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ABSTRACT 

CONFORMATIONAL CHANGE AND TOPOLOGICAL STABILITY OF PROTEINS 

Jeffrey Andrew Tibbitt 
Virginia Polytechnic Institute and State University, 2001 

Directors: Drs. Jennifer Poutsma and Lesley Greene 

The conformation and topology of a protein changes when stabilizing forces are 

absent, but the mechanisms by which these changes occur remains elusive. This 

dissertation aims to broaden the understandings. On the conformational level, the M20 

loop conformers of E. coli dihydrofolate reductase are interrogated to identify factors 

responsible for their stability as well as to determine how one conformer might change 

into another. Molecular dynamics is used to simulate the open, closed and occluded 

conformers (observed in X-ray crystal structures) under a series of different single ligand 

conditions. Analysis shows that all open conformers move to a similar new conformation. 

Free energy methods examine the stability of the new loop conformer relative to the 

others. External perturbation molecular dynamics simulations and normal mode analysis 

methods examine possible M20 loop pathways occurring either when one loop conformer 

is forced to change into another or when a ligand is pulled out of its binding site. 

On the topological level, conserved residue-residue interaction networks found 

among three different protein superfamilies (the all a-helix death domains, the a/p-plaits 

and the all p-sheet immunoglobulins), each of different secondary structure but sharing 

the Greek-Key topology, are assessed for any inherent stability they might contain 

relative to randomly selected interaction networks. This assessment is achieved by 

simulating one protein from each family at different temperatures, ranging from 300 to 

600 K, and observing that adding thermal energy to the system causes the random 

interaction networks to fall apart more easily than the conserved networks. 

When considered together, the conformational and topological projects, although 

very different from each other, both demonstrate the same idea - that regardless of scale, 

instability causes change and vice versa. This dissertation is divided into five chapters: 

Introduction, Theoretical Background, M20 Loop Conformers of Dihydrofolate 

Reductase, Conserved Contact Networks of Greek-Key Proteins and Summary. 
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CHAPTER I 

INTRODUCTION 

Proteins constantly change shape. From the smallest bond stretches, to the larger 

conformational shifting of loops and domains, to the complete unfolding, these changes 

are all controlled by the energy available. The malleable polymeric structure of proteins 

allows for almost countless shapes; hence, they possess very complex energy landscapes, 

and the binding of ligands magnifies the complexity. The paths proteins take as they 

transform, either by themselves or upon binding to other molecules, are of immense 

interest to the scientific community and in many cases are still not well understood. 

As an example, the quaternary structure of hemoglobin undergoes a 

conformational shift as oxygen binds to one of its four identical heme groups (Figure 1) 

(1-2). Prior to binding, the heme is dome-shaped, with the iron sitting slightly out of 

Deoxygenated Oxygenated 

Figure 1. Conformational change of hemoglobin as oxygen binds. The molecules here 
(PDB codes: left=2DN2, right=2DNl) and in all other images were drawn in VMD (3). 

The journal model followed here is the Proceedings of the National Academy of Sciences. 
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plane towards the histidine residue; upon binding, the metal atom attains an octahedral 

geometry and the heme becomes planar. The change in the local geometry surrounding 

the iron causes a shift in the entire subunit. The subunit shift triggers similar shifts in the 

other three subunits that allow them to bind oxygen more easily. This process involves 

changes in bond lengths, bond angles, dihedral angles and so on, but the exact order of 

events (i.e. the pathway of conformational change) remains elusive (4-5). 

Today, two big problems in protein science are mapping the pathway of 

conformational change between two different structures and solving the three-

dimensional structure of a protein given only its amino-acid residue sequence (a.k.a. the 

protein folding problem). A major obstacle is the experimental difficulty involved with 

observing proteins in real time; this is due to their sub-microscopic size and picosecond-

level motions. Ideally, the positions of all atoms in the protein would need to be known at 

each point in time. Nuclear magnetic resonance (NMR) and X-ray crystallography are the 

two most popular experimental methods that can map atomic positions (6-8). The 

timescale of motions within proteins ranges from picosecond atomic fluctuations up to 

millisecond and second foldings (9). This is too fast for either conventional X-ray 

crystallography or NMR to handle, since they both capture time-averaged data. 

Advances in time-resolved crystallography now allow X-ray snapshots to be taken 

on the picosecond level (10-13), and there have been many reported 'molecular movies' 

of protein conformational changes (14-19) and more recently of an actual protein folding 

(19). One study examined the nature of ligand binding to myoglobin (a protein that 

contains the same type of oxygen-binding heme group as hemoglobin does) (15). 

Mutational studies on this protein showed that Leu29 replaced with phenylalanine 

resulted in the elevation of d-binding affinity by an order of magnitude (20). The time-

resolved structures of the ligand-binding process of both the wild-type and L29F proteins 

revealed that the size of the added phenylalanine residue was the mechanistic origin of 

this functional difference. Previous studies on wild-type myoglobin had indicated that 

entering/exiting ligands were trapped in a 'holding cell' in close proximity to the heme 

group before being released (21-22). The time-resolved structures of the wild-type 

binding confirm this. In the mutant binding, they reveal that the large benzene ring in the 

side chain of Phe29 pushed aside the nearby His64, which in the wild-type enzyme would 
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normally reside next to the binding site. Thus in the mutant enzyme, ligand rebinding is 

easier due to less steric hindrance from the His64 and the destruction of the holding cell. 

The time-resolved snapshots in this study provided several missing mechanistic details. 

However, several problems with this experimental technique still remain. Even at 

100-ps, the time-resolution was not quick enough to show the ligand moving from the 

binding site over to the holding cell. Other problems are that the resolution remains low 

when compared to conventional crystallography techniques (19), many proteins cannot 

be easily studied by X-ray crystallography (15) and the technique is very time-consuming 

and expensive (16). Regardless of these issues, experimental tools such as time-resolved 

X-ray crystallography are invaluable for observing phenomena. 

The two problems in protein science mentioned above will be understood once 

models correctly predict their solutions without need for prior experimental observation. 

In other words, the process of building models to correctly predict protein behavior is a 

process of understanding. Computer simulations are currently used to 'observe' protein 

conformational changes and foldings, however their accuracy needs to be confirmed by 

comparison with experimental data. Probably the most powerful and most popular 

simulation method is molecular dynamics (23-25). This technique models molecular 

motion by placing the atoms inside of a programmable force field, and allowing them to 

move through Newtonian mechanics. Molecular dynamics force fields are always being 

improved by tuning them to agree with newer, more detailed experimental data. 

Experimental methods (e.g. time-resolved X-ray crystallography) provide extremely 

detailed data, which apart from being useful in itself, helps to test the accuracy of 

theoretical methods. So, more accurate experimental methods allow scientists to improve 

their models, which in turn, allows them to better predict the conformational changes and 

folding of any unknown protein. 

This dissertation uses molecular dynamics in two separate studies, the first 

involving protein conformational changes and the second involving protein (un)foldings. 

In the first study (Chapter III), several different conformations of Escherichia coli 

dihydrofolate reductase are modeled under equilibrium conditions. Results indicate the 

existence of a new conformation. Simulated conformational changes show that this new 

conformer plays a role when one conformer transitions to another. In the second study 
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(Chapter IV), proteins sharing a Greek-Key topology are simulated at several different 

high temperatures, with the highest ones causing the proteins to unfold. The effect on 

long-range conserved contacts is closely monitored. Results support a novel hypothesis, 

which could eventually lead to the ability to predict protein structure from an amino-acid 

sequence. The next chapter discusses the fundamentals of the main theoretical methods 

used in these two studies. 
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CHAPTER U 

THEORETICAL BACKGROUND 

The research methods used in this dissertation are theoretical in nature. The four 

major tools used are molecular dynamics, targeted molecular dynamics, free energy 

analysis and normal mode analysis. Here, the framework of each is reviewed. These 

theories are mathematically complex and using them for the purposes of the work in this 

dissertation requires both the speed of computers, as well as numerical approximation 

methods for implementing them. Except for the integration scheme involved in the theory 

of molecular dynamics, the rest of the approximation methods lie outside the scope of 

this review. More information can be found in the literature (26-28). Theories are 

concisely developed from first principles, with lighter treatment offered where 

appropriate. Mathematical derivations assume familiarity with calculus and linear 

algebra. Vectors and matrices are represented as bold letters. 

MOLECULAR DYNAMICS 

The most popular method for simulating the motion of large molecules is 

molecular dynamics (29-33). The algorithm involves solving the classical equations of 

motion. The solution generates the trajectory of the molecule as it moves through the 3N-

dimensional configuration space, R3N, where N is the number of atoms in the molecule 

and each point in the space represents an entire atomic configuration. During this motion, 

the atomic velocities change in reaction to forces acting on them, which in turn alters the 

forces. Assuming the forces in the system depend only on the current configuration of the 

molecule (i.e. they are path independent, or conservative), then they are derivable from a 

potential energy function as its negative gradient. A potential energy surface of the 

molecule can then be defined. The valleys and peaks of the surface represent relatively 

stable and unstable configurations, respectively. The interplay between velocities and 

forces can be treated as an exchange between the kinetic and potential energies possessed 

by the molecule. The passage of time funnels the molecule along an energetically feasible 

path on this surface. The mechanical concepts described above form the theoretical basis 
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of molecular dynamics. The following derives the dynamic equations of motion used for 

simulating molecules. 

Given (at time t) the atomic positions, x, and their respective velocities, v, the 

positions at a slightly later time (t + dt) are approximated by the second degree Taylor 

expansion 

x(t + dt) - x(t) + ̂ ) dt + | ^ $ ^ d t 2 = x(t) + v(t)dt + ±a(t)dt2 [ l] 
cA (A , 

where a is the atomic acceleration vector and t is the time. The acceleration vector is 

known if the forces on each atom (i.e. the force vector) are known. Using Newton's law 

relating force to acceleration, F=ma, and extending the infinitesimal time (dt) to a finite 

time-step (At), Equation 1 becomes 

x(t + At) = x(t) + v(t)At + - U At2 [2] 

where F and m are the atomic force and mass vectors, respectively. Similarly, the 

positions at a previous time-step are 

x(t - At) = x(t) - v(t)At + - ^ At2 [3] 

Adding Equations 2 and 3 produces the Verlet integration algorithm, 

x(t + At) - 2x(t) - x(t - At) + S ^ At2 [4] 
in 

The velocities can be estimated by 
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/ x x(t + At)-x(t-At) 

Verlet integration can become numerically unstable. This is because a small number 

(~At2) is added to the difference of two large numbers (Equation 4). The Leapfrog 

algorithm, a more numerically well-behaved variation of the Verlet scheme (and directly 

derivable from it), is applied in this dissertation and uses the following relationships: 

x(t + At)=x(t)-Atv(t + |At) [6] 

v(t + iAt) = v(t-lAt) + ^ f f l [7] 
m 

where the evaluation of the positions and velocities are off by a half time-step. 

Starting a molecular dynamics simulation requires three items: initial positions, 

initial velocities and the forces acting on the atoms. Coordinates for proteins are obtained 

from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data 

Bank (PDB). Initial velocities are randomly assigned to all atoms according to a 

Boltzmann distribution at the desired simulation temperature. The forces are obtained 

from a potential energy function, V, (also known as a force field) by 

F(t) = -VV [8] 

Common force fields for proteins are CHARMM22 (34-35), AMBER-99 (36), 

GROMOS96 (37) and OPLS-AA (38-40). All are similar, as exemplified by the 

CHARMM22 potential, 
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V= 2kb(b-b0f+2ke(e-eo)2+ J k,[l + cos(n<j>-8)] [9] 
bonds angles dihedrals 

+ SM t D"< D°)+ 2kM^"^o) 
impropers Urey-Bradley 

+ 2 e 

nonbonded 

^roin.lj 

12 / v 

mm,l| 

\ ^ I 

q»qj 

^ er 
nonbonded "J 

Figure 2 describes the terms in Equation 9. The first term is harmonic, and 

accounts for the bond stretches, where kb is the bond force constant and b-bo is the 

distance from equilibrium for a given bond (Figure 2A). The second term, also harmonic, 

accounts for the bond angles, where kg is the angle force constant and 8-0o is the degrees 

from equilibrium for a given angle (Figure 2B). The third term is periodic, and accounts 

for the dihedral (or torsion) angles, where k̂  is the dihedral force constant, n is the 

multiplicity, (j> is the dihedral angle and 6 is the phase shift (Figure 2C). The fourth term 

is harmonic, and accounts for the improper dihedral (i.e. the out of plane bending), where 

k,,, is the force constant and co-coo is the out of plane angle (Figure 2D). The fifth term, 

also harmonic, accounts for the Urey-Bradley potentials (or 1,3 nonbonded angle bending 

interactions), where k̂  is the force constant and U,-JAO is the distance from equilibrium of 

the 1,3-nonbonded (i.e. atoms bonded to a common atom) interactions (Figure 2E). Term 

six represents the classic far-attractive close-repulsive Lennard-Jones potential, where e 

is the electric permittivity constant, rjj is the distance between the two nonbonded atoms 

(i.e. atoms not bonded to each other or to another common atom) in the configuration and 

Rmin,ij is the constant distance at which the potential is zero (Figure 2F). The seventh term 

is the electrostatic energy between the two atoms. This interaction arises from the partial 

charges, q\ and qj, residing on the two atoms. The last two terms take up the vast bulk of 

simulation time. To minimize computing time, the nonbonded interactions (van der Waal 

and electrostatic) are ignored outside of a certain cutoff distance. Switching and shifting 

functions are used to smoothly truncate these interactions at that cutoff. 

In order to run a molecular dynamics simulation, the force field must be given 

every parameter required by the seven terms of the energy function. Developing 
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I /^attractive (r6) 

Figure 2. CHARMM22 potential energy function terms. Bond lengths (A), bond angles 
(B), Urey-Bradley 1,3 distances (C) and improper dihedrals (D) are all harmonic. 
Dihedral angle potentials (E) are cosine cyclic (with period 2K). van der Waals potentials 
(F) are treated as Lennard-Jones. 

parameters for molecules is usually accomplished via intensive quantum mechanical (ab 

initio or density functional theory) calculations, or through the use of experimental data. 

Parameters are developed that satisfactorily reproduce experimental values or the 

quantum mechanical data. Good parameter sets exist for all protein amino acids and 

countless other types of molecules. 

As proteins are in solution in vivo, so they must be in silico. Thus the protein is 

placed inside of a box filled with water molecules, then the overlapping water molecules 

are removed. Apart from questioning whether the chosen water model accurately portrays 

the effects of real water, there remain two problems. First, it increases the number of 

atoms, which in turn, lengthens the simulation time. Therefore, the protein is solvated in 

just enough water to cover the nonbonded cutoff space surrounding the protein atoms. 

Secondly, the use of a water box creates boundary conditions. Since the protein atoms 

smoothly truncate their nonbonded forces inside the box, none of these atoms directly 
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'feel' the boundary via the force field. But this is not the case for the water molecules, 

especially those close to the boundary. So, the protein indirectly 'feels' the boundary by 

directly interacting with affected waters. 

The second problem is overcome by using periodic boundary conditions. The 

simulation box is infinitely replicated in all directions. Each box is equivalent to its 

neighbor, with their respective atoms occupying the exact same relative positions. Figure 

3 shows the two-dimensional version of such a periodic system. If a water molecule 

leaves on the right side of the center cell, its image enters on the left side. It is really just 

the same molecule being wrapped around. In other words, the atoms feel no edges 

Figure 3. Two-dimensional periodic boundary conditions. Human death domain (1E3Y), 
solvated in a cubic box of water is drawn as a flattened 2-D image. 
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Figure 4. Torus representation of periodic boundary conditions, dihydrofolate reductase 
(1RD7), solvated in a cubic box of water is drawn as a flattened 2-D rectangle (A). The 
sides are joined by rolling the sheet into a vertical cylinder (B). The top and bottom ends 
of the cylinder are joined to form a torus (C). 

because there are none. So, in the two-dimensional case, the simulation box (Figure 4A) 

is first rolled up into a cylinder (Figure 4B), the ends of which are then connected to form 

a torus (Figure 4C). Thus, the topology of the two-dimensional periodic boundaries is 

equivalent to that of a three-dimensional torus. The two-dimensional atoms are embedded 

on the surface of the three-dimensional torus. Similarly, the opposite faces of a three-

dimensional box are connected to form a four-dimensional torus. In this case, the three-

dimensional atoms lie on the surface of the four-dimensional torus, with no boundaries or 

image atoms. Therefore when applying periodic boundary conditions, only the atoms in 

the center cell need to be tracked. 

EXTERNAL PERTURBATION MOLECULAR DYNAMICS 

Proteins exhibit motions on a wide variety of timescales. These include bond 

vibrations on the femtosecond timescale, surface sidechain rotations on the picosecond 

timescale, hinge bending between two domains on the picosecond to nanosecond 

timescale, conformational transitions on the nanosecond to microsecond timescale and 

folding on the millisecond to second timescale (41). Unfortunately it takes much longer 

to simulate these motions using normal molecular dynamics. For example, running an 

MD simulation of a single protein conformational change can easily require months of 

computer time, on even the worlds fastest supercomputers. Several methods exist, which 



12 

speed up this process. This dissertation makes use of methods that facilitate both ligand 

unbinding and conformational change for the enzyme dihydrofolate reductase. 

Ligand unbinding is accomplished simply by applying an external force on one of 

the ligand atoms to push it out of the binding pocket. The force is included with the rest 

of the forces on that atom. The force magnitude is linearly varied from zero to a 

predefined value over the course of the simulation. This allows the ligand time to first 

break the weak interactions holding it in place and then the stronger interactions. The 

direction is chosen such as to offer a path of least resistance between its current position 

and the protein exterior. 

The targeted molecular dynamics (TMD) method forces structural changes to 

occur faster than they normally would during a simulation (42). An extra force is added 

in at each timestep pushing the system towards a target structure. The force arises from a 

time-dependent holonomic constraint based on the mass-weighted root-mean-square 

deviation (RMSD) between the current and target structures. The general form of the 

constraint is 

* [ x W ] = i 1 - ^ p2W=° [io] 

i-1 

where t is the current time, N is the number of atoms in the protein, X(t) is the 3N-

dimensional time-dependent atomic coordinate vector, mi is the mass of atom i, X;(t) is 

the position of atom i at time t, Xi;F is the target position of atom i and p(t) is the desired 

mass-weighted RMSD between the structure and target structure. Thus, the constraint is 

set equal to the difference between the current mass-weighted RMSD and the desired 

mass-weighted RMSD. Treating this difference as 0 means the constraint is holonomic 

and that system dynamics are restrained to occur on the confines of the p-hypersphere. In 

other words, adding in the constraint at one time-step forces the system to attain the 

desired RMSD (p) at the next time-step. So decreasing p at each successive time-step 

restrains the system trajectory along a path of decreasing RMSD with respect to the target 
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structure. Since the constraint is holonomic it is incorporated into the original potential 

energy function using a Lagrange multiplier: 

V' = V+*,<D. [11] 

where V is the original potential (given by Equation 9) and X is the Lagrange multiplier 

to be determined (see below). Hence, the net force on each atom is 

F{ -F1 + F , c —V.V-W, * [12] 

where the first and second components on the right are the original and perturbing forces, 

respectively. Differentiating the second term on the right yields the perturbing force 

2Xm, 
-='(<)=^M<)-x„] [13] 

where (m) is the average atomic mass. The resulting integrated equations of motion under 

the Leapfrog algorithm (Equations 6 and 7) are 

X,(t)= X i( t-At) + v l ( t - |A t )At +
F | ^ t A t ) M 

-x,(t) + p,(t) 

Fi
c(t-At)At2 

ms 

[14] 

where Xj(t) is the position in the absence of the holonomic constraint and p;(t) is the 

perturbation (change in position) due to the constraint. A simplified expression for pi(t) is 

obtained by incorporating Equation 13 into the p* component of Equation 14: 

, , 2)Jx(t-At)-X iFl r , , 

•»•(')- M
( m ) ^ - f r M ) - * * ] [15] 
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with y (implicitly defining the Lagrange multiplier, X) as 

2 X A t 2 Y = f-rAt : 

This shows the perturbation is a simple scaling factor (Y) times the difference between the 

previous position and the target. To obtain y, Equation 14 (lower form) is substituted into 

Equation 10 giving 

2rni{pf(t) + 2p,(t)[x1(t)-X lF]} I H ^ M - X u : ] 2 

-P2 ( t ) [17] i-1 
N 

i-1 

|m{rf(t)+2p,(t)[x,(t)-
i-1 

N 

i-i 

+ ,; 

-*4 

=1 
N 

i=1 

*[x(t)] = 0 

Now, substituting Equation 15 into Equation 17 gives y (and hence A,) as the solution of 

ay2 + by + ^f x(t M = 0 [18] 

where 

JmJX^t-At)-^]2 

a = - N > [19] 

2m* 
i=1 
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2^[X,(t-At)-Xlj:IxI(t)-Xlf] 
b = - ^ s [20] 

2™i 
i-1 

and 

-a 

*[*(*)] = - S P2(*) PI] 
_ _ i 

i-1 

The transition pathway generated by TMD may contain artifacts and 

abnormalities, which need to be addressed. First, the mass weighting factors in the 

derivations above ensures a stationary center of mass only if all atoms are perturbed. 

Second, the angular momentum of the protein is not theoretically conserved, even when 

all atoms are perturbed. The perturbation calculations described above suppose the 

simulation and target structures are both aligned. So, every so often, the target structure 

is aligned (using the constrained atoms for the fitting) with the current structure. 

A larger problem arises when considering the direction and magnitude of the 

TMD perturbation. Conventionally, the p(t) parameter, which specifies the desired 

RMSD with respect to the target structure, is set to decrease evenly and monotonically 

with time. In other words, at each time-step, the protein is forced to occupy the adjacent 

RMSD hypersphere, which is closer to the target value. As shown in Figure 5, even if the 

unconstrained molecule overshoots the next hypersphere, and gets closer to the target, the 

perturbation brings it back. And since these perturbations are only based on RMSD, they 

may force the crossing of large energy barriers. 
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Figure 5. TMD movements along successive p-hyperspheres. The initial configuration 
(Xi) approaches the final configuration (XF) by moving along adjacent RMSD 
hyperspheres (p). Newtonian and perturbing movements are labeled with grey and black 
arrows, respectively. And Newtonian and final configurations (i.e. after applying the 
perturbation) are labeled with, respectively, lower case and upper case letters. 

The Restricted-Perturbation TMD method (43) addresses these problems by both 

restricting the total magnitude of perturbation and minimizing the RMSD with the target 

structure at each step. It is designed to prevent large barrier crossings. The total 

perturbation is obtained by summing Equation 15 over all perturbed atoms: 

ihHiWt-At)-^ [22] 
i-1 i-1 

Restricting the total perturbation to a certain amount, PF, means the scaling factor, y, 

takes the value ±YF, where 
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^( t -AtJ -X, , ! P31 

Solving for p(t) (using Equation 10) gives the RMSD at each step, 

* ) - . 1 
N 

i-1 

-4>[X(t)] [24] 

Since the first term under the square root sign in Equation 24 is positive, the RMSD, p(t), 

is minimized by maximizing the second term, <J>[X(t)]=-ay2-bY (Equationl8). a>0 by 

Equation 19. So 0[X(t)]=-ay2-bY is maximized by letting Y^+YF when b<0 and Y=-YF 

when b>0. Of course, setting PF=0 means YF=0 (Equation 23), and hence <&[X(t)]=0 

(Equation 18). Thus setting PF=0 recovers the unperturbed dynamics. 

To further prevent large energy barrier crossings, the already restricted value of 

the total perturbation, PF, is reduced when the perturbation vector, p, is poorly aligned 

with the unperturbed force vector, F, since the latter points downhill in energy (F=-VE). 

The sign of the following parameter checks the alignment: 

N 

C = 2|Pi|cos(pj,Fi) [25] 
i-i 

This perturbation reduction results in a relative increase in both the current RMSD 

relative to the target structure (the RMSD using the full value of PF would be lower) and 

hence the simulation length. Although the RMSD is minimized at each step, there is no 

reason why it cannot increase temporarily, in order for the protein to skirt the edge of an 

unstable conformational zone. 
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FREE ENERGY ANALYSIS 

The relative stabilities of two protein conformers are measured by their respective 

free energies. Free energies, however, are rather difficult to obtain, and their accurate 

calculation, is an ongoing research problem (44-47). The origin of this difficulty lies in 

the close relationship between free energy and the thermodynamic partition function the 

latter being most difficult to calculate under simulation, since it requires a sampling of 

the entire configuration space. The difference in free energy between two structures is 

easier to calculate. The most rigorous methods for this are free energy perturbation (31) 

and thermodynamic integration (48). The former requires calculations on an entire path 

of structures between the two conformers. The latter requires the free energy to be a 

function of some parameter, which defines the thermodynamic state (i.e. conformation), 

thus allowing the free energy difference to be calculated by integrating it as a function of 

the change in the parameter. Since these are very time-consuming, attention has been 

focused on end-point calculations, where only the two structures being compared need to 

be analyzed (49-51). Most of these methods decompose the free energy into separate 

components. The Molecular-Mechanics Poisson-Boltzmann Surface-Area (MMPBSAA) 

method is a popular end-point method, which splits the free energy into four parts: gas 

phase molecular-mechanics energy, free energy of solvation - composing both 

electrostatic (Poisson-Boltzmann) and nonpolar (Surface-Area) components, and entropy 

(51-55). This dissertation uses the MMPBSA method to compare the relative stabilities of 

the different M20 loop conformers of DHFR under different ligand environments. The 

method is briefly described here. 

Relative free energies of protein conformers may be computed using structures 

obtained from a protein/solvent MD simulation, but without referring to the explicit 

solvent coordinates. The basis for this reduction of coordinates lies in statistical 

thermodynamics and is briefly outlined here under the framework reviewed by Gilson et 

al (46). The free energy of protein conformation C (C represents the ensemble of protein 

configurations corresponding to that particular conformation), relative to the unfolded 

state, is 
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Jexp 
AGc = -kTln^ 

I V} dx1,...,dxNdy1 dyK 

U 
kT 

Jexp - — dx1,...,dxNdy1,...,dyK 

[26] 

where k is Botzmann's constant, T is the temperature, U is the potential energy, x; 

(i=l,...,N) are the protein coordinates and y; (i=l,...,M) are the solvent coordinates. The 

lower integral is the classical configuration integral of the protein/solvent system, while 

the upper integral function is the sum over the configurations of conformation C. The 

ratio represents the probability of occurrence of conformation C. The protein potential of 

mean force, W(XI,...,XN), introduced by Kirkwood in 1935 (56), gives the average force 

over all solvent configurations, and depends on the volume, V: 

exp 
/ W(x1,...,xN

N 

kT 

VN /exp 

--kTln-

( JU 
kT 

dyv-.-dyn 

U 
Jexp-—dx1,...,dxNdy1 dy, 

kT 

[27] 

Rewriting the free energy in terms of W allows the solvent terms to be integrated out into 

a constant, which then cancels, and results in 

/ e x p -
AGc=-kTln-2 i -

VV 

kT 
'.dx, dxN 

Jexp - — dx^-.-.dXN 
[28] 

The potential of mean force (PMF) represents an effective free energy potential (i.e. 

W«G). Using it allows implicit inclusion of solvent effects without explicit reference to 

solvent coordinates. 

In the MMPBSA method (51-55), the free energy (or PMF) decomposes as 



20 

AG - EMM + AGPB + AGSA - TS [29] 

This calculation requires a set of protein coordinates (e.g. those obtained from an MD 

trajectory). Comparing Equation 29 to the familiar G=H-TS, suggests that the first three 

components and the last component are the enthalpy and entropy, respectively. The first 

term is simply the protein's gas phase energy calculated with a standard molecular-

mechanics force field (discussed in the previous section). The second term is the 

electrostatic part of the free energy of solvation of the protein and is calculated using 

G r e - i ^ [30] 

where q; is the partial charge on each atom and (j>i is the potential at each atom (obtained 

by solving a linearized version of the Poisson-Boltzmann equation). Solving the Poisson-

Boltzmann involves treating each charged atom as being encompassed by other charged 

atoms within a protein dielectric (E = 1) as well as being surrounded by solvent dielectric 

(e = 80). The Poisson-Boltzmann free energy term (Equation 30) represents the 

electrostatic interaction energy between explicit charges in the protein and the implicit 

charge of the solvent. So the actual term used in Equation 29 is difference between GPB 

solved for e=80 and GPB for e=l. The nonpolar part of the free energy of solvation 

represents the energy necessary to create a cavity in the solvent. It is taken to be 

proportional to the solvent accessible surface area (SASA) 

AGSA = Y A+p\ [31] 

where y is the constant of proportionality and p is the y-intercept. The fourth component 

of the free energy is the gas phase entropy of the protein and is obtained via 

quasiharmonic normal mode procedures (explained in the next section). 
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NORMAL MODE ANALYSIS 

The complete vibrational pattern of any molecule decomposes into a set of 

independent non-interacting vibrations all occurring simultaneously. These are the 

normal modes. This research utilizes them in two different ways: first, to measure the 

degree of similarity between the vibrational distortions of DHFR complexes and the 

various conformational changes that can occur, and second, to calculate the entropy 

component for the relative free energy analysis of the DHFR MD simulations. Normal 

mode theory, as it applies to the two problems, is discussed below; but first, the basic 

formalism of the theory is developed (57-58). 

Consider first the one-dimensional problem of a point mass moving in a harmonic 

potential 

V(x) = |kx2
) [32] 

where x specifies the displacement from equilibrium, which is defined as the location 

where the potential is at its minimum, and k is the force constant describing the stiffness 

of the potential: 

k = 
dx2 [33] 

The force acting on the particle is: 

F = - ^ = -kx [34] 
dx 

Newton's equation of motion for this particle is 

d2x 
m ^ = -kx [35] 

dt2 J 
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or 

^ = -c»2X co = - J - [36] 

at with 

Solving this differential equation for x gives 

x(t) = A • Cos(oot + 6) [37] 

Thus x moves about its equilibrium position (x=0) with amplitude A, frequency co and 

phase 6. The constants of integration, A and 6, depend upon the initial conditions. This is 

called a harmonic oscillation. 

Vibrations of a polyatomic molecule are described similarly. Consider a molecule 

with N atoms, described by their 3N Cartesian coordinates, Xi (i=l, 2, ..., 3N), and under 

the influence of a potential V. The Taylor expansion of V is 

^<M\ «v*$|VvN 
V(x1,x2,...,x3N) = V0 + £ — Xi + i ^ E 

-U^x-O ' ' ^ H I ^ L O 
X.X, + . . . [38] 

This form of the potential is simplified by assuming the following three criteria. First, the 

constant potential lies at the zero point of the energy scale (i.e. Vo=0). Second, motion 

occurs about the equilibrium configuration of the molecule, so that the partial derivative 

of the potential energy for each coordinate equals zero. Third, the atoms do not move 

very far from their equilibrium positions, so the third order terms and above are 

negligible and can be ignored. This third assumption is the only approximation made so 

far. It is called the harmonic approximation. So, V becomes 

3N 3N 

V(x1,x2,...,x3N) = | 2 E ^ i x i x i [39] 
i=1 j - 1 
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or 

V = fxTFx [40] 

a multidimensional harmonic potential, with harmonic force constants given by the 

symmetric matrix, F: 

F,-
/ ?y\ 

\ ' f/x=0 

[41] 

Newton's equations of motion for each coordinate are then 

d2x, av $ _ 
m — r - - = - ) F i i x i 

' d t 2 [42] 

a set of 3N coupled differential equations. They are coupled because the various points of 

the potential energy depend on the coordinates of more than one atom. There exists 

another related set of coordinates, yj (j = 1, 2, ..., 3N), called the normal coordinates, in 

which, Newton's equations are uncoupled, thus giving the potential energy a diagonal 

form: 

3N 

v(y1 ,y2 , . . . ,y3N) = ^ 2 A i y i 2 [43] 
i-i 

with new constants, Xj, or in matrix form, 

V = |y'Ay [44] 

where A is the diagonal matrix with the new constants, Xj, occupying the diagonal 
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positions and zeros elsewhere. The following shows the identity of these new constants 

and the relation between x and y. The original form of the potential can be transformed to 

mass-weighted Cartesian coordinates by 

V = ±xTMAM1AFMAM~Ax ^ [45] 

where M1/2 is the mass matrix. The diagonal elements of M1/2 are the square roots of the 

atomic masses and the off diagonal elements are 0. M~1/2 is its inverse. Because F is 

symmetric and both M1/2 and M"1/2 are diagonal, the triple matrix product, M"1/2FM1/2 is 

also symmetric and hence diagonalized by an orthogonal transformation matrix, L: 

M K FM K L=LA, [46] 

or 

MAFMy=LAL\ [47] 

which is an eigenvector/eigenvalue equation, with L being the eigenvector matrix and A 

the corresponding eigenvalue matrix (containing eigenvalues, Xj , along its diagonal and 

zeros elsewhere). The potential then becomes 

V - i x W 2 LAL"1 M %x [48] 

The normal coordinates can be defined as 

y = L~1M/2x [49] 

Then, since the transpose of the orthogonal matrix, L, is the same as its inverse, yT is 

given by 



25 

.T x T M% [50] 

and the potential simplifies to Equation 44. The eigenvector matrix, L are the normal 

modes, and the matrix, A, are the corresponding eigenvalues. In this formalism, the 

motion of the molecule is a superposition of independent harmonic vibrations in each of 

the coordinates yj (i = 1, 2, ..., 3N). These 3N types of motion are called the normal 

modes of the molecule. Treating each normal mode as a one-dimensional problem, the 

potential and motion of the kth normal mode are given by 

vk«Kyii [5i] 

and 

yk(t) = Akcos(a>kt + 4 ) 5 [52] 

where Ak and 6k are given by the initial conditions, and 

«k=VV [53] 

Using the eigenvector matrix, L, to transform from normal coordinates back to Cartesian 

coordinates, the motion in Cartesian space of the kth normal mode becomes 

xi(t) = LikAkCOs(o\t + \) i - (1,2 3N) [54] 

So in any one normal mode, all 3N atoms oscillate with the same frequency tt>k (and same 

phase 6k) and relative amplitudes given by the kth column in the eigenvector matrix L. 

Since normal modes describe atomic vibrations, they can be used to calculate the 

mean square fluctuations of the particle positions, (XJ2). The equipartition theorem of 

statistical mechanics shows that the average potential energy of a harmonic oscillator is 
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<V) = (ikx2) = ik B T ; [ 5 5 ] 

where k is the force constant, kB is Boltzmann's constant and T is the temperature. This 

yields 

|k(x2) = fkBT [56] 

or 

x2) = T " = ^ T [571 
1 k ma) 

Similarly, in normal mode k, 

( V k > - ( K ^ ) - ^ T [58] 

and 

„2\ k B T k B T 

^ = T - = - T [59] 

Using Equation 52, the amplitude is calculated by 

(y^) = (Afcos2Kt + (\)) = !A^ [60] 

Thus 
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A 2 _ ^ B 

0) 

2kDT 
2 [61] 
k 

In Cartesian space, the motion of normal mode k is given by Equation 54, so 

(x^)=(^cos2Kt+^))=^kA^=qk^I [62] 

Then it is easy to show that the total mean square fluctuation of coordinate i (across all 

normal modes) is 

3N .2 

(*?W2% [63] 
k=1 w k 

and similarly that the total mean square fluctuation for atom j is 

( A r f ) " (X3G-1)+1 + X3(j-1)+2 + X3(j-1)+3/ [64] 

or 

3N 12 3N,2 .2 .2 
3(1-1 )+1,k + L3(|-1)t2,k +L3q-1)+3,k 

2 [ 6 5 J 
k-1 0 ) k 

Here, the subscripts are changed from i to j to emphasize the use of positional 

coordinates, r, as opposed to one-dimensional coordinates, x, where X3(j.i)+i, \3Q.iyt-2 and 

X3(j-i)+3 correspond to x, y and z of atom j . This says that the mean square position 

fluctuations of atoms, in a molecule under the influence of a harmonic potential, are 

proportional to temperature and that the lowest frequency vibrations (i.e. the normal 

modes with the largest eigenvalues) contribute the most to atomic motion. 

file:///3Q.iyt-2


28 

Finally, consider the covariance matrix, in which fluctuations in the distances 

between different atomic coordinates are calculated. The element in the ith row and jth 

column of this matrix (i.e. the covariance between coordinates i and j) is given by 

3N I I 

X i X \ = k T y ^ <*i- TO = K B' A — r [66] 
k=1 W k 

In matrix notation this equation is 

2 = kBT-LA-1LT [67] 

where A"1 is the inverse of the diagonal matrix of eigenvalues Xk = tok
2, and ay are 

elements of 2. Combining this equation with Equation 47 gives 

F r^r- [68] 
2 = k B T - M " W o r k8T 

Thus, normal modes are obtained from the covariance matrix also. Thus normal modes 

can be extracted from any source that yields a covariance matrix. The quasiharmonic 

method (see below) uses the covariance matrix calculated from an MD trajectory. 

Normal mode analysis is applied in two different ways in this dissertation. The 

first method measures the degree of similarity between vibrational distortions of DHFR 

complexes and various M20 loop conformational changes. Normal mode theory shows 

how the vibrational distortions decompose into independent normal modes, each 

described by its own directional eigenvector with 3N components in Cartesian space. A 

conformational change is represented by a directional difference vector, i.e. the 

coordinates of the target conformation minus the coordinates of the initial conformation, 

also with 3N components in Cartesian space. Therefore, the degree of similarity between 

the two is measured simply by the magnitude of their dot product. Modes with large dot 

products indicate oscillations occurring along the path of conformational change. 
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Before using this measure to compare the vibrational overlap with two or more 

conformational difference vectors, a few considerations need to be addressed. First, all 

conformational difference vectors used in the comparison are normalized prior to 

calculating the dot products, since it is only the direction that is of interest and not the 

magnitude. The normalization is necessary because it eliminates any bias (e.g. if one 

difference vector is larger in magnitude than the other vectors). Second, a calculated dot 

product may be negative, which means that the normal mode eigenvector is pointing in 

the opposite direction to the conformational difference vector. However, normal modes 

are oscillatory motions, and therefore vibrate back and forth with the same amplitude in 

both directions. Therefore the sign of the dot product is meaningless. Hence only the 

absolute values of the dot products are used in the comparisons. Third, as previously 

shown, the largest atomic displacements occur in the lowest frequency modes. In fact, 

studies show that the few lowest frequency normal modes of proteins account for 

virtually all of the larger slow motions (e.g. conformational changes), while the vast 

majority of higher frequency modes involve only quick movements (e.g. bond stretches 

and angle bends) (59-61). Therefore, only the dot products involving the first few lowest 

frequency modes need to be examined (59-62). To examine a superposition of normal 

modes, the corresponding dot products are simply summed together. Because normal 

modes occur simultaneously, a dot product with one mode may be negative, while that 

with another is positive. So in this case, the absolute value is taken after the dot products 

are summed together. These considerations allow the dot products (and their sums) to be 

a good measure for determining which conformational change vector best overlaps with 

the protein vibrations. 

The second use of normal mode analysis (NMA) is for calculating the entropy of 

an MD simulation structure. This data is used in the calculation of the relative free energy 

of the DHFR MD simulations. Two things are required: a set of normal modes 

(specifically their frequencies) that represent the motion of DHFR during molecular 

dynamics simulations and a way to extract the entropy given the frequencies. The normal 

modes are extracted in three steps. First, the positional covariance matrix, 2, along the 

simulation trajectory is calculated. Next (using Equation 68), this matrix is converted into 

a force constant matrix. Finally, in what is called the Quasiharmonic Approximation, this 
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'effective force constant matrix' is used in the same diagonalization procedure (described 

above) to obtain the normal modes. 

The subsequent entropy calculation from the normal mode frequencies requires 

some elementary statistical mechanics. In particular, the quantum formalism of the 

harmonic oscillator is used. The energy levels of the one-dimensional harmonic oscillator 

are given by 

En=/m>(n + | ) n-1 ,2 , . . . . [69] 

The partition function for this system is 

q = ^ e k e T [70] 
n 

This sum is calculated by converting it to a geometric power series, 

q = ey*ye™ = -?— « a/
 1

 a/ mi 
^ 1-e_B e/2-eA l J 

where the dimensionless quantity is 

a = 
kBT 

[72] 

The Helmholtz free energy and average energy of the oscillator are 

A = -kBTln(q) = — + kBTln(l - e^1*") [73] 

and 
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a(kBT) ~ T ekBTf 'M-1 
[74] 

respectively. Calculating the entropy using the familiar thermodynamic equation, 

s = E-A 
T 

[75] 

yields 

S = k« -±— In(l-e-) [76] 

The partition function in systems with many degrees of freedom is 

Q-n* [77] 

Finally, plugging this result into Equations 73 and 74 and solving Equation 75 shows that 

the entropy of a harmonic system with many degrees of freedom is 

^^-'"Hi [78] 

with 



ak = 

32 

[79] 

The entropy contribution to the free energy is then just TS, where T is the temperature. 
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CHAPTER III 

M20 LOOP CONFORMERS OF DIHYDROFOLATE REDUCTASE 

BACKGROUND 

Escherichia coli dihydrofolate reductase (DHFR) catalyzes the reduction of 7,8-

dihydrofolate (DHF) to 5,6,7,8-tetrahydrofolate (THF) by cofactor nicotinamide adenine 

dinucleotide phosphate (NADPH). The enzyme is comprised of 159 amino-acid residues 

and folds into a globular-shaped structure consisting of an 8-stranded p-sheet surrounded 

by 4 ct-helices (Figure 6). DHFR regulates the amount of THF available for cellular 

processes. Notably, the biosyntheses of purine and thymidylate require THF, thus making 

it necessary for DNA production, and in turn, cell growth. Although DHFR is found in all 

cell types, the most rapidly proliferating ones (e.g. skin, hair, growing fetus, and cancer) 

are more dependent on it. The enzyme's ubiquitous nature and vital cellular role make it a 

very popular target in the development of anticancer and antimicrobial drugs (63). In fact, 

circa 1950, the first anticancer drug targeted this enzyme (64-66). These applications rely 

on a predetermined knowledge of the structure, especially its active site region. 

The M20 loop (residues 14 to 24) is a flexible portion of dihydrofolate reductase, 

connecting p-strand A to a-helix B (Figure 6) that covers the active site. During catalysis 

this loop changes shape, allowing ligands access to the active site. More simply, it opens 

and closes as the reactant and product molecules bind to or detach from the protein. 

However, an in depth crystallography study by Sawaya and Kraut (67), on a large number 

of DHFR complexes, over a wide variety of ligands, shows the loop preferring one of 

three well-defined conformations: open, closed or occluded, with the shape determined 

by the identity of the ligand(s) present (Figure 7). In the closed conformation, the M20 

loop is characterized by a short antiparallel p-sheet with hydrogen bonds in residues 16-

19 forming a type IIF hairpin turn [Metl6(CO)-Alal9(NH) and Metl6(NH)-Alal9(CO)] 

and a pair of hydrogen bonds to the FG loop [Glyl5(CO)-Aspl22(NH) and Glul7(NH)-

Aspl22(Oe2)] that maintain the shape of the loop's N-terminal portion. In this 

conformation, the loop fits snug against the cofactor's nicotinamide binding pocket 

sealing it from the solvent. The occluded conformation contains a short 3io-helix 

[Glul7(CO)-Met20(NH)] and a pair of hydrogen bonds on its C-terminal end to the GH 
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Figure 6. DHFR secondary structure. Shown at the top is the 3-D structure of DHFR with 
bound DHF and NADPH (PDB code 1RX2), and at the bottom, the corresponding 1-D 
amino acid residue sequence. 
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Figure 7. M20 loop conformers of DHFR. Shown are the closed (A), open (B) and 
occluded (C) conformers. The full protein images on the left show the highlighted M20 
loop substrate and/or cofactor. Shown on the right are ribbon representations of the three 
major loops (M20, FG and GH), stick representations of the M20 loop backbone atoms 
and stick representations of all atoms in residues 122 and 148 of the FG and GH loops, 
respectively. This figure was constructed using PDB coordinates (1RX2 for closed, 1RD7 
for open and 1RX7 for occluded). 
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loop [Asn23(CO)-Serl48(NH) and Asn23(NH)- Serl48(06)]. Its N-terminal portion, 

being relieved of any interloop hydrogen bonds, protrudes into the active site, occluding 

the cofactor's nicotinamide binding pocket. The open conformer (also the most 

frequently occurring conformation crystallographically) contains one of the M20-FG 

interloop bonds [Glyl5(CO)-Aspl22(NH)] and both of the M20-GH interloop bonds. 

However, the loop's central portion does not resemble either of the other two conformers, 

but has a unique irregular shape, characterized by a large opening from the solvent to the 

interior of the active site. Although the open conformer is the most frequently occurring 

crystal conformer observed, it appears to be stabilized by crystal packing contacts. Every 

structure exhibiting the open conformer also reveals extensive contacts between the M20 

loop of one enzyme and the GH loop of its two-fold symmetry related neighbor within 

the crystal lattice (Figure 8). It is possible that removing these contacts (as would exist in 

vivo conditions) would cause the loop to shift in order to restabilize itself. 

Sawaya and Kraut were able to obtain isomorphous crystal structures (of space 

group p2}2i2iB) representing the five steady state catalytic intermediates of DHFR: 

E|NADPH, E|NADPH|DHF, E|NADP+|THF, E|THF and E|THF|NADPH (67). By using 

modified (but structurally similar) substrates and cofactors to mimic the reactive species, 

they found that each intermediate takes on either the closed or occluded conformation. 

From these results, they proposed an extended model of the catalytic cycle, which defines 

the loop conformation for each intermediate (Figure 9). The model shows the M20 loop 

closed in both the holoenzyme (E|NADPH) and the subsequent Michaelis complex 

(E|NADPH|DHF) and occluded the rest of the time. These results do not, however, 

provide any information on conformational changes for any complex or transitions 

between any two. Nuclear magnetic resonance (NMR) studies also lend support for 

Sawaya and Kraut's model. By using previously determined chemical shift markers (68-

70), which distinguish between closed and occluded conformers, each catalytic 

intermediate (or representative complex mimicking a reactive intermediate) was observed 

to have the same M20 loop conformation seen by X-ray (71). 

The interloop hydrogen bond contacts mentioned above, in addition to marking 

the different M20 loop conformers, are also vital for proper catalytic function. 

Mutagenesis studies targeting Asp 122 of the FG loop (needed to stabilize the closed M20 
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Figure 8. Crystal packing contacts of the open M20 loop conformer. Contacts exist 
between the FG loop and M20 loop of two symmetry-related proteins in the crystal 
lattice. Structure is drawn using the open M20 loop conformer of E. coli DHFR with 
folate bound (PDB code 1RD7). 
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Figure 9. DHFR catalytic cycle. Steady-state rate constants in the forward direction are 
shown next to the straight black arrows connecting the catalytic intermediates. Also 
shown are conformational exchanges occurring between ground and excited states of the 
M20 loop. Exchange rate constants are shown next to the curved grey dashed arrows 
connecting the ground states and excited states. The M20 loop conformations (closed, 
occluded and other) in the ground states and excited states are specified. 
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loop conformer) (72) and Serl48 of the GH loop (needed for the occluded conformer) 

show the importance of these residues (73). First, substituting Asp 122 with Asn, Ser or 

Ala (respectively decreasing in hydrogen bond forming ability) resulted in a decreased 

steady-state turnover rate. Not surprisingly, there was an increase in the cofactor 

dissociation rate from the Michaelis complex. This result was expected since without the 

hydrogen bonds between Asp 122 and Glyl5-Glul7, the M20 loop is better able to 

occlude the cofactor's binding pocket and hence push it back out of the active site. 

Unexpectedly, this mutation also increased the dissociation rate of the product NADP+ 

from the product complex E|NADP+|THF. This is strange since the crystal structure of 

this complex shows its M20 loop already occluded. Second, substituting Ser 148 with Ala 

also decreased the steady-state turnover rate, and the NADP+ off rate from 

E|NADP+|THF was decreased. Without the hydrogen bonds connecting it to Serl48, the 

M20 loop should be freer to convert back to closed and trap the cofactor in the active site. 

Again, the mutation unexpectedly decreased the off rate of NADPH from 

E|NADPH|folate (also catalytically active, but with a slower reaction rate). The take 

home message is that destabilization of one M20 loop conformer also affects complexes 

which do not have that particular M20 loop conformation. The authors explained these 

strange results by suggesting that conformational exchange could be occurring in those 

complexes, which appear to only have one conformer via X-ray or NMR (72). 

Evidence for closed-occluded conformational exchange within a DHFR catalytic 

intermediate was established by McElheny et al (74) by using NMR spin relaxation 

dispersion techniques (75). Nuclear spin relaxation results from time-dependent 

stochastic modulation of spin Hamiltonians, and when conformational dynamics occur on 

time scales comparable to or faster than the overall rotational correlation times, the spin 

relaxation rate constants are influenced. Measuring the dependence of transverse 15N 

relaxation rate on the temporal separation between NMR pulses revealed exchange 

between a closed ground state and an occluded excited state occurring within 

DHFR|folate|NADP+ (the same ternary complex that the previously mentioned X-ray 

studies used for modeling the Michaelis complex of DHFR) (74). A more comprehensive 

study that followed revealed four of the five catalytic intermediates to be populating 

additional M20 loop conformers (76). Figure 9, which summarizes these results, shows 
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that the Michaelis complex (closed ground state) populates an excited state conformer 

that resembles occluded. Likewise, the product complex (occluded ground state) 

populates an excited state conformer that resembles closed. E|THF|NADPH (occluded 

ground state) and E|NADPH (closed ground state) both populate a similar third 

conformation of unknown structure. 

The observations described above suggest a mechanism for loop movement 

during the reactive step. Crystal structures show the occluded M20 loop occupying the 

same binding pocket as the cofactor's nicotinamide ring in the closed conformer. 

Therefore, as the Michaelis complex (E|NADPH|DHF) transitions from the closed 

ground-state to the occluded excited-state and back again (as observed by NMR), the 

nicotinamide ring must leave and reenter the binding pocket, respectively. Since hydride 

transfer can only occur in the closed conformation, the speed at which the reaction occurs 

may be limited by the speed at which conformational exchange occurs. Support for this 

theory comes from the similarity between the rate of conformational exchange within the 

product complex (1200 s"1) and the steady-state hydride-transfer rate (950 s"1) (77). 

The combination of X-ray and NMR studies also sheds light on THF dissociation. 

The steady-state dissociation rate (12.5 s"1) (77) from E|NADPH|THF, which is the rate-

limiting step, is similar to the conformational exchange rate (12-18 s"1) occurring in that 

complex (76). Thus product dissociation may occur from the excited state. In that case, 

the M20 loop in E|NADPH|THF would exchange conformation before the cycle proceeds 

to the next step. As noted in Figure 9, the excited state loop conformer of E|NADPH|THF 

resembles a structure other than closed or occluded. However, its structure does resemble 

the unknown exited-state conformer of the next catalytic intermediate, E|NADPH. 

Dissociation occurs more slowly from the product complex, E|NADP+|THF (2.4 s"1) than 

from the ternary complex E|NADPH|THF (12.5 s"1) (77). If the product complex were 

able to sample the unknown third conformer, like the ternary complex does, then, perhaps 

TFIF dissociation from E|NADP+|TFTF would occur just as quickly. 

The third unknown M20 loop conformer observed by NMR (76) may be similar 

to the frequently seen open crystal structure (67). A separate NMR experiment by 

Kitahara et al (78) shows that under high-pressure the DHFR|folate binary complex 

adopts a second conformation apart from its ground state occluded form, which they 
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propose may be the often-seen open crystal conformer (67). At normal pressure the 

second conformation is estimated to have a 10% population. In the two-dimensional 
15N/'H HSQC spectrum, they observe splittings of Argl2, Vail3 and Trp22 in the M20 

loop and of Gly51 and Gly95 in a-helices C and F, respectively, all of which surround 

the cofactor binding site. The affected residues are similar to those areas with differences 

in the open and occluded crystal structures of DHFR|folate (PDB codes 1RD7 and 1RX7, 

respectively) (67). Additional calculations show a decrease in volume (AV = -25 

mL/mol), enthalpy (AH = -43 kJ/mol) and entropy (AS = -0.15 kJ/K mol), as the complex 

transitions to the second higher energy conformer (78). These suggest the transition is 

accompanied by an increase in hydration, and a decrease in cavity volume. This agrees 

with Kitihara et al's (78) calculated decrease in cavity volume in the transition from the 

occluded conformer to open conformer in the crystal structures. The NMR evidence of 

the same open conformer as seen in crystallography is not well supported, especially after 

taking into account the crystal packing forces in all open conformer crystal structures 

(67) and the possible shift involved with removing those forces. 

The considerations above demonstrate the close connection between change and 

stability for the M20 loop of E. coli DHFR. Crystallography reveals the stabilizing 

contact forces, within the M20 loop and between the M20 loop and the FG and GH loops, 

which are responsible for holding the separate M20 loop conformations in place (67). 

Mutagenesis shows that scaling down these contact forces (or removing them entirely) 

stabilizes one loop conformer over another and hence greatly reduces the enzyme's 

catalytic productivity (72-73). Furthermore, NMR experiments show how the M20 loop 

conformational exchange between the ground state and less stable excited state 

conformers allows catalysis to proceed from one intermediate to the next (78). The 

existence of the M20 loop conformational flexibility within E. coli DHFR is 

hypothesized to be the result of an evolutionary response to the increased NADP+ levels 

in E. coli over other cell types (67). That is, elevating the cellular concentration of 

NADP+ would result in product inhibition of DHFR. In response, E. coli developed an 

ability for the M20 loop of DHFR to occlude the cofactor binding pocket in order to 

prevent hindered catalysis by NADP+ binding. In other words, the cell forced the enzyme 

to change its active-site loop conformation to avoid a stagnant (or stable) environment. 
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This dissertation studies the M20 loop conformations of E. coli DHFR by 

addressing the following questions. How do different ligands affect the structure and 

dynamics of the M20 loop? More specifically, does changing the ligand shift the enzyme 

preference towards another M20 loop conformer? Does the 'open' M20 loop conformer 

observed in crystal structures play a part in the closed-occluded conformational 

transition? Does removal of the crystal packing forces destabilize the open crystal 

conformation? How do conformational changes occur? More specifically, what is the 

pathway for conformational change? The atomistic detail and timescale of these events 

make experimental inquiry difficult and therefore lend themselves exceedingly well to 

simulation investigation. 

Numerous theoretical investigations have already been performed on E. coli 

DHFR. Certain classical MD studies have probed how conformation and dynamics 

contribute to catalytic function (79-81). One such study demonstrates that certain 

correlated motions appearing in the Michaelis complex disappear in the product complex 

(79). Another study reveals that the N5 atom of DHF (i.e. the protonation site) is solvent-

exposed, whereas static X-ray images show it to be concealed (80). Another study shows 

how mutations distal to the active site affect the M20 loop conformation and the 

hydrogen-bonding network of the enzyme, both key factors in modulating the enzyme 

kinetics (81). One high-temperature classical MD study identified regions possibly 

serving as nucleation sites during folding (82). Another compares the unfolding of wild 

type with that of the G121V mutant and shows the two unfolding paths to be similar, but 

that the latter involves a lesser number of contacts connecting the M20 and FG loops 

(83). Several QM/MM approaches have looked into the hydride transfer step (84-94). 

Among these, Thorpe and Brooks have calculated the activation barriers along the 

reaction coordinate and have determined that these barriers fluctuate in time and depend 

on the M20 loop conformation (88,91,93). A classical look into the hydride-transfer step 

(via a combination of MD simulations on the Michaelis and product complexes along 

with free energy perturbation calculations) established that the pKa on the N5 of the 

substrate DHF is modulated by the M20 loop conformation (95). A recent classical MD 

study found (using umbrella sampling methods) the minimum-energy transition pathway 

between the closed and occluded M20 loop conformers of the Michaelis complex (96). 
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Interestingly, during transition, the enzyme samples a relatively stable transition structure 

resembling the open conformer seen in X-ray studies (67). 

A proper molecular modeling study on DHFR and its M20 loop aims to resolve 

the issues discussed in the preceding paragraphs. The conformational transitions will be 

characterized by three studies. First, the relative stabilities of the initial and final states of 

a transition are determined by running molecular dynamics simulations followed by free 

energy analysis on single enzyme complexes in multiple starting conformations. The 

following four complexes are studied: DHFR, DHFR/folate, DHFR/NADPH and 

DHFR/dihydrofolate. Apo and folate-bound complexes are chosen since NMR has 

characterized the distribution of M20 loop conformers for these structures. The 

dihydrofolate-bound form was chosen to study how a small change in the ligand affects 

loop behavior. The NADPH-bound form is chosen since it is an actual catalytic 

intermediate. Second, the inherent motional tendencies of these initial and final states are 

examined for any predisposition for conformational change. Normal mode analysis 

techniques are perfect for quantifying these motions. To understand how ligands affect 

this disposition, both the Apo enzyme and ligand bound forms are studied. Third, 

conformational transition pathways are mapped using targeted molecular dynamics 

simulations. Like the umbrella sampling method used in a previous study that generated 

the closed-occluded transition path of the Michaelis complex (96), targeted MD also 

generates a low energy transition path. But, since targeted MD only requires one 

simulation to generate the path, it is much quicker, and therefore much more desirable 

when many different paths need to be generated (as is required here). The pathways 

generated are inspected to see if the open (or shifted open) conformer is sampled during 

the transition. Again, both ligand-bound form and the free enzyme are studied to assess 

ligand effects. Similar protocols are used to impose THF dissociation and determine 

whether that forces sampling of the open (or shifted open) conformer. Together these 

results should characterize both the general behavior of the individual stable M20 loop 

conformers and the changes between them. 
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METHODS 

Two sets of MD simulations are performed on DHFR, one under equilibrium 

conditions and one with external perturbation forces applied. The CHARMM software 

(97-99) with the CHARMM22 protein (34-35), substrate (100) and cofactor (101) 

parameters is used. In the first set, four complexes are simulated: E|NADPH, E|folate, 

E|DHF and E (Apo). Except for E|NADPH, each is run three times, corresponding to its 

M20 loop starting in the open, closed or occluded conformation (Table 1). The methods 

are the same in all eleven simulations. First, internal coordinate building procedures add 

the missing hydrogens to necessary positions. After construction, the complex is 

minimized by steepest descent for 500 steps, then by conjugant gradient for 1500 steps 

(or until achieving an energy tolerance of 0.001 kcal/mol), and lastly, by Adopted-Basis 

Newton-Rhapson method for 2000 steps. A diminishing harmonic restraining force is 

used to hold the backbone atoms in place during the steepest descent and conjugant 

gradient stages, van der Waals switching and electrostatic shifting functions handle 

nonbonded potential truncation from 8-A to 10-A. Next the complex is solvated by 

Table 1. Equilibrium MD simulations of DHFR 

Complex M20 Loop* PDB t Time (ns)* 

NADPH open 1RA1 10 
10 

Folate open 1RD7 10 
9 

20 

DHF open 1RD7 7 
7 
7 

Apo open 1RD7 7 
20 
7 

* Starting M20 loop conformation 
f RCSB PDB code of structure used for building initial simulation coordinates. 
t Total simulation time 

open 
closed 

open 
closed 
occluded 

open 
closed 
occluded 

open 
closed 
occluded 

1RA1 
1RX1 

1RD7 
1RX2 
1RX7 

1RD7 
1RX2 
1RX7 

1RD7 
1RX1 
1RX7 
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placing it in the middle of a preconstructed truncated octahedral box containing 6861 

TIP3P water molecules and then removing waters overlapping the protein. Prior to 

dynamics, the surrounding water is minimized for 200 steps of steepest descent while 

keeping the protein and ligand atoms fixed. This solvated structure serves as the initial 

coordinates for the simulation. Dynamics takes place in the microcanonical (NVE) 

ensemble under periodic boundary conditions, using a 2-fs time step. The SHAKE 

algorithm is used to constrain the lengths of all bonds involving hydrogen. A switching 

function is used to smoothly shut off the van der Waals potential from 8-A to 11-A. The 

particle mesh Ewald method handles electrostatic potential across the periodic 

boundaries. Production dynamics is preceded by 100 ps of equilibration, during which the 

protein is allowed to relax while the system is heated. During the initial 20 picoseconds 

of the equilibration, a harmonic restraining force holds the backbone in place while 

heating occurs. Starting at 60K the temperature is increased by 30K every 200 steps by 

reassigning the velocities until the desired temperature (298 K) is reached. Production 

dynamics extends for enough time, such that the subsequent calculated free energy is 

stabilized (further described in the next section). Coordinates are saved every 100 

timesteps (or every 2 picoseconds). 

The free energy at every 2000th timestep is calculated using the MMPBSA 

method (51-55). The molecular mechanics component uses the CHARMM22 force field 

(34-35). Infinite cutoffs (with a 1.0 constant dielectric) are employed for the nonbonded 

interactions. Thus, all nonbonded interactions are accounted for. The PB component also 

does not use a cutoff. Solvation energy calculations are performed using the PBEQ 

module of CHARMM, which uses a numerical grid-based approach to solve the Poisson-

Boltzmann equation around the surface of the protein. A 0.4-A sized grid unit cell is used 

along with a uniform number of grid points in the x,y and z directions to cover the protein 

and/or ligand surfaces. Dielectric constants of 80 and 1 are used for solvent and protein, 

respectively. The molecular (contact+reentrant) surface is created with a 1.4-A radius and 

then used as the dielectric boundary between protein/ligand and solvent. The nonpolar 

surface area energy is estimated from the solvent-accessible-surface-area using a 1.4 A 

solvent probe. The constant of proportionality, y, and the y-intercept, (3, (Equation 31) are 

set to 0.00542 kcal/(mol*AA2) and 0.92 kcal/mol, respectively (55). The entropy 
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component is estimated using quasiharmonic analysis of the MD trajectory. The 

calculations are performed on 2-ns portions of the trajectories, where the MMPBSA 

energy has reached a well-defined average. Further details on how the trajectory window 

is selected are specified in the Results and Discussion section of this chapter. Prior to 

calculating the covariance matrix, trajectory frames are reoriented by minimizing their 

mass-weighted root-mean-square difference (RMSD) with respect to the average 

structure along the selected 2-ns window. Entropy calculations are performed two ways; 

the first uses only heavy protein atoms (justified since the lengths of all bonds involving 

hydrogen are kept fixed during the simulation), and the second includes all protein atoms. 

Two types of external perturbations are used for the second set of DHFR 

simulations: forced conformational changes and forced ligand dissociation. Table 2 

outlines each complex and the corresponding forced action(s). Each initial structure is 

equilibrated using the same methodology as described above. Conformational changes 

utilized the Restricted-Perturbation TMD method (43). Target coordinates were taken 

from 1RX2 or 1RX7, depending on whether the target conformer is closed or occluded, 

respectively. Forces were applied to the M20 loop (residues 14 to 24) backbone atoms. 

Forced conformational change simulations are run for at least 400 ps. For the first 300 ps 

in the forced conformational change simulations, forward and backward perturbations are 

restricted to maximum RMSD moves of 0.001 A and 0.0008 A, respectively, per 

timestep. To ensure the transition occurs, the maximum RMSD moves are increased to 

0.002 A and 0.001 A, respectively, in the final 100 ps. If required, simulations are 

extended another 100 ps (500 ps total) with forward and backward perturbations 

restricted to maximum RMSD moves of 0.004 A and 0.002 A, respectively. 

The ligands are dissociated by applying an external force on a ligand atom to push 

it out of the active site. These runs last for 100 picoseconds, during which the pulling 

forces linearly increases from 0 to 1500 piconewtons. Two runs are performed using 

different pulling vectors for each dissociation simulation listed in Table 2. Pulling vectors 

are defined as a ligand atom coordinate minus a selected protein interior atom coordinate. 

The protein atoms are selected so that the defined pulling vectors point along low steric 

routes towards the solution. In the first cofactor dissociation simulation, nitrogen NN7 (at 

the reactive end of the cofactor molecule) is pulled away from the alpha carbon of 
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Table 2. External perturbation MD simulations of DHFR 

Ligand M20 Loop* PDB* Perturbation Type 

DHFR 

DHFR| 

DHFR| 

DHFR| 

DHFR| 

DHFR| 

DHFR| 

DHFR| 

Folate 

! DHF 

|NADPH 

j DHF|NADPH 

| THF|NADP+ 

|THF 

j THF|NADPH 

closed 
occluded 

closed 
occluded 

closed 
occluded 

closed 
closed 

closed 

closed 
closed 
closed 
occluded 

closed 
closed 
occluded 
occluded 

closed 
closed 
closed 
occluded* 
occluded* 

1RX2 
1RX7 

1RX2 
1RX7 

1RX2 
1RX7 

1RX1 
1RX1 

1RX2 

1RX2 
1RX2 
1RX2 
1RX7.1RA1 

1RX2 
1RX2 
1RX7 
1RX7 

1RX2 
1RX2 
1RX2 
1RX7.1RA1 
1RX7.1RA1 

occluded 
closed 

occluded 
closed 

occluded 
closed 

occluded 
NADPH out 

occluded 

occluded 
NADP+ out 
THF out 
THF out 

occluded 
THF out 
closed 
THF out 

occluded 
THF out 
NADPH out 
closed 
THF out 

* Starting M20 loop conformation 
t RCSB PDB code of structure used for building initial simulation coordinates. Structures 

requiring 2 PDB codes use first for enzyme coordinates and second for cofactor coordinates. 
t The coordinates for bound cofactors in occluded conformers are obtained from 1RA1. In this 

crystal structure, the nicotinamide ring moeity is invisible. Since the CHARMM internal 
coordinate building procedures place the moeity outside the active site, the presence of the 
cofactor does not interfere with the occluded M20 loop. 

ALA7 (Figure 10). In the second simulation, carbon NC7 (adjacent to the cofactor's 

nicotinamide ring) is pulled away from the carbonyl carbon of ALA7. In the first 

substrate dissociation simulation, carbon C (Figure 10) is pulled away from the alpha 

carbon of ALA7. And in the second simulation, carbon CB is pulled away from the 

carbonyl carbon of LEU 112. 
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Figure 10. NADPH and DHF pulling atoms. Their positions relative to the protein atoms 
they are being pulled away from are displayed in the lower image. 

An examination of other external perturbation simulations in the literature shows 

a lack of convention as to how fast these structural changes should be forced to occur, 

with simulation times ranging anywhere from 90 ps on up (102-105). The forced 

conformational change simulation times were set, based upon trial and error, by starting 

with a very small perturbation (0.0001 A) in 1-2 ns runs, and slowly increasing the 

perturbation until the transition occurred. At least a 0.001 A forward perturbation was 

needed to get any transition to occur. Certain structures required more than the 0.001 A 

forward perturbation, so a final 100 ps was run with the perturbation doubled to 0.002 A. 

The ligand dissociations were tested similarly (also using implicit solvent) by slowly 

increasing the force constant until dissociation occurred. 
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Normal modes are calculated for each starting structure used in the forced 

conformational change simulations listed in Table 2. The 13 structures are as follows: 

E|closed, E|occluded, E|folate|closed, E|folate|occluded, E|DHF|closed, E|DHF|occluded, 

E|NADPH|closed, E|DHF|NADPH|closed, E|THF|NADP+|closed, E|THF|closed, 

E|THF|occluded, E|THF|NADPH|closed and E|THF|NADPH|occluded. Since these are 

just the starting structures, they have not been altered by MD simulation. The first 7 

structures, however, were simulated under equilibrium conditions. So normal mode 

calculations will also be performed on the minimized-average structures obtained from 

those equilibrium simulations. Normal modes are also calculated for the minimized-

average structure obtained from the E|NADPH|open equilibrium simulation, since (as 

will be shown in the Results and Discussion section of this chapter) this structure shifts to 

a new conformation. Prior to obtaining the normal modes, each structure is first 

minimized by steepest descent for 2000 steps or until an energy change tolerance of 

0.00001 kcal/mol is reached, followed by conjugant gradient for 20,000 steps or until a 

tolerance of 0.0000001 kcal/mol is reached. During minimization, van der Waals 

switching and electrostatic shifting functions handle nonbonded potential truncation from 

8-A to 10-A. Studies show that only the lowest frequency modes are needed to describe 

conformational changes (59-61). Studies vary on the number of low-frequency modes 

used, with some using only one low-frequency normal mode (60,61), another using the 

lowest 20 (62) and another using the lowest 100 (106). The 20 lowest frequency normal 

modes are used in the dot product calculations. 

After obtaining the normal modes, the dot products between the normal modes 

(discarding the first 6 translational and rotational eigenvectors) and the conformational 

change vectors are calculated. The conformational change vectors are defined as the 

coordinates of a second structure (x2) minus the coordinates of the structure for which the 

normal modes are calculated (xl). The second structure is superimposed onto the normal 

mode structure prior to calculating this vector. Only the M20 loop (residues 14-24) alpha-

carbons are considered, so the dot product with the kth normal mode is calculated using 

Dotk=|nk-(x2-x1)|, [80] 
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where nk are the coordinates of the alpha-carbons in the M20 loop of the kth normal 

mode, x2 are the coordinates of the alpha-carbons in the M20 loop of the second structure 

and xl are the coordinates of the alpha-carbons in the M20 loop of the normal mode 

structure. The caret indicates that the difference vector is normalized. The second 

structure coordinates used are the open (1RD7), closed (1RX2) and occluded (1RX7) X-

ray conformers, and the new conformer (using the NADPH open MD minimized-average 

simulation structure). The dot products for each of the 5 lowest frequency modes (i.e. 

modes 7, 8, 9, 10 and 11) are individually examined to see which of the dot products is 

greatest. To assess the effects of multiple normal modes at once, the sum of the dot 

products for the 5 (modes 7 to 11), 10 (modes 7 to 16) and 20 (modes 7 to 26) lowest are 

calculated. For example, the dot product sum of modes 7 to 11 is calculated using 

11 

DotSumk = 2;|rv(x2-x1)|. [81] 
k-7 

RESULTS AND DISCUSSION 

The data and analyses from the equilibrium MD simulations on the binary/Apo 

complexes are discussed first. Conformational stability is identified using extensive 

structural and energetic means. Then, the external perturbation MD simulations and their 

corresponding normal mode calculations are analyzed to see if the closed-occluded 

transition involves a sampling of the third (open) M20 loop conformer. 

A total of 11 standard equilibrium molecular dynamics simulations (Table 3), 

covering 4 complexes, were performed. They can be divided into 4 classes according to 

ligand identity: NADPH, folate, DHF, and apo, or into 3 classes according to starting 

M20 loop conformation: open, closed and occluded. The general system coherence is 

assessed by examining the time series of the following quantities from the simulation 

trajectories: CHARMM total energies, backbone root mean square deviations (RMSD) 

with respect to the X-ray starting structure, and radius of gyration (RGY) (Figures 11-13, 

respectively). Both the CHARMM total system energies (Figure 11) and the protein radii 

of gyration (Figure 12) for all simulations remain constant, meaning, respectively, that 

throughout the simulation the systems remain energetically stable (or constant) in the 
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Table 3. Analysis of equilibrium MD simulations of DHFR. 

Complex Starting M20 loop Time (ns)* Stable (ns)f M20 (stable)* 

apo 

NADPH 

Folate 

DHF 

open 

closed 

occluded 

open 

closed 

open 

closed 

occluded 

open 

closed 

occluded 

7 

20 
7 

10 

10 

10 

9 

20 

7 

7 

7 

6-7 

12.6-14.5 
6-7 

6-7 

6-7 

9-10 

8-9 

19-20 

6-7 

6-7 

4-5 

new 

slightly shifted 

very conserved 

new 

conserved 

new 

slightly shifted 

more shifted 

new 

conserved 
more shifted 

* Total simulation time 
f Stable 2-ns window of simulation 
$ Conformation of M20 loop backbone within the 2-ns window relative to where it started at. 

Shifts are either slight (a few residues move 1-2 A) or more (several residues move up to 4 
A, but most sidechains still point the same general direction). New conformations have no 
resemblence to any of the three X-ray conformers). 
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throughout the simulation the systems remain energetically stable (or constant) in the 

CHARMM force field and that the proteins do not abnormally shrink or grow. This result 

is not unexpected since previous DHFR simulations in the same force field also exhibited 

stability (44-50,69). The jumps in the total system energy plots (Figure 11) are normal, 

and occur when the atomic velocities are reassigned to maintain the temperature. Protein 

backbone RMSD values remain less than 2.5 A and are relatively flat (Figure 13), 

indicating, respectively, that the protein conformation stays close to the native starting 

structure and that the structure fluctuates around an average. 

Equilibrium Molecular Dynamics: Structural Analysis 

With the overall systems regarded as stable, the specific conformational motion of 

the M20 loop represents how it probably behaves in vivo. Stable two-nanosecond 

simulation windows for all systems were determined (see Table 3) and used for various 

subsequent analyses, both structural and energetic. The determination of these windows 

is described later in the free energy analysis subsection; however, they represent portions 

of the simulation, during which the protein is both structurally and energetically 

equilibrated. Structural analysis of the protein during this interval proceeds by examining 

the following: alpha carbon root-mean square fluctuations (RMSF), visual inspection of 

the M20 loop region in the minimized-average structures, M20 loop backbone RMSD, 

existence of hydrogen bonds that characterize the three M20 loop conformers, residue 

centroid distance matrices of the M20 loop versus the entire protein and corresponding 

difference distance matrices of the M20 loop versus the entire protein. Table 3 describes 

the M20 loop conformation in the stable window. Most interestingly, all structures 

starting in the open conformer move to a new M20 loop conformer and remain there. It 

will be shown later, through visual inspection that these new conformers are all identical. 

Hence, the simulated open M20 loop conformer will be called 'new'. 

Alpha carbon RMSF values were calculated during the stable 2-ns windows to 

show the ligand effect on protein dynamics. The plots show most residues fluctuating 

within 1 A of the average position. Values greater than this, as indicated by the peaks on 

the RMSF plots (Figure 14) are the more flexible exterior loop regions (Figure 15). The 

M20 loop region (residues 14-24) of the new conformers (indicated by the blue lines in 
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Figure 14), fluctuate around 1.75 A (Figures 14A, 14C and 14D), except when NADPH 

is bound (Figure 14B), where it fluctuates about 1 A. This rigidity in the NADPH 

complex probably results from contacts between the loop and the proximal cofactor. The 

closed loop (red lines) behaves exactly opposite; it fluctuates 1 A everywhere except in 

the NADPH complex, where it approaches -1.5 A (Figure 14B). The occluded loop 

(green lines) remains stable (~1 A) in all but the DHF-bound complex (Figure 14D) 

where it has large 2-A fluctuations. Visual inspections (Figure 16) of the minimized-

average structures of the eleven simulations show a corresponding shift in the M20 loop 

of the occluded DHF simulation (green ribbon in Figure 16C). 

In each of the 4 DHFR simulated complexes, at least one conformer remained 

mostly conserved (perhaps with slight shifts) and at least one changed to a new 

conformer (Table 3). Figure 16 shows the overlapped M20 loop regions of both 

simulation (colored) and X-ray (black) structures after superimposing the entire protein 

backbones of all structures. As mentioned previously, Figure 16A shows that all 

simulations starting in the open conformer change to a common new conformation. By 

comparing the middle orientations of Figure 16 to that of Figure 6 (which is similar), it is 

seen that the N-terminus end of the M20 loop (residues 14-19) of the new conformer 

folds in towards the protein. The slight shift of the DHFR|NADPH new conformer (red 

loop in Figure 16A) away from the other new conformers is due to the presence of the 

bound cofactor, since it sits between the loop and the enzyme. This conformer is actually 

similar to the closed conformer, though none of the simulations starting in the closed 

conformer approached this conformer. In the closed simulations (Figure 16B), the C-

terminus portions of the M20 loop (residues 20-24) remain very well conserved 

compared to the X-ray conformer. In the DHF-bound complex (green), the N-terminus 

end shifts slightly away from the X-ray conformer. The M20 loop of the NADPH-bound 

complex (red) stays very conserved, which probably results from stabilizing interactions 

between it and the bound cofactor. The N-terminus ends of the folate (blue) and apo 

(yellow) complexes both fold in towards the protein (Figure 16B), probably to fill the 

void where the cofactor would bind. Perhaps if the DHF simulation were extended, or if 

different random starting velocities were used, it would have also shifted. In the occluded 

simulations (Figure 16C), only DHFR\apo (yellow) remains well conserved compared to 
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Figure 16. M20 loop portions of the superimposed simulation structures. Three different 
views are shown. The images are separated according to starting M20 loop conformation: 
open (A), closed (B) and occluded (C). Each figure (A, B, and C) shows the NADPH, 
folate, DHF and apo simulation structures, as well as the corresponding X-ray structure. 
C has no NADPH structure. Figure A also includes the closed X-ray structure (1RX1). 

X-ray (black). The other two (DHF-green and folate-blue) both shift a good amount, 

probably a result of interactions with the pteridine ring. However, they do retain a loose 

resemblance to the occluded X-ray conformer. 

The visual inspections above (Figure 16) show the relative mobility of the M20 

loop's N-terminus portion over its C-terminus portion. This difference is also observed in 

the M20 loop backbone RMSD plots. After aligning the trajectories with respect to their 

X-ray starting points using the entire protein backbone, the RMSD of the M20 loop 

backbone in both its N-terminus (residues 14-19) and C-terminus (residues (20-24) 
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portions were calculated and plotted (Figure 17). The N-terminus (thin dashed lines) 

moves farther away from the X-ray than the C-terminus (thick solid lines) in all cases, 

except the NADPH complex with a closed loop (red lines in Figure 17B), where both 

ends remain extremely well conserved. The formation of the new M20 loop conformer in 

the open simulations results in large RMSDs (Figure 17 - dotted blue lines). 

The M20 loop conformations of the 11 simulations were further and more 

quantitatively characterized by three different methods: M20 loop backbone RMSDs, the 

presence (or absence) of X-ray conformation markers (17) and residue centroid 

difference distance matrices. In the first method, the simulation conformers are compared 

with the three X-ray conformers (open, closed and occluded), the new conformer (using 

the coordinates from the folate-bound minimized average structure from the open 

simulation), the folate-bound closed minimized average structure and the DHF-bound 

occluded minimized average structure (Table 4). The last two are included, since their 

M20 loops involved slight shifts away from X-ray. Before calculating the RMSDs for a 

given simulation conformer, the comparison structures are aligned using their entire 

protein backbones in a mass-weighted fitting. The RMSD calculations use only the M20 

loop backbone atoms. Obvious matches occur when the RMSD is much less (at least by 

1.0 A) than all others involved in the comparison and are highlighted bold. 

The apo-open and DHF-open are, by far, closer to the new conformer than any of 

the three X-ray structures. In addition, the folate-open does not match any others, 

confirming the presence of a new conformation. The NADPH-open structure has several 

comparisons to the open X-ray (2.8 A), closed X-ray (2.2 A) and new conformer (2.9 A), 

which is in agreement with the observed shift away from the other open conformers. The 

fact that this new conformer is not seen in X-ray could mean one of two things, the 

conformer is too unstable to be crystallized or it is an artifact of the force field. The 

former circumstance (as discussed in the Background section of this chapter) is possible 

since the M20 loop of all open crystal structures contains interactions with one of the 

symmetry related crystal proteins (Figure 8). Removing these interactions (as exists in 

vivo) would likely cause a corresponding shift in the M20 loop conformation. The new 

conformer from the simulation may be the relaxed form of the open X-ray conformer. 
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Table 4. M20 loop backbone RMSD (A) 

Complex 

Apo 

NADPH 

Folate 

DHF 

Starting 
M20 Loop 

open 
closed 
occluded 

open 
closed 

open 
closed 
occluded 

open 
closed 
occluded 

Xray 
Open* 

3.6 
3.1 
3.9 

2.8 
2.6 

4.2 
3.4 
4.0 

4.4 
3.6 
4.2 

Xray 
Closed* 

2.4 
2.7 
3.7 

2.2 
0.7 

3.3 
3.2 
4.0 

3.2 
2.1 
3.8 

Xray 
Occluded* 

4.4 
3.5 
1.6 

4.1 
4.0 

4.8 
3.0 
3.3 

5.2 
4.6 
3.9 

New* 

1.8 
3.2 
4.7 

2.9 
3.2 

0.0 
3.4 
4.6 

1.9 
1.8 
4.2 

Folate 
closed* 

2.9 
1.1 
2.9 

3.6 
3.4 

3.4 
0.0 
3.8 

4.1 
3.3 
3.6 

DHF 
occluded5 

3.5 
3.3 
3.4 

3.5 
3.8 

4.2 
3.6 
2.0 

3.7 
4.0 
0.0 

* open=1RA1, closed=1RX1, occluded=1RX7 
f Folate-open minimized average simulation structure 
f. Folate-closed minimized average simulation structure 
§ DHF-occluded minimized average simulation structure 

The latter circumstance was tested by simulating the new conformer using the 

AMBER force field and seeing if the M20 loop remained stable. The new conformer 

(using the minimized-average apo-opoa structure - from the CHARMM simulation) was 

used as the starting point for a 2-ns AMBER run. The minimized-average structure of the 

AMBER run was calculated and compared with the minimized-average structure from 

the CHARMM run. Figure 18A shows that the M20 loop of both structures is very 

similar. The M20 loop RMSD calculations (Table 5) show that the structure resembles 

the new conformation more than the other X-ray conformers. As a control, the 

minimized-average structure from the a/?o-occluded simulation was also run for 2 ns in 

the AMBER force field. The opo-occluded was chosen since it remained close to its X-

ray starting point when simulated under CHARMM (Figure 16C and Table 4). Figure 

18B shows it also remained stable under AMBER. The corresponding RMSD 

calculations (Table 5) verify this. The control indicates that DHFR is well behaved when 

simulated under the AMBER force field. These results provide compelling evidence that 

the new M20 loop conformer is valid, not just an artifact of the CHARMM force field. 
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Table 5. M20 loop backbone RMSD of AMBER simulation structures (A) 

Starting Xray Xray 
Complex M20 Loop Xray Open1 Closedf Occluded* new* 

apo new 4.2 2.6 5.0 1.5 
occluded 5A 4J3 Z2 4.7 

* open=1 RA1, closed=1 RX1, occluded=1 RX7 
t open=1RA1, closed=1RX1, occluded=1RX7 
t apo-open minimized average simulation structure 

Figure 18. M20 loop portions of the superimposed AMBER simulation structures. Shown 
are the apo-new (A) and the apo-occluded (B) structures. The minimized-average 
structures and the initial starting structures are both drawn. 

The folate and apo closed simulation structures both shifted away from their X-

ray starting points (3.2 and 2.7 A RMSDs, respectively). The small RMSD between them 

(1.1 A) agrees with the visual drawing (Figure 16B) that they shifted to a similar 

conformation, where the N-terminus portion of the M20 loop folds in to occupy the 

region where the cofactor (missing) binds. The DHF closed simulation shifted slightly 

away from X-ray (2.1 A RMSD) to a structure resembling the new conformer (1.8 A 

RMSD). Visually, it appears close to X-ray, except for a distortion in the central loop 

residues (Figure 16B). The folate and DHF occluded simulations both shifted away from 
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their starting points (3.3 and 3.9 A RMSDs, respectively), but, the 2.0-A RMSD between 

them shows the shifts were similar. The RMSD calculations show the three M20 loop 

conformers behaving very consistently. The open simulation structures all shift to a 

similarly-shaped new conformation. The closed is stable when either NADPH or DHF is 

bound, but shifts slightly (in a similar manner) to a more closed type conformer when 

folate is bound or in the apo form. Occluded is stable in the apo form, but slightly shifts 

when folate or DHF are bound. 

The second characterization method is to look for the hydrogen bond markers. 

The closed X-ray conformer markers are the type IIP hairpin turn and the two M20-FG 

interloop interactions, the occluded markers are a short 3io-helix within the M20 loop and 

the two M20-GH interloop interactions and the open markers are aspects of both. Table 6 

shows the corresponding distances in the X-ray and simulation structures. None of the 

structures (except NADPH-closed) contain all of the supposed markers. The apo and 

folate closed simulations lose most of the associated markers. Their visual renderings 

display a shift towards the protein in the N-terminus end of the M20 loop. Then once the 

hydrogen bonds were broken, the N-terminus portion of the M20 loop shifted in towards 

the protein. The open conformers each retain one M20-FG interloop interaction, but lose 

the M20-GH interloop interactions. In addition, one of the interactions in the intraloop 

type IIP hairpin turn is formed. The visual renderings (Figure 16A) support this 

conclusion, where the simulation structures have formed a U-shaped bend, similar to that 

observed in closed, but in a different location than closed with respect to the rest of the 

protein. The apo occluded simulation remains close to X-ray, maintaining the M20-GH 

interloop hydrogen bonds, Asn23(CO)-Serl48(NH) and AsN23(NH)-Ser 145(06), at 3.1 

A and 3.5 A, respectively, and the 3io-helix hydrogen bond [Glul7(CO-Met20(NH)] at 

2.7 A. The 3io-helix is lost in the occluded folate (5.2 A) and DHF (4.5 A) simulations. 

However, both possess larger spiral-type backbone folds. The DHF-bound structure 

actually shifts its 3i0-helix from Glul7(CO)-Met20(NH) over to Metl6(CO)-Alal9(HN) 

with a 2.35 A connection (Figure 19A), while the folate-bound structure shifts one more 

residue to form a Glyl5(CO)-Met20(NH) jc-helix connection (1.92 A) (Figure 19B). 

Thus, losing the stabilizing 3io-helix interaction causes a conformational shift in the 3io-

helical M20 loop to a larger backbone spiral (st-helical). 
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Table 6. Hydrogen bond markers in X-ray and simulation structures (A) 

Complex 

X-ray 

Apo 

NADPH 

Folate 

DHF 

M20 

open 
closed 
occluded 

open 
closed 
occluded 

open 
closed 

open 
closed 
occluded 

open 
closed 
occluded 

M20-FGf 

A B 
2J." 
2.2 
8.6 

3J. 
5.6 
5.8 

19. 
2.3 

3A_ 
5.4 
8.8 

Z3 
2.0 
8.7 

4.4 
2.2 
13.1 

9.7 
2.4 
10.4 

8.3 
3.1 

8.7 
4.5 
4.8 

8.3 
8.7 
3.3 

Type III' 
A 

6.4 
2.3 
2.3 

7.3 
6.9 
2.1 

7.0 
2.2 

6.8 
6.9 
5.4 

6.9 
6.5 
2.3 

hairpin* 
B 

6.8 
1.7 
5.7 

3J> 
6.4 
4.4 

19 
1.9 

13 
6.0 
7.7 

ZA 
3.3 
5.7 

M20-GH§ 

A B 
Z0 
3.4 
2 1 

5.5 
3.7 
3.1 

4.7 
4.3 

4.4 
3.9 
8.1 

5.7 
4.4 
7.0 

19 
3.8 
2.0 

6.5 
4.1 
3.5 

5.3 
4.7 

5.0 
4.6 
11.4 

7.6 
4.8 
8.0 

3^-helix11 

7.2 
6.7 
2.2 

8.6 
8.1 
2.7 

8.3 
6.7 

7.9 
8.0 
5.2 

7.8 
7.6 
4.5 

X-ray coordinates are open (1RA1), closed (1RX1) and occluded (1RX7) 
f Interloop H-bond closed markers: A=Gly15(CO)-Asp122(NH), B=Glu17(NH)-Asp122(0£2) 
t Type III' Hairpin closed marker: A=Met16(CO)-Ala19(NH), B=Met16(NH)-Ala19(CO) 
§ Interloop H-bond occluded markers: A=Asn23(CO)-Ser148(NH), B=Asn23(NH)-Ser148(Od) 
U 3,0-helix occluded marker: Glu17(CO)-Met20(NH) 

II Open, closed and occluded X-ray markers are displayed blue (underlined), red (bold) and green (italic) 
The markers of simulation structures that are retained are indicated by the same scheme. 

Figure 19. M20 loop helix shifts in folate and DHF occluded simulations. Shown are the 
minimized-average structures for DHF (A) and folate (B) simulations. 
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The third method for characterizing the simulation conformers is to compare the 

residue centroid difference distance matrices between the simulation structures and the 

X-ray conformers. First, the residue centroid distance matrices are calculated for each X-

ray structure and each of the 11 simulation structures. To do this calculation, the centroid 

(i.e. the geometric center position of all atoms) in each of the 159 protein residues is 

calculated. Then, the distance between every pair of centroids is calculated and 

subsequently used to generate a 159x159 distance matrix. The matrices are symmetric, 

since, for instance, the distance between residues 14 and 24 is the same as the distance 

between residues 24 and 14. These matrices indicate the areas of close contacts within the 

protein. Figure 20 displays the M20 loop regions (residues 14 to 24) of these matrices for 

the three X-ray conformers as well as the new conformer (i.e. the one obtained from the 

open simulations). They show residues that are in contact with the residues of the M20 

loop. However, using them to visually distinguish between conformers is difficult. 

The residue centroid difference distance matrices, on the other hand, make it easy 

to match conformers. If two conformers are similar in structure, then they should have 

similar distance matrices, and subtracting their two distance matrices would generate a 

difference distance matrix with values close to zero. Therefore, matching the 

conformation of one structure to a set of other structures, involves calculating the 

corresponding difference distance matrices and looking for the one with the lowest 

values. The absolute values of the differences are used since the order of subtraction is 

unimportant. Figure 21 shows the difference distance plots used to characterize the 

simulation minimized average structures. Each of the eleven simulation structures is 

compared to the four following structures: X-ray open (1RA1), closed (1RX1) and 

occluded (1RX7) and the new conformer (the folate-bound open simulation minimized 

average structure). Some of the plots show clear matches, such as the a/?o-occluded 

simulation matching the occluded X-ray conformer (Figure 21C). Others, such as the 

apo-closed simulation (Figure 2IB), show no obvious matches. The opo-open (Figure 

21 A), folate-open (Figure 2IF) and DHF-open (Figure 211) all show major deviations 

with respect to the open X-ray conformer in the central portion of the M20 loop, but have 

very close matches to the new conformer. The NADPH-open (Figure 2ID) on the other 
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Figure 20. DHFR residue centroid distance matrix. Shown are M20 loop-region distance 
matrices for open-lRAl (A), closed- 1RX1 (B) and occluded-1RX7 (C) X-ray structures 
and the folate-bound minimized-average simulation structure (D). 

hand matches the new conformer best for residues 20 to 24 and either the open or closed 

X-ray conformer best for residues 16 to 19, which agrees with the RMSD analysis. 

To quantify the results of the plots shown in Figure 21, the average distance 

values on the matrices used to generate the plots are calculated. The calculations exclude 

the diagonal elements (i.e. resl4|resl4, resl5|resl5, ..., res24|res24), since those values 

are all zero. The averages are calculated for the difference distance matrices of the 11 

simulation structures with respect to the three X-ray M20 loop conformers and both the 

folate-closed and DHF-occluded simulation structures. These structures are the same 

structures as used in the M20 loop backbone RMSD comparisons (see Table 4), therefore 

it makes sense to compare the results of both methods. However, there are several 

noteworthy differences between using the M20 loop backbone RMSD to characterize the 

M20 loop conformation versus using the average value of the M20 loop region of the 

residue centroid difference distance matrix to characterize it. First, the RMSD calculation 

requires prior alignment of the entire protein backbones of the two structures. On the 

other hand, the distance matrices of the two structures can be calculated and subtracted 
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Figure 21. DHFR residue centroid difference distance matrices. Shown are the M20 loop 
regions for all 11 simulation structures: apo-open (A), apo-closed (B), apo-occluded (C), 
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Figure 21 Continued 
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without alignment, because distances between two parts of a rigid structure always 

remain constant, even after rotating it (e.g. during an alignment procedure). Second, the 

RMSD calculation only involves the positions of the M20 loop backbone atoms of both 

proteins, in contrast to the average difference distance matrix calculation, which involves 

the positions of all protein atoms. So, the difference matrix average characterizes the 

conformation of the entire M20 loop, in contrast to the M20 loop backbone RMSD, 

which characterizes only the M20 loop backbone conformation. Also, the difference 

distance matrix averages are lower in value than the corresponding RMSDs of Table 4, 

which is due to an averaging effect from the very low numbers in large portions of the 

plots (as seen by the relatively large region light grey cells in the difference distance plots 

of Figure 21). 

Table 7 shows the calculated averages and indicates (in bold) a match in the M20 

loop conformation of a structure when one value is much lower than all others in the row. 

The obvious matches have values well below 1.50 A. There is a very strong correlation 

between the clear matches in Table 7 and those from the RMSD calculations in Table 4. 

Except for the NADPH-bound complex, the simulations starting with the M20 loop open 

match the new conformer (i.e. the folate-open minimized average structure). The 

Table 7. Residue centroid difference distance matrix averages (A) 

Starting M20 X-ray X-ray X-ray Folate DHF 
Complex Loop Open* Closed* Occluded* Newf closed occluded 
Apo 

NADPH 

Folate 

DHF 

open 
closed 
occluded 

open 
closed 

open 
closed 
occluded 

open 
closed 
occluded 

2.17 
1.98 
2.08 

1.60 
1.62 

2.45 
2.11 
2.15 

2.51 
2.18 
2.87 

1.60 
1.81 
1.89 

1.48 
0.80 

1.93 
2.05 
2.26 

1.91 
1.15 
2.64 

2.36 
1.72 
1.13 

2.07 
2.06 

2.44 
1.78 
1.73 

2.54 
2.26 
2.29 

1.18 
1.81 
2.34 

1.67 
1.93 

0.00 
1.73 
2.30 

1.16 
1.28 
2.43 

1.59 
0.70 
1.54 

1.76 
2.05 

1.73 
0.00 
1.70 

2.13 
1.94 
1.97 

2.15 
1.82 
1.86 

2.32 
2.65 

2.43 
1.97 
1.32 

2.27 
2.60 
0.00 

* X-ray coordinates are open (1RA1), closed (1RX1) and occluded (1RX7) 
t Folate-open minimized-average simulation structure 
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NADPH-bound complex does not clearly match any of the 6 structures. Rather it 

compares similarly to several structures: the X-ray open (1.60 A), the X-ray closed (1.48 

A), the new (1.67 A) and the folate-closed simulation structure (1.76 A). The RMSD 

calculations also show a nonmatching trend of the NADPH-bound open simulation 

structure. The difference between the NADPH-bound structure and the other open 

simulation structures in these calculations most likely arises from the presence of steric 

distortions on the M20 loop by the bound cofactor. The NADPH-closed simulation stays 

well conserved with the X-ray starting conformation (0.80 A). While the folate-closed 

and apo-closed both shift from their X-ray starting points (2.05 A and 1.81 A, 

respectively), the end up with very similar conformations (0.70 A), which the RMSD 

calculations also show. The DHF-closed structure resembles the X-ray closed conformer 

(1.15 A) and the new conformer (1.28 A), a result also seen in the RMSD calculations, 

except that the RMSD calculations showed a slightly closer match to the new conformer. 

The a/>o-occluded simulation structure remains well conserved with the X-ray conformer 

(1.13 A). While the folate-occluded and DHF-occluded shift away from the X-ray closed 

starting conformer (1.73 A and 2.29 A, respectively), they end up with a similar 

conformation (1.32 A), a result also shown by the RMSD calculations. 

So the structural behavior of the M20 loop is summarized as follows: the M20 

loop either stays well conserved (e.g. in the NADPH closed and opo-occluded structures), 

shifts slightly as the folate and DHF occluded and the apo and folate closed conformers 

did or shifts to a new conformer as observed for the open conformer simulations. The 

folate and DHF occluded M20 loops shifted similarly, as did the apo and folate closed 

conformers. The conformational changes correlate with the disruption of hydrogen bond 

markers that were used to characterize the open, closed and occluded X-ray structures. 

Loss of M20-GH interloop contacts occurs with the open to new conformational change. 

Loss of both the M20-FG interloop contact and the type III' hairpin turn contacts occur 

with the apo and folate shifts in the closed conformers, whereas the NADPH and DHF 

closed simulations retain those contacts and their conformation. Loss of both of the M20-

GH interloop contacts and the 3io-helix contact correlates with the shift in the folate and 

DHF occluded conformations, unlike the a/?o-occluded conformer, which retains those 

contacts and its conformation. These results strongly suggest that intra and inter-loop 
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hydrogen bond contacts help stabilize certain M20 loop conformations. In addition, 

ligands can have a subtle effect on the conformation of the M20 loop, as the loop shifts, 

depending on whether or not the nicotinamide site is empty. 

Equilibrium Molecular Dynamics: Free energy Analysis 

MMPBSA free energy analysis was performed on the 11 simulation structures. 

Before estimating the free energy, a 2-ns simulation window was chosen, in which the 

structure remains stable. Then, the MMPBSA energy is calculated at regular intervals 

during the window, and the average of those calculations is then taken. A minimum of 

two nanoseconds is required to obtain reasonable quasiharmonic estimates of the 

simulation structures' entropies. The protein needs enough time to sample a 

representative portion of phase space before the atomic positional covariance matrix is 

calculated. There are several criteria for selecting the 2-ns window from the entire 

trajectory. First, a visual inspection of the simulation interval must show the M20 loop 

either in a conserved state or fluctuating about an average conformation. Second, the 

M20 loop backbone RMSD must be relatively flat during this interval. Third, the 

MMPBSA energy (entropy not included), which is calculated throughout the entire 

trajectory, must have reached a well-defined average by the time the interval is sampled. 

This energy term represents the protein's stability within the force field and surrounding 

implicit solvent field. Performing these three tests is a cumbersome process, and it is 

difficult to satisfy all three stringent constraints perfectly. The most importance is placed 

on the visual inspection, since the goal of the calculation is to obtain the relative 

stabilities of'separate' conformers. 

The 3-test procedure is demonstrated here for the NADPH-bound open 

simulation. Visual inspection shows the M20 loop moves to the new conformation after 2 

ns of dynamics (Figure 22), and remains there. Corroboration is provided by the M20 

loop backbone RMSD with respect to the superimposed X-ray starting point (Figure 23). 

The loop moves fairly quickly up to a 3 A RMSD and is relatively flat for the remainder 

of the simulation. Towards the end of the simulation, the RMSD does increase to around 

4 A, but does return to 3 A. The MMPBSA energy is plotted in Figure 24. The running 

average (dotted line) slowly decreases until about 8 ns of dynamics have 
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Figure 22. M20 conformations along the NADPH-bound open simulation trajectory. 
Snapshots of the M20 loop portion are shown after every 1 ns of simulation time. The 
superimposed open X-ray structure (1RA1) is also drawn. 
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Figure 23. M20 loop backbone RMSD of NADPH-bound open simulation. The X-ray 
starting point (1RA1) is superimposed using protein backbone atoms in a mass-weighted 
best fit. The time-series RMSD between the simulation structure and X-ray is calculated 
using only coordinates of the backbone atoms of the M20 loop. 
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Figure 24. MMPBSA energy of NADPH-bound open simulation. The MMPBSA energy 
is plotted as a thin line, the running average as a thick dotted line and the average of the 
encompassing 2 ns (i.e. the value at 1 ns is the 0-2 ns average) as a thick solid line. 

completed, where it starts to rise again. So the shift in structure towards the end of the 

simulation (as indicated by the RMSD bump to 4 A) is manifested here as a resulting 

increase in the running average of the MMPBSA energy. Since 2 ns of the trajectory are 

necessary for calculating the average, it is helpful to see how this average changes as the 

simulation progresses. Therefore, the encompassing 2-ns average is also plotted (solid 

blue). Each plotted value is the average of the surrounding 2 ns. That is, the value plotted 

at 1 ns is the average from 0 to 2 ns, and the value plotted at 7 ns is the average from 6 to 

8 ns. The dip in the thick blue line from 4 to 6 ns indicates that 3 to 7 ns is a good section 

of the simulation, from which to choose the 2-ns window. Therefore, after considering 

the answers to these three tests, the window is chosen to be from 5 to 7 ns, and the 

resulting MMPBSA average is -2423.5 kcal/mol. The minimized average structure across 

this window is taken to represent the simulated complex's structure, and it is the same 

structure used in the above structural analysis portion of this section. 

The MMPBSA average energies are combined with their corresponding entropy 

estimates. The same 2-ns windows are used to calculate the quasiharmonic entropy 
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(described in Chapter II). The M20 loop conformer relative free energies for each 

complex are displayed in Table 8 below. The relative energies are calculated for each 

protein complex by setting the lowest energy conformer to zero. Two observations are 

immediate: the separate conformers differ significantly in energy and the 'new' 

conformers are the most stable in the apo and folate-bound complexes. These results 

disagree with the experimental NMR data discussed in Background section of this 

chapter (78), since, in the folate-bound complexes, the free energy of the new conformer 

is estimated to be about ~90 kcal/mol lower than the other two. Using the familiar 

relation, AG=-RTlnK, this corresponds to a population of the new, much greater than 

99.9999%, whereas the NMR observations place the population of the closed at 90% and 

the other (probably the open conformer) at about 10%. Also, X-ray only observes the 

folate-bound complex in both the open and occluded M20 loop conformations (67), 

whereas the free energy calculations predict that occluded is high in energy. In addition, 

experimental NMR studies observe the apo complex in 2 conformers (107), but two of 

comparable energies are not calculated with this method. Interestingly, the NADPH-

closed simulation is lower in energy than NADPH-open, which agrees with 

Table 8. Relative free energies of M20 loop conformers (kcal/mol) 
Starting TS AG TS 

Ligand M20 Loop EM M A G P B A G S A (heavy) (heavy) (all) AG (all) 

Apo open -87.3 -2386.4 50.3 1903.0 0.0 2246.0 0.0 
closed -46.7 -2390.8 50.0 1893.2 45.8 2235.0 47.0 
occluded -95.1 -2350.3 49.3 1904.5 25.9 2248.1 25.3 

NADPH open 195.4 -3222.6 51.4 1931.9 25.6 2273.4 31.2 
closed 158.4 -3172.2 49.6 1968.9 0.0 2316.1 0.0 

Folate open -747.0 -2566.7 48.2 1917.6 0.0 2259.1 0.0 
closed -600.5 -2611.4 49.6 1935.2 85.6 2277.3 85.0 
occluded -474.2 -2722.6 49.7 1946.5 89.5 2291.6 85.9 

DHF open -716.6 -2631.8 49.2 1953.4 70.0 2297.9 67.9 
closed -837.3 -2593.7 48.3 1940.0 0.0 2282.4 0.0 
occluded -689.2 -2631.7 49.8 1941.2 110.4 2285.1 108.9 
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experiment (76). The all-atom entropies were also calculated (Table 8). Not surprisingly, 

the trend is exactly the same. Thus, these numbers cannot be trusted for comparing the 

relative free energies of DHFR conformers. Therefore, we applied other methods to try 

and investigate the link between ligand structures and M20 loop conformation. 

External Perturbation Molecular Dynamics and Normal Mode Analysis 

Conformational changes and ligand dissociations were forced using the methods 

discussed in Chapter II. Table 2 (in the Methods section of this chapter) describes the 31 

simulations: the 9 forced ligand dissociation simulations (each one run twice) and the 13 

forced conformational change simulations. Both types will be similarly analyzed to 

determine whether their trajectories involve the protein sampling either the open X-ray or 

new conformer. In addition, whether or not the ligand has an effect on the pathway 

followed will be investigated. The main tool for making this determination is the M20 

loop backbone RMSD. To analyze a simulation, each frame of the trajectory is first 

aligned with a reference structure by superimposing the protein backbone atoms in a 

mass-weighted fit. Then, the RMSD of just the M20 loop backbone atoms is calculated 

for each frame. The following analysis is divided into two parts: forced ligand 

dissociations and forced conformational changes. 

Each forced ligand dissociation simulation finished with the ligand successfully 

dissociated. Some crashed before the 100 ps because their ligands traveled too far from 

the protein and reached into neighboring periodic boxes causing problems. In most of the 

THF dissociation simulations, RMSD plots show that the M20 loop remained nearer to its 

starting conformation than any of the others (Figure 25). Only the E|THF closed —• THF 

out simulation involves a possible path through the new M20 loop conformation (Figures 

25E and 25F). Although the graphs clearly indicate that the simulation structures in both 

cases maintain their closed starting conformation, the loops do get close (~ 2 A) to the 

new conformation as dissociation continues. But, the close pass may be more of a random 

fluctuation in RMSD than a large relative drop. All second dissociation runs starting from 

the occluded conformer involve the M20 loop getting far from its starting conformation 

(Figures 25D, 25H and 25L). Visual inspection shows that in all three cases the M20 loop 

protrudes further into the active site to occlude part of the THF binding site. The 
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Figure 25. M20 loop backbone RMSD during forced THF dissociation simulations. 
Shown are E|THF|NADP+ closed - • THF out (A-B), E|THF|NADP+ occluded - • THF 
out (C-D), E|THF closed - • THF out (E-F), E|THF occluded - • THF out (G-H), 
E|THF|NADPH closed -> THF out (I-J), E|THF|NADPH occluded - • THF out (K-L). In 
each simulation pair, the first run involves pulling the C atom of folate and the second 
run involves pulling the CB atom (see Figure 10). Simulation M20 loop backbone RMSD 
is plotted relative to the following structures: open-lRAl, closed- 1RX1, occluded-1RX7 
and new-NADPH open simulation. Because it is large, the distance between pulling 
atoms is plotted 12 A less than actual. Low RMSD points are noted in A. 
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Figure 25 Continued 
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corresponding first simulation runs do not exhibit this behavior. In all dissociations from 

the closed conformer, the M20 loop remains conserved. 

As THF dissociates, it leaves along a direct route to the solvent (Figure 26), with no 

protein loop blocking the way as happens when the cofactor leaves (the M20 loop blocks 

the way). Several of the simulations show that as THF leaves, it interacts with a-helix B 

and the loop connecting a-helix C to P-strand C, as if to pull them out into solution with 

itself (Figure 26 shows this effect for the first run of E|THF|closed —• THF out). The 
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effect is stronger in some simulations than in others, but its occurrence does not seem to 

depend on either the starting M20 loop conformation or the identity and location of any 

cofactor present. It is interesting though, that a-helix B (residues 25-36) is directly 

connected to the M20 loop (residues 14-24). 

It is interesting to compare the THF dissociation to experimental kinetic data. 

Figure 25 shows THF dissociating more quickly from E|THF|NADPH (occluded or 

closed) than from E|THF|closed. This might be interpreted as agreeing with the kinetic 

experiments (77), which shows a 1.4 s"1 rate from E|THF and a 12.5 s"1 rate from 

E|THF|NADPH. However, crystallography (17) and NMR (76) studies indicate that 

E|THF has an occluded M20 loop. Figure 25 shows dissociation occurring just as quickly 

from E|THF|occluded than from E|THF|NADPH|occluded, thus disagreeing with the 

kinetic data. Also, there seems to be no difference between THF dissociation from 

E|THF|NADPH and E|THF|NADP+. This disagrees with the experimental data, which 

shows the latter to be about 5 times quicker. Therefore these forced dissociations cannot 

reproduce experimental data. 

Most of the cofactor dissociations involve the M20 loop sampling conformations 

close to the new conformation. The M20 loop RMSD graphs show a common 

characteristic among these simulations to be that once dissociation begins, the RMSD 

relative to the starting closed conformation increases, while that relative to the new 

conformer decreases (Figure 27). This trend continues until the two RMSDs meet each 

other, where at this time, the simulation structure is sampling a conformation equally near 

to both the closed and new conformers. In the first E|NADPH|closed —• NADPH out 

dissociation, the M20 loop reaches 1.87 A and 1.98 A relative to the closed and new 

conformers, respectively (Figure 27A), and in the second run, it reaches 1.65 A and 1.81 

A, respectively (Figure 27B). Figures 28 and 29 show visual renderings of the first and 

second runs, respectively. The first E|THF|NADP+|closed -* NADP+ out run does not 

involve a decrease in M20 loop RMSD relative to the new conformer, but that relative to 

the closed conformer suddenly increases after dissociation begins at ~ 50 ps and 

continues to steadily increase to above 4 A until the simulation finishes (Figure 27C). 

Visual analysis of the trajectory reveals that this major distortion in the loop 

conformation results from the C-terminus portion entering in to occlude the missing 
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cofactors binding pocket, a job normally reserved for the N-terminus portion of the loop 

(shown visually in Figure 30). But this does not happen in the second 

E|THF|NADP+|closed —• NADP+ out dissociation run (shown visually in Figure 31). The 
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Figure 27. M20 loop backbone RMSD during forced cofactor dissociation simulations. 
Shown are E|NADPH closed - • NADPH out (A-B), E|THF|NADP+ closed - • NADP+ 
out (C-D), E|THF|NADPH closed - • NADPH out (E-F). In each simulation pair, the first 
run involves pulling the NN7 atom of the cofactor and the second run involves pulling 
the NC7 atom (see Figure 10). Simulation M20 loop backbone RMSD is plotted relative 
to the following structures: open-lRAl, closed-1RX1, occluded-1RX7 and new-NADPH 
open simulation. Distance between pulling atoms is also plotted. Low RMSD points are 
noted in A. 
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second run dissociation begins at ~ 70 ps, and right afterwards, the RMSD relative to the 

closed starting conformer increases sharply while that relative to the new conformer 

decreases (Figure 27D). The nearest passes to the new conformer occur in 

E|THF|NADPH closed - • NADPH out dissociations, where the RMSD reaches a minima 

of 1.50 A and 1.74 A in the first and second runs, respectively (Figures 27E and 27F). 

At each near pass, the RMSD indicates that the simulation structure resembles 

both the closed and new M20 loop conformers. To gain a better comparison, residue 

centroid difference distance graphs are calculated on the five near pass structures (Figure 

32). In all five cases, the plots indicate a clear resemblance to both the closed and new 

conformers. Each deviates similarly from the closed conformer, with major differences 

from residues 40 to 80 and minor differences elsewhere. Residues 40 to 80 contain beta-

strands B, C and D, and alpha-helices C and E, all of which make up what is known as 

the adenosine-binding subdomain, since it is responsible for binding the adenosine 

portion of the cofactor. So, the M20 loop has similar proximity relative to the rest of the 

enzyme as the closed X-ray conformer does, except in the adenosine-binding subdomain. 

Since the effect is observed in all five structures, it is probably not an artifact of improper 

methodology, suggesting that it could take place in vivo. These results agree with the 

crystallography studies (67), which show that subdomain rotations do occur during 

catalysis. The difference plots relative to the new conformer show smaller magnitude 

deviations in adenosine-binding subdomain portion of the closed conformer-reference 

plots. But, more deviations with the closed conformer-reference plots, much similarity 

with respect to the locations of deviation is found among the five new conformer 

reference plots. This suggests that the M20 loop conformation is similar in these five 

dissociation snapshots. Visual renderings confirm this (Figure 33). These observations 

suggest that cofactor dissociation causes the M20 loop to a sample conformation 

resembling both the new and closed conformers. 

Another interesting observation is that cofactor dissociation happens earlier in the 

first run than in the second run. Figure 27 shows clearly where the pulling distance 

sharply increases, marking the beginning of dissociation, and in each case it happens 

about 25 ps earlier in the first run. It might simply be that the first runs involve a more 

direct route for the ligand out to the solvent. Another possible explanation is that in the 
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first runs, the NN7 atom, which lies on the very end of the cofactor, is being pulled 

(Figure 10). But in the second runs, the NC7, which lies one bond away from the end, is 

being pulled. As it is pulled, atoms attached to both sides of it drag alongside and interact 

Closed New 

Figure 32. Residue centroid difference distance plots for cofactor dissociation structures. 
The plots correspond to the following simulation snapshot structures: 50.3 ps in the 1st 
E|NADPH closed -»• NADPH out run (A), 66.2 ps in the 2nd E|NADPH closed -• 
NADPH out run (B), 76.6 ps in the 2nd E|THF|NADP+ closed - • NADP+ out run (C), 
53.4 ps in the 1st E|THF|NADPH closed -> NADPH out run (D) and 72.0 ps in the 2nd 
E|THF|NADPH closed -+ NADPH out run (E). Difference distance matrices are plotted 
relative to both the X-ray closed conformer (1RX1) and new conformer (using the 
NADPH open simulation). 
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Figure 33. M20 loops of superimposed near-pass cofactor dissociation structures. Shown 
are snapshots of the first E|NADPH closed —• NADPH out run at 50.3 ps (A), the second 
E|NADPH closed -> NADPH out run at 66.2 ps (B), the second E|THF|NADP+ closed -» 
NADP+ out run at 76.6 ps (C), the first E|THF|NADPH closed -> NADPH out run at 
53.4 ps (D), and the second E|THF|NADPH closed - • NADPH out run at 72.0 ps (E). 
The new conformer using the NADPH open simulation is also shown (F). 

with the protein. If the pulling atom were an end atom, there may be less of a drag force, 

as there are only atoms attached to one side. Hence pulling on an end atom may allow 

dissociation to be faster. 

Closed-occluded conformational changes were forced using the restricted-

perturbation targeted molecular dynamics method (43). The amount of simulation time 

and the magnitude of the restricted-perturbation required to reach a low M20 loop 

backbone RMSD with respect to the target varied with each complex (Figure 34). As 

stated in the Methods section of this chapter, maximum-allowed perturbations were 

increased after 300 ps, and again after 400 ps. Although most complexes achieved 

conformational change within 300 ps, each was run for 400 ps. E occluded —• closed 

(Figure 34B) clearly needed to be extended to 500 ps with increased perturbations. 

No passes near either the X-ray open or new M20 loop conformers were observed 

in these simulations. In all cases, the M20 loop RMSD clearly shows the following 

concerning the simulation structure: it gets further away from the starting conformation, 

it approaches the target conformation and it does not get near the other conformers. 

Certain simulations involve decreases in the RMSD relative to the other conformers 

(Figures 34D, 34E, 34F, 34K and 34M), but in each case, the RMSD relative to the target 

conformer is clearly much lower. An example visual rendering (Figure 35) shows E|THF 

transitioning from the occluded starting conformer to the closed target conformer. 
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All forced conformational-change simulations involving the cofactor demonstrate 

behavior inconsistent with the experimental data. First, X-ray studies show that whenever 

the M20 loop is occluded, the cofactors nicotinamide ring cannot bind in the active site. 
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Figure 34. M20 loop backbone RMSD during forced conformational change simulations. 
Shown are E closed —• occluded (A), E occluded —• closed (B), E|folate closed —• 
occluded (C), E|folate occluded - • closed (D), E|DHF closed -> occluded (E), E|DHF 
occluded —• closed (F), E|NADPH closed —• occluded (G), E|NADPH occluded —• closed 
(H), E|DHF|NADPH closed -> occluded (I), E|THF|NADP+ closed -> occluded (J), 
E|THF|NADP+ occluded -» closed (K), E|THF occluded - • closed (L), E|THF|NADPH 
closed -> occluded (M) and E|THF|NADPH occluded -> closed (N). Simulation M20 
loop backbone RMSD is plotted relative to the following structures: X-ray open (1RA1), 
X-ray closed (1RX1), X-ray occluded (1RX7) and new (NADPH open simulation). 
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However, in each closed-to-occluded simulation, the cofactor is not expelled from the 

binding pocket to make way for the M20 loop. Instead as the M20 loop changes to the 

occluded conformation, it pushes the nicotinamide ring further into the binding pocket. 

This may result from the unnatural conditions produced from forcing the conformational 

change too quickly. In vivo, the enzyme allows time for random fluctuations in cofactor 

and loop motion to occur. Without allowing enough time for them in the simulation 

before introducing the perturbation, the cofactor is not given the chance to leave the 

active site before the occluding M20 loop enters the active site and blocks the exit. The 

equilibrium simulations (explained earlier) showed no such random fluctuations in 

cofactor movement occurring after 10 ns, indicating that the barrier for the nicotinamide 

leaving the active site is probably high. Also, X-ray studies show that if the cofactor is 

bound and the M20 loop is in the closed conformation, then the nicotinamide ring 

occupies the binding pocket. The occluded-to-closed simulations involving the cofactor 

start with the nicotinamide portion outside of the active site. But as the conformational 

change occurs, the nicotinamide ring remains outside. Again, there is probably not 

enough time in silico to allow the nicotinamide ring to enter the active site before 

inducing the change in the M20 loop conformation. As such, the restricted-perturbation 

method is unreliable when the cofactor is bound. 

The normal modes were calculated for all starting structures studied in the forced 

conformational exchange simulations (a.k.a. the non-simulated structures) as well as 

several structures obtained from the equilibrium MD studies (a.k.a. the simulated 

structures). These modes describe the vibrational character of the DHFR structures. Here 

the modes are probed to find whether the structures exhibit tendencies to vibrate in the 

direction of an M20 loop conformational change. According to the NMR experiments 

(74,76) discussed in the Background section of this chapter, several catalytic 

intermediates sample excited state M20 loop conformers (Figure 9). So the ground state 

structures should contain vibrations pointing towards their respective excited states. Thus 

dot products of the mode vectors with the corresponding conformational difference 

vector (i.e. the excited state structure minus the ground state structure) should be larger 

than dot products with other conformational difference vectors. Using the normal modes 

for each structure, the dot product calculations (described in the Methods section of this 
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chapter) were performed. Tables 9-13 list the dot product results for the 5 lowest 

frequency normal modes. The lowest frequency normal mode (which contains the largest 

atom position movements) is mode 7; modes 1-6 are only translations and rotations. 

Superpositions of normal modes are examined by dot product sums. Tables 14, 15 and 16 

show the dot product sums of modes 7-11, 7-16 and 7-25, respectively. 

Table 9. Normal mode dot products (mode 7) 

Complex 
DHFR 

DHFR | Folate 

DHFR|DHF 

DHFR|NADPH 

DHFR|DHF|NADPH 

DHFR|THF|NADP+ 

DHFR|THF 

DHFR|THF|NADPH 

M20 Loop 
closed 
closed* 
occluded 
occluded* 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
new** 

closed 

closed 

closed 
occluded 

closed 
occluded 

open 
0.025 
0.027 
0.031 
0.005 

0.013 
0.002 
0.009 
0.010 

0.019 
0.047 
0.034 
0.008 

0.016 
0.042 
0.010 

0.002 

0.019 

0.015 
0.010 

0.028 
0.013 

closed 
-
-

0.036 
0.038 

-
-

0.013 
0.013 

-

-
0.052 
0.002 

-
-

0.005 

-

-

-

0.005 

-

0.047 

occluded 
0.015 
0.043 

-
-

0.025 
0.001 

-
-

0.018 
0.044 

-
-

0.018 
0.008 
0.005 

0.009 

0.014 

0.024 
-

0.032 
-

new* 
0.012 
0.012 
0.031 
0.008 

0.001 
0.003 
0.013 
0.030 

0.008 
0.048 
0.035 
0.008 

0.012 
0.032 

-

0.000 

0.002 

0.005 
0.013 

0.039 
0.023 

M20 loop conformation of the complex for which the normal modes are calculated for 
t NADPH-open minimized-average simulation structure. 
t Minimized-average structure from the equilibrium simulation. 
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Table 10. Normal mode dot products (mode 8) 

Complex M20 Loop* open closed occluded new1 

DHFR 

DHFR| 

DHFR| 

DHFR| 

| Folate 

|DHF 

INADPH 

DHFR|DHF|NADPH 

DHFR| 

DHFR| 

DHFR| 

|THF|NADP+ 

|THF 

|THF|NADPH 

closed 
closed1 

occluded 
occluded* 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
new** 

closed 

closed 

closed 
occluded 

closed 
occluded 

0.008 
0.009 
0.065 
0.040 

0.006 
0.027 
0.003 
0.031 

0.000 
0.015 
0.005 
0.033 

0.024 
0.019 
0.020 

0.016 

0.018 

0.003 
0.047 

0.010 
0.020 

-
-

0.045 
0.051 

-

-

0.023 
0.016 

-

-
0.021 
0.016 

-

-
0.017 

-

-

-

0.020 

-

0.014 

0.025 
0.003 

-
-

0.010 
0.030 

-
-

0.017 
0.026 

-
-

0.005 
0.004 
0.001 

0.020 

0.006 

0.015 
-

0.010 
-

0.001 
0.003 
0.059 
0.037 

0.001 
0.015 
0.017 
0.024 

0.010 
0.030 
0.003 
0.031 

0.031 
0.027 

-

0.004 

0.025 

0.000 
0.031 

0.008 
0.014 

M20 loop conformation of the complex for which the normal modes are calculated for 
f NADPH-open minimized-average simulation structure. 
t Minimized-average structure from the equilibrium simulation. 
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Table 11. Normal mode dot products (mode 9) 

Complex M20 Loop* open closed occluded new1 

DHFR 

DHFR| 

DHFR | 

DHFR | 

DHFR | 

DHFR | 

DHFR | 

DHFR | 

Folate 

DHF 

NADPH 

DHF|NADPH 

THF|NADP+ 

THF 

THF|NADPH 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
new** 

closed 

closed 

closed 
occluded 

closed 
occluded 

0.003 
0.047 
0.006 
0.002 

0.023 
0.007 
0.055 
0.008 

0.024 
0.019 
0.025 
0.007 

0.016 
0.040 
0.019 

0.008 

0.030 

0.027 
0.073 

0.011 
0.037 

-
-

0.032 
0.023 

-

-

0.032 
0.012 

-

-

0.005 
0.005 

-

-
0.007 

-

-

-

0.028 

-

0.049 

0.019 
0.020 

-
-

0.014 
0.015 

-
-

0.002 
0.019 

-
-

0.009 
0.014 
0.016 

0.003 

0.003 

0.003 
-

0.037 
-

0.021 
0.004 
0.005 
0.012 

0.042 
0.011 
0.020 
0.008 

0.035 
0.005 
0.029 
0.008 

0.030 
0.041 

-

0.031 

0.027 

0.041 
0.038 

0.016 
0.045 

* M20 loop conformation of the complex for which the normal modes are calculated for 
t NADPH-open minimized-average simulation structure. 
t Minimized-average structure from the equilibrium simulation. 
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Table 12. Normal mode dot products (mode 10) 

Complex M20 Loop* open closed occluded new1 

DHFR 

DHFR | Folate 

DHFR|DHF 

DHFR | NADPH 

DHFR|DHF|NADPH 

DHFR|THF|NADP+ 

DHFR|THF 

DHFR|THF|NADPH 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
new1* 

closed 

closed 

closed 
occluded 

closed 
occluded 

0.026 
0.016 
0.008 
0.016 

0.019 
0.013 
0.024 
0.025 

0.012 
0.041 
0.014 
0.014 

0.021 
0.000 
0.017 

0.002 

0.010 

0.020 
0.022 

0.014 
0.021 

-
-

0.003 
0.015 

-
-

0.013 
0.010 

-

-

0.008 
0.008 

-

-
0.032 

-

-

-

0.023 

-

0.016 

0.004 
0.041 

-
-

0.013 
0.013 

-
-

0.005 
0.046 

-
-

0.007 
0.013 
0.027 

0.009 

0.000 

0.003 
-

0.026 
-

0.021 
0.013 
0.004 
0.017 

0.006 
0.012 
0.006 
0.016 

0.028 
0.020 
0.017 
0.007 

0.026 
0.008 

-

0.035 

0.022 

0.005 
0.024 

0.007 
0.025 

* M20 loop conformation of the complex for which the normal modes are calculated for 
t NADPH-open minimized-average simulation structure. 
t Minimized-average structure from the equilibrium simulation. 
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Table 13. Normal mode dot products (mode 11) 

Complex 
DHFR 

DHFR | Folate 

DHFR|DHF 

DHFR|NADPH 

DHFR|DHF|NADPH 

DHFR|THF|NADP+ 

DHFR|THF 

DHFR|THF|NADPH 

M20 Loop 
closed 
closed* 
occluded 
occluded* 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
new** 

closed 

closed 

closed 
occluded 

closed 
occluded 

open 
0.019 
0.007 
0.038 
0.022 

0.012 
0.028 
0.028 
0.002 

0.037 
0.026 
0.002 
0.069 

0.017 
0.000 
0.004 

0.026 

0.000 

0.002 
0.047 

0.015 
0.016 

closed 
-
-

0.016 
0.013 

-
-

0.011 
0.013 

-
-

0.002 
0.017 

-
-

0.006 

-

-

-

0.000 

-

0.021 

occluded 
0.003 
0.025 

-
-

0.003 
0.021 

-
-

0.006 
0.038 

-
-

0.004 
0.002 
0.008 

0.007 

0.005 

0.006 
-

0.002 
-

new' 
0.004 
0.023 
0.031 
0.010 

0.008 
0.020 
0.020 
0.012 

0.006 
0.023 
0.002 
0.071 

0.005 
0.002 

-

0.009 

0.002 

0.010 
0.008 

0.035 
0.020 

* M20 loop conformation of the complex for which the normal modes are calculated for 
t NADPH-open minimized-average simulation structure. 
t Minimized-average structure from the equilibrium simulation. 
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Table 14. Normal mode dot product sums (modes 7 to 11) 

Complex M20 Loop* open closed occluded new1 

DHFR 

DHFR | Folate 

DHFR|DHF 

DHFR | NADPH 

DHFR |DHF|NADPH 

DHFR|THF|NADP+ 

DHFR|THF 

DHFR|THF|NADPH 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
new** 

closed 

closed 

closed 
occluded 

closed 
occluded 

0.031 
0.035 
0.071 
0.050 

0.009 
0.033 
0.101 
0.009 

0.006 
0.118 
0.041 
0.073 

0.028 
0.063 
0.037 

0.055 

0.019 

0.009 
0.033 

0.036 
0.049 

-
-

0.061 
0.111 

-

-

0.028 
0.018 

-
-

0.063 
0.028 

-

-

0.010 

-

-

-

0.021 

-

0.018 

0.060 
0.040 

-
-

0.045 
0.053 

-
-

0.014 
0.121 

-
-

0.021 
0.033 
0.007 

0.030 

0.022 

0.003 
-

0.103 
-

0.007 
0.018 
0.060 
0.051 

0.044 
0.010 
0.024 
0.002 

0.004 
0.056 
0.051 
0.125 

0.093 
0.037 

-

0.018 

0.077 

0.051 
0.039 

0.057 
0.041 

M20 loop conformation of the complex for which the normal modes are calculated for 
t NADPH-open minimized-average simulation structure. 
t Minimized-average structure from the equilibrium simulation. 
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Table 15. Normal mode dot product sums (modes 7 to 16) 

Complex M20 Loop* open closed occluded new1 

DHFR 

DHFR| 

DHFR| 

DHFR| 

DHFR| 

DHFR| 

DHFR| 

DHFR| 

| Folate 

|DHF 

j NADPH 

|DHF|NADPH 

| THF | NADP+ 

|THF 

|THF|NADPH 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
new** 

closed 

closed 

closed 
occluded 

closed 
occluded 

0.117 
0.051 
0.068 
0.025 

0.044 
0.027 
0.150 
0.033 

0.062 
0.111 
0.012 
0.152 

0.044 
0.084 
0.057 

0.059 

0.061 

0.005 
0.043 

0.045 
0.059 

-
-

0.055 
0.064 

-

-

0.036 
0.018 

-

-

0.043 
0.072 

-

-

0.038 

-

-

-

0.016 

-

0.054 

0.107 
0.057 

-
-

0.003 
0.005 

-
-

0.002 
0.144 

-
-

0.071 
0.008 
0.013 

0.022 

0.007 

0.003 
-

0.044 
-

0.043 
0.032 
0.041 
0.026 

0.041 
0.042 
0.012 
0.010 

0.000 
0.071 
0.031 
0.191 

0.118 
0.081 

-

0.008 

0.080 

0.045 
0.056 

0.004 
0.060 

M20 loop conformation of the complex for which the normal modes are calculated for 
t NADPH-open minimized-average simulation structure. 
$ Minimized-average structure from the equilibrium simulation. 
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Table 16. Normal mode dot product sums (modes 7 to 26) 

Complex M20 Loop* open closed occluded new t 

DHFR 

DHFR I Folate 

DHFRIDHF 

DHFRINADPH 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 
occluded 
occluded* 

closed 
closed* 

new 
t t 

DHFR I DHF I NADPH closed 

0.072 
0.121 
0.120 
0.069 

0.192 
0.016 
0.067 
0.134 

0.028 
0.044 
0.095 
0.118 

0.022 
0.072 
0.032 

0.018 

DHFR|THF|NADP+ 

DHFR|THF 

DHFR|THF|NADPH 

closed 

closed 
occluded 

closed 
occluded 

0.005 

0.076 
0.010 

0.054 
0.089 

0.067 
0.018 

0.223 
0.066 

0.174 
0.001 

0.034 

0.047 

0.014 

0.094 
0.026 

0.031 
0.032 

0.019 
0.017 

0.051 
0.041 
0.038 

0.019 

0.008 

0.020 

0.084 

0.031 
0.148 
0.077 
0.033 

0.122 
0.004 
0.064 
0.022 

0.054 
0.072 
0.159 
0.139 

0.026 
0.020 

0.024 

0.031 

0.104 
0.038 

0.001 
0.056 

* M20 loop conformation of the complex for which the normal modes are calculated for 
t NADPH-open minimized-average simulation structure. 
t Minimized-average structure from the equilibrium simulation. 
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The validity of the normal mode dot product method described above is 

determined by comparing its calculation results with experimental data. The NMR studies 

discussed in the Background section of this chapter provide three different validation 

tests. First, E|DHF|NADPH|closed is observed by NMR to populate an excited state M20 

loop conformer that closely resembles the occluded X-ray conformer (76). So the dot 

products of its low-frequency mode vectors with the closed-to-occluded conformational 

difference vector should be larger than the dot products with the closed-to-open or 

closed-to-new vectors. Second, E|THF|NADPH|occluded populates an excited state 

conformer not resembling closed (76). So its low-frequency modes should not have the 

largest dot products with the occluded-to-closed vector. Third, E|NADPH|closed 

populates an excited state conformer not resembling occluded (76). So its low frequency 

modes should not have the largest dot products with the closed-to-occluded vector. 

More consideration is given to the first validation test because it involves an event 

that is less unlikely to occur randomly than the events of the second or third tests. The 

first test has three possible results: the closed-to-occluded dot product is the largest, the 

closed-to-open dot product is the largest or the closed-to-new dot product is the largest. 

So there is only a 33% chance of passing the first test. Similar reasoning shows that there 

is a 66% chance of passing the second test and a 66% chance of passing the third test. 

To pass the first validation test, the dot products of the low-frequency mode 

vectors of E|DHF|NADPH|closed with the closed-to-occluded conformational difference 

vector must be larger than those with the closed-to-open or closed-to-new vectors. Out of 

the five lowest frequency modes, only modes 7 and 8 pass the test. Mode 7 has a 0.009 

value with occluded, but only 0.002 and 0.000 values with open and new, respectively 

(Table 9). Mode 8 has a 0.020 value with occluded, but only 0.016 and 0.004 values with 

open and new, respectively (Table 10). Also, the larger 0.020 value of mode 8 indicates 

that mode to vibrate more along the closed-to-occluded direction than mode 7. Although 

modes 7 and 8 favor the occluded direction, modes 9, 10 and 11 do not. In fact, the dot 

product sums, which describe modal superposition, show that modes 7 to 11, together, 

vibrate more towards the open direction (0.55) than towards the occluded (0.030) or new 

(0.018) directions (Table 14). The superposition of modes 7 to 16 (Table 15) exhibits a 

similar trend, but the superposition of modes 7 to 26 (Table 16) shows the closed-to-new 
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sum (0.024) is larger than the closed-to-open (0.018) and closed-to-occluded (0.019) 

sums. Thus, the calculations do not strongly support the first validation test. 

To pass the second validation test, the dot products of the low-frequency mode 

vectors of E|THF|NADPH|occluded with the occluded-to-closed conformational 

difference vector must not be largest. Calculations on the individual normal modes 7 to 

11 show that three out of the five modes (7, 9 and 11) do have the largest dot products 

with the occluded-to-closed vector (Tables 9-13). However, the dot product sums of 

modes 7 to 11 are 0.049 for occluded-to-open, 0.041 for occluded-to-new and only 0.018 

for occluded-to-closed (Table 14). Thus the superposition of modes 7 to 11 vibrates more 

along the occluded-to-open and occluded-to-new directions than along the occluded-to-

closed direction. The dot product sums of modes 7 to 16 show much less variation: 0.059 

for occluded-to-open, 0.060 for occluded-to-new and 0.054 for occluded-to-closed (Table 

15). But the dot product sums of modes 7 to 26 (like the sum of modes 7 to 11) show the 

occluded-to-closed direction (0.014) to be less favored than the occluded-to-open (0.089) 

or the occluded-to-new (0.056) directions (Table 16). Thus calculations do mostly 

support the second validation test. 

To pass the third validation test, the dot products of the low-frequency mode 

vectors of E|NADPH|closed with the closed-to-occluded conformational difference vector 

must not be largest. E|NADPH|closed was one of the structures studied by equilibrium 

molecular dynamics simulations, so it makes sense to examine the normal modes of both 

native and simulated structures. Calculations on both structures do, in fact, show smaller 

dot products of mode vectors 7 to 11 of E|NADPH|closed (shown in Tables 9 to 13, 

respectively) with the closed-to-occluded vector than with the closed-to-open or closed-

to-new vectors. For example, mode 8 of the simulated structure has dot product values of 

0.019 and 0.027 with the open X-ray and new conformers, respectively, but only 0.004 

with the occluded X-ray conformer. The same dot products of the modes from the non-

simulated structure are 0.024 and 0.031 with the open X-ray and new conformers, 

respectively, and 0.005 with the occluded X-ray conformer. Mode 9 follows a similar 

trend, that is, the dot products in both the simulated and non-simulated E|NADPH|closed 

structures are lower with the closed-to-occluded vector than with the closed-to-open or 

closed-to-new vectors. Mode 7 of the simulated structure exhibits the trend, and mode 10 
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of the non-simulated structure does as well. Mode 11 does not exhibit the trend for either. 

Thus, some of the individual low frequency modes of E|NADPH|closed do vibrate 

towards M20 loop conformations other than occluded. 

The vibrational trend of E|NADPH|closed is, perhaps, better seen with an 

examination of the dot product sums. The sum of modes 7 to 11 (Table 14) in the 

simulated structures shows a larger tendency for them to vibrate more along the closed-

to-open vector (0.063) than along the closed-to-occluded (0.033) or closed-to-new 

(0.037) vectors. In contrast, the non-simulated structure has the largest value with the 

closed-to-new vector (0.093). Both structures show the smallest values with the closed-

to-occluded vector, which indicates that the vibrational tendency of these modes is not 

towards occluded. Modes 7 to 16 (Table 15) in the simulated structure strongly favor 

vibration along the closed-to-open (0.084) and closed-to-new (0.081) directions as 

opposed to the closed-to-occluded direction (0.008). These same modes in the non-

simulated structure vibrate more along the closed-to-new vector (0.118) than the closed-

to-occluded (0.071) or the closed-to-open (0.044) vectors. Modes 7 to 26 (Table 16) in 

the simulated structure vibrate more along the closed-to-open vector (0.072) than the 

closed-to-occluded (0.041) or closed-to-new (0.020) vectors. Modes 7 to 26 in the non-

simulated structure vibrate more along the closed-to-occluded direction (0.051) than the 

closed-to-open (0.022) or closed-to-new (0.026) directions. Thus, incorporating modes 17 

to 26 shifts the vibrational tendency of the non-simulated structure to be more along the 

closed-to-occluded vector than the other two conformational difference vectors. Evidence 

supporting the third validation test is not very strong. 

Although the normal mode analysis method passed certain parts of the validation 

tests, the evidence is not strong enough to conclude it as very good (i.e. at predicting 

vibrational tendencies of the M20 loop towards certain defined conformational changes). 

This is not surprising since in order for conformational change to occur, the structure may 

need to move further away from the target conformation before getting closer to it, 

whereas the normal modes describe only vibrational tendencies in the immediate vicinity 

of a structure. Molecular motion proceeds according to various constraints (e.g. dihedral 

angle rotations), which normal modes do not fully consider. 
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CONCLUSIONS 

The open, closed and occluded X-ray M20 loop conformations of Escherichia coli 

dihydrofolate reductase were examined. The closed and occluded conformers stayed 

close to their native conformations in several complexes through the help of hydrogen 

bonds within the M20 loop and between the M20 loop and neighboring loops. Loss of 

these hydrogen bonds was accompanied by corresponding shifts in structure. This was 

most apparent when simulating the open X-ray conformer; each case involved a loss of a 

pair of interactions connecting the M20 loop to the GH loop resulting in a similar shift in 

conformation. Structural analysis showed this shift to be different enough from the three 

X-ray structures to name it a new M20 loop conformation. 

Ligand dissociations, which were simulated by pulling on certain atoms, revealed 

that in five of the six occurrences, as the cofactor leaves the binding pocket from the 

closed conformer, it pushes its way past the M20 loop, causing the loop to change 

structure. In all five cases, this change resembles the new conformation observed in the 

equilibrium simulations. The M20 loops in these five near-pass structures were similar in 

conformation to each other as well as to the new conformation. Substrate dissociation 

simulations revealed no such sampling by the M20 loop. 

Certain methods were seen to be unreliable for examining the hypotheses. The 

restricted-perturbation targeted molecular dynamics method used to produce the 

conformational change failed to expel the cofactors nicotinamide ring from the active site 

as the M20 loop was forced into the occluded conformation. This directly contradicts 

crystallography studies, which show that the nicotinamide ring lies tethered outside the 

active site whenever the loop is occluded. Likewise in contradiction, occluded-to-closed 

transitions failed to bring the tethering nicotinamide ring into the binding site. The 

MMPBSA energetic analysis failed to calculate the relative free energies of the different 

M20 loop conformers of various equilibrium DHFR simulation structures. This was 

immediately apparent, since the estimated population of the folate-bound open M20 loop 

conformer was less than 0.0000001%, whereas experimental NMR studies predict it to be 

roughly 10%. Finally, the dot products between the low-frequency normal mode 

eigenvectors of a complex and the four conformational change difference vectors failed 



102 

to identify tendencies of the complex for vibration towards any one specific 

conformational change. 

Future research should be done to see if different free energy analysis methods 

(e.g. umbrella sampling or free energy perturbation) are better at calculating the relative 

free energies of the various M20 loop conformers of dihydrofolate reductase than the 

MMPBSA method. Also, while the restricted-perturbation targeted molecular dynamics 

method provided interesting results, other path-determining methods (108) might furnish 

better mappings of the closed-occluded transition. Also, recently developed vibrational 

methods (109-110) that are able to calculate the pathway of conformational change 

between two given protein structures should be tried. 
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CHAPTER IV 

CONSERVED CONTACT NETWORKS OF GREEK-KEY PROTEINS 

BACKGROUND 

The topological fold of a protein is the overall global placement of the 

polypeptide backbone with respect to itself, while disregarding sidechains and secondary 

structure. Although the general subject of topology is vast, a few examples should 

illustrate the essential ideas pertaining to protein folds. Figure 36 shows three sets of 

equivalent different topological folds or motifs: the trefoil knot (Figure 36A), the V-

shaped bend (Figure 36B) and the straight line (Figure 36C). The two different proteins 

containing trefoil knots, E. coli YBEA (Figure 36A left) and RNA 2'-0-Ribose 

Methyltransferase (Figure 36A center), have different a-helix lengths, but equivalent 

topologies. Independence of secondary structure is illustrated by topologically equivalent 

V-shaped motifs in both the all a-helix human death domain (Figure 36B left) and the all 

P-sheet human titin (Figure 36B center). 

This structural ambiguity reduces the vast 3-dimensional fold space into a smaller 

topological fold space, more manageable in size (111). Classifying proteins as such 

departs from other popular protein classification schemes, such as CATH (112,113), 

SCOP (114), FSSP (115) and DALI (116), in that it completely disregards both 

secondary structure and evolutionary sequence heredity. Instead it emphasizes 

commonality between proteins with equivalent topology but different secondary structure 

(111,117). One such commonality is the conserved residue long-range interaction 

network. Network theory (or graph theory) is an important tool for describing any system 

of interconnected items (or nodes), such as the world-wide web, electrical power grids, 

the national highway system and biological systems (118-120). In a protein network, 

residues are the nodes and long-range interactions the connections (121). Greene and 

Higman (117) have proposed that evolutionarily conserved long-range residue interaction 

networks both govern and stabilize the native topology of a protein. The proving ground 

used for testing this hypothesis is the Greek-Key topology, a common fold found among 

many proteins that vary in both secondary structure and function. The name 'Greek-Key' 

derives from its resemblance to the Greek-Key meander design in art and architecture. 
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Figure 36. Equivalent protein folding motifs. Shown above are the trefoil knot (A), the V-
shaped bend (B) and the straight line (C). The left trefoil knot is from residues 67 to 123 
of E. coli YBEA (PDB code 1NS5). The center trefoil knot is from residues 188 to 239 
(PDB code IIP A). The left V-shaped bend is from residues 122 to 154 of human death 
domain (PDB code 1E3Y). The right V-shaped bend is from residues 45 to 62 of human 
titin (PDB code 1TIT). The left straight line is from residues 135 to 154 of human Fas-
associated death domain (PDB code 1E3Y). The center straight line is from residues 54 
to 62 of human titin (PDB code 1TIT). The rope images on the right are photographs 
taken by the author. 

The general procedure designed for testing the hypothesis follows five steps, in 

which part of the work in this dissertation composes the final step. First, three sets of 

protein domains are selected to represent three different superfamilies, the all a-helix 

death domains, the a/P-plaits and the all P-sheet immunoglobulins (Table 17). Although 

these differ in secondary structure, they share a common Greek-Key fold (Figure 37). 

Second, find the native contacts in each selected protein. A contact occurs when heavy 

atoms from two residues, separated by at least eight other residues, are within a certain 

cutoff distance of each other. This cutoff distance is 7 A for both the death domains and 
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the a/|3-plaits, but only 6 A for the immunoglobulins since they are composed solely 

from the more tightly-packing (3-sheet secondary structure units. The PERL programs for 

calculating the native contacts were written by Ahmed and Greene (unpublished data). 

An additional BASH program, which (exactly) reproduces the results of the PERL 

programs, was written (for purposes of smooth operability between it and other analysis 

programs) by the author, for use in the fifth step below. 

Third, the proteins within each set are structurally aligned by Greene using the 

Combinatorial Extension program (122) and refined with Monte Carlo simulations 

(unpublished data). Then, a sequence alignment list is generated by grouping together 

residues from different proteins that occupy equivalent structural positions. Sequence 

gaps occur when a protein contains no residue at the corresponding equivalent position. 

Table 18 shows an example sequence alignment list for the death domain superfamily. 

Structurally equivalent positions correspond with the table columns. Sequence gaps 

correspond with dashes. Apart from truncation of N-terminus and/or C-terminus residues, 

the entire connected sequences from each protein are contained in these alignment lists. 

In other words, removing the gaps the original sequence. 

In the fourth step, the conserved contact networks are generated by Pothen and 

Greene via one of two methods. In the direct method, the conserved network is generated 

Table 17. PDB codes of selected superfamily protein sets. 

Death Domains 
1E3Y 
1DDF 
1D2Z:A 
1N3K:1 
1C15:1 
1UCP:1 
1DGN:1 
1A1W 
1CRD:1 

ot/p-Plaits 
1Q5Y:A 
1RIS 
1UOS:A 
2ACY 
1URN:A 
1B7F:A 
1GH8:1 
1RKJ:A:1 
2AW0:1 

Immunoglobulins 
1TIT 
1WIT 
1TLK 
2VAA:B 
3CD4 
1CQK:A 
1TEN 
1G84:1 
1HE7 
1HNG:A 

* Letters/numbers after colon represent chain ID/frame number 
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D 

Figure 37. Proteins sharing a Greek-Key topology. Proteins shown are human Fas-
associated death domain - 1E3Y (A), ribosomal S6 - IRIS (B) and human titin - HIT 
(C). A generic stick representation of Greek-Key topology is shown in D (117). The five 
equivalent topological segments are numbered 1 to 5, starting from the N-terminus. 



Table 18. Sequence alignment list for the death domains. 

1E3Y S H M G E E D L C A A F N V I C D N V - G - K D W R R L A R Q L 

1DDF L S K Y I T T I A G V M T - L - S Q V K G F V R K N 

1D2Z M A I R L L P L P V R A Q L C A H L D - A L D V W Q Q L A T A V 

1N3K A E Y G T L L Q D L T N N I T - L - E D L E Q L K S A C K E 

1C15 D A K A R N C L L Q H R E A L E K D - I K T S Y I M D H M 

1UCP - - - - G R A R D A I L D A L E N L T - A - E E L K K F K L K L L S V P L R 

1DGN K K R R I F l H S V G - A - G T I N A L L D C L 

1A1W - - - M D P F L V L L H S V S S S L S - S - S E L T E L K Y L C L G - - - -

1CRD - - - - K Q V L R S L R L E L G A E V - L - V E - G L V L Q Y L 

1E3Y K V S D T K I D S I E D R Y P R N L T E R V R E 

1DDF G V N E A K I D E I K N D N V Q D T A E Q K V Q 

1D2Z K - - - - L Y P D Q V E Q I S S Q K Q R G R S - A S N E 

1N3K D I P S E K S E E I T T G S A 

1C15 - - - - I S D G F L T I S E E E K V R N - E P T Q Q Q R A A M L 

1UCP E G Y G R I P R G A L L S M D A L D 

1DGN - - - - L E D E V l S Q E D M N K V R D E N - D T V M D K A R V 

1A1W R V G K R K L E R V Q S G L D 

1CRD Y G E G I L T E N H I Q E I N A Q T T G L R K T M L 

1E3Y S L R I W K - N T E K E N A T V A H L - - - V G A L R S C Q M N L V A D L V 

1DDF L L R N W H - Q L H G K K E A Y D T L I K D L K K A N L C T L A E K I 

1D2Z F L N I W G - G Q Y N - - H T V Q T L - - - F A L F K K L K L H N A M R L I 

1N3K W F S F L E S H N K L D K D N L S Y I E H I F E I S R R P D L L T M V 

1C15 I K M I L K - K - - D N D S Y - V S F - - - Y N A L L H E G Y K D L A A L L 

1UCP L T D K L V - S F Y L E T Y G A E L T A N V L R D M G L Q E M A G Q L 

1DGN L I D L V T - G K G P K S C C - - K F I K H L C E - E D P Q L A S K M 

1A1W L F S M L L - E Q N - - D L E P G H T E L L R E L L A S L R R H D L L R R V 

1CRD L L D I L P - S R G P K A F - - D T F L D S L - - Q E F P W V R E K L 

1E3Y Q E V Q Q A R D L Q N R S 

1DDF Q T I I L K D I T S 

1D2Z K D Y V S E D L H 

1N3K V D Y R T R V L K I S E E 

1C15 H D G I 

1UCP Q A A T H Q 

1DGN G L 

1A1W D D F E 

1CRD K K A R E E A M T D 

* Vertical columns indicate corresponding sequence positions between the aligned proteins. 
Dashes indicate gaps in the chain (i.e. removing them produces the actual sequence). 
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by examining each native contact of the first protein in the sequence alignment list. If 

both residues forming a contact are in the alignment, then the corresponding slots (i.e. 

structurally equivalent positions) of the second protein are checked. If it also contains 

residues in those slots, and if they form a contact, then the programs moves on to the 

third protein. Similarly, all proteins in the alignment list are checked to see if they contain 

the contact. If so, the contact is considered conserved. Doing this for each native contact 

in the first protein generates the conserved network. The toggle method (Figure 38), 

introduced by Higman and Greene (117,121), is applied in this work. Toggling takes into 

account potential secondary structural stabilization. For example, suppose that all but one 

protein contain a contact and closer inspection of the corresponding two residues in the 

rogue protein shows that although the first residue does not contact the second, it does 

A B 

Figure 38. Direct versus Toggle contacts. In the all (3-sheet human immunoglobulin -
1TIT (A), there is no direct contact between ILE49 and LEU60, but toggling down 2 
residues in the P-strand reveals one between ILE49 and GLU58. In the all a-helix human 
Fas-associated death domain - 1E3Y (B), there is no direct contact between LYS125 and 
THR151, but toggling up 4 residues in the helix reveals one between LYS125 and 
ILE147. Contact distances are in angstroms. 



109 

contact a residue near the second. This may occur if the second residue lies on a P-sheet, 

since the side chains of every other residue in the P-strand occupy similar positions 

(Figure 38A). Similarly, the side chains of every forth residue in an a-helix point in the 

same direction (Figure 38B). Toggling allows for these small sequence shifts within 

secondary structure units, and hence more natural variability within biological structures. 

Contacts related in such a way are still considered equivalent. So in the case of the rogue 

protein described above, the contact would be conserved. A third network is made from 

this by deleting any contacts containing acidic or basic residues (i.e. arginine, aspartic 

acid, glutamic acid or lysine). This allows the final network to contain only hydrophobic 

interactions, removing potential hydrophilic interactions with the solvent. 

The three conserved networks each differ in size; Direct (D), Toggle (T) and 

Toggle with no acidic/basic residues (TN). The T network is a superset of both of the 

other two networks. The D network would be a subset of the TN network if none of the 

proteins in the alignment contained any acidic/basic residues (R, D, E or K) among their 

direct conserved interactions, however, this situation does not apply to the three 

superfamilies being studied. Despite this, the D networks are still much smaller than the 

TN networks. For example, the D network of the death domains contains just 4 

interactions, whereas the corresponding TN network contains 14 (Figure 39). The entire 

Figure 39. D and TN conserved networks in human Fas-associated death domain (1E3Y). 
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conserved networks are shown in Tables 19-21 for the all a-helix human Fas-associated 

death domain, the cx/p-plait ribosomal S6 and the all p-sheet human titin, respectively. 

Pothen and Greene generated this data (unpublished data). Counting shows that the 

smallest network is the D network of the death domains, which contains 4 interactions. 

The largest is the T network of the a/p-plaits, which contains 109 interactions. 

Recent computational studies have identified (using a different protocol to the one 

used in the present study) a list of sixteen conserved residues in the death domains 

(123,124). Experimental studies have examined the folding of human Fas-associated 

death domain in the death domain superfamily containing mutations at conserved and 

nonconserved sites (123). The conservation of tryptophan made Trpll2 and Trpl48 

interesting sites for mutation. In the present study, Trpl 12 is not found in the D network, 

but the T network contains Trpll2-Serl44 and Trpll2-Vall41 interactions (the TN 

network only has Trpl 12-Serl44). Trpl48 is found in all 3 networks of the present study 

(Trpl48-Leul61 in the D network, and Leul 15-Trpl48 and Trpl48-Leul61 in both the T 

and TN networks). The reduction in sidechain size in the Trpl48Phe mutant resulted in 

large destabilizing effects on the protein structure. Trpll2Phe had lesser effects, but the 

rate of folding was significantly decreased. The non-conserved Hisl60Gly mutant 

showed hardly any effect on the structure or folding kinetics. Combining the conserved 

Trpll2Phe with the non-conserved Hisl60Gly in a double mutant resulted in little 

additive effect, even though the conserved Trpl48 has a long-range interaction with 

His 160. This experimental study shows significant progress towards understanding how 

conserved residue interaction networks stabilize the structure and folding of proteins. 

The fifth step in testing the hypothesis, is performing MD simulations on an 

example protein from each superfamily. These three proteins (human Fas-associated 

death domain, ribosomal S6 and human titin) are interrogated under high-temperature 

conditions to see if their conserved interactions do, in fact, stabilize their Greek-key 

topologies. Higher temperature means more kinetic energy, hence more residue shaking. 

If the conserved interactions do contain some inherent stability over other non-conserved 

native contacts, then that should be apparent from the simulations. Molecular dynamics is 

used to make this determination. The chosen proteins from each superfamily are 

simulated at several different temperatures, the highest being enough to denature them. 
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Table 19. Conserved networks for human Fas-associated death domain (1E3Y)* 

~D 148 161 162 162 
161 177 177 178 

T 99 99 100 101 101 101 102 102 103 103 103 103 104 104 105 105 105 
161 176 145 141 142 145 142 176 141 161 173 176 141 173 141 142 145 

106 107 109 111 111 112 112 113 113 115 115 115 115 115 116 125 145 
141 173 141 141 165 141 144 140 141 144 148 161 164 165 144 147 161 

148 158 158 158 161 162 162 162 163 163 
161 177 178 180 177 177 178 180 177 178 

TN 

* Contacts are indicated between by pairs of vertically-separated sequence numbers. 

99 100 103 105 112 115 
161 145 161 145 144 148 

115 115 
161 165 

116 145 148 158 161 162 
144 161 161 177 177 177 

Table 20. Conserved networks for ribosomal S6 (1RIS) 

"D 4 4 5 5 (3 (5 6 6" 7 7 £5 8 8 9 9 S3 37" 
63 64 62 63 61 62 63 89 61 88 59 60 87 59 86 87 63 

37 37 38 39 39 40 
64 65 64 62 63 62 

T 2 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 
65 64 65 62 63 64 65 62 63 64 65 89 61 62 63 64 65 

6 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 
88 89 60 61 62 63 87 88 89 26 58 59 60 61 62 63 86 

8 8 8 9 9 9 9 9 9 9 9 10 10 10 10 10 10 
87 88 89 58 59 60 61 86 87 88 89 26 58 59 60 61 86 

10 11 11 11 11 12 12 12 25 25 26 26 26 28 28 29 29 
87 58 59 86 87 58 59 86 78 79 63 75 79 75 78 75 78 

29 30 30 30 30 30 31 32 33 33 33 35 35 36 36 36 37 
79 63 65 75 78 79 75 75 75 78 79 65 66 64 65 66 63 

37 37 37 38 38 38 38 38 39 39 39 39 40 40 40 40 41 
64 65 66 62 63 64 65 66 62 63 64 65 61 62 63 64 62 

41 41 42 42 43 43 44 
63 64 61 62 62 63 61 

TN 4 4 6 6 6 7 7 8 8 8 9 10 26 26 29 30 30 
63 65 63 65 88 63 88 26 63 88 88 26 63 75 75 63 65 

30 32 33 35 37 37 40 
75 75 75 65 63 65 63 

* Contacts are indicated between by pairs of vertically-separated sequence numbers. 
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Table 21. Conserved networks for human titin (1TIT)* 
17 
62 

34 
49 

17 
62 

21 
60 

32 
74 

35 
74 

18 
60 

19 
60 

34 
58 

18 
59 

22 
56 

32 
75 

36 
69 

19 
58 

20 
59 

34 
72 

18 
60 

22 
57 

32 
76 

36 
70 

19 
60 

20 
60 

35 
70 

18 
61 

22 
58 

33 
72 

36 
71 

20 
60 

21 
58 

35 
71 

18 
62 

23 
55 

33 
73 

36 
72 

21 
56 

22 
57 

36 
69 

19 
58 

23 
56 

33 
74 

69 
82 

21 
58 

22 
58 

36 
70 

19 
59 

23 
57 

33 
75 

70 
82 

21 
60 

23 
56 

70 
82 

19 
60 

23 
73 

34 
49 

71 
81 

23 
56 

23 
73 

71 
81 

19 
61 

24 
56 

34 
58 

71 
82 

23 
73 

30 
75 

71 
82 

20 
57 

25 
56 

34 
71 

72 
82 

25 
56 

30 
76 

20 
58 

25 
75 

34 
72 

25 
75 

31 
74 

20 
59 

30 
75 

34 
73 

30 
75 

31 
75 

20 
60 

30 
76 

34 
74 

31 
75 

32 
74 

21 
56 

31 
73 

35 
70 

32 
73 

33 
72 

21 
57 

31 
74 

35 
71 

32 
75 

33 
73 

21 
58 

31 
75 

35 
72 

34 
58 

33 
74 

21 
59 

32 
73 

35 
73 

34 
73 

* Contacts are indicated between by pairs of vertically-separated sequence numbers. 

The conserved networks are compared with randomly chosen native contact networks to 

show that inherent stability does exist. 

This work supports a previous study on proteins from these same three 

superfamilies (121). In the previous study, it was revealed how conserved contact 

networks guide the formation of the Greek-Key topology. And a network common to all 

three superfamilies was employed. The current study extends the idea of stability to an 

already folded protein and involves separate networks for each superfamily. The network 

in the previous study was constructed using only one protein from each superfamily. But 

in this study, several proteins from each superfamily are used to determine an individual 

network for each superfamily. 

METHODS 

The molecular dynamics simulations use CHARMM (97-99) on a Dell 1950 

cluster with dual-core 2.99-GHz Intel Xeon processors. Initial coordinates for the all a-

helix death domain (from the two-domain Fas-associated death domain), the a/p-plait 

ribosomal protein and the all |3-sheet immunoglobulin-like domain from titin are obtained 

from PDB structures 1E3Y, IRIS and 1TIT, respectively. Using the CHARMM22 all-

D 

TN 
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atom force field (34-35), each protein is simulated at 7 different temperatures: 300, 350, 

400, 450, 500, 550 and 600 K. The same protocols used for simulating DHFR (see the 

Methods section of Chapter III) are used here, except for a few minor differences, which 

are listed here. Dynamics employs a 0.001-fs timestep. More heating is required during 

the initial 20-ps phase of equilibration in order to reach the final temperature (300, 350, 

400, 450, 500, 550 or 600 K). All simulations extend for 10 nanoseconds of production 

dynamics, using a 1-fs time-step. Coordinates are saved every 100 steps, resulting in 

100,000 frames per trajectory for analysis. 

Determining whether the set of conserved contacts behaves any differently in 

simulation than a set (equal in number) of random native contacts requires a random 

selection protocol. First, the native contacts are numbered from 1 to NT, where NT is the 

total number of native contacts. So if there are NC conserved contacts, then NC unique 

random integers ranging from 1 to NT must be generated. Obtaining a random integer 

from 1 to NT is accomplished as follows: first, a random real number from 0 up to, but 

not including 1, is generated; second, it is multiplied by NT; third, the fraction part is 

removed, and fourth, 1 is added. The generation of the random real number (0<x<l) is 

done with the GNU FORTRAN 90 randomnumberO intrinsic function. The random 

networks for 1E3Y, IRIS and 1TIT are shown in Tables 22,23 and 24, respectively. 
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Table 22. Random contacts of human Fas-associated death domain (1E3Y)* 

~D 116 118 118 129 
125 155 168 140 

T 90 90 91 94 95 96 96 97 98 99 99 100 101 107 111 111 112 
101 142 142 180 158 159 187 177 177 158 173 145 177 172 137 172 126 

112 112 113 113 114 114 114 115 115 116 116 119 119 119 119 119 125 
130 141 126 141 126 169 170 164 170 126 144 147 148 151 152 164 148 

126 129 157 159 159 159 161 163 163 165 
140 139 184 180 181 184 177 174 177 178 

TN 90 96 97 101 101 104 107 111 112 119 121 125 157 159 
101 158 156 149 156 119 177 170 128 148 147 148 184 180 

* Contacts are indicated between by pairs of vertically-separated sequence numbers. 

Table 23. Random contacts of ribosomal S6 (1RIS)* 

D 2 3 4 6 6 9 9 9 10 10 11 12 14 27 30 31 32 

92 94 93 61 75 58 84 86 19 23 85 46 84 63 40 75 75 

33 34 37 37 49 75 

73 68 63 65 87 90 

T 1 1 2 2 3 3 3 4 4 4 4 4 4 5 5 5 6 
36 68 67 68 36 91 96 64 67 68 69 90 92 63 94 96 26 

6 6 6 6 6 7 7 7 7 8 8 8 8 8 8 9 9 
61 72 76 89 91 43 61 63 89 58 59 61 84 85 89 46 52 

9 9 9 9 10 10 11 11 11 12 12 12 13 13 14 14 18 
85 86 88 89 23 86 58 84 86 55 56 84 45 57 59 85 84 

19 19 19 21 22 22 22 23 25 25 26 27 27 28 29 30 30 
42 59 61 82 63 82 83 42 79 82 75 37 40 78 79 40 63 

30 30 30 32 32 33 33 33 34 34 34 35 36 37 38 38 39 
64 65 78 75 78 68 75 77 66 67 71 67 67 65 63 65 63 

39 40 40 40 41 43 43 45 46 47 47 47 48 48 49 53 53 
65 61 62 63 61 59 63 59 59 56 60 87 57 59 60 83 86 

59 60 65 75 77 78 80 
86 87 90 88 88 88 89 

TN 2 4 4 4 5 5 6 9 10 11 12 14 29 31 35 36 36 
65 64 67 91 63 92 79 89 82 83 45 85 67 75 71 65 68 

38 39 41 42 47 60 80 
66 64 61 61 56 87 90 

* Contacts are indicated between by pairs of vertically-separated sequence numbers. 
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Table 24. Random contacts of human titin (1TIT)* 

2 
28 

32 
73 

1 
77 

12 
83 

23 
55 

37 
71 

3 
25 

3 
24 

34 
51 

2 
26 

12 
87 

23 
80 

37 
72 

3 
78 

3 
78 

36 
70 

2 
27 

13 
61 

24 
54 

46 
60 

5 
24 

3 
79 

37 
68 

2 
28 

13 
63 

27 
53 

47 
58 

6 
25 

5 
26 

67 
86 

2 
78 

13 
87 

29 
52 

48 
61 

7 
24 

8 
22 

68 
84 

3 
24 

13 
88 

29 
54 

50 
59 

14 
63 

8 
23 

69 
82 

4 
25 

14 
88 

30 
54 

65 
86 

19 
60 

13 
84 

69 
83 

4 
78 

15 
64 

31 
56 

69 
85 

21 
34 

14 
63 

69 
85 

6 
24 

16 
61 

31 
73 

70 
83 

21 
58 

15 
86 

72 
82 

7 
24 

16 
63 

32 
51 

72 
81 

21 
84 

17 
63 

8 
34 

17 
60 

34 
49 

24 
54 

19 
60 

8 
73 

17 
61 

34 
74 

35 
70 

19 
84 

8 
81 

17 
62 

36 
60 

36 
68 

22 
56 

9 
82 

18 
62 

36 
66 

36 
72 

25 
55 

10 
82 

20 
58 

36 
68 

64 
86 

25 
73 

11 
83 

22 
58 

36 
72 

65 
88 

32 
51 

11 
85 

23 
54 

36 
84 

70 
82 

* Contacts are indicated between by pairs of vertically-separated sequence numbers. 

RESULTS AND DISCUSSION 

The protein conformational stability during simulation was assessed by 

calculating the backbone RMSD versus native structure time series (Figure 40) for all 

seven simulations on each of the three proteins. A general trend common to all three 

proteins is that the RMSD increases with temperature. Increasing the temperature means 

increasing the kinetic energy and hence, the protein fluctuations. Comparing the three 

proteins shows that the thermophile ribosomal S6 stays closest to its native conformation. 

It maintains flat RMSDs of about 3 A or less for temperatures 300-550 K (Figure 40B). 

At 550 K, the RMSD strays up to around 5 A during the second quarter of the 10-ns 

simulation and then comes back down to about 3 A. At 600 K, the thermophile unfolds; 

its RMSD steadily rises to more than 20 A. Figure 4IB shows evenly spaced snapshots of 

this unfolding. The Greek-Key topology is held until about 7 ns into the simulation. The 

death domain protein stays relatively close to its native structure (< 5 A) for temperatures 

up to 450 K (Figure 40A). The 500 K simulation remains stable (with an RMSD ~5 A for 

the first 4 ns), then jumps to around 10 A and slowly increases after that. Figure 41A 

shows snapshots of the 500 K 
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Figure 40. Greek-Key proteins backbone RMSD vs. time. Shown are 1E3Y (A), IRIS (B) 
and 1TIT (C). Plots combine data from all high-temperature simulations: 300, 350, 400, 
450, 500, 550 and 600. Filled circles on the y-axis indicate the RMSD of the minimized-
average simulation structure. 

simulation. Although much secondary structure is held for the duration, inspection 

reveals that the native Greek-Key topology is lost after 5 ns. Not surprisingly, the 550 

and 600 K simulations end up even further from the native structure (Figure 40A). Titin 

shows an RMSD trend similar to that of the death domain. From 300 to 400 K, it stays 

within 3 A of the native structure at 450 K within 8 A, but like the death domain ends up 

unfolding at 500 K, as indicated by its mid-simulation jump in RMSD to -15 A (Figure 
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40C). At 550K, titin gradually strays up to 20 A away from its native structure. And at 

600 K, it quickly increases to an RMSD -15 A, and after that it increases far above 20 A. 

Figure 41C shows titin's gradual unfolding at 500K. These results reveal that the three 

Figure 41. Protein snapshots after each nanosecond during unfolding simulations. Shown 
are 1E3Y at 500K (A), IRIS at 600K (B) and 1TIT at 500K (C). Simulation structures are 
superimposed onto the respective native structures. 
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proteins vary in their ability to remain in a folded state as temperature increases. And as 

expected, the thermophile has a greater ability than the other two. 

The minimized-average structures are calculated along the entire 10 ns for all 

simulation trajectories remaining within 10 A RMSD of the native structures and used in 

subsequent contact analyses. This corresponds to 300-450K for both the death domain 

and titin, and 300-550K for ribosomal S6. RMSDs going higher than 10 A indicate an 

unfolding gradient occurring, so finding those average (or minimized-average) structures 

makes little sense. Backbone RMSDs of the minimized-average simulation structures 

relative to the native structures are reported in Figure 40 by solid circles on the y-axis. 

These values are all lower than 5 A (except for the 450 K minimized-average structure of 

titin, which has a 6.095 A RMSD), which indicates similarity to the native backbone 

conformations. Figure 42 shows these structures superimposed onto their respective 

native structures. Death domain and titin (Figures 42A and 42C, respectively) both show 

their 450 K structure (yellow) a little shifted from the other lower temperature structures 

and native state. Likewise, the 550 K structure (red) of ribosomal S6 (Figure 42B) 

displays a couple of loop regions that do not overlap well with the other lower 

temperature structures. In the other high temperature simulations with RMSDs > 10 A, 

the proteins do not fluctuate about an average structure, but unfold in many (if not all) 

sections, hence it is not meaningful to present them as minimized-average structures. 

Figure 42. Superimposed minimized-average simulation structures. Shown are 1E3Y (A), 
IRIS (B) and 1TIT (C). Simulation structures are superimposed onto the native structure. 
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Contact Analysis 

The three conserved contact networks (Direct - TN, Toggling - T and Toggling 

without acidic/basic residues - TN) determined in the first part of this study are assessed 

to see if they behave differently (under simulation) than randomly selected contact 

networks. For each protein, the three networks contain different numbers of contacts, so 

three sets of random contact networks are chosen for each of the three proteins, or nine 

random sets in all. The conserved networks for 1E3Y, IRIS and 1TIT are shown in 

Tables 19-21, and the random networks are shown in Tables 22-24. Three tests are 

performed to demonstrate that the conserved networks do, in fact, behave differently than 

randomly chosen networks. The same random contact networks were used for all three 

tests. The first checks the average contact distances in each of the minimized average 

simulation structures to see if it changes with temperature. A steeper increase in the 

random contact distances will indicate that they fall apart easier, and hence play a lesser 

role in protein stability than the conserved contacts do. The second test compares the 

average simulation root-mean-square fluctuations (RMSF) of the contact distances. 

Larger fluctuations in the random contact distances indicate less inherent stability within 

those contacts and more of a tendency to break apart than the conserved contacts. The 

third test examines a high-temperature unfolding simulation in each protein. The number 

of conserved contacts kept is compared with the number of random contacts kept as the 

protein unfolds. Here, smaller numbers of random contacts maintained indicate that, 

during unfolding, the random contacts break before the conserved contacts do. 

In the first test, the conserved contact distances are calculated for a minimized-

average structure and then averaged. This calculation is repeated for each minimized-

average structure and for the random contacts. Figure 43 displays these averages as 

distance vs. temperature graphs. To determine the rate of increase of the contact distance 

average with temperature, linear least squares regression lines are fitted to the data. 

Clearly the slopes of the conserved lines (solid) are less than those of the random lines 

(dashed). To quantify this comparison, we define the network score to be the slope of the 

random regression line divided by the slope of the conserved regression line. Network 

scores greater than 1 indicate an inherent stability of the conserved network. The 

regression line slopes and network scores are shown in Table 25. As indicated by all the 
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Figure 43. Average contact distance vs. temperature (random). Graphs show average 
conserved/random contact distances in the simulation minimized-average structures and 
their associated linear least-squares-fitted trendlines. Plots show 1E3Y (A), IRIS (B) and 
ITiT (C) and include the data from each algorithm used to determine the conserved 
network: Direct, Toggling and Toggling without acidic/basic residues. Conserved 
contact data are plotted as solid lines and random contact data as dashed lines. 

Table 25. Regression line slopes and network scores (random) 

Direct Toggle Toggle no RDEK 
PDB 
1E3Y 
1RIS 
1TIT 

Cons. 
0.0018 
0.0003 
0.0046 

Rand. 
0.0070 
0.0045 
0.0104 

|R/CP 
3.8 

14.6 
2.3 

Cons. Rand. 
0.0016 0.0117 
0.0006 0.0029 
0.0027 0.0071 

|R/C| 
7.4 
4.8 
2.6 

Cons. Rand. 
0.0038 0.0192 
0.0007 0.0050 
0.0043 0.0152 

|R/C| 
5.1 
6.9 
3.5 

Network score = Random/Conserved 
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network scores being greater than 1, the conserved networks in each protein break later 

than other contacts as the temperature is increased. In other words, on average, the 

contacts within the conserved networks are more robust, and can withstand more thermal 

shaking than other native contacts. So they contribute a larger portion of the stabilizing 

energy that holds the protein together. Without them, the contact distances, on average, 

will increase and cause the protein to fall apart. 

Comparing the conserved networks with sets of random contacts has two 

problems. First, different random network selections would, of course, yield different 

network scores, perhaps even resulting in scores less than 1. Repeating our procedures 

several times and averaging the network scores from each trial would overcome this 

obstacle. However, it is better to compare the conserved networks with the entire set of 

native contacts. The latter method was employed. The average distance of all native 

contacts was calculated for each minimized-average structure. Figure 44 and Table 26 

provide these results. In all cases, the network scores are above 1, which shows that the 

conserved contacts are held together more tightly than randomly chosen contacts. 

The second problem is that the random contact distances in the native structures 

of the three proteins, are, on average, already greater then the conserved contact 

distances. Figure 43 shows the difference clearly for the 300-K minimized-average 

structures, which are similar enough to the native structures. The random network 

average distances (hollow spheres) are greater than the conserved network average 

distances (solid spheres). However, the random native contacts were chosen using the 

same criteria used to identify the conserved native contacts (i.e. the two residues of the 

contact are sequentially separated by at least 9 other residues and the contact is less than 

7 A long for the death domain and ribosomal S6 and 6 A long for titin). So, a question is 

raised of whether the conserved contacts behave differently only because of their shorter 

contact distances. The experiments were repeated using a different set of random 

contacts, having contact distances less than or equal to the greatest distance in the entire 

conserved networks. This process may create three different cutoff distances for each 

protein, since each of the three conserved networks may have a different greatest 

conserved contact distance. The results obtained from these parallel studies are shown in 

Figures 45 and 46 with corresponding Tables 27 and 28 (below). In 



122 

A R "I Direct 
m Toggle 

6 
CD 

u 
c 4 

b 2 

1. Zt „ 1 - - - - • • Toggle (no RDEK) 
Native 

-i r-

300 350 400 450 500 550 600 
Temperature (K) 

B 8 

O 

6 

-*~ 
C 4 Ip-̂  ••••••' ' - f f — : • ^ p -

— 
b 2 H « r-

300 350 400 450 500 550 600 
Temperature (K) 

C 8 

300 350 400 450 500 550 600 
Temperature (K) 

Figure 44. Average contact distance vs. temperature (native). Graphs show average 
contact distances in the simulation minimized-average structures and their associated 
linear least-squares-fitted trendlines. Plots show 1E3Y (A), IRIS (B) and 1TIT (C) and 
include the data from each algorithm used to determine the conserved network: Direct, 
Toggling and Toggling without acidic/basic residues. Conserved contact data are plotted 
as solid lines and native contact data as dashed lines. 

Table 26. Regression line slopes and network scores (native) 

Direct Toggle Toggle no RDEK 
PDB 
1E3Y 
1RIS 
1TIT 

Native 
0.0053 
0.0030 
0.0113 

Cons. 
0.0018 
0.0003 
0.0046 

|N/C|* 
2.9 
9.8 
2.5 

Cons. 
0.0016 
0.0006 
0.0027 

|N/C| 
3.3 
5.0 
4.1 

Cons. 
0.0038 
0.0007 
0.0043 

|N/C| 
1.4 
4.2 
2.6 

Network score = Native/Conserved 
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Figure 45. Average contact distance vs. temperature (lower-distance random). Graphs 
show average conserved/random contact distances in the simulation minimized-average 
structures and their associated linear least-squares-fitted trendlines. Plots show 1E3Y (A), 
IRIS (B) and 1TIT (C) and include the data from each algorithm used to determine the 
conserved network: Direct, Toggling and Toggling without acidic/basic residues. 
Conserved contact data are plotted as solid lines and random contact data as dashed lines. 

Table 27. Regression line slopes and network scores (lower-distance random) 

PDB Direct Toggle Toggle no RDEK 
Cons. Rand. |R/C|* Cons. Rand. |R/C| Cons. Rand. |R/C| 

1E3Y 
1RIS 
HIT 

0.0018 
0.0003 
0.0046 

0.0064 
0.0027 
0.0088 

3.5 
8.7 
1.9 

0.0016 0.0066 
0.0006 0.0037 
0.0027 0.0101 

4.2 
6.1 
3.7 

0.0038 0.0155 
0.0007 0.0038 
0.0043 0.0083 

4.1 
5.3 
1.9 

* Network score = Random/Conserved 
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Figure 46. Average contact distance vs. temperature (lower-distance native). Graphs 
show average conserved/native contact distances in the simulation minimized-average 
structures and their associated linear least-squares-fitted trendlines. Plots show 1E3Y (A), 
IRIS (B) and 1TIT (C) and include the data from each algorithm used to determine the 
conserved network: Direct, Toggling and Toggling without acidic/basic residues. 
Conserved contact data are plotted as solid lines and native contact data as dashed lines. 

Table 28. Regression line slopes and network scores (lower-distance native) 

PDB Direct Toggle Toggle no RDEK 

1E3Y 
1RIS 
1TIT 

Cons. Native 
0.0018 0.0045 
0.0003 0.0028 
0.0046 0.0108 

|N/C|* 
2.5 
9.0 
2.4 

Cons. Native 
0.0016 0.0051 
0.0006 0.0029 
0.0027 0.0110 

|N/C| 
3.3 
4.8 
4.0 

Cons. Native 
0.0038 0.0051 
0.0007 0.0027 
0.0043 0.0107 

|N/C| 
1.3 
3.7 
2.5 

Network score = Native/Conserved 
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all cases, the network scores are above 1. These results confirm that the inherent stability 

of the conserved contacts over other contacts is not due to their shorter contact distances. 

The results from the second test of the contact distance RMSF averages versus 

temperature graphs are given in Figure 47. The graphs are scaled so that only the data 

from simulations whose RMSD is less than or equal to 10 A (300-450 K for death 

domain and titin, and 300-550 K for ribosomal S6) are shown. Beyond that, the proteins 

unfold and distance fluctuations are meaningless. Clearly, in all cases, the fluctuations of 

the distances of the random contacts (dashed lines) are greater than those of the 

conserved contacts (solid lines). The difference between random and conserved contact 

distance fluctuations is magnified at higher simulation temperatures. IRIS shows this 

clearly; at 300 K, it is difficult to tell the difference between the plotted points, but at 550 

K, the points are clearly separated. As before, the conserved networks' RMSF averages 

were compared with those of the entire native contacts (Figure 48), those of the lower 

distance set of random contacts (Figure 49) and those of the lower distance set of native 

contacts (Figure 50). Again, in all cases, the results remain unchanged. Results from the 

second test confirm that for folded Greek-Key proteins, conserved contacts do not 

fluctuate in distance as much as other contacts do. However, if conserved interactions do 

maintain and stabilize the native topology, then they are expected to be more rigid than 

other interactions. 

The third test, perhaps, most clearly shows the difference between the conserved 

contacts and the random contacts. Here, the fraction of conserved contacts remaining is 

compared with the fraction of random contacts remaining as the protein gradually 

unfolds. At each frame in the simulation trajectory, the conserved interactions are 

assessed to determine how many still satisfy the criteria of being a contact. The fraction 

of contacts remaining is then the number still in contact divided by the original number of 

conserved contacts. Contacts are lost as the protein unfolds. So the fraction of native 

contacts remaining should decrease with simulation time. The same calculations are done 

on the set of random contacts, which requires an unfolding or partial unfolding simulation 

for each protein. As seen in the RMSD graphs (Figure 40), ribosomal S6 only unfolds 

partially at 600 K simulation so this is the only trajectory that can be used. Death domain 

and titin both unfold at 500, 550 and 600 K. The 500 K simulations are chosen for both 



126 

2 1 

1 i 
ffl-

«=---.:§::: :~~™»»—-gf 

Direct 
» Toggle 
• Toggle (no RDEK) 

.&: 

300 

3 H 

1 i 

350 

#-- gp. 

400 450 500 

Temperature (K) 

550 600 

300 

300 

350 

350 

400 450 

Temperature (K) 
500 550 600 

400 500 550 600 450 
Temperature (K) 

Figure 47. Average contact distance RMSF vs. temperature (random). Plots show 1E3Y 
(A), IRIS (B) and 1TIT (C) and include the data from each algorithm used to determine 
the conserved network: Direct, Toggling and Toggling without acidic/basic residues. 
Conserved contact data are plotted as solid lines and random contact data as dashed lines. 
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Figure 48. Average contact distance RMSF vs. temperature (native). Plots show 1E3Y 
(A), IRIS (B) and 1TIT (C) and include the data from each algorithm used to determine 
the conserved network: Direct, Toggling and Toggling without acidic/basic residues. 
Conserved contact data are plotted as solid lines and native contact data as dashed lines. 
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Figure 49. Average contact distance RMSF vs. temperature (lower-distance random). 
Plots show 1E3Y (A), IRIS (B) and 1TIT (C) and include the data from each algorithm 
used to determine the conserved network: Direct, Toggling and Toggling without 
acidic/basic residues. Conserved contact data are plotted as solid lines and random 
contact data as dashed lines. 
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Figure 50. Average contact distance RMSF vs. temperature (lower-distance native). Plots 
show 1E3Y (A), IRIS (B) and HIT (C) and include the data from each algorithm used to 
determine the conserved network: Direct, Toggling and Toggling without acidk^asic 
residues. Conserved contact data are plotted as solid lines and native contact data as 
dashed lines. 
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both proteins since, in them, the unfolding process is more gradual. The results are shown 

in Figure 51. Complete breakage of the tertiary structure is seen when the fraction 

decreases closed to 0 or drops to about 0.2. This occurs at ~3 ns for death domain, ~7 ns 

for ribosomal S6 and ~7 ns for titin. Clearly, in each protein, the conserved networks 

(solid lines) retain more contacts longer than the random networks (dashed lines) do. 

Interestingly, but perhaps not surprisingly, the thermophile ribosomal S6 maintains most 

conserved contacts for ~7 ns at 600 K, while titin only maintains them for ~7 ns and 

death domain for ~3 ns, both at the lower temperature of 500 K. Yet again, additional 

calculations comparing the fractions of conserved contacts remaining with both the 

fraction of native contacts, the fraction of lower-distance random contacts and the 

fraction of lower-distance native contacts are performed. Graphs of these results are 

shown in Figures 52, 53 and 54, respectively. Again, in all cases, the results are the same, 

as was observed for the completely random contact set. These results show that as Greek-

Key proteins unfold, conserved contacts break later than other contacts do suggesting that 

when a Greek-Key protein folds, conserved contacts are the first to form. 

The three tests showed that all three conserved networks (D, T and TN) exhibited 

more stabilizing effects on Greek-Key topology than random contacts do suggesting that 

any of these three algorithms would have sufficed in producing a conserved interaction 

network. In fact, the collected data make no clear distinction on which algorithm serves 

as the best for all three proteins. However, when considering only ribosomal S6, the 

Direct method appears the best. From Table 25, the slope of the average contact distance 

in the first test is less for the D network contacts (0.0003) than for the network contacts 

(0.0006 and 0.0007 for T and TN, respectively). The second test also shows that the 

contact distances in the D network, on average, fluctuate less than those in the T or TN 

networks. In the third test, more of the D network contacts are held for longer as the 

protein unfolds than contacts from the other two networks are. Thus, the Direct network 

is the best choice for ribosomal S6. It is not as clear in the other two proteins. The slopes 

in the first test indicate that the T network is the best for titin (Table 25), but there is no 

clear distinction in the contact distance fluctuations (Figure 47) or the fraction of contacts 

remaining (Figure 51). The first test slopes put the D and T networks about equal for 

death domain, but there is no distinction in the second and third tests. 
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Figure 51. Fraction of contacts remaining vs. time (random). Plots show 1E3Y (A), IRIS 
(B) and 1TIT (C) and include the data from each algorithm used to determine the 
conserved network: Direct, Toggling and Toggling without acidic/basic residues. 
Conserved contact data are plotted as solid lines and random contact data as dashed lines. 
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Figure 52. Fraction of contacts remaining vs. time (native). Plots show 1E3Y (A), IRIS 
(B) and 1TIT (C) and include the data from each algorithm used to determine the 
conserved network: Direct, Toggling and Toggling without acidic/basic residues. 
Conserved contact data are plotted as solid lines and native contact data as dashed lines. 
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Figure 53. Fraction of contacts remaining vs. time (lower-distance random). Plots show 
1E3Y (A), IRIS (B) and 1TIT (C) and include the data from each algorithm used to 
determine the conserved network: Direct, Toggling and Toggling without acidicftasic 
residues. Conserved contact data are plotted as solid lines and random contact data as 
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Figure 54. Fraction of contacts remaining vs. time (lower-distance native). Plots show 
1E3Y (A), IRIS (B) and 1TIT (C) and include the data from each algorithm used to 
determine the conserved network: Direct, Toggling and Toggling without acidic/basic 
residues. Conserved contact data are plotted as solid lines and native contact data as 
dashed lines. 
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CONCLUSIONS 

The three Greek-Key proteins, (human Fas-associated death domain, ribosomal 

S6 and human titin) were subjected to high temperature simulations for the purposes of 

examining the conserved long-range residue interaction networks found among their 

respective protein superfamilies. Under folded conditions, the conserved contacts were 

found to be more resistant to breaking and were less prone to fluctuating in length than 

other random native contacts. During unfolding simulations, the conserved contacts were 

the last ones to break before the protein unfolded. These effects were subjected to much 

scrutiny to make sure they were not just a random occurrence. Thus, the conserved 

networks were found to be a major stabilizing force that prevents the Greek-Key 

topology from changing. The trends remained the same for all three conserved networks 

(Direct, Toggling and Toggling with no acidic/basic residues). 

The analysis in the Results and Discussion section of this chapter raises the 

question of what the nature of the conserved and random contact networks is. The 

conserved contacts exhibit different behavior than the random contacts. But what is the 

definition of a contact? And are the conserved contacts similar, in nature, to the random 

contacts? Both sets of contacts are chosen from among the set of all native contacts. So 

the only defining difference between the two is that the conserved contacts of a particular 

protein are found among all of the other proteins in the entire superfamily. In other 

words, the conserved contacts are hereditary and the random contacts are not. Therefore 

the question of whether or not the conserved contacts are of the same type as the random 

contacts are depends on whether (or not) all native contacts are of the same type. 

The Methods section of this chapter describes the algorithm used to define a 

native contact. It states that two residues form a direct contact if, first, they are separated 

by 9 or more other residues and, second, the distance between any heavy atom from one 

residue and any heavy atom from the other residue is lower than a certain cutoff distance. 

Toggling the residue position to account for secondary structure increases the number of 

contacts, but the general idea remains the same. This algorithm acknowledges a large 

variation in the types of residue-residue contacts that make up the set of native contacts. 

For instance, a certain native contact may only have one heavy atom-heavy atom 

interaction below the cutoff while another native contact may have 20 interactions. But 
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they both satisfy the requirements of being a native contact. Another source of variation 

is the absence of the chemical properties of the native contacts. Some contacts may result 

from polar interactions, others from nonpolar van der Waals type forces, and still others 

from water-mediated hydrogen bonding. But, again, each type satisfies the requirements 

of being a native contact. 

So, in theory, the conserved contacts could be of a much different nature than the 

random contacts. This would only happen if the algorithm that is used to classify a native 

contact as conserved also places weight upon one type of contact over another. In other 

words, do the conserved contacts have proportionately more hydrogen-bonding contacts 

than its superset native contacts do? It is, of course, possible for such differences in the 

chemical type to occur. And given enough time, a more stringent protocol for generating 

the sets of conserved and random could be developed. But it is of the opinion of the 

author and of the principal investigator that such a line of questioning leads to an 

unnecessary complication of protocol, at least at this stage. Both the conserved network 

generation and the native contact definition algorithms are kept simple. 

The next step in this research is to test whether these conserved networks guide 

the formation of the Greek-Key topology as proteins fold. Progress in this area has 

already been made. Greene has conducted preliminary folding simulations (unpublished 

data) using conventional simulated-annealing structure-determination protocols with the 

Crystallography & NMR System software package (125). Normally, these programs fold 

a structure using an entire set native contact distances as restraints. However, correct 

Greek-Key topologies are being generated when using only conserved contact distances 

as restraints. These preliminary results should be checked with other software packages 

(e.g. CHARMM). 

Also, work is underway on finding the common interaction network among the 

three superfamilies studied here (i.e. the all a-helix death domains, the a/(3-plaits and the 

all p-sheet immunoglobulins). The differences in tertiary structure among these 

superfamilies make aligning the proteins very difficult. With the structures aligned, 

Monte Carlo methods are being used to find the common conserved contacts. 
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CHAPTER V 

SUMMARY 

The molecular dynamics simulations conducted in this dissertation sheds light on 

how DHFR M20 loop conformational changes and Greek-Key protein foldings occur. 

The absence of time-resolved X-ray structures for these processes required the simulation 

accuracy to be rigorously tested via other indirect comparisons to experimental data (e.g. 

by measuring the backbone RMSD relative to the native structure to make sure the 

simulated structure maintains a native-like shape). The conformational changes and 

foldings were both characterized by the stabilizing properties that prevented them from 

occurring. In the DHFR simulations, the stabilizing hydrogen bonds between the M20 

loop and other nearby loops kept the M20 loop from changing its conformation. Their 

loss resulted in corresponding shifts within the M20 loop. In the Greek-Key protein 

simulations, conserved contacts were found to be more important than other native 

contacts in maintaining the overall native-like topology. Loss of these contacts resulted in 

the protein unfolding. These two cases demonstrate the symbiotic relationship of change 

and stability. 

As discussed in Chapter I, direct observation of phenomena is invaluable in 

gaining a good understanding of it. Correct understanding leads to the construction of 

accurate models. But also the process of producing accurate models leads to better 

understanding. This dissertation work required the production of accurate models of 

protein motion. Once used, these models generated very detailed descriptions where the 

positions of all atoms were solved with angstrom-level precision at different points, and 

on a picosecond-level timescale. That level detail and finely-spaced timescale allowed the 

protein to be 'observed' moving in real time. The generated simulation trajectories 

allowed the dissertation hypotheses to be attacked in a brute-force manner. In other 

words, the simulations generated enough (actually, much more than enough) information 

to answer the questions posed in the Introduction sections of Chapters III and IV, the only 

problem was how to go about retrieving that information. 

The DHFR project required knowledge of the motion of the M20 loop residues, 

and the simulation trajectories provided the motion of every atom. Given that 
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information, the M20 loop conformation was able to be characterized by several different 

methods: visual renderings, backbone RMSDs, M20 loop N-terminus and C-terminus 

backbone RMSDs, hydrogen-bond distances, alpha-carbon RMSFs, residue centroid 

difference distance matrices and free energy analyses. The list far from exhausts all 

possible analyses; nevertheless it does allow a thorough description of the M20 loop 

behavior in the different complexes. 

The Greek-Key project required knowledge of the overall backbone topology and 

many inter-residue distances as a function of temperature; again the simulation 

trajectories provided more than enough information. Visual renderings and backbone 

RMSDs helped identify which proteins remained folded in their native-like topology. 

Various structures along the trajectories and calculated minimized-average structures 

were analyzed by intensive contact analyses methods. Most of the analyses involved 

using knowledge of the atomic positions to calculate the contact distances in the random 

and conserved interaction lists. These calculations were taken a step further to yield the 

average conserved contact distance and the average random contact distance - that is 

only two values were retrieved using knowledge of all atomic positions. But the brute 

force method worked. Again, there were many other methods that could have showed 

that the conserved contacts behaved differently than the random contacts do. One method 

that was performed, but not described in this dissertation, was the use of calculated 

residue-residue correlation matrices to show that conserved contacts move in correlation 

more than random contacts do. 

The idea is that these models provided a complete enough picture of the proteins' 

behavior, and therefore understanding the models allowed the proteins to be understood. 

The hypotheses of this dissertation were examined to a satisfactory level, as discussed in 

the Conclusion sections of chapters III and IV. But many aspects of protein motion are 

still not well understood, and no models will ever be completely accurate. However, the 

simulations described in this dissertation did allow direct observation of the modeled 

phenomena, with mechanistic detail unlike any known laboratory experiment today. The 

future development of new simulation tools will result in further and better understanding 

of these phenomena. Because theoretical models are never proven, only disproven, a 

perfect understanding of the phenomena they describe will always remain elusive. 
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