 138 130 118 118

r " 1 1 I 1 1 I 1 T _ . . .
u ' U "  I 7J

B737: Vertical Polarization Data (cont.).
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&<$•
------ID— " 1579 1881 1887 1 8 8 4 "

system — LOC" LOC LOC LOC

C
or

re
ct

io
n

F
ac

to
rs

"TVTOt U u 0
Pre-Amp 25 25 0 a

TCL -10.33 -11.5 - 3 T -2.9
ACL 0 0 0 0

Pwr-Amp 0 0 Cl '0 -
Tx-Oaln 1.25 1.25 1.25 1.25

Totil i s .y i 14.76 -1.H6 -1.6b

.2
S•en
0 
0.

3
‘S0»
>
nj

5
6
§TJC
1

WIRT Ob.O 00.b yu.y ^b.H
win 2 52.8 59.8 91.7 97.9
win 4 53.7 66.8 94 4 91.1
win a 59.0 65,2 98.5 94.7
w in e 64.6 ■58.8 92.6 87.0
w in e 65.0 56.3 97.6 91.2
win 7 62.0 69.2 96 1 89.1
w in s 66.0 61,2 99.7 S1.4
w in s 63.5 46.5 99.9 59.3
win 10 62.0 59.7 96.4 90S
win 11 60.2 55.8 101.6 90.6
win 1z 65.2 64.5 96.3 91.9
win 13 62.5 53.5 97 7 93.3
win 14 62.5 53.5 987“ 95.7
win 16 61.2 55.5 100.0 86.4
win 16 62.0 5y.7 55 1 UA! -
win 17 61.3 63.5 98.9 85.5
win 18 57.3 53.5 ' 97,5 bb.O
win 19 65.2 65.0 07.5 “ 55.S
win 20 55.7 63.7 56.S 67.7
win 21 55.0 60.5 96.6 S0.5
win 22 62.3 69.8 99.3 67.8
w m 23 5/.U 5 7 7 '" 96.4 B8.4
win 24 59.3 55.5 96.9 83.1
win 26 53.2 ' SOT 96.8 85.9
win 26 51.7 56.8 95.2 64.5
win 27 57.0 57.3 95.8 86.7
win 28 57.3 54.8 9 6 ? 87.7
win i s 66.8 "  5 27 86.3 84.7
win io 60.6 57.3 93.2 87.7
w in i l 53.0 62.0 95.8 56.4
win 32 49.8 67.0 93.8 86.1
win 33 59.3 BO'.'B ' yb.9 84.4

at
Jjj
.3
Si
75
2ra-C
o
ro
o
<

L eng in iyp4 Jy54 2904 2904
Wins 33 33 33 33
Exits 2 2 2 2
Exitl 491 491 r  481 491
EXIt2 2333 2333 2333 2333
Exits 2333 2333 2334 2333

Em Exits 1 1 1 1
EmExI 1250 1250 1250 1550
EmEx2 1250 1250 1250 1250
x-loc 2900 2900 2900 2900
y-loc 812.5 812.5 812,5 812.5

s ta rt (hz) lUb fU8 108 U S  '
s top  (Hz) 118 118 118 118
poi (vinj U -  TT' u

u

B737: Vertical Polarization Data (cont.).
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r r r T w " 1 8 5 7  ~ " 1881 " ~ 9 ~
k £ _ GS "  BS ■ ® «l*) OS U s U s TCASt| icTty (CAE rC’AK " TCA S"'

\ ix -rw r t s 15 u u U u
C Pre-Amp 0 55 25 25" ■55 0 - n r 0 25 25 25 6

*
2 "  TCL -9.6 -6.8 -§.8 -27T -11.3 -3.6 -3. { -9.8 -8.5 - l i b -11.53

r
Uu A'£L 6 5“ 0 0 0 0 0 0 0 0 0 0

ft pwr-Amp 0 " 1) ■ 0 ■" T  ■ 6 d 0 " 0 " " u  ■■ U 0 0
u Tx-Qaln 0 25 0.25 0.25 0.25 0 25 0.25 0 25 5.26 5.26 5.26 536 5.26

i AUi 5.45 30.45 40.45 22,46 13.13 -3.33 -54b 10.46 2U.46 2 l.fb its.re -b 127
4S.0 1 74 .8 4 f 3 47.3 (jB.7 69.U t>12 11 you 54.3 55.U T J l . f

w in ! 49.5 253" 28.2 67.S 45.7 69.5 66.7 62.5 56.0 52.8 51.8 81.6
win a " "55 .7"" 2 6 T 23,o 4d.fl 46.3 68.3 57.1 59.0 44.5 "B2.3 52.2 79.1
win 4 6X2 26.3 29.0 47.7 46.3 71.6 67.8 56.5" 46.8 52.0 52.3 78.2
w in e M.d 28.5 28,2' 45.2 Si .3 "B B .T / 0.4 59.0 4 97 4i'.b 52 0 "B2.IT"
win 6 53.5 27.0 27.7 4-51 62.8 69.8 71.7 65.4 46.8 55.5" 53.3 85.2
win 7 b l.8 32.U 2GB" 49.U 47.4 '7 2 F n .4 bO.H 4575 51.2 53.3 82.7
w ine &4.i 31.6 27.0 45.7 50.8 74.6 69.5 63.8 45.7 56.7 54.7 ■57.5

c1 w in s 53.7 33.1) 28.8 " 4775 " 4TB 70.5 7 3 0 "52.7” 49.5 51.3 44.3 7 8 .5
y win 10 55.7 34.6 3 i .7 51.0 52.0 76,2 68.7 68.6 49.3 48.3 54.0 80.8
m
.a win 11 "55.5 33.6 31.3 52.3 54.5 76.1 76.2 59.0 49.3 53.2 52.8 78.1

win 12 56.3 34.7 29.5 49.2 57.2 ~ 74.2" '7 4 T " 1 62.7 47.8 51.3 &2. r 78.7"
o win 13 "S'Z.S— 37.6 28.7 49.8 52.2 74.0 75 1 60.7 48.8 50.2 54.2 7 6 .1
— wm 14 ■B7.2- 36.8 29.0 47.3 5B.3 ~ 70.5" 7575 “ i 60.5 48.8 49.7 4T5 "50.3
c win 16 57.6 453 28 3 51.8 51.7 70.6 77 9 60.8 49.2 56.lT 51.8 81.0
N win 16 59.5 35.5 31.2 507" 5TB 76.4 7575 58.0 46.8 46.6 5  i t i ^8.6
0 win 17 55.8 46.4 42.7 5i!5 54.8 "77 .T 7S.6 “ "57 r 48.6 50.3 4 7 7 77.4

win 18 58.8 347" 3T.0 52.5 34.2 75.0 74.7 61.0 50.2 50.5 '527T 79.2
win 19 61.5 37.6 34.7 6 4 3 56.8 76.6 78.0 60.8 48.5 48.2 5 67 80.6

Q win 20 55.8 45.7 36 5 52.8 54.8 76.8 78.1 62.5 49.2 54.7 51 8 86.9
.J win 21 68.3 56.3 31.2 53.3 33.3 19 .6 78.5 ' 63.2 47.8 S2.3" 4 l.t> IIA

win 22 60.0 40.2 35 3 53.3 56.5 78.0 7 92 62.3 49.6 52.2 6 T b 76.3
O win 23 &42 38.2 34.8 52!B <5t.b "7 4 .T 7S"4 - 1 61.3 58.5 49.2" 5C8 50.3
? win 24 56.5 35.7 33.2 53.2 59.8 77.0 81.3 64.2 49.3 50.5 51 8 80.2
S w m 26 68.3 40.0 36 3 56.5 577" 78.2 79 2 " "B ad- 5U. 1 t i l . 7 553 82.9

win 26 61.3 40.0 36.5 54.7 59.0 77.9 78.1 62.0 52.8 52.7 52.6 80.8
w ihT T " """STB 387 46.2 53.2 36.2 76.1 5T9 b3.U '  50.2 " 1 "B2.2 6 22 82.4
win 28 61.7 41.0 37.7" 52.3 57.8 73.8 81.5 61.7 52.2 53.7 5 6 3 79.2
win 29 52.0 3977 35.8 36.8 1 5T31 /6.3 79.9 " "54 .3"" ■50H 53.3 84 5 80.4
win 30 62.7 38.4 w a 54.3 57.5 79.2 8 0 4 65.0 53.0 56.5 5 48 84.3
win 31 64.8 42.2 48.7 55.3 57.7 77.1 82.6 62.2 5 26 48.8 48.0 82.4
win 32 64.8 40.5 ' 357 33.8 38.3 n .i 9T7 602 52 ./ b z / 5 2 T ' BT7
w in ire 64.s 4 17" 387 36.3 b4.U "8U .3" ' '8458' " 63 0 ' bO.H ' otj.a b(J.7 84. I
Lengin 53b4 2554 2934“ 2 9 3 4 2^34 1^934 USJii 2tli>4 2sb4
Wins S3 33 66 33 33 33 34 33 33 33 33 33

</> Exits 2 2 2 2 7  " 2 2 2 2 ' 2 2 ' 2
Exitl 461 491 461 491 491 491 491 491 491 491 491 461
Exit2 2333 2343 2333 2338 2633 2333 2333 23a3 2333 2333 233T 2333

o Exit3 2333 2333 2333 2333 2663 2333 2333 2333 2363 2433 2346 2333
2 Em Exits 1 1 1 1 1 1 1 1 1 1 1 1
2 EmEXI 1250 1256 1250 1250" 1250 1250 1255 1250 — 12SB" 125o 1260 1250
O EmEx2 1250 1250 1250 1250 1250 1250 1250 1256 1256 1250 1250 1250ra X-IOC 200 200 "253 “ 200" 500 "200 200 b a o 680" 880 880' 550
o V -loe 0 0 0 0 0 0 0 2005 206.5 260.5 200.5 200.5
< s tart (Hz) 325 325 355 323 323 325 325 4D80"~ 1080 1080 108IT 1080

stop  (Hz) 346 346 346 446" 646 340 346 1100 1160 1160 1100 fi6 6
poi(w n) U u 1 "TT u u u 0„, - 1 T ' 1 1 1

B737: Horizontal Polarization Data.
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3S s £ § S £u

— it j— 1881 1987“ " ~ 1994 1989’ 1 9 9 9 " 1993
system TCAB VHF-1 Vplp'-I (PI) VHF-1 " VHF-1 (bi) VHF-1 VHF1 VHP VHP LOC lOC (di) LOC

" lb  " lb U u u 1.5 0 15 15 U "
Pre-Amp 0 0 0 25 25 25 25 0 0 25 25 25

TCL -112 -9.8 -9.8 -"5.8 "" - 3 T -0.2 ... -1.7“ " -3.4 1 -3.5""' -9.8 -9.8 -9.8
ACL 0 0 0 0 1.7 6 4.9 0 0 0 0

pwr-Amp 0 0 0 "O' " 0 0 0 0 0 0 0 0
Yx-Oain “ 3 2 6 0.05 -10.9 ® 5 -U tS 0.05 0.05 0.05- 0.05 1.25 -12.85 1.25
"Total- -b.tW 0.25 -5./ 15.2b 4.3 28.05 23.35 3.U5" -3. 15 31.45 1/.35 16.40

W tnl I S . / 48.1 83.3 35./ ’.1 1 . '1 yi.b 32.8 bl.8 b4.3 uy ./ 4U.5 4 /.t5
win 2 83.4 48.7 57 3 39.0 36.7 35.5 31 8 63.2 63.1 32.7 37.7 46.5
win 3 88.0 48.2 S5.8 3518 38.3 35.3 33.8 60.6 65.8 ”32.3 37.7 44.7
win 4 82.0 46.8 68.0 39.3 38.7 3 67 33.6 59.3 64.8 30.5 41 3 42.5
wins 83.2 "37.8 531 " 357" " 34.3 38.2 36.0 58.7“ 83.4 32.2 38.8 42.3
win 6 82.3 45.8 37,5 37.2 35.8 35.2 32,8 56.6 65.9 32.5 39.0 42.7
win 7 81.S 13.2 55.8 37.0 35.5 3570 33,7 58.2 "B2.3 1 0 .5 37.7 44.8
wins 84.2 47.0 52 3 38.2 35 > 31.7 36.7 £6.2 62.6 33.8 41.3 44.7
wins ra.4 4V.S 53"0 38.2 31.8 34.8 34.0 55.5 "81.7 “2B.8 35.7 40.8
win 16 "7S.0 13.(1 518 40.0 36.8 35,4 37 0 57.2 63.7 29.0 362 40.7
win 11 77.5 46.7 53.8 36.7 46.6 457 35.8 $4.4 64.6 28.2 35.7 40.2
win 12 "75.2 48.3 53.3 40.8 3 2 / 37.2 33.0 59.1 64.1 28.5 ■04.8 302
win 13 78.7 49.8 52.5 42.3 350 39.0 36.2 61.4 65.4 3l.O 38.8 38.0
win 14 ■7 7 .O 49.0 55.8 427T " 41.0 40.3 " 39.0 58.6 64.4 32.2 19.5 38.7
win 16 79.3 49.0 61.0 47.2 42.0 35.5 40,7 $2.6 64.2 30.5 40.8 36.3
win 16 77.0 60./ 86.0 5b. 3 38.5 427 4 i.tr 65.1 72.7 26.0 4o.« 32.3
win 17 79.3 51.7 59 7 43.5 41.8 42.8 45.3 66.5 70.8 42.0 "396 48.5
win 18 "57.3 48.2 52.8 " 40: 5 ■ 40.3 40.3 39.0“ 84.0 88.1 35.3 3 / 2 40.2
win 19 81.8 47.8 52.8 43.3 36.2 36.3 384 59.6 66.0 35.2 44.7 43.5
win 23 84.8 55.6 59.0 37.7 33.3 45.4 36.B 62.0 64.0 33.8 44,2 40.2
win 21 82.4 17.3 500 39.0 3b ./ 36./ 35.5 58.5 65.8 35.2 38 2 36.8
win 22 81.5 45.3 48.7 38.7 31.8 35.4 33.5 60.1 64.5 34.5 39.7 08.7
win 23 80.9 4 / . / 19.3 357 35 2 35.8 38.0 83,7 62.8 36.7 1 3  0 37./
win 24 61.9 44.6 48.8 38.5 34.3 34.7 45.3 57.6 T 2.5 ■05.7 42.5 40.8
win I T T I.1 45.2 50.5 35.7 307 33.5 36.2 57.0 62.8 33.3 39.3 3'8.0
win 24 46.1 44.3 50 5 4B.2 3 70 33"7" 42.7 59.1 61.2 36.2 43.0 3B.2
win 2? 73.9 45./ 49.2 3S.2 33.5 35.4 34.4 56.9" 64.1 "3'8.8 10.7 39.2
win 28 79.4 48.7 53'.7 ' 37.3 34.5 34.8 42.7 60.3 61.9 35.0 40.8 SB. 6
win 29 8u.e 15.3 50.5 351 34.7 33.3 31.8 61.8 63.4 "33.0 08.0 36.5
win 30 82.9 '48.6 50.2 38.7 457 323 4 5  r ~ E 1.4 89.5 30.8 39.0 37.7
win 31 84.4 44.0 56.7 37.3 34.7 34.2 35.5 57.6 63.5 34.0 40.3 36.5
Win32 84.0 13.2 45"5 371 31.8 327 31.8 55.5 6U.9 "30.0 ' 07.0 37.5
Wirt 33 81.8 '4'J2 5U.U 38.5 s l.o 3 / .U a-; .b M .8 64.6 '342 3 ( 3 35.U "
UhgtH 2954 2354 2904 2954 2954 2954 2st>4 Jtlo4
Wins 33 33 33 33 33 33 43 33 43 33 33 33

"Exits 2 2 2 2 2 2 2 2 2 2 2 2
Exitl 45i 19i 19'i 491 451 491 491 491 491 491 401 491
Extt2 2333 2333 2333 233a 2333 2343 2334 2333 2333' 2333 2333 2333
Exit3 2303 2333 2333 2333 2433 2343 2333 2333 2333 2333 2333 2033

Em Exits I 1 1 1 1 I 1 1 1 1 1 1
EmExI "T7S0 1250 1550 " 1250 1250" 1250 1250' 1280" 1250 1250 1250 1250
EmEx2 1250 1250 1250 1250 1255" 1250 1250 1250 1250 1250 1250 1250
x-loc 680 1250 1250 1280 1250 1250 1250 1250” 1250 2900 2900 2800
y-loc ioo .5 530.5 206.5 20b. 5 206.6 200.5 200.5 200.5 200.5 S12.S 812.5 017.5

start (Hz) "1080 TIB 11S 116 1'l6 116 115“ 116 116 118 108 108
stop (HZ) 1100 138 138 138 138 138 138 138 138 138 118 118

■' —T" 1 l 1 1 1 1 -1 1 ' "O' -  T  ” U

B737: Horizontal Polarization Data (cont.).
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1994

V System LOC "" LOT “LOC LOC
T  K -PW " u

c Pre-Amp 25 25 0 0
TCL -10 33 -11.5 -3.1

_ , ^ 9

i* o A<±L 0 0 0 0
o i. pwr-Amp 0 (j (J 0
u Yx-Gain 1.45 1.25 “ T45 1.45

lotai ib.s2 14.(5 -1.85 -1.6b
“ W h l  " 5b. 1 4y.« 7b.5

win 2 54.0 48.0 87 4 76.6
w in s 51.3 49.2 85.0 77.3
win 4 49.2 45.3 91.1 77.9
w in e 56.7 " 4771" - « / 3 76.6
w in e 50.0 46.3 85.5 76.2
win 7 64.0 45.3 S7.9 73.3
win 8 50.3 56.5 87.2 74.0

C w in s 49.0 457) 83.8 73.5
.2 win 10 49.5 47.7 84.0 75.4<9.a win 11 42.4 "" 5 52 03.0 — ?5.4
re win 12 4a.a 45,3 84.3 74.2
o win 13 46.3 46.2 85.5 72.4

win 14 4S.S 48.3 04.1 71.9
c win 16 44.3 47.0 "53.6 71.4
N win i s 45.3 62.0 85.U 75.8
0 win 17 50.3 56.0 95.1 CO O 44.

w in 18 45.0 5073 TJ/.5 76.9
win 19 46.7 50.3 06.4 76.1

Q win 20 47.7 52.7 89.1 78.7
win z i ” 40.0“ ' 56.3 H/S 77.3
win 22 44.2 81.4 00.6 76.3

o win 23 45.2 5 1.9 88.4 78.0
t win 24 44.8 51.5 87 7 76.$
£ win 26 45.7 50.3 88.0 78.8

win 26 46.0 51.7 88.4 76.7
win 27 45.3 54.5 88.2 " m "
win 28 43.8 49.5 86.9 75.8
win 29 41.7 40.3 84.5 73.0
win 30 39.5 49.3 84.4 73.3
win 31 41.5 46.7 07.0 76.4
win 32 41.3 46.3 T 8 .2 /3.0
Wrlil 33 38.U 4iU 03.1 WJ.b

2354 2y04 yyo4 m
Wins 33 33 33 33

“ Exits 2 h  J " ' 2 2
EXitl 491 491 491 491

“ E xitt 2333 2333 2333 ‘2333
fcxit3 2333 2333 4633 2333

e Em Exits 1 1 1 1
c EmEXI 1250 — |25JJ- 125 0 1250

EmEx2 1250 1250 1250 1260
09 X-IOC 2900 290U 2900 2300

y-loc 812.5 814.5 812.5 812.5
s ta rt (Hz) 109 1U8 TOO 1U8
stop  (Hz) 118 118 118 118
pbi (v/nj U (J u U

B737: Horizontal Polarization Data (cont.).
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— m— 80/ — Ml— ”  BUT”" — ro r"
bystem VHL-U(P) VHF-H(S) VHI--l.(P) VHL-C(S)

Co
rr

ec
tio

n
Fa

ct
or

s

f x-Mwr -JU -1U -IB -10
Pre-Amp 0 0 0 0

TCL •5.2 -8.2 -b.li -5.2
ACL 0 d 6 0

Pwr-Amp 37 " 17" " vr~ 37
Tx-6a!n -10.9 -10.9 -10.9 -10.9

lotai tu.y tu y iu y iu.y

W
ind

ow
 

IPL
 

Da
ta 

(V
er

tic
al

 P
ol

ar
iz

at
io

n!

win} bb.2 bi.a 5U.y
win 2 56.4 62.0 63.5 54.9
win it b/.'i 53.b 6U.U
win 4 61.4 52 5 56.7 57.1
win 5 58.5 53.1 51.9 5!i 3
win 6 62.4 58.8 55.8 53.7
win { 613.7 5T1 bO.b “57 1
win 8 62.3 63.9 55.6 57.0
win 9 57.4 ES 50. 1 49.2
win 10 60.8 69.1 52.2 53.0
win 11 59.2 67 9 57.0 53.9
win Vi 64.9 575 52.7 45.8
win 13 57.8 m 46.6 44.8
win 14 b/.9 557 4/.b 41.U
win 15 60.8 578 56.8 48.5
win 16 53.8 62.b 54.6 "51.2 "
win 17 48.6 48.5 53.0 47.0
win 1b 41.4 52 3 49.9 49.3
win 19 48.8 88 8 52.7 47.3
win 20 47.6 8l 3 45.5 45.7
win 21 bl .2 b3 8 42.6 4b.y
win 22 55.6 53.2 46.0 44.0
win 23 bu.6 blJ.l 45.3 44.2
win 24 49.4 48.0 45.7 435
win 2b 54.1 51 I 50.b 467
win 26 “55.1 5J.1 45.6 45.4
win 2/ 48.0 53,4 46.7 '44 8
win 28 48.0 54.5 51.0 483
win 29 50.1 4ST 48.7 4b 1
win 3U “J5./ ~ 45.9 46.5 4b 6

IAo»
32
&
X
2(BJZ
O

?

Length 3383 3383 yjy?
Wins 32 32 32 32
Exits 2 2 2 2
Exitl m 757 767 /57
Exit2 2810 2810 2810 2810
txitli 2810 ~  25TO "'2810 "" IH'iO

Em Exits 1 I 1 I
"TmExT 1504 16U4 1604 I6U4

EmEx2 1604 1604 1604 1604
x-loc 2003 2003 2056 2056

<
Y-loc -206.8 -5BE.8 205.6 205.8

start (Hz) 116 116 116 116
stop (Hz) 138 1.38 138 138
pot (vm) 1 1 1 i

A319: Vertical Polarization Data (cont.).
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& iO — m — 1 w? n" m r " DU}
r bystem THh-H(PJ VHF-C{*5)

ix-Pwr -IU -111
c Pre-Amp 0 0 0 '"0

e TCL -5.2 -6.2 -5.2 -5.2
P> o ACL 0 0 0 0
O Pwr-Amp 37 37 37 37

(x-<iain -10.9 -10.9 -10.9 -TD.9
lotal 1U.9 iuy iu.y
win i 48.8 4I2.U 44 b
win 2 51.3 55.1 44.1 41.0
win 3 47.0 52.4 39.7 40.2
win 4 56.9 5b.3 46.5 45.6
win 5 55.4 49.1 43.2 44 7
win 6 56.0 52.3 49.5 42.2
win 7 “H55.9 1 52.3 41.4 4s.2

§ win a 58.U 5U.I 45.5 4!TJ
ts win 9 52.6 515 41.8 3l7
•B win 10 52.2 62.4 427 4b.5

win 11 54.4 61 1 SO.O 4? 3
a. win 12 58./ 56.6 44.4 41 9
n win 13 46.5 37.9 31.4 SIB
0 win 14 49.0 44.1 37.5 30 7
•c win IS 51.3 sly 48.4 418
X win 16 51.0 49.3 45.5 4b 4
& win 1'( 46.4 4/6 44.0 47.1

win 18 48.5 48 7 46.7 43 5
-J win 19 ""45.8' 517 48.5 47.3

win 20 48.0 47.2 417 44.6
win 21 46.5 48.6 45.8 49.5

•o win 22 50.9 51.2 457 44.6
win 23 47.7 48 9 47.1 46.3
win 24 48.7 “ 507 47.2 44.1
win 25 48.5 54.0 48.2 46 5
win 26 46.4 50.2 411 4T"B
win 27 46.8 47.5 46.5 35.5
win 28 “ 547 " 47.9 45.5 44,3
win 29 42.7 45.7 39.9 39.4
win ju 43.4 417 41.2 ■■ 37T
Length yyys 3J8I1 3383 r  OTJ
Wins 32 32 '32 32

$ Exits 2 2 2 2
Exitl 767 767 767 767

c Exit2 2810 2810 2810 2OT
Exiti 2810 2810 28l0 iSTB

E km kxits 1 I 1 1
£ EmExI 1604 1664 1604 1604
£ kmkx2 !bU4 1OT 1604 1604
E x-ioc 2o08 2003 2056 2066
H y-loc -205.8 -206 8 i(36.b 206.8

start (Hz) 116 1TS 116 116
stop (Hz) 188 188 138
pot (vm) i i 1 \

A319. Horizontal Polarization Data (cont.).
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6 113 W 4/7 ■■ 4yj1 1 '4yj " — 177— ' 4/7' 45/ TCT " m IHT 4m — -----JB1-----

f
bystem lISIH) TUCM" L'0(J(S} UMt-l(H) UMt-l(b) 7HI--L(P)" Vllh-L(S) Alt-Up} AIL-1(81 FIIJ-B(PT a IL-h(s|
ix-Mwr -IU -IU - IU -1U -IU -IU -IU ” fll -

Pre-Amp 0 0 0 0 0 0 0 0 0 0 0 0

» s TCL -8.8 ' -9.8 -4.9 -4.9 -15.7 ' -15.7' -5.2 -5.2 -fO -164 -16.4 -16 4
ACL 0 0 0 0 0 0 0 0 d 0 0 0

Pwr-Amp 8? 3/ 3/ 3/ 37.5 3/.5 37 37 37 5 37.5 37.S 37 5
Tx-Galn i.OJ 1.03 -12.0$ -12.85 5.32 5.32 -10.9 -10 9 4.85 4.86 4.65 4.85

lotal iy.23 19. i i y 25 y.25 1 / 12 "  i/.r?" “ my iu.y isr.yb -' ib.SB" —ij'.yb Ib.yb
win 61.6 M.y Uli.O bJ.b 45.U 49.4 4b. 1 42.4 44.1) 52.2 bU.b 49.3
win i 50.4 52.6 62.2 86.0 44.2 50.0 45.9 48.8 45.8 61.9 49.7 43.3
win J 51/ 63 U 70.0 tz.i 54.(J Adi 46,0 16.3 41.1 53 5 bU.b 46.1
win 4 49.6 53.1 70.0 72 1 46.9 48.6 46.3 53.6 41 3 53.0 50.9 47 0
win 5 5f5 49.6 “77.0 76.2 46.9 47.5 47.7 52.9 44.1 54 5 i0.6 4b0
win 6 54.1 53 1 71.$ 69 0 494 46.6 53 0 52.2 47 4 51 7 51.2 45 4
win 7 49.9 54.8 /S.6 71 3 50.2 5U.0 55.7 ■53.2 457 bb 4 48.0 452
win 8 52.1 53.2 76.1 79.6 52.7 48.8 478 52.4 48.2 54.1 55.1 45 8
win 9 54.2 51.6 ai.o 6/5 b2.h 491 54.1 TI9.4 56 .'4 56 1 S1.2 46,6
win 10 55.3 53.9 79.8 70 0 53.2 50.6 49.4 55.1 54.1 62.1 46.4 492
win 11 51.7 53.4 >7.5 H a 51.8 49.$ 56 8 56.7 54.6 56 T S0.4 46.7
win 12 53.7 §0 2 77.4 73 0 51 2 49.9’ 65.3 63.5 457 bb b bS.O $2 2
win 13 53.3 52.0 70.7 69.0 52.4 51.2 523 50.Q 50 2 57 8 56.2 47.5

.2 win 14 56.6 65 5 82.4 “ 777T " 49.3 51.6 53.8 54.7 53.1 bb b 51.9 47 9
fc win 15 61.2 53,0 77.4 77.0 49.2 53.7 50.0 52.6 56.2 597 57.6 47.3
k win 16 54.9 59.5 74.3 TO 51.5 53./ 47 0 48.4 47 0 55 5 bb.l W5
z win 17 57.2 61.1 >5.2 68.1 51.6 53.8 51.2 54.1 55.3 EOF bt. 6 46.6

win 18 58.8 66.1 “93.2 t t  3 bd. ( 54.5 52.0 56.4 53.4 58.3 58.4 63 3
o win 19 60.4 56.7 76.7 75.7 53.8 55.5 48.3 55.5 51.1 59 3 60.5 56 9

win 20 63.1 59.8 69.9 7! 1 51.4 57.2 53.0 57.9 48 3 62.1 56.3 53 2
e win 21 56.3 50.6 79.3 / b.4 53.6 56.1 54.0 54.8 54.7 63 2“ EB.5 57 .3
43 win 22 58.3 57.7 79.6 >9 3 54.3 55.2 59.3 56.5 54.0 58.4 57.8 35 5

win 23 6 0 62.1 74.4 /b.3 6(3.4 5 f.6 56.2 56.8 51.4 58 4 57.1 68.(1
a. win 24 62.5 57.7 79.4 74.5 53.7 56.8 54.9 58.2 56 5 61 4 60.8 59 2
5 win25 54.9 58.3 8±b 82.2 5T5 60.0 54.7 69.0 56.7 58 b 58.2 5.3.2
5 win 26 58.7 60.0 83.4 85.6 54.2 57.3 58.6 57.0 56 1 578 E9.6 57 0
c win27 64.3 54./ “S2.5 ...STS ' 55.B 57.3 56.1 57.4 OT bU 3 58.4 " 57T "
5 win 28 60.6 63.1 84.0 827 53.8 60.9 59 7 56.9 58 5 61.7 62.2 56 5

win 29 6(j.O 54.6 “59.4 TO 53.6 57.8 57.9 67.5 b/.l 632 bU.b 53.2 "
win 30 62.0 56.1 83.4 769 56.8 57.8 55.8 56.5 59 & 60.1 62.6 56.5
win 31 66.8 60.0 79.9 83 7 56.1 57.6 55.2 66.2 59.5 63.0 64.7 59.9
win 32 63.2 57 4— 83.5 76 9 56.5 57.6 53 b 6 u./ bb b IjU.b 63.6 5b9
win 33 58.5 56.5 76.9 76 3 55.5 59.1 55.1 56.5 56.3 62.5 60.8 59.5
win 34 60.5 5b .6 80.1 877 ' 567"' 58.7 ”553 bb.b S5T 61 T ~ 63.6 56 4
win 35 62.0 63.9 79.2 785 57.8 60.0 59.9 56.9 58.0 59.6 60.6 54.8
win 36 58./ 59.9 85.2 82 0 55.8 ” 59.1— 5b 2 bb. I SET bb.b 59.3 54 0
win 37 63.2 61.4 85.0 84.1 55.7 61.8 56.7 56.7 55.4 64.1 59.6 54.4
win 38 62.4 56 2 82.6 8'4 5 ' 56.'9 62.4 54 3 btj.l 586 bb.b 57.8 56 i
win 39 60.5 63.3 80.1 798 53.9 61.4 57.7 57.7 55.9 63.0 59.6 56.5
win 4u bl.B 59.9 92./ 4 5 t ' i 61.6 52.5 b«.4 bb. 1 65.4 t>/./
Length 'J/5U 'i/bO 3/5U 3/50 3/5U 3/5U J/5U J/bU li/ibtl J75U J(5u i t  bU
Wins 40 40 40 40 40 40 40 40 40 40 40 40

ft Exits 2 2 2 ' T "  ' t 2 2 " T "  ' 2 2 2 2
•■ta Exitl 780 780 780 780 780 780 780 700 780 780 780 780
■c Lxit2 3060 "3050 "3050 3050 3050 3U5[) -joso " 3050" ' 3050 305U 3050 3050

Exit3 3050 3050 3050 3050 3050 3050 3050 3050 30E0 3059 3050 3050
2 hm Exits 2 2 2 2 t 2 2 T "  ' 2 2 2 2
£ EmExI 1002 1002 1002 1002 1002 1002 1QQ2 i002 1002 1002 1002 1602

Lmtx2 1709 T705 T709 1709 17£J9 i/u9 1709 i 709 1709 170F T709 ' f7TO' '
2 x-loc 200 200 260 200 400 400 811 811 920 92(1 870 670
ii y-ioc -113 -113 0 0 -206.8 -206.8 206.8 206.8 26S.B 206.8 -266.8 -206.8

start 325 32b 108 1Ub 960 ' 960" 116 TT5'" ' I02U 1020 1020 1020
stop Hz) 340 $46 113 113 1215 1215 136 138 104(5 1040 1040 1040
poi (v/h) U 0 U U 1 I 1 1 r 1 1 1

A320: Vertical Polarization Data.
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4 6 / 461
System 7iVJ{(PJ GPS(S) "VHkC{P} VHI-L'fS)
ix -rw r -JU -3'U " -10" -IU

C Pre-A m p 0 0 6 0
TCL -21.4 -7T.4 -5 2 -b.2
a Cl 0 T 0 0

0 i. Hwr-Amp i t 3 / 37 ■if
rx-G ain 7.5 T.i -100 -10.9

lotal -6.9 -6.y iu.y iu.y
win 1 T i . V  " " ' TT'9 63.4 bu.d
win i 76.9 705 62.0 64.6
win 3 /1.6 W1 64.2 64 5
win 4 75.3 73.1 56.7" 07.7
win 5 / / .  5 /4  0 b/.b 6 / 4
win 6 76.9 73.3 63.0 07.5
win / 79.0 76 1 " x i . r " 66 6
win 8 62.0 71 8 61.5 54.7
win 9 " 7 0 .5  ” 7 3 3 66.6 017

w in 10 80.1 72.9 60.6 57.6
win 11 82.2 74 2 58.1 62 2
win 12 01.3 74.4 51.7 50.3

“S win 13 80.6 76 6 60.7 65 2
O win 14 01.4 /b  6 55.7 56.3
%
N win 15 80.9 75 2 48.1 522
(9 win 18 ' / B  6 7! 2 58.4 55.8
O win 17 81.3 74.0 56.7“ 59.6

w in 18 " 0X§ n  a 56.9 4b./
U win 19 84.9 76.2 56.2 51.4
6» win 20 83.2 74.9 60.4 50.5

win 84.8 /8.4 55.3 5b. 6
43 win 22 86.4 79 9 55.6 59.0
8 win 2 3 " 05. \ 7TS 61.b 63.0
cl win i4 84.6 8! 6 58.5 56.4
i win 25 "T i.3  " 82.5 50.6 50.9

win 26 03.9 70.2 51.7 49.1
c win I t 02.5 7X4 49.6 5(J 0

win 28 84.6 75e 45.4 47 2
win 20 87.0 8U.6 4 t.i 4 9 1)
win 30 83.7 812 48.6 51.5
win 31 85.3 83 7 47.0 47.7
win 32 85.2 { f t 39.0 bu b
win 33 86.8 85 4 47.9 49.3
win 34 89.1 9713 49.4 56.2
win 35 95.1 78.3 56.3 57.7
win 36 86.2 8X4 50.1 1 O T  '
win 37 80.8 836 53.9 95.3
win 38 8 f t 9T9 53.7 6/.4
win is 87.5 0T3 59.4 06 8
win 4U T 4  .y " BU.fci Wi.h 51 .y
Length J /b 0 y /y i 9/bl! X/bU
W ins 40 40 40 40

<3
Exits 2 2 ■ 2 2
Exitl 780 780 780 780

•c Lxit2 3050 305U 3060 3050
Exit3 3050 3000 3050 3000

2 tm  Exits “"2 " 2 2 ~2
c E m ExI 1002 1002 1002 1002

HmEx2 ' i/09 "" 1709 I/U9 " 1709
2 x-loc 1217 1217 2456 2456
ii y-loc 206.8 206.8 206.8 206.8

s ta r t  (Hz) 1665 1565 11S 116
s to p  (Hz) 1585 1506 138 138
poi (v/nj U 0 1 1

A320: Vertical Polarization Data (cont.).
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A320: Horizontal Polarization Data (cont.).
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