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ABSTRACT

BIOINFORMATICS, THERMODYNAMICS AND KINETICS ANALYSIS OF
AN ALL ALPHA HELICAL PROTEIN WITH A GREEK-KEY TOPOLOGY

Hai Li

Old Dominion University, 2011
Director: Dr. Lesley H. Greene

Computational and experimental studies focusing on the role of conserved
residues for folding and stability is an active and promising area of research. To further
expand our understanding we present the results of a bioinformatics analysis of the death
domain superfamily. The death domain superfamily fold consists of six a-helices
arranged in a Greek-key topology, which is shared by the all B-sheet immunoglobulin and
mixed o/B-plait superfamilies. Our sequence and structural studies have identified a
group of conserved hydrophobic residues and corresponding long-range interactions,
which we propose are important in the formation and stabilization of the hydrophobic
core and native topology. Equilibrium unfolding and refolding studies of a model
superfamily member, the Fas-associated death domain protein indicate that this process is
cooperative, two-state and reversible. Stopped-flow fluorescence studies reveal that the
folding is rapid and biphasic with the majority of the hydrophobic core forming in the
first phase. Site-directed mutagenesis studies indicate that conserved Trp112, Trp148,
Leull5 and Val121 are important to structure, native state stability and folding.

We also present the results of experiments aimed at characterizing the formation
of secondary structure. Stopped-flow far-UV CD spectroscopy revealed that the folding
process was monophasic and the rate is 23.4 s™'. To gain atomic resolution a combination

of quenched-flow methods, hydrogen deuterium exchange (HX) and NMR spectroscopy



was implemented. Twenty-two amide hydrogens in the backbone of the helices and two
in the backbone of the loops were monitored and the folding of all six helices was
determined to be monophasic with rates between 19 s™ and 22 s™. These results indicate
that the formation of secondary structure is largely cooperative and concomitant with the
hydrophobic collapse. Additional insights are gained by calculating the exchange rates of
twenty-three residues from equilibrium HX experiments. The majority of protected amide
protons are found on helices 2, 4, and 5 which make up core structural elements of the
Greek-key topology. These results appear to be the earliest conservation analysis and
biophysical characterization conducted on the Fas-associated death domain and folding
kinetics using quenched-flow combined with NMR spectroscopy on an all a-helical

Greek-key protein.
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CHAPTERI

INTRODUCTION

Proteins consist of a chain of amino acids which are linked together by peptide
bonds formed between the amino group of one residue and the carboxyl group of the
neighboring residue. There are twenty types of naturally-occurring amino acids. The
primary structure of a protein is its amino acid sequence. The secondary structure of a
protein is its specific regularly repeating local structures including a-helices, B-strands,
and B-turns. The major force forming and stabilizing secondary structure is hydrogen
bonding. The tertiary structure of a protein is its overall topology composed of a-helices
and B-strands, such as all a-helices, all B-sheets, o/, and o + B. The forces involved in
forming and stabilizing tertiary structure include hydrophobic interactions, ionic
interactions, hydrogen bonding and disulfide bonds. The quaternary structure of a protein
is in the form of multi-subunits or chains. There are some common topologies in the
protein universe, including Greek-key, TIM barrel and jelly roll (May et al., 2010).

X-ray crystallography and NMR spectroscopy are the two primary methods
utilized to solve protein structures. The solved structures of a protein are maintained in
the Protein Data Bank (PDB). There are two main protein structure classification
databases: Structural Classification of Proteins (SCOP) (Murzin et al., 1995) and CATH
Protein Structure Classification (Orengo et al., 1997).

Protein folding remains one of the most fundamental and intriguing questions in

the field of structural biology (Kang and Kini, 2009). This question can be simply stated

This dissertation follows the format of Molecular Cell.



as: “how does a linear polypeptide chain of amino acids accurately fold into a distinct
native functional conformation?”

Anfinsen’s dogma, also known as the thermodynamic hypothesis, states that, at
least for small globular proteins, the native structure of a protein is determined only by its
amino acid sequence. This discovery led to Christian Anfinsen’s winning the Nobel Prize
in 1972. Anfinsen's dogma indicates that amino acids interact with each other to produce
a well-defined folded three-dimensional structure known as the native state (Anfinsen,
1972).

The Levinthal paradox states that if a protein with 100 amino acids folds by
sampling all possible conformations and each side chain has many possible states, it
would take an extremely long time to do so. Even if the conformations were sampled at a
rate of 10* nanosecond, it would still take 10?7 years to fold (Levinthal, 1968; Zwanzig et
al., 1992). Since proteins fold much faster than this, Levinthal then proposed that instead
of a random conformational sampling, the protein must fold by a specific folding
pathway (Levinthal, 1968).

In the folding process, the thermodynamics can be described as:

AGitotal = AHchain + AHsolvent — TAScham — TASsolvent

In the equation, AGio is the total Gibbs free energy change between the
denatured and native states; AHchan and AHgoven: represent the enthalpy change for the
polypeptide chain and solvent, respectively; and ASchan and ASgoivent represent entropy
change for the polypeptide chain and solvent, respectively (Garrett and Grisham, 2005).
Van der Waals forces, hydrophobic interaction, hydrogen bonding and electrostatic

interactions are the main driving forces for folding. Comparison of all the terms indicates



that the two largest contributions to the stability of a folded protein are -TASqojyent for the
hydrophobic side chains (ASgvent is a positive value) and AHggvent (2 negative value) for
the polar groups, which makes the total free energy a negative value (Garrett and
Grisham, 2005). Therefore, the direction of folding from the unfolded state to the native
state goes spontaneously. In the folding process, denatured protein goes through the
transition state (TS) to the native state and overcomes a free energy barrier, which
controls the folding rates. Plaxco et al. (1998) revealed that the intrinsic folding rate
decreases with the increase of relative contact order, which reflects the relative
importance of local and non-local contacts to the native structure.

It appears that small proteins (100 amino acids or less) can fold rapidly in a two-
state (denatured and native states) mechanism with no kinetically detectable
intermediates. However, the folding of larger proteins often involves a multi-stage
pathway or folding funnel. There are currently four models for protein folding:
framework, hydrophobic collapse, nucleation-condensation, and folding funnel models
(Nolting and Andert, 2000; Kelly et al., 2005). In the framework model, protein folding
starts with the formation of the secondary structure elements independent of tertiary
structure, or at least before tertiary structure is formed (Kim and Baldwin, 1982). These
elements then assemble into a tightly packed native tertiary structure either by diffusion
and collision (Karplus and Weaver, 1994) or by propagation of structure step by step
(Wetlaufer, 1973). The folding of acyl-coenzyme A-binding protein which has four a-
helices is an example of a sequential framework model (Kragelund et al., 1999). A
bioinformatics study of this protein identified twenty-six conserved residues. Among

these residues, the mutation of four hydrophobic residues in helix 1 and three



hydrophobic residues in helix 4 significantly decrease the folding rates. The folding
process involves regions of helices 1 and 4 in a spatial arrangement that favors the
formation of long-range interactions. The backbone hydrogen bonds of helix 1 and 4
form first, and hence the hydrophobic residues from these two helices are brought close
together. Afterwards the structure becomes locked and the folding proceeds by the further
formation of the other helices. The generation of native-like interactions between two
terminal helices (1 and 4) is the rate-limiting step, so the helix formation rate is much
faster and a sequential framework model can describe the folding process (Kragelund et
al., 1999).

In the hydrophobic collapse model for folding (Dill, 1990), the initial event of the
reaction is a relatively uniform collapse of the protein molecule, mainly driven by the
hydrophobic interaction. Stable secondary structure starts to grow only in the collapsed
state. The folding of cytochrome ¢, which has four a-helices and a heme group, is
presented as a model of hydrophobic collapse (Akiyama et al., 2000). Initially, the
unfolded protein condenses into the compact intermediate I, whose helical content is
about 20% of the native state. Compaction of intermediate I facilitates the search for
stabilizing contacts to create the molten globule-like intermediate II. Thus, the specific
contacts between the helices are established in the TS between intermediates I and II. The
final process from intermediate II to the native conformation involves the folding of the
remaining helices and the coordination of Met80 to the heme. Since initial hydrophobic
collapse happens before much of the helix formation in the folding, it is proposed that
folding mechanism is better described as the hydrophobic collapse model. Furthermore,

the heme may serve as a hydrophobic nucleation core. In the folding of barstar, the



polypeptide rapidly collapses to compact globule with a non-specific hydrophobic core,
without involving the formation of concomitant secondary or tertiary structure (Agashe et
al., 1995). The rate constants of the fast and slow phases for the secondary structure
formation are 7000 s™ and 11 s™'; and those for the tertiary structure formation are 4000
s and 4 s}, respectively. However, Nolting et al. (1997) suggests that barstar also folds
through nucleation-condensation model after conducting ®-value analysis, which will be
explained later, indicating that two folding models can co-exist for one protein.

In the nucleation-condensation mechanism (Fersht, 1995; Fersht, 1997; Nolting et
al., 1997), early formation of a diffuse folding nucleus catalyzes further folding. The
nucleus primarily consists of a few adjacent residues that have some correct secondary
structure interactions but is stable only in the presence of further correct tertiary structure
interactions. The folding of chymotrypsin inhibitor 2 conforms to a nucleation-
condensation model, which may explain the fairly fast folding rate. The nucleus of the
protein is part of the only helix and some distant residues with which it interacts (Itzhaki
et al., 1995). Only Alal6 on the helix in the hydrophobic core has its full native
interaction energy in the TS. The formation of the helix in the TS is stabilized by the
interaction between Alal6 and Leu49 and Ile57 that will form the hydrophobic core. The
initially diffuse nucleus of relatively low stability becomes increasingly stabilized as
further structure grows around it in a hierarchical manner (Nolting, 1999). Measurements
of the nucleation site by ®-value analysis which supports the nucleation-condensation
model coincide with predictions by using the folding funnel model. The folding funnel
model discussed in the next paragraph concentrates on the rapid decrease of the

conformational dispersity during the reaction (Shoemaker et al., 1999). All three models



may be extended to proteins that have intermediates and multiple TSs on their pathways.
The final steps of folding usually involve the interlocking of the side chains.

The folding funnel hypothesis is the energy landscape theory of protein folding.
Energy landscapes may be considered as energy levels for partially folded intermediate
states of the proteins (Onuchic and Wolynes, 2004; Oliveberg and Wolynes, 2005). It
assumes that the native state of a protein corresponds to its minimum free energy and
entropy. As the protein goes from the unfolded state to the native state, both the
conformational energy and entropy value go down and the number of native contacts
goes up. In the folding funnel model, the protein has many different starting
conformations and eventually converges into a single pathway. The driving force for
folding is the sequestration of side chains of hydrophobic residues to the interior of the
folded protein. The molten globule state is predicted to be an ensemble of folding
intermediates and it corresponds to a species in which hydrophobic collapse has occurred
but native contacts have not yet formed. This state may also exist as an intermediate in
the three classic models. In addition, it has most of its secondary structure but very little
tertiary structure (Kelly and Price, 1997). It belongs to a type of intrinsically disordered
protein (Mittag and Forman-Kay, 2007). Molten globule states may exist as an important
intermediate in the folding pathway of some proteins, such as a-lactalbumin, calcium-
binding lysozyme, apomyoglobin and cytochrome c (Ptitsyn, 1995; Kuwajima and Arai,
2000). Under certain conditions such as low pH, a native protein can be in the molten
globule state.

In order to predict predicting folding rates computationally, Plaxco et al. (1998)

revealed a significant correlation between the natural logarithm of the intrinsic folding



rate (Ink) and the relative contact order. Contact order is the average sequence distance
between residues forming native contacts in the native state divided by the total length of
the protein. Their results show that Ink decreases as the relative contact order increases.
Futhermore, although there is no significant relationship between protein length and
folding rates, a weak correlation is observed between length and the fraction of solvent-
exposed surface area buried in the TS.

The ability to test both empirical and theoretical relationships for predicting
protein folding rates has been limited because a wide range of experimental conditions
and methods are employed. To overcome these problems, Maxwell et al. (2005) defined a
consensus set of experimental conditions such as 25°C at pH 7.0, 50 mM buffer, data
analysis methods and data reporting standards. The folding kinetics of thirty two-state
proteins or protein domains were further studied under the consensus conditions.
METHODS TO STUDY PROTEIN FOLDING: ®-VALUE ANALYSIS

®-value analysis is an experimental protein engineering method used to study the
structure of the folding TS in small domains that fold with a two state transition. Since
the folding TS is a transient and partially unstructured state, its structure is difficult to
determine by methods such as protein NMR or X-ray crystallography. In ®-value
analysis, the folding kinetics and conformational folding stability of the wild-type (WT)
protein are compared with those of one or more point mutants (Fersht et al., 1992;
Zarrine-Afsar and Davidson, 2004). This comparison yields a ®-value that measures the
mutated residue’s energetic contribution to the TS, and thus the degree of native structure

around the mutated residue in the TS.



Usually a high percentage of the residues in a protein are mutated to identify
clusters of residues that are well-ordered in the folded TS. Generally the mutations are
non-disruptive and conservative and replace the original residue with a smaller one, most
commonly alanine (Zarrine-Afsar and Davidson, 2004). Examples of proteins that have
been studied by ®-value analysis include barnase (Dalby et al., 1998), chymotrypsin
inhibitor (Jackson et al., 1993; Gromiha and Selvaraj, 2002), SH3 domains (Northey et
al., 2002), individual domains of proteins L and G, ubiquitin (Sosnick et al., 2004), Fadd-
DD (Steward et al., 2009), BBL (Neuweiler et al., 2009), and chicken brain a-spectrin
(Wensley et al., 2009).

The ®-value is defined as (AG™ Pyr - AGTSPWI(AGN Pyt - AGNPy) = AAG™P
/AAGNP (Figure 1) (Zarrine-Afsar and Davidson, 2004). AGTSPyp represents the energy
difference between the TS and the denatured state for the WT protein, AG™ Py represents
this energy difference for the mutant (M) protein, and AGN"Py1 terms the energy
difference between the native state and the denatured state for the WT (Fersht and
Daggett, 2002; Daggett and Fersht, 2003). Thus, the ®-value represents the ratio of the
energetic destabilization introduced by the mutation to the TS versus that introduced to
the native state. The ®-value ranges from O to 1. A ®-value near 0 suggests that the
region surrounding the mutation is relatively unfolded or unstructured in the TS; a value
near 1 means that the local structure around the mutation site in the TS closely resembles
the structure in the native state. In Figure 1A, the energy of the TS is affected by Ala to
Gly by the same energy as in D, so the change in energy of TS relative to that of D,
AAG™?, is 0. Thus, ® = AAG™P/AAGNP = 0. In Figure 1B, in the TS, AAG™P =

AAGNP, so @ = 1. AAG™™P s calculated from the ratio of rate constants for folding of



WT [keewr)] and mutants [kg] [AAG™® = RTIn(kgwry/ksay)]- The value of AAGN™ is
calculated by subtracting the free energy of folding of mutant AGN "y from that of WT
protein AGNPyr. The free energies of folding are usually measured from urea, GndHCI,
or thermal denaturation curves. Calculations of folding rates and equilibrium constants

are required for @-value analysis (Zarrine-Afsar and Davidson, 2004).

D’ \ N’ mutant

| W
z AAGN-D

wild-type N wild-type

Figure 1. ®@-value analysis (adapted from Zarrine-Afsar and Davidson, 2004)
Schematic profiles are sketched in solid lines for a protein that has an alanine, and in
dashed lines for a variant in which the alanine is replaced by glycine.

(A) The TS is at the top of the energy profile. AAG™>is 0 and thus, ® = 0.

(B) In the TS, AAG™P = AAGN™®, so ® = 1 (modified from Dagget and Fersht, 2003).
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METHODS TO STUDY PROTEIN FOLDING: STOPPED-FLOW
FLUORESCENCE

The application of fluorescence in protein chemistry usually employs intrinsic
fluorescence of aromatic residues (Lakowicz, 2006). Three aromatic amino acids
tryptophan, tyrosine, and phenylalanine are fluorescent; however, they all occupy relative
low percentage in proteins. For example, there is generally 1 mol% tryptophan present in
proteins (Lakowicz, 2006). The maximal absorption wavelengths for phenylalanine,
tyrosine and tryptophan are approximately 260 nm, 280 nm, and 285 nm, respectively;
and the maximal emission wavelengths for phenylalanine, tyrosine and tryptophan are
about 285 nm, 300 nm and 360 nm, respectively (Lakowicz, 2006). Tryptophan has both
a greater molar extinction (absorption) coefficient and fluorescence intensity than the
other two aromatic amino acids (Lakowicz, 2006), therefore it is a good probe for
monitoring unfolding and refolding. An excitation wavelength of 295 nm is employed in
order to specifically detect tryptophan intrinsic fluorescence. Usually, for a protein with a
buried tryptophan, the maximum emission wavelength is shorter, and emission intensity
is greater in the native state than in the denatured state in the equilibrium study. This is
because in the presence of a polar solvent, the energy is transferred to the solvent and the
emission is lost (Lakowicz, 2006). Consequently, the fluorescence intensity will increase
at the maximum wavelength if such a protein goes from the denatured state to the native
state. Furthermore, unfolding and refolding conducted with fluorescence can indicate
important thermodynamic values such as the Gibbs free energy of denaturation (Pace et
al., 1989). However, tryptophan is very sensitive to its microenvironment. The tryptophan

can be quenched in the native state by the neighboring residues such as cysteine, a
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disulfide bridge, histidine, aspartic acid, glutamic acid and lysine (Engelborghs, 2001).
Moreover, a tryptophan in a protein with multiple tryptophans may behave differently
depending on its own microenvironment. In this case, site-directed mutagenesis helps to
detect the contribution of each individual tryptophan to the overall fluorescence.

A stopped-flow instrument is a rapid mixing device used to study the kinetics of a
reaction in solution and it allows various conditions to be tested (Frieden et al., 1993).
Stopped-flow apparatus from Bio-Logic (Claix, France) and Applied Photophysics
(Surrey, UK) are commonly used. Different types of spectroscopy such as fluorescence
spectroscopy (Lakowicz, 2006), circular dichroism (CD) spectroscopy (Kelly et al.,
2005), real time-NMR spectroscopy (Zeeb and Balbach, 2004) and FT-IR spectroscopy
(Fabian and Naumann, 2004) can be used in combination with stopped-flow (Frieden et
al., 1993). A stopped-flow instrument coupled to either a CD spectrometer or a
fluorescence spectrometer is most often used in the field of protein folding to observe
rapid reactions (Kuwajima, 1996). In the stopped-flow fluorescence spectroscopy, after
one solution containing the unfolded protein and another solution containing the native
buffer are mixed, the change of fluorescence intensity using tryptophan or tyrosine as the
probe is amplified, revealing the kinetics of the hydrophobic core formation in a protein
with such buried residue(s) (Lakowicz, 2006). The kinetics traces can be analyzed with
the scientific analysis and graphing program SigmaPlot to calculate the folding rates and
residuals using various exponential equations. The best-fit residuals indicate the number

of phases in the folding process.
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METHODS TO STUDY PROTEIN FOLDING: STOPPED-FLOW CIRCULAR
DICHROISM

CD is one of the most widely used types of chiroptical spectroscopy (Woody,
1996) and a very sensitive biophysical tool for detecting the overall structure of the
protein and monitoring conformational change (Venyaminov and Yang, 1996). The
inherent information content of the far-UV CD spectra (190-250 nm) depends on the
difference in absorption of left- and right- handed circularly polarized light at the protein
backbone (Bohm et al., 1992). Within these wavelengths the peptide bonds in a regular
and folded environment are the chromophore, whereas in fluorescence the side chains of
aromatic residues are chromophores. Therefore, the far-UV CD region of proteins can
reveal important characteristics of their secondary structure elements including
conformations of the a-helix, the B-sheet, the B-turn and random coil (Woody, 1996;
Whitmore and Wallace, 2008). The far-UV CD spectra can also examine the types of
secondary structure in proteins including all-a, all-B, o + B, o/ and disordered proteins
(Venyaminov and Yang, 1996; Kelly et al., 2005). For example, all-a proteins show two
strong double minimum at around 208 nm and 222 nm and all-P proteins usually
demonstrate a less strong single minimum between 210 and 225 nm (Venyaminov and
Yang, 1996). It can be used to study how the protein secondary structure changes as a
function of temperature, pH, or the concentration of denaturant such as guanidinium
hydrochloride (GndHCI) or urea.

Near-UV CD spectrum (250-320 nm) of proteins provides information on the
tertiary structure. The signals obtained in the 250-300 nm region are due to the

absorption, dipole orientation and the nature of the surrounding environment of the
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phenylalanine, tyrosine, tryptophan and cysteine (or disulfide bond) (Woody and Dunker,
1996). Tryptophan shows a peak near 290 nm with fine structure between 290-305 nm;
tyrosine shows a peak between 275-282 nm, with a shoulder at longer wavelengths;
phenylalanine shows weaker but sharper signals with fine structure between 255-270 nm
(Kelly et al., 2005). Unlike far-UV CD, near-UV CD spectrum cannot be assigned to any
one specific three-dimensional structure a priori.

CD gives less specific protein structural information than X-ray crystallography
and NMR spectroscopy. However, CD spectroscopy is a fast method that does not require
large amounts of protein or extensive data processing. Therefore, CD can examine
changes in protein structure for a large number of conditions including solvent,
temperature, pH and salt concentration. Stopped-flow far- (usually at the wavelength of
222 or 225 nm) and near- UV CD spectroscopy usually at the wavelengths between 275
and 295 nm can measure the rates of secondary structure and the tertiary structure
formation, respectively (Kuwajima, 1996; Kelly et al., 2005).

METHODS TO STUDY PROTEIN FOLDING: QUENCHED-FLOW AND
HYDROGEN-DEUTERIUM EXCHANGE

A combination of quenched-flow methods, hydrogen deuterium exchange (HX)
and NMR spectroscopy can give detailed site specific information about the protein
folding process (Englander and Mayne, 1992; Dyson and Wright, 1996). In a typical
experiment (Krishna et al., 2004) as shown in Figure 2, the protein is initially unfolded in
D,0 and guanidium-HCIl (GndHCI) and all the amide hydrogens exchange to deuteriums.
Folding is initiated by rapid dilution into a folding buffer in H,O. The folding buffer is

kept at fairly low pH so that no exchange occurs. After select folding times, a brief
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hydrogen labeling pulse is applied by mixing with high pH buffer and amide deuteriums
that are unprotected exchange to hydrogens but those in stable-formed structures are
protected. A third mix into low pH buffer stops the labeling process. The protein sample
is then concentrated and exchanged into D,0 buffer for NMR analysis. 2D NMR spectra
of the refolded protein are then recorded and the proton occupancy is measured at each

refolding time for the observable amide proton resonances (Dyson and Wright, 1996).

c c
w refold ND
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buffer exchange

Figure 2. The schematic diagram showing the protein at different stages in a typical
quenched-flow, HX and NMR experiment (adapted from Dyson and Wright, 1996)

The stages include refolding, pulsing, quenching, concentration and buffer exchange.

Quenched-flow HX studies of the folding of a number of proteins have been
reported, such as ribonuclease A (Udgaonkar and Baldwin, 1988), cytochrome ¢ (Roder

et al., 1988), T4 lysozyme (Lu and Dahlquist, 1992), ribonuclease T; (Mullins et al.,
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1993), staphylococcal nuclease (Jacobs and Fox, 1994), immunoglobulin binding domain
of streptococcal protein G (Kuszewski et al., 1994), dihydrofolate reductase (Jones and
Matthews, 1995), hen lysozyme (Lu et al., 1997), apomyoglobin (Garcia et al., 2000),
acyl-CoA binding protein (Teilum et al., 2000), human fibroblast growth factor (Samuel
et al., 2001), hisactophilin (Liu et al., 2002), cobrotoxin (Hsieh et al., 2006), onconase (an
RNase A homologue from the oocytes of Rana pipiens) (Schulenburg et al., 2009) and
lysozyme from bacteriophage A (Di Paolo et al., 2010). The results of several of these
studies such as hen lysozyme, human fibroblast growth factor and onconase appear to
show that certain parts of the protein may fold earlier than other regions (Lu et al., 1997;
Samuel et al., 2001; Schulenburg et al., 2009). However, in other proteins such as phage
A lysozyme, acyl-CoA binding protein and the immunoglobulin binding domain of
streptococcal protein G the kinetics of secondary structure formation indicate that they
form cooperatively (Kuszewski et al., 1994; Teilum et al., 2000; Di Paolo et al., 2010).
CHAPERONES

The refolding of an unfolded protein in vitro is a spontaneous process. The
primary driving force for protein folding is the movement of hydrophobic residues away
from the aqueous solvent and reduction in solvent accessible area. On the other hand,
folding of a nascent protein in vivo is a different story (Garrett and Grisham, 2005). The
proteins in the cell can be so crowded that new proteins can aggregate due to the
interaction between their hydrophobic patches (van den Berg et al., 1999). In order to
solve this problem, new proteins are assisted in folding by proteins called molecular
chaperones and chaperonin (Martin and Hart, 1997). Chaperones such as heat shock

proteins (Hsp) bind to the hydrophobic segments of proteins and release them as each
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segment is ready to participate in folding. The main Hsp chaperones are Hsp10, Hsp40
(Dnal in Escherichia coli), Hsp60, Hsp70 (DnaK in E. coli) and Hsp90 (HtpG in
prokaryotes). In eukaryotes, a protein after release from ribosomes can interact with
Hsp70, and then Hsp60 to complete the folding process. GroEL is an example of
chaperonin in E. coli (Garrett and Grisham, 2005; Kampinga et al., 2009) and GroES is a
co-chaperonin. In E. coli, nascent proteins fold in the cylindrical cavity of the GroES-
GroEL chaperonin complex. The cylindrical cavity protects the protein from the crowded
environment of the cytoplasm (Scopes and Truscott, 1998; Garrett and Grisham, 2005).
In eukaryotes, prefoldin, which serves as a co-chaperone, binds unfolded chains emerging
from the ribosomes and delivers them to the chaperonin, TricC (Garrett and Grisham,
2005).
MISFOLDING CAUSES DISEASE

The misfolding of a protein is often associated with its assembly into fibrillar
aggregates, commonly termed amyloid fibrils (Bellotti and Chiti, 2008). Amyloid fibrils
are insoluble aggregates, which form when proteins polymerize to form a -sheet
structure (Chiti and Dobson, 2006; Bellotti and Chiti, 2008; Maji et al., 2009). Figure 3 is
an illustration of how a native protein forms amyloid fibrils. A partially unfolded protein
can form misfolded monomers. The misfolded monomers oligomerize to form a
precursor species known as protofibrils which mature into fibrils. Accumulation of
amyloid fibrils may lead to various neurodegenerative and other kinds of diseases.
Human disease associated with the formation of extracellular amyloid fibrils or

intracellular inclusions with amyloid-like characteristics include thirteen
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neurodegenerative diseases, thirteen nonneuropathic systemic amyloidoses and fourteen

nonneuropathic localized diseases (Chiti and Dobson, 2006).
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Figure 3. Model for protein misfolding and fibrillization (adapted from Skovronsky
et al., 2006)
Soluble native protein is misfolded and associates in the form of oligomers and

protofibrils that eventually lead to fibrils.

Neurodegenerative diseases associated with fibrils include Alzheimer’s,
Huntington’s and Parkinson’s. Alzheimer's disease is caused by accumulation of -
amyloid (1-42 aa) and tau protein aggregations in the brain (Hashimoto et al., 2003). -
amyloid is a fragment hydrolyzed from a larger integral membrane protein called amyloid
precursor protein (Hooper, 2005). One fragment (1-42 aa) aggregates to form ordered
insoluble fibrils consisting of B-sheets (Ohnishi and Takano, 2004). Huntington's disease
is caused by a tri-nucleotide (CAG) repeat in a gene, making it exceed a normal length
(Walker, 2007). The CAG sequence (coding for the glutamine) repeats in Huntingtin

protein results in a chain of glutamines (Walker, 2007). A sequence of forty or more
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glutamines in the protein causes it to aggregate and form amyloid fibrils (Walker, 2007).
Parkinson’s disease is thought to be caused by an abnormal accumulation and fibril-
formation of a-synuclein in the brain (Galpern and Lang, 2006). However, Volles and
Lansbury (2003) propose that and toxicity is caused by the pore-like protofibrils, which
lead to membrane permeabilization, rather than the amyloid fibril, fibrillar aggregates,
Lewy bodies and the a-synuclein monomer. Bovine spongiform encephalopathy, also
known as mad cow disease and humans Creutzfeldt-Jakob disease, is believed to be
caused by misfolded prion protein (Prusiner, 1998). PrPC is a normal protein found on the
cells membranes. PrPSC, the infectious isoform of PrP, can change conformation of
normal PrP® proteins into the infectious isoform.

Nonneurodegenative diseases include cystic fibrosis and type 2 diabetes. Mutation
in the gene encoding cystic fibrosis transmembrane chloride channel causes cystic
fibrosis. The most common mutation is AF508, a deletion of three nucleotides that results
in a loss of phenylalanine508 on the protein. Absence of phenylalanine508 causes the
protein to misfold (Cyr, 2005). The folding intermediate remains attached to the
chaperone and is not inserted into the membrane (Kopito, 1999). Type 2 diabetes is
caused by amylin amyloid fibrils in the pancreas (Jaikaran and Clark, 2001).
Haemodialysis-associated amyloidosis is caused by amyloid fibrils of B2 microglobulin, a
normal serum protein in the blood (Miyata et al., 1993). The mutation of p53, a key
check-point protein in the cell cycle regulation results in its misfolding. The proteasome
system removes the misfolded p53. The reduced concentration of p53 fails to arrest the
cell cycle in the event of improper DNA replication (Garrett and Grisham, 2005). The

above examples show that mutation and/or failure of assistance by chaperones lead to
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protein misfolding and fibril formation, resulting in diseases. External factors may also
play a role in amyloid fibrils formatin such as metals and other environmental agents
(Alexandrescu, 2005).
THE FAS-ASSOCIATED DEATH DOMAIN AND THE DEATH DOMAIN
SUPERFAMILY

The death domain superfamily fold consists of six a-helices arranged in a Greek-
key topology. This topology is shared with members of two other superfamilies, which
are the all B-sheet immunoglobulins and the mixed a/B-plaits (Higman and Greene,
2006). Extensive experimental studies have been conducted on these two superfamilies,
but no studies have been conducted on the death domain superfamily members. Thus they
are ideal for investigating the determinants of the common topology. The death domain
superfamily is comprised of four families: death domain (DD), death effector domain
(DED), caspase recruitment domain (CARD) and pyrin domain (PYD). They function in
either intracellular signal transduction of apoptosis (DD, DED and CARD), or innate
inflammation (PYD) (Park et al., 2007). The Fas-associated death domain (Fadd) consists
of an N-terminal DED and a C-terminal DD (Fadd-DD) consisting of one-hundred
residues (Berglund et al., 2000; Carrington et al., 2006). Fadd-DD was selected as our
model DD protein system because its NMR structure has been solved, the protein is
monomeric and the protocols to express and purify the protein are already established
(Berglund et al., 2000).

The role of Fadd-DD in the apoptosis is presented in Figure 4. The Fas ligand, an
intrinsic membrane protein, is present on the surfaces of cytotoxic T lymphocytes, which

remove the virally infected cells (Pollard and Earnshaw, 2004). The Fas ligand associates
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with the extracellular binding domain of Fas on the target cell and initiates the apoptotic
pathway (Ashkenazi and Dixit, 1998). Intracellular DD of Fas binds with the DD of Fas-
associated protein. The DED of Fas-associated protein binds with DED of procaspase 8.

Procaspase 8 activates itself proteolytically and activates downstream effector caspases.

Fas ligand

Fas

Membrane

Caspase 8

Effector caspases

\

Apoptosis
Figure 4. The role of Fadd-DD in the apoptotic signaling (adapted from Ashkenazi
and Dixit, 1998)

Fadd: Fas-associated death domain; DD: death domain; DED: death effector domain.



21

CHAPTER II

MATERIALS AND METHODS

MATERIALS

All chemicals were high quality reagents. Ultra pure 8 M Guanidine-HCl solution
(GndHCI) was purchased from Pierce (Rockford, IL), dithiothreitol (DTT), carbenicillin
and Isopropyl -D-1-thiogalactopyranoside (IPTG) from Fisher (Waltham, MA) or VWR
(Suwanee, GA), Bis-Tris from Acros Organics (Morris Plains, NJ) and Sephadex G-75
superfine resin from Sigma (St. Louis, MO). All buffers were filtered through either a
0.45 or 0.22 um filter (Pall Corporation, Ann Arbor, MI). T7 promoter and T7 terminator
primers, Pfu DNA polymerase, Phi-X174/Hae III Marker, £ . coli BL21(DE3), dNTP
mix, 2 X PCR mastermix and XL1-blue supercompetent cells were from Stratagene (La
Jolla, CA). Qiaquick gel extraction kit and Qiagen plasmid mini Kit were from Qiagen
(Valencia, CA). pET-14b vector was from EMD Chemicals (San Diego, CA). Nde 1, Xho
I, BamH I and NEB 5-alpha F’I? competent E. coli were from New England Biolabs
(Ipswich, MA). NuPAGE Novex 4-12% Bis-Tris Mini Gels were from Invitrogen
(Carlsbad, CA). Ni-NTA His bind resin and Ni-NTA Buffer Kit were from Novagen (San
Diego, CA).

The °N labeled-ammonium chloride and 99.0% deuterium oxide were purchased
from Cambridge Isotope (Andover, MA). 2-(N-morpholino) ethanesulfonic acid (MES),
glycine and citric acid were purchased from Fisher. Dipotassium phosphate was

purchased from VWR. Deuterated GndHCI, DTT, citric acid and K;HPO,4 were prepared
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by dissolving the chemicals into D,O and lyophilizing. This procedure was repeated three
times. The concentration of GndHCI used in the experiments was determined with an
Atago hand-held refractometer (Tokyo, Japan).

Protein purification was conducted on a Perceptive Biosystems BioCAD Sprint
(GMI, Ramsey, MN). Mutagenesis was conducted with the Stratagene QuickChange II
site-directed mutagenesis kit. DNA sequencing was conducted by Nucleic Acids
Research Facility (Virginia Commonwealth University, Richmond, VA). Mass
spectroscopy was conducted by the COSMIC facility (Old Dominion University,
Norfolk, VA).
METHODS FOR THE BIOINFORMATICS STUDY OF FADD-DD

The death domain superfamily is a large superfamily with different functions,
divergent sequences and members with known structures. A bioinformatics analysis to
identify conserved residues has not been conducted. This analysis is a necessary
prerequisite for structure, stability and folding studies to test the role of conserved
residues in structure and folding.
Construction of a Superfamily Sequence Alignment

A multiple sequence alignment is an alignment of three or more protein
sequences. Generally the input sequences have an evolutionary relationship by sharing a
lineage and descending from a common ancestor. A diverse multiple sequence alignment
was created in order to enhance sequence variability and in this way, only the conserved
residues for structure and folding could be identified. PSI-BLAST (Altschul et al., 1990)
was used to search for divergent (< 25% sequence identity) members of the death domain

superfamily. Four proteins served as query sequences when conducting PSI-BLAST
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search: human Fadd-DD (PDB code: 1E3Y), human Fadd-DED (PDB code: 1A1W),
human Apaf-1-CARD (PDB code: 1CY5) and human ASC-PYD (PDB code: 1UCP).
They were selected for the following reasons: the three-dimensional structures are
resolved, they are functionally diverse and they represent the four families within the
superfamily. The multiple sequence alignment was created using the program Muscle -
multiple protein sequence alignment program (Edgar, 2004) in the software Jalview
(Clamp et al., 2004). Modifications were made by hand based on the comparison of the
side-chain orientation in the four aligned protein structures generated with the online CE-
MC-Multiple Protein Structure Alignment Server (Guda et al., 2004). Modifications by
hand are necessary to make sure the side chains of the four structures have similar
orientation and all sequences without solved structures can be aligned properly because
computer algorithms are not perfect. Structures were analyzed using Insight II, version
2005 (Accelrys, San Diego, CA) running on a SUN workstation with Linux.
Calculation of Conservation and Hydropathy

The number of each residue type in each position of the superfamily sequence
alignment was calculated using a program written in Perl script. The entropy value was

calculated by the following equation:

m

SG) = Z — PPN = 1.2,...,20)

j=1
Pj(i) is the fractional occurrence of amino acid type j at each site i; and m is the
number of amino acid types used in the particular analysis (Sander and Schneider, 1991).
Since twenty sequences were incorporated, i ranges from 1 to 20. Conservation was
calculated by the following equation: C(i) = 1 — S(i) / In(m) (Greene et al., 2003). The

positions with conservation values greater than 0.45 are considered to be highly
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conserved; the positions with conversation values between 0.35 and 0.45 are considered
to be moderately conserved; and the positions with conservation values lower than 0.35
are considered to be less conserved. The positions which have more than one gap are
considered non-conserved and therefore have a value of zero. Persistent hydropathy is
calculated by the following equation: hydropathy = sum of the number of each amino
acid + hydrophobicity of that amino acid. The hydrophobicity scale is adapted from
Nozaki and Tanford scale (Nozaki and Tanford, 1971). The resultant data were analyzed
using SigmaPlot (Ver. 10, SYSTAT Software).
The Long-range Interaction Network within the Fadd-DD

A contact file listing all atom contacts within each structure was generated with
the Contact program (Collaborative Computational Project, 1994). Programs written in
Perl script were used to calculate the conserved long-range interaction network from the
contact files. The focus is on long-range interactions which are defined as pair-wise
contacts between residues that are ten or more amino acids apart in the primary structure
but within 6 A in the three-dimensional structure (Greene and Higman, 2003).
Interactions are considered between all atoms except hydrogens.
METHODS FOR THE EXPERIMENTAL STUDY OF FADD-DD

The experimental procedures are summarized in Figure 5. The recombinant DNA
was obtained after the Fadd-DD gene was amplified and cloned into an expression vector.

Fadd-DD protein was expressed and purified and biophysical studies were conducted.
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Extract the Fadd-DD ¢DNA from the filter paper
T7 promoter and T7 terminator

PCR reaction with primers

DNA gel electrophoresis to separate and purify the amplified region
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Ligate with digested pET-14b
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Transform the plasmid into E. coli BL21(DE3)
Plasmidlprep—> DNA sequencing to verify
Design primers from Stratagene
Site-directed mutagenesis
Express the WT gene l
Transform the mutants into E. coli BL21(DE3)
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Express the variants
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Cloning

Plasmid is a circular double-stranded DNA and separate from the chromosomal
DNA. Since a plasmid can replicate independently of the chromosomal DNA, it is
commonly used as a vector to multiply and express a particular gene in bacteria.
Complementary DNA (cDNA) is the DNA sequence synthesized from a mature mRNA
template under the catalysis of the reverse transcriptase and DNA polymerase. The paper
containing the plasmid with Fadd-DD as cDNA was kindly supplied by Dr. Paul Driscoll,
University of College London (London, UK). The plasmid was contained within two
concentric circles. The small inner circle and the big outer circle of paper containing the
plasmid was cut and immersed in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0).
They were preserved at -20°C overnight, followed by incubation at 42°C for fifteen
minutes and vortexed to get most of the DNA sample into the solution. Since
transformation of the plasmid into the expression cells did not generate the recombinant
bacteria probably due to inadequate amount of plasmid, molecular biology methods were
used to obtain the cDNA.

The polymerase chain reaction (PCR) is a technique used to amplify a single or a
few copies of DNA and generate a large amount of copies of a particular DNA sequence
in vitro. Forward and reverse primers are DNA oligomers, which serve as starting points
for DNA synthesis. PCR was used to amplify the regions between T7 promoter and T7
terminator on the cloning/expression region of pET-14b vector with Eppendorf
Mastercycler (Eppendorf, NY) (see Figure Al). The vector harbors the gene encoding -
lactamase which is resistant against ampicillin, therefore E. coli transformed with the

vector can grow on the media with ampicillin. PCR reactions were set up according to
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Table A1l and the temperatures and cycles were set up as Table A2. The Ty, of the two
primers were calculated according to the equation: Tp, = 64.9°C + 41°C X (number of G’s
and C’s in the primer — 16.4)/N (http://www.promega.com/biomath/calcl 1.htm). Both T7
promoter primer and T7 terminator primer bind to the specific regions of the plasmid.
The initial set up stage was increased to 2.5 minutes as Hot-start PCR to reduce non-
specific amplification. Pfu DNA polymerase from the hyperthermophilic archacon
Pyrococcus furiosus was used to generate fragments which have fewer errors than those
generated by Taq DNA polymerase from the thermophilic bacterium Thermus aquaticus.

The PCR product was isolated by the agarose gel electrophoresis. After a 1.5% of
agarose gel with 50 ng/ml of ethidium bromide was polymerized, it was immersed in 1 X
Tris/borate/EDTA (TBE) buffer (pH 8.0). Voltage for electrophoresis was set to 100 V
and time was set to 30-40 minutes. Loading dye (0.4% orange G, 0.03% bromophenol
blue and 0.03% xylene cyanol FF) was used to track the movement of the samples. Phi-
X174/Hae I1I Marker or ladder (100-1000 bp) was used to calculate the approximate
molecular weight of cDNA. After electrophoresis, the DNA in the gel was illuminated
with a UV lamp. Part of the gel which contained cDNA was cut and purified with
Qiaquick gel extraction kit. cDNA samples were sent to Dr. Wayne Hynes’s group
(Department of Biological Sciences, ODU, Norfolk, VA) and Nucleic Acid Research
Facility (VCU, Richmond, VA) for sequencing.

The cDNA encoding Fadd-DD was cloned into pET-14b plasmid. Two of three
restriction sites for cloning (Nde 1, Xho I and BamH I) are commonly used for the
insertion of any cDNA clone. Figure A2 shows the sequences of three cloning sites.

Three restriction enzymes Nde I and Xho 1, and Nde I and BamH I were used to cut the
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c¢DNA and pET-14b plasmid (Table A3). The digestion protocol is presented in Table
A4. The addition of bovine serum albumin (BSA) helps reduce the loss of restriction
enzymes on tube and pipette tip surfaces and stabilize the enzymes according to the
website of New England Biolabs. Sequential digestion was performed in order to get a
good yield. The plasmid and cDNA were first cut with Nde 1, and then cut with BamH 1
or Xho 1. Digestion products were run on the agarose gel and then purified with gel
extract kit as mentioned previously. One cDNA cut by Nde I and X#o I and another
cDNA cut by Nde I and BamH 1 were inserted into the corresponding cut plasmid,
resulting in the recombinant plasmid. Inserts were made one fourth dilution to get the
correct ratio with the plasmid (Table AS).

Transformation is the process during which a competent bacterial cell takes up an
exogenous DNA, particularly a plasmid, from its environment. Transformation was
performed according to the protocol of NEB 5-alpha F’I? competent E. coli. 3 pl of
recombinant DNA was transformed into 50 pl of competent cell. Cells were heat shocked
at 42°C for 30 seconds. 200 pl of reaction solution was added to LB medium containing
200 pg/ml of ampicillin. After drying at room temperature, plates were incubated upside
down at 37°C overnight.

Colonies containing the recombinant plasmid grew on the plates because the
plasmid conferred ampicillin-resistance. Twelve colonies were picked up and inoculated
into 50 ml falcon tubes containing 5 ml LB with 100 pg/ml of ampicillin (six from “Xho™
and six from “Bam”). The culture was incubated at 37°C and shaking at 200 rpm
overnight. 3 ml of overnight LB culture was centrifuged at 13,000 rpm for 15 minutes.

The resultant pellet was dried for 15 minutes and dissolved in 50 pl of ddH,O. Plasmid
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extraction was conducted with the protocol of Qiagen plasmid mini Kit. To verify if the
cDNA is present in the recombinant plasmid, 10 pl of plasmid was cut with 2 pl of Nde 1
and 2 pl of Xho 1 in 0.4 pl of BSA, 4 pl of buffer 4 and 22 pl of water. Mixture was
incubated at 37°C for one hour.

Bacterial strains from colony 1 from “XA0” and colony 7 from “Bam” were
inoculated into two flasks and incubated overnight at 37°C. After plasmid extraction, one
of the plasmid from “X%o” with the highest concentration of 285 ng/ul and one from
“Bam” with the highest concentration of 214 ng/ul were sent for sequencing. The result
showed that the cDNA encoding Fadd-DD was subcloned into pET-14b.

Protein Expression

The small-scale expression of Fadd-DD WT was performed to find out the best
experimental conditions. 1 ul of recombinant plasmid was transformed into 100 pl of
expression cell £ . coli BL21(DE3). Pasmid pUC18 (Stratagene) was also transformed
into the cell as a control. After growing overnight at 37°C, one single colony was picked
up and inoculated into 5 ml of Luria-Bertani (LB) broth in a falcon tube, which was
incubated overnight at 37°C. Bacteria containing pUC18 was used as a negative control.
50 pl of culture was transferred into 50 ml of LB broth containing ampicillin (200 pg/ml)
and incubated at 37°C. Following the first four hours, the optical density (O.D.) value at
600 nm was measured in the Cary 50 UV-Vis spectrophotometer (Varian, Palo Alto, CA)
every hour until the value reached around 0.8. The O.D.go reached 0.8 at 7.8 hours. At
this point, 100 pl of 100 mg/ml of ampicillin was added to the medium. Additionally, 20
wl of 1 M IPTG as an inducing agent was added to one culture while another was kept

free of IPTG.
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The O.D.¢p0 of 1 ml of bacteria culture was measured sixteen hours later after
being induced with IPTG. The O.D.¢g of all three cultures (with IPTG, without IPTG and
pUC control) were adjusted to be approximately 1.5. 1 ml of culture was centrifuged at
120,000 rpm for 5 minutes to harvest the cell. After the supernatant was decanted, the cell
pellet was redissolved in 40 pl of 1 X sample buffer (100 pl of 4 X sample buffer, 300 ul
of water and 20 ul of B-ME as a reducing agent). The mixture was heated at 74°C for ten
minutes to lyse the cell. The solution was then filtered through syringe several times to
shear the sticky DNA. 10 pl more of sample buffer was used to wash out the remaining
solution in the syringe.

Protein gel electrophoresis 4 X sample buffer, Coomassie brilliant blue staining
buffer and destaining buffer were made according to the protocol from Invitrogen. 15 ul
of samples and marker (Invitrogen) were loaded to NuPAGE Novex 4-12% Bis-Tris Mini
Gels. Gel electrophoresis was performed at the voltage of 200 V for 45 minutes. The gel
was agitated in the staining buffer for three hours on the rotator, and then in the
destaining buffer overnight.

The protocol to express the protein was based on that of Berglund et al. (2000)
with some variations to accommodate the difference in equipment in our lab such as
column sizes. One single colony was inoculated into one 50 ml broth containing
carbenicillin (200 pg/ml) in flask and cultivated at 37°C for overnight. 1 ml of bacterial
culture was inoculated into each of twelve 500 ml LB media in 2 L baffled flask and
cultivated at 37°C. The O.D. value was measured at 600 nm every hour after inoculation.
After the O.D. value reached 0.8, carbenicillin and IPTG was added so that the final

concentration is 200 pg/ml and 0.4 mM, respectively. The culture was continually
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cultivated at 25°C for sixteen more hours and then the media was centrifuged in 500 ml
bottles at 7,000 rpm for thirty minutes. The cell pellet was harvested and combined into
one bottle and the supernatant was removed. The cell pellet was resuspended into 50 ml
Tris buffer (pH 8.0) containing 50 mM Tris base, 300 mM NaCl and 5 mM B-
mercaptoethanol (B-ME). The suspension was frozen at -80°C to help lyse the cell. After
the cells were thawed, the suspension was sonicated every four seconds per one minute
for four hours with amplitude of 0.38 at 20°C with ultrasonic processor (Sonics &
Materials, Newton, CT). The cell lysate was spun at 11,000 rpm for one hour and without
inclusion bodies which are white sandy percipitants, indicating the protein was produced
as a soluable form.
Protein Purification

The established protocols to purify the protein were based on previous publication
(Berglund et al., 2000). pET-14b vector can express a protein with an N-terminal His-tag.
Since the nickel-nitrilotriacetic acid (Ni-NTA) resin contains Ni** immobilized on a
matrix and binds the His-tag, the resin can be used in an affinity column. An Ni-NTA
column (1.5 cm X 30 cm) was loaded with Ni-NTA His bind resin with the column
volume of 37 ml. Affinity chromatography was controlled by Perceptive BioSystems
BioCAD spring biomolecule purification chromatography systems with double
wavelengths of 280 nm and 320 nm. The resin was washed with binding buffer in Ni-
NTA Buffer Kit. The lysed cells were loaded onto the Ni-NTA column. After the sample
was completely loaded, the column was washed with binding buffer (pH 8.0) containing
50 mM Tris base, 300 mM NaCl and 5 mM B-ME and then washing buffer (pH 8.0)

containing 50 mM Tris base, 300 mM NaCl, 5 mM B-ME and 20 mM of imidazole
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respectively. After the O.D.pg became steady, the column was eluted with gradient
mixture of washing buffer and elution buffer (pH 8.0) containing S0 mM Tris base, 300
mM NaCl, 5 mM B-ME and 250 mM of imidazole from 100:0 to 0:100. His-tag Fadd-DD
began to elute with 150 mM of imidazole with the peak showing up with 200 mM of
imidazole. Afterwards, the column was washed with pure elution buffer until O.D.»g
became steady.

Fractions containing His-tag Fadd-DD were collected into Standard Grade RC
Membranes: Spectra/Por® 3 with MWCO of 3,500 Da (Spectrum Labs, Rancho
Dominguez, CA). In order to remove the imidazole, the protein solution was dialyzed
against 4 L buffer (pH 8.4) containing 20 mM Tris-HCI, 150 mM NaCl and 5 mM B-ME
overnight at 4°C. The protein solution was concentrated with Vivaspin-20 tubes which
have Polyethersulfone Membrane with MWCO of 3,000 Da (Sartorius Stedim Biotech
S.A., Aubagne, France). The Vivaspin tubes were centrifuged at 8,000 rpm for 30
minutes in Hettich ROTANTA 460 Tabletop Centrifuge (GMI, Inc., Ramsey, MN).

In order to remove the His-tag, 50 units of thrombin were added to the protein
solution and the mixture was incubated at 4°C overnight. SDS-PAGE was run on the
protein solution to determine successful thrombin cut. The protein solution was loaded
onto Ni-NTA column again in order to separate Fadd-DD and His-tag Fadd-DD.
Washing and elution were the same as previously described in the first Ni-NTA column
separation. Fractions containing Fadd-DD are collected. Fractions containing His-tag
Fadd-DD was also collected for further digestion. Protein concentration was measured at

280 nm in Cary 50 UV-Vis spectrophotometer.
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For the gel filtration column, 37 g of Sephadex G-50 or G-75 (Sigma-Aldrich, St
Louis, MO) was dissolved in 371 ml of H,O. The resin was allowed to hydrate and swell
overnight. It was then poured into the gel filtration column (5 cm X 70 cm, Uppsala,
Sweden) and allowed to settle overnight. The column was equilibrated with phosphate
buffer (50 mM phosphate buffer, 150 mM NaCl, 1 mM DTT, pH 6.2). Protein sample
was concentrated and loaded to the column through 5 ml of the PEEK Sample Loops
(Upchurch Scientific Inc., Oak Harbor, WA). The protein absorbance peak was noticed
after approximately 170 ml of buffer elution. Following purification approximately
50 mg of protein per liter of culture was obtained.

The Fadd-DD sample was sent to COSMIC (College of Sciences Major
Instrumentation Cluster, ODU) for determination of molecular weight using the
instrument of Bruker Apex-Qe, a hybrid Qh-FTICR-MS with an extended high
performance actively shielded 12 Tesla magnet. The predicted average molecular mass of
Fadd-DD is 11852.32139 Da according to Protein Calculator v3.3
(http://www.scripps.edu/cgi-bin/cdputnam/protcalc3), then (M+H)" = 11853.32825 u.
Site-directed Mutagenesis

Both forward and reverse primers for seven mutations were designed according to
the website provided by Stratagene: http://www.stratagene.com/sdmdesigner/default.aspx
(Table A6). The primers were ordered from Invitrogen. The primers were dissolved in
autoclaved distilled water and diluted to ideal concentrations of 100 ng/ul.

The PCR reactions were designed according to the QuikChange® Site-Directed
Mutagenesis Kit provided by Stratagene. 50 ul PCR solutions consisted of the following

components: 5 ul of 10 X reaction buffer (Stratagene), 1 pl of 100 ng/ul plasmid template
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encoding Fadd-DD, 1 ul forward primer, 1 pl reverse primer, 1 ul dNTP mix, 41 pl
distilled water and 1 pl of 2.5 U/ul pfuTurbo DNA polymerase. Alternative, reaction
buffer, AINTP mix and pfuTurbo DNA polymerase were substituted by 25 ul of 2 X PCR
mastermix. 2 pl of 5 ng/ul pWhitescript control plasmid (Stratagene) was used as control.
Cycling parameters for the Quikchange site-directed mutagenesis method are as follows:
95°C for 30 sec, 95°C for 30 sec, 55°C for 1 min, 68°C for 4 min (cycles for 16 times).
Following temperature cycling, the reaction was cooled to 4°C. 1 pl of the Dpn 1
restriction enzyme (10 U/ul) was added to the mixture, which was incubated in water
bath at 37°C for one hour. The enzyme can specifically digest the parental non-mutated
supercoiled dsDNA.

The transformation protocol with XL 1-blue supercompetent cells was similar to
that with E. coli BL21(DE3). 50 ul XL1-blue supercompetent cells were mixed with 1 pl
Dpn I-treated DNA from sample reaction and control. To verify the transformation
efficiency, 1 pl of pUC18 control plasmid (0.1 ng/ul) was mixed with the competent
cells. After the heat pulse, 0.5 ml of NZY™ broth which was preheated to 42°C was added
to the mixture. 100 pl of 10 mM IPTG (in water) and 100 pl of 2% X-gal (dissolved in
dimethylformamide) were spread on the LB agar with 100 pg/ml carbenicillin. For
pWhitescript mutagenesis control, 250 pl of the mixture was plated on the LB agar; for
pUC18 transformation control, 5 pl was plated; for sample mutagenesis, 250 pl was
plated. All the plates were incubated at 37°C overnight. Blue cells of pWhitescript control
grew up on the plates the next day. Two colonies from each mutagenesis reaction for
Trp112Phe were selected and inoculated into LB broth with 200 pg/ml carbenicillin,

which were incubated at 37°C overnight.
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The plasmid was extracted according to the protocol of Strataprep Plasmid
Miniprep Kit. The DNA solutions were washed with 55 ul of distilled water and the
concentrations and purities were checked with Biophotometer with O.D. values at 260
nm and 280 nm. The DNA samples were sent to Nucleic Acid Research Facilities in
VCU for sequencing.

Selection and Purification of Variants

The proteins for the experimental study are summarized in Table 1. In order to
produce variants for folding while minimizing the effect of significant change to the side
chain, two tryptophans were mutated to phenylalanines and Leul15 and Val121 were
mutated to alanine. As a control, His160Gly was synthesized since His160 in human
Fadd-DD aligns with Gly160 in murine homologue. Moreover, in order to produce
variants with greater ellipticity in the near-UV region, two more variants are designed to
introduce an exposed or partially exposed tryptophan residue to the protein, since the
near-UV CD signal is largely caused by the asymmetric environment of aromatic residues
in the protein (Kelly et al., 2005). Leul 72 is an exposed residue even though it is
hydrophobic by its physico-chemical property. Vall58 is a partially exposed residue. To
replace these two residues with tryptophans will not cause significant change to their

microenvironments.
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Table 1. Expression of Fadd-DD and variants used in experimental studies

Protein/variant Property Expressed location
WT Cytoplasm

Trpll2 Phe Conserved Cytoplasm

Trp148 Phe Conserved Inclusion bodies
His160 Gly Non-conserved Cytoplasm
Trp112/His160 Phe/Gly  Conserved Cytoplasm

Leull5 Ala Conserved Inclusion bodies
Vall21 Ala Conserved Inclusion bodies
Leul72 Trp Conserved (hydrophilic position) Cytoplasm

Vall58 Trp Non-conserved Cytoplasm

The Trp112Phe, His160Gly and Trp112Phe/His160Gly recombinant proteins
were expressed and purified in the same manner as the WT Fadd-DD. It should be noted
that the yields of soluble Trp112Phe protein was substantially decreased in comparison to
the WT Fadd-DD and His160Gly variant. The Trp148Phe variant however, was so
significantly destabilized that instead of soluble expressed protein, this variant formed
inclusion bodies within the bacteria. Purification therefore was initially done under
denaturing conditions and refolding in vitro yielded large amounts of precipitated protein.
Variations to the refolding buffer were tried in order to optimize the system for recovery
of some native-like protein and found to be 20 mM Tris—HCI, pH 8.0, 150 mM NaCl and
2 mM DTT at 4°C.

Leul15Ala and Vall21Ala variants are very unstable and exist as inclusion
bodies, similar to the Trp148Phe variant. These two variants were purified in the similar

manner as the Trp148Phe variant (Li et al., 2009). Leul 72Trp and Val158Trp are stable
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and exist in the cytoplasm, similar to the WT. These two variants were purified in the
similar manner as the WT (Li et al., 2009).
Protein Isotope-labeling

Recombinant human Fadd-DD (11.8 kD) uniformly labeled with °N was purified
from a six liter fermentation of E. coli BL21(DE3) (Novagen, NJ). The cells were grown
at 37°C on M9 minimal medium supplemented with 1 g/l "NH4Cl, 0.2 mg/ml
carbenicillin and 1 ml/l poly-Vi-Sol vitamin drops with iron (Mead-Johnson, Evansville,
IN). The protein was purified according to the previously described protocols. The yield
was approximately 15 mg/liter. The protein was lyophilized in preparation for
denaturation and refolding in the quenched-flow studies.
Equilibrium Unfolding and Refolding Monitored by Fluorescence Spectroscopy

Fluorescence emission spectra were obtained with a Cary Eclipse fluorescence
spectrophotometer (Varian, Palo Alto, CA). 0.05 mg/ml (4 puM) of WT Fadd-DD and all
variants were excited at 295 nm and emission spectra were measured from 310 to
450 nm. Scans were repeated six to eight times at 20°C and averaged. The excitation and
emission slits were set at 5 nm and 10 nm, respectively for the WT protein and
His160Gly variant; 10 nm for Trpl12Phe and Trp112Phe/His160Gly variants; and 20 nm
for Trp148Phe variant. The path-length of the fluorescence cuvette was 1 cm. All the
samples were in 20 mM Bis-Tris buffer (pH 6.2) with 2 mM DTT to keep the three free
cysteines reduced except for Trp148Phe which was in Tris—HCI buffer (pH 8.0) and
2 mM DTT.

For the equilibrium unfolding process, WT Fadd-DD and variants were diluted to

0.05 mg/ml in increasing amounts of GndHCI buffer from 0 M to 6 M. For the refolding



38

titration, protein was denatured in 6 M GndHCI in buffer for 3 h. The protein was
subsequently refolded by dilution to 0.05 mg/ml into decreasing concentrations of
GndHCI from 6 M to 0 M. The samples were incubated at room temperature overnight.
The fluorescence spectra of the samples were determined with emission monitored from
329 to 371 nm for the WT, Trp112Phe, Trp148Phe and Trp112Phe/His160Gly variants
and from 320 to 380 nm for the His160Gly variant. The ratios of emission intensities of
370 over 330 were used for data analysis for all proteins. Fraction unfolded values were
calculated using the method of Pace et al. (1989) and the curves were fitted using
SigmaPlot.
Circular Dichroism and Equilibrium Unfolding

CD spectra were obtained with the Fast modular polarimeter (MOS-450) (Bio-
logic, France). The protein concentrations for far-UV and near-UV CD were 0.2—
0.25 mg/ml (1621 uM) and 0.5-0.6 mg/ml (42—-50 pM), respectively. Scans were
repeated six to twenty-four times at 20°C and averaged. The slits were both set at 1 mm.
The cuvette path-lengths for far-UV and near-UV CD were 1 mm and 1 cm, respectively.
All the samples were in 20 mM Bis-Tris buffer (pH 6.2) with 2 mM DTT with the
exception of the Trp148Phe variant which was in 20 mM Tris—HC], pH 8.0, 150 mM
NaCl and 2 mM DTT.

For the unfolding titration, WT Fadd-DD, Trp112Phe, His160Gly and
Trp112Phe/His160Gly variants were diluted to 0.2 mg/ml in increasing amounts of
GndHCl in buffer from 0 M to 6 M. The samples were incubated at room temperature

overnight. The far-UV CD spectra of the samples were monitored with excitation from
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221 to 223 nm. The ellipticity at 222 nm was used for data analysis. Fraction unfolded
values were calculated and the curve was fitted using SigmaPlot.
Stopped-flow Fluorescence Studies

The folding of WT Fadd-DD, Trpl112Phe and His160Gly variants were
characterized by stopped-flow fluorescence with a SFM-400 (Bio-Logic, France). Native
protein was denatured at 0.12 mg/ml to 0.3 mg/ml in 6 M GndHCl, 20 mM Bis-Tris
buffer (pH 6.2) and 2 mM DTT at room temperature for 3 h or overnight. Refolding was
initiated by five-fold dilution into 20 mM Bis-Tris buffer (pH 6.2) and 2 mM DTT at
20°C. The dead time was 8.6 ms. Changes in fluorescence intensity was monitored in an
FC-15 cuvette (1.5 mm of path-length) with excitation at 295 nm and emission from 300-
340 nm using a bandpass filter (Semrock, Rochester, N.Y.) selected for optimal signal for
the WT Fadd-DD and the His160Gly variant. For the Trp112Phe variant another
bandpass filter was selected (362—396 nm) to obtain the optimal signal. The excitation
and emission slits were both 1 mm for WT Fadd-DD and 2 mm for the variants. The
refolding experiments were repeated four to sixteen times and the averaged traces were
fit to a double exponential equation in SigmaPlot for WT Fadd-DD and the His160Gly
variant. For the Trp112Phe variant the trace was best fit to a triple exponential equation.
The time course for all proteins was monitored up to 10 s.

The unfolding process was initiated with a 1:5 dilution at 20°C. Unfolding of
native WT protein at 0.12 mg/ml in 20 mM Bis-Tris buffer (pH 6.2), 2 mM DTT and 1 M
GndHCI was mixed with buffer with 7 M GndHCI and monitored by stopped-flow
fluorescence spectroscopy. The excitation wavelength and dead time are the same with

the refolding and emission was monitored using a bandpass filter (300-340 nm).
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Secondary Structure Formation Studied with Stopped-flow Far-UV CD

The kinetics of refolding of Fadd-DD was measured at 20°C on a Bio-Logic MOS
450 stopped-flow instrument using far-UV CD detection. 0.9 mg/ml protein was unfolded
in 20 mM MES buffer (pH 6.2), 5 mM DTT and 6 M GndHCI. Refolding experiments
were carried out by rapid 1 to 5 dilution of the protein solution in 20 mM MES buffer
(pH 6.2) at 20°C, giving the final concentrations of protein and GndHCI of 0.15 mg/ml
and 1 M, respectively. The dead time was 9.3 ms. Change in the far-UV CD signal was
monitored in an FC-20 cuvette (2 mm of path-length) at 225 nm. The excitation and
emission slits were both 2 mm. The refolding experiments were repeated twenty times
and the averaged traces were fit to a single exponential equation in SigmaPlot. The
denatured baseline was obtained by mixing the denatured protein with denaturing buffer
in the stopped-flow system and measuring the CD signal at 225 nm. The native baseline
was determined by mixing native protein with refolding buffer in the stopped-flow
system and measuring the CD signal at 225 nm. Both baselines were calculated from an
average of 20 shots each.
Tertiary Structure Formation Studied with Stopped-flow Near-UV CD

The kinetics of refolding of Fadd-DD was measured at 20°C on a Bio-Logic MOS
450 stopped-flow instrument using near-UV CD detection. 1.5 mg/ml protein was
unfolded in 20 mM Bis-Tris buffer (pH 6.2), 5 mM DTT and 5 M GndHCI. Refolding
experiments were carried out by rapid 1 to 4 dilution of the protein solution in 20 mM
Bis-Tris buffer (pH 6.2) at 20°C, giving the final concentrations of protein and GndHCl
of 0.3 mg/ml and 1 M, respectively. The dead time was 5.6 ms. Change in the far-UV CD

signal was monitored in an TC-100 cuvette (10 mm of path-length) at 285 nm. The
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excitation and emission slits were both 2 mm. The refolding experiments were repeated
thirty times.
Quenched-flow Experiments

The preparation of the samples for the HX methods utilized a Bio-Logic SFM-400
and the following delay lines: 17, 90 and 190 (Bio-Logic, France) at 20°C. '*N-Fadd-DD
(1 mg/ml) was denatured in 5 M deuterated GndHC], 10 mM deuterated MES (pD 5.8)
and 5 mM deuterated DTT overnight. This pD value was chosen because it was used in
the previous folding study with stopped-flow fluorescence and CD spectroscopy. The pD
of the deuterated buffer solution was determined by adding 0.4 units to the reading of the
pH probe (Primrose, 1993). Refolding was initiated by mixing one volume of the
denatured protein solution with four volumes of water-based refolding buffer containing
10 mM MES (pH 6.2) and 5 mM DTT. The concentrations of GndHCI and protein at this
point are 1 M and 0.2 mg/ml, respectively. Under this concentration of GndHCI, the
protein was shown to be in the native state and the folding of the protein at this
concentration is not concentration dependent (Li et al., 2009). After refolding for a
specified period of time the protein was mixed with five volumes of water-based pulsing
buffer containing 50 mM glycine buffer (pH 9.8) and 5 mM DTT, thus subjected to a
high pH pulse step for 5.4 ms. At this moment, the amide deuterium on the protein
exchange with hydrogen in the solvent. The first three refolding times (9.9 ms, 28.1 ms,
53.2 ms) were used under the continuous mode and the last five (65 ms, 80 ms, 120 ms,
160 ms and 200 ms) were used under the interrupted mode (Table 2). The protein sample
was then allowed to continue refolding at a lower pH followed by mixing with ten

volumes of water-based quenching buffer containing 200 mM K,;HPO,/100 mM citric
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acid (pH 3.9) and 5 mM DTT. The final pulse and quench pH after dilution were 9.6 and
4.8, respectively. The average intrinsic exchanging times from amide deuterium to amide
hydrogen in H,O at 20°C are approximately 1.4 s and 0.6 ms at pH 6.2 and pH 9.6,
respectively (http://hx2.med.upenn.edu/download.html). Therefore, the hydrogen labeling
only occurs when the pulsing buffer was mixing with the protein solution. To prepare the
samples for NMR studies the solutions were concentrated using vivaspin 20
concentrators (Sartorius Stedim, Aubagne, France) at 7,500 rpm at 4°C for approximately
twelve hours immediately following the quenched flow experiments and stored overnight
at 4°C. The next day the buffer of the solution was exchanged into 100 mM deuterated
K>;HPO4/50 mM deuterated citric acid (pD 4.4) and 10 mM deuterated DTT in D0 for
approximately twelve hours at 4°C, in order to exchange the amide hydrogens with no or
weak hydrogen bond protection and then immediately used for NMR. A pD of 4.4 was
selected because the number of stable amide protons was maximal in comparison to those

at pD 7.2, 5.8 and 4.8.
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Table 2. The set-up parameters of quenched-flow experiment

Continuous mode

DL1 (n)) DL2 (ul) Washing Collecting Ageing 1 Ageing 2
(ms) (ms)
39.4 43.4 Time 50 50 9.9 5.4
(ms)

Syr. 1 40 pl 40 pl

Syr. 2 160 pl 160 pl
Syr. 3 200 pl 200 pl
Syr. 4 400 pl 400 pl
Total 800 pl 800 pl

55.8 43.4 Time 50 50 13.9 5.4
(ms)
Syr. 1 40 pl 40 pl
Syr. 2 160 ul 160 pl
Syr. 3 200 wl 200 pl
Syr. 4 400 pl 400 pl
Total 800 ul 800 ul

112.4 43.4 Time 85 50 28.1 5.4
(ms)
Syr. 1 68 ul 40 pl
Syr. 2 272 ul 160 pl
Syr. 3 340 ul 200 pl
Syr. 4 680 ul 400 pl
Total 1360 ul 800 ul

212.6 43.4 Time 160 50 53.2 5.4
(ms)
Syr. 1 128 ul 40 pul
Syr. 2 512 ul 160 ul
Syr. 3 640 pl 200 ul
Syr. 4 1280 ul 400 pl
Total 2560 ul 800 ul

Interrupted mode

Phase 1 (ul) Phase 2 (ul) Phase 3 (ul) Phase 4 (ul)
Time (ms) 158.6 T, 17.42 35.21
Syr. 1 127.5 14 28.3
Syr. 2 510 56 113.2
Syr. 3 70 141.5
Syr. 4 140 283
Total 637.5 280 566

The ageing time 1 increases with the volume of circles and the ageing time 2 is kept
constant. DL: delay line. Washing and phases 1 to 3 are for line-washing and collecting
and phase 4 are for sample-collection. The parameters are following the instructions of
Bio-Logic.

* DL, = T, + 53. Therefore, T, = 12, 27, 67, 107, and 147, respectively for refolding
times of 65 ms, 80 ms, 120 ms, 160 ms and 200 ms, respectively.
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NMR Studies

The NMR experiments were conducted on a Bruker AVANCE III 400 MHz NMR
spectrometer (Bruker-biospin, Billerica, MA) in College of Sciences Major
Instrumentation Cluster, Old Dominion University. All NMR spectra (1D and 2D) were
collected at 30°C. The acquisition time for 2D NMR is approximately 5.5 hours. In order
to obtain residue specific information about the refolding of Fadd-DD from the HX
experiments, the backbone peaks of 'H-"°N-Heteronuclear Single Quantum Coherence
(HSQC) spectra for the native Fadd-DD were obtained and compared with the literature
(Berglund et al., 2000). Sensitivity enhanced 'H-'"N HSQC spectra were obtained on a 5
mm inverse conventional probe with GARP decoupling in the °N channel. 1024 complex
points were collected along the F2 dimension and 128 transients were accumulated along
the F1 dimension. '°N chemical shifts were referenced indirectly using the consensus
chemical shift ratio 0of 0.101329118. All the HSQC spectra were generated in NMRPipe
by apodizing the FID’s with a cosine window, followed by zero-filling to the next power
of 2, Fourier transformation and phasing in both F1 and F2 dimension and visualized
with NMRDraw (Delaglio et al., 1995).
Data Analysis of Quenched-flow, HX and NMR

Hydrogen bonds were calculated using the program Contact (CCP4, 1994) and
further confirmed with the molecular viewing and analysis program Insight II (Accelrys,
CA). The HSQC peak intensities from the quenched-flow studies were normalized to a
control experiment. In the control experiment, water based buffers were used in the
unfolding and refolding portions of the quenched flow experiment. The protein was then

concentrated and buffer exchanged as specified earlier. 1D proton NMR spectra were
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used to calibrate the concentration difference among protein samples from different time
points in TopSpin software (Bruker) (Nabuurs and Mierlo, 2010). The absolute peak
intensity of the well-resolved resonance at -0.37 ppm, which corresponds to a non-
exchangeable methyl proton resonance from L119, is a direct measure of the protein
concentration in the corresponding NMR sample. The HSQC peak intensities were
normalized using the absolute peak intensities of the upfield resonances in the 1D spectra
in order to correct the small variation of protein concentration in the same samples. The
resultant data were plotted using SigmaPlot (version 10) (Systat Software, Chicago, IL)
and kinetic rates determined by applying the single exponential equation to twenty-two
peaks monitored during the study were analyzed. The peak intensities were calculated
with NMRDraw.
Equilibrium Hydrogen Exchange

In the equilibrium HX study, '’N-Fadd-DD (4 mg/ml) was buffer exchanged into
100 mM deuterated K,HPO4/50 mM deuterated citric acid and 50 mM deuterated DTT in
99.0% D,O (pD 4.4). Each HSQC spectrum was acquired every eight hours over the
course of one week. HX rates were determined by fitting peak intensities from HSQC
spectra as a function of time using a single exponential equation in SigmaPlot. The
intensities of each identified peak are normalized against that in the first HSQC spectrum.
The protection against exchange rate is expressed as protection factor, which is the ratio
between the sequence specific intrinsic exchange rate for an amide proton &y, and
measured exchange rate k. (Bai et al., 1993; Sasakawa et al., 1999). &y is calculated
using an intrinsic exchange rate program (H in D,0) located at http://hx2.med.upenn.edu/

download.html. The protection factors are calculated for the slowly exchanging peaks.


http://hx2.med.upenn.edu/
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METHODS FOR THE BIOINFORMATICS STUDY OF THE CHITINASE
INSERTION DOMAIN (CID)
Construction of a Multiple Sequence and Structure Alignment of the CID

The CID regions within the structures of three proteins: Bacillus circulans
chitinase A1 (11TX), C. immitis chitinase (1D2K) and human chitotriosidase (1LG1)
were used as query sequences in PSI-BLAST to search for distant relatives. They
represent chitinases within the kingdoms of Bacteria, Fungi and Animalia, respectively.
A plant or archaeal structure was not available at the time however the PSI-BLAST
searches did identify plant and archaeal chitinases for inclusion in our study. An initial
multiple sequence alignment was made using MUSCLE in Jalview (Clamp et al., 2004;
Edgar, 2004). In the searched sequences, some from close relatives have high identities
>40% (data not shown). Five sequence relatives from each of the five kingdoms and two
from early eukaryotes with sequence identities less than 40% were chosen to make
twenty-seven representatives of the CID superfamily (Table A7). The alignment was
created in order to enhance sequence variability and in this way, only the key conserved
residues for structure, folding and function could be identified. The boundary of the CID
in each sequence was identified by aligning with the three model chitinases and the
domain was further extracted from each chitinase sequence.

An initial structure alignment containing the CIDs from 1ITX, 1D2K and 1LG1
was generated with the online CE-MC (Guda et al., 2001). The initial sequence alignment
was compared with the initial structure alignment and adjusted in Jalview to ensure the
sequences with unknown structures were properly aligned with the known structures.

Since no structure from plant is available, the secondary structure of tobacco chitinase
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CID was predicted by the program of PSIPRED (McGuffin et al., 2000) and the other
sequences were aligned with it thereafter. To verify our sequence and structure
alignment, structures of eight members of family 18 chitinases (1HKM, 1LJY, 1ITX,
1D2K, 1FFR, 1UR9, 1IKFW and INWT) were superimposed with CE-MC method (Guda
et al., 2001). Two structures, 1D2K and 11TX, are within the initial alignment with
twenty-seven sequences.

A larger multiple sequence alignment of sixty sequences was generated using
MUSCLE in Jalview, without being edited according to the three model structures. The
large alignment includes the twenty-seven CID sequences from Archaea, Bacteria, Fungi,
Plantae and Animalia and thirty-three more sequences from Bacteria, Fungi and Animalia
(Table A7) were acquired from searches of the protein database using the PSI-BLAST
program. Furthermore, the SAM-TO08 program was employed to search for the conserved
residues in the CID (http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html) (Karplus,
2009).

Conservation and Hydropathy Analysis

The number of each residue in each position was calculated and analyzed by
SigmaPlot 10.0 (SYSTAT Software Inc.). The entropy value and hydropathy were
calculated by the same equations previously mentioned. The definitions of Pj(i), m, C(i)
are the same as mentioned in the Section of “methods for bioinformatics study of Fadd-
DD”. The positions with conservation values greater than 0.45 were considered to be
highly conserved; the positions with conservation values between 0.35 and 0.45 were
considered to be moderately conserved; and those positions with conservation values

lower than 0.35 were considered to be less conserved (Greene et al., 2003). The positions


http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html
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which have more than one gap are considered non-conserved and therefore have a value
of zero. The hydrophobicity scale of Nozaki and Tanford was used for our studies
(Nozaki and Tanford, 1971).

Select structures from the designated family 18 chitinases in SCOP
(http://scop.mrc-lmb.cam.ac.uk/scop/) and CAZy (http://www.cazy.org/fam/GH18.html)
were chosen to compare the structure and function of chitinases and chitinase-like
proteins (see Table A8). Protein data bank (PDB) files were obtained from SCOP and
RCSB (http://www.rcsb.org). All PDB files were visualized and analyzed in either
Insight I, version 2005 (Accelrys, CA), Pymol, version 0.99 (DeLano Scientific, CA), or
Rasmol, version 2.7. Hydrogen bond calculations and van der Waals radii were
determined with Insight II.

Phylogenetic Analysis of the CID

In order to investigate the evolutionary relationship of the CID sequences from
different lineages of life, the Clustal W2 program
(http://www.ebi.ac.uk/Tools/clustalw2/index.html) was performed with the sixty CID
sequences, because the program can produce a multiple sequence alignment of divergent
sequences and Cladogram or Phylogram to visualize the evolutionary relationships
(Larkin et al., 2007). The phylogenetic tree was constructed using the neighbor-joining
algorithm as described by Saitou and Nei (1987). The tree was visualized and drawn with

MEGA version 4.0.2 software (Kumar et al., 2008).


http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.cazy.org/fam/GH18.html
http://www.rcsb.org
http://www.ebi.ac.uk/Tools/clustalw2/index.html
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CHAPTERIII

ANALYSIS OF CONSERVATION IN THE FAS-ASSOCIATED DEATH

DOMAIN PROTEIN AND CHITINASE INSERTION DOMAIN

INTRODUCTION

Within the vastness of conformational space the greatest number of possible
conformations exists at the onset of folding. The restriction of conformational space and
the formation of native-like topology prior to the establishment of the finer details of the
three-dimensional structure may in part be based on the early formation of a conserved
network of interactions which facilitates rapid and correct folding (Greene et al., 2003;
Geierhass et al., 2004; Higman and Greene, 2006). A number of computational and
experimental studies provide insight into the link between conserved amino acids and
folding (Martinez et al., 1999; Mirny and Shakhnovich, 1999; Kloczkowski and Jernigan,
2002; Ting and Jernigan, 2002; Greene et al., 2003; Gunasekaran et al., 2004; Guo et al.,
2004; Zarrine-afsar et al., 2005; Pearce et al., 2007) particularly those experiments which
reveal that the conserved residues are preferentially structured in the TS (Kragelund et
al., 1999; Hamill et al., 2000; Fowler and Clark, 2001; Heidary and Jennings, 2002;
Otzon and Oliveberg, 2002; Hubner et al., 2004; Wilson and Wittung-Stafshede, 2005;
Cambell-Valois and Michnick, 2007; Olofsson et al., 2007; Lappalainen et al., 2008).
While there are a few studies which argue against conservation of a folding nucleus
(Larson et al., 2002; Tseng and Liang, 2004), this avenue of investigation is very
promising and new approaches to finding determinants of structure and folding from an

evolutionary perspective continue to emerge (Socolich et al., 2005; Marcelino et al.,
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2006). We report the results of a computational investigation into the determinants of
protein folding and stability by identifying conserved residues in the death domain
superfamily and the corresponding long-range interactions. The death domain
superfamily fold consists of six a-helices arranged in a Greek-key topology which is
shared by the all B-sheet immunoglobulin and mixed a/B-plait superfamilies (Higman and
Greene, 2006) (Figure 6). The Greek-key topology in general is one of the most prevalent

in nature (Higman and Greene, 2006; Cuff et al., 2009).

Figure 6. The three superfamilies which share the same Greek-key topology
(A) Apaf-1 CARD (PDB code: 1CY5) represents the death domain superfamily.
(B) Ribosomal S6 (PDB code: 1RIS) represents the a/p plait superfamily.

(C) Titin (PDB code: 1TIT) represents the immunoglobulin superfamily. Ribbon

structures created with PyMOL.

Sequence and structural studies show that sixteen conserved hydrophobic residues

located within the interior of our model superfamily member, Fadd-DD (see Figure 7),
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form a network of long-range interactions, which we propose may play an important and
interconnected role in governing protein folding, topology and stability. Additionally, the
conservation analysis identified six conserved hydrophilic residues which we propose

play a common role in protein—protein interactions between the diverse DDs.

C-terminus

N-terminus

Figure 7. Structural analysis of Fadd-DD (PDB code: 1E3Y)

Ribbon representation of NMR structure of Fadd-DD created by Rasmol (Ver. 2.7).

Chitin and Chitinase
An unrelated side project involved the bioinformatic analysis of conservation in
the chitinase insertion domain to further our understanding of the function. This work did
however involved the identical approach used to analyze the death domains. Thus in this
instance, it is interesting to look at conservation for function versus structure and folding.
Chitin (CgH;305N), is a long-chain polymeric polysaccharide of B-glucosamine
that forms a hard, semi-transparent material found throughout nature. Chitin is composed

of units of N-acetyl-D-glucos-2-amine, which are linked by B-1,4 glycosidic bonds
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(Gooday, 1990). Hence, it may also be described as cellulose with one hydroxyl group on
each monomer replaced by an acetylamine group. Chitin is the main component of the
cell walls of fungi (Gooday, 1990), the shells and radulae of molluscs and of the
exoskeletons of arthropods, especially crustaceans and insects (Dahiya et al., 2006).

The breakdown of chitin is catalyzed by chitinases which hydrolyze it to simple
sugars. Chitinases can be divided into two major categories: exochitinases and
endochitinases (Dahiya et al., 2006; Li, 2006). Exochitinases can be further divided into
two subcategories: chitobiosidases, which cleave diacetylchitobiose units from the non-
reducing end of the chitin chain, and B-(1,4)-N-acetyl-glucosaminidases (NAGase),
which cleave the N-acetylglucosamine (NAG) oligomers, generating NAG monomers.
Endochitinases cleave glycosidic linkages randomly at internal sites along the chitin
chain, eventually providing a variety of low molecular mass NAG oligomers such as
diacetylchitobioses and chitotrioses (Dahiya et al., 2006; Li, 2006).

Chitinases occur in a wide range of organisms including bacteria, fungi, plants,
insects and animals. Chitinases from bacteria and fungi are extremely important for
maintaining a balance between the large amount of carbon and nitrogen trapped in the
biomass as insoluble chitin in nature (Aronson et al., 2003; Li, 2006). Chitinases are
needed by fungi to disrupt existing cell walls when normal cells divide (Kuranda and
Robbins, 1991) and chitinases from some plants may be essential in inhibition against
fungal pathogens (Taira et al., 2002). In insects and crustaceans, chitinases are associated
with degradation of old cuticle (Merzendorfer and Zimoch, 2003). Additionally, human
chitotriosidase may be important in defence against chitinous pathogens such as Candida

albicans (Renkema et al., 1998; van Eijk et al., 2005).
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Based on amino acid sequence similarity, chitinases are classified into families 18
and 19 of glycoside hydrolases (GH) (Kawase et al., 2004; Funkhouser and Aronson,
2007). The members of the two different families differ in their amino acid sequences,
three-dimensional structures and molecular mechanisms of catalytic reactions (Aronson
et al., 2003). Family 18 chitinases have catalytic domains of triosephosphate isomerase
(TIM barrel) fold with a conserved DxDxE motif (Vaaje-Kolstad et al., 2004) and
catalyze the hydrolytic reaction by a substrate-assisted mechanism (Terwisscha van
Scheltinga et al., 1996; van Aalten et al., 2001), whereas family 19 chitinases have high
percentage of a-helices and adopt the single displacement catalytic mechanism (Brameld
and Goddard, 1998; Hoell et al., 2006). In family 18 chitinases, the leaving group alcohol
is protonated by a conserved glutamic acid, the sugar at —1 subsite is distorted into a boat
conformation, and an oxazolinium intermediate is stabilized by the sugar N-acetamido
group and then hydrolyzed (van Aalten et al., 2001; Songsiriritthigul et al., 2008). In an
exochitinase S. marcescens chiB, it was proposed that binding of substrate causes the —1
sugar ring to distort to a boat conformation and rotation of Asp142 towards Glu144, thus
enabling hydrogen bonding between the acetamido group, Asp142 and Glul44. Later on
the oxazolinium ion intermediate was hydrolyzed, leading to protonation of Glu144 and
rotation of Asp142, which shares a proton with Asp140 (van Aalten et al., 2001) (Figure
A3). Family 18 chitinases are widely distributed in five lineages of life; for example,
Thermococcus kodakarensis (Fukui et al., 2005) in Archaea, Serratia marcescens (S.
marcescens) (Brurberg et al., 1994) in Bacteria, Coccidioides immitis (C. immitis) (Hollis

et al., 2000; Bortone et al., 2002) in Fungi, tobacco (Melchers et al., 1994) in Plantae, and
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the sandfly (Ramalho-Ortigao and Traub-Cseko, 2003) and human (Fusetti et al., 2002)
in Animalia.
Family 18 Chitinases

Family 18 chitinases can be classified into three subfamilies A, B and C, in terms
of the amino acid sequence similarity (Watanabe et al., 1993). The main structural
difference between subfamilies A and B chitinases is that a small o + B domain inserts
into the TIM barrel catalytic domain in the subfamily A, while this insertion domain is
absent in the subfamily B (Suzuki et al., 2002). For example, human chitotriosidase (PDB
code: IHKM), as a family 18 chitinase in the subfamily A, has a TIM domain and a CID,
which is a module inserted into the TIM barrel (Figure 8A). In the subfamily A, other
additions can occur at N- or C- terminus of the TIM barrel. On the other hand, S.
marcescens chitinase C (chiC), belonging to the subfamily B, has a catalytic domain, a
fibronectin type IlI-like domain and a chitin-binding domain (Suzuki et al., 2002).
Therefore the presence or absence of the insertion domain appears to be subfamily
specific (Suzuki et al., 1999). Examples of family 18 chitinases in the subfamily B are
only limited to a few bacteria, such as S. marcescens and B. circulans (Watanabe et al.,
1993; Suzuki et al., 1999). Here we mainly discuss family 18 chitinases in the subfamily

A.
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Figure 8. Structural analysis of the CID

(A) Ribbon model of human chitotriosidase (PDB: 1HKM) in complex with the substrate
(NAA-NAA-ALI) generated by Pymol, showing the TIM barrel and CID. The helices
and strands on the TIM barrel are colored in green and those on the CID are colored in
light blue. Some residues (Tyr267, Arg269, Glu297 and Met300) in blue on the CID and
Asp213 in yellow on the TIM barrel interact with the substrate in red.

(B) Schematic representation of the CID between 7 and a7 on the TIM barrel, which is

composed of two anti-parallel B-strands followed by one B-strand, one short a-helix and
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Figure 8 Continued.
lastly three anti-parallel B-strands. The arrows indicate B-strands and the rectangles are a-

helices. The lines stand for the loops connecting a-helices or B-strands.

The TIM barrel domain consists of an (a/B)s-barrel fold and has been found in
many different proteins, most of which are enzymes. The TIM barrel domains share low
sequence identity and have a diverse range of functions. The specific enzyme activity is
determined by the eight loops at the carboxyl end of the B-strands (Branden and Tooze,
1998). In some TIM barrels, an additional loop from a second domain approaches the
active site of the TIM domain and participates in binding and catalysis (Branden and
Tooze, 1998; Pestsko and Ringe, 2004).

The CID superfamily has only one family member and is classified as having an
FKBP-like fold in the SCOP database (Figure 8B) (Murzin et al., 1995). The CID is
composed of five or six anti-parallel B-strands and one a-helix and it inserts between the
seventh o-helix and seventh B-strand of the TIM barrel (Srivastava et al., 2006). The CID
forms a wall alongside the substrate-binding cleft of TIM barrel of chitinase which
increases the depth of the cleft. Thus, it is easy to imagine that the substrate-binding cleft
of chitinases from the subfamilies B and C is not as deep as that from the subfamily A
(Suzuki et al., 1999). Interestingly, some mammalian glycoproteins with various
functions also exhibit the fold of a family 18 chitinase, such as human cartilage
glycoprotein-39 (HCgp-39), whose structure consists of a TIM domain and a CID

(Fusetti et al., 2003).
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In addition to the TIM domain and the CID, some bacterial chitinases in the
subfamily A involved in chitin degradation contain one or two additional domains
involved in substrate-binding (van Aalten et al., 2000). For example, S. marcescens
chitinase A (chiA) (PDB code: 1ICTN/1FFR) has an additional N-terminal domain
(Papanikolau et al., 2001) which belongs to the E-set domain superfamily in SCOP,
whereas S. marcescens chitinase B (chiB) (PDB code: 1E15/1UR9) has one extra C-
terminal domain (Vaaje-Kolstad et al., 2004) which belongs to the carbohydrate-binding
domain superfamily. Removal of such domains often results in enzymes that are still
active but show extremely impaired binding to substrates (van Aalten et al., 2000;
Katouno et al., 2004). For example, mutagenesis studies of two tryptophans on the N-
terminal domain of chiA resulted in decreased specific hydrolyzing activity thus showing
their importance for the hydrolysis of B-chitin (Uchiyama et al., 2001; Aronson et al.,
2003; Ferrandon et al., 2003).

Four Conserved Residues on the CID May Play an Important Role in Chitinase
Function

As known previously, the TIM barrel is considered the catalytic domain in family
18 chitinases (Uchiyama et al., 2001; Aronson et al., 2003). Although a number of
previous publications showed interactions between a group of residues on the CID and
the enzyme substrate and reported the possible functional significance of the CID (van
Perrakis et al., 1994; Hollis et al., 2000; Aalten et al., 2001; Papanikolau et al., 2001;
Fusetti et al., 2003), the definitive role of the CID in chitinase function has not been
completely determined (Fusetti et al., 2002; Fusetti et al., 2003; Songsiriritthigul et al.,

2008). For example, the functional contribution of the CID is not clear in the case of S.
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marcescens chiA (Zees et al., 2009). A previous study showed that by removing the CID
from S. marcescens chiA, the thermal stability was reduced, the specific activity was
decreased, the pH optimum was shifted lower, and the catalytic activity towards long
chitin derivatives was lost (Zees et al., 2009). However, none of the residues on the CID
have been individually mutated. Hence, the role of the specific residues in binding with
substrates remains to be identified.

To identify the specific functional residues on the CID, a multiple sequence and
structure alignment of this domain was constructed. The sequence search process
revealed that this domain exists in a wide range of organisms. Conservation and
hydropathy analysis revealed that four conserved residues, constituting two distinct
sequence motifs, interact with the substrate. Furthermore, extensive comparisons among
different family 18 chitinases demonstrated that the TIM domains + CID can bind long-
chain substrates by providing a deep substrate-binding cleft, while this may not be the
case for the enzymes with the TIM domain alone. In general, additional modules fused to
a catalytic domain may play a role in substrate specificity by providing a specific binding
site or shaping the active site to recognize a substrate with a different shape or size (Todd
et al., 2001). We extrapolate that this may be a reason for the insertion of the CID into the
TIM barrel. This paper identifies and provides initial computational support for the
importance of conserved residues on the CID in chitinase function.

RESULTS
Bioinformatics and Network Studies of the Death Domain Superfamily
A sequence alignment with twenty proteins from the death domain superfamily

was constructed as described in the materials and methods (Figure 9; Table A9).
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Hydrophobic residues such as leucine and tryptophan are preferentially aligned with the
hydrophobic residues, while hydrophilic residues such as lysine and glutamine are
preferentially aligned with hydrophilic residues. A conservation analysis was conducted
using a modified entropy parameter (Figure 10A) and hydrophobicity measure (Figure
11) for each position in the superfamily alignment. Ten positions were found to have
conservation scores greater than 0.45, indicating that they are highly conserved. Among
these ten positions, nine are persistently hydrophobic and one persistently hydrophilic.
The residues in Fadd-DD that correspond to the hydrophobic positions are: Alal00,
Asnl07, Leull9, Ser144, Leul4S5, Trpl48, Leul65, Vall73 and Vall77 (Figure 12A).
Thirteen positions had conservation scores between 0.35 and 0.45 and are designated as
moderately conserved. Among the thirteen positions of intermediate conservation, seven
are persistently hydrophobic, five are persistently hydrophilic and one neutral. The
residues in Fadd-DD that correspond to the hydrophobic positions are: Trp112, Leul15,
Vall21, Ile129, Leul61, Alal64 and Alal74 (Figure 12A). The remaining positions

(< 0.35) are designated as less conserved. Therefore, sixteen conserved hydrophobic

residues and six conserved hydrophilic residues were identified (Figure 12A-B).
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Figure 9. Multiple sequence and structure alignment of twenty proteins from death

domain superfamily
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Figure 9 Continued.

Hydrophobic positions with high conservation are colored in blue and annotated with
“*» Hydrophobic positions with intermediate conservation are colored in green and
annotated with “#”. Conserved hydrophilic positions are colored in red and annotated

with “~”, Arrows indicate the sequences that are in the six a-helices. The number scheme

represents positions in the alignment.
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Figure 10. Sequence conservation and hydropathy analyses of death domain

superfamily

(A) Black bars represent highly conserved positions (C(i) > 0.45) (ten positions); gray

hashed bars represent moderately conserved sites (0.35 < C(i) < 0.45) (thirteen positions);

white bars represent the less conserved positions (C(7) < 0.35). Six helices are annotated

with roman numerals on arrows. Residue positions annotated with a “hash mark”

represent Trp112, Leul15, Vall21, Trp148, His160 and Leul72.

(B) The small diagram shows the distribution of conservation scores (C(i)).
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Figure 12. Ribbon diagram showing conserved residues

(A) Ribbon diagram generated by Insight II (Ver. 2005) shows highly conserved (blue)
and intermediately conserved (green) hydrophobic residues. The helices are colored 1-6
as follows: purple, blue, green, yellow, orange, red. Van der Waals radii around atoms of
the conserved residues show the hydrophobic core.

(B) Ribbon diagram shows conserved hydrophilic residues and numbers.
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The long-range interaction network within Fadd-DD is illustrated in Figure 13A.
Long-range interactions were denoted by contacts that occur between residues that are ten
or more residues apart in the primary structure and within 6 A in the tertiary structure
(Greene and Higman, 2003). There are twenty-two interactions between the sixteen
conserved residues. These interactions are all between predominantly hydrophobic
residues in the core. If two pairs of residues from two families both form a long-range
interaction and these two pairs belong to the same position in the alignment, then this
interaction is designated to be conserved. Furthermore, eleven of the interactions in the
long-range interaction network in Fadd-DD are conserved in the other three families

within the death domain superfamily (Figure 13B).
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Figure 13. Network of long-range interactions between the conserved residues in
Fadd-DD

(A) The circles indicate the locations and identities of the sixteen conserved residues in
the Fadd-DD structure. The black lines indicate contacts that are within 6 A and involve
only heavy atoms.

(B) The balls labeled with numbers represent the sixteen conserved residues. Helices 1 to
6 are colored in blue, cyan, green, yellow, orange and red, respectively. The turns are
colored in gray. The solid lines are the conserved long-range interactions within the four
death domain subfamilies; the dashed lines are the conserved long-range interactions

within three of the four subfamilies. The helices are denoted H1 — H6.
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Structure-based Sequence Alignment of the CID

The representative family 18 chitinases and chitinase-like proteins from plants,
bacteria, fungi and animals with determined three-dimensional structures are listed in
Table A8. A multiple sequence alignment of twenty-seven CIDs based on the structures
of three model proteins: B. circulans chitinase A1 (PDB code: 11TX), C. immitis
chitinase (PDB code: 1D2K) and human chitotriosidase (PDB code: 1LG1) was
generated by MUSCLE in Jalview (Figure A4). CIDs from organisms in all five
kingdoms are aligned, including Archaea, Bacteria, Fungi, Plantae and Animalia (Figure
A4). The secondary structure of the CID of tobacco chitinase is quite similar to those of
fungal chitinases, and thus the B-strands and a-helix of plant CIDs can be predicted.
Smaller alignments can be found in the following references: van Aalten et al. (2000);
Varela et al. (2002); Fusetti et al. (2002); Srivastava et al. (2006). Because the CID in
chitinases is conserved, we can identify its sequence boundaries. Furthermore, we can
predict its structure in family 18 chitinases with absence of solved structures.

Eight chitinase and chitinase-like structures including the three model chitinases
and five more structures (PDB codes: 1LJY, 1FFR, 1UR9, 1IKFW and INWT; explained
in Table A8) were superimposed on each other based on the CE-MC method (see Figure
14). Furthermore, a second and larger sequence alignment with sixty CID sequences was

generated using MUSCLE (see Figure AS5).
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YxR motif

Figure 14. Superimposition of eight family 18 chitinases and chitinase-like

structures (PDB codes: 1HKM, 1LJY, 1ITX, 1D2K, 1FFR, 1UR9, 1IKFW and
INWT) and the two conserved motifs on the CIDs

(A) The eight structures |lHKM, 1LJY, 1ITX, 1D2K, 1FFR, 1UR9, 1IKFW and INWT
are coloured in red, orange, yellow, green, blue, cyan, purple and black, respectively. The
aligned, blue and cyan parts are TIM domain + CID, N-terminal domain on 1FFR and C-
terminal domain on 1URD, respectively. The structures were superimposed with the CE-
MC method.

(B) The two positions in the YxR motif are shown in red and orange, respectively; and

the two positions in the [E/D]xx[V/I] motif are shown in yellow and blue, respectively.
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Proposed Role of Conserved Residues on the CID

Residues are often conserved in protein families because they either make critical
stabilizing interactions or play important functional roles (Schueler-Furman and Baker,
2003). Additionally, residues important for stability are clustered together in the
hydrophobic core and functional residues may be close together in protein-ligand binding
sites (Schueler-Furman and Baker, 2003). Therefore, an analysis of residue conservation
is a reasonable approach in which to identify functionally important sites in the CID.

Positions of highly and moderately conserved residues (Figure 15) and the
average hydropathy profile analysis (Figure 16) are shown. Our conservation study
indicated that there are nine hydrophobic positions with high conservation and five with
moderate conservation; five hydrophilic positions with high conservation and two with
moderate conservation; and five neutral positions with high conservation and six with
moderate conservation (Figure A4). Among these conserved positions, two hydrophobic
and two hydrophilic on the CIDs in chitinases denoted by PDB codes 11.G1, 1D2K and
1ITX are proposed to be important for interactions with the substrate, and five for the
formation of the hydrophobic core, as well as the stabilization of the domain (Table 3).
Interestingly, these four residues fall into two characteristic motifs, one in the N-terminal
region and one in the central region, which are termed the YXR motif and the
[E/D]xx[V/I] motif, respectively. These two motifs are also conserved in the larger
multiple sequence alignment (see Figure A5) as well as the structural superimpositions
(see Figure 14B). It should be noted that the use of SAM-T08 program also identified the

two conserved motifs.



70

0.9
0.8 4|*
0.7 -

0.6 -

0.5 -

Conservation (C(i))

i q
i
i
i H
i M
i H
: e
0.2 - ;
i Hiflllld i
b H B M H
H § o
f : i i {
0.1 1 ;_ ‘
1 i §
B § ¢ i H
I i ¢ H i
; § { AN
0.0 : .
0 50

0 10 20 30 4 60 70 80 90 100
Position in alignment

12
10

# of residues

8
(]
4
2
0

02 04 06 08 1.0
Conservation (C(i))

Figure 15. Sequence conservation analysis of the CID (alignment with 27 sequences)
The figure shows the distribution of conservation scores (C(i)). Positions with high
conservation are represented by black bars (C(i)>0.45), positions with moderate
conservation by gray hashed bars (0.35<C(7)<0.45) and positions with less conservation
by white bars (C(i)<0.35). The conservation values of the positions with more than one
gap in the alignment are calculated as zero. The insert below shows the histogram of

conservation in terms of the number of positions. Bars annotated with the stars are the

conserved residues which may interact with the substrate.
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Table 3. Conserved residues on the CIDs in chitinases denoted by PDB codes of 1LG1,
1D2K and 1ITX and their proposed roles

Code Interaction with the substrate Formation of the hydrophobic core

YxR motif [E/D)xx[V/I] motif

1LG1 Tyr267 Arg269 Glu297 Met300 | Tyr303 Val306 Ala312 Vai332 Phe334
1D2K Tyr293 Arg295 Glu3lé Val319 | Tyr322 Met325 Ala330 Ile352 Tyr354
1ITX Tyr338 Arg340 Glu366 Ser369 | Phe372 Leu375 Tyr385 Ile407 Tyr409
INWT Phe261 Arg263 Glu290 Thr293
1FFR  Tyr444 Argdd6 Glud73 Iled476

1LG1 (1HKM): human chitotriosidase; 1D2K: C. immitis chitinase; 11TX: B. circulans chitinase
Al.

In the YxR motif, tyrosine and arginine form a pi-cation interaction, which is
conserved in all five kingdoms except Plantae. These interactions are also conserved in
the other family 18 chitinases which were not included in the alignment. In many family
18 chitinases, a conserved catalytic aspartic acid on the TIM barrel (e.g. Asp213 in
human chitotriosidase, Figure 17A), forms an electrostatic interaction with the arginine
and hydrogen bonds with both arginine and tyrosine in the motif. The pi-cation
interaction, salt bridge and hydrogen bonding are likely to be important to the structural
integrity of the active site. Vibrio harveyi chitinase A (PDB code: 3B9A) was proposed to
catalyze the substrate hydrolysis following the “slide and bend mechanism” as previously
described for a long-chain substrate (Songsiriritthigul et al., 2008). First, the sugar chain
slides forward towards the reducing end distorting the chain especially in —1 NAG,
causing it to bend and take up a transient strained boat conformation (van Aalten et al.,
2001). Then the twist of the scissile bond, together with the bending of —1 NAG, makes

the glycosidic oxygen accessible to the catalytic residue Glu315 for cleavage



73

(Songsiriritthigul et al., 2008). This mechanism may also apply to the other family 18
chitinases. In the protein structure 3B9A, Tyr461 and Arg463 in the conserved YxR
motif interact with —1 NAG. They also form hydrogen bonds with the conserved catalytic
residue Asp392 on the TIM barrel, which interacts with three subsites of (NAG)s
(Songsiriritthigul et al., 2008).

In another exochitinase S. marcescens chiA, after the substrate glycosidic bond is
protonated, Asp313 which interacts with Asp311 moves to another position where it
interacts with the proton donor residue Glu315, forcing the acetamido group of -1 sugar
to rotate. Subsequently, the water molecule that forms hydrogen bonds with Tyr390 and
the NH of the acetamido group is displaced to a position which allows hydrolysis to
complete (Papanikolau et al., 2001). Since the conserved YxR motif on the CID interacts
with -1 NAG in S. marcescens chiA (Figure 18), it may help cause distortion of substrate,
thus facilitating the cleavage of the glycosidic bonds along the long-chain sugar.
Moreover, the YXR motif in chiA forms hydrogen bonds and provides a hydrophilic
environment for the catalytic residue Asp391 (Figure 18), which is in a nearly
symmetrical position with another catalytic residue Glu315 with respect to the plane of
the sugar ring (Perrakis et al., 1994). Interestingly, Asp311, Asp313 and Glu315 in
chiA’s and Asp140, Asp142 and Glul44 in chiB (not discussed here) both belong to the
conserved TIM barrel DxDxE motif, indicating that their catalytic mechanisms are very

similar.
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Figure 17. Structures of select family 18 chitinases with their substrates

The TIM barrel residues are coloured in green, the four conserved CID residues are in
yellow and gray, and substrates are in red. Hydrogen bonds are indicated as dashed lines.
(A) The conserved residues on the CID of human chitotriosidase (1HKM) either interact
with the substrate, or presumably form a hydrophobic core (Table 3). The a-carbon
backbone of the CID is depicted as a blue ribbon. Glu297 on the CID forms a hydrogen
bond directly with the substrate while Tyr267 and Arg269 on the CID have hydrogen
bonding interactions indirectly through Asp213 on the TIM domain with +1 subsite of the

substrate (Table 3). Tyr267 and Met300 on the CID form hydrophobic interactions
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Figure 17 Continued.

with the substrate. Some conserved hydrophobic residues in gray appear to form a
hydrophobic core indicated by a dashed pink circle. Other conserved hydrophobic
residues face the straight plane indicated by a dashed pink line. They are mostly aromatic
and their role is undetermined.

(B) Subsites from +3 to —3 in the structure of HCgp-39 (INWT) are lined up on the main
chitin fragment. On the CID of INWT, Arg263 forms a hydrogen bond directly with —1
NAG and indirectly via Asp207 on the TIM domain. Phe261 from the CID forms a

hydrophobic interaction with the oligosaccharide (Table 3).
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Figure 18. Residues on S. marcescens chiA (PDB code: 1FFR) interact with 7-mer of
NAG substrate

Residues in yellow on the CID of 1FFR form hydrogen bonds with the substrate (shown
as dashed lines), although some interactions are mediated by Asp391 from the TIM barrel
and water molecules coloured in blue. Ile476 from the CID forms a hydrophobic
interaction with the substrate (Table 3). Additional TIM barrel residues involving in
hydrogen bonding and hydrophobic interactions are shown in green and brown,
respectively. Structures are visualized and analyzed in Insight II. Structural studies
analyzing the interactions between the protein and substrate have been previously
conducted by other researchers (Papanikolau et al., 2001; Fusetti et al., 2003; Horn et al.,

2006).
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In the substrate-binding site in CID of human chitinase (1HKM), Tyr267 and
Arg269 both form hydrogen bonding indirectly by Asp213 with +1 site, and Glu297
directly with —2 site; and Met300 forms a hydrophobic interaction with substrate (Figure
17A) (Rao et al., 2003). These amino acids, together with neighboring residues from the
TIM domain, may constitute part of the substrate-binding site of the chitinase. Some of
the clustered hydrophobic residues (Tyr303, Val306, Ala312, Val332 and Phe334) form a
hydrophobic core indicated by the dashed pink circle (Figure 17A). The roles of the other
aromatic residues (Phe271, Tyr324, Phe326 and Trp331) are not exactly known.
Interestingly, they face a straight plane indicated by the dashed pink line (Figure 17A).

The [E/D]xx[V/I] motif also appears to form contacts with substrate (Table 3). In
human cartilage glycoprotein-39 (HCgp-39) (PDB code: INWT), six sugar-binding
subsites in the carbohydrate-binding groove across the C-terminal ends of the B-strands of
the barrel were identified from —3 to +3 from the non-reducing end (Figure 17B). The
CID also plays a role in sugar-binding because a complex hydrogen bonding network
involving conserved residues Arg263, Glu290 and Thr293 on the CID interacts with —1
NAG and Phe261 forms a hydrophobic interaction (Figure 17B) (Fusetti et al., 2003).

The other highly conserved neutral positions contain mostly alanine, glycine, or
proline; the latter two frequently occur in the structure of B-turns (Creighton, 1993) and
may be conserved for structural reasons. CID has a large percentage of aromatic residues
(e.g. 21% in 1ITX). With the exception of some residues which interact with sugar, many
of them exist in the hydrophobic core, which may be important for folding and stability.

Aromatic residues have been found to play an important role in stabilizing proteins and
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peptides (Subramaniam et al., 2001; Palermo et al., 2008). Therefore, the combination of
the CID with TIM barrel may increase the thermal stability of the whole enzyme.
Comparison of GH 18 Proteins with the CID and Those without the CID

Both the NAGase from Elizabethkingia meningoseptica (PDB code: 1EOM) and
the NAGase from Streptomyces plicatus (PDB code: 1EDT) are composed of one TIM
domain. They break down the glycosidic bond of (NAG); to NAG, therefore, they do not
have complete chitinolytic activities. In the crystal structure of 1IEOM in complex with
biantennary octa-saccharide, only the reducing end NAG and two mannoses of the tri-
mannose core are in direct contact with the protein (Waddling et al., 2000), while the
other sugars extend away from the protein (data not shown). 1EDT hydrolyzes the central
B1—4 bond of the diacetylchitobiose core, NAG-(B1-4)-NAG, of asparagine linked
oligosaccharides. Unlike the chitinases, the enzyme acts on branched oligosaccharides
and has specificities for distinct forms of asparagine-linked oligosaccharides (Rao et al.,
1995; Rao et al., 1999).

While only four out of eight units of the substrate interact directly with some
residues on 1EOM (Table 4) (Waddling et al., 2000), proteins with the TIM and CID
domains have a broad network of contacts including hydrophobic interactions and
hydrogen bonding with the substrate. This can be seen, for example, in the analysis of the

structure of S. marcescens chiA (Figure 18, Table 4B) (Papanikolau et al., 2001).
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Table 4. Comparison of substrate-binding residues between chitinases with the CID

and without the CID
Protein residue
PDB Sugar Residues on the TIM barrel Conserved residues on the CID
Code ring
number Hydrogen Hydrophobic Hydrogen Hydrophobic
bonding interaction bonding interaction
632 D126, E128, F39
Q211, Y213,
Y272
633 D18, R20,
E245,Y272,
1EOM 634 K42, N85, D87, F39
(A) H129
641 R20, E245
635,
636,
642, 643
+2 K369, D391 W275, F396,
Y418
+1 E315, D391 W275,F316, R446
M388
-1 D313, E315, Y163, W275, Y444, R446
1FFR D391 A362, M388,
W539
(B)
-2 E540 W275, W539 E473 1476
-3 T276 w167 E473
-4 R172
-5 Y170

(A) Interactions between select residues on F. meningosepticum NAGase (1EOM) and
bound polysaccharide.

(B) Interactions between some residues on S. marcescens chiA (1FFR) and bound
substrate (NAG)7. The data are adapted from Waddling et al. (2000) and Papanikolau et
al. (2001). Conserved residues on the CID from our conservation analysis are in bold.
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Sun et al. specified that the CID of mouse lectin Ym1 (PDB code: 1E9L) was not
involved in the saccharide-binding (2001). Furthermore, they were unable to assign any
definitive function for this domain. However, the results of our study indicate that at least
four conserved residues on the CID of many chitinases were found to have either
hydrogen bonding or hydrophobic interaction with the substrate of more than three units
of NAG. While 1E9L was not included in the original structural alignment, a close
homologue INWT was studied and suggests that the authors may have seen saccharide-
binding by the CID if a longer substrate was used.

In CAZy database (Cantarel et al., 2009), S. marcescens chiA and chiB, B.
circulans chitinase Al and Aspergillus fumigatus chitinase B (PDB code: 1W9P) are
“bacterial-type” exochitinases with a deep or even a tunnel-shaped substrate-binding
cleft, formed by the TIM barrel and CID (van Aalten et al., 2001; Watanabe et al., 2003;
Sikorski et al., 2006; Horn et al., 2006). S. marcescens chiC (Horn et al., 2006; Sikorski
et al., 2006) and “plant-type” chitinases such as hevamine from Para rubber tree (Hevea
brasiliensis) (PDB code: 1HVQ) (Terwisscha van Scheltinga et al., 1996), ScCTS1 from
Saccharomyces cerevisiae (PDB code: 2UY2) (Hurtado-Guerrero and van Aalten, 2007),
PPL2 from Parkia platycephala seeds (PDB code: 2GSJ) (Cavada et al., 2006) and a
hyperthermophilic chitinase from Pyrococcus furiosus (PDB code: 2DSK) (Nakamura et
al., 2006) are endochitinases with a shallow substrate-binding cleft since they lack the
CID. Therefore, overall it appears that the CID may enhance the exo-type activity by
forming a deep substrate-binding cleft on the top of the TIM barrel (Horn et al., 2006;

Sikorski et al., 2006; Zees et al., 2009).
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Structures of TIM domain alone, TIM domain + CID, and TIM domain + CID +
N- (or C-) terminal domain align very well with their respective counterparts (data not
shown). Interactions between residues and substrates are shown in Table 4 for IEOM
(TIM domain alone) and 1FFR (TIM domain + CID). It appears as if more sugar residues
interact with amino acid residues when the CID is included in the TIM domain.
Therefore, the CID may facilitate stronger association with the substrate, particularly
with increasing substrate length. By removing the CID from S. marcescens chiA, a
processive exochitinase (Uchiyama et al., 2001; Sikorski et al., 2006), the truncated
active enzyme appeared to have a shallower tunnel in the catalytic domain than that of
the intact enzyme (Zees et al., 2009) and it resembled the catalytic domain of S.
marcescens chiC, which acts as a non-processive endochitinase (Sikorski et al., 2006).
Therefore, the CID of chiA enhances not only the exo-N,N'-diacetyl-glucosaminidase
activity, but also the processivity during the degradation of the polysaccharide chains
(Zees et al., 2009).

Phylogenetic Analysis of the CID and Evolutionary Scheme of Family 18 Chitinases
(Subfamilies A and B)

The ubiquitous TIM barrel fold is adopted by seven enzyme superfamilies, one of
which is the TIM barrel GH (Todd et al., 2001). The evolutionary relationships between
different enzymes with TIM barrel are well studied (Todd et al., 2001; Nagano et al.,
2001; Nagano et al., 2002). Gene duplication, gene fusion and incremental mutations are
three mechanisms by which new functions are created in proteins (Todd et al., 1999;
Todd et al., 2001). Molecular phylogenetic analyses of mammalian GH 18 chitinase and

chitinase-like members suggest that active chitinases result from an early gene
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duplication event, which is followed by mutations, leading to chitinase-like proteins, such
as chito-lectins (Bussink et al., 2007). Comprehensive genomic studies of animal GH 18
proteins showed a similar result (Funkhouser and Aronson, 2007). Another phylogenetic
analysis of catalytic domain sequences from various organisms showed that sequences of
animal, fungi and bacteria belong to different lineage; however, chitinase genes from
lepidopteran insects and baculoviruses originated from bacteria and were maintained
through evolution since they transferred laterally (Daimona et al., 2005).

Since the CID sequences are present in all of sixty archaeal, bacterial and
eukaryal genomes in this study, it is possible that the CIDs were present in the Last
Universal Common Ancestor (LUCA) (Ranea et al., 2006). However, no evolutionary
study has been conducted on the CID by itself. To establish the phylogenetic
relationships between the CIDs from different organisms, a preliminary phylogenetic tree
was constructed based on the sixty sequences from five kingdoms (Archaea, Bacteria,
Fungi, Plantae and Animalia) (Figure A6). Overall, the CID sequences grouped into five
major clusters, each representing one kingdom as to be expected. In the cluster of
Animalia, members from early eukaryotes and early Animalia branch out earlier than
those from vertebrates and mammals.

DISCUSSION
Bioinformatics and Network Analysis of Fadd-DD

Our computational analysis shows that sixteen residues with intermediate to high
levels of conservation and dominant hydrophobic character form a long-range interaction
network in Fadd-DD (Figure 10-11 and Figure 13). These residues are postulated to be

important for folding, topology and stability. Furthermore, the residues constituting the
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network may act by organizing the hydrophobic collapse during the folding process. In
the network, Alal00, Leull5, Trp148 and Leul61 have more interactions than the other
twelve residues suggesting that these four interconnected residues may be particularly
important (Figure 13). Given the scarcity of tryptophan in proteins in general (e.g., in
most of CARD proteins and PYD proteins), it is unusual that some DD proteins have two
tryptophans (some DED proteins have just one). Since the two conserved tryptophans
were taken as probes in the stopped-flow fluorescence studies, it will be interesting to see
if the more conserved Trp148 becomes structured on an earlier timescale, and thus is key
to the first phase.

Our structural studies also identified another potentially important residue,
Phe101. It is hydrophobic and has an orientation similar to Alal00 but is only 60% buried
according to the program Naccess (www.bioinf.manchester.ac.uk/naccess). It does
however form long-range interactions with Trp148 and Leul61. While Phe101 does not
occupy a conserved position in our analysis it is adjacent to Alal00 and may, in Fadd-
DD, play an important structural role in concert with this residue. This suggests that
while conserved residues and interactions may be used by all members within a
superfamily for folding, there may also be some residues specific for individual proteins.
Interestingly, there are eleven conserved interactions within the four structures studied
and these may be important discriminators of the all a-helical Greek-key topology.
Conserved Residues for Structure and Stability versus Function in Fadd-DD

It is well established that amino acids are conserved in proteins because they are
important for stability and function (Schueler-Furman and Baker, 2003). With respect to

stability, mutational experiments indicate that hydrophobic core residues make
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substantial contributions (Shortle, 1992). Therefore, mutation of any of these sixteen
hydrophobic residues in Fadd-DD to any hydrophilic amino acid may affect the structure
and stability of Fadd-DD. This in turn can disrupt the functional association with other
DDs in the formation of the apoptotic complex. Berglund et al. (2000) proposed that
mutation of Val121Asn in human Fadd-DD would destabilize the protein fold and thus
indirectly affect function. Two mutations towards conserved residues in mouse Fadd-DD
(Vall21Asn and Leul 19Asn) were also implicated in a functional role due to reduced or
abolished binding affinity with Fas-DD (Jeong et al., 1999). We speculate that the
observed effect of Val121 on function may be explained because it forms the long-range
interaction in the hydrophobic core and mutation probably causes the disruption of the
structure and stability in mouse and human Fadd-DD. This is supported by the fact that in
mouse Fadd-DD Val121Asn significantly reduced the secondary structure measured by
far-UV CD (Bang et al., 2000). Additionally, previous mutation of Ile225Asn in mouse
Fas-DD which aligns with Val121 in human Fadd-DD, disrupted its binding and caused
autoimmune lymphoproliferative (/pr) syndromes (Watanabe et al., 1992; Imtiyaz et al.,
2005). In mouse Fas-DD, the mutation may destabilize the structure and thus indirectly
affect function.

The conservation and hydropathy analysis also identified six hydrophilic residues
with intermediate to high levels of conservation (Figures 10-11, 12B). Mutational
experiments indicate that some conserved residues in protein—protein interfaces
contribute significantly to binding between proteins (DeLano et al., 2002). Fourteen sites
on mouse or human Fadd-DD were experimentally mutated by other researchers and

found to be important for the interaction or binding with Fas-DD, which triggers Fas-
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mediated apoptosis (Table 5) (Jeong et al., 1999; Bang et al., 2000; Imtiyaz et al., 2005;
Hill et al., 2004; Sandu et al., 2005). Of these fourteen experimentally determined
positions, four are shown on our hydropathy plot to be conserved and persistently
hydrophilic (Figure 12). Our analysis also indicates that there are two additional
conserved hydrophilic residues (Glul43 and Asp111) which have not been
experimentally studied (Table 5). Mutagenesis of these two residues may reveal their

importance in function and further highlight the value of these conservation studies.

Table 5. Sites on Fadd-DD which are important for the interaction with Fas-DD to

cause Fas-induced apoptosis

Residue D106 K110 R113 R114 R117 Q118 D123

Mutation A A E.A A E, A A R, A
Residue K125 D127 R142 R146 R166 L172 D175
Mutation A A E,A A E E R

Underlined residues may be explained by the conservation and hydropathy analysis.

It could also be argued that the conserved hydrophilic residues on the surface may
play a role in protein folding and stability as in the case of Lys5 and Lys7 of the cold
shock protein CspB (Garcia-Mira and Schmid, 2006). Additional support for considering
the role of charged residues for folding comes from studies of de novo libraries which

successfully generate stable protein folds based on polar—nonpolar patterns (Go et al.,
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2008). With regard to stability, hydrophilic residues involved in ionic interactions (salt
bridges) can often be crucial determinants as typified by studies of proteins from
thermophilic organisms (Sadeghi et al., 2005). Mutagenesis of these residues should
address this possible role. However, in support of their proposed role in function, the
conserved Asp127 in the mouse Fadd-DD was changed to alanine by Bang et al. (2000)
and resulted in loss of interaction with Fas-DD. The change also did not perturb the
structure judging from the far-UV CD signal and the 'H-'’N HSQC spectra (Bang et al.,
2000).
Bioinformatics Analysis of the CIDs

In the study conducted by Nagano et al., family 18 GH were divided into two
functional groups; F4 includes chitinases and F5 includes both hevamine and NAGase
(Nagano et al., 2001). A proposed evolution of the structure and function of family 18
chitinases and chitinase-like proteins in the subfamilies A and B can be potentially
described as follows. Due to divergent evolution, a TIM domain line may initially have
evolved as hevamine, xylanase inhibitor protein, or seed storage protein (e.g.
Concanavalin B) in some higher plants, as well as NAGase in some bacteria. While
hevamine has lysozyme/endochitinase function (Terwisscha van Scheltinga et al., 1996;
Terwisscha van Scheltinga et al., 1994), xylanase inhibitor protein (Payan et al., 2003)
and seed storage protein (Hennig et al., 1995) do not have known chitinolytic activity.
One possible evolutionary scheme suggests that a TIM barrel evolved to a more potent
family 18 chitinase in two routes: 1) with the incorporation of the CID to form a
subfamily A chitinase and 2) with the other domains (e.g. chitin-binding domain) to form

a subfamily B chitinase. In the first route, this double-domain chitinase evolved in
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archaea, bacteria, fungi, plants and animals, as well as the triple-domain chitinase with
the fusion of N- or C- terminal domain in S. marcescens. Subsequently, the double-

domain chitinase gene was mutated to have novel functions in animals (Bussink et al.,

2007).
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CHAPTER 1V

IMPORTANCE OF CONSERVED HYDROPHOBIC RESIDUES IN

STRUCTURE AND STABILITY OF FADD-DD

INTRODUCTION

The mutation of conserved amino acids on some proteins led to decreased
stability and structural change (Jager et al., 2009; Xiao et al., 2009). In the section on
bioinformatics, we propose that nine significantly conserved and seven moderately
conserved hydrophobic residues form a network that is important for the structure and
stability of Fadd-DD. In order to test this hypothesis, site-directed mutagenesis was
employed to produce the protein variants. Equilibrium fluorescence and CD experiments
were performed and the structure and stability were compared between the WT and
variants.

To probe the role of the conserved residues hypothesized to be important in
structure and native state stability, six protein variants were analyzed: conserved Trp112
to phenylalanine, conserved Trp148 to phenylalanine, non-conserved His160 to glycine, a
double variant Trp112Phe/His160Gly, conserved Leul15 to alanine and conserved
Vall21 to alanine. Trp148 interacts with His160 in the native state via van der Waals
forces and through a tertiary hydrogen bond. The significantly reduced side chain of
His160 to glycine and loss of the hydrogen bond had no negative effects on native state

stability. However, the small reduction in side chain of Trp148 to phenylalanine, Leul15
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and Val121 to alanine had significant destabilizing effects on the structure of Fadd-DD.
The change of Trpl12 to phenylalanine was also destabilizing though to a lesser degree.
RESULTS
Cloning, Expression and Purification of WT Fadd-DD

Pure PCR products for WT Fadd-DD were obtained (Figure 19). The length is
about 590 bp. Bands on the 3rd and 4th lanes were combined to get more concentrated
DNA. The purified cDNA was eluted with ddH,O (pH 8.2). The DNA concentration was
measured at 260 nm in Eppendorf Biophotometer (Eppendorf, NY). The concentrations
of the samples “circle” and “PCR product” were 54 and 156 pg/ml, respectively. The
ratio of O.D. values at 260 nm/280 nm was also measured to check the purity of the DNA
product. Their ratios of approximately 1.8 proved their purity.

Sequencing results show that the DNA sample contains Fadd-DD c¢cDNA (Figure
20). Its site is between Nde I and Xho I and it is 303 bases long which encode 100 amino
acids (TGA as stop codon). BLAST search in NCBI shows that it has 99% identity with
the human Fadd-DD gene. Two nucleotides were different from the original gene
sequences noted in Figure 20. These “mismatches” encode the same amino acids. Gel
electrophoresis shows the insert in the plasmid, which was cut by both Nde I and X#o 1
(Figure 21). The results show that cDNA was successfully inserted into the plasmid

(Figure 20-21).
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Figure 19. Agarose gel electrophoresis showing pure PCR product

Bright bands on the 3rd and 4th lanes were PCR product of cDNA in “small circle”.

Molecular weight marker (MWM) was in the 1st lane.

TATTTCCCTCTAGAAAAATTTTGTTTACTTTAAAAGGAGATATACCATGGGCA
GCAGCCATCATCATCATCATCACGGCAGCGGCCTGGTGCCGCGCGGCAGCCA

Hisg Tag thrombin digestion site
TATGGGGGAAGAAGACCTGTGCGCAGCATTTAACGTCATCTGTGATAATGTG
Nde 1 start Cys Ile

GGGAAAGATTGGAGAAGGCTGGCTCGTCAGCTCAAAGTCTCAGACACCAAG
ATCGACAGCATCGAGGACAGATACCCCCGCAACCTGACAGAGCGTGTGCGG
GAGTCACTGAGAATCTGGAAGAACACAGAGAAGGAGAACGCAACAGTGGCC
CACCTGGTGGGGGCTCTCAGGTCCTGCCAGATGAACCTGGTGGCTGACCTGG
TACAAGAGGTTCAGCAGGCCCGTGACCTCCAGAACAGGAGTGGGGCCTGAC
Stop
TCGAGGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTG
Xhol BamH]1
CCACCGCTGAGCAATAACTAGCAATAA

Figure 20. Sequencing result of the cDNA sample for WT Fadd-DD
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Figure 21. Gel electrophoresis of inserts after cutting the recombinant plasmid with
Nde I and Xho I or BamH 1
Faint bands in each lane show insert at 300 kb (lanes from 3 to 6 were cut by Nde I and

Xho |, while lanes from 8 to 11 were cut by Nde I and BamH I). MWM is in the 1st lane.

Fadd-DD (100 aa) attached with His-tag and thrombin digestion site (21 aa) has a
molecular weight of roughly 13.7 kDa. The protein was successfully expressed by E. coli
BL21(DE3) (Figure 22), since 13 kD bands were observed for the bacteria induced by
IPTG, but not for the negative control. Moreover, the bacteria induced by IPTG produced
more Fadd-DD than those without IPTG. However, this is a leaky system, because the E.
coli RNA polymerase makes a small amount of T7 RNA polymerase without induction.
High-level expression of cloned genes in E. coli exploits a phage T7 promoter whose
activity depends on a regulatable transcription unit supplying the specific T7 RNA
polymerase (Mertens et al., 1995). However, T7 RNA polymerase in some pET vectors
may bind upstream of the lac UVS promoter and read through it (Gerstein, 1992).

Therefore, the target protein is expressed before induction with IPTG causing leaky
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expression (Spehr et al., 2000). This phenomenon may be due to a small amount of
lactose in the medium (Trudy et al., 1998).

After purification through the first Ni-NTA column, the fractions containing His-
tag Fadd-DD were pooled. After the protein was digested with thrombin and loaded onto
the SDS-PAGE, the bands on the gels showed one smaller band at 11 kDa and one bigger
band at 13 kDa, indicating that part of the His-tag Fadd-DD was cut (Figure 23). After
purification through the second Ni-NTA column, the fractions containing Fadd-DD were
collected. Protein gel electrophoresis showed a pure protein sample (Figure 24). After the

gel filtration column, pure protein samples were obtained.

144

Figure 22. Protein analyses on SDS-PAGE
The 1st lane is the MWM. The 2nd lane is bacteria induced with IPTG; the 3rd lane is
bacteria without IPTG; the 4th lane is bacteria with pUC18 control; the 5th lane is

bacteria in 6 L culture.
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kDa

Figure 23. His-tag Fadd-DD in the SDS-PAGE
Protein sample on SDS-PAGE after thrombin digestion. MWM is in the 1st lane. The 3rd

lane is the mixture of His-tag Fadd-DD and Fadd-DD.

kDa

215

144

Figure 24. Fadd-DD in the fractions and SDS-PAGE
Protein samples on SDS-PAGE after the second Ni-NTA column. The 5th lane is Fadd-

DD. The 7th lane indicates His-tag Fadd-DD and His-tag.

Mass spectrometry was performed on the purified Fadd-DD in COSMIC. The

observed average molecular mass of (M-+H)": 11853.217401 u was obtained from the in-



house deconvolution program attached to the instrument (Figure 25). The predicted

isotopically averaged molecular weight is 11853.3213 according to

http://www.scripps.edw/cgi-bin/cdputnam/protcalc3. Therefore, the difference of -9.4

ppm indicates that the protein is the correct one. DNA sequencing, SDS-PAGE gel
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electrophoresis and mass spectroscopy data confirmed that the cDNA was cloned and the

expressed recombinant protein is WT Fadd-DD. The recombinant Fadd-DD is composed

of 104 amino acids, which includes 4 residues left from the thrombin digestion sites and

100 residues of the original Fadd-DD. Following purification approximately 50 mg of

protein per liter of culture was obtained.

Intens
X107 |

107
084
061
041
021

00~

800

13+
912620342

14+
847 506476

800

12+
988 6?3546

11+
1078 279180

10+
1186 006159

{
"

9+
1317 560875

8+

1482.382761

-

1000

Mo

1200

Figure 25. Mass spectrum analysis of Fadd-DD

The peaks indicate the different charge states of the protein.
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The Trpl112Phe, Trp148Phe, His160Gly, Trp112Phe/His160Gly, Leul 15Ala,
Vall21Ala, Leul72Trp and Val158Trp mutants were synthesized with the Stratagene
Quick Change Kit and confirmed by DNA sequencing.

Intrinsic Fluorescence Spectra and Equilibrium Refolding and Unfolding

The overall character of the fluorescence emission spectra was assessed by
exciting the protein at 295 nm and observing emission intensities from 310 to 450 nm in
native buffer and buffer with GndHCI (Figure 26A). Native WT Fadd-DD had a
fluorescence emission maximum of 337 nm and the denatured protein exhibited a
fluorescence emission maximum of 360 nm. There is little difference in maximum
intensities between the native and denatured states considering that Fadd-DD has two
buried tryptophans (Figure 26A). This led us to carefully assess the environments of the
tryptophans in the solution structure. We identified that the side chain of Trp148 is within
close proximity to His160 and forms a hydrogen bond with its side chain (Figure 27).
Therefore, it is quite probable that the fluorescence intensity is quenched in the native
state by the Trp—His interaction (Lakowicz, 1999). A quenching affect is also noted for
the human yD crystallin domains (Kosinski-Collins and King; 2003; Kosinski-Collins et
al., 2004). Therefore, in accordance with the analysis procedure established by Kosinski-
Collins et al. (2004), all equilibrium unfolding/refolding data for Fadd-DD were analyzed

using the ratio of fluorescence emission intensities at 370 nm over 330 nm.
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Figure 26. Fluorescence spectra of native and denatured states of Fadd-DD

(A) The fluorescence of 0.05 mg/ml of WT Fadd-DD (4 uM) in 20 mM Bis-Tris buffer
(pH 6.2, 2 mM DTT) with different concentrations of GndHCl was measured at 20°C
with excitation at 295 nm and emission from 310 nm to 450 nm. The solid line, dashed
line, dash-dot line and dotted line were protein in 0 M, 1 M, 5 M and 6 M of GndHCI,
respectively.

(B) The ratio of fluorescence emission intensities at 370 nm/330 nm was used to
concurrently monitor changes in the unfolding and native maxima. The equilibrium
unfolding (open circle on the dashed line) and refolding (closed circle on the solid line)

curves show that the folding is cooperative, two-state and reversible.
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Figure 27. Side chain environments around the two buried tryptophans
Trp112 is flanked by Argl113 and Argl140 and Trp148 is surrounded by Phe101, Lys149
and His160. The calculated hydrogen bond between the side chains of His160 and

Trp148 is shown as a dotted line.

The equilibrium refolding transition of WT Fadd-DD appears to be cooperative
and reversible since it resembles the unfolding curve (Figure 26B). The overall character
of the fluorescence emission spectra was assessed by exciting Trp112Phe at 295 nm and
observing emission intensities from 310 to 450 nm in native buffer and buffer with
GndHCI (Figure 28A). The conformational free energy, AG™™, indicates how much more
stable the native conformation of the protein is than the unfolded conformation (Pace,
1986) and the cooperativity index, m, is the slope of the curve AG®™ over the molar
GndHCl concentration (Dalal and Pio, 2006). AG®™ and m determined from fits of the
data to the two-state model are 6.60 + 0.03 kcal/mol and — 2.41 + 0.02 kcal/mol/M,
respectively (Figure 28B). The AG”™ and m, determined for the variants are listed in

Table 6 (Figure 28B).
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Figure 28. Fluorescence spectra of native and denatured states of Fadd-DD variants
(A) The fluorescence of 0.05 mg/ml of Trp112Phe in 20 mM Bis-Tris buffer with
different concentrations of GndHCI was measured. The line types are the same as those
in Figure 26A.
(B) Normalized fraction unfolded of the WT and variants as a function of GndHCI
concentration at 20 °C. The fraction unfolded was measured as the ratio of fluorescence
intensities 370 nm/330 nm. The proteins are annotated as follows: WT (e); Trpl112Phe
(A); Trp148Phe (0); His160Gly (*); Trp112Phe/His160Gly ( ¥). The inset shows AGy as

a function of GndHCI concentration. The data are graphed using SigmaPlot (Ver. 10).



Table 6. The AG”™ and m value of the WT and variants

Protein/variant AG"™ (kcal/mol) m value (kcal/mol/M)
WT 6.60 = 0.03 -2.41+£0.02
Trp112Phe 3.57 £ 0.06 -2.12+£0.04
Trp148Phe 1.70 £ 0.07 -1.11+0.04
His160Gly 7.35+0.15 -2.93 £ 0.07
Trp112Phe/His160Gly 3.42 +0.06 -2.15+£0.04
Leull5Ala 1.81 £0.15 -1.39£0.10
Vall21Ala 2.94 +0.46 -2.28 £0.31
Leul72Trp 6.54 £ 0.62 -2.38 £0.23
Vall58Trp 6.53 +£1.10 -2.60 +0.43

Leul72Trp and Vall58Trp Variants

The fluorescence spectra and fraction unfolded of Leul 72Trp are both similar to
those of the WT (Figure 29). The fluorescence spectra and fraction unfolded of
Val158Trp are both similar to those of the WT (Figure 30). The AG”™ and m values of

these two variants are shown in Table 6.
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Figure 29. Fluorescence spectra of native and denatured states of Leul72Trp
(A) The fluorescence of 0.05 mg/ml of Leul 72Trp in 20 mM Bis-Tris buffer (pH 6.2,

2 mM DTT) with different concentrations of GndHC] was measured at 20°C with

0 1 2 3 4 5 6
[GndHCI] (M)

100

excitation at 295 nm and emission from 310 nm to 450 nm. The dashed line and dotted

line were protein in 0 M and 5 M of GndHCI, respectively.

(B) The ratio of fluorescence emission intensities at 370 nm/330 nm was used to

concurrently monitor changes in the unfolding and native maxima. The open circle on the

dashed line and closed circle on the solid line are equilibrium unfolding of Leul 72Trp

and WT.
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Figure 30. Fluorescence spectra of native and denatured states of Val158Trp
(A) The fluorescence of 0.05 mg/ml of Val158Trp in 20 mM Bis-Tris buffer (pH 6.2,
2 mM DTT) with different concentrations of GndHCI was measured at 20°C with
excitation at 295 nm and emission from 310 nm to 450 nm. The solid line, dashed line,
dash-dot line and dotted line were proteinin 0 M, 1 M, 5 M and 6 M of GndHCI,
respectively.
(B) The ratio of fluorescence emission intensities at 370 nm/330 nm was used to

concurrently monitor changes in the unfolding and native maxima. The open circle on the

dashed line and closed circle on the solid line are unfolding of Val158Trp and WT.
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Leull5Ala and Vall21Ala Variants

Equilibrium fluorescence was conducted on the two variants, showing faction
unfolding as the function of the GndHCI concentration (Figure 31A) and free energy
(Figure 31B). Leul15 and Vall121 were shown in our previous study to be moderately
conserved (Li et al., 2009). This is not surprising because in the study conducted by
Steward et al. (2009), the mutation of Leul15 to alanine was too unstable to obtain
enough proteins for study and so Leul 15 was converted to methionine. It can therefore be
inferred that Vall21Ala is also unstable since it misfolds, similar to Leul15Ala variant.
The AGP™ and m value of these two variants are shown in Table 6.
The Effect of pHs on Protein Fluorescence

To test the effect of different pHs on the conformation of Fadd-DD, the
fluorescence experiment was conducted with the protein in different buffers with pH
values ranging from 3.9 to 9.8. It appears that the maximum fluorescence intensity
increases as pH decreases, while the fluorescence maximum wavelength is only
marginally affected (Figure 32). This phenomenon may due to the fact that the
hydrophobic core is more buried in lower pH than in higher pH or because of
fluorescence quenching effect since fluorescence of one of the tryptophans may be

quenched in the native state.
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Figure 31. The fraction unfolded and free energy of WT, Leull15Ala and Vall21Ala
(A) Normalized fraction unfolded of the WT and variants as a function of GndHCl
concentration at 20°C. The fraction unfolded was measured as the ratio of fluorescence
intensities 370 nm/330 nm. The proteins are annotated as follows: WT (e); Vall21Ala
(A); Leull5Ala (=).

(B) AGuy as a function of GndHCI concentration.
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Figure 32. Fluorescence spectra of 0.05 mg/ml Fadd-DD in buffers with different
pHs

The parameters of the fluorescence experiment are the same as previous. The buffers
used are the same as those used in the quenched-flow experiments. The lines indicate pH
as follows: 3.9: dotted black; 4.2: gray triangle; 4.8: black circle; 5.2: dashed-dotted-

dotted black; 6.2: dashed black; 9.6: dashed-dotted black; 9.8: solid black.

CD Spectra and Equilibrium Unfolding

The overall character of the far-UV and near-UV CD spectra was assessed by
observing ellipticities from 190 to 250 nm and from 250 to 320 nm in native buffer and
buffer with GndHC], respectively (Figure 33A-B). For far-UV CD, the native WT Fadd-
DD had one maximum around 195 nm and two minima at 207 nm and 221 nm indicating
Fadd-DD is a typical a-helical bundle protein. The denatured protein, as expected, lost

this characteristic. For near-UV CD, the native WT Fadd-DD had two maxima around
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260 nm and 295nm, and one minimum around 285 nm. Because there are only two
exposed aromatic residues, Tyr133 and Phel01, it is reasonable that the near-UV CD
ellipticity is low. The depth at around 285 nm is probably due to the asymmetrical
arrangement of Tyr133 (Kelly et al., 2005). The equilibrium unfolding transition
monitored by far-UV CD at 222 nm shows a two-state transition (Figure 33C).
Trp112Phe and Trp112Phe/His160Gly variants showed diminished CD signal and
decreased stability (Figure 33A—C). Interestingly, the Trp148Phe variant had significant
effects on the structure and stability of the protein. Equilibrium unfolding occurred
rapidly and there was a 4.9 kcal/mol decrease in the free energy of stability (Figure 26B;
Table 6). The far-UV CD signal was greatly diminished and the near-UV CD signal
indicated loss of tertiary structure (Figure 33A-B). The His160Gly variant showed both a
similar equilibrium CD spectra and two-state unfolding transition as the WT Fadd-DD

(Figure 33A-C).
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Figure 33. Circular dichroism spectra of native and denatured states of Fadd-DD
(A) The far-UV CD of 0.2 mg/ml of Fadd-DD (16 uM) in 20 mM Bis-Tris buffer (pH
6.2, 2 mM DTT) with different concentrations of GndHCI was measured at 20°C with the
excitation from 190 nm to 250 nm. The solid line, dashed line and dotted line in black
represent WT protein in 0 M, 1 M and 6 M of GndHCl, respectively. The dashed and
dotted lines in cyan represent Trp112Phe in 1 M and 6 M GndHCI, respectively. The
solid line in blue represents Trp148Phe in the native buffer. The solid line, dashed line

and dotted line in green represent His160Gly in 0 M, 1 M and 6 M of GndHCl,
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Figure 33 Continued.

respectively. The dashed and dotted lines in pink represent Trp112Phe/His160Gly in 1 M
and 6 M GndHC], respectively.

(B) The near-UV CD of 0.6 mg/ml of Fadd-DD (50 pM) in 20 mM Bis-Tris buffer with
different concentrations of GndHCI was measured at 20 °C with excitation from 250 nm
to 320 nm. The line types and colors are the same as those in Figure 33A.

(C) The equilibrium unfolding curves for the WT Fadd-DD and select variants appear to
be a two-state transition. The proteins are annotated as follows: WT (solid-line with
circles); Trp112Phe (dotted-line with triangle up); His160Gly (dashed-line with squares);
Trp112Phe/His160Gly (dash-dot-line with triangle down). The data are graphed using

SigmaPlot (Ver. 10).

Leul72Trp and Vall58Trp Variants

The far- and near- UV CD spectra of Leul 72Trp are shown in Figure 34. The far-
UV CD spectrum of Leul72Trp is similar to the WT (Figure 34A). The near-UV CD
spectrum of Leul 72Trp is different from the WT (Figure 34B) and the ellipticity is
smaller than that of the WT. The far- and near- UV CD spectra of Vall158Trp are shown
in Figure 35. The far-UV CD spectrum of Vall58Trp is similar to the WT (Figure 35A).
The ellipticity from 260 to 285 nm in the near-UV CD spectrum of Vall58Trp is greater

than that of the WT (Figure 35B), due to the introduction of the extra tryptophan.
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Figure 34. Circular dichroism spectra of WT Fadd-DD and Leul72Trp
(A) The far-UV CD of 0.2 mg/ml of Fadd-DD in 20 mM Bis-Tris buffer (pH 6.2, 2 mM
DTT) measured at 20 °C with the excitation from 200 nm to 250 nm. The solid line

represents WT protein in the buffer with 0 M GndHCI. Dashed line, dashed-dotted and

dotted lines indicate Leul 72Trp in the buffer with 0 M, 1 M and 5 M GndHCI,

respectively.

(B) The near-UV CD of 0.5 mg/ml of WT Fadd-DD and Leul72Trp in 20 mM Bis-Tris

buffer with different concentrations of GndHC! was measured at 20°C with excitation

from 250 nm to 320 nm.
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Figure 35. Circular dichroism spectra of WT Fadd-DD and Val158Trp

(A) The far-UV CD of 0.2 mg/ml of Fadd-DD in 20 mM Bis-Tris buffer (pH 6.2, 2 mM
DTT) and Val158Trp was measured at 20 °C with the excitation from 200 nm to 250 nm.
The solid line and dashed line represent WT protein and Val158Trp in native buffer,
respectively.

(B) The near-UV CD of 0.5 mg/ml of WT Fadd-DD and Val158Trp in 20 mM Bis-Tris
buffer with different concentrations of GndHCI was measured at 20°C with excitation
from 250 nm to 320 nm. The solid line, dashed line and dotted line represent Vall58Trp
in the buffer with 0 M, 1 M and 6 M of GndHCl, respectively. The dashed-dotted and
dashed-dotted-dotted lines represent WT protein in the buffer with 0 M and 1M GndHClI,

respectively.

DISCUSSION
The equilibrium unfolding and refolding results clearly indicate that the unfolding

transition of WT Fadd-DD is well-described by a two-state equilibrium folding model
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and is reversible (Figure 26B, 33C). Interestingly, Fadd-DD exhibits fluorescence
quenching. There are only a few proteins which demonstrate native-state fluorescence
quenching effects. The most notable example is barnase. The emission intensity of wild-
type barnase increases dramatically as the pH is increased from 7.0 to 8.5 (Loewenthal et
al., 1991), which can be explained by the loss of the quenching effect of His18. This
suggests that Trp94 is quenched by the protonated form of histidine (Lakowicz, 1999).
Investigation of the NMR structure of barnase revealed that His18 and Trp94 are very
close in the three-dimensional structure. As for Fadd-DD, His160 forms a hydrogen bond
with Trp148, which was thought to be the most likely cause of the intrinsic fluorescence
quenching. Mutagenesis of the histidine residue however, did not eliminate the
fluorescence quenching effect. Other amino acids are known to quench tryptophan
fluorescence, such as arginine, lysine and phenylalanine (Chen and Barkley, 1998; Clark
et al., 1996; Hennecke et al., 1997). Therefore, the likely candidates for the source of
fluorescence quenching are Trp112 by one or both of the flanking arginines and/or
Trp148 by Phel01 or Lys149 (Figure 27).

Biophysical characterization of the four Fadd-DD variants revealed that changes
to the conserved Trp112 and Trp148 had adverse effects on the stability. The degree of
the effect for the Trp148Phe substitution was, however, surprising. Within the
superfamily this site is highly conserved, but there are instances where other superfamily
members have phenylalanine or even isoleucine in place of the tryptophan (Figure 9-11).
The large effect of a Trp mutation is however, not without precedent. The Trp109Phe
substitution in the cellular retinoic acid-binding protein also resulted in significant

destabilization of the native protein, substantial aggregation and little yield (Clark et al.,
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1996). The substitution of Trp133 to valine in E. coli dihydrofolate reductase resulted in a
partially unfolded protein and a 5 kcal/mol decrease in free energy (Ohmae et al., 2001).
In lysozyme, mutation of Trp62 to glycine led to misfolding due to the significant loss of
long-range interactions (Zhou et al., 2007). In f2-microglobulin, mutation of Trp95 to
glycine destabilized the native state and greatly diminished secondary and tertiary
structures (Esposito et al., 2008).

Conversely, the His160Gly had no adverse affects on structure and stability. In
fact, the stability marginally increased. The substitution for glycine was made on the
basis that a naturally occurring glycine substitution occurs at this location in the mouse
sequence. Thus, the mutagenesis and biophysical study on a pair of interacting residues
where one is conserved and one is not provides insight into the role of the conserved
residues play in structure and stability. The effect of mutating Trp112 to phenylalanine
was pronounced. The change to this conserved residue produces a protein which is
destabilized. The Trpl12Phe variant in conjunction with the other four variants
(Trp148Phe, His160Gly, Leul 15Ala and Val121Ala) thus provides initial support for the
hypothesis that the conserved residues are important for stability and the structure of
Fadd-DD. Further, these results indicate that conserved residues themselves can have
varying roles of importance in stability and structure. To summarize, Trpl12Phe,
Trp148Phe, Trpl112Phe/His160Gly, Leul15Ala and Vall21Ala variants decrease the
stability. His160Gly, Leul72Trp and Val158Trp variants do not change the stability
significantly.

A research group led by Dr. Jane Clarke (University of Cambridge, England)

(Steward et al., 2009) showed that the variants of Trpl112Ala, Leul 15Met, Leul 19Met,
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[le129Ala, Leul45Met, Trp148Phe, Leul61Ala, Leul65Ala, Vall73Ala and Vall77Ala
had decreased equilibrium stability compared to the WT. These ten residues are
conserved according to our bioinformatics study (Li et al., 2009). These results further
support our hypothesis about the nature of conservation in Fadd-DD.

Fadd-DD is the only member of death domain superfamily to be studied by site-
directed mutagenesis. So the effects on stability in Fadd-DD cannot be compared at this
time to other DDs. See future work where I propose studying pyrin protein from this
superfamily. The PYD has been studied thermodynamically (Dalal and Pio, 2006). Its

stability is 1.75 kcal/mol, lower than Fadd-DD.
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CHAPTER V

IMPORTANCE OF CONSERVED HYDROPHOBIC RESIDUES

IN FOLDING OF FADD-DD

INTRODUCTION

Attention has been paid to the link between protein sequence conservation and
folding (Greene et al., 2003). In the section of bioinformatics, we propose that nine
significantly conserved and seven moderately conserved hydrophobic residues form a
network, which is important for the folding of Fadd-DD. In order to test this hypothesis,
site-directed mutagenesis was employed to produce the protein variants. Experimental
studies were conducted to characterize the folding behavior of Fadd-DD using four
biophysical techniques; which include stopped-flow fluorescence spectroscopy and CD.
The folding kinetics were then compared between the WT and variants.

To probe the role of the conserved residues hypothesized to be important in
folding, four protein variants were analyzed: Trp112 to phenylalanine, Trp148 to
phenylalanine, His160 to glycine and Trp112Phe/His160Gly. Previous results showed
that the significantly reduced the side chain of His160 to glycine had no negative effects
on native state stability; the small reduction in side chain of Trp148 to phenylalanine had
significant destabilizing effects on the structure; and the change of Trp112 to
phenylalanine was also destabilizing though to a lesser degree.

Folding kinetics studies of three CARD proteins in the death domain superfamily

have been described previously and display complex behavior consisting of multiple
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phases, parallel pathways and kinetically trapped species (Chen and Clark, 2004; Chen
and Clark, 2006; Milam et al., 2007). In contrast, the folding behavior of WT Fadd-DD is
rapid, biphasic and the majority of the hydrophobic core is formed in the first phase.
RESULTS
Folding Kinetics of WT Fadd-DD, Trp112Phe and His160Gly Variants

Denatured protein was refolded in a final concentration of 1 M GndHCI to
achieve the maximum change in fluorescence between the native and unfolded states. We
established that Fadd-DD is native at this concentration of denaturant, because the ratio
of fluorescence intensities at 370 nm over 330 nm and the ellipticities at both near- and
far-UV CD are similar for Fadd-DD in 0 M and 1 M GndHC1 (Figure 26 and Figure 33).
The time course of refolding of WT Fadd-DD was examined in single-mixing stopped-
flow experiments by monitoring changes in fluorescence emission (Figure 36A). The
residuals of the fit to a biphasic relaxation equation are shown in Figure 36A. The
relaxation time of the first phase in the hydrophobic core formation is 44.0 ms and that of
the second is 123.0 ms (Table 7). The gap between the denatured state baseline and the
start of the refolding trace indicates that there is a burst phase within the dead time of the
experiment. Analysis of the amplitudes indicates that 28%, 55% and 17% of the folding
occurs in the burst phase, the first phase and the second phase, respectively. The folding
rates of different concentrations of Fadd-DD (ranging from 0.01 to 0.2 mg/ml) were
similar to those of 0.05 mg/ml, indicating that the folding rates are not concentration

dependent (see Figure A7 and Table A10).
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Figure 36. Stopped-flow fluorescence studies of Fadd-DD WT and His160Gly

The folding process was initiated with a 1:5 dilution at 20°C. The native state and
denatured state baselines are denoted by N. B. and D. B., respectively.

(A) Refolding of denatured WT protein at 0.05 mg/ml in 20 mM Bis-Tris buffer (pH 6.2)
and 2 mM DTT was monitored by stopped-flow fluorescence spectroscopy. The
excitation wavelength was 295 nm and emission was monitored using a bandpass filter
(300-340 nm) therefore the emission increases (see Figure 26A). The dead time was

8.6 ms. The residuals of the fit to a double exponential equation are shown below the
time course.

(B) Refolding of denatured His160Gly at 0.05 mg/ml in Bis-Tris buffer was monitored by
stopped-flow fluorescence spectroscopy. The emission was monitored with the same
bandpass as the WT protein. The residuals based on the fit to a double exponential

equation are also shown.
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Table 7. Refolding kinetics of WT Fadd-DD, His160Gly and Trp112Phe and unfolding of

WT monitored by intrinsic tryptophan fluorescence

Protein A, ki (s A, k(s As k; (s
WT 029+0.01 22.73+0.57 0.09+001 8.13+047 - —
refolding

His160Gly 0.58=0.01 34.05+0.33 0.20+0.01 8.51x0.15 - -
Trp112Phe 0.81+£0.01 11.97+0.15 026+0.01 4.13+0.15 0.08+0.00 0.33+0.01
WT 028+0.00 6.02+0.08 0.04+0.00 139021 - -

unfolding

Refolding and unfolding are performed in 1 M GndHCI (pH 6.2) and 6 M GndHCI (pH 6.2),

respectively.

The time course of refolding for the His160Gly variant was analyzed by stopped-
flow fluorescence spectroscopy (Figure 36B). The timescales were relatively similar
indicating that the substitution had only a small effect on folding kinetics (Table 7). In
fact, the slight increase in stability appears to correspond to the marginal increase in
folding rates. Due to the inability to acquire sufficient amounts of the Trp148Phe variant
and its partially unfolded character, folding kinetic studies could not be conducted. The
Trp112Phe variant was also characterized by stopped-flow fluorescence and the folding
analysis revealed three phases (Figure 37). The relaxation timescales are as follows:

84 ms, 242 ms and 3 s (Table 7). This change from a double to a triple exponential
equation is based on the significant improvement in the fit and the distributions of the

residuals (Figure 37).
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Figure 37. Stopped-flow fluorescence studies of Trp112Phe

Refolding of denatured Trpl12Phe at 0.12 mg/ml in Bis-Tris buffer was monitored by
stopped-flow fluorescence spectroscopy. The emission was monitored by a bandpass
filter (362-396 nm) therefore the intensity change goes down (see Figure 28A). The
residuals of the fits are shown for both a double and triple exponential equations are

shown.

The time course of unfolding of WT Fadd-DD was examined in single-mixing
stopped-flow experiments by monitoring changes in fluorescence emission (Figure 38).

The residuals of the fit to a biphasic relaxation equation are also shown. The relaxation
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time of the first phase in the hydrophobic core formation is 166 ms and that of the second

is 719 ms (Table 7).

N
N

g
o

2.5 -

2.4 4

2.3

Fluorescence intensity (a. u.)

22 — y - . .
0.0 0.5 1.0 15 2.0

Time (s)

0.10
0.05
0.00 | IRURENNRN R el
-0.05 -

-0.10— . . . .
0.0 0.5 1.0 15 2.0
Time (s)

Residuals

Figure 38. Stopped-flow fluerescence unfolding studies of Fadd-DD in 6 M GndHCl
The unfolding process was initiated with a 1:5 dilution at 20°C. Unfolding of native WT
protein at 0.12 mg/ml in 20 mM Bis-Tris buffer (pH 6.2), 2 mM DTT and 1 M GndHCI
was mixed with buffer with 7 M GndHCI and monitored by stopped-flow fluorescence
spectroscopy. The excitation wavelength was 295 nm and emission was monitored using
a bandpass filter (300-340 nm) therefore the emission change goes down. The dead time

was 8.6 ms. The residuals of the fit to a double exponential equation are shown below the

time course.
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Stopped-flow Far-UV CD Spectroscopy

The folding kinetics of Fadd-DD at a final GndHCI concentration of 1 M,
monitored by far-UV CD reveals the rate of the secondary structure formation (Figure
39). One single phase with a rate of 23.4 + 0.4 s™' and amplitude of 16.8 £ 0.1

millidegrees was calculated.
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Figure 39. Stopped-flow far-UV CD study of Fadd-DD

The folding process was initiated with a 1:5 dilution at 20 °C. Refolding of denatured
WT protein at 0.15 mg/ml in 20 mM MES buffer (pH 6.2) and 5 mM DTT was
monitored by stopped-flow far-UV CD spectroscopy at 225 nm. The dead time was 9.3
ms. The residuals are shown below the time course. D.B. and N.B. stand for the

denatured baseline and native baseline, respectively.



120

Stopped-flow Near-UV CD Spectroscopy

The stopped-flow near-UV CD experiment conducted on Vall58Trp does not
demonstrate any noticeable change of CD signal in folding (Figure 40). This is probably
due to the inadequte difference of ellipticity between the native and denatured states,

which is approximately 80 deg*cm?*dmol™ at 280 nm (Figure 35B).

Millidegree

Figure 40. Stopped-flow near-UV CD study of 0.3 mg/ml Val158Trp

The folding process was initiated with a 1:5 dilution at 20 °C. Refolding of denatured
Vall58Trp variant at 1.5 mg/m! in 5 M GndHCI, 20 mM Bis-Tris buffer (pH 6.2) and
2 mM DTT was monitored at 285 nm by stopped-flow near-UV CD spectroscopy with

TC-100 cuvette. The path-length is 10 mm. The traces shown are an average of thirty

shots.
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By comparison, the folding of hen lysozyme was implemented at 289 nm with the
final concentration of 1 mg/ml (Radford et al., 1992) and the difference of of ellipticity
between the native and the denatured states is about 120 deg*cm?®*dmol™ at 289 nm
(Sasahara et al., 2000). Construction of one more tryptophan to the Val158Trp is needed
in order to create more near-UV CD signal for folding study.

DISCUSSION

The folding behavior of WT Fadd-DD is both rapid and biphasic. Approximately
80% consolidation of the hydrophobic core appears to occur in the intermediate state. The
absence of a slow phase suggests proline isomerization does not exist in the folding
process. Because Fadd-DD contains only one tyrosine on the surface, the difference in
near-UV CD ellipticity between the native and denatured states is relatively small.
Therefore, the timescale of the tertiary structure formation could not be obtained.
Mutation of one exposed residue to tryptophan could increase the difference in the near-
UV CD spectra. Fadd-DD uniquely has a hydrogen bond between the side chain of
His160 and the highly conserved Trp148 in the core. Therefore, Trp148 is not only an
ideal probe of the hydrophobic collapse but also to monitor the structuring of the core by
techniques such as quenched-flow hydrogen—deuterium exchange.

Within the death domain superfamily the folding behavior of three members of
the CARD family have been previously studied. These are procaspase-1, RICK-CARD
and Apaf-1-CARD. All three show complex kinetics. The refolding of RICK-CARD
contains multiple phases as well as kinetically trapped species, which are unrelated to
proline isomerization (Chen and Clark, 2003; Chen and Clark, 2006). Apaf-1-CARD, like

RICK-CARD, appears to fold via parallel paths due to two unfolded conformations
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(Milam et al., 2007); while procaspase-1, like RICK-CARD, also folds through
kinetically trapped species (Chen and Clark, 2004). In comparison, the folding pathway
of Fadd-DD appears to be more straightforward and is thus a good model in which to
investigate the determinants of the all-a-helical Greek-key topology.

Biophysical characterization of four Fadd-DD variants revealed that changes to
the conserved Trp112 had adverse effects on folding while the Trp148 variant could not
even be studied due to its low stability. The degree of the effect for the Trp148Phe
substitution is not without precedence. In antichymotrypsin, the Trp194Phe mutation
lowered the kinetic barrier to misfolding (Pearce et al., 2007).

Conversely, the His160Gly had no adverse affects on structure, stability or
folding. In fact, the refolding rates marginally increased. Thus the mutagenesis and
biophysical study on a pair of interacting residues where one is conserved provides initial
insight into the role of the conserved residues in folding. The affect of mutating Trp112
to phenylalanine was pronounced. The change to this conserved residue produces a
protein which folds significantly more slowly. In addition to a doubling in the folding
timescales of the first two phases, a third phase now appears and is on the second not
millisecond timescale. Analysis of mutated conserved residues in other proteins such as
apo-azurin also show changes to the folding rate in proteins (Engman et al., 2004). The
Trp112Phe variant in conjunction with the other two variants (Trp148Phe and
His160Gly) thus provides initial support for the hypothesis that the conserved residues
are important for folding of Fadd-DD. Furthermore, these results indicate that conserved

residues themselves can have varying roles of importance at different stages of folding.
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To summarize, the folding rate of Trp112Phe is slower than the WT. Trp148Phe,
Leull15Ala and Vall21Ala variants cause misfolding. There are two phases for the
hydrophobic core formation and only one phase for the secondary structure formation.
The majority of hydrophobic core formation occurs at similar timescale with the
secondary structure formation, indicating the hydrophobic core and secondary structure
form concomitantly. The second minor phase is probably due to the complete exclusion
of the two tryptophans from the solvent at the later stage of folding.

A research group led by Dr. Jane Clarke (Steward et al., 2009) showed that the
folding rates of Trpl12Ala, Leul 15Met, Leul 19Met, Leul45Met, Leul61Ala,
Leul65Ala, Vall73Ala and Vall77Ala in 2 M urea were slower than that of the WT.
These eight residues are conserved according to our bioinformatics study (Li et al., 2009).
These studies provide support for our hypothesis about the nature of conservation in
Fadd-DD.

Fadd-DD is the only member of death domain superfamily to be studied by site-
directed mutagenesis. So the effects on folding in Fadd-DD cannot be compared at this
time to other DDs. See future work where I propose studying pyrin protein from this

superfamily.



124

CHAPTER VI

FOLDING OF FADD-DD MONITORED BY QUENCHED-FLOW, HYDROGEN-

DEUTERIUM EXCHANGE AND NMR SPECTROSCOPY

INTRODUCTION

Fadd-DD is composed of six a-helices which is shown in Figure 41A. The folding
pathway of Fadd-DD is more straightforward than the folding of CARDs and is thus a
good model with which to investigate the determinants of the all a-helical Greek-key
topology. We are interested in determining if the helices which make up the canonical
Greek-key structure (helices 1, 2, 4, 5) form on a faster folding time-scale than the other
helices (3 and 6) (Higman and Greene, 2006; Steward et al., 2009). Stopped-flow
fluorescence studies by our group indicate that folding is biphasic (k; = 22.73 s'and k=
8.13 s™) with the majority of the folding occurring in the first phase (amplitude = 76%)
(Li et al., 2009). In our condition, the refolding buffer is 20 mM Bis-Tris buffer (pH 6.2)
and temperature is 20°C. In folding studies conducted by Steward et al. (2009) one rapid
phase with a rate of 40 s was detected using different experimental conditions, including
the refolding buffer of 50 mM phosphate buffer (pH 7.0) and 150 mM NaCl and
temperature is 25°C. In our present experiments using stopped-flow far-UV CD
spectroscopy, the folding of the secondary structure of Fadd-DD was determined to be
monophasic with a rate similar to that of the majority of hydrophobic core formation. In a
more detailed study using a combination of quenched-flow HX and NMR spectroscopy

the folding of twenty-two amide hydrogens in the backbone of helices and two amide
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hydrogens in the backbone of loops are monitored. The results indicate that the folding of
all six helices is monophasic and the formation of hydrogen bonded secondary structure
is fundamentally cooperative. In addition, the equilibrium HX of Fadd-DD was also
performed and the exchange rates of twenty-three residues are calculated. Most of the
amide protons that are slowest to exchange are in the core region. This experiment is the
first time to the best of our knowledge that folding kinetics monitored by hydrogen bond

formation was conducted on an all a-helical protein with a Greek-key topology.

A B

e

N-terminus

Helix 3

Figure 41. Structure of Fadd-DD showing stable backbone amides

(A) Ribbon diagram of Fadd-DD drawn in PyMOL v0.99 (DeLano Scientific). The six
helices are annotated.

(B) Location of the twenty-three backbone amides which persist for over twenty-four
hours and thus have the greatest protection in Fadd-DD (F101, V103, C105, L115,R117,
Q118,L119, V121,1129, V141, S144, 1145, 1147, W148, K149, V162, G163, A164,
R166, M170, A174, V177, Q182) are shown in black in the context of the secondary and

tertiary structure using PyMOL.
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RESULTS
Test of Protein State in Different pHs

The fluorescence was used to monitor the state of the protein in different pHs in a
sequence of quenched-flow experiments. The fluorescence spectra of the sample starting
with the denatured protein resembles that of the native protein of all the pHs tested
(Figure 42), indicating the protein maintains its native state after refolding.
'H-NMR Spectra

The '"H-NMR spectrum of 4 mg/ml Fadd-DD in 100% D,0, 200 mM
K>HPO4/100 mM citric acid and 5 mM DTT (pD 4.4) at 30°C are shown in Figure 43.
The peak height of the methyl proton of Leul 19 was used to calibrate the protein
concentration in the samples.
Comparing the Exchange Rates from Equilibrium HX Studies

The native HSQC spectrum of Fadd-DD in K,;HPO4/citric acid buffer (pH 4.8)
and 10% D50 is shown in Figure 44 and is similar to the previously published HSQC in

potassium phosphate buffer (pH 6.2) (Berglund et al., 2000).
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Figure 42. The fluorescence spectra of Fadd-DD in different buffers in the
quenched-flow process
The solid line and dashed line indicate the fluorescence spectra of the sample starting
with the denatured protein and that starting with the native protein, respectively. The
parameters of the fluorescence experiment are the same as previous. Panels A, B and C

show 0.2 mg/ml protein in refolding buffer (pH 6.2), 0.1 mg/ml protein in pulsing buffer

(pH 9.8) and 0.05 mg/ml protein in quenching buffer (pH 4.8), respectively.
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The HX rate is dependent on the conditions such as pH and temperature
(Englander and Mayne, 1992). The rates of HX (kex) of slowly exchanged amide protons
of native Fadd-DD were measured at pD 4.4 and 30°C by recording HSQC spectra every
eight hours for one week. Exchanges of three amide protons were observed at this pH but
were too fast for the rates to be measured. Except for some overlapping peaks in the
spectra, a large number of identifiable backbone amide protons are exchanged during the
process of buffer exchange. Thus, the exchange rates of twenty-three slowly exchanging
amide protons which are defined as those that persist for twenty-four hours or more were
calculated. The range is between 3.7x10° min™ and 6.7x10°° min™. Normalized
intensities of the eight peaks with the slowest exchange rates are shown as a function of
time in Figure 45A. Protected amides occur in all six helices (Figure 45B). However, the
number of protected amides did not distribute evenly among the six helices; for example,
only one amide proton 1129 in helix 3 was protected. The HSQC spectra are shown in
Figure 47. Figure 48 shows the hydrogen bonding pattern in Fadd-DD. Most assigned
peaks are not visible after one week, except for three, W148, V162 and V177, which
have the slowest exchange rates.

V177 has both the slowest exchange rate and the highest protection factor (Figure
45). The very stable and local hydrogen bond between W148 and S144 as well as
between S144 and R140 suggests that these regions of helix 4 are very stable. Thus, it
appears as if helix 4 is the most stable. The locations of the backbone amides which are
stable for more than twenty-four hours is shown in Figure 41B and are distributed among

the six helices, although most are located on helices 2, 4 and S (Figure 45B, 46). Among
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the twenty-three stable amides, ten residues are conserved according to the bioinformatics

study, indicating a moderate correlation between their stability and conservation.
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Figure 43. The "H-NMR spectrum of 4 mg/ml Fadd-DD in 100% D,0, 200 mM
phosphate/100 mM citric acid and S mM DTT (pD 4.4) at 30°C

The upfield peak marked with an asterisk shows the methyl proton of Leul19.
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Figure 44. The HSQC spectrum of Fadd-DD in 50 mM citric acid/100 mM K;HPOy,

5 mM DTT (pH 4.8) and 10% DO at 30°C

The twenty-four stable amide protons in our kinetic study are indicated in bold and

underlined.
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Figure 45. Equilibrium amide hydrogen exchange in Fadd-DD

(A) The HX of the ten slowest exchanging peaks are plotted (L115: white diamond,
L119: white triangle down, S144: white square, L145: white triangle up, 1147: black
triangle down, W148: white circle, V162: black circle, R166: black diamond, A174:

black square, V177 black triangle up).
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Figure 45 Continued.
(B) The histogram shows the distribution of experimentally calculated exchange rates for
the native protein at pD 4.4 and 30°C versus residue number. Regions of secondary

structure are indicated schematically.
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Figure 46. Distribution of protection factors for Fadd-DD
The histogram shows the distribution of protection factors for the native protein at pD 4.4
and 30°C versus residue number. Regions of secondary structure are indicated

schematically.
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Figure 47. The HSQC spectra of 4 mg/ml Fadd-DD after exchange into D,O buffer

containing 50 mM citric acid/100 mM K>;HPO, (pD 4.4)

Panels A, B, C and D are day 1, 2, 3 and 4, respectively. The contour level of the HSQC

spectrum of day 1 is 6 x 10°. In order to see all the peaks, the contour level of the

spectrum of day 2 is reduced to 1.5 x 108, which is the same as those of day 3 and 4.
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Figure 47 Continued.
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Hydrogen Exchange and Quenched-flow Coupled with NMR Spectroscopy
Following HX in D,O buffer, a total of twenty-four well-resolved and assignable
amide protons were identified to be stable. There is one more stable amide because the
time for acquiring NMR spectra for the quenched-flow study is about six hours, which is
shorter than that for the equilibrium study. The amide protons of N107 and R140 have
very high exchange rates and the peaks disappear after sixteen hours of exchange. They
are therefore not included in the quenched-flow kinetic studies, leaving twenty-two
residues to be analyzed. A total of twenty-two amide protons could be monitored in the

six helices.
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Figure 48. The hydrogen bonding pattern of Fadd-DD
The curves and arrows indicate the hydrogen bonding and the direction. The dashed lines

show the two unstable hydrogen bonds of N107 and R140.
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The ratio of volume among the protein solution, refolding buffer and pulse buffer
is 1:4:5. The content of proton and deuterium after mixing of the three buffers are 90%
and 10%, respectively. Therefore, the maximum proton occupancy of the quenched-flow
study is 90%. In our study, the maximal proton occupancy is about 90%.

After the quenched-flow experiments were performed with eight different
refolding times, the structural details of the folding reaction were obtained by analyzing
the samples by 2D 'H-"°N HSQC measurements. Figure 49 displays the protection time
courses obtained for individual amides, grouped according to their distribution in
different helices. HSQC spectra are also shown in Figure 50. In addition, two amide
protons from two residues (V121 and M170) located in loop structures could also be
monitored with folding rates of 20.72 + 7.03 s and 21.34 + 6.74 5™, respectively (Figure
51). All of the kinetics were found to be monophasic and a single exponential function
could be used to fit the data satisfactorily (Figure 49). The resulting curves are all
virtually identical, with rates between 19 s” and 22 s™ (Table 8). The average rate of
hydrogen bond formation is 20.85 + 1.66 s™ (Table 8). The results indicate that all
detectable amides acquire protection from exchange concomitantly, with simple mono-
exponential time courses. No intermediate or partially protected species are observable in

these experiments and folding appears to be highly cooperative.
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Figure 49. The kinetics of hydrogen bond formation of twenty-two residues in the

six helices of Fadd-DD

Panels A, B, C, D, E and F show the proton occupancies of backbone amides from helix
1 (F101, V103 and C105), 2 (L115,R117,Q118, L119 and K120), 3 (1129), 4 (V141,
S144,1145,1147, W148 and K149), 5 (V162, G163, A164 and R166) and 6 (A174,
V177 and Q182), respectively. This data was fit to a single exponential equation (black

curve in plots) to calculate the folding rate using SigmaPlot.



Figure 50. The HSQC spectra of 4 mg/ml Fadd-DD in D,O after quenched-flow
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folding and buffer exchange into D,O buffer (S0 mM citric acid/100 mM K;HPO,,

pD 4.4)

Select refolding times are shown in the following panels: (A) 9.9 ms, (B) 53.2 ms, (C) 80

ms and (D) 200 ms. The hydrogen bond formation of twenty-two residues are followed.
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Figure 50 Continued.
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Figure 51. The kinetics of hydrogen bond formation of two loop residues (V121 and
M170)

Panels A and B show the proton occupancy of V121 and M170, respectively.

Table 8. The folding rates and the formation of secondary structure and hydrogen
bonds for each helix of Fadd-DD

Rate (s7) Amplitude
Secondary structure formation 23404 16.8+£0.1
(Stopped-flow far-UV CD)
Average Hydrogen bond formation 209+ 1.7 0.72+0.0
(Quenched-flow/NMR spectroscopy)
Helix 1 19.1+£4.0 0.8+0.1
Helix 2 21.0+34 0.7+0.0
Helix 3 197+ 7.0 0.7+0.1
Helix 4 21.0+2.8 0.7+0.0
Helix 5 22.5+4.2 0.7+0.1

Helix 6 209+54 0.7+0.1
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DISCUSSION

In the equilibrium HX study conducted by Jeong et al. with mouse Fadd-DD,
thirty-five residues spanning the six helices were shown to have the slowest exchanging
protons in an equilibrium HX study (Jeong et al., 1999). Invariably, residues involved in
the hydrophobic core formation have the slowest exchanging protons. Among these
thirty-five residues, nineteen residues are strongly protected in the human Fadd-DD as
well (Figure 41B). The backbone amides with hydrogen bonds in the loops of both mouse
and human Fadd-DD, V121 and L.170 (M170 in human homologue), are also protected.
More backbone amides from mouse Fadd-DD were found to have slower exchange rates
than human Fadd-DD. It may be explained that in our study, the protein goes through
approximately twelve hours of buffer exchange from the water based buffer to D,O based
buffer. Since there are three free cysteines in Fadd-DD, the protein cannot be lyophilized.
Therefore, some of the backbone residues with weak hydrogen bonds may be exchanged
during the process whereas the mouse Fadd-DD was lyophilized and directly dissolved in
D,O. The pH also differed and Fadd-DD pH 4.0 was used for the mouse Fadd-DD study.

For human Fadd-DD, only one slowly exchanging amide group was found in
helix 3 in comparison to the other helices. This observation is in good agreement with the
discovery that helix 3 is more mobile than the other helices (Berglund et al., 2000). The
observation that helix 3 has higher relative accessibility compared to the other helices
shows this helix is clearly more exposed. In mouse Fadd-DD helix 3 also has the most
internal flexibility of all helical elements according to the profile of amide solvent

exchange rates (Jeong et al., 1999).
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There appears to be a limited number of equilibrium HX studies conducted on
proteins with the Greek-key topology. One study is on ribosomal S6 (Haglund et al.,
2009), which belongs to the a/B-plait superfamily, two are members of all-p
immunoglobulin superfamily, Llama antibody fragment (Perez et al., 2001) and cell-
surface receptor protein CD2.D1 (Parker et al., 1997) and another is on the human
ephrin-B2 ectodomain, which also possesses the Greek-key topology (Ran et al., 2008).
The amide protons in ribosomal S6 located in B1, al and B3 have greater protection
factors (Haglund et al., 2009). They correspond with helix 1, 2 and 4 in Fadd-DD,
respectively (Higman and Greene, 2006). Of these three helices, 2 and 4 have significant
protection in Fadd-DD. Similar to our result, the residues on B2 in ribosomal S6 which
corresponds to helix 3 in Fadd-DD has the lowest protection factor of all secondary
elements (Haglund et al., 2009). The llama antibody fragment appears to have more
complex secondary elements consisting of eleven B-strands. It appears that strands 4 and
9, which correspond to helices 2 and 5 in Fadd-DD, have higher protection factors (Perez
et al., 2001; Higman and Greene, 2006). Again, helix 2 as well as helix 5 in Fadd-DD are
well protected. In the cell surface receptor protein, CD2.D1, protected amides are located
throughout the various -stands as well as in loops (Parker et al., 1997). Interestingly, the
three highest protection factors are in -strand C and the loop between B-strands D and E
(Parker et al., 1997). These correspond to helix 3 and the turn between helices 4 and 5 in
Fadd-DD (Higman and Greene, 2006). All of these studies indicate that proteins with
Greek-key topology have similar stable cores despite different secondary structures.

There is good agreement between folding rates measured by stopped-flow far-UV

CD and quenched-flow indicating that they all monitor the same cooperative transition. It
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is also similar to the first and dominant phase of folding monitored by stopped-flow
fluorescence spectroscopy (22.73 s™) (Li et al., 2009). While there is only one phase
indicated by stopped-flow far-UV CD and quenched-flow and two phases for the study of
stopped-flow fluorescence it is not an unprecedented result. There are examples of
several proteins which also show similar kinetic behavior. For example, the study
conducted on bacteriophage A lysozyme showed that there are two phases for intrinsic
fluorescence and far-UV CD, but only one phase for both HX and NMR as well as HX
and mass spectrometry (Di Paolo et al., 2010). Additionally, for human fibroblast growth
factor, two phases were detected for stopped-flow fluorescence spectroscopy, one phase
for stopped-flow far-UV CD and multiple rates for HX and NMR (Samuel et al., 2001).

In the quenched-flow experiment conducted on phage A lysozyme, it was
suspected that two factors account for the 15-20% lack of protection: 1), some back
exchange of deuterium for hydrogen occurred following quenching and before the final
buffer exchange into the D,0 buffer; 2), sample preparation required several hours due to
the large amount of protein needed for NMR (Di Paolo et al., 2010). We think that these
factors also apply to our experiment, which could explain the fact that proton occupancy
of all amides does not go to approximately zero. It should be noted that in our study the
data were plotted with peak intensity because the standard errors are less than those
plotted with peak volume although the time scales of hydrogen bond formation are
similar.

Our quenched-flow experiments indicate that all six helices fold concomitantly.
The folding behavior of individual amide protons with HX quenched-flow and NMR

spectroscopy have been conducted on well over ten proteins. In some proteins, it is
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shown that select amide protons fold earlier than the others. For example, in -
lactoglobulin, it was found that during the folding process, the intermediate contains a
hydrogen bonded structure in the core of BF, BG, BH and the major a-helix (Kuwata et
al., 2001). In hen lysozyme, the fast phase and slow phase of the a-domain both have
greater folding rates than those of the B-domain (Lu et al., 1997). Furthermore, in human
fibroblast growth factor, among the various B-strands, strands I, IV, IX and X form in
similar time scales and appear to provide the basic B-trefoil framework (Samuel et al.,
2001). On the other hand, there are cases of other proteins where the formation of
hydrogen bonds appears to occur on a similar time scale. For example, in the
immunoglobulin binding domain of streptococcal protein G, the twenty-six slowly-
exchanging backbone amides fold simultaneously with a single rate of 133 s™ (Kuszewski
et al., 1994). In the acyl-CoA binding protein, the measured proton occupancies at
different later folding times could be fitted to a single exponential decay with an average
rate constant of 20 s™ (Teilum et al., 2000). Pulsed HX study coupled with mass
spectrometry showed that the N/C-terminal regions of cytochrome ¢ fold cooperatively
on the same timescale (Yang and Smith, 1997). Also in bacteriophage A lysozyme, all of
the kinetics were monophasic and the resulting curves are all virtually identical (Di Paolo
et al., 2010). In our study, the folding of Fadd-DD is similar to that of the
immunoglobulin binding domain, acyl-CoA binding protein, N/C-terminal regions of
cytochrome ¢ and bacteriophage A lysozyme, indicating significant cooperative hydrogen
bond formation in the secondary structure of the protein. It is also concomitant with the

hydrophobic collapse. Overall, the studies presented here with Fadd-DD provide insight
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into the formation of secondary structure for the all a-helical Greek-key proteins and
potentially the all-B and mixed o/ Greek-key proteins more generally.

A model for the folding of Fadd-DD can be constructed by taking into account the
results of HX studies and those from stopped-flow fluorescence and ¢-value analysis that
allows the identification of key interactions in the TS (Steward et al., 2009) (Figure 52).
Steward et al. (2009) generated over twenty variants and after the effect of the mutations
was examined, select residues on helices 1, 2, 4 and 5 were found to form native
interactions in the TS. In our study, all six helices are formed in a cooperative manner.
Therefore, while all the helices are forming concomitant with the hydrophobic collapse
based on our stopped-flow fluorescence studies, helices 3 and 6 associate through tertiary

interactions with canonical core of Greek-key at a later stage of folding.
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Figure 52. The proposed folding model of Fadd-DD

Helices 1, 2, 3, 4, 5 and 6 are colored in purple, blue, green, yellow, orange and red,

respectively.
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CHAPTER VII
CONCLUSIONS

ANALYSIS OF CONSERVATION, STRUCTURE, STABILITY AND FOLDING
OF WT FADD-DD |

Fadd-DD is a six-helical bundle protein with Greek-key topology and belongs to
the death domain superfamily. This topology is shared by two other superfamilies, mixed
a/B-plait and all-f immunoglobulin. Fadd-DD functions in the signal transduction
pathway of apoptosis. A multiple sequence and structure alignment of the death domain
superfamily consisting of all four families was constructed and nine significantly
conserved hydrophobic and seven moderately conserved hydrophobic positions were
identified.

Fadd-DD WT was expressed in £. coli BL21(DE3) and purified after using
column chromatography. The WT protein is quite stable with AGPN value of
6.60 £ 0.03 kcal/mol. The folding of WT protein is rapid and straightforward. The
hydrophobic core formation studied by stopped-flow fluorescence spectroscopy has two
phases, one major fast phase with the rate of 22.73 + 0.57 s™ and one minor slow phase
with the rate of 8.13 + 0.47 s. The secondary structure formation studied by stopped-
flow far-UV CD spectroscopy has one phase with the rate of 23.4 + 0.4 5™
STRUCTURE, STABILITY AND FOLDING OF FADD-DD VARIANTS

Eight mutants were synthesized by site-directed mutagenesis. Trp112, Leul15

and Val121 are moderately conserved and Trp148 is significantly conserved. His160 and
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Val158 are not conserved. Leul72 belongs to a conserved position where most of the
residues among the homologues are hydrophilic. The variants were expressed in E. coli
BL21(DE3) and purified through a series of column chromatography. The AGP N values
of five variants Trp112Phe, Trp148Phe, Leul15Ala, Vall21Ala and
Trp112Phe/His160Gly are lower than that of the WT, indicating the replacement of
conserved residues with Phe or Ala reduced the stability of the protein. On the other
hand, three variants His160Gly, Val158Trp and Leul72Trp are similar to that of the WT.
The secondary and tertiary contents of Trp112Phe, Trp148Phe and
Trp112Phe/His160Gly significantly decreased compared to the WT, while the secondary
and tertiary structures of His160Gly, Val158Trp and Leul 72Trp closely resembled the
WT. Furthermore, the folding rates of Trp112Phe and Trp112Phe/His160Gly are
significantly slower than that of the WT. Instead of two phases, Trp112Phe has one more
third long phase. Overall, mutation of the conserved hydrophobic residues had substantial
effects on the protein stability, structure and folding.
QUENCHED-FLOW, HX AND NMR STUDIES OF FADD-DD

Quenched-flow, HX and NMR studies give the site specific information of
individual hydrogen bond formation at atomic resolution. After deuterated unfolded
protein is mixed with refolding buffer, the solution is then mixed with pulsing buffer with
high pH. After a certain refolding time, the protected backbone amide deteriums will
remain and the unprotected backbone amide deuteriums exchange with protons in the
solution. The solution is then mixed with quenching buffer with low pH to stop the
labeling process. The final protein is concentrated and buffer exchanged into deuterium

buffer. The amide peak intensities are analyzed with 2D NMR spectroscopy (*H,"°N-
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HSQC). Hydrogen bond formation of twenty-four stable backbone amides are followed.
It appears that all the six helices fold on a similar timescale with rates between 19 and 21
s, which is similar to the secondary structure formation detected by stopped-flow far-
UV CD spectroscopy. Furthermore, exchange rates and protection factors of twenty-three
residues were studied by equilibrium HX, and these residues are in the core region.
CHITINASE INSERTION DOMAIN

Four conserved amino acids identified in this study are proposed to be essential
for binding with the substrate and they form two distinguishable sequence motifs. The
CID may be inserted into the TIM domain to facilitate orienting and binding to longer
(e.g.>3) saccharide substrates. Because of the wide distribution in diverse organisms and
the high conservation of the CID, we can identify the sequence and predict the structure
of this domain in family 18 chitinases in the subfamily A. An evolutionary scheme is
presented which places the emergence of the CID in the context of chitinase function;
with the addition of the CID leading to an evolutionary shift of the protein from a non-
chitinolytic protein, or a NAGase, to a subfamily A or B family 18 chitinase. We also
identify a group of conserved hydrophobic residues in the core which we propose are
important for folding and structural stability. To test the hypothesis about the role of the
CID, a myriad of experimental and computational techniques such as molecular
modeling, in vitro and in silico binding studies coupled to site-directed mutagenesis,

enzymatic assays, and crystallization of the holo-protein can be carried out.
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FUTURE WORK
Characterize the Tertiary Structure Formation

The timescale of tertiary structure formation of Fadd-DD cannot be obtained with
the WT and Val158Trp variant. Another variant will be synthesized to obtain more
ellipticity in the near-UV region and the near-UV CD folding will be conducted to study
the tertiary structure formation. The two promising locations, Val162 and Val180, will be
mutated to tryptophan in order to increase the ellipticity in the near-UV CD spectra.
Solve the Fluorescence Quenching Problem

Equilibrium fluorescence study of the native state of Fadd-DD reveals that the
fluorescence intensity at 1 M GndHCl is greater than that at 0 M GndHCI. This result
indicates that the fluorescence of the WT is quenched in the native state. One tryptophan
(112 or 148) may be quenched by one or more of its surrounding amino acids. Since the
Trp112Phe variant and His160Gly also demonstrate the quenching phenomenon, Trp148
is more than likely to be quenched by some other neighboring residues. A variant will be
synthesized in order to solve the fluorescence quenching problem. The two promising
locations, Phe101 and Lys149 will be mutated to Leu and Asn, respectively.
Show the Early Folding Intermediates of Trp112Phe Variant

The study of quenched-flow, HX and NMR on the WT demonstrates that all
helices fold fast and on the same timescale. There is no folding intermediate in the
process. The stopped-flow fluorescence study on Trp112Phe indicates that this variant
folds more slowly than the WT with one more phase. In order to show if any intermediate

exists in the folding process of the Trp112Phe variant, the quenched-flow, HX and NMR



150

experiments will be conducted to test if all helices still fold cooperatively or helix 2 will
fold more slowly than the others.
Study the Effect of Conserved Hydrophobic Residues on Folding and Stability of
Another Death Domain Superfamily Member, Pyrin (PDB code: 1UCP)

Buried Tyr60 will be mutated to Trp as the fluorescence probe (Figure 53). L27,
equivalent to L119 and L56, equivalent to W148 will be mutated to A. And equilibrium
and stopped-flow fluorescence will be performed to compare stability and folding rates

between the WT and variants as well as calculate Phi-values.

Figure 53. Pyrin protein (PDB code: 1UCP)
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APPENDIX I

METHODS FOR CLONING, EXPRESSION, AND PURIFICATION

OF FADD-DD

T7 terminator

T7 promoter
Ampicilin 7T
resistant

pET-14b

pBR322-
origin

BamHI
Xhol
Ndel

Figure Al. The diagram of pET-14b map showing the cloning site (adapted from

http://www.biovisualtech.com/bvplasmid/pET-14b.htm)
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Table Al. Components (in pl) of the PCR reactions to amplify the cDNA

Component Rxnl Rxn2 Rxn 3 Control
Sterile ddH,O 36 35 33 37

10 X Pfu reaction buffer 5 5 5 5
Deoxyribonucleotide (ANTPs) (12.5 mM) 0.8 0.8 0.8 0.8
DNA template 1 2 4 1
Promoter primer (30 ng/pl) 3.1 3.1 3.1 3.1
Terminator primer (30 ng/pl) 3.1 3.1 3.1 3.1

Pfu hotstart polymerase (2.5 U/ul) 1 1 1 0

Total volume 50 50 50 50
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Table A2. Temperature and cycles of the PCR reaction to amplify the cDNA

Segment  Number of cycles Temperature Duration Period

1 1 95°C 2.5 minutes  Initial set up

2 30 95°C 30 seconds Denaturation
52°C 30 seconds Annealing
72°C 1 minute Elongation

3 1 72°C 10 minutes Final elongation

4 1 4°C Until use Hold

Bglll T7 promoter

AGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAG

AAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGGCAGCAGCCATCATCATCATCAT

Met Gly Ser Ser His His His His His

TCS Ndel Xhol BamH]I

CACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGCTCGAGGATCCGGCTGCTAACAAAGC

His Ser Ser Gly Leu Val Pro Arg Gly Ser His Met Leu Glu Asp Pro Ala Ala Asn Lys Ala

CCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGG

Arg Lys Glu Ala Glu Leu Ala Ala Ala Thr Ala Glu Gln End_ T7 terminator

CCTCTAAACGGGTCTTGAGGGGT TTTTTG

Figure A2. The cloning/expression region of pET-14b showing T7 promoter, His-tag
sequence, thrombin cleavage site (TCS), three cloning sites (Nde I, Xho 1 and BamH

I), and T7 terminator
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Table A3. Restriction enzymes used to digest the plasmid and insert

Restriction enzyme Recognition site NEB buffer Bovine serum albumin
BamH 1 5’...GGATCC...3 3 Y
Nde 1 5°...CATATG...3’ 4 N
Xho 1 5°...CTCGAG...> 2 Y

Table A4. Digestion mixture (concentration is empirically determined)

Plasmid (pl) c¢DNA (pl)
DNA 52 31
Buffer 6 4
Enzyme 2 2
Water 0 3
Total 60 40

Table AS. Ligation mixture (in pl) (concentration is empirically determined)

XhoI XholI BamHI BamHI Xhol BamHI XholI BamHI

Ratio 1:3 1:6 1:3 1:6 - - - -
plasmid 4 4 4 4 4 4 4 4
Buffer 1 1 1 1 1 1 1 1
cDNA 2 4 1.5 3 0 0 0 0
ATP 1 1 1 1 1 1 1 1
Water 1.5 0 2 0.5 3.5 3.5 4 4
Ligase 0.5 0.5 0.5 0.5 0.5 0.5 0 0
Total 10 10.5 10 10 10 10 10 10

“Xho I’ means the cDNA and plasmid were digested by both Nde 1 and X#o I; and
“BamH I” means the cDNA and plasmid were digested by both Nde I and BamH 1.
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Table A6. The sequences of primers for the mutagenesis

Primer Name Primer Sequence (5' to 3')

Trpl112Phe 5'-atctgtgataatgtggggaaagatttcagaaggctggete-3'
Trpl12Phe antisense S'-gagccagccttctgaaatctttccccacattatcacagat-3'
Leull5Ala 5'-ggaaagattggagaagggcggctcgtcagctcaaag-3’
Leuli5Ala_antisense 5'-ctttgagctgacgagecgeccttctecaatetttee-3°
Vall21Ala 5'-getegtcagetcaaagectcagacaccaagate-3’
Vall21Ala antisense 5'-gatcttggtgtctgaggctttgagetgacgage-3'
Trpl148Phe S'-cgggagtcactgagaatctticaagaacacagagaaggaga-3'
Trp148Phe_antisense S'-tctecttetetgtgttcttgaagattctcagtgacteeeg-3°
Vall58Trp S'-acagagaaggagaacgcaacatgggcccacctgg-3'
Vall58Trp antisense S'-ccaggtgggcccatgttgegttctecttetetgt-3°
His160Gly 5'-cgcaacagtggecggectggtgggggct-3°
His160Gly_antisense 5'-agcccccaccaggecggecactgttgeg-3°
Leul72Trp 5'-gtcctgecagatgaactgggtggctgacctggta-3°

Leul72Trp_antisense 5'-taccaggtcagccacccagttcatctggecaggac-3’
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APPENDIX II

BIOINFORMATICS STUDY OF FADD-DD AND CID
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Figure A3. Proposed catalytic mechanism showing Asp142 and Glul44 in S.
marcescens chitinase B, during two stages of catalysis (adapted from van Aalten et
al., 2001)

(A) Binding of substrate -1 NAG residue causes distortion of the pyranose ring to a boat
or skewed boat conformation and rotation of Asp142 toward Glul44, enabling hydrogen
bond formation between the acetamido group, Asp142, and Glul44.

(B) Hydrolysis of the oxazolinium ion intermediate results in protonation of Glul44 and

rotation of Asp142 to its original position.



Table A7. List of the sequence names, species name, and GI numbers of thirty-three

more CID sequences that are included in the phylogenetic tree and the larger
multiple sequence alignment

Sequence name Species name GI number
B_LysobacterE Lysobacter enzymogenes 50429005
B_Stenotrophomonas Stenotrophomonas sp. SKA14 254524159
B_HerpetosiphonA Herpetosiphon aurantiacus ATCC 159899269
23779
B_CellulomonasU Cellulomonas uda 17865808
B _DoohwaniellaC Doohwaniella chitinasigens 6649589
B_ChromobacteriumV Chromobacterium violaceum ATCC 34499695
12472
B_StreptosporangiumR Streptosporangium roseum DSM 43021 229855168
B _KiribbellaF Kribbella flavida DSM 17836 227377795
B_StackebrandtiaN Stackebrandtia nassauensis DSM 44728 229863927
B_SaccharopolysporaE Saccharopolyspora erythraea NRRL 134102989
2338
B_NocardiopsisD Nocardiopsis dassonvillei subsp. 229205033
dassonvillei DSM 4311
B _CatenulisporaA Catenulispora acidiphila DSM 44928 256395265
B_Synechococcus Synechococcus sp. RCC307 148242001
F_PenicilliumM Penicillium marneffei ATCC 18224 212534216
F_GrifolaU Grifola umbellata 28436151
F_HypocreaS Hypocrea seppoi 220701877
F_BionectriaO Bionectria ochroleuca 88696577
F_PyrenophoraT Pyrenophora tritici-repentis Pt-1C-BFP 189188560
F_RhizopusM Rhizopus microsporus var. oligosporus 1565203
F_NeosartoryaF Neosartorya fischeri NRRL 181 119470878
EE EntamoebaH Entamoeba histolytica HM-1:IMSS 67472835
EA_CaenorhabditisE Caenorhabditis elegans 17551250
EA_DrosophilaM Drosophila melanogaster 45550474
EA Cional Ciona intestinalis 167830427
EA_StrongylocentrotusP  Strongylocentrotus purpuratus 115608306
V_XenopusT Xenopus (Silurana) tropicalis 4262194
V_GallusG Gallus gallus 45383307
V_DanioR Danio rerio 41055329
M MusM Mus musculus 12597291
M _BosT Bos taurus 27807261
M _EquusC Equus caballus 219689080
M_RattusN Rattus norvegicus 119120779
M CapraH Capra hircus 66361429
Ar_ThermococcusK T kodakarensis KOD1 57641700
Ar_HalogeometricumB Halogeometricum boringuense DSM 227882613
11551
Ar_HalomicrobiumM Halomicrobium mukohataei DSM 257388962

12286



Table A7 Continued.

Sequence name Species name GI number
F Coccidioidesl C. Immitis 1D2K
F_AspergillusF A. fumigatus 70985392
F TrichodermaA Trichoderma atroviride 71143448
F_CandidaA C. albicans SC5314 68466729
F SaccharomycesC S. cerevisiae 6320579
B_BacillusC B. circulans HTX
B_StreptomycesT Streptomyces thermoviolaceus 436784
B_ClostridiumP Clostridium paraputrificum 2696017
B_HahellaC Hahella chejuensis KCTC 2396 83644516
B_SerratiaM S. marcescens 1E15
M_HomoS Homo sapiens 1LG1

EA PenacusM Penaeus monodon 5114426
EA_AcanthocheilonemaV Acanthocheilonema viteae 804649
EA_ Lutzomyial Lutzomyia longipalpis 28863959
EA_DermatophagoidesP  Dermatophagoides pteronyssinus 78128018
EE Hydractiniak Hydractinia echinata 46016169
EE DictyosteliumD Dictyostelium discoideum AX4 66818433
P_NicotianaT Nicotiana tabacum 899342
P_RobiniaP Robinia pseudoacacia 119721188
P_MomordicaC Momordica charantia 20269861
P_OryzaS Oryza sativa 115485441
P ArabidopsisT Arabidopsis thaliana 22328814
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Table A8. List of twenty-one structures of family 18 chitinases and chitinase-like proteins from
plants, bacteria, fungi, and animals

PDB Code Species Name/ With Other Ligand Function
Kingdom CID? domain
1HVQ H. brasiliensis Para No 3INAG Hevamine A
rubber (endochitinase/lysozyme)
tree
1TA3 Triticum Wheat No NAG, Xylanase inhibitor
aestivum EDO protein
(scatter)
1CNV Canavalia Jack bean No Concanavalin B, seed
ensiformis storage protein
INAR Vicia Purple No Narbonin, seed storage
narbonensis broad protein
vetch
1EOM E. Bacterium No 3NAG,3 NAGase
meningoseptica MAN, 2
GAL
1EDT S. plicatus Bacterium No NAGase
2EBN E. Bacterium No NAGase
meningoseptica
1ITX B. circulans Bacterium Yes Chitinase Al
IFFR/ICTN S marcescens  Bacterium Yes N- 7NAG Chitinase A
terminal
1URY9/1E15 S. marcescens  Bacterium Yes C- NAG, Chitinase B
terminal GDL, PHJ
1IKFW Arthrobacter Bacterium Yes Psychrophilic chitinase B
sp.
3B9%A V. harveyi Bacterium  Yes N- 6 NAG Chitinase A
terminal
1D2K C. immitis Fungus Yes Chitinase
IWNO/1WIP A, fumigatus Fungus Yes NAG, Chitinase B
NDG
1LG1/1HKM H. sapiens Human Yes 2NAA,1 Chitotriosidase
ALI
3FXY H. sapiens Human Yes Acidic Mammalian
Chitinase
1E9L Mus musculus ~ Mouse Yes NAG Mammalian lectin
INWT H. sapiens Human Yes 8§ NAG Cartilage gp39
1JND Drosophila Fruit fly Yes NAG, Disc growth factor-2
melanogaster MAN
2DPE Ovis aries Sheep Yes 2NAG, 3 Signal processing protein
MAN
1LYY Capra hircus Goat Yes NAG Mammary gland protein

Structures in bold are described and compared in the text.
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Table A9. The twenty proteins that are utilized to make sequence and structure

alignment of the death domain superfamily

Family Sequence number GI number Name of organism Name
CARD 1 6137576 Human H 1CY5
2 76156998 Trematode T SJ 6
3 21326823 Carp fish Fi CARD
4 57163901 Cat C_caspase
5 6680696 Mouse M_IAP
DED 6 4139474 Human H_1A1W
7 56540946 Frog Fr LOC 5
8 13095651 Bovine herpesvirus BHV_FLIP
9 9628077 Equid herpesvirus EHV_ORF
10 40389470 Mouse M_vanishin
DD 11 76155247 Trematode T SIS
12 45383358 Junglefowl Fo TNFRSF
13 11513952 Human H_1E3Y
14 10732781 Fruit fly Fl DD
15 80476543 Frog Fr LOC 7
PYD 16 18203023 Zebra fish Fi PYD
17 38493024 Human H_1UCP
18 37791117 Dwarf Lemur L _cryopyrin
19 24660214 Human H NLRP
20 18088559 Human H_pyhin

Each family has one known structure indicated in bold and four unknown structures.

Sequence are chosen from diversified organisms and have identity percentage less than

25% in order to find those residues conserved for structure and folding.
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Figure A4. Structure-based multiple sequence alignment of the CID

Hydrophobic positions with high conservation (C(i)>0.45) are coloured in blue and

positions with moderate conservation (0.35<C(i)<0.45) are coloured in light blue.
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Figure A4 Continued.

Hydrophilic positions with high conservation are coloured in red and positions with
moderate conservation are coloured in pink. Neutral positions with high conservation
containing mostly glycine, alanine, or proline are coloured in orange, while positions
with moderate conservation are not highlighted. “~” and “— indicate the sequences in a-
helices and -strands, respectively. The secondary structure of tobacco chitinase CID was
predicted by the program of PSIPRED. “*” and “#” represent the positions which form
hydrogen bonding and the hydrophobic interaction with the substrate, respectively. The
full genus name and the first letter of species name are shown for each organism in the
figure. If two sequences are from one species, a number is added after the species name.
All the sequences were obtained from the protein database at the NCBI. Abbreviations:
Ar, Archaea; B, Bacteria; F, Fungi; P, Plantae; EE, early eukaryotes; EA, early Animalia;

M, mammal.



Ar_Thermococcusk/1-75
Ar_Halogeometricemdl/1-N
Ar_HalomicrobiumMi/1-75
Ar_HalogeometricumB2/1-90
Ar_HalomicrohimmM2/1-61
F_Coccidioideal_ld2k/1-62
F_Aspergillus¥/i~74
F_trichodermar/1-57
F_CandidaA/1-65
F_SaccharomycesC/1-80
B_BacillusC_1itx/1-72
B_Streptomyces?/1-60
B_Clostridiump/1-96
B_HahellaC/1-96
B_Serratiad leéz/1-88
N_HomoS_11g1/1-68
BA_PenaeusM/1-15
BA_AcanthochellonemaV/1-70
EA_Lutzomyial/1-70
EA_DermatophagoidesP/1-71
EE_Hydractiniak/1i-69

EE _DictyosteliumD/1-8¢

P _Nicotiana1/1-6%
£_Roblniap/3~58
?_Momordicac/1-65
P_Oryzas/1-71
®_Arabidopsis?/1-62
B_Lysobacterg/1-63
B_Stenotrophomonas/1-64
B_Eerpetosiphond/1-63
B_CellulomonasD/1-60

B DochwaniellaC/1-64

8 Chromobacterimmv/1-66
B_StreptosporangiumR/1-70
B_Kribbella?/1-66
B_StacksbrandtiaN/1-64
B_Saccharopolysporak/1-64
B_Nocardiopsisd/1-70
B_CatenulisporaA/1~72
B_Synechococous/i-72
F_PenicilliumM/1-66
F_GrifolaU/1-62
F_Bypocreas/1-62
F_Blonectrla0/1-64
F_Pyrenophora?/1-63
F_RhizopusM/1-62
F_NeosartoryaF/1-66
EE_Entamoebal/1-63
EA_DrosophilaM/1-71
EA_Caentrhabditisk/1-69
BA _Clonal/l-71
EA_Strongylocentrotus®/1-79
V_Xenopus?/1-69
v_GallusG/1-70
V_DanioR/1~68

N_Mus4/1-70

M_BosT/1-70

M_EquusC/1-68

M RattusN/1-66
M_Caprail/1-68
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Figure AS. The larger multiple sequence alignment of sixty CID sequences

The alignment was generated by MUSCLE in Jalview.
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Figure AS Continued.
It is not edited according to the three model structures. The two conserved motifs YxR
and [E/D]xx[V/I] are highlighted in the frames and the four conserved positions are

labeled with the asterisks. The species names and GI numbers refer to Table 7.
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Figure A6. Phylogenetic analysis of the CID sequences from different lineages of
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Figure A6 Continued.

The phylogenetic tree was constructed by the neighbour-joining method based on the
CID sequences: five from Archaea, eighteen from Bacteria, twelve from Fungi, five from
Plantae, three from early eukaryotes, eight from early Animalia, and nine from
vertebrates (V) including six from mammals. The sequence names, corresponding GI
numbers, and abbreviations are listed in Figure 11 and Table 7. All the sequences were

obtained from the protein database at the NCBI.



APPENDIX III

STOPPED-FLOW FLUORESCENCE OF FADD-DD WITH DIFFERENT

CONCENTRATIONS
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Figure A7. Stopped-flow fluorescence studies of Fadd-DD with different

concentrations



188

Figure A7 Continued.
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Refolding of denatured WT protein with three different concentrations: (A) 0.2 mg/ml;

(B) 0.1 mg/ml; (C) 0.01 mg/ml in refolding buffer was monitored by stopped-flow

fluorescence spectroscopy. The conditions are same with previously mentioned.

Table A10. The folding rates and amplitude of hydrophobic core formation of Fadd-
DD with the concentration ranging from 0.01 mg/ml to 0.2 mg/ml

Concentration A; ki A, k>
0.2 mg/ml 3.226 +0.024 23577 £0.183 0.682+£0.025 6.479 £ 0.160
0.1 mg/ml 1.839 +0.013 20.033+0.150 0.438+0.014 5.512+0.125

0.01 mg/ml 0.161 £0.006  24.386+0.780 0.071 £0.006  7.980 + 0.391
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