
Old Dominion University
ODU Digital Commons
Electrical & Computer Engineering Theses &
Disssertations Electrical & Computer Engineering

Winter 1996

Modelling an Optical Fiber Bragg Grating
Claudio Oliveira Egalon
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

Part of the Electrical and Computer Engineering Commons, and the Optics Commons

This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted
for inclusion in Electrical & Computer Engineering Theses & Disssertations by an authorized administrator of ODU Digital Commons. For more
information, please contact digitalcommons@odu.edu.

Recommended Citation
Egalon, Claudio O.. "Modelling an Optical Fiber Bragg Grating" (1996). Doctor of Philosophy (PhD), dissertation, Engineering and
Technology, Old Dominion University, DOI: 10.25777/qacw-ws98
https://digitalcommons.odu.edu/ece_etds/60

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fece_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece?utm_source=digitalcommons.odu.edu%2Fece_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=digitalcommons.odu.edu%2Fece_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/60?utm_source=digitalcommons.odu.edu%2Fece_etds%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


MODELLING AN OPTICAL FIBER BRAGG GRATING

by

Claudio Oliveira Egalon

B.Sc. in Physics, December 1984, Federal University of Rio de Janeiro, Brazil 
M.Sc. in Physics, The College of William and Mary, December 1988 

Ph.D. in Physics, The College of William and Mary, May 1990

A Dissertation submitted to the Faculty of 
Old Dominion University in Partial Fulfillment of the 

Requirement for the Degree of

DOCTOR OF PHILOSOPHY 

ELECTRICAL ENGINEERING

OLD DOMINION UNIVERSITY
December 1996

Approved by:

Dr. Sacharia Albin

Dr. Linda L. Vahala

Dr. Vishnu K. Lakdawala

Drfjohn B. Cooper

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

MODELLING AN OPTICAL FIBER BRAGG GRATING

Claudio Oliveira Egalon 

O ld  Dominion University, 1996 

Director: Dr. Sacharia Albin

A theoretical investigation of a single mode optical fiber with one and two 

superimposed Bragg grating is presented. The formulation relies in the 

determination of an approxim ate solution in the asymptotic region of one of 

the fiber parameters. A correction is then applied to the asymptotic solution 

using the Method of the Successive Approximations also known as the 

Piccard Method. The approxim ation was then compared to the numerical 

solution using the Runge-Kutta method. Assuming that each Bragg grating 

has modulation frequencies given by Q! and Q2, it has been found that the 

second Bragg grating shifts the peak reflectivity of the first one by a small 

amount. The direction of the shift depends on the relative value of Ql and 

Q2■ The fiber Bragg grating solution has been succesfully applied to other fiber 

devices.
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CHAPTER I 

INTRODUCTION

1.1 Historical Background

The coupled mode equations can be used to solve several important problems 

in Physics and Engineering [Cardimona et al., 1995; Shi and Okoshi, 1992a and 

b; Huang et al., 1992; Haus and Huang, 1991; Marcuse, 1990; Lam and Garside, 

1981; Yariv, 1989; Park et al., 1989 and Kogelnik and Shank, 1972]. They have 

been used to model distributed feedback (DFB) lasers, [Kogelnik and Shank, 

1972; Yariv 1989 and Marcuse, 1990], intermodal switches and mode 

converters [Park and et al., 1989; Bilodeau et al., 1991 and Shi and Okoshi 

1992a and b], optical fiber filters [Hill et al., 1978 and Lam and Garside, 1981], 

optical fiber sensors [Morey et al., 1989 and 1994] and other devices.

Kogelnik and Shank [1972] have analyzed the laser action in a periodic 

structure using the coupled mode equations. This procedure has been 

repeated by Yariv [1989] to determ ine the longitudinal modes of vibration of a 

laser whereas Marcuse [1990] presented a theoretical study of a DFB laser with 

an attached external intensity m odulator.

Mode converters have been fabricated by Hill et al. [1990] and Bilodeau et al. 

[1991]. These converters use a periodic grating to transfer power from the
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fundamental to higher order modes and  have applications in bimodal 

networks [Blake et al., 1986 and Park and Kim, 1989]. Shi and Okoshi [1992] 

undertook a theoretical analysis of one of these converters, the LP0i-«-*LPo2 

converter, and determ ined that a narrow  spectrum of power conversion 

could be obtained by reducing the index perturbation, the core-cladding 

refractive index difference and the core radius.

Hill et al., [1978] were the first to propose that a reflection filter could be 

fabricated from a photosensitive optical fiber. A dditional work by Lam and 

Garside [1981] dem onstrated that the solution of the coupled mode equations 

of an optical fiber w ith a periodic grating compared very well with 

experiments they have undertaken. They found, am ong other results, that 

the spectral bandw idth increases w ith the writing pow er of the laser.

Finally, the coupled mode equations have been used to determine the 

behaviour of optical fiber sensors for strain and tem perature [Morey et al., 

1989 and 1994]. These sensors use the shift in the Bragg wavelength to 

determine the param eters to be measured.

This work is concerned with the solution of the coupled mode equations 

applied to optical fiber Bragg gratings. An exact analytical solution for this 

kind of equation is not known but it is possible to obtain an approximate 

solution in the asymptotic region of one of its param eters [Miller, 1968; 

Snyder and Davis, 1970; Kogelnik and Shank, 1972; Lam and Garside,1981; 

Snyder and Love, 1983; Haus and Huang, 1991 and Shi and Okoshi, 1992a]. 

This asymptotic solution, although not exact, fits very well the experimental
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results [Limberger et al., 1993) because of the order of m agnitude of the 

wavelength of the light and the period of its associated Bragg grating. These 

quantities make up the so-called a-param eter that is used in the asymptotic 

region, i.e., a=>oo. However, if a  w ere to be lower, the asymptotic solution 

would not work as well and a first order correction w ould be required.

Although this asymptotic solution has been known for some time [Miller, 

1968; Snyder and Davis, 1970; Kogelnik and Shank, 1972; Lam and 

Garside,1981; Snyder and Love, 1983; Haus and Huang, 1991 and Shi and 

Okoshi, 1992a], a clear detailed mathematical procedure outlining its 

derivation has not been found. The derivations found in the literature 

restrict to qualitative explanations such as neglecting the high frequency 

terms of the coupled mode equations [Yariv, 1989 and Snyder and Love, 1983] 

but present no transparent straight-forward mathematical procedure that 

justifies this assumption. Maybe, the best attem pt at its derivation was m ade 

by Snyder and Davis [1970]. However, it has been found that the procedure 

presented is not self-consistent and their first order correction does not agree 

with the numerical solution [see Appendix D and Egalon et al., 1996]. 

Furthermore, extensive comparison between the asymptotic and numerical 

solutions has not been found in the literature as well.
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1.2 Research Overview

In this work, a clear, straight-forward mathematical procedure is outlined in 

the derivation of the asymptotic solution of a single mode optical fiber with a 

single Bragg grating. This solution was then used to determ ine a first order 

correction to the asymptotic solution which may apply whenever a second, 

co-located, Bragg grating is super-imposed to the first one. This procedure can 

be used to determine the effects of additional gratings, blazed gratings, 

multimode optical fibers, tapered couplers etc. The m ethod presented here is 

a modified and improved version of the procedure outlined by Snyder and 

Davis [1970] which was found to make unnecessary assumptions and to be 

slightly inconsistent [Appendix D and Egalon et a!., 1996], For this reason, 

some of this formulation had to be modified leading to an improved version. 

Basically, the method consists of

i) determining an approximate solution of the coupled mode equations using 

an asymptotic assumption and

ii) applying a first order correction to the asymptotic solution using the 

Method of the Successive Approximations, also known as the Piccard Method 

[Ince, 1956; Greenspan, 1960; Rowe, 1962 and Volpert and Volpert, 1990].

These approximate solutions were then com pared to a numerical solution 

obtained by using the Runge Kutta method. Since the coupled mode 

equations of a single mode fiber is basically a Boundary Value problem, an 

initial guess, or initial value, had to be provided to the numerical solution. 

This initial value was chosen from the approximate solution derived, and the
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final numerical result compared to the analytical formulas throughout the 

domain of values.

For the case of two superimposed Bragg gratings it was found that the second 

grating produces a very small shift in the wavelength of the peak reflectivity 

of the first grating; the very presence of this term can shift this wavelength 

either towards longer or shorter values. However, it has also been found that 

this correction can be neglected at least for the range of parameters used.

Although an exact solution for the coupled mode equations with a periodic 

variation in the refractive index along the propagation length of the wave is 

not known, there is sufficient evidence in the literature that shows that an 

approximate solution can be applied to many optical devices. Several of them, 

such as DFB lasers, mode converters, optical fiber reflection filters and sensors 

have been analysed using this approximate solution leading to results that are 

compatible with experiments.
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CHAPTER H 

THE COUPLED MODE EQUATIONS

II.l Introduction

It is a well known theoretical result that transference of power among modes 

does not occur in translationally invariant fibers [Marcuse, 1974 and Snyder 

and Love, 1983]. In this kind of fibers, the refractive index profile, n, and the 

core radius, a, are invariant along its length, i.e., they are independent of the 

axial coordinate z. However, if a fiber is translationally variant, mode 

coupling, or transference of pow er among modes, will occur. This coupling 

can be explained by the fact that the l/-num ber -a param eter that determines 

the num ber of modes in a fiber-, varies along the fiber length. Because the 

fraction of power in a given mode of an optical fiber is a function of the V- 

number, it is reasonable to assume that a rearrangement of power among the 

modes in a fiber takes place once the U-number varies along its length. In 

other words variations in the V'-number causes the pow er in a given mode 

to change. Since the total power m ust be conserved, any difference must be 

transferred to other modes.

This coupling can occur among bound a n d /o r  radiation modes and it can be 

described as a set of coupled differential equations [Marcuse, 1973 and 1974; 

Yariv, 1989 and Snyder and Love, 19831. F°r instance, assuming that the 

power transferred among bound and radiation modes can be ignored in a
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single mode fiber, coupling will take place only between the forward and 

backward propagating fundamental modes (see Fig. 1). In this case, the 

coupling is essentially a reflection, a transference of power tow ards the 

backward propagating mode.

forward propagating 
mode (incident)

forward propagating 
mode (transmitted)

coupled (reflected) 
backward propagating mode

Figure 1. Mode coupling in a translationally variant fiber

Similarly, in the case of a two mode fiber, coupling may take place among the 

forward and backward propagating LP01 and LP11 modes. However, in the 

particular case where an optical fiber has a Bragg grating perpendicular to the 

fiber axis, no coupling occurs between these modes. This happens because the 

coupling constants between them, fc01 and&10, are zero, whereas the 

coupling constants between the forward and backward fundam ental modes, 

k QQr and the forward and backward LPn  modes, A:n , are different from zero 

(see Chapter VII). Chapter VII also shows that, for coupling between the LP01 

and LPn  modes to occur, the Bragg grating m ust be tilted, or blazed, with
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respect to the fiber axis. Indeed this effect has been experimentally observed by 

Hill et al. [1990] who determined that a tilted grating transferred power from 

the fundamental to the backward and forward LPn  modes. In other words; a 

grating that is perpendicular to the fiber axis can transfer power only between 

modes that have azimuthal symmetry.

II.2 Outline of the derivation of the coupled mode equations

The coupled mode equations describing the electric field amplitude of a single 

mode optical fiber with a Bragg grating written along its length, can be 

derived directly from the M axwell's Equations [Marcuse, 1973 and 1974; Yariv, 

1989 and Snyder and Love, 1983]. The literature in this area is very extensive 

and can be traced back as far as the early 1950's [Haus and Huang, 1991]. These 

coupled equations may take more than one format once appropriate 

transformations are made. The format followed here is the one adopted by 

Marcuse [1973 and 1974] who derived the coupled mode equations for a fiber 

with any num ber of modes. Throughout this work, it has also been assum ed 

that coupling among bound and radiation modes is negligible.

The procedure outlined by Marcuse consists initially in accounting for the 

refractive index variation along the fiber length in the source-free Maxwell's 

equations. The fields are then decomposed in transversal and azimuthal 

components and in terms of the modes of an ideal waveguide with a 

coefficient that is dependent on the axial coordinate z. The resulting 

Maxwell's equations are then multiplied by the complex conjugate of the
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fields and integrated over the infinite cross section of the fiber. The equations 

are simplified by using the orthogonality relations and lead to a set of coupled 

differential equations in terms of the amplitude of the ideal modes of a 

waveguide. Finally, the field am plitudes are written as a linear combination 

of backward and forward propagating modes. This, added to the fact that the 

z-component of the electric field of a weakly guiding fiber can be neglected, 

yields to the following coupled mode equations;

V  = 2  (c P  e ' ®h+Pv) = + c W e ' uv 0 )
v = 0 v v v '  uv

^C  ̂ =  2  ( cP  e ' ~ + c P  e l fc uv • (2)
d z  v=0

In the above equations, c W and are the amplitudes of the forward and 

backward propagating modes of order and rank n, i is the imaginary constant, 

(5 the propagation constant, N  the number of modes that propagate in the 

fiber, z the coordinate along the fiber axis and k  ^  the coupling coefficient 

between the modes (.i and v given by

k  =  [  f Q z ) E t , v E  * \ i r d r  •  ( 3 )

Here, to is the circular frequency of the light, e 0  the permitivity constant, n Q 

and n the refractive index of the unperturbed and perturbed fiber, 

respectively, £tv the transverse component of the electric field of the mode v,
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r and <j> the radial and azimuthal coordinates of the fiber and P a 

normalization constant. Also in Eq. (3), the asterisk (*) denotes complex 

conjugation.

As mentioned before, Eqs. (1) through (3) are slightly different from the one 

presented by Marcuse for the following reason; in a weakly guiding fiber the 

z component of the fields can be neglected and this simplification has been 

used in the final result shown above.

For a single mode fiber, N  =1 and coupling occurs only between the forward 

and backward propagating fields that are associated with the fundamental 

mode. Applying Equations (1) and (2) to a single mode fiber, the following 

equations are obtained

and

^ l £  = - ( c P  + C £ > e - 2tV --K 'oo  <5)
dz

The Boundary Conditions associated with these equations can be obtained 

considering Figs. 1 through 4. For instance, in a semi-infinite uniform fiber a 

light source can excite only forward propagating modes (Figure 2). In this case, 

the amplitude of the backward propagating mode is zero throughout the 

whole fiber length. However, in a finite uniform fiber, the fiber end-face may

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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semi-infinite uniform fiber
light source

□
>

forward propagating modes

Figure 2. A semi-infinite uniform fiber excites only forward propagating modes

finite uniform fiber
light source

forward
propagating

modes

backward
propagating

mode
Figure 3. The end-face of a finite uniform fiber can introduce backward 

propagating modes through Fresnel reflections
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introduce backward propagating modes through Fresnel reflections (Figure 3). 

In general, these reflections account to less than 4% of the total power in the 

modes and can be neglected. Anyhow, th is kind of non-uniformity in the 

fiber, the glass / air interface, represents a means of transferring power from 

the forward to the backward propagating modes. Another way of exciting 

backward propagating modes would be to add a second light source at the far 

side of the fiber (Figure 4). A third means of doing so would be to introduce 

non-uniformities along the fiber length. A Bragg grating is such a kind of 

non-uniformity that is restricted to a finite region of the fiber (see Fig. 1) for 

this reason, it can introduce backward propagating modes only within the 

region between the source and the far side of the grating. Outside this region, 

i.e., at Z^l, and assuming that Fresnel reflections at the fiber end-face can be 

neglected, there are no backward propagating modes. Taking that into 

account, the Boundary Conditions can be easily derived as

cg>fc=0) = l

and

c $ Z = l )  = 0 ■

These conditions state that the am plitude of the forward propagating mode at 

the input end of the fiber has been norm alized to one whereas the amplitude 

of the associated backwards propagating mode is zero in the after-region of the 

grating. The above boundary conditions are very general and applies to most 

kind of situations.
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uniform finite fiber
source #1 with two sources source #2

*►

forward backward
propagating propagating

modes due to modes due to
source #1 source #2

Figure 4. A second light source at the other endface of the fiber can introduce 

backward propagating modes in the fiber

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

CHAPTER HI 

OPTICAL FIBER BRAGG GRATINGS

III.1 Introduction

Optical fibers with a photo-induced Bragg grating was first reported by Hill et 

al. [1978]. At that time it was observed that light from  a 488 nm argon laser 

was capable of producing a change in the refractive index of a glass fiber doped 

with germanium; a phenomenon called photosensitivity. Hill et a l/s  

experiment consisted basically in injecting the laser light into the fiber, while 

its output intensity w ould be monitored at the other end (see Fig. 5). It was 

observed that the output intensity would decrease with time whereas, at the 

input end, there was a simultaneous increase in the intensity. It was also 

found that the reflectivity spectrum was very narrow  with a peak reflectivity 

at 488 ni n . This phenomenon was thought to be due  to the formation of 

reflection centers by the laser light. These reflection centers are basically an 

increase in the refractive index of the glass, the so-called phenomenon of 

photosensitivity. In order words, the laser light induced an index change in 

the fiber core along its length giving rise to a periodic variation. This 

variation was found to be related to the frequency of a standing wave formed 

inside the fiber; the standing wave formed by Fresnel reflections at the fiber 

end-faces. In summary, the fiber w ould get a perm anent im print in its 

refractive index due to the presence of a standing wave within the fiber. This 

procedure has since been known as internal writing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15
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n r n m i  i n m  i r n m  i m i n  m r r

Argon laser 
488 nm

detector

Figure 5. Experimental set-up used by Hill et al. [1978] to write a Bragg grating

III.2 Advances in Fabrication Techniques

In addition to the internal writing technique another advancem ent was m ade 

with the developm ent of the external writing technique. It consists of 

forming Bragg gratings by transversely exposing the fiber core to two 

overlapping coherent, interfering UV beams [Meltz et al., 1989) of roughly 244 

nm of wavelength (see Fig. 6). This technique has several advantages over 

the previous including greater efficiency, flexibility in the choice of location, 

period and length of the grating, and the formation of gratings of different 

angles with respect to the fiber axis. Indeed, it has been demonstrated that 

tilted gratings are capable of coupling light among bound modes that are not 

circularly sym m etric [Hill et al., 1990], i.e., modes of different order. Among 

these modes, coupling does not occur whenever the grating is perpendicular 

to the fiber axis.
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Figure 6. Experimental set-up for external writing [Meltz et al., 1989]
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A third technique has also been achieved recently [Hill et al., 1993|. In this case 

a diffractive optical phase mask has been used to generate a near-field fringe 

pattern from a UV beam passing through the mask. The period of the fringes 

are one half that of the mask. This procedure greatly simplifies the fiber 

grating fabrication system avoiding fine mechanical displacements required 

when using the coherent UV beam technique.

Recently, Bragg gratings have been written in fibers using a a single 20 nsec 

excimer pulse laser [Askins et al., 1992]. This laser has a higher power output 

allowing a single pulse to write a grating almost instantaneously. This 

technique has since being used to manufacture gratings during autom ated 

fiber draw ing [Askins et al., 1992 and Dong et al., 1993]

Other milestones in the fabrication of Bragg gratings include photo-sensitivity 

enhancement of the material by loading it with hydrogen at high pressures 

and the generation of gratings in fibers with dopants other than germ anium  

such as cerium [Morey et al., 1994].

III.3 Characteristics

The periodic refractive index perturbation within the fiber acts as a m ode 

converter; in general, the conversion is made between forward and backward 

propagating modes. Alternately the grating can also be designed to allow it to 

transfer pow er from the original forward propagating mode into another
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forward propagating mode [Bilodeau et al., 1991J. The mode into which the 

power is converted depends on the grating period and the wavelength of the 

light used. For instance, in a single m ode fiber, conversion occurs whenever 

the so called phase-matching condition is satisfied or

2Po i  - G  =  0-

Similarly, in a four mode fiber, conversion between the forward fundam ental 

mode and the backward LP02 mode is accomplished whenever

Poi +  Po2 ~ G  = 0

where (5 stands for the propagation constant and Q the grating frequency. For 

the case of conversion into another forward propagating mode, the relation is 

slightly different or

Pot ~  P o 2 “ Q  =  0-

The conversion is very selective once the grating is tuned to the proper 

modes and the spectral distribution of the conversion is narrow as well. 

Typical values of the bandw idth of the reflection and transmission peaks are 

of the order of 1 nm .
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Table 1. Optical fiber dopants for optical fiber lasers.

dopant paper(s)

Erbium Mears et al., 1987; Zyskind, et al., 1992; 

Ball and Morey, 1992; Sejka et al., 1995

N eodym ium Reekie et al., 1986; Mear et al., 1985; 

Ainsle et al., 1988

T h u liu m Esterowitz et al., 1988; Allen and 

Esterowitz, 1989

H o lm iu m Brierley et al., 1988; Hanna et al., 1989

Ytterbium Asseh et al., 1995; Hanna et al., 1988

S am arium Farries et al., 1989

Praseodym ium Percival et al., 1989 and Ohishi et al., 1992

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

III.4 Devices

Several optical fiber Bragg devices have been envisioned such as optical fiber 

lasers, fixed and tunable filters, mode converters and strain and temperature 

sensors [3M, 1996; Morey et al., 1994 and Morey et al., 1989]. In what follows 

each of these devices is briefly discussed.

Ill.4.1 Optical fiber lasers

Lasing conditions in an optical fiber Bragg grating can be achieved by using 

the grating as a feedback mechanism, a fiber dopant for the gain medium and 

a pum p source for excitation. There are several optically active dopants for 

fiber lasers reported in the literature (see Table 1); some of them are 

appropriate for silica whereas others can be used with fluoride fibers. The 

pum ping mechanism can be made with another laser, such as Ti:sapphire, at 

an excitation wavelength of 980 nm [Ball and Morey, 1992] whereas 

tunability can be achieved by applying axial strain to the fiber in its grating 

region [Ball and Morey, 1992]. The axial strain basically changes the grating 

period and the fiber refractive index by a small amount producing a shift in 

the Bragg wavelength. This shift can be as high as 10 nm (see Chapter VII).

An optical fiber Bragg grating laser basically can be modelled as a resonant 

cavity with gain [Yariv, 1989]. The coupled m ode equations generated are very 

sim ilar in format to the coupled mode equations of a fiber w ithout gain.
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III.4.2 Optical fiber filters and mode converters

A Bragg grating within the fiber acts as a wavelength-selective reflector. A 

wavelength selective reflector is virtually a mode converter that converts the 

pow er in the forward propagating modes into the backward propagating 

modes. This application was first reported by Hill et al., [1978]. The peak 

wavelength of the reflection filter is determined by the period of the grating 

in accordance with the Bragg condition (see Eq. (96)), i.e., on the order of 

10-6m . Figure 7 is a plot of the reflectivity spectrum of a single-mode, single 

grating fiber, against the wavelength; the plot is given by Eq. (27). This result 

compares very well w ith experiments [Limberger et al., 1993]. As it can be seen 

the filter is very wavelength selective with a bandw idth on the order of 2 

n m .

This kind of fiber can also be used as a mode converter among forward 

propagating modes [Hill et al., 1990; Bilodeau et al., 1991] with the difference 

that the grating period is on the order of 10-4m , i.e., three orders of 

m agnitude longer than the period of a reflector. A typical experimental set-up 

for a mode converter is shown in Fig. 8; it is composed of a light source, a few 

m ode fiber, a mode stripper and an optical spectrum analyser, OSA. Light 

from a broadband source is introduced into the fiber where a mode stripper 

strips the higher order modes allowing only the fundamental m ode to 

propagate through it. Once the light reaches the grating, some of the power is 

transferred from the fundamental mode to a higher order mode, such as the 

LP02. Another mode stripper is introduced in the far end of the grating 

stripping the fiber from the higher order modes. A spectrum analyser
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Figure 7. Reflection spectrum of a single Bragg grating at wavelength 1.3 (.im. 

The normalized coupling constant was assum ed to be 2.0, >icore=l-46 and

L=0.03 m
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mode mode
-----------  stripper stripper -----------

O  I o

\ grating region -----------

optical spectrum 
source fiber analyser

Figure 8. Experimental set-up for a mode converter

determines the final output as a function of the wavelength. Since the 

coupling between the fundamental and higher order modes occurs mostly 

within certain values of the wavelength, the output read by the OSA will 

have some gaps in it. Typical outputs are shown in Hill et al. [1990] and 

Bilodeau et al. [1991].

III.4.3 Optical fiber sensors

Another application of Bragg grating fibers is in the area of optical sensing; 

such as strain and tem perature distributed sensing. Mechanical and thermal 

strain, provokes a shift in the Bragg wavelength [Xu et al., 1994; Kersey and 

Morey, 1993 and Chapter VII] in the same way that they shift the phase in a
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Mach-Zender sensor. This shift is a t most lOnm for coupling between 

forward and backward propagating modes and can be up to three orders of 

magnitude longer for coupling am ong forward propagating modes. By 

monitoring this shift, strain and tem perature variation can be determined. 

This effect is due basically to changes in the fiber length and refractive index. 

Chapter VII has a detailed derivation of how much shift occurs once 

mechanical and thermal strain is applied to a Bragg grating optical fiber.

Actual distributed strain can be accomplished by writing several gratings 

along the length of the fiber, with different grating periods. In this case the 

shift would be around the Bragg wavelength of each grating -the locations of 

which are known before hand. Another technique consists in writing several 

similar gratings along the length of the fiber and measure the shift of each 

one by using a Fourier transform. These techniques are capable of determining 

different strain locations along the length of the fiber.

III.5 Summary

Since its discovery in 1978 optical fiber Bragg gratings have found applications 

in several fields. In this Chapter a brief outline of the devices envisioned was 

given so the reader can appreciate the usefulness of this new technology. 

There are several other applications that have not been mentioned such as 

wavelength division multiplexing, optical fiber chemical sensors etc.
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CHAPTER IV

COUPLED EQUATIONS OF AN OPTICAL FIBER 

WITH A SINGLE BRAGG GRATING

IV.l Introduction

For the case of a fiber with a single Bragg grating, the refractive index n is 

given by

n =^o + 6« (1 +cos (cQ ))  •

where bn is the index modulation and Q is the frequency of variation of the 

refractive index. The above relation for the refractive index yields a very 

complicated solution of the coupled mode equations. However, it has been 

found that the approximate relation

n = no + 6n cos(cQ) (6)

yields much simpler solutions. Furthermore, bn is a very small quantity, 

i.e., 6u<10~2 which implies that Eq. (6) is a very good approximation to the 

refractive index in a Bragg grating fiber. In addition to that, Eq. (6) has been 

used over and over again in the solutions of the Bragg grating fiber resulting 

in very good agreement w ith experimental results [Lam and Garside, 1981 and 

Limberger et al., 19931. Because of these three reasons, it has been chosen to 

use Eq. (6) as the relation for the refractive index solution.
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Substituting Eq. (6) into (3) and taking into account that 6n is very small, on 

the order of 10-4 to 10~2, the squared terms can be neglected. The coupling 

constant can then be rewritten as

i f c o o ^ c o s U Q )  (7)

w here

2 P f f  l^t.o|2 r d r d *  J o  J o
j - = - 6n _Q)80 AZoj_ [ f  \ E t n \ 2  r d r d b  (8)

Introducing Eq. (7) into Eqs. (4) and (5), and expanding the circular function in 

terms of complex exponentials, the coupled mode equations reduce to

= A ° °  [(e'C2P. + a ) :  + e / ( 2 P . - Q ) i ) c p  + (e - / Q i  + e i2 ; )  c £0] 
d z  2

(9)

d c $  =  _ k  op r / -i-Q; + e «Q:)c p  + (g-f(2P0 + Q)= +  ̂- i  (2p0-  Q) c) c £) ] 
d z  2

(10)

Introducing L as the length of the Bragg grating and defining the real 

norm alized param eters

Z - —  / (U)
L
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a  = (2  p 0 +  Q ) L r (12)

Y = (2  P 0 - Q ) £  and (13)

(14)

Eqs. (9) and (10) reduce to the following

d Z  2
(15)

d Z  2
(16)

In the above, y is the normalized phase matching parameter and C00 the

determines the wavelength at which coupling is maximum among modes 

whereas the the normalized coupling constant determines how strong is 

coupling among modes.

IV.2 The Asymptotic Solution

A simple asymptotic solution of Eqs. (15) and (16) can be obtained for large 

values of a . This solution applies to the case in which a » l  and a » y  or, 

more specifically, a> 1 0 0  and a /y>100 . For bound modes of an optical fiber, the
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first condition always hold because of the order of magnitude of the

wavelength and the grating period. More specifically, large values of a  are

106m -1. This can be appreciated by analysing Eq. (12) which indicates that a  is 

on the order of 105 for grating lengths of a few centimeters, refractive index 

values around 1.5 and wavelengths in the visible region of the spectrum.

In general, the relation a/y>100 is satisfied specially in the neighborhood of 

the phase matching condition where y«0. Similarly, from its very definition, y 

will always be smaller than a. Taking these facts into consideration, the 

asymptotic solution can now be derived. By integrating both sides of Eqs. (15) 

and (16), it is clear that the integrals involved are of the form

where a can be either ±a, ±y or ±(a-y)/2. Integration by parts of Eq. (17), 

generates an expression with coefficient 1 /a  or

Further integration by parts of the remaining integral generates additional 

powers of 1/a with an integrand directly proportional to the derivative of the 

am plitude of the electric field. This quantity will always be finite no m atter 

the values of its parameters and, for this reason, the second term in the right 

hand side of Eq. (18) will become negligible whenever a=*><» or
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olURc /  ^ (a ' y),7;2 c f i d Z  = d isk  j  e * a i Z c $ d Z  *  0 (19)

This approximation, the so-called Asymptotic Approximation, neglects the 

higher frequency terms in the solution of the coupled mode equations 

[Snyder and Love, 1983j. So, applying Eq. (19) to the integrals of Eqs. (15) and

(16), reverting this result to a set of differential equations and adding  a zero 

subscript to the fields to distinguish them from the exact solution, the 

coupled differential equations reduce to

d c % = _ C 00 j gY,-z o  (20)
d Z  2

and

dc  &  = C  oo 1 r  Q - (21)
d Z  2

The solution of this set of equations is obtained by turning them into a single 

second order differential equation in terms of either c or c ($ j such as

d  ° $ °  -  i Y -  C oo r  = 0
d z 2 d z  4

The solution of the above equation is straight-forward and can be obtained in 

term s of exponential functions. Next the Boundary Condition for is 

applied and the resulting equation is substituted into Eq. (20). Finally the 

Boundary Condition for c ^ 0 *s a lso applied leading to the final solution
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where

'I = ■ <M>

This result can be directly verified by substituting them  into Eqs. (20) and (21). 

It is important to point out that the Boundary Conditions of the asymptotic 

approximation are the sam e for the exact field solution.

IV.3 Comparison between asymptotic and numerical solutions

In order to determine the validity of the asymptotic approximation a 

comparison was made w ith the num erical solution. The procedure used 

consisted basically of four steps;

1. the original coupled mode equations, Eqs. (15) and (16), were broken down 

into four separate equations describing the real and imaginary portions of the 

fields;
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2. then the asymptotic approximation w as used to determ ine the initial 

value of the backward propagating field at Z=0 (the initial value of forward 

propagating field is already given by the initial condition);

3. with the values calculated in 2, the problem was then treated as an initial 

value problem using the Runge-Kutta method [Maron, 1982, Chapter 8, 

subroutine RKF4 and Prescience, 1994]. The final result was a numerical 

solution of the am plitude fields throughout the Z interval, i.e., 0<Z<1, and 

finally

4. the power in the backward propagating mode given by

P = \ c & \ 2 <25>

was obtained for both numerical and asymptotic solutions and compared 

between each other.

This method can be thought of as a slight variant of the shooting method in 

which an arbitrary value of the backward propagating field is chosen at Z=0. 

Using this value the differential equation is then solved as an initial value 

problem throughout the domain of values of Z. The final numerical 

solution at Z=1 is then compared with the actual Boundary Conditions and, 

depending on the outcome of this comparison, it is chosen either to refine the 

original value of the backward propagating field or to end the iteration 

process. In the procedure adopted here, the second step or refinement in the 

initial value, is not undertaken because the intention here is only to 

determine whether the numerical and approximate results are compatible
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between each other. Furthermore, additional refinement w ould result in 

extensive computer time. Some of the results are presented in what follows.

Using the procedure discussed above, several plots of the numerical and 

approximate solutions were made against the norm alized longitudinal 

coordinate. Figures 9 and 10 display some of these results for a typical value of 

a , a  =100,000 (see Appendix C), and a few additional values of y and C00. It 

can be seen from Fig. 9 that the numerical solution can hardly be 

distinguished from the asymptotic one for all three cases. The exception is the 

case in which y=10,000. At this value both curves differ slightly but the 

coupling is very small as well. The small difference is due  to the value of y 

which is only 1/10 of the value of a . If y were to become higher the difference 

would increase even more since the asymptotic solution was derived for 

a » y .  Also, notice that the higher the modulus of tj, the lower the power 

transferred to the backward propagating mode, i.e., the higher the rj the lower 

the coupling between modes.

In Fig. 10, the transferred power was plotted against Z for y=0. This y value 

corresponds to the so-called phase matching condition in which maximum 

power is transferred between the modes. From Fig. 10, it can readily be seen 

that the higher the value of the normalized coupling constant C00, the lower 

the Z-value at which the numerical and asymptotic solutions start to 

diverge. For instance, whenever C00 =5, both solutions diverge at Z=0.7, 

whereas for C00=7, they diverge at Z=0.5. It is not clear why there is this 

difference between the numerical and asymptotic values. One explanation 

would be the possibility that the numerical solution diverges for these 

particular param etric values. Another explanation m ight be that the 

asymptotic solution fails in this parametric region as well.
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Figure 9. Numerical and asymptotic solutions for the transferred 

power against the norm alized position.
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Figure 10. Numerical (dashed curves) and asymptotic (solid curves) solutions 

for the transferred power against the normalized position in an optical fiber 

Bragg grating nearby the phase matching condition, y=0. The higher 

the value of the coupling constant, the more the numerical 

and approximate solutions deviates from each other.
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IV.4 Reflectivity of a single mode fiber with a single Bragg grating

One parameter of particular interest in an optical fiber Bragg grating is the 

reflectivity of the grating. Once light in the forward propagating mode reaches 

the Bragg grating, some of its power is transferred to the backward 

propagating mode. This power transfer is virtually a reflection. Accordingly, 

the reflectivity of a Bragg grating is related to the power in the backward and 

forward modes [Lam and Garside, 19831 at Z=0 or

Using Eq. (26) and the result for the asymptotic solution, Eq. (26) reduces to

where R0 is the reflectivity obtained using the asymptotic solution. Figure 11 

is a contour plot of the reflectivity against the normalized coupling constant 

and the normalized phase matching parameter. As it can be seen, the 

reflectivity increases with the normalized coupling constant and  is maximum 

at the phase matching condition y=0; a result well known in the literature 

[Lam and Garside, 1981; Haus and Huang, 1991 etc[.

R  = (26)

(27)
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Figure 11. Contour plot of the Reflectivity against the normalized coupling 

constant and the normalized phase matching param eter for a single 

Bragg grating optical fiber. At a given value of the coupling 

constant, the reflectivity is maximum at y=0.
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IV.5 Summary

In this section the asym ptotic solution was reformulated for a single mode 

fiber with a single grating. A step by step mathematical procedure was 

presented to arrive at a final approximate solution. The approxim ate solution 

was then compared w ith the numerical solution using the Runge-Kutta 

method. It was found that both analytical and numerical solution agree very 

well whenever the norm alized coupling constant is less than 5. A t high 

values of the coupling constant these two solutions diverge. The 

disagreement in this region is thought to be due to the possibility that the 

numerical solution diverges for high values of the normalized coupling 

constant. Using the asym ptotic solution for the fields the reflectivity was then 

plotted as a function of its two parameters.
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CHAPTER V

COUPLED EQUATIONS OF AN OPTICAL FIBER 

WITH DUAL BRAGG GRATINGS

V .l Introduction

The derivation of the solutions of the coupled mode equations of an optical 

fiber with two Bragg gratings is similar to the previous case yet more 

involved. For this case, a second Bragg modulation of frequency is

present. Taking that into account, the refractive index n can be written as

n = n o + bn [cos ( ; Q , ) +  cos (c £2,)] ^

where it has been assum ed that the am plitude modulation of the second 

grating is equal to the am plitude modulation of the first. Substituting this 

result into the coupled m ode equations, they reduce to

d c §  = \c  f t  i  (e‘-(2fVO j z + e i (  + CJ+) i  (e-' i Q ^ )
d 7 ^ L m = 1 m=I

(29)

d c  & — — -̂ 00 £<+) 2  (g (2Po+S2m) ~ + g  ~i (2Po-Sm) - )  + C f t  2  i f  ~‘ Qnz + e ' )  1 
d z  2  L m=1  m = l J

(30)
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where k qq is given by Eq. (8). The above equations can now be rewritten in

terms of the norm alized param eters defined previously or

C OP / ( e f t  j  ( e ^ iZ +e ' i " iZ) +
A7 'J V U m= 1 V ’

and

w here

and

d Z  2 v m = 1

C $  2  (e  ~ Ym) ‘ 2 2  +  £  («m -  Ym) ' 2  2 ) )m = 1 /

=  C 00 * f  Q (+ ) S  ( g - O n l 'Z  + g - / Y m«Z)  +  
c/Z 2 v 0 "> = i v '

c f c )  2  (e  ~ ( a m -Ym) ' Z 2 +  g  (am -  Ym) ' 2  2 )j

(31)

(32)

a m = ( 2 p 0 + QJ L  (33)

Ym = ( 2 p 0 - Q m) L  • 04)
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V.2 The Modified Asymptotic Solution

In the case of an optical fiber with two Bragg gratings, the set of differential 

equations has a total of five parameters in which the parametric values of 

are still large, i.e. a rr» l  and a ir» y rr. So, if these conditions are applied to 

Eqs. (31) and (32), the following simplified result, similar to Eqs. (20) and (21), 

is obtained

d c ®  C op t o  f  e Ymiz  (35)
d Z  2 ™ = >

and

d c §  = Cqq j r) Ym, z . (36)
d Z  2 ™ = i

Unlike Eqs. (20) and (21), these two coupled differential equations can not be 

solved exactly. However, it is still possible to obtain an exact solution if the 

additional assumptions Iy2 I» Iy i  I anc* 1 y2 I>:>1 are introduced. In practice 

these assumptions means that the Bragg wavelength of the two gratings are at 

least lOnra apart. These assumptions lead to what has been called the 

modified asymptotic solution which will be used to generate the first order 

approximation in 1 /y 2- The procedure adopted is the one outlined in the 

Appendix A and B. Doing so, the following solutions for the two Bragg 

grating fiber are obtained
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c a  I 11' 1c o { — 2  " ] ~  s i n [ n ‘ ' \  Z > }

f l i i c o s ( ^ ) - Yl sinffi l )

i Yi Z 2
(37)

and

Coosm[n ' (1 z ) L - . - r . z 2  
■ a  =  L 2 J_________  (38)

*1i icos(2 lL ) -  y, sin(2lL)

where

n ,  = W F c T -  <39)

Again, it must be emphasized that this solution is valid only in the region 

where ly2 l»ly-[ I and ly2 l » l ,  i.e., in the region nearby the Bragg wavelength 

of the first grating. If the condition were to be inverted to read I yT l » l y 71 and 

lyt I » 1  the y1 term would have to be replace with y2 in Eqs. (37) and (38).

The first order correction on l /y 2 follows from the Piccard Method 

(Appendix A) and is given by

d c $  = -_Cqq_,.[ m i  (e ° „ i z + e ymi z )  + 
d Z  2 ,0 m = I

cfrlI 2  (e -  Ca<n -Vm) ' Z 2 + e (On -  YJ  iZ 2) )
’ m = 1 Jm ~ 1 ' (40)
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^ M l  =  £ ™ L { c % 0 2  f e ^ - 'Z  + e - 'v .- 'Z )*
dZ  2 v ’ m = 1

c 9 n  2  ( c -  ( a m ~ Y m ) I 2  2  +  g  ( a m - Y m )  f  Z / 2 )  1 
1 u m = I /

Integrating the above equations, using Eq. (19), and neglecting the terms that 

are a function of leads to the following

•Q  = ~ £ m J ( J  c t f 0 e  ‘i S - d Z  + J  c $ ,  e '> .z rfz )  ~ c $ (42)

and

c $  = 1 ( j  c t}o e -i't*2 dZ  + J  c fio  e ~l'i ' z d Z^  ~ c P  • (43)

Equations (86) and (87) in the Appendix B can now be used to solve the 

second integral in the right hand side of Eqs. (42) and (43) or

(44)

and

/ e g  C Y, . - Z<i z = l i £ &  . (45)
1 C 00
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Again, Eqs. (91) and (92) in the Appendix B can be used to solve the remaining 

integrals or

J  c$0 e - ‘^ z dZ -  i c  d p  + C  o o  c ox> e l Y ' z
Y2 2 ( y1- y2) y2 .

- i ' i z Z  2
C  2m / ^2 m 
C 00 ^

0 Y f  ( Y i - Y z ) ' "

(46)

j  c$0 e i 'hz  dZ =-,
Y2 2  ( y [ ~ Y 2 ) Y2 m

c - m  /  ^ 2 m  *-00 '2.
“ « Y f  ( Y 1 - Y 2 )"

(47)

These two solutions converge whenever

C  5 q / 2 2 

Y 2 ( Y1 Y2) I
< 1 (48)

Substituting Eqs. (46) and (47) into (42) and (43), taking into account that the 

infinite sum can be rewritten as

C 2m /O 2m *- 00 ' L
m-  = 2

m  = 0 Y f  ( Y1 ~  Y2 ) m m= 0
7— -^ -T —-
(Yi - y J y 2

1 -
-1

(Y1 - Y 2) Y2

and expanding the resulting equation in powers of l /y 2, Eqs. (42) and (43) 

reduce to
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* 8  = c & + ^  oo 
2Yz

00 sin m - c H  e ^ iZ (49)

and

T] j £ '(Y i~2y2)/2 /

n ,  < c o s ( l l ) - Y ,  s i n ( l l )
, - y  2 t Z (50)

These solutions will now be used to determine the characteristics of a two 

Bragg grating fiber.

V.3 Comparison between approximate and numerical solutions

In order to determine the validity of Eqs. (49) and (50), they were compared 

w ith the numerical solution using the same procedure adopted in the 

Chapter IV. Figures 12 through 14 are typical results of a double Bragg grating 

nearby the phase m atching condition of the first grating. In all figures, the 

broken lines correspond to numerical solutions whereas the continuous lines 

correspond to the approximate solution. As it can be seen from Figs. 12 

through 14, the behaviour of the numerical solution with respect to the 

approximate solution is similar to the one in Fig. 10, i.e., there is a steady 

departure from the approximate solution at a given Z-value. The higher the 

normalized coupling coefficient the lower the Z-value at which the 

numerical solution departs from the approximated solution. Also, in Fig. 12, 

there is a modulation in the am plitude of the curve throughout the values of
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l.OE+O
Numerical

l.OE-1

1.0E-2

Approximate
1.0E-3 =  0.1

P
1.0E-4

1.0E-5

1.0E-7
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

z
Figure 12. Comparison between numerical (dashed lines) and approximate 

(solid lines) solutions for an optical fiber with two co-located Bragg gratings 

(^=100,000, a 2=99,950, Yi=0, y2=50 and C00=0.1, C00=5 and C00=7).
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1.0E-3

P
l.OE-4

1.0E-5

1.0E-6

l.OE-7
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

z
Figure 13. Comparison between num erical (dashed lines) and approximate 

(solid lines) solutions for an optical fiber with two co-located Bragg gratings 

((1^=100,000, a 2=99,950, Y|=0, y2=10 and C0q=0.1, C0q=5 and C0q=7).
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1.0E+0

oo

1.0E-2 oo

P 1.0E-3

1.0E-4

1.0E-5

1.0E-6
0.7 0.8 0.90.1 0.2 0.3 0.4 0.5 0.6

z
Figure 14. Comparison between numerical (dashed lines) and approxim ate 

(solid lines) solutions for an optical fiber with two co-located Bragg gratings

(0^=100,000, a 2=99,950,y-[=l, y2=10 and C00=0.5, C00= l.l and C00=2).
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Z; an effect due to the presence of the second grating. As it was discussed 

before, the departure from the approximate solution might be due to the 

possibility that the numerical solution diverges at these values of Z. This 

explanation seems adequate because of the matching between the two 

solutions at low to moderate Z-values.

The comparison discussed in the previous paragraph, is evidence that the 

approximations derived work fairly well w ithin a large interval of values, 

specially at low values of the coupling constant. Taking that into account, the 

reflectivity was determined for the two Bragg grating fiber and plotted in Figs. 

15 and 16 against the two normalized phase matching variables, y1 and y2■ The 

value used for the normalized coupling constant was the unity whereas the 

value chosen for a! was 100,000. As it can be seen, Figs. 15 and 16 are contour 

plots of the reflectivity with the contour lines spaced by 2%. The maximum 

value of the reflectivity occurs nearby the center of both graphs, around Yi=0. 

In this region, there are several lobes aligned alm ostparallel to the y2 axis; it 

is inside these lobes that the maximum value of the reflectivity occurs. Notice 

that the higher the modulus of y2, the closer the center of the lobes are to y^O, 

i.e., the higher the modulus of y2, the closer the first order and asymptotic 

solutions are to each other. However, the lower the modulus of y2, the more 

the peak reflectivity deviates from the phase matching condition y^O. In 

other words, a lower value of y7 displaces the phase matching condition of 

the first grating, i.e., lower values of y2 leads to a phase matching condition 

in the first grating in which y ^ 0 . This displacement in the phase matching 

condition leads to a shift in the Bragg wavelength of the first grating.
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0.22
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30 0.16

0.18.
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- 2 - 1 0  1 2

Yi
Figure 15. Contour plot of the reflectivity against the two normalized phase 

matching parameters of a dual Bragg grating optical fiber for C00=l (y2>0)-
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Figure 16. Contour plot of the reflectivity against the two normalized phase 

matching parameters of a dual Bragg grating optical fiber for C00=l (y2<0)-
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Whereas for the single Bragg grating the peak reflectivity occurs at Y-[=0r for 

the double Bragg grating , the peak reflectivity may occur at y^O, unless ly2 1, 

is very large and the first order correction can be neglected. It is noted that a 

lower I y2 I, means Q2 closer to Qr  Obviously, the equations derived fails 

whenever Q2 gets infinitely closer to due to the fact that the equations were 

derived for 1 y2 1 >10.

Another result that follows from Figs. 15 and 16 is the following; negative  

(positive) values of y, shifts the peak reflectivity of the first grating towards 

negative (positive) values of y:. Rephrasing the above; positive values of y9 

shifts the center of the lobes in the reflectivity plot towards positive values of 

Yl (see Fig. 15) whereas negative values of y2 shifts the center of the lobes 

towards negative values of ŷ  (see Fig. 16).

The shift direction in the wavelength space can be easily derived from  the 

above results. The Bragg wavelength, g, for a single Bragg grating fiber with 

frequency Qj can be written as (ŷ  b=0)

(51)

Whenever a second Bragg grating is introduced with Y2<0, i.e., Q2> ^ v  the 

Bragg condition of the first grating is shifted towards negative values of the 

normalized phase m atching parameter or yTB<0. This leads to a final Bragg 

wavelength, X, b ' given
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4ji n eff

•IB
-Q, <0

or

^  13  > ^ 1£-

So, for £22^1/ X- i b > ^ i.b whereas the converse is also true.

V.4 Estimate of the shift in wavelength due to a second Bragg grating

A quick estimate of the amount of shifting in the first Bragg wavelength, due 

to the addition of a second one, can be made by knowing the Bragg value of y-[ 

after the second grating is written. Assuming that this value is y ^ l ,  the final 

Bragg wavelength will be given by

4 j l «err „  1

T   1+ L

where n off is the effective index of refraction given by

n  eff  =  £
k
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The shifted w avelength can then be determined as

4 l t  n eH
X 1. B _  Q ,  + - 1- -  <52)

The effective refractive index has a value within the interval 

” core>rteff>nclad w hich, for a weakly guiding optical fiber m ade of silica, 

leads to values that fall within the interval 1.46>«eff>1.45. Let the length of 

the Bragg grating L be L=0.03m and the initial Bragg wavelength of the first 

grating around ^  B=1.3|.im. At this initial Bragg wavelength, the frequency Q1 

is roughly 14.1xl06m _l. Using these values into Eq. (52), the final wavelength 

turns out to be X', B=1.301pm, or one nanometer longer than the initial 

value.

As it can be seen a second Bragg grating may shift the Bragg wavelength of a 

fibers grating by roughly lnm . The direction of shift depends on the signal of 

the normalized phase matching param eter of the second grating, i.e., positive 

values of y2 shifts the Bragg wavelength of the first grating towards lower 

values whereas negative values of y, shifts the Bragg wavelength towards 

higher values. Indeed such an effect has been observed befpre by Othonos et 

al. [19941- In their experiment, a shift of almost lnm was observed whenever 

six additional gratings were w ritten over the a first one. The authors 

attributed the shift to a variation in the effective index of refraction. Here it is 

proposed that this variation results from the inscription of a additional 

gratings.
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CHAPTER VI

APPLICATIONS OF THE OPTICAL FIBER BRAGG 

GRATING SOLUTION TO OTHER DEVICES

VI.l Introduction

In this Chapter, three different applications of an optical fiber Bragg grating 

are explored; they involve coupling among modes w ithout azimuthal 

symmetry such as in a two mode fiber, coupling within a four mode fiber and 

the effect of the axial strain and tem perature in the shift of the Bragg 

wavelength.

VI.2 Coupled Equations for a two Mode Fiber

The coupled equations of a two mode fiber can be derived directly from Eqs.

(1) and (2) for N =2 or

- fl*., = ( cf ie (Pi +P< J + c $ e  (Po-Pi)i;:) k 0[ + (cfft  + c $ e 2P<>, z ) k ^ 
d z

(53)

= ~ (c f i e"(P> +P°)1 z + ct fe (Pi ~ P̂  'z) k 0i ~ (cf t  + c f t e -2P°';) k qo
d z

(54)
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^£-L. -  (c  + c*f) e 2P>iz) k  n  + {c $ e  +̂ '  ‘ + c $ e  ^ 'O ^ i o  
d z

(55)

and

f~ = ~(cV + c f ie  ~2P i ' :) k  11 -(c  $ e  ^Po)'- + c-$ e  P ^ i : ) k l0
d z

(56)

As it can be seen, from Eqs. (53) through (56), there are four coupling 

constants associated with them  namely, ^ o o '^ ii '^ o t and fc10,w here the 

numerals "0" and "1" stand for the fundamental and LPn  modes. These 

coupling constants are given by Eq. (3) and can be written as

k o o = ^ 7 r f  f  { n £ - n 2) \ E u0\ 2 r d r  d §  (57)
4 P Jo Jo

k n = ^ j i r - (  f  ("o 2 - "  2) \E t, i \ 2 r d r  d §  (58)
Jo Jo

01 4 P
k m = (l)£_°f j (  { n $ - n  2 ) E  uXE l Qr d r d §  (59)

Jo Jo
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Whenever, the refractive index variation along the fiber has azim uthal 

symmetry, such as in the case of a Bragg grating perpendicular to the fiber axis 

[see Eq. (6)], n*n(tj>) and Eqs. (59) and (60) are zero because of the 

orthogonality relation between two m odes of different order. In this case 

there is no coupling between the LP01 and LP/m modes for 1*0 and coupling 

occurs only between the forward and backward propagating modes.

However, whenever the azimuthal sym m etry is broken, an additional <[> 

dependency is introduced in the integration of the azimuthal variable <j> and 

the final result may be different of zero. Such is the case of a tilted or blazed 

Bragg grating in which the refractive index can be written as

where z' is the axis along the tilted Bragg grating which is assumed to make 

an angle 6 with the fiber axis (see Fig. 17). The tilted z'-axis can then be 

written as

(61)

z ' =  ) ’ s in (6 ) + z  co s(6 ) (62)
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where

y - r  Sin(<t>) • (63)

z. - axis

- axis
Figure 17. Optical fiber with a blazed Bragg grating.

By introducing Eqs. (61) through (63) into (59) and (60), it can be easily seen 

that the tilted Bragg grating introduces a (j> dependence that works towards to 

make Eqs. (59) and (60) different of zero.

VI.3 Conditions for C oupling Among Modes in  a Four Mode Fiber

Mode conversion in a four mode fiber has been experimentally observed by 

Bilodeau et al. [1991]. Subsequent work by Shi and Okoshi [1992] has analysed 

the conversion characteristics between the LP01 and LP,^ modes only. Here the 

coupled mode equations are used to determine the characteristics of coupling 

among all modes involved. The starting point again are Eqs. (1) and (2) for 

N  =4. Assuming that only the forward fundamental mode is excited initially, 

coupling will occur only between the forward and backward fundamental and 

LPQ9 modes.
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The conditions for each of these couplings are obtained directly from the 

coupled mode equations using the phase m atching condition in the 

argument of the exponentials associated with the two modes. For instance, 

the condition for coupling between the forward and backward fundamental 

mode is obtained from the differential equation that contains the derivative 

d c fflld Z  . The phase m atching condition is the one derived from the 

argument of the exponential that comes along with the c $  or

Yo = °-

The above condition leads to

Q = 2 P o i  f64*

which is the condition for maximum power transfer between the forward and 

backward propagating fundam ental modes. Let

Q  = 2 X '

where A is period of the grating, then the phase matching condition in Eq. (64) 

reduces to

K
A — g Poi
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Doing the sam e for the other two cases, it is obtained

A -  2  3CA -
^02 + Pol

for coupling between the forward fundamental and backward LPQ9 and

A _______A -
Poi ~  Po2

for the forward fundamental and forward LP02.

As it can be seen there are three different conditions for phase matching for 

each mode; each of these conditions are a function of the grating period and 

the propagation constant of the modes. If a given grating period is chosen 

such that the propagation constant of the fundamental m ode is maximum at 

X=1.3fim, i.e., P01=^«corc/ with « corc=l-46, the grating period will be given by

A = 4.45x10-7 m  • (65)

Assuming that the propagation constant of the LP02 is ^ u c|ad, with 

;ic|ad=l-45, the Bragg wavelength, for coupling between the forward 

fundamental and backward LP02 will be at

X.q-3 = 1.296X1CT6 ™

As it can be seen, the difference between these two Bragg wavelengths is 

almost 4.5nm and, as such, it should be possible to distinguish these two
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Bragg wavelengths by scanning the reflectivity spectrum of a Bragg grating 

fiber with a spectrum  analyser. Indeed, a more general estimate predicts that 

the difference between the Bragg wavelengths of these two modes is on the 
order of

1̂  \  | — core — ^  clad ) ^  00
I 0-3 -  A oo I ------------------------------------ '

n  core

i.e., the longer the period of the grating, the larger the difference between the 

Bragg wavelengths. However, it should be pointed out that these values are 

just an upper limit.

For the case of coupling between the forward fundamental and forward LP0t 

using the grating period given by Eq. (65), the Bragg wavelength would be

very short, on the order of 4 nm, and way outside the visible spectrum. So, for

coupling between these two m odes to occur, the grating period must be much 

longer than the one in Eq. (65).

VI.4 Effects of Temperature and Axial Strain in the Bragg Wavelength

Bragg grating optical fibers can be used as strain temperature sensors. The 

principle used consists in m onitoring the shift in the Bragg wavelength due 

to mechanical and  thermal strain. The Bragg wavelength can be determined 

from the following Equation

^13 =  2  n  eff A  <6 6 >
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where both the effective refractive index «eff and the grating period changes 

as mechanical and thermal strain are applied or

Equation (66) is very similar to the expression for the phase of a Mach-Zender 

optical fiber configuration [Butter and Hocker, 1978; Hocker, 1979; Sirkis and 

Haslach, 1991 and Egalon and Rogowski, 1991; 1992a; 1992b; 1992c and 1994] 

which is given by

where L is the length of the fiber that is undergoing strain. Comparing Eqs. 

(66) and (67), it can be easily realized that L corresponds to A, the grating 

period, whereas (3, corresponds to « eff. Indeed these two expression are 

proportional to each other. For this reason, the expression of the shift in the 

Bragg wavelength is the same as the one for phase shift of a Mach-Zender 

sensor less a constant. Based on this identification, the shift in the Bragg 

wavelength due to axial strain, for an optical fiber that is surface mounted, 

can be easily w ritten in terms of previous results found in the literature or, 

for a shift due to mechanical strain [Butter and Hocker, 1978; Sirkis and 

Haslach, 1991 and  Egalon and Rogowski, 1991; 1992a; 1992b and 1994]

dkB = 2 ( 6« eff A + n eff 6A>

4>=P£ (67)

6^-b, m -  2ft
2

core \  — n  core P ef  +  A — ^-(rtcorc ( 3 - 4 i ]  / J ^ c f - 1 -  2 p q  ,„ )  A

(6 8 )
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where

p  = [P\l  ~  (P12 + A l )  ]ef -  ^ ___1 - i i ^  , (69)
2

»■ -  K ‘ (W ‘n )  (70)

Win = J v Z-U?n r (71)

2 2 
. ^corc — ^cladA =  5----------, (72)

2/1 core

p u  and p p  are components of the strain optic tensor, e  the value of the axial 

strain, p the Poisson's ratio for the fiber, K , the modified Bessel function of 

o rder I and W  ln and U Jn the eigenvalues of a mode of a weakly guiding 

fiber of order / and rank n. It can be easily shown that the term in A 

contributes less than 1% to the total shift in the Bragg wavelength [Egalon and 

Rogowski, 1992b and 1994], for this reason Eq. (68) can be simplified to

5Xb ..vi = 2 " c o re (1 -P cf« A e • (73)

As it can be seen from the above, sensitivity of the sensor increases with the 

Bragg period and decreases with the effective strain optic coefficient, P

Doing the same for the effect of temperature, the shift in the Bragg
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wavelength can be written as [Hocker, 1979; Sirkis and Haslach, 1991 and 

Egalon and Rogowski, 1992c]

&^b ,t - 2
d n
dT

+  < X /Z  core +  A
u m L  (dn
VnnH;d T +  2 C U2 core I CIII core A  6  T

(74)

where 6T is the variation in from a set point and a  and d n / d T  are the 

thermal expansion coefficient and the thermal refractive coefficient of the 

fiber. Again Eq. (74) can be simplified to

S ^ b.t - 2
dn
dT

■+■ Ct/I core A  6  T (75)

As before, sensitivity increases w ith the grating period.

The condition for a Bragg grating optical fiber strain sensor insensitive to 

axial strain is exactly the same as the one for a strain insensitive Mach-Zender 

sensor [Egalon and Rogowski, 1992b and 1994] or

n 1
core —

cf

(76)

whereas for a tem perature insensitive fiber the condition is

^ core —
I_ dn 
a dT

(77)
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Using values that are typical for a silica fiber (/icore=1.46 and Pef=0.102) and a 

grating period consistent with a peak at X=1550 nm , or A=5.31 10~7 m , the 

shift in the wavelength due to mechanical strain is

6^ b ,m  = 1.02 10-6 £ m  • (78)

For e=750 [.i-strain the above relation reduces to 6XB=0.765 w n , which is 

roughly the value 0.8 nm obtained by Kersey and Morey [1993|. For higher 

strain values, such as 10,000 [.i-strain, which is the breaking point of silica, the 

shift can be as large as 10 wn .

The mechanical and tem perature strain formulas have been compared with 

another experimental result [Xu et al., 1994]. Table 2 sum m arizes these results. 

Within the range of 0-600 ^-strain, and at Bragg wavelengths of 1300 nw and 

850 wn the relations for the wavelength shift and strain obtained by Xu et al. 

[1994] were found to be 0.96xl0-6 e in and 0.59xl0~6 e m, respectively. Using 

Eq. (78), the relations obtained are 0.855 x 10~6 e m at 1300 wn  and 0.56 x 10~6 

e  m at 850 nm ; a difference of less than 10%.

For thermal strain within the temperature range 10 and 60°C, Xu et al. [1994], 

found slope values of 8.72xl0~12 m /°C and 6.3 x 10-12 m /°C, at 1300 and 850 

n m , respectively. Using the therm al constants of a silica fiber given by 

[Hocker, 1978], a=5xlO_7/°C and dn /dT=10-5 /°C, these slopes are 

9.575x1 0~12j« /°C and 6.26xl0-12 m /°C, again a difference of less than 10%.
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For the case of a temperature variation between -273°C and 800°C and 

a=5xlO-7/°C and dn  /dT=10_5/°C, which are values for the silica fiber 

[Hocker, 1978], the shift in the Bragg wavelength for a grating period of 1300 

n m , is 5.1 nm .
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Table 2. Slope values for the shift of the Bragg wavelength at 1300 and 850 

ntn, for mechanical and thermal strain. Experimental values are from Xu et 

al. [1994| whereas theoretical values are from Equations (73) and (75). 

Parameters used are for a silica fiber.

strain wavelength (nm ) Experim ental 

[Xu et al., 1994[

Theory

m echanical 1300 0.96x10~6m 0.855x10~bm

850 0.59x1O'6/// 0.56x10~6m

therm al 1300 8.72x10"12m /°C 9.58x10"12m f°C

850 6.3xl0-12m /°C 6.26x10~l2m /°C
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CHAPTER VII 

CONCLUSIONS

The asymptotic solution of a single Bragg grating optical fiber was 

reformulated. A first order correction has been determ ined using the Method 

of the Successive Approximations. Using these results, a solution for a two 

Bragg grating optical fiber was determined. It was found that a second Bragg 

grating shifts the Bragg wavelength of the first one by a small amount. This 

shift is towards longer (shorter) wavelengths whenever the period of the 

second grating is smaller (greater) than the period of the first one. The shift 

increases whenever the Bragg wavelength of the second grating is closer to 

the Bragg wavelength of the first one. A similar shift, in which multiple 

Bragg gratings w ere written in a fiber, has also been reported in the literature 

[Othonos et al., 1994].

A theoretical analysis of a Bragg grating optical fiber with two and four modes 

was presented. It has been shown that a tilted Bragg grating is capable of 

coupling light into modes of different orders by introducing a non-zero 

coupling constant. Results of two co-propagating modes using the coupled 

mode equations have been compared with work published elsewhere [Snyder 

and Davis, 1978]. It has been found that the numerical solution does 

not match the approximate solution derived by Snyder and Davis [1978]. 

Furthermore, coupling within a four modes optical fiber has also been 

investigated. It was shown that coupling between two forward propagating
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m odes occurs for grating periods much longer than the period required for 

coupling between a forward and backward propagating modes. This indicates 

that coupling between two forward propagating modes is much more 

sensitive to axial and thermal strain.

Finally, relations for the shift in the Bragg wavelength due to thermal and 

mechanical strain have been derived. These relations were compared with 

experim ental results and it was found that the agreement is within 10%.

The procedure outlined here can be applied to model other devices which use 

m odal coupling such as tapered couplers, distributed feedback lasers, optical 

fiber filters and sensors.
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APPENDIX A

DERIVATION OF THE FIRST ORDER CORRECTION

A first order correction in 1 /a  can be derived from the coupled mode 

equations of an optical fiber with a single Bragg grating. The procedure 

outlined here can also be applied to optical fibers with m ultiple Bragg gratings 

so correction terms in 1 /Yj, j=2, 3 , can be obtained.

The method used to derive the first order correction is the so-called Piccard 

Method, also known as the Method of the Successive Approximatioa This is a well 

known technique that can be used to obtain analytical approximated solutions 

to a system of differential equations after a certain num ber of iterations [Ince, 

1956; Greenspan, 1960 and Rowe, 1962]. Basically it states that the sequence of 

solutions {c ,c }, n= 1, 2,..., of the system  of differential equations

(80)

converges to Eqs. (15) and (16) as The closer the initial trial functions 

c ffy  and c $ )  are to the "exact" solution, the faster the above sequence
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converges. Consequently, by choosing appropriate trial functions the sequence 

of solutions may converge after only a few iterations. Actually, it has been 

found that the result obtained with the very first iteration, or the first order 

correction, compared very well with the numerical result. As mentioned 

before, the trial functions can be chosen to be the asymptotic solution. By 

substituting Eqs. (22) and (23) into (79) and (80), integrating the resulting 

equation, expanding it in powers of 1 / a  and keeping the first order term in 

1/ a , they reduce to

and

C ft = c $) + {4 i c hi  sin[j (a -  y ) z] -  c $  e ““ lZj  ~ ef t  • <82)

The constants of integration on the right hand side of the above equations, 

can be obtained by applying the boundary conditions of the problem. Their 

derivation is straight forward and given by

(+) =  -
c  00 s i n ( ? )

Y sing)]
(83)

and
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Cf Q = -
2a

n  C qq g (Y~ 2 a ) < / 2 /

T1 /c o s g )-y s in ^ )
(84)

The range of values that the above approximation applies will now be 

investigated.
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APPENDIX B

INTERVAL OF CONVERGENCE OF THE 

FIRST ORDER APPROXIMATION

A careful analysis of the solution of Eqs. (79) and (80) was made in order to 

determ ine its interval of convergency. The analysis consisted of determining 

an appropriate series expansion of the integrals involved and the values of 

the parameters for which the series converge. Basically, the integral which 

has to be solved and analysed was the following

I  i.± = f c $ )  e ±a, z  dZ (85)

w here a can be either a, y or a -y .

W hen a=-y, the integrals in Equation (85) have very simple solutions given 

b y

f c £ U - ? , z dZ = - ^ i ^ -  (86)
'  L  (X)

and

/ c $ e r ' z d Z = ^ l .  • (87)
1 C  (K)
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These solutions correspond to the zeroth order correction of the field

amplitudes, they are obtained using the relations in Eqs. (22) and (23) and are 

good for any values of C00 and y-

On the other hand, the rem aining integrals are more involved and can be 

obtained in two different ways; the most obvious and straight-forward way, 

would be to directly substitute the values of the forward and backward 

amplitudes of the fields directly into the integrand. However, it has been 

found that this procedure does not give any information about the parametric 

values for which the resulting integral converges. For this reason, a second 

approach was attempted which consists of the following:

first an integration by parts of the term e ***1 z  d  Z  was performed or

I  e ±aiZ dZ = ~ Li c g 0 e ±aiZ  +
±a

e ±aiZ

Then a substitution of Eqs. (20) and (21) was made leading to

J  cf& e ±aiZ d Z i c  $o e ±aiZ + c  oo 
±a  ±2a

f  C$> dZ (89)

±2 a  J±a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

Next, this procedure was repeated for the rem aining integrals several times. 

Using the inductive method, it can be easily realized that the integrals can be 

written as the following series:

/ c & , e ^ d z = - t \ ^ . + iJ - a ±2 (y ± a) a m = o \±a [y ± a)\
(91)

m

and

J c & e “'°z dZ=- c S?o +  Coo c$0 e yiZ±a ±2 (y -  (±a)) a ±I a Z  2
". = 0 [±a (y -  (±a))] 

(92)

m

The condition of convergency can be obtained directly from Eqs. (91) and (92)

or

C  2  ^  oo
l(Y ~ a) (3 Y ~ a)l

<  1 (93)

r  2oo
4 | ( y ~ a ) l a

< 1 (94)

and

C  oo ^ j
W ^ ) \  1

(95)

where the corresponding values for a have been substituted.
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In conclusion, there are three different conditions of convergency for the 

integrals on the left hand side of Eqs. (89) and  (90). Among those three 

conditions, the most restrictive one must be chosen. It m ust be emphasized 

that these conditions are necessary but are not sufficient for the series to 

converge. A necessary and sufficient condition would be achieved only after 

exhaustive analysis of the higher order approximations of the coupled m ode 

differential equations, Eqs. (79) and (80), for n =2, 3, etc.
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APPENDIX C

TYPICAL VALUES OF THE FIBER PARAMETERS

An examination of the typical values of the optical fiber Bragg grating 

param eters have been undertaken in order to determ ine their range of 

values. The param eters in question are a, the normalized phase matching 

param eter y and the normalized coupling constant C00. The results obtained 

are specifically for a fiber with a single Bragg grating however their order of 

m agnitude values also apply to an optical fiber w ith  two Bragg gratings.

The three param eters mentioned above are given by Eqs. (12) through (14). 

Nearby the phase matching condition y is almost zero. This yields to a 

m odulation frequency S3 given by

Q = 2  P o (96>

and

a s 4 p 0 L • (97)

The normalized coupling constant is given by Eqs. (8 ) and (14). Substituting 

the values of the electric field for a single mode fiber [Marcuse, 1973] and 

using the eigenvalue equation of a weakly guiding fiber to eliminate the 

Bessel functions /-[ and /0 in favor of the modified Bessel functions and 

Kq, the normalized coupling constant reduces to
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Figure 18. Contour plot of the normalized coupling constant against the V- 

num ber and the am plitude modulation of the refractive index for L=0 .01w ,

/ t core= l-4 6 , rt=5.0 | . iw , A=0.01.
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_ 2 L W 1 k 1 bnnc m j
L n n - - - - - - - - - - - - - - - - - -   ^ - - - - - - - - - - - - - - \  1  4 -

P o  V 2

U K 0( W)
. WKy i Wl

(98)

Equations (97) and (98) can now be plotted using the approximation for the 

eigenvalue IV given by Marcuse [1974 and 1982] (see Figs. 18 and 19)

W =  1 . 1 2 2  e x p
( a  + 1 ) y  „( v )

v  j  ,(vo (99)

Typical values of the parameters involved are shown in the Figures. As it can 

be seen, the normalized coupling constant is anywhere between 0 and 400 

whereas a can be as low as 50,000 and as high as 170,000.
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Figure 19. Plot of the a  param eter against the \/-num ber for L=0.01//z,

n COTe= \ M ,  a = 5 .0  p m , A =0 .01 .
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APPENDIX D

SOLUTION OF THE COUPLED EQUATIONS 

FOR TWO CO-PROPAGATING MODES

Using the procedure described in the previous appendices, results obtained 

with this w ork was compared with [Snyder and Davis, [1970 ]. In this case, the 

coupling was assumed to be between two co-propagating modes, i.e., the 

coupling between the forward and backward propagating modes was 

neglected. A negligible coupling betw een other m odes is achieved whenever 

the frequency of modulation of the grating is tuned to match the difference 

between the propagation constant of two specific m odes or

Q  = Po -  P i <100>

where po and P1 are the propagation constant of the first and second modes, 

respectively. In the case where the first and second modes are the forward and 

backward fundamental modes, respectively, = -(30 and the tunning 

condition must be Q s2 fS0-

When the above condition applies, coupling between the remaining modes is 

virtually suppressed. Deriving the asymptotic solution for two co-propagating 

modes using the Initial Conditions

(Z =0) = 1 and c p  (z=0) =0
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and applying a first order correction using the Piccard's method, it is obtained

.(+) = c f l  , [(«•+ 2  Y-)
-1 b  j b  0 e - b , + 'fiiQfx’ + y)

+ c 10 (101)

and

M -  „ «  _  [(“ ' + 2 ' l ' ) i c $ > ~ c  $  e  " ','9] 
>•' lA & , * 0 e ^ * v ) . e

+ C 11 (102)

w here

and

CM, = cos( 0  ) +
Y / sin( i f  0 )

2 t i (
(103)

c § - e 'riQI2 sin( Tl ’e ) (104)

_  ( a , +  2 Y ' ) /   1___
b [ b 0 L ™ ' b x b Q ’

(105)

n* = / Y2 + 4 
2

(106)

b  ^ 0 =  [ 1 — (ex' +  2 y ' )(«■' +  Y') ]  ’ (107)
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Figure 20. Comparison between the asymptotic, first order and numerical 

solutions for the transferred power against the normalized length of two co-

propagating modes (a'=2Y', y'=5).
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In Eqs. (101) through (104), c (+) is the n ^  order correction of the amplitude

where C is the coupling constant between the two modes.

A comparison between the transferred power obtained by Snyder and Davis, 

the power derived from Eq. (102) and the pow er using the numerical is 

shown in Figs. 20 through 23. As it can be seen, the first order solution in 

Figures 20 and 22 is very close to the numerical solution. For the higher value 

of a '  (Figure 20), it is almost indistinguishable from the numerical result 

whereas for lower a '  value it deviates slightly from the "exact" solution.

Since the trial solution used was the asymptotic, it is expected that the first 

order correction works better in the interval of higher a '  values.

1 °  mji ■
of the m* forward propagating mode. Furthermore, the above parameters 

have been redefined to agree with Snyder and Davis notation or

(108)

Q - A 0
C /2

(109)

(110)

AP -  P i P o (111)
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Figure 21. Comparison between the asymptotic, numerical and first order 

solutions of Snyder and Davis [1970] for the transferred power against the 

normalized length of two co-propagating modes (a'=2Y', y =5)-
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Figure 22. Comparison between the asymptotic, first order and numerical 

solutions for the transferred power against the norm alized length of two co-

propagating modes (a'=2y', y'=2.5).
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Figure 23. Comparison between the asymptotic, numerical and first order 

solutions of Snyder and Davis [1970] for the transferred power against the 

normalized length of two co-propagating modes ( cx'= 2 y' ,  y'=5).
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Additional comparisons were m ade between the numerical result and the 

first order approximations obtained by Equation (13) of Snyder and Davis 

[1970] (see Figures 21 and 23). Notice this first order approximation deviates by 

more than 100% from the numerical solution in several regions of the plot. 

This result is even worse than the asymptotic solution itself. In addition, it is 

important to point out that Snyder and Davis [1970] have obtained a different 

numerical result much closer to their approximation (see for instance, Figure 

1 of Snyder and Davis [1970]). It is not known why their numerical result is so 

different from the one obtained. However, it is believed that their 

approximate solution does not yield an accurate result because of the lack of 

consistency of the method used. In their work it was initially assumed that 

the amplitudes of the modes could be expressed in terms of a series expansion 

of 1 / a '  where the terms multiplied by the power would be independent of a ',

after some manipulations Snyder and Davis arrived at a result contrary to the 

initial assumption or

or

(112)

and

(113)

Accordingly c fy  and c ^  were assum ed to be independent of a '.  However,
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cjft = a ' c ®> e i (a' + vOe (114)
° -1 / ( y ' + a ' )

and

c t }i =  T ( /+ ' a ' l (e $  e - ' V + M  -  1) • (115)

As it can be seen, Eqs. (114) and (115) -which correspond to Eqs. (12a) and (12b) 

of Snyder and Davis [1970] are not consistent with the initial assumption. 

This lack of consistency might have been the source of inaccuracy of their 

approximation.
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