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ABSTRACT

DESIGN AND IMPLEMENTATION OF ONE AND TWO-DEGREE-OF-FREEDOM

MAGNETIC SUSPENSION AND BALANCE SYSTEMS

Mark W. Adams
Old Dominion University, 2005
Director: Dr. Oscar R. Gonzélez

The main objectives of this research were to design and implement one and two-degree-
of-freedom (1 DOF and 2-DOF) magnetic levitation systems to levitate permanent magnet cores
contained in PVC pipes, 84 cm and 76.2 cm in length, respectively. This project used the
components of a Magnetic Suspension and Balance System (MSBS) that is being built to provide
obstruction free positioning of test models in six degrees of freedom (6-DOF) inside the Princeton
University/Office of Naval Research High Reynolds Number Test Facility (HRTF). The HRTF,
a specialized wind tunnel designed to simulate undersea conditions by creating a low-speed, 3500
PSI air environment, imposes design challenges unique to this MSBS. Among these challenges
are the need to control magnetic flux densities through the two-inch thick stainless steel walls of
the suspension chamber and to suspend a heavy test object for long periods due to the limited

access to the chamber’s interior.

The main design specifications were regulation of the vertical displacements of the
suspended magnet and PVC pipe assemblies and a set point for pitch angle in the 2-DOF system.
Laser beam position sensors were used to derive control feedback. The defining electromagnetic
equations were reformulated into three-dimensional equations of motion according to well-known
assumptions for large gap magnetic levitation systems. The resulting kinetic equations were
converted to a linearized state-space model through a truncated Taylor series expansion. Using
this modeling approach, a series of I-DOF and 2-DOF controllers were designed and
implemented using actual MSBS components configured outside the stainless steel suspension
chamber. Moreover, the 2-DOF levitation was successfully repeated inside the actual suspension
chamber with only a simple adaptation to the controller design. Through the demonstration of a
scaled-down system incorporating all the essential dynamics and hardware of the full system, and
the employment of the engineering techniques o construct and operate an actual working system,

the paper argues from a practical standpoint for the completion of full-scale MSBS.
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CHAPTER I

INTRODUCTION

Introduction

Magnetic levitation is the stable positioning of objects counter to gravity and other external forces
without mechanical supports. It has been the subject of serious speculation and study at least
from the early twentieth century when Dr. Robert Goddard, “Father of American Rocketry”,
described an idea for a magnetically levitated train. Since then many practical applications of
magnetic levitation, maglev for short, have been developed in the areas of science, industry and
medicine. Prototypes of maglev trains have been built and a thirty-kilometer commercial maglev
line is running in Shanghai, China [1]. Both Dr. Goddard’s concept then and maglev train
designs today involve lifting train cars and propelling them along mechanical guide rails using
magnetic fields. A more widespread use of maglev technology is the use of contact-less magnetic
bearings in high-speed, near zero-gravity or extreme temperature conditions in which mechanical
bearings would be impractical. Also, medical applications are becoming more widespread, where,
for example, maglev technology is used for precision steering of catheters and probes inside the

human body.

The examples above are non-trivial because the phenomenon of magnetic levitation opposes a
fundamental characteristic in nature set forth in what is known as Earnshaw’s Theorem. As noted
in [2], this theorem states “that a group of charged particles governed by inverse square law
forces cannot be in a stable equilibrium.” According to Moon, this idea applies to the very
devices employed in maglev systems, namely “a set of magnets and fixed circuits with constant

current sources {21.”

This thesis presents the design and implementation of one and two-degree-of-freedom (1 and 2-
DOF) magnetic levitation systems. The 1-DOF design specifications are to regulate the vertical
position of a permanent magnet core within a 1.5 cm range centered at a point 17.8 cm below a
single electromagnet. The permanent magnet core is housed in an 8.4 cm long PVC pipe and the
entire suspended assembly weighs 192 g. The 2-DOF design specifications are to regulate the

vertical displacement and pitch of a permanent magnet core housed in a 76.2 cm long PVC pipe

The journal mode! used for this thesis is the IEEE TRANSACTIONS and JOURNALS (April 2002}
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with a total weight of 4.38 kg. The vertical displacement is regulated within a2 1.5 cm range
centered at a point 17.8 cm below a pair of electromagnets. The pitch angle is regulated over a

range plus or minus one degree from the horizontal.

The primary significance of these experiments is that they use for the first time in closed-loop
control the components of a Magnetic Suspension and Balancing System (MSBS) under
development by Old Dominion University. The MSBS will be a large-gap magnetic levitation
system intended to position test objects inside a specialized wind tunnel known as the High
Reynolds Number Test Facility (HRTF). The HRTF, a project managed by Princeton University
under a grant from the U.S. Office of Naval Research, is intended to provide a high pressure, low
velocity environment suitable for testing submarine models. The constraints imposed by HRTF

pose a unique set of challenges for the MSBS.

Much of the MSBS groundwork had been laid prior to the research supporting this thesis. This
earlier work included derivation of mathematical models, validation of the models using
computer simulations with realistic physical quantities, proofs of concept with laboratory
components, procurement, fabrication and assembly of parts of the MSBS subsystems,
prototyping of a graphical user interface (GUI) and testing of isolated subsystems (see [3], [4], [5]
and {6]). In short, the framework for the MSBS design and physical configuration had been set
up and partially validated.

Beginning in the spring of 2003, efforts have focused on the primary goal of this thesis: to
demonstrate the practicality of building a full-scale MSBS through the successful implementation
of 1-DOF and 2-DOF systems comprising actual MSBS components to be used in the HRTF.

A secondary goal for the thesis is to support future MSBS development by pulling together the
heretofore disparate background references in a compact, integrated format. To provide future
engineers a strong footing to advance the project, it’s necessary to know the context in which the
most recent work was done. For this reason, a considerable portion of this thesis is spent
explaining the theoretical underpinnings of the MSBS and developing a framework for
understanding the functional and physical aspects of the system. To understand the design
constraints imposed by the HRTF, the next section describes the MSBS,

MSBS Design Geoals and Physical Layout

This section presents an overview of the planned functionality and physical layout of the MSBS.
The immediate purpose for this is to give the reader the background necessary to understand and

appreciate the theoretical and practical aspects of the MSBS. Moreover, to help guide follow-on
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MSBS development, this section also infroduces functional and physical configuration baselines
for the MSRBS. As noted in the National Consensus Standard for Configuration Management,
ANSI/EIA-649, these baselines provide at least a three-fold benefit; 1) they facilitate 2 common
and more thorough understanding of the system’s operation among all the parties involved m
system development and use; 2) they give direction and boundaries to engineering efforts; and 3)
they enable the impacts of design changes to be assessed more quickly and accurately [7]. First,
the high-level MSBS functional goals and early design choices are explained in order to orient the
reader to the MSBS. Following that the functional and physical baselines themselves are

presented.
Overview of MSBS Design Goals

The MSBS is intended to accurately and reliably position a one meter long test object in six
degrees of freedom inside a cylindrical steel chamber (part of the HRTF) under pressures up to
3500 PSI. The six degrees of freedom are commonly referred to as roll, pitch, yaw, vertical,
lateral (left to right) translation and heave (forward and backward) motion. Fig. 1 illustrates the
Princeton HRTF containing the MSBS test chamber, labeled “Section A”.

I[‘ 43 -47116™ >
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8 « 120" »
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Fig. 1. Schematic of the Princeton University/ONR HRTF (see [3], p. 683, and [8]).

The high-pressure HRTF environment requires an MSBS test chamber constructed of highly
sturdy, nonmagnetic material. This effectively constrains the MSBS diameter to about two fest
due to the extraordinary fabrication costs for diameters much larger than that. Several designs
were considered, but it was decided to construct the test chamber of two-inch thick stainless steel
and place the electromagnets, or suspension coils, outside the chamber. Because the suspension

coils were to be placed outside the chamber, the gap between the coils and the suspended test
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object was larger than it would have been otherwise, requiring larger coils to allow effective
control of magnetic fields: Large coils would in fum require large current sources and cooling
systems. Finally, the high pressure environment would require the MSBS design to include

pressure canisters for the delicate optical position sensors.

Fig. 2 is a schematic diagram showing the MSBS suspension chamber surrounded by 2 suite of
ten electromagnets, or suspension coils. The four pairs of transversely mounted coils were
custom-built to produce the it force on the model, and the two coils wound coaxially around the
ends of the chamber are intended to control the longitudinal movement of the model, The axially

wound coils are not yet built.

Fig. 2. Schematic of MSBS suspension chamber with electromagnets (see

[91, p. 686).

Functiona! Baseline

A functional baseline, also called a requirements baseline in some references, formally defines
the required high-level performance attributes for a system, normally in the form of a
comprehensive set of authoritative documents that describe what the system must do [7]. The
two essential elements of this baseline are a systematic enumeration of reguired functions and

their authentication, and the baseline’s chief purpose is to provide a “point of departure” for
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future design changes [7]. The functional baseline in this thesis is a simple one in that it consists
mainly of a tabulated set of concise descriptions of the major MSBS functions as determined
from earlier MSBS theses and conference papers and reports. For the purpose of this thesis, the
authentication of these functions is assumed and the source documents are not integrated into the

haseline as described in the definition above.

Before proceeding to the actual functional baseline, it is noted that not all the lower-level MSBS
performance specifications are uniquely or straightforwardly derived from the high-level design
goals. For example, the minimum number of suspension coils needed to implement six degree-
of-freedom control can be derived directly from the electromagnetic theory, but the settling time
allowable in the controller represents the engineer’s best judgment in the design. Second, some
of the MSBS design choices were based on equipment choices made in response to budget or
time constraints, rather than directly from specific high-level requirements. For example, the
controller’s range is somewhat constrained by the particular position sensors selected. Third,
most of the MSBS requirements were identified and the design choices made well before the
work on this paper was started, as reported in [3]. (Additional work is presented in {4], [S] and
[91) As a result, the MSBS baselines presented here should not be construed as exclusive of
other designs. Nevertheless, the functional and physical baselines do perform their most essential

function, which is to provide a useful point of departure for design improvements [7].

Table I is an abbreviated functional baseline for the current MSBS design. (Appendix A includes
a more detailed version.) In addition to a hierarchical listing of requirements statements, the table
also lists certain design decisions which correspond to these requirements. Design decisions are
the particular choices of algorithms, methodologies or equipment types determined to be the best
or most cost-effective way to implement a functional requirement. Design decisions are not
“must do” statements although, once adopted, they can place constraints on requirements and

other design decisions.
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TABLE I

ABBREVIATED MSBS FUNCTIONAL CONFIGURATION BASELINE

Identifier

Functional Requirements

Related Design Decisions

FR16G0

FR1100

FR1200

FR1300

FR1310

FR1400

FR1410

FRi420

FR1436

PRE440

Operate within the environmental and operational
constraints of the HRTF

Operate under 3500 PSI internal pressure.

Maintain airtight seal with HRTF under 3500 PSI
internal pressure.

Support Reynolds number in range of researcher’s
needs.

Employ test object supporting high Reynolds
numbers.

Operate unattended and continuously for periods
of several days without interior access to HRTF.

Accommodate changes in pressure, airspeed and
test object position commands without manual
intervention.

Allow for calibration and testing of interior

components without manual intervention.

Maintain safe internal temperature in electro-
magnets for long periods of unattended operation,

Fmploy automated condition monitoring and
emergency system shut-down,

Two-inch, nonmagnetic stainless steel
chosen for construction of suspension
chamber. Nonmagnetic material needed
to aveid interference with MSBS
operation.

Materials costs constrain inner diameter
to approx. 19 in.

Cylindrical and uniform construction.
Actuators mounted externally.

Level of effort required to open
suspension chamber limits accessibility.

Baseline design for test object calls for
an ellipsoidal model with 12:1 length to
diameter ratio.

Robust sensor scheme selected. (See
FR2210)

Linear design selected for coniroller.
{Seec FR2210)

Choose a conservative range of
movement with respect to system’s
physical capabilities.

Conirol program designed to compensate
for changes in seasor input/output
characteristics.

Electromagnets wound with insvlated
copper tubing with square cross-section.

Circulating, chilled water cooling system
designed.
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TABLE 1, CONT'D

Identifier Functional Requirements Related Design Decisions

FR2000 Automatically control position of suspended test ™ cemeeeemeemnee
obiect in six-degrees-of-freedom without direct
mechanical contact.

FR21900 Actuate suspended test object in six degrees of 00000 e
freedom using electromagnets.

FRZ2110 Employ minimum of five independently driven Five separately controlled current

actuators {electromagnets). amplifiers capable of supplying up to
120ADCat 150 V DC.
FRZ120 Produce aggregate flux density of sufficient Large, iron-core electromagnets custom

magnitude to create force adequate to counter both designed and built for MSBS. Drive
weight of test object and the aerodynamic forces  current anticipated to be up to 120 DC
acting on it. amps.

So-called X configuration for
electromagnets selected.

FR2200 Sense and provide test object position without Optical sensors selected for design.
direct mechanical contact,

FR2210 Measure deviation of test object from fixed point - Selected sensors were SunX LA-511
in an inertial coordinate system attached to the optical sensors with 15-mm range of
suspension chamber. detectable motion.

FR2300  Execute real-time, multivariable control ina way =~ —eeeeemmeeeeeeee
that HRTF users to readily change parameters and
data capture schemes.

FR2310 Provide rapid prototyping. dSPACE Controller Design and
: Implementation system selected to
permit both design and operation on
same hardware/software suite.

FR3000  Provide real-time control, monitoring and data =~ —eemmmecmmeeeeeen
logging to MSBS operators.

Physical Baseline Description

The physical baseline description in this thesis combines elements of two common configuration
management concepts: the product configuration baseline and the product structure. The product
configuration baseline, or just product baseline, is defined as the set of all documents needed to
completely describe a system’s functional and physical attributes, usually just prior to the
production phase. In other words, the product baseline contains all the drawings, specifications,

etc. needed to build the system [7]. The product structure is a method for laying out, in
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hierarchical form, the compeosition of a product in terms of structural components, equipment
type and quantity, software versions, interfaces, etc. The product structure makes reference fo but
does not necessarily include the design documentation [7]. The physical baseline used in this
thesis is much like the product structure except that it is not replete with references to design
documentation. In addition, the physical baseline used here makes reference to all the source
documents available for the MSBS, though does not integrate them as a formal product baseline

would.

Table I is an abbreviated physical baseline showing the highest level hardware and software
components with brief descriptions. Appendix A contains a more detailed physical baseline

description with references to the source documents describing these items.

TABLE I
ABBREVIATED MSBS PHYSICAL BASELINE

Group Identifier Item Name Qty Item Description
MSBS Plant 1A1 Suspension chamber 1 Type 304L stainiess steel cylindrical
Group suspension chamber, nom. 24 in.

OD.,nom. 19in. 1D, 961in. L.

IA1A1 Radial coil mounting 1 Structural fiberglass frame used to
assermbly mount radial suspension coils in X-
configuration around suspension
chamber
1A1A2 Radial suspension coil 8§  Custom built, iron-core magnets
1A1A3 Axial suspension coil 2 Water-cooled magnets wound around

suspension chamber (axially).

1A2 Position sensor assy 1 Position sensors and mounting
structure.
1AZA1 Sensor mounting frame 1 Non-magnetic frame holding position

sensors in configuration to sense
movement in 5 degrees-of-freedom.

MSBS Plant 1AZAZ Laser beam sensor set 5  SunX Trading Co., Model LA-511
Group
1A3 Magnet cooling system Chilled water circulation systen.
1A4° Test model assy. no. 3 1 Cylindrical PVC test model, 30 in. I,
3.5in. dia
1A4A1 Permanent magnet core 6  Neodymivm-Iron-Boron disks, 3.0 in.

dia., 0.5 in. thickness.
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TABLE I, CONT'D

Group Identifier Itern Name Qty Item Description
Amplifier 2A1 Electromagnet Drive ¢ Copley Controls Corp Model 2329
Group Current Amplifier PWM Power Amplifier

ZAZAL High voltage/high current 1 Clinton Model 8600/1508
power supply
Control System  3A1 Host Computer 1 - Dell Precision PWS330, Intel
Group Pentium 4 CPU, 523 KB RAM
3AZ Real Time Interface 1 DS-1103 Real Time Interface
3A3 Signal interface panel 1 CP-1103 Interconnection Module
Software Group 4Al Host Computer Operating 1 MS Windows 2000, v 5.00.2195
System Service Pack 1
4A2 Matlab Software Suite I Control system design software.
4A2A1 Matlab R12.1 (inc. ' Matlab R12.1 (inc. Simulink)
Simulink)
4A2A2 Matlab Control System 1 Matlab Control System Tool Box,

Tool Box, v5.1

vi.1

* Test model presented here is the last one used in the set of experiments covered in this thesis and the one
that most closely represents the model anticipated during actual operations.
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Fig. 3 illustrates the interrelationships among the major MSBS components listed in TABLE IL

The legend identifies the four major groupings within the physical baseline.
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Fig. 3. High-level MSBS physical configuration diagram.

Document Layout
To meet its objectives, the document is laid out in the following chapters:

CHAPTER I INTRODUCTION. This chapter introduces the MSBS and its
major design challenges and provides breakdowns of the system’s functional and
physical atiributes.

CHAPTER Il MSBS THEORETICAL BACKGROUND. This chapter explains
the electromagnetic and control systems theory needed to design the MSB
contro! system.

CHAPTER I GENERAL IMPLEMENTATION METHODS. This chapter
provides a background for transforming the mathematical model into a physical
controller by introducing the use of certain components in the MSBS software
and hardware suite.
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CHAPTER IV ONE-DEGREE-OF-FREEDOM TESTS. This chapter explains
the role of the one-degree-of-freedom tests in developing the full MSBS and
describes how the tests were conducted and the importance of their results.

CHAPTER V APPLICATION OF OPTIMAL CONTROL THEORY. This
chapter shows how optimal control theory is applied to the design of a state
regulator for the MSBS.

CHAPTER VI TWO-DEGREE-OF-FREEDOM EXPERIMENTS. This chapter
continues the previous description by discussing how optimal control is applied
to the multiple input, multiple output (MIMO) case, in particular the two-degree-
of-freedom configuration of the MSBS.

CHAPTER VII CONCLUSION. This chapter provides a broad summary of the
document and highlights key points in the remaining MSBS development work.

APPENDICES. These contain technical references such as equipment
descriptions and drawings, operating procedures, experimental data and Matlab
scripts.
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CHAPTER 11

TICAL BACKGROUND

Introduction

As pointed out in Chapter 1, the electromagnetic theory and mathematical equations needed to
design the MSBS have long been identified and understood, if not fully implemented. The
purpose of this chapter is to introduce the underlying physics and mathematics in enough detail to
enable the reader to understand the development effort covered in this thesis and to pursue the

MSBS design and construction {o its completion.

The motivation for a separate treatment of the theoretical background lies in the fact that the most
recent MSBS design documentation, [4], [5], [6] and [9], as well as the maglev work on which
that paper was primarily based, [10] through [13], covered the MSBS theoretical background only
in varying degrees, according to the documents’ particular individual emphases. None of the
references contained a broad-scoped development of the basic MSBS equations, beginning with a
derivation of the electromagnetic force and torque equations and proceeding through to the
derivation a linear model. However, it was just this kind of background that was needed to bring
the MSBS development forward—for at least iwo reasons. First, despite the prior successful
computer simulation of a 5-DOF linear quadratic regulator [4], to actually build the MSBS in full
scale, several new interim controller designs were needed, each design requiring the 5-DOF linear
model to be adapted to smaller scale versions of the final system. Second, understanding the
design issues of robust stability and performance requires knowledge of the physical

characteristics of the MSBS plant.

A final note is needed before proceeding to the development of the MSBS theoretical background.
Whereas the goal of the MSBS project is to build the 6-DOF system described by the functional
and physical configurations described in the previous chapter, the remainder of this paper
primarily addresses modeling a 5-DOF system and the design and implementation of 1-DOF and
2-DOF systems. The reason is two-fold. First, controlling a 6-DOF system requires a slightly
larger and more complicated mathematical model [12]. Second, detecting the rolling motion of
cylinder around its long axis would be difficult with the optical shadow sensors selected for this
design. Some kind of fin would be needed that changed cross section in the sensor beam, vet at
this point in the project it is unknown what the HRTF design constraints will allow. Therefore, it

was opted to forgo the more complicated design and prove the maglev concepts and techniques
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using the same basic slectromagnetic configuration of the full 6-DOF system but with a 5-DOF

controller design.

This chapter briefly explains the electromagnetic principles underlying the MSBS operation,
derives the equations of motion describing the basic MSBS dynamics, then develops a2 general
five-degree-of-freedom (5-DOF) linear model for a five-coil MSBS plant and finally introduces

other system dynamics that should be considered in the control system design.
Electromagnetic Theory

The basis for the MSBS is the interaction of one or more regulated magnetic fields produced by 2
fixed array of electromagnets with the constant magnetic field of a smaller, moveable permanent
magnet core inside the suspended test object. This interaction produces forces and torques that
move the core relative to the fixed magnet array. If the current in the electromagnets can be
regulated so the resulting forces and torques suspend the core in stable equilibrium, then the basic
MSBS design goals have been met. The start of the design process is then to obtain equations
describing the electromagnetic forces and torques. This section develops these equations, which

are based on Maxwell’s equations for magnetic fields.
Reference Frames and Assumptions

Before the MSBS electromagnetic equations can be derived, two rectangular coordinate systems,
or reference frames must be defined, as illustrated in Fig. 4. The first is the inertial reference
frame, which contains the fixed array of electromagnets and the suspension equilibrium point,
located at the reference frame’s origin. The second reference frame is the one atiached to the
suspended object, referred to as the body coordinate system. The origin of this system is the
centroid of the suspended core, which for convenience is modeled as a cylinder. The two
coordinate systems are distinguished by using an overbar on the axis labels to denote the body
coordinate system. When the suspended object is at equilibrium, the two coordinate systems are

coincident, as pictured in Fig. 4.
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Fig. 4. Cylindrical permanent magnet in inertial and body coordinate systems.

Several assumptions concerning the electromagnetic environment of the MSBS are essential to
constructing the MSBS linear model. The first assumption, as stated in [11], is that “The torques
and forces on a magnetic dipole in a steady magnetic field are identical to those on an
mfinitesimal current loop with the same magnetic moment.” This, along with the fact that a
cylindrical permanent magnet approximates a closely wound solenoid whose magnetic dipole is
simply the number of turns times the magnetic dipole of each turn—in a uniform magnetic field
[15]—allows the fundamental torque and force equations for an infinitesimal loop to be extended

directly to a permanent magnet in the MSBS.

The second assumption is that the MSBS is in the class of so-called “large gap” suspension
systems, where the volume of the permanent magnet core is small relative to the volume of the
electromagnets and small relative to the gap between the core and the electromagnets. For these
systems the magnetic flux densities can be considered uniform over the volume of the suspended
permanent magnet core, which simplifies the force and torque equations [10]. This assumption
was successfully applied in several working large-gap systems, including an earlier proof of
concept demonstration of the MSBS [1], [16]. 1t should be noted that prior to the research
supporting this thesis, the use of this assumption had not been validated in a system

approximating the dimensions of the MSBS.

The third assumption is that the magnetic flux densities produced by the electromagnets, or
suspension coils, can be suitably approximated by second-order Taylor series expansions about
the centroid of the core af its equilibrium point. As a result, the values of the magnetic flux
densities and their gradients need only be calculated (or measured) at the suspension equilibrium

point. This assumption has been validated in practical systems of different configurations [11].
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The fourth primary assumption is that time invarian{, or magnetosiatic equations can be used 1o
reasonably approximate the electromagnetic environmeni in the MSBS. This assumption is itself
based on two others: 1) the magnetic field variations in the MSBS are not rapid enough to require
a time varying model, and 2) the movements of the suspended core are slow enough to consider
the object static. The importance of this last assumption is shown by first considering Maxwell’s

equation for a time varying magnetic field

VXE:-—@,
ot

where E is the electric field produced by the time-varying magnetic flux density B. Taking the
surface integral of both sides of this equation and applying Stokes theorem' to the left hand side

gives

oB
E-dl =—[ 2= ds,
(f I ot

which shows that a time rate of change in a magnetic field induces an electric field.

Next, consider a moving charge g with velocity vector u in a steady magnetic field. The moving
charge induces a electric field in the conductor [17]. Thus, both a moving conductor in a static
magnetic field and a time-varying magnetic field cause an electric field to be present in a

conductor and Faraday’s law of electromagnetic induction applies,

$E-dl =, %8 ds + §(uxB)-dl, )
c ot c

where E and B are electric field, magnetic flux density vectors, respectively, and u is the velocity
vector of a moving conductor. The role of an induced electric field in the development of MSBS

forces can be seen in Lorentz’s force equation
F=g(E+uxB), 2

where F is the force vector and ¢ and u are the moving charge and its velocity vector. In light of
(2), both eleciric and magnetic force components must be considered whenever conditions exist
that produce non-zero terms on the right hand side of (1). However, when a magnetostatic model
is assumed, i.c., B is not time varying and the permanent magnet is static, the force equation

reduces o

! Stokes theorem states the surface integral of the curl of a vector field is equal to the line integral of that vector field
around the closed coniour bounding that surface.
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F=g(uxB), (3}
a much simpler starting point for developing the eleciromagnetic torque and force equations.
Electromagnetic Torque and Force Equations

Following is a development of the torque and force equations needed to model the MSBS
operation. Consider a magnetostatic condition as described above where a constant magnetic
field B acts on a plane circular loop with cross-sectional area A carrying current I. The simplified
Lorentz’ force equation (3) describes force on an electric charge moving in that loop. This
equation can be adapted as in [17] to express just the force on an incremental portion of the loop

as follows:
dF =1dixB.

Because of the loop’s symmetry, the net force on the entire loop is zero. However, a torque T is
produced that tends to rotate the loop until the plane of the loop is normal to the B field. The

torque can be calculated by

T= I@Looprx dlxB),

where r is the position vector of the differential loop element, d, with respect to the origin of the
of the inertial reference frame. Using the vector identity Ax(BxC)=B(A4A-C)—-C(4-B), the

torque can then be expressed as
T=1 @Laop di(r-B)-7 @LDOP B(r-dl). G
Applying Stokes theorem and using a result from [11], the two integrals in (4) become
T=IdAxV(r-B)-/B[ (Vxr)-dA,

where dA is a vector normal to the differential area with magnitude equal to the area. The right

hand integral equals zero because the curl of the position vector is zero.” Also, if B is constant

2 if taken from the coordinate system origin, the position vector r is really the gradient of a scalar field, i.e., the position
of an incremental portion of the current loop; hence V xr = §, since the curl of the gradient of any scalar field is
identically zero.
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across the current loop, then V(r-B) =B > and the basic equation for torque on an infinitesimal

loop situated in a magnetic flux density field reduces to
T=7[,dAxB=IAxB. %)

If A in the equation above is taken to be the area of an infinitesimal loop, the quantity 1A is the

loop’s magnetic dipole moment, m, in units A-m’. Then (4) becomes
T=mxB. (6)

The equation for magnetic force is derived from the above torque equation. Consider when the
magnetic dipole moment m of an infinitesimal loop lies at an angle § to the flux density field B.
(Note, for an infinitesimal loop there is no requirement for B to be uniform.) The magnitude of

the torque on the loop is given by
T =mBsiné .

An incremental change in & involves a change in torque and thus a change in the loop’s potential

energy as described in
dU =dW =dT =mBsin8d8 @)

where dU , dW and dT are the magnitude changes in potential energy, work and torque,
respectively. The potential energy in the loop can be found by integrating (7) and is given by

U=-mBcosf=—meB. 8)

If the value of U is taken to be zero when the loop is has its maximum potential energy, i.e., when
it is oriented such that m and B are perpendicular, then the negative sign properly describes the

loop’s potential energy as & decreases.

The force producing the torque on the infinitesimal loop is derived from the above expression for
potential energy. Consider a positive force displacing the infinitesimal current loop from its
position of maximum potential energy toward its position of zero potential energy, or equilibrium
position. The incremental work done in moving the loop causes a decrease in potential energy

equal to

dW = ~dlJ =Fedr=-VUedr,

* The gradient of the dot product of the position vector and B field is given by
[ 6. 3 0]
Lax L %—mz P g(xB_.{ +yB, +ZBZ) =a B +a B +aB =B.

4
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which when considering (8), implies
F=-VU=V(meB). ©
Expanding the right hand side of equation (7) yields
VimeB)=mx(VxB}+(meV)B+Bx(Vxm)+(BeV)m.

All terms on the right hand side go to zero except (me V)B [11] °, allowing the equation for

magnetic force on an infinitesimal loop (9) to be expressed as
F=(meV)B. (10

Next the torque and force equations for a cylindrical permanent magnet are derived in the form
they will be used in the MSBS model. Consider the vector quantity M, the infinitesimal current

loop’s magnetic moment density. For a magnetic moment produced in an incremental volume,
M=0m/ov,or

m = [Mdyv,
14

where the latter expression is noted in [11]. From equations (6) and (10), the differential torque

and force per unit volume can then be expressed

OT =(M xB)ov (11)
and

OF=(MeV)Bov. 12

Consider next a set of N identical coaxial current loops, i.e., a solenoid. The torque, magnetic
moment, and magnetization on such a solenoid in a uniform magnetic ficld are simply equal to N
times those quantities for a single loop. Recall the assumption a permanent magnet with the same
magnetization behaves like a solenoid in the same magnetic field [15]. Thus the formulae for
torgues and forces for a current loop can be extended to the cylindrical permanent magnet in the

MSBS.

4 From Maxwell’s equations for a non-time varying field, the curl of the B field is proportional to the free current
density, which is zero inside the permanent magnet core. Also from Maxwell’s equations, the divergence of B is zero.
Finally, the curl of the magnetic dipole moment is zero because m represents a curl-free vector.
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In equation (2) of [11], the total torgue on a cylindrical permanent magnet is given by

T = [[6T +(Fx0F)]dv, (13)

where the two terms in the integral indicate two components of torque. The first term T is the
incremental torque derived from the interaction of the B-field with the magnetic dipole moment
m in an incremental volume, as in (11). The second term in (13) represents the torque produced
by the Lorentz force on an incremental volume located at a position ¥ in the body coordinate

system as shown in Fig. 5. Substituting equations (11) and (12 ) in (13), gives

T = [{(MxB)+[Fx(MeV)B)]}dv. (14)

7,2

A

Fig. 5. Ilustration of an incremental volume within the permanent magnet core.

A new notation is introduced in equation (14) above. The ~ symbol over the variable is a short

hand means of denoting a truncated Taylor series expansion. For example, the magnetic flux

density at a given point within the suspended magnet in body coordinates, B, is given by

1_0*B
PR

_O°B
v
6}’2

* o7

“+

(15)

B |

The equations for the total force on the cylindrical magnet can be found by integrating the term

for force in the integrand in (14) as follows:

(16)

The expression (M e V)B can also be written [OBIM , where
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‘B, B, B
OB = BT %_ Bw (17
Bz;x Fal B'Z'f
and
P
M= M._|. (18)

Equation (18) is noted in {11]. In the planned MSBS configuration, the magnetization vector is

coincident with the long axis of the suspended permanent magnet and oriented in the positive

X direction. Accordingly, M. is the only non-zero component of M, which leads to the

expression
(0B M =M, B, | (19)

Therefore, if the B-field is uniform throughout the volume of the core, the equations for force

components are

Fy =M [Bodv=M_.[(By+BuX+By¥+Bs7 jdv, (20)
Fy=M,[Bdv=M[(By+Byx+By+By7 )i, @)
F. =M, [Bodv=M,[(B, +BX+B 5 +B% v, (22)

where the B terms with multiple subscripts are the first and second order gradients with respect to
the axes of the body coordinate system and v is the volume of the core. Because of the
symmetry of the cylindrical core, and the assumption of uniform fields and gradients within the
core (assumption number two explained at the beginning of this section), the position terms (X,

vy and 7 ) integrate to zero, and based on [11], (20} through (22) reduce to
£ =vM B 23)

F,=vM B, @4
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and
F.=vM_B_. {253

Finally, the equation for forque on the cylindrical core is derived from (14). Employing the

Taylor series expansion as in (15), from [11] the equations for the components of torque are

T =0+M,[(B,y - B Z)dv (26)
T, =—M, j B+ M, f (BoZ - B %)dv 27
T, =M. [B,+ M [(B,%-B;7)dv. (28)

Note the overbars indicating the core’s magnetization is defined in the body coordinate system,
whereas the magnetic flux density is defined in the inertial reference frame. When expanded, the
integrals in the above equation are fairly complex. For example, the first term under the integral

in (26) becomes

T)'? :MYI(Bij;.*-BYZXj}“x_-*-B

Xzy

y*+B_ yz)dv.

However, just as in the force equations (20) through (22), the position terms integrate to zero.
Furthermore, subsequent developments of the torque and force equations in {12} and [14] show
that due to symmetry, certain the second order field gradients terms are negligible. Consequently,
for a uniform magnetization throughout the core, the torque equations used to create the MSBS

model can be approximated by the much simpler equations:

T.=0, 29
Ty =—vM_B, and (30)
T, =vM_B;. 3y

Equations of Motion

This section uses the torque and force equations just derived to develop equations of motion
suitable for modeling the MSBS. The equations specifically of interest are the ones describing
the acceleration and velocity of the suspended object in the five conirollable degrees of freedom,
as illustrated in Fig. 6. These equations are complicated by the fact the MSBS torques and forces

arise from fields originating in two different reference frames, or coordinate systems: 1) the
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inertial reference frame, where the controlling magnetic fields originate and the control feedback
signals are generated; and 2) the body reference frame in which the magnetization vector is
defined. For this reason, two coordinate system iransformations are employed in this section to
develop the kinematic equations for the MSBS, the Euler rate transformation for angular rates and

the inertial-to-body coordinate system transformation.

Yaw Z z Yertical
| I Translation
Axial
{Longitudinal)
Translation

X

Roli .
Pitch
{Not Controllabie} Laterq!
Translation

Fig. 6. Illustration of six-degrees-of-freedom in the MSBS coordinate system.
The angular acceleration of a rigid body in the body’s own coordinate system can be expressed
0=1""T, (32)

where Q is a vector of angular acceleration components, I, is a diagonal matrix comprised of

the moments of inertia of the body’s principal axes and T is a vector containing the components
of torque. Because the suspended object is cylindrical, its moments of inertia about the central

diameter (i.c., the ¥ and Z axes in Fig. 4) are equal. The moment of inertia about the

longitudinal axis is zero because, as noted in the previous section, the torque generated around the

X-axis IS Zero.

To get the angular velocity vector, the angular acceleration in (32) is integrated and the body

coordinate rate-to-Euler rate transformation applied as in [10], [12], yielding
9=T,0. (33)

This enables the angular velocity defined in body coordinates to be expressed in inertial frame

coordinates, which is where the suspended core’s angular velocity will actually be measured. The

Euler transformation matrix in (33), T, is defined for a 3-2-1 (x-y-z) rotation sequence. From

[10] T, isdefined as
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T,=0  cosb, —sinf, |.

=
%_O secd sind,  secd, cos 49ZJ
It can be seen that by assuming smell angles and low rates of change, T, approximates an
identity matrix and from [12] equation (33) becomes
6z0. (34)

The utility of the approximation will be seen later in this section when the system linear model is

derived.

The translational, or linear, acceleration of the suspended magnetic core in body coordinates is

defined as a function of magnetic force in the expression
V=mF, (35)

where V and F are the acceleration and force vectors and m, is the core’s mass.

To get the inertial translational velocity, an approach similar to the one taken with equation (34)

yields
V=TV, (36)
where T, is the inertial-to-body coordinate system transformation matrix, defined in [10] as

cB,c6, 50,c0, ~s6,

T, =|(c0,50,50 —56,c0,) (50,5050 +c0,c8) cb,s0 |,
(c8,50,c8, +56,58,) (s6,56,c0, +cO,50.) 0,cOx |

where ¢ and s are shorthand for cosine and sine. Assuming the angles of displacement are small
between the two coordinate systems and the rates are small, then, as noted in [12], the matrix can

be approximated as

18 - 1
T ={-6 1 @& | @7
Lo O 1]

This leads 1o the approximation used in [12]:
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Thus far basic equations of motion for both linear and angular acceleration and velocity have
been presented in equations (32), (33), (35) and (36). Next, the equations for electromagnetic
torque and force are added to (32) and (35) to produce equations of motion as functions of

controllable physical quantities, the magnetic flux density B and its gradients. To do this, the

coordinate transformation matrix T, must be applied to the field quantities as described below.

Because the magnetization vector M is defined in the body coordinate system, and the magnetic
field B is defined (produced) in the inertial coordinate system, T, must be applied as follows to

get the torque in body coordinates

T=MTB. (39)

e

The expression for force is slightly more complicated because the magnetization vector in body

coordinates must first converted to inertial coordinates before the product MB can be calculated.
Then, that product must be converted back from inertial to body coordinates before force is

calculated. The basic force equation becomes
F =T, [oB]r;'M . (40)

One more transformation is necessary, and that is to represent gravitational force in suspended

body coordinates:

0 0,m.g
Fg = r[mFg = 'Ilm 0 = _gxmcg
Mg | g

After performing the conversions, adding the gravitational force component and setting the

rotation angles and rates around the x-axis o zero, the torque and force equations become

T,=0 @1)
T, =vM (-6,B, - B,) (42)
T, =vM (-0,B +B,) (43)

Fg:(ﬁvincg 0 —mmg]T
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F =vM (B +20,B_-20B_+0'B -200B +0.B )+0mg (44)
i:’y = VM): {_Hszx + Bxy - HZZBW + ngyy + ByHZBXZ - BVB.W) (45)
F,=vM (6,B,-B,-006,B -6B +6.B -0B )-mg. (46)

A further simplification is possible since for small angles their products are negligible. This

reduces equations (44) to (46) to

F,=vM (B, +208 -20B_)+0mg 47
F,=vM (-0,B +B,+6B -8B ) (48)
F,=vM (0B, +B_—-6B,-6B }-mg. (49)

One more expansion is done before the final equations of motion are formed. This time the terms

in (41) to (43) and (47) to (49) consisting only of magnetic field quantities (e.g., B,, B

> €iC.)
are expanded around the equilibrium point. Finally, the complete set of twelve detailed equations
of motion can be produced by substituting the expanded equations for torque and force, into

equations (32) and (35), giving

Q. =0 (50)

Q, =I'vM (-0,B,~B,-B,x~B,y—B,2) (51)

O, =IvM(-0,B,+B,+B,x+B y+B 2) (52)

6, =0 | (53)

6,=Q, (54)

6.=0, (55)

Vo= ; [VM,(B, + B x+B,,y+B,2+20,B ~20 B )+0mg] (56)
7 = %[VM* (-0.B+B_+B_x+B y+B, z+6,8, ~0,B.)] 7

€
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V= i{va 6,B, +B,+B, x+B_y+B, z-0B, -8B )-mgl. (58
7, e

v, =V, (59)

V;u = 171 . (60)

V,=V, (61)

System Equations

In this section a linear mathematical model for the MSBS is derived based on its equations of
motion. The premise for the linearization is that the magnetic fields are continuous and
differentiable over the volume of the permanent magnet, allowing the MSBS plant to be treated as
a linear system in a small region around some equilibrium point. The linear model developed in

this section in turn forms the basis for designing the MSBS controller.
The Linear Model

The non-linear form of the MSBS plant is

‘ (LD
X=/XU=f1" ", ] : (62)
¥ |
Based on the equations of motion (50) through (61), the variable vector X is defined as
X'=[Q, Q Q 6 6, 6 V., V, V. x y zI. (63)

The plant is non-linear because the equations of motion are multivariable, nonlinear functions of
states. The variable vector U in (62) represents the control input to the system, the current

flowing in the five MSBS suspension coils. U is denoted by
u'=[7 1, I, I, L]. {64)

Coil currents are chosen as the system control inputs because the equations of motion are partly
functions of magnetic flux density. At the distances of concern in a large gap suspension system
like the MSBS, the operating values of the magnetic fields are well-approximated by the ratio
found in [10]:

B=_"b_. (65)
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In this ratio,  is a variable representing the instanianeous conirol current in a given suspension
coil, 1., i8 a constant denoting the maximum coil current allowed and b, is 2 constant denocting
the magnetic field value produced by [,,. Note that b,,, is determined for a specific point in

space, i.e., the equilibrium point. This ratio also holds for first and second order gradients of B.

The procedure for linearizing the non-linear MSBS plant is to perform a Taylor series expansion

around some nominal equilibrium point —}Tio within the composite magnetic field. There is also a

set of equilibrium currents I associated with the spatial equilibrium point. A first order Taylor

series expansion of (62) with the substitution of (63) and (64) results in
X, +0X = f(X,,1)+AdX+Bal,

where A and B are given by

A=Yl (66)
6XX’1

p-L (67)
61)(,1

Taking only the first order terms of the expansion gives a reasonable approximation as noted in

[12] Consequently, the linear state equation form of (62) is

Q ol - .
0 0 f
Vioal Vsl

=A| |+B|J,
i x I,
y Y I,
2y LAl

Note four of the six state variable symbols do not have the over-bar symbol, indicating they are
referenced to the inertial coordinate system. This is possible because of the approximations in
(34) and (38), and it creates an advantage for confrol system design in that these state variables

are directly measurable in the inertial reference frame.

Next the partial derivatives in (66) are taken with respect to the state variables in (63) and, if the
components associated with the torque along the x-axis are excluded, the following 10-by-10

state matrix resulis:
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0 ¢ -B,
O ¢ O
1 0
0 1
0 0 2B +-<
A=W, WM,
o ¢ —Byz
0 0 .’CX~BZZ
0 0
¢ ¢
0 0
where
M
v 0
I
0o oM
]Z
0
0
0 0
W:
0 0
0 0
0 0
0 0
0 0

0
0

0
0

0
G

e T o B o B e B e

OO OO

[T e N o S e B e

[ R = T s T i)

0
0

[on-T e B o B i T

[l < T e B G B

S

hakd

S

0
0

1
0

2

[
Q0

(68)

(69)

Similarly, to form the input matrix B, the partial derivatives in (67) are taken with respect to the

control inputs vector I. However, to do this, the magnetic fields and their gradients must be

expressed in ratios, as in equation (65). For example, the x-component of magnetic flux density

is approximated by
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Because the present MSBES design calls for five electromagnet currents,

CAGY
oL X 0

leads to an input matrix B with five columns. However, only five of the equations of motion
contain B-field components and taking the partial derivative produces only five non-zero rows. It
should also be noted that the partial derivative is evaluated for the model at its equilibrium point.
Consequently, the derivatives containing angles or positions go to zero, since in the linear model

these variables represent perturbations from equilibrium. The resulting input matrix is

-—_‘bzl ~bz2 "'bzs _bz4 "bz4 ]
byl by2 by3 by 4 by5
B = WZ bxxl b\:xz bxx3 bx}'4 bxxS E (70)
bxyl bxyZ bxyB bxy4 bxyi
_ ble b.tz2 bxz3 bxz4 bsz n
where
M,y 0 0 0
I qy‘[ max
o M 0 0
](‘Z]YHEX
W,=| 0 o 0 0o | (71)
mc]max
0 0 0o M 0
mclﬂl&‘(
0 0 0 0o M
L mc“[ max |

The matrix above assumes 7__ is the same for each coil.

max
Caleulating Initial Conditions

The linear state space model {A,B,C} has been derived in terms of constants representing the

magnetic flux densities and their gradients at the equilibrium point. However, the values of the
constants are not yet determined. The common method for deriving numeric values for the state
space model, employed in [3], [4], [12], and [14], consisis of three steps: 1) calculate the value of

the magnetic field component needed to hold the suspended core at the equilibrium point it furns
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out only one is needed); 2) from the equilibrium value of the field calculate the values of the
equilibrium current required fo produce that field; and 3} using the equilibrium current values,
calculate the remaining field components at equilibrium. This procedure is applied in Chapter VI
where the values are determined for a two-degree-of-freedom configuration of the MSBS

configuration.
Additional System Dynamics

To completely describe the MSBS for purpose of automatic control, consideration must be given
to two additional system characteristics: 1) the dynamic response of the current
amplifier/suspension coil combination; and 2} the effects of eddy current produced by the
suspension coils in the 2.5-inch thick stainless steel wall of the MSBS. The role of these last two
factors, ampilifier dynamics and eddy current effects, in designing controllers for the MSBS is

presented in more detail in later chapters.
Current Amplifier Dynamics

In Chapter II it was pointed out the MSBS suspension coils may be driven by currents ranging
between -100 to 100 amperes, thus requiring a current amplifier with considerable dynamic range.
Depending on its frequency response, this amplifier could pose a potentially significant
performance limitation without compensation in the controller design. In [5] the dynamics for a
current amplifier similar to the one slated for use in the MSBS were approximated experimentally

by the third order transfer function

K(s+zl)
(s+p1)(5+p2)(5+p3)’

where K = -51.585, z; = - 209.8, p;, = -499.8, p,; = - 93 + 210i. Fortunately, in [4] the
amplifier was found to have a relatively high roll-off frequency of about 400 Hz, indicating the

amplifier dynamics may not have to be modeled.
Eddy Current Effects

An experiment described in [5] indicates eddy currents in the steel MSBS wall cause a 10-dB per
decade roli-off in magnetic flux density magnitude, indicating a half-order transfer function. The
3 dB bandwidth at a point two inches from the inside of the test chamber wall was found fo be
approximately 27.5 Hz, but rapidly decreased to approximately 12.5 Hz at ten inches from

chamber wall. The latter distance is more realistic for actual MSBS operation and the relatively
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small bandwidth indicates the likelihood eddy currents will have 1o be modeled later in the

controller design.
Conclusion

This chapter has explained how 2 mathematical linear meodel is developed for the MSBS. The
equations above have been validated to some exitent in models or other proof of concept
demonstrations, although not in settings containing actual MSBS parameters or equipment. For
example, researchers at NASA successfully demonstrated a six-degree-of-freedom, large-gap
suspension system, but this system used different configuration of magnets configured in a planar
array. References [4], [5], and [6] describe how controllers were designed and evaluated using
Matlab’s Simulink modeling software, but these controllers were based on hypothetical physical
parameters quite different from the ones to be used in the actual MSBS. Finally, [5] and [6]
describe actual leviiation experiments, but these used only one or two components of the MSBS
hardware and software suite. As will be seen in later chapters, knowledge of the theory behind

the linear model is employed in building a working MSBS.
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CHAPTERIII

GEN

W IMPLEMENTATION METHODS

Introduction

Chapter I laid out the scope of the MSBS design and enumerated the high~£ével functional
reguirements supporting the design goals. Chapter Il elaborated on the physics and conirol
systems theory that underlie the MSBS operation. This chapter takes another step in developing
the MSBS background by describing how the design goals and equations introduced in the first
two chapters are actually addressed and implemented in software and hardware. In so doing, the
chapter not only completes the background needed to begin the discussion on specific MSBS
developments covered described in later chapters, but introduces several new techniques that are

actually building blocks essential to the completion of the MSBS project.

Beyond the challenge of designing, fabricating and interconnecting the major MSBS components
{e.g., the suspension chamber and electromagnets), the goal of instantiating the MSBS model and
meeting the system’s requirements in real hardware and software embodies at least three major
sub-tasks: 1) performing in real time the calculations associated with signal conversions, system
control logic and linear controller equations; 2) converting machine code into physical signals
and vice-versa; and 3) providing real-time system monitoring and control for operators. It should
be noted these three engineering issues have all been addressed in varying degrees using other
terminology in [4], [5], [6] and [9]. However, no single reference has covered these issues as
topics unto themselves, resulting in sketchy guidance for newcomers to MSBS control system
design. This chapter uses the three tasks above as a framework for both familiarizing the reader
with the system’s development and operating environments and illustrating several practical
techniques needed for building the full MSBS.

This chapter contains two main sections. The first introduces the structure of the MSBS
development and operating environment and provides a general overview on how the designer
uses its components. The second section illustrates the workings of the MSBS hardware and
software in more detail by explaining the implementation of several specific MSBS functions,

including performing sensor calibration, data capture and on-line parameter changes.
The MSBS Development and Operating Environment

This section describes the sofiware and hardware environment in which the MSBS is both

developed and intended to operate. Recall from Chapter I that one of the functional requirements
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was for the MSBS to permit “rapid prototyping”, which would allow MSBS developers and users
the flexibility to quickly make design changes to the control system without resorting fo a
dedicated “development” platform. (See FR2310 in Table 1) It was partly for this reason the
dSPACE system was selected, which employs nearly the same software and hardware
components for both development and operation. Nevertheless, the sets of components used in
development and operation do differ slightly and these differences are pointed out in the
discussion of design procedures. To provide a convenient distinction between the developmental
and operational use of the MSBS, the concept of the MSBS application is introduced in this

section.
The Hardware and Software Environment

The MSBS software and hardware environment is where the three implementation issues
presented above are tackled. This environment, illustrated in Fig. 7, contains multiple software
applications running on two different hardware platforms, with inputs and outputs to and from the

physical plant and its ancillary equipment and operator inputs (not shown).

CP-1103 Interconnection | |  MSBS Plant, including coils,
Module =P sensers, amplifiers, efe...
7 3
' nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
..................... w & » dSPACE Control Desk
. > MLIB/MTRACE i
Real-Time = : - '“
Controller E :.......‘.............. .......... .
Fnstructions : RTI-compiled :
: controller, config. files :
: % ¥ and dSPACE libraries. :
Real Time ¢
Processor & »: Real Time Interface |
DS1193 DSpace e
Real Time Interface Assy. MATLAB (w/Simulink)
MSBS development and  ceveoeonnen 1 MATLAB Control Systemm:
operation software 5 Taelbcvz;m :
MSRBS development [ grescassoscsasosasce cessrenseaseranns .
software only { Microsoft Windows O8
ardware platforms Host Computer

Fig. 7. Schematic of MSBS development and operating environments.
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The first two major implementation issues, real-time execution of the controller, signal processing
algorithms and control logic (the conirol system) and the digital interface between the control
system and the physical plant, are handled primarily inside the DSpace DS1103 Real Time
Interface (RTD) module. During normal system operation, the RTT contains the controller and
signal conversion instructions running on the real-time processor (RTP), which is a Power PC
604e microprocessor in the current MSBS configuration. The RTI also holds a set of digital-to-
analog (D/A) and analog-to-digital (A/D) converters, which serve as interfaces to the CP-1103
Interconnection Module. The RTI also simulianeously maintains a bidirectional interface with

the DSPace Control Desk application on the host PC.

Position sensor signals are received via BNC connectors on the CP-1103 and passed to the A/D
converters on the RTL Afier conversion to digital form, the sensor signals are processed by the
RTP to determine the displacements and rotations. of the MSBS test object, which serve as
feedback to the controller algorithm also running on the RTP. Similarly, the CP1103 receives
TTL status signals from the Copley current amplifiers and the cooling subsystem, which are
converted to digital form and used in the control logic on the RTP. In the opposite direction,
control commands from the RTP are converted to TTL form and sent to the amplifiers and

cooling system.

The third implementation challenge, providing operators real-time system monitoring and control,
is met using the dSPACE Control Desk software running on the host PC. Control Desk
communicates with the RTP either via the host PC’s main communications bus or an external bus
link if the DS-1103 RTI Card is installed externally. (The experiments covered here used an
external DS-1103. Sece physical configuration baseline in Appendix A.) This interface allows the
operator to load the control system instructions onto the RTP and start the controller operation.
During normal operation, Control Desk lets the operator monitor and adjust selected parameters

in the control system algorithm.
Basic MSBS Development Issues

Even though both development and operations use essentially the same hardware and sofiware
environment, only the operational use of the MSBS environment has been addressed thus far.
The following paragraphs describe how the system designer creates the control system
instructions in machine code and builds an operator interface to monitor and control the necessary

system parameters.
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The designer begins by modeling the operations of the enfire control system in Matlab’s Simulink
modeling tool. When this is done in the MSBS development environment, and Matlab is
configured appropriately, a link is automatically establish with the dSPACE Real-Time Interface
(RTI) software. This link equips Simulink with RTI-specific interface blocks for use in the Real
Time Processor (RTP) and commands that allow Simulink block diagrams to be compiled into
machine code and placed into operation on the RTP. While designing the confrol system is
challenging, the basic procedure for converting the design into machine code for the RTP is

relatively simple:

1) When constructing the model of the control systern in Simulink, the designer
inserts the special RTI blocks to implement external interfaces such as control

outputs and sensor inputs. These blocks embed a link to the RTI software.

2) To compile the control system model into executable coded and load the code
on the RTP, the designer executes the “Build” command within Simulink. (This
command is located on the main Simulink toolbar whenever the the model is

open.)

To build the operator interface, the designer first uses the graphical user interface (GUI) design
tool within Control Desk to create “virtual” instrument panels. These panels contain virtual
displays and controls (e.g., line graphs, numeric readouts, thumbwheel switches and pushbuttons)
through which operators interact with the control system. (See later chapters for specific MSBS
screens.) Multiple operator screens with different sets of instruments can be created for a single

set of machine code instructions, or application, on the RTP.

The crux of the Control Desk functionality, however, is the real-time linkage between the virtual
instruments in the GUI and their corresponding parameters in the machine code on the RTP. This
linkage is established through a system description file generated at the same time the Simulink
model is compiled. This .sdf file presents the functions contained in the various Simulink
modeling blocks as system “variables™ for use in Control Desk. To assign the virtual instruments
to specific parameters in the real-time control system, the designer opens the .sdf file within the
Control Desk application and manually links the desired system variables to the correct virtual

instruments. These associations are recorded in the .sdf file.

In addition to variable monitoring and control, Control Desk can also capture the values of
selected dynamic variables over adjustable intervals using variable sample rates. This feature

allows critical control system variables such as control inputs, feedback signals and system states

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

to be stored and analyzed in any number of ways using Matlab. Finally, Control Desk groups the
several virtual instrument panels and the .sdf file pertaining to a particular control system into a

single Control Desk “experiment”.

Another component in the MSBS development and operating environment, the MLIB/MTRACE
interface, gives Matlab divect read/write access to the control system on the RTP. This feature is
potentially more capable than the Control Desk instrument panel because it brings to bear the
whole range of calculating power of Matlab and its tool boxes, including the use of Matlab scripts,

on the task of analyzing and updating control system variables in real time.

To summarize, during regular operation, the MSBS “application” runs in a sofiware environment

comprising the following major components:

1) The compiled controller, sensor signal conversion and control logic algorithms,

i.e., control system, loaded on the dASPACE Real Time Processor (RTP).
2) Control Desk Software on the host computer.

3) Real Time Interface (RTI) software.

4) MLIB/MTRACE software for live parameter updating.

5) MATLAB software for live parameter updating.

The MSBS application is created in the MSBS development environment by first designing and
coding the control system in Simulink and incorporating specific RTI blocks in the model. Then
the Simulink model is compiled and loaded on the RTP on the RTL. This accomplishes the first
two major implementation tasks: doing the control system calculations in real time and creating
signal interfaces to the physical system. The system designer then creates a Control Desk
experiment by designing the instrument panels and designating the variable links needed for the
application. This step meets the third design challenge, providing an operator interface. Detailed
descriptions of the installation and operation procedures for the dSPACE software can be found
in [18], [19], [20], and [21].

Implementation of System Functions

This section describes some of the innovations made during the recent research. These

innovations introduced the following functionality:

1) Simplified sensor signal processing
2) Sensor calibration using on-line parameter updates

3) Capturing data on system performance
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4y Conversion of the controller output to control signals for the Copley

amplifiers.

The descriptions of these innovations include technical background on the problems they are
intended 1o solve as well as the specific algorithms and modeling features employed to solve
them. As a result, the discussions in this section more illustrate in more detail the use of the
MSBS sofiware and hardware. Implementations of specific MSBS conirollers are covered in

later chapters.
Simplified Sensor Signal Processing

Recall from Chapter II that the MSBS is ultimately intended fo control a test model in six
degrecs-of-freedom: vertical and horizontal lateral translation, longitudinal translation, roll, pitch
and yaw. However, at this time the controller design only addresses five degrees-of-freedom,
leaving roll control for future development. Thus, given the required ellipsoidal test model and
the type of sensors selected for the MSBS, a minimum of five measurements are needed to sense
the model’s movement. These measurements are illustrated in Fig. 8, which shows the beams

associated with the five emitter-receiver pairs.

Forward Qrientation
of Model

L

One sensor beam measures model's Four sensor beams measurs modef's
movement along x axis. movement along v and z axes

Fig. 8. Schematic diagram of sensor beam placement

The L.A-511 sensors chosen for the MSBS are optical shadow sensors, ie., they detect the

percentage of a beam blocked by the sensed object. The sensors are aligned so that their beams
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are partially blocked by a when the test object is in its equilibrium position. Other types of non-
contact position sensing have been used for maglev systems, such as balanced induction sensors
[22] or balanced optical reflection sensors [23], but these types of sensor systems were not chosen

due 1o their relative complexity.

The sensor receivers produce an oufput voliage proportional to the amount of beam received.
Knowing the sensor output values for the test object’s equilibrium position allows the test
object’s deviation from equilibrium to be calculated. Fig. 9 illustrates the relationship of the test
object to LA-511 sensor beams. For ease of calculation and to permit a symmetrical range of
motion, the equilibrium point is chosen such that every beam is blocked by fifty percent. This
ties the sensor/feedback subsystem somewhat intricately to the plant design, because the
equilibrium point is determined by the electromagnetic fields produced by the actuators and the
characteristics of the suspended object. The point is, while the positions of the sensors are not

specified, they are critical to the performance of the system.

7.5 mm

I

Shadow detects changes
in z-direction

Shadow detects changes

in x-direction
-% }% Shadow detects changes
7.5 mm in y-direction
Lengthwise View of Model at Cross Sectional View of Model
Equilibrium Position at Equilibrium Position

Fig. 9. Schematic diagram of position measurement.

Of course the purpose of the sensors is to provide the controller information about the states of
the test ohject, specifically, the test object’s deviations from equilibrium in the five-degrees-of-
freedom. Doing this first requires converting the five raw sensor oufpuis into the linear
displacements they represent. Following this, the five displacements are used to calculate the test
object’s translational and angular movements. The following paragraphs describe how the MSBS

application performs these calculations.
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Because the desired precision and response are not given for the sensor systemy/feedback path,
from the system’s intended use and the size of the test model, it assumed the sensor system must

support sub-millimeter positioning.

In the work documented in [9], the sensor receiver’s response was assumed to be nonlinear and
the voltage-distance conversion was done by referencing the sensor outputs to calibrated lock-up
tables, implemented with standard modeling blocks in Simulink. These look-up tables were built
by measuring the outputs of the sensors over the full range of their beam widths., This involved a
time consuming process of positioning a calibration tool at eight or more settings within the beam
and recording the receiver output voltages. Fortunately, later analysis of the input-output
response of several LA-511 receivers showed the sensors were linear over most of their ranges.
Accordingly, it was decided to replace the look-up tables with voltage-distance conversions based

on the simple slope-intercept equation y =mx+5b. The simplification afforded by this approach

is described in the following paragraphs. More importantly, its validity was practically

demonstrated in actual levitation experiments.

v

Tax et
(5.0 v nom.) \

—_
Z

=

=

£

é Vimid

5 3.0 viom.)

|23

5

v

Viin ™
{1.0 voom.)
0 7.5 i5

Portion of sensor beam blocked by test model (mam)

Fig. 10 Input-cutput relationship of an LA-511 sensor receiver [24].

The wvoltage-distance calculations are based on the typical manufacturer’s inpui-output

relationship for the LA-511, illustrated in Fig. 10. Given 2 nominal output range of v, to v

max

for a totally uncbstructed to totally obstructed 15 mm beam, the slope is

imiz(vlmx “Vanin )/ (beamwid*{h) .
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Using the slope-intercept equation, and noting that the slope in Fig. 10 is negative, a2 measure of

displacement can be calculated by

Vieas = Vs —]m|><d, or

meas

d =V —V )/lmg, (72)

meas

where v is the sensor output and 4 is the total beam obstruction in mm.

eas

Equation (72) applies to a situation where ¢ directly represents an object’s movement with
respect to the beam’s edge. But since the MSBS control system requires both positive and
negative displacements, the test object’s equilibrium position is set at the point where the sensor
beam is 50% obstructed. In this case, the displacement from equilibrium is given by

+ Vmin )//2 ~V,

d —_ (vmax meas . (73)

]

Assume that at equilibrium the upper edge of the test object lies at the midpoint of the beam as

illustrated in the right hand side of Fig. 9. (Also assume the test object is wider that the beam.)

At this point v, equals the midrange voltage (Vi +Vain )/2 and the measured displacement

meas
equals zero. As the object moves down, allowing more of the beam to pass, the measured voltage
increases, and equation (73) indicates a negative displacement. Correspondingly, upward
movement of the test object produces a positive displacement. In the MSBS application, equation
(73) is implemented for each of the five sensor pairs, giving the complete set of measurements

needed to calculate the translational and rotational displacements of the test object.

The five displacement measurements are the minimum needed to implement the five-degree-of-
freedom (5-DOF) controller. But processing these measurements is complicated due to the
ambiguities introduced by the combinations of three simple types of movement: lateral (along the
y and z axes), axial (along the x axis), and rotational (pitch or yaw). An analysis of this problem
was done m [9], which is expanded on below. First, the calculations of the simple motions by

themselves are explained and then the combinations of movements,

The simplest calculation is the one for sirictly axial translation. Assuming the test object moves
only along the length of the test chamber, i.e., the z-axis, axial translation is merely the distance

measured by the z-axis sensor. (See the diagrams in Figs. 8 and 9.}
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Simple lateral motion, either vertical or horizontal, requires a slightly more complicated
calculation, Using g minimum number of sensors requires there be only two sensors to measure
both lateral and rotational displacement in each of the x-v and x-z planes. This can be secen in the
sensor placement schematic in Fig. 8. Taking the x-z plane as an example, and referring to Fig.
11, it can be seen that vertical displacement can be determined by taking the average of the two
measured displacements, S1 and S2. In other words, lateral displacement is defined in terms of
the movement of the iest object at a point midway between the sensors. Comparing Figs. 11{a)
and 11(b) shows this method holds when the test ohject is not level. The equation for this simple

movement type is
dZ =(dz, +dz,)/2. (74)

Slightly more complicated are the two cases of simple rotational movement: rotation in the x-z
plane (pitch) and rotation in the x-y plane (yaw). (As discussed earlier, roll is not controllable in

the current system design.) Because the calculations have the same form for both pitch and yaw,

only the calculation for displacement in pitch, denoted 46, , is developed.
In Fig. 11(a) the test object is shown with a negative rotation, where sensors S1 and S2 measure
negative and positive displacements, or dz, and dz,, respectively. The rotational displacement

dd, is given by the formula
d6, =—tan"' (2dz,/d ) =tan™ (2dz, /d) = tan™" ((dz, - dz,)/d ), (75)

where d is the separation between the sensors along the x axis. This equation also holds when
the object undergoes simple lateral translation, illustrated in Fig. 11 (b). Note the order of the

displacements in (75) applies when positive rotation is in the clockwise direction. To maintain

the correct sign for the angle, the positions of dz, and dz, must be reversed when positive is

taken in the other direction.
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Motes: {1) Test obiect and sensor beams not drawn o scals.
{2} Only the ends of the test object are shown in the diagrams.
{3} Sensor 1 and Sensor 2 beams are shown in cross section.

Fig. 11. Hlustration of rotational and translational movement in the x-z plane.

Normally the test object will typically undergo several types of movement at once, requiring the

effects of one type of movement on another to be considered. One of these combinations of
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movements is when lateral and rotational movement both occur in the same plane, illustrated n
Fig. 11(b). Fortunately, as stated above, displacements are calculated just as they were when

these movement types occurred by themselves, using equations (74) and (75).

Another combination is when the object axial displacement and pitch, shown in Fig. 11(c). In the
planned configuration for the MSBS, calculating the axial displacement is can be treated the same
with or without rotation, but only because the current design provides for an axisymetric shape at

the front end of the test model and allows only small rotation angles. These constraints serve ©

minimize the dependence of dr on d6, and 46, . These constraints will have to be considered if

and when the MSBS requirements are changed to allow large rotation angles.

To elaborate on the range-of-motion constraints, note that a sensor beam width of 15 mm limits
the detection range of each sensor {0 plus or minus 7.5 mm. This directly limits the controllable
range of simple translational movement, but also indirectly constrains the controllable range of
angular motion, as pointed out in [9] This stems from the geometry of the sensor system and is
illustrated by the uppermost curve in Fig. 12. This curve represents the calculated rotation angle,
based on equation (74), when both sensors for that plane of rotation measure the maximum linear
displacement of 7.5 mm. This curve indicates the maximum measurable angle decreases from
about seven degrees to one degree as the sensor separation increases from 5 to 34 inches. (The
anticipated length of the actual MSBS test model is about 35 in. [3].) The sensor spacing in the
2-DOF experiments covered in Chapter VI was 30 inches, giving a maximum measurable rotation

of 1.13 degrees.
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Fig. 12. Family of curves describing change in angular displacement

measurement with increasing sensor separation.

However, a limitation on the maximum angle is not the only constraint imposed by the sensor
system. Each curve in the family represents the calculated angle for a given displacement as
measured at Sensor 1 and Sensor 2 in Fig. 11, ie,, dz, and dz,. The gaps between the curves
indicate the changes in calculated angle for 0.5 mm changes in measured displacement. The
wider gaps at narrow sensor separations plainly indicate a decrease in measurement resolution
with the increase in measurable angle. For example, a 0.5 mm shift at 5-inch sensor separation
produces a nearly one-degree change in rotation angle. The same shift at a 30-inch sensor
separation produces a 0.15-degree angle change. This poses a trade-off for the designer between

Iimited maximum rotation angles and effective measurement resolution of the rotation angle.

Continuing the explanation of combined rotational and axial displacement, calculating the

displacement angle in this case turns out to be the same as it is for rotation by itself. Consider Fig.

11(c), which shows the upper edge of a test model with negative pitch 46, and negative

displacement along the x-axis, dx. The tangent of the displacement angle is expressed as
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Md ,
tan @, = dz}/f LZ +dx ]~- dzz/ {:—wdx ’ or
' d d .
tan 8, =(dz, —dzz)/g ;;+dx+f2f—dx}=(dzl ~dz,}/(d). (76)
’ FANE /
leading to
a6, =tan™ ((dz, - dz,)/d). 77

Finally, simultaneous rotational, axial and lateral movement is considered. As state above,
rotation angles and axial displacements are calculated the same before. However, the fixed
sensor configuration produces ambiguity in the lateral displacement when the test model moves
in an axial direction. Compare Figs. 11(a), 11(b) and 11{c), where the rotation angles are the
same but the displacements measured by the respective sensors differ because of the axial shift.

In Figs. 11(a) and 11(b) the displacement is calculated as before:
dZ =(dz, +dz,)/2.

But for Fig. 11(c) the same calculation yields a non-zero answer where there is no actual lateral

movement
dZ =(dz, +dz,)[2#0.

This is an apparent lateral displacement. Thus it can be seen that lateral displacement can have

both apparent and actual components, that is
dZ, =dZ +dZ ,

where dZ,,, dZ and dZ are the measured, apparent and actual model displacements, respectively.

To resolve the ambiguity, first let
dZ,, =dZ +dZ =(dz, +dz))[2~dxtandd,.

Then, from (75) the actual displacement can be expressed in terms of the measured displacement

and a correction factor:
dZ =dZ,, —dZ =(dz, +dz, )2~ dx(dz, - dz, ) /d . (78)

Obviously, when there is no axial displacement, the apparent lateral displacement disappears. To

give the true displacement, the apparent displacement is removed. Note the signs of the terms
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assume the MSBS coordinate system, where the negative direction on the x-axis is to the right in

the figure.

Based on equations (74), (77) and (78), Table Il summarizes all the equations needed to convert

sensor signals to five DOF feedback:

TABLE I
SUMMARY OF ALGORITHMS FOR SENSOR SIGNAL CONVERSION *
Axial Lateral Rotational
Displace- Displace- Displace- Lateral Displacement Rotational Displacement
ment ment ment Calculations Calculations
d6, = tan™" ((dz,~dz, ) /d)
O O D S —— »
df, = tan ((dy1~dy2 )/d)
dZ = (dzy +dz)/2
0 X 0 (dz ‘)’, ......
dY = (dy, +dy,)/2
dZ =(dzy+dz)/2 d6, = tan” ((dzy~dz,)/d)
0 X X / o
a¥ =(dyp+dn)f2 a9, = tan ((dy~dy,)/d)
d8, = tan”" ((dz;~dz,)/d
X o X ¥y . (( 1 2)// )
d6, = tan” ((dy,~dv,)/d)
dZ =\{dz,+dz)/2
X X ¢ (derdn)f2
dY = (dy,+dy,)/2
dZ = (d22 +dz )/2 dg, = tan ™ ((dzl-dzz )//d)
< < < ~dx(dzy~dz,)/d d6, = an” ((dy,~dy, )/d)

dy =(dy,+dy)/2
~dx (d)’l ~dy, )/ d

? Solutions for axial displacement are the same under all conditions, i.e., axial displacement is direct
measurement from axial displacement sensor.

To see how the MSBS application implements the sensor signal processing, consider the
Simulink model in Fig. 13. The blocks on the left-hand side implement the equation to convert
sensor output voltages to the distances they represent. Assuming the same sensor configuration
as the one depicted in Fig. 13, the set of blocks on the right-hand side of the model implement
the calculations for vertical translation and pitch. When the MSBS application is compiled, the
Matlab code represented by these blocks will become part of the instruction set running on the

Real Time Processor {RTP) and the blocks will become variables available to Control Desk.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T
Function

Piteh il
{dalta theta-y)

Fig. 13. Representative Simulink model showing sensor signal conversion to pitch and vertical
translation.
Sensor Processing Calibration and Live Parameter Update

Voltage-distance conversion was described as the first step in sensor signal processing and is

based on a simple linear equation, repeated here

. [(vma)f + Yonin )//2] ™ Vineas
7 '

However, because the output range of a given sensor receiver can change over time, and the range
can vary between individual receivers, a method to compensate for these variations is needed to
maintain the accuracy of conversions. If look-up tables were used to do the conversions, the
compensation method would require rebuilding the tables, a time consuming procedure consisting
of opening the test chamber, adjusting a test model through a calibrated range of positions and

measuring the corresponding voltage outputs [9]. Fortunately, use of the above equation enables
the voltage-distance algorithms to be updated based on two relatively easily obtained values, v

win

and v

max "

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

It would be simple enough o measure v

min

and v, by reading the sensor output voltage when

the beam is both fully on and fully cobstructed, and then calculate the slope }ml based on those

values. However, it was found the typical sensor response is not linear over its entire range,
specifically at the range ends. Thus using v, and v, directly would not provide a reliable

voltage-distance conversion. Consequently, a means was devised to reliably derive the maximum

linear output range for any given sensor using v

nin Bﬂld mec :

First, an experiment was set up to analyze the input-output characteristics of five LA-511 sensor
receivers. In this experiment, a calibrated positioning device was used to move a sample test
object from one edge of the sensor beam to the other in one-millimeter increments while the
voltage output was recorded for each position. This procedure was performed five times for each
of the five sensors. Then for each sensor the average of the five outputs at each object position
was calculated and a plot of the averages generated. A comparison of the five plots validated the
assumption that the LA-511 outputs had a large linear region extending to just about a millimeter
from their end points, implying the simple linear conversion formula could provide an acceptable

range of operation for the MSBS.

To complete the analysis, the two extreme data points for each set of responses were discarded

and a linear regression analysis was done on the remaining points to calculate the slope of the

linear portion of the response. By comparison, the slopes derived from v

e and v were flatter
than those of the linear region. This experiment showed that basing the voltage-distance
conversion algorithm on a truncated sensor range would not only better match the typical MSBS
operating range, but that there was enough similarity between the output plots that a standard

method could probably be devised for all sensors.

To develop the standard method for truncating the output ranges, a means was needed to express

the amount of truncation in terms of the two easily measured values, and v, . First, based

Yrin
on the analysis of the plots, it was determined a reasonable first step would be to truncate the
input ranges of the sensors by one millimeter at each end. Then for each sensor the average
outputs at beam widths of 1 and 14 mm were used to determine the average upper and lower
timits of the linear output region for that sensor. For example, for Sensor 3 the sample mean for
all five sets of measurements is 4.90 v at 14 mm and 1.29 v at | mm, which correspond to 97.1%
and 6.43% of Sensor 3's total output range, respectively. Lastly, the averages of all five sensors’

upper and lower percentages were determined, which were 95.37 % and 4.47 %, respectively.
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(Unfortunately the sample size was limited due to the small number of sensors available.) Thusa

simple calibration technique was found to compensate for changes in v, and v, and create

viable working parameters for the voltage-distance conversion algorithm, namely using the

equations

+0.9537 % (v

max-meas vmin~1neas

},and

vmax—working = Vinin-mess

4% =1.0447 xv__

min-working min-niegs

To validate this technigue, the percentages obtained above were applied to all five sensors and the
endpoints of the truncated ranges were used to calculate an input-output slope for each sensor.
Then, simulated input-output responses were generated using the conversion algorithm using the
slopes obtained by the truncation method. It was reasoned that if the simulated responses were

close to the responses obtained from the actual sensor measurements, this approach would be

validated.

55 T
sser Data

= Lingar Appreximation

=na: Slope Calculations--Truncated Range
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Fig. 14. Measured and calculated responses of an LA-511 sensor.

From a comparison of the plots, this method did seem acceptable, as indicated by Fig. 14. The

dotted line is the average measured response of one of the sensors over its entire range; the solid
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line is the linear approximation of the truncated response; and the dashed line is the simulated
response using the truncated slope as described above. (Matlab scripts for this experiment are
provided in Appendix D.) Most importantly, subsequent levitation experiments validated this

method for deriving conversion algorithm parameters.

Having shown the viability of a relatively simple way to derive reliable sensor signal conversion
parameters, the task remaining was to implement this method in the context of a real-time
parameter update, i.e., while the MSBS is operating. Live parameter updating employs a separate
dSPACE software program MLIB/MTRACE. This program provides an interface between the
Matlab workspace on the host PC and the MSBS application on the real time processor (RTP).
This interface enables variables in the real time application to be changed while the application is

running.

To use MLIB/MTRACE, two preliminary steps are necessary. First, Matlab must be configured
to operate with the MLIB/MTRACE software as described in [20]. Second, the MSBS GUI in
Control Desk has to be set up to recognize parameter changes. This is done—while the MSBS
application and its GUI are up and running—by identifying a parameter file and declaring what
parameters are to be changed. After that a Matlab script containing MLIB/MTRACE commands
can be executed to read the max/min sensor voltages, calculate the corresponding input-output
slopes and midpoints and replace these values currently in use in the MSBS application. Finally,
the new parameter values are saved as the new default values next time the MSBS application is
run. Appendix B contains a detailed procedure for live parameter updating and Appendix D

contains a sample Matlab script using the MLIB/MTRACE commands.
Data Capture

In the earlier discussion of the M(SBS operating environment, it was pointed out the Control Desk
software can be set up to capture the instantaneous values of various MSBS states and conditions,
or variables, selected by the designer. One application of this feature would be to characterize the
MSBS controller’s performance by capturing test object’s position as the control input is varied.
The following is an overview explanation of the basic ideas involved in the operation. Much

more detailed information is presented in [18] and [211.

Control Desk provides two types of instruments in its GUI design tool: 1) the single-shot, or
virtual instrument and 2) the time-trace, or data acquisition instrument. These instrument types
are based on two different dSPACE software segments called system services, which bring the

data from the real-time application on the Real Time Interface (RTI) to the Control Desk on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-

51

host PC. For each application such as the MSBS, there is a system description file (.sdf) that
defines these services. (Recall that the .sdf file, built when the Simulink model is compiled, also
contains the names of all the application’s variables.) Capturing data associated with single-shot
instruments such as numeric readouts and LED displays requires the designer to specifically
configure the application’s Simulink model so as to establish the appropriate system service in
the .sdf file. However, data acquisition instruments use the default time-trace system service,
meaning that whenever this type of instrument is linked to a variable in the .sdf file, data capture
connections are automatically established between Control Desk and the RTI. This enables the
designer to capture data associated with plotting instruments such as X-Y plotters simply by

setting defining the data capture parameters within Conirol Desk.

Control Desk provides a window for the operator 1o select the data to be captured and specify the
parameters for the capture, including the total sampling time, the sample rate and the method for
triggering the capture. As noted above, only data associated with data acquisition instruments can
be selected without prior configuration of the application program on the RTI. The capturéd data
can be written to disk in the form of structured data files. Some of the basic capture parameter

settings are listed in the table below.

TABLE IV
BASIC DATA CAPTURE PARAMETERS

Setting Description

Capture Start/Stop Choose whether or not to start capturing the data automatically as soon as the
application statts.

Interval Length The duration of the entire data capture interval.

Down Sampling Ratio between samples read by the default sampling rate of the application and
the sample rate of the data capture.

Trigger On Signal Select a signal (variable) within the application to trigger the data capture.

Acquisition Mode Simpie: Capture the value of a variable over a single period.

Autosave:  Simple capture with automatic file save using same file name.

Autoname: Simple capture with automatic file save using filename generated
automatically based on root filename provided by the user.
(E.g., MSBS 001.mat, MSBS 002.mat, etc...)

Continvous: Capture that continues until explicitly stopped.

Stream to Disl:  Continuous capture that continnously write data to disk.
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When Control Desk writes the captured data to disk, it places them in structured data files with
the .mat extension. Each file is structured with two or three tiers of data fields which contain the
raw data itself as well as information about the data such as numeric form of the data (single or
dual precision, integer, etc...}, the name and version of the application that captured the data, and
the parameters of the data capture. The specific information stored in the .mat file depends on the
application generating it, but typical meta-data for MSBS experiments includes the capture

interval length, down-sampling rate and sample period.

The following example, adapted from one of the MSBS experiments, illustrates the basic data
capture procedure. Consider the evaluation of a two-degree-of-freedom (2-DOF) controller for
the MSBS. Four data sets are needed: the control inputs for elevation and pitch and the elevation
and pitch states. This data is displayed on plotting instruments in the MSBS GUI so data capure
capture can be set up in the Control Desk data capture window. Suitable capture parameters

would include: those in Table V.

TABLEV

TYPICAL CONTROL DESK DATA CAPTURE SETTINGS
Parameter Name Setting
Capture mode Autoname
Capture variables Elevation input, pitch input, elevation position, pitch angle
Data filename MSBS response xxx
Triggering Mamnual (i.e., operator initiated)
Interval length 5 sec.
Sample Period .001 sec.
Downsample rate 100

Using these seitings, the resulting .mat data file would contain four sets of 50 data points
describing the conditions of the four variables listed above over a period of five seconds. Plots of
this data or other analyses can be done using Matlab. The Matlab script in Fig. 15 is a simple

example.
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load MSBS response (01; Load data file into Matlab workspace.
length= MSBE response (01.Capture.length Retrieve capture intexrval length.
spericd= MSBS response_U01.Capture.SamplingPeriod; Retrieve sample period.
dsrate= (MSBS response_ 001.Capture.Downsampling); Retrieve downsample rate and
dsrate=double (dsrate) ; Convert to double precision
variable for calculation.

n={ {length/speriod} /dsrate)+1; Calculate number of data
points in .wat file.

ti={l:n)*.01; Create time axis for data piots.
Pitch= MSBS response (01.¥(4).Data; Load data into Matlab arrays.

Position= MSBS_ response_001.¥(3).Data;

pos_cmd= MSBES response _001.Y(2) .Data;

pitch cmd= MSBS_response_001.¥ (1) .Data; )

plot{tl, pitch cmd, til, Pitch(i,:}); figure; Plot pitch command and responses.

plot{tl, pos_cmd, tl, Position)); Plot elevaticn positicon command
and responses.

Fig. 15. Sample Matlab script illustrating manipulation of data from structured data files.

Amplifier Input Signal Conversion

In Chapter I the need for large current amplifiers to drive the suspension coils was explained. In
the MSBS architecture, these amplifiers are indirectly controlled by the system controller
algorithm running on the RTP. The controller’s output signals do not drive the coils directly but
rather represent the values of the drive currents; specifically the voltage level of the controller
output corresponds numerically to the desired current level in the suspension coil. The Copley
current amplifiers convert the input signal voltage to some level of output current, but not in
direct numeric correspondence as the controller algorithm expects it to be. For example, a 20 V
signal into the amplifier does not produce a 20 A output. This gives rise to the important
engineering consideration discussed below, namely the DC input-output characteristic of the

Copley P232 power amplifiers.

To ensure the amplifiers produce the coil current demanded by the controller, it’s necessary to
first characterize the ratio of amplifier’s output current to its DC control input voltage and then
insert a compensator for the amplifier’s DC response into the controller algorithm. Note that this
DC characteristic differs from the amplifier’s dynamic, or frequency response that was discussed

in Chapter IL
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Fig. 16. Response of Copley 232P amplifier to range of inputs.

An experiment was set up using amplifier control logic, a Control Desk instrument panel, one of
the Copley current amplifiers and one of the MSBS suspension coils. The amplifier input was
adjusted in 5 V increments and the input voltage and the coil current were recorded and plotied.
Fortunately, the input-output response was very linear, as illustrated by the virtual overlap of the

plotted data and its corresponding fitted curve in Fig. 16.

The equation describing the amplifier input-output characteristic is

Jf;zmp (vm) = 0-654‘&1[” + 0.296 - l

out ?

where v, is the voltage input and i, is the amplifier output current. As stated above, the
controller output forms the input to the amplifier v, . Now if it is desired i, be the same in sign

and magnitude as the controller output, then it stands to reason that v, must first be transformed

by the inverse of the input-output characteristic before being applied to the amplifier. This

transformation is given by

Ty (7 ) = (i —0.296)/0.645 (79)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



W
[

where 1, is the desired output current. Because by definition i, is also equal in sign and

magnitude to v,

in?

then this leads to amplifier output given by

S (72 (5.)) =, =i
amp k«'am:u wFi T Tm T Cdes

This transformation is implemented in the as the last process in the control system before the
control system is converted to analog form. A Simulink block diagram of the transformation is
shown in the following chapter along with some other specific implementations for the one-

degree-of-freedom experiment.
Conclusion

The primary goal of this chapter was to complete the background work started Chapters I and II
in order to provide the basis for understanding the more complicated MSBS experimenis to
follow. The secondary purpose was to facilitate future development. The chapter described the
structure of the MSBS software and hardware environment and introduced the basic methods of
using that environment to implement MSBS functions. Several new solutions to engineering
design problems were presented as means to illustrate the implementation methods, including
solutions relating to sensor signal processing, data capture and manipulation and control signal
processing. The following chapters take up the more complicated explanations of specific control
system issues. In the process, further elaboration is made on the practical engineering challenges

of producing the completed MSBS.
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CHAPTERIV

EEDOM TESTS

Introduction

The vltimate goal of the work supporting this thesis is to produce a full-scale MSBS prototype.
Chapters I through III have laid out the design requirements, the system configuration, a large
portion of the theoretical background and the basic implementation methods for achieving that
goal. This chapter begins the explanation of how control systems theory was applied to actual
MSBS hardware and software by describing a set of experiments centered on implementing a

one-degree-of-freedom (1-DOF) maglev system.

Previous work included sensor testing, validating suspension coil parameters, control system
modeling and simulation using the dSPACE software application and some prototyping with
power amplifiers similar to the Copley P232 and small electromagnets. Most of this work was
documented in [4], [5] and [6]. However, no test had been done of a closed-loop control system
employing primarily MSBS components and levitating a test object at a distance near its intended
gap. The 1-DOF experiments described in this chapter were the first successful attempt to do so
and served to validate important assumptions and design decisions upon which MSBS controller
design is based. These include the assumption of a “large-gap” system as described in Chapter II,
the assumption of a large, linear range for the LA-511 sensors, use of the voltage-distance
conversion algorithm for the sensors and use of the input signal conversion for the Copley 232P

amplifiers.

Up to this point a linear model of the MSBS has been defined but the model’s use in control
system design has not been discussed. This chapter addresses that aspect of design by adapting
the 5-DOF model to the 1-DOF case and applying classical single-input, single-output (SISO)
control theory. In addition, this chapter also expands on the implementation methods introduced
in the previous chapter by describing how the controller is implemented in Simulink and explains

several practical engineering concerns.

The remainder of this chapter is divided into three main sections. The first section covers the
preliminary work needed to perform the 1-DOF experiment, including the adaptation of the 5-
DOF linear model to the 1-DOF case and the hardware and sofiware setup. The next section
discusses the first group of 1-DOF experiments including the controller design, experimental
procedures and the results. The third main section gives a similar presentation of a second set of

1-DOF experiments.
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Experimental Preliminaries

The purpose of the 1-DOF experiments was to begin to demonstrate the feasibility of meeting the
MSBS design requirements using the linear model described in Chapter II and the actual
components selected for the operational system. To that end an experiment was devised that
would provide a meaningful evaluation of some of the assumptions and MSBS design choices.
This section describes some of the work preparatory to the experiment in order to orient the
reader to the specific physieal sefup and theory involved as well as to illustraic additional
techniques that will also be needed to implement larger, multiple degree-of-freedom prototypes.
The subsections deal with the physical setup, application of the electromagnetic theory,
determination of the magnetic fields, controller design and several specific Simulink modeling

features.
The 1-DOF System Setup

The 1-DOF experiment was set up to levitate a permanent magnet core at a distance below a
suspension coil approximating the gap anticipated in the actual MSBS. The setup is described as
follows. A pair of MSBS suspension coils, mounted on a backplane of structural fiberglass (as

they will be in the full 6-DOF MSBS) were placed on a wooden frame such that their magnetic

axes were oriented vertically, or parallel to the z-axis in the MSBS coordinate system. (See Fig.
17.)

. :
a
////////,/// .

/////////////
/ .
: //// /////

e

Fig. 17. MSBS suspension coils on test frame.

One of the coils was wired to one of the Copley 232P amplifiers so that its magnetic flux density
was oriented downward, or in the negative z direction. An LA-511 sensor pair was mounted
below the active suspension coil such that the 15 mm beam was oriented vertically and the beam

crossed directly below the center of the coil. The height of the sensor pair was adjusted so that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

the top of the permanent magnet core would be at the midline of the sensor beam when the
suspended core was at its equilibrium point. This is illustrated in the schematic diagram of the 1-
DOF system in Fig. 18. The composition of the permanent magnetic core is discussed in more

detail in following paragraphs.

E Equilibrivm

1
' Copley 232P S . Position: E
CP1103 <:> Current Amplifier “3%5‘.‘; 1on 178 mm
dSPACE : o ;
Interface Module ; 3 / :
; ; :
o LA-511 | Ul LASIL ||
i Physical Plant ] ;
: Laser Beam Widéh: 15mm :
> Digital Controlier <|r >
For Physical Plant DSpace Control
: i Desk Operator
System Model < > Interface
1
Data Capture
DS1103 DSpace
Real Time Interface Host Computer

Fig. 18. Schematic diagram of 1-DOF Maglev system using MSBS components.

The 1-DOF setup also emploved the CP1103 Interface Module, DS-1103 Real Time Interface and
host computer containing the dSPACE and Matlab software. The basic operation involved
detecting the suspended core’s change in position with the laser sensor pair, changing the sensor
output to position feedback to a controller and regulating the current in the suspension coil via the
Copley amplifiers. Basically, except for the stainless steel suspension chamber and a full-sized
test object, the 1-DOF experimental setup contained parts of the whole MSBS development and

operating environment described in Chapter HI. Table VI summarizes these components .
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TABLE VI
MAJOR COMPONENTS COMPRISING 1-DOF EXPERIMENTAL SETUPS

1% Setup—Part of 2™ Setup--Part of

System Component Actual MSBS? Actual MSBS?
Suspension coils Yes Yes
Copley 232P current amplifier Yes Yes
Clinton DC power scurce (and assoc. control circuiiry No Yes
Levitation environment {chamber) No No
LA-511 laser sensors Yes Yes
Permanent magnet core No No
Simulink-based controller instructions Yes Yes
DSPace RTI software Yes Yes
D8-1103 Real Time Interface Yes Yes
DSpace CP-1103 Interconnection Module Yes Yes

Special consideration is given here to the composition of the two different permanent magnetic
cores levitated in the two sets of 1-DOF experiments. The first group of experiments employed
the same core used in earlier tests, described in [6]. This core was comprised of four small
permanent magnet wafers, approximately one centimeter square by 2 millimeters thick. The
magnets’ magnetization vectors, M, were normal to their square surfaces. The several magnets
were joined together magnetically, i.e., placed together with their magnetizations aligned, to form
essentially a single cubic magnet. The initial value used for this core’s volume was 1.6088e-6 m’,
as stated in [6]. Later the core was re-measured the value changed to 1.9531e-6, as shown in the

figure.

This permanent magnet core was housed in a small, plastic egg-shaped case to both protect it
from damage and to simulate the concept of using the core inside a larger model more suited to
wind tummel testing. Fig. 19 shows the construction of the core and its relationship to the sensor
beam and equilibrium position. Note the core is not in the center of the case and thus the centroid

of the core is not the same as the centroid of the test object as 2 whole.
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Fig. 19. Permanent magnet core used in first set of 1-DOF experiments.

The second test object and its permanent magnet core were constructed in a similar way, with
multiple smaller magnets joined together in a larger plastic case. Fig. 20 illustrates this
configuration in relation to the sensor beam and equilibrium position. The second core contains
five Neodymnium-Iron-Boron (NdFeB) discs separated by nylon wafers (shaded in the figure).
Just as with the first core, the magnetization vectors of the individual magnets are normal to the
large surface area so that when joined together the discs form a cylindrical bar magnet with its
magnetization vector M oriented along its long axis. The magnets are housed inside a PVC tube
with a rounded PVC cap with the dimensions of the core and test object assembly shown in the
figure. The top is rounded so that it presents a symmetric cross section to the sensor beam. In
this way, the system is less sensitive the object’s rotation around the z-axis, a motion that
occurred frequently and was not controllable in the one-DOF system. This improvement was
suggested by the tendency for the egg-shaped test object to induce spurious elevation changes due
to its profile change during rotation. Also note that the equilibrium position was lowered for the

second core, from 130 mm below the suspension coil to 178 mm.
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Fig. 20. Permanent magnet core used for second set of 1-DOF experiments.

In Chapter II it was pointed out the magnetic torque and force calculations are based on the value
of the magnetic flux density at the origin of the inertial coordinate system, which is also the
centroid of the core when the core is at its equilibrium. Thus to correctly place the sensors, the
position of the centroid relative to the centerline of the sensor beam must be determined for the
suspended object’s equilibrium position, These measurements are shown in both Figs. 19 and 20.
Taking Fig. 20 as an example, note the equilibrium position of the centroid is -178.35 mm, but
the point at which the suspended object’s position is measured, the object’s top in this case, is

displaced some 28 mm above the centroid of the core.
Adaptation of the 5-DOF Linear Model

Chapter Il explained the underlying electromagnetic theory and provided mathematical models
for the 5-DOF MSBS. This section adapts that theory for use in the 1-DOF case, where only the
vertical translation of the permanent magnet core is of interest.

In the 1-DOF configuration only one component of magnetic flux density is considered, ic., B_.

Because the force and torque equations are based on the flux density vectors and their gradients at

a single (equilibrium) point, and that point is assumed to lie on the axis of the suspension coil’s
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core, it is reasonable to assume B, is effectively the only field component present. This can be

seen in Fig. 21, which illustrates the magnetic flux lines and the suspended core’s magnetization

vector, ¥4, in a singie coil configuration.

™,
//f\

(b} Underside of coll

Fig. 21. Magnetic flux lines for 1-DOF configuration.

An additional consideration in adapting the 5-DOF model is that no conversions are needed
between inertial and body coordinate systems and z=7%. This is because only movement along
the z-axis is involved and the core’s magnetization vector remains aligned with the z-axis. As
expected, the equations of motion are greatly simplified leaving only the equation for force along

the z-axis.

From Chapter I1 the equation for magnetic force is

F=[(MeV)Bdv. (16)
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The integrand can also be wriiten [OBIM , where

Bxx BE ﬁ_z
oB=|B, B, B, | a7
and
(M.
M::*M? (18)
v,

By assuming the magnetization is uniform throughout the core and noting M is the only non-

zero component of M, equation (14) can be rewritten

Bx7
F= v[aﬁ]ﬂ =M, éﬁ , or
B,
Er = z ~xz 9 (80)
F,=vM_ B _, (81)
F, =vM_B_, (82)

where v and M_ are the volume of the core and the core’s magnetization vector, respectively,

and B_ B, and B, are the z-direction gradients of the components of magnetic flux density.

Although equations (80) and (81) indicate there may be components of force in the x and y

directions, for the 1-DOF experiments B, and B, are assumed negligible and F, and F, are

disregarded. This leaves only equation (82) to form the equation of motion. Also note the over

bar notation was dropped to indicate the body and inertial coordinates are the same.

Though the five equations of motion in the 5-DOF case are reduced to only one, two critical
modeling assumptions still apply in the 1-DOF case: 1) the force is linear over 2 small region
around the equilibrium point; and 2) the magnetic flux density and its gradients can be expressed
as functions of the instantaneous coil currents. This is one key motivation for the 1-DOF tests:

validation of the assumptions.
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Recall two of the basic assumptions described in Chapter IL: 1) in a large-gap maglev system the
magnetic flux densities and their gradients are uniform throughout the volume of the suspended
core; and 2) the magnetic fields can be reasonably approximated by taking a Taylor series
expansion and leaving out second order and higher terms. Also note the method of expressing the
magnetic flux density as 2 function of current in

B=—-5b

max ?
i max

(65)

where the 7 is a variable representing the instantaneous control current in a given suspension coil,
L. is a constant denoting the maximum coil current allowed and b, denotes the magnetic field

produced by £, [10]. Thus the magnetic flux gradient in (74) can be approximated by

~

Bzz = ;_bzz +._l—bzzzaz 9 (83)
H z

max nax

where b and b_, represent the maximum values of the first and second flux density gradients at

the equilibrium position (higher order terms are neglected) and Oz represents the vertical
distance from the equilibrium position. Lower case variables are used because the 1-DOF tests
involve only a signal coil current and field, not a composite as in the 5-DOF case. In addition, the
over-bar notation s dropped because there is no difference in coordinate systems for the single
dimension case. This leads to the following nonlinear equation of motion for the core around its

equilibrium point:

F=—= b +—= b_oz—g. (84)

The nonlinearity of equation (76) is apparent when it is rewritten as

vM

7

max

[bﬂ +5 ﬁz]i—-g,

zzz

Z =

where the factor [5,, +5,,0z] produces the nonlinearity.

A linear equation for the acceleration of the core in the vicinity of the its equilibrium point is

derived by taking a truncated Taylor series expansion of (84),

i+8 = f(z,i)+a-0z+pB-0i,
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where 0z and OZ are the deviations in position and acceleration, respectively, Because only the

periurbations from equilibrium are of interest in the control syster, this equation is simplified to

OZ=o-0z+ 01, {85)
where
&z
= — and 86
522:3 f= ( )
6%
= 87
6iz—z i=1 ( )

Equations (85) and (86) are evaluated at the equilibrium position (z=z ) and the
corresponding equilibrium current (i =i, ), giving

Mib M i
q=""Elm gng =25 (b or). (88) (89)
i -

The value of i .is obtained from equation (85) above by substituting for & and f, setting &%

and Oz to zero and solving for i;:

j =l (90)
vM b

To simplify the notation, the notation for the perturbations &z, & &i are shortened to just z, 7

and 8i . Then the linearized 1-DOF system can represented in state space form as follows:
z=Az+Bu, v=Cz+Du,

or

y=1t o] *|+[o]: ©2)

Once the values of the constants in (88) and (89) are obtained, a transfer function for the 1-DOF
plant can be derived using the above state space relationship. In that this is a single-input, single-

output (SISO) system, the transfer function will have the form
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B

y:C{SI”A)~EB=m.

The following table summarizes the terms used in the development of the 1-DOF eguation of

motion.
TABLE VI
EXPLANATION OF TERMS IN [-DOF EQUATION OF MOTION
Term Explanation
&z Perturbation varisble representing the change in height of the suspended object with respect
to eguilibrium.
oz Perturbation variable representing the change in acceleration of the suspended object.
v Volume of the suspended permanent magnet.
M, Magnitude of the magnetization vector for the permanent magnet core.
m Mass of the suspended permanent magnet.
b, First gradient of the magnetic flux density b, of the suspension coil, measured with coil
current equal to imax.
b, Second gradient of the magnetic flux density b, of the suspension coil, measured with coil
current equal to i .
i Suspension coil current, set at some value greater than the largest value needed o suspend
ax the permanent magnet anywhere in the desired range. This is the coil current at which the
magnetic flux density b, is determined.
i instantaneous suspension coil current needed to produce a differential acceleration , i.e. the
value that just balances the magnetic force with gravity.
g Gravitational force constant

Magnetic Field Measurements

Because this was the first attempt to model the MSBS using one of its actual suspension coils and
Jevitating an object at a realistic gap, there no values were available for the magnetic flux density
in the region of interest to the 1-DOF experiment. (An earlier 1-DOF experiment described in [6]
used the MSBS suspension coil but at a different operating point.) As a preliminary step to this
experiment values for b, b,, and b,,, were determined using a two-stage process: first the z-
component of the magnetic flux density b, was measured and then the gradients b,, and b,,, were

derived for the intended equilibrium points.
Two MSBS suspension coils were supported on a8 wooden frame as described earlier in the

chapter. One of them was energived at i =39.84 with polarity such that the magnetic flux

max
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density was oriented in the negative z divection. It should be noted that at the time of the first set
of 1-DOF experiments, the 150 VDC Clinton power supply was not on line and a smaller power

supply had to be used. This limited the current to well below the capacity of the coil.

Measurements of b, were teken by attaching the test probe of an F.W. Bell Series 9900

Gaussmeter in 2 vertical position to a moveable jig calibrated in millimeters. The tip of the probe,
held in an upward position in the jig, was placed directly below the center of the core of the
suspension coil and moved in ten mm increments from a distance 11 mm below core to a point

291 mm below the core. The z-component of the B-field was recorded at each increment.

The procedure was repeated for the same suspension coil and then, as a cursory check of the
uniformity of MSBS coils and amplifiers, the procedure was repeated for a second coil and
amplifier. As expected, the measurements were consistent, both between the two sets taken for
the first coil and those taken between the first and second coils. Fig. 22 contains plots of the
fower portion of the range (-291 mm < z < -81 mm) for all three sets of measurements. In this
region the plots were particularly close. Appendix C contains the complete measurement data.
These results indicated the same B-field parameters could probably be used for all the coils in the

5-DOF system, and the same input-output characteristic could be used all the amplifiers.

-0.01 T T 1 T
-------- Coil#1, Amp #1--1st Set of readings
—— Coit#1, Amp #1-2nd Set of readings
0.015

- Coil #2, Armp #2—{-1st Setof readings
0.02}~-

-0.025
0.03
on . —

-0.04

Magnetic Flux Density, B (T)

0D - - = Ryo--- - o]
' : ' % 1
LB e

-0.055

0.08 ¢
0.3 -0.25 02 0.15

Distance Below Elecromagret (m)

Fig. 22. Comparison of magnetic flux density measurements for MSBS

suspension coils 1 and 2 over range -291 mm <z < -81 mm.
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The data for coil number one were then plotted and the curve was fitted with 2 fourth degree
polynomial using Matlab’s basic curve fitting function. The intent was to obtain a closely fitted
curve so that its first and second derivatives could be used to find values for b, and b, 8t any
arbitrary equilibrium point along the —z-axis. The resulting polynomial is shown in Fig. 23,

where using the variables x and vy provided by the Matlab algorithm represent z and b,

respectively.
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Fig. 23. Plot of measurements and and fourth degree polynomial curve fit

for B, over range -291 mm <z < -81 mm.

For all the 1-DOF experiments the “best fit” polynomial
b, =0.2664z" ~2.289z° ~2.3147° - 0.8194z - 0.1125 93)

was differentiated and used to calculate the parameters needed to complete the linear model. Fig.

24 iltustrates the curves obtained for b, and b__.
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Fig. 24. Magnetic flux density together with first and second order

gradients, B,, B,,, and B,,,, over range -250 mm < z < -100 mm.

One other important finding is pointed out here. Recall the assumption that the instantaneous
value of magnetic flux density, as well as its gradients, can be closely approximated by linear
functions of the instantaneous coil currents in the vicinity of the equilibrium point. This
approximation for the 1-DOF experiments is illustrated in the following expressions:

B =-b, B =——b_ andB_=——b

z?* zz zzz ?

i i Z

max max miax

where i and £ are the instantancous and maximum coil currents, respectively, and B, and b,

are the instantaneous and maximum B-fields. During the first set of 1-DOF tests, an experiment

was conducted in which the B-field and gradients that were calculated using 7 =15.74 and

fnex = 39.8, were compared directly to the measured values at {,, =15.74. The results are

summarized in Table VIII and, as expected, validate the use of the technique. Plots of the
measurements are provided in Appendix C and the Matlab script used to do the analysis is

provided in Appendix D.
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TABLE VI
DIFFERENCES BETWEEN MEASURED AND CALCULATED FLUX DENSITIES AND GRADIENTS *
Parameter” Numeric Difference Percent Difference
B, 0.000152 111
B, 0.0023 1.9765
B, 0.0178 1.6164

* At equilibrium point z = -150mm,
® “Measurements” here refer to the values derived from “best fit” curve obtained from the data plots.

The 1-DOF Controller Design Process

Development of the 1-DOF controller was basically a reiterative process in which a likely
compensator was first designed and evaluated using a2 nonlinear model of the 1-DOF plant. Then
the compensator’s closed-loop performance with the physical plant was compared to its
performance with the nonlinear model. The following paragraphs address several preparatory

steps for controller design.

The first step in producing the SISO compensator was to obtain a specific linear transfer function
for the plant at its expected operating point. To do this, actual numeric values were needed for
the parameters listed in Table VII. Most of these values were obtained directly from component
specifications or measurements. The magnetic flux density, b,, and its gradients, b, and b,,,, were
derived from B-field measurements as explained above. To facilitate a reiterative development
process, the known parameter values and the calculations for the derived ones were coded in a

Matlab script described below.

The main function of the Matlab script is to use the coefficients of the 4™ degree “best fit”
polynomial (93), the magnetic core volume, the suspended object’s mass {core and housing), the
maximum coil current 7,,,, and other given parameters to calculate the state-space form of the
linearized plant model. The program uses the Matlab ss22.m command to convert the state-space
model to a plant transfer function. In addition, the script calculates the values of constants used
in the Simulink non-linear model (discussed below). Finally, all the values are placed on the
Matlab workspace for use in subsequent caiculations. For example, the state-space model and
transfer function for the linear 1-DOF plant with an equilibrium point at -150 mm are shown in

the following equations:
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lesr 0 1 z+! 0 51 (94)
Z] |86.43 0] 7] [0.4565 |
-
y=[1 ol |+[o]i. (95)
Z

0.4665
Grgior =7 96
Y (5+9.297)(s~9.297) 0

The design procedure also entails evaluating the compensator in a closed loop system with a
nonlinear model of the 1-DOF plani. A nonlinear model was constructed from the 1-DOF
nonlinear equation of motion, equation (84). Fig. 25(a) shows how this equation was
implemented in Simulink. The two constants in the model, k; and k,, represent the constants in

the nonlinear eguation, i.e.,

k=M p and 97)
mlmax
M
k,=——s, 98)
mzmax

These constants are generated and placed on the Matlab script along with the transfer function
and other parameters. The nonlinear model contains two integrator blocks that derive the

perturbation position, ¢z , based on equation (84).
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Fig. 25. Simplified block diagram of nonlinear 1-DOF plant and controller.

To test the controller, the nonlinear model is placed as a subsystem in a larger Simulink model of
the overall closed-system, illustrated in Fig. 25 (b). The system model shows the poles, zeros and
gain for one of the compensators used in the 1-DOF experiments. Also note the block labeled
“Rensert Equilibrium Current”. Because the compensator is designed around a linearized plant
model, i.c., one that describes the plant’s operation only within a small region around its
operating, or equilibrium, point, the compensator only commands the marginal amount of current
needed to restore the plant to its equilibrium. In other words, the compensator doesn’t supply the
total current ¢ needed in the plant (or nonlinear model) fo produce B, and B__ according to
H i )

B, =——b,,B,=—b_ and B =—05b

z . z? Tzz . zzz "

Imax Emax lmax

Therefore, a quiescent bias, or equilibrium current must be added to the compensator output to
produce the full control signal necessary to drive the non-linear plant, real or modeled. That s, in

the above equation
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where i, and i, are the equilibrium and compensator currents, respectively.

Notice there is no corresponding subfraction of equilibrium position from the plant output
analogous to the bias current reinsertion. This is because both the linear and nonlinear 1-DOF
system equations are perturbation-based, where the deviation from equilibrium 8z is the variable
of interest. Finally, the system model in Fig. 25(b) contains a functional block, “Plant_Output”,

that places the output of the nonlinear plant, dz , on the Matlab workspace during simulation runs.

Initial compensator design was done using Matlab’s graphical design tool for SISO systems,
Sisotool. Sisotool provides a more-or-less real-time root locus design capability where the
changes in the root loci are plotted as the compensator poles, zeros and gains are changed. Fig.

26 illustrates a typical set of views presented by Sisotool for the second order 1-DOF system.

The method for using Sisotool in these experiments was to first run the Matlab script that
calculates the constants and plant transfer function and places them on the Matlab workspace.
Then Sisotool was launched and the transfer function imported from the workspace and used
within the tool to evaluate candidate compensators. When suitable a suitable compensator was
identified using root locus and bode plot analysis, the transfer function was exported to the

workspace for subsequent evaluation in the Simulink model.
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Fig. 26. Typical Simulink-generated root locus and Bode plots for first 1-DOF controller.

Additional Implementation Details

The last portion of this section covers additional implementation techniques needed to produce a

Chapter Il presented the basic modeling

Once an adequate compensator is identified, it is placed in a Simulink model

working controller for 1-DOF and larger systems.

procedure.

containing the blocks needed to provide sensor signal processing, amplifier contro! logic, coil

drive current and operator functions. This larger model is then compiled and loaded on the on the

DSpace Real Time Processor (RTP). The remainder of this section will address additional,

detailed modeling constructs and instructions needed to set up an operating maglev system.

A simplified, high-level controller block diagram is shown in Fig. 27. The controller contains

the following subsystems: 1) the sensor subsystem containing the algorithms to convert sensor

outputs to controller feedback signals; 2) the amplifier subsystem containing the logic and voltage

conversions to apply the controlier output to the Copley current amplifier; 3) the controller turn-

on subsystem containing logic needed to detect when the suspended object is within the sensor

and 4) the compensator subsystem that contains the actual compensator, gain adjustments,

2

range;

and logic to cut the compensator out of the circuit.
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Fig. 27. Simplified Block Diagram of Simulink Controller Model.

Recall from Chapter I that Matlab can be configured to incorporate functions from the dSPACE
Real Time Interface (RTI) library, which are incorporated into Simulink as specific modeling
blocks. These blocks enable the compiled model running on the RTP to communicate with the
real world through the RTI. The shaded blocks in Fig. 27 represent two such RTT functions. The
block titled “DS1103MUX_ADC_CONI1” denotes a four-part multiplexer on the DS1103 that
handles signal from up to four separate analog inputs on the CP1103 Interface Module. The A/D
conversion is done in the DS1103. When placing the block in the model, the designer configures
it to reference the correct connector on the CP1103. The other shaded block “DS1103DAC C1”
represents D/A conversion on the DS1103 for a single output from the Simulink model. Likewise,

this block is configured to reference the correct connector on the CP1103.

Though not dSPACE blocks themselves, two other blocks are needed to implement a real-world
interface via the RTI. These are the triangular gain blocks adjacent to the RTI blocks in Fig. 27.
These gains are conversion factors required to match the voltage levels actually present in the
RTT with the signel levels they represent in the coded algorithms. From RTI 1o model, the
conversion gain is 10, and in the opposite direction it is 0.1. Finally, note the small shaded block

in the upper left-hand corner. This indicates the model contains RTI functions.
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Fig. 28. Selected Blocks of Typical 1-DOF controller model.

Fig. 28. contains portions of two of the subsystems depicted in Fig. 27, selected to illustrate
several dSPACE modeling constructs. The first is the shaded RTT block in Fig. 28(a) tabeled
“DS1103BIT IN_(GO”. This block represents the conversion of TTL logic levels on the CP1103
Interface Module to binary ones and zeros used in the RTP. The designer can configure the block
to handle to up to eight inputs on the CP1103 by selecting the corresponding pin number on the
TTL connector. The designer can also set the block’s default logic levels at sysitem turn-on. The

other block, “DS1103BIT OUT GO”, performs the same function in reverse. Because these
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blocks handle only binary signals and the machine-to-TTL conversion is hard-wired into the
CP1103, accompanying gain blocks are not needed. In Fig. 28(a) the amplifier subsystem, these
blocks bring “amplifier ready” signals from the Copley 232P amplifiers and convey the aniplifier

enable signals to the amplifiers.

Fig. 28 also illustrates several practical engineering technigues, one of which is to provide
operators the ability to monitor the MSBS coil currents during actual operation. Note the group
of four blocks in the upper left hand comer of Fig. 28(a), including the RTI block
“DS1103MUX_ADC _CON3”. These convert the coil current monitor signal from the Copley
232P amplifier to digital form and rescale the signal to the actual current level it represents. The
physical-to-machine code conversion was discussed in the paragraph on Fig. 27. The rescaling is
needed because the Copley current monitor signal is scaled at 0.025 volt/amp, or 1/40 times the
magnitude of the actual current. The last block in the conversion process is an artifice by which a
Control Desk instrument can be linked to the coil current value. This set of four blocks is

replicated for each amplifier in the system.

This same technique is employed in reverse to provide the coil current command signal to the
Copley amplifiers, as illustrated in the upper right hand side of Fig. 28(a). Because the Copley
amplifier assumes an input signal calibrated at a ratio of 40 Amps/volt, the controller output is
converted by the inverse of that ratio, 0.025. (This is a separate and subsequent conversion to the
one that compensates for the amplifiers mput-output characteristic, discussed in Chapter IIL)

This functionality is replicated for each amplifier.

Fig. 28(b) addresses another engineering concern that has to do with preventing large excursions
in coil current. 1t was found during the 1-DOF experiments that when the suspended test object
moves out of the sensor beam, the controller can drive the coil current up to dangerously high
levels. This condition could easily occur if the controller is operating while the test object is
being launched. It can also occur whenever the plant does not respond to the controller, such as
when the test object falls out of the beam and is no longer controllable. Further, this effect is
compounded when the compensator contains poles very near the origin, which causes the
compensator to act as an integrator. The application of a constant error signal (from an

unresponsive plant) causes the compensator output to rise to high levels.

The remedy to this problem is to keep the compensator out of the loop until the sensors show the
suspended object is within a few millimeters of its equilibrium point. This functionality is
referred to in Fig. 28(b) as the controller turn-on cireuitry and works as follows. First, shown in

the lower part of the figure, the magnitude of the suspended object’s position is subtracted from a
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reasonable boundary value for the tun-on threshold, in this case 4 mm. When the position
changes from outside the sensor range to within plus or minus 4 mm of the equilibrium point, this
difference becomes greater than zero and triggers the relay output to a logic level one. This logic
ievel is passed to the compensator subsystem in the upper portion of Fig. 28(b), where it is
applied to 2 logic “and” block in combination with a manual controller cut-out switch. When
both inputs are high, a logic one is applied to the “Controller-To-Plant Switch”, allowing the
compensator signal to pass to the amplifier subsystem. This prevents the compensator from

driving the control current up before the plant is ready 1o be controfled.

However, this functionality only solves part of the problem. To prevent the threshold detector
from turning off when the object moves outside the 4 mm boundary, thus limiting the 15 mm
MSBS operating range, the relay is set to turn off at a threshold lower than its turn on boundary.
That is, the relay does not turn off until the difference between the turn-on boundary and the
absolute value of the position falls to negative 3.5 mm. This keeps the compensator out of the
control loop until the test gbject moves to within 4 mm of equilibrium and then takes it back out

of the loop only if the object moves out of the sensor range.

It may be noted there is a saturation block following the compensator in Fig. 27(b) that also
limits coil current excursions. However, this alone cannot mitigate the over-current problem
described above. First, the saturation range must be set wide enough to accommodate large
control current transients. Second, limiting the excursion range does not in and of itself prevent
current buildup when the test object is out of the beam, nor does it prevent transients produced

when moving the object within the beam manually.

Finally, once a compensator is designed, and a Simulink model of the control system is compiled
and loaded onto the RTP, a GUI is designed using Control Desk to allow operators to both control
the experiment and capture the necessary data. The graphic in Fig. 29 is a screen shot of a basic
control panel for the 1-DOF experiment. As described in Chapter II, the virtual instruments on
the panel are linked to the appropriate variables in the RTP.

Fig. 29 confains several instruments used in all the MSBS experimenis covered in this thesis.
For example, the two numeric displays in the upper left of the figure show the raw voltage of the
sensor cufput and the object’s displacement from equilibrium. On the right side of the figure
there are four data plotting instruments that display the input and output signals for both the
nonlinear model and the physical plant, enabling a side-by-side comparison compensator’s
performance in both the modeled and real system. As noted in Chapter 11, variables linked to

these instruments are automatically available for data capture.
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Fig. 29. Screen capture of main operator control panel for joint 1-DOF test.

The control screen also contains several simulated thumbwheel switches and push buttons. These
provide the operator with compensator gain adjustments, commands to change the desired
displacement of the test object and on-off switches for the amplifier and the controller. The

amplifier cutoff switch was particularly important as a safety measure.

The modeling constructs and design solutions presented in this section are some of the basic ones
needed to set up controller experiments, and the sample block diagrams are only simplified
versions of the more complex ones actually used. Further techniques and more detailed Simulink

models will be presented in the ensuing discussions of the actual models and specific experiments.
Imitial 1-DOF Experiments

This section describes the first 1-DOF experiment: simultaneous testing of the MSBS model and
physical plant. The section builds on the basic design methods presented thus far by providing
more specific information on the specific 1-DOF controller and Simulink model used in these

experiments.
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The motivation for this experiment was two-fold: 1) to validate the MSBS modeling assumptions
using major MSBS components, and 2) to identify new implementation issues and gain practical
experience operating the hardware and software. The first goal would be addressed by comparing
the performance of a compensator in both the 1-DOF nonlinear model in Simulink and the
physical 1-DOF system. The second goal would be met in the course of setting up the software
and hardware. As it was pointed out earlier in the chapter, lessons learned during this experiment

and the next were the stimulus for much of the discussion earlier in the chapter.

This section first covers the experimental setup and compensator design, including the use of
Sisotool and the composition of the Simulink model. Following that the experimental procedure

is presented and then a discussion of the results, emphasizing their relevance to the full MSBS
Experimental Setup

The 1-DOF maglev for this experiment was designed to control the vertical position of an object
within a 14 millimeter range centered at 150 millimeters below the core of a larger electromagnet,
as illustrated in the schematic diagram in Fig. 30. (This experiment used the first suspended
object, i.e., the egg-shaped case and permanent magnet core described in detail in Fig. 19.) The
full 15 mm range was not attempted because it was uncertain at that point how well the sensors
conversions would work at the range extremes. Otherwise, the experimental setup was the same

as depicted in Fig. 18.

: H

‘ MSBS Eguilibrium |

: Copley 231P : Position: |

CP1103 Current Amplifier Suspension '

' : 150 mm !

dSPACE : Coil :
Interface : yy :
Modale i : :

— LA-511 2 LASIL |

E Receiver \ Emitter E

: Phyvsical Plant ;

: ;

Laser Beam Width: 15 mm

__________________________________________________________

Fig. 30. Schematic diagram of first 1-DOF maglev plant.

To design the controller, it was first necessary to obtain values for the physical constants and
develop a linear model of the plant. This was done following the approach of the previous

section, i.e., using a Matlab script to calculate the values and place them on the Matlab workspace.
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The calculations were based on an equilibrium position at 150 millimeters below the suspension
coil, a distance approximating the suspension position planned for the actual MSBS. First the
functions for the magnetic flux density gradients, 5., and b,,, were obtained by taking the
derivatives of the “best-fit” polynomial for b,. The equations for the derivatives were then solved
for z, = -150mm. Then equilibrium current was calculated and the coefficients for the state space
equation derived using b, by, i, M, m and v. Also, the parameters needed for the nonlinear
model, k; and k;, were calculated and placed on the Matlab workspace. The resulting values are
listed in Table IX. Note in the table that during the course of this experiment, several values were
revised in an effort to understand how sensitive the system model was to parameter variations.
Appendices C and D contain the measurement data, the curves and the Matlab script used to

derive the quantities in the table.

TABLE iX

MODELING PARAMETERS FOR ONE DOF MAGLEV—EXPERIMENT NO. 1
Parameter Values
Mass of suspended permanent magnet, m 0.0235kg
Equilibrium Distance, z, -0.150 m
Maximum coil current, i, 398 A
Coefficients (descending order) of “best fit” plot of Bz 0.2664, -2.289,-2.314, -0.8194, -0.1125
First gradient of magnetic flux density at z,, b,, -.2833 T/m
Second gradient of magnetic flux density at z,, b, -2.4960 T/m’
Magnetization of permanent magnet (initial), M, -9.5731e 5 A/m
Volume of permanent magnet, v (initial) 1.6088e-6 m’
Equilibrinm current, i, (initial) 21.028 A
First coefficient, o (initial) 86.4283
Second coefficient, # (initial) 0.4665
Nonlinear model constant, k; 0.4665
Nonlinear model constant, ks 4,110

Parameters Revised Due to Increased Permanent Magnet Volume ?

Adjusted volurne of permanent magnet, v 1.9531e-6 or’
Equilibriom current, i, 173216 A
First coefficient, o 86.4283
Second coefficient, § 0.5663

® Note, during the experiment the equilibrium current was adjusted fom the calculated value in an effort
to get 2 better response from the physical plant.
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TABLE IX, CONT'D

Parameter Values

Parameters Revised Due to Both Increased Magnet Volume and Magnetization Vector ?

Magnetization of permanent magnet, M, -1.1392e 6 A/m
Volume of permanent magnet, v 1.9531e-6 m’
Eguilibrivm cuzrent, i, 14.556 A

First coefficient, o 86,4283
Second coefficient, § 0.6740

# Note, during the experiment the equilibrium current was adjusted from the calculated value in an effort
to get a better response from the physical plant.

The Simulink model constructed for this set of experiments is shown in Fig. 31. Fig. 31 (a)isa
block diagram of the overall joint 1-DOF model. Note the nonlinear plant model and controller
are almost totally separate from the physical plant and its (identical) controller. This of course
was done to enable the simultaneous, independent compensator testing. Fig. 31(b) is an

expanded view of the “Nonlinear Plant and Controller” block in Fig. 31(a).

Several of the blocks in Figs. 31(a) and (b) have been discussed already. Additional blocks to
note include those labeled “Gain Adjust”, which were inserted to allow the compensator gain to
be adjusted in both coarse (x 1000) and fine (x 10) increments while the controller was in
operation. (Note “coarse” and “fine” are defined relative to the baseline compensator gain, K, =
8900, calculated in Sisotool. This functionality was useful in tuning the controller to the plant
once a suitable set of compensator poles and zeros were identified. Also note the “Command
Input” block in Fig. 31(a). When linked to the GUI, this permitted a common step input to both
the model and physical system. Finally, it can be seen Fig. 31 does not contain the controller
turn-on threshold circuitry described in the previous section. This functionality was not

implemented until the second set of 1-DOF experiments.
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After deriving the linear plant model and its transfer function, Matlab’s Sisotool was used to
design a lead-lag controller for the 1-DOF plant. In view of the primary goals of this experiment,
validating the modeling assumptions in the context of actual MSBS equipment and gaining
expertise in building the full MSBS system, the objective of this controller design was simply to
obtain a level of performance and robusiness sufficient to conduct a rough side-by-side
comparison of the plant and model. In this way at least the conirollability of the real system

could be gauged and any major discrepancies in the model could be identified.

As described in the 1-DOF controlier design process above, the linearized plant transfer function

was calculated and placed on the Matlab workspace:
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(96)

Y

0.4665
(s+9.297)(s—9.297)

Gmaglev

Equation (95) was imported into Sisotool to begin the controller design. The transfer function

+ 9.3, so to start the design the plant was stabilized

shows the plant was unstable with poles at s

This

(s+9.2)
{s+92) -

with negative output feedback and a simple lead compensator, K, = 8900x

controlier stabilized the plant but did not provide an acceptable steady state response to a step

input as indicated in Sisotool’s closed-loop step response plot. Various combinations of lead-lag

controllers were tried while observing then root locus, bode and step response plots as pictured in

Figs. 32 and 33.

ORI G S R R

:-14.4 4B

BOF -

oM
401 Freq: .14 rad/s

Foot Locus Sditor (C)

Frequency (radfsec)

Fig. 32. Root locus and Bode plots for first 1-DOF controlier.
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After several iterations of pole-zero placement and gain settings, a compensator was selected to
begin the experiment. Subsequently the plant model had to be changed slightly, but it turned out
the same compensator was suitable for each transfer function. The several plant transfer

functions and controllers are listed in Table X,

TABLE X
LINEAR PLANT TRANSFER FUNCTIONS AND CONTROLLERS FOR EXPERIMENT NO. 1
Parameter Set * Linear Plant Transfer Function Controller
Initial .
nitia Grragies= 0.4665 K, =8900><(S +9.2)(5+4.0)
{(s+9.297)(s-9.297) ' (s+80)(s+0.4)
First Revision Grased 0.5663
maglev=— >
B (5+9.297)(5-9.297) Same as above.
Second Revision 0.67490
Graglev= Same as above.

(s+9.297)(s-9.297)

* Note, during the experiment the equilibrium current was adjusied from the calculated value in an effort
to get a better response from the plant.
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Experimental Procedure

The basic procedure for conducting the 1-DOF experiment consisted of loading 1-DOF
application in dSPACE and launching the test object. Once the system was stable at equilibrium,
a range of step inputs were commanded via the Control Desk GUI while the inputs and outputs of

both the model and plant were sampled.
The experiment was place in operation as follows:

1) Load compiled Simulink model, called the “application” in DSpace, onto the

RTP using the Control Desk software.

2) Verify links between the Control Desk screen and the variables.

3) Turn off amplifier enable and controller cut-out switches on the GUL
4} Energize amplifier and sensor power supplies.

5) Align sensor emitter and receive pair and adjust gain to provide a full-beam

output of 5.0 V.

6) Remove amplifier inhibit on the Copley 232P front panel and set controller

gain according to the compensator transfer function. (See Table X.)

7) The Copley amplifier and compensator were brought on line and the test

object was launched in the sensor beam.

Once the test object was stable in the sensor beam, a series of five-second data captures was
undertaken over a range of command inputs from minus seven to plus seven millimeters. A one-
millisecond sample period was used with a down sampling rate of 100, resulting in ten data points

per second.

Both the nonlinear model and physical plant tracked the command input very closely in that each
one millimeter command input produced a one millimeter increment in output. {See plots in
discussion on results.) However, the physical plant produced a consistent positive 0.66 mm offset
in its output over the entire range of command inputs. It was also noted the compensator did not
adjust the coil current to the level of the calculated equilibrium current values, even with a zero
command input. In fact, the compensator output remained between -5.5 and -7.2 A throughout
the experiment, indicating the compensator was continually seeking to drive the plant input to an
unattainable equilibrium point. Further, it was observed that as the bias current was lowered
(using the virtual dial on the main operator’s screen) the compensator output moved foward zero

and position decreased. It was found a new equilibrium current setting of 15.74 A allowed the
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compensator output fo return to zero at equilibrium and caused the position offset to go to zero.
These observations plainly indicated the calculated equilibrium current was too high for the

actual plant.

Several secondary experiments were then performed to investigate the apparent miscalculation of
equilibrivm current. The current equation itself was not in question since it had been successfully
employed in several one and five DOF experiments. (For example, see [4].) For this reason the
investigation focused on verifying the values for the constants in the equation, which is repeated

here for convenience:

i) =8 (90)
VMZbZZ

The first constant to be considered was the magnetic flux density gradient 5. To verify this

value a secondary experiment was devised where another set of B-field readings were taken with
the coil current set at what appeared to be the correct equilibrium current, 15.74 A, the values for
b,, b,, and b, were plotted. These values very closely approximated those obtained from the
calculations

B=—b B ="b andB_ =——b

z . z? 2z zzz *

i i I

max max max

This sub-experiment confirmed the correct values for flux density had been used and that the field
measurement technique was correct. These results were addressed in more detail under the

discussion on B-field measurements in the section on Experimental Preliminaries.

Attention was next turned to the physical constants associated with the test object: total mass (m),
core volume (v} and magnetization (M,). While these values had appeared to be correct in an
earlier experiment, the write-up did allow that they were manufacturer’s specifications at best in
[6]. A multi-step investigation, beginning with the easiest step, was performed to verify the

values:
1} Verify mass of test object.

2) Calculate the minimum error in v and M, needed to produce the apparent discrepancy

in equilibrium current.

3) Disassemble test object and re-measure volume of permanent magnet.
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First, the total mass of the test object was easily confirmed to be within 0.1 grams of the stated
value. Then a set of calculations was performed using a Mailab script fo determine if a small
error in v or M, could produce the six ampere discrepancy in equilibrium current. The reasoning
was that if realistic errors in the nominal manufacturer’s specifications could account for the
discrepancy, then it would be reasonable to revise the given values and proceed with the tests.
This would obviate the need to disassemble the test object and measure the core, or worse, ry 1o

measure the core’s magnetization.

The Matlab script calculated equilibrium current using values for v and M, incremented over a

certain range in 2% gradations. There were 42 pairs of v and M, that satisfied the equation

li,, —14.59/<0.2, (99)

where i, is the calculated equilibrium current and 14.59 A is the new estimated plant equilibrium

current. Unfortunately, the results showed the values for both v and M, would have to be at least
10% and 30% larger, respectively, to account for the discrepancy in current. Therefore, it was

decided to disassemble the sealed test object and measure the volume of the magnet.

The volume of the core was rechecked and found to be 1.9531e-6 m® versus 1.6088¢-6 m® as
originally thought. This 21.4 percent increase represented a surprisingly large difference in
measurement per side. Nevertheless, the revised volume measurement was taken as the correct
value, resulting in a new equilibrium current of 17.3216 A, The parameter values obtained using

the new volume are shown in the second group in Table IX.

The Matlab test script was then modified to vary only the magnetization M,. With the gradations
for M, at 2%, a magnetization value of -1.1392¢ 6 A/m was found to produce an equilibrium
current of 14.56 A, within the window defined by (99). This showed that an error as small as
16% in the nominal magnetization value could explain the remainder of the current discrepancy.
The parameter values obtained using the revised values for volume and magnetization are shown
in table IX. Notably, the table shows the plant’s poles as reflected in « did not change with the

decreasing current, only the plant’s DC gain,

A second run of the 1-DOF experiment was done to confirm whether the errors in volume and
magnetization constituted a credible explanation for the discrepancy in the equilibrium current.
Because the plant’s poles did not change, a change in compensator was nof anticipated, except for
possibly the gain. For this reason, only the plant parameters, accessible on the Control Desk GUI,

and not the nonlinear model were change for this test. When the test object was launched, it was
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found an equilibrium current of 14.63 A and compensator gain of 8900 (same as for the previous
test) produced the least offset between model and plant positions. (Note that 14.63 1s within the
0.2 A selection window defined in (98).) With the equilibrium current to the plant set at 14.63 A,
input and output data for both plant and model were captured for a range of inputs -7 mm to +7

mm. The data plots for this experiment are presented in Figs. 34 and 35.
Experimental Results

This section concludes with a presentation of the data and discussion of the findings from this
experiment. To assist in analyzing the data, Matlab scripts were written to extract the sampled
data points from the .mat files created by the data capture function in Control Desk. A total of 51
points per variable per command input were stored in Matlab vectors for convenient use in

plotting and analysis.

The upper plot in Fig. 34 shows the sampled input currents for both the model and plant. One
obvious result is the plots of the model input are fairly uniformly spaced. However, analysis of
the values shows a slight widening in the spacing with increasing coil current. For example,
between command inputs of 6 and 5 mm, the input differed by 0.1712 A. This difference grew to
0.2136 A, 24% increase, for command inputs -6 and -7 mm. (Higher current corresponds to

increasingly positive command inputs.)

A second prominent feature is the noisiness of the plant inputs. To smooth out the noisy signals,
Matlab script calculated the sample mean for the 51 data points for each data capture. The lower
plot in Fig. 34. shows the sample mean for the input for each command input. An unexpected
result was the large difference in model and plant input values. An analysis of the data points
shows that for a command input of zero, the mean model input was the calculated equilibrium

current, 21.028 A, as expected. But the corresponding mean plant input was 14.556 A.

Fig. 35. illustrates the outputs of the model and physical plant over the command input range.
The plots depict a nearly linear response, also borne out by analysis of the data, which shows the
increments in outputs to be uniform to within less than 2%. In fact, the tight tracking between
command input and system output is within the theoretical steady state response to a .001 m step
input obtained from Matlab. However, a serious problem with the plant output was its consistent
offset of 6.658 mm. It is probably because of this offset the plant could not accommodate a
command input of +7 mm, since the command input and offset combined would push the object

out of range of the sensor.
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The second round of fests using the revised equilibrium current level produced a marked
improvement in positioning accuracy with a position offset less than 0.03 mm, as illustrated in
Figs. 36 and 37. The plots of the model and plant and inputs were nearly the same as for the
original equilibrium current, which was expected because only the plant parameters were changed.

but the output plots were much improved, as shown in Fig. 37.

<
E
=3
O
5
j&3
£
2 T T T T i i
5 ! : : : ; o Mean Model Inputs
22} e dommm e b fomeeenees + MeanPlantihpuis |-
= , : ) s, . :
<« ! ) ' Q O [} o H )
g ¢ | R Ao SR, . L A R T D e m e @ ----- oo
S ) H | ) : H i
[T | NP - R M —— S AR S — -
o ; i H H i : i
5 : : : ; : : !
Fo A -] N IR - e Fossiiouiooien S [ dameecnennna ]
£ + + + ; : : : ; :
| I |
L HE— g H— proesemsomeee R T e HE
12 i i { i i i i
3 5 -4 2 0 2 4 6 8

Command Input (mm)

Fig. 36. 1-DOF model and plant inputs for revised equilibrium current.
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Second Set of 1-DOF Experiments

This section describes a second set of 1-DOF experiments undertaken to refine the 1-DOF
compensator. Similar to the first set of experiments, this one involved a reiterative process of
controller design and closed-loop evaluation, except that this time the evaluation used only the
physical plant and not the nonlinear model. The rationale was that because the first experiments
showed the linearized transfer function would readily provide a workable compensator—using
the revised value of M,—it was not necessary to evaluate candidate compensators against the
model to get them into the ballpark, so to speak. Also, during this set of tests, the 1-DOF setup
was altered slightly in anticipation of later 2-DOF tests.

Having demonstrated the viability of the basic MSBS modeling approach, the primary motivation
for this group of experiments was to investigate the potential for improving the lead-lag controller
already developed. If performance improvements could be realized using the same modeling
assumptions and parameters as before, that would further demonstrate the validity of the range of
linearity in the force equation, linearity of the sensors, accuracy of the physical parameters such

as flux density, magnetization and equilibrium position. In addition, a favorable outcome would
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also be a strong indicator the MSBS model incorporated all the significant system dynamics. (Of
course, it us understood at this point in the development the set of dynamics does not include the
effects of the eddy currents in the stainless steel suspension chamber.) A secondary motivation is
tc provide more experience with the hardware and software; some of the practical issues

discussed i this section were presenied in the experimental preliminaries section.

In this section, the experimental setup is explained first, then the experimental procedure, and
finally the experimental results are presented with an emphasis on their relevance to the design of

the full MSBS.
Experimental Setup

The setup for this set of experiments was similar to that used in the first set. The same overall
system configuration as in Fig. 18 was used. The second, larger test object was employed, as
described in the section on experimental preliminaries and illustrated in Fig. 20. Because of the
new object’s larger size, the equilibrium point was moved from -150 mm down to -178 mm, and
as a result, the sensors and their mounting rail were lowered. As indicaied above, additional
changes in anticipation of the 2-DOF experiments included an additional sensor mounted below
the second suspension coil (see side-by-side coil positions in Fig. 17.), and additional Simulink
blocks to process the second sensor output signals. However, these additions were not used

during these experiments

These experiments followed the same modeling techniques described earlier in the section on
experimental preliminaries. A MATLAB script was used to calculate certain parameters and
obtain transfer functions for the linearized plant. The modeling parameters used in this set of

experiments are listed in Table XI. Note the equilibrium current was revised once during the

procedure.
TABLE XI
MOBDELING PARAMETERS FOR ONE DOF MAGLEV—EXPERIMENT NO, 2
Parameter Values
Mass of suspended permanent magnet and case, m 0.192 kg
Equilibrium Distaace, z, 0178 m
Maximum coil current, i, 398 A

Coefficients {descending order) of “best fit” to plot of Bz 0.2664, -2.289, -2.314, -0.8194, -0.1125

First gradient of mag. flux density at z,, b, -2185 T/m
Second gradient of mag. flux density at z,, b,,, -2.0769 T/nd
Magnetization of permanent magaet, M, -6.7085¢ 5 A/m
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TABLE Xi, CONT'D

Parameter Values
Volume of permanent magnet, v 16.09 e-6
21.97 A (Initial)

Equilibrium current, 1, © 21.55 A (Revised) ®
First coefficient, o 93.2566
Second coefficient, § 0.4456

@ During the experiment the equilibrivm current was reduced slightly from the calculated value to get a better response from the
plant.

As before, Matlab’s Sisotool was used to design an output feedback compensator for the plant.
However, a controller more accurate than the previous one was sought, in particular one which,
after demonstrating stability and robust gain and phase margins, limited the percent steady-state
value, percent overshoot and control input. An accurate steady-state value was important for two
reasons. First, fairly precise positioning is required, given the scale of the models intended for
use with the MSBS. Second, the ability to tune the system to produce small steady-state errors
over its operating range tends to show the viability of the linearized plant model and other
assumptions used to design the controller. This is, as stated above, one of the primary goals of
this set of experiments. The percent overshoot is important because the test object’s movement is
tightly constrained by the width of the sensor beam. (At an elevation of .006 m from equilibrium,
a percent overshoot of only twenty-five percent could cause a command input of plus .001 m to
momentarily move out of the beam, which could irrecoverably disrupt the feedback loop.) The
magnitude of the control input was constrained in this experiment by the capacity of the power
supply feeding the Copley current amplifiers. The power supply’s upper limit was 40 Amps, so
given the quiescent current of 22 Amps, large deviations of input current could not be tolerated.
Finally, rise time and settling time were of small concern because of the intended operational

setting for the MSBS, i.¢., tests running 48 hours or longer.

The design involved several iterations of parameter choice using Sisotool, followed by testing on
the 1-DOF plant. This entailed finding the best trade-off between opposing system characteristics:
steady-state value, percent overshoot and maximum deviation of contro! input current. The first
step in the design was to bring down the steady-state error by inserting an additional lag element

in the compensator close to zero. Then the compensator gain and pole-zero locations were varied
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to find a “baseline” compensator giving accepiable gain margin (GM), vhase margin (PM),
percent overshoot, steady-state value and maximum input current. This compensator was tested

on the actual 1-DOF system.

During the latter part of the design process, the gain and the two lag parts of the compensator
were adjusted in small increments around the baseline to produce the best set of responses. A
Matlab script was used to produce a series of 1-DOF systems based on &1 pole-zero permutations
in double-lag compensator. The most dynamic trade-off was seen between percent overshoot and
maximum input current while adjusting gain. Also, shifting the lag compensators’ poles and
zeros slightly toward the origin reduced the percent overshoot, but increased the steady-state error
slightly. Finally, a compromise in pole-zero selection was reached and tested in the actual 1-DOF

plant. This compromise is reflected in the transfer function

(s+9.68)(s+2.0)(s+1.5)

X 5 +97)(s+05) (s +.0.1)

(100)

The values in Table XII illustrate the main trade-off in pole-zero location for the lag
compensators. Note the first three rows contain pole-zero combinations producing the lowest
percent overshoot. Unfortunately, the steady state values for these compensators had nearly 8.5%
error. The last three rows contain pole-zero combinations resulting in the lowest steady state
values. However, the percent overshoot increases by 60% for these combinations. The middie
row contains the values used in the compromise, those in equation (100).

TABLE XIT
DESIGN TRADE-OFFS USING DIFFERENT DOUBLE-LAG COMPENSATORS *°

Steady Max Input

z1 pl z2 p2 %08 State Current GM PM
-5 -0 18 -10 25.5280 1.0840 9.0000 -13.0869 52.1019
-5 <10 <15 -0 25.5280 1.0840 9.0000 -13.0865 52.1019
-5 <10 20 -10 25.5280 1.084¢ 9.0000 -13.0869 52.1019
2.0 05 15 <01 38.7670 1.0039 9.0000 -12.039¢6 49.9625
225 201 10 <01 40.4091 1.0001 9.0000 -11.8222 49.2159
2.5 -0t -1s 0 -0 40.4091 1.0001 9.0000 -11.8222 49.2159
2.5 <01 20 01 40.4091 1.6001 2.0000 -11,8222 49.2159
* Lag compensators shown in colummns 1-4 are combined with lead compensator 9000 x (E i%%? o
8

obtain open and closed-loop system responses in the other columns.

¥ Not all pole-zero combinations that were evaluated are shown,
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Once an accepiable controller was designed, the Simulink model depicted in Fig. 41. was
completed and compiled to run on the dSPACE RTP. The model contains blocks to provide
tandem control of a second 1-DOF levitation using another sensor pair, amplifier and suspension
coil. As noted above these blocks were inserted in preparation for 2-DOF experiments as well as
to sllow a second coil to be tested. The figure also includes the controller turn-on threshold
circuit, whose operation was discussed earlier. As the experiment was being set up, it was found
this latest controller, with 2 pole at -0.1, behaved like an integrator, whose output voltage rose to
significant levels if a large error voltage was applied for longer that fifteen or twenty seconds. As
a result, the controller was found to build up dangerous voltage levels during the time it typically
took for one person to launch the test object. Finally, while the controller turn-on threshold was
being tested, it was found the calculated equilibrium current, 21.97 A did not allow the controller
output to fall to zero when there was no error input. The equilibrium current was lowered o

21.55 A, which produced the smallest controller output at equilibrium.
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o | ) o]
& DOutl §| From Controfler §
Command Gain g P
: Posgition
Drisplacement
0 B Frov Amp 1
Pr{Sensor2  Cuf #1 Coil #1 Controller
— Frn Anp 2
- Sensor 4 Ctrl #2
From Controller
Controlter
Tum-On rBet In Amplifies
Threshold utl Subsystem
& 4 Position
Coil #2 Controller
— Sensor 2
nt ki
Sensor 4 pio Analeg sensor
cutput signal bus
Bensor 2 P 9
Position (mm} 52 11000 Sensor
] ‘ ;':Lm Subsystem Aumplifier
' B ——_{ “Regdy”
Bad Link Bignals
Senserd i_; — —
Position {mm) 54 w1000 LS4103MUX_ADC_CONR
Hotes:

{1y "Bad Link® indiczies modal iz being viewad on
wietestation where RTI Library not instalied.

Fig. 41. Coniroller model for second set of 1-DOF experiments.
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For this experiment, the Control Desk GUI was set up 1o capture the controlier output (the input
to the plant) and the plant output. {Sensor pair #2 and coil #1 were used.) Twelve ten-second
data captures were taken while position change commands were issued o the plant via the GUL
The sample period was 001 s and 2 down sampling rate of 10 was used, resulting in 1001 data
points per sample interval. The commands were given about iwo or three seconds into cach
capture interval to allow the plots to give a good before-and-after coraparison of the controller
and plant behavior. As before, the data were stored in .mat files for later extraction using 2

Matlab script.
Experimental Results

Table XIII summarizes the data capture sequence and results. There were ten one-mm and two
five-mm step mputs. It was found the system could not tolerate step inputs larger than 5 mm,
which did not come as a surprise given the large percent overshoot calculated during the design.
(With a 38% overshoot, a step command of six mm results in a momentary position change of
8.28 mm, well out of the sensor range.) The mean plant inputs and outputs were based on the last
five seconds (500 data points) in each capture, the idea being that the system would have settled

from the step input before then.

TABLE XIIT
SYSTEM PERFORMANCE MEASUREMENTS FOR DOUBLE-LAG COMPENSATOR
Mean Plant Input Plant Output from
Capture  Command Minus Equilibrium Mean Plant Theoretical Steady Percent
No. Input (mm) Current (A) Output (mm) State Value (mm) Difference
1 Oto 1 -0.6531 1.003862 1.0039 0.063737
2 1t02 -0.844¢ 2.007358 2.0078 0.021990
3 2103 -1.0099 3.010614 3.0170 0.212088
4 304 -1.1871 4.013903 4.0156 0.042277
5 4105 -1.4073 5.017771 5.0195 0.034448
6 03 -1.3630 4.995589 5.0195 0.478639
7 1o -1 8.1275 -1.004479 -1.0039 0.057710
& -lto-2 0.3306 -2.008083 -2.0078 0.01400%
g -2 t0-3 0.5184 -3.012125 -3.017¢ 0.161840
i¢ -3 1o -4 0.7120 -4.015911 -4.0156 0.007752
i1 -4 15 -5 0.9385 -5.020060 -5.0195 0.011169
12 Jto-5 0.9206 -4.994255 -5.0195 0.505469
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The following observations can be made from the table. First, the change in coil current is not
symmetric around the equilibrium point, which could indicate one or more of a varety of
miscalculations or mistaken measurements. Most likely this was related to the need to adjust the
equilibrium current down from its calculated value. Second, there is a very small percentage
difference between the observed steady state values and those calculated using the theoretical
steady state value obtained in the design. More experimental results are presented in Figs. 42

through 45, which illustrate the plant inputs and outputs over the range of input commands.
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Fig. 42. Plots of plant inputs over a ten-second interval for step input

commands ranging from +1 mm to +6 mm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



102

2
&

1000

1000

. T 1 1
£ I [ J ! j
H F - i H :
; ; - : I i
| ! b ; ; :
i : Vo ] : '
i ; Lo b ;
! i i I <R \
15 b Q i (53 | ] i ¥ i
o | ] T - el % P —
v Il - 1 - v gl t t H «
, : ! = ] L ‘
: i i Vol ) L ;
' ! K ! o ; D :
LR ; ; L :
. ! : Vo i Lo ;
i ; : F R ) - ;
L \ ; b 3 - i
i ; , Vo d Vo )
o ; = g ek P b
L& HE b F A G - 8
1= ; ; =T ! [ ;
; ; ; [ \ K '
: ; : [ ES ; |
; ; [ ] ) H
1. 1 e TG 1 o v ", 1
: B | b ; '
i i . ] ; ;
| E , I I :
; [ I B L ; \
A8 L8 a8 4
nk IR rRi 0 o Tl ;
] ! - 1 P 1 1 b + 1
. 3 ; Lo I ;
; ! Lo | ; :
; | N B ; |
; i o = J |
; : 2 | ; ;
, : . . : :
' = . ! ; |
1 = i f=J 3t 12 R 1
i U A R F- w S - 1 ot
T T B T ;
; i P I |
! L . oo |
. ! b I i
: . A ; ; ;
i = - | ; ;
' E ' - S : )
; ; S : ‘ ;
) 1 k- 1 i 1 i i
P SO I O SR T £~ I 4 )
1R k] i e ; ;
; ] ; = ] !
! ! O = ; |
; ; ESR ] , |
H i Vo ! ' i
; 2 1 3o | ) |
1 + T it -1 1 s
: ; b j A !
; i Lo ; ' |
; | L ) ; ;
i mw 1 m 4 i i ' 1 |
10 N S O § - S O = I O ST B -
1% S £ 4 I St 7 1
N ; o ' : ;
+ - b I 1) L 1
; ; [ ] ; T
| ; L g : ;
; . Lo ; ;
; e : S ; Vo N
: ; P ; Vo i
hE= -] - L ;
S S =3 S NN i -4
R TR T8 1 T
; P ; b ' Vo i
; 3 ! b ! L ;
: : Vo P ;
; ; Vo . H
i ; Vo . ;
: 3 ! - [ '
; ' b Vo '
; ' Vo . j
1 e Ve Vo I ;
AR 8 3eecd i i
i 5 1 i 1 f 1
7 (34 - N ™ hw H _2 K | H
! o : - 1
¥ [ t T 1
; 7 gt Vo ,
: ) v L :
; ) - . |
K ' Lo o .
| ) P TR '
i i P . '
=3 1 . L vk 1
18 RN T (I 0 S i
ne e i [ ;
; ; E S - !
; i Vo Lo :
i | o ; : |
k £ Lo ; ; ;
B ' il ' [ I I
¥ ' « 1 B B v
o) . s S0 B L] I
o0 2 o 2 0 NQ O -
~ [AY (ST o AU R S -

g 2

00 500 600 700 800 900
Sample Numbe

200

Fig. 43. Plots of plant input for negative command inputs.

Fig. 44. Plots of plant outputs for positive command inputs.
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Fig. 45. Plots of plant output for negative command inputs.

A visual analysis of the plots shows the shapes of controller and physical plant responses closely
resembled the theoretical responses obtained during the controller design. Although the physical
system responses were much noisier, the controller output contains the same short, large-valued
excursion followed by the smaller, longer deviation over the same 0.1 second period. Another
similarity is the shape and magnitude of the plant output responses. The rise times to peak value
and the settling times are similar for theoretical and actual responses and there are no oscillations

or other anomalies appearing in the plant responses.

This second results from this set of experiments addressed the experiment’s goals very directly.
The close match in theoretical and measured steady state values is a strong indicator the MSBS
plant is well-modeled by the non-linear equation. The accuracy of the force equations and
linearization method are also indicated because the controller for the real plant can be tuned with
predictable results in the setting of actual MSBS equipment. Also, it did not appear the Copley
amplifiers introduced any significant phase shift, tending to rule out the need to model the

amplifier dynamics.

On the other hand, the asymmetry of the changes in input current (Table XIII) tends to show the

plant linearization was not thoroughly realistic. This was also borne out by the need to lower the
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equilibrium current from its calculated value, even with a much more carefully measured test

object. This finding was consistent with the first set of experiments.

Fortunately, the equilibrium current problem does not appear to have operational consequences
other than to require the equilibrium current to be adjusted down. It is also possible the physical
messurements of the sensor positions are in error, since the tools used to position the sensors
were not very sophisticated. The 1-DOF maglev behavior over the desired command input range

is acceptable.

Conclusion

By the conclusion of the previous chapter, the design goals, theoretical background and system
configuration had been introduced. The goal of this chapter was to further elucidate how a full-
scale prototype of the MSBS can be built by addressing two main areas: 1) the application of
feedback control 1o a 1-DOF MSBS plant; and 2} additional implementation issues over and
above those discussed in Chapter IIl. By successfully implementing a 1-DOF maglev system
with the major MSBS components and a lead-lag controller with negative feedback, the premises
for the MSBS modeling and design methods were decisively validated. These design
assumptions include the so-called “large-gap” approximation, the linearity of the sensor responses,
and the adequacy of using a first order Taylor series approximation in creating the linear model.
In addition, this chapter dealt with practical engincering considerations pertinent to an
implementation of the MSBS of any degree-of-freedom. These include the conversion algorithm
for amplifier input and the “Turn-on Threshold” circuitry needed to limit compensator action
when the plant is unresponsive. At the conclusion of this chapter, sufficient background has been
laid to introduce one more design concept, before the design of a multiple-degree-of-freedom

system is taken up.
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CHAPTERY
APPLICATION OF OPTIMAL CONTROL THEORY TO THE MSBS

Intreduction

This chapter covers the last of the 1-DOF experiments conducted in preparation for controlling
multiple degrees of freedom. This particular set of experiments warrants its own chapter because
the motivation for these experiments breaks from the earlier emphasis on model validation and
rudimentary implementation, and focuses on gaining experience in optimal controller design in
the context of the MSBS plant. This was a necessary step because the “classical” design
techniques employed thus far would likely not suffice for the more complex MSBS, especially

given ifs strong requirement for reliability and robustness.

The controllers up to this point had been “classical’ in that their design was based on output

feedback and employed the traditional root locus, bode and Nygquist analysis using the poles and

zeros of transfer functions. The resulting compensator altered the plant’s behavior by adding

three pole-zero pairs to the system. For the 1-DOF maglev, a single-input, single-output (SISO)

system, this did not significantly increase the system’s order and complexity, and a controller was

fairly easily obtained after a few iterations. However, the multiple-input, multiple-output (MIMO)
system represented by the 5-DOF MSBS is considerably more complex. This can be appreciated

by considering the twenty-five element transfer function matrix for the 5-DOF MSBS plant,

developed by Jafri [4]. For example, the first column of that matrix is shown in Table XIV.

TABLE X1V
FIRST COLUMN OF 5-DOF TRANSFER FUNCTION MATRIX

Input-to-Output Mapping Transfer Function

0.023873

One-to-One 2

8

0.023873(5+0.01293)(s~0.01293)

Cne-to-Two
4
N
OnetoTin 0.79833
ne-to-tawee (5+6.982)(s~6.982)(s” +48.75)
2
OnotoFous 0.081379s 2
(5+6.982)(5—6.982)(s% +48.75)
0
One-fo-Five 9‘*82379

2

g2
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The transfer function of a compensator for the 5-DOF MSBS could quite easily add many poles
and zeros 10 the system, increasing the likelihood of undesirable modes. Therefore, it was
decided to control the MSBS plant using a non-zero set point regulator with linear state variable
feedback, designed using optimization techniques [4]. In fact, this approach was shown 1o be
feasible in a paper describing its application to a 5-DOF, large-gap maglev system developed at
NASA [25]. The benefits of using state variable feedback include the fact that it does not add
large numbers of poles and zeros to the system and that it lends itself well to computer assisted
design, since it is done using state space form of the plant (see [26], p. 364). However, the

rationale for using optimal control methods in the MSBS is best presented as follows:

1) The MIMO case provides a wide latitude for acceptable compensator design,

driving the need for a methodical approach to determine the best compensator.

2} The “optimal” approach, using a cost function based on the state space

formulation of the plant provides such a methodology.

3) The regulator control law lends itself to optimal control methods, with many
implementation tools in Matlab and many proven examples in the literature. (For

example, see {27], ch. 5, and [28], section 9.2.)

The practical result of using optimization techniques to design a regulator is that it presents the
designer a convenient—and limited—set of “knobs” to tune, which will in the very least give
stability to a physical plant whose critical areas of uncertainty are not well understood. Of course,
candidate controllers always have to be evaluated, and in keeping with the desire to maintain a

methodical practice, this created a need for an efficient tool to evaluate controllers.

The goals of this experiment then were as follows: 1) to apply optimal control theory to a 1-DOF
maglev system; 2) to construct a working 1-DOF regulator based on optimal control principles;
and 3) in the course of designing the controller, create controller validation tool useful for future
MSRBS development.

This chapter first presents a discussion of optimal control theory and its role in MSBS
development pertains to linear state variable feedback and state estimation. Following the theory,
the experimental set-up and procedure is explained, followed by a discussion of the results. The

chapter concludes with an analysis of the progress made toward the full 5-DOF MSBS.
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Optimal Control Theory Adapted to the MSBS

This section discusses two closely related but distinct concepts relative to the MSRS controller
design. The first is the use of the regulator control law with linear state variable feedback; the
second is the application of “optimal” control theory to the regulator control law, an application
that is well described and widely employed in conirol systems work. Together these two ideas
lead to a fairly straightforward methodology for developing an MSBS controller. In this section,
an overview of regulator control theory is presented first, along with an explanation of state
estimation. Then the use of optimal control in the design of regulators and state estimators is
explained. Lastly in this section, the idea of optimal control is used in the formation of a
methodology for MSBS controller design. This methodology will apply to the higher degree of

freedom implementations.
The Regulator Control Law and State Estimation

As stated in the chapter introduction, the motivation for choosing a regulator design with linear
state variable feedback over the “classical” lead-lag compensator includes this consideration: the
reduction of complexity and associated risk of unforeseen adverse effects. The basis for what is
called the regulator control law lies in the concept of linear system controllability. If a linear
system is state controllable, then there always exists some input that will drive the system to an
arbifrary state. According to [29], p. 187, in the early 1960’s a nexus was described between
state-controllability and the ability to shift a plant’s eigenvalues using state variable feedback.
Specifically, it was found if state controllability exists, state variable feedback can be used to
generate any characteristic polynomial. That led to the idea of relocating a plant’s poles so as to
obtain the desired response characteristics. This concept of pole-shifting is clearly illustrated

through the state space formulation of the plant, ie.,
(1) = Ax(t) + Bu(t)
y()=Cx(®)+ Du(),
o which the so-called regulator control law is applied:
u(r) =-Kx(z).

Note that K is an m x n matrix that produces a linear combination of the states at the plant input.

Assuming all the states are controliable, substituting the control law in the plant equation gives

(1) = Ax() - BKx() = (A - BK)x(?),
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which gives the plant a new characteristic equation derived from
a{s) =det(sI- A+ BK).

Now, if a set of poles can be identified that would give the plant the desired response—the crux
of the design challenge and the motivator for a workable design methodology—these poles can be
used to calculate a desired cheracteristic equation. The task at that point is to match the
characteristic equation derived from the control law with the one derived from the desired

poles—by finding the right linear state variable feedback (LSVF) coefficient matrix, K.

It was stated the basis for pole placement is state controllability. However, even if the plant is not
entirely controllable, linear state variable feedback can still be used to one’s advantage if the
uncontrollable modes are asymptotically stable, i.e., the uncontrollable eigenvalues are in the
open left hand side of the s-plane. In this condition the plant is referred to as stabilizable. The
regulator control law is applied only to the controllable states and the stable, uncontrolled states
are left to dampen out naturally. There are two Matlab commands, acker.m and place.m, that take
non-optimizing approaches to deriving the value of K, although these are not used in the MSBS

controller design.

So far the discussion of the regulator control law has assumed all the plant states are accessible.
Unfortunately, this is not the case for the MSBS or for most real-life plants. If for no other reason,
the cost of measuring very many states in a physical system is prohibitive. Consequently, seeking
to apply linear state variable feedback in this circumstance gives rise to the problem of state
estimation. For this reason, the MSBS controller uses a dynamic asymptotic state estimator,

sometimes called an observer.

The concepts of pole-placement and asymptotic state estimation share a type of duality derived
from linear systems theory. With pole placement, if a system (A, B) is controllable, then its states
can be used to form a feedback signal that will drive the plant (system) to some desired end state,
effectively changing the modes. In a type of dual condition, a plant must be state-observabie to
solve the state estimation problem. The property of observability implies that a knowledge of the
plant’s states can be obtained from the plant’s input and output vectors. This means that at any

time ¢ > 1,, the state vector x(¢) can be computed from a knowledge of the plant’s input and
output history from time ¢, forward (see [29], p. 294). The usefulness of this property in solving

the problem of state estimation is this: because state-observability ensures information about the
states is present in a system’s output, un-measurable states can be duplicated using signals that

can be measured, i.e., the system’s input and output vectors.
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Fig. 46. illustrates a regulator with state estimation for a continuous time system. As pointed out
above, the LSVF matrix K operates on the plant states to realize the regulator control law.
However, in the system illustrated in Fig. 46, the states themselves are not available and an
asymptotic state estimator, or observer provides state estimates. The estimator takes the same
input as the plant and applies it to a state space model of the plant, in theory replicating the plant
output. But since a model can never perfectly capture all the dynamics of a real-world plant,
there is always some error between the real plant and replicated output. The estimator feeds this
output error, multiplied by the constant matrix L, back to the plant input to force the estimator

output closer to the plant output.

® = AurBuy
omd +‘,-", » v= Ox+Dy
Ref. 4 Dut
input Plant

1
s

tntegrator

LSWF Matrix

Fig. 46 Regulator with state estimation

The desired state estimation takes place as a result of the system’s observability. As noted above,
this property implies the plant’s states are represented in, and derivable from, the plant’s mput
and output. Thus, as the estimator’s output is driven asymptotically toward that of the real plant,
the estimator’s states are also asymptotically driven toward the plant’s, if indeed the plant is
observable—and the state-space model of the plant is accurate. The rate at which the estimated

state vector approaches the real state vector is determined by the values in L.
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The estimator dynamics are given as follows
%= A%+ Bu+L(y-C%) = A% +Bu+LCx-LC&,
v=Cx+Du,
where {%,%}, and {x,y} denote estimated and measured vectors, respectively.

Just as not all systems are fully state-controllable, not all are state-observable. However, in a dual
property to the one that allows linear state variable feedback with uncontrollable, but stabilizable
systems, state estimation can still be used with unobservable systems if the unobservable states

are stable. Under this condition, the system is called detectable.

The central task in estimator design is the selection of the feedback matrix L, which determines
where the estimator poles lie and thus how quickly the state estimates approach the actual states.
The rule of thumb is that L should be chosen to make the estimator’s response two to six times
the bandwidth of the plant, although there are cases when this is not advisable (see [26], pp. 47,
304). While the selection of L does not influence the system response as directly as the value of
K, this selection still represents another degree of freedom contributing to the complexity of the
overall design process. As with pole placement for the regulator, the Matlab commands Acker
and Place can be used to reposition the estimator poles to prescribed locations, although these

commands are not used in the MSBS controller design.

Before proceeding, an explanation is offered for the terms “dual” and “duality” used in

conjunction with controllability and observability. What is meant by dual in this context is that
given a system realization {A,B,C}, its dual is defined as {AT,CT,BT} . The duality between

controllability and observability implies the existence of one property in a system implies the
existence of the other property in the dual system (see [29], p. 90). This is shown by considering
two alternate definitions of controllability and observability, equivalent to earlier statements
about the relationships between the system states and the inputs and outputs. One definition of

state-controllability is that the so-called controliability matrix,
C=[B AB A’B .. A"'B],

must be of rank equal to the number of states (see [30], pp. 29-32). Likewise, a definition of
observability is that the observability matrix,

o=[c ca ca’ .. caT,

-
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must be of rank equal to the number of states. Taking the transpose of the observability matrix

above results in
o7 :[CT ATCT (AT)2CT (AT)n«lfT] _
But by definition this is the confrollability matrix of the dual of the original system.

Thus far the discussion has shown designing a comiroller with linear state variable feedback
{(LSVF} and state estimation requires the plant to be both controllable and observable, or at least

stabilizable and detectable [30G]. This observation leads to another important property of linear

systems: if a system realization {A, B,C} is both controllable and observable, then it must also
be minimal. This means there does not exist another triple {A',B;C'} with fewer states that will

produce the same transfer function G(s)=C(sI-A)"'B. The implication for the controls

designer is some degree of assurance that the plant is amenable to control using LSVF and state
estimation if the linearized state-space model of the plant is jointly controllable and observable, a
condition that is easy to verify with several commands in Matlab’s Control System Toolbox. (Of
course, this assurance is predicated on the fidelity of the model.) If a system is not minimal, but
still stabilizable and detectable, then at least hidden modes should not pose a problem with system

stability.
Optimal Control Design for the Regulator and State Estimator

It was stated the real challenge to the designer is finding locations for the plant poles that produce
the desired closed-loop response with acceptable control inputs. Basic decisions such as which
poles should be moved and by how much bring with them into the design process issues like how
much conirol effort is needed (or desired), the uncertainty of the effects of new pole-zero
combinations on the response, and whether some poles can even be controlled or observed at all.
Increasing the compiexity of the design decision further, in MIMO systems there can be multiple
values of K and L. in the regulator and state estimator that produce an acceptable response as
shown in [26], p. 359. Also in MIMO systems, the poles and zeros have directions associated
with them, meaning a given pole placement scheme could produce very different responses for
different input vectors. One way to handle the complexity of the design challenge is o apply 2
systematic approach to design with as a few “tuning knobs” as possible. This is the motivation

behind the “optimal” design employed in this project.

Generally speaking, optimal control refers to the practice of minimizing an objective function (a

cost function) containing a dependence on one or more confroller design parameters. The vesult
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of the minimization is a compromise among design objectives, such as the allowable control
effort, speed of response or measurement error. However, at least this approach guarantees
stability of the system [26], [31]. The cost function can be biased, or weighted, toward one
design consideration or another, and it is these weights that provide the tuning “knobs” for

optimal control design.

There are several other optimal design approaches considered part of “modern” control theory.

Two of these are 7, and H optimal design, which seek to optimize the system with respect fo

certain error signals by minimizing of the /, and H_ norms of a specialized system formulation.

The specialized formulation in this casen is the lower linear fractional transformation of the plant
and controller when configured in what is called the general control configuration in [28], section

9.3. These design approaches use state space realizations:

The approach to optimal control used in the MSBS is referred to as the Linear Quadratic Gaussian
(LQG) problem, so called because of its application to linear systems, use of a cost function in
quadratic form and assumption of Gaussian stochastic disturbances within the system. LQG
design applies optimization to both the regulator control law and state estimation processes and
technically consists of two sub-problems: the Linear Quadratic Regulator (1.QR) solution and the
Kalman estimator design. Fortunately, because of what is called the Separation Principle,
explained in succeeding paragraphs, the LQR and estimator problems can be addressed
independently. An overview of each of these two design tasks will be presented as well as a brief

explanation of the separation principle.

Briefly, the Linear Quadratic Regulator (LQR) solution involves minimizing a certain quadratic
cost function containing the linear state variable feedback (LSVF) matrix, K. The K thus derived
produces an “optimal” regulator control law as defined by certain weighting matrices, Q and R,
which are also part of the cost function. Of course, the control law applies to a linear system, and
the assumption is made all the system states are available. Following is a short explanation of the

cost function and relationships of the matrices K,  and R to the design process.

In LQR design, “optimal” control refers to a balance between the quickness with which the
regulated system will reach (or return to) its equilibrium point and the amount of control energy
that has to be added to the system to achieve that rate of response. Optimality is, then, a
condition determined by the designer according to many practical engineering factors such as

system use, plant input and output capacities, actuator size and many others. As stated above, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

designer introduces his or her definition of optimality into the LOQR solution via the weighting

matrices Q and R in the cost function.

The cost function for continuous time (C'T) systems is given by

J= ; [ x(" Qx(t) +u() Ru(e)ar, (101)

where @ and R are the weighting matrices for the plant states and inputs, respectively. The

corresponding cost function for a discrete time (DT) system is
1 N
=3 > x(k) Qx(k)+ulk) Ru(k). (102)
k=0

In both CT and DT cost functions, Q@ and R represent the design choices in the LQR solution.
The matrices Q and R are of dimensions (n X n} and (m x m), respectively, where n is the number
of states and m the number of inputs to the plant. In addition, both Q and R must be non-negative
definite, meaning they ensure their respective products are always non-zero for any value of x or
u. (This can be ensured by requiring both matrices to be diagonal.) The rationale behind
assigning values to the matrices is as follows. The numeric values in the Q diagonal represent the
relative importance of forcing the corresponding state to its equilibrium point as quickly as
possible. The numeric values of the R diagonal represent the relative cost of using the
corresponding input. In other words, a low value in R allows a greater magnitude (voltage,
current, force, efc.) on that control input in order to achieve the level of response signaled by the

elements of Q.

The process of calculating the optimal LSVF matrix K for the LQR solution is a complex

sequence of steps. (More detailed development of the calculations associated with the LQR

solution can be found in [29], pp. 213-233, for CT systems, and [26], pp. 371-382, for DT

systems.} First the objective, or cost functions (101) or (102) are augmented to reflect the

constraints  imposed by the plant dynamics, ie., X{f)=Ax()+Bu() ,
x(tk+ D) =®x(k)+Tu(k).

Then a mathematical method known as Lagrange Multipliers is applied o the composite cost
function and the cost function is differentiated with respect to its constituent variables, the control
input vector, the state vector and the Lagrange multiplier vector. The resulting set of three
differential equations {or difference eguations if using DT) represent a time-varying system,
which, because of assumptions about the initial and final states of the system, poses a two-point

boundary value problem. The solution to this problem leads to the creation of the Ricatti
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equation, which is not easy to solve. The result is a time-varying value of K, which is optimal,

but difficult to implement,

Fortunately, the value for K stays constant over most of the period during which the regulator is
in operation, with the beneficial implication that, for practical purposes, the constant value for K
is all that need be calculated. This leads to a simpler formulation of the above mentioned
boundary value problem through the use of the Algebraic Ricatti equation. The steady state
optimal solution, which is what is really meant when using the term LQR, produces a K-matrix

related to the design parameters, Q and R through the following:
K=R'B'P, (103)
where P is the non-negative definite solution to the Algebraic Ricatti Equation (ARE)
A'P+PA-PBR'B'P+Q=0. (104)

When conirollability and observability are assumed, the solution P to (104) above leads to a
unique, optimal stabilizing value of K. [29]. There is a similar relationship between the K-
matrix for discrete systems and the discrete ARE. However, it should be noted that if an
optimization is realized for the continuous cost function (101), and then a discrete time controller
is sought for the continuous plant, the weighting matrices Q and R cannot be directly applied to

the discrete cost function (102).

Part two of the LQG solution is the design of an optimal state estimator, in particular the Kalman
estimator, or filter. The Kalman filter, named after one of the pioneers in modern control theory,
is an optimal state estimator that accounts for Gaussian noise associated with the plant inputs and
output sensors. In the Kalman filter, the optimization is done with respect to the mean square
error of the estimated states, given certain noise conditions specified by the designer. The result
is the feedback gain matrix L. most statistically likely to minimize the state estimation error (see
[26]. p. 394.) The structure of the Kalman estimator is the same as the estimator depicted in Fig.
46.

In a manner analogous to the use of @ and R in the LQR solution, certain matrices are used to
change the parameters in the Kalman filter design and ultimately produce the optimal gain matrix
L. The following equations illustrate the context from which these “funing” matrices arise and

their relevance to real life systems.
The Kalman filter is applied to the continuous time linear plant

HE) = Ax(t) + Bu(t) + Gw(e) (105)
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vy =Cxl(ty+ Dule) +v(£), (166}

where w{t) and v{t) arc process and measurement noise signais, respectively, and G is a process
noise gain matrix (see [27], p. 8-100). The noise signals are assumed to be zero-mean,

uncorrelated stochastic processes, whose covariances are given by

E{w(eyw®)'} =Q,, and (107)

E {v(z)v(r)T} =R,. (108)

Because the noise sources are assumed {0 be uncorrelated, or “white” noise, the Q, and R, are
diagonal matrices representing the mean square energy level of the noise. And if the occurrence
of noise is equally likely on all states or inputs, all the elements on the matrix diagonals are equal.
In the Kalman filter calculations, as with the LQR solution, an optimal feedback gain L is
calculated based on the unique solution to an Algebraic Ricatti Equation containing Q,, R, and G.
(A full development of the Kalman filter calculations for a DT system can be found in section 9.4
of [26].)

In general, measurement noise is understood well enough so that somewhat meaningful values
can be used in R, [26]. This is due to more accurate knowledge of the sensors, which are often
separate, commercial off-the-shelf items with fairly reliable specifications. However, because the
nature of process noise is not thoroughly known, and because true “white” noise does not occur in
real systems, in practical controller synthesis Q, and G,, represent tuning “knobs” used in an
iterative, multi-step design process more than precise plant modeling parameters, as noted in

several texts on control systems, including [26], [281, and [29].

Mention was made earlier of what is called the Separation Principle and its practical effect of
allowing the estimator and regulator to be designed separately (see [28], section 8.3). This
principle is shown briefly here using the state space equations for state feedback and state

estimator configuration depicted in Fig. 45.

The equation for the state estimation error can be found by subtracting the estimator state

equation from the plant equation ¥ = Ax + Bu , giving
(k-8 = A(x-%)-LCx+LCi = (A-LO)X,

where ¥ denofes the state estimation error. Then a system equation i terms of the states and

state estimation error ¢an be written:
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W] TA-LC 0 [H0]
o= § . (109)
X(®) | BK A-BK || x(t)
The significance of (109} is apparent when the characteristic equation is formed as follows:
sSI-A+LC 0 |
=|sI-A+LC||sI-A+BK|=0 (110)
~BK si-A+BK

it is readily seen the poles of the estimator and those of the conitrolled plant do not influence one
another. It should be noted, though, that while the pole placements in both the estimator and
regulator are done independently, there is coupling between the two systems through the term

~BK .

For a stabilizable, detectable system, the above calculations are guaranteed to produce optimal
gain matrices, K and L, resulting in an asymptotically stable LQG-regulated system [28].
Unfortunately, combining the Kalman estimator with an optimized regulator often results in much
worse performance than that anticipated from the LQR solution by itself. This degradation is tied
to the apparently arbitrary changes in the system gain and phase margins that occur when plant

and estimator dynamics are placed in series to form the loop gain transfer functions [28].

Recall that gain and phase margin are indicators of how much the dynamics of the actual system
may deviate from the modeled system before stability is lost. (System bandwidth and rejection of
output disturbances and sensor noise are also tied to phase and gain margin.) These stability
margins are determined from the open loop transfer function, using Bode or Nyquist plots, as a

means of gauging the closed loop system performance.

LQG Controller

Fig. 47. Structure of combined LQR/Kalman Estimator coniroller.
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Consider the LQG coniroller configuration in Fig. 47. The open loop transfer function taken at

the output of the plant is given by
Ly, =~G(s)K[®(s)" +BK+LC| 'L,
where
D(s) =(s1-A)".

It is through their complicating effect on the open loop transfer function that the combination of
Kalman estimator and LQR can reduce stability margins and thus reduce system robustness.
Therefore, even though the Separation principle allows independent L.QR and estimator design, as

a result of this phenomenon, the designer must take pains to validate the resulting LQG controller.
Method for I-DOF MSBS Controller Design

Earlier in this chapter the point was made that a primary motivation for considering optimal
control was to find a systematic approach to design using a manageable number of design
parameters. The LQG solution described thus far realizes that goal in part by identifying three or

four design parameters at least guaranteeing system stability if not desired robustness.

However, limiting the number of design parameters does not itself produce a workable design
process. This is because the net effect of multiple LQG parameter changes is not intuitively
apparent—even though the parameters’ specific individual roles in the equations are known. For
example, it is understood that in the LQR command the parameter R influences the size of the
optimum control input and @ has designates the relative importance of individual states. But the
best choices for the noise covariance and gain matrices in the Kalman estimator are not obvious a
priori. Worse, the effects on performance of combining the LQR and Kalman estimator are
virtually impossible to judge apart from testing the resulting system [28]. For this reason, the
remainder of this section is given to presenting a methodology and workable procedure for

applying the optimal control parameters.

This section first provides a small catalogue of parameters used in optimal LQG regulator design,
which represent the “tuning knobs” available o the designer. Secondly, a general methodology
for control system design is presented along with a procedure for implementing that methodology.
Following that there is a discussion of the concept of controller robustness as pertains the design
process. Lastly, the section gives an overview of the Loop Transfer Recovery (L'TR) method

used for optimal design.
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Optimal Design Parameters

Before proceeding, it should be pointed out that even though this chapter lays the groundwork for
optimal contro! of multiple degree of freedom (MIMO) systems, the chapter’s focus is still on the
1-DOF (SISO) maglev. Because the SISO model was relatively simple, its controller design was
something of & “toy” problem and the utility of optimal design was not fully realized in this
experiment. The parameters presented in Table XV so far did not have to be selected with as
much engineering judgment as they would for MIMO systems. However, the 1-DOF
experiments did provide a valuable exercise for learning the Matlab commands and setting up
procedures for evaluation controller performance. (The 2-DOF experiments, which make use of a
full 5-DOF nonlinear model, will better illustrate the benefit of a systematic design process.)
Table XV summarizes the “tuning knobs” available in the optimal control design method and

their effects. The table also lists the Matlab commands that emiploy those parameters.

TABLE XV
SUMMARY OF DESIGN PARAMETERS USED IN OPTIMAL CONTROLLER DESIGN
Associated
Matlab
Name Symbol * Description Effect On Design Command
State Weighting Q Positive semi-definite matrix ~ Higher valuestend to  lqr.m,
Matrix {(n x n) that assigns relative cause regulator to digr.m,
values to the states in the drive states to Igrdm
LQR cost function. equilibrium faster.
Input Weighting R Positive semi-definite matrix ~ Higher values tend to  Iqr.m,
Matrix {m x m) that assigns costs 0 restrict control digr.m,
control inputs in the LQR “effort” expended to  lgrdm
cost function. drive states to
equilibrium.
Process noise Q. Constant (n X n) matrix Ige.m,
covariance representing the level of dige.m,
matrix. “white” noise present in the kalman.m,
plant states. Serves as kalmd.m
weighting matrix in ARE.
Sensor noise R, Constant {m x m)} matrix Ige.m,
covariance representing the level of dige.m,
matrix, “white” noise present in the kalman.m,
measurements of the plant kalmd.m
output, Serves as weighting
matrix in ARE.
Process noise Gy Gain matrix (n x m} lge.m,
gain matrix. describing dynamics dige.m,
associated with process noise kalman.m,
vector in plant, kalmd.m

® As per the convention adopted for this thesis.
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Design Method and Procedure

To make efficient use of the design parameters, an orderly sequence of steps is needed to ensure
that all the parameters are adjusted through appropriate ranges and all reasonable controllers are
evaluated. One such design process was developed in [4] for the 5-DOF MSBS simulations, In
that process, an LQR solution was first derived for a 5-DOF MSBS model for a series of five
successively more complex simulations, the first involving only the basic linear state space
formulation and the last modeling all the known dynamics and disturbances. At each level of
complexity the time and frequency domain responses of the system were eveluated and the
matrices ( and R adjusted as necessary. Following the LQR iterations, a Kalman estimator was
designed using the same five-stage approach. Finally, the total LQG solution was evaluated. The

process in [4] is generalized in the following synopsis:

Create ranges of design parameters based as much as possible on knowledge of
system dynamics, system use, etc... Derive an LQR solution (an LSVF matrix K)
and a Kalman estimator, and combine the two sclutions into an LQG regulator.
Simulate controller operation using a system model for and validate controller
against time and frequency response criteria. Repeat for every parameter

permutation, identifying each solution with its respective parameters.

The following procedure was used to execute the design method above for in the 1-DOF
experiments covered in this chapter. The steps were implemented primarily using Matlab scripts

and Simulink models.

TABLE XVI
CONTROLLER DESIGN PROCEDURE
Step No. Action

1 Implement a nonlinicar mode! of the 1-DOF system in Simulink and derive a state space
formulation of the linearized plant. Analyze the plant for controllability and observability,

2 Produce ranges of values for design parameters §, R, @, R, and G,,, based on knowledge
of the MSBS. (See TABLE XVv.)

3 Based on the design parameters § and B, create a range of LSVF gain matrices K using
Matlab’s igr.m command. Ensure each K is traceable to parameters that produced it.

4 Test the range of K matrices in 2 closed-loop LQR system containing the linearized plant
model.

5 Based on one set of the parvameters Q,, B, and G,,, design a single Kalman estimator using

Matlab’s kalman.m command. Ensure resulting estimator is tzaceable to its own parameters.

6 Combine one of the values for K with the Kalman estimator using lggreg.n.
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TABLE XVI, CONT'D
Step No. Action
7 Test the resulting LQG regulator using 2 Simulink model of the nonlinear, closed-loop

system. Record and evaluate the time responses of the model with respect to relevant
criteria, such as percent overshoot, seitling time, steady-state value and control input value.
Plot the time responses as needed. If responses acceptable, go to next step. Otherwise,
return o step 6 and select another K-matrix.

8 Using same LOG regulator produced in step S, repeat simulation while dynamically
applying output “disturbances” to the system model. Record and evaluate the time
responses as before and compare to earlier results as a means to test the controller’s
stiffness. If responses acceptable, go to next step. Otherwise, return to step 6 and select
another K-matrix.

9 Using same LQG regulator, repeat simulation while simulating perturbations in the plant’s
magnetic flux density. (Plant “perturbed” after controller is designed.) Record and evaluate
the time responses and compare to earlier results as a ‘means to test the controller’s

robustness.

10 Compare the most recent validation results with those from previous acceptable controllers
and select best candidate. If necessary, repeat steps 5 through 9 for a different Kalman
estimator.

11 Validate candidate controller in actual 1-DOF system.

Measures of Coniroller Quality

Steps 7 and 8 in Table X VI describe actions intended to measure the “quality” of the prospective
controller in two distinct ways. First, step 7 seeks to more closely simulate the real-life operating
conditions of the HRTF by “disturbing” the forces acting on the suspended test object. The
system’s behavior under this condition provides a measure of a quality referred to as controller
“stiffness”. Second, step 8 is an attempt to ascertain the controller’s ability to function despite the
inevitable discrepancies between the real plant and its linear model (upon which the controller is
based). This aspect of controller quality is known as robustness with respect to model uncertainty.

These two measures are explained in the following paragraphs.

The controller stiffness test in step 7 involves a measure of how rigidly the controller holds the
plant (i.e., the magnetic core) in its equilibrium condition. For a wind tunnel application such as
the MSBS, greater controller stiffness means greater resistance to fluctuations in the aerodynamic
forces. To quantify this performance measure, and thus enable different coniroliers to be
accurately compared, a stiffness ratio was devised in earlier MSBS work [4]. This ratio is the
magnitude of a disturbance-producing force divided by the amount of displacement produced by

that force. Displacement is measured with respect to the equilibrium position. In the 1-DOF
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maglev system, stiffness is measured in terms of a known force applied in a vertical direction
divided by the position change that force produces. (In the 2-DOF system, stiffness is also
measured in terms of torque and its resulting angular displacement.) Step 7 then is essentially a
refinement of the simulation model done to reduce the number of candidate controllers that will

have to be tested under more time consuming conditions with the real MSES plant.

As explained in Chapter II, the MSBS controller is designed around a linear model of the physical
MSBS, and the linear model is in turn based on certain assumptions and simplifications. The
discrepancies between the model and the real plant, always present to some extent, are
collectively referred to as “model uncertainty”, and the controller’s ability to perform properly in
the face of these model-to-plant mismatches is called robustness with respect to model

uncertainty {(e.g., [28], p. 253).

Robustness is sought in controller design by using various techniques to mathematically
incorporate uncertainty in the formulation of the plant model—" representations of uncertainty”—
thereby giving the controller based on that model an edge in handling modeling disparities. In
general, this practice involves analyzing a set of plant models to see whether any of the
candidates likely to be encountered by the prospective controller result in unacceptable
performance. In other words, an attempt is made to discover what the worst-case result is likely
to be. Chapters seven and eight in [28] and [30], respectively, contain detailed examinations of

uncertainty modeling and analysis of robustness.

Step 8 in the design procedure seeks to evaluate controller robustness in a more practical way by
dynamically varying the value of one of the physical characteristics modeled in the nonlinear
plant model. This emulates the mathematical process described above by effectively creating a

set of different plant models whose responses for each candidate controller can be evaluated.

The parameter varied in Step 8 is the one least precisely known, the magnetic flux density at the
operating point. Of course, there is a high degree of confidence in this parameter for the 1-DOF
system because the magnetic flux density was measured directly several times, as well as
validated through earlier experiments. But in the 2-DOF and later configurations, the flux density
will not be measured directly but calculated using a finite element analysis routine, which is itself
based on a model of the MSBS electromagnetic environment. Furthermore, the force and torgue
equations for multiple magnet configurations are functions of several such calculated values,
resulting in a multiplicative compounding of error. Thus it is reasoned magnetic flux density and

its gradients are the parameters most responsible for modeling uncertainty.
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The need for practical evaluation steps such as those in steps 7 and 8 of Table XV1 is underscored
by two factors: 1) the loose linkage between parameter selection and actual plant characteristics
in optimal control design; and 2) the uncertainty of the stability margin produced by combining a

given LSVF matrix with a2 Kalman estimator in an LQG solution.
Loop Transfer Recovery (LTR) Technique

Finally, this section introduces an alternate method for producing an LQG solution with greater
tikelihood of meeting the design goals is presented. This technique, called Loop Transfer
Recovery (IL'TR), effectively incorporates indicators of closed-loop system response into each of
the two major design steps: the Kalman estimator and LQR. First, a Kalman estimator (filter) is
designed by iteratively adjusting the parameters discussed above to achieve a filter loop response
that matches the corresponding response of the overall system. One or more different loop
responses can be used as measures of suitability: the open loop, output sensitivity or
complementary sensitivity function responses. When an acceptable estimator is obtained, the
LQR weighting matrices Q and R are adjusted to produce an overall system response matching
the one obtained for the Kalman estimator. In theory a match is possible—and the desired system
response realizable—as the value of R approaches zero. The technique gets its name because
using the loop transfer function, it “recovers” the robustness of the LQR solution lost by the

infroduction of the Kalman estimator.
Experimental Setup

This section explains the setup for the 1-DOF experiments using optimal control design. For the
most part the setup duplicates that done for the earlier 1-DOF experiments, simply because the
significant changes have more to do with the design process and digital controller implementation
than with the physical system configuration. The same plant equations, flux densities, test object,
equilibrium distance and hardware and software configuration were used as in the experiments
covered in Chapter IV. (See Table IX and Figs. 18 and 20 in Chapter IV.) However, the system

maodel in Simulink was significantly revised as was the operator GUI in Control Desk.

This section first describes the model for the LQG regulator and then shows how the nonlinear
plant mode! was modified to enable the controller performance testing described in the previous

section.
dSPACE Controller Model

The Simulink implementation of the LQG regulator in this set of experiments differs from the

structure as illusirated shown in Fig. 45. In that case both inputs to the Kalman estimator, i.¢.,
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the control input (7} and the plant output 37¥), along with the individual state space components
of the estimator were explicitly shown. However, this set of experiments employed a single LQG
regulator block whose transfer function was produced using the Matlab command Iggreg.m. This

modeling structure combines the Kalman estimator with the LSVF matrix K as shown in Fig. 48.

Control input to plant, u{t) Plant output, y{t)
'y
- }
K Kalman W“
<— Estimator <
(iqr.m) x | (kalman.m)

Fig. 48 Schematic diagram of LQG regulator structure showing Matlab commands [27].

Note there is only one external input to the regulator (the plant input is fed back internally). Also,
positive feedback is used to connect the regulator block to the plant. The Matlab commands used

to form the two subsystems are shown in italics.
Controller Validation Models for 1-DOF Optimal Control

Steps five through seven in Table XVI entail simulating the operation of a closed-loop 1-DOF
system under different conditions. To conduct these simulations, three distinct models were
created, the third being the most complex and the one with which the most of the experiments
were conducted. It should be understood the creation of the controller validation models was an
iterative process, cycling through three basic activities: parameter calculations in Matlab, model
construction and trial runs of the controller design. Essentially, the validation models, the Matlab
scripts used to run the simulations and a set of ¢candidate controllers were all developed in parallel.
The remainder of this section describes the structures of the validation models and the some of
their associated design problems. The other aspects of 1-DOF controller design are covered in

the next section, Bxperimental Procedure.

The first validation model, used in design step 4, was an LQR configuration consisting of a linear
model of the plant in state space form and optimally derived state variable feedback matrix.

(States were fed back directly rather than estimated.) This model was created and operated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



124

entirely through Matlab commands without the use Simulink. Specifically, a set of optimal LSVF
K-matrices was derived and a Matlab Linear Time Invariant (LTI} model of the closed-loop
system was formed for each K. Then the closed-loop system response was obtained for a range
of step inputs. (Stiffness and B-field perturbation tests were not done with the linear model.} The

Matlab commands pertinent to this phase of testing are illustrated in Fig. 49.

K{i)=lgr{A plant, B _plant, Q(i) , R{i)); derive optimal LSVF matrix
Ac=2A _plant-B_plant*K{i); create pole-shifted state matrix
Gel=gs(Ac, B_plant, C plant, D);

ustep=ones(lent,1); create step input sequence
ustep=andrustep;

{ystepl=1sim(Gcl,ustep, t); obtain step response

Fig. 49. Matlab commands to implement closed-ioop LQR simulation

Fig. 48 illustrates Matlab implementation of equations (102) and (103). The command sequence
shown assumes the existence of the state space variables A_Plant, etc., on the Matlab workspace.
This is accomplished using the parameter derivation and linear modeling script described in the
previous chapter. Note also the ranges of Q, R and K values are stored in arrays and the K-

matrix carries the same index as the state and input weighting matrices that formed it.

The second model was also an LQR system but with a nonlinear model of the plant. This model
was created in the process of developing the modeling structures and Matlab scripts needed to
perform the stiffness and robustness tests described in Table XVI. The pertinent modeling blocks,

all contained within the nonlinear plant model, are illustrated in Fig. 50.
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Fig. 50. Block diagram of the 1-DOF nonlinear mode! including vertical

force and magnetic field disturbances.

Recall the dynamics of the nonlinear model, where the change in acceleration of the suspended

object is related to the object’s position through the equation

=M Ly (VML a g

ook Mmoo

The first alteration to the model was the introduction of a mechanism for determining controller
stiffness. (Refer to the set of blocks along the top of the figure.) Since stiffness is a measure of
how susceptible the controlled object is to external disturbances, it was reasoned a disturbing
force could be simulated by introducing another vertical component of acceleration to the model.
For example, to simulate a disturbance force of 1 Newton pressing upward on the suspended
object, a constant equal to one over the object mass could be introduced at the point in the model
where gravitational acceleration is added. The dynamics of the model would simulate the effect

of the disturbance and in turn place a demand on the conirolier to adjust the system to equilibrium.
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Then, by measuring the meximum deviation in the output, the coniroller stiffness could be

calculated using the ratic

Maximum Deviation (m)
Disturbance Force (M)

To make the stiffness tests more realistic with respect to the controller’s eventual operational
setting, the HRTF, a simple waveform was to devised to simulate the type of aerodynamic
disturbance that might be encountered in a wind tunnel. Ilustrated in Fig. 51., the disturbance
“force” has a relatively sharp rise time and slower decay time. A Simulink Repeating Sequence

block with parameters describing the waveform was used to generated the disturbance waveform.

N

Acceleration (m/sz)
[oe]

L

Time (sec)
Fig. 51. Disturbance force waveform.

Actually, what is depicted in Fig. 51 is the disturbance “acceleration” applied in the 1-DOF
experiments. This was obtained by dividing the output of “Disturbance Force” block by the
reciprocal of the object mass, contained in block labeled “Fd Scaling”. Because the mass of the
object in this experiment is much less than a kilogram, the peak amplitudes are on the order of

plus or minus 5.2 m/s”. In the actual mede! construction, the waveform was built on 10-unit scale
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for ease in creating the desired shape. Thus the scaling factor also contains 2 0.1 veduction in

order to simulate a - force.

Note in Fig. 50 the disturbance waveform is multiplied by a factor labeled “Fd Switch”. This
provided a means to turn the disturbance on or off simply by setting 2 Matlab variable to zero or
one from within a Matlab script. In this way, the same mode! could be used o run simulations

both with and without the disturbance.

The second addition to the nonlinear model was a2 mechanism to test the controller’s robustness in
the face of modeling uncertainty. This was done by introducing perturbations to the nonlinear
constants, k; and k;, effectively changing the magnetic flux density within the model. As
described in the previous section, the rationale for this test is that the linear controller can be

considered robust if it performs well with an uncertain, nonlinear plant.

To simulate the most likely source of uncertainty in the maglev plant, the magnetic flux density,
the nonlinear constants, k; and k, were randomly perturbed. These constants were convenient
spots to introduce the changes since they’re the only variables that carry magnetic flux

information and they directly apply the magnetic flux density gradients to the model as seen in

The perturbations were implemented in the model by generating random percentages of k; and k,
and adding them back to the constants themselves. This is illustrated in the lower left hand side
of Fig. 50 by the blocks labeled “Nonlinear Constant 17, “B Field Perturb” and “K1 x B-Field
Perturb”. This additive method enables to the amount of perturbation to be randomly varied with

2 uniform probability distribution over a defined range centered on the constant’s nominal value.
ki =k, + Bpert x k, = (1 +bpert ) k;,
The variable Bpert is a random variable with range defined by a Matlab command
Bpen = (0.02*(2*rand-1)),

where the embedded command rand.m generates a uniformly distributed number on the interval
(0.0, 1.0). In the inner parentheses, the random number is shifted to the interval (-1.0, 1.0}, and

the factor 0.02 scales that random number 1o the interval {-.02, .02). The result in the system
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model is that the flux density gradients are randomly perturbed within a range of plus of minus
two percent. For modeling simplicity, only one random variable is used, which is reasonable
since the gradients are derived from linear operations on the flux density, and percentage changes
in the density are carried through directly to the gradients. Also, just as with the disturbance
forces, there is a switch that allows the same model to be used for perturbed and non-perturbed

simulations.

The third validation mode! was the last produced during the experimental set up. This model
contained an LQG regulator and the nonlinear plant model . Both were similar that only the LQG

system is shown below in Fig. 52.

——  simin ey Sirnout
To Wokispace] Tu Wodkspace
omgd )@ + Bed Input Current  dz
. +
Command ‘o
input Mon Linaar
Reinsert Plant
Equilibrium
Current
regout
To Wodspace2
# = Pt Bu :
y= CxtDuy

LG Regulator

Fig. 52. Nonlinear system model for LQG regulator validation.

This model contains a linear coniroller and nonlinear plant just as the earlier 1-DOF models.
Consequently, the bias, or eguilibrium current is supplied to the model. However, the feedback
path contains the regulator in state space form and feedback is positive, due to the internal
structure of the LQG regulator block. There are three blocks, simin, simout and regout, that
Simulink uses to place data from the model into arrays with the same names on the Matlab
workspace. These arrays contain the time responses of the simulation at intervals equal to the

simulation step size, 0.001 seconds for this set of experiments.
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The variable in the “Command Tnput” block in Fig. 52 is not simply the desired output position,
as in the earlier 1-DOF experiments. This has to do with the difference between the output
feedback structure used before and the regulator control law used here. Recall that the basic

regulator control law, u(f) = —Kx(¢), assumes there is no external reference input, i.e., the set

point is zero. (The set point is the equiltbrium reference for the system.) If different equilibrium
points are desired, which is what is needed for the MSBS, then the control law and system

equations have 1o be rewritten
u(t)=-Kx(t)+v, ()
(1) =(A-BK)x(¢) +Bv (1)
Switching to transfer function notation, the input-output relationship is given by
Vs ) = Gy (v, (1)

The equilibrium condition is equated to the steady state condition of a stable systemas t > 0. In
Laplace transform notation, the steady state output of the plant with a step input of magnitude

v, 18 €xpressed as

vdes
S

Vas () = lim 5Gy (5)-
This corresponds to the following

ya'es = dcgain(GC,; (S)) : vdes ?

which leads to
Vies = iny [ngain (GCL (S)):l * Vetos -

This is the simplest means to determine non-zero sef points for the closed-loop regulator. For
controller validation tests, the variable cmd was defined within a2 Matlab script using 2 command

sequence similar to the following:

Gp = ss{A_plant,B plant,C plant,D plant);
Gel = feedback{Gp,Klgg,+1);
el = mv{degain{Gel});

emd = Ici*out_des.
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In this way the set points for the regulator could be easily changed to determine the range over

which the linear regulator and state estimator could effectively operate.

To implement a real-time controller for the MSBS hardware, the dSPACE model used for the last
set of 1-DOF experiments was modified to incorporate the LQG regulator block shown in Fig. 52,
In addition, the whole LQG nonlinear system was added as a subsystem in order to allow the

controlier to be tested with the plant and nonlinear model simultaneously.
Experimental Procedure

The purpose of this set of experiments was to gain familiarity with optimal control design in the
relatively simple 1-DOF case so that multivariable controller design could be carried out more
efficiently. Most of the experimental procedure for these experiments consisted of developing the
Simulink models and Matlab scripts needed to automate the design process described in Table
XVI. By the time these design “tools” were refined, several possible controller designs had been
identified, ieaving only a few relatively simple tests using the dSPACE real time controller and
the actual plant. The previous section described the structure of the simulation models and this

section explains the functions of the Matlab scripts.

To execute either the 11-step design process in Table XVI or the LTR method outlined in the
previous section, both of which potentially involve many iterations, it was necessary to automate
as many steps as possible. This involved developing a set of Matlab scripts to manage the design
parameters, invoke the necessary commands to create the LQG regulator, simulate the controller
operation and organize and evaluate the simulation results. This section first describes the
functionality of the different Matlab scripts developed for the experiment and highlights the
salient design issues associated with each. Secondly, the section briefly describes the controller
test with the actual MSBS hardware. Finally there is a comparison between an optimally
designed controller using the tools created in this chapter and the lead-lag controller described in

the previous chapter.
Functionality of the Matlab Scripts

The first Matlab script was the relatively simple one used to evaluate an LQR design using the
Linear Plant model—as described in Fig. 48 in the previous section. This experiment,
corresponding to design steps two through four, provided a simple, preliminary evaluation of a
range of values for the state and input weighting matrices, Q and R. This part of the experiment
also provided an opportunity automate the creation of a series of LSVF coefficients for a

regulator without the encumbrance of programming other functions.
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The next stage in the design process was to implement a series of LQR simulations using the

nonlinear plant model and feed back the state variables directly. {This involved the second model

described in the last section.} This programming in this stage addressed a significant amount of

the functionality for controller validation without having to handle the additional parameters

associated with staie estimation. Following were the important programming functions

implemented:

TABLE XVII

FUNCTIONALITY IMPLEMENTED IN SECOND STAGE OF DESIGN AUTOMATION

Sequence
No.

Description of Functionality

1

Declare the variables needed in the Matlab workspace. This provided two benefits: 1) it
reduced the number of variables that had to be passed between routines; and 2} it allowed
the parameters in the Simulink model to be easily changed.

Derive a state space model of the plant and calculate constants k; and k, needed for the
nonlinear plant model.

Determine whether to use a default set of values for the weighting matrices Q and R or take
user input for the values. This experiment was designed to allow a “shotgun” approach to
the selection of QQ and R, where a wide range of values could be tried first and then
narrowed down in successive tests.

Construct an array of values for Q and R, based on the facts that 1) R is a scalar for this
system and 2) Q is a 2 x 2 diagonal matrix containing two different values. For ease of
programming, both clements of Q were given the same range. Thus the number of
permutations of design parameters was equal to the square of the number of values in the Q-
range times the number of elements in the R-range. The column order of the parameter

array was {1y, Qi1, g2

For every permutation of these values find the optimal LSVF matrix, K, and the repositioned
eigenvalues, E, by using the Matlab command lgr.m. Store resulting K’s and E’s in an array
and maintain association between them and their corresponding Q and R pair.

Implement a range of regulators based on the stored feedback matrices and obtain step input
responses for each system using the both linear model and nonlinear Simulink model. Allow
default range of set-poinis or user defined range. Store step responses in vectors.

Evaluate the step responses to determine whether they meet design specifications for time
response. (E.g., percent overshoot, settling time and final value)) This was done by
evaluating each step response vector against a set of threshold criteria adjustable by the user.
Store responses meeting criteria along with the corresponding @ and R values.
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Sequence

No. Description of Functionality

g Provide user the option to perform controller stiffness tests. Stiffness test done as follows:

Determine range of set points, either default or user specified. . This range is used to
establish a process loop.

Create closed-loop transfer function for the pole-shifted plant, invert the transfer
function and determine its DC gain. Use the DC gain to calculate reference input
needed to produce the desired set point.

For the current reference input, obtain the step respounse of non-linear system
without disturbance force. Determine final value of response as baseline for
calculating stiffness ratio.

For the same reference input, “turn on’” the force disturbance in the model and
obtain step response. Evaluate the response for its max/min values and calculate
the positive and negative stiffness ratios. Use value of the amplitude peaks of the
distwrbance force divided by the maximum positive or negative deviations of the
step response from its final value, e.g.,

Disturbance Force (W)
Max deviation perturbed sys. -Steady state unpertured sys. (m)
Store stiffiness ratios in an array. Repeat for the next set point in the range. .

Stiffness Quotient=

10 Provide user the option to test the controller with B-field perturbations.
Determine range of set points, either default or user specified.

Create closed-loop fransfer function for pole-shifted plant, invert the transfer
function and determine its DC gain. Use the DC gain to calculate the reference
input needed to produce desired set point.

Copy non-perturbed step responses intc new matrix

Conduct programmed number of simulations with cusrent reference input. For each
simulation, generate new random perturbation factor and obtain step response.
Evaluate each step response for percent overshoot, settling time and final value.

Take average of all response values for each reference input. Store response values
with corresponding Q and R values.

11 If necessary, repeat entire sequence for different range of @ and R values.

The third stage of automating the 1-DOF design process involved incorporating the Kalman
estimator into the coniroller design using the Matlab commands kalman.m and Iggreg.m,
described in the earlier section on Experimental Setup. The first of these commands creates a
Kalman estimator using the state space model of the plant and noise covariance matrices, (J, and
R,, provided by the designer. The second command creates a single regulator block by joining
the LSVF matrix K with the Kalman estimator (see Fig. 48). Joining the programming and

modeling functions produced in this stage with those done earlier resulted in a complete set of
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Matlab scripts for implementing & semi-automated design process along the lines of Table XV.

The following describes the functions added under this stage.

TABLE XV
FUNCTIONALITY IMPLEMENTED IN THIRD STAGE OF DESIGN AUTOMATION

Sequence
Mo. Deseription of Functionality

1 Give user (designer) the option to re-create the range of LSVF matrices before proceeding.

2 Create 3 Kalman state estimator using single set of values for the design paramsters Q;, B,
and G, This is the start of the outermost processing loop.

The command syntax is [Kestl=kalman(sys_k, Q,, R, ), where sys_k represents the
plant augmented by process and measurement noise vectors, w and v. [Matl] The
state space equations are

i=Ax+ButG w

y=Cx+Du+Hw+v,
where G, and H are process noise gain matrices. Thus, sys_k is formed by the
command sys_k=ss(A_plant, [B_plant G}, C_plant, [D_plant H]). The resulting

Kalman estimator takes an input vector [u y]T and outputs a vector [ ¥ )E]T .

Because the 1-DOF maglev is a SISO system, Q,, and R,, are scalass and G, is a
vector,

3 Determine range of set points, either default or user-specified. Selection of the first value in
this range is the first step in the first inner process loop.

4 For each LSVF matrix K created earlier in the process, form the LQG regulator using the
command Iqgreg.m. The command syntax is Lggr = lqgreg(K, Kest). Selection of the first
value in the range of K-matrices is the fist step in the second inner process loop.

5 With the current regulator and plant model, create the closed-loop transfer function and then
invert the transfer function and determine its DC gain. Then use the DC gain to calculate the
reference input needed to produce desired set point.

6 For each regulator, obtain the step response of non-linear system and evaluate for percent
overshoot, etc. as before. Store time response values in an array along with the sequence
number of the K-matrix used o form the regulator. The sequence number can be used fo
trace acceptably performing regulators to their design parameters.

7 Conduct controller stiffness and B-field perturbation tests as described in Table X VL

8 Repeat regulator formation and simulation for the next value for K, i.e., the next value in the
inner loop.

g When all values for K tested, proceed to next set point value, or next value in the outer loop.

16 All time response values are stored in a three-dimensional array (K, Resp, SP), where K is

the no. of LSVF matrices, Resp is the size of the vector storing the time response and SP
equals the no. of set points tested.

11 If desired, return to the cutermost processing loop and create a new Kalman estimator.
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After to automating the procedure described in Table XV, the Loop Transfer Recovery (LTR)
method was likewise implemented. Using this method, evaluation of the frequency response
could by added to the validation process. As mentioned earlier, the basic two-part design is
reversed in the LTR method. The Kalman estimator 1s designed first, based on the frequency
response of its open loop transfer function. Then the LSVF matrix is tuned to provide an overall
closed-loop system response that matches the response obtained for the Kalman estimator alone.
The last stage of programming for this experiment was to implement an LTR design tool
containing the functionality described below.

TABLE XIX
FUNCTIONALITY IMPLEMENTED IN LTR DESIGN AUTOMATION

Sequence
Ne. Description of Functionality

1 Declare variables needed in the Matlab workspace and derive a state space model of the
plant and calculate constants k; and k.

2 Synthesize and evaluate a range of Kalman estimators using fixed values for the process and
sensor noise covariance matrices, Qn and Rn, and a range of values for the process noise
gain matrix, Gw. Select estimator giving best response.

The frequency response of the loop transfer function for each resulting filter is
plotted on screen for user evaluation. Frequency response is determined in terms of
the singular values of the transfer function. Filter selection is done in two steps:
first the user chooses up to four candidate filters based on the responses; then all the
candidate response are displayed on a single graph and the user selects the best
from that group.

3 Synthesize and evaluate one or more LQG regulators using state space models of the plant
and Kalman estimator. Choose LQG regulator that provides open loop frequency response
for the overall system (plant and regulator) that most closely matches response of Kalman
estimator.

Derive the linear state variable feedback matrix, K using the command lgr.m. In
this implementation state and input weighting matrices Q and R are fixed: Q =
{C plant’ x C plant) and R = 1. (R is a scalar for SISO systems.) The only
parameter to be varied in the LQR design is the input weight R, which the user does
by selecting either one of a range of values for an R-matrix multiplier, rho. The
conmand syntax looks like

[K.S,E[=LOR(A,B,Q.Rp5e%9) .
where Ry, =1 and p is the user-selected multiplier.

4 Using the command lggreg.m, form the LQG regulator from K and the estimator model
provided. Produce the open loop transfer function for the overall system by placing the
plant model and regulator in series.

5 In the case of multiple vegulators, the user selects up to four candidate responses and then
down-selects the best from that group. Frequency response is determined in terms of
singular values of the transfer function.

6 Obtain step responses and perform stiffness and B-field perturbation tesis as described in
previous stages.
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The Matlab script files created to perform these functions are provided in electronic form as a
separate attachment to this thesis. However, Appendix E contains an index of the files and table

tisting the Matlab scripts created to achieve the fumctionality just described.

Upon completion of the design tool, several design iterations were conducted and candidate
controller designs produced. Table XX summarizes the final design parameters selected as well

as the transfer function settled on in the classic [-DOF design covered in Chapter IV.

TABLE XX
CONTROLLER DESIGN PARAMETERS
Controller Q. B, Gy Q R Transfer Function
1] le-6
LQR o1 T
. 500 1 0] e
LQG ! s000] |0 1] %
. 400 (1 0] 160
LTR 1 gooo| o 1] %
| 900 0X(s+9.68)(s+2.0)(s+1 5)
Lead-Lag (s+97)(s+0.5)(s+0.1)

MSBS Hardware Test

Certainly the true validation of a controller lies in the demonstration of its performance as part of
a real-world system. Therefore, once a likely candidate was obtained through the software
validation steps, it was incorporated into an RTI-enabled Simulink model of the entire controller
system, compiled and loaded onto the RTP as described in the previous chapter. In this
experiment with the actual MSBS plant the LTR-designed controller described in Table XX was
used. The dSPACE GUI was set up to capture the following variables: 1) the control input to the
nonlinear model; 2} the control input to the plant (suspension coil current); 3) The output of the
nonlinear model; and 4) the object displacement from equilibrium in the plant. Fourteen five-
second data captures were conducted during which the input commands ranging from +7 mm to -

-7 mm. The system was unable to track the command -7 mm.
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Comparison of LTR-Designed and Classic Controllers

Lastly, the stiffness and robustness against B-field perturbations of the lead lag confrolier from
Chapter IV were measured. The Matlab script for the LTR design was modified to accomplish
this.

Presentation and Discussion of Resulis

As noted above, the activities associated with this experiment consisted primarily of designing
Simulink models of different controlier configurations and creating the Matiab scripts needed to
automate the use of these models. In addition, a lesser amount of time was required to validate a
controller design with the actual MSBS equipment in a sample 1-DOF plant. This section
presents some typical system responses obtained while developing the models and scripts and
while validating a controlier on the actual MSBS 1-DOF plant. The design parameters used are
those listed in Table XX.

The experimental results are arranged to provide three types of comparisons. First a comparison
is made between three different design approaches: 1) an LQR controller with full state feedback;
2) the same LQR only using a Kalman state estimator; and 3) a regulator with Kalman estimator
synthesized using the LTR design method. Second, there is a comparison between the
performance of a controller with a nonlinear model and the actual 1-DOF plant. Lastly, the
stiffness and robustness of the classical controller described Chapter IV are compared to the same

performance measures of an optimally designed regulator.
Comparison of Three Approaches to Optimal Design

The following plots and tables contain selected results from tests of the three different design
approaches: LTR alone, LQG regulator from the iterative design procedure in Table XVIII and
LTR-designed LQG regulator from the procedure in Table XIX. The results are arranged so to
compare the three design approaches under similar operating conditions. First several groups of
step input response plots are presented, followed by numeric data describing the different
controllers’ time response characteristics, their stiffness quotients and thelr robustness against B-
Field perturbations. Figs. 53 to 55 illustrate the system responses to step inputs for the three
different design approaches.
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Fig. 54. Step responses of nonlinear mode] during siumulation with LQG

regulator with state estimation for range of set points: -5, -2, -1, 0, 1, 2, S mm.
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Fig. 55. Step responses of nonlinear model during simulation with LTR-designed

LQQ regulator for range of set points: -5, -4, -3,-2,-1,0, 1,2, 3,4, 5 mm.

The next set of plots, Figs. 56 to 58, illustrate the system responses at set points -5 mm, ¢ mm,
and +5 mm, when a disturbance force in the output is simulated. These plots provide a good

visual indication of the controllers’ relative stiffness.
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Figs. 59 to 61 show the range of responses for different controliers when the B-fields in the

nonlinear plant models are “perturbed”.
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Fig. 59. Responses of nonlinear model during simulation with LQR and
full state feedback when perturbations applied to magnetic flux density

over range of set points -5mm to +5mm.
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Displacement (m)

Fig. 60. Responses of nonlinear modei during simulation with iteratively-

designed LQG Regulator when perturbations applied to magnetic flux

density at set points: -5 mm, -2 mm, { mm, +2 mm and +5 mm.
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Fig. 61. Responses of nonlinear model during simulation with LTR-designed
LQG Regulator when perturbations in magnetic flux density applied over

range of set points -5 mm to +5 mm.

Fig. 62. illustrates the system open loop frequency responses obtained during the LQR, LQG and
LTR designs. Note the slight decrease in bandwidth from the LQR to the LQG design and the

large bandwidth increase from LQG to LTR. Fig. 63 illustrates the Kalman filter and system
responses used for the LTR design.
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Next, selected numeric data are presented from the different controller simulations. These data
were obtained automatically by capturing the responses and performing the calculations using

Matlab scripts.

TABLE XXI
STEP RESPONSE DATA FOR LOR, LQG AND LTR REGULATOR DESIGNS
Set Point {mm)/Desiga Type % OS 2 % Seutling Time Steady State Value
-5 LQR(Im)? 2.0905 0.1900 -.00050
-5 LOQR 3.1562 0.1700 -0.0051
-5 LQG 5.1624 4.7300 -0.0053
-5 LTR 0.3861 04,2030 -0.0050
-2 LQR (Im) 2.0905 0.1900 -0.0020
-2 LQR 4.2630 0.1700 -0.0020
-2 LQG 1.8775 4.4800 -0.0020
-2 LTR 0.1492 0.2030 -0.0020
-1 LQR (lm) 2.0905 0.1900 -0.0010
-1 LQR 3.9779 0.1700 -0.0010
-1 LQG 0.9119 4.4100 -0.0010
-1 LTR 0.0738 0.2040 -0.0010
1 LOR (Im) 2.0905 0.1900 0.0010
1 LOR 3.4259 0.1700 0.0010
1 LQG -0.8635 4.2800 0.0010
1 LTR -0.0722 0.2040 0.0010
2 LOQR (Imy 2.0905 0.1900 0.0020
2 LQR 3.1585 0.1700 0.0020
2 1.QG -1.6832 4.2400 0.0020
2 LTR -0.1428 0.2040 0.0020
5 LOQR (im} 2.0905 0.1900 0.0050
5 LOR 2.38%4 0.1700 0.0050
5 LQG -3.9154 4.1200 0.0048
5 LTR -0.3459 0.2050 0.0050

# (im) denotes that design approack was tested with lnear model
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TABLE XXII
STIFFNESS TEST DATA FOR LQR, LOG AND LTR REGULATOR DESIGNS

Set Point (men}  Steady State Value Positive Stiffness  Megative Stiffness  Average Stiffness

(m) Ratio Ratio Ratio
-5 -0.0051 122,586 -107.631 £15.108
-0.0053 46,5691 -34.0359 40.3025
-0.0050 328.81¢ -318.846 323.831
G 0 129.647 -115.136 122.392
49,3041 -37.8255 43.5648
0 347.713 -339.160 343.437
5 0.0050 136.182 -122.600 129.391
0.0048 51.77%6 -41.0580 46.4188
0.0050 366.536 -359.330 362933

TABLE XXIH

B-FIELD PERTURBATION TEST DATA FOR LOR, LQG AND LTR REGULATOR DESIGNS

Percent Overshoot 2% Settling Time (s) Steady State (m) Max. Input Deviation

Standard Standard Standard Standard
Set Point Devia- Devia- Devia- Devia-
{mm) Mean tion Mean tion Mean tion Mean tion

-5-LQR 75829  13.2781  0.1700 0.0000 -0.0052 0.0006 22257 0.8870
-5-LQG 45048 28.1321 0 0.4743 0.0172 -0.0052 0.0014 1.1523 0.5982
-5-LTR 1.1647  1.9622 0.2025 0.0005 -0.0051 0.0001 40940 0.3035
-2-LQR 239487 351267  0.1700 0.0000 -0.0024  0.0007 1.3434 0.9531
-2-LQG  0.1664  55.6546  0.4481 0.0110 -0.0020 0.0012 04295 0.5183
2-LTR 06775 4.8133 0.2033 0.0605 -0.0020 6.0001 1.5315 0.3215
0-LOR 0.0006  0.0003 0.1706 0.0000 0.0001 0.00607 0.3466 0.5087
0-LQG 0.0609  0.0006 0.4361 $.0086 -0.0001 G.0011 $.2256 0.3024
0-LTR 0.0001  0.0000 0.2036 0.0005 -0.0000 0.0001 0.1144 0.1352
2-LQR -5.0287 38.2850  0.1700 0.0000 0.0018 6.0007 2.0431 0
2-10QG 09118  60.0971 04245 0.06073 0.0620 0.0612 0.4476

2-LTR -0.2668 4.6384 0.2043 0.0605 0.0020 0.0001 5.4413

5-LQG -9.8757 21.3230 0.4136 0.0049 0.0045 0.0011 11191

0
0
5-LOR -0.7378  8.2290 0.1700 0.0000 0.0048 0.0004 5.1078 0
0
5-LTR -0.3069 2.0279 0.2048 0.0006 0.6050 0.0001 13.6032 ©
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Comparison of Results from Nonlinear Model and Plant

The next set of results compares the performance of the nonlinear model and the actual 1-DOF
plant using the same LTR-based controller design. {This was the same LTR design described in
Table XX.) Both model and plant were operated simulisneously and shared the same reference
input. Fig. 64 shows the responses of both modeled system and actual plant/controller
combination systems to a series of step commands. Then, Fig. 65 highlights the difference in
response of the two systems with respect to two performance measures, the control nput signal
and the object position. The top plot shows the difference between the two maxinmum control
mput deviations over the range of command inputs (MSBS current minus model current). For all

inputs the actual MSBS plant experienced smaller excursions in control current. The lower plot

in Fig. 66 illustrates the differences in steady state output (MSBS object position minus model

object position). For every step command, the magnitude of the object’s displacement was less

with the MSBS.
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Comparison of Optimal Controller Design with Classical Design
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The final set of resulis compares the stiffness and robustness against modeling uncertainty in a

classical lead-lag controller and two regulators the LOQR and the LQG regulator designed using

the LTR method.

TABLE XXIV

STIFFNESS TEST DATA FOR LEAD-LAG CONTROLLER AND OPTIMAL RBGULATORS

Set Point (rum)  Steady State Value  Positive Stiffness ~ Negative Stiffness  Average Stiffness
(m) Ratio Ratic Ratio

-5 -0.0051 122.586 -107.631 115.108
-0.0050 128.1954 -84.7437 106.4696

-0.0050 328.816 -318.846 323.831

0 0 129.647 -115.136 122.392
0 135.6316 -91.7179 113.6748

0 347.713 -339.160 343,437

5 0.0050 136.182 -122.600 129.391
0.0050 143.0634 -98.5562 120.8098

0.0050 366.536 -359.330 362.933
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TABLE XXV
B-FIELD PERTURBATION TEST DATA FOR LEAD-LAG CONTROLLER AND OPTIMAL REGULATORS
Percent Overshoot 2% Settling Time Steady State (im) Max. Input
Deviation
Set Standard Standard Standard Standard
Point Devia- Devia- Devia- Devia-
{mm} Mean tion MMean tion Mean tion Mean tion

-5-LOR 7.5829 13.2781  0.1700 0.0060 -0.0052  0.000¢6 2.2257 0.8870
-S-Lela 452722 44984 0.1830 0.2506 -0.6050  0.0000 5.1569 0.215%
-5-LTR 1.1647 1.9622 0.2025 0.0005 -0.0051 0.0001 4.0%40 0.3035
2-LQR. 23.9497 351267 0.1700 0.0000 -0.0024  0.0007 1.3434 6.9531
2-Lela 402779 111623  0.1951 0.2708 -0.0020  0.000¢ 3.5774 0.2854
-2-LTR  -0.6779  4.8133 0.2033 0.0005 -0.0020  0.0061 1.5315 0.3215
0-LQR  0.0006 0.0003 0.1700 0.0000 0.0001 0.0007 0.3466 0.5087
0-Lela  0.0002 0.0001 3.1875 2.0122 6.06000 0.0600 0.0850 0.1792
0-LTR  0.0001 0.0000 0.2036 0.0005 -0.0000  0.0001 0.1144 0.1352
2-LQR -5.0287  38.2850  0.1700 0.06000 0.0018 0.0007 2.0431 0
2-Lela 43.5784 5.3802 0.2273 0.2920 0.0020 0.0000 17.0000

2-LTR -0.2668  4.6384 0.2043 0.0005 0.0020 (.0001 5.4413

0
0
5-LQR  -0.7378  8.2290 0.1700 0.0000 0.0048 0.0004 5.1078 0
5-LeLa 363208 2.4604 0.0988 0.1741 0.0050 0.0000 425000 O

0

5-LTR  -0.30669 2.0279 0.2048 0.0006 0.0050 0.0001 13.6032

* LeLa denotes Lead-Lag Controller

Discussion of Results

There are several primary observations of the data to be made pertinent to the development of the
MSBS controlier. The first is that there was a significant degradation in performance when going
from the LQR controller to the first LOG controller. This was predicted in the discussion of
optimal confrol design earlier in the chapter, and is apparent in all three performance
measurements: time response, stiffness ratio and robustness against B-field perturbations. There
was greater steady state error with the LQG controller, evidenced by the fact the 2% settling
times were consistently nearly as long as the test period itself. Also, the stiffness ratios were
about 35% less for the LQG controller, a phenomenon also seen in the larger displacement

amplitudes m the plots. Finally, the LQG controller’s response to B-field perturbations was
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poorer in this respect: the standard deviations in steady state values were twice as large for the
LQG design as they were for the LOR controller. This reflects a definite lack of robustness to

modeling uncertainty.

In contrast to the first observation, the second prominent feature of the data was the dramatic
performance improvement seen in the LTR-designed over the straight iteratively-designed LOQG.
The LTR controller provided low steady state error and an even lower percent overshoot than the
LQR design. The LTR design also produced stiffness ratios nearly three times those of the LOR
design. Finally, the B-field robustness test data showed the LTR design had nearly zero mean
steady-state error and the standard deviation in steady state values was 15% to 25% of that seen
with the QR design.

The contrast between the LTR-designed controller and the others was also seen in the plot of
open loop responses. Note the loop response for the LTR-based system had greater gain and
bandwidth than the others. That this controller demonstrated greater output disturbance rejection
and damping is in keeping with classical loop shaping design techniques where large open loop
gain at lower frequencies tends to allow greater disturbance rejection and larger open loop

bandwidth provides faster response [28].

It should be pointed out the first LQG controller was designed strictly through iterations of
synthesis and time response evaluation. The results were not very good after just a few iterations.
Undoubtedly better results would have been by testing more permutations of design parameters.
(However, only 10 values for each of threc parameters would require 1000 evaluations to test
every combination.) On the other hand, the LTR design involved no more iterations than LQG
design and produced a much better controller. This points out the importance of incorporating

frequency response into the design process.

A third major observation is that the optimal controller produced excellent command tracking in
the actual MSBS plant. The controller was able to track positive step commands up to + 7 mm
and negative commands up to — 6 mm. (This is better than the classical design tested in Chapter
Five, which allowed only a plus or minus 5 mm command range.) The largest mean value of

steady state error over the command range was 5%.

The fourth observation concerns the comparison the LTR-designed controller o the classical
lead-tag design. The LTR design provided much lower percent overshoot than the classical lead-
lag design for the perturbed plant. (This probably explains the wider command range.) The LTR

controller was also stiffer by a factor of three.
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Finally, the comparison of the nonlinear model and plant shows the importance of measuring the
control input when validating the controller. Under the LTR method, the goal is to match the
open loop response of the system as nearly as possible to the Kalman filter response by reducing
the control input weight R. (This assumes the Kalman filter response is tuned to reflect design
specifications.) But the real-world plant poses a practical limit on how “good” the LTR design
can actually get, since lower values of R result in higher control inputs to the plant. That care
should be taken to monitor the values during design is illustrated by the plot of simultaneous
control inputs to the model and plant in Fig. 65. The open loop responses in the LTR design
process were not very close (see Fig. 63), yet the resulting design, with R = 1e-9, allowed very
large transients in the control input. The deviations were large enough so that the suspension
coils in the plant could not meet the demands placed on them by the controlier, and for input

command —7 mm, the controller dropped the test object.
Cenclusion

In the chapter introduction it was stated that the goals of this work were to apply optimal control
principles to the MSBS, to demonstrate at least one optimal controller using MSBS hardware and
software and to produce some software tools to aid in the design process. To reach these goals,
optimal control theory was explored and implemented in a relatively simple controller for the 1-
DOF maglev system. In the course of designing the 1-DOF controller, a design procedure was
identified and various Matlab command sequences, or scripts were produced to automate some of
the steps. Also, Simulink models were developed to validate the interim designs produced along
the way. These scripts and models were loosely integrated into a type of design and validation

software “{ool” set.

Analysis of the controller tests performed during this set of experiments resulted in the following

critical observations respecting MSBS controller design:

1) The optimally designed regulator and state estimator resulted in improved

controller performance over the classical designs tried earlier.

2) Optimal design techniques argue for a systematic, automated methodology for

MSES contreller design.

3) Including frequency response analysis in the validation can greatly expedite

the design process.

4) Controller validation must include some threshold criteria for control input

current.
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Upon completion of the work underlying this chapter, significant progress toward meeting the
overall project goal has been reached, namely understanding and applying the operational
requirements, maglev dynamics, software and hardware characteristics and control theory. Two
major tasks remain before the full 5-DOF controller can be developed: 1) adapting optimal
contro! theory to the MIMO case; and 2) validating a plant model including the effects of the

stainless steel suspension chamber.
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CHAPTER VI

TWO-DEGREE-OF-FREEDOM EXPERIMENTS

Introduction

Before the work covered in this thesis was begun, the 5-DOF controller designs and simulations
in [4] and {25] indicated the 5-DOF MSBS was possible. The experiments covered in Chapters
IV and V have partially validated the overall approach to the MSBS design, including the system
modeling equations, the use of the dSPACE real time coniroller suite with Matlab-based
controller algorithms and the optimal control design method. However, another task remained to
show the practicality of the 5-DOF MSBS; and that was the demonstration of a working multiple
degree-of-freedom controller using actual MSBS hardware and a realistically sized model. This
chapter covers the development and testing of a 2-DOF controller for the MSBS and the

experiments performed to demonstrate the feasibility of controlling multiple degrees of freedom.

The primary motivation for the 2-DOF experiments stems from the main difference between
SISO and MIMO systems, the existence of directivity in the MIMO plant. The chief effect of
plant directivity is to produce different gains for different combinations of plant inputs, where
inputs also encompass noise signals present throughout the plant. In turn this creates a more
complicated set of conditions for system stability and robust performance, greatly increasing the
coniroller’s susceptibility to modeling errors. Validation of the modeling assumptions in the

presence of plant directivity was seen as a prerequisite to proceeding to the full 5-DOF controller.

The 2-DOF configuration was seen as the logical choice for validation because it required only
two suspension coils yet created a three dimensional electromagnetic environment in which fo
test the controller. In addition, this set of would use a large volume permanent magnet in the
suspended obiect and maintained an equilibrium point close to the actual distances intended for

the final MSBS, factors important to validating the modeling assumptions described above.

Another motivation for the 2-DOF experiments was to develop the coniroller design and
validation programs fo handle the more complex MIMO case. This would entail new Simulink
modeling structures to handle more sensor signals and amplifiers. In addition, the MIMO case
would require additional functionality in the operator GUI pertaining to system monitoring,

control and safety.

The experiments covered in this chapter were designed to further the MSBS development in three
ways: 1) by validating the modeling equations for the multiple degree of freedom MSES; 2) by
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further developing the controller synthesis and validation tools for the MIMO case; and 3) by
identifying practical engineering considerations pertaining to an implementation with multiple

degrees of freedom.

The chapter is organized as follows. First, the rationale for the 2-DOF experiments is developed
and several concerns particular to the 2-DOF MSRES configuration are ¢xplained. Next, there is a
discussion of the experimental setup, including the equipment configuration, the structure of the
Simulink models and a special medification made to the DC power supply. Then the
experimental procedure is described, including an explanation of the semi-automated process that
was developed to expedite the controller design. Following that the results of the experiments are
presented, and finally the chapter concludes with a summary statement concerning the success of

the experiments.
Design Considerations for 2-DOF Experiment

This section provides background for the 2-DOF experiment’s setup and procedure. In particular,
this section elaborates on the rationale and benefit of conducting a 2-DOF experiment as well as
explains how the full 5-DOF linear model is scaled for the 2-DOF case. In addition, this section
discusses several changes in the way optimal control theory was applied to the 2-DOF (MIMQ)
case over the way it was applied in the 1-DOF case. The section concludes with a discussion of a

modification that was made to the Clinton DC power supply.
Purpose and Design of the 2-DOF Experiment

Two modeling assumptions in particular are of concern in this set of experiments, Set forth in
Chapter I, these assumptions concern the magnetic fields in the MSBS and are major sources of
uncertainty in the confroller design. The first is the assumption the values of magnetic flux
density and flux density gradients at the suspension equilibrium point, i.e., the origin of the
inertial reference system, are known. For the MSBS, these values are obtained from a PC-based
magnetic field modeling program, OPERA ™ | which in turn bases its calculations on certain
approximations of the physical parameters on the system being modeled. The second assumption
is that the magnetic fields and gradients are uniform throughout the volume of the suspended
permanent magnet. This assumption, predicated on the small dimensions of the suspended
magnet relative to the suspension coils and the levitation distances, leads to an approximation of
torques and forces in the modeling equations [ 10]. However, there was no specification as to how

small or how far away from the suspension coils the suspended magnet has to be for this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



138

assumption fo hold. Consequentily, the robust performance of a linear controller based on these

assumptions needed to be assessed before proceeding to the full 5-DOF MSRBS.

To best validate the MSBS modeling approach, an experiment was needed to implement the
dynamics of 5-DOF MSBS as completely as possible using actual MSBS components. But an
experiment based on the full 5-DOF systern would have been impossible to set up and build
within an acceptable time frame, given that the suspension coils had not been mounted around the
suspension chamber. Fortunately, when only two suspension coils are operated in the vicinity of
the test object, torques and forces are produced in three dimensions. This can be seen by
considering the field lines illustrated in Fig. 67 in the context of equations (23) through (31).
Thus it is possible to use a relatively easily built 2-coil configuration and still create much of the
same electromagnetic interaction between the suspension coils and test object that would be seen

in g larger system.

{b} Underside of coils

Fig. 67. Magnetic flux lines for the 2-DOF configuration.
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This can be seen by examining the magnetic flux density lines for the two-coil configuration in
Fig. 67. The two views show that in the region around the equilibrium point, denoted by the
magnetization vector M, there are components of flux along all axes of the inertial reference
system. Thus, in contrast to the 1-DOF configuration, where B, is the only significant component
of magnetic flux and F, is the only significant force component, the set of forces and torques

better represent the full 5-DOF environment.

However, it should be noted the 2-coil configuration does not completely model the full MSBS.

One reason is the cancellation of the y-component of flux density B . Looking at the

configuration from the underside, as illustrated in Fig. 67(b), the flux lines contain components
in both the x and v directions. To s¢e how the cancellation occurs, consider a perpendicular
bisector constructed on a line segment connecting centers of the two coils. Because of the
symmetric flux line pattern along that bisector, and the opposite flux orientation produced by
each magnet, it can be seen the y-components would cancel one another along the perpendicular
bisector, which represents the transverse axis of the suspended magnetic core. Furthermore, over

any region symmetric around the line segment connecting the two coil centers, ie., the

longitudinal axis of the permanent magnet core, the net B, is also zero. The effect of this is to

remove B, and B from the torque and force equations. Nevertheless, the system will still

produce some force and torque in five degrees of freedom.

To create the tri-axial magnetic field, the 2-DOF experiment was designed using a pair of MSBS
suspension coils mounted in tandem on a structural fiberglass backplane. (Four of these two-coil
assemblies had been built in anticipation of building the full 5-DOF configuration, pictured in
schematic form in Fig. 2.) The two-coil assembly was placed on a wooden frame so that the coil
axes were oriented vertically and the test object containing the permanent magnet core could be
levitated below the coils. In this way, two actual MSBS coils could be used to levitate and

control the height and pitch of a test object approximating its eventual operational size.

Obviocusly, one important element lacking in this simulation of MSBS operations was the
stainless steel suspension chamber. Chapter 11 poinied out the presence of eddy currents in the
chamber walls would probably affect the dynamics of the control system and these effects would
have to be modeled. However, to characterize the effect of the chamber on the conirol system
would have involved substantial effort to mount the coils and sensor system. It was intended to
first develop a working 2-DOF controller and a usable controller design method, and afterward

refine the controller as needed to compensate for the staineless steel pipe.
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The 2-DOF Mathematical Models

Chapter II states that the matrix element values in the linear state space model are obtained by
taking the partial derivatives of the torgue and force equations with respect to each of the state
variables and the suspension coil currents. The terms of the partial derivatives are evaluated for
the system equilibriumn condition and contain constants associated with the equilibrium coil
currents, the structure of the suspended object and the permanent magnet if contains, and the
magnetic flux densities and their gradients produced by the suspension coils at the specific
equilibrium point. The following paragraphs show how the equations in Chapter II are adapted to

produce the 2-DOF linear model.

Recall the method for determining the matrix element values in the linear model requires the
equilibrium current to be determined first. This is done by first evaluating the input matrix B for

the system at equilibrium.

In the 2-DOF systern, the input matrix B is given by

—_blz/]c —b,, /‘[c‘
b,/1, b,/
0 0
0 0
B:VM" b, /m b, Im
wax | Do/ By Im ’
by /m by, /m
0 0
0 0
L 0 0 -

b

lzx

where the values of magnetic flux densities and gradients, 5, ) bzy .

etc., are those produced
when 71,,,, flows in suspension coils one and two. At equilibrium, the angular and translational
displacements and velocities of the test object are zero, and the only forces acting on the object
are gravity and the net vertical magnetic force produced by both coils. Of course these two forces
must be equal and opposite. In light of these conditions, the input matrix B leads to a set of five

linear equations
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B S A
b,/I, b, /I
b, /m b, /m {

L

Txx

=\ pIm by Im

2%y
b,/m b lm]

L Tixz

8
I |
]
== =

where the numeric subscripts indicate the suspension coil mumbers. This system of equations is

and /.

204 » the equilibrium currents in coils one and two.

solved for 7,

With the equilibrium coil current values, the values of the elements in the state space matrix A are
then calculated. From equation (65) in Chapter II, the instantaneous magnetic flux density is
estimated by the ratic of instantancous coil current to the current at which the maximum flux
density is measured. (This also applies to the flux density gradients.) Further, the net flux
density (or gradient) at the equilibrium point is equai to the algebraic sum of the components
produced by each magnet. The B-field components at equilibrium are calculated according to the

following example:

-B = _I:(Ileq 'blx +I2eq 'bZX)}

X I

max

As a result, the numeric values for the 2-DOF A matrix given in symbolic form in equations (68)
and (69) are determined using equilibrium B-field values. Using the physical parameters for this

experimental setup, discussed in the following section, the following A matrix results:

0 0 73515 0 0 0 0 -48:.58 0 0
00 0 73515000 0 0 0
10 0 0 000 O 0 0
01 0 0 000 0 0 0
L]0 0 981 0 00 0 -25210 O 0
00 0 0 000 0 2083 0
00 0 0 000 0 0 67.201
00 0 0O 100 0 0 0
00 0 0 010 © 0 0
00 0 o 001 0 0 0 |
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Recall that the input mairix B is determined by taking the partial derivatives of the force and
gquations with respect to the current. Consequently, the symbolic terms in B, used in (70) and

(71) in Chapter I, contain the maximum B-field values. The remainder of the 2-DOF state space

mode! is shown below.

 0.4489  0.4489 |
0 0
0 0
0 0
B -0.0616 —0.0616
0 0
0.1142  0.1142
0 0
0 0
L. 0 0 -
C=[0010000000'}
6 000O0O0O0COO01

xTz[éy 6, 6, 9, J'cj;z'xyz:[

In {4], the 5-DOF version of this system was shown to be both state controliable and observable.
However, with only two inputs and two outputs, and the magnetic ficld pattern being what it was,
A check of the rank of the

controllability and observability matrices—using the Matlab commands ctrb.m and obsv.m—

this was no longer the case for the 2-DOF configuration.

revealed the system was neither controllable nor observable.

To identify the uncontroilable and unobservable states, the state space model was transformed to
diagonal form using a transformation matrix equal to the inverse of the eigenvector matrix. The
diagonal of the resulting A matrix shown below contains the system eigenvalues (modes) and the
elements in the resulting B and € matrices correspond to those modes by row in the case of B and
by column in the case of C. All the zeros in B and C indicate the corresponding mode is

uncontrollable {(uncbservable) from that input (output).

The diagonal form also reveals whether the system is stabilizable or detectable. Zero enfries in B
or C whose corresponding eigenvalues, or modes, in A are unstable show that the system is not
stabilizable or detectable. The matrices below show the 2-DOF system was borderline

stabilizable and detectable. This is because the uncontrollable eigenvalues lie on the imaginary
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axis, making system stability highly susceptible to modeling errors or system perturbations. In
fact this condition caused Matlab to return the error “undetectable system” when the commands

Ige.m and dige.m were used on the full ten-state system with two inputs and outputs.

+/11.07 0 0 0 0 0 6 0 0 0
0 ~j11.07 0 0 0 0 6 0 0 0
0 0 -4.88 0 0 0 0 0 0 0
0 0 0 488 0 0 0 0 0 0

A 0 0 0 0 +;857 0 0 0 0 0
0 0 0 0 0 —j857 0 O 0 0
0 0 0 0 0 60 82 0 0 0
0 0 0 0 0 0 0 -82 0 0
0 0 0 0 0 0 0 0 +j457 0

0 0 0 0 0 0 0 0 0 —j4.57]

[-.0474 —.0474]
-.0474 0474
—.185 -.185
~.185 -.185
B 0 0
0 0
~.0575 0575
~.0575 .0575
0 0
L O G -

co +7.0895 —;0895 197 -197 0 0 O 0 0 0
10 0 0 0 0 0 .21 —121 0 ©

Table XXVI presents a modal analysis of the 2-DOF system, which shows the eigenvalues and
corresponding eigenvectors and notes which are conirollable and observable. The top row

contains the eigenvalues, or modes. The column underneath cach contains the eigenvectors.
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TABLE XXVI
MODAL ANALYSIS OF 2-DOF PLANT

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
j11.67 1107 -4.8813 48813 78574 8574 81976 -8.1976 j4.568 -i4.568

Conirollable:u;, u,  Controllable: u, u, Uncontrollable Controllable: vy, v, Uncontroliable

Observable: v; Observable: v, Uncbservable Observable: v, Uncbservabie
-990%  -9%09  -9606  -9606 0 0 0 ¢ 0 0
0 0 0 0 8933 9933 0 0 0 0
70895 -.0895  .1968 -.1968 ] 9 0 t 0 0
0 0 0 0 -.1158  j.1158 0 0 0 0
-0996  -.0999% 1922 1922 0 8 0 0 0 0
0 0 0 0 ¢ 0 Y 9769 9769
0 0 0 0 0 0 .9926 9926 0 ¢
70090 -.009¢ -0394 0394 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2139 j.2139
0 0 0 0 0 0 JA211 -1211 0 0

To work around the fact that for all practical purposes the 2-DOF system was neither stabilizable
nor detectable, it was decided to extract from the main model those states known to be
controllable for the 2-DOF case, pitch angle and vertical displacement. The states were extracted

using the Matlab commands:

[Am,Bm,Cm,Dmi=ssselect{ A,B,C,D,{1 21,[1 21,[1 3 7 10]);
minsys=ss{Am,Bm,Cm,Dm);

The resulting controllable/observable system, which served as the basis for the controller design,

is given by

0 -73.515 O 0

1 0 0 0
A= (111
0 0 0 67201
E

0 G i 0 |
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" 0.4489 0.4489@
0 0 |
B= (112)
~0.1142 0.1142
0 0
01 0 0
C= (113)
0 0 0 1]
x'=[6, 6, z z]. (114)

Besides the linear model used to design the controller, a nonlinear model, capturing the dynamics
of the 5-DOF system, was used to test the designs. The model used in these experiments was
produced to conduct 5-DOF controller simulations in [4]. The nonlinear model is essentially a
term-by-term implementation in Simulink of the torque and force equations developed in Chapter
1L

Application of Optimal Control to the 2-DOF System

This remainder of this section explains the how the additional complexity of the multiple-degree-
of-freedom configuration changes the use of optimal control theory as seen in the previous
chapter. Of course, the underlying concepts of the regulator control law, state estimation, state
observability and controllability discussed in Chapter VI still applied, as did the techniques of
cost minimization and the roles of the design parameters, Q, R, etc. (It was MIMO controller
design that motivated the application of optimal control in the first place.) However, some of the

mechanics of the automated design process had to be reworked to accommodate MIMO design.

One adaptation to earlier Matlab scripts was to employ both maximum and minimum singular
values as measures of the frequency responses of the Kalman estimator and plant. As mentioned
at the beginning of the chapter, the directivity of a MIMO system is manifest in what are called
the system’s principal gains, or singular values. The principal gains in the various system transfer
functions {e.g., the open loop, L, sensitivity, 8, and complementary sensitivity, T) give rise to
corresponding sets of principal input and output directions. For example, for an equal number of

inputs and outputs, the input direction set {u,4,,.4,} corresponds to the principle gains

{01,0'2 ,...G,,} , resulting in the output direction set {y;, 7, ... yn} . Because the direction of an input

vector is determined by its individual element values, the gains of L, § and T are dependent on the
combinations of elements in their respective input vectors, including the stochastic noise signals

throughout the system.
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The result of system directivity is fo require stability and performance measures to be made in
terms of both maximum and minimum system gains. For example, to determine the minimum
bandwidth of an open loop transfer function, L = GK , for all possible inpuis, the performance
measure is the zero-crossover of the smallest principal gain. On the other hand, to judge the

minimum amount of output disturbance rejection provided by the system, the -3 dB point of the
largest principal gain of 8 = (I+1L)™" is considered. Consequently, the Matlab scripts had to be

revised to calculate two values over a range of frequencies for at least two system transfer
functions, which required quite a few more programming steps than the single open loop gain
analysis used in the SISO analysis. Additionally, the Matlab scripts had to be adapted to use

vectors instead of simple variables to handle the two-dimensional signals versus scalars.
Experimental Setup

This section describes the physical configuration of the 2-DOF experiment, the Simulink models
that were used and a special modification to the high-power DC power supply. The basic system
architecture did not change from earlier experiments, although the hardware suite expanded and
the control system modeling became more complex. Most of the experiments were done outsided
the stainless steel suspension chamber, but just at the completion of this paper’s writing, a simple

2-DOF levitation was conducted insided the suspension chamber.
Hardware and Software Configuration

The 2-DOF experiments used the general MSBS configuration depicted in Fig. 18 in Chapter IV
but involved more components than the 1-DOF experiments. As indicated in the previous section,
the setup contained two vertically mounted coils, two sensor pairs and two amplifiers. Also, the
test object was much larger than for earlier experiments. Fig. 68 illustrates the arrangement of
the 2-DOF plant (minus the amplifiers) used for most of these experiments. For simplicity the
wooden framework built to support the coils and the aluminum mounting rails for the sensors are

not shown in this figure.

The side view of the 2-DOF setup in Fig. 68(a) illustrates the relationships between the major
components, including the critical distances between them for the system at equilibrium. Note
the equilibrium suspension distance is about 180 mm (7 inches), which corresponds to a likely
position in the siainless steel suspension chamber when the MSBS will be in actual operation.
Also note the actual equilibrium point is midway between the suspension coil axes. The distances
shown in the figure are those used with OPERA ™ 1o calculate the B-field values. Fig. 68(b)

contains an end view of the setup with the test object at its equilibrium point.
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{a) Side view of 2-DOF test sat up. Wooden support frame and sensor mounting raiis not shown.
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{b) End view of 2-DOF test set up. Wooden supprt frame not shown.

Six {6} Neodymnium-iron-Boron
Disks, 3.0" dia., 0.5" thickness,
separated by five non-magnetic
spacers of the same dimension

Cylindrical tesi model: 76.2 cm (30 in.) section of PVC conduit, .88 cm (3.5in.} O.D.

{c} Test mode! showing permanent magnst (not to scale}.

Fig. 68. Schematic drawings illustrating set up of 2-DOF plant.

Fig. 68(c) provides a more detailed view of the test object. An outer shell, whose size and shape
were intended to roughly simulate an actual operational model in the MSBS, was constructed

from a section of PVC pipe approximately 762 mm (30 inches) long and 89 mm (3.5 inches) in
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outer diameter. The permanent magnet core consisted of a set of six neodymniume-iron-boron
disks, each nominally 12 mm (0.5 inches) thick by 122 mm (3.0 inches) in diameter, assembled
with identically sized, non magnetic spacers between the disks. The magnet assembly was
mounted in the center of the pipe so that the assembly and shell were coaxial and the
magnetization vectors were oriented to the lefi as shown in Fig. 68(a). The fact that the core

assembly and the shell were both cylindrical and shared a2 common longitudinal axis greatly

simplified the calculation of the moments of inertia, /_, 7 ) and 7, . Specifically, the moments of

inertia for the whole object could be determined piecewise by individually calculating the
moments for the core and shell, each with different lengths and densities, and then adding the
components. For these calculations, the magnetic disks and the spacers were treated as a single

unit with respect to the mass and size of the core.

Table XXVII summarizes the values of the physical parameters in the 2-DOF plant, minus the
values of the magnetic flux densities and gradients at the equilibrium point. These were used to
derive the state space model. For comparison, the corresponding values used for the 5-DOF

simulation in [4] are also provided.

TABLE XXVII
PARAMETERS USED IN 2-DOF SYSTEM MODELING
Values for 2-DOF Values for 5-DOF
Parameter Experiment Simulation
Dimensions of Suspended Object (length x dia.) 760 mm x 89 mm Not available
Mass of PVC Shell 1.64 kg Not available
Dimensions of permanent magnet core * 140 mom x 76.2 mm Not available
Mass of permanent magnet core ® 2.723 kg Not available
Total Mass of Suspended Object, m 4383 kg 20.67 kg
Volume of Permanent Magnet, v 3.475¢-4 ot 2.65¢-3 m’
Magnetization of Permanent Magnet, M, 9,7085e 5 A/m 9.5493¢ 5 A/m
Moment of Inertia (about transverse axes), L, I, b 0.0879 kg-m2 0.837 kg—m2
Moment of Inertia (about longitudinal axis), I, ° 0.0085 kg-m’ 0.0116 kg-m®
Equilibrium Current {all coils), I;, I, I, etc... -42.9590 A 102 A
429590 A 102 A
-102 A
-102 A
0A
Equilibriven Distance below coils, z 0178 m Not available
Equilibrium offset from coil axes 0.254m Not available
Flux Density at Equilibrium B B,,=0.1268 T/'m B,,=0.0106 T/m

* For purpose of calculating moments of inertia only, core comprised both magnetic disks and spacers.
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" Note coordinate axis labeling in this thesis, x-y-z, corresponds to z-x-y in [4].

Table XXVIII contains the maximum values of the magnetic flux densities and and their
gradients at the origin of the inertial reference system, or equilibrium point. These values were

calculated using the finite clement analysis program OPERA ™ assuming a coil current of 100

amps.
TABLE XXV
MAXIMUM MAGNETIC FLUX AND GRADIENT VALUES AT EQUILIBRIUM POINT

Field or CoilNe. 1° Coil No. 2 Field or Coil No. § Coii No. 2
Gradient (T, T/m, T/m?) (T, T/m, T/m*)  Gradiemt (T, T/m, T/m%) (T, T/m, T/m®)
B, -0.0223 0.0223 B 0.3793 -0.3793
B, 0.0 0.0 Boyx 0.0 0.0
B, -0.017 -0.017 Boax -1.0782 -1.0782
By -0.796 -0.796 By 0.3139 -0.3139
B,y 0.0 0.0 By 0.0 0.0
B,, -0.1476 0.1476 Bz -1.0111 1.0111
B,, 0.0837 0.0837 Byyy 0.0 0.0
B,, 0.0 0.0 By, 0.0 0.0
B,, -0.1304 -0.1304 B, 0.0 0.0

B 1.0782 1.0782

? Coil No. | is the one in the positive x direction relative to the other, i.e. the one in the direction toward
which the magnetization vector of the suspended magnet is pointed.

As stated above, the stainless steel suspension chamber was not used for the 2-DOF experiments
except for one brief experiment at the close of the research period. For this, a second pair of
suspension coils, mounted on 2 fiberlass backplane just as in the setup in Fig. 68, were placed on
top of the suspension chamber. The sensors were arranged in the same basic configuration as in
Fig. 68 on a temporary wooden frame inside the chamber and the same test object was used. The

same controller setup used but the levitation gap was greater than for exterior 2-DOF experiments.
Power Supply Modifications

Earlier experiments, employing only a single MSBS suspension coil with an eguilibrium current
of only 22 amps, required only 2 small, 40-ampere DC power supply to operate the Copley power
amplifier. But for the 2-DOF experiments, using two coils with equilibrium currents on the order

of plus or minus 42 amps, the large 150-volt, 50G-ampere Clinton DC power supply was required.
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Unfortunately, when the 2-DOF experiments were begun, the Clinton power supply posed a
significant risk of overload due to two features of the MSBS hardware installation. First, the
input stage of the Copley amplifier contains a 26 m¥F filter capacitor, whose positive side is
connected o the DC input line, thus presenting a large capacitive load. Secondly, the MSBS
configuration had six Copley amplifiers with inputs ganged together on large buss bars,
effectively placing all six capacitors in parallel. Consequently, at system turn on, the six
amplifiers could produce a very large current demand on the power supply. The lower output
voltage of the 40 amp power supply limited the current draw and the smaller power supply did
not experience excessive surge currents when connected to the amplifier buss bar. But at 150
volts the Clinton power supply did not limit the current and in some earlier experiments, surge

currents had burned out one of the power supply rectifiers.

To reduce the risk of overload, a phased turn-on circuit was added to the Clinton’s control panel.
This so-called “soft-start” circuit contained a separate transformer and rectifier that “pre-charged”
the capacitors in the amplifier bank while holding the main supply out of the circuit. At the end
of a user-specified period, the Clinton supply was switched in to power the amplifiers and the
auxiliary circuit dropped out. The only adaptation to the original turn-on procedure was that the
user would have to press and hold the Clinton start button until the soft-start circuit timed out, a

period of about ten seconds. Appendix E contains a schematic of the soft-start circuit.
Models for Simulation and Real Time Control

This set of experiments used two slightly different controller configurations. Both employed a
regulator with state estimation using a Kalman estimator, but the second one also incorporated
integral control with a separate output feedback loop. In addition, both 2-DOF controllers were
designed in discrete time based on a zero-order hold data sampling. As in the 1-DOF case, this
set of experiments employed both validation models for the controller design process and real
time controller models for use with dSPACE. The following paragraphs highlight the new

functionality added to these models.

The coniroller validation models contained a2 nonlinear model of the 6-DOF plant, based on the
one developed in [4]. However, for these experiments, that original nonlinear model had to be
modified in three respects. First, variable naming was altered 1o recognize the change in
coordinate axis labeling from the convention used in {4]. Secondly, the input and output vectors
in the model were changed to reflect two inputs and outputs. Lastly, the mechanisms for
introducing output disturbance forces and B-field perturbations (for robustness testing) were

redesigned due to a change in the Matlab commands available in the current software suite.
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These modifications are denoted by the use of drop down shadows in the overall block diagram

shown in Fig. 69.
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Fig. 69. Top level view of the 6-DOF nonlinear model modified for 2-DOF.

As noted earlier in the chapter, the nonlinear model was built as an explicit implementation of the
6-DOF equations of motion. For example, note the block labeled “Taylor Expansion of Fields” in
Fig. 69. This subsystem contains Taylor series expansions that dynamically update the values of

the magnetic fields and gradients according to the instantaneous displacement of the core from

equilibrium, just as shown in
= -~ _ 0B _
B=B+r,—+

C Ox
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The block “c2i1” in Fig. 69 invokes the Matlab s-function, “core2inertial s”, which converts the
magnetization vector, M, from body to inertial coordinates for use in the force and torque
calculations. Similarly to the Taylor expansion block, this function uses the instantaneous

angular displacement of the core to compute the instantaneous value of the fransformation matrix.
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One other view of the nonlinear model is presented in Fig. 70 to indicate where the 2-DOF
adaptations were made. This is the subsystem that implements the equations of motion, equations
(50) through (61). It should be emphasized that although only four states are used to design the
2-DOF controller, as shown in {111) through (114}, the nonlinear mode! simulates the full 6-DOF

system, i.e., it contains all twelve states shown in the vector
X' =] Q, Q 6 6 6 V.V, V., x y zIl. (63)

Thus the controller validations presented a rigorous test for the controller design in that the

uncontroliagble states were free to run in an open loop.
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Fig. 70. Subsystem of modified nonlinear model containing torque and force calculations.

Because of the overall similarity between the two controller designs in these experiments, only
the models containing integral control are described here. Fig. 71 contains a block diagram of
the system containing integral control. Note the zero-order hold block, which performs a sample
and hold operation on the continuous time plant outputs at a specified sample rate, in this case 1
kHz. Also note a major difference from the 1-DOF systems in that this controller does not

combine the Kalman estimator and the LSVF into 2 single LQG regulator block.
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Fig. 71 Controller validation model with LQR, Kalman estimator and integral control.

The motivation for integral control was touched on briefly in Chapter IV where it was seen that
adding compensator with poles near zero effectively changed the system to Type I and thus force
the steady-state error to zero. This same idea was applied to these experiments by creating an
output feedback loop, taking the difference between the reference input and output to produce an
error signal and then integrating error signal. The integrated signal is summed with the regular
states of the plant to form a new input vector. This is referred to as state augmentation because
the integrals of the errors are effectively additional states added to the original state vector. The

imtegrator module is depicted in Fig. 72.

Fig. 72. Integrator subsystem in 2-DOF controller validation model.
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Note the blocks K and KI in Figs 71 and 72, respectively. These are the normal (non-integral)
LSVF gain matrix and the gains associated with the additional states, respectively. To derive
these matrices, the following augmented state-space model is formulated and a modified control

law stated. To the normal system eguation
Wk +D=Dx(k)+Tu(k)
is added the equation describing the integral of the error vector
X, (k+D)=x,(k)+e(k)=x,(k)+r-Hx(%).

These two equations together form the augmented state-space model

[xl(kﬂ)] [1 -H][x,(k)} [0] H
= +| | |ulky—| k),
x(k+1) 0 @ | x(k)| |T 0

which, when LSVF is applied, leads to the control law

u(k) =—[K, K][X’(ﬂ.
x(k)
To obtain the optimal K matrix, the basic LOR design procedure is followed except that 1) the
state weighting matrix, Q, is augmented to include weights for the integrators; and 2) the
augmented plant model is used rather than the original. A sample set of commands is presented

to illustrate.

% Set LOR tuning parameters

R=[.01;.01];
Qint=[10 10]; % portion of matrix diagomal for integrators
Qplant={50 50 50 50]; % basic matrix diagomal

% Create augmented plant to obtain integral control

phi_aug=[eye(2) H;zeros(4,2) Am]; % Augmented state matrix
gam_aug=[zeros(2) ;gaun] ; % Augmented input matrix
newdiag=[Qint Qplant]; $ Create augnented matrix diagonal
Q=diag(newdiag) ; % Produce augmented Q-matrix
[Klgrl=dlgr (phip, gamp,Q, R}; % Obtain combined KI/X
KI=Klgr{:,1:2); % Assign first fwo columng to integrators
K=Klgr{:,3:6); % Assign remaining columng to LSVF

Fig. 73. Command set to augment plant with integrators and determine LSVF matrices.

Note that a single matrix Klgr is derived in the conunand set above and then subdivided to obtain
the variables for the Simulink models. The dimensions of K are determined by the number of

plant inputs and the number of outputs fed back.
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Simulink models were created to produce the real time controllers in dSPACE. Just as with the 1-
DOF experiments, these models contained the confroller itself, the amplifier control logic and
signal processing needed to run the plant. The mode! used for integral control is shown in Fig. 74.

Several new features are explained in the following paragraphs.

During one of the tests, it was observed the addition of separate integrators produced the same
effects seen in the 1-DOF experiment where the compensator confained poles close to the origin.
The error voltage would build up fo high levels as the system was being placed in operation.

Thus a second output from the turn-on threshold had to be added for the integrator module.

It

guﬂ

Ret, Input 74 Tumn-On Thresh
Sudnestem

integrator
bAndule (t. 1)

l—p u Coil#1
go{ From Phant outt Current
.

Position Tum-Dn Thresheld1

Regutater st S #1 Input

Coil #2
Cunent
Satwsation
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Poi Sensor 2 Cid #1 ——o

—Bpi Sensoc 4 Ot #2

Teimninator

3
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l }d—<—K~ }4 “
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|
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|
DE4I03RUE_ADL_C0!

Fig. 74. Top level of Simulink mode! of real time controller for 2-DOF experiments.

Additional changes to the controller are contained in the block “Ref. Input Subsystem”. One of
these functions is the conversion of input commands from degrees and millimeters {o radians and
meters. This was needed because the angles in degrees are more natural for the operator, but the
Matlab equations on which the controller was base were in radians and meters. Another function
is the addition of a repeating command sequence that can be turned off and on at the Control

Desk GUL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



176

Finally, additional operator screens were developed. The main operator’s screen is presented in
Fig. 75, which contains the essential conirol, monitor and data capture fimctions for the system.
The additional complexity of the MIMO case is reflected in the use of two command inputs, one
in “mm” and one in “deg”, and two outputs, the “Z-Axis Displacement” and the “Pitch”. Note
that to simplify the control screen there is a single equilibrium current adjustment for both coils.
Because the equilibrium currents are equal in magnitude but opposite in sign, it was a simple
matter in the control logic to make 2 copy of the one setting, reverse ifs sign and apply it 1o the
second amplifier/coil. The screen also contains an “Amplifier Master Enable” switch. This
provides a single “kill” switch for both amplifiers, needed not only for emergencies, but also
because it’s safer to de-energize both coils simultaneously during system shutdown. When the
coils are de-energized one at a time, the configuration momentarily simulates a 1-DOF system
and forces the suspended core to rotate to align its magnetization vector vertically. This would

cause the PVC housing to forcefully impact the magnets and frame.

' a DOF mmywzﬂrmm; amn& Fal ‘

e

Command Inpuls/Sensor Qulpuls

Cammntin

Aematilior Bundy |idbte
[Grven @ Ragdy

i Bt

s % ! Gter cuy

@mw ? % e = Doy o
B aulitiiom s ben Masiuse 10 i 42,98 WE%

. Caiteaiuy N
L vsen - b
E

Fig, 75. Screen capture of main operator control panel for the 2-DOF experiments.
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Experimental Procedure

This section covers the implementation of semi-automated controller synthesis procedures for the
2-DOF set up described in the last section. First, issues concerning optimal contrel design in the
MIMO versus SISO case are addressed. Secondly, some of the considerations involving the
design of a discrete time controller are covered. Then the two different design approaches used in
this set of experiments are described and some of the features of their corresponding Matlab

scripts are explained. Finally, the tests conducted with the actual MSBS plant are described.
Implementation of Discrete Time Controller

The controller for the 2-DOF maglev was designed in discrete time (DT) form, rather than in
continuous time as were the earlier controllers. The reason for this was that designing directly in
the DT form provides greater predictability of performance with the actual plant. This is because
the controller is eventually implemented in sampled-data form anyway on the dSPACE real time
processor (RTP). When the continuous time system is converted to sampled data form there are
unknown and potentially drastic changes in its characteristics, due in part to the phase lag
imtroduced by the zero-order hold function and the effects of using different sample rates. When
the system is designed directly in discrete time, it is implemented as-is and there are fewer

uncertainties regarding its performance with the real plant.

The most evident change in switching to discrete time design was using the zero-order hold (ZOH)
form of the plant and state estimator models. This required inserting a ZOH block in the models
between the plant and the Kalman estimator as well as the consistent use of the same sample

period throughout all the Matlab functions and models.

Another important concern of using the DT form in optimal control design stems from the cross-

coupling between the states and inputs that occurs when converting the CT cost function,
J= 4 "Reu(n)d
=5 | GO Qcx(®)+u@) Reu()dr,

to an equivalent DT cost function. There is not a direct correspondence, so that the DT form is

just

J = é é x(k) Q.x(k)+u(k) Roulk).

with the same matrices, {Q and B. Rather, the equivalent cost function for a DT realization

{@,I ,H} is a complex expression that weighis the product of x and u [26]. The relevance of
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this is the state and input weighting scheme designed for the CT system does not apply directly to
the DT system. Thus the rationale discussed in Chapter V for selecting the weights is
undermined in the DT case—unless the equivalent DT forms are derived for Q and R. The
Matlab command lgrd.m first finds the equivalent forms and then computes the LQR solution.
However, this set of experiments was designed using the same controller synthesis commands
shown to work in {41, which did not find the DT equivalent forms for @ and R {i.e., did not use
lgrd.m). Consequently, for these experiments the relationship between the LQR design

parameters and their effects was more ambiguous than it otherwise might have been.

Another adaptation had to be made to the earlier design scripts in order to correctly evaluate the
frequency responses of the loop transfer functions. This was because of the aliasing that occurs
in the sampled data environment when the frequency of the sampled signal exceeds a value equal
to one half the sampling frequency, the so-called Nyquist frequency. Stated another way in the
Sampling Theorem, this phenomenon implies a signal can be uniquely recoverd from discrete
samples only if the sampling frequency is at least twice that of the original signal. This means,
for a sample time of one millisecond and corresponding Nyquist Frequency of 500 Hz, plots of
the loop gain responses of a discrete time implementation would not extend past 500 Hz since
signals above that frequency could not be accurately represented. For this reason a function was
added to the Matlab design scripts that converted the open loop transfer functions from a sampled
to a continuous form at those points in the scripts that called for plotting loop responses. The

method for conversion is termed “bilinear transformation™.

Finally, a specific discrete time technigue known as the Pincer method was employed in the LQR
portion of the controller design. The Pincer method causes the resulting K-matrix to place all the
system’s closed loop poles within a specified radius from the origin of the z-plane. This allows
designers to ensure all system modes settie to within some specified percentage of the final value

in less than or equal to some specified time, ;.

For a 1 % settling time equal to {,, the Pincer method calculates a factor alpha such that at sample

number k, the relationship of a state x{k} 1o its initial value of one is given by
a*x(k)y=x(0), or
*(AT)=(1/ " }x(0)=.01x(0) .
This implies

1/a* <01, 0r
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[

1

3

H
a >100% =100
where the target sample number, k, is related to the desired settling time through the relationship

.. . ¢
settling time divided by the sample period, or & = Eﬁ— .
The desired settling time is placed into the LQR calculation in Matlab by multiplying the state
and control matrices phi and gamma by the factor alpha before using the matrices in Matiab’s
digr.m command. (Note this is a distinct command from Igrd.m discussed above.) A Matlab
function LOQSIM.m, created by Dr. Oscar Gonzélez at Old Dominion University, was used to

perform this process,
Automated Design Approach

Two design approaches were taken to automate the synthesis of a 2-DOF controller: the first
using the LTR design technique and the second consisting strictly of a reiterative series of

synthesis and evaluation of time responses based on a defined range of “tuning” parameters.

The LTR method was tried first, given the positive results obtained using this approach for the 1-
DOF system. The process was basically the same as the last chapter, but the scripts were more
complicated due to the directivity of the plant and multidimensional signals in the 2-DOF system.
Specifically, a set of Matlab scripts were written to execute the steps listed in Table XXIX. A
table listing the individual scripts themselves and denoting their interrelationships is provided in

Appendix E.

TABLE XXIX
FUNCTIONALITY IMPLEMENTED IN SECOND STAGE OF DESIGN AUTOMATION
Sequence
No. Description of Functionality

1 Create the 2-DOF linear model and extract the four states of interest: 93, ﬂ}, JE,Z .

2 Create a range of process noise gain matrices based on user input, derive a four-state
Kalman estimator for each matrix and obiain the open loop frequency respouse for each,
{Assume fixed values for the process and sensor noise covariance matrices Q, and R,.)
Automatically prescreen the responses and display on screen only those responses mesting
user-provided criteria {e.g., the zero-crossover bandwidth). Allow user selection of best
response.

3 Based on keyboard input from the user, determine whether to use integral control.
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TABLE XXIX, CONT'D

Sequence
No. Description of Functionality

4 Obtain the desired values for the weighting matrices, { and B. Creaie range of matrices and
obtain the corresponding LSVF matrices, K. Instead of the Matlab command digr.m, this
experiment used 2 small routine to derive the K-matrices using the Pincer method, described
above. *

5 For each LQR solution, combine the resulting K-matrix, the Kalman estimator selected
previously and the plant model to obtain the system open loop frequency response. Plot the
responses and allow user selection of the best match.

6 Obtain step response for a combination of reference inputs using the selected controller
design and the appropriate ponlinear model. (L.e., with integral or non-integral control.)
Determine pertinent time response values for each reference input: percent overshoot,
settling time, steady state value, and maximum deviation of control input. Store responses in
an array.

7 Obtain stiffness quotients for a combination of reference inputs using the selected controller
design and the appropriate nonlinear model. Store responses in an array.

8 Perform B-field perturbation tests for a combination of reference inputs. Store responses in

an array.

The results obtained from the LTR approach were disappointing, and a second approach was tried
in which the design parameters used in [4] were applied as closely as possible. This approach
was highly iterative and involved several thousand simulations. A set of Matlab scripts were
written to perform the following functions. A table listing the individual scripts and denoting

their interrelationships is provided in Appendix E.
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TABLE X3(X
FUNCTIONALITY IMPLEMENTED IN SECOND STAGE OF DESIGN AUTOMATION
Seguence
MNo. Description of Functionality

1 Create and reduce the linear plant model as in the LTR approach in Table X3

2 Based on keyboarduput from the user, determine whether to use integral control.

3 Create ranges of design parameters: G,,, Q, R according to settings with in program. Hold
other parameters fixed: Q,, R,. For each permutation of parameters, create LQR with
Kalman estimator.

4 Obtain step responses, stiffness quotients and B-Field perturbation responses as above.
(Note for this process step responses were determine for only one reference input
combination; | degree pitch and 2 mm pesition change.) Save all data for each countroller
design in a separate file, including all parameter settings and responses,

5 When controller synthesis run is complete, retrieve each data file sequentially. Evaluate

all responses according to user-provided criteria for percent overshoot, settling time and
the maximum deviation in control current. Select values according to hierarchy:

1) maximum deviation of control input; 2) maximum percent overshoot; and 3) maximum
settling time.

Using this approach, a controller was obtained with acceptable, though not impressive, response
characteristics. (See Table XXXII in following section.) However, the combinations of
parameters tried up to that point had been fairly exhaustive, requiring approximately 2500
separate simulations. After evaluating so many candidates, it scemed best at that point to validate
the best coniroller obtained thus far against the real plant in order to set a baseline for further

design.

The LTI model for the estimator (Kest) and the feedback matrices (L and K) were loaded into a
Simulink model similar to the one in Fig. 74 (but without the integrators) and the model was
compiled and loaded on the dSPACE Real Time Processor (RTP). The variables in the controller
were linked to the corresponding virtual instruments in a GUI similar to the one in Fig. 75 and

the system was ready for turn-on.

The test object could not be levitated at first, and it seemed the torque response of the coniroller
was much too vigorous. The conireller model and GUI were modified to reduce the individual
elements of the LSVF matrix and the gains corresponding to the pitch states were reduced, which
allowed the test cylinder to be levitated. After adjustments were made to the angle feedback
calculations, and the test cylinder was levitated with the gains restored to their initial values. The

control input levels (suspension coil currents) and plant outputs were measured and recorded for a
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series of input commands, The design parameters for that controller were stored in a Matlab

script written to re-synthesize the controller when needed.

An improved controller was sought by incorporating integrators to reduce the steady state error.
The second simulation model was designed and the design approach in Table XXX was revised
as shown in Step 2 then repeated. The improvement in time response was so drastic that no more
than 150 iterations were needed to derive an acceptable controller. The Simulink model for the
real time controller had to be revised to incorporate the integrators. In addition, a feature was
added to the reference input section where a pre-programmed repeating input sequence could be

initiated from the operator control panel.

The test cvlinder was launched without difficulty and the controller fested with a series command
inputs. The system variables were captured as before and the controller design parameters saved

in a Matlab script.

Table XXVII contains the design parameters used for the two controllers tested on the actual two-
DOF plant.

TABLE XXXI
PARAMETERS FOR DESIGN OF CONTROLLERS TESTED ON THE 2-DOF PLANT

Parameter LTR Design Non-Integral Control Integral Control

Q. Q,=r=r’ Q,=r+r’ Q,=r=r’

le-5 @ fe-5 O le—5
R, R, = e R, - e R, - e 0
0 le-5 0 le-3 0 1e-5
G
w 10000 4 125

(diagonal) 000 = eye(4) 00 * gye(4) 12500 * gye(4)

Q 010 1}°
(diagonal) [ 0 1j [1000 3000 2000 3000] [500 500 500 500 500 500]

10
R R %)
6 .1

 Derived from (C7*C)

i “

Presentation and Discussion of Resulés
Data and Plots from Controller Synthesis and Validation

This section presents typical data and time response plots obtained from the automated, iterative

synthesis and validation process for the 2-DOF LQR with Kalman estimator. Results are shown
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for the regulator both with and without integral control. Stiffness quotients and B-Perturbation

responses are shown for the designs that were selected for use with the actual MSBS plant.

Table XXXII shows selected results for an LQR/Kalman estimator controller (without integral
control) using the parameters in Table XXVIL The reference input vector was the same for all
simulation runs: [1 deg; 2 mm] and the validation routine contained the following threshold

criteria in the rank order indicated;

1) % Overshoot 19%
2) Settling Time: 1.9s
3) Max Input Deviation: 19A

Note the steady state value was not included among the step responses because the maximum

input deviation and percent overshoot were much higher priority in the initial validations.

TABLE XXX1I
SELECTED RESULTS FROM ITERATIVE SYNTHESIS AND VALIDATION OF 2-DOF CONTROLLER

% OS Settling Max Input

Qs Qo Qi3 Qa4 {pitch/position) Time (s) Deviation (A)

1000 3000 1000 1000 18.88 1.8695 13.035
-0.40708 17.884

1000 3000 1000 2000 18.88 1.8695 13.022
-0.40212 17.898

1000 3000 1000 3000 18.88 1.8695 13.008
-0.39731 17.911

1000 3000 2000 1000 18.88 1.8694 12.441
-0.30756 18.479

1000 3000 2000 2000 18.88 1.8694 12.431
-0.30539 18.489

1900 3600 2600 3600 18.83 1.8694 12.421°
-0.30326 18.498

1000 3000 3000 1060 18.88 1.8693 11.971
-0.25929 18.949

1600 3000 3600 2000 18.88 1.8693 11.963
-3.258

3000 18.88 1.8693 11.955

-0.2567 18.964

? Boldface type indicates parameters selected for final coniroller.
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Table XXXIII presents selected results from the synthesis and velidation of a controller using

integral control with the parameters from Table XXVIL The reference input vector in radians and

meters was {.01745 .002}T.

TABLE XXX
SELECTED RESULTS FROM ITERATIVE SYNTHESIS OF 2-DOF CONTROLLER WITH INTEGRAL
CONTROL
% O8S Settling Max Input
Qi3 Qs Qss Qs {pitch/positior)  Time (s) Deviation (A)
0 0 0 0 14.439 1.9634 0.85549
0.91536 1.397
0 500 0 0 9.4561 1.9004 1.0758
0.85521 1.812
0 500 0 560 9.4534 1.9604 1.0437
$.82339 1.8444
0 500 00 0 9.4505 1.9003 0.92392
0.36214 2.0736
0 500 500 500 9.4504 1.9003 0.92315
0.36082 2.0765
500 0 0 0 0.83009 0.8573 2.081
0.61502 2.5471
500 0 0 500 0.83017 0.8573 2.057
0.60164 2.574
56C 0 500 0 0.83025 0.8574 1.7696
0.25753 2.8902
500 0 560 500 0.83025 0.8574 1.7665
$.25663 2.8937
500 560 0 0 0.8281 0.8564 2.095
0.61597 2.5607
566 506 ¢ 500 0.82818 0.8564 2.0711
0.60266 2.5874
506 560 500 0 0.82826 0.8564 1.7836
0.2579¢ 29033
500 509 560 500 9.82827 8.8564 1.7806°
8.25705 2.9068

* Boldface type indicates parameters selected for final controller.

Figs. 76 and 77 are presented to compare the ranges of responses from the various non-integral

and integral controller designs. Note the difference in amplitude scales.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



185

Step Responses for Range of Controliers

~— Corovend input 0175 rad
---- Command input .002 m

e niaiadehadate

0,325

0.02}-------~

0.015 b-mnm o

apnduy

0.0% |- mmnm

1.8

1.6

1.4

Time (5ec)

-DOF regulator designs without integral control.

76. Step responses for range of 2

Fig

ponses for Range of Controllers

Step Res

PR S S

1.8

0.018}----
0.016 F--vmnvm-

0.02

0.014 1-wmmmmnee

0.012 -

0.0 f-rmmmmnen

apnyduiy

0.004 |-~~~

e {88C)

T

Fig. 77. Step responses for range of 2-DOF regulator designs with integral control.
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Table XXXIV compares the stiffness quotients of the non-infegral and integral controller designs

selected for live testing on the MSBS plant. There are nine combinations of reference inputs.

TABLE XXXIV
COMPARISOM OF STIFFNESS RATIOS BETWEEN NON-INTEGRAL AND INTEGRAL REGULATORS
Controlier Final Positive Negative Average
Ref Inputs Design Values Stiffness Ratio Stiffness Ratio  Stiffness Ratio
-0.017453 rad  Non- -0.0197 rad 439.6592 ~69.1457 254.4045
-0.002 m [utegral -0.6020 m 2964.8858 -3235.3425 3100.1141
Integral -0.01705 rad 204.3579 -73.4800 138.9190
-0.00199 m 4443.2390 -2934.7974 3689.0182
-0.017453 rad  Non- 0.0197 rad 4337844 -70.1190 251.9517
0.000 m Integral 0.0m 3017.7652 -3288.1268 3152.9460
Integral -0.01706 rad 206.9195 -74.6756 140.7976
0.60000 m 4516.5976 -2990.7229 3753.6603
-017543 rad Non- -0.0197 rad 427.7805 -71.0467 249.4136
0.002 m Integral 0.00199 m 3070.6036 -3340.6719 3205.6378
Integral -.01706 rad 209.2192 -75.8460 142.5326
0.00200 m 4593.8493 -3046.6282 3820.2387
0.0 rad Non- 0.000 rad 72.7555 -68.8804 70.8179
-0.002 m Integral -0.00200 m 2961.0097 -3298.3660 3129.6879
Integral 0.000 rad 79.1545 -87.1619 83.1582
-0.00200 453.4461 -2975.6258 3714.5360
0.0rad Non- 0.000 rad 73.9959 -70.2818 72.1388
0.000 m Integral 0.0000 m 3013.7950 -3350.3100 3182.0525
Integral 0.000 rad 80.8644 -88.7396 84.8020
0.0000 m 4526.6361 -3031.0602 3778.8482
0.0 rad Non- 0.000 rad 75.1858 -71.6459 73.4159
0.002m Integral 0.00199 m 3066.5378 -3402.0812 3234.3095
Integral 0.000 rad 82.5196 -90.2608 86.3902
0.60199 m 4603.7780 -3086.5027 3845.1403
0.017453 rad Non- 0.0197 rad 38.8365 -66.4098 52.6731
-0.002 m Integral 0.002m 3037.7166 -3678.382 3202.7774
Integral 0.01705 rad 47.7623 -94.2981 710302
0.00198 m 4557.3153 -3011.3061 37843107
0.017453 rad Non- 0.01974 rad 39.6894 -67.7843 53.7369
0.0m Integral 0.00000 m 3090.0218 -3418.8774 3254.4496
Integral 0.01706 rad 48.8767 -96.2888 72.5828
0.00001 m 4629.5991 -3066.4580 3848.0286
0.017453 rad Non- 0.01974 rad 40.4216 -69.1269 54.7743
0.002m Integral 0.00199 m 3142.3337 -3469.7957 3306.0647
Integral 0.01706 vad 49.9690 -08.1939 74.0815
0.00201 m 4706.0326 -3121.6425 3913.837¢6
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Table XXXV compares the results of B-field perturbation fests of the non-integral and integral
controller designs selected for testing with the MSBS plant.

TABLE XXXV
B-FIELD PERTURBATION TEST DATA FOR NON-INTEGRAL AND INTEGRAL REGULATOR DESIGNS
Mazx. Input
Percent Overshoot 2% Settling Time Steady State {m) Deviation
Standard Standard Standard Standard
Ref. Devia- Devia- Devia-~ Devia-
Input Mean tion Mean tion Mean tion Mean tion

1.0deg 18.8852 0.1560 1.8677 £.0021 0.0197 0.6000 12.3957  0.7714
20mm -1.0307 21.8540 1.0200 0.0783 0.0020 0.0604 18.5240 0.7714
1.0 deg® 27653 0.0171 1.8608 0.0010 0.0171 0.0000 0.9823 (.3438

20mm®  0.5424 0.0046 0.9993 0.0008 (.0020 0.0000 2.4819 0.3671
® Integral Regulator Design

Fig. 78 contains the both the estimator and system open loop responses for the first design
attempt using the LTR method. Each response is characterized by the maximum and minimum
singular values of the corresponding transfer function. The parameter set used for this controller
was based on the successful LTR design in Chapter V. Fig 79 contains the open loop responses
for the non-integral controller designed by the iterative method. The LTR method was retried

using the successful parameters.
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The next group of figures presents the results of live testing on the actual MSBS plant
using the non-integral controlier. Only the coil currents for one command input, -0.5 to 0
degrees, are shown. A prominent spike is seen at the point in time the command was

given.

Coil #1 Current (A)

Coil #2 Current (A)

36 I { 1 ! L

Time (sec)

Fig. 80. Coil currents of plant with non-integral controller for change of

piich from neg. 0.5 to zero degrees.

Fig. 81 shows the 2-DOF plant’s response to a series of one-half-degree pitch commands. Note
the dotted lines showing the relative changes in position that occur simultaneously with the pitch
commands. The plots show the stability in pitch is much better than that in vertical position, but
they don’t show interaction between the commands. Similarly, Fig. 82 displays the plant’s
response to a series of one-millimeter position commands with the corresponding changes in
pitch denoted by dotted lines. These plots also show marginal response to position commands,

but the output error is obscured by the instability.
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Fig. 81. Responses of plant with non-integral controller to pitch changes: 0 to -0.5,
0.5t0-1.0,-1.01t0-0.5, -0.5100.0,0.5 t0 0.5, 0.5 to 1.0 degrees. Corresponding

simultanecus position changes are also shown.
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Fig. 82. Responses of plant with non-integrai controller to position changes: 0.0 to
-1,-1t0-2,-2t0 -3, -3 t0 -2, -2 to -1, -1 t0 0.0 mm. Corresponding simultaneous

pitch changes also shown.
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The last set of plots illustrates the behavior of the 2-DOF plant under the integral controller. Fig.
83, shows the coil inputs for the whole range of command inputs, issued over period of about 37
seconds. The time scale is compressed over what is shown in Fig. 80 so the cumrent spikes

occurring for the command changes are not as apparent as before. Also, the input current

deviations are expected to be much smaller with integral control.

Coit #1 Inputs

Curmrent (A)

=Y
(4

Current (A)
3

Time (sec)

Fig. 83. Coil 1 current (upper plot) and coil 2 current (lower plot) for
MSBS plant using integral control.

Figs. 84 and 85 compare the responses of the nonlinear model and actual 2-DOF plant responses
for both pitch and position commands. The controller design included integral control using the
parameters in Table XXVIL. Fig. 86 illustrates how the x-axis position in the nonlinear model} is

unstable when the 2-DOF controller is used and that this instability is coupled to the pitch state by
the model dynamics.
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Fig. 84. Reference input for pitch and corresponding responses of nonlinear model

and actual MSBS plant using LQG regulator with integral control.
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Fig. 86. Responses of nonlinear model states 6,, x and z to changes in pitch

reference input.

The following figures illusirate the 2-DOF experiments done on the wooden frame depicted in
Fig. 17 in Chapter IV. Fig. 87 is a side view of the magnet assembly and suspended PVC tube.
In this view the suspended tube is held at a slightly positive pitch angle of approximately one
degree. The positive direction in pirch is taken as a positive angular displacement (i.e., anti-
clockwise) around the x-axis. Note the suspended tube is situated such that its upper edge lies in
the laser sensor beams. Fig. 88 is another side view illustrating the relative size of the PVC tube
and the levitation gap. Note the major gradations on the ruler are in centimeters. Fig. 89 is an
end view of the test frame and leviated object. This view more clearly shows the suspension gap,

i.e., the distance between bottom of the coil and the centroid of the suspended object.
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Fig. 87. Side view of 2-DOF levitation.
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i

Fig. 88. Oblique view of 2-DOF leviataion. of suspended object and levitation gap.
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Fig. 89. End view of 2-DOF levitation.

At the close of the research leading up to this thesis, a 2-DOF levitation was performed inside the
stainless steel suspension chamber. See Fig. 90, which shows the MSBS suspension chamber
temporarily fitted with the a pair of suspension coils identical to those used in the wooden frame.
{Note the axially wound coils are not yet completed.) First and LQG regulator without integral
control was tried and then an LQG regulator with integral control (the one described in Table
KXKXVID) was used. This experiment was intended to determine whether the basic 2-DOF
coniroller design would work in this setting without significant tinkering. This was in fact shown
to be true in that only the bias, or equiplibrium, current had to be adjusted to achieve the 2-DOF

levitation depicted in Fig. 91. No measurements have been taken yet for this experiment.
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B,

Fig. 90. MSBS suspension chamber with suspension coils temporarily mounted on top for

2-DOF levitation inside the chamber.
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Fig. 91. 2-DOF levitation inside the MSBS suspension chamber.

Discussion of Results

The LTR design method was tried first with disappomting results. The controller was unable to
maintain stability in the nonlinear model for even short period. The open loop responses in Fig.
78 indicate that should not have been a surprise, as the minimum system open loop gain was at or
below 0 dB for most of the frequency spectrum. This illustrates the effects of directivity in
MIMO plant response.

Later, after an acceptable design was found using the iterative approach and emulating the
parameters in [4], the LTR method was revisited using the known good design parameters. The

open loop responses from this design are shown in Fig. 79, which indicates a benefit to be gained
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by incorporating loop shaping technigues with measurements of time domain responses into the
coniroller design process. It was noted the sensor noise covariance values for the working LTR
design were many orders of magnitude smaller than for the faulty design. To investigate the
effect of this disparity, the pole locations of each design were checked. These values, compared
in Table XXXVI, indicated the higher value of sensor noise caused the optimization algorithm to

select an estimator that was too slow to stabilize the plant.

TABLE XXXVI
COMPARISON OF KALMAN FILTER EIGENVALUES FOR TWC DIFFERENT SENSOR NOISE
COVARIANCE MATRICES

Lower Sensor Noise Matrix and Estimator Poles Higher Sensor Noise Matrix and Estimator Poles

le-5 O 1 ¢
R, = R,=
0 le-35 g 1

5590+ 70.8170, .6639+ j0.5024 5410+ 70.0631, .9688% j0.0312

The step response data in Tables XXXIII and XXXIV and the plots clearly show that the integral
controller not only reduces the steady state error, but also the settling time and amount of control

effort needed as well. The settling time for the first controller is essentially the whole period of

the simulation run, meaning that state, By , sustained oscillations. Another observation from that

set of data is that the effect of weighting appears to be greater when applied to states
corresponding to rates rather than positions. Also, the effects of different weights appear to be

determined by their absolute value as well as their values relative to one anocther.

The stiffness response tables showed pitch stiffness decreased for the integral controlier for
negative pitch commands but increased for pitch commands 0.0 to 1.0 degrees. For the entire

input range the z-axis stiffness increased significantly.

Notable in the responses of the selected controllers to B-field perturbations in Table XXXV was
the fact the spread of some of the performance criteria was an order of magnitude lower for the
second controller. And again in this same table, the reduction in control current transients is guite
obvious. However, one performance value that did not improve in this test with integral control
was the pitch state settling time. This will be addressed below in the discussion of the plant

TCSpOonses,

The most important-—and telling—results were the plant responses. Several observations are
made below regarding these responses. The plant outputs confirmed the observations about

performance made from the simulation results, particularly the plots in Figs. 84 and 85.
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Consistency between model and plant performance tends to validate the mode! and the design
method. Neither of the controllers tested on the plant would allow the pitch to be adjusted
beyond 1.5 degrees, but this was anticipated due to the sensors’ ranges and positions, which

limited the maximum measurable rotation to 1.13 degrees.

Figs. 84 and 86 illustrate a fundamental design challenge for these experiments, namely applying
a 2-DOF controller to a system that is marginally unstabilizable with two inputs. This condition
was illustrated earlier in the in the chapter where the controllability analysis showed that the

uncontrollable modes had an eigenvalues on the imaginary axis.

Note in Fig. 86 the growing oscillations in the nonlinear plant’s x-position output. This
instability is fed back to other states via the Taylor series expansion block, which continuously

recalculates the B-field components and their first order gradients based on the instantancous
position output (See Fig. 69.). Because the y-axis torque, T,, is 2 function of B_, which is
partially dependent on the x-position output through the Taylor series expansion, the mstability

seen in Fig. xx is also reflected in the nonlinear model’s response to pitch commands. To a lesser

degree, oscillations are also coupled to the model’s z-position output, which is dependent through
the F_ equation and its dependence on B, . It is suspected these undamped oscillations did not

pose problems during the controller synthesis process runs because none of the simulations ran
for long periods. However, these oscillations are probably responsible for the longer pitch state

settling time, refered to above.

This same phenomenon occurs in the real plant, where oscillations in the x-position slightly vary
the electromagnetic profile within the suspended magnet core, in turn slightly changing

electromagnetic torgue and force on the object. From the torque equation

T, =vM (-6,B.~B,) (42)

it can be seen that if a non-zero flux density gradient B, exists, which it does in the field pattern

for the 2-DOF experiment, changes in the x-position will effectively change the value of B, .

This in turn alters the forque oun suspended core. The controller was able to manage those
perturbations in torque—at least for short periods, as predicted by the B-field perturbation tests.
Fortunately, this problem was easily overcome in the plant by manually damping the test

cylinder’s movement in the x-direction.

Finally, the 2-DOF levitation inside the suspension chamber cleary demonstrated that the basic

controller design for the external 2-DOF system would work without much interference due to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



204

eddy currents inside the chamber walls. This tends o support 2 claim that effects from the
stainless stee!l do not have to modeled in the controller design, although these results were not
conclusive since there were only two magnets operating simultaneous in this experimeni. When

all ten are in operation, there may be a more substantial eddy current effect.
Conclusion

The chapter covered the rationale, theoretical background and execution of several 2-DOF MSBS
experiments and completes a bridge from classical to optimal control started in Chapter V. The
experimental results demonstrated the effectiveness of an optimally designed regulator and state
estimator for the MIMO case and so met the goal of validating the modeling approach in the
context of an actual MSBS sestup. In the course of performing the experiments practical
implementation techniques were introduced and 2 set of semi-automated controller synthesis
“tools” were developed that can be easily adapted to implementations with higher degrees of

freedom.
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CHAPTER VIII

CONCLUSIONS

Introduction

The intent of this thesis was to design and imaplement one and two-degree-of-freedom levitation
systems while making a practical case for building the full-scale MSBS for the HRTF.
Ultimately, the success of the project was shown in the results of the 1 DOF and 2 DOF
experiements, reported in Chapters IV - VL. But leading up to the successful experiments were
the completion of many supporting tasks. These included not only model validation and
controller design, but development of practical engineering techniques encompassing such areas
as sensor calibration and position measurement algorithms, live parameter adjustments for the
control system, development of an operator GUI with safety mechanisms, and surge current

reduction in the high current DC power supply.
Discussion of the Findings

Prior to the research supporting this thesis, there had been no validation (i.e., demonstrations
using actual hardware and software components) of the assumptions and approximations upon
which preliminary designs were based. (See [4].) This paper discusses a succession of successful
levitations using increasingly thorough instantiations of the intended MSBS environment,
concluding with a demonstration of 2-DOF control inside the stainless steel suspension chamber.
For each experiment, the specific correspondence between that configuration’s attributes and
those of the full system were pointed out. For example, in Chapter IV the tie between
experimental and full systems lay in the simplifying approximations used to model the system, in
the sensor signal algorithm and the use of an actual coil and amplifier combination. Then in
Chapter VI the correspondence was expanded to include multiple suspension coils with a three-
dimensional magnetic field, MIMO controller, larger suspension gap and pitch measurement
algorithms. The experimental results made two sirong points in validating the design

assumptions:

1) Controllers based on an analytic model of the MSBS performed as expected

and responded to parameter changes according to the basic control theory;

2} The responses of the system comprising actual MSBS hardware and software
very closely matched results of computer simulations based solely on the

mathematical assumptions and approximations.
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A second support for the practicality of building the full-scale MSBS was the demonstration of a
particular robust controller design—an optimal regulator using state estimation—that was highly
suitable to the equipment suite and configuration of the intended system. The experimental
results showed the controllers met critical performance specifications: percent overshoot and
steady state error. In addition, the controllers exhibited what appeared to be adequate stiffness in
both the simulations and actual experiments. Also, the simulations demonstrated the optimal
regulator’s robustness with respect io uncertainty in modeling the magnetic flux density and its
gradients. (This finding also supports the validation of various modeling assumptions.) Finally,
of key practical importance, controllers were designed that met performance criteria without

driving the control input to the plant (i.e., coil currents) to excessive levels.
The experiments included all ’but one of the major MSBS components:

1) custom-built suspension coils;

2) Copley 232P power amplifiers

3) Clinton power supply;

4) dSPACE interfaces, real time processor and software;

5) LA-511 sensors; and

6) The stainless steel suspension chamber.

The chilled water cooling system was not tested. Several essential system capabilities were
shown, including the interoperability of the components, the adequacy of their ranges and
tolerances and their suitability to support for long periods of uninterrupted operation without
access to the interior of the suspension chamber. Of note, a close similarity was shown between
the performance of different amplifiers and coils, removing the need to individually characterize
each of one. Also, related to the control system design, it was confirmed that the dynamics of the
Copley amplifiers did not require special compensation in the controller design. Lastly, the
stainless steel chamber did not appear to require special design considerations in the controller
due to phase shifts induced by eddy currents. However, it should be noted the experiments thus

far employed only two, not ten magnets around the chamber.

The practical implementation techniques introduced in this work included a simplified voltage-to-
distance conversion algorithm for the sensors, a workable means to compensate for sensor cutput
variations, a method to adjust coniroller parameters during system operation, and a phased

amplifier urn on procedure to guard against overloading the main power supply during system
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startup. In addition, the estimation of magnetic field values using the program OPERA™ was
shown to be adeguate for fields from multiple cotls. Lastly, a semi-sutomated process for
designing MIMO controllers was developed using a set of Matlab scripts. This “tool set” will be

essential in producing the higher degree-of-freedom controllers.
Follow-on Issues

Several major challenges remain in building the full 6-DOF MSBS. The first of these is
reformulating the MSBS system equations and modeling the “X-configuration” of the suspension
coils. This is an issue because of the need to operate two coils on opposite sides of the
suspension chamber wired in series (see Fig. 2.). If the suspension point (origin of the inertial
reference system) is not symmetric with respect to the coils, multiple calculations of magnetic
flux density will be needed for the different coils. Also, the altered amplifier/coil dynamics

presented by two suspension coils in series may require additional modeling.

Related to this, a second challenge will be revising the nonlinear system model for 6-DOF. For
this two sub-tasks must be tackled. First, a means to produce the x-axis component of torque will
have to be implemented. Fortunately, this is described mathematically in [12] and is based on the
same assumptions and approximations validated in this paper. The second sub-task will be to
devise a means to detect the rolling motion of the suspended object, preferably in a manner
compatible with the eventual operational use of the system. A side note here is that the higher
degree-of-freedom controller may require thousands more synthesis-validation iterations due to

the larger number parameters, particularly the larger state and input weighting matrices.

A third remaining major design challenge is the investigation of controller operation through the
stainless steel suspension chamber with the complete set of suspension coils. A concern first
raised in Chapter 1L, this involves the expected roll-off in the magnitude of magnetic flux density
caused by eddy currents preduced in the suspension chamber walls induce an opposing counter
magnetic field [5]. Although, the last experiment showed a 2-DOF controllier could work without
special modification through the stainless steel chamber walls, this only involved two coils, rather

than the ten that will eventually be needed.
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Concluding Remarks

Through the demonstration of a working, scaled-down system incorporating all the essential
dynamics and hardware of the full system, the work supporting this paper removes the major
uncertainties surrounding the MSBS design.  Also, the engineering techniques and methods
described herein contribute significant practical means to construct and operate an actual working
system. Thus, in two respects, reducing the risk of further development as well as creating
greater likelihood of success, this paper strongly contends from a practical standpoint for the

completion of full-scale MSBS.
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APPENDIX A

FUNCTIONAL AND PHYSICAL CONFIGURATION BASELINES

TABLEI-A
FUNCTIONAL CONFIGURATION BASELINE
Identifier Functional Requirements Related Design Decisions Reference
FRI1000  FRI1000 Operate within the environmental and 31 [7]
operational constraints of the HRTF
FR1106 =~ FR1100 Operaie under 3500 PSI internal pressuze. Two-inch, nonmagnetic stainless steel chosen for construction of 3.1
suspension chamber.
Materials costs constrain inner diameter to approx. 19 in.
Interiorly mounted components protected from pressure.
FR1200  FR1200 Maintain airtight seal with HRTF under 3500 131, 71
PSI internal pressure.
FRI1300  FR1300 Support Reynolds number in range of Cylindrical and uniform construction. 3] 71
researcher’s needs.
Actuators mounted externally.
Level of effort required to open suspension chamber limits
accessibility.
Interior mounted components must be small relative to chamber
diameter and have aerodynamic shapes or covers.
FR1310  FR1310 Employ test object supporting high Reynolds  Baseline design for test object calls for an ellipsoidal model with 12:1 i3}, {71

numbers,

length to diameter ratio. Baseline dimensions are 35.4 in. (0.9 m) L;
2.95 in. (0.075 m) dia.

For simplicity and reduced power consumption, & permanent magnet
chosen rather than magnetizing coils to create magnetic field in test
object.
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TABLEI-A,CONT’D

Identifier Functional Requirements Related Design Decisions Reference
FR1400  FR1400 Operate unattended and contingously for Robust sensor scheme selected. (See FR2210) (31, 7
iods of al days wi interi C g .

petiods of several days without interior access to HRTF Linear design selected for controller. (See FR2210)

FR1410  FR1410 Accommodate changes in pressure, airspeed  Choose a conservative range of movement with respect to systein’s 31, 171
and test object position commands, including test object physical capabilities.
launch, without manual intervention.

FR1420  FR1420 Allow for calibration and testing of interior Control program designed to compensate for changes in sensor [31, {71
components without manual intervention. input/output characteristics.

FR1430 = FR1430 Maintain safe internal temperature in Electromagnets wound with insulated copper tubing with square 31 {71
electromagnets during long periods of unattended cross-section.
operation. . . . . .

Circulating, chilled water cooling system designed

FR1440 ~ FR1430 Employ automated condition monitoring and {31, 7}
emergency system shut-down.

FR2000  FR2000 Automatically control position of suspended 3L 171
test object in six-degrees-of-freedom without direct
mechanical contact,

FR2100  FR2100 Actuate suspended test object in six degrees of (31, [71
freedom without direct mechanical contact, i.e., using
electromagnets.

FR2110  FR2110 Employ minimum of five independently Five separately controlled current amplifiers capable of supplying up  [3], {71, [12],
controlled actuators (electromagnets). 10 120A DC at 150 V DC. [18]

FR2120  FR2120 Produce aggregate flux density of sufficient Large, iron-core electromagnets custom designed and built for 3% 71

magnitude to create force adequate to counter both
weight of test object and the aerodynamic forces acting
on it

MSBS.

So-called X configuration for electromagnets selected, where the
magnets are mounted transversely to the suspension chamber and
paired such that magnets on opposite sides of the suspension chamber
share the same current source.
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TABLE I-A, CONT’'D

Identifier Functional Requirements Related Design Decisions Reference

FR2200  FR2200 Sense and provide test object position without Optical sensors selected for design.

direct mechanical contact. 131 [7]
FR2210  FR2210 Measure deviation of test object from fixed Selected sensors were Sunx LA-511 optical sensors with 15-ram

point in an inertial coordinate system attached to the range of detectable motion.

suspension chamber. Sensors selected establish range of controliable movement at

approximately plus-or-minus 7.5 mm 131, (7]

FR2211  FR2211 Convert raw sensor voltages to corresponding

distances in form. 131, [71
FR2212  FR2212 Convert linear movements to angular

movements {3l {71
FR23006  FR2300 Execute real-time, multivariable control in a

way that HRTF users to readily change parameters and

data capture schemes. 31 {71
FR2310  FR2310 Enwploy system that permits rapid prototyping. dSPACE Controller Design and Implementation system selected to

permit both design and operation on same hardware/software suite.  [3], [7]

FR2320  FR2320 Employ digital multivariable controller

permitting real-time operator input. {31, [7]
FR2330  FR2330 Convert actual system control and feedback

signals to digital form compatible with controller

platform. (31, 171
FR3000  FR3000 Provide real-time control, monitoring and data

logging to MSBS operators,
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TABLE II-a
PHYSICAL CONFIGURATION BASELINE
Group Identifier Item Name Qty Item Description Reference
MSBS Plant Group 1Al Suspension chamber 1 Type 304L cylindrical stainless steel suspension chamber,
nom. 24 in. 0.D,, nom. 19'in. L.D., 96 in. L. 13}, [7]
1A1A1 Radial coil mounting assembly 1 Structural fiberglass frame used to mount radial suspension
coils in X-configuration around suspension chamber
1A1A2 Radial suspension coil 8 Custom built iron-core magnets
TATIA3 Axial suspension coil 2 Water-cooled magnets wound around suspension chamber
(axially).
1A2 Position sensor assy I Position sensors and mounting structure.
1AZA1 Sensor mounting frame 1 Non-magnetic frame holding position sensors in configuration
to sense movement in 5 degrees-of-freedom.
1A2A2 Laser beam sensor set 5 Sunx Trading Co., Model LA-511 {31, I71
1AZAZAL Laser emitter 5 Sunx Trading Co., Model LA-511P
1A2A2A2 Laser receiver 5 Sunx Trading Co., Model LA-511D
1A2A2A3 Laser sensor power supply 1 Leader Electronics Corp., DC Tracking Power Supply, Model
LPS 152
1A2A2A4 Sensor cable junction box 1 Polystyrene junction box containing terminal strips needed to
independently route sensor power and signal cables.
1A3 Magnet cooling system 1
1A3A1 ‘Water chiller unit 1 Affinity Model
1A3A2 Chilled water manifold 6
1A3A3 Tubing assembly
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TABLE II-A, CONT’D

Group Identifier Item Name Qty Item Description Reference
MSBS Plant Group  1A4° Test model assy. no. 3 1 Cylindrical PVC test model,30 in. L, 3.5 in. dia
1A4A1 Permanent magnet core 6 Neodymium-Boron-Iron disks, 3.0 in. dia., 0.5 in. thickness.
1A4A2 Magnet spacers 5 Wooden spacers between magnetic disks, 3.0 in. dia., 0.5 in.
thickness.
Amplifier Group 2A1 Electromagnet Drive Current 6 Copley Controls Corp Model 232P PWM Power Amplifier
Amplifier
2AT1AL Amplier control panel 6  Copley Controls Corp Model 265P Display Panel Assy
2A2 Current amplifier power supply 1
2A2A1 High voltage/high current 1 Clinton, Model S600/1508
power supply
2AZA2 Power supply step-start assy Step start switch for Clinton power suppl
2AZA2A1 Isolation transformer Tripp Lite, Model 1S-500 500 KV A isolation transformer.
2A2A2A2 Soft-start CCA Timed charging circuit card assy.
Control System Group 3Al Host Computer 1 Dell Precision PWS330, Intel Pentium 4 CPU, 523 KB RAM
3A2 Real Time Interface 1 DS-1103 Real Time Interface
3A3 Signal interface panel 1 CP-1103 Interconnection Module
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TABLE HI-A, CONT’D

Group Identifier Item Name Qty Ttem Description Reference
Software Group 4A1 Host Computer Operatingl  MS Windows 2000, v 5.00.2195 Service Pack 1

System

4A2 Matlab Software Suite 1 Control system design software. (27N

4A2A1 Matlab R12.1 (inc. Simulink) 1  Matlab R12.1 (inc. Simulink) [27]

4A2A2 Matlab Control System Tooll  Matlab Control System Tool Box, v5.1 [271
Box, v5.1

4A3 dSPACE  control system1 dSPACE v3.4 [18]
software suite

4A3A1 Real Time Interface 1 Interface btwn Real Time Interface (RTI) and Simulink, v4.3 [18], [19]

4A3A2 Control Desk Interface 1 Interface btwn Control Desk and Simulink, v1.0 21]

4A3A3 MLIB/MTRACE Imterface tol MLIB/MTRACE to Matlab interface libraries, v4.4 [20]
Matlab, v4.4

4A3A4 dSPACE Conirol Desk, v2.2 1  dSPACE Conirol Desk, v2.2 [21]

*Test model presented here is the last one used in the set of experiments covered in this thesis and the one that most closely represents the model anticipated

during actual operations.
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APPENDIX B

MSBS OPERATING PROCED

Introduction
This Appendix provides the following for the operation of the two 2-DOF experiment:

1) A brief description the MSBS operating environment.

2) A step-by-step system turn-on procedure.

3} A procedure for changing the coniroller parameters while the MSES is operation.
Operating Environment

This section presents the primary software and hardware components of the MSBS and briefly
describes their interaction. This background is intended to help MSBS operators prepare the

system for use and to betier understand its operation.

Software Architecture
Table I-B, extracted from the complete physical baseline in Appendix A, lists the software
installed on the host computer used to operate the MSBS. Note the version numbers apply to the

system configuration at the time the research supporting this thesis was completed.

TABLE I-B
MSBS OPERATIONAL SOFTWARE COMPONENTS AND VERSION NOS.
Item Name Item Description
Host Computer Operating System  MS Windows 2000, v 5.00.2195 Service Pack 1
Matlab Software Suite Scientific and engineering mathematics sofiware. Includes the
following:

Matlab R12.1 (w/Simulink)
Control System Toolbox, a specialized add-on functionality
for Conirol System design

dSPACE Software suite dSPACE v3.4 Control System Developer’s Software. Inchudes the
following:

Real Time Inferface (RTT) v4.3, interface between dSPACE
and Simufink

dSPACE Control Desk, Developer Version, v2.2

Control Desk Interface, v1.0, interface btwn Control Desk and
Simulink

MLIB/MTRACE Interface, v4 .4, dSPACE-to-Matlab interface
libraries

In addition to the sofiware applications, the operating environment includes certain data and

configuration files created during the development of the controller. MSBS operation requires
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the files listed in Table [I-B. (Only the main ones are listed.) Because the MSBS “application” is
operated via Control Desk, the MSBS operational environment—at least in terms of the host
computer’s file structure——is organized around the Control Desk experiment. This is the basis for
the folder structure illusirated in Table II-B. Reference [21] contains detailed information on the

dSPACE file types and their roles in designing and operating an experiment,

TABLE [I-B
PRIMARY DATA AND CONFIGURATION FILES USED DURING MSBS OPEARATION

Folder/File Name Description

Primary Folder Name This is the Working Root directory, set up by the user, where the main
Control Desk (CD} experiment file resides, e.g., “2-DOF Integral Ctrl”

ExperimentName.cdx Main experiment file, which contains links to all other files associated
with experiment. User assigns name when creating experiment; name
may or may not be same as the name of the Simulink model file.

InstrumentPanel 1.lay File containing Control Desk layout window, comprising designer-
selected set of instruments linked to the corresponding variables in the
Real Time Processor (RTP). An experiment may include several layout
windows.

ExperimentName.cdc Control Desk connection file, which contains information on the data
connections between the instruments and the real time hardware.

SimulinkModeIName.mdl  Simulink modet of the controller. This is compiled by the Real Time
Imterface (RTI) software to create the real time application.

SimulinkModeIlName.ppc  File containing the executable instructions to run the real time
application (MSBS controller} on the Real Time Processor, Power PC
604e processor. (Applies to dSPACE systems using the DS-1103 RTL)

SimulinkModelName.map File generated by the linker; maps symbolic variable names to physical
addresses.

SimulinkModelName.trc  ASCII file that contains descriptions of the variables in the real time
application {MSBS controller).

SimulinkMeodeiName.sdf  System description file that describes files to be loaded to individual
components of the Real Time Processor. This file is generated when the
along with the .tre file when the RTI software compiles the Simulink
model. This file is also used when establishing links between
instruments and variables.

UserMame.par Contains variable names, descriptions and values; used when changing
values of variables while application is running,

P\param_change.m Matlab script that invokes MLIB/MTRACE functions for live update of
parameters used for sensor signal processing.

quick con.m Matlab script containing parameters and instructions to derive LQG
regulator. Assumes values for state and input weighting matrices and
noise covariance matrices are knowa.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



219

TABLE II-B, CONT'D

Folder/File Name Description

Two DOF Plantm Matlab script containing parameters and calculations necessary to derive
linear model of 2-DOF plant and thus parameters needed to synthesize
state estimator and state variable feedback gain constants. Script called
by guick con.m.

fgsim.amn Matlab script that wmplements Pincer’s method when calculating the
linear state variable feedback matrix K. Script called by quick_conm

SimulinkModelName 141103 This is 2 sub-directory to the working root directory; produced when the
Simulink mode! is compiled; its files contain segments of code to be
loaded on the real time processor.

Besides the Control Desk files, Table II-B also includes the Simulink model of the controller and
the Matlab scripts needed to derive the variables needed by the Simulink model and place them
on the Matlab workspace. Though not strictly needed to operate the MSBS once the Simulink
model is compiled, these files are left here for convenience since the system is still under
development. Having the files handily grouped along with the Control Desk experiment makes it

easier to refine and recompile the controller model or add variables to the operator’s screens.
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CP-H*IBV Interconnection MSBS Plant, including coils,
Module sensors, amplifiers, ete...
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Hardware platforms. o Host Computer

Fig. 1-B. MSBS Software

Fig. 1-B depicts the set of operational software components and their relationship to the
hardware platforms they run on. Operator control is executed primarily using the dSPACE
Control Desk program on the host computer. This program interacts with the real time
application (compiled controller instructions) running on the real time processor, located on the
DS-1103 Real Time Interface assembly. Note this piece of software code is not listed in Table IF
because it is created when the MSBS is initialized and continues to exist only while the system

remains in operation.

Hardware Configuration

Fig. 2-B illustrates the hardware configuration employed during MSBS operation. Although this
figure describes the complete 6-DOF system, except for the quantities of certain components, it
also applies to the 2-DOF configuration. The legend corresponds to the equipment groupings in
the physical baseline in Appendix A.
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Fig. 2-B. MSBS Basic Hardware Block Diagram

Basic System Turn On Procedure

This section describes how to prepare and place the MSBS into normal operation. The procedure
assumes that the control system has been modeled in Simulink, the model has been compiled and
the operator control screens have been designed and properly linked to the correct variables and
that the amplifier and sensor control systems have been tested. Note also the procedure refers to

the system configuration in use at the completion of the work supporting this thesis.
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Procedure

Table HI-F provides the step-by-step procedure to place the MSBS into normal operation.

TABLE [1I-B
BASIC SYSTEM TURN-ON PROCEDURE
Step No. Action
i Remove watches, wallets, magnetically encoded cards and other itemns to safe place away

from the suspension coils and permanent magnet core.

2 Place test object containing Neodymnium-Iron-Boron magnetic core at the bottom of the
test frame. Ensure core is oriented so that the its magnetization vector is pointing in the
positive x direction of the MSBS inertial reference frame.

Energize external dSPACE DS-1103 Interface Module.
Energize DC power supply for sensors and set output for approximately 15 veolts,

Boot host computer and log on as MSBS user.

SN R W

Launch Matlab and ensure Real Time Interface banner is displayed indicating the dSPACE
software components are installed. Set current directory to the primary MSBS operating
folder (see Table IIF).

7 Launch the DSpace Control Desk application. On the menu bar, select File, then Open
Experiment. In the Open Experiment window that appears, click on the desired experiment
name from within the MSBS operating folder. Then click open to launch Control Desk
experiment. Control Desk will then open the experiment, gather all the associated files and
present the operator control screen in use when the experiment was last saved. The
experiment will come up in the edit mode.

8 From the menu bar select Platform, Application and then Load Application. One or
more .sdf files will be listed; select the one with the same name as the Simulink model used
to create the controller system (not necessarily the same name as the experiment). Click
Open to start the real time controller application running in the background.

Note: if ervor message appears indicating platform connection does not exist, perform step
7. Otherwise, proceed to step 8.

9 From the menu bar, select Platform, then Initialization, then Register. In the Register board
window that appears, select 1351103 PPC Controtler Board from the drop down menu in the
Type field. Then click on Register. This will establish the Control Desk connection with
the DS-1103 RTI module, i.e., the platform.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



223

TABLE 1H-B, CONT'D

Step No. Description

10 From: the top tool bar (vight below the menu bar}, select Animation mode to activate the
links between the instruments and the application already running in the background. At
this point instruments will respond o the external signals received via the CP-1103 module.
For example, there will be voltage readings for the laser sensors,

i1 Visually check that the sensors’ fields of view are completely uncbstructed and that the
LEDs on the receiver units aiso indicate good alignment with beam emitters. If the LEDs
show poor alignment, the receiver units should be physically aligned to remedy the
condition.

12 Note along the bottom of the operator screen several tabs with the names of the different
operator screens. Select the Sensor menu, which contains large displays of the sensor
output voltages, Adjust “span” pot on sensor receivers so that the sensor cutputs are 5.0
volts for the unobstructed beams.

13 Ensure the Master Amplifier Enable switches on all control screens are in the off position.
Return to the main operator control screen and place Amplifier On/Off swiltches in the off
position and the Controller Cut-out switch in the out position. (Indicator “LEDs” on the
screen will be dark.)

14 Ensure the Amplifier Inhibit switches on the front panel of the Copley amplifiers are in the
out position (not depressed).

15 Turn on main breaker for Clinton DC power supply.
16 Energize the isolation transformer assembly inside the Copley amplifier rack.
17 Press and hold the green “soft-start” switch at the top of the amplifier rack until the Clinton

power supply comes on and its cooling fan starts running. At this point the Copley power
amplifiers should be energized.

18 Release the Inhibit buttons on Copley amplifiers and note on the operator control screen that
the Amplifier Ready indicators are green. At this point the coil currents should be zero.

19 On all control screens, click on the Amplifier Master Enable switches and note the
indicators change color to green.

20 Return to the main operator screen, click on the amplifier enable switches and observe that
the coil current graphs display the equilibrium current value.

21 Click on the Controiler Cut-out butten to switch in the controller. Note the indicator
changes color. At this point the controller is ready to begin driving the suspension coils
once the suspended model is placed within several millimeters of its equilibrium position.

22 Launch the model ensuring the end marked positive is in the positive x direction of the
reference coordinate system. CAUTION: suspension coil leads are at approximately 150
Vols DC—do not touch!

Live Parameter Update

This section describes a procedure by which MSBS operators can change the values of
parameters within the MSBS control system while the MSBS is in operation. Further, the

procedure also saves the modified parameters and loads them next time the system is initialized.
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This ability is provided through the regular the MSBS operating software suite in conjunction
with the MLIB/MTRACE software and Matlab. The particular implementation described here
concerns parameters used by sensor system o convert the amount of light received by the sensors
to the corresponding displacement from equilibrium. However, the same technique can be

employed for other values.
Background

The MSBS sensor system contains several laser emitter and receiver pairs aligned so that when
the suspended object is in its desired equilibrium position, the laser beams between each emitter
and receiver are partially blocked. Because the receivers produce an output voltage proportional
to the amount of beam they receive, the test object’s deviation from its equilibrium position can
be determined by how much the various receiver outputs vary. These outputs are converted to

control system feedback by the MSBS application ruming on the dSPACE Real Time Processor.

The algorithm to convert receiver output voltages to the suspended object’s displacement relies
on the linearity of the laser receiver’s input-output response. The algorithm uses an estimate of
the slope of that response to relate the output voltage to the width in millimeters of the beam
received. For example, the nominal sensor output range is from 1.0 to 5.0 volts as the amount of
beam received varies from 0 mm to 15 mm (100%). Assuming a linear response, this gives a
slope of 4.0 volts per 15 mm, or .26667 volts/mm. When an object blocks the beam and the
sensor pair produces an output of 3.0 V, the object’s position—relative to the beam edge—can be
estimated as follows: 3.0V — 1.0 V = 2.0 V equals the output due to beam reception. Thus the
object’s position is 2.0 V/.26667 V = 7.5 mm from the edge of the beam, or half way through the

beam. .

Given the need for accuraie values for the sensors’ oufputs, the motivation to implement some
kind of parameter correction—while the system is operating—arises from two factors. First,
sensor output voltages can change over time as well as vary between sensor pairs. Secondly,
because the sensors will essentially be inaccessible in the completed system, the only practical
way actually check the sensor outputs is to use the MSBS application itself. Thus, it is important

to be able to update the value of the slopes and midpoints while the MSBS application is running.
Live Update Procedure

The procedure for updating and saving parameters consists of two separate activities. One is the
set of Matlab commands used in conjunction with MLIB/MTRACE software to read the values of

certain variables in the real time application, perform calculations using those values and then
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modify the values of other values in the real time application based on the calculations. However,
to ensure the revised values are employed the next time the MSBS application is started, Control
Desk must be specifically configured. Table IV-B contains the step-by-step procedure, adapted
from [20] and [21], to adjust the sensor voltage conversion algorithms in the MSBS sensor system.
It will be seen the procedure essentially fall intc two stages, set up and operation. Note the

procedure refers to the system configuration in use at the completion of the work supporting this

thesis.
TABLE IV-B
LIVE PARAMETER UPDATE PROCEDURE
Step No. Action

1 Generate a parameter file as follows:
While experiment is running on real time processor (RTP), select Edir mode from the upper
tool bar.
On menu bar, select Parameter Editor, then Generate Parameter File and then type in the
name of parameter file, e.g., sensor_params.par. Click Save.

2 Designate selected parameter file for automatic, repeated use as follows:
Select tab labeled SimulinkModelName.sdf at bottom of tool window (below instrument
panel).
Right click on the parameter file (e.g., sensor_params.par) in the left side of the tool
window. Select Declare Status Set.

4 Right click again on same parameter file and select Add to Experiment. The parameter file
should then be listed in the Experiment Navigator window on the left side of the screen.

5 In the Experiment Navigator window, right click on parameter file (e.g., sensor
params.par) and select Open on Experiment Load.

7 Right click again on parameter file and select Use on Start Animation.

8 From menu bar select Parameter Editor-—Automatic Update Parameters. Save experiment.

9 Live Parameter Update:

While the experiment running, MATLAB window and set default folder to the root directory
of the experiment.

12 Execute MATLAB script file param_change.m.

10 Save Updated Parameters as Defaults:
In Control Desk, select Edit mode.
In left-hand sided of Experiment Navigator window, right click on parameter file {e.g.,
sensor_params.pary and select close.

i2 On menu bar, sclect Parameter Editor—Generate Parameter File and select same file
name designated for this experiment. Click OK to overwrite existing version of file.

13 To ensure updated parameters are loaded as defaults for next experiment, upon conclusion of
cutrent experiment session, terminate the experiment on the RTP.
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PENDIXC
SELECTED DATA AND DATA ANALYSIS

This appendix contains selected measurement data and results of data analysis obtained during

the expertments covered in this thesis.

Table I-C presents the magnetic flux density measurements taken in preparation for the 1-DOF
experiments. The setup included two separate MSBS amplifier and suspension coil combinations,
and measurements were taken using an F.W. Bell Series 9900 Gaussmeter in a vertical position to
a moveable jig calibrated in millimeters. The tip of the probe, held in an upward position in the
jig, was placed directly below the center of the core of the suspension coil and moved in ten mm
increments from a distance 11 mm below core to a point 291 mm below the core. The z-
component of the B-field was recorded at each increment. Three sets of measurements were

taken, two for the first coil and one for the second.

Z-AXIS MAGNETIC FLUX DENSITY META‘:?JI}J:E;AENTS FOR TWO COIL/AMPLIFIER PAIRS
Distance below Field measurements for  Field measurements for  Field measurements for
coil (m) Coil #1/Amp #1 (mT)*  Coil #1/Amp #1 (mT)®  Coil #2/Amp #2 (mT) ©
-011 -85.13 -83.21 -83.03
-021 -83.71 -81.97 -81.74
-031 -81.12 -79.85 -79.38
-041 -77.79 -76.69 -76.38
-.051 <1371 -73.07 -72.57
-.061 -69.29 -68.81 -68.66
-071 -64.67 -64.49 -64.00
-.081 -60.00 -59.90 -59.71
-091 -55.31 -55.59 -55.14
-.101 -50.95 -51.33 -50.98
- 111 -46.94 -47.37 -46.89
-121 -43.13 -43.52 -43.09
-.131 -39.56 -39.98 -39.67
-.141 -36.38 -36.79 -36.43
-151% -33.43 -33.82 -33.47
-.161 -30.76 -31.14 -30.74
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TABLE [-C, CONT'D

Distance below Field measurements for  Field measurements for  Field measurements for

coil {m) Coil #1/Amp #1 (1) *  Coil #1/Amp #1 (mT)°  Coil #2/Amp #2 (mT) °
=171 -28.33 -28.64 -28.43
-.181 -26.08 -26.44 -26.08
-.161 -24.10 -24.32 -24.18
-.201 -22.28 -22.50 -22.23
-211 -20.61 -20.80 -20.54
-221 -15.09 -19.28 -19.08
-.231 -17.72 -17.82 -17.67
-.241 -16.50 -16.60 -16.47
-.251 -15.34 -15.41 -15.28
-.261 -14.27 -14.38 -14.20
-271 -13.32 -13.45 ~13.27
-.281 -12.47 -12.56 -12.39
-291 -11.75 -11.75 -11.63

* For coil current in range 39.7-40.0 A. Magnetic Flux Density, Bz, oriented downward, or negative z
direction. -Same for all measurements.

b For coil current in range 39.7-40.0 A. Second of two sets of readings for this coil/amp combination.
¢ For coil current in range 39.6-39.9 A.

Chapter IV of the thesis describes an experiment performed to validate the assumption that

magnetic flux density and its gradients can be approximated using the relationship

7

B= }mb (65)

max ?
max

where the 7 is a variable representing the instantaneous control current in a given
suspension coil, 7,4 is a constant denoting the maximum coil current allowed and by
denotes the magnetic field produced by £,4,. In this experiment the values of the B-field and
its gradients calculate for 7 = 15.74 A were compared with those quantities when measured
directly with coil current 15.74 A. Figs. 1-C and 2-C. illustrate the fact the approximation is

guife close,
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Fig. 1-C. Comparison of first order magnetic flux density gradients
obtained by measurement and calculation for I = 15.74 A.. Also shown is
gradient for [=39.8 A.
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Fig. 1-C. Comparison of second order magnetic flux density gradients
obtained by measurement and calculation for [ = 15.74 A.. Also shown is

gradient for I =39.8 A.

The last part of this appendix is a table containing the results of the calculations of the magnetic

flux densities and their gradients performed by the finite element analysis program Opera.

TABLEII-C
MAGNETIC FLUX DENSITY CALCULATIONS FOR 2-DOF EXPERIMENTS

Values calculated in Gauss using inches Values calculated in Tesla using meters

gi:idi:;t Coil A ® (Gauss) Coil B (Gauss) Coil A (Tesla) Coil B {Tesla)
Bx -223.25 223.25 -0.0223 0.0223
By ¢ G th 0
Bz -117.07 -117.07 -0.0117 -0.6117
Bxx -20.23 -20.23 -0.6796 -0.0796
By 0 0 0 0
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TABLE iI-C, CONT'D

Values calculated in Gauss using inches  Values calculated in Tesla using meters

éizﬁgt Coil A * (Gauss) Coil B (Gauss) Coil A (Tesla) Coil B (Tesla)
Bxz -37.5 37.5 -0.1476 0.1476
Byy 21.26 21.26 0.0837 0.0837
Byz i 0 0 5
Bzz -33.13 -33.13 -0.1304 -0.1304
Bxxx 2.447 2447 0.3793 -0.3793
Bxxy 6 0 ] 0
Bxxz -6.956 -6.956 -1.0782 -1.0782
Bxyy 2.025 -2.025 0.3139 -0.3139
Bxyz 0 ] 0 0
Bxzz -6.523 6.523 -1.0111 1.0111

¢ In 2-DOF experiments, coils lie along x-axis,

Coil B.

Coil A is lies in the positive direction with respect to
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APPENDIX D

SELECTED MATLA
Introduction

This appendix contains various Matlab scripts used throughout the experiments conducted in
support of this thesis. The scripts were selected based on their analysis or functional

implementation of noteworthy contributions to the development of the MSBS.
Miscellaneous Matlab Scripts Used in Preparation for 1-DOF Maglev Experiments

The scripts in this section are those used to analyze the MSBS experimental setup with
respect to its physical parameters such as the input-output relationship for the laser sensors

and the analysis of the magnetic flux densities for the MSBS coils.

The first script is the one used to analyze 1.A-511 laser sensors to determine a reliable
algorithm for converting sensor voltage to distance that could be easily updated according

changes in sensor characteristics.

Sensor_measurements.m

$Sensor voltages vs. Width of Beam Received

format short;

s=5; %number of sensors

n=5; %number of sample sets
alopes=zeros(n,5);
x={0:1:15);
Sensor_outputs=zeros(n,1i6,5);

$Sengor 1 Readings
Sensor outputs{:,:,L)=...
[1.00 1.15 1.3%9 1.66 1.96 2.22 2.56 2.83 3.12 3.40 3.70 4.00 4.30 4.56 4.78 5.01;...

1.00 1.16 1.41 1.65 1.94 2.24 2.55 2.82 3.12 3.43 3.74 4.02 4.31 4.57 4.83 5.0%;...
1.00 1.16 1.41 1.68 1.98 2.25 2.53 2.83 3.14 3.42 3.76 4.03 4.31 4.55 4.82 5.01;...
1.00 1.16 1.41 1.67 1.96 2.24 2.54 2.84 3.14 3.43 3.75 4.04

2

4
4.32 4.58 4.83 5.01;...
.05 4.31 £.57 4

o

1.00 1.17 1.41 1.70 1.86 2.25 2.56
%Sensor 2 Readings
Sensor_outputs{:,:,2)=...

{0.99 1.09 1.31 1.55 1.85 2.14 2.38 2.59 2.88 3.19 3.39 3.66 3.52 4.14 4.37 4.60;...

.83 3.13 3.45 3.77 .82 5.011;

0.99 1,092 1.32 1.55 1.87 2.08% 2.33 2.55 2.84 3.14 3.38 3.66 3.90 4.14 4.37 4.59;...
.99 1.08 1.34 1.57 1.84 2.07 2.35 2.59 2.84 3.11 3.35 3.63 3.80 4.12 4.35 4.60;...
0.9% 1.10 1.34 1.55 1.81 2.08 2,37 2.61 2.85 3.13 3.37 3.65 3.89 4.14 4.35 4.59;...
0.99 1.0% 1.30 1.53 1.75 2.07 2.32 2.55 2.83 3.11 3.38 3.63 3.86 4.12 4.35 4.58];

%Sensor 3 Readings
Sensor_outputs{:,:,3)=...
{1.05 1.28 1.56 1.84 2.10 2.39 2.69 2.00 3.28 3.57 3.87 4.17 4.42 4.67 4.89 5.01;...

1.03 1.28 1.57 1.84 2.13 2.41 2.69 2.99 3.30 3.61 3.90 4.15 4.43 4.86 4.21 5.02;...
1.03 1.31 1.59 1.87 2.11 2.40 2.69 3.01 3.29 3.57 3.89 4.16 4.43 4.87 4.90 5.02;...
1.02 1.29 1.56 1.85 2.11 2.41 2.70 3.01 3.31 3.60 3.85 4.20 4.43 4.67 4.30 5.02;...
1,05 1.30 1.57 1.85 2.12 2.40 2.71 3.01 3.30 2.5% 3.87 4.1% 4.44 4.68 4.91 5.02];

¥Sensor 4 Readings

Sengor_outputs{:,:,4)=...

{1.00 1.18 1.37 1.61 1.81 2.20 2.45 2.70 3.05 3.35 3.64 3.83 4.23 4.48 4.77 4.9%;...
1.00 1.19 1.3% 1.82 1.8% 2.18 2.48 2.75 3.05 3.36 3.66 3.87 4.24 4.52 4.75 4.99;...
1.60 1.17 1.43 1.62 1.94 2.21 2.47 2.76 3.06 3.38 3.66 3.87 4.24 4.50 4.75 4.99;...
1.00 1.16 1.41 1.64 1.93 2.18 2.48 2.80 2.05 3.36 3.68 3.93 4.24 4.52 4.75 5.02;...

oy
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1.00 1.16 1.38 1.64 1.88 2.22 2.4% 2.77 3.06 3.38 3.64 3.36 4.24 4.531 4.76 5.01%1;

%Sensor 5 Readings

Sensor_outputs(z,:, 5)=...
[L.00 1.18 1.36 1.81 1.88 2.12 2.32 2.60 2.86 3.14 3.43 3.65 3.8C 4.12 4.31 4.45;
1.00 1.14 1.36 1.65 1.87 2.11 2.3% 2.62 2.8% 3.12 3.42 3.63 3.8% 4.10 4.34 4.45;.
1.00 1.17 1.37 1.64 1.83 2.14 2.3% 2.64 2.93 3.16 2.43 3.87 3.22 4.14 4.36 4.45;.
1.00 1.17 1.40 1.64 1.91 2.14 2.40 2.583 2.93 3.17 3.42 3.68 3.90 4.14 4.37 4.45;.
1.00 1.18 1.3%9 1.65 1.89% 2.14 2.42 2.65 2.91 3.16 3.42 3.66 3.87 4.15 4.37 4.45};
%Calculate sample mean for each senscor at each position (i.e., 0 mm, 1 mm, ... 15 mm)
for i= {i:1:n}

for = {1:1:16)

sample mean{i,j) = mean(Sensor_ outputs{:,],i}};

end
end

$Calculate slopes of sengor responses based on 2nd and 15th points in sensor ranges
for i= (l:1:n)

slope (i} =(sample mean(i,15)-sample _mean(i,2)}/13;
end

$shorten x-axis by eliminating end-points (i.e., 0 and 16)
for i={2:1:15)}

xlinear{i-1)=x{i);
end

%Calculate linear regression parameters for shortened ranges
% for each sensor based on sample means

al=zeros(5,1); al=gzeros(5,1); a3d=zerosg{5,1); ad=zeros(5,1);
A=zeros{2,2,5);
C=zerog(2,5) ;
X=zeros(2,5);
for i=(1:1:8) $create sample mean array for shortened range
for j=(2:1:15)
sm_linear(i, j-1)=sample mean(i,j);

end

end

for i={1:1:s)
al{i) = sum{xlinear.”2);
a2{i) = sum(xlinear);
a3 (i) = sum(xlinear);
a4 (i) = 14;
C(1,i) = xlinear*sm linear(i,:)’*;
C(2,1) = sum{sm_linear(i,:));
A(:,:,i)=[81(i) a2(i);a3(i) ac¢(i)};
X(:,i)=inv{A(:,:,1))*C(:,1);

end

$Calculate best fit using linear regression parameters
for i={1:1:8)

linear approximation(i,:})={(X(1,i)*xlinear)+¥{2,1);
end

%Using the sensor outputs corresponding to the shortened x-axis as described above
%{i.e., minus points 0 and 16), calculate the percent of the total sensor cutput range
$obtained by this shortened x-axig.

$8.g., say for semsor 1 at point 15 (14 mm), the sample mean for all sets of output
readings

%is 4.812 and at point 2 the sample mean ig 1.16. This corresponds to percentages
0.9537

%and 0.0447 respectively of sensocr 1's total output range.

$To simplify calculations, the average high and low percentages of all sensors are
calculated.

$Then thege two values are used below to calculate sensor ocutputs for the truncated
ranges. If

$the fit of these calculated outputs to the linear regression plot is acceptable, then
this
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$technigue may be useful for updating the sengor input-output glopes used in the
actual
%dSpace application

for i={l:1:8)

high percent(i)=(sample_mean(i, 15)-sample_mean{i,1))/{sample mean{i,16)-
sample mean (i, 1)} ;

low_percent (i) ={zample mean (i, 2) -sample mean(i,1})/(sample mean{i, 16)-
sample mean{i, 1}};
end
high percent=mean (high percent);
low _percent=mean{low_percent);

%Calculate outputs using slopes derived from shortened ranges

for i={l:1:8)
new_high{i)=high percent*(sample mean (i, 16)-sample mean(i,1))+sample_mean(i,1);
new_low(i)=low_percent* (sample mean(i,16)-sample mean(i,1))+sample mean(i,1);
new_slope(i)=(new_high{i)-new low(i)}/13;
calc outputs (i, :)={(new_slope(i}*(xlinear-1))+sample mean(i,2);

end

%Plot sample wmeans of (1) actual sensor outputs, (2} best fit derived from linear
regresgsion parameters
%and (3) the ouputs calculated using new slopes obtained from percentages.
for i= (1:1:8)
figure; plot(x, sample mean(i,:), 'r', xlinear, linear approximation(i,:), 'g',...
xlinear, calc_outputs(i,:), 'b');
xlabel ('Width of Sensor Beam Rcvd (mm)');
ylabel ('Sensor Output Voltage (v)');
legend('Data’, ‘Linear Approximation', ‘Slope Calculations--Truncated Range',2);
grid minor
end

The second script in this section illustrates the commands used to read variables from the
dSPACE real time processor, perform calculations based on those variables and then update

the variables in the real time processor all while the dSPACE application is running.

Param_change.m

% This Matlab script uses the ASPACE MLIB/MTRACE Functions to perform a live update of
MSBS sensor voltage conversion parameters in the MSBS application. It does this while
the application is running on the DSpace Real Time Processor (RTP), on the DS1103 Real
Time Interface (RTI). (Parameters ave called “"variables" in the dSPACE environment.)
The script first obtains the correct locations in the RTP for the variables
representing the maximum output of the Sensors and reads in the values. Then the
gensor output midpoints and the inverse slopes of the input-output response are
calculated. Finally, the variables on the RTP corresponding to these parvameters are
located and the newly calc values substituted for the existing ones.

% MLIB/MTRACE functions require the £ile dSPACErc.m to be present in directory
% \Matlab\Toolbox\Local and a call to this file be appended to
\MATLAB\Toolbox\Local\Matlabrc.m

%

% Created by Mark Adams, June 2003

% Last modified 03/11/04

%Select DS1103 for use with MLIB/MTRACE
mlibini;

$Get variable addresses for sensor voltages.

sens_voltages=...
{ 'Model Root/Sensor \nSubsystem/Positioning Subsystem/Sensor S1/0utl';...
‘Model Root/Sensor \nSubsystem/Positioning Subsystem/Sensor 32/Cutl’;...
"Model Root/Sensor \nSubsystem/Positioning Subsystem/Sensor S3/0utl’;...
‘Model Root/Sensor \nSubsystem/Positioning Subsystem/Sensor S4/0utl’;...
‘Model Root/Sensor \nSubsystem/Positioning Subsystem/Sensor $5/0utlt};
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% Capture 10 samples of each sensor output woltage in uncbstructed {(full beam)
condition

voltages vecl=mlib{'GetTrcVar’, sens_voltages);

mlib{'8et’, 'TraceVars', voltages vecl, 'NumSamples', 10);
mlib{'StaxrtCapture’);

while mlib{ ‘CaptureState’)}~=0, end;

% Save sensor output voltages in arrvay
display {'Sensor Voltages');
voltages=wlib{’ FetchData') ;

BSensorCEf=0.285; % average min value for all sensorg--much more stable than max
value

% Take sample mean of each Sensor output voltage and calculate widpoints and
% inverse slopes for each

SenzorOn=mean (voltages');

SensorOff=. 995;

midpoint_cale={ (SensorQfE£+SensorOn) /2) ' ;
inv_slope_calc:(0.0lS./(SensorOn—SensorOff))‘;

%Convert numeric arrays to cell arrays
midpoints=num2cell {(midpoint_calc);
inv_slopes=num2cell (inv_slope_calc);

$Get variable addresses for sensor midpoints and reset values
sensor_midpointe=...

{ *Model Root/Sensor \nSubsystem/Positioning Subsystem/Voltage-
Digplacement\nConversions/S1 Midpoint/Value';...

'Model Root/Sensor \nSubsystem/Positioning Subsystem/Voltage-
Displacement\nConversions/S2 Midpoint/Value';...

'Model Root/Sensor \nSubsystem/Positioning Subsystem/Voltage-
Digplacement\nConversions/83 Midpoint/Value';...

'Model Root/Sensor \nSubsystem/Positioning Subsystem/Voltage-
Displacement\nConversions/S4 Midpoint/Value';...

'Model Root/Sensor \nSubsystem/Positioning Subsystem/Voltage-
Digplacement\nConversions/S5 Midpoint/value'};
midpoints vec=mlib('!'GetTrcVar', sensor_midpoints);
mlib('Write', midpoints_vec, 'Data’, midpoints);

%Get variable names for sensor inverse slopes and reset values in Real Time Processox
sensor_inv_slopes=...

{'Model Root/Sensor \nSubsystem/Positioning Subsystem/Voltage-
Displacement\nConversions/S1 Inv Slope/Value';...

'"Model Root/Sensor \nSubsystem/Positioning Subsystem/Voltage-
Displacement\nConversions/S2 Inv Slope/Value';...

"Model Root/Sensor \nSubsystem/Positioning Subsystem/Voltage-
Displacement\unConversions/S3 Inv Slope/Value';...

‘Model Root/Sensor \nSubsystem/Positioning Subsystem/Voltage-
Displacement\nConversions/sS4 Inv Slope/Value':...

'Model Root/Sensor \nSubsystem/Positioning Subsystem/Voltage-
Displacement\nConversions/S5 Inv Slope/Value'};
inv_slope_vec=mlib('GetTrcVar’', sensor_inv_slopes);
mlib ('Write', inv_slope vec, ‘Data’, inv_slopes);

The third script in this section is the one used to compare the values of the magnetic flux
density and its gradients obtained both by measurement and by calculation using the

relationship

This experiment was covered in Chapter IV.
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Bzz Bzzz compare.m

% This program uses poelynomials describing the z components of magnetic flux densitciy
measured at two different coil currents: (1) 3%.8 A, the value Imax used to obtain the
Bz measurements used in the one-DOF MAGLEV test; and {2) 15.74 2, a value of Imax just
above the maximum current needed to levitate the permansent magnet at the extreme lower
end of the one-DOF command input range. The program plots the walues of Bzz and Bzzz
for each ©coil current together with plots of the calculated values of Bzz and Bzzz
bagsed on the one-DOF modeling assumption: Bzz={I/Imax)*bzz, where bzz=Bzz at Imax.
Finally, the program calculates the percentage difference between the calculated
values and the measured values of bzz and bzzz.

%

% The purpose of the program is to validate the modeling assumption by comparing
values obtained from assumption to values obtained by direct measurement.

format;

clear;

close all;

% Best fit polynomial coefficients for Bz for Imax = 39.8A:
al=[63.92 35.06 5.773 -.05612 -.0865];

% Best fit polynomial coefficients for Bz for Imax = 15.74A:
a2=[21.95 12.25 1.998 -.0456 -.03519]

x=-.10;

ZO=X;
bi=polydexr(alj;
cl=polyder (bl) ;
b2=polyder (a2) ;
c2=polyder (b2) ;

clc
imax=39.9;
i0=15.74;

for x=1:1:15
bzz_ imax(x)=polyval(bl, (-.05-({(x-1}*%.01)))
bzzz_imax(x)=polyval (ci, (-.05- ({x-1)*.01))
bzz_i(x)=polyval (b2, (-.05-((x-1)*.01)));
bzzz_1i(x)=polyval{c2, (-.05-{(x-1)*.01)));
bzz_calc(x)=bzz_imax(x)*io/imax;
bzzz_calc(x)=bzzz_imax(x)*io/imax;

)i

end
z=(~,051:-.01:-.191);
plot{z, polyval{al,z),'-", z, polyval{a2,z),':');

grid; legend('B_z at I = 39.8A', 'B z at 15.74 A'};
xlabel ('Distance Below Coil {(m)');
ylabel (‘Magnetix Flux Density, B_z (T)');

figure;
plot(z, bzz_imax,'-', z, bzz i,':', z, bzz_calc,’'-.');
grid; legend{'B z =z at I = 39.8A', 'B z z at 15.74 A', 'B_z_z Calculated’}

xlabel {'Distance Below Coil (m) ")
ylabel ('Magnetic Flux Density--First Order Gradient, B z z (T/m)’);

figure
plot(z, bzzz_imax,'-', =, bzzz i,':', z, bzzz calc,'-.'});
grid; legend{'B z_z =z at I = 39.8A', "B z z z at 15.74 A', 'B_z z z Calculated')

xlabel ("Distance Below Coil {m)*);
ylabel (‘Magnetic Flux Density--Second Order Gradient, B_z z z {(T/m"2)'};

cle;

disp (*Absolute differences between calculated and measured values of bzz and bzzz')
Abs_bzz_ diff=abs(bzz_i(11)-bzz_calc{il})

Abs_bzzz_ diff=abs(bzzz_1i{11)-bzzz_calc{il))

disp{'Percent differences between calculated and measured values of bzz and bzzz')

Percent bzz diff=100%(bzz_1i{11)-bzz_calc{1l))/bzz_i{11)
Percent_bzzzwdiff=100*(bzzz_i(ll)‘bzzzﬁcalc(ll})/bzzz_i(ll)
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Matlab Scripts Used for 1-DOF Controller Synthesis

This section contains Matlab scripts written to produce the 1-DOF linear quadratic gaussian
(LQG) regulators described in Chapter V. Only the scripts for the basic iterative design
method and not the loop transfer recovery (L TR) method are provide. The basic scripts are of
value here to illustrate early experimentation with implementing optimal control concepts for
the MSBS, including a design methodology. On the other hand, the TR scripts, though also
illustrative, were substantially revised for the muliiple-input, mmltiple-output (MIMO) case

and it was felt inclusion of the 1-DOF LTR scripts would be excessive.

ONE_DOF_LQR.m

% This program is an LOR design tool.
% Created by Mark Adams.
% Last Modified: 01/27/04

format; clc; clear; close all;

% Variables needed on Matlab Workspace

global cmd £bl £b2 simout d out io tl default m bpert £d a 1lgg b_lgg c_lqgg d_1qg;
tl=clock;

% ***x** Derive State Space Model and Nonlinear Model Coefficients for Plant #*wxx%w
One_DOF_Plant;

g x*xx*x* Determine whether to use default values or user input *****x¥x
msg='Use default ranges for Q, R and desired regulator set points? (¥Y/N): '
default=prompt (msg) ; i

IR ETEEEEEEESEAEELEEELERE SRS RS EELE RS RS E LSRR LSRR EEEELEREEEEESESEEEEEERSEEE
Call function QEVAL to obtain ranges of feedback coefficients and eigenvalues
obtained from Matlab command [X,S,E]=LQR(A,B,Q,R), along with the wvalues of
the elements in the corresponding Q and R weighting matrices.

& of o of

[K_range, E_range, input_ rangel=QEVAL(a, B);

% % FEEEEER RS A LA L LRSS AR EREEEEEEE LR ERSEEEEEEEAEEEENAEEEEREEEREEEEEEEEEEELELEEESES]

% Implement Range of LTI Systems and determine time responses for each system.
[step respl=CL_RESPONSES (A,B,C,K_range) ;

% *#x* Find Values Meeting Threshold Criteria and Corresponding Q,R for time responses
* %k

meg="'Perform Criteria Threshold tests? (¥/N): *;

rhreshtest=prompt {(mag} ;

if threshtest=='y’

[step thresh] =THRESHOLDS (step_resp, input_range);

end

% wwkwsisd Determine whether to do controller stiffness tesig ¥r¥Frxxxeswrdhteihis
meg='Perform controller stififness tests? (Y/W): ';
stifftest=prompt (msg) ;
if stifftest=='y’
{cstiff]=8TIFFNESS_TEST{A,B,C,X range)
end
% break
§ *xx%xxx%% Determine whether to do B Field perturbation tesits *#*¥rikdkddardaitin

mag='Perform B Field perturbation tests? (¥/N): ';

btest=prompt (msg) ;

if btest=='y'
[bptest]=B_PERTURB(A,B,C,step_resp,K range);

end
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msg='Calculate new lsvE coefficients based on different @ and R values? (¥/N): ¥;
recalo=prompt (meg) ;

1if recalos='y!
default old=default;
default='n*;

[¥X_range, E_range, input_range]=geval(A,B);
[step respl=cl responses({i, B,C, K range);

mseg='Repeat Criteria Threshold tests? (¥Y/N): *;
threshtest=prompt {(msg) ;
if threshtest=='y!
{step thresh]=thresholds(step_resp, input range};
end
mgg='Repeat contrcller stiffness tests? (Y/W): ';
stifftest=proupt {(mag);
if stifftest=='y’
[cestiffl=gtiffness_test (A,B,C,K _range);
end
msg="'Repeat B Field perturbation tests? (Y/N): ';
btest=prompt (msg) ;
if btest=='y’
{bptest]=B_PERTURB (A,B,C, step_resp,K_range);
end

default=default_old;
end % if recale='y’

g **xx%xx¥xx*x Determine whether to perform LQG regulator test **x#xxxx
msg='Create Kalman state estimator and perform system response tests? (Y/N): ';
estimator=prompt (msg) ;
if estimator=='y’
[lgg_respl=LQG_TEST(A,B,C,K range);
end

ONE_DOF_PLANT.m

% This program calculates values for state space matrices A,B,C,D for a one-degree-of-
freedom maglev system. The program also calculates linearized plant transfer functicms
and parameters for use in the Similink non-linear model.

% Program uses 4th degrree polynomials to describe z components of the magnetic flux
densities from each magnet. The polynomials are fitted to the plots of actual
measurements.

$For coil and permanent magnet #1 (Coefficients from get Bl.)

a=1.2664 -2.289 -2.314 -.8194 -.1125];

b=polyderi{a);

c=polyder{b) ;

z2o=~.17835;

bzz=polyval (b, zo) ; $polynomial describing first order gradient
bzzz=polyval{c, z0); $polynomial describing second order gradient
imax=39.8;

m=.192; %1590.2 grams without adhesive filler
mu=pi*de-7;

v=16.0%e-5%;

Mz={-1.22/mua) ;

g=9.81;

io= {(m*g*imax) / (v*Mz*bzz) ; $Bquilibrium current

B=[0 I;{v*Mz*io*bzzz)/{imax*w) 0]; %State Space form of linearized plant
B={0 v*Mz*bzz/ (imax*m)}’;

c=[1 01;

D={0];

% FEREEFEESAE R AR EERE S SRR S SR EEEESE] Hold fCr use with non linear mode}_ KEITARARAKERERAR R

% pause;

ki={v*Mz*bzz) / {(imax*m} ; $Constants for use in non-linear wodel
k2= (v*Mz*bzzz) / {(imax*n) ;
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QEVALm

% This function takes the specified range limits for the values of Q and R, along with
the state space matrix A and input matrix for the plant, and calculates the
corrésponding range of state variable feedback values and repositioned pole values
uging the LQR function.

o

Created by Mark Adams

% Last Modified: 01/27/04

%

% The function uses the input variables:

%

% A _plant: The state variable matrix for the plant

% B _plant: The input matrix for the plant

% Q bound: The limit for the range cof values in the diagonal weighting matrix ¢

% (all elements have the same range.)

% R_bound: The limit for the range of values in the weighting matrixz, R.

% incr: Size of the increments between values in ¢ and R.

% The function returns the variables:

%

% feedback_range: An array contraining the elements of the diagonal feedback matrix K
% pole_range: An array containing the new eigenvalues obtained with s.v.
feedback

% QR range: An array containing the elements of the two weighting matrices for
the

% ranges specified by the input variables

function{feedback_range, pole range, QR rangel=Qeval(A plant, B plant);
global default;

g wxkkxxxkkkx*4%% Uge Test Range or Take User Input ***xkxkxkxkskkxrdkkhkdk

if default=='y’
% Use Test Range
Q=[1 0;0 1];
R=1;
{K,8,El=1lgr (A _plant,B plant,Q,R);
QR_range=[1 1 1];
feedback_range=K;
pole_range=E';

else

% User Input range of Weighting Matrices, Feedback Constants, Eigenvalues

range u=input ('Max value in range of elements of Q & R matrices: ‘); %High end
of range

range_l=input ('Min value (but not 0) in range of elements of Q & R matrices: ');
$Low end of range
no_values=input ('No. of equally spaced values in range, including beth range

endpoints: '); $Input no. of values in range.
% (E.g., for desired range = 10 and no_values = 10, Q varies from [.1 0; 0 .1] to
% [1.0 0; 0 1.0] in increments of 0.1 in the diagonal elements. Each element
% is varied separately for a total of 10¥10=100 permutations. Also, R varies
% from 0.1 to 1. The total no. of permutations for = 10*10*10=1000.)
% Note: current configuration assumes both diagonal elements of Q and the single
% element ¢f R 3ll have same range and are incremented kv the same value.

% wxxxxx¥k Zet Up Parameters for Calculating Permutations of § and R #¥¥#v#xwirrrx
step_size=(range u-range 1)/(no_values-1);

range_len={no_values”3}; $Determine length of arrays.

pole range=zeros {range_len, 2}; $pre-zllccate arrays

feedback_range=zeros (range_len, 2);

OR_range=zerog(range_len, 3);

step size=(range u-range 1)/{no _wvalues-1};

r={range_l:step size:range u);

gl=xr;

g2=gi;
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% EE AR EEEEREEEEEEE LN Create Permuﬁ;ations O-_f R and Q RS EEE AL EREEEEREE AR L EEEEE 2]
count=0;
for i=1:nc_values
for j=l:no_values
for k=1:no_values
count=count+1;
QR _range (count, :}={xr{i) gl{j) g2{k)i;
Q=Ilgi{j) 0; ¢ a2{k}];
{X.5,El=1gr (& _plant, B plant, Q, r(ij};
feedback range{count, :)=K;
pole range(count,:}=E’;
end % innermost for loop
end % next ror Locp
end; % outer for loop
end; % If then else statement

CL_RESPONSES.m

% This function takes a range of state variable feedback constants and derives new
transfer functions for the plant. The function then uses the LTI transfer functions
to implement closed loop unity feedback systems, which are tested with step and
impulse functions. The function performs the same procedure for the nonlinear model
by invoking a Simulink model. The tested system responses are returned in vectors.

o

% Created by Mark Adams

% Last Modified 01/27/04

% The function uses input: variables:

%

% A plant: State variable matrix for the plant

% B plant: Input matrix for plant

% C_plant: Output matrix for plant

% fos: An array containing linear state variable feedback (lsvf) coefficients
% The function returns variables:

%

% trstep An array containing percent overshoot, settling time

% and steady state response for both the linear and nonlinear models

% as well as magnitude of the maximum deviation of the control input from
% its eguilibrium,

% tr_imp An array containg maximum value, final value and settling

% time of impulse response. ****not implemented at this timex*¥*

function[trstepl=CL_RESPONSES (A plant, B_plant, C_plant, fcs);
global cmd £bl £b2 simout d_out default tl ioc bpert f£d; %variables needed on Matlab

workspace

£d=0; % switch for additive disturbance force in Simulink model
bpert=0; % switch for additive b-field perturbations in Simulink model
if default=="y'

d_out=[-.005 -.004 -.003 ~.002 -.001 © .001 .002 .003 .004 .005];

d_out_len=11;
else

disp{''});

d_out_l=.001*input ('Enter lower limit of desired regulator set point range (in mm}
EAD

d_out_u=.001l*input (‘Enter upper limit of desired regulator set point range {(in

mm} ¢ Y
&_out_incr=.00l*input {'Enter increment between desired set points in range (in
wmmy s )

4 out={d_out_1i:d_out_incr:d_omut_ul;
& _out_len=length{d_out);

end % if default
len=length(fcs{:,1}); 3length of fcs equals no. of permutations to calculate
trstep=zeros(len, 8,d _out_len); $%preallocate arrays to hold time responses

% trimp=zeros{len,7.d cut_lemn); % not implemented at this time
elapsed time=zeros(d out_len,l);

£=(0:.01:5.0); % Create time scale
lent=length{t);
D=[0];
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for h=1:4 ocut len % seguence through all seb pointe
elapsed_time (k) =etime (clock,tl);
for i=l1:len % seguence through all levf coefficients once for

% each set point

$Create closed-loop fransfer function, Gcl, using lsvE coefficients
Ao=A_plant-B plant*fesi{i, :);

Gecl=as{Ac,B plant,C plant,D);

% Invert closed-loop transfer function and evaluate at f£inal value.

% Then use to find input corresponding to final value = yd. (Kailath p.208)
% Icl=degain {inv{Gcl));

Ici=inv{dcgain(Gcl));

cmd=Ici*d _out{h);

trstep(:, 8,h)=cnd;

% Derive amplitude step function need to for set point
ugtep=ones (lent, 1) ; % Create step input seguence
ustep=cud*ustep;

% Determine step response of closed-loop, pole-shifted, linear system
[ystep]l=lsim(Gcl, ustep, t);

% Determine step response of non-linear system
fohl=fcg{i,1);

fb2=Ffce (i, 2);

sim('nonlinear_ lqr’);

% Determine final value of step response of linear system

trstep(i, 3, h)=ystep(lent);

if ystep{lent)==0 %Avoid division by zero in following calculations
ystep (lent)=le-12;

end

% Determine final value of step response of non-linear system

trstep(i, 6,h)=simout (lent) ;

if simout (lent)s== $Avoid division by zero in following calculations
simout (lent)=le-12;

end

% Determine percent overshoot of linear system response to step input
if d_out(h)<0.00
trstep(i,1,h)=((min(ystep)-ystep(lent))/ystep(lent))*100;
else
trstep(i,1,h)={(max(ystep) -ystep(lent)) /ystep(lent))*100;
end

% Determine percent overshoot of non-linear system responge to step input
if d_outi{h)<0.00
trstep(i,4.h)={{(min(simout) -simout (lent) ) /simout (lent) )} *100;
alsge
tratep (i, 4,h)={(max (simout) -simout {lent)) /simout (lent)) *100;
end

% Determine settling time (within 2% of final value) of linear system
crosg=0;
for tstep=l:lent
if abs{ystep(tstep)-trstep{i,3,.h)}<=.02*%abs(trstep{i,3,h))
Crogs=cross+l;
if cross==2
trstep(i,2,h)=.01l*tstep;
break
end % end if cross
end % end if abs
end % end for tstep
if cross<=l
trstepi{i, 2, h)=.01*lent;

2

end % end if cross

% Determine settling time {within 2% of final value) of non-linear system
cross=0;
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for patep=i:lent
if abs{simout {Lstep)-trstep{i, &, h))<=.02%abs{tratep({i,s, b}
CYrOSS=0rO88+1;

1f crogs==
trstep(i,5,h)=.01l*Ctstep;
break
end % end if cxoss
end % end if abs
and % end for tstep

if crosgxsl
trstep{i,s,h)=.01%1lent;
end % end if cross

% Determine magnitude of waximum deviation of contyol input Lo non-linear

mnodel
cratep (i, 7, h)=max({max{simin) -io0), (min{simin)-io));
end % end for i=1:len
end % end for h=1:d_out len
THRESHOLDS.m

% This function examines ranges of step and impulse response data (percent overshoot,
gsettling time, steady state value, max impulse response, impulse settling time, and
steady state value) for values that meet certain thresholds. The function then
returns those values along with the corresponding values for weighting matrices that
produced them.

%

% Created by Mark Adams

% Last Modified: 01/27/04

% This function uses the following inputs:

% trstep: A 3-D array containing step responses of linear and non-linear
systems

% “created uging a range of linear state variable feedback (lsvf)

% coefficients.

% QR_range: A 3-D array containing LQR weighting matices used to produce a range
of

lsvE coefficients, which in turn were used to create the responses
in
trstep.

% The function returns the variables:

% sr_ thresh An array whose columns represent the time response values contained

% in the input array 'trstep' that meet designated threshold criteria.
The time response values represented are Percent 08, Settling Time,
Final Value. Along with the values selected are the corresponding
values of Q and R that produced them. sr_thresh is three

dimensgsional,

e.qg., sr_thresh(x,y,z), where x is no. of values meeting the
criteria

for any of the three responses of interest, y is the no. of tr
values

and their corresponding R&Q, z is the number of desired regulator
outputs for which time responses were measured.

function[sr_thresh] =THRESHHOLDS (trstep, QR _range);
global ic d_out default;

disp{' '};

disp(' ');

if default=='y’

% Use Test criteria

perc_os=1;

st=.65;

perc_ss=.05;

perc_io=.10;
else

disp(‘Enter the threshold criteria for ¢l step responsed of candidate systems.
)i
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perc os=.01i*input {'&nter maximum percent overshoot (E.g., use 2 to indicate 2%.)
Y1 -

st=input {'Enter maximum desired settling time in seconds. '};

perc_ss=.01*input ('Enter maximum allowable percent error in steady state value.
(E.g. 2 indicates 2%) °);

perc_ico=.0L*input {'Enter maximum percent increase in eguilibriun current (E.g. 10

indicates 10%) ');

end

ioval=abs {perc_ic*io); % magnitude of the linear system's eguilibrium current
s=sizel{trstep); % size of arvay containing step responses
sr_thresh=zerocs(s(1),4*s{2),s(3)): %preallocate arrays to hold values meeting
criteria

g *xxwxxxxxixx Select step responses meetbing threshold criteria **F*xxuddiwdidis

for h=1:35(3) $Loop through range of desired regulator set points
perc_ss;
ssval=abs (perc_ss*d out{h));

b=1; % Percent overshoot of linear wmodel
ind=0;
for j=1:s(1)
count=j;
QR=QR_range {(count, :) ;
if trstep(j,1,h)<=perc_os
ind=ind+1;
sr_thresh(ind,b:b+2,h)=0QR;
sr_thresh(ind,b+3,h)=trstep(j,1,h);
end
end

b=5; % Settling Time of linear model
ind=0;
for j=1:s(1)
count=j;
QOR=QR_range (count, :};
if trstep(j,2,h)<=st
ind=ind+1;
sr_thresh(ind,b:b+2, h)=0QR;
sr_thresh(ind, b+3, h)=trstep(j,2,h);
end
end

b=9; % Percent error of steady state value of linear model
ind=0;
for 4=1:8(1)
count=7;
QR=0R range (count, :) ;
if abs{trstep(j,3,h)-d_out(h))<=ssval
ind=ind+1;
sr_thresh{ind,b:b+2,h)=QR;
sr_thresh(ind,b+3,h)=trstep{]j,3,h);
end
end

b=13; % Percent overshoot of non-linear model
ind=0;
for j=1l:8(1)
count=j;
QR=QR_range {count, :};
if trstep{j,4,h)<=perc_os
ind=ind+1;
sr_thresh(ind,b:b+2,h)=0R;
sr thresh(ind,b+3,h)=trstep(j, 4, h);
end

% Settling Time of non-linear model

=1:8(1)
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count=3j;

OR=QR_ range{count, t} ;

if trstep{d.5,h)«=8t
ind=ind+1;
sr_thresh(ind, b:b+2,h)=0R;
sy_thresh({ind,b+3,h)=trstep{i,5.h};

end
end
b=21; % Percent ervor of steady state value o0f non-linear model
ind=0;
for j=1l:8(1}
count=3;
QE=QR_range (count, :) ;
% abs{trstep(j,s,.h)-d_out{h});

if abs(trstep{j,s,nh)-d_out{h))<=s8sval
ind=ind+3;
gr thresh{ind, b:b+2,h)=0QR;
sr_thresh{ind, b+3,h)=trstep(j,6.h};
end
end

b=25; % Percent change in equilibrium current
ind=0;
for j=1:s8(1)
count=1;
QR=QR_range (count,:) ;
if abs(trstep(j,7,h)-i0)<=ioval
ind=ind+1;
sr thresh{ind,b:b+2,h)=0R;
sr_thresh(ind,b+3,h) =trstep(j,7,h);
end
end

end $for h=1:s5(3)
disp ('Following are the non-linear system responses meeting the threshhold
criteria ')
disp('for percent overshoot, settling time, final value and maximum control input:
")
sr_thresh{:,13:28,:)
msg='Display both linear and non-linear responses? (¥/N): *;
all vals=prompt (msg) ;
if all vals=='y'
sr_thresh
end % if all_vals

STIFFNESS TEST.m

% This function takes plant state equations & a range of state variable feedback
constants and derives new transfer functions for the linearize plant. The function
then uses the LTI transfer functions to determine appropriate cmd inputs for the
Simulink nonlinear 1lsvf model. The nonlinear model is then run using the cmd settings,
the corresponding state variable feedback constants and a known disturbance force that
simulates an aerodynamic disturbance. The stiffness quotient, i.e. the ratic of the
force to the displacement it produces, for each cmd setting is returned.

op

Created by Mark Adams
Last Modified 01/27/04

g0

% The function uses input variables:

%

% 2 plant: State variable matrix for the plant

% B plant: Input matrix for plant

% C_plant: Output matrix for plant

% fos: An array containing the state vaxiasble feedback constants

% The function returns variables:

%

% fdresp An array containing the stiffness quotients for the nonlinear system
% for a range of lsvf constants and cmd inputs.
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function {£dresp] =STIFFNESS _TEST (A _plant, B_plant, C plant, fcs});
global omd £b1 £b2 simout default tl m bpert £4; %$variables needed on Matlab

workspace

len=length(fos{:,1})); % length of fcs egquals no. of permutations to
calculate

£={0:.01:5.0}; % Create time scals for simulation

lent=length{t);

hflent=floor{lent/2);

b=[01;

£d_max=1/m; % represents magnitude of max disturbance forxrce in Simulink wodel
in range={-.003 0 .005];

in len=length{in_range) ;

fdresp=zercos{len,4*in len); %preallocate arrays to hold stiffness responses

£d=0; % switch for additive disturbance force in Simulink model
bpert=0; % switch for additive b-field perturbations in Simulink model

for h=1:in_len
elapsed_time(h)=etime (clock,tl);
gp=h+3* (h~1);

for i=l:len

$Create closed-loop fransfer function, Gecl, for pole-shifted plant
Ac=A plant-B plant*fcs(i, :);
Gel=s8s(Ac,B_plant,C_plant,D);

% Invert ¢losed-lcop transfer function and evaluate at final value.

% Then use to find input corresponding to final value = yd. (Kailath p.206)
Icl=inv{dcgain(Gel));

cmd=Icl*in range(h) ;

% Obtain response of non-linear system
£d=0;

fbl=fecs{i,1);

fbh2=£fca (i, 2);

sim{'nonlinear lqr');

fy=gimout (lent) ; $obtain final value without Fd
fd=1;
sim('nonlinear lqr'); % obtain ocutput with Fd

% Test response for max/min and calculate stiffness quotient
a=1/max {simout (hflent:lent) -£fv);
b=1/min (simout (hflent:lent) -fv);

% 1if fv~=D % normalized displacement from nominal position
% a=a/fv;
% b=b/fv;
% end
c=(abs(a)+abs (b)) /(2};
fdresp{i,gp:gp+3)=[{fv a b cl;
if len<=2
plot {t,simoutl) ;
end
end $inner for loop
end % outer for lcop
B PERTURB.m

% This function takes plant state eguations & a range of state variable feedback
constants and derives new transfer functions for the linearize plant. The function
then uses the LTI transfer functions to determine appropriate cmd inputs for the
Simulink nonlinear lsvf model. The nonlinear model is then run using the same omd
gsettings used for the unperturbed time responses only with the B field coefficients
perturbed.

% Created by Mark Adams
% Last Modified 01/27/04
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% The function uses input variables:

%

% A plant: State variable matrix for the plant

% B _plant: Input matrix for plant

% C_plant: Output matrix for plant

% fos: An arvay containing the state variable feedback constants

% The function returns variables:

&

% fdresp An array containing the stif+fness guotients for the nonlinear system
% for a range of lsvf constants and omd inputs.

function (bprespl=b perturb(A plant, B _plant, C_plant, txstep, fos);
global cmd £bl fb2 simout default d out tl m bpert io £d; %variables nseded on Matlab

workspace

len=length(fcs{:,1}); % length of fcs equals no. of permutations to
calculate

t=(0:.01:5.0); % Create time scale for simulation
lent=length(t);

D={[0];

d_out_len=length{d out);

bpresp=zeros(len,12,d out_len); % preallocate array to hold B Field Perturbation
responses

£d=0; % switch for additive disturbance force in Simulink model
bpert=0; $ switch for additive b-field perturbations in Simulink model

for h=1:d_out_len % sequence through range of set points
yd=d_out {(h) ;
cmd=trstep(1,8,h);
elapsed_time (h)=etime(clock, tl);

for i=l:len
bpresp(i;1,h)=trstep(i,4,h); % Copy non-perturbed time responses into new
matrix
bpresp(i,4,h)=trstep(i,5,h);
bpresp (i, 7,h)=trstep(i,6,h);
bpresp(i,10,h)=trstep(i,7,h);

for j=1:5
% Determine step response of non-linear system
Fbl=fcs{i,1);
fb2=fes (i, 2);
bpert=(0.05* (2*rand-1)};
sim{'nonlinear lgr');
if abs(d_out(h))==.005
% elseif abs(d_out{h))==.002
plot{t, simout); hold on;
end

% Determine final wvalue of step response of non-linear system

£v{j)=simout {lent) ;

1f simout {lent)s== $Avoid division by zero in following calculations
simout {lent)=1e-12;

end %if simout

% Determine percent overshoot of non-linear system response to step input
if d_out{h}<0.00
perc_os (j)={{min (simout) -simout (lent})/simout (lent)) *100;
else
perc_os{j)=({max{simout) -simout (lent)) /simout {lent}) *100;
end %end if d_out

% Determine settling time (within 2% of final value) of non-linear system
cross=0;
for tstep=l:lent
1f abs{simout (tstep)-£fv{j))<=.02*abs{Ev{]))
Cro8s8=Ccross+l;
if crogs==2
st{j)=.01l*tstep;
break
end % end if cross
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end $end if abs
29151 ¥end for tstep
if cross«=l

st{j)=.01l*1lent;
and % end 1f cross

I

¥Determine max input signal to non-linear model
in(j)=max({max{simin)~io}, {(min{simin)-io0));
N

end % end for j=1:5

bpresp(i, 2, h)=mean {perc_os);
bpresp{i,3,h)=std{perc_os);

bpresp{i,5,h)=mean{st) ;
bpresp (i, 6,h)=std(st);

bpresp(i, 8,h) =mean {fv) ;
bpresp(i, 9, h)=std(fv);

bpresp(i,11,h)=mean(in) ;
bpresp(i,12,h)=std(in);

end % end for i
and % end for h=

LQG_TEST.m

246

% This function takes a range of state variable feedback constants and derives new
transfer functions for the plant. The function then uses the LTI transfer functions

to implement closed loop unity feedback systems, which are tested with step and

impulse functions. The function performs the same procedure for the nonlinear model
by invoking a Simulink medel. The tested system responses are returned in vectors.

%
% Created by Mark Adams
% Last Modified 01/28/04

% The function uses input variables:
%
% A plant: State variable matrix for the plant
% B_plant: Input matrix for plant
$ C_plant: Output matrix for plant
% fes: An array containing linear state variable feedback (1svE) coefficients
% The function returns variables:
%
% resp: An array containing percent overshoot, settling time
% and steady state response for both the nonlinear model
% as well as magnitude of the maximum deviation of the control input from
% its equilibrium,
function[resp]l=LQG TEST(A plant, B plant, C plant, fcs);
$variables needed on Matlab workspace
global cwmd fbl £b2 simout d_out default tl io bpert £d a lgg b lgg o_lgg 4 1gg ;
£d3=0; % switch for additive disturbance force in Simulink wmodel
bpert=0; % gwitch for additive b-field perturbations in Simulink model
if default=='y’
d out=[-.005 -.004 ~.003 -.002 -.001 0 .001 .002 .003 .004 .0051;
d out len=11;
else
disp('');
d_out _l=.001l*imput (*Enter lower limit of desired regulator set point range (im
mm): ')
d out_u=.001l*input (*Enter upper limit of desired regulator set point range (in
mm): oY)
d_out_incr=.001*input ('Enter increment between desired set points in range (in

mm) : ),
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d out={d_ocut_1:4 out_incr:d_out_u};
d_out_len=lengthi{d_out);
end % i1f default

len=length{fcs{:,1)); %length of fgs eguals no. of permutations to calculate
resp=zeros{len,6,d out_len); spreallocate arrays to hold time responses
elapsed_time=zeros{d_out_len,1};

£={0:.01:5.0); % Create time scale

lent=length{t);

D={01;

G=1{1;11; % Process noise gain in state eguation x¥ = BAx + Bu + Gw
H={1]; % Process nolse gain in ocufput eguatiocn v = Cx + Du + Hw + v

sys=ss (2 _plant,B_plant,C_plant, D);

sys_k=ss(A_plant, [B_plant G],C_plant, [D H]}; % Separate control and disturbance
inputs
[kest]=kalman{sys_k,1,.1); % Create Kalman estimabtor
for h=1:d out_len % sequence through all set points
elapsed time (h)=etime(clock,tl);
for i=1l:len % sequence through all lsvi coefficients once for

9

% each set point

$Create ILQG Regulator using lsvf coefficients

F=lggreg (kest, fcs(i, :)); % Combine LSVF coefficients and Kalman
estimator
[a_lgg, b_lqg, c_lgg, d_lqggl=ssdata(F); % Obtain ss representation of LQG

Regulator

%Create closed-loop fransfer function, Gecl

Gel=feedback (sys, F, +1);

% Invert closed-loop transfer function and evaluate at final value.

% Then use to find input corresponding to final value = yd. (Kailath p.206)
input_gain=inv(degain(Gcl));

cmd=input_gain*d out (h);

resp(:,5,h)=d_out(h);

% Determine step response of non-linear system
sim{‘nonlinear lgg');
sim(*nonlinear lgr');

o0

% Determine final value of step response of non-linear system

resp(i,3,h)=simout (lent) ;

if simout (lent)==0 $Avoid division by zero in following calculations
simout (lent)=1le-12;

end

% Determine percent overshoot of non-linear system response to step input
if 4 out(h})<0.00
vegp(i,1,h)={{min{simout) ~simout (lent) ) /simout (lent) )} *100;
else
resp{i,1,h)={{max{simout) -simout (lent)) /simout (lent) ) *100;
end

% Determine settling time {within 2% of final value) of non-linear system
cross=0;
for tstep=1:lent
if abs{simout (tstep)-resp{i,.3,h)l<=.02%abs(resp{i,3,.h})}
Cross=Cros8s+l;
if cross==2
resp({i,2,h)=.0l*tstep;
break
end % end 1f cross
end % end 1f abs
end % end for tstep
if cross<=1
resp{i,2,h)=.01*lent;
end % end if cross
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% Determine wegnitude of maximum deviation of control input to non-linear

model
respl{i, 4, hl=max{ (max{simin)-io), (min{sinin)-ic));
respli,6, h)=1i;
end % end for i=l:len
end % end for h=l:4 _out_len
for h=1:d_out_len
displ(t '}
disp(’ % 0% | 8T .| 88 Vval | Iin | Set Point | Row Ind 'j;
respl:, s, k)
end % for h=1:4 cut_len

Matlab Seripts Used for 2-DOF Controller Synthesis

This section contains Matlab scripts written to produce the 2-DOF linear quadratic gaussian
(LQG) regulators described in Chapter VI. The first group of scripts are those used to
implement the loop transfer recovery (LTR) method. The second group are those used in

conducting the iterative design procedure.

TWO_DOF_LTR.m

% This program is an LTR design tool.
% Created by Mark Adams.
% Last Modified: 04/14/04

format; clc; clear; close all;

% Variables needed on Matlab Workspace

global cmd Kin Teqg bpert £d Ic m Ts;

Te=.001;

w=logspace (-2,3,400) ; % Create log frequency range for responses

% *x%x%% Derive Analytic State Space Model of Plant from Egng #**x#**x#
TWO_DOF_PLANT;
Izinv=sum([0 0 1}*Icinv)

% ** Extract States Relating to Pitch and Vertical Movement/Create DT Model **
[Am, Bm, Cm, Dm] =ssselect (A,B,C,D, [1 21, [1 21,01 3 7 10]1);
minsysg=8s (Am, Bm, Cm, Dm) ;

sysd=c2d (minsys, Ts) ;

[ad,bd, cd, dd] =ssdata (sy=sd) ;

fat,bt,ct,dtl=bilin{sysd.a, sysd.b,sysd.c,sysd.q4d, -1, 'Tustin’, Ts);

LTR='y"'; % Loop containing whole process
while LTR=='y’

% #** Synthesize and evaluate range of Kalman Estimators *##xxxxx

disp(' ')

digp(**** Synthesize and evaluate range of Xalman Estimatorsg #**w&*xxx:)

[KE, Gw,Rest, Kest, L _kf]=KALMAN SVYNTH (minsys, sysd);

Kagain='n';

meg='Repeat Kalman Estimator synthesis using different process ncoise gains? (Y/N):

Kagain=prompt {msqg) ;

while Kagain=='y’'
[Kf, Gw, Rest, Kest, L kfl=KALMAN SYNTH(minsys,sysd);
Kagain=prompt (msg) ;

end

g ERmwrkwkkikAkesk Parform Loop Transfer RECOVEYy PrOCess X ##*hxdkasikikxkxk
{Qilgr,rho,Klgr,L sys]=LTR PROCESS (Gw, Rest, L k£, minsys, sysd);
LTRagain='n';

meg=‘Repeat LTR Process using different multiplier value(s}? (¥/N): ';
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LTRagain=proupt {(msgl;

while LTRagainss='y’
{Qlgr, rho,Klgr,L sysl=ltr process(Gw,Rest,L kf,minsys, sysd);
LTRagain=prompt (msg) ;

end

Frwxwxk  Implement LOG system model and determine time responsesg sF*krkartk

SR=prompt { ' Determine step response of nonlinear model? (Y/N} 7);
if SR=='y’'
[step values, step resp,tout!=STEP RESPONSE(Klgr, winsys, sysd, ‘n'};
end
figure;

plot{tout, step_resp) ;

% *#xx%xx%%%¥ Determine whether to do controller stiffness tests *#dxakwxikdkidk
disp(* *);
mag='Perform controller stiffness tests? (Y/N): *;
stifftest=prompt (msg) ;
if griffrest=='y’

[stf_values, stf_resp, tout, d_forcel =STIFFNESS_TEST(Klgr, minsys,sysd);
end

% wxxkkx*+ Dgfermine whether to do B Field perturbation tests
EE TR T EEEREER L EEEELE

disp(' ')

msg='Perform B Field perturbation tests? (Y/N}: ';

btest=prompt (msg) ;

if btest=='y’

[bp_values, bp_resp, tout]=B _PERTURB(Klqgr,minsys, sysd);
end

LTR=prompt ('Repeat Entire LTR Implementation Process? ');
End %While

TWO_DOF_PLANT

This program provides the state space form of the linearized
two~DOF MSBS system. It also places certain MSBS parameters
% on the MATLAB workspace for modeling.

o dP

% Created by Mark Adams
% Last Modified 03/03/04

% Third set of Values calculated by Dr. Britcher:

% 1Bx 2By 3Bz 4Bxx 5BxXy 6Bxz 7Byy 8Byz 9Bzz 10Bxxx 11Bxyx 12Bxzx 13Bxyy 14Bxyz
15Bxzz 16BYyYyY
% 17Byyz 18Byzz 19Bzz=z
%
Bmax=[-.0223 0 -.0117 -.07%6 O -.1476 .0837 0 -.1304 .3783 0 ~1.0782 .313%8 0 -
1.0111 0 0 0 1.0782;...

.0223 0 -.0117 ~.07%6 0 .1476 .0837 0 -.1304 -.3793 0 -1.0782 -.3138 O

1.0111 0 ¢ 0 1.0782];

m=4.383; %mass of permanent magnet core and shell in kg deternmined 1/14/04 Dr.
Britcher/M Adams

v=6*(0.5%.0254) *pi* {1.5%,0254)72; fvolume of magnetic core composed of six 3.0% x
0.5" discs

mu=pi*de-7;

Mx=(1.22/mu);

g=%.81;

Imax=100;

% Moment of Inmertia for Test Model

mp=1.6383; % mass of pipe alone

mph=1.6601; % mass pf pipe and temp magnet holder
mphs=4.383; % mass of pipe, holder and magnets
m=mphs- (mph-mp)} ; % mass of test obiject (magnets and pipe)
mm=mphs-mph; % mass of magnets
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Im={11/2)*.0254; % length of magnet subassy

Ru=1.50%.0254; % radius of magnet subassy

lp=30*.0254; % length of pipe

Rp=3.5%.0254; % radius of pipe

Tm= (mm/12) *1m”™2+ (mm/4) *Rm”™2; % moment of inertia of magnets around transverse axis
Ip={mp/12} *1p"2+ {mp/4)*Rp™2; % moment of inertia for pipe

Ic=Im+Ip % total moment of inertia around transverse axes
Imx=0.5*mm*Rm"2; % moment of inertia of magnets avound axis of symetry

Ipx=0.5*mp*Rp”2;
IX=Imx+Ipx
=-Bmax{L,3)/Inax;
b=-Bmax (2,3} /Imax;
c=Bmax (1, 6) /Imax;
d=Bmax{2,6) /Imax;
e={m*g) / (v¥Mx) ;
A=la b;c d]; C=[0 el ';

Teg=inv (A} *C %Determine equilibrium current vector for both coils
Beg= (Bmax {1, :) *Ieq(l)+Bmax (2, : ) *Ieqg(2)) /Imax; $Calculate aggregate fields and
gradients

Wil={ {v*Mx) /m)*eye (10} ;
WL(3,3)=1;W1(4,4)=1;W1(8,8)=1;W1(3,9)=1;WL(10,10)=1;
% Create A matrix whose terms are defined based on I=Ieq

Al=[0 0 -{m/Ic)*Beqg(l) 0 000 -~{m/Ic)*Begis) -(m/Ic)*Beg(8) -
(m/Ic)*Beg{9);
0 00 -{m/Ic)*Beg{l) ©0 0 0 (m/Ic)*Beg(s) (m/Ic)*Beg(7)
{m/Ic)*Beqg(8);
1 00 0 000 O 0 0;
o 10 0 000 O 0 0;
0 0 -Beq(6) Beqg(5) 0 0 0 Beg(l0) Beqg(1l1)
Beq(12) ;
0 0 -Beg(s) (Beg(7)-Beg{4)) 0 0 0 Beqg(ll) Beg{13)
Beq(14);
0 0 (Beq{4)-Beq(9)) Beq(s) 000 Beq(i2) Beq(14)
Beq(15);
0 0090 0 100 © 0 0;
0 00 0 010 O 0 0;
0 00 0 001 0 0 01;
A=W1*Al;

% Create B Matrix whose termg are defined with (Bmax/Imax)*I

B={ (v*Mx) /Imax)*...

[-Bmax{1,3)/Ic -Bmax(2,3)/Ic;
Bmax(1,2)/Ic Bmax (2,2) /1c;
0 0;

0 [¢H
Bmax(l,4)/m Bmax(2,4) /m;
Bmax (1,5)/m Bmax (2,5) /m;
Bmax(1,6)/m Bmax{2,6) /m;
0 0;

0 0;

0 0};

% Output matrix C

C=f{0 01000000 G;
0000000060 1];
D=zeros (2,2} ;
[V,L]l=eig(A); % Deteremine eigenvectors and eigenvalues
Gpss=ss(A, B, C, D); % Create State Space model
Gp=tf {3pss}; % Create trangfer function: multiple-inpoub, single-output

% Controllability and observability analysis

co=ctrb(A,B) ;

crank=rank{co) ;

if crank==gize (A,1)
controllable='Yes’

elseif crank<size(a,1l)
controllable='Not

end

ob=ocbsv {(A,C);

orank=rank{ob) ;

if orank==sizela, 1)
obzservable=‘yes!
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elgeif orank<sizeld, 1}

ocbservable='No®

end

%

3imilarity transformation

sysbar=ss2ss (Gpss, inv(V));

%

xxxkx Create additional constants for use in nonlinear Simulink model **%%*

kT={viMx} /IC;
kF={v*Mx)} /m;
Boax=Bmax'® ;
Icinv=[1/Ix 0 0; 0 1/Ic 0; O O 1i/Ici;
M={Mx;0;0]1;
cmd=[{0;01;
To={0;0];
Fg=m*g;
num=[1] ;
den={1];
£=(0:.001:5);

U0 P P dP of oF O P of O° OF OO d° OF OP dP OP OF Of OO O dP dD o P

disp ('Maximum Fields and Gradients per Coil in following order:');

disp('Bx By Bz Bxx Bxy Bxz Byy Byz Bzz Bxxx Bxyx Bxzx Bxyy Bxyz Bxzz')
Bmax

disp ('Composite Fields and Gradients at eguilibrium:');

Beq

disp (‘A matrix'); A

disp('B Matrix'); B

disp('C matrix'); C

disp ('Eigenvectors'); V

disp ('Eigenvalues'); diag(L)

disp(* ');

disp ('Controllable?"’);

controllable

digp('Rank of controllability matrix: ')
crank

disp(® *');

disp{'Observable?'};

cbservable

disp ('Rank of observability matrix: *);
orank

disp(' ')

disp('Similarity transformation of State Space Model: ');
sysbar

disp('System Transfer Function'); Gp

KALMAN SYNTH.m

%

This function uses a range of tuning matricesg to derive Kalman Estimators for the

plant specified in state space form. The frequency responses of the open loop
transfer function for each Kalman Estimator ave derived and plotted for evaluation.
The function returns the Kalman filter gain (Kf), the process noise gain mulitplier
Gwgain and the Kalman Estimator (KF) associated with the particular derivation
selected by the user via keyboard input.

%
%

%

o0

Created by Mark Adams
Last Modified 06/01/04

The function uses input variables:

plant: State Space representation of minimized continuous plant
plantd: State Space representation of minimized discrete plant
The function returns variables:

Kfgain: The Kalman f£ilter gair wmatrix for the Kalman Estimator selected by user
Gwgain: The gain matrix for the process noise used to derive the Kalman Estimator
selected by user.
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% Kest: A 88 LTI object representing the Kalman Estimator selected by user
% Liresp: Arvay containing Max/Min Singular Values of the Loop Gain of sslected
% Kalman Estimator

function{Kfgain, Gwgain, Rn, Kest, Lresp]l=KALMAN SYNTH {plant,plantd};
global Ts;

cle; close all;

w=logspace{-2,3,400};

Rn=eye (2)*le-5; % Sensor noise covariance matrix (scalar}
Qu=plantd.br*plantd.b’; % Process noise covariance matrix (scalar)
{at,bt,ct,dtl=bilin(plantd.a . plantd.b,plantd.c,plantd.d, -1, ‘Tustin', Ts)} ;

g *¥x%%  Obtain range of values for Process Nolse (PN) Gain Matrix #*eswawwxx
PNagain='y*;
while PNagain=='y’

Gw_rangel=PN GAIN{plantd.b);

if Gw_rangel==

return
end
[range len, rows]=size(Gw_rangel);
if range len==1 % 1if only one element in range of PN Gain matrices, do not
evaluate
Gw_range2=Gw_rangel;
else % if more than 1 element in Gw_range
Gw_range2=EVAL LOOP_RESP (plantd,Gw_rangel,Qn,Rn);
end % if g(l)==
PNagain=prompt ('Repeat Gain Matrix selection with different values? 7);
end % while PNagain = 'y'

% **x* Store selected PN Gain Matrices and Kalman Filter Lcop Gain responses **¥
[range len, rows]=size(Gw_range2);

Lo_range=zeros(2,400,range len); % Preallocated array to hold selected Loop
Gain Responses

count=0;

for i=l:range len % Store Loop gain response in bilinear form for display

L=1lge{at,diag(Gw_range2(i,:)),ct,Qn,Rn);
IGe=sg(at,L,ct,dt);
Lo=sigma (LGe,w) ;
Lo_range(:,:,1)=Lo;
end; % for i=l:range len

g *#%*%x% Plot Loop Gain Responses and select candidate Kalman Estimators #***##%
holder=PLOT_RESPONSES (Lo_range, Gw_range2);

% #*xx%% If 1 or More Candidate Loop Gain Responses Selected, Plot on Same Graph **#%¥*
if holder==0
Kfgain=0;
Gwgain=0;
Kest=0;
Lresp=0;
disp(' *);
digp('No Kalman Estimator Selected®);
else $then holder > 0
gymb=char ('-",":' -7, -1},
symbtext=char ('1: solid','2: dotted', '3: dash-dot', '4: dashed’);
cloge all;
disp{' ');
digp('Indices of selected responses and corresponding line styles:');
gymbtext (1:1length (holder), :}

g *#x%% Plot Candidate Responses #*###%%
for i=l:length(holder)
k=holder{i);

loglog{w,Lo_range(:,:,k},symbi{i, :}) ;hold on;
title {*Max/Min Singular Values for selected Kalman Loop Gains');
end % for i=1:length{holder)

yliabel (‘Magnitude’};
xlabel ('Frequency {(rad/se)');hold off;

% ***%% Sslect Desired Kalman Estimator From Candidate Responses *x#¥r%*
beep;
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msg='Select £
gselect=prompt
if select=='y
beep;
disp(* *});
if length(holder)==1
ind=1;
elge
ind=input {'Enter index nuwber above corresponding to desired response:

rom candidate response{s}? (¥/H) '
{msg) ;
1

end % if range len==1
p=holder (ind) ;

% % Except for Response curve, assign function output variables in DT form vs.
Bilinear
Gwgain=diag{Gw_range2(p,:));
Kfgain=dlge (plantd.a,Gwgain,plantd.c,Qn,Rn) ;
Ae=plantd.a-Kfgain*plantd.c;
Be= [plantd.b Kfgainl;
Ce=cye (4) ;
De=zeros (4,4} ;
Kest=8s (Ae, Be,Ce,De, Ts) ;
L=1ge(at,diag(Gw_range2{p,:)),ct,Qn,Rn);
% LGBe=gs{at,L,ct,dt);
Lregp=Lo_range(:,:,p);
loglog{w, Lo_range{:,:,p));
vlabel ('Magnitude') ;
xlabel ('Frequency (rad/s)');grid;hold off;
title('Max/Min Singular Values for Selected Kalman Loop Gain');
elsge % select = n
Kfgain=0;
Gwgain=0;
Kest=0;
Lresp=0;
disp(' ');
disp('No Kalman Estimator Selected!');
end %if select = 'y!'
end % if holder > 0

o

PN _GAIN.m

% This function creates a process noise gain matrix for the Xalman Estimator

% Created by: Mark Adams
% Last Modified: 03/17/04

function [Gw]=PN_GAIN(B)};
clec;
[m,pl=size(B);

§ =x%%% Determine values for Process Noise Gain Matrix *#*kx#*%
disp(* *');
mag='Choose method to select element values for Process Noise Gain Matvrix';
choice=menu {msg, ‘Default gain matrix--diag {100 100 100 100}', *Identity Matrix Scaled
Up or Down', ...

'Identity Matrix Scaled over Range', 'Scale individual rows of Identity
Matrix', ...

‘Exit PN _GAIN'} ;
if choice==1

Cw=100%ones {1,m);

return
elseif choice==2 % User input values of elements in process gain matrix
k=input {'Enter desired scaling factor for B _Plant: ');
Guw=k*ones (1,m);
elgeif cholce== % User Input range of process gain matrices
disp{' *):

disp('Default range of scaling factors’);
r=[.1 1 10 100]
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default = prompt{‘use default range? (¥/M): ')
if default==‘y’
Guw=FN_DIAG(x,B);
else
disp{' ');
disp{'Enter range of up to four (4) scaling factors in brackets.'};
r=input{'E.g., {1 10 100 1000}: Ty
Gw=DN_DIAG(r,B);
end
elself choice==4
disp(® ‘);
B
disp{’Enter range of values in brackets corresponding to rows in B plant’);
Gw=input ('E.g., {20 ¢ 100 0}: Y
elseif choice==5
Gw=0;
return
end %if choice==

EVAL LOOP_RESP.m

% This function evaluates loop gain responses of a range of Kalman estimators based on
a range of diagonal process noise gain matrices. These watrices are derived from a
range of wectors provided as one of the inputs to the function. The function first
requests evaluation criteria from the user, then forms the Kalman estimators and
evaluates their Open Loop Gain responses against the user's criteria. This function
calls the Matlab function SET_CRITERIA.m. Note the loop gain responses are derived
using a bilmnear transformation of the plant in order that the responses are properly
represented in the w-plane. The function returns an array of vectors representing the
diagonals of the process noise gain matrices that produce acceptable Kalman
estimators.

% Mark Adams
% Last Modified 03/17/04

function [Gw_out]=EVAL_LOOP_RESP(plantd,Gw,Q,R);
global Ts

w=1logspace(-2,3,400) ;

s=gize (Gw) ;

% *%** ZSet Loop-Shaping criteria to evaluate responses obtained from PN Gain matrices
* Rk
[dir,T,ind]:SET_CRITERIA(w);
{at,bt,ct,dtl=bilin(plantd.a,plantd.b,plantd.c,plantd.d, -1, "Tustin’, Ts) ;
count=0;
holder=0;
for i=1l:s(1)
L=lge{at,diag(Gw(i, :}),ct,Q,R);
L@e=gg{at,L,ct,dt);
Lo=gigma (LGe, w) ;
loglog{w,Lo) ;
if dir== % threshold is a minimum (i.e, if Lo > T, then accept)
if min{Lo(:,ind))-T>0
count=count+1;
indices {count)=1; % Determines which rows in Gw tc accept
elge
count=gount ;
end
elgeif dir==2 % threshold is a maximum ({(i.e., if Lo < T, then accept)
if max{Lo{:,ind) ) -T<0
count=count+1;
indices (count) =1i;
else
count=count ;
end
end % if dir==1
if count==125
break
end
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end % for 1 1:s(1)
if count>@
dispf{' '};
disp{ 'Responses meeting criteria exceed 125'};

% *%%x Reglzme Gw_range ***#

len=length(indices); % Indices contains indices of rows accepted from original
Gw_range

Gw_range_hold=zeros (len,s(2}};

for i=l:len

Gw_range_nold (i, :)=CGw{indices (i}, :};

end

Gw_out=0w_range hold;

g=gize (Gw);

range len=g{l};

disp(*' ');
disp{'No responses meet criteria’);
range_len=0;
break
end %if count > O

SET CRITERIAm

% **% Set Loop-Shaping criteria to evaluate responses obtained from PN Gain matrices
E R

%

% Mark Adams

% Last Modified 04/14/04

function {threshtype, threshval, freqindex] =SET_CRITERIA (wrange)
disp (' ')
disp ('Select responses meeting loop shaping criteria.');
default=prompt ('Use default thresholds (20 rad/sec, 0 dB, Min sigma, min
Threshold)? (¥/N)*);
if default=='y!'
wbh=20; mag=0; dir=1;

else
disp{' ');
wb=input ( 'Enter approximate frequency of interest (in rad/sec): ');
disp (' *);
mag=input ('Enter response magnitude threshold (in dB): ');
disp (' ')
dir=input ('Enter type of threshold: minimum (1) or maximum (2): '};
end $if default=='y'’
I=find (wrange>wb) % Variables used to locate points in response curves

fregindex=I(1)-1;
threshval=10"{.1*mag) ;
threshtype=dir;

PLOT RESPONSES.m

% This function plots Max/Min Singular Values of Loop Gain Responses and select
candidate Kalman Estimators.

% Created by Mark Adams

% last modified: 04/14/04

function{indicesl=PLOT_ RESPONSES{resp_range, Gwrange);
[rows, cols, pagesl =size (resp_range)};
ind=0;
indices=0;
w=logspace (-2,3,400} ;
if pages==1
indices=1;
loglog{w,resp range{:,:,1}};
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citle{'Max/Min Singular Values for Kalman Loop Gain');
viabel { 'Magnitude’®) ;
xlabel { ! Frequency (rad/s)}'};
else
for i=1:pages
plot_no=int2gtr{i); %plot no. of the response being displayed
loglog{w, resp _range(:,:,i));
legend{pliot_no,2);
beep;
title('Max/Min Singular Values for Kalman Loop Gain {(Pause for kevboard
input.) ‘) ;
vliabel {'Magnitude');
x1label ('Freguency (rad/s)');
r=int2str{4-ind);
t=int2gtr {pages-i+l);
disp(' '};
gc=strcat{r,' Selections available ocut of:',t, ' remaining responses.');
disp(sc);
Gwrange (i, :)
meg="'Plot acceptable? (Max of 4 selections allowed.) (¥/N): Y
accept=prompt (msg) ;
if accept =='y'
ind=ind+1;
indices (ind) =1i;
if ind >=4
break
end %if ind >=4
end $1f accept == 'y’
end %for i=1:pages
end % if pages

LTR_PROCESS.m

% This function uses a given plant and Kalman Estimator, along with a range of tuning
matrices supplied by the user to aid in a Loop Transfer Revovery (LTR) process for a
Linear Quadratic Gaussian (LQG) regulator. Also provided is a frequency response plot
of the max/min singular values of the Kalman estimator's loop gain transfer function.
The plant is provided in state space foxrm. The function returns the LQR gain matrix,
Krlgr, the input weighting matrix multiplier used to derive that matrix, Rgain, and
the derived LQOG regulator, LQGr. LOGr represents the incorporation of the XKalman
estimator and LQR gain into a single regulator block, and is provided in state space
form. The function takes values for the multiplier, Rgain, from the user via keyboard
input.

&

Created by Mark Adams
Last Modified 04/14/04

P

% The function uses input variables:

%

% Gwgain: Process noise gain matrix for Kalman Estimator

% Rm: Sensor noise covariance matrix for Kalman Estimator

% Lout: Loop gain response f£or Kalman Estimator

% plant: CT Plant model in state space form

% plantd: DT Plant model in state space form

% The function returns variables:

%

% Rgain: The multipliexr for the input weilghting matrix in the LQOR calculation,
% i.e., Rgain*R.

% Kr: The LOR gain matrix selected for the LG Regulator

% LQGr: An LTI object representing the LOG Regulator selected by the user

function[Q, Rgain, Kr, L] =LTR_PROCESS (Gwgain, Rn, Lout, plant, plantd)
global Ts;

% clc;

clogse all;

w=logspace(-2,3,400}; % Create log frequency range for responses
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lat,bt,ct, dtl=bilin{plantd.a,plantd.b,plantd.c,plantd.d, -1, *Tustin’ ,Ts} ;

plantw=ge{at,bt,ct,dt,Ts}; % minimized plant in bilineaxr form

Qb=aye (4}

Rb=eye (2} ; % Base value for Input weighting matrix
On=plantd.b*plantd.b’; % Process noise covariance matrix for Kalman
Estimator

t8=.8;

xo=[0 0 ¢ 01";

F O RFEEEREE Determine whether to use default values or usey input F#x#¥i¥»
msg='Choogse Values for Diagonal of State Weighting Matrix, Q:';
choice=menu {msg, ‘Default Q=C{transpose)*C', 'Enter Multiplier Qgain * {1 1 1 317,...
‘Enter Diagonal, e.g., [10 10 100 1001°, *Exit LTR PROCESS') ;
if choice==4
return
elseif choice==
Q=plant.c'*plant.c;
elgelf choice==

Qgain=input {'Value of multipier Qgain: ‘');
Q=0b*Qgain;
elseif choice==
Qdiag=input (‘Enter diagonal in square brackets, e.g., [10 10 100 100] Y ;
Q=diag{Qdiag) ;
end

FEE KA Determine whether to use default values or user input **®x*#*x
msg="'Choose Input Weighting Matrix Multiplier Rgain:';
choice=menu (msg, ‘Default Rgain=le-10°, Enter single value',K 'Exit LTR_PROCESS');
if choice==3

return
elseif choice==

Rgain=1e-10;

R=Rb*Rgain;
elseif cholce==2

Rgain=input ('Value of multipier Rgain: ');

R=Rb*Rgain;
end

g ***x%% Convert system to w plane for plotting responses *¥%%#*
[v,x%,t,Kr]l=1gsim(at,bt,Ts,x0,Q,R, ts, 'heading’) ;

L d=lge{at,Gwgain,ct,Qn,Rn);

A?eg:at—bt*Kr—Lwd*ct;

Breg=L_d;

Creg=-Kr;

Dreg=zeros (2} ;

[8lp,Blp,Clp,Dipl=series (Areg, Breg, Creg,Dreg, at,bt,ct,dt);
Lresp=sigma(Alp,Blp,Clp,Dip,w);

loglog{w,Lout {1, :},'-*,w,Louc(2,:),"':",w,Lresp(l,:},'--' w,Lresp(2,:),'~-.");
title (*Max/Min Singular Values of Open Loop Gain Responses');
legend (‘'Max SV Kegt Loop Gain',’'Min SV Kest Loop Gain’, 'Max SV System Loop Gain', ...

‘Min 8V System Loop Gain');

g »»*#%%+ Produce DT LSVF gain matrix for use in simulation #rx¥xsswz
[v,%,£,Krl=1lgsim(plant.a,plant.b,Ts,xc,Q, R, ts, 'heading’);

LESIM.m

function [u,x,t,Kl=lgsimn(F,G,T,ic,ql,q2,ts,heading,n)
% LQ SIMULATOR

%

% [u,%,tl1=1gsim(F,G, T, ic,qgl, g2, ts, heading, n}

%

% CONTINUOUS-TIME PLANT STATE EQUATION : zdob = F*x + G*u
% SAMPLING PERIOD = T

% x(t=0) = initial condition = ic

% gl=0,g2=R = L cost weight matrices

% s = desired settling time (Pincer's method)
% heading = portion of title (eg. 'Q1 = ]

% n = optional number of samples

% clf

{phi,gam]=c2d{F,G,T);
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%Pincer’s method
k=ts/T;
alpha=100"{(1/k};
phip=alpha*phi;
gamp=alpha*gam;

% disp{('The steady-state gain is: ")

K=dlgr{phip gamp,gl,g2};

% disp{® ')

% disp{‘The closed-locp poles are ')
clpoles=eig{phi-gam+*X)};

ddamp (clpoles, T) ;

H=-X; %u = -RK¥x
phicl=phi-gam*K;

J=1[0];

if (nargin==8),
[u,x}=dimpulse (phicl,ic ¥, J,1);
[n,nanl=sizefu);
else
[u,x]=dimpulse (phicl,ic,H,J,1,n); %n is given in function call
end

%n = number of rows

=-T:T: (n-2)*7T;
t=t{2:n); %the first real output is 2nd one
x=x{2:1,:);
u=u(2:n,:);
axis ([0 n*T -1.6 1])
plot(t,x{:,1), 'ro',t,x{(:,2), 'bx"),grid
hold on
plot{t,x(:,1), 'r-",t,x(:,2}, 'b-"}
zohplot (t',u(:,1),'g--")
vlabel (' STATES, CONTROL INPUT'), ...
xlabel {'TIME (SEC) '), ...
title( ['ZERO-INPUT PLOTS FOR ' heading ' AND R = ' num2str(g2)] )
text(6,0.9,'---0--- X1')
text {6, .75, ' ---x-~-- X21)
textb (6, .55, ' --m v un)

9P Of OP P OP OP OP d° P IP op

c

% hold off

format compact

satex

T=1;

teg=inf;

gl=[{1 0;0 01;

h='gi=[1 6;0 0]°*;

[v,x,tl=lgsim{A,8,T, [1;0],qg1,.05,¢t8,h);

9P dP o 9P 90 P &

STEP_RESPONSE.m

% This function takes a Linear Quadratic Guassian regulator {composed of a Kalman
estimator and LOQR state variable feedback matrix) and evaluates the time responses of
nonlinear plant model using that LQC regulator.

Created by Mark Adams
Last Modified 04/21/04

The function uses input variables:
Plant: State gpace form of wminmized countinuous plant

Plant: State space form of minmized discrete plant
Kr: Optimal state feedback coefficient

9 P o O P oP oP o° ap U

The fuaction returns variables:

de

£

resp_values array containing percent overshoot, settling time
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% and steady state response for the nonlinear model and magnitude
of the maximum deviation of the control imput from eguilibrium.

function [resp_values, rvesponses, C]=5TEP_RESPONSE(Kr, plant, plantd, int_cntrl);

% wkxxkxxrxx yariables needed on Matlab workspace **F¥k*kxxikkwsdk
global cmd Kin Nbar K KI simout default d out tl m Izinv bpert fd Teq;

£3=0; % switch for additive disturbance force in Simulink model
bpert=0 % sewitch for additive b-field perturbations in Simulink model
Izinv;

fam, bwm, cm, dn} =ssdatai{plant);
[ad, bd, cd,dd] =ssdata (plantd} ;

if int_cntri==‘y’;
KI=Kr{:,1:2);
K=Kr{:,3:6);
[Ny, Nu, Nbar]=refi(ad,bd,cd,K);
Kin=eve (2);
else
c¢l_reg=ss(am-bm*Kr, bm, cm, dm) ;
Kin=inv (dcgain{cl_reg));
end
deg=[1.0 -1.0]
pitch=deg*pi/180;
z_pos=[.002 -.002];
len=length{deg) ;
simlength=2.0; % Length of simulation in seconds
t=(0:.0001:simlength); %Create time scale
lent=length(t);
resp_values:zeros(2*len‘2,5); $preallocate arrays to hold values

responses=zeros (lent,2*len”2); %preallocate arrays to hold entire responses
incr=0;
for h=1l:len ¥sequence through all set points

for j=l:len
incr=1incr+1;
row=incr+ (incr-1) ;
cmd=[pitch(h);z_pos(j)];
resp_values (row:row+l, 1) =cmd

g% wxxwkkwsxxrx Obtain step response of non-linear system ¥krxxxx
if int_cntrl=='y'
sim('DT_nonlin_int');
else
sim{'DT_exp nonlin');
end
responses (:, row: row+l) =simout;

¢ »*¥x%* Determine final value of step response of system *#*%*

if simout {lent, :)}==[0 0] % Avoid division by zero in following calculations
simout{:,lent}={1e-12;1le-12];

elseif simout(lent,1)==0
gimout {lent,1)=12-12;

elseif simout (lent,2)==0
simout {lent,2)=1e-12;

end

resp values (row:row+l, 4)=simout (lent,:)’;

% *%** Detsrmine percent overshoot of system step response *x&xxx
if emd{1,1)==C
resp_values(row,z)=max(abs{min(simout(:,1))));
elself omd{(1,1}<0.00
resp_values{row,2)={{min(simout(:,1))-cmd{1,1)) /cmd (1,3} }*100;
elseif cmd(1,1)>0.00
resp_values(row,Z):((max(simout(:,l))—cmd(l,l})/cmd(l,l})*100;
eng $end cmd(1,1) ) ==0
if emd{2,1) ==
resp_values (row+1, 2) =max {(abs (min{simout (:,2))));
elseif omd{2,11<0.00
resp_values(row+1,2)=({min(simout(:,Z))~cmd{2,l))/cmd(2,l})*100;
elgeif cmd(2,1)>0.00
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resp_values {row+l,2)={{max{simout (:,2}) -cnd{2,1)) /cmd/{
end %end omd{2,1))==0

% ***% Determine settling time (within 2% of final wvalue) of system
% For pitch response
count=1;
enter=0;
for tstep=1:lient
if azbs{simout ({step,l) -resp_values{row,4))<=.02%abs (resp_values{row,4})
if enter==0
cross (count) =.0001%tstep;
end
enters1;
end
if enter==1
if abs(simout(tstep.l)-resp values(row, 4})>.02%abs{resp_values (row,4})
count=count+1;

enter=0;
end
end % if enter==
end %for tstep =l:lent

if count>length{cross)

digp('Settling time exceeds test interval');
else

resp_values (h, 3)=cross (count) ;
end $If count>length{cross)
% For Position vesponse
count=1;
enter=0;
for tstep=l:lent

if abs(simout (tstep,2) -

resp_values (row+l,4))<=.02*abs(resp_values (row+l,4))
if enter==0
cross (count) =.0001*tstep;

end
enter=l;
end
if enter==

if abs (simout (tstep, 2) -
resp_values(row+l,4))>.02*%abs (resp_values(row+l, 4))
count=count+1;

enter=0;
end
end % if enter==1
end %$for tstep =1:lent

if countslength{cross)

disp('Settling time exceeds test interval');
else

resp_values (row+l, 3) =cross {count) ;
and % If countslength{cross)

% #%%* Determine magnitude of maximum deviation of control input to system

w %k kK
resp values (row, 5)=max(max(gimin(:,1))-Ieq(1,1)) min(simin(:,1)-Teqg(1,1));
resp_values (row+l, 5) =max(max(simin(:,2))-Ieq(2,1)) ,min{simin{:,2) -Ieg(2,1});
end % for j=i:len
end % for h=1:len
step_ heading='Command Input--Percent 0S--Settling Time--Final Value--Max Input
Deviation';

STIFFNESS_TEST.m

% This function takes plant state equations & a range of state variable feedback
constants

% and derives mew transfer functionsg for the linearize plant. The function then

% uses the LTI transfer functionms to determine asppropriate cmd inpute for the Simulink
% nonlinear levf model. The nonlinear model is then run using the cmd sgettings, the
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corresponding state variable feedback constants and a known disturbance force

that simulates an aerodynamic disturbance. The stiffness gquotient, i.e. the ratio
of the force to the displacement it produces, for each omd setting is returned.
which are tested with step and impulse functions.

Created by Mark Adams
Last Modifisd 04/20/04

op of JP 4P P P o2

The function uses input variablesg:

&0 de P

plant: gtate space form of minimized CT plant
plantd: state space form of minimized DT plant
Kr: L8VF Matrix

o 9o

The function returns variables:

dP o

fdresp An array containing the stiffness quotients for the nonlinear system
for a range of lsvf constants and cmd inputs.

o0 oo

functioniresp values, responses,t, fd out, td out]l=8TIFFNESS_TEST(Kr,plant, plantd,
int_cntrl);
global cmd Kin simout simin regout m io bpert £d Ieq Ic fd_time seq £d_ampl seg K KI;

close all;

t=(0:.0001:2.0); % Create time scale for gimulation
lent=length{t);

hflent=Fflooxr (lent/2);

z_pos=[-.002 0 .002];

pitch=[-1.0 0 1.0]*pi/180;

len=length(z_pos) ;

resp_values=zeros (2*1len”2,5); % preallocate array to hold stiffness responses
responses=zeros (lent,4*len”2);

£d=0; % switch for additive disturbance force in Simulink model
bpert=0; % switch for additive b-field perturbations in Simulink model

fd time_seg={0.0 0.5000 0.5100 0.5200 0.5300 0.5500 0.5600 0.5700 0.6100...
0.6500 0.6900 0.7300 0.7500 0.7600 0.7700 0.7800 0.8000 0.8100...
0.8200 0.8600 0.9000 0.9400 0.9800];

fd_ampl seq=[0 0 1 4 6 5 10 106 3100 -1 -4 -6 -9 -10 -10 -6 -3 -1 0};
[am,bm, cm, dm] =ssdata (plant) ;
[ad,bd, cd,dd] =ssdata(plantd) ;

if int_cntrl=='y';
Ki=Kr({:,1:2);
K=Kr(:,3:6);
[Nx, Nu, Nbar]=refi{ad,bd,cd,k);
Kin=eye (2);

else
cl_reg=ss{am-bm*Kr, bm, cm, dm) ;
Kin=inv{(dcgain(cl_reg));

end
i=0;
for h=l:1len % sequence through range of pitch set points
for j=l:len % sequence through range of z_pos set points
i=i+l;
k=i+(i-1};
p=1+3*{i-1);

cmd=Ipitch(h) ;z_pos{i)l;
% Obtain response of non-linear system
fé=0;
if int_cntri=='y’
sim('DT_nonlin int’);

fv=gimout (lent, :); % obtain final value without Fd
no_dist resp=simoul;

£d=1;

plot (tout, simout) ;hold on;

sim{'DT_nonlin int'}; % obtain output with Fd

£d out=~Ffdout;
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td out=tdout;

else
sim{’DT_exp nonlin’);
fv=simout {lent,:};
no_dist_resp=simout;
fd=1;
sim{'DT_exp nonlin');
£d_out=£fdout;
£d _out=tdout;

% obtain output with Fd

end

% Calculate pos neg and avg. s {
a=Ic/ (max (simout (hflent:lent,i

b=Ic/ {min{simout (hflent:lent,1
c={abg{a)+abs (b)) /(2);

resp values(k,2:5)={a b ¢ £vi{i)];

t1i
V) -Ev{1));
Yy -Evi{l));

$8ame for z_pos

a=m/ {max{simout (hflent:lent, 2) ) -Fv(2));
b=m/ (min{simout (hflent:lent,2))-£fv{(2));
c={abs{a)+abs (b)) /(2);

resp values(k+1,2:5)=[a b ¢ £fv(2)};

resp_values(k:k+1,1}=cmd;
responses (:,p:p+l)=no_dist_resp;
responses {:,p+2:p+3) =simout;
end
end % outer for loop

B_PERTURB.m

% obtain final wvalue without Fd

iffness gquotients (S0} for pitch

262

% This function takes plant state equations & a state variable feedback matrix and
derives new transfer functiouns for the linearize plant. The function then uses the
transfer functions to determine appropriate cmd inputs for the Simulink nonlinear
model. The nonlinear model is then run using the same cmd settings used for the
unperturbed time responses only with the B field coefficients perturbed.

% Created by Mark Adams
Last Modified 04/20/04

P

The function uses input variables:

State space form of minimized CT plant

plantd: State space form of minimized DT plant
Kr State variable feedback matrix derived using lgsim.m

%
%
% plant:
%
%

% The function returns variableg:

% fdresp

An array containing the stif+fness guotients for the nonlinear system

% for a range of 1lsvi constants and cmd inputs.

function{resp_values, responses, t]=B_PERTURB(Kr, plant, plantd, int_cntrl);

$variables needed on Matlab workspace:
global cmd Kin simout default & out tli m Icinv bpert fd Ieg K KI;

£={0:.0001:2.0) ;
lent=length{t)} ;

no_rung=5;

z_pos=1{.002];
pitch=[1.0}*pi/180;
len=length{z_pos};

resp values=zercs(2*len, 9);
response values
responses=zeros (4, lent, len™2) ;
responses
fv=zeros(2,n0_runs) ;
perc_os=zercs(2,no_runs) ;
fv=zeros (2,n0_xunsg) ;

%

$ Create time scale for simulation

number of sample runs

% preallocate avray to hold b-£ield perturbed time

% preallocate array to hold b-£field perturbed
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inp=zeros {2,no_runs) ;
hold_pitch=zeros (no_runs, lent);
hold_z_pos=zercs(no_runs, leat);
£4=0; % switch for additive disturbance force in Simulink model
bpert=0; % switch for additive b-field perturbations in Simulink model
[am, bm, cm, dm] =ssdata (plant) ;
[ad, bd, cd, ddl =ssdata (plantd) ;
if int_cntriss='yi;
Ki=Kr(:,1:2);
K=Kx{:,3:6};
[Kx, Nu, Nbarl=refilad,bd, cd,k);
Kin=eve {2} ;
else
¢l _reg=ssi{an-bm*Xr, bm, cm,dm) ;
Kin=inv{dcgain{cl reg))};

n % sequence through range of pitch set points
l:1len % sequence through range of z pos set points

p=i+3*(i-1);
cud={pitch(h);z_pos(i)l;
if int_cntrli=='y'
sim{'DT_nonlin int');
else
gim('DT_exp nonlin');
end
no_perturb_resp=simout;
for n=l:no_runs
% Determine step response of non-linear system w/B-field perturbations
bpert=(0.02* (2*rand-1)); % Generate random factor between -2 and +2 %
if int_cntrl=='y’
gim('DT_nonlin_int');

else
sim{'DT_exp nonlin!');
end
$ Determine final value of step response of non-linear system
if simout (lent, :}=={0 0] $Avoid division by zero in following
calculations
gimout (lent, :)={le-12 le-12];
elseif simout (lent,l)== $Avoid division by zero in following
calculations
gimout (lent, 1) =le-12;
elseif simout{lent,2)==0 ¥Avoid division by zero in following
calculations

gimout {lent,2)=1e-12;
end %if simout
£v{:,n)=simout (lent,:) ' ;

% **** Determine percent overshoot of system step response *¥+¥*x
if omd{1,1)==0
perc_os{l,n)=max{abs (min(simout(:,1}))};
elseif omd (1,1)«0.00
perc_os{i,n)=({min{simout{:,1))-cmd(1,1)) /emd {1,1))*100;
a@lseif omd{1,1)>0.00
perc_os(l,n)={{max{simcut{:,1))-omd(1,1)) /omd{1,1})*100;
end %end cmd{l,1))==0
1if emd(2,1)==0
perc_os(2,n)=max{abs {min(simout{:,2)))};
elseif omd(2,1)<0.00
perc _os(2,n)=((min{simout (:,2))-cmd(2,1)}/omnd (2,1} }*100;
elseif cmd(2,1)>0.00
perc_os(2,n)={{max{simout {:,2))-cmd(2,1))/omd {2, 1)) *100;
end %end cmd{2,1))==0

% **#% Determine settling time (within 2% of final value) of system
% For pitch response

count=1;

enter=0;
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for tstep=1l:lent
1f abe{simout (fstep, 1) -fvi{l,n))<=.02%abs{fv {1, n))
if enter==0
cross {count) =. 0001 *Cgtep;
end
enter=1;
end
if enter==1
if abs(simout{tstep,i)-Iv{l,n)}>.02%abs{fv{l,n)}
count=count+l;

enter=0;
end
end % if enters==
end %for tatep =1:lent

if countslength(cross)
disp ('Settling time exceeds tesgt interval');

else
st (1,n)=cross (count) ;
end 3If countslength(cross)
count=1;
enter=0;

for tstep=1:lent
if abs(simout (tstep,2)-fv{2,n))<=.02%abs{fv{2,n))

if enter==
cross {count)=.0001*tstep;
end
enter=1;
end
if enter==

if abs(gimout (tstep,2)-£fv(2,n))>.02*abs(fv(2,n))
count=count+1;
enter=0;
end
end % if enter==
end %for tstep =l:1lent
if count>length{cross)
disp('Settling time exceeds test interval');
else
st {2,n)=cross (count} ;
end % If count>length(cross)

% ** Determine magnitude of maximum deviation of control input to system
%A RK
% inp(1,n)=max (max{simin(:,1))-Ieq(1,1)) ,min{simin{:,1)-Teq(1,1));
% inp{2,n)=max{max{simin{:,2))-Teq(2,1)) ,min{simin(:,2) -Teqgi2,1));

hold pitch(n,:)=simout(:,1)";
hold_z pos(n,:)=simout(:,2);

end % end for n=1:5

% Copy command input to first column of values matrix
resp_values(k:k+1,1)=cmd;

% Calculate mean and std deviation of values over n samples and copy
% to output matrix

resp_values(k, 2)=mean{perc os{l,:}};

resp_values{k+l,2) =mean{perc_os(2,:});
resp_values(k,3)=std(perc_os(i,:}};
resp_values(k+l,3)=std{perc_os{2,:)}));

resp valuesi{k,4)=mean(st{l,:}};
resp_values(k+l,4)=mean{st(2,:});
resp _values(k,5)=std{st(l,:});
regp_values(k+l,5)=std(st(2,:});

resp_values(k,6)=mean{fv{l, :}};
resp values{k+l, s} =mean{fv (2, :});
resp_values(k,7)=std (£v{1,:});
resp_values (k+1,7)=std{Ev(2,:));
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resp_valuesi{k,8)=mean{inp(l,:});
rasp values{k+l,8)=nean{inp (2, :};

regp_values(k,9)=std(inp {1, :});

resp_values {(k+l, 9)=std{inp{(2,:});

% Calculate mean and std deviation of responses over all samples and copy
% to output matrix

regponses {1, :, i) =nean(hold pitchj;

responses(z, ;i) =mean{hold z pos};

regponses {3, 1)=std(hold leck),

responses {4, :, 1) =std(hold_z pos};

responses(s.s,.,1/—no_peruurbwresp';

end % end for j=1l:len
end % end for h=l:lemn

PROMPT.m

% This function takes a prompt message and returns a 'y' for
% an affirmative answer and a ‘n' for a negative one.

% Created by Mark Adams
% Date last wmodified: 03/10/04

function [answer] =prompt (question) ;
answer=input (question, 's');

% if answer==' '

% answer="'y';

% end

answer=lower (answer) ;

TWO_DOF_TEST.m

% This program is a regulator synthesis and validation tool
% for the 2-DOF version of the MSBS.

%
% Created by Mark Adams.

% Last Modified: 05/25/04

format; clc; clear; close all;

% Variables needed on Matlab Workspace

global cmd Kin Ieq bpert f£d m Ic Ts K KI Nbar;
Tg=.001;

% #x%%%% Derive Analytic State Space Model of Plant from Egns ¥ *#¥xx
Two_DOF_Plant;
% Izinv=sum{[0 0 1]*Icinv);

% **¥%%x Extract States Relating to Pitch and Vertical Movement/Create DT
Model**********

[Am, Bm, Cm,Dm] =gsselect (A,B,C, D, {1 2},{1 21,01 3 7 101);
mingys=gs (Am, Bm, Cm, Dm) ;

gysd=c2d (minsys, Ts) ;

{ad, bd, cd,dd] =ssdata (sysd) ;

a8

Run=eye(2) *1e-5; Sensor noise covariance matrix (scalar)
On=bd*bd’; % Process nolse covariancs matrix (scalar)
Gwi=[12500];

G_len=length (GwL};

R weights=1[.11;

R_len=length(R_weights);

Q_weights=(500 500 500 5001;

w_len=length(Q_weights);

% Qrange=zeros{w_len-1,4)
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count=0;
for h=1:w_1ien
for i=l:w_len
for j=l:w_len
for k=l:w_len
count=count+li;

Qrange (couunt, :) =[Q weights{l) Q weights(2) { weights{3) Q_weights{4)];
end
end
end
end
[rows, cols] =size{Qrange) ;
loc=input { ' Enter location/date of test: NASA 24 mar, srl..., or h... ','s’);

current_start=input{'Enter starting no. of sequence ‘');
ov_len:G_len*R_len* TOWS;
last=current_start+ov_len-1;

count=0;
disp(['Total number of iteratioms: ', int2str{ov_len}'‘'l};
disp(' '});

gxxxkxxxx*%  Use Integral control with added zero? *¥***xxk%x=
message= ('Use integral control?');
ans=prompt (message) ;

for p=1:G_len % Derive LQG regulators for range of Kalman process noise, LOR input
and state weighting values
tic;
dvals=GwE (p) *ones (1,4) ;
Gw=diag (dvals};
L=dlqge{ad,Gw,cd,Qn,Rn) ;
Ae=ad~L*cd;
Be=[bd L];
Ce=eye (4) ;
De=zeros (4,4);
Kest=gs (Ae,Be,Ce,De, Ts) ;

Rest=Rn;

for g=1:R_len % Input weighting matrix values
R=R_weights (q) *eye(2) ;
for i=l:rows % State weighting matrix values

count=count+1;

Q=diag{Qrange(i,:});

£8=.8;

xo=[0 0 0 01"';

a=Am;

b=Bm;

if ang=='y'’
a=[eye({2) Cm;zeros(4,2) Am];
b=[zercs{2) ;minsys.bl;
xo=[0 0 0 0 0 01"';
newdiag=[{500 500 Qrange({i,:}};
Q=diag(newdiag) ;

end

[y.%,t,Klgrl=1gsim(a,b, Ts,xc,Q,R, ts, 'heading'} ;

[step_values, step_resp,tout]=STEP_RESPONSE(Klgr, minsys, sysd, ans};
plot {tout, step_resp) ;grid;
title ("Response from Step Response’);

[stf values, stf resp, tout]=STIFFNESS_TEST(Klgr, minsys,sysd, ans);
figure;

plot {tout, stf_vesp) ;grid;

title{‘Responsge from Stiffness Tests');

[bp _values, bp_resp, tout]=B PERTURB(Klgr,minsys,sysd, aas);
figure;

plot {(toukt, bp_resp) ;grid;

title{'Response from B-Field Perturbation Test.');

% Tk kW RK Save Design Results EEE R AR L EE SR

no=int2str{current start+{count-1}};
results=strcat ('results_ ', loc,no);
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save I(results, 'Gw’,'Regt’, 'Q7,'R, ‘Kin’', 'Kest’,
'Klgr', step_values’, ‘step_resp', 'stf_values',K 'stf resp', 'bp_values', ‘bp resp’, 'tout'}

M

save (results, 'Gw', 'Rest’,’'Q’, 'R’, "step_values', ‘step resp', 'stf values',
‘bp_walues’, 'tout});
save {(results, 'Gw','Rest’,'Q*','R', 'step_values’, ‘step resp', 'tout’};

elapsed time=toc;
if count=s=
first pass=elapsed time;
total est=cov_len*first pass;
end
co=int2str {count);
tot=int2str {ov_len);
est_time remaining=total_est-elapsed time;
elapsed time
est_time remaining
msg=streat (co, '_iterations completed out of ', tot);
disp (msg) ;
end
end
end

SORT_RESULTS.m

% Created by Mark Adams
% Last Modified 05/25/04

clear

% EEEE AR R LS Sk User Input EEEEEE RS EREEEE R & X

loc=input ('Enter location as expressed in data file name: nasa, srl, etc... ', 's');
diafilename=strcat (loc, ' _controller test');

first=input ('Enter exp start no. ');

last=input ('Enter no. of last experiment to be looked at ');
OS=input ('Eneter max allowable percent overshoot ');

ST=input { 'Enter max allowable settling time (sec) ');

Id=input {‘Enter maximum allowable deviation of imput current (a) ');
int_cntrl=prompt ('Was Integral Control Model Used?');
len=last-first+l;

cle;

diary (diafilename)

% TRXRLR A IK K Generate Header KEFEFREI A XTI A X AN
append=int2str (first) ;

datafilename=strcat {'results_’',loc, append);
load {datafilename);

gim run length=length(tout)/le4

disp(* ')

% **xxw»x% obtain response values from .mat files and place in table *rerisskaddrisnsx
if int_cntrl=s'y'
resp valuesszeros(2%len, 13);
else
resp values=zeros{2*len, 11);
and
for i=l:len
row=1i+{i-1);
append=int2str{first+{(i-1});
datafilename=strcat {'results ', loc, append}:
load {(datafilename):;
Gw=diag {Gw) ;
R=diag(R);
Qw=diag{Q)';
resp values{row,1:2)=[CGw{l) R{(1}];
resp values(row+l,1:2)=[{Cw(l} R{1)];
if int cntrl=='y’
resp values{row, 3:8)=0Qw;
resp values {row+l,3:8)=Qw;
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resp values{rowirow+l, 2:13}=gtep_values{l:2,:};
else

resp values{row,3:6)=Qw;

regp values{row+l,3:6)=Qw; '

resp_values(row:row+1,7:11)=step~values(1:2,:);

end

plot {tout,step_resp{:,1), tout,step resp(:,2), 'k:');holid on;
end
legend {'Command Input: .0175 rad', ‘Command Input .002 m');

title{'Step Responses for Range of Controllers');

viabel( awplitude'];

xlabel {("Time (sec)'});

format short g;

resp_values

chreshold=THRESHOLDS (resp_ values, 05, 8T, Id) ;

s=gize{threshold);

disp(['Thresholds: % 0S--' num2stx (08} 'Settling Time:' num2str(ST) 'Max Input
Deviation: ' num2str{(Id) ‘No. Regponses Qualified:' int2str(s{1}))]);:

% group pitch and position commands for like parameters
count =07y
adjacent_rows=zeros (2,11);
for i=2:s(1)
if threshold(i,7)==2.0
if threshold(i-1,7)==1.0
if {threshold(i,1:6)-threshold(i-1,1:6))==0
count=gount+1;
row=gount+{count-~1) ;
adjacent_rows (row, : ) =threshold(i-1, :);
adjacent_rows (row+l, :) =threshold (i, :);

end
end
end
end

s=size (adjacent_rows) ;
% disp{[*Total number of iteratioms: ‘int2str(ov_len)'l);

disp([*Number of Paired pitch/position responses with same paramters: !
int2str(s(1))1);

adjacent rows_short=zeros(s(1l),10);
adjacent_rows_short(:,1:9)=adjacent_rows(:,1:9);

adjacent _rows_short (:,10)=adjacent_rows(:,11);

disp('Time Domain Response Values');

disp (* Gw Rlgr Qlgr
Cmd %08 ST Max I dev');
adjacent_rows_short

diary off;

format shoxt;

% hold_SQ=zeros(1,10);
% max _SQ=0;

% hold BP=zeros(l,7);
% hold BP{1l,7)=0S;

max_OS=max{step_ values(:,2));
max_Iin=max{step_values(:,5)};
max_ SQ=max{stf_values{:,4)};
I=find{stf_values(:,4)==max_SQ);
if max_SQ»hold 80Q(1,8);

hold 8Q(1,1:2)=IGw{l) R{1}]:;

hold SQ{1,3:6)=Qw;

hold 8Q(1,7)=stf values(I,1);

hold _8Q(1,8)=max_S8Q;

nold 8Q{1,%)=max_0S;

hold 8Q(1,10)=max Iin;
end

P 4P S0 df 9P o GO P of O P of

98

max_CS=max{(bp_values(:,2));
if max_OS<=hold BP(1,7)

o0
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hold BP{1,1:2)=[Gw(l} R{1}1};
nold BP{L,3:8)=0w;
hold BP(L,7)=max_0S;
end

oF af oF o

% disp('Maximum value stiffness coefficient');

% disp(?® Cw Rlgr Qlgr

Crd 519] %03 In Dev')

% nold S0

% disp('Minimum percent 08 (of the higher valued output) with B-Field Perturbation’®);
% disp(’ Gw Rigr Qlgx

$037)

% hold_BP

THRESHOLDS.M

% This function examines ranges of step response data (percent overshoot, settling
time, steady state value, max impulse response, impulse settling time, and steady
state value) for values that meét certain thresholds. The function then rxeturns those
values along with the corresponding values for weighting matrices that produced them.

o0

Created by Mark Adams
Last Modified: 04/20/04

P o

% This function uses the following inputs:

% trstep: A 3-D array containing step responses of linear and non-linear systems
% created using a range of linear state variable feedback (lsvf)
coefficients.

% perc_os The threshold for percent overshoot

% st The threshold for settling time

% Tin _dev  The threshold for max input current deviation

% The function returns the variables:
% sr_thresh: An array whose columns represent the time response values contained
% in the input array ‘'trstep' that meet designated threshold criteria. The

ime
response values represented are Percent 08, Settling Time, Final Value
along
with the values selected are the corresponding values of Q and R that
produced them. sr_thresh is three dimensional, e.g., sr_thresh(x,v,z),
where
x is no. of values meeting the criteria for any of the three responses of
interest, y is the no. of tr values and their corresponding R&Q, z is the
number of desired regulator cutputs for which time responses were
measured.

function[sr_thresh]=THRESHHOLDS (trstep, perc_os, st, Iin _dev);

s=size{trstep); % gize of array containing step responses
for i=l:s(1}/2 % convert command input and final values to degrees and millimeters
row=i+{i-1};
trstep(row,7) =trstep(row, 7) *180/pi;
tystep(row,10) =trstep (row,10) *180/pi;
tratep(row+l, 7) =trstep {row+l, 7} *1000;
trstepirow+l,10) =trstep{row+l,10) *1000;
end

% *%% ZSelect step responses meeting threshold criterion for max deviation of input
curyent #*#FFFEx
firgt_count=l;

for h=il:s{1) $Examine responses for max deviation of imput current
if abs{trstep(h,11))<=Iin dev
first hold(first _count, :)=trstep(h,:);
firgt count=first_ count+l;
end
end

g=gize (first_hold) ;
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% wxxx%% Select respouses meeting threshold criterion for percent overshoot
PR TR
second_count=1;
for i=1l:s{1)
if abs (£irst_hold(i,8))<=perc_os
second_hold(second count, :}=first_hold(i,:);
second_count=second_count+l;
end
end

% ®rwxxxwxx Select responses meeting threshold criterion for settling time
ER SR XSS EEE S
s=size{second hold);
third count=1;
for j=l:s(1)
if second hold(j, 9)<=st
third hold(third count, :)=second_hold{j,:);
third count=third count+l;
end
end
sr_thresh=third hold;
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APPENDIX E

CATALOGUE OF S

PTS FOR OPTIMAL CONTROLLER SYNTHESIS AND
VALIDATION

Introduction

This appendix provides a catalogue of the Matlab scripts written to synthesize the different
optimal controllers produced in support of this thesis. The scripts are grouped in tables according
to controller type and design approach. The tables also show the interrelationships between the
scripts by listing the calling script(s) for each entry.

The appendix is divided into two parts, corresponding to the 1-DOF and 2-DOF systems
described in Chapters V and VI, respectively. For each of the two systems, there are two or three

tables corresponding to the different controller designs undertaken, e.g., LQR, LQG, LTR.
Controller Synthesis and Testing for 1-DOF System

Chapter V of the thesis introduced the concepts of optimal control theory and described how that
theory was adapted to the problem of magnetic levitation in the MSBS. Several controller
designs were tried to gain familiarity with optimal control concepts and begin developing a set of

Matlab-based tools to automate the controller design process.

Table I-E lists the Matlab scripts used to develop an automated process for synthesizing a linear
quadratic regulator (LQR) for a 1-DOF setup. The process is initiated by invoking the first
Matlab script in the table, ONE_DOF_LQR.m,

TABLEI-E
MATLAB SCRIPTS USED FOR THE 1-DOF LQR DESIGN
Matlab Script Description Called by
ONE DOF LQR.m Main program that coordinates the overall e
process.
ONE DOF PLANT.m  Uses values for physical constants and creates ONE DOF LGQR.m

linear state space model of 1-DOF plant. Also
derives nonlinear constants for use in simulations.
Places all values on Matlab workspace.

PROMPT.m Utility script that facilitates user queries. All

QEVALm Takes the specified range limits for the values of ONE DOF LOQR.m
Q and R, along with the state space matrix A and
input matrix B for the plant, and calculates the
corresponding range of state variable feedback
values K and repositioned pole values using the
LOR function.
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Miatiab Script

Description

Called by

CL_RESPONSES.m

THRESHOLDS.m

STIFFNESS_TEST.m

B-PERTURB.m

Uses range of K-matrices to derive a set of linear
closed-loop regulator models, for which step
responses are obizined using Matlab command
Isine.m. Step responses for the same range of K-
matrices are also obtained from the nonlinear
Staulink model of the regulator.

Ewvaluates step responses against user-provided
criteria for percent overshoot, settling time and
steady state value. Selects those regulator designs
meeting criteria.

Produces range of LQR controllers based on range
of LSVF matrices provided as input parameters.
Evaluates controllers for stiffness by simulating
disturbances in the nonlinear model. Provides so-
called stiffness ratios for each controlier design.

Evaluates controllers for robusiness with respect
to plant uncertainty by simulating random
variations in plant parameters. Provides
comparison of perturbed, non-perturbed step
reSpOnses.

ONE_DOF LQR.m

ONE_DOF_LQR.m

ONE_DOF_LQR.m

ONE_DOF_LQR.m

Table II-E lists the Matlab scripts used to develop an automated process for synthesizing a Linear
Quadratic Gaussian (LQG) regulator for a 1-DOF setup. The process is initiated by invoking the
first Matlab script in the table, ONE_DOF_LQG.m. Note several scripts from the LQR process

are reused.

TABLE II-E
MATLAB SCRIPTS USED FOR THE 1-DOF LQG DESIGN

Matlab Script
ONE DOF LQG.m

Description Called by

Main program that coordinates the overall
Process,

ONE DOF PLANT.m Same as in Table [-E. ONE DOF 1.QG.m

PROMPT.m Same as in Table I-E. All

QEVAL.m Same as in Table I-E. ONE DOF 1L.QGm
CL RESPONSES.m Same as in Table I-E. ONE DOF LQGm
THRESHOLDS.m Same as in Table I-E. ONE DOF 1L.OQG.m
STIFFNESS TEST.m Same as in Table I-E. ONE DOF 1LOG.m
B-PERTURB.m Same as in Table I-E. ONE DOF LOGm
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TABLE II-E, CONT'D

Matlah Script Description Called By

LQG TESTm Synthesizes a range of LQG regulators based  ONE DOF LQG.m
on a range of LSVT matrices specified in its
input parameters and a single Kalman
estimator design. The time response of each
regulator is obtained for user-specified range
of set points using a noanlinear Simulink
model. Returns a single array containing
time response values and the maximum
deviation of the control signal.

STIFFNESS TEST.m Same as in Table I-E. LOG TEST.m

B PERTURB_LQG.m Similar to B PERTURB.m except that this LQG TEST.m
script obtains the perturbation response for
only one LQG regulator provided as input
parameter.

Table MI-E lists the Matlab scripts used to develop an automated process for synthesizing an
LQG regulator for a 1-DOF setup using the loop transfer recovery (LTR) technique. The process
is initiated by invoking the first Matlab script in the table, ONE _DOF_LTR.m. Note several

scripts from the LQR process are reused.

TABLE HI-E
MATLAB SCRIPTS USED FOR THE 1-DOF LTR DESIGN

Script Description Called By

ONE _DOF LTR.m Main program that coordinates the overall = weee-
process.

ONE DOF_PLANT.m Same as in Table I-E. ONE DOF LTR.m

PROMPT.m Same as in Table I-E. All

KALMAN SYNTH.m Synthesizes a range of Kalman estimators ONE DOF LTRm

based on the linear plant model. Allows user
to select best candidate based on frequency
responses of the estimators’ open loop transfer
functions.

LTR PROCESS.m Synthesizes one or more LQG regulators using  ONE _DOF LTR.m
the previously chosen Kalman estimator and
user-specified range of LSVF matrices.
Allows user selection of best design based on
frequency response of system open loop
transfer function.
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TABLE III-B, CONT'D

Matlab Script Description Called By

FREQ RESPONSE.m Evaluates step response of closed-loop (CL}y ONE DOF LTRm
nonlinear system using selected LQG
regulator and user-specified range of set
points. Returns array of time domain
responses forthe CL system: %08, 2%
settling time, 8§ value and max: deviation of
control input,

STIFFNESS_TEST 1QG.m Similar to STIFFNESS TEST.mexceptthat ONE DOF LTR.m
stiffness ratio obtained for only one LQG
regulator provided as input parameter.

B PERTURB.m Same as in Table II-E. ONE DOF LTR.m

Controller Synthesis and Testing for 2-DOF System

Chapter V1 of the thesis explained how the concepts of optimal control theory were applied to the
2-DOF case of magnetic levitation using MSBS components. Building on the Matlab
programming from the previous chapter, more complex scripts were developed to implement

controller synthesis.

In Chapter VI of the thesis the first technique employed to obtain a2 2-DOF controller was the
Loop Transfer Recovery (LTR) technique. The overall LTR process was similar to the one used
for the 1-DOF setup. - However, because of the multivariable structure of the controlier, there
were many more controller candidates to be evaluated. This prompted a decision to break the but

the individual scripts had to be more intricate to handie the.

TABLEIV-E
MATLAB SCRIPTS USED FOR THE 2-DOF LTR DESIGN
Matlab Script Description Called By
TWO DOF_LTRm Main program--coordinates the overall, 0000 —eeeee

process. Saves results from each simulation
in sequentially numbered .mat files

TWO DOF PLANT.m Uses values for physical constants and TWO DOF LTR.m
creates linear state space model of 2-DOF
plant. Also derives constants for use in
Simulink models.
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TABLE IV-E, CONT'D

Matlab Script

Description Called By

KALMAN SYNTHm

PN _GAIN.m

EVAL LOOP RESP.m

SET CRITERIA.m

PLOT RESPONSES.m

LTR_PROCESS.m

STEP RESPONSE.m

Uses a range of tuning matrices to derive TWO_DOF_LTR.m

Kalman Estimators for the plant specified in
state space form. The frequency responses
of the open loop transfer function for each
Kalman Estimator are devived and plotted for
evaluation. The function returns the Kalman
fitter gain (K1), the process noise gain
mulitplier Gwgain and the Kalman Estimator
(KF) associated with the particular derivation
selected by the user via keyboard input.

Creates a process noise gain matrix for the KALMAN SYNTH.m

Kalman Estimator.

Evaluates loop gain responses of a range of KAILMAN SYNTHm
Kalman estimators based on a range of
diagonal process noise gain matrices. These
matrices are derived from a range of vectors
provided as one of the inputs to the function.
The function first requests evaluation criteria
from the user, then forms the Kalman
estimators and evaluates their Open Loop
Gain responses against the user’s criteria.
The loop gain responses are derived using a
bilnear transformation of the plant in order
that the responses are properly represented in
the w-plane. Function returns array of
vectors representing the diagonals of the
process noise gain matrices that produce
acceptable Kalman estimators.

Uses default or takes user-defined or loop-
shaping criteria to evaluate responses
obtained from PN Gain matrices.

Plots Max/Min Singular Values of Loop
Gain Responses and select candidate Kalman
Estimators.

EVAL LOOP RESP.m

KALMAN SYNTH.m

Uses a given plant and Kalman Estimator, TWO_DOF_LTR.m

along with a range of tuning matrices
supplied by the user to aid in a Loop
Transfer Recovery (LTR) process for a
Linear Quadratic Gaussian {L(QG) regulator.
The function returns the LQR gain matrix,
Krlgr, the input weighting matrix multiplier
used to derive that matrix, Rgain, and the
derived LQG regulaior, LQGr. The function
takes values for the multiplier, Rgain, from
the user via keyboard input.

Evaluates step response of closed loop TWO DOF LTR.m
nonlinear model using LOG regulator or
LQG regnlator with integral control

depending on user input.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



276

TABLE IV-E, CONT'D

Matlab Script

Description Calied By

STIFFNESS TEST.m

B_PERTURB.m

Calculates  stiffness  ratic for given TWO DOF LTR.m
comtroller—LQQ or LQG with integral
control.

Determines effects of B-field perturbations on  TWO DOF_LTR.m
step response for given conmtroller—LQG or
LQG with integral conirol

TABLE V-E

MATLAB SCRIPTS USED FOR THE ITERATIVE 2-DOF CONTROLLER DESIGN

Matlab Script

Description Called By

TWC DOF_TEST.m

TWO DOF PLANT.m
STEP _RESPONSE.m
STIFFNESS TEST.m
B_PERTURB.m

SORT RESULTS.m

THRESHOLDS.m

Main program--coordinates the overall ~ eceeen
process. Saves results from each simulation in
sequentially numbered .mat files

Same as Table IV-E.
Same as Table IV-E.
Same as in Table IV-E.
Same as in Table IV-E.

TWO _DOF_TEST.m
TWO_DOF_TEST.m
TWO DOF TEST.m
TWO DOF_TEST.m

Separate program that loads .mat files saved —
by TWO _DOF _TEST.m and stores time

response values from the step response for

each controller tested. Evaluates all responses

according to criteria for percent overshoot,

settling time and the maximum deviation in

control current. Creates table showing design

parameters and responses meeting criteria.

Only reports responses paired by like design

parameters.

From table of time response values for alt
controllers tested, selects values meeting
hierarchy of criteria whose specific values are
specified by the user: maximum deviation of
conirol input, maximum percent overshoot,
and maximum settling time.

SORT RESULTS.m
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APPENDIX F

SOFT-START CIRCUIT FOR COPLEY

Intreduction

This appendix provides a description of the “soft-start” circuit produced to protect the Clinton DC
power supply from current surges when the Magnetic Suspension and Balancing System (MSBS)

is energized.
Problem Description

As discussed in the main body of the thesis, the MSBS configuration consists of six Copley 232P
power amplifiers connected in parallel on the DC power bus. Each Copley amp contains a 26,000
uF filter capacitor wired across the amplifier’s input. Thus a high capacitance load is
continuously present on the Clinton power supply’s output, regardless of the number of amplifiers
in actual operation. Consequently, at the moment it’s energized, there is a tremendous surge
current in the Clinton power supply. This poses a great potential hazard to both equipment and

people.
Seft-Start Circait

A remedy to the surge problem was devised whereby the capacitors in the Copley amps are “pre-
charged” using a separate, external power supply. When charged to a point where the surge
current would be acceptable, the Clinton supply is energized. Referring to the circuit in Fig. 1-G,

the following explains how the soft-start circuit operates.

The Clinton power supply is normally energized by pressing a momentary contact switch on a
control panel in the Copley amplifier equipment rack. The power supply is designed to latch
itself on once the contact is made. (The latch is broken and the power supply de-energized by
pressing a different momentary contact switch on the same panel.) To implement the soft start,
the original push-to-start switch was removed from the circuit and replaced with normally open
contacts of a time-delay relay. The original switch was wired into the new soft-start circuit
between an isolation transformer and bridge rectifier. The coil of a time delay relay is placed
across the bridge rectifier outputs so that when the push button is depressed, the relay begins its
time delay cycle. At the same time the rectifier output is applied through 2 high wattage resistor
and dicde to the DC power bus connecting all six Copley amplifiers. At the end of the time delay,
currently about ten seconds, the amplifier capacitors are significantly charged, the relay contacts

close and the Clinton power supply turns on as normal.
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Fig. 1-G. Schematic diagram of MSBS “soft-start” circuit.



279

ViTA

Mark W. Adaros is currently a Lieutenant Commander on active duty in the United States Coast Guard.
He attended Old Dominion University during the period May 2002 through May 2005 in pursuit of 2

Masters Degree in Electrical Engineering. He was awarded a Bachelor’s degree in Electrical Engineering

from Old Dominion University in December 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



	Old Dominion University
	ODU Digital Commons
	Spring 2005

	Design and Implementation of One and Two-Degree-of-Freedom Magnetic Suspension and Balance Systems
	Mark W. Adams
	Recommended Citation


	tmp.1553518568.pdf.p1dKO

