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ABSTRACT 

BIOINFORMATICS, THERMODYNAMICS AND KINETICS ANALYSIS OF 
AN ALL ALPHA HELICAL PROTEIN WITH A GREEK-KEY TOPOLOGY 

HaiLi 
Old Dominion University, 2011 
Director: Dr. Lesley H. Greene 

Computational and experimental studies focusing on the role of conserved 

residues for folding and stability is an active and promising area of research. To further 

expand our understanding we present the results of a bioinformatics analysis of the death 

domain superfamily. The death domain superfamily fold consists of six a-helices 

arranged in a Greek-key topology, which is shared by the all P-sheet immunoglobulin and 

mixed a/p-plait superfamilies. Our sequence and structural studies have identified a 

group of conserved hydrophobic residues and corresponding long-range interactions, 

which we propose are important in the formation and stabilization of the hydrophobic 

core and native topology. Equilibrium unfolding and refolding studies of a model 

superfamily member, the Fas-associated death domain protein indicate that this process is 

cooperative, two-state and reversible. Stopped-flow fluorescence studies reveal that the 

folding is rapid and biphasic with the majority of the hydrophobic core forming in the 

first phase. Site-directed mutagenesis studies indicate that conserved Trpl 12, Tip 148, 

Leul 15 and Vail21 are important to structure, native state stability and folding. 

We also present the results of experiments aimed at characterizing the formation 

of secondary structure. Stopped-flow far-UV CD spectroscopy revealed that the folding 

process was monophasic and the rate is 23.4 s"1. To gain atomic resolution a combination 

of quenched-flow methods, hydrogen deuterium exchange (HX) and NMR spectroscopy 



was implemented. Twenty-two amide hydrogens in the backbone of the helices and two 

in the backbone of the loops were monitored and the folding of all six helices was 

determined to be monophasic with rates between 19 s"1 and 22 s"1. These results indicate 

that the formation of secondary structure is largely cooperative and concomitant with the 

hydrophobic collapse. Additional insights are gained by calculating the exchange rates of 

twenty-three residues from equilibrium HX experiments. The majority of protected amide 

protons are found on helices 2, 4, and 5 which make up core structural elements of the 

Greek-key topology. These results appear to be the earliest conservation analysis and 

biophysical characterization conducted on the Fas-associated death domain and folding 

kinetics using quenched-flow combined with NMR spectroscopy on an all a-helical 

Greek-key protein. 
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CHAPTER I 

INTRODUCTION 

Proteins consist of a chain of amino acids which are linked together by peptide 

bonds formed between the amino group of one residue and the carboxyl group of the 

neighboring residue. There are twenty types of naturally-occurring amino acids. The 

primary structure of a protein is its amino acid sequence. The secondary structure of a 

protein is its specific regularly repeating local structures including a-helices, P-strands, 

and P-turns. The major force forming and stabilizing secondary structure is hydrogen 

bonding. The tertiary structure of a protein is its overall topology composed of a-helices 

and P-strands, such as all a-helices, all P-sheets, a/p, and a + p. The forces involved in 

forming and stabilizing tertiary structure include hydrophobic interactions, ionic 

interactions, hydrogen bonding and disulfide bonds. The quaternary structure of a protein 

is in the form of multi-subunits or chains. There are some common topologies in the 

protein universe, including Greek-key, TIM barrel and jelly roll (May et al., 2010). 

X-ray crystallography and NMR spectroscopy are the two primary methods 

utilized to solve protein structures. The solved structures of a protein are maintained in 

the Protein Data Bank (PDB). There are two main protein structure classification 

databases: Structural Classification of Proteins (SCOP) (Murzin et al , 1995) and CATH 

Protein Structure Classification (Orengo et al., 1997). 

Protein folding remains one of the most fundamental and intriguing questions in 

the field of structural biology (Kang and Kini, 2009). This question can be simply stated 

This dissertation follows the format of Molecular Cell. 
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as: "how does a linear polypeptide chain of amino acids accurately fold into a distinct 

native functional conformation?" 

Anfinsen's dogma, also known as the thermodynamic hypothesis, states that, at 

least for small globular proteins, the native structure of a protein is determined only by its 

amino acid sequence. This discovery led to Christian Anfinsen's winning the Nobel Prize 

in 1972. Anfinsen's dogma indicates that amino acids interact with each other to produce 

a well-defined folded three-dimensional structure known as the native state (Anfinsen, 

1972). 

The Levinthal paradox states that if a protein with 100 amino acids folds by 

sampling all possible conformations and each side chain has many possible states, it 

would take an extremely long time to do so. Even if the conformations were sampled at a 

rate of 10"4 nanosecond, it would still take 1027 years to fold (Levinthal, 1968; Zwanzig et 

al., 1992). Since proteins fold much faster than this, Levinthal then proposed that instead 

of a random conformational sampling, the protein must fold by a specific folding 

pathway (Levinthal, 1968). 

In the folding process, the thermodynamics can be described as: 

AGtotal = AHchain + AHsolvent — TAScham ~ TASsolvent 

In the equation, AGtotai is the total Gibbs free energy change between the 

denatured and native states; AHCham and AHsoivent represent the enthalpy change for the 

polypeptide chain and solvent, respectively; and ASCham and ASsoivent represent entropy 

change for the polypeptide chain and solvent, respectively (Garrett and Grisham, 2005). 

Van der Waals forces, hydrophobic interaction, hydrogen bonding and electrostatic 

interactions are the main driving forces for folding. Comparison of all the terms indicates 
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that the two largest contributions to the stability of a folded protein are -TASsoivent for the 

hydrophobic side chains (ASsoiVent is a positive value) and AHsoiVent (a negative value) for 

the polar groups, which makes the total free energy a negative value (Garrett and 

Grisham, 2005). Therefore, the direction of folding from the unfolded state to the native 

state goes spontaneously. In the folding process, denatured protein goes through the 

transition state (TS) to the native state and overcomes a free energy barrier, which 

controls the folding rates. Plaxco et al. (1998) revealed that the intrinsic folding rate 

decreases with the increase of relative contact order, which reflects the relative 

importance of local and non-local contacts to the native structure. 

It appears that small proteins (100 amino acids or less) can fold rapidly in a two-

state (denatured and native states) mechanism with no kinetically detectable 

intermediates. However, the folding of larger proteins often involves a multi-stage 

pathway or folding funnel. There are currently four models for protein folding: 

framework, hydrophobic collapse, nucleation-condensation, and folding funnel models 

(Nolting and Andert, 2000; Kelly et al., 2005). In the framework model, protein folding 

starts with the formation of the secondary structure elements independent of tertiary 

structure, or at least before tertiary structure is formed (Kim and Baldwin, 1982). These 

elements then assemble into a tightly packed native tertiary structure either by diffusion 

and collision (Karplus and Weaver, 1994) or by propagation of structure step by step 

(Wetlaufer, 1973). The folding of acyl-coenzyme A-binding protein which has four a-

helices is an example of a sequential framework model (Kragelund et al , 1999). A 

bioinformatics study of this protein identified twenty-six conserved residues. Among 

these residues, the mutation of four hydrophobic residues in helix 1 and three 
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hydrophobic residues in helix 4 significantly decrease the folding rates. The folding 

process involves regions of helices 1 and 4 in a spatial arrangement that favors the 

formation of long-range interactions. The backbone hydrogen bonds of helix 1 and 4 

form first, and hence the hydrophobic residues from these two helices are brought close 

together. Afterwards the structure becomes locked and the folding proceeds by the further 

formation of the other helices. The generation of native-like interactions between two 

terminal helices (1 and 4) is the rate-limiting step, so the helix formation rate is much 

faster and a sequential framework model can describe the folding process (Kragelund et 

al., 1999). 

In the hydrophobic collapse model for folding (Dill, 1990), the initial event of the 

reaction is a relatively uniform collapse of the protein molecule, mainly driven by the 

hydrophobic interaction. Stable secondary structure starts to grow only in the collapsed 

state. The folding of cytochrome c, which has four a-helices and a heme group, is 

presented as a model of hydrophobic collapse (Akiyama et al., 2000). Initially, the 

unfolded protein condenses into the compact intermediate I, whose helical content is 

about 20% of the native state. Compaction of intermediate I facilitates the search for 

stabilizing contacts to create the molten globule-like intermediate II. Thus, the specific 

contacts between the helices are established in the TS between intermediates I and II. The 

final process from intermediate II to the native conformation involves the folding of the 

remaining helices and the coordination of Met80 to the heme. Since initial hydrophobic 

collapse happens before much of the helix formation in the folding, it is proposed that 

folding mechanism is better described as the hydrophobic collapse model. Furthermore, 

the heme may serve as a hydrophobic nucleation core. In the folding of barstar, the 
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polypeptide rapidly collapses to compact globule with a non-specific hydrophobic core, 

without involving the formation of concomitant secondary or tertiary structure (Agashe et 

al., 1995). The rate constants of the fast and slow phases for the secondary structure 

formation are 7000 s"1 and 11 s"1; and those for the tertiary structure formation are 4000 

s"1 and 4 s"1, respectively. However, Nolting et al. (1997) suggests that barstar also folds 

through nucleation-condensation model after conducting O-value analysis, which will be 

explained later, indicating that two folding models can co-exist for one protein. 

In the nucleation-condensation mechanism (Fersht, 1995; Fersht, 1997; Nolting et 

al., 1997), early formation of a diffuse folding nucleus catalyzes further folding. The 

nucleus primarily consists of a few adjacent residues that have some correct secondary 

structure interactions but is stable only in the presence of further correct tertiary structure 

interactions. The folding of chymotrypsin inhibitor 2 conforms to a nucleation-

condensation model, which may explain the fairly fast folding rate. The nucleus of the 

protein is part of the only helix and some distant residues with which it interacts (Itzhaki 

et al., 1995). Only Alal6 on the helix in the hydrophobic core has its full native 

interaction energy in the TS. The formation of the helix in the TS is stabilized by the 

interaction between Alal6 and Leu49 and Ile57 that will form the hydrophobic core. The 

initially diffuse nucleus of relatively low stability becomes increasingly stabilized as 

further structure grows around it in a hierarchical manner (Nolting, 1999). Measurements 

of the nucleation site by <D-value analysis which supports the nucleation-condensation 

model coincide with predictions by using the folding funnel model. The folding funnel 

model discussed in the next paragraph concentrates on the rapid decrease of the 

conformational dispersity during the reaction (Shoemaker et al., 1999). All three models 
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may be extended to proteins that have intermediates and multiple TSs on their pathways. 

The final steps of folding usually involve the interlocking of the side chains. 

The folding funnel hypothesis is the energy landscape theory of protein folding. 

Energy landscapes may be considered as energy levels for partially folded intermediate 

states of the proteins (Onuchic and Wolynes, 2004; Oliveberg and Wolynes, 2005). It 

assumes that the native state of a protein corresponds to its minimum free energy and 

entropy. As the protein goes from the unfolded state to the native state, both the 

conformational energy and entropy value go down and the number of native contacts 

goes up. In the folding funnel model, the protein has many different starting 

conformations and eventually converges into a single pathway. The driving force for 

folding is the sequestration of side chains of hydrophobic residues to the interior of the 

folded protein. The molten globule state is predicted to be an ensemble of folding 

intermediates and it corresponds to a species in which hydrophobic collapse has occurred 

but native contacts have not yet formed. This state may also exist as an intermediate in 

the three classic models. In addition, it has most of its secondary structure but very little 

tertiary structure (Kelly and Price, 1997). It belongs to a type of intrinsically disordered 

protein (Mittag and Forman-Kay, 2007). Molten globule states may exist as an important 

intermediate in the folding pathway of some proteins, such as a-lactalbumin, calcium-

binding lysozyme, apomyoglobin and cytochrome c (Ptitsyn, 1995; Kuwajima and Arai, 

2000). Under certain conditions such as low pH, a native protein can be in the molten 

globule state. 

In order to predict predicting folding rates computationally, Plaxco et al. (1998) 

revealed a significant correlation between the natural logarithm of the intrinsic folding 
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rate (ln£) and the relative contact order. Contact order is the average sequence distance 

between residues forming native contacts in the native state divided by the total length of 

the protein. Their results show that Ink decreases as the relative contact order increases. 

Futhermore, although there is no significant relationship between protein length and 

folding rates, a weak correlation is observed between length and the fraction of solvent-

exposed surface area buried in the TS. 

The ability to test both empirical and theoretical relationships for predicting 

protein folding rates has been limited because a wide range of experimental conditions 

and methods are employed. To overcome these problems, Maxwell et al. (2005) defined a 

consensus set of experimental conditions such as 25°C at pH 7.0, 50 mM buffer, data 

analysis methods and data reporting standards. The folding kinetics of thirty two-state 

proteins or protein domains were further studied under the consensus conditions. 

METHODS TO STUDY PROTEIN FOLDING: O-VALUE ANALYSIS 

O-value analysis is an experimental protein engineering method used to study the 

structure of the folding TS in small domains that fold with a two state transition. Since 

the folding TS is a transient and partially unstructured state, its structure is difficult to 

determine by methods such as protein NMR or X-ray crystallography. In <D-value 

analysis, the folding kinetics and conformational folding stability of the wild-type (WT) 

protein are compared with those of one or more point mutants (Fersht et al., 1992; 

Zarrine-Afsar and Davidson, 2004). This comparison yields a O-value that measures the 

mutated residue's energetic contribution to the TS, and thus the degree of native structure 

around the mutated residue in the TS. 
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Usually a high percentage of the residues in a protein are mutated to identify 

clusters of residues that are well-ordered in the folded TS. Generally the mutations are 

non-disruptive and conservative and replace the original residue with a smaller one, most 

commonly alanine (Zarrine-Afsar and Davidson, 2004). Examples of proteins that have 

been studied by O-value analysis include barnase (Dalby et al., 1998), chymotrypsin 

inhibitor (Jackson et al., 1993; Gromiha and Selvaraj, 2002), SH3 domains (Northey et 

al., 2002), individual domains of proteins L and G, ubiquitin (Sosnick et al., 2004), Fadd-

DD (Steward et al., 2009), BBL (Neuweiler et al., 2009), and chicken brain a-spectrin 

(Wensley et al., 2009). 

The O-value is defined as (AGTS-D
WT - AGTS-D

M)/(AGN-D
WT - AGN-°M) = AAGTS"D 

/AAG " (Figure 1) (Zarrine-Afsar and Davidson, 2004). AG " WT represents the energy 

difference between the TS and the denatured state for the WT protein, AG * M represents 

this energy difference for the mutant (M) protein, and AGN"°WT terms the energy 

difference between the native state and the denatured state for the WT (Fersht and 

Daggett, 2002; Daggett and Fersht, 2003). Thus, the O-value represents the ratio of the 

energetic destabilization introduced by the mutation to the TS versus that introduced to 

the native state. The O-value ranges from 0 to 1. A O-value near 0 suggests that the 

region surrounding the mutation is relatively unfolded or unstructured in the TS; a value 

near 1 means that the local structure around the mutation site in the TS closely resembles 

the structure in the native state. In Figure 1 A, the energy of the TS is affected by Ala to 

Gly by the same energy as in D, so the change in energy of TS relative to that of D, 

AAGTS"D, is 0. Thus, O = AAGTS"D/AAGN"D = 0. In Figure IB, in the TS, AAGTS"D = 

AAG , so O = 1. AAG " is calculated from the ratio of rate constants for folding of 



WT [AtrwT)] and mutants [%<)] [AAGTS'D= RTln(£f(WT)/£f(M))]. The value of AAGN"D is 

calculated by subtracting the free energy of folding of mutant AGN"DM from that of WT 

protein AGN"DWT- The free energies of folding are usually measured from urea, GndHCl, 

or thermal denaturation curves. Calculations of folding rates and equilibrium constants 

are required for O-value analysis (Zarrine-Afsar and Davidson, 2004). 

B 

T S ' AAGTSD 

D' 
\ NT mutant 

AAGN"D 

™"N wild-type 

_ _T§'_ 
| XAAGTS-D 

TS 

\ N' mutant 

I AAGND 

N wild-type 

Figure 1. O-value analysis (adapted from Zarrine-Afsar and Davidson, 2004) 

Schematic profiles are sketched in solid lines for a protein that has an alanine, and in 

dashed lines for a variant in which the alanine is replaced by glycine. 

(A) The TS is at the top of the energy profile. AAGTS"Dis 0 and thus, O = 0. 

(B) In the TS, AAGTS"D = AAGN"D, so O = 1 (modified from Dagget and Fersht, 2003). 
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METHODS TO STUDY PROTEIN FOLDING: STOPPED-FLOW 

FLUORESCENCE 

The application of fluorescence in protein chemistry usually employs intrinsic 

fluorescence of aromatic residues (Lakowicz, 2006). Three aromatic amino acids 

tryptophan, tyrosine, and phenylalanine are fluorescent; however, they all occupy relative 

low percentage in proteins. For example, there is generally 1 mol% tryptophan present in 

proteins (Lakowicz, 2006). The maximal absorption wavelengths for phenylalanine, 

tyrosine and tryptophan are approximately 260 nm, 280 nm, and 285 nm, respectively; 

and the maximal emission wavelengths for phenylalanine, tyrosine and tryptophan are 

about 285 nm, 300 nm and 360 nm, respectively (Lakowicz, 2006). Tryptophan has both 

a greater molar extinction (absorption) coefficient and fluorescence intensity than the 

other two aromatic amino acids (Lakowicz, 2006), therefore it is a good probe for 

monitoring unfolding and refolding. An excitation wavelength of 295 nm is employed in 

order to specifically detect tryptophan intrinsic fluorescence. Usually, for a protein with a 

buried tryptophan, the maximum emission wavelength is shorter, and emission intensity 

is greater in the native state than in the denatured state in the equilibrium study. This is 

because in the presence of a polar solvent, the energy is transferred to the solvent and the 

emission is lost (Lakowicz, 2006). Consequently, the fluorescence intensity will increase 

at the maximum wavelength if such a protein goes from the denatured state to the native 

state. Furthermore, unfolding and refolding conducted with fluorescence can indicate 

important thermodynamic values such as the Gibbs free energy of denaturation (Pace et 

al., 1989). However, tryptophan is very sensitive to its microenvironment. The tryptophan 

can be quenched in the native state by the neighboring residues such as cysteine, a 
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disulfide bridge, histidine, aspartic acid, glutamic acid and lysine (Engelborghs, 2001). 

Moreover, a tryptophan in a protein with multiple tryptophans may behave differently 

depending on its own microenvironment. In this case, site-directed mutagenesis helps to 

detect the contribution of each individual tryptophan to the overall fluorescence. 

A stopped-flow instrument is a rapid mixing device used to study the kinetics of a 

reaction in solution and it allows various conditions to be tested (Frieden et al., 1993). 

Stopped-flow apparatus from Bio-Logic (Claix, France) and Applied Photophysics 

(Surrey, UK) are commonly used. Different types of spectroscopy such as fluorescence 

spectroscopy (Lakowicz, 2006), circular dichroism (CD) spectroscopy (Kelly et al., 

2005), real time-NMR spectroscopy (Zeeb and Balbach, 2004) and FT-IR spectroscopy 

(Fabian and Naumann, 2004) can be used in combination with stopped-flow (Frieden et 

al , 1993). A stopped-flow instrument coupled to either a CD spectrometer or a 

fluorescence spectrometer is most often used in the field of protein folding to observe 

rapid reactions (Kuwajima, 1996). In the stopped-flow fluorescence spectroscopy, after 

one solution containing the unfolded protein and another solution containing the native 

buffer are mixed, the change of fluorescence intensity using tryptophan or tyrosine as the 

probe is amplified, revealing the kinetics of the hydrophobic core formation in a protein 

with such buried residue(s) (Lakowicz, 2006). The kinetics traces can be analyzed with 

the scientific analysis and graphing program SigmaPlot to calculate the folding rates and 

residuals using various exponential equations. The best-fit residuals indicate the number 

of phases in the folding process. 
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METHODS TO STUDY PROTEIN FOLDING: STOPPED-FLOW CIRCULAR 

DICHROISM 

CD is one of the most widely used types of chiroptical spectroscopy (Woody, 

1996) and a very sensitive biophysical tool for detecting the overall structure of the 

protein and monitoring conformational change (Venyaminov and Yang, 1996). The 

inherent information content of the far-UV CD spectra (190-250 nm) depends on the 

difference in absorption of left- and right- handed circularly polarized light at the protein 

backbone (Bohm et al., 1992). Within these wavelengths the peptide bonds in a regular 

and folded environment are the chromophore, whereas in fluorescence the side chains of 

aromatic residues are chromophores. Therefore, the far-UV CD region of proteins can 

reveal important characteristics of their secondary structure elements including 

conformations of the a-helix, the P-sheet, the P-turn and random coil (Woody, 1996; 

Whitmore and Wallace, 2008). The far-UV CD spectra can also examine the types of 

secondary structure in proteins including all-a, all-P, a + P, a/p and disordered proteins 

(Venyaminov and Yang, 1996; Kelly et al., 2005). For example, all-a proteins show two 

strong double minimum at around 208 nm and 222 nm and all-P proteins usually 

demonstrate a less strong single minimum between 210 and 225 nm (Venyaminov and 

Yang, 1996). It can be used to study how the protein secondary structure changes as a 

function of temperature, pH, or the concentration of denaturant such as guanidinium 

hydrochloride (GndHCl) or urea. 

Near-UV CD spectrum (250-320 nm) of proteins provides information on the 

tertiary structure. The signals obtained in the 250-300 nm region are due to the 

absorption, dipole orientation and the nature of the surrounding environment of the 
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phenylalanine, tyrosine, tryptophan and cysteine (or disulfide bond) (Woody and Dunker, 

1996). Tryptophan shows a peak near 290 nm with fine structure between 290-305 nm; 

tyrosine shows a peak between 275-282 nm, with a shoulder at longer wavelengths; 

phenylalanine shows weaker but sharper signals with fine structure between 255-270 nm 

(Kelly et al., 2005). Unlike far-UV CD, near-UV CD spectrum cannot be assigned to any 

one specific three-dimensional structure a priori. 

CD gives less specific protein structural information than X-ray crystallography 

and NMR spectroscopy. However, CD spectroscopy is a fast method that does not require 

large amounts of protein or extensive data processing. Therefore, CD can examine 

changes in protein structure for a large number of conditions including solvent, 

temperature, pH and salt concentration. Stopped-flow far- (usually at the wavelength of 

222 or 225 nm) and near- UV CD spectroscopy usually at the wavelengths between 275 

and 295 nm can measure the rates of secondary structure and the tertiary structure 

formation, respectively (Kuwajima, 1996; Kelly et al., 2005). 

METHODS TO STUDY PROTEIN FOLDING: QUENCHED-FLOW AND 

HYDROGEN-DEUTERIUM EXCHANGE 

A combination of quenched-flow methods, hydrogen deuterium exchange (HX) 

and NMR spectroscopy can give detailed site specific information about the protein 

folding process (Englander and Mayne, 1992; Dyson and Wright, 1996). In a typical 

experiment (Krishna et al., 2004) as shown in Figure 2, the protein is initially unfolded in 

D2O and guanidium-HCl (GndHCl) and all the amide hydrogens exchange to deuteriums. 

Folding is initiated by rapid dilution into a folding buffer in H2O. The folding buffer is 

kept at fairly low pH so that no exchange occurs. After select folding times, a brief 
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hydrogen labeling pulse is applied by mixing with high pH buffer and amide deuteriums 

that are unprotected exchange to hydrogens but those in stable-formed structures are 

protected. A third mix into low pH buffer stops the labeling process. The protein sample 

is then concentrated and exchanged into D2O buffer for NMR analysis. 2D NMR spectra 

of the refolded protein are then recorded and the proton occupancy is measured at each 

refolding time for the observable amide proton resonances (Dyson and Wright, 1996). 

N"LrO 

2D NMR analysis 
Concentrate & 

refold 
(H20) 

•4 N 
t f 

quench 

G Q.Q.Q.Q.. 

pulse 
label 
(H20) 

G •0-0-Q-O., 

J buffer exchange 

Figure 2. The schematic diagram showing the protein at different stages in a typical 

quenched-flow, HX and NMR experiment (adapted from Dyson and Wright, 1996) 

The stages include refolding, pulsing, quenching, concentration and buffer exchange. 

Quenched-flow HX studies of the folding of a number of proteins have been 

reported, such as ribonuclease A (Udgaonkar and Baldwin, 1988), cytochrome c (Roder 

et al., 1988), T4 lysozyme (Lu and Dahlquist, 1992), ribonuclease Ti (Mullins et al., 
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1993), staphylococcal nuclease (Jacobs and Fox, 1994), immunoglobulin binding domain 

of streptococcal protein G (Kuszewski et al., 1994), dihydrofolate reductase (Jones and 

Matthews, 1995), hen lysozyme (Lu et al., 1997), apomyoglobin (Garcia et al., 2000), 

acyl-CoA binding protein (Teilum et al., 2000), human fibroblast growth factor (Samuel 

et al., 2001), hisactophilin (Liu et al., 2002), cobrotoxin (Hsieh et al., 2006), onconase (an 

RNase A homologue from the oocytes of Ranapipiens) (Schulenburg et al., 2009) and 

lysozyme from bacteriophage A. (Di Paolo et al., 2010). The results of several of these 

studies such as hen lysozyme, human fibroblast growth factor and onconase appear to 

show that certain parts of the protein may fold earlier than other regions (Lu et al., 1997; 

Samuel et al., 2001; Schulenburg et al., 2009). However, in other proteins such as phage 

X lysozyme, acyl-CoA binding protein and the immunoglobulin binding domain of 

streptococcal protein G the kinetics of secondary structure formation indicate that they 

form cooperatively (Kuszewski et al., 1994; Teilum et al., 2000; Di Paolo et al., 2010). 

CHAPERONES 

The refolding of an unfolded protein in vitro is a spontaneous process. The 

primary driving force for protein folding is the movement of hydrophobic residues away 

from the aqueous solvent and reduction in solvent accessible area. On the other hand, 

folding of a nascent protein in vivo is a different story (Garrett and Grisham, 2005). The 

proteins in the cell can be so crowded that new proteins can aggregate due to the 

interaction between their hydrophobic patches (van den Berg et al., 1999). In order to 

solve this problem, new proteins are assisted in folding by proteins called molecular 

chaperones and chaperonin (Martin and Hart, 1997). Chaperones such as heat shock 

proteins (Hsp) bind to the hydrophobic segments of proteins and release them as each 
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segment is ready to participate in folding. The main Hsp chaperones are HsplO, Hsp40 

(DnaJ in Escherichia coli), Hsp60, Hsp70 (DnaK in E. coli) and Hsp90 (HtpG in 

prokaryotes). In eukaryotes, a protein after release from ribosomes can interact with 

Hsp70, and then Hsp60 to complete the folding process. GroEL is an example of 

chaperonin in E. coli (Garrett and Grisham, 2005; Kampinga et al., 2009) and GroES is a 

co-chaperonin. In E. coli, nascent proteins fold in the cylindrical cavity of the GroES-

GroEL chaperonin complex. The cylindrical cavity protects the protein from the crowded 

environment of the cytoplasm (Scopes and Truscott, 1998; Garrett and Grisham, 2005). 

In eukaryotes, prefoldin, which serves as a co-chaperone, binds unfolded chains emerging 

from the ribosomes and delivers them to the chaperonin, TricC (Garrett and Grisham, 

2005). 

MISFOLDING CAUSES DISEASE 

The misfolding of a protein is often associated with its assembly into fibrillar 

aggregates, commonly termed amyloid fibrils (Bellotti and Chiti, 2008). Amyloid fibrils 

are insoluble aggregates, which form when proteins polymerize to form a P-sheet 

structure (Chiti and Dobson, 2006; Bellotti and Chiti, 2008; Maji et al., 2009). Figure 3 is 

an illustration of how a native protein forms amyloid fibrils. A partially unfolded protein 

can form misfolded monomers. The misfolded monomers oligomerize to form a 

precursor species known as protofibrils which mature into fibrils. Accumulation of 

amyloid fibrils may lead to various neurodegenerative and other kinds of diseases. 

Human disease associated with the formation of extracellular amyloid fibrils or 

intracellular inclusions with amyloid-like characteristics include thirteen 
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neurodegenerative diseases, thirteen nonneuropathic systemic amyloidoses and fourteen 

nonneuropathic localized diseases (Chiti and Dobson, 2006). 

Protein aggregation 

Misfolding 

^ J ^ ^ ^ C h a p e r o n e activity '-- * 

Native protein Misfolded monomers 

Oligomerization 

Oligomers, 
protofibrils 

Fibrils 

Figure 3. Model for protein misfolding and fibrillization (adapted from Skovronsky 

et al., 2006) 

Soluble native protein is misfolded and associates in the form of oligomers and 

protofibrils that eventually lead to fibrils. 

Neurodegenerative diseases associated with fibrils include Alzheimer's, 

Huntington's and Parkinson's. Alzheimer's disease is caused by accumulation of P-

amyloid (1-42 aa) and tau protein aggregations in the brain (Hashimoto et al., 2003). P-

amyloid is a fragment hydrolyzed from a larger integral membrane protein called amyloid 

precursor protein (Hooper, 2005). One fragment (1-42 aa) aggregates to form ordered 

insoluble fibrils consisting of P-sheets (Ohnishi and Takano, 2004). Huntington's disease 

is caused by a tri-nucleotide (CAG) repeat in a gene, making it exceed a normal length 

(Walker, 2007). The CAG sequence (coding for the glutamine) repeats in Huntingtin 

protein results in a chain of glutamines (Walker, 2007). A sequence of forty or more 



18 

glutamines in the protein causes it to aggregate and form amyloid fibrils (Walker, 2007). 

Parkinson's disease is thought to be caused by an abnormal accumulation and fibril-

formation of a-synuclein in the brain (Galpern and Lang, 2006). However, Voiles and 

Lansbury (2003) propose that and toxicity is caused by the pore-like protofibrils, which 

lead to membrane permeabilization, rather than the amyloid fibril, fibrillar aggregates, 

Lewy bodies and the a-synuclein monomer. Bovine spongiform encephalopathy, also 

known as mad cow disease and humans Creutzfeldt-Jakob disease, is believed to be 

caused by misfolded prion protein (Prusiner, 1998). PrP is a normal protein found on the 

cells membranes. PrPSc, the infectious isoform of PrP, can change conformation of 

normal PrP proteins into the infectious isoform. 

Nonneurodegenative diseases include cystic fibrosis and type 2 diabetes. Mutation 

in the gene encoding cystic fibrosis transmembrane chloride channel causes cystic 

fibrosis. The most common mutation is AF508, a deletion of three nucleotides that results 

in a loss of phenylalanines 08 on the protein. Absence of phenylalanines 08 causes the 

protein to misfold (Cyr, 2005). The folding intermediate remains attached to the 

chaperone and is not inserted into the membrane (Kopito, 1999). Type 2 diabetes is 

caused by amylin amyloid fibrils in the pancreas (Jaikaran and Clark, 2001). 

Haemodialysis-associated amyloidosis is caused by amyloid fibrils of P2 microglobulin, a 

normal serum protein in the blood (Miyata et al., 1993). The mutation of p53, a key 

check-point protein in the cell cycle regulation results in its misfolding. The proteasome 

system removes the misfolded p53. The reduced concentration of p53 fails to arrest the 

cell cycle in the event of improper DNA replication (Garrett and Grisham, 2005). The 

above examples show that mutation and/or failure of assistance by chaperones lead to 
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protein misfolding and fibril formation, resulting in diseases. External factors may also 

play a role in amyloid fibrils formatin such as metals and other environmental agents 

(Alexandrescu, 2005). 

THE FAS-ASSOCIATED DEATH DOMAIN AND THE DEATH DOMAIN 

SUPERFAMILY 

The death domain superfamily fold consists of six a-helices arranged in a Greek-

key topology. This topology is shared with members of two other superfamilies, which 

are the all p-sheet immunoglobulins and the mixed a/p-plaits (Higman and Greene, 

2006). Extensive experimental studies have been conducted on these two superfamilies, 

but no studies have been conducted on the death domain superfamily members. Thus they 

are ideal for investigating the determinants of the common topology. The death domain 

superfamily is comprised of four families: death domain (DD), death effector domain 

(DED), caspase recruitment domain (CARD) and pyrin domain (PYD). They function in 

either intracellular signal transduction of apoptosis (DD, DED and CARD), or innate 

inflammation (PYD) (Park et al., 2007). The Fas-associated death domain (Fadd) consists 

of an N-terminal DED and a C-terminal DD (Fadd-DD) consisting of one-hundred 

residues (Berglund et al., 2000; Carrington et al., 2006). Fadd-DD was selected as our 

model DD protein system because its NMR structure has been solved, the protein is 

monomeric and the protocols to express and purify the protein are already established 

(Berglund et al., 2000). 

The role of Fadd-DD in the apoptosis is presented in Figure 4. The Fas ligand, an 

intrinsic membrane protein, is present on the surfaces of cytotoxic T lymphocytes, which 

remove the virally infected cells (Pollard and Earnshaw, 2004). The Fas ligand associates 
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with the extracellular binding domain of Fas on the target cell and initiates the apoptotic 

pathway (Ashkenazi and Dixit, 1998). Intracellular DD of Fas binds with the DD of Fas-

associated protein. The DED of Fas-associated protein binds with DED of procaspase 8. 

Procaspase 8 activates itself proteolytically and activates downstream effector caspases. 

Fas ligand 

Fas 

J O U L Membrane 

Fadd 

Caspase 8 

if 
Effector caspases 

Apoptosis 

Figure 4. The role of Fadd-DD in the apoptotic signaling (adapted from Ashkenazi 

and Dixit, 1998) 

Fadd: Fas-associated death domain; DD: death domain; DED: death effector domain. 
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CHAPTER II 

MATERIALS AND METHODS 

MATERIALS 

All chemicals were high quality reagents. Ultra pure 8 M Guanidine-HCl solution 

(GndHCl) was purchased from Pierce (Rockford, IL), dithiothreitol (DTT), carbenicillin 

and Isopropyl P-D-1-thiogalactopyranoside (IPTG) from Fisher (Waltham, MA) or VWR 

(Suwanee, GA), Bis-Tris from Acros Organics (Morris Plains, NJ) and Sephadex G-75 

superfine resin from Sigma (St. Louis, MO). All buffers were filtered through either a 

0.45 or 0.22 um filter (Pall Corporation, Ann Arbor, MI). T7 promoter and T7 terminator 

primers, Pfu DNA polymerase, Phi-X174/Hae III Marker, E. coli BL21(DE3), dNTP 

mix, 2 X PCR mastermix and XL 1-blue supercompetent cells were from Stratagene (La 

Jolla, CA). Qiaquick gel extraction kit and Qiagen plasmid mini Kit were from Qiagen 

(Valencia, CA). pET-14b vector was from EMD Chemicals (San Diego, CA). Nde I, Xho 

I, BamR I and NEB 5-alpha FTq competent E. coli were from New England Biolabs 

(Ipswich, MA). NuPAGE Novex 4-12% Bis-Tris Mini Gels were from Invitrogen 

(Carlsbad, CA). Ni-NTA His bind resin and Ni-NTA Buffer Kit were from Novagen (San 

Diego, CA). 

The 15N labeled-ammonium chloride and 99.0% deuterium oxide were purchased 

from Cambridge Isotope (Andover, MA). 2-(JV-morpholino) ethanesulfonic acid (MES), 

glycine and citric acid were purchased from Fisher. Dipotassium phosphate was 

purchased from VWR. Deuterated GndHCl, DTT, citric acid and K2HPO4 were prepared 
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by dissolving the chemicals into D2O and lyophilizing. This procedure was repeated three 

times. The concentration of GndHCl used in the experiments was determined with an 

Atago hand-held refractometer (Tokyo, Japan). 

Protein purification was conducted on a Perceptive Biosystems BioCAD Sprint 

(GMI, Ramsey, MN). Mutagenesis was conducted with the Stratagene QuickChange II 

site-directed mutagenesis kit. DNA sequencing was conducted by Nucleic Acids 

Research Facility (Virginia Commonwealth University, Richmond, VA). Mass 

spectroscopy was conducted by the COSMIC facility (Old Dominion University, 

Norfolk, VA). 

METHODS FOR THE BIOINFORMATICS STUDY OF FADD-DD 

The death domain superfamily is a large superfamily with different functions, 

divergent sequences and members with known structures. A bioinformatics analysis to 

identify conserved residues has not been conducted. This analysis is a necessary 

prerequisite for structure, stability and folding studies to test the role of conserved 

residues in structure and folding. 

Construction of a Superfamily Sequence Alignment 

A multiple sequence alignment is an alignment of three or more protein 

sequences. Generally the input sequences have an evolutionary relationship by sharing a 

lineage and descending from a common ancestor. A diverse multiple sequence alignment 

was created in order to enhance sequence variability and in this way, only the conserved 

residues for structure and folding could be identified. PSI-BLAST (Altschul et al., 1990) 

was used to search for divergent (< 25%> sequence identity) members of the death domain 

superfamily. Four proteins served as query sequences when conducting PSI-BLAST 
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search: human Fadd-DD (PDB code: 1E3Y), human Fadd-DED (PDB code: 1A1W), 

human Apaf-1-CARD (PDB code: 1CY5) and human ASC-PYD (PDB code: 1UCP). 

They were selected for the following reasons: the three-dimensional structures are 

resolved, they are functionally diverse and they represent the four families within the 

superfamily. The multiple sequence alignment was created using the program Muscle -

multiple protein sequence alignment program (Edgar, 2004) in the software Jalview 

(Clamp et al., 2004). Modifications were made by hand based on the comparison of the 

side-chain orientation in the four aligned protein structures generated with the online CE-

MC-Multiple Protein Structure Alignment Server (Guda et al., 2004). Modifications by 

hand are necessary to make sure the side chains of the four structures have similar 

orientation and all sequences without solved structures can be aligned properly because 

computer algorithms are not perfect. Structures were analyzed using Insight II, version 

2005 (Accelrys, San Diego, CA) running on a SUN workstation with Linux. 

Calculation of Conservation and Hydropathy 

The number of each residue type in each position of the superfamily sequence 

alignment was calculated using a program written in Perl script. The entropy value was 

calculated by the following equation: 

m 

s(0 = £ - {PKOHPKOmi = 1.2 20) 
i = i 

Pj(i) is the fractional occurrence of amino acid typey at each site i; and m is the 

number of amino acid types used in the particular analysis (Sander and Schneider, 1991). 

Since twenty sequences were incorporated, i ranges from 1 to 20. Conservation was 

calculated by the following equation: C(i) = 1 - S(i) I ln(/w) (Greene et al., 2003). The 

positions with conservation values greater than 0.45 are considered to be highly 



24 

conserved; the positions with conversation values between 0.35 and 0.45 are considered 

to be moderately conserved; and the positions with conservation values lower than 0.35 

are considered to be less conserved. The positions which have more than one gap are 

considered non-conserved and therefore have a value of zero. Persistent hydropathy is 

calculated by the following equation: hydropathy = sum of the number of each amino 

acid * hydrophobicity of that amino acid. The hydrophobicity scale is adapted from 

Nozaki and Tanford scale (Nozaki and Tanford, 1971). The resultant data were analyzed 

using SigmaPlot (Ver. 10, SYSTAT Software). 

The Long-range Interaction Network within the Fadd-DD 

A contact file listing all atom contacts within each structure was generated with 

the Contact program (Collaborative Computational Project, 1994). Programs written in 

Perl script were used to calculate the conserved long-range interaction network from the 

contact files. The focus is on long-range interactions which are defined as pair-wise 

contacts between residues that are ten or more amino acids apart in the primary structure 

but within 6 A in the three-dimensional structure (Greene and Higman, 2003). 

Interactions are considered between all atoms except hydrogens. 

METHODS FOR THE EXPERIMENTAL STUDY OF FADD-DD 

The experimental procedures are summarized in Figure 5. The recombinant DNA 

was obtained after the Fadd-DD gene was amplified and cloned into an expression vector. 

Fadd-DD protein was expressed and purified and biophysical studies were conducted. 
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Figure 5. The flow chart showing the experimental procedures 



Cloning 

Plasmid is a circular double-stranded DNA and separate from the chromosomal 

DNA. Since a plasmid can replicate independently of the chromosomal DNA, it is 

commonly used as a vector to multiply and express a particular gene in bacteria. 

Complementary DNA (cDNA) is the DNA sequence synthesized from a mature mRNA 

template under the catalysis of the reverse transcriptase and DNA polymerase. The paper 

containing the plasmid with Fadd-DD as cDNA was kindly supplied by Dr. Paul Driscoll, 

University of College London (London, UK). The plasmid was contained within two 

concentric circles. The small inner circle and the big outer circle of paper containing the 

plasmid was cut and immersed in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). 

They were preserved at -20°C overnight, followed by incubation at 42°C for fifteen 

minutes and vortexed to get most of the DNA sample into the solution. Since 

transformation of the plasmid into the expression cells did not generate the recombinant 

bacteria probably due to inadequate amount of plasmid, molecular biology methods were 

used to obtain the cDNA. 

The polymerase chain reaction (PCR) is a technique used to amplify a single or a 

few copies of DNA and generate a large amount of copies of a particular DNA sequence 

in vitro. Forward and reverse primers are DNA oligomers, which serve as starting points 

for DNA synthesis. PCR was used to amplify the regions between T7 promoter and T7 

terminator on the cloning/expression region of pET-14b vector with Eppendorf 

Mastercycler (Eppendorf, NY) (see Figure Al). The vector harbors the gene encoding P-

lactamase which is resistant against ampicillin, therefore E. coli transformed with the 

vector can grow on the media with ampicillin. PCR reactions were set up according to 
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Table Al and the temperatures and cycles were set up as Table A2. The Tm of the two 

primers were calculated according to the equation: Tm = 64.9°C + 41°C X (number of G's 

and C's in the primer - 16.4)/N (http://www.promega.com/biomath/calcl 1.htm). Both T7 

promoter primer and T7 terminator primer bind to the specific regions of the plasmid. 

The initial set up stage was increased to 2.5 minutes as Hot-start PCR to reduce non­

specific amplification. Pfu DNA polymerase from the hyperthermophilic archaeon 

Pyrococcus furiosus was used to generate fragments which have fewer errors than those 

generated by Taq DNA polymerase from the thermophilic bacterium Thermus aquaticus. 

The PCR product was isolated by the agarose gel electrophoresis. After a 1.5%> of 

agarose gel with 50 ng/ml of ethidium bromide was polymerized, it was immersed in 1 X 

Tris/borate/EDTA (TBE) buffer (pH 8.0). Voltage for electrophoresis was set to 100 V 

and time was set to 30-40 minutes. Loading dye (0.4% orange G, 0.03% bromophenol 

blue and 0.03% xylene cyanol FF) was used to track the movement of the samples. Phi-

X174/Hae III Marker or ladder (100-1000 bp) was used to calculate the approximate 

molecular weight of cDNA. After electrophoresis, the DNA in the gel was illuminated 

with a UV lamp. Part of the gel which contained cDNA was cut and purified with 

Qiaquick gel extraction kit. cDNA samples were sent to Dr. Wayne Hynes's group 

(Department of Biological Sciences, ODU, Norfolk, VA) and Nucleic Acid Research 

Facility (VCU, Richmond, VA) for sequencing. 

The cDNA encoding Fadd-DD was cloned into pET-14b plasmid. Two of three 

restriction sites for cloning (Nde I, Xho I and BamH I) are commonly used for the 

insertion of any cDNA clone. Figure A2 shows the sequences of three cloning sites. 

Three restriction enzymes Nde I and Xho I, and Nde I and BamH I were used to cut the 

http://www.promega.com/biomath/calcl
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cDNA and pET-14b plasmid (Table A3). The digestion protocol is presented in Table 

A4. The addition of bovine serum albumin (BSA) helps reduce the loss of restriction 

enzymes on tube and pipette tip surfaces and stabilize the enzymes according to the 

website of New England Biolabs. Sequential digestion was performed in order to get a 

good yield. The plasmid and cDNA were first cut with Nde I, and then cut with BamH I 

or Xho I. Digestion products were run on the agarose gel and then purified with gel 

extract kit as mentioned previously. One cDNA cut by Nde I and Xho I and another 

cDNA cut by Nde I and BamH I were inserted into the corresponding cut plasmid, 

resulting in the recombinant plasmid. Inserts were made one fourth dilution to get the 

correct ratio with the plasmid (Table A5). 

Transformation is the process during which a competent bacterial cell takes up an 

exogenous DNA, particularly a plasmid, from its environment. Transformation was 

performed according to the protocol of NEB 5-alpha FTq competent E. coli. 3 ul of 

recombinant DNA was transformed into 50 ul of competent cell. Cells were heat shocked 

at 42°C for 30 seconds. 200 ul of reaction solution was added to LB medium containing 

200 ug/ml of ampicillin. After drying at room temperature, plates were incubated upside 

down at 37°C overnight. 

Colonies containing the recombinant plasmid grew on the plates because the 

plasmid conferred ampicillin-resistance. Twelve colonies were picked up and inoculated 

into 50 ml falcon tubes containing 5 ml LB with 100 ug/ml of ampicillin (six from "Xho" 

and six from "Bam"). The culture was incubated at 37°C and shaking at 200 rpm 

overnight. 3 ml of overnight LB culture was centrifuged at 13,000 rpm for 15 minutes. 

The resultant pellet was dried for 15 minutes and dissolved in 50 ul of ddH20. Plasmid 
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extraction was conducted with the protocol of Qiagen plasmid mini Kit. To verify if the 

cDNA is present in the recombinant plasmid, 10 ul of plasmid was cut with 2 ul of Nde I 

and 2 ul of Xho I in 0.4 ul of BSA, 4 ul of buffer 4 and 22 ul of water. Mixture was 

incubated at 37°C for one hour. 

Bacterial strains from colony 1 from "Xho" and colony 7 from "Bam" were 

inoculated into two flasks and incubated overnight at 37°C. After plasmid extraction, one 

of the plasmid from "Xho" with the highest concentration of 285 ng/ul and one from 

"Bam" with the highest concentration of 214 ng/ul were sent for sequencing. The result 

showed that the cDNA encoding Fadd-DD was subcloned into pET-14b. 

Protein Expression 

The small-scale expression of Fadd-DD WT was performed to find out the best 

experimental conditions. 1 ul of recombinant plasmid was transformed into 100 ul of 

expression cell E. coli BL21(DE3). Pasmid pUC18 (Stratagene) was also transformed 

into the cell as a control. After growing overnight at 37°C, one single colony was picked 

up and inoculated into 5 ml of Luria-Bertani (LB) broth in a falcon tube, which was 

incubated overnight at 37°C. Bacteria containing pUC18 was used as a negative control. 

50 ul of culture was transferred into 50 ml of LB broth containing ampicillin (200 ug/ml) 

and incubated at 37°C. Following the first four hours, the optical density (O.D.) value at 

600 nm was measured in the Cary 50 UV-Vis spectrophotometer (Varian, Palo Alto, CA) 

every hour until the value reached around 0.8. The O.D.600 reached 0.8 at 7.8 hours. At 

this point, 100 ul of 100 mg/ml of ampicillin was added to the medium. Additionally, 20 

ul of 1 M IPTG as an inducing agent was added to one culture while another was kept 

free of IPTG. 
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The O.D.600 of 1 ml of bacteria culture was measured sixteen hours later after 

being induced with IPTG. The O.D.600 of all three cultures (with IPTG, without IPTG and 

pUC control) were adjusted to be approximately 1.5. 1 ml of culture was centrifuged at 

120,000 rpm for 5 minutes to harvest the cell. After the supernatant was decanted, the cell 

pellet was redissolved in 40 ul of 1 X sample buffer (100 ul of 4 X sample buffer, 300 ul 

of water and 20 ul of p-ME as a reducing agent). The mixture was heated at 74°C for ten 

minutes to lyse the cell. The solution was then filtered through syringe several times to 

shear the sticky DNA. 10 ul more of sample buffer was used to wash out the remaining 

solution in the syringe. 

Protein gel electrophoresis 4 X sample buffer, Coomassie brilliant blue staining 

buffer and destaining buffer were made according to the protocol from Invitrogen. 15 ul 

of samples and marker (Invitrogen) were loaded to NuPAGE No vex 4-12% Bis-Tris Mini 

Gels. Gel electrophoresis was performed at the voltage of 200 V for 45 minutes. The gel 

was agitated in the staining buffer for three hours on the rotator, and then in the 

destaining buffer overnight. 

The protocol to express the protein was based on that of Berglund et al. (2000) 

with some variations to accommodate the difference in equipment in our lab such as 

column sizes. One single colony was inoculated into one 50 ml broth containing 

carbenicillin (200 ug/ml) in flask and cultivated at 37°C for overnight. 1 ml of bacterial 

culture was inoculated into each of twelve 500 ml LB media in 2 L baffled flask and 

cultivated at 37°C. The O.D. value was measured at 600 nm every hour after inoculation. 

After the O.D. value reached 0.8, carbenicillin and IPTG was added so that the final 

concentration is 200 ug/ml and 0.4 mM, respectively. The culture was continually 
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cultivated at 25°C for sixteen more hours and then the media was centrifuged in 500 ml 

bottles at 7,000 rpm for thirty minutes. The cell pellet was harvested and combined into 

one bottle and the supernatant was removed. The cell pellet was resuspended into 50 ml 

Tris buffer (pH 8.0) containing 50 mM Tris base, 300 mM NaCl and 5 mM P-

mercaptoethanol (P-ME). The suspension was frozen at -80°C to help lyse the cell. After 

the cells were thawed, the suspension was sonicated every four seconds per one minute 

for four hours with amplitude of 0.38 at 20°C with ultrasonic processor (Sonics & 

Materials, Newton, CT). The cell lysate was spun at 11,000 rpm for one hour and without 

inclusion bodies which are white sandy percipitants, indicating the protein was produced 

as a soluable form. 

Protein Purification 

The established protocols to purify the protein were based on previous publication 

(Berglund et al., 2000). pET-14b vector can express a protein with an N-terminal His-tag. 

9+ 

Since the nickel-nitrilotriacetic acid (Ni-NTA) resin contains Ni immobilized on a 

matrix and binds the His-tag, the resin can be used in an affinity column. An Ni-NTA 

column (1.5 cm X 30 cm) was loaded with Ni-NTA His bind resin with the column 

volume of 37 ml. Affinity chromatography was controlled by Perceptive BioSystems 

BioCAD spring biomolecule purification chromatography systems with double 

wavelengths of 280 nm and 320 nm. The resin was washed with binding buffer in Ni-

NTA Buffer Kit. The lysed cells were loaded onto the Ni-NTA column. After the sample 

was completely loaded, the column was washed with binding buffer (pH 8.0) containing 

50 mM Tris base, 300 mM NaCl and 5 mM p-ME and then washing buffer (pH 8.0) 

containing 50 mM Tris base, 300 mM NaCl, 5 mM P-ME and 20 mM of imidazole 
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respectively. After the O.D.280 became steady, the column was eluted with gradient 

mixture of washing buffer and elution buffer (pH 8.0) containing 50 mM Tris base, 300 

mM NaCl, 5 mM p-ME and 250 mM of imidazole from 100:0 to 0:100. His-tag Fadd-DD 

began to elute with 150 mM of imidazole with the peak showing up with 200 mM of 

imidazole. Afterwards, the column was washed with pure elution buffer until O.D.280 

became steady. 

Fractions containing His-tag Fadd-DD were collected into Standard Grade RC 

Membranes: Spectra/Por® 3 with MWCO of 3,500 Da (Spectrum Labs, Rancho 

Dominguez, CA). In order to remove the imidazole, the protein solution was dialyzed 

against 4 L buffer (pH 8.4) containing 20 mM Tris-HCl, 150 mM NaCl and 5 mM p-ME 

overnight at 4°C. The protein solution was concentrated with Vivaspin-20 tubes which 

have Polyethersulfone Membrane with MWCO of 3,000 Da (Sartorius Stedim Biotech 

S.A., Aubagne, France). The Vivaspin tubes were centrifuged at 8,000 rpm for 30 

minutes in Hettich ROTANTA 460 Tabletop Centrifuge (GMI, Inc., Ramsey, MN). 

In order to remove the His-tag, 50 units of thrombin were added to the protein 

solution and the mixture was incubated at 4°C overnight. SDS-PAGE was run on the 

protein solution to determine successful thrombin cut. The protein solution was loaded 

onto Ni-NTA column again in order to separate Fadd-DD and His-tag Fadd-DD. 

Washing and elution were the same as previously described in the first Ni-NTA column 

separation. Fractions containing Fadd-DD are collected. Fractions containing His-tag 

Fadd-DD was also collected for further digestion. Protein concentration was measured at 

280 nm in Cary 50 UV-Vis spectrophotometer. 



33 

For the gel filtration column, 37 g of Sephadex G-50 or G-75 (Sigma-Aldrich, St 

Louis, MO) was dissolved in 371 ml of H2O. The resin was allowed to hydrate and swell 

overnight. It was then poured into the gel filtration column (5 cm X 70 cm, Uppsala, 

Sweden) and allowed to settle overnight. The column was equilibrated with phosphate 

buffer (50 mM phosphate buffer, 150 mM NaCl, 1 mM DTT, pH 6.2). Protein sample 

was concentrated and loaded to the column through 5 ml of the PEEK Sample Loops 

(Upchurch Scientific Inc., Oak Harbor, WA). The protein absorbance peak was noticed 

after approximately 170 ml of buffer elution. Following purification approximately 

50 mg of protein per liter of culture was obtained. 

The Fadd-DD sample was sent to COSMIC (College of Sciences Major 

Instrumentation Cluster, ODU) for determination of molecular weight using the 

instrument of Bruker Apex-Qe, a hybrid Qh-FTICR-MS with an extended high 

performance actively shielded 12 Tesla magnet. The predicted average molecular mass of 

Fadd-DD is 11852.32139 Da according to Protein Calculator v3.3 

(http://www.scripps.edu/cgi-bin/cdputnam/protcalc3), then (M+H)+= 11853.32825 u. 

Site-directed Mutagenesis 

Both forward and reverse primers for seven mutations were designed according to 

the website provided by Stratagene: http://www.stratagene.com/sdmdesigner/default.aspx 

(Table A6). The primers were ordered from Invitrogen. The primers were dissolved in 

autoclaved distilled water and diluted to ideal concentrations of 100 ng/ul. 

The PCR reactions were designed according to the QuikChange® Site-Directed 

Mutagenesis Kit provided by Stratagene. 50 ul PCR solutions consisted of the following 

components: 5 ul of 10 X reaction buffer (Stratagene), 1 ul of 100 ng/ul plasmid template 

http://www.scripps.edu/cgi-bin/cdputnam/protcalc3
http://www.stratagene.com/sdmdesigner/default.aspx


encoding Fadd-DD, 1 ul forward primer, 1 ul reverse primer, 1 ul dNTP mix, 41 ul 

distilled water and 1 ul of 2.5 \JI\i\pfuTurbo DNA polymerase. Alternative, reaction 

buffer, dNTP mix andpfuTurbo DNA polymerase were substituted by 25 ul of 2 X PCR 

mastermix. 2 ul of 5 ng/ul pWhitescript control plasmid (Stratagene) was used as control. 

Cycling parameters for the Quikchange site-directed mutagenesis method are as follows: 

95°C for 30 sec, 95°C for 30 sec, 55°C for 1 min, 68°C for 4 min (cycles for 16 times). 

Following temperature cycling, the reaction was cooled to 4°C. 1 ul of the Dpn I 

restriction enzyme (10 U/ul) was added to the mixture, which was incubated in water 

bath at 37°C for one hour. The enzyme can specifically digest the parental non-mutated 

supercoiled dsDNA. 

The transformation protocol with XLl-blue supercompetent cells was similar to 

that with E. coli BL21(DE3). 50 ul XLl-blue supercompetent cells were mixed with 1 ul 

Dpn I-treated DNA from sample reaction and control. To verify the transformation 

efficiency, 1 ul of pUC18 control plasmid (0.1 ng/ul) was mixed with the competent 

cells. After the heat pulse, 0.5 ml of NZY+ broth which was preheated to 42°C was added 

to the mixture. 100 ul of 10 mM IPTG (in water) and 100 ul of 2% X-gal (dissolved in 

dimethylformamide) were spread on the LB agar with 100 ug/ml carbenicillin. For 

pWhitescript mutagenesis control, 250 ul of the mixture was plated on the LB agar; for 

pUC18 transformation control, 5 ul was plated; for sample mutagenesis, 250 ul was 

plated. All the plates were incubated at 37°C overnight. Blue cells of pWhitescript control 

grew up on the plates the next day. Two colonies from each mutagenesis reaction for 

Trpl 12Phe were selected and inoculated into LB broth with 200 ug/ml carbenicillin, 

which were incubated at 37°C overnight. 

file:///JI/i/pfuTurbo
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The plasmid was extracted according to the protocol of Strataprep Plasmid 

Miniprep Kit. The DNA solutions were washed with 55 ul of distilled water and the 

concentrations and purities were checked with Biophotometer with O.D. values at 260 

nm and 280 nm. The DNA samples were sent to Nucleic Acid Research Facilities in 

VCU for sequencing. 

Selection and Purification of Variants 

The proteins for the experimental study are summarized in Table 1. In order to 

produce variants for folding while minimizing the effect of significant change to the side 

chain, two tryptophans were mutated to phenylalanines and Leul 15 and Vall21 were 

mutated to alanine. As a control, Hisl60Gly was synthesized since His 160 in human 

Fadd-DD aligns with Glyl60 in murine homologue. Moreover, in order to produce 

variants with greater ellipticity in the near-UV region, two more variants are designed to 

introduce an exposed or partially exposed tryptophan residue to the protein, since the 

near-UV CD signal is largely caused by the asymmetric environment of aromatic residues 

in the protein (Kelly et al., 2005). Leul 72 is an exposed residue even though it is 

hydrophobic by its physico-chemical property. Vail58 is a partially exposed residue. To 

replace these two residues with tryptophans will not cause significant change to their 

microenvironments. 
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Table 1. Expression of Fadd-DD and variants used in experimental studies 

Protein/variant Property Expressed location 

WT 

Trpl 12 

Trpl 48 

Hisl60 

Trpl 12/His 160 

Leul15 

Vall21 

Leul72 

Vail 58 

Phe 

Phe 

Gly 

Phe/Gly 

Ala 

Ala 

Trp 

Tip 

Conserved 

Conserved 

Non-conserved 

Conserved 

Conserved 

Conserved 

Conserved (hyd 

Non-conserved 

Cytoplasm 

Cytoplasm 

Inclusion bodies 

Cytoplasm 

Cytoplasm 

Inclusion bodies 

Inclusion bodies 

Cytoplasm 

Cytoplasm 

The Trpl 12Phe, Hisl60Gly and Trpl 12Phe/Hisl60Gly recombinant proteins 

were expressed and purified in the same manner as the WT Fadd-DD. It should be noted 

that the yields of soluble Trpl 12Phe protein was substantially decreased in comparison to 

the WT Fadd-DD and Hisl60Gly variant. The Trpl48Phe variant however, was so 

significantly destabilized that instead of soluble expressed protein, this variant formed 

inclusion bodies within the bacteria. Purification therefore was initially done under 

denaturing conditions and refolding in vitro yielded large amounts of precipitated protein. 

Variations to the refolding buffer were tried in order to optimize the system for recovery 

of some native-like protein and found to be 20 mM Tris-HCl, pH 8.0, 150 mM NaCl and 

2 mM DTT at 4°C. 

Leul 15Ala and Vall21 Ala variants are very unstable and exist as inclusion 

bodies, similar to the Trpl48Phe variant. These two variants were purified in the similar 

manner as the Trpl48Phe variant (Li et al., 2009). Leul72Trp and Vall58Trp are stable 



and exist in the cytoplasm, similar to the WT. These two variants were purified in the 

similar manner as the WT (Li et al., 2009). 

Protein Isotope-labeling 

Recombinant human Fadd-DD (11.8 kD) uniformly labeled with 15N was purified 

from a six liter fermentation of E. coli BL21(DE3) (Novagen, NJ). The cells were grown 

at 37°C on M9 minimal medium supplemented with 1 g/115NH4C1, 0.2 mg/ml 

carbenicillin and 1 ml/1 poly-Vi-Sol vitamin drops with iron (Mead-Johnson, Evansville, 

IN). The protein was purified according to the previously described protocols. The yield 

was approximately 15 mg/liter. The protein was lyophilized in preparation for 

denaturation and refolding in the quenched-flow studies. 

Equilibrium Unfolding and Refolding Monitored by Fluorescence Spectroscopy 

Fluorescence emission spectra were obtained with a Cary Eclipse fluorescence 

spectrophotometer (Varian, Palo Alto, CA). 0.05 mg/ml (4 uM) of WT Fadd-DD and all 

variants were excited at 295 nm and emission spectra were measured from 310 to 

450 nm. Scans were repeated six to eight times at 20°C and averaged. The excitation and 

emission slits were set at 5 nm and 10 nm, respectively for the WT protein and 

Hisl60Gly variant; 10 nm for Trpl 12Phe and Trpl 12Phe/Hisl60Gly variants; and 20 nm 

for Trpl48Phe variant. The path-length of the fluorescence cuvette was 1 cm. All the 

samples were in 20 mM Bis-Tris buffer (pH 6.2) with 2 mM DTT to keep the three free 

cysteines reduced except for Trpl48Phe which was in Tris-HCl buffer (pH 8.0) and 

2 mM DTT. 

For the equilibrium unfolding process, WT Fadd-DD and variants were diluted to 

0.05 mg/ml in increasing amounts of GndHCl buffer from 0 M to 6 M. For the refolding 
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titration, protein was denatured in 6 M GndHCl in buffer for 3 h. The protein was 

subsequently refolded by dilution to 0.05 mg/ml into decreasing concentrations of 

GndHCl from 6 M to 0 M. The samples were incubated at room temperature overnight. 

The fluorescence spectra of the samples were determined with emission monitored from 

329 to 371 nm for the WT, Trpl 12Phe, Trpl48Phe and Trpl 12Phe/Hisl60Gly variants 

and from 320 to 380 nm for the Hisl60Gly variant. The ratios of emission intensities of 

370 over 330 were used for data analysis for all proteins. Fraction unfolded values were 

calculated using the method of Pace et al. (1989) and the curves were fitted using 

SigmaPlot. 

Circular Dichroism and Equilibrium Unfolding 

CD spectra were obtained with the Fast modular polarimeter (MOS-450) (Bio­

logic, France). The protein concentrations for far-UV and near-UV CD were 0.2-

0.25 mg/ml (16-21 uM) and 0.5-0.6 mg/ml (42-50 uM), respectively. Scans were 

repeated six to twenty-four times at 20°C and averaged. The slits were both set at 1 mm. 

The cuvette path-lengths for far-UV and near-UV CD were 1 mm and 1 cm, respectively. 

All the samples were in 20 mM Bis-Tris buffer (pH 6.2) with 2 mM DTT with the 

exception of the Trpl48Phe variant which was in 20 mM Tris-HCl, pH 8.0, 150 mM 

NaCl and 2 mM DTT. 

For the unfolding titration, WT Fadd-DD, Trpl 12Phe, Hisl60Gly and 

Trpl 12Phe/Hisl60Gly variants were diluted to 0.2 mg/ml in increasing amounts of 

GndHCl in buffer from 0 M to 6 M. The samples were incubated at room temperature 

overnight. The far-UV CD spectra of the samples were monitored with excitation from 
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221 to 223 nm. The ellipticity at 222 nm was used for data analysis. Fraction unfolded 

values were calculated and the curve was fitted using SigmaPlot. 

Stopped-flow Fluorescence Studies 

The folding of WT Fadd-DD, Trpl 12Phe and Hisl60Gly variants were 

characterized by stopped-flow fluorescence with a SFM-400 (Bio-Logic, France). Native 

protein was denatured at 0.12 mg/ml to 0.3 mg/ml in 6 M GndHCl, 20 mM Bis-Tris 

buffer (pH 6.2) and 2 mM DTT at room temperature for 3 h or overnight. Refolding was 

initiated by five-fold dilution into 20 mM Bis-Tris buffer (pH 6.2) and 2 mM DTT at 

20°C. The dead time was 8.6 ms. Changes in fluorescence intensity was monitored in an 

FC-15 cuvette (1.5 mm of path-length) with excitation at 295 nm and emission from 300-

340 nm using a bandpass filter (Semrock, Rochester, N.Y.) selected for optimal signal for 

the WT Fadd-DD and the Hisl60Gly variant. For the Trpl 12Phe variant another 

bandpass filter was selected (362-396 nm) to obtain the optimal signal. The excitation 

and emission slits were both 1 mm for WT Fadd-DD and 2 mm for the variants. The 

refolding experiments were repeated four to sixteen times and the averaged traces were 

fit to a double exponential equation in SigmaPlot for WT Fadd-DD and the Hisl60Gly 

variant. For the Trpl 12Phe variant the trace was best fit to a triple exponential equation. 

The time course for all proteins was monitored up to 10 s. 

The unfolding process was initiated with a 1:5 dilution at 20°C. Unfolding of 

native WT protein at 0.12 mg/ml in 20 mM Bis-Tris buffer (pH 6.2), 2 mM DTT and 1 M 

GndHCl was mixed with buffer with 7 M GndHCl and monitored by stopped-flow 

fluorescence spectroscopy. The excitation wavelength and dead time are the same with 

the refolding and emission was monitored using a bandpass filter (300-340 nm). 
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Secondary Structure Formation Studied with Stopped-flow Far-UV CD 

The kinetics of refolding of Fadd-DD was measured at 20°C on a Bio-Logic MOS 

450 stopped-flow instrument using far-UV CD detection. 0.9 mg/ml protein was unfolded 

in 20 mM MES buffer (pH 6.2), 5 mM DTT and 6 M GndHCl. Refolding experiments 

were carried out by rapid 1 to 5 dilution of the protein solution in 20 mM MES buffer 

(pH 6.2) at 20°C, giving the final concentrations of protein and GndHCl of 0.15 mg/ml 

and 1 M, respectively. The dead time was 9.3 ms. Change in the far-UV CD signal was 

monitored in an FC-20 cuvette (2 mm of path-length) at 225 nm. The excitation and 

emission slits were both 2 mm. The refolding experiments were repeated twenty times 

and the averaged traces were fit to a single exponential equation in SigmaPlot. The 

denatured baseline was obtained by mixing the denatured protein with denaturing buffer 

in the stopped-flow system and measuring the CD signal at 225 nm. The native baseline 

was determined by mixing native protein with refolding buffer in the stopped-flow 

system and measuring the CD signal at 225 nm. Both baselines were calculated from an 

average of 20 shots each. 

Tertiary Structure Formation Studied with Stopped-flow Near-UV CD 

The kinetics of refolding of Fadd-DD was measured at 20°C on a Bio-Logic MOS 

450 stopped-flow instrument using near-UV CD detection. 1.5 mg/ml protein was 

unfolded in 20 mM Bis-Tris buffer (pH 6.2), 5 mM DTT and 5 M GndHCl. Refolding 

experiments were carried out by rapid 1 to 4 dilution of the protein solution in 20 mM 

Bis-Tris buffer (pH 6.2) at 20°C, giving the final concentrations of protein and GndHCl 

of 0.3 mg/ml and 1 M, respectively. The dead time was 5.6 ms. Change in the far-UV CD 

signal was monitored in an TC-100 cuvette (10 mm of path-length) at 285 nm. The 
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excitation and emission slits were both 2 mm. The refolding experiments were repeated 

thirty times. 

Quenched-flow Experiments 

The preparation of the samples for the HX methods utilized a Bio-Logic SFM-400 

and the following delay lines: 17, 90 and 190 (Bio-Logic, France) at 20°C. 15N-Fadd-DD 

(1 mg/ml) was denatured in 5 M deuterated GndHCl, 10 mM deuterated MES (pD 5.8) 

and 5 mM deuterated DTT overnight. This pD value was chosen because it was used in 

the previous folding study with stopped-flow fluorescence and CD spectroscopy. The pD 

of the deuterated buffer solution was determined by adding 0.4 units to the reading of the 

pH probe (Primrose, 1993). Refolding was initiated by mixing one volume of the 

denatured protein solution with four volumes of water-based refolding buffer containing 

10 mM MES (pH 6.2) and 5 mM DTT. The concentrations of GndHCl and protein at this 

point are 1 M and 0.2 mg/ml, respectively. Under this concentration of GndHCl, the 

protein was shown to be in the native state and the folding of the protein at this 

concentration is not concentration dependent (Li et al., 2009). After refolding for a 

specified period of time the protein was mixed with five volumes of water-based pulsing 

buffer containing 50 mM glycine buffer (pH 9.8) and 5 mM DTT, thus subjected to a 

high pH pulse step for 5.4 ms. At this moment, the amide deuterium on the protein 

exchange with hydrogen in the solvent. The first three refolding times (9.9 ms, 28.1 ms, 

53.2 ms) were used under the continuous mode and the last five (65 ms, 80 ms, 120 ms, 

160 ms and 200 ms) were used under the interrupted mode (Table 2). The protein sample 

was then allowed to continue refolding at a lower pH followed by mixing with ten 

volumes of water-based quenching buffer containing 200 mM K2HPO4/IOO mM citric 
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acid (pH 3.9) and 5 mM DTT. The final pulse and quench pH after dilution were 9.6 and 

4.8, respectively. The average intrinsic exchanging times from amide deuterium to amide 

hydrogen in H2O at 20°C are approximately 1.4 s and 0.6 ms at pH 6.2 and pH 9.6, 

respectively (http://hx2.med.upenn.edu/download.html). Therefore, the hydrogen labeling 

only occurs when the pulsing buffer was mixing with the protein solution. To prepare the 

samples for NMR studies the solutions were concentrated using vivaspin 20 

concentrators (Sartorius Stedim, Aubagne, France) at 7,500 rpm at 4°C for approximately 

twelve hours immediately following the quenched flow experiments and stored overnight 

at 4°C. The next day the buffer of the solution was exchanged into 100 mM deuterated 

K2HPO4/5O mM deuterated citric acid (pD 4.4) and 10 mM deuterated DTT in D20 for 

approximately twelve hours at 4°C, in order to exchange the amide hydrogens with no or 

weak hydrogen bond protection and then immediately used for NMR. A pD of 4.4 was 

selected because the number of stable amide protons was maximal in comparison to those 

at pD 7.2, 5.8 and 4.8. 

http://hx2.med.upenn.edu/download.html


Table 2. The set-up parameters of quenched -flow experiment 
Continuous mode 
DL1 (fil) DL2 (ill) 

39.4 43.4 

55.8 43.4 

112.4 43.4 

212.6 43.4 

Time 
(ms) 
Syr. 1 
Syr. 2 
Syr. 3 
Syr. 4 
Total 
Time 
(ms) 
Syr. 1 
Syr. 2 
Syr. 3 
Syr. 4 
Total 
Time 
(ms) 
Syr. 1 
Syr. 2 
Syr. 3 
Syr. 4 
Total 
Time 
(ms) 
Syr. 1 
Syr. 2 
Syr. 3 
Syr. 4 
Total 

Washing 

50 

40 ul 
160 ul 
200 ul 
400 ul 
800 ul 
50 

40 ul 
160 ul 
200 ul 
400 ul 
800 ul 
85 

68 ul 
272 ul 
340 ul 
680 ul 
1360 ul 
160 

128 ul 
512 ul 
640 ul 
1280 ul 
2560 ul 

Collecting 

50 

40 ul 
160 ul 
200 ul 
400 ul 
800 ul 
50 

40 ul 
160 ul 
200 ul 
400 ul 
800 ul 
50 

40 ul 
160 ul 
200 ul 
400 ul 
800 ul 
50 

40 ul 
160 ul 
200 ul 
400 ul 
800 ul 

Ageing 1 
(ms) 
9.9 

13.9 

28.1 

53.2 

Ageing 2 
(ms) 
5.4 

5.4 

5.4 

5.4 

Interrupted mode 
Phase 1 

Time (ms) 158.6 
Syr. 1 127.5 
Syr. 2 510 
Syr. 3 
Syr. 4 
Total 637.5 

(Hi) Phase 2 (ul) 
T2" 

Phase 3 (ul) 
17.42 
14 
56 
70 
140 
280 

Phase 4 (ul) 
35.21 
28.3 
113.2 
141.5 
283 
566 

The ageing time 1 increases with the volume of circles and the ageing time 2 is kept 
constant. DL: delay line. Washing and phases 1 to 3 are for line-washing and collecting 
and phase 4 are for sample-collection. The parameters are following the instructions of 
Bio-Logic. 
* DL2 = T2 + 53. Therefore, T2 = 12, 27, 67, 107, and 147, respectively for refolding 
times of 65 ms, 80 ms, 120 ms, 160 ms and 200 ms, respectively. 
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NMR Studies 

The NMR experiments were conducted on a Bruker AVANCE III 400 MHz NMR 

spectrometer (Bruker-biospin, Billerica, MA) in College of Sciences Major 

Instrumentation Cluster, Old Dominion University. All NMR spectra (ID and 2D) were 

collected at 30°C. The acquisition time for 2D NMR is approximately 5.5 hours. In order 

to obtain residue specific information about the refolding of Fadd-DD from the HX 

experiments, the backbone peaks of ^-^N-Heteronuclear Single Quantum Coherence 

(HSQC) spectra for the native Fadd-DD were obtained and compared with the literature 

(Berglund et al., 2000). Sensitivity enhanced 'H-15N HSQC spectra were obtained on a 5 

mm inverse conventional probe with GARP decoupling in the 15N channel. 1024 complex 

points were collected along the F2 dimension and 128 transients were accumulated along 

the Fl dimension. 15N chemical shifts were referenced indirectly using the consensus 

chemical shift ratio of 0.101329118. All the HSQC spectra were generated in NMRPipe 

by apodizing the FID's with a cosine window, followed by zero-filling to the next power 

of 2, Fourier transformation and phasing in both Fl and F2 dimension and visualized 

withNMRDraw (Delaglio et al., 1995). 

Data Analysis of Quenched-flow, HX and NMR 

Hydrogen bonds were calculated using the program Contact (CCP4, 1994) and 

further confirmed with the molecular viewing and analysis program Insight II (Accelrys, 

CA). The HSQC peak intensities from the quenched-flow studies were normalized to a 

control experiment. In the control experiment, water based buffers were used in the 

unfolding and refolding portions of the quenched flow experiment. The protein was then 

concentrated and buffer exchanged as specified earlier. ID proton NMR spectra were 
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used to calibrate the concentration difference among protein samples from different time 

points in TopSpin software (Bruker) (Nabuurs and Mierlo, 2010). The absolute peak 

intensity of the well-resolved resonance at -0.37 ppm, which corresponds to a non-

exchangeable methyl proton resonance from LI 19, is a direct measure of the protein 

concentration in the corresponding NMR sample. The HSQC peak intensities were 

normalized using the absolute peak intensities of the upfield resonances in the ID spectra 

in order to correct the small variation of protein concentration in the same samples. The 

resultant data were plotted using SigmaPlot (version 10) (Systat Software, Chicago, IL) 

and kinetic rates determined by applying the single exponential equation to twenty-two 

peaks monitored during the study were analyzed. The peak intensities were calculated 

with NMRDraw. 

Equilibrium Hydrogen Exchange 

In the equilibrium HX study, 15N-Fadd-DD (4 mg/ml) was buffer exchanged into 

100 mM deuterated K2HPO4/5O mM deuterated citric acid and 50 mM deuterated DTT in 

99.0% D2O (pD 4.4). Each HSQC spectrum was acquired every eight hours over the 

course of one week. HX rates were determined by fitting peak intensities from HSQC 

spectra as a function of time using a single exponential equation in SigmaPlot. The 

intensities of each identified peak are normalized against that in the first HSQC spectrum. 

The protection against exchange rate is expressed as protection factor, which is the ratio 

between the sequence specific intrinsic exchange rate for an amide proton kmU and 

measured exchange rate £ex(Bai et al., 1993; Sasakawa et al., 1999). kmt is calculated 

using an intrinsic exchange rate program (H in D20) located at http://hx2.med.upenn.edu/ 

download.html. The protection factors are calculated for the slowly exchanging peaks. 

http://hx2.med.upenn.edu/
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METHODS FOR THE BIOINFORMATICS STUDY OF THE CHITINASE 

INSERTION DOMAIN (CID) 

Construction of a Multiple Sequence and Structure Alignment of the CID 

The CID regions within the structures of three proteins: Bacillus circulans 

chitinase Al (1ITX), C. immitis chitinase (1D2K) and human chitotriosidase (1LG1) 

were used as query sequences in PSI-BLAST to search for distant relatives. They 

represent chitinases within the kingdoms of Bacteria, Fungi and Animalia, respectively. 

A plant or archaeal structure was not available at the time however the PSI-BLAST 

searches did identify plant and archaeal chitinases for inclusion in our study. An initial 

multiple sequence alignment was made using MUSCLE in Jalview (Clamp et al., 2004; 

Edgar, 2004). In the searched sequences, some from close relatives have high identities 

>40% (data not shown). Five sequence relatives from each of the five kingdoms and two 

from early eukaryotes with sequence identities less than 40% were chosen to make 

twenty-seven representatives of the CID superfamily (Table A7). The alignment was 

created in order to enhance sequence variability and in this way, only the key conserved 

residues for structure, folding and function could be identified. The boundary of the CID 

in each sequence was identified by aligning with the three model chitinases and the 

domain was further extracted from each chitinase sequence. 

An initial structure alignment containing the CIDs from 1ITX, 1D2K and 1LG1 

was generated with the online CE-MC (Guda et al., 2001). The initial sequence alignment 

was compared with the initial structure alignment and adjusted in Jalview to ensure the 

sequences with unknown structures were properly aligned with the known structures. 

Since no structure from plant is available, the secondary structure of tobacco chitinase 
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CID was predicted by the program of PSIPRED (McGuffin et al., 2000) and the other 

sequences were aligned with it thereafter. To verify our sequence and structure 

alignment, structures of eight members of family 18 chitinases (1HKM, 1LJY, 1ITX, 

1D2K, IFFR, 1UR9, IKFW and INWT) were superimposed with CE-MC method (Guda 

et al., 2001). Two structures, 1D2K and 1ITX, are within the initial alignment with 

twenty-seven sequences. 

A larger multiple sequence alignment of sixty sequences was generated using 

MUSCLE in Jalview, without being edited according to the three model structures. The 

large alignment includes the twenty-seven CID sequences from Archaea, Bacteria, Fungi, 

Plantae and Animalia and thirty-three more sequences from Bacteria, Fungi and Animalia 

(Table A7) were acquired from searches of the protein database using the PSI-BLAST 

program. Furthermore, the SAM-T08 program was employed to search for the conserved 

residues in the CID (http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html) (Karplus, 

2009). 

Conservation and Hydropathy Analysis 

The number of each residue in each position was calculated and analyzed by 

SigmaPlot 10.0 (SYSTAT Software Inc.). The entropy value and hydropathy were 

calculated by the same equations previously mentioned. The definitions ofPj(i), m, C(i) 

are the same as mentioned in the Section of "methods for bioinformatics study of Fadd-

DD". The positions with conservation values greater than 0.45 were considered to be 

highly conserved; the positions with conservation values between 0.35 and 0.45 were 

considered to be moderately conserved; and those positions with conservation values 

lower than 0.35 were considered to be less conserved (Greene et al., 2003). The positions 

http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html


which have more than one gap are considered non-conserved and therefore have a value 

of zero. The hydrophobicity scale of Nozaki and Tanford was used for our studies 

(Nozaki and Tanford, 1971). 

Select structures from the designated family 18 chitinases in SCOP 

(http://scop.mrc-lmb.cam.ac.uk/scop/) and CAZy (http://www.cazy.org/fam/GH18.html) 

were chosen to compare the structure and function of chitinases and chitinase-like 

proteins (see Table A8). Protein data bank (PDB) files were obtained from SCOP and 

RCSB (http://www.rcsb.org). All PDB files were visualized and analyzed in either 

Insight II, version 2005 (Accelrys, CA), Pymol, version 0.99 (DeLano Scientific, CA), or 

Rasmol, version 2.7. Hydrogen bond calculations and van der Waals radii were 

determined with Insight II. 

Phylogenetic Analysis of the CID 

In order to investigate the evolutionary relationship of the CID sequences from 

different lineages of life, the ClustalW2 program 

(http://www.ebi.ac.uk/Tools/clustalw2/index.html) was performed with the sixty CID 

sequences, because the program can produce a multiple sequence alignment of divergent 

sequences and Cladogram or Phylogram to visualize the evolutionary relationships 

(Larkin et al., 2007). The phylogenetic tree was constructed using the neighbor-joining 

algorithm as described by Saitou and Nei (1987). The tree was visualized and drawn with 

MEGA version 4.0.2 software (Kumar et al., 2008). 

http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.cazy.org/fam/GH18.html
http://www.rcsb.org
http://www.ebi.ac.uk/Tools/clustalw2/index.html


CHAPTER III 

ANALYSIS OF CONSERVATION IN THE FAS-ASSOCIATED DEATH 

DOMAIN PROTEIN AND CHITINASE INSERTION DOMAIN 

INTRODUCTION 

Within the vastness of conformational space the greatest number of possible 

conformations exists at the onset of folding. The restriction of conformational space and 

the formation of native-like topology prior to the establishment of the finer details of the 

three-dimensional structure may in part be based on the early formation of a conserved 

network of interactions which facilitates rapid and correct folding (Greene et al., 2003; 

Geierhass et al., 2004; Higman and Greene, 2006). A number of computational and 

experimental studies provide insight into the link between conserved amino acids and 

folding (Martinez et al., 1999; Mirny and Shakhnovich, 1999; Kloczkowski and Jernigan, 

2002; Ting and Jernigan, 2002; Greene et al., 2003; Gunasekaran et al., 2004; Guo et al., 

2004; Zarrine-afsar et al., 2005; Pearce et al., 2007) particularly those experiments which 

reveal that the conserved residues are preferentially structured in the TS (Kragelund et 

al., 1999; Hamill et al , 2000; Fowler and Clark, 2001; Heidary and Jennings, 2002; 

Otzon and Oliveberg, 2002; Hubner et al., 2004; Wilson and Wittung-Stafshede, 2005; 

Cambell-Valois and Michnick, 2007; Olofsson et al., 2007; Lappalainen et al., 2008). 

While there are a few studies which argue against conservation of a folding nucleus 

(Larson et al., 2002; Tseng and Liang, 2004), this avenue of investigation is very 

promising and new approaches to finding determinants of structure and folding from an 

evolutionary perspective continue to emerge (Socolich et al., 2005; Marcelino et al., 
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2006). We report the results of a computational investigation into the determinants of 

protein folding and stability by identifying conserved residues in the death domain 

superfamily and the corresponding long-range interactions. The death domain 

superfamily fold consists of six a-helices arranged in a Greek-key topology which is 

shared by the all P-sheet immunoglobulin and mixed a/p-plait superfamilies (Higman and 

Greene, 2006) (Figure 6). The Greek-key topology in general is one of the most prevalent 

in nature (Higman and Greene, 2006; Cuff et al., 2009). 

Figure 6. The three superfamilies which share the same Greek-key topology 

(A) Apaf-1 CARD (PDB code: 1CY5) represents the death domain superfamily. 

(B) Ribosomal S6 (PDB code: IRIS) represents the a/p plait superfamily. 

(C) Titin (PDB code: 1TIT) represents the immunoglobulin superfamily. Ribbon 

structures created with PyMOL. 

Sequence and structural studies show that sixteen conserved hydrophobic residues 

located within the interior of our model superfamily member, Fadd-DD (see Figure 7), 
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form a network of long-range interactions, which we propose may play an important and 

interconnected role in governing protein folding, topology and stability. Additionally, the 

conservation analysis identified six conserved hydrophilic residues which we propose 

play a common role in protein-protein interactions between the diverse DDs. 

? 
N-terminus 

Figure 7. Structural analysis of Fadd-DD (PDB code: 1E3Y) 

Ribbon representation of NMR structure of Fadd-DD created by Rasmol (Ver. 2.7). 

Chitin and Chitinase 

An unrelated side project involved the bioinformatic analysis of conservation in 

the chitinase insertion domain to further our understanding of the function. This work did 

however involved the identical approach used to analyze the death domains. Thus in this 

instance, it is interesting to look at conservation for function versus structure and folding. 

Chitin (CgHi305N)n is a long-chain polymeric polysaccharide of P-glucosamine 

that forms a hard, semi-transparent material found throughout nature. Chitin is composed 

of units of N-acetyl-D-glucos-2-amine, which are linked by P-1,4 glycosidic bonds 

C-terminus 



52 

(Gooday, 1990). Hence, it may also be described as cellulose with one hydroxyl group on 

each monomer replaced by an acetylamine group. Chitin is the main component of the 

cell walls of fungi (Gooday, 1990), the shells and radulae of molluscs and of the 

exoskeletons of arthropods, especially crustaceans and insects (Dahiya et al., 2006). 

The breakdown of chitin is catalyzed by chitinases which hydrolyze it to simple 

sugars. Chitinases can be divided into two major categories: exochitinases and 

endochitinases (Dahiya et al., 2006; Li, 2006). Exochitinases can be further divided into 

two subcategories: chitobiosidases, which cleave diacetylchitobiose units from the non-

reducing end of the chitin chain, and P-(l,4)-N-acetyl-glucosaminidases (NAGase), 

which cleave the N-acetylglucosamine (NAG) oligomers, generating NAG monomers. 

Endochitinases cleave glycosidic linkages randomly at internal sites along the chitin 

chain, eventually providing a variety of low molecular mass NAG oligomers such as 

diacetylchitobioses and chitotrioses (Dahiya et al., 2006; Li, 2006). 

Chitinases occur in a wide range of organisms including bacteria, fungi, plants, 

insects and animals. Chitinases from bacteria and fungi are extremely important for 

maintaining a balance between the large amount of carbon and nitrogen trapped in the 

biomass as insoluble chitin in nature (Aronson et al., 2003; Li, 2006). Chitinases are 

needed by fungi to disrupt existing cell walls when normal cells divide (Kuranda and 

Robbins, 1991) and chitinases from some plants may be essential in inhibition against 

fungal pathogens (Taira et al., 2002). In insects and crustaceans, chitinases are associated 

with degradation of old cuticle (Merzendorfer and Zimoch, 2003). Additionally, human 

chitotriosidase may be important in defence against chitinous pathogens such as Candida 

albicans (Renkema et al., 1998; van Eijk et al., 2005). 
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Based on amino acid sequence similarity, chitinases are classified into families 18 

and 19 of glycoside hydrolases (GH) (Kawase et al., 2004; Funkhouser and Aronson, 

2007). The members of the two different families differ in their amino acid sequences, 

three-dimensional structures and molecular mechanisms of catalytic reactions (Aronson 

et al., 2003). Family 18 chitinases have catalytic domains of triosephosphate isomerase 

(TIM barrel) fold with a conserved DxDxE motif (Vaaje-Kolstad et al., 2004) and 

catalyze the hydrolytic reaction by a substrate-assisted mechanism (Terwisscha van 

Scheltinga et al., 1996; van Aalten et al., 2001), whereas family 19 chitinases have high 

percentage of a-helices and adopt the single displacement catalytic mechanism (Brameld 

and Goddard, 1998; Hoell et al., 2006). In family 18 chitinases, the leaving group alcohol 

is protonated by a conserved glutamic acid, the sugar at -1 subsite is distorted into a boat 

conformation, and an oxazolinium intermediate is stabilized by the sugar N-acetamido 

group and then hydrolyzed (van Aalten et al., 2001; Songsiriritthigul et al., 2008). In an 

exochitinase S. marcescens chiB, it was proposed that binding of substrate causes the -1 

sugar ring to distort to a boat conformation and rotation of Asp 142 towards Glul44, thus 

enabling hydrogen bonding between the acetamido group, Aspl42 and Glul44. Later on 

the oxazolinium ion intermediate was hydrolyzed, leading to protonation of Glul44 and 

rotation of Aspl42, which shares a proton with Aspl40 (van Aalten et al., 2001) (Figure 

A3). Family 18 chitinases are widely distributed in five lineages of life; for example, 

Thermococcus kodakarensis (Fukui et al., 2005) in Archaea, Serratia marcescens (S. 

marcescens) (Brurberg et al., 1994) in Bacteria, Coccidioides immitis (C. immitis) (Hollis 

et al., 2000; Bortone et al., 2002) in Fungi, tobacco (Melchers et al., 1994) in Plantae, and 
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the sandfly (Ramalho-Ortigao and Traub-Cseko, 2003) and human (Fusetti et al., 2002) 

in Animalia. 

Family 18 Chitinases 

Family 18 chitinases can be classified into three subfamilies A, B and C, in terms 

of the amino acid sequence similarity (Watanabe et al., 1993). The main structural 

difference between subfamilies A and B chitinases is that a small a + p domain inserts 

into the TIM barrel catalytic domain in the subfamily A, while this insertion domain is 

absent in the subfamily B (Suzuki et al., 2002). For example, human chitotriosidase (PDB 

code: IHKM), as a family 18 chitinase in the subfamily A, has a TIM domain and a CID, 

which is a module inserted into the TIM barrel (Figure 8A). In the subfamily A, other 

additions can occur at N- or C- terminus of the TIM barrel. On the other hand, S. 

marcescens chitinase C (chiC), belonging to the subfamily B, has a catalytic domain, a 

fibronectin type Ill-like domain and a chitin-binding domain (Suzuki et al., 2002). 

Therefore the presence or absence of the insertion domain appears to be subfamily 

specific (Suzuki et al., 1999). Examples of family 18 chitinases in the subfamily B are 

only limited to a few bacteria, such as S. marcescens and B. circulans (Watanabe et al., 

1993; Suzuki et al., 1999). Here we mainly discuss family 18 chitinases in the subfamily 

A. 
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Figure 8. Structural analysis of the CID 

(A) Ribbon model of human chitotriosidase (PDB: IHKM) in complex with the substrate 

(NAA-NAA-ALI) generated by Pymol, showing the TIM barrel and CID. The helices 

and strands on the TIM barrel are colored in green and those on the CID are colored in 

light blue. Some residues (Tyr267, Arg269, Glu297 and Met300) in blue on the CID and 

Asp213 in yellow on the TIM barrel interact with the substrate in red. 

(B) Schematic representation of the CID between P7 and a7 on the TIM barrel, which is 

composed of two anti-parallel P-strands followed by one P-strand, one short a-helix and 
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Figure 8 Continued. 

lastly three anti-parallel p-strands. The arrows indicate P-strands and the rectangles are a-

helices. The lines stand for the loops connecting a-helices or P-strands. 

The TIM barrel domain consists of an (a/p)8-barrel fold and has been found in 

many different proteins, most of which are enzymes. The TIM barrel domains share low 

sequence identity and have a diverse range of functions. The specific enzyme activity is 

determined by the eight loops at the carboxyl end of the P-strands (Branden and Tooze, 

1998). In some TIM barrels, an additional loop from a second domain approaches the 

active site of the TIM domain and participates in binding and catalysis (Branden and 

Tooze, 1998; Pestsko and Ringe, 2004). 

The CID superfamily has only one family member and is classified as having an 

FKBP-like fold in the SCOP database (Figure 8B) (Murzin et al., 1995). The CID is 

composed of five or six anti-parallel P-strands and one a-helix and it inserts between the 

seventh a-helix and seventh P-strand of the TIM barrel (Srivastava et al., 2006). The CID 

forms a wall alongside the substrate-binding cleft of TIM barrel of chitinase which 

increases the depth of the cleft. Thus, it is easy to imagine that the substrate-binding cleft 

of chitinases from the subfamilies B and C is not as deep as that from the subfamily A 

(Suzuki et al., 1999). Interestingly, some mammalian glycoproteins with various 

functions also exhibit the fold of a family 18 chitinase, such as human cartilage 

glycoprotein-39 (HCgp-39), whose structure consists of a TIM domain and a CID 

(Fusetti et al., 2003). 
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In addition to the TIM domain and the CID, some bacterial chitinases in the 

subfamily A involved in chitin degradation contain one or two additional domains 

involved in substrate-binding (van Aalten et al., 2000). For example, S. marcescens 

chitinase A (chiA) (PDB code: 1CTN/1FFR) has an additional N-terminal domain 

(Papanikolau et al., 2001) which belongs to the E-set domain superfamily in SCOP, 

whereas S. marcescens chitinase B (chiB) (PDB code: 1E15/1UR9) has one extra C-

terminal domain (Vaaje-Kolstad et al., 2004) which belongs to the carbohydrate-binding 

domain superfamily. Removal of such domains often results in enzymes that are still 

active but show extremely impaired binding to substrates (van Aalten et al., 2000; 

Katouno et al., 2004). For example, mutagenesis studies of two tryptophans on the N-

terminal domain of chiA resulted in decreased specific hydrolyzing activity thus showing 

their importance for the hydrolysis of p-chitin (Uchiyama et al., 2001; Aronson et al., 

2003; Ferrandon et al., 2003). 

Four Conserved Residues on the CID May Play an Important Role in Chitinase 

Function 

As known previously, the TIM barrel is considered the catalytic domain in family 

18 chitinases (Uchiyama et al., 2001; Aronson et al., 2003). Although a number of 

previous publications showed interactions between a group of residues on the CID and 

the enzyme substrate and reported the possible functional significance of the CID (van 

Perrakis et al., 1994; Hollis et al., 2000; Aalten et al., 2001; Papanikolau et al., 2001; 

Fusetti et al., 2003), the definitive role of the CID in chitinase function has not been 

completely determined (Fusetti et al., 2002; Fusetti et al., 2003; Songsiriritthigul et al., 

2008). For example, the functional contribution of the CID is not clear in the case of S. 
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marcescens chiA (Zees et al., 2009). A previous study showed that by removing the CID 

from S. marcescens chiA, the thermal stability was reduced, the specific activity was 

decreased, the pH optimum was shifted lower, and the catalytic activity towards long 

chitin derivatives was lost (Zees et al., 2009). However, none of the residues on the CID 

have been individually mutated. Hence, the role of the specific residues in binding with 

substrates remains to be identified. 

To identify the specific functional residues on the CID, a multiple sequence and 

structure alignment of this domain was constructed. The sequence search process 

revealed that this domain exists in a wide range of organisms. Conservation and 

hydropathy analysis revealed that four conserved residues, constituting two distinct 

sequence motifs, interact with the substrate. Furthermore, extensive comparisons among 

different family 18 chitinases demonstrated that the TIM domains + CID can bind long-

chain substrates by providing a deep substrate-binding cleft, while this may not be the 

case for the enzymes with the TIM domain alone. In general, additional modules fused to 

a catalytic domain may play a role in substrate specificity by providing a specific binding 

site or shaping the active site to recognize a substrate with a different shape or size (Todd 

et al., 2001). We extrapolate that this may be a reason for the insertion of the CID into the 

TIM barrel. This paper identifies and provides initial computational support for the 

importance of conserved residues on the CID in chitinase function. 

RESULTS 

Bioinformatics and Network Studies of the Death Domain Superfamily 

A sequence alignment with twenty proteins from the death domain superfamily 

was constructed as described in the materials and methods (Figure 9; Table A9). 



Hydrophobic residues such as leucine and tryptophan are preferentially aligned with the 

hydrophobic residues, while hydrophilic residues such as lysine and glutamine are 

preferentially aligned with hydrophilic residues. A conservation analysis was conducted 

using a modified entropy parameter (Figure 1OA) and hydrophobicity measure (Figure 

11) for each position in the superfamily alignment. Ten positions were found to have 

conservation scores greater than 0.45, indicating that they are highly conserved. Among 

these ten positions, nine are persistently hydrophobic and one persistently hydrophilic. 

The residues in Fadd-DD that correspond to the hydrophobic positions are: AlalOO, 

Asnl07, Leul 19, Serl44, Leul45, Trpl48, Leul65, Vall73 and Vall77 (Figure 12A). 

Thirteen positions had conservation scores between 0.35 and 0.45 and are designated as 

moderately conserved. Among the thirteen positions of intermediate conservation, seven 

are persistently hydrophobic, five are persistently hydrophilic and one neutral. The 

residues in Fadd-DD that correspond to the hydrophobic positions are: Trpl 12, Leul 15, 

Vall21, He 129, Leul61, Alal64 and Alal74 (Figure 12A). The remaining positions 

(< 0.35) are designated as less conserved. Therefore, sixteen conserved hydrophobic 

residues and six conserved hydrophilic residues were identified (Figure 12A-B). 
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a5 a6 
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—DSYWVEMASLQVFEKMHRMDLSERAKD 
-PGDAGLGKLIEFFKEIPTLGDLAETLKREK-

Figure 9. Multiple sequence and structure alignment of twenty proteins from death 

domain superfamily 
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Figure 9 Continued. 

Hydrophobic positions with high conservation are colored in blue and annotated with 

"*". Hydrophobic positions with intermediate conservation are colored in green and 

annotated with "#". Conserved hydrophilic positions are colored in red and annotated 

with "A". Arrows indicate the sequences that are in the six a-helices. The number scheme 

represents positions in the alignment. 
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Figure 10. Sequence conservation and hydropathy analyses of death domain 

superfamily 

(A) Black bars represent highly conserved positions (C(i) > 0.45) (ten positions); gray 

hashed bars represent moderately conserved sites (0.35 < C(i) < 0.45) (thirteen positions); 

white bars represent the less conserved positions (C(i) < 0.35). Six helices are annotated 

with roman numerals on arrows. Residue positions annotated with a "hash mark" 

represent Trpl 12, Leul 15, Vall21, Trpl48, Hisl60 and Leul72. 

(B) The small diagram shows the distribution of conservation scores (C(i)). 
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Figure 11. Average hydropathy profile analysis in the death domain superfamily 

Conserved hydrophobic residues are represented by black bars (C(i) > 0.35) (sixteen 

positions). Conserved hydrophilic residues are represented by gray hashed bars 

(C(i) > 0.35) (six positions). Residue positions annotated with a "star" were found to be 

important in the interaction with Fas-DD in mutagenesis studies. 
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Figure 12. Ribbon diagram showing conserved residues 

(A) Ribbon diagram generated by Insight II (Ver. 2005) shows highly conserved (blue) 

and intermediately conserved (green) hydrophobic residues. The helices are colored 1-6 

as follows: purple, blue, green, yellow, orange, red. Van der Waals radii around atoms of 

the conserved residues show the hydrophobic core. 

(B) Ribbon diagram shows conserved hydrophilic residues and numbers. 



65 

The long-range interaction network within Fadd-DD is illustrated in Figure 13 A. 

Long-range interactions were denoted by contacts that occur between residues that are ten 

or more residues apart in the primary structure and within 6 A in the tertiary structure 

(Greene and Higman, 2003). There are twenty-two interactions between the sixteen 

conserved residues. These interactions are all between predominantly hydrophobic 

residues in the core. If two pairs of residues from two families both form a long-range 

interaction and these two pairs belong to the same position in the alignment, then this 

interaction is designated to be conserved. Furthermore, eleven of the interactions in the 

long-range interaction network in Fadd-DD are conserved in the other three families 

within the death domain superfamily (Figure 13B). 



66 

Figure 13. Network of long-range interactions between the conserved residues in 

Fadd-DD 

(A) The circles indicate the locations and identities of the sixteen conserved residues in 

the Fadd-DD structure. The black lines indicate contacts that are within 6 A and involve 

only heavy atoms. 

(B) The balls labeled with numbers represent the sixteen conserved residues. Helices 1 to 

6 are colored in blue, cyan, green, yellow, orange and red, respectively. The turns are 

colored in gray. The solid lines are the conserved long-range interactions within the four 

death domain subfamilies; the dashed lines are the conserved long-range interactions 

within three of the four subfamilies. The helices are denoted HI - H6. 



Structure-based Sequence Alignment of the CID 

The representative family 18 chitinases and chitinase-like proteins from plants, 

bacteria, fungi and animals with determined three-dimensional structures are listed in 

Table A8. A multiple sequence alignment of twenty-seven CIDs based on the structures 

of three model proteins: B. circulans chitinase Al (PDB code: 1ITX), C. immitis 

chitinase (PDB code: 1D2K) and human chitotriosidase (PDB code: 1LG1) was 

generated by MUSCLE in Jalview (Figure A4). CIDs from organisms in all five 

kingdoms are aligned, including Archaea, Bacteria, Fungi, Plantae and Animalia (Figure 

A4). The secondary structure of the CID of tobacco chitinase is quite similar to those of 

fungal chitinases, and thus the P-strands and a-helix of plant CIDs can be predicted. 

Smaller alignments can be found in the following references: van Aalten et al. (2000); 

Varela et al. (2002); Fusetti et al. (2002); Srivastava et al. (2006). Because the CID in 

chitinases is conserved, we can identify its sequence boundaries. Furthermore, we can 

predict its structure in family 18 chitinases with absence of solved structures. 

Eight chitinase and chitinase-like structures including the three model chitinases 

and five more structures (PDB codes: ILJY, IFFR, 1UR9, IKFW and INWT; explained 

in Table A8) were superimposed on each other based on the CE-MC method (see Figure 

14). Furthermore, a second and larger sequence alignment with sixty CID sequences was 

generated using MUSCLE (see Figure A5). 
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structures (PDB codes: IHKM, ILJY, 1ITX, 1D2K, IFFR, 1UR9, IKFW and 

INWT) and the two conserved motifs on the CIDs 

(A) The eight structures IHKM, ILJY, 1ITX, 1D2K, IFFR, 1UR9, IKFW and INWT 

are coloured in red, orange, yellow, green, blue, cyan, purple and black, respectively. The 

aligned, blue and cyan parts are TIM domain + CID, N-terminal domain on IFFR and C-

terminal domain on 1UR9, respectively. The structures were superimposed with the CE-

MC method. 

(B) The two positions in the YxR motif are shown in red and orange, respectively; and 

the two positions in the [E/D]xx[V/I] motif are shown in yellow and blue, respectively. 
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Proposed Role of Conserved Residues on the CID 

Residues are often conserved in protein families because they either make critical 

stabilizing interactions or play important functional roles (Schueler-Furman and Baker, 

2003). Additionally, residues important for stability are clustered together in the 

hydrophobic core and functional residues may be close together in protein-ligand binding 

sites (Schueler-Furman and Baker, 2003). Therefore, an analysis of residue conservation 

is a reasonable approach in which to identify functionally important sites in the CID. 

Positions of highly and moderately conserved residues (Figure 15) and the 

average hydropathy profile analysis (Figure 16) are shown. Our conservation study 

indicated that there are nine hydrophobic positions with high conservation and five with 

moderate conservation; five hydrophilic positions with high conservation and two with 

moderate conservation; and five neutral positions with high conservation and six with 

moderate conservation (Figure A4). Among these conserved positions, two hydrophobic 

and two hydrophilic on the CIDs in chitinases denoted by PDB codes 1LG1, 1D2K and 

1ITX are proposed to be important for interactions with the substrate, and five for the 

formation of the hydrophobic core, as well as the stabilization of the domain (Table 3). 

Interestingly, these four residues fall into two characteristic motifs, one in the N-terminal 

region and one in the central region, which are termed the YxR motif and the 

[E/D]xx[V/I] motif, respectively. These two motifs are also conserved in the larger 

multiple sequence alignment (see Figure A5) as well as the structural superimpositions 

(see Figure 14B). It should be noted that the use of SAM-T08 program also identified the 

two conserved motifs. 
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Figure 15. Sequence conservation analysis of the CID (alignment with 27 sequences) 

The figure shows the distribution of conservation scores (C(i)). Positions with high 

conservation are represented by black bars (C(/)>0.45), positions with moderate 

conservation by gray hashed bars (0.35<C(/')<0.45) and positions with less conservation 

by white bars (C(z')<0.35). The conservation values of the positions with more than one 

gap in the alignment are calculated as zero. The insert below shows the histogram of 

conservation in terms of the number of positions. Bars annotated with the stars are the 

conserved residues which may interact with the substrate. 
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Figure 16. The average hydropathy profile analysis in the CID superfamily 

Highly conserved hydrophobic positions are represented by black bars and moderately 

conserved positions by dark gray bars. Highly conserved hydrophilic positions are 

represented by black hashed bars and moderately conserved positions by gray hashed 

bars. 



72 

Table 3. Conserved residues on the CIDs in chitinases denoted by PDB codes of ILGl, 

1D2K and IITX and their proposed roles 

Code Interaction with the substrate 

YxR motif [E/D]xx[V/I] motif 

ILGl Tyr267 Arg269 Glu297 Met300 

1D2K Tyr293 Arg295 Glu316 Val319 

IITX Tyr338 Arg340 Glu366 Ser369 

INWT Phe261 Arg263 Glu290 Thr293 

IFFR Tyr444 Arg446 Glu473 Ile476 

Formation of the hydrophobic core 

Tyr303 Val306 Ala312 Val332 Phe334 

Tyr322 Met325 Ala330 Ile352 Tyr354 

Phe372 Leu375 Tyr385 Ile407 Tyr409 

ILGl (IHKM): human chitotriosidase; 1D2K: C. immitis chitinase; IITX: B. circulans chitinase 

Al. 

In the YxR motif, tyrosine and arginine form a pi-cation interaction, which is 

conserved in all five kingdoms except Plantae. These interactions are also conserved in 

the other family 18 chitinases which were not included in the alignment. In many family 

18 chitinases, a conserved catalytic aspartic acid on the TIM barrel (e.g. Asp213 in 

human chitotriosidase, Figure 17A), forms an electrostatic interaction with the arginine 

and hydrogen bonds with both arginine and tyrosine in the motif. The pi-cation 

interaction, salt bridge and hydrogen bonding are likely to be important to the structural 

integrity of the active site. Vibrio harveyi chitinase A (PDB code: 3B9A) was proposed to 

catalyze the substrate hydrolysis following the "slide and bend mechanism" as previously 

described for a long-chain substrate (Songsiriritthigul et al., 2008). First, the sugar chain 

slides forward towards the reducing end distorting the chain especially in -1 NAG, 

causing it to bend and take up a transient strained boat conformation (van Aalten et al., 

2001). Then the twist of the scissile bond, together with the bending of-1 NAG, makes 

the glycosidic oxygen accessible to the catalytic residue Glu315 for cleavage 
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(Songsiriritthigul et al., 2008). This mechanism may also apply to the other family 18 

chitinases. In the protein structure 3B9A, Tyr461 and Arg463 in the conserved YxR 

motif interact with -1 NAG. They also form hydrogen bonds with the conserved catalytic 

residue Asp392 on the TIM barrel, which interacts with three subsites of (NAG)6 

(Songsiriritthigul et al., 2008). 

In another exochitinase S. marcescens chiA, after the substrate glycosidic bond is 

protonated, Asp313 which interacts with Asp311 moves to another position where it 

interacts with the proton donor residue Glu315, forcing the acetamido group of-1 sugar 

to rotate. Subsequently, the water molecule that forms hydrogen bonds with Tyr390 and 

the NH of the acetamido group is displaced to a position which allows hydrolysis to 

complete (Papanikolau et al., 2001). Since the conserved YxR motif on the CID interacts 

with -1 NAG in S. marcescens chiA (Figure 18), it may help cause distortion of substrate, 

thus facilitating the cleavage of the glycosidic bonds along the long-chain sugar. 

Moreover, the YxR motif in chiA forms hydrogen bonds and provides a hydrophilic 

environment for the catalytic residue Asp391 (Figure 18), which is in a nearly 

symmetrical position with another catalytic residue Glu315 with respect to the plane of 

the sugar ring (Perrakis et al., 1994). Interestingly, Asp311, Asp313 and Glu315 in 

chiA's and Asp 140, Asp 142 and Glul44 in chiB (not discussed here) both belong to the 

conserved TIM barrel DxDxE motif, indicating that their catalytic mechanisms are very 

similar. 



74 

Figure 17. Structures of select family 18 chitinases with their substrates 

The TIM barrel residues are coloured in green, the four conserved CID residues are in 

yellow and gray, and substrates are in red. Hydrogen bonds are indicated as dashed lines. 

(A) The conserved residues on the CID of human chitotriosidase (IHKM) either interact 

with the substrate, or presumably form a hydrophobic core (Table 3). The a-carbon 

backbone of the CID is depicted as a blue ribbon. Glu297 on the CID forms a hydrogen 

bond directly with the substrate while Tyr267 and Arg269 on the CID have hydrogen 

bonding interactions indirectly through Asp213 on the TIM domain with +1 subsite of the 

substrate (Table 3). Tyr267 and Met300 on the CID form hydrophobic interactions 
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Figure 17 Continued. 

with the substrate. Some conserved hydrophobic residues in gray appear to form a 

hydrophobic core indicated by a dashed pink circle. Other conserved hydrophobic 

residues face the straight plane indicated by a dashed pink line. They are mostly aromatic 

and their role is undetermined. 

(B) Subsites from +3 to -3 in the structure of HCgp-39 (INWT) are lined up on the main 

chitin fragment. On the CID of INWT, Arg263 forms a hydrogen bond directly with -1 

NAG and indirectly via Asp207 on the TIM domain. Phe261 from the CID forms a 

hydrophobic interaction with the oligosaccharide (Table 3). 
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Figure 18. Residues on 5. marcescens chiA (PDB code: IFFR) interact with 7-mer of 

NAG substrate 

Residues in yellow on the CID of IFFR form hydrogen bonds with the substrate (shown 

as dashed lines), although some interactions are mediated by Asp391 from the TIM barrel 

and water molecules coloured in blue. Ile476 from the CID forms a hydrophobic 

interaction with the substrate (Table 3). Additional TIM barrel residues involving in 

hydrogen bonding and hydrophobic interactions are shown in green and brown, 

respectively. Structures are visualized and analyzed in Insight II. Structural studies 

analyzing the interactions between the protein and substrate have been previously 

conducted by other researchers (Papanikolau et al., 2001; Fusetti et al., 2003; Horn et al., 

2006). 
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In the substrate-binding site in CID of human chitinase (IHKM), Tyr267 and 

Arg269 both form hydrogen bonding indirectly by Asp213 with +1 site, and Glu297 

directly with -2 site; and Met300 forms a hydrophobic interaction with substrate (Figure 

17A) (Rao et al., 2003). These amino acids, together with neighboring residues from the 

TIM domain, may constitute part of the substrate-binding site of the chitinase. Some of 

the clustered hydrophobic residues (Tyr303, Val306, Ala312, Val332 and Phe334) form a 

hydrophobic core indicated by the dashed pink circle (Figure 17A). The roles of the other 

aromatic residues (Phe271, Tyr324, Phe326 and Trp331) are not exactly known. 

Interestingly, they face a straight plane indicated by the dashed pink line (Figure 17A). 

The [E/D]xx[V/I] motif also appears to form contacts with substrate (Table 3). In 

human cartilage glycoprotein-39 (HCgp-39) (PDB code: INWT), six sugar-binding 

subsites in the carbohydrate-binding groove across the C-terminal ends of the P-strands of 

the barrel were identified from -3 to +3 from the non-reducing end (Figure 17B). The 

CID also plays a role in sugar-binding because a complex hydrogen bonding network 

involving conserved residues Arg263, Glu290 and Thr293 on the CID interacts with -1 

NAG and Phe261 forms a hydrophobic interaction (Figure 17B) (Fusetti et al., 2003). 

The other highly conserved neutral positions contain mostly alanine, glycine, or 

proline; the latter two frequently occur in the structure of B-turns (Creighton, 1993) and 

may be conserved for structural reasons. CID has a large percentage of aromatic residues 

(e.g. 21% in IITX). With the exception of some residues which interact with sugar, many 

of them exist in the hydrophobic core, which may be important for folding and stability. 

Aromatic residues have been found to play an important role in stabilizing proteins and 
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peptides (Subramaniam et al., 2001; Palermo et al., 2008). Therefore, the combination of 

the CID with TIM barrel may increase the thermal stability of the whole enzyme. 

Comparison of GH 18 Proteins with the CID and Those without the CID 

Both the NAGase from Elizabethkingia meningoseptica (PDB code: 1EOM) and 

the NAGase from Streptomyces plicatus (PDB code: 1EDT) are composed of one TIM 

domain. They break down the glycosidic bond of (NAG)2 to NAG, therefore, they do not 

have complete chitinolytic activities. In the crystal structure of 1EOM in complex with 

biantennary octa-saccharide, only the reducing end NAG and two mannoses of the tri-

mannose core are in direct contact with the protein (Waddling et al., 2000), while the 

other sugars extend away from the protein (data not shown). 1EDT hydrolyzes the central 

pi—>4 bond of the diacetylchitobiose core, NAG-(Bl-4)-NAG, of asparagine linked 

oligosaccharides. Unlike the chitinases, the enzyme acts on branched oligosaccharides 

and has specificities for distinct forms of asparagine-linked oligosaccharides (Rao et al., 

1995; Rao etal., 1999). 

While only four out of eight units of the substrate interact directly with some 

residues on 1EOM (Table 4) (Waddling et al., 2000), proteins with the TIM and CID 

domains have a broad network of contacts including hydrophobic interactions and 

hydrogen bonding with the substrate. This can be seen, for example, in the analysis of the 

structure of S. marcescens chiA (Figure 18, Table 4B) (Papanikolau et al., 2001). 
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Table 4 . Comparison of substrate-binding residues between chitinases with the CID 
and without the CID 

PDB 
Code 

1EOM 
(A) 

IFFR 

(B) 

Sugar 
ring 
number 

632 

633 

634 

641 

635, 
636, 
642,643 

+2 

+1 

-1 

-2 

-3 

-4 

-5 

Protein residue 

Residues on the TIM barrel 

Hydrogen 
bonding 

D126,E128, 
Q211.Y213, 
Y272 

D18,R20, 
E245, Y272, 

K42, N85, D87, 
H129 

R20, E245 

K369, D391 

E315,D391 

D313,E315, 
D391 

E540 

T276 

R172 

Hydrophobic 
interaction 

F39 

F39 

W275, F396, 
Y418 

W275,F316, 
M388 

Y163, W275, 
A362, M388, 
W539 

W275, W539 

W167 

Y170 

Conserved residues on the CID 

Hydrogen Hydrophobic 
bonding interaction 

R446 

Y444, R446 

E473 1476 

E473 

(A) Interactions between select residues on F. meningosepticum NAGase (1EOM) and 
bound polysaccharide. 

(B) Interactions between some residues on S. marcescens chiA (IFFR) and bound 
substrate (NAG)7. The data are adapted from Waddling et al. (2000) and Papanikolau et 
al. (2001). Conserved residues on the CID from our conservation analysis are in bold. 
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Sun et al. specified that the CID of mouse lectin Yml (PDB code: 1E9L) was not 

involved in the saccharide-binding (2001). Furthermore, they were unable to assign any 

definitive function for this domain. However, the results of our study indicate that at least 

four conserved residues on the CID of many chitinases were found to have either 

hydrogen bonding or hydrophobic interaction with the substrate of more than three units 

of NAG. While 1E9L was not included in the original structural alignment, a close 

homologue INWT was studied and suggests that the authors may have seen saccharide-

binding by the CID if a longer substrate was used. 

In CAZy database (Cantarel et al., 2009), S. marcescens chiA and chiB, B. 

circulans chitinase Al and Aspergillus fumigatus chitinase B (PDB code: 1W9P) are 

"bacterial-type" exochitinases with a deep or even a tunnel-shaped substrate-binding 

cleft, formed by the TIM barrel and CID (van Aalten et al., 2001; Watanabe et al., 2003; 

Sikorski et al., 2006; Horn et al , 2006). S. marcescens chiC (Horn et al., 2006; Sikorski 

et al., 2006) and "plant-type" chitinases such as hevamine from Para rubber tree (Hevea 

brasiliensis) (PDB code: 1HVQ) (Terwisscha van Scheltinga et al., 1996), ScCTSl from 

Saccharomyces cerevisiae (PDB code: 2UY2) (Hurtado-Guerrero and van Aalten, 2007), 

PPL2 from Parkia platycephala seeds (PDB code: 2GSJ) (Cavada et al., 2006) and a 

hyperthermophilic chitinase from Pyrococcus furiosus (PDB code: 2DSK) (Nakamura et 

al., 2006) are endochitinases with a shallow substrate-binding cleft since they lack the 

CID. Therefore, overall it appears that the CID may enhance the exo-type activity by 

forming a deep substrate-binding cleft on the top of the TIM barrel (Horn et al., 2006; 

Sikorski et al., 2006; Zees et al., 2009). 
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Structures of TIM domain alone, TIM domain + CID, and TIM domain + CID + 

N- (or C-) terminal domain align very well with their respective counterparts (data not 

shown). Interactions between residues and substrates are shown in Table 4 for 1EOM 

(TIM domain alone) and IFFR (TIM domain + CID). It appears as if more sugar residues 

interact with amino acid residues when the CID is included in the TIM domain. 

Therefore, the CID may facilitate stronger association with the substrate, particularly 

with increasing substrate length. By removing the CID from S. marcescens chiA, a 

processive exochitinase (Uchiyama et al., 2001; Sikorski et al., 2006), the truncated 

active enzyme appeared to have a shallower tunnel in the catalytic domain than that of 

the intact enzyme (Zees et al., 2009) and it resembled the catalytic domain of S. 

marcescens chiC, which acts as a non-processive endochitinase (Sikorski et al., 2006). 

Therefore, the CID of chiA enhances not only the exo-jV,iV'-diacetyl-glucosaminidase 

activity, but also the processivity during the degradation of the polysaccharide chains 

(Zees et al., 2009). 

Phylogenetic Analysis of the CID and Evolutionary Scheme of Family 18 Chitinases 

(Subfamilies A and B) 

The ubiquitous TIM barrel fold is adopted by seven enzyme superfamilies, one of 

which is the TIM barrel GH (Todd et al., 2001). The evolutionary relationships between 

different enzymes with TIM barrel are well studied (Todd et al., 2001; Nagano et al., 

2001; Nagano et al., 2002). Gene duplication, gene fusion and incremental mutations are 

three mechanisms by which new functions are created in proteins (Todd et al., 1999; 

Todd et al., 2001). Molecular phylogenetic analyses of mammalian GH 18 chitinase and 

chitinase-like members suggest that active chitinases result from an early gene 
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duplication event, which is followed by mutations, leading to chitinase-like proteins, such 

as chito-lectins (Bussink et al., 2007). Comprehensive genomic studies of animal GH 18 

proteins showed a similar result (Funkhouser and Aronson, 2007). Another phylogenetic 

analysis of catalytic domain sequences from various organisms showed that sequences of 

animal, fungi and bacteria belong to different lineage; however, chitinase genes from 

lepidopteran insects and baculoviruses originated from bacteria and were maintained 

through evolution since they transferred laterally (Daimona et al., 2005). 

Since the CID sequences are present in all of sixty archaeal, bacterial and 

eukaryal genomes in this study, it is possible that the CIDs were present in the Last 

Universal Common Ancestor (LUCA) (Ranea et al., 2006). However, no evolutionary 

study has been conducted on the CID by itself. To establish the phylogenetic 

relationships between the CIDs from different organisms, a preliminary phylogenetic tree 

was constructed based on the sixty sequences from five kingdoms (Archaea, Bacteria, 

Fungi, Plantae and Animalia) (Figure A6). Overall, the CID sequences grouped into five 

major clusters, each representing one kingdom as to be expected. In the cluster of 

Animalia, members from early eukaryotes and early Animalia branch out earlier than 

those from vertebrates and mammals. 

DISCUSSION 

Bioinformatics and Network Analysis of Fadd-DD 

Our computational analysis shows that sixteen residues with intermediate to high 

levels of conservation and dominant hydrophobic character form a long-range interaction 

network in Fadd-DD (Figure 10-11 and Figure 13). These residues are postulated to be 

important for folding, topology and stability. Furthermore, the residues constituting the 
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network may act by organizing the hydrophobic collapse during the folding process. In 

the network, AlalOO, Leul 15, Trpl48 and Leul61 have more interactions than the other 

twelve residues suggesting that these four interconnected residues may be particularly 

important (Figure 13). Given the scarcity of tryptophan in proteins in general (e.g., in 

most of CARD proteins and PYD proteins), it is unusual that some DD proteins have two 

tryptophans (some DED proteins have just one). Since the two conserved tryptophans 

were taken as probes in the stopped-flow fluorescence studies, it will be interesting to see 

if the more conserved Tip 148 becomes structured on an earlier timescale, and thus is key 

to the first phase. 

Our structural studies also identified another potentially important residue, 

PhelOl. It is hydrophobic and has an orientation similar to AlalOO but is only 60% buried 

according to the program Naccess (www.bioinf.manchester.ac.uk/naccess). It does 

however form long-range interactions with Tip 148 and Leul61. While PhelOl does not 

occupy a conserved position in our analysis it is adjacent to AlalOO and may, in Fadd-

DD, play an important structural role in concert with this residue. This suggests that 

while conserved residues and interactions may be used by all members within a 

superfamily for folding, there may also be some residues specific for individual proteins. 

Interestingly, there are eleven conserved interactions within the four structures studied 

and these may be important discriminators of the all a-helical Greek-key topology. 

Conserved Residues for Structure and Stability versus Function in Fadd-DD 

It is well established that amino acids are conserved in proteins because they are 

important for stability and function (Schueler-Furman and Baker, 2003). With respect to 

stability, mutational experiments indicate that hydrophobic core residues make 

http://www.bioinf.manchester.ac.uk/naccess
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substantial contributions (Shortle, 1992). Therefore, mutation of any of these sixteen 

hydrophobic residues in Fadd-DD to any hydrophilic amino acid may affect the structure 

and stability of Fadd-DD. This in turn can disrupt the functional association with other 

DDs in the formation of the apoptotic complex. Berglund et al. (2000) proposed that 

mutation of Vail 21 Asn in human Fadd-DD would destabilize the protein fold and thus 

indirectly affect function. Two mutations towards conserved residues in mouse Fadd-DD 

(Vall21 Asn and Leul 19Asn) were also implicated in a functional role due to reduced or 

abolished binding affinity with Fas-DD (Jeong et al., 1999). We speculate that the 

observed effect of Vail 21 on function may be explained because it forms the long-range 

interaction in the hydrophobic core and mutation probably causes the disruption of the 

structure and stability in mouse and human Fadd-DD. This is supported by the fact that in 

mouse Fadd-DD Vall21 Asn significantly reduced the secondary structure measured by 

far-UV CD (Bang et al., 2000). Additionally, previous mutation of Ile225Asn in mouse 

Fas-DD which aligns with Vall21 in human Fadd-DD, disrupted its binding and caused 

autoimmune lymphoproliferative (Ipr) syndromes (Watanabe et al., 1992; Imtiyaz et al., 

2005). In mouse Fas-DD, the mutation may destabilize the structure and thus indirectly 

affect function. 

The conservation and hydropathy analysis also identified six hydrophilic residues 

with intermediate to high levels of conservation (Figures 10-11, 12B). Mutational 

experiments indicate that some conserved residues in protein-protein interfaces 

contribute significantly to binding between proteins (DeLano et al., 2002). Fourteen sites 

on mouse or human Fadd-DD were experimentally mutated by other researchers and 

found to be important for the interaction or binding with Fas-DD, which triggers Fas-
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mediated apoptosis (Table 5) (Jeong et al., 1999; Bang et al., 2000; Imtiyaz et al., 2005; 

Hill et al., 2004; Sandu et al., 2005). Of these fourteen experimentally determined 

positions, four are shown on our hydropathy plot to be conserved and persistently 

hydrophilic (Figure 12). Our analysis also indicates that there are two additional 

conserved hydrophilic residues (Glul43 and Aspl 11) which have not been 

experimentally studied (Table 5). Mutagenesis of these two residues may reveal their 

importance in function and further highlight the value of these conservation studies. 

Table 5. Sites on Fadd-DD which are important for the interaction with Fas-DD to 

cause Fas-induced 

Residue D106 

Mutation A 

Residue K125 

Mutation A 

Underlined residues 

apoptosis 

K110 

A 

D127 

A 

may be ex 

R113 

E,A 

R142 

E,A 

R114 

A 

R146 

A 

R117 

E,A 

R166 

E 

Q118 

A 

L172 

E 

D123 

R,A 

D175 

R 

plained by the conservation and hydropathy analysis. 

It could also be argued that the conserved hydrophilic residues on the surface may 

play a role in protein folding and stability as in the case of Lys5 and Lys7 of the cold 

shock protein CspB (Garcia-Mira and Schmid, 2006). Additional support for considering 

the role of charged residues for folding comes from studies of de novo libraries which 

successfully generate stable protein folds based on polar-nonpolar patterns (Go et al., 
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2008). With regard to stability, hydrophilic residues involved in ionic interactions (salt 

bridges) can often be crucial determinants as typified by studies of proteins from 

thermophilic organisms (Sadeghi et al., 2005). Mutagenesis of these residues should 

address this possible role. However, in support of their proposed role in function, the 

conserved Aspl27 in the mouse Fadd-DD was changed to alanine by Bang et al. (2000) 

and resulted in loss of interaction with Fas-DD. The change also did not perturb the 

structure judging from the far-UV CD signal and the *H-15N HSQC spectra (Bang et al., 

2000). 

Bioinformatics Analysis of the CIDs 

In the study conducted by Nagano et al., family 18 GH were divided into two 

functional groups; F4 includes chitinases and F5 includes both hevamine and NAGase 

(Nagano et al, 2001). A proposed evolution of the structure and function of family 18 

chitinases and chitinase-like proteins in the subfamilies A and B can be potentially 

described as follows. Due to divergent evolution, a TIM domain line may initially have 

evolved as hevamine, xylanase inhibitor protein, or seed storage protein (e.g. 

Concanavalin B) in some higher plants, as well as NAGase in some bacteria. While 

hevamine has lysozyme/endochitinase function (Terwisscha van Scheltinga et al., 1996; 

Terwisscha van Scheltinga et al., 1994), xylanase inhibitor protein (Payan et al., 2003) 

and seed storage protein (Hennig et al., 1995) do not have known chitinolytic activity. 

One possible evolutionary scheme suggests that a TIM barrel evolved to a more potent 

family 18 chitinase in two routes: 1) with the incorporation of the CID to form a 

subfamily A chitinase and 2) with the other domains (e.g. chitin-binding domain) to form 

a subfamily B chitinase. In the first route, this double-domain chitinase evolved in 
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archaea, bacteria, fungi, plants and animals, as well as the triple-domain chitinase with 

the fusion of N- or C- terminal domain in S. marcescens. Subsequently, the double-

domain chitinase gene was mutated to have novel functions in animals (Bussink et al., 

2007). 
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CHAPTER IV 

IMPORTANCE OF CONSERVED HYDROPHOBIC RESIDUES IN 

STRUCTURE AND STABILITY OF FADD-DD 

INTRODUCTION 

The mutation of conserved amino acids on some proteins led to decreased 

stability and structural change (Jager et al., 2009; Xiao et al., 2009). In the section on 

bioinformatics, we propose that nine significantly conserved and seven moderately 

conserved hydrophobic residues form a network that is important for the structure and 

stability of Fadd-DD. In order to test this hypothesis, site-directed mutagenesis was 

employed to produce the protein variants. Equilibrium fluorescence and CD experiments 

were performed and the structure and stability were compared between the WT and 

variants. 

To probe the role of the conserved residues hypothesized to be important in 

structure and native state stability, six protein variants were analyzed: conserved Trpl 12 

to phenylalanine, conserved Trpl48 to phenylalanine, non-conserved His 160 to glycine, a 

double variant Trpl 12Phe/Hisl60Gly, conserved Leul 15 to alanine and conserved 

Vall21 to alanine. Trpl48 interacts with Hisl60 in the native state via van der Waals 

forces and through a tertiary hydrogen bond. The significantly reduced side chain of 

His 160 to glycine and loss of the hydrogen bond had no negative effects on native state 

stability. However, the small reduction in side chain of Trpl 48 to phenylalanine, Leul 15 
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and Vall21 to alanine had significant destabilizing effects on the structure of Fadd-DD. 

The change of Trpl 12 to phenylalanine was also destabilizing though to a lesser degree. 

RESULTS 

Cloning, Expression and Purification of WT Fadd-DD 

Pure PCR products for WT Fadd-DD were obtained (Figure 19). The length is 

about 590 bp. Bands on the 3rd and 4th lanes were combined to get more concentrated 

DNA. The purified cDNA was eluted with ddH20 (pH 8.2). The DNA concentration was 

measured at 260 nm in Eppendorf Biophotometer (Eppendorf, NY). The concentrations 

of the samples "circle" and "PCR product" were 54 and 156 ug/ml, respectively. The 

ratio of O.D. values at 260 nm/280 nm was also measured to check the purity of the DNA 

product. Their ratios of approximately 1.8 proved their purity. 

Sequencing results show that the DNA sample contains Fadd-DD cDNA (Figure 

20). Its site is between Nde I and Xho I and it is 303 bases long which encode 100 amino 

acids (TGA as stop codon). BLAST search in NCBI shows that it has 99% identity with 

the human Fadd-DD gene. Two nucleotides were different from the original gene 

sequences noted in Figure 20. These "mismatches" encode the same amino acids. Gel 

electrophoresis shows the insert in the plasmid, which was cut by both Nde I and Xho I 

(Figure 21). The results show that cDNA was successfully inserted into the plasmid 

(Figure 20-21). 
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Figure 19. Agarose gel electrophoresis showing pure PCR product 

Bright bands on the 3rd and 4th lanes were PCR product of cDNA in "small circle". 

Molecular weight marker (MWM) was in the 1st lane. 

TATTTCCCTCTAGAAAAATTTTGTTTACTTTAAAAGGAGATATACCATGGGCA 

GCAGCCATCATCATCATCATCACGGCAGCGGCCTGGTGCCGCGCGGCAGCCA 

His6"Tag thrombin digestion site 

TATGGGGGAAGAAGACCTGTGCGCAGCATTTAACGTCATCTGTGATAATGTG 

Nde I start Cys He 

GGGAAAGATTGGAGAAGGCTGGCTCGTCAGCTCAAAGTCTCAGACACCAAG 

ATCGACAGCATCGAGGACAGATACCCCCGCAACCTGACAGAGCGTGTGCGG 

GAGTCACTGAGAATCTGGAAGAACACAGAGAAGGAGAACGCAACAGTGGCC 

CACCTGGTGGGGGCTCTCAGGTCCTGCCAGATGAACCTGGTGGCTGACCTGG 

TACAAGAGGTTCAGCAGGCCCGTGACCTCCAGAACAGGAGTGGGGCCTGAC 

Stop 

TCGAGGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTG 

Xho I BamH I 

CCACCGCTGAGCAATAACTAGCAATAA 

Figure 20. Sequencing result of the cDNA sample for WT Fadd-DD 
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Figure 21. Gel electrophoresis of inserts after cutting the recombinant plasmid with 

Nde I and Xho I or BamH I 

Faint bands in each lane show insert at 300 kb (lanes from 3 to 6 were cut by Nde I and 

Xho I, while lanes from 8 to 11 were cut by Nde I and BamH I). MWM is in the 1st lane. 

Fadd-DD (100 aa) attached with His-tag and thrombin digestion site (21 aa) has a 

molecular weight of roughly 13.7 kDa. The protein was successfully expressed by E. coli 

BL21(DE3) (Figure 22), since 13 kD bands were observed for the bacteria induced by 

IPTG, but not for the negative control. Moreover, the bacteria induced by IPTG produced 

more Fadd-DD than those without IPTG. However, this is a leaky system, because the E. 

coli RNA polymerase makes a small amount of T7 RNA polymerase without induction. 

High-level expression of cloned genes in E. coli exploits a phage T7 promoter whose 

activity depends on a regulatable transcription unit supplying the specific T7 RNA 

polymerase (Mertens et al., 1995). However, T7 RNA polymerase in some pET vectors 

may bind upstream of the lac UV5 promoter and read through it (Gerstein, 1992). 

Therefore, the target protein is expressed before induction with IPTG causing leaky 
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expression (Spehr et al , 2000). This phenomenon may be due to a small amount of 

lactose in the medium (Trudy et al., 1998). 

After purification through the first Ni-NTA column, the fractions containing His-

tag Fadd-DD were pooled. After the protein was digested with thrombin and loaded onto 

the SDS-PAGE, the bands on the gels showed one smaller band at 11 kDa and one bigger 

band at 13 kDa, indicating that part of the His-tag Fadd-DD was cut (Figure 23). After 

purification through the second Ni-NTA column, the fractions containing Fadd-DD were 

collected. Protein gel electrophoresis showed a pure protein sample (Figure 24). After the 

gel filtration column, pure protein samples were obtained. 

kDa — 

§ 
|: 

21.5 

14.4 

6 
3.5 

Figure 22. Protein analyses on SDS-PAGE 

The 1st lane is the MWM. The 2nd lane is bacteria induced with IPTG; the 3rd lane is 

bacteria without IPTG; the 4th lane is bacteria with pUCl 8 control; the 5th lane is 

bacteria in 6 L culture. 
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Figure 23. His-tag Fadd-DD in the SDS-PAGE 

Protein sample on SDS-PAGE after thrombin digestion. MWM is in the 1st lane. The 3rd 

lane is the mixture of His-tag Fadd-DD and Fadd-DD. 

1 3 5 7 
kDa 

144 «»* 

6 
35 

Figure 24. Fadd-DD in the fractions and SDS-PAGE 

Protein samples on SDS-PAGE after the second Ni-NTA column. The 5th lane is Fadd-

DD. The 7th lane indicates His-tag Fadd-DD and His-tag. 

Mass spectrometry was performed on the purified Fadd-DD in COSMIC. The 

observed average molecular mass of (M+H)+: 11853.217401 u was obtained from the in-
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house deconvolution program attached to the instrument (Figure 25). The predicted 

isotopically averaged molecular weight is 11853.3213 according to 

http://www.scripps.edu/cgi-bin/cdputnam/protcalc3. Therefore, the difference of-9.4 

ppm indicates that the protein is the correct one. DNA sequencing, SDS-PAGE gel 

electrophoresis and mass spectroscopy data confirmed that the cDNA was cloned and the 

expressed recombinant protein is WT Fadd-DD. The recombinant Fadd-DD is composed 

of 104 amino acids, which includes 4 residues left from the thrombin digestion sites and 

100 residues of the original Fadd-DD. Following purification approximately 50 mg of 

protein per liter of culture was obtained. 
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Figure 25. Mass spectrum analysis of Fadd-DD 
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The peaks indicate the different charge states of the protein. 

http://www.scripps.edu/cgi-bin/cdputnam/protcalc3
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The Trpl 12Phe, Trpl48Phe, Hisl60Gly, Trpl 12Phe/Hisl60Gly, Leul 15Ala, 

Vail21 Ala, Leul72Trp and Vall58Trp mutants were synthesized with the Stratagene 

Quick Change Kit and confirmed by DNA sequencing. 

Intrinsic Fluorescence Spectra and Equilibrium Refolding and Unfolding 

The overall character of the fluorescence emission spectra was assessed by 

exciting the protein at 295 nm and observing emission intensities from 310 to 450 nm in 

native buffer and buffer with GndHCl (Figure 26A). Native WT Fadd-DD had a 

fluorescence emission maximum of 337 nm and the denatured protein exhibited a 

fluorescence emission maximum of 360 nm. There is little difference in maximum 

intensities between the native and denatured states considering that Fadd-DD has two 

buried tryptophans (Figure 26 A). This led us to carefully assess the environments of the 

tryptophans in the solution structure. We identified that the side chain of Tip 148 is within 

close proximity to Hisl60 and forms a hydrogen bond with its side chain (Figure 27). 

Therefore, it is quite probable that the fluorescence intensity is quenched in the native 

state by the Trp-His interaction (Lakowicz, 1999). A quenching affect is also noted for 

the human yD crystallin domains (Kosinski-Collins and King; 2003; Kosinski-Collins et 

al , 2004). Therefore, in accordance with the analysis procedure established by Kosinski-

Collins et al. (2004), all equilibrium unfolding/refolding data for Fadd-DD were analyzed 

using the ratio of fluorescence emission intensities at 370 nm over 330 nm. 
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Figure 26. Fluorescence spectra of native and denatured states of Fadd-DD 

(A) The fluorescence of 0.05 mg/ml of WT Fadd-DD (4 uM) in 20 mM Bis-Tris buffer 

(pH 6.2, 2 mM DTT) with different concentrations of GndHCl was measured at 20°C 

with excitation at 295 nm and emission from 310 nm to 450 nm. The solid line, dashed 

line, dash-dot line and dotted line were protein in 0 M, 1 M, 5 M and 6 M of GndHCl, 

respectively. 

(B) The ratio of fluorescence emission intensities at 370 nm/330 nm was used to 

concurrently monitor changes in the unfolding and native maxima. The equilibrium 

unfolding (open circle on the dashed line) and refolding (closed circle on the solid line) 

curves show that the folding is cooperative, two-state and reversible. 
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^ /"—< His16C His160 

Lys149 

Figure 27. Side chain environments around the two buried tryptophans 

Trpl 12 is flanked by Argl 13 and Argl40 and Trpl48 is surrounded by PhelOl, Lysl49 

and His 160. The calculated hydrogen bond between the side chains of His 160 and 

Tip 148 is shown as a dotted line. 

The equilibrium refolding transition of WT Fadd-DD appears to be cooperative 

and reversible since it resembles the unfolding curve (Figure 26B). The overall character 

of the fluorescence emission spectra was assessed by exciting Trpl 12Phe at 295 nm and 

observing emission intensities from 310 to 450 nm in native buffer and buffer with 

GndHCl (Figure 28A). The conformational free energy, AGD"N, indicates how much more 

stable the native conformation of the protein is than the unfolded conformation (Pace, 

1986) and the cooperativity index, m, is the slope of the curve AGD"N over the molar 

GndHCl concentration (Dalai and Pio, 2006). AGD"N and m determined from fits of the 

data to the two-state model are 6.60 ± 0.03 kcal/mol and - 2.41 ± 0.02 kcal/mol/M, 

respectively (Figure 28B). The AGD"N and m, determined for the variants are listed in 

Table 6 (Figure 28B). 
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Figure 28. Fluorescence spectra of native and denatured states of Fadd-DD variants 

(A) The fluorescence of 0.05 mg/ml of Trpl 12Phe in 20 mM Bis-Tris buffer with 

different concentrations of GndHCl was measured. The line types are the same as those 

in Figure 26A. 

(B) Normalized fraction unfolded of the WT and variants as a function of GndHCl 

concentration at 20 °C. The fraction unfolded was measured as the ratio of fluorescence 

intensities 370 nm/330 nm. The proteins are annotated as follows: WT (•); Trpl 12Phe 

(A); Trpl48Phe (0); Hisl60Gly (•); Trpl 12Phe/Hisl60Gly ( • ) . The inset shows AGu as 

a function of GndHCl concentration. The data are graphed using SigmaPlot (Ver. 10). 
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Table 6. The AGU* and m value of the WT and variants 

Protein/variant AG " (kcal/mol) m value (kcal/mol/M) 

~WT 6.60 ± 0.03 -2.41 ± 0.02 

Trpll2Phe 3.57 ±0.06 -2.12 ±0.04 

Trpl48Phe 1.70 ±0.07 -1.11 ±0.04 

Hisl60Gly 7.35 ±0.15 -2.93 ± 0.07 

Trpll2Phe/Hisl60Gly 3.42 ± 0.06 -2.15 ± 0.04 

Leull5Ala 1.81 ±0.15 -1.39 ±0.10 

Vall21 Ala 2.94 ± 0.46 -2.28 ± 0.31 

Leul72Trp 6.54 ±0.62 -2.38 ±0.23 

Vall58Trp 6.53 ±1.10 -2.60 ±0.43 

Leul72Trp and Vall58Trp Variants 

The fluorescence spectra and fraction unfolded of Leul72Trp are both similar to 

those of the WT (Figure 29). The fluorescence spectra and fraction unfolded of 

Vall58Trp are both similar to those of the WT (Figure 30). The AGD"N and m values of 

these two variants are shown in Table 6. 
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Figure 29. Fluorescence spectra of native and denatured states of Leul72Trp 

(A) The fluorescence of 0.05 mg/ml of Leul72Trp in 20 mM Bis-Tris buffer (pH 6.2, 

2 mM DTT) with different concentrations of GndHCl was measured at 20°C with 

excitation at 295 nm and emission from 310 nm to 450 nm. The dashed line and dotted 

line were protein in 0 M and 5 M of GndHCl, respectively. 

(B) The ratio of fluorescence emission intensities at 370 nm/330 nm was used to 

concurrently monitor changes in the unfolding and native maxima. The open circle on the 

dashed line and closed circle on the solid line are equilibrium unfolding of Leul72Trp 

andWT. 
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Figure 30. Fluorescence spectra of native and denatured states of Vall58Trp 

(A) The fluorescence of 0.05 mg/ml of Vall58Trp in 20 mM Bis-Tris buffer (pH 6.2, 

2 mM DTT) with different concentrations of GndHCl was measured at 20°C with 

excitation at 295 nm and emission from 310 nm to 450 nm. The solid line, dashed line, 

dash-dot line and dotted line were protein in 0 M, 1 M, 5 M and 6 M of GndHCl, 

respectively. 

(B) The ratio of fluorescence emission intensities at 370 nm/330 nm was used to 

concurrently monitor changes in the unfolding and native maxima. The open circle on the 

dashed line and closed circle on the solid line are unfolding of Vall58Trp and WT. 
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Leull5Ala and Vall21AIa Variants 

Equilibrium fluorescence was conducted on the two variants, showing faction 

unfolding as the function of the GndHCl concentration (Figure 31 A) and free energy 

(Figure 3 IB). Leul 15 and Vall21 were shown in our previous study to be moderately 

conserved (Li et al., 2009). This is not surprising because in the study conducted by 

Steward et al. (2009), the mutation of Leul 15 to alanine was too unstable to obtain 

enough proteins for study and so Leul 15 was converted to methionine. It can therefore be 

inferred that Vall21 Ala is also unstable since it misfolds, similar to Leul 15Ala variant. 

The AGD"N and m value of these two variants are shown in Table 6. 

The Effect of pHs on Protein Fluorescence 

To test the effect of different pHs on the conformation of Fadd-DD, the 

fluorescence experiment was conducted with the protein in different buffers with pH 

values ranging from 3.9 to 9.8. It appears that the maximum fluorescence intensity 

increases as pH decreases, while the fluorescence maximum wavelength is only 

marginally affected (Figure 32). This phenomenon may due to the fact that the 

hydrophobic core is more buried in lower pH than in higher pH or because of 

fluorescence quenching effect since fluorescence of one of the tryptophans may be 

quenched in the native state. 
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Figure 31. The fraction unfolded and free energy of WT, Leull5Ala and Vall21Ala 

(A) Normalized fraction unfolded of the WT and variants as a function of GndHCl 

concentration at 20°C. The fraction unfolded was measured as the ratio of fluorescence 

intensities 370 nm/330 nm. The proteins are annotated as follows: WT (•); Vall21Ala 

(A);Leull5Ala(-). 

(B) AGu as a function of GndHCl concentration. 
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Figure 32. Fluorescence spectra of 0.05 mg/ml Fadd-DD in buffers with different 

pHs 

The parameters of the fluorescence experiment are the same as previous. The buffers 

used are the same as those used in the quenched-flow experiments. The lines indicate pH 

as follows: 3.9: dotted black; 4.2: gray triangle; 4.8: black circle; 5.2: dashed-dotted-

dotted black; 6.2: dashed black; 9.6: dashed-dotted black; 9.8: solid black. 

CD Spectra and Equilibrium Unfolding 

The overall character of the far-UV and near-UV CD spectra was assessed by 

observing ellipticities from 190 to 250 nm and from 250 to 320 nm in native buffer and 

buffer with GndHCl, respectively (Figure 33A-B). For far-UV CD, the native WT Fadd-

DD had one maximum around 195 nm and two minima at 207 nm and 221 nm indicating 

Fadd-DD is a typical a-helical bundle protein. The denatured protein, as expected, lost 

this characteristic. For near-UV CD, the native WT Fadd-DD had two maxima around 
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260 nm and 295nm, and one minimum around 285 nm. Because there are only two 

exposed aromatic residues, Tyrl33 and PhelOl, it is reasonable that the near-UV CD 

ellipticity is low. The depth at around 285 nm is probably due to the asymmetrical 

arrangement of Tyrl33 (Kelly et al., 2005). The equilibrium unfolding transition 

monitored by far-UV CD at 222 nm shows a two-state transition (Figure 33C). 

Trpl 12Phe and Trpl 12Phe/Hisl60Gly variants showed diminished CD signal and 

decreased stability (Figure 33A-C). Interestingly, the Trpl48Phe variant had significant 

effects on the structure and stability of the protein. Equilibrium unfolding occurred 

rapidly and there was a 4.9 kcal/mol decrease in the free energy of stability (Figure 26B; 

Table 6). The far-UV CD signal was greatly diminished and the near-UV CD signal 

indicated loss of tertiary structure (Figure 33A-B). The Hisl60Gly variant showed both a 

similar equilibrium CD spectra and two-state unfolding transition as the WT Fadd-DD 

(Figure 33A-C). 
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Figure 33. Circular dichroism spectra of native and denatured states of Fadd-DD 

(A) The far-UV CD of 0.2 mg/ml of Fadd-DD (16 uM) in 20 mM Bis-Tris buffer (pH 

6.2, 2 mM DTT) with different concentrations of GndHCl was measured at 20°C with the 

excitation from 190 nm to 250 nm. The solid line, dashed line and dotted line in black 

represent WT protein in 0 M, 1 M and 6 M of GndHCl, respectively. The dashed and 

dotted lines in cyan represent Trpl 12Phe in 1 M and 6 M GndHCl, respectively. The 

solid line in blue represents Trpl48Phe in the native buffer. The solid line, dashed line 

and dotted line in green represent Hisl60Gly in 0 M, 1 M and 6 M of GndHCl, 



Figure 33 Continued. 

respectively. The dashed and dotted lines in pink represent Trpl 12Phe/Hisl60Gly in 1 M 

and 6 M GndHCl, respectively. 

(B) The near-UV CD of 0.6 mg/ml of Fadd-DD (50 uM) in 20 mM Bis-Tris buffer with 

different concentrations of GndHCl was measured at 20 °C with excitation from 250 nm 

to 320 nm. The line types and colors are the same as those in Figure 33A. 

(C) The equilibrium unfolding curves for the WT Fadd-DD and select variants appear to 

be a two-state transition. The proteins are annotated as follows: WT (solid-line with 

circles); Trpl 12Phe (dotted-line with triangle up); Hisl60Gly (dashed-line with squares); 

Trpl 12Phe/Hisl60Gly (dash-dot-line with triangle down). The data are graphed using 

SigmaPlot (Ver. 10). 

Leul72Trp and Vall58Trp Variants 

The far- and near- UV CD spectra of Leul72Trp are shown in Figure 34. The far-

UV CD spectrum of Leul72Trp is similar to the WT (Figure 34A). The near-UV CD 

spectrum of Leul72Trp is different from the WT (Figure 34B) and the ellipticity is 

smaller than that of the WT. The far- and near- UV CD spectra of Vall58Trp are shown 

in Figure 35. The far-UV CD spectrum of Vall58Trp is similar to the WT (Figure 35A). 

The ellipticity from 260 to 285 nm in the near-UV CD spectrum of Vall58Trp is greater 

than that of the WT (Figure 35B), due to the introduction of the extra tryptophan. 
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Figure 34. Circular dichroism spectra of WT Fadd-DD and Leul72Trp 

(A) The far-UV CD of 0.2 mg/ml of Fadd-DD in 20 mM Bis-Tris buffer (pH 6.2, 2 mM 

DTT) measured at 20 °C with the excitation from 200 nm to 250 nm. The solid line 

represents WT protein in the buffer with 0 M GndHCl. Dashed line, dashed-dotted and 

dotted lines indicate Leul72Trp in the buffer with 0 M, 1 M and 5 M GndHCl, 

respectively. 

(B) The near-UV CD of 0.5 mg/ml of WT Fadd-DD and Leul72Trp in 20 mM Bis-Tris 

buffer with different concentrations of GndHCl was measured at 20°C with excitation 

from 250 nm to 320 nm. 
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Figure 35. Circular dichroism spectra of WT Fadd-DD and Vall58Trp 

(A) The far-UV CD of 0.2 mg/ml of Fadd-DD in 20 mM Bis-Tris buffer (pH 6.2, 2 mM 

DTT) and Vall58Trp was measured at 20 °C with the excitation from 200 nm to 250 nm. 

The solid line and dashed line represent WT protein and Vall58Trp in native buffer, 

respectively. 

(B) The near-UV CD of 0.5 mg/ml of WT Fadd-DD and Vall58Trp in 20 mM Bis-Tris 

buffer with different concentrations of GndHCl was measured at 20°C with excitation 

from 250 nm to 320 nm. The solid line, dashed line and dotted line represent Vall58Trp 

in the buffer with 0 M, 1 M and 6 M of GndHCl, respectively. The dashed-dotted and 

dashed-dotted-dotted lines represent WT protein in the buffer with 0 M and IM GndHCl, 

respectively. 

DISCUSSION 

The equilibrium unfolding and refolding results clearly indicate that the unfolding 

transition of WT Fadd-DD is well-described by a two-state equilibrium folding model 
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and is reversible (Figure 26B, 33C). Interestingly, Fadd-DD exhibits fluorescence 

quenching. There are only a few proteins which demonstrate native-state fluorescence 

quenching effects. The most notable example is barnase. The emission intensity of wild-

type barnase increases dramatically as the pH is increased from 7.0 to 8.5 (Loewenthal et 

al., 1991), which can be explained by the loss of the quenching effect of Hisl8. This 

suggests that Trp94 is quenched by the protonated form of histidine (Lakowicz, 1999). 

Investigation of the NMR structure of barnase revealed that His 18 and Trp94 are very 

close in the three-dimensional structure. As for Fadd-DD, His 160 forms a hydrogen bond 

with Tip 148, which was thought to be the most likely cause of the intrinsic fluorescence 

quenching. Mutagenesis of the histidine residue however, did not eliminate the 

fluorescence quenching effect. Other amino acids are known to quench tryptophan 

fluorescence, such as arginine, lysine and phenylalanine (Chen and Barkley, 1998; Clark 

et al., 1996; Hennecke et al., 1997). Therefore, the likely candidates for the source of 

fluorescence quenching are Trpl 12 by one or both of the flanking arginines and/or 

Trpl48 by PhelOl or Lysl49 (Figure 27). 

Biophysical characterization of the four Fadd-DD variants revealed that changes 

to the conserved Trpl 12 and Trpl48 had adverse effects on the stability. The degree of 

the effect for the Trpl48Phe substitution was, however, surprising. Within the 

superfamily this site is highly conserved, but there are instances where other superfamily 

members have phenylalanine or even isoleucine in place of the tryptophan (Figure 9-11). 

The large effect of a Tip mutation is however, not without precedent. The Trpl09Phe 

substitution in the cellular retinoic acid-binding protein also resulted in significant 

destabilization of the native protein, substantial aggregation and little yield (Clark et al., 
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1996). The substitution of Trpl 33 to valine in E. coli dihydrofolate reductase resulted in a 

partially unfolded protein and a 5 kcal/mol decrease in free energy (Ohmae et al., 2001). 

In lysozyme, mutation of Trp62 to glycine led to misfolding due to the significant loss of 

long-range interactions (Zhou et al., 2007). In p2-microglobulin, mutation of Trp95 to 

glycine destabilized the native state and greatly diminished secondary and tertiary 

structures (Esposito et al., 2008). 

Conversely, the Hisl60Gly had no adverse affects on structure and stability. In 

fact, the stability marginally increased. The substitution for glycine was made on the 

basis that a naturally occurring glycine substitution occurs at this location in the mouse 

sequence. Thus, the mutagenesis and biophysical study on a pair of interacting residues 

where one is conserved and one is not provides insight into the role of the conserved 

residues play in structure and stability. The effect of mutating Trpl 12 to phenylalanine 

was pronounced. The change to this conserved residue produces a protein which is 

destabilized. The Trpl 12Phe variant in conjunction with the other four variants 

(Trpl48Phe, Hisl60Gly, Leul 15Ala and Vall21 Ala) thus provides initial support for the 

hypothesis that the conserved residues are important for stability and the structure of 

Fadd-DD. Further, these results indicate that conserved residues themselves can have 

varying roles of importance in stability and structure. To summarize, Trpl 12Phe, 

Trpl48Phe, Trpl 12Phe/Hisl60Gly, Leul 15Ala and Vall21 Ala variants decrease the 

stability. Hisl60Gly, Leul72Trp and Vall58Trp variants do not change the stability 

significantly. 

A research group led by Dr. Jane Clarke (University of Cambridge, England) 

(Steward et al , 2009) showed that the variants of Trpl 12Ala, Leul 15Met, Leul 19Met, 
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Ilel29Ala, Leul45Met, Trpl48Phe, Leul61Ala, Leul65Ala, Vall73Ala and Vall77Ala 

had decreased equilibrium stability compared to the WT. These ten residues are 

conserved according to our bioinformatics study (Li et al., 2009). These results further 

support our hypothesis about the nature of conservation in Fadd-DD. 

Fadd-DD is the only member of death domain superfamily to be studied by site-

directed mutagenesis. So the effects on stability in Fadd-DD cannot be compared at this 

time to other DDs. See future work where I propose studying pyrin protein from this 

superfamily. The PYD has been studied thermodynamically (Dalai and Pio, 2006). Its 

stability is 1.75 kcal/mol, lower than Fadd-DD. 
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CHAPTER V 

IMPORTANCE OF CONSERVED HYDROPHOBIC RESIDUES 

IN FOLDING OF FADD-DD 

INTRODUCTION 

Attention has been paid to the link between protein sequence conservation and 

folding (Greene et al., 2003). In the section of bioinformatics, we propose that nine 

significantly conserved and seven moderately conserved hydrophobic residues form a 

network, which is important for the folding of Fadd-DD. In order to test this hypothesis, 

site-directed mutagenesis was employed to produce the protein variants. Experimental 

studies were conducted to characterize the folding behavior of Fadd-DD using four 

biophysical techniques; which include stopped-flow fluorescence spectroscopy and CD. 

The folding kinetics were then compared between the WT and variants. 

To probe the role of the conserved residues hypothesized to be important in 

folding, four protein variants were analyzed: Trpl 12 to phenylalanine, Trpl48 to 

phenylalanine, His 160 to glycine and Trpl 12Phe/Hisl60Gly. Previous results showed 

that the significantly reduced the side chain of His 160 to glycine had no negative effects 

on native state stability; the small reduction in side chain of Tip 148 to phenylalanine had 

significant destabilizing effects on the structure; and the change of Trpl 12 to 

phenylalanine was also destabilizing though to a lesser degree. 

Folding kinetics studies of three CARD proteins in the death domain superfamily 

have been described previously and display complex behavior consisting of multiple 
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phases, parallel pathways and kinetically trapped species (Chen and Clark, 2004; Chen 

and Clark, 2006; Milam et al., 2007). In contrast, the folding behavior of WT Fadd-DD is 

rapid, biphasic and the majority of the hydrophobic core is formed in the first phase. 

RESULTS 

Folding Kinetics of WT Fadd-DD, Trpll2Phe and Hisl60Gly Variants 

Denatured protein was refolded in a final concentration of 1 M GndHCl to 

achieve the maximum change in fluorescence between the native and unfolded states. We 

established that Fadd-DD is native at this concentration of denaturant, because the ratio 

of fluorescence intensities at 370 nm over 330 nm and the ellipticities at both near- and 

far-UV CD are similar for Fadd-DD in 0 M and 1 M GndHCl (Figure 26 and Figure 33). 

The time course of refolding of WT Fadd-DD was examined in single-mixing stopped-

flow experiments by monitoring changes in fluorescence emission (Figure 36A). The 

residuals of the fit to a biphasic relaxation equation are shown in Figure 3 6 A. The 

relaxation time of the first phase in the hydrophobic core formation is 44.0 ms and that of 

the second is 123.0 ms (Table 7). The gap between the denatured state baseline and the 

start of the refolding trace indicates that there is a burst phase within the dead time of the 

experiment. Analysis of the amplitudes indicates that 28%, 55% and 17% of the folding 

occurs in the burst phase, the first phase and the second phase, respectively. The folding 

rates of different concentrations of Fadd-DD (ranging from 0.01 to 0.2 mg/ml) were 

similar to those of 0.05 mg/ml, indicating that the folding rates are not concentration 

dependent (see Figure A7 and Table A10). 
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Figure 36. Stopped-flow fluorescence studies of Fadd-DD WT and Hisl60Gly 

The folding process was initiated with a 1:5 dilution at 20°C. The native state and 

denatured state baselines are denoted by N. B. and D. B., respectively. 

(A) Refolding of denatured WT protein at 0.05 mg/ml in 20 mM Bis-Tris buffer (pH 6.2) 

and 2 mM DTT was monitored by stopped-flow fluorescence spectroscopy. The 

excitation wavelength was 295 nm and emission was monitored using a bandpass filter 

(300-340 nm) therefore the emission increases (see Figure 26A). The dead time was 

8.6 ms. The residuals of the fit to a double exponential equation are shown below the 

time course. 

(B) Refolding of denatured Hisl60Gly at 0.05 mg/ml in Bis-Tris buffer was monitored by 

stopped-flow fluorescence spectroscopy. The emission was monitored with the same 

bandpass as the WT protein. The residuals based on the fit to a double exponential 

equation are also shown. 
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Table 7. Refolding kinetics of WT Fadd-DD, Hisl60Gly and Trpll2Phe and unfolding of 

WT monitored by intrinsic tryptophan fluorescence 

Protein AJ k t (s~y) A~2 Ms - 1 ) Â  k3(s~l) 

~WT 0.29 ±0.01 22.73 ±0.57 0.09 ±0.01 8.13 ±0.47 - -

refolding 

Hisl60Gly 0.58 ±0.01 34.05 ± 0.33 0.20 ±0.01 8.51 ±0.15 -

Trpll2Phe 0.81 ±0.01 11.97 ±0.15 0.26 ±0.01 4.13 ±0.15 0.08 ± 0.00 0.33 ±0.01 

WT 0.28 ±0.00 6.02 ±0.08 0.04 ±0.00 1.39 ±0.21 -

unfolding 

Refolding and unfolding are performed in 1 M GndHCl (pH 6.2) and 6 M GndHCl (pH 6.2), 

respectively. 

The time course of refolding for the His l60Gly variant was analyzed by stopped-

flow fluorescence spectroscopy (Figure 36B). The timescales were relatively similar 

indicating that the substitution had only a small effect on folding kinetics (Table 7). In 

fact, the slight increase in stability appears to correspond to the marginal increase in 

folding rates. Due to the inability to acquire sufficient amounts of the Trp l48Phe variant 

and its partially unfolded character, folding kinetic studies could not be conducted. The 

Trpl 12Phe variant was also characterized by stopped-flow fluorescence and the folding 

analysis revealed three phases (Figure 37). The relaxation timescales are as follows: 

84 ms, 242 ms and 3 s (Table 7). This change from a double to a triple exponential 

equation is based on the significant improvement in the fit and the distributions of the 

residuals (Figure 37). 
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Figure 37. Stopped-flow fluorescence studies of Trpll2Phe 

Refolding of denatured Trpl 12Phe at 0.12 mg/ml in Bis-Tris buffer was monitored by 

stopped-flow fluorescence spectroscopy. The emission was monitored by a bandpass 

filter (362-396 nm) therefore the intensity change goes down (see Figure 28A). The 

residuals of the fits are shown for both a double and triple exponential equations are 

shown. 

The time course of unfolding of WT Fadd-DD was examined in single-mixing 

stopped-flow experiments by monitoring changes in fluorescence emission (Figure 38). 

The residuals of the fit to a biphasic relaxation equation are also shown. The relaxation 
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time of the first phase in the hydrophobic core formation is 166 ms and that of the second 

is 719 ms (Table 7). 
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Figure 38. Stopped-flow fluorescence unfolding studies of Fadd-DD in 6 M GndHCl 

The unfolding process was initiated with a 1:5 dilution at 20°C. Unfolding of native WT 

protein at 0.12 mg/ml in 20 mM Bis-Tris buffer (pH 6.2), 2 mM DTT and 1 M GndHCl 

was mixed with buffer with 7 M GndHCl and monitored by stopped-flow fluorescence 

spectroscopy. The excitation wavelength was 295 nm and emission was monitored using 

a bandpass filter (300-340 nm) therefore the emission change goes down. The dead time 

was 8.6 ms. The residuals of the fit to a double exponential equation are shown below the 

time course. 



Stopped-flow Far-UV CD Spectroscopy 

The folding kinetics of Fadd-DD at a final GndHCl concentration of 1 M, 

monitored by far-UV CD reveals the rate of the secondary structure formation (Figure 

39). One single phase with a rate of 23.4 ± 0.4 s"1 and amplitude of 16.8 ± 0.1 

millidegrees was calculated. 
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Figure 39. Stopped-flow far-UV CD study of Fadd-DD 

The folding process was initiated with a 1:5 dilution at 20 °C. Refolding of denatured 

WT protein at 0.15 mg/ml in 20 mM MES buffer (pH 6.2) and 5 mM DTT was 

monitored by stopped-flow far-UV CD spectroscopy at 225 nm. The dead time was 9.3 

ms. The residuals are shown below the time course. D.B. and N.B. stand for the 

denatured baseline and native baseline, respectively. 



Stopped-flow Near-UV CD Spectroscopy 

The stopped-flow near-UV CD experiment conducted on Vall58Trp does not 

demonstrate any noticeable change of CD signal in folding (Figure 40). This is probably 

due to the inadequte difference of ellipticity between the native and denatured states, 

0 1 

which is approximately 80 deg*cm *dmoi" at 280 nm (Figure 35B). 

Time (s) 

Figure 40. Stopped-flow near-UV CD study of 0.3 mg/ml Vall58Trp 

The folding process was initiated with a 1:5 dilution at 20 °C. Refolding of denatured 

Vall58Trp variant at 1.5 mg/ml in 5 M GndHCl, 20 mM Bis-Tris buffer (pH 6.2) and 

2 mM DTT was monitored at 285 nm by stopped-flow near-UV CD spectroscopy with 

TC-100 cuvette. The path-length is 10 mm. The traces shown are an average of thirty 

shots. 
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By comparison, the folding of hen lysozyme was implemented at 289 nm with the 

final concentration of 1 mg/ml (Radford et al., 1992) and the difference of of ellipticity 

9 1 

between the native and the denatured states is about 120 deg*cm *dmol" at 289 nm 

(Sasahara et al., 2000). Construction of one more tryptophan to the Vall58Trp is needed 

in order to create more near-UV CD signal for folding study. 

DISCUSSION 

The folding behavior of WT Fadd-DD is both rapid and biphasic. Approximately 

80% consolidation of the hydrophobic core appears to occur in the intermediate state. The 

absence of a slow phase suggests proline isomerization does not exist in the folding 

process. Because Fadd-DD contains only one tyrosine on the surface, the difference in 

near-UV CD ellipticity between the native and denatured states is relatively small. 

Therefore, the timescale of the tertiary structure formation could not be obtained. 

Mutation of one exposed residue to tryptophan could increase the difference in the near-

UV CD spectra. Fadd-DD uniquely has a hydrogen bond between the side chain of 

His 160 and the highly conserved Trpl48 in the core. Therefore, Trpl48 is not only an 

ideal probe of the hydrophobic collapse but also to monitor the structuring of the core by 

techniques such as quenched-flow hydrogen-deuterium exchange. 

Within the death domain superfamily the folding behavior of three members of 

the CARD family have been previously studied. These are procaspase-1, RICK-CARD 

and Apaf-1-CARD. All three show complex kinetics. The refolding of RICK-CARD 

contains multiple phases as well as kinetically trapped species, which are unrelated to 

proline isomerization (Chen and Clark, 2003; Chen and Clark, 2006). Apaf-1-CARD, like 

RICK-CARD, appears to fold via parallel paths due to two unfolded conformations 



(Milam et al., 2007); while procaspase-1, like RICK-CARD, also folds through 

kinetically trapped species (Chen and Clark, 2004). In comparison, the folding pathway 

of Fadd-DD appears to be more straightforward and is thus a good model in which to 

investigate the determinants of the all-a-helical Greek-key topology. 

Biophysical characterization of four Fadd-DD variants revealed that changes to 

the conserved Trpl 12 had adverse effects on folding while the Trpl48 variant could not 

even be studied due to its low stability. The degree of the effect for the Trpl48Phe 

substitution is not without precedence. In antichymotrypsin, the Trpl94Phe mutation 

lowered the kinetic barrier to misfolding (Pearce et al., 2007). 

Conversely, the Hisl60Gly had no adverse affects on structure, stability or 

folding. In fact, the refolding rates marginally increased. Thus the mutagenesis and 

biophysical study on a pair of interacting residues where one is conserved provides initial 

insight into the role of the conserved residues in folding. The affect of mutating Trpl 12 

to phenylalanine was pronounced. The change to this conserved residue produces a 

protein which folds significantly more slowly. In addition to a doubling in the folding 

timescales of the first two phases, a third phase now appears and is on the second not 

millisecond timescale. Analysis of mutated conserved residues in other proteins such as 

apo-azurin also show changes to the folding rate in proteins (Engman et al., 2004). The 

Trpl 12Phe variant in conjunction with the other two variants (Trpl48Phe and 

Hisl60Gly) thus provides initial support for the hypothesis that the conserved residues 

are important for folding of Fadd-DD. Furthermore, these results indicate that conserved 

residues themselves can have varying roles of importance at different stages of folding. 
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To summarize, the folding rate of Trpl 12Phe is slower than the WT. Trpl48Phe, 

Leul 15Ala and Vall21 Ala variants cause misfolding. There are two phases for the 

hydrophobic core formation and only one phase for the secondary structure formation. 

The majority of hydrophobic core formation occurs at similar timescale with the 

secondary structure formation, indicating the hydrophobic core and secondary structure 

form concomitantly. The second minor phase is probably due to the complete exclusion 

of the two tryptophans from the solvent at the later stage of folding. 

A research group led by Dr. Jane Clarke (Steward et al., 2009) showed that the 

folding rates of Trpl 12Ala, Leul 15Met, Leul 19Met, Leul45Met, Leul61 Ala, 

Leul 65 Ala, Vail 73 Ala and Vall77Ala in 2 M urea were slower than that of the WT. 

These eight residues are conserved according to our bioinformatics study (Li et al., 2009). 

These studies provide support for our hypothesis about the nature of conservation in 

Fadd-DD. 

Fadd-DD is the only member of death domain superfamily to be studied by site-

directed mutagenesis. So the effects on folding in Fadd-DD cannot be compared at this 

time to other DDs. See future work where I propose studying pyrin protein from this 

superfamily. 
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CHAPTER VI 

FOLDING OF FADD-DD MONITORED BY QUENCHED-FLOW, HYDROGEN-

DEUTERIUM EXCHANGE AND NMR SPECTROSCOPY 

INTRODUCTION 

Fadd-DD is composed of six a-helices which is shown in Figure 41 A. The folding 

pathway of Fadd-DD is more straightforward than the folding of CARDs and is thus a 

good model with which to investigate the determinants of the all a-helical Greek-key 

topology. We are interested in determining if the helices which make up the canonical 

Greek-key structure (helices 1, 2, 4, 5) form on a faster folding time-scale than the other 

helices (3 and 6) (Higman and Greene, 2006; Steward et al., 2009). Stopped-flow 

fluorescence studies by our group indicate that folding is biphasic (k\ = 22.73 s"'and fe = 

8.13 s"1) with the majority of the folding occurring in the first phase (amplitude = 76%) 

(Li et al., 2009). In our condition, the refolding buffer is 20 mM Bis-Tris buffer (pH 6.2) 

and temperature is 20°C. In folding studies conducted by Steward et al. (2009) one rapid 

phase with a rate of 40 s"1 was detected using different experimental conditions, including 

the refolding buffer of 50 mM phosphate buffer (pH 7.0) and 150 mM NaCl and 

temperature is 25°C. In our present experiments using stopped-flow far-UV CD 

spectroscopy, the folding of the secondary structure of Fadd-DD was determined to be 

monophasic with a rate similar to that of the majority of hydrophobic core formation. In a 

more detailed study using a combination of quenched-flow HX and NMR spectroscopy 

the folding of twenty-two amide hydrogens in the backbone of helices and two amide 



125 

hydrogens in the backbone of loops are monitored. The results indicate that the folding of 

all six helices is monophasic and the formation of hydrogen bonded secondary structure 

is fundamentally cooperative. In addition, the equilibrium HX of Fadd-DD was also 

performed and the exchange rates of twenty-three residues are calculated. Most of the 

amide protons that are slowest to exchange are in the core region. This experiment is the 

first time to the best of our knowledge that folding kinetics monitored by hydrogen bond 

formation was conducted on an all a-helical protein with a Greek-key topology. 

A B 
Helix C-terminus 

Helix 2 

Helix 

N-terminus 

Figure 41. Structure of Fadd-DD showing stable backbone amides 

(A) Ribbon diagram of Fadd-DD drawn in PyMOL v0.99 (DeLano Scientific). The six 

helices are annotated. 

(B) Location of the twenty-three backbone amides which persist for over twenty-four 

hours and thus have the greatest protection in Fadd-DD (FlOl, V103, C105, LI 15, Rl 17, 

Q118, L119, V121,1129, V141, S144, L145,1147, W148, K149, V162, G163, A164, 

R166, M170, A174, V177, Q182) are shown in black in the context of the secondary and 

tertiary structure using PyMOL. 



RESULTS 

Test of Protein State in Different pHs 

The fluorescence was used to monitor the state of the protein in different pHs in a 

sequence of quenched-flow experiments. The fluorescence spectra of the sample starting 

with the denatured protein resembles that of the native protein of all the pHs tested 

(Figure 42), indicating the protein maintains its native state after refolding. 

*H-NMR Spectra 

The 'H-NMR spectrum of 4 mg/ml Fadd-DD in 100% D20, 200 mM 

K2HPO4/100 mM citric acid and 5 mM DTT (pD 4.4) at 30°C are shown in Figure 43. 

The peak height of the methyl proton of Leul 19 was used to calibrate the protein 

concentration in the samples. 

Comparing the Exchange Rates from Equilibrium HX Studies 

The native HSQC spectrum of Fadd-DD in K2HP04/citric acid buffer (pH 4.8) 

and 10%> D2O is shown in Figure 44 and is similar to the previously published HSQC in 

potassium phosphate buffer (pH 6.2) (Berglund et al., 2000). 
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Figure 42. The fluorescence spectra of Fadd-DD in different buffers in the 

quenched-flow process 

The solid line and dashed line indicate the fluorescence spectra of the sample starting 

with the denatured protein and that starting with the native protein, respectively. The 

parameters of the fluorescence experiment are the same as previous. Panels A, B and C 

show 0.2 mg/ml protein in refolding buffer (pH 6.2), 0.1 mg/ml protein in pulsing buffer 

(pH 9.8) and 0.05 mg/ml protein in quenching buffer (pH 4.8), respectively. 
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The HX rate is dependent on the conditions such as pH and temperature 

(Englander and Mayne, 1992). The rates of HX (kex) of slowly exchanged amide protons 

of native Fadd-DD were measured at pD 4.4 and 30°C by recording HSQC spectra every 

eight hours for one week. Exchanges of three amide protons were observed at this pH but 

were too fast for the rates to be measured. Except for some overlapping peaks in the 

spectra, a large number of identifiable backbone amide protons are exchanged during the 

process of buffer exchange. Thus, the exchange rates of twenty-three slowly exchanging 

amide protons which are defined as those that persist for twenty-four hours or more were 

calculated. The range is between 3.7x10" min" and 6.7x10" min" . Normalized 

intensities of the eight peaks with the slowest exchange rates are shown as a function of 

time in Figure 45A. Protected amides occur in all six helices (Figure 45B). However, the 

number of protected amides did not distribute evenly among the six helices; for example, 

only one amide proton 1129 in helix 3 was protected. The HSQC spectra are shown in 

Figure 47. Figure 48 shows the hydrogen bonding pattern in Fadd-DD. Most assigned 

peaks are not visible after one week, except for three, W148, V162 and V177, which 

have the slowest exchange rates. 

VI77 has both the slowest exchange rate and the highest protection factor (Figure 

45). The very stable and local hydrogen bond between W148 and SI44 as well as 

between S144 and R140 suggests that these regions of helix 4 are very stable. Thus, it 

appears as if helix 4 is the most stable. The locations of the backbone amides which are 

stable for more than twenty-four hours is shown in Figure 41B and are distributed among 

the six helices, although most are located on helices 2, 4 and 5 (Figure 45B, 46). Among 



the twenty-three stable amides, ten residues are conserved according to the bioinformatics 

study, indicating a moderate correlation between their stability and conservation. 
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Figure 43. The *H-NMR spectrum of 4 mg/ml Fadd-DD in 100% D20,200 mM 

phosphate/100 mM citric acid and 5 mM DTT (pD 4.4) at 30°C 

The upfield peak marked with an asterisk shows the methyl proton of Leul 19. 
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Figure 44. The HSQC spectrum of Fadd-DD in 50 mM citric acid/100 mM K2HP04, 

5 mM DTT (pH 4.8) and 10% D 20 at 30°C 

The twenty-four stable amide protons in our kinetic study are indicated in bold and 

underlined. 
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Figure 45. Equilibrium amide hydrogen exchange in Fadd-DD 

(A) The HX of the ten slowest exchanging peaks are plotted (LI 15: white diamond, 

LI 19: white triangle down, SI44: white square, LI45: white triangle up, 1147: black 

triangle down, W148: white circle, VI62: black circle, R166: black diamond, A174: 

black square, VI77 black triangle up). 



132 

Figure 45 Continued. 

(B) The histogram shows the distribution of experimentally calculated exchange rates for 

the native protein at pD 4.4 and 30°C versus residue number. Regions of secondary 

structure are indicated schematically. 
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Figure 46. Distribution of protection factors for Fadd-DD 

The histogram shows the distribution of protection factors for the native protein at pD 4.4 

and 30°C versus residue number. Regions of secondary structure are indicated 

schematically. 
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Figure 47. The HSQC spectra of 4 mg/ml Fadd-DD after exchange into D 20 buffer 

containing 50 mM citric acid/100 mM K2HP04 (pD 4.4) 

Panels A, B, C and D are day 1, 2, 3 and 4, respectively. The contour level of the HSQC 

spectrum of day 1 is 6 x 106. In order to see all the peaks, the contour level of the 

spectrum of day 2 is reduced to 1.5 x 106, which is the same as those of day 3 and 4. 
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Figure 47 Continued. 
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Hydrogen Exchange and Quenched-flow Coupled with NMR Spectroscopy 

Following HX in D2O buffer, a total of twenty-four well-resolved and assignable 

amide protons were identified to be stable. There is one more stable amide because the 

time for acquiring NMR spectra for the quenched-flow study is about six hours, which is 

shorter than that for the equilibrium study. The amide protons of N107 and R140 have 

very high exchange rates and the peaks disappear after sixteen hours of exchange. They 

are therefore not included in the quenched-flow kinetic studies, leaving twenty-two 

residues to be analyzed. A total of twenty-two amide protons could be monitored in the 

six helices. 

Figure 48. The hydrogen bonding pattern of Fadd-DD 

The curves and arrows indicate the hydrogen bonding and the direction. The dashed lines 

show the two unstable hydrogen bonds of N107 and R140. 



The ratio of volume among the protein solution, refolding buffer and pulse buffer 

is 1:4:5. The content of proton and deuterium after mixing of the three buffers are 90% 

and 10%, respectively. Therefore, the maximum proton occupancy of the quenched-flow 

study is 90%. In our study, the maximal proton occupancy is about 90%. 

After the quenched-flow experiments were performed with eight different 

refolding times, the structural details of the folding reaction were obtained by analyzing 

the samples by 2D ^ - ^ N HSQC measurements. Figure 49 displays the protection time 

courses obtained for individual amides, grouped according to their distribution in 

different helices. HSQC spectra are also shown in Figure 50. In addition, two amide 

protons from two residues (V121 and Ml70) located in loop structures could also be 

monitored with folding rates of 20.72 ± 7.03 s"1 and 21.34 ± 6.74 s"1, respectively (Figure 

51). All of the kinetics were found to be monophasic and a single exponential function 

could be used to fit the data satisfactorily (Figure 49). The resulting curves are all 

virtually identical, with rates between 19 s"1 and 22 s"1 (Table 8). The average rate of 

hydrogen bond formation is 20.85 ± 1.66 s"1 (Table 8). The results indicate that all 

detectable amides acquire protection from exchange concomitantly, with simple mono-

exponential time courses. No intermediate or partially protected species are observable in 

these experiments and folding appears to be highly cooperative. 
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Figure 49. The kinetics of hydrogen bond formation of twenty-two residues in the 

six helices of Fadd-DD 

Panels A, B, C, D, E and F show the proton occupancies of backbone amides from helix 

1 (FlOl, V103 and C105), 2 (LI 15, Rl 17, Q118, LI 19 and K120), 3 (1129), 4 (V141, 

S144, L145,1147, W148 and K149), 5 (V162, G163, A164 and R166) and 6 (A174, 

VI77 and Q182), respectively. This data was fit to a single exponential equation (black 

curve in plots) to calculate the folding rate using SigmaPlot. 
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Figure 50. The HSQC spectra of 4 mg/ml Fadd-DD in D2O after quenched-flow 

folding and buffer exchange into D2O buffer (50 mM citric acid/100 mM K2HPO4, 

pD 4.4) 

Select refolding times are shown in the following panels: (A) 9.9 ms, (B) 53.2 ms, (C) 80 

ms and (D) 200 ms. The hydrogen bond formation of twenty-two residues are followed. 
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Figure 51. The kinetics of hydrogen bond formation of two loop residues (V121 and 

M170) 

Panels A and B show the proton occupancy of VI21 and Ml70, respectively. 

Table 8. The folding rates and the formation of secondary structure and hydrogen 

bonds for each helix of Fadd-DD 

Secondary structure formation 

(Stopped-flow far-UV CD) 

Average Hydrogen bond formation 

(Quenched-flow/NMR spectroscopy) 

Rate (s1) 

23.4 ±0.4 

20.9 ±1.7 

Amplitude 

16.8 ±0.1 

0.72 ± 0.0 

Helix 1 

Helix 2 

Helix 3 

Helix 4 

Helix 5 

Helix 6 

19.1 ±4.0 

21.0 ±3.4 

19.7 ±7.0 

21.0 ±2.8 

22.5 ±4.2 

20.9 ±5.4 

0.8 ±0.1 

0.7 ±0.0 

0.7 ±0.1 

0.7 ±0.0 

0.7 ±0.1 

0.7 ±0.1 
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DISCUSSION 

In the equilibrium HX study conducted by Jeong et al. with mouse Fadd-DD, 

thirty-five residues spanning the six helices were shown to have the slowest exchanging 

protons in an equilibrium HX study (Jeong et al., 1999). Invariably, residues involved in 

the hydrophobic core formation have the slowest exchanging protons. Among these 

thirty-five residues, nineteen residues are strongly protected in the human Fadd-DD as 

well (Figure 4IB). The backbone amides with hydrogen bonds in the loops of both mouse 

and human Fadd-DD, VI21 and LI70 (Ml70 in human homologue), are also protected. 

More backbone amides from mouse Fadd-DD were found to have slower exchange rates 

than human Fadd-DD. It may be explained that in our study, the protein goes through 

approximately twelve hours of buffer exchange from the water based buffer to D2O based 

buffer. Since there are three free cysteines in Fadd-DD, the protein cannot be lyophilized. 

Therefore, some of the backbone residues with weak hydrogen bonds may be exchanged 

during the process whereas the mouse Fadd-DD was lyophilized and directly dissolved in 

D2O. The pH also differed and Fadd-DD pH 4.0 was used for the mouse Fadd-DD study. 

For human Fadd-DD, only one slowly exchanging amide group was found in 

helix 3 in comparison to the other helices. This observation is in good agreement with the 

discovery that helix 3 is more mobile than the other helices (Berglund et al., 2000). The 

observation that helix 3 has higher relative accessibility compared to the other helices 

shows this helix is clearly more exposed. In mouse Fadd-DD helix 3 also has the most 

internal flexibility of all helical elements according to the profile of amide solvent 

exchange rates (Jeong et al., 1999). 
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There appears to be a limited number of equilibrium HX studies conducted on 

proteins with the Greek-key topology. One study is on ribosomal S6 (Haglund et al., 

2009), which belongs to the a/B-plait superfamily, two are members of all-P 

immunoglobulin superfamily, Llama antibody fragment (Perez et al., 2001) and cell-

surface receptor protein CD2.D1 (Parker et al., 1997) and another is on the human 

ephrin-B2 ectodomain, which also possesses the Greek-key topology (Ran et al., 2008). 

The amide protons in ribosomal S6 located in pi, a 1 and (33 have greater protection 

factors (Haglund et al., 2009). They correspond with helix 1, 2 and 4 in Fadd-DD, 

respectively (Higman and Greene, 2006). Of these three helices, 2 and 4 have significant 

protection in Fadd-DD. Similar to our result, the residues on 02 in ribosomal S6 which 

corresponds to helix 3 in Fadd-DD has the lowest protection factor of all secondary 

elements (Haglund et al., 2009). The llama antibody fragment appears to have more 

complex secondary elements consisting of eleven P-strands. It appears that strands 4 and 

9, which correspond to helices 2 and 5 in Fadd-DD, have higher protection factors (Perez 

et al., 2001; Higman and Greene, 2006). Again, helix 2 as well as helix 5 in Fadd-DD are 

well protected. In the cell surface receptor protein, CD2.D1, protected amides are located 

throughout the various p-stands as well as in loops (Parker et al., 1997). Interestingly, the 

three highest protection factors are in P-strand C and the loop between p-strands D and E 

(Parker et al., 1997). These correspond to helix 3 and the turn between helices 4 and 5 in 

Fadd-DD (Higman and Greene, 2006). All of these studies indicate that proteins with 

Greek-key topology have similar stable cores despite different secondary structures. 

There is good agreement between folding rates measured by stopped-flow far-UV 

CD and quenched-flow indicating that they all monitor the same cooperative transition. It 
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is also similar to the first and dominant phase of folding monitored by stopped-flow 

fluorescence spectroscopy (22.73 s"1) (Li et al., 2009). While there is only one phase 

indicated by stopped-flow far-UV CD and quenched-flow and two phases for the study of 

stopped-flow fluorescence it is not an unprecedented result. There are examples of 

several proteins which also show similar kinetic behavior. For example, the study 

conducted on bacteriophage X, lysozyme showed that there are two phases for intrinsic 

fluorescence and far-UV CD, but only one phase for both HX and NMR as well as HX 

and mass spectrometry (Di Paolo et al., 2010). Additionally, for human fibroblast growth 

factor, two phases were detected for stopped-flow fluorescence spectroscopy, one phase 

for stopped-flow far-UV CD and multiple rates for HX and NMR (Samuel et al., 2001). 

In the quenched-flow experiment conducted on phage X lysozyme, it was 

suspected that two factors account for the 15-20% lack of protection: 1), some back 

exchange of deuterium for hydrogen occurred following quenching and before the final 

buffer exchange into the D2O buffer; 2), sample preparation required several hours due to 

the large amount of protein needed for NMR (Di Paolo et al., 2010). We think that these 

factors also apply to our experiment, which could explain the fact that proton occupancy 

of all amides does not go to approximately zero. It should be noted that in our study the 

data were plotted with peak intensity because the standard errors are less than those 

plotted with peak volume although the time scales of hydrogen bond formation are 

similar. 

Our quenched-flow experiments indicate that all six helices fold concomitantly. 

The folding behavior of individual amide protons with HX quenched-flow and NMR 

spectroscopy have been conducted on well over ten proteins. In some proteins, it is 



shown that select amide protons fold earlier than the others. For example, in P-

lactoglobulin, it was found that during the folding process, the intermediate contains a 

hydrogen bonded structure in the core of PF, PG, PH and the major a-helix (Kuwata et 

al., 2001). In hen lysozyme, the fast phase and slow phase of the a-domain both have 

greater folding rates than those of the P-domain (Lu et al., 1997). Furthermore, in human 

fibroblast growth factor, among the various P-strands, strands I, IV, IX and X form in 

similar time scales and appear to provide the basic P-trefoil framework (Samuel et al., 

2001). On the other hand, there are cases of other proteins where the formation of 

hydrogen bonds appears to occur on a similar time scale. For example, in the 

immunoglobulin binding domain of streptococcal protein G, the twenty-six slowly-

exchanging backbone amides fold simultaneously with a single rate of 133 s"1 (Kuszewski 

et al., 1994). In the acyl-CoA binding protein, the measured proton occupancies at 

different later folding times could be fitted to a single exponential decay with an average 

rate constant of 20 s"1 (Teilum et al., 2000). Pulsed HX study coupled with mass 

spectrometry showed that the N/C-terminal regions of cytochrome c fold cooperatively 

on the same timescale (Yang and Smith, 1997). Also in bacteriophage X lysozyme, all of 

the kinetics were monophasic and the resulting curves are all virtually identical (Di Paolo 

et al., 2010). In our study, the folding of Fadd-DD is similar to that of the 

immunoglobulin binding domain, acyl-CoA binding protein, N/C-terminal regions of 

cytochrome c and bacteriophage A. lysozyme, indicating significant cooperative hydrogen 

bond formation in the secondary structure of the protein. It is also concomitant with the 

hydrophobic collapse. Overall, the studies presented here with Fadd-DD provide insight 
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into the formation of secondary structure for the all a-helical Greek-key proteins and 

potentially the all-P and mixed cc/p Greek-key proteins more generally. 

A model for the folding of Fadd-DD can be constructed by taking into account the 

results of HX studies and those from stopped-flow fluorescence and (p-value analysis that 

allows the identification of key interactions in the TS (Steward et al., 2009) (Figure 52). 

Steward et al. (2009) generated over twenty variants and after the effect of the mutations 

was examined, select residues on helices 1, 2, 4 and 5 were found to form native 

interactions in the TS. In our study, all six helices are formed in a cooperative manner. 

Therefore, while all the helices are forming concomitant with the hydrophobic collapse 

based on our stopped-flow fluorescence studies, helices 3 and 6 associate through tertiary 

interactions with canonical core of Greek-key at a later stage of folding. 

% ' 
6 1 
Transition state 

Figure 52. The proposed folding model of Fadd-DD 

Helices 1, 2, 3, 4, 5 and 6 are colored in purple, blue, green, yellow, orange and red, 

respectively. 



CHAPTER VII 

CONCLUSIONS 

ANALYSIS OF CONSERVATION, STRUCTURE, STABILITY AND FOLDING 

OF WT FADD-DD 

Fadd-DD is a six-helical bundle protein with Greek-key topology and belongs to 

the death domain superfamily. This topology is shared by two other superfamilies, mixed 

a/p-plait and all-p immunoglobulin. Fadd-DD functions in the signal transduction 

pathway of apoptosis. A multiple sequence and structure alignment of the death domain 

superfamily consisting of all four families was constructed and nine significantly 

conserved hydrophobic and seven moderately conserved hydrophobic positions were 

identified. 

Fadd-DD WT was expressed in E. coli BL21(DE3) and purified after using 

column chromatography. The WT protein is quite stable with AG "N value of 

6.60 ± 0.03 kcal/mol. The folding of WT protein is rapid and straightforward. The 

hydrophobic core formation studied by stopped-flow fluorescence spectroscopy has two 

phases, one major fast phase with the rate of 22.73 ± 0.57 s"1 and one minor slow phase 

with the rate of 8.13 ± 0.47 s"1. The secondary structure formation studied by stopped-

flow far-UV CD spectroscopy has one phase with the rate of 23.4 ± 0.4 s"1. 

STRUCTURE, STABILITY AND FOLDING OF FADD-DD VARIANTS 

Eight mutants were synthesized by site-directed mutagenesis. Trpl 12, Leul 15 

and Vall21 are moderately conserved and Trpl48 is significantly conserved. Hisl60 and 
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Vail 58 are not conserved. Leul 72 belongs to a conserved position where most of the 

residues among the homologues are hydrophilic. The variants were expressed in E. coli 

BL21(DE3) and purified through a series of column chromatography. The AGD"N values 

of five variants Trpl 12Phe, Trpl48Phe, Leul 15 Ala, Vail 21 Ala and 

Trpl 12Phe/Hisl60Gly are lower than that of the WT, indicating the replacement of 

conserved residues with Phe or Ala reduced the stability of the protein. On the other 

hand, three variants Hisl60Gly, Vall58Trp and Leul72Trp are similar to that of the WT. 

The secondary and tertiary contents of Trpl 12Phe, Trpl48Phe and 

Trpl 12Phe/Hisl60Gly significantly decreased compared to the WT, while the secondary 

and tertiary structures of Hisl60Gly, Vall58Trp and Leul72Trp closely resembled the 

WT. Furthermore, the folding rates of Trpl 12Phe and Trpl 12Phe/Hisl60Gly are 

significantly slower than that of the WT. Instead of two phases, Trpl 12Phe has one more 

third long phase. Overall, mutation of the conserved hydrophobic residues had substantial 

effects on the protein stability, structure and folding. 

QUENCHED-FLOW, HX AND NMR STUDIES OF FADD-DD 

Quenched-flow, HX and NMR studies give the site specific information of 

individual hydrogen bond formation at atomic resolution. After deuterated unfolded 

protein is mixed with refolding buffer, the solution is then mixed with pulsing buffer with 

high pH. After a certain refolding time, the protected backbone amide deteriums will 

remain and the unprotected backbone amide deuteriums exchange with protons in the 

solution. The solution is then mixed with quenching buffer with low pH to stop the 

labeling process. The final protein is concentrated and buffer exchanged into deuterium 

buffer. The amide peak intensities are analyzed with 2D NMR spectroscopy ( 'H^N-



HSQC). Hydrogen bond formation of twenty-four stable backbone amides are followed. 

It appears that all the six helices fold on a similar timescale with rates between 19 and 21 

s"1, which is similar to the secondary structure formation detected by stopped-flow far-

UV CD spectroscopy. Furthermore, exchange rates and protection factors of twenty-three 

residues were studied by equilibrium HX, and these residues are in the core region. 

CHITINASE INSERTION DOMAIN 

Four conserved amino acids identified in this study are proposed to be essential 

for binding with the substrate and they form two distinguishable sequence motifs. The 

CID may be inserted into the TIM domain to facilitate orienting and binding to longer 

(e.g.>3) saccharide substrates. Because of the wide distribution in diverse organisms and 

the high conservation of the CID, we can identify the sequence and predict the structure 

of this domain in family 18 chitinases in the subfamily A. An evolutionary scheme is 

presented which places the emergence of the CID in the context of chitinase function; 

with the addition of the CID leading to an evolutionary shift of the protein from a non-

chitinolytic protein, or a NAGase, to a subfamily A or B family 18 chitinase. We also 

identify a group of conserved hydrophobic residues in the core which we propose are 

important for folding and structural stability. To test the hypothesis about the role of the 

CID, a myriad of experimental and computational techniques such as molecular 

modeling, in vitro and in silico binding studies coupled to site-directed mutagenesis, 

enzymatic assays, and crystallization of the holo-protein can be carried out. 
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FUTURE WORK 

Characterize the Tertiary Structure Formation 

The timescale of tertiary structure formation of Fadd-DD cannot be obtained with 

the WT and Vall58Trp variant. Another variant will be synthesized to obtain more 

ellipticity in the near-UV region and the near-UV CD folding will be conducted to study 

the tertiary structure formation. The two promising locations, Vail62 and Vail80, will be 

mutated to tryptophan in order to increase the ellipticity in the near-UV CD spectra. 

Solve the Fluorescence Quenching Problem 

Equilibrium fluorescence study of the native state of Fadd-DD reveals that the 

fluorescence intensity at 1 M GndHCl is greater than that at 0 M GndHCl. This result 

indicates that the fluorescence of the WT is quenched in the native state. One tryptophan 

(112 or 148) may be quenched by one or more of its surrounding amino acids. Since the 

Trpl 12Phe variant and Hisl60Gly also demonstrate the quenching phenomenon, Tip 148 

is more than likely to be quenched by some other neighboring residues. A variant will be 

synthesized in order to solve the fluorescence quenching problem. The two promising 

locations, PhelOl and Lysl49 will be mutated to Leu and Asn, respectively. 

Show the Early Folding Intermediates of Trpll2Phe Variant 

The study of quenched-flow, HX and NMR on the WT demonstrates that all 

helices fold fast and on the same timescale. There is no folding intermediate in the 

process. The stopped-flow fluorescence study on Trpl 12Phe indicates that this variant 

folds more slowly than the WT with one more phase. In order to show if any intermediate 

exists in the folding process of the Trpl 12Phe variant, the quenched-flow, HX and NMR 
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experiments will be conducted to test if all helices still fold cooperatively or helix 2 will 

fold more slowly than the others. 

Study the Effect of Conserved Hydrophobic Residues on Folding and Stability of 

Another Death Domain Superfamily Member, Pyrin (PDB code: 1UCP) 

Buried Tyr60 will be mutated to Tip as the fluorescence probe (Figure 53). L27, 

equivalent to LI 19 and L56, equivalent to W148 will be mutated to A. And equilibrium 

and stopped-flow fluorescence will be performed to compare stability and folding rates 

between the WT and variants as well as calculate Phi-values. 

Figure 53. Pyrin protein (PDB code: 1UCP) 
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APPENDIX I 

METHODS FOR CLONING, EXPRESSION, AND PURIFICATION 

OF FADD-DD 

fBamHI 
fA Xhol 
f LNdel 

Figure Al. The diagram of pET-14b map showing the cloning site (adapted from 

http://www.biovisualtech.com/bvplasmid/pET-14b.htm) 

Table Al. Components (in pi) of the PCR reactions to amplify the cDNA 
Component Rxn 1 Rxn 2 Rxn 3 Control 
Sterile ddH20 
10 X Pfu reaction buffer 
Deoxyribonucleotide (dNTPs) (12.5 mM) 
DNA template 
Promoter primer (30 ng/ul) 
Terminator primer (30 ng/ul) 
Pfu hotstart polymerase (2.5 U/ul) 
Total volume 

36 
5 
0.8 
1 
3.1 
3.1 
1 
50 

35 
5 
0.8 
2 
3.1 
3.1 
1 
50 

33 
5 
0.8 
4 
3.1 
3.1 
1 
50 

37 
5 
0.8 
1 
3.1 
3.1 
0 
50 

http://www.biovisualtech.com/bvplasmid/pET-14b.htm
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Table A2. Temperature and cycles of the PCR reaction to amplify the cDNA 

Segment Number of cycles Temperature Duration Period 

1 

2 

3 

4 

1 

30 

95°C 

95°C 

52°C 

72°C 

72°C 

4°C 

2.5 minutes 

30 seconds 

30 seconds 

1 minute 

10 minutes 

Until use 

Initial set up 

Denaturation 

Annealing 

Elongation 

Final elongation 

Hold 

Bgl II T7 promoter 

AGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAG 

AAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGGCAGCAGCCATCATCATCATCAT 

Met Gly Ser Ser His His His His His 

TCS Nde I Xho I BamH I 

CACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGCTCGAGGATCCGGCTGCTAACAAAGC 

His Ser Ser Gly Leu Val Pro Are Gly Ser His Met Leu Glu Asp Pro Ala Ala Asn Lys Ala 

CCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGG 

Arg Lys Glu Ala Glu Leu Ala Ala Ala Thr Ala Glu Gin End. T7 terminator 

CCTCTAAACGGGTCTTGAGGGGT TTTTTG 

Figure A2. The cloning/expression region of pET-14b showing T7 promoter, His-tag 

sequence, thrombin cleavage site (TCS), three cloning sites (Nde I, Xho I and BamH 

I), and T7 terminator 



Table A3. Restriction enzymes used to digest the plasmid and insert 

Restriction enzyme Recognition site NEB buffer Bovine serum albumin 

BamH I 

Nde I 

Xho I 

5'. 

5'. 

5'. 

..GGATCC..3' 

..CATATG...3' 

..CTCGAG...3' 

3 

4 

2 

Y 

N 

Y 

Table A4. Digestion mixture (concentration is empirically determined) 

Plasmid (pi) cDNA (pi) 

DNA 52 31 

Buffer 6 4 

Enzyme 2 2 

Water 0 3 

Total 60 40 

Table A5. Ligation mixture (in pi) (concentration is empirically determined) 

Xho I Xho I BamH I BamH I Xho I BamH I Xho I BamH I 

Ratio 

plasmid 

Buffer 

cDNA 

ATP 

Water 

Ligase 

Total 

1:3 

4 

1 

2 

1 

1.5 

0.5 

10 

1:6 

4 

1 

4 

1 

0 

0.5 

10.5 

1:3 

4 

1 

1.5 

1 

2 

0.5 

10 

1:6 

4 

1 

3 

1 

0.5 

0.5 

10 

-

4 

1 

0 

1 

3.5 

0.5 

10 

-

4 

1 

0 

1 

3.5 

0.5 

10 

-

4 

1 

0 

1 

4 

0 

10 

-

4 

1 

0 

1 

4 

0 

10 

"Xho I" means the cDNA and plasmid were digested by both Nde I and Xho I; and 

"BamH I" means the cDNA and plasmid were digested by both Nde I and BamH I. 



Table A6. The sequences of primers for the mutagenesis 

Primer Sequence (5' to 3') 

5 '-atctgtgataatgtggggaaagatttcagaaggctggctc-3' 

5 '-gagccagccttctgaaatctttccccacattatcacagat-3' 

5'-ggaaagattggagaagggcggctcgtcagctcaaag-3' 

5'-ctttgagctgacgagccgcccttctccaatctttcc-3' 

5'-gctcgtcagctcaaagcctcagacaccaagatc-3' 

5 '-gatcttggtgtctgaggctttgagctgacgagc-3' 

5 '-cgggagtcactgagaatcttcaagaacacagagaaggaga-3' 

5 '-tctccttctctgtgttcttgaagattctcagtgactcccg-3' 

5'-acagagaaggagaacgcaacatgggcccacctgg-3' 

5'-ccaggtgggcccatgttgcgttctccttctctgt-3' 

5'-cgcaacagtggccggcctggtgggggct-3' 

5'-agcccccaccaggccggccactgttgcg-3' 

5 '-gtcctgccagatgaactgggtggctgacctggta-3' 

5 '-taccaggtcagccacccagttcatctggcaggac-3' 

Primer Name 

Trpll2Phe 

Trpl 12Phe_antisense 

Leul 15 Ala 

Leul 15 Ala_antisense 

Vall21Ala 

Val 121 Ala_antisense 

Trpl48Phe 

Tip 148Phe_antisense 

Vall58Trp 

Val 15 8Trp_antisense 

Hisl60Gly 

His 160Gly_antisense 

Leul72Trp 

Leul72Trp antisense 
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BIOINFORMATICS STUDY OF FADD-DD AND CID 
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Figure A3. Proposed catalytic mechanism showing Aspl42 and Glul44 in S. 

marcescens chitinase B, during two stages of catalysis (adapted from van Aalten et 

al., 2001) 

(A) Binding of substrate -1 NAG residue causes distortion of the pyranose ring to a boat 

or skewed boat conformation and rotation of Asp 142 toward Glu 144, enabling hydrogen 

bond formation between the acetamido group, Asp 142, and Glu 144. 

(B) Hydrolysis of the oxazolinium ion intermediate results in protonation of Glu 144 and 

rotation of Asp 142 to its original position. 



Table A7. List of the sequence names, species name, and GI numbers of thirty-three 
more CID sequences that are included in the phylogenetic tree and the larger 
multiple sequence alignment 
Sequence name 
B_LysobacterE 
B_Stenotrophomonas 
B_HerpetosiphonA 

B_CellulomonasU 
B_DoohwaniellaC 
B_ChromobacteriumV 

B StreptosporangiumR 
BKribbellaF 
B_StackebrandtiaN 
B_SaccharopolysporaE 

B_NocardiopsisD 

BCatenulisporaA 
BSynechococcus 
F PenicilliumM 
F_GrifolaU 
FHypocreaS 
FBionectriaO 
FPyrenophoraT 
F_RhizopusM 
FNeosartoryaF 
EEEntamoebaH 
EACaenorhabditisE 
EA_DrosophilaM 
EACional 
EAStrongylocentrotusP 
V XenopusT 
V_GallusG 
VDanioR 
M_MusM 
M_BosT 
M_EquusC 
MRattusN 
M_CapraH 
Ar_ThermococcusK 
ArHalogeometricumB 

ArHalomicrobiumM 

Species name 
Lysobacter enzymogenes 
Stenotrophomonas sp. SKA 14 
Herpetosiphon aurantiacus ATCC 
23779 
Cellulomonas uda 
Doohwaniella chitinasigens 
Chromobacterium violaceum ATCC 
12472 
Streptosporangium roseum DSM 43021 
Kribbellaflavida DSM 17836 
Stackebrandtia nassauensis DSM 44728 
Saccharopolyspora erythraea NRRL 
2338 
Nocardiopsis dassonvillei subsp. 
dassonvilleiDSM4311 
Catenulispora acidiphila DSM 44928 
Synechococcus sp. RCC307 
Penicillium marneffei ATCC 18224 
Grifola umbellata 
Hypocrea seppoi 
Bionectria ochroleuca 
Pyrenophora tritici-repentis Pt-lC-BFP 
Rhizopus microsporus var. oligosporus 
NeosartoryafischeriNKRL 181 
Entamoeba histolytica HM-1 :IMSS 
Caenorhabditis elegans 
Drosophila melanogaster 
Ciona intestinalis 
Strongylocentrotus purpuratus 
Xenopus (Silurana) tropicalis 
Gallus gallus 
Danio rerio 
Mus musculus 
Bos taurus 
Equus caballus 
Rattus norvegicus 
Capra hircus 
T. kodakarensis KOD1 
Halogeometricum borinquense DSM 
11551 
Halomicrobium mukohataei DSM 
12286 

GI number 
50429005 
254524159 
159899269 

17865808 
6649589 
34499695 

229855168 
227377795 
229863927 
134102989 

229205033 

256395265 
148242001 
212534216 
28436151 
220701877 
88696577 
189188560 
1565203 
119470878 
67472835 
17551250 
45550474 
167830427 
115608306 
4262194 
45383307 
41055329 
12597291 
27807261 
219689080 
119120779 
66361429 
57641700 
227882613 

257388962 
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Sequence name 
FCoccidioidesI 
F_AspergillusF 
F_TrichodermaA 
F_CandidaA 
F_SaccharomycesC 
B_BacillusC 
B_StreptomycesT 
B ClostridiumP 
BHahellaC 
BSerratiaM 
M_HomoS 
EA_PenaeusM 
EAAcanthocheilonemaV 
EAJLutzomyiaL 
EA_DermatophagoidesP 
EEHydractiniaE 
EEDictyosteliumD 
PNicotianaT 
P_RobiniaP 
PMomordicaC 
P_OryzaS 
PArabidopsisT 

Species name 
C. Immitis 
A. fumigatus 
Trichoderma atroviride 
C. albicans SC5314 
S. cerevisiae 
B. circulans 
Streptomyces thermoviolaceus 
Clostridium paraputrificum 
Hahella chejuensis KCTC 2396 
S. marcescens 
Homo sapiens 
Penaeus monodon 
Acanthocheilonema viteae 
Lutzomyia longipalpis 
Dermatophagoides pteronyssinus 
Hydractinia echinata 
Dictyostelium discoideum AX4 
Nicotiana tabacum 
Robinia pseudoacacia 
Momordica charantia 
Oryza sativa 
Arabidopsis thaliana 

GI number 
1D2K 
70985392 
71143448 
68466729 
6320579 
IITX 
436784 
2696017 
83644516 
1E15 
ILGl 
5114426 
804649 
28863959 
78128018 
46016169 
66818433 
899342 
119721188 
20269861 
115485441 
22328814 
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Table A8. List of twenty-one structures of family 18 chitinases and chitinase-like proteins from 
plants, bacteria, fungi, and animals 

PDB Code 

1HVQ 

1TA3 

1CNV 

1NAR 

1EOM 

1EDT 

2EBN 

IITX 

1FFR/1CTN 

1UR9/1E15 

IKFW 

3B9A 

1D2K 

1WNO/1W9P 

1LG1/1HKM 

3FXY 

1E9L 

INWT 

1JND 

2DPE 

ILJY 

Species 

H. brasiliensis 

Triticum 
aestivum 

Canavalia 
ensiformis 

Vicia 
narbonensis 

E. 
meningoseptica 

S. plicatus 

E. 
meningoseptica 

B. circulans 

S. marcescens 

S. marcescens 

Arthrobacter 
sp. 

V. harveyi 

C. immitis 

A. fumigatus 

H. sapiens 

H. sapiens 

Mus muscuius 

H. sapiens 

Drosophila 
melanogaster 

Ovis aries 

Capra hircus 

Name/ 

Kingdom 

Para 
rubber 
tree 

Wheat 

Jack bean 

Purple 
broad 
vetch 

Bacterium 

Bacterium 

Bacterium 

Bacterium 

Bacterium 

Bacterium 

Bacterium 

Bacterium 

Fungus 

Fungus 

Human 

Human 

Mouse 

Human 

Fruit fly 

Sheep 

Goat 

With 
CID? 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Other 
domain 

N-
terminal 

C-
terminal 

N-
terminal 

Ligand 

3 NAG 

NAG, 
EDO 
(scatter) 

3 NAG, 3 
MAN, 2 
GAL 

7 NAG 

NAG, 
GDL, PHJ 

6 NAG 

NAG, 
NDG 

2 NAA, 1 
ALI 

NAG 

8 NAG 

NAG, 
MAN 

2 NAG, 3 
MAN 

NAG 

Function 

Hevamine A 
(endochitinase/lysozyme) 

Xylanase inhibitor 
protein 

Concanavalin B, seed 
storage protein 

Narbonin, seed storage 
protein 

NAGase 

NAGase 

NAGase 

Chitinase Al 

Chitinase A 

Chitinase B 

Psychrophilic chitinase B 

Chitinase A 

Chitinase 

Chitinase B 

Chitotriosidase 

Acidic Mammalian 
Chitinase 

Mammalian lectin 

Cartilage gp39 

Disc growth factor-2 

Signal processing protein 

Mammary gland protein 

Structures in bold are described and compared in the text. 
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Table A9. The twenty proteins that are utilized to make sequence and structure 

alignment of the death domain superfamily 

Family Sequence number GI number Name of organism Name 

CARD 1 

2 

3 

4 

5 

6137576 

76156998 

21326823 

57163901 

6680696 

Human 

Trematode 

Carp fish 

Cat 

Mouse 

H_1CY5 

T_SJ_6 

Fi_CARD 

C_caspase 

M IAP 

DED 6 

7 

8 

9 

10 

4139474 

56540946 

13095651 

9628077 

40389470 

Human 

Frog 

Bovine herpesvirus 

Equid herpesvirus 

Mouse 

H_1A1W 

Fr_LOC_5 

BHV_FLIP 

EHV_ORF 

M vanishin 

DD 11 

12 

13 

14 

15 

76155247 

45383358 

11513952 

10732781 

80476543 

Trematode 

Junglefowl 

Human 

Fruit fly 

Frog 

T_SJ_5 

FoJTNFRSF 

H_1E3Y 

F1_DD 

Fr LOC 7 

PYD 16 

17 

18 

19 

20 

18203023 

38493024 

37791117 

24660214 

18088559 

Zebra fish 

Human 

Dwarf Lemur 

Human 

Human 

FiPYD 

H_1UCP 

L_cryopyrin 

H_NLRP 

H_pyhin 

Each family has one known structure indicated in bold and four unknown structures. 

Sequence are chosen from diversified organisms and have identity percentage less than 

25% in order to find those residues conserved for structure and folding. 
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Figure A4. Structure-based multiple sequence alignment of the CID 

Hydrophobic positions with high conservation (C(/')>0.45) are coloured in blue and 

positions with moderate conservation (0.35<C(/)<0.45) are coloured in light blue. 
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Figure A4 Continued. 

Hydrophilic positions with high conservation are coloured in red and positions with 

moderate conservation are coloured in pink. Neutral positions with high conservation 

containing mostly glycine, alanine, or proline are coloured in orange, while positions 

with moderate conservation are not highlighted. "~" and "—•" indicate the sequences in a-

helices and B-strands, respectively. The secondary structure of tobacco chitinase CID was 

predicted by the program of PSIPRED. "A" and "#" represent the positions which form 

hydrogen bonding and the hydrophobic interaction with the substrate, respectively. The 

full genus name and the first letter of species name are shown for each organism in the 

figure. If two sequences are from one species, a number is added after the species name. 

All the sequences were obtained from the protein database at the NCBI. Abbreviations: 

Ar, Archaea; B, Bacteria; F, Fungi; P, Plantae; EE, early eukaryotes; EA, early Animalia; 

M, mammal. 



183 

* * * * 
ArThennococc»»K/ l -75 Y5RSPAKVPPE HNGIYQPF SOT-PAST* GPA YETYG-VHDYmWAEKBgS SEYEYHKDPIAfilflW LYSPSK-WFITF 

A r _ B a l 0 9 « M » t r l c l f f l B l / l - 7 4 YGRSFGHVASSD—HGGLYQSF EGS-PDGTK GOtWS-I»EPTOn«mEP—SSEKBYnTODIAKVPH TJSDS8-DVLVSY 

ArJlalcmtcrol l iai l l ia /1-75 JGSGFK GTEMYGmf SGt-PEGWifflOiEDG ADPB3-AFDFGDlja»tEG—AOGHTtOCRHBPGAVPY IVM5DE-ETIISY 

A r _ H a l o g e < » « ! t r l c l » B 2 / l - 9 0 JGRGOCV ENGI«TOFSiAB«QQGDPKHg HEVIPPGWHHLLGPD QAOTG-AFDISraLBSlrtSG—AOGHEKHVNEQGSiVPII UWERIC-GIFISY 

Ar_Baloff l lcrobluBH2/ l -61 YGREFYGVESTA HDGIMIPF GGSGG-ATGFADnXSFGS BTItYtlDBEAKVPY KFDGSS USt 

F_Cocctdioi<Je«I_l<121c/l-62 YGRAFAS TDGIGTSF NGV-GGGSK EHG-VRDYKBCPQQGAa VTELEDIAASY SYnKNK-RYUSY 

F_AspergmusF/l-74 YGRSFTLNHTS CTOSCPF STVSKAGDC THSAG-TlSFSKIEAILKiasMIAIBrHEASSVQIV TFDGHQ SVSY 

F_Trlc l>oden»aA/ l -57 YARYFFV AEGPGCST EG AG-EKDYYBMPOEWD HAWEETSVAAK YVnAHSGKGYITF 

F_CandidaA/ l -65 YGSIFHGVD RFEIGIPF TKERKSGCI EAD-WDYHKFGDTFDY KDFDHilWGAI, XYDSBS-ltgUTF 

F_SaccbaMByce8C/ l -eO YGWFHDtDHKFKPFSgjnVUHKIF 1CGVGKPTJE I0KA nGKEG-WPYEHlPKIGTI KQYDHCTVSM CFDHSH-SIFISr 

B_BacllluBC_Utx/l-72 JSRGBDSCAOA GHOQYQTC TGGSSVGIW EAG-SFWYDLBAUYIH—KHGYIRYtBiWAlCm 1YSASH-KRFISY 

B_Strepto«yc»8l/l-60 SGRGKTGVT QOMGGTA TGP-AAGT* KOS-IEOYKIljaiTCPV TGTVAGtAY AHCGSH WHY 

B_Clos tr l<UuaP/ l -96 YTRGlEKVSre<3VDPKIW3LFGEMVraKMAOI.IPTPGAUIKAPMrai^ ——-<31«GG-VIIGn»UDia«AIt~YTGWEY»I)DSAraPY LYHFET-GAFFYY 

S _ B a h e U a C / l - 9 6 YHRABUJISAADITElfSDGIAGAI AHgPSBAPGTTKTILAIAGYGSK EA-—«ViaG-YnKOSFIJ>PSia-PYHGYiaYTDKASHADY~—LVQPAI-GSFITI 

B_Serrati»H_le6z/l-88 YGRAFKGVSGG SGGffltSSHSTPG E D P Y F S T ! ^ A r e C K S C V R r a i > r a - I A S Y B O l M ( ( « K * - l ^ ^ OTAOH-GLFVYY 

H_Bos»S_U«l / l -68 YGRSFTLASS8 DTRVGAPA TGSGTSGPF TKEGS-MLAYYEVCStKGA TKflaigDQKVPY IFRHIQ ftVGF 

E A _ P e n a B U « H / l - 7 5 YGRTYTLGDPT KNGiHAMXKS EGGGKPGPY THASS-IBAYFEtCUW«—DSEHVDKYIMVGIVPF THKGDO. INGY 

E A _ A c a n t b o c h e i l o n e i l l i V / l - 7 0 ISRGKTLSKPS ETAIGAEG DRPSSPSTT HPASG-TAAYKEICKYVKE GGKETVIKKSVGAY MVKSDO WIGY 

EA_Lutlomyial/l-70 YGKGFBM9HG -GHKPGSVR GGPCQAGPY TQTPG-M^FNELCEKHBil EKSHOFTODEOFVPY STKNDO RIGF 

E A _ D e m a t o p h a g o l l t e s P / l - 7 1 YGRAHSIEDRS RVJttGDPA KGKSPBGFI I6EEG-VLSYIELCQI.F0K EEOTIOYBEYYKAPY GYHDia HVGY 

EE_Hydract in iaE/ l -69 YGBAFfOniAS HHGICAPKADif -OKP-SKGOF TRBAG-FLSYYBICKWa.T WKBiAVftSFY GYK30D-—WIGY 

EE_Dietyo3teUra»/J-84 YGYNYPCIG S K m B T F ECIIPPSSY—LGYBC IDASGIEniYSinBlttlIDIAIffl!GGVaniSESESFrF«FIDlFSGTQBffle!F--

P_HlcoUanaT/l-69 YGYAWU.VMPK IHBIHAPA AGXSHVGA7 DDG-SBTORIRDYIVQ SRAITVYRAIIVGDY CYSGSH W S Y 

P_R0blniaP/l-58 YGFKKR1SDPH HHGUTAPA TQGLG-AVXYTOIVNTGGQ VEfTOYYimiY CFKGTD HYGY 

PJfoaordicaCA-65 BGKAmAHAA EHBHFSKA Tfi SCVW PKDYSEVItSBaiA-RKEYMIPIiDPRFGUt AYVETT MGY 

P_Ory*aS/ l -71 EGBSOTLRSKD- KNGLGAPY AAAGTKQRK SSQIG-VIAYAEIEEYUtS QSVFVTHBHflSVADY FYSGDL OTSF 

P_AraM<lops i sT71-62 VGWWSLGSGH OAATSfWA TSAEG-SIHYBQIKRIJVD-—aiailPVFDSrVVGDY -CFASTS LIGY 

BJ,ysobacterE/l-63 YGRGHTGVQHV ASGiYO— HGTAAPGTY EAG-IEDYKVLKHKPGI VYTDAIAKATO -XYDGST-—YHSY 

B_Stenotropho»onaa/l-64 YGBSSTGVAHA HHGLYQTA TGA-APGTY BAG-IEOHTOUtHLA WPGYmHAGATO IYHGST L*SF 

S_BerpetoaiphonA/l-« YGFGWtDVPST HHGiFQP 5SAAPATY EAG-IEDYKVLKTKGLT RYSKSAAGAA* LYOKQ FSTY 

B_Cellulo»onaoO/l-60 VGBGSITGVT O S A P G G S A — — - — — -TGA-APGnf EAG-IEDYKVUMRCPA TGTOGGTAJ AKCGME WtSY 

B_Dooh»aole l laC/ l -64 JGKGMiaVTNA HHGLlfQAA TAP-ARSTY EPG-IEDYKVLniAAGfl VIIHPVTKQS1* KFDGMi FITSY 

B_Chr«K)bBCter inaV/ l -66 JGRGKAGVAAGPR GDGWTQVA IGP-AKGTY EQG-IEDYRI1VKFSAK OFHSFVAKQUI TYDGME FWSY 

B _ S t c e p t 0 8 I ! O r a o s i U ! i a / l - 7 0 TOBEKQGVADGS KSGBWJSA IGA-APGOF PDSAG-TIW5YS10LAGPGC TIKmEOSVATY —CFTaB-GQSWTF 

B_KrlbbellaF/l-6« YSRGWGVT1H! l̂KGLFaPA TGP-APATY EAG-YEDYRUUtAltLSQ PTVHRDEflAGFA* LFDGTT FKTII 

B_StaekebraiKlt iaHi ' l -64 FGMWGVGSA HHGIYQTS TGP-APGKY EPS-IDDYKLViratPGa ^VFKIEEHMAVW KYDGTQ FUST 

B _ S a « h a r < > p o l y s i » r a E / l - 6 4 BGSGHSGVHAB GDGIF9PS ^AGP-ABGTF EPG-BESYRV1HSIGA RHRnEAAGFAR LYEGGT FWTY 

S_Hoe*raiopsl8D/l-70 IGflGWGVEPGPD GDGLFOtA TGP-AQGAY AA^TEDmCvajEWK—-GtSOTIi lJDGAGIWJ IYDGQT Vm 

B_Cat<siullsporaA/l-72 lYKGIilGVSAGS SBSLFOPASAPA ASAADSGSV PG-I»KKEITSIVKN PABTFSDPVAEAAI FYDGTS FUSS 

B _ S y o « c h o c o c o u 8 / 1 - 7 2 mAKGDVTAGD DYGYGESG AASSASGSF EAG-SYOBCDUTGVBD GSYaMTODtlUCAAY AYNAOA-LIHSSM 

F_PenlcilliuiSI/t-66 IGASFKH TSSPGtAF DGIGTLGTK —<aAG-UWY»lSI.PVPGF!I ATTYKLPDIGASY SYDPVK-KYHISY 

F_GrUolaB/ l -62 IGRSFm TBGFGIPF KSL-GPGSW-^ — EQG VYDRALP1PGS— YVlQDDnaiASW TYDYBK-KEHISF 

F_BypocteaS/ l -62 IGRSFES TSGIGOSY SGI-GSGSW EKG-VKraWlPKAGAI VXYDDVWKGY! SYDPHT-KEIISY 

F_Blonectr iaO/I-64 KGHSFUIT VASVGOre QGVASIITGS DPG-m«BH.PBQGAO ^VKlMQAGAMf SYBArT-KELVSF 

F_Pyrenoi>horaT/l -69 YGHSFWIWOLSRS—TGAMGffitF ^NGS-GEGSH EAG-TLDYKVUEOJIGIK ^VFTDKSILASW SKBPIIC-EQWSF 

F_Khi2ppusH/ l -62 YGBGFCM tAGPGBPF QGl-PRGW EES-QFmiCtLPKPGAV EYaDF«UASIt SYUPQA-SBFITY 

F_NeosartoryaF/ l -«6 JGBAFN1 TAGPGTKF ^ACWTIiGSF —-GTAG-TODTOaFVPGPS ^ASWELPAIGAST SJBAAR-KYMISY 

EE_Entaw«baH/ l -69 YGBGWUCSSS— DHEHGSAA TGASKSGTC IGENG-YlSKYEIIi*l,IPfi EHIKFOaKSKmir GYKNEO W S F 

EA_Dtosophl laK/ l -71 YGRSFTIATAE-̂  QiQPGAPH IGKEIAGHY SRBPG-VLGYKELCESJBR—EEmSSOiEAtaQVPY AYRSSS WV5Y 

EA_CaenOIhabdtt l sE/ l -69 YGRG8TWHAS——AIMPGTS GSPAKITOY VBBAG-VGAYFSFCBiLAH GATRYIiDSOSBVPY LVQGHQ W B Y 

EA_ClonaI/l-71 YGRTmiDPL KFGFOSHA TGPGDAGtY T8EAG-FUYYEICPYlfi!D PAAMFWSOYAMAPA VAVGDQ H1SF 

E A _ S t r o n w l o c e n t J r o t a 8 P / l - 7 9 YGYMYtCLTVS EtDVCTIP EVPFRGVHC SDAAGSflKSFVNVMKliVI^KSTTGPJaBttTYKAPYFDYraSETGEAYOVinr--

V_!!e iKipuaI / l -69 YGKTFRHPNPS HCBVGIPV SGAGSAGQY TREAG-FKAYYEICTIILSG TTIMKADOKVPY AOCGffi ^»¥GF 

V_Gal lusG/ l -70 YGHSYIIKHPS OTAVGAPT SGPGPAGPY TROSG-FLAYYEICTFIDS GAI0ABIJAP(S1VPY AYKSSE WVGY 

V_DanlOR/ l -«8 YGSTFCLSSA VNGLGAPV SGPASAGTY mEAG-YKSYYEICTFLOR ASVEQIADWCVPY ATSG1H HVGF 

MJ40SH/1-70 latTFILHSPS ONGIGAPT SGDGPAGAY TPaAG-FKAYYEICTFlSS GATEVSBASQEm AYXAHE KLGY 

M_BOST/1-70 YGHMFIUaiAS ^HHGIGAPI SGAGPAGPY raEAG-FKAYYEICAFLKD GATEATODSOEVPY AWAKE ULGY 

HJ&JUUSC/1-68 YGBSFSIASSS OTGVGAPV TGPGTPGPF TBEGG-IiAYYEVCSIIXGA IEHRIEDWWPY AVQGDH «VGF 

H_RittasN/ l -6S YGSSFTIASSS DSGVGAPA TGPGAPGPY IKEKG-ILVYFEVCStOLGK QRIEOKtVPY VSOGNQ WGF 

M_CapraB/ l - {8 FGRSFTIASS KTDVGAPI SGPGIPGRF IKEKG-HAYYEICOFLBS ATTBRFROafiVPY ATOGMQ WAY 

Figure A5. The larger multiple sequence alignment of sixty CID sequences 

The alignment was generated by MUSCLE in Jalview. 



Figure A5 Continued. 

It is not edited according to the three model structures. The two conserved motifs YxR 

and [E/D]xx[V/I] are highlighted in the frames and the four conserved positions are 

labeled with the asterisks. The species names and GI numbers refer to Table 7. 
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B Streptomyces thermoviolaceus 
B Cellulomonas uda 

B Lysobacter enzymogenes 
B Stanotrophomonas sp. 

B Doolmaniella chitinasigens 
B Stackebrandtia nassauensis 
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- B Synechococcus sp. 
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Figure A6. Phylogenetic analysis of the CID sequences from different lineages of 

organisms 
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Figure A6 Continued. 

The phylogenetic tree was constructed by the neighbour-joining method based on the 

CID sequences: five from Archaea, eighteen from Bacteria, twelve from Fungi, five from 

Plantae, three from early eukaryotes, eight from early Animalia, and nine from 

vertebrates (V) including six from mammals. The sequence names, corresponding GI 

numbers, and abbreviations are listed in Figure 11 and Table 7. All the sequences were 

obtained from the protein database at the NCBI. 
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APPENDIX III 

STOPPED-FLOW FLUORESCENCE OF FADD-DD WITH DIFFERENT 

CONCENTRATIONS 

B 

0.4 0.6 

Time (s) 

HH|I» mill* HM» I" I'l'i llll'tll IM'I* 11 

0.4 0.6 

Time (s) 
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I f f lBal^^^ii lWiti l l^l iaj ia^^l^layi jiy»|»;ii0)f«.) 

0.0 0.2 0.4 0.6 0.8 1.0 

Time (s) 

Figure A7. Stopped-flow fluorescence studies of Fadd-DD with different 

concentrations 
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Figure A7 Continued. 
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0.4 0.6 0.8 
Time (s) 

Refolding of denatured WT protein with three different concentrations: (A) 0.2 mg/ml; 

(B) 0.1 mg/ml; (C) 0.01 mg/ml in refolding buffer was monitored by stopped-flow 

fluorescence spectroscopy. The conditions are same with previously mentioned. 

Table AlO. The folding rates and amplitude of hydrophobic core formation of Fadd-

DD with the concentration ranging from 0.01 mg/ml to 0.2 mg/ml 

Concentration Ai A2 * 2 

0.2 mg/ml 

0.1 mg/ml 

0.01 mg/ml 

3.226 ±0.024 

1.839 ±0.013 

0.161 ±0.006 

23.577 ±0.183 0.682 ± 0.025 

20.033 ±0.150 0.438 ±0.014 

24.386 ±0.780 0.071 ±0.006 

6.479 ±0.160 

5.512 ±0.125 

7.980 ±0.391 
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