
Old Dominion University
ODU Digital Commons
Engineering Management & Systems Engineering
Projects for D. Eng. Degree Engineering Management & Systems Engineering

Spring 2015

A Common Knowledge Engineering Framework
for Data Assimilation, Correlation, and
Extrapolation (DACE)
Edward P. Weaver
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/emse_deng_projects

Part of the Computer Engineering Commons, and the Systems Engineering Commons

This Doctoral Project is brought to you for free and open access by the Engineering Management & Systems Engineering at ODU Digital Commons. It
has been accepted for inclusion in Engineering Management & Systems Engineering Projects for D. Eng. Degree by an authorized administrator of
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

Recommended Citation
Weaver, Edward P.. "A Common Knowledge Engineering Framework for Data Assimilation, Correlation, and Extrapolation (DACE)"
(2015). Doctor of Engineering (D Eng), doctoral_project, Engineering Management, Old Dominion University, DOI: 10.25777/
a827-jt92
https://digitalcommons.odu.edu/emse_deng_projects/5

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Femse_deng_projects%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_deng_projects?utm_source=digitalcommons.odu.edu%2Femse_deng_projects%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_deng_projects?utm_source=digitalcommons.odu.edu%2Femse_deng_projects%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse?utm_source=digitalcommons.odu.edu%2Femse_deng_projects%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_deng_projects?utm_source=digitalcommons.odu.edu%2Femse_deng_projects%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.odu.edu%2Femse_deng_projects%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.odu.edu%2Femse_deng_projects%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_deng_projects/5?utm_source=digitalcommons.odu.edu%2Femse_deng_projects%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A COMMON KNOWLEDGE ENGINEERING FRAMEWORK FOR DATA

ASSIMILATION, CORRELATION, AND EXTRAPOLATION (DACE)

Edward P. W eaver
B.S. May 2001, Old Dominion University

M.S. May 2007, George W ashington University

A Doctoral Project Submitted to the Faculty of
Old Dominion University in Partial Fulfillment o f the

Requirements for the Degree of

ENGINEERING M ANAGEMENT AND SYSTEMS ENGINEERING

by

DOCTOR OF ENGINEERING

OLD DOMINION UNIVERSITY
May 2015

Adrian Gheorghe (Director)

Charlie Daniels (Member)

R oderlc^B am es (Member)

ABSTRACT

A COMMON KNOW LEDGE ENGINEERING FRAMEW ORK FOR DATA
ASSIMILATION, CORRELATION, AND EXTRAPOLATION (DACE)

Edward P. W eaver
Old Dominion University, 2015
Director: Dr. Adrian Gheorghe

The Common Knowledge Engineering Framework for Data Assimilation,

Correlation, and Extrapolation (DACE) project is focused on providing a software centric

general framework for advanced processing and analysis o f data. This translates to

researchers, scientists, engineers, and system architects not having to program a new

application but rather to define the system configuration, process, and processing that is

needed to perform a specific functionality. This makes the limitation of the application

the end users ability to fully define the functional requirements and setup the framework

accordingly.

This doctoral project will provide the details to the system definition, standards,

metrics, schedule, and evaluation that were utilized in the performance o f this project.

The project’s framework allows multiple analysis methods to be utilized either

individually or concurrently depending on the end user’s configuration. The architecture

will not provide limitations on what can be done. It will allow the end user to configure

and define the analysis method to use.

I would like to dedicate this Doctoral Project to Meghan, Shane, Sarah and everyone that
helped me on this endeavor. W ithout their understanding, support, and encouragement,
this journey would not have been possible.

V

A C K N O W LED G M EN TS

I would like to express my appreciation to my advisor, Dr. Adrian Gheorghe, for

his support, guidance, and encouragement. His dedication and passion in the

advancement in this topic’s development have been an inspiration to me.

I would also like to thank my committee members, Dr. Charlie Daniels, Dr. Holly

Handley, and Dr. Roderick Barnes, for their insights, suggestions, and comments to

improve the quality of this project.

NOMENCLATURE

AD O ActiveX Data Objects

ASP Active Server Pages

A tem Arctic Tern

CLR Common Language Runtime

COTS Commercial Off-The-Shelf

CRC Cyclic Redundancy Check

CPU Central Processing Unit

D Difficulty

DACE Data Assimilation, Correlation, and Extrapolation

D CU DACE Configuration Utility

DLL Dynamically Linked Library

Dman Data M anager

DOD Department o f Defense

DSDM Dynamic Systems Development Index

DSM DACE System Manager

DSQI Dynamic Structure Quality Index

E Effort

ECM A European Computer Manufacturers Association

exe Executable

FTP File Transfer Protocol

GOTS Government Off-The-Shelf

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IP Internal Protocol

IRAD Internal Research and Development

LAN Local Area Network

LISI Levels of Information Systems Interoperability

ms Milliseconds

n Program Vocabulary

N Program Length

«/ Number o f distinct operators

Ni Total number of operators

«2 Number o f distinct operands

N 2 Total number of operands

NIPRNet Nonsecure Internet Protocol Router Network

NRE Non-Recurring Engineering

PEMs Process Entity Modules

Pman Presentation Manager

P&A Procedure & Analyses

R&D Research & Development

RTSP Real Time Streaming Protocol

SIPRNet Secret Internet Protocol Router Network

s Seconds

SM E Subject Matter Expert

T Time in Seconds

viii

TCP Transmission Control Protocol

UDP User Datagram Protocol

V Volume

VB Visual Basic

WCF Windows Communication Foundation

ix

TABLE OF CONTENTS
Page

LIST OF TA BLES... x

LIST OF FIG U R ES..xi

1. IN TRO DU CTION ... 1
1.1 Project Problem D escription.. 2
1.2 Overview... 3

2. DACE DESIGN D E T A ILS...12
2.1 Overview o f Technical D eta ils .. 12
2.2 Twelve Variable E lem ents.. 14
2.3 Three-Tier A rchitecture...19
2.4 T echnology.. 41
2.5 Infrastructure Relationship M atrix..42

3. SCOPE OF PR O JEC T..49
3.1 C apabilities.. 54
3.2 Development M ethodology... 55
3.3 M etrics .. 56
3.4 Schedule.. 57

4. EXPERIM ENTAL EV ALUATION... 67
4.1 Im plem entation... 68
4.2 Experimental Evaluation... 73

5. CONCLUSIONS.. 83
5.1 Conclusions.. 83
5.2 Future D irection.. 86
5.3 Lessons Learned.. 88

R EFER EN C ES...90

A PPEN D ICES.. 91
APPENDIX A: DACE REQUIREMENTS TRACEABILITY M A T R IX 91
APPENDIX B: DACE INFRASTRUCTURE RELATIONSHIP M A T R IX92
APPENDIX C: DCU CONFIGURATION PA R AM ETERS... 93
APPENDIX D: DACE ALIGNM ENT W ITH LEVELS OF INFORMATION
SYSTEMS INTEROPERABILITY (L IS I)...96

VITA 106

LIST OF TABLES

Table Page

1. Access Control L eve ls ..30

2. DACE Module Implementation... 51

3. Development Level of E ffort.. 53

4. DACE Development Level of E ffo rt.. 60

5. DCU Development E ffort..64

6. DACE Configuration Requirem ents... 69

7. Test Scenario Technology M ap ... 70

8. Test Scenario Variable Elements O ptions... 71

9. Applications running during test.. 71

10. Test Design Implementation Characteristics.. 73

11. Test Scenario Level of Effort..74

12. DACE Phase I Design Structure Quality Index... 75

13. System Implementation Characteristics... 78

14. R&D Project Effort D a ta ...80

15. R&D Project Implementation Comparison..81

16. DACE Requirements Traceability M atrix ...91

17. LIS I Reference M odel.. 97

LIST OF FIGURES

Figure Page

1. DACE High Level Architectural Fram ew ork... 4

2. Presentation L ay e r...5

3. Business Service L ayer...6

4. Data Service Layer...8

5. Activity Flow D iagram ...10

6. Detailed DACE Architectural Framework... 13

7. 12 Variable Elem ents.. 14

8. DACE Configuration Utility (D CU)... 20

9. DACE B oundaries.. 25

10. DACE Business Service Layer, Single M achine...26

11. Detailed Processing E ntity .. 32

12. Single Processing System ... 35

13. Single Processing Multi-Threaded System ... 36

14. Single Processing M ixed Threaded Multi-PEMs System ..37

15. Mixed Processing Mixed Threaded Multi-PEMs S ystem ..38

16. DACE Data Service Layer.. 39

17. Infrastructure Relationship Matrix Focus Point... 43

18. Infrastructure Relationship Matrix, Three-Tier vs. M odules... 44

19. Infrastructure Relationship Matrix, Three-Tier vs. Components.......................................45

20. Infrastructure Relationship Matrix, 12 Variable Elements vs. M odu les..................... 46

21. Infrastructure Relationship Matrix, 12 Variable Elements vs. C om ponents.............. 47

xii

22. Infrastructure Relationship Matrix, Technology vs. M odules..48

23. Project S co p e ... 50

24. Dynamic Systems Development Method (DSDM) Atem (Arctic T em)....................... 55

25. DACE Full Schedule...58

26. DACE Configuration W orksheet...62

27. Project S co p e ... 67

28. Test System C onfiguration... 72

29. Computer Performance Prior to DACE Execution..76

30. Computer Performance during DACE Execution..77

31. Additional System Test C ases ... 86

32. DACE Infrastructure Relationship.. 92

1

CHAPTER 1

INTRODUCTION

In today’s technically complex world, there is a focus on system interaction and

data integration. Historically, technology was designed to perform specific tasks given

certain situations. These designs were utilized in conjunction with other designs to

provide situational awareness to accomplish a goal. The information from each of the

components or devices was gathered independent of one another and the data were

analyzed in the effort to paint a heuristic picture o f the environment. This process

required that the resources gathering and analyzing the data had to thoroughly understand

the components and what they do, as well as, have a detailed understanding of

information that it provided. The process also geared heavily upon the ability of the

analyzer to take in all o f the information provided and be able to build an overall

situational understanding.

This generated a focus more to a system level, where, in theory, the components

interact at the machine level and data is correlated and evaluated based on a defined set of

constructs. With this focus came integration issues which translated to increased costs

and schedules due to the considerable effort needed to integrate components that were not

designed in a fashion that would allow them to work in such a manner. The situation is

further compounded when systems are integrated with both old and new technologies.

The purpose of this project is an attempt to provide a common software framework to

address data assimilation, correlation, and extrapolation. The intent is for this tool to

become a foundation application for complex system design and integration efforts.

2

1.1 Project Problem Description

Over the past 20 years, system designs have become increasingly complex. The

focus on internal system boundaries, as well as, external system boundaries has become

more of a focal point. This is due to the level o f information that is being distributed

within the systems. Custom software development efforts, to connect within these

systems, have increased dramatically and can be seen as one o f the development tasks in

almost any project. This scenario creates a common system development efficiency

problem, meaning that the process of developing a system requires development teams to

continue to develop custom interfacing software over and over, costing time and money.

In the federal sector, millions o f dollars are spent each year by the government on

projects that are focused on the integration of components into systems, and systems into

system of systems. This focus is not only on military technology projects but on financial

and business process systems as well. One can find multiple parallel efforts in each o f the

three focus areas listed above. W hat if the problem for the three focus areas was actually

the same problem, viewed from a different perspective?

By moving the view perspective further from the system of observation, to a

higher level to see more o f the picture and provide more generality, there are

considerable similarities. Each area requires an input, performs an operation, and

produces an output. This is a very simplistic view for these areas and very ideal. If this

model was accurate, then why do both the federal and commercial markets continue to

develop integration modules that only address a specific system implementation? The

answer lies in the thought process that it is easier, faster, and cheaper for a customer to

focus only on the current system being developed. Most customers define a fixed set of

requirements to address a specific functional need. This provides a method to support the

developers in the ability to complete designs, hopefully, within schedule and budget. Yet,

what is actually missed in this process is the fact that there may be 20 other projects in

development at the same time doing very similar types o f work. Each project is spending

a considerable amount of time and money, compounding the total effort that is being

placed in system integration efforts. To address the problem, a Common Knowledge

Engineering Framework for Data Assimilation, Correlation, and Extrapolation (DACE) is

proposed.

1.2 Overview

To architect a system that can interconnect with various types of systems, the

architecture must be designed in such a way that core functionality is abstracted. This

means the application has been designed and developed with various layers to allow for

flexibility in its capabilities. The proposed framework for DACE consists o f three main

layers: a Presentation, a Business, and a Data Service Layer (see Figure 1).

4

Figure 1. DACE High Level Architectural Framework

1.2.1 Presentation Layer

The Presentation Layer consists of user interfaces or Graphical User Interface

(GUI) and a Presentation M anager (Pman). This comprises the front end of the

application and allows the user to enter in data, configure application specific settings,

run an analysis, analyze the results, and output the results in another form such as digital

or hard copy. This layer only directly interacts with the Business Layer through the

Pman. If data need to be retrieved from the Data Service Layer, the request is passed to

the Business Layer for processing.

5

Presentation
Layer

DACE
•
•

Configuration
Utility

S ^ P C U L a

to
■oc3om
u0)
5a
EoO

CD*0
c
3
O
CD

3a
EoO

wa■o
c
3
O
CD
w
®
3a
EoO

Computer Boundary

Presentation Manager
(Pman)

|__ Computer Boundary_______________________________________|

Figure 2. Presentation Layer

The GUI in the Presentation Layer (see Figure 2), when an analysis is configured,

passes the analysis information to the Core Framework (Business Service Layer) so that

an analysis can be performed with respect to the chosen methodology. As the analysis is

running, modules in the Presentation Layer have the ability to receive status information

from the Core Framework on its state, progress, and any issues it may be encountering.

The DACE Configuration Utility (DCU) is a tool that encapsulates utilities that

support a defined system configuration allowing the ability to update and monitor system

specific information. The tool allows for manual configuration o f a system and was

developed to support the development phase for configuration and testing purposes.

1.2.2 Business Service Layer - Core Framework

The Business Service Layer is the heart of the architecture which contains the

Core Framework (see Figure 3).

Layer

CORE

Extrapolation

DACE
System

M anager

/ \
P rocessing

Entity
M nrinlfil

Script
Engine

Correlation
Engine

WCF Server

/ P rocessing Entity \
Module 2

WCF Script
Client Engine

C om puter Boundary

P rocessing Entity ^
M odule 3

WCF Script
Client Engine

Figure 3. Business Service Layer

This layer is responsible for building the system architecture from the configuration

defined in the Presentation Layer, execution of install packages, and distribution of

operations and management of the system. The main components within this layer are the

Core and the Process Entity Modules (PEMs).

The Core provides the main operating processes. It is comprised o f a DACE

System M anager (DSM), a W indows Communication Foundation (WCF) server, a

PEMs, a Correlation Engine, and an Extrapolation Engine. These components provide the

infrastructure that supports the overall capability of the system.

The DSM manages the overall system. It provides mechanisms to control the

configuration, monitoring, and controlling o f a defined DACE architecture

implementation. As the system manager, it coordinates module execution, updating,

health monitoring, and controls all of the PEMs within a systems design state. This

module also contains and coordinates operations with both the Correlation and

Extrapolation engines.

7

The W CF server controls all system component communications. It provides both

internal and external network communication mechanisms. These mechanisms allow for

fde transfers from the Pman to PEMs, data transfers with PEMs, and mechanisms for

PEMs state and operational control.

A PEMs is a component that performs a defined operation. It consists of

operations and procedures that have been defined by an end user. A simple example

would be a process where data are retrieved from a sensor, processed using mathematical

equations, and produces a result. If this result has been marked as an output parameter

from the PEMs to the Core, then this information is transferred to the W CF Server. In the

Core, a PEMs component will always exist to support the DSM in processing data for

system execution. As indicated in Figure 3, additional PEMs can reside outside o f the

Core. Additional PEMs can exist based on the end user’s configuration preference. They

can reside on the same machine as the Core and on a separate machine.

The Correlation Engine provides a mechanism for data association. If a system

has various sources o f data, this engine can perform higher level analysis to assist in

determining links and relationships between system data. This engine’s process is defined

within the Presentation Layer applications. Since the end user is responsible for the

functionality of this engine, the process is only as good as the configuration provided.

The Extrapolation Engine provides a mechanism for computed data to be

forecasted beyond its current state. This can be done by analyzing the system ’s computed

results and based on the end user’s defined parameters, project future results. This

engine’s process is defined within the Presentation Layer applications. Since the end user

8

is responsible for the functionality of this engine, the process is only as good as the

configuration provided.

1.2.3 Data Service Layer

The Data Service Layer is the primary data storage mechanism. It is comprised of

a Data M anager (Dman) and data storage containers (see Figure 4). The Dman provides a

common interface mechanism for the Core Framework to interact with the Data Service

Layer. It resides in the Presentation Service Layer and provides the means to store and

retrieve data that have been selected within the system configuration to be warehoused.

The common interface implementation provides a set of standard operations that can be

executed with no dependency on the underlining storage mechanism. This means that the

type o f data warehouse implemented, whether a database, a flat file, or a spreadsheet, has

no bearing to a calling process. The Dman takes care o f all the data warehousing

interactions and the translation o f the data to the specific formatting and processing

requirements for that type of storage container.

Data Manager
(Dman)Data

Layer

Database Rat Fils Spreadsheet

Figure 4. Data Service Layer

9

1.2.4 Significance and Impact

The framework would have significant impact to system development efforts.

This is due to the framework being developed in a modular and configurable architecture,

and its ability to support the three main focus areas o f data assimilation, correlation, and

extrapolation in one cohesive application. The focus areas would also be able to be

deployed in a standalone fashion as well. This ability allows the framework to be

deployed in a variety of situations.

When it comes to complex system designs, there is always a gap that needs to be

addressed for component integration. Often, components have different types of

interfaces and communication mechanisms. The DACE framework would be able to be

the “glue” or translation element for these components. This would be achievable without

writing custom code, which is essentially the current process, by defining the components

communication schema and the information that needs to be translated. This is paramount

because the system developer may not have the ability to modify the components within

the system without providing Non-Recurring Engineering (NRE) funding to the original

manufacturer.

There is often a need to have the ability to analyze data, whether they are live or

historical in nature, utilizing multiple methods and performing cross correlation to the

results o f each analysis method to provide a final output model. The DACE framework is

designed to support this type o f analysis fusion. This provides value to both academic and

industry, by providing a common mechanism where analysis methodology or

methodologies is defined by the end user for a specific focus. For example, a system

needs to be analyzed for an Internal Research and Development (IRAD) project to

10

determine the impact to a com pany’s portfolio. It has been determined that the following

methods would be utilized for this effort: Failure Modes and Effects Analysis

(Reliability), Fault Tree Analysis (Reliability), Life-cycle Analysis (also known as Life-

Cycle Assessment), and Value Chain Analysis (Firm Level). W ithin the DACE

framework each o f these methods could be analyzed in their own separate process. The

results o f each analysis would then, based on the user’s defined cross relationship rules,

be correlated together to provide a final solution set to the defined scenario (see Figure 5

for representation).

Source Data M u Iti pie I ndepend ent
Analyse Acti vities

Activity
Correlations

Figure 5. Activity Flow Diagram

These situational application areas provide value to both the engineering

management and systems engineering disciplines. W ith the defined framework,

significant efficiencies could be gained in both schedule and cost of a projects effort.

Engineering M anagement, from a federal market perspective, has a heavy focus

on the cost o f an overall product development effort. The utilization of a common

application to integrate a system provides a significant cost savings relative to schedule

and/or to resource allocation costs of developing a custom application to interface

components. The cost savings gained could even be across multiple projects. This savings

could translate to quicker break-even scenarios allowing companies to more quickly

profit on their designs. If the project can leverage a reduction in schedule by eliminating

the need for custom interfaces, the result could be a faster time to market.

System engineers will also gain significant benefit on projects that require quick

prototypes, feasibility studies, complex analysis methodology, and custom analysis

methods. This could possibly provide them additional justification to get buy-in for

internal research and development projects based on a common tool which does not

require a long programming cycle or purchase o f a different tool for each IRAD exercise.

12

CHAPTER 2

DACE DESIGN DETAILS

This chapter provides details to the underlining architecture and methodology of

the DACE design. It offers information on the design details, constraints, and the overall

implementation process.

2.1 Overview of Technical Details

The reality is the DACE system is very complex and large in scope. To define

such a system required definition and analysis of the system’s requirements. Upon

analysis, technologies and system design considerations were identified. This information

further required the grouping and definition o f a two tier classification scheme. The first

tier construct, is the classification of the inclusion o f the 12 variable elements of

application configuration control or freedom. The second tier construct is the breakout o f

the pinnacle sections o f the architecture to align with the Three-Tier software architecture

model. These sections are the Presentation, the Business, and the Data Service Layers

(see Figure 6).

13

Presentation
Layer

•

DACE •
ConfigurationUtility

(DCU)

1 1

C om puter B oundary

P resen tation M anager
(Pm an)

C om pt ter B oundary

CORE
P ro cessin g Entity

Module 2
DACE System M anager

(DSM)
W C F

Client
Script

Engine
P ro cessin g Entity

M odule 1
Business

Layer

W C F

S erver
C om puter Boundary

W C F

Client
S c r ip t

Engine P ro cessin g Entity
Module 3

Correlation
Engine

Extrapolation
Engine WCF

Client
Script

Engine

Com pu e r B oundary

D ata M anager (Dman)

C om puter Boundary

P ro cessin g Entity
Module

P ro cessin g Entity
Module

P ro cessin g Entity
M odule

WCF
Client

Script
Engine

WCF
Client

Script
Engine

W CF
Client

Script
Engine

a.

D a ta b a s e Flat Fite

Figure 6. Detailed DACE Architectural Framework

The choice o f using a multi-tier application with the integration o f the 12 variable

elements (see Figure 7) provides the optimal flexibility for both local and distributed

14

systems. This provides significant benefit to support both the system analysis, as well as

the design development.

12 Variable
Elements

Model_____________
Process____________
Processing_________
Application________
Data _____________
Correlation________
Extrapolation______
Storage____________
Health_____________
Metrics____________
Security___________
Reliability_________

Figure 7.12 Variable Elements

2.2 Twelve Variable Elements

The 12 variable elements definitions are a way to quantify major features o f the

system that provide dynamic configuration capability. To fully understand the importance

of defining these elements, we must first quantify their intended function within the

design. The variable elements defined are:

1. Model: Local vs. Distributed

2. Process: W ork flow logic in Single Thread vs. M ultiple Thread

3. Processing: Single Core Processing vs. Multi Core Processing

4. Application: Executable vs. Service Application

5. Data: Real-time Data vs. Captured Data

15

6. Correlation: Correlated Analysis (Fusion) vs. Uncorrelated

7. Extrapolation: Active vs. Inactive

8. Storage: Single vs. Multiple Storage Containers

9. Health: System Configuration Health monitoring: Active vs. Inactive

10. Metrics: System Operational metrics: Active vs. Inactive

11. Security: Access control, encryption, redundancy check

12. Reliability: Message Delivery, Redundancy

The “M odel” element is defined as the classification of the system components

locality. There are two main capabilities, local and distributed. The local option implies

that all of the layers are physically located on the same machine. This means that one

computer is running the full DACE application which consists o f the Presentation,

Business, and Data Layers. While the distributed option implies that at least one o f the

layers (Presentation or Data Layer) or a processing entity within the Business Layer is on

at least one other machine. There could be multiple Presentation Layers and Data Layers

but there will always only be one Business Layer which could contain multiple

processing entities.

The “Process” element is defined as the classification of how the system

processes programmed instructions. There are two main capabilities, single threaded or

multi-threaded. These are called Procedure and Analysis Threads in the DACE

framework for clarification. The system could be single threaded, meaning the

instructions are linear, one operation at a time in order. W ithin DACE, this would

effectively apply to the Business Layer where the processing occurs. For DACE to

perform as a single threaded application, all processing would be contained within one

16

processing entity and be performed in order. This configuration within DACE provides

“State M achine” functionality. The second option is that the system could be multi­

threaded, meaning that selections of instructions are placed in groups to be processed

separately, as if they were isolated. The operating system would time slice between each

thread so that each could perform its intended functionality. In a single core processor,

these threads are not concurrent but essentially thought of as operating in that state.

Examples o f these configurations will be provided in a later section.

The “Processing” element is defined as the classification of the system ’s

utilization of the computers processing capability. Processors in computers can be single,

dual, or quad core, meaning that there can be multiple processing units on a single chip.

A single core processor has only one processing unit on it and, when using threads, can

only process one thread at a time. A dual core processor has two processing units and,

when using threads, can be running two threads concurrently. A quad core processor has

four processing units and, when using threads, can run four threads concurrently

providing greater efficiencies in processing. It should be noted that when using m ulti­

threading coding techniques with multi-core processors, great care needs to be applied to

guarantee there are no data contingencies between tasks. If there are, this could lock up

the designed system in question.

The “Application” element is defined as the classification o f the system ’s method

of instantiation. There are three main types of instantiation, an executable (.exe), a

service (also called a damon in UNIX), or a dynamically loaded assembly. Executable

applications are general applications that reside on machines and typically must be

selected to execute. Services are applications that run in the background and are

17

instantiated when the system starts and typically execute whenever the computer is

running. Dynamically loaded assemblies are compiled code that is loaded at runtime

without any direct reference within a running application. This allows for applications to

be extended without having to recompile.

The “Data” element is defined as the classification o f the system’s collection of

input data. There are two main types, real-time and captured data. Real-time data are

considered live data, meaning a sensor or some device is collecting and providing these

data for usage. Captured data are considered data that have been recorded and stored in a

digital format such as a flat file, an excel spreadsheet, or even a database.

The “Correlation” element is defined as the classification o f the system ’s ability

to perform correlation on data, based on predefined constraints for the dataset under

analysis. There are two options, either correlated or uncorrelated. The correlated option

tells the system to perform a specific correlation based on either incoming data or data

that have already been processed. The data to use and the procedure to perform the

operations are inputted by the subject matter expert (SME) or the end user. This process

is executed within the Correlation Component o f the Processing Entity within the

Business Layer. The uncorrelated option tells the system that there is no correlation to

perform on the individual Processing Entity in question.

The “Extrapolation” element is defined as the classification of the system ’s ability

to take processed data and perform estimation beyond the original interval of observation.

If this functionality is set “Active”, then the Process Entity in question will execute a

predefined set of data and procedures, which have been entered by the SME. An example

would be to predict the location of a vehicle in a failed GPS state. By using other sources

of sensor information i.e., a last known GPS state, and navigation algorithms, one can

predict the current location accurately over a certain length of time. The Extrapolation

component is located within each Process Entity that has configured this option to

“Active” within the Business Layer.

The “Storage” element is defined as the classification of the system’s capability to

store and retrieve data from various data storage containers. The application has the

ability to set multiple data storage containers or a single storage container for a given

system.

The “Health” element is defined as the classification of the system’s ability to

provide system health monitoring. This option can either be set to “Active” or “Inactive” .

If set to “Active,” then within each of the Presentation, Business, and Data Layers, active

system monitoring will occur. The system state information is then collected at the

Business Layer and can be distributed for status applications within the Presentation

Layer stored in the Data Layer containers.

The “M etric” element is defined as the classification of the system’s ability to

collect and quantify performance within each of the layers. Metrics such as processing

time, memory allocations, and communication throughput are examples of items that are

collected to determine system metrics. Since the design is very flexible, and a system can

be configured in many ways to perform the same functionality, the ability to capture and

quantify system performance metrics provides a way to determine the most optimal

configuration.

19

2.3 Three-Tier Architecture

The definition of the 12 variable elements of freedom drove the determination of

a highly flexible architecture. To be able to fulfill the requirements o f the 12 variable

elements classification, a “Three-Tier Architecture” was selected. The benefits of this

architecture are in its scalability, higher level o f security, faster execution, and the ability

to allow client side applications to be less complex. These features align with the DACE

model; however this also increases the level o f complexity within the DACE framework

implementation. This architecture is comprised of a Presentation Layer, a Business Layer

and a Data Layer.

2.3.1 Presentation Service Layer

The Presentation Service Layer conceptually entails the user interfaces for human

interaction with the system, as well as, the Presentation Manager. A base GUI application

called the DACE Configuration Utility provides the full system interaction functionality.

2.3.1.1 DACE Configuration Utility

The DCU is a tool that has been designed to support the system configuration,

updating, and monitoring. The DCU interacts with the system via a Windows

Communication Foundation client module to the Pman. The intention o f this tool is to

support the design development phase for configuration and testing purposes, as well as,

providing the base application user interface. It is comprised o f four configuration

objects, two functional objects, and two operational objects (see Figure 8).

20

DACE Configuration Utility (DCU)

Configuration
O bjects

Functional System
UpdaterO bjects

O perational
O bjects

System ^
Translator J

Math
Editor

System
Parser

Script
Generator

) f System ^
I Monitor J

(S crip ting^ f WCF ^
Engine J V Client J

Figure 8. DACE Configuration Utility (DCU)

The tool allows for manual configuration o f a system. The tool takes a defined

system configuration which captures the following parameters:

1. Definition o f client access

a. Number of clients

i. Each Client

1. Definition o f Client ED

2. Definition o f Client E5

3. Definition of Client Operating System

21

4. Definition of Client Access Level

5. Definition of Data Encryption

6. Definition of Data Cyclic Redundancy Check (CRC)

7. Definition o f Performance Metrics Reporting

2. Definition of number o f components (Each component)

a. Each component

i. Definition of Component ID

ii. Definition o f Components IP

iii. Definition of Components Operating System

iv. Definition o f Execution Process (Threads)

V. Definition o f Processing (CPU Cores)

vi. Definition o f components operations

1. Definition of input data

a. Definition o f data source

b. Definition o f data format

c. Definition of data types

2. Definition of operations on data

a. Definition of process

b. Definition of internal variables

3. Definition of output data

a. Definition of distribution rights

b. Definition o f encryption option

c. Definition of storage options

22

4. Definition of performance metrics

3. Definition o f correlation operations

a. Definition of input data

i. Definition o f data source

ii. Definition o f data format

iii. Definition of data types

b. Definition of operations on data

i. Definition of process

ii. Definition of internal variables

c. Definition of output data

i. Definition o f distribution rights

ii. Definition of encryption option

iii. Definition of storage options

d. Definition o f performance metrics

4. Definition of extrapolation operations

a. Definition o f input data

i. Definition of data source

ii. Definition of data format

iii. Definition of data types

b. Definition o f operations on data

i. Definition of process

ii. Definition of internal variables

c. Definition o f output data

23

i. Definition of distribution rights

ii. Definition of encryption option

iii. Definition of storage options

d. Definition of performance metrics

The DCU takes the inputted data and builds the defined system. If the system has

been built and is already running, the DCU allows for updates to individual components

without rebuilding the whole system.

When the DCU builds the system, it goes through a series of operations to build in

the system implementation. Using the information provided the DCU captures and

translates this information in the System Translator module. Mathematical equations that

have been entered into the DCU through a mathematical editor are translated from

MathML™ and then sent to the System Translator module for inclusion. This

information is stored in a readable M icrosoft Excel file. The format was selected to

provide flexibility and options in building a DACE system. Designers can develop any

tool to interact with the template as their situation deems necessary. It is even possible

with the DACE configuration template, for an end user to generate a system

configuration right from Excel without having a GUI.

The Excel configuration file is then used to define the system scheme. The

System Parser module loads the file and determines the system boundaries and the

arrangement of the components with respect to the boundaries (see Figure 9). In the

figure below, the boundaries are represented by the “Computer Boundary” objects, which

indicate that this boundary may or may not exist based on the system configuration. For

example, in the Presentation Layer, there are “Computer Boundary” indicators between

each o f the possible user interface devices. This could be the case where multiple client

user applications are on various machines. But if there were no boundaries with multiple

devices, then this would indicate that there are multiple client user applications on the

same machine.

25

P resenta tion

•

DACE •
ConfigurationUtility

(DCU)

,

Computer Boundary |

Present ation M anager
Pman)

Compi ter Boundary |

B usiness
Layer

CORE

DACE System M anager
(DSM)

/ Processing Entity \
Module 1

WCF Script
Client Engine

/

Correlation Extrapolation
Engine Engine

4-V W C F

Server

r = y

/ Processing Entity \
Module 2

WCF
Client

Script
Engine

Computer Boundary

Processing Entity
Module 3

WCF
Client

Script
Engine

£ 3

£3

D ata
Layer

Comp i er Boundary

Data M anager (Dman)

Computer Boundary

Processing Entity
Module

WCF
Client

Scnpt
Engine

D atabase

(Processing Entity
Module

WCF Script
Client Engine

Flat File

Processing Entity
Module

WCF
Client

Scnpt
Engine

t

<r
spreadsheet

Figure 9. DACE Boundaries

In the Business Layer in Figure 9, “Computer Boundaries” depict separation of

the Core and additional components, however, it could be the case that all o f these

components could reside on the same machine if configured as such (see Figure 10).

26

Business
L ayer

CO RE

DACE System M anager
(DSM)

P ro cessin g Entity
M odule 1

WCF
S erver

W CF
Client

Script
Engine

Correlation
Engine

Extrapolation
Engine

/ P ro cessin g Entity \
Module 2

WCF Script
Client Engine

/ P ro cessin g Entity \
Module 3

WCF Script
Client Engine

Figure 10. DACE Business Service Layer, Single Machine

Once the components o f the system have been generated, each component’s

procedure is sent to the Script Generator module. This module essentially translates the

module’s procedure from a general pseudo format to a C# script file. Each generated

script is then tested to make sure that it can be compiled by the M ono compiler. If there is

no issue in the compilation of the script, then the component is considered ready for

deployment and the System Updater module is signaled.

The System Updater first determines if the system component is already deployed

or if a new system has been designed. If the component is new, then an installation

package is generated with the component’s application framework, which consists o f a

Scripting Engine, a W CF Client, and its correlated script file, if applicable. If the

component has already been deployed and this is a modification or update, then a review

occurs to determine what the change actually entails. If the script file has changed, then

this file will be sent to the appropriate component for update. If a configuration setting

has changed, then a new installation package will be generated for manual installation for

27

the component. The System Updater module will perform the above procedure for each

component within the system. During this process, the System M onitor module will

provide information on the status of the process, as well as, the status o f the system.

During a live update, meaning a components script is being updated, the System M onitor

will control the state of the component to allow for the transaction to occur.

2.3.1.2 Presentation M anager (Pman)

The Presentation Manager, or Pman, is a critical component within this layer. It

provides an abstract interface to the DACE system that is language and platform

independent. This means that user interface applications can be developed that fit the

purpose o f the system and can run on an operating system o f the end user’s choosing as

long as the Mono framework can run on that operating system. The Pman, acting as a

gateway to the DACE system, can also allow multiple user interfaces to connect and

communicate with the system at the same time with multiple levels of access.

This component is system independent, meaning it can reside on any machine

within the system. Figure 9 shows that the Pman is bound by Computer Boundaries.

These boundaries may or may not exist depending on the defined system implementation.

The Pman component could reside on a separate machine, a machine that contains a

client access application, or even on the same machine where the Business Layer Service

resides. This is accomplished by utilizing the W CF framework for communications. It

contains a server that provides and controls client access and a backend client that

communicates with the Presentation Service Layer’s Core W CF Server.

28

The W CF Server module within the Pman provides the communication

infrastructure for the external DACE architecture. W CF is a framework that was designed

by M icrosoft for providing service-oriented communications implemented in the .NET

Framework. This framework was selected due to its extensibility, reliability, security,

interoperability, and service orientation. The DACE architecture implements this

framework and provides configuration options for communication protocols, security,

reliability, and durability.

Three communication protocols have been identified to support Presentation

Service Layer client applications, these are: Named Pipes, Transmission Control Protocol

(TCP), and Hypertext Transfer Protocol (HTTP). Each type provides a specific functional

requirement that supports the “M odel” axis for local versus distributed system

characteristics. For system components that are physically located on the same machine

(local) and need to communicate with each other, the named pipes communication

protocol is used. While system components that are on different machines (distributed)

can utilize the TCP or HTTP protocol based on client application implementations.

Client applications that have been implemented in a popular website

programming language such as JavaScript or ASP.NET would most likely use the HTTP

protocol for interaction with the DACE Pman. Although this is not a requirement, typical

web browser clients use HTTP. They could implement a client side backend that would

implement a TCP protocol.

The design also allows for various options for interaction by client applications.

These actions allow for control of system operational states, as well as, receiving both

status and computational information. Based on the general functionality, these have been

categorized into three levels of client access control for client applications to connect to

the system (see Table 1). Access control is useful in systems were there are multiple

types of access permissions allowed within a system. An example might be in a ship’s

power plant system where there are several stations for interaction. The engineering

station may need full access to change parameters and monitor. A bridge station might

only have monitoring capabilities to provide situational awareness information to the

captain on the vessel’s power plant efficiency. Access control is configured and

controlled via the DACE Configuration Utility. This information is sent and utilized

within the Pman to control system access. User access control levels defined for

interaction include: Full Access Control, Limited Access Control, and M onitor Access

Control.

30

Table 1. Access Control Levels

Capability
Full
Access

Limited
Access

Monitor
Access

No
Access Description

System Control
Procedure:
Terminate V

If
Granted

Allows the user to terminate one
or more processes executing
within the system.

System Control
Procedure: Restart V

If
Granted

Allows the user to restart one or
more processes executing within
the system.

System Control
Procedure; Suspend V

If
Granted

Allows the user to suspend one
or more processes executing
within the system at their current
state.

System Control
Procedure: Resume V

If
Granted

Allows the user to resume one or
more processes executing within
the system if they are currently
in the halt state.

System Control
Procedure: Update V

If
Granted

Allows the user to update one or
more processes executing within
the system.

System Health Status V
If

Granted
If

Granted

Allows client applications to
receive system status
information through the Pman.

Computational
Results V

If
Granted

If
Granted

Allows client applications to
receive computational results
updates through the Pman.

Remote Desktop V
If

Granted

Allows client DCU terminals to
access system computers using a
remote desktop connection.

Direct Warehouse
Data Retrieval V

If
Granted

If
Granted

Allows client applications to
perform queries on the stored
data in the systems warehouse.

2.3.2 Business Service Layer (Core)

The Business Layer is considered the heart o f the system. It is comprised o f a

Core and one or more PEMs. The Core is subdivided into the DACE System Manager, a

W CF Server, a Correlation Engine, an Extrapolation Engine, and a PEMs. Each o f these

modules provides a distinct function for execution o f a defined system implementation. It

is responsible for all of the input and output data translation, the layer’s communications

31

and data acquisition (Assimilation), the execution of the defined procedure methods

(Analysis), the processes information Fusion (Correlation), and the

factorization/prediction o f data (Extrapolation). This layer is the most complex layer

within the design. All o f the 12 variable elements apply to this layer.

2.3.2.1 Components

The DSM manages the overall system. It provides mechanisms for configuration,

monitoring, and controlling of a defined DACE application implementation. It

coordinates system updates from client applications through the Pman module, controls

the system process workflow among PEMs, and coordinates the storage and retrieval of

data through the Dman module.

The W CF Server module provides the communication infrastructure for the

internal DACE architecture. W CF is a framework that was designed by M icrosoft for

providing service-oriented communications implemented in the .NET Framework. This

framework was selected due to its extensibility, reliability, security, interoperability, and

service orientation. The DACE architecture implements this framework and provides

configuration options for communication protocols, security, reliability, and durability.

Two communication protocols have been identified to support inner process

system communications, these are: Named Pipes and TCP. Each type provides a specific

functional requirement that supports the “Model” axis for local versus distributed system

characteristics. For system components that are physically located on the same machine

(local) and need to communicate with each other, the Named Pipes communication

protocol is used for Windows based operating systems. For UNIX based machines, there

32

is currently no equivalent. There is current work being done in this area under the M ono •

framework. System components that are on different machines (distributed) utilize the

TCP protocol.

The PEMs is responsible for procedure processing (see Figure 11). In a general

case, this aligns with the general software program that executes a set o f operations and

performs a set o f actions. The difference lies in its implementation. This module

essentially acts as an internal client to the DSM, based on the idea that all PEM s reside

within the Presentation Service Layer boundaries o f the Three-Tier Architecture. It

contains processing logic and two sub modules which are: a W CF client module and a

Script Engine module. The PEMs processing logic coordinates execution of the W CF and

the Script Engine.

P r o c e s s in g Entity M o d u le
M u lti-T h re ad e d

S c rip t E n g in e

C o m p o n e n t Logic

P&A
Thread

W C F
C lien t

p&A
Thread

P&A
Thread

Figure 11. Detailed Processing Entity Module

33

The W CF client module provides an infrastructure that supports internal

communications from components to the W CF servers. This module is the only W CF

client module used within the system. It was designed to dynamically load configuration

scripts that provide the communication schema that aligns with the appropriate W CF

server based on a defined system implementation. For system PEMs, if a PEMs is local

then then the Named Pipes communication protocol is used (Windows only). For a PEMs

that is on another machine or on a UNIX based machine, the TCP communication

protocol is used.

To achieve the ability to dynamically create and execute the PEMs in the DACE

architecture and fulfill the defined 12 variable elements required the flexibility of a

scripting engine. The Script Engine is a C# scripting system that interacts directly with

any Common Language Runtime (CLR) for .NET and Mono. The use of a scripting

engine is useful when there are frequent code changes, development and deployment time

is expected to be faster, and the solution requires more flexibility in application

deployment instances. This module allows for script files to be loaded, compiled,

debugged, and executed on a target machine. This functionality was needed in the

Application element of the 12 variable elements. Since it ties into the CLR, it uses the

CLR compiler and debug engine to provide direct target support mechanisms for in-

system updates, testing, and debugging system configurations. The engine can also

compile scripts into an executable, a dynamically linked library (dll), service application,

or run them in a debug mode. Running scripts in a debug mode provides in-system

debugging even for multiple components in a distributed configuration.

34

2.3.2.2 Configurations

The Business Service Layer is very dynamic in nature. It can be configured in

various configurations based on system definitions. This layer can be configured as a

simple single threaded application or service, to a multi-threaded multi-core distributed

set of services on multiple operating systems. These options have been categories into

four main items: Single Processing, Single Processing Multi-Threaded, Single Processing

Mixed-Threaded Multi-PEMs, and a Mixed Processing Mixed Threaded Multi-PEMs

system.

A single processing system is defined as a system comprised of only containing

the Core module (see Figure 12). Single processing refers to the component residing on a

single machine. All logic and procedures are executed within a single PEMs and in a

single processing or execution thread called Procedure & Analysis (P&A) threads. This is

very similar to a simple linear software application, where operations are performed in

order.

35

CORE
Processing Entity Module

S ingle-Threaded

 Script Engine

C om ponent Logic
PracetJui* & Anrfyeie

(P&A) Thr—d/a

Z mTV—X
V Thread JExtrapolation

Engine
WCF
Client

DACE
System

M anager
(DSM)

Correlation
Engine

W CF S erver

Figure 12. Single Processing System

A single processing multi-threaded system is defined as a system comprised of

only containing the Core module (see Figure 13). Single processing refers to the

component residing on a single machine. All logic and procedures are executed within a

single PEMs but disjoint or parallel processes are separated in multiple P&A threads to

be executed.

36

CORE

P ro c e ss in g Entity M odule
 M u l l i - T t m t e d _ _ _ _

 Script E ngine

Com ponent Logic
Procedum ft Anafyata

(PftAj TTrw tet

ZraT X — X
v Thread J

Extrapolation
Engine WCF

Client
P&A

Thread

DACE
System

M anager
(DSM)

P&A
Thread

Correlation
Engine

WCF Server

Figure 13. Single Processing Multi-Threaded System

A single processing mixed threaded multi-PEMs system is defined as a system

comprised of containing a Core module and one or more PEMs (see Figure 14). Single

processing refers to the components residing on a single machine. All logic and

procedures are executed within various PEMs where each may have either single or

parallel processes in P&A threads to be executed.

/ Processing Entity Modiie
 Mtiti-.Ili.aB dad_____

CORE

Processing Entity Modiie
Mdti-Thrflatted

Script Engine

(pujrnvwcw
(3&a\-_

Thread J
Extrapolation

Engine WCF
Client

P&A
Thread

DACE
System

M anager
(DSM)

Correlation
Engine

WCF Server

Script Engine

WflmWfWfl Iflfllfi

Thread

Thread

Processing Entity Module
an tie-T hreaded

Script Engine

Componert L og ic

Thread

Figure 14. Single Processing Mixed Threaded Multi-PEMs System

A mixed processing mixed threaded architecture is defined as a system comprised

o f the Core module and at least one Process Entity Module on different machines. This

means that any of the modules could be executing in either a single or multiple thread

capability. In Figure 15, the Business Service Layer within the system is configured to

reside on four machines. The Computer Boundaries depict physical separation o f the

components which translate to physical machines. As you can see, multiple PEMs can

reside on the same machine, as depicted on M achine #2.

38

C O R E

Extrapolation
Engine

DACE
S ystem

M a n a g e r
(D SM)

C o m p u te r B o u n d a ry

Correlation
Engine

W CF S erver

Figure 15. Mixed Processing Mixed Threaded MuIti-PEMs System

2.3.3 Data Service Layer

The Data Service Layer is the data warehousing component of the architecture. It

allows the Business Service Layer to interface with a data storage container in a

consistent fashion without working knowledge on the how the data storage container is

implemented. This layer was designed in this fashion not to only allow for a common

storage mechanism but also to allow for flexibility, portability, and expandability. This

layer allows for multiple storage containers to be utilized even when of different types.

This layer contains the Dman and the PEMs system components (see Figure 16).

39

C om puter Boundary

D a ta
L ayer

D ata M anager (Dman)

C om puter Boundary

/ P ro cessin g Entity
Module

W CF Script
Client Engine

Database

/ P ro cessin g Entity
Module

WCF Script
Client Engine

Flat File

(P ro cessin g Entity
Module

WCF Script
Client Engine

Spreadsheet

Figure 16. DACE Data Service Layer

2.3.3.1 Components

The Data Manager, or Dman, provides an interface mechanism for the Business

Service Layer. Its primary focus is to provide a common interface for storing and

retrieving data, independent of the storage mechanisms deployed. The common data

warehouse model is intended to provide the same interfacing functionality to storage

containers. The design aligns with standard database operations such as Query, Insert,

Update, and Delete. This component has been designed in a fashion similar to the Pman

but containing additional logic to perform synchronization and transfer operations for the

PEMs warehousing components. It is system independent, meaning it can reside on any

machine within the system. Figure 16 shows that the Pman is bound by Computer

Boundaries. These boundaries may or may not exist depending on the defined system

implementation. The Dman component could reside on a separate machine, a machine

that contains a data warehousing mechanism, or even on the same machine that Business

Layer Service resides on. This is accomplished by utilizing the W CF framework for

communications. It contains a server that provides and controls the PEMs for each

40

implementation o f the data warehousing and a backend client that communicates with the

Presentation Service Layer’s Core W CF Server.

Two communication protocols have been identified to support PEMs

warehousing, these are: Named Pipes and TCP. Each type provides a specific functional

requirement that supports the “M odel” axis for local versus distributed system

characteristics. For system components that are physically located on the same machine

(local) and need to communicate with each other, the Named Pipes communication

protocol is used. W hile system components that are on different machines (distributed)

can utilize the TCP protocol.

The PEMs modules depicted in Figure 16 are the same modules utilized within

the Business Service Layer. They are configured to connect to the Dman W CF server

using either TCP or Named Pipes. Each PEMs in this layer loads a warehousing

interaction script depending on what type of data storage container is selected. The script

contains the logic to correctly translate commands to and from the common data format

and the desired data storage container format and functionality.

2.3.3.2 Execution/W ork Flow

Operations within the Data Service Layer are simplistic from a higher point of

view. Messages to store or retrieve data are received by the Dman. In the case where

there are multiple storage containers, the request is then evaluated and distributed to the

appropriate PEMs. If there is more than one storage method and all warehouses are

storing the same data, then the message is distributed to all relative PEMs. Once a

41

message is received by a PEMs, it is then translated from the common messaging format

to the appropriate interfacing format for that specific storage container.

If the operation was a “Store” procedure then the operation is complete. If the

operation was a “Retrieve” or “Query” procedure, then the PEMs performs the

appropriate action. Once the data have been received within the PEMs, the data are then

packaged into the common message format and transmitted back to the calling module.

2.4 Technology

The DACE design premise is based on the concept of flexibility. This means that

the underlying technologies and architecture need to be designed with a variety of

flexible characteristics. The two primary elements that influence the underlying

technologies are operating system independence and language support.

2.4.1 Operating System Independence

The DACE architecture is designed to be able to run on multiple operating

systems. The reason for this is so that there would not be a limitation to the users based

on their system operational requirements. The primary operating systems focused on for

this design are W indows 7, Windows 8, UNIX, Linux, and M ac OSx.

To open the design up to multiple operating systems required a development

environment and technologies that enabled cross compatibility. The Mono Framework

was chosen as the underlining mechanism to fulfill this requirement. The Mono

framework is a cross platform development platform that is an open source .NET

42

development framework. It closely parallels M icrosoft’s .NET framework which is based

on the ECMA standards for the Common Language Runtime (CLR).

2.4.2 Language Support

The DACE framework, by utilizing Mono, allows various programming

languages and technologies to be utilized. The .NET model defines a common language

runtime and a common class library which provides common operations to technologies

such as C++, C#, J#, Visual Basic (VB), Active Server Pages (ASP), and ActiveX Data

Objects (ADO). The variety of technologies that can interact with the DACE architecture

allows for other developers to use the language or technology o f choice to interact with

the DACE application. In the design o f the DACE framework the primary technologies

are C# and W indows Communication Foundation or WCF.

2.5 Infrastructure Relationship Matrix

The Infrastructure Relationship Matrix provides a visual representation of the

relationship o f the architecture’s components, modules, and constructs with the

technologies defined for implementation. The Infrastructure Relationship Matrix, shown

in Appendix B, shows the full mapping of the various aspects of the DACE design. The

matrix is sectioned into four groups. It is essentially built around Group 1 which is the

focus point. The focus point consists of the “Components” and the “M odules.” These are

the implementation elements of the design (see Figure 17). This focal point was chosen

due to the criticality o f items in the implementation of the proposed solution. By working

from the bottom up, or implementation, to the theoretical details of the actual

43

development items can be explored and evaluated against the system design and the

requirements. Relationships are represented by either an “X” or an abbreviation in the

case o f the Three-Tier Architecture designators. The designators for this item in the

matrix are PSL for Presentation Service Layer, BSL for Business Service Layer, and DSL

for Data Service Layer.

The focus point o f the matrix correlates the system Components to the system

Modules. For example, in Figure 17, by tracing from the System M anager horizontally

and the Core vertically, you can see that there is an identified relationship between the

Component and Module.

12 Variable Elements Components Technology

i7
St s8 .§

9
I

e
e

1
Ic
3

15
to

M

1 17
* 1

a
I

3 Tier Architecture
Presentation Service Layer
(PSL)
Business Service Layer (BSL)
Data Service Layer (DSL)

DACE
Configuration
Utility (DCU)

Presentation
Manager

(PMan)

P°rO Process
Entity (PE)

Data
Manager
[Dman)

s0
1
Z $

u.
§

X PSL, BSL WCF Server X r i i l , X X X
X PSL, BSL, DSL WCF Client X X W X X X X X
X X X X X X X X X X X X PSL. BCt ^ X V X X X
X X X X X X X X X X X X BSL M 'System Manager {U5MT X X

X X BSL ▼ f f i t a i a i u n B U i i r ' X X X
X X BSL Extrapolation Engine X X X
X X BSL Common Data Engine X X X

X X X X X X X X X X X X PSL System Translator X X X
PSL Math Editor X X X

X X X X X X X X X X X X PSL System Parser X X X

fl R R R R R R R
V i IB Jvlnleclure k Ll r o t DdL BsM. UOL

1. Model: Local vs. Distributed Model X X X X
? Process: Single Thread vs. MuRiple Thread Process X X
3 Processing: Single Core Processing vs. Multi Core Processing £ Processing X X
4 Application: Exectiable vs. Service Application I AppScation X X X
5 Data: Real-time Data vs. Captured Data £ Data X X X
6 Correlation: Correlated Analysis (Fusion) vs. Uncorrelated Corrrelatlon X X
7 Extrapolation: Active vs. In-Active i Extrapolation X X ^ G bu* A
8 Storage: Single vs. MuRiple Storage Containers •c Storage X X X
9 Health: System Configuration Health monitoring: Active vs. In-Active > Health X X X X
10. Metrics: System Operational metrics: Active vs. I rvActive Metrics X X X X
11 Secuity: Access control, encryption, redundancy check Secta ty X X X X
12. Reliability: Guaranteed Delivery, Redundancy Relabtfty X X X X X

Figure 17. Infrastructure Relationship Matrix Focus Point

44

W hen looking at the relationships from the Three-Tier Architecture to either the

design Modules or the Components, the matrix must be evaluated horizontally or

vertically independently by using pairs o f groups. For example, to determine if there is a

relationship between the Three-Tier Architecture and a Module, Groups 1 and 2 are

utilized. Tracing from the Three-Tier Architecture items in Group 2 vertically and the

Module items in Group 1 horizontally, one can see that if there is an identified

relationship between these items with the design framework, either one or more

abbreviations is indicated (see Figure 18).

12 Variable Elamants Components Technology

M
od

el

|
Pr

oc
es

s
[

?
3

A
pp

ic
at

io
n

j

a
8

c
.0
5
e
3

1

Ia
S

®
?o
«

£
■
i M

etr
ic

s
|

>

aTbr Archllsctum^
PreeeitifflHrSerwce Layer
(PSL)
Business Service Layer (BSL)
Deta Service Layer (DSL)

IACE
!onfiguratkm
JtiSty(DCU)

Preservation
Manager

(PMan)

Core Process
Entity (PE)

Data
Manager
(Dman)

1

I
z 3

tL

X PSLfjBSL WCF Server X X X X
X PSL, Bi t . DSL WCF Client X X X X X X X X
X X X X X X X X X X X PSL | b s l Script Engine X X X
X X X X X X X X X X X System Manager (DSM) X X X

X X i Correlation Engine X X X
X X

n fi
^ ra n o la tk m Engine X X X

X X X X X X X X X X X PSL
Lgl

System Translator X X X
PSL Math Editor X X X

X X X X X X X X X X X PSL System Parser X X X
ft ft ft ft R

3 Tier Architecture PSL PSL BSL BSL DSL
1 Model: Local vs. Distributed Model X X X X
7 Process: Single Thread vs Multiple Thread Process X X
3 Processing: Single Core Processing vs. MuRi Core Processing • Processing X X
4 Application: Executable vs. Service Application s AppRcation X X X
5 Data: Real-time Data vi Captured Data i Data X X X
fi Correlation: Correlated Analysis (Fusion) vs. Uncorrelated Co rrr elation X X
7 Extrapolation: Active vs. In-Active z Extrapolation X X ^ 4 Group 4

8 Storage: Single vs. Multiple Storage Containers •15 Storage X X X
9 Health: System Configuration Health monitoring Active vs. In-Active > Health X X X X
10. Metrics: System Operational metrics: Active vs. in-Active Metrics X X X X
11 Security: Access control, encryption, redundancy check Secixty X X X X
12. Reliability: Guaranteed Delvery, Redundancy RelabHRv X X X X X

Figure 18. Infrastructure Relationship Matrix, Three-Tier vs. Modules

W hen looking at the relationships between the “Three-Tier Architecture” to a

Component, the matrix must be evaluated using Groups 1 and 4. For example, by tracing

from the Three-Tier Architecture items in Group 4 horizontally and the Component items

45

in Group 1 vertically, one can see if there is an identified relationship within the design

framework, either one or more abbreviations is indicated (see Figure 19).

Graun 1
F ocus Point

2 S
V sH ib b B im m ts

3 TU f A rchtoctur*
Presentation Sendee Layer
(PSL)
Business Service Layer (BSL)
Data Service Layer (DSL)

esentation
Configuration
Utility (DC

Process
Entity (PE)

Data
Manager
(Dman)

Technology

PSL. BSL
PSL. BSL. DSL ,WCF Ciiert

Script Engine
System Manager (OSM)
Correlation Engine

PSL

Extrapolation Engine
C om m on D ata Engine
System Translator

3 Tier Architecture.
1. Model: Local vs. Distributed
2 P ro cess : Single T hread vs MiJtiple T hread
3 Processing: Single Core Processing vs. Miiti Core Processing
4. Application: E xecutable vs. S erv ice A pplication
5. Data: Real-time Data vs. Captured Data
6. Correlation: Correlated Analysis (Fusion) vs. Uncorrelated
7 Extrapolation: Active vs. In-Active
8. S to rage : Single vs. Multiple S to ra g e C ontainers
9. Health: S y stem Configuration H ealth monitoring Active vs. In-Active
10. M etrics: S y s tem O perational m etrics Active vs. In-Active
11 Security: A ccess control, encryption, redundancy check
12. ReSabitity: G u a ran teed Delivery. R edundancy

I 2
Processing
Application

Extrapolation

ReiabHitv

Figure 19. Infrastructure Relationship Matrix, Three-Tier vs. Components

W hen looking at the relationships from the 12 variable elements to either the

design Modules or the Components, the matrix must be evaluated in the same fashion as

the Three-Tier Architecture methods, either horizontally or vertically independently, by

using pairs o f groups. For example, to determine if there is a relationship between the 12

variable elements and a Module, Groups 1 and 2 are utilized. Tracing from the 12

variable elements in Group 2 vertically and the Module items in Group 1 horizontally,

one can see that if there is an identified relationship between these items within the

design framework, an “X” is indicated (see Figure 20).

46

* r /
12 VartaUs Elements

3 Tier Architecture
Presentation Sendee Layer
(PSL)
Business Service Layer (BSL)
Data Service Layer (DSL)

Components Technology

i
5

3

CL

s £

i

I

I c
I.fi

W lS
§ 1

c&
I
i I

f

3
z

t%
S Se

cu
ri

ty

>.
1
3
S.

DACE
Configuration
Utility (OCU)

Presentation
Manager

(PMan)

Core Process
Entity (PE)

Data
Manager
(Dman)

8e

I
Z 3

5

X PSL. BSL WCF Server X X X X
X PSL. BSL, DSL WCF Client X X X X X X X X
X X X X X X X X X X X PSL. BSL Script Engine X X X X
X X X X X I X X

bs?H
X X X X BSL System Manager (DSM) X X X

X
&

X
i] •

BSL

z
fcxtrapolauon engine X X X

X X BSL Common Data Engine X X X
X X X X X X X X X X X X PSL System Translator X X X

PSL Math Editor X X X
X X X X X X X X X X X X PSL System Parser X X X

R R r R r R R R R R R R PSL X
3 Tier Architecture PSL PSL BSL BSL DSL

I. Model Local vs. Distributed
2 Process: Single Thread vs. MuKipie Thread
3. Processing: Single Core Processing vs. Mdti Core Processing
4 Application: Executable vs. Service Application
5. Data: Real-time Data vs. C aptued Data
6. Correlation: Correlated Analysis (Fusion) vs. Uncorrelated
7 Extrapolation; Active vs. In-Active
8. Storage: Single vs. MuRiple Storage Containers
9. Health: System Configuration Health monitoring: Active vs. In-Active
10 Metrics: System Operational metrics: Active vs. In-Active
II . Security: Access control, encryption, redirdancy check
12. Reliability: Guaranteed Delivery. Redundancy

{

i
1
s
£

Model X X X X
Process X X
Processing X X
Application X X X
Data X X X
Correlation X X
Extrapolation X X
Storage X X X
Health X X X X
Metrics X X X X
Security X X X X
Refiabiltv X X X X X

Figure 20. Infrastructure Relationship Matrix, 12 Variable Elements vs. Modules

W hen looking at the relationships between the 12 variable elements to a

Component, the matrix must be evaluated using Groups 1 and 4. For example, by tracing

from the 12 variable elements in Group 4 horizontally and the Component items in Group

1 vertically, one can see if there is an identified relationship within the design framework,

an “X” is indicated (see Figure 21).

47

•oup 1 I J----------
ic us Point I J f im iO .

T V 7
1 12 Variable Elements —

3 Tier Architecture
Presentation Service Layer
(PSL)
Business Service Layer (BSL)
D rta Service Layer (DSL)

Components 11 Technotogy j

!
S P

ro
ce

ss
Pr

oc
es

si
ng

Ap
p

be
at

io
n

m%
O

£
3
go
O

I

I
i ! H

ea
th 1•s S

ec
ur

ty i
3•
(£

DACE
Configuration
Utility (DCU)

Presentation
Manager

(PMan)

Core / P rocess " \
Entity (PE J

Data
Manager
(Dman)

.N
ET

/M
on

o

8
,

X PSL. BSL WCF Server X p| X X X
X PSL, BSL. DSL WCF Client X X X n X X X UL
X X X X X X X X X X X X PSL, BSL Script Engine X y X X
X X X X X X X X X X X X BSL System Manager (OSM) X X X

X X BSL 2 Correlation Engine X n X X
X X BSL I Extrapolation Engine X 111 X X
X X BSL J Common Data Engine |l| X X X

X X X X X X X X X X X X PSL System Translator X f|| X X
PSL Math Editor X X X

X X X X X X X X X X X X PSL System Parser X y X X
x_X X X X X X X X X X X PSL Scrtrt Generator X [ii JL X

1 Model: Local vs. Distributed
2. Process: Single Thread vs. Multiple Thread
3 Processing: Single Core Processing vs. MtAi Core Processing
4 Application: Exectiable vs Service Application
5. Data: Real-time Data vs. Captured Data .
6. Correlation: Correlated Analysis (Fusion) vs. Uncorrelated
7 Extrapolation: Active vs. In-Active
8. Storage. Single vs. Multiple Storage Containers
9 Health: System Configuration Health monitoring: Active vs. In-Active
10 Metrics System Operational metrics: Active vs. In-Active
11. Security' Access control, encryption, redundancy check
12 Reliability: Guaranteed Delivery, Redundancy

1 3 Tier Architecture 1 PSL p a BSL SSL DSL

!
i
r
>N

c

Model X X n X
Process X n
Processing X n
Application X X n
Data X X »
Corrretatbn X 1 X y
Extrapolation X X [i j 1 Groun 4
Storage X 1 X X
Health X X W X
M stdfs ^ X I , X r j

f w \
X

■ ■ ■ ■ ■ _

I XI

Figure 21. Infrastructure Relationship Matrix, 12 Variable Elements vs. Components

In the evaluation o f Technology to the items in the focus point, there is only a

single process. This is due to the fact that all items listed under Technology relate to all

items under the Components. This leaves the evaluation o f Technology to the Modules.

This is accomplished by tracing from the Technology items in Group 3 vertically and the

Modules items in Group 1 horizontally, one can see that i f there is an identified

relationship within the design framework, an “X” is indicated (see Figure 22).

48

| G roup 7 j I | f i m m J j

1
r

/
12 Variable Elements

3 Tier A rchitecture
Presentation Service Layer
(PSL)
Business Service Layer (BSL)
Data Servtoe Layer (DSL)

Component* TechnO o«Y

•S
Ss

3

1
f

e.fi

1

I 1

3
1
0 1

1X
5 Se

cu
rit

y
1

1
&
£

DACE
Configuration
UtHity (DCU)

Presentation
Manager

(PMan)

Core Process
Entity (PE)

Data
Manager
(Dman)

N
ET

/M
on

o
|

(S '
X PSL, BSL WCF Server X X X
X PSL, BSL, DSL WCF Client X X X X X X pi X
X X X X X X X X X X X X PSL, BSL A Script Engine X X X N
X X X X X X X X X X X X BSI_____

j
System Manager (DSM) X X M

X X BSL W Correlation Enoine X X n
X X BSL W Extrapolation Engine X X f i t ,
X X BSL X Common Data Engine X X

X X X X X X X X X X X X PSL System Translator X X x
PSL Math Editor 3 £ tel

X X X X X X X X X X X X PSL System parser X X Y
X X X X X X X X PSL X X X

I. Model: Local vs. Distributed
2 Process: Single Thread vs. MJtiple Thread
3 Processing: Single Core Processing vs. Multi Core Processing
4. Application Executable vs. Service Application
5. Data: Real-time Data vs. Captured Data6. Correlation: Correlated Analysis (Fusion) vs. Uncorrelated
7. Extrapolation: Active vs In-Active6. Storage: Single vs. Multiple Storage Containers
9. Health: System Configuration Health monitoring; Active vs. In-Active
10. Metrics: System Operational metrics: Active vs. In-Active
II . Security: Access control, encryption, redundancy check
12. Reliability: Guarenteed Delivery, Redundancy

i•
i
Ui

I•

I
N

Model X X X X
Process X X
Processing X X
Application X X X
Data X X X
Corrrelatbn X X
Extrapolation X X
Storage X X X
Health X X X X
Metrics X X X X
Security X X X X
ReRabWty X X X X X

Figure 22. Infrastructure Relationship Matrix, Technology vs. Modules

CHAPTER 3

SCOPE OF PROJECT

The overall DACE framework was highly complex and is a very large task to

accomplish. Due to the scope o f the complete framework which entails the Presentation

Service Layer, the Business Service Layer, and the Data Service Layer, a bounded subset

(see Figure 23) o f the framework’s design for this project has been defined which is to be

considered Phase I o f the application’s full design.

The Phase I focus is on the Business Service Layer design with a subset o f the

Data Service Layer and Presentation Service Layer (see Figure 23). The Presentation

Service Layer is not intended to be the primary focus of this effort. This was due to the

large task o f implementing the graphically intensive interface, a DACE Configuration

Utility or DCU, with limited functionality was developed to configure and update the

developed system.

50

DACE
ConfigurationUMity

(DCU)Presen ta tion
Layer

a
E

Presentation M anager
(Pman)

Compi ter Boundary

Business
(U
■Q

Layer 3
m
a>

Q.

O

CORE

DACE System M anager
(DSM)

7 Processing Entity
Module 1

V

WCF Script
Client Engine

Correlation
Engine

Extrapolation
Engine

Processing Entity
Module 2

WCP
Client

Script
Engine

Computer Boundary

f Processing Entity
Module 3

WCF Script
Client Engine

Compu er Boundary

Data Manager (Dman)

/(Processing Entity
Module

WCF Script
Client Engine

Database

/ Processing Entity
Module

WCF Script
Client Engine

Flat Ole

/(Processing Entity
Module

WCF Script
Client Engine

Spreadsheet

Figure 23. Project Scope

To implement the DACE system, three methods were chosen. The first method

was the utilization of an open source Commercial Off-The-Shelf (COTS) component.

Since the design o f DACE required a scripting engine and given the size and scope of

developing a fully functional engine was not the primary goal of this project, a Common

51

Language Runtime (CLR) scripting engine called CS-Script was chosen to be utilized.

The second method of module implementation was the actual coding o f each module in

C#. The third method was script generation. System specific scripts are auto generated by

DACE upon the development o f system configurations. Table 2 shows the modules and

the methods that were utilized to implement DACE.

Table 2. DACE Module Implementation

Phase I Level o f Effort
Module Implementations

Implementation Met iod Annlicable Lavers
Presentation Service
Layer (PSL)
Business Service Layer
(BSL)
Data Service Layer
(DSL)

C# Code
Developed

Components
Off-The-
Shelf (COTS)

Generated
Scripts from
"Script
Generator"

M
od

ul
es

WCF Server X PSL, BSL

W CF Client X PSL, BSL, DSL
Script Engine
(CS-Script) X PSL, BSL
System Manager
(DSM) X BSL
Correlation
Engine X BSL
Extrapolation
Engine X BSL
Common Data
Engine X BSL
System
Translator X PSL

Math Editor X PSL

System Parser X PSL

Script Generator X PSL
Application
Functionality X BSL

The COTS CS-Script engine is a MIT Licensed product that can be used within

other applications without restriction. The DACE system utilizes this engine to provide

52

the functionality to load and execute custom C# code. To utilize this engine, additional

integration code needed to be developed.

The code development using the C# language was the majority o f the systems

implementation effort. There were 15 modules needed for system implementation,

classified into two separate tiers based on functional application level within the design.

Table 3 shows the low level modules and their supporting roles to the higher level

modules that are in Figure 23.

The script generation method is the dynamic process o f the system generating

run-time scripts based on a system configuration. These scripts can then be loaded upon

startup o f a defined systems implementation.

Table 3. Development Level of Effort

Modules

Level 1 Level 0 - Support Modules
DCU WCF Client

Script Engine Integration

System Translator

Math Editor

System Parser

Script Generator

Function & Integration Code

Pman WCF Server

WCF Client

Function & Integration Code

Dman WCF Server

WCF Client

Function & Integration Code

PEMs WCF Client

Script Engine Integration

Function & Integration Code

DSM PEMs

Correlation Engine

Extrapolation Engine

Function & Integration Code

Core DSM

WCF Server

Function & Integration Code

54

3.1 Capabilities

The Phase I implementation has the ability to configure, build, run, and monitor a

system definition through utilization o f the DCU. Since the graphical configuration

module has not been implemented in this phase, all system definition operations are

manually performed using the DACE Configuration template. The resultant configuration

file is then loaded and built using the DCU. The generated files are stored in a specific

folder directory which can be accessed within the DCU. These files can then be

transferred to the appropriate computer. If this is a new build of the system configuration,

then the files need to be manually moved. If the system structure already exists on the

computers with no physical changes to where the components are or the quantity of

computers, and the only thing that changed was workflow logic, then the DCU can be

used to transfer the updated items.

The Business Service Layer has been fully implemented. This allows for a

variety o f complex configurations to test system functionality and performance. There is

no limit on the number o f PEMs which can be configured within the system. All o f the

system configuration categories Single Processing, Single Processing M ulti-Threaded,

Single Processing Mixed-Threaded Multi-PEMs, and a Mixed Processing Mixed

Threaded Multi-PEMs can be achieved within the current system state.

The Data Service Layer has only been partially implemented. This layer was not a

focus point for this phase but due to the similarities of the Dman and the Pman, the Dman

has been partially developed. The communication and workflow logic has been

developed. The common data engine module, which provides the common data

warehousing interface mechanism, is slated for Phase II development.

55

3.2 Development Methodology

The DACE framework was developed using the Agile development process

integrated into a system engineering process. Agile development uses iterations and

continuous feedback to refine and deliver a software implementation. The Dynamic

Systems Development Method (DSDM) Atern (Arctic Tem), which is a development

method of the Agile development process, was used (see Figure 24). This method was

designed to focus on rapid application development. It tries to solidify the development

efforts time, cost, and quality at the beginning of a project by using identifiers such as

musts, shoulds, coulds, and won’t haves to meet a set deliverable.

Incremental
Deployment

Engineering
Post-Project

Figure 24. Dynamic Systems Development Method (DSDM) Atern (Arctic Tern)

56

3.3 Metrics

In the design and development of the DACE framework, several metrics were

selected to quantify the system. To measure the architecture and quality o f the design, the

Design Structure Quality Index (DSQI) models were utilized. To quantify the

implementation the following measurements were selected: number o f lines of code,

program execution time, program load time, and size.

3.3.1 Design Structure Quality Index

The Design Structure Quality Index (DSQI) is metric for architectural designs

implemented using object oriented design. This method was developed by the United

States Air Force. It is used to evaluate computer program efficiency relative to its code

modules. This correlates to the quality of the systems design. Results from this method,

range from 0 (lower quality) to 1 (higher quality) in range. There are seven variables

evaluated, these are:

1. Total number o f modules in the architecture.

2. Number of modules that depend on data input or produce data to be produced in

another module.

3. Number o f modules who depend on prior processing.

4. Number o f database items.

5. Total number o f unique database items.

6. Number of database segments.

7. Number of modules with only 1 entry and exit point within the module.

57

3.3.2 Implementation Characteristics

The system implementation characteristics selected are an attempt to provide

quantifiable data to a system configuration for the DACE framework design. The system

design shown in Figure 23 is the physical layout o f the configuration with all o f the

baseline modules included. The implementation characteristics defined are:

• Number of lines o f code.

• Program execution time.

• Program load time.

• Program size.

3.4 Schedule

The Gantt chart (see Figure 25) shows the Phase I development schedule which

defines four phases. This schedule was a developed as a result o f the architecture design.

The four phases defined in the schedule are the System Requirements Development, the

Full System Design, the Phase I Development, and the Experimental Evaluation. The

sections that follow provide an overview of phases relative to the schedule in Figure 25.

58

(£) Name

1 BOAC£ P h ase 1; DCU & B usiness Serv ice Layer
2 V l / S tage I: Full System Requirem ents Development

3 0 S ta g e II: Fui S y stem Design
4 Business Service Layer
5 1/ Data Service Layer
$ Presentation Service Layer

7 1/ DACE Configuration Utility (DCU)
8 G S ta g e DI: D evelopm ent
9 Af B B usiness Serv ice Layer

10 ✓ WCF Server
11 ✓ WCF Client
12 if Script Engine

13 1/ System Transla tor
14 | / Math Editor
15 ^ System P arser

10 y Script G enerator
17 ✓ Processing Entity

18 ̂ Correlation Engine
19 a / Extrapolation Engine
20 System M anager (DSM)

21 ✓ P resentation M anager (PMan)
22 OACE Configuration Utility (DCU)
23 S S ta g e IV: Experim ental Evaluation
24 T e s t Generation

25 Testing

.,2013 [Qtr 2 ,2013 |Qtr 3 ,2013 10 * 4 ,2 0 1 3 fQtr 1,2014 [Qtr 2 ,2
„J.Xjn P ul feb jM ar. (Apr jM

Qtr 4j 2013

■ u tv

Figure 25. DACE Full Schedule

3.4.1 Stage I - System Requirements

The first stage is where the system requirements definition occurred. This entailed

the definition o f the proposed system requirements to be identified and categorized. The

categorization process defined the 12 variable elements and the full system design phases

o f development. Although the high level system requirements were adhered too, the

process o f lower lever requirements refinement occurred throughout the project’s life

cycle.

3.4.2 Stage II - Design

The second stage defined the full system design. The full system design needed to

be developed from the beginning; that allowed an appropriate software architecture to be

defined. The choice was narrowed down to three options: peer-to-peer, layered

architecture, and the Three Tier Architecture. The decision for the Three Tier

59

Architecture design was driven by the requirements and the definition of the 12 variable

elements.

The DACE framework is built around a client-server architecture, but does deploy

some additional functionality from other architectural methodologies. W ithin the

Business Service Layer, the components have some peer-to-peer architecture qualities

due to the fact that all components can act as both consumers and suppliers. A consumer

is an object that receives or consumes messages or data and performs an action. Suppliers

are objects that produce and transmit a message or data to a consumer object. This layer

also can be configured and perform very similar to the Layered Architecture where the

different PEMs can provide layered operations that are passed down or up to the next

PEMs in the configuration. This scenario is similar in nature to the network stack or Java

virtual machine functionality. Once the architecture was selected, the details of the three

service layers where developed to align back to the 12 variable elements. This

information was then used to generate and DACE Infrastructure Relationship Matrix in

Appendix C.

3.4.3 Stage III - Development

The purpose o f this section is provide an overview o f how the system was

developed and relates to the DACE schedule in Figure 25. The system development was

broken out into the two focus layers o f the architecture, the Business and Presentation

Layer. Table 4 provides information relative to the level of effort o f the DACE

development. The table shows module lines of code, man hours expended, and the

effective man-month equivalent.

60

Table 4. DACE Development Level of Effort

Modules
Lines of
Code

Man
Hours

Man
Months

Level 1 Level 0 - Support Modules
DCU WCF Client 680 218 1.36

Script Engine Integration 121 39 0.24

System Translator 694 222 1.39

Math Editor 2,143 686 4.29

System Parser 948 303 1.90

Script Generator 1,432 458 2.86

Function & Integration Code 378 151 0.12

Tally: 6,396 2077 12.16
Pman WCF Server 183 59 0.37

WCF Client 680 218 1.36

Function & Integration Code 83 27 0.17

Tally: 946 303 1.89
Dman WCF Server 183 59 0.37

WCF Client 680 218 1.36

Function & Integration Code 83 27 0.17

Tally: 946 303 1.89
PEMs WCF Client 680 218 1.36

Script Engine Integration 121 39 0.24

Function & Integration Code 234 75 0.47

Tally: 1,035 331 2.07
DSM PEMs 1,035 331 2.07

Correlation Engine 756 242 1.51

Extrapolation Engine 509 163 1.02

Function & Integration Code 413 132 0.83

Tally: 2,713 868 5.43
Core DSM 2,713 868 5.43

WCF Server 183 59 0.37

Function & Integration Code 178 57 0.36

Tally: 3,074 984 6.15

DACE
Phase I
Totals: 9,553 3,087 18.47

3.4.3.1 Presentation Service Layer

The Presentation Service Layer was the first section to be developed. This

consisted of, in development order, the System Parser, Script Generator, Math Editor, and

System Translator modules. The development o f this layer was done based on the order

o f operational need. The System Parser and Math Editor modules were done in parallel,

which lead into the development the Script Generator.

The System Parser which essentially takes in the system configuration parameters

from either an XML or Excel file (see Figure 26) and evaluates them to determine the

system boundaries. This means that is parses the system out into computer configurations

and their corresponding information for each computer in the system. System

configuration parameters can be found in Appendix C: DCU Configuration Parameters.

Since this module was the main interface to implementing the proposed system,

care was taking in the implementation to make sure to catch any load errors. This module

not only organizes all the system components and aligns their functional requirements; it

also does system configuration validation. This was necessary to make the overall

architecture more reliable and provide a feedback mechanism to end users when there is a

system design issue.

62

N u m b e r o f C o m p u te rs : 3

C o n figu ra tion 10: 1 2 3 4 5 6 7 8 9 1C
C o m p u te r ID: 1 2 2
C o m p u te r IP: 192.168.1.10 192.168.1.11 192.168.1.11

C o m p u te r OS: W in7 O p e n S u se O p e n S u se

CPU C ores: 1 1 1

T hreads; 1 1 1

S y stem C o m p o n e n t ID: 4001 4002 4003

C o m p u te r C o m p o n e n ts

DCU PEMs PEMs

Pm an DCU

DSM

WCFS

D m an

PEMs

Figure 26. DACE Configuration Worksheet

The System Translator is the module that takes mathematical formulas that have

been provided in Excel and creates a mechanism to convert the formula into C# code for

utilization in the DACE system. This module essentially matches all standard mathematic

operations in the same form as Excel. This mechanism provided a quick way to perform

mathematical functions and do one-to-one mappings in C# code.

The Script Generator was developed next. Upon initial development o f this

module, it came clear that it needed to support two main purposes. The first purpose was

to take the application logic that was cached from the System Translator operation and

convert this into executable C# code. The second purpose was to create the installation

packages for the machines that components would be installed on.

The process of creating installation packages had a few challenges that were faced

along the way. The biggest challenge encountered was making sure to group the required

technologies into the build environment. This first phase effort essentially supported only

W indows and openSUSE installations. These configuration package parameters were

hard coded, but a more flexible and sustainable method would be to provide OS specific

information files and information that the module could dynamically load. This

information would then be utilized to create the installation package as required.

Since this phase was not intended to provide a high end graphical user interface,

the System Translator and the Math Editor were not developed to their fullest extent.

Both modules were developed to allow data input to provide the correct format of

information to the System Parser.

A DCU user interface was developed to wrap the modules into one application.

Due to the scope o f the project, the graphical configuration mechanism was not

implemented. A generic dashboard was created that automates the build process and

shows the status. Table 5 provides information to the development level of effort for the

DCU and supporting modules that it uses. The table shows module lines o f code, man

hours expended, and the effective man-months to each development effort.

64

Table 5. DCU Development Effort

Modules
Lines of
Code

Man
Hours

Man
Months

Level 1 Level 0 - Support Modules
DCU WCF Client 680 218 1.36

Script Engine Integration 121 39 0.24

System Translator 694 222 1.39

Math Editor 2,143 686 4.29

System Parser 948 303 1.90

Script Generator 1,432 458 2.86

Function & Integration Code 378 151 0.12

Tally: 6,396 2077 12.16

3.4.3.2 Business Service Layer

The Business Service Layer was the next section to be developed. This consisted

of, in development order, the Scripting Engine, the W CF Server, the W CF Client, the

Processing Entity Module, the Core, the Correlation Engine, and the Extrapolation

Engine. The development of this layer was done based on the bottom up approach. Since

the W CF Server is the backbone of this layer, it was developed first. The corresponding

W CF Client module was then developed and tested for all modes of communications.

The W CF server and client were developed in C# utilizing the .NET framework.

Two projects were created that would utilize both Named Pipes and the TCP

communication mechanisms. Since both Windows 7 and openSUSE supported TCP, this

was developed first. Using .NET W CF both the server and client modules were created.

Based on the concept of general usability, a data distribution mechanism needed to be

identified to be able to pass any type of data within the system.

The PEMs was the next component to be developed but the biggest challenge was

the Scripting Engine module. A base scripting engine was developed but the first

65

generation scripting engine lacked some o f the dynamic capabilities that were needed for

the design. After researching scripting engines and evaluating the level o f effort to

implement the full capabilities required in the DACE framework, an open source C#

scripting engine called CS-Script was selected for this project. This saved time while

providing the module functionality required in the development and evaluating the

proposed framework. The PEMs module was then developed to integrate the component

control logic with the W CF client and the scripting engine.

The Core was the next component to receive focus, to align the layer’s

components to the functional requirements. Since both the PEMs and the W CF Server

were already developed, the focus was on the administrative system logic, the Correlation

Engine, and the Extrapolation Engine. The general administrative logic consisted of

implementing status operations and system component heartbeat mechanisms. This

allows the DSM to have a fundamental concept o f component health. Although this is not

a holistic feature by any means, it does provide low administrative monitoring capability

o f the system components. Future development will provide a Health M onitoring

messaging structure to be handled by system components.

The Correlation Engine and the Extrapolation Engine models were then

developed. Both o f these modules turned out to be similar in functional requirements.

Both needed to have a base capability where information collected needed a definition or

identification o f a relationship to another piece o f information. For example, to correlate

information one needs to either know what the rules are (procedure or function) or what

information to watch based on other information identified as input variables, and what

information to watch as output variables. So a common model was developed to support

a simple model that required variable inputs function and output designation. The

Correlation Engine would then essentially use a signal to noise methodology to wiggle

input variables and map the output variance looking for strong and weak bonds. For the

Extrapolation Engine, the same mind set was utilized. Either time specific identifiers

could be used to extrapolate a given data set or the identification of specific information

could be used. This structure provided flexibility to add more advanced methods while

providing a base capability within the system.

CHAPTER 4

EXPERIMENTAL EVALUATION

The DACE framework contains 12 variable elements; this produces 4096 test

combinations for every possible system definition that could be defined. To evaluate the

Phase I systems framework development, the system deployment in Figure 27 was

implemented.

Machine #2
Windows 7

r
DACE •

ConfigurationUtility
(DCU)

P resen ta tio n M anager
(P m an)

C O R E

P rocessing Entity M odule
M ulti-Threaded

 Scrip! Engine

C om ponent Looic
r a e e d u * 4 A n tf y e l e

(P M T MExtrapolation
Engine

DACE
S ystem

M anager
(DSM)

PSA

W CF S e rv e r

Machine n
Linux OS

P ro c essin g Entity M odtJe (PEM) #2
M ulti-Threaded

Script E ngine

C om ponent Logic

Ow n Ship
Data

T hread

CD
®
3
Q.

Io
P ro c essin g Entity M odule (PEM) #3

S ing le-T hreaded

R ange

C om ponent Logic

Figure 27. Project Scope

68

4.1 Implementation

The evaluation scenario which aligns with the system configuration chosen is

based off of a general data acquisition design. The system requirement is detailed in the

following sections.

4.1.1 System Problem - Target Interrogation

A customer has two sensors that he wants to use to increase his situational

awareness on a boat but wants to provide an automated solution. The first system is a

highly accurate legacy GPS. The second system is a target acquisition camera that

utilizes laser range finder to provide situational awareness. This camera, once fixed on a

target, tracks the target automatically and uses the laser to determine the range to the

target. Both sensors are connected to a computer with a Linux operating system and the

customer wants the data displayed on a second computer that has a W indows 7 operating

system. The customer also wants to determine their position and does not have radars on

his small crafts. He does not want to pay and wait for a custom application to be

developed and would like to have a prototype.

4.1.2 DACE Component Configuration Requirements

Based on the problem the requirements have been documented and mapped to the

DACE system components (see Table 6). There are many ways to implement this

scenario and the one depicted is not considered the optimal. It does show the flexibility in

design considerations. The system could have been defined using one PEMs and all

components except the DCU could have resided on the Linux computer.

69

Table 6. DACE Configuration Requirements
ED Requirement Dace Component OS

1 Acquire GPS data on Computer with Linux OS PEMs #2 Linux
Computer
#12 Calculate approximate own ship speed PEMs #2

3 Calculate approximate own ship heading PEMs #2

4
Acquire range information from camera on
Linux OS Computer

PEMs #3

5 Calculate targets current GPS location Correlation Engine Window 7
Computer
#26 Calculate targets speed Correlation Engine

7 Calculate targets heading Correlation Engine

8 Show Target Information on 2 computer with
Windows 7 OS DCU

The test case that was implemented within DACE, was generated using the DCU.

The code was separated into two separate modules. The first module was generated was

for Computer #1. The second module was generated for Computer #2 with a Windows 7

operating system. Table 7 shows a cross mapping of the components utilized in the test

case against the technologies utilized in the DACE design.

70

Table 7. Test Scenario Technology Map

Components Technology
Computer #1
openSUSE

Computer #2
Windows 7

.N
E

T

M
on

o

6 W
C

F

DCU X X X

Pman X X X
System Manager
(DSM) X X X

8
1 Correlation Engine X X X
%
s

Extrapolation
Engine X X X

WCF Server X X X X

WCF Client X X X X X

PEMs X X X X X

The Linux machine has two CPU ’s and two PEMs. PEMs two, focuses on the

acquisition of GPS data and calculation of own ship’s speed and heading. PEMs number

three, focused on the acquisition o f target range data from the camera system. Since

receiving time critical information resides on the same machine, each PEMs will be

configured to run on a separate CPU.

On the W indows 7 machine, even though it is a dual core CPU, the DCU and the

Pman will execute on the same core. Table 8 shows additional details o f the 12 Variable

Elements configuration for this scenario.

71

Table 8. Test Scenario Variab le Elements Options

e
a
so

y
DCU

Pman

Core

WCF
Server
PEMs
#2____
PEMs
#3

Si
3a
Eo

r -
G

Q
w
w

■a

Ji
i3
X>
‘fit/is
&
I

J L
D

D

u
"ebu
xnIIW3

■§u

8 So ii

M

M

M

M

u
”3)c
t/3II
C/3

CA
ao
U

3
SII
2 .

M

M

M

M

X)
3
3
gX
1
o o
w yco -r u r
-s °a oo
3 - ii
< w

T9

8*
Vu
0>>

•w

i

X

0>>
*3u<
Ii

X'w'
G0
■S
1
X

_BL

X

U
2
S

-22_

X X

X

„ o
o §
is T>
e c O 3
w •g
$ ll
o ai o
< cII o
< ~ o o.
&
s s -g
3 $ I
<» pi U

&D
>

I >;
a §CO *3 » c

r3 U is•§ 3S15 a n as13 s ll
..BLS J i .

M

M

M

M

M

M

4.1.3 Test System Configuration

The actual test was implemented using a Dell Precision T1500 computer. The

CPU was an Intel i3 Dual Core, 3.07 GHz processor with 2.99 Gigabits o f Random

Access Memory (RAM) and a 32 bit W indows 7 Professional Operating System. The test

was performed while the following applications, in Table 9, were running.

Table 9. Applications running during test

McAfee Total Protection FireFox v25.0.1

Microsoft Visual Studio 2010 Internet Explorer 10

Microsoft Word 2010 Microsoft Excel

Microsoft Visio 2013 iTunes

Microsoft Visual SourceSafe 6.0 Oracle VM VirtualBox

72

The test scenario defined W indows components, were executed directly on a

W indows 7 based machine. The test scenario Linux components, were executed on an

openSUSE Linux Virtual Machine (VM) that was running on the same test computer. In

this configuration, it is understood that there would be a performance penalty of the

configuration under the test due to the performance hit o f running on a VM and the VM

residing on the same machine. Figure 28 shows a graphical representation o f the test

scenario implementation.

Figure 28. Test System Configuration

73

4.2 Experimental Evaluation

The “Target Interrogation” test scenario was implemented (see Figure 27) and

tested based on the selections and configuration covered in Table 8. The test information

computed is based the Design Structure Quality Index, DACE Application and

Implementation Characteristics, and System Performance Characteristics. This

information was then evaluated against the same problem developed using a typical

development methodology.

4.2.1 System Configuration Metrics

4.2.1.1 DACE Application and Implementation Characteristics

The test case that was implemented within DACE, was generated using the DCU

and showed acceptable performance characteristics, depicted in Table 10. The test

scenario design produced 463 lines o f application code. The test scenario, upon

execution, started up in 5.66 seconds (s) and the actual functional execution o f the test

case 66 milliseconds (ms) into the DACE engine. The test case then took approximately

129.6 ms to fully execute its process.

Table 10. Test Design Implementation Characteristics

Measurement Computed

Total Lines of Code Utilized 463

Execution Time (ms) 129.6

Total Application Load Time(s) 5.66

Script Load Time (ms) 66

System Size (KB) 1111

74

The DACE test case system consisted o f over 14,700 lines of code (see Table 11).

The test case specific functional code produced equaled 183 lines o f code. If this design

was written in a monolithic application and assuming that there is a 40% gain in

efficiency by reworking some of the DACE modules to be application specific, the total

lines of code utilized to implement the same system would be approximately 8,830 lines

of code. This level o f effort o f development effort would have impacts to both schedule

and cost.

Table 11. Test Scenario Level of Effort

Modules

Computer #1
openSUSE
Lines of Code

Computer #2
Windows 7

System Code
Tally:

DCU 6,396 6,396

Pman 946 946

System Manager (DSM) 2,713 2,713

Correlation Engine 756 756

Extrapolation Engine 509 509

WCF Server 183 183

WCF Client 680 680

PEMs 2,070 2,070

Test Scenario 463 463

Test Scenario Totals: 2,533 12,183 14,716

40% Efficiency Gain 1520 7310 8830

4.2.1.2 Design Structure Quality Index (DSQI)

To evaluate the efficiency and structure o f the test scenario design, the Design

Structure Quality Index method was used. Table 12 provides the parameters that were

used to calculate the DSQI. The input variables that were o f focus based on the test

scenario and the DACE architecture were the total number of modules in the architecture,

75

the number o f modules that depend on data input and the number of modules with only

one entry and exit point. Since the focus was on the application structure and module

independence, a higher weighted value was used. Module entrance and exit values play a

strong role in the DSQI. The higher the value for this module entrance and exit

characteristics means that the system is more venerable to cyber-attacks. Although this is

of concern, it is not the intention of this phase to harden the system against these types o f

threats. Based on the program architecture and the values and weights entered, module

independence induced the most DSQI variance resultant.

Table 12. DACE Phase I Design Structure Quality Index

Variables Values Measurement Wrights
Total number of modules in the
architecture 15 Program Structure 30

Number of modules that depend on
data input or produce data to be
produced in another module 4 Module Independence 30

Number of modules who depend on
prior processing 2

Modules not dependent on
prior processing 30

Number of database items 0 Database size 0

Total number of unique database
items 0

Database
compartmentalization 0

Number of database segments 0
Module entrance and exit
characteristics 10

Number of modules with only 1
entry and exit point within the
module 7

100.0

DSQI 0.87333

76

4.2.2 System Test Results

The Target Interrogator test scenario showed the flexibility within the Phase I

DACE system design. The test, although not exhaustive of the full frameworks

capabilities, executed as expected with no issues for over 3 hours. During test execution,

there were no indicators o f any system performance issues. The com puters’ performance

stayed reasonably within the values displayed in Figure 29. The CPU utilization stayed

within a 10% margin. Upon investigation on the fluctuation using the operating systems

Resource M onitor application, both FireFox and Internet Explorer were the main drivers

to the fluctuation.

*---S

W in d o w s T ask M a n ag e r 1 cp
File o p t io n s v ie /; Help

Applications I Processes | Services P erfo rm an ce : Networking f User! !

CPU U sa g e CPU U sa g e H istor y

M emory

Physical M em ory (MB) S ystem

Total 3063 H andles 9 1 6 3 3
C ach ed 385 T h re ad s 1929
A vailable 383 P ro c e sse s 132
F re e 10 Up Time 6 :1 1 :4 1 :5 8

Commit (MB) 5 3 3 6 /6 1 2 4
Kernel M em ory (MB)

P ag ed 3 94
N o n p a g ed 104 | R e so u rc e M o n ito r ...

P r o c e s s e s : 1 3 2 C PU U sa g e : 2 3 % P h y s ic a l M e m o ry : 8 7 %

Figure 29. Computer Performance Prior to DACE Execution

77

*® W indows Task M anager cd S S3

File Options vie/. Help

Applications j Processes (Services P e rfo rm a n c e Networking [Users

CPU Usage CPU Usage History

Memory Physical Memory Usage History

Physical Memory (MB) System
Total 3063 Handles 93538
Cached 341 Threads 2033
Available 334 Processes 140
Free 2 Up Time

C o m m it (MB)
6:11:35:25

5508 /6124
Kernel Memory (MB)
Paged 395
Nonpaged 106 j Resource Monitor...

Processes: 140 CPU Usage: 41% Physical Memory: 89%

Figure 30. Computer Performance during DACE Execution

Upon execution, the solution took 5.66 s to load. This means that all modules

were up and processing. Researching both .NET and Mono, showed that the frameworks

have an overhead startup time of anywhere from 4 to 9 seconds on a typical software

implementation. This is without any startup optimization techniques. During the test

system start up, there was a system resource surge that occurred. This aligns with the

.NET and M ono’s CLR execution.

The performance of the DACE test scenario was compared to a Research &

Development (R&D) project that contained the same functionality, see Table 13. This

project was developed using mostly the ANSI C and C++ programming languages. If we

are to take the stance that DACE tool has been developed and that the application specific

code is the level of effort to implement a defined functionality then the DACE

78

implementation code was significantly less. Since the DACE tool was already available,

there was no need to develop an architecture to support this effort.

Table 13. System Implementation Characteristics
Measurement R&D Project DACE

Total Lines of Code Utilized 2019 463

Execution Time (ms) 119.4 129.6

Total Application Load Time(s) 0.68 5.66

Script Load Time (ms) N/A 66

System Size (KB) 2033.13 1111

The system execution time between the two solutions shows that the R&D project

solution actually executed the specific functionality faster than the DACE solution. This

outcome is partially due to the languages used and most likely the sensor data simulation

execution time. The original project’s development language is considered a lower level

language which typically contains less overhead and executes faster than higher level

languages. The DACE tool was developed in the C# language and runs in a virtual

software machine which will have more execution management overhead.

The test sensor data were housed in a comma separated file. These data were

accessed through the file and published or made available in fixed intervals. File access

operations are known to have access overhead to them which may have affected the data

availability to the system.

The application load time between the two systems was significant. The load time

o f the DACE system was much greater than on the original implementation. The

increased load time is due to the application startup and running within essentially a

79

software execution virtual machine in Mono. There are optimization techniques that can

be implemented to gain efficiencies but they have not been addressed at this point in

time.

The final item of comparison is the system size or size o f the code that was

generated and utilized. The original project was over 80% larger in size then the DACE

implementation. This was mostly due to the W indows User Interface that was developed

to present the data. Graphical interfaces are typically larger in size then a generic shell

window like what was utilized in the DACE test scenario.

This test scenario provided a view of the flexibility of the DACE architecture. The

test also showed, given the defined architecture and conceptual usage possibilities, the

DACE initial design was successful. The current limitation that did surface was the

significant application load time and differences on the various operating system

platforms. Additional testing and optimization techniques need to be evaluated to gain

efficiencies in this area.

4.2.3 System Implementation Comparison and Evaluation

To evaluate the efficiency and magnitude of the test scenario design, the DACE

test scenario was compared to a similar effort that was implemented using a typical R&D

project. The overall life cycle of the project lasted 63 day or 11.8 weeks shown in Table

14. The projects life cycle consisted of requirements analysis, research, design,

development, and system testing.

80

Table 14. R&D Project Effort Data

Phase

Time Frame
(Working
Days) Weeks

Approximate
Cost

Requirements Analysis 3 0.6 $4.5K

Research 5 1 $7.6K

Design 8 0.8 $12K

Development 20 4 $30.5K

Testing 15 3 $22.8K

Documentation 10 2 $14K

Close Out 2 0.4 $3K

Totals: 63 11.8 $94.4K

To compare this effort with the DACE test scenario and provide a one to one

development analysis, it was determined that the major items effected based on the

current state o f the design, where the design and development phases o f the original

effort. The general evaluation approach was to assume the current version o f the DACE

tool was available to be utilized for the R&D project effort. This means that the typical

project phases and administration would still apply.

The implementation of the DACE scenario required a determination o f the 12

Variable Elements o f configuration that would align to the required design requirements.

Since the work could be distributed to multiple PEMs in many configurations, the choice

to provide a three PEMs approach, aligned with the R&D project implementation as far

as physical configuration. This decision was determined in two hours and aligns with the

Design phase in the R&D projects life cycle. This phase took the team eight working

days due to the evaluation of the architectures that could have been deployed.

The next major impact area for the evaluation of the DACE design against the

R&D project was the Development phase. This phase took the design team a total o f 20

working days to complete. This was due to the creation of the architecture for the system

81

which contained modules for both Linux and Windows. This was needed before even the

scenario specific algorithms could be addressed. This design was implemented by two

software engineers. The DACE test scenario “Development” effort consisted only o f the

development of the scenario specific algorithms which consisted o f 463 lines o f code.

This took a total of six hours to develop, test, and debug.

Table 15 shows the differences between the R&D project and the DACE test. It

provides insight to where the impacts would have occurred if the DACE tool could have

been utilized within the project instead of the typical system development methodology.

Comparisons of the two efforts shows a large efficiency gain in the level o f effort needed

to implement the system. This then translates to a schedule savings of 27 working days

and a cost savings o f approximately $41 thousand dollars. This provides a huge value to a

project and customers success.

Table 15. R&D Project Implementation Comparison
S &D Project DACE

Phase

Time Frame
(Working
Days) Weeks

Approximate
Cost

Time
Frame
(Working
Days) Weeks

Approximate
Cost

Requirements
Analysis 3 0.6 $4.5K 3 0.6 $4.5K

Research 5 1 $7.6K 5 1 $7.6K

Design 8 0.8 $12K 0.25 0.00625 SOAK
Development 20 4 S30.5K 0.75 0.01875 S1.1K
Testing 15 3 $22.8K 15 3 $22.8K

Documentation 10 2 $14K 10 2 $14K

Close Out 2 0.4 $3K 2 0.4 $3K

Totals 63 11.8 $94.4K 36 7.025 S53.4K
Savings 27 4.775 $4 IK

Upon further maturity of the DACE framework, both the Documentation and

Testing phases could also be impacted as well. Based on the idea that the DACE general

architecture documentation will be available, only the specific generated system and the

application specific functionality would need developed for the design. A documentation

standard template could also be developed that could provide system implementers a

head start on their projects documentation efforts.

System testing is always a critical phase of a projects life cycle, whether talking

about unit, integration, verification or even final validation testing. An efficiency gain

could be gained in this area as well, based on the fact that the DACE framework would

have already been and continues to be tested during each development effort. This means

that every possible customer benefits on testing and bug fixes based on a common tool

mentality. As the system matures, based on the level of testing and implementations

fielded, a higher level o f quality assurance will be achieved. This translates to lower

levels of life cycle costs and system failures due to implementation errors.

83

CHAPTER 5

CONCLUSIONS

This project’s focus was to develop a framework that could be used to develop a

Common Knowledge Engineering Framework for Data Assimilation, Correlation, and

Extrapolation application that would allow end users to define or generate their preferred

methodology for analysis. The applicability o f such a design provides a very good base

for analyzing complex situations that are driven by multiple criteria.

5.1 Conclusions

The purpose o f this project was to provide a common software framework to

address data assimilation, correlation, and extrapolation. The intent was for this tool to

become a foundation application for complex system design and integration efforts.

Based on the current design state o f this phase and the limited testing that has been done,

the implementation o f this framework was successful in aligning with the objectives. The

comparison between a R&D project and the DACE test scenario showed significant

efficiencies in a project schedule and cost. This provides significant value to customers

which allows them to address complex problems in a cost effective manner. It also

provides a strong mechanism to get approval and funding from sponsors on technical

problems that may seem extremely complex or push the current feasibility envelope.

The framework would have significant impact to system development efforts. The

framework was developed in a modular and configurable architecture, and able to support

the three main focus areas of data assimilation, correlation, and extrapolation in one

84

cohesive application. This ability allows the framework to be deployed in a variety of

situations.

When it comes to complex system designs, there is always a gap that needs to be

addressed for component integration. Often components have different types o f interfaces

and communication mechanisms. The DACE framework would be able to be the “glue”

or translation element for these components. The translation element would be achievable

without writing custom code, which is essentially the current process, by defining the

components communication schema and the information that needs to be translated. This

is important because the system developer may not have the ability to modify the

components within the system without providing Non-Recurring Engineering (NRE)

funding to the original manufacturer.

There is often a need to have the ability to analyze data, whether it is live or

historical in nature, utilizing multiple methods and performing cross correlation to the

results of each analysis method to provide a final output model. The DACE framework

would be designed to support this type of analysis fusion. This provides value to

academia and industry, by providing a common mechanism where analysis methodology

or methodologies is defined by the end user for a specific focus. For example, a system

needs to be analyzed for an IRAD project to determine the impact to a com pany’s

portfolio. It has been determined that the following methods would be utilized for this

effort: Failure Modes and Effects Analysis (Reliability), Fault Tree Analysis (Reliability),

Life-cycle Analysis (AKA Life-Cycle Assessment), and Value Chain Analysis (Firm

Level). W ithin the DACE framework each of these methods could be analyzed in their

own separate process. The results of each analysis would then, based on the users defined

85

cross relationship rules, be correlated together to provide a final solution set to the

defined scenario.

These situational application areas provide value to both the engineering

management and systems engineering disciplines. With the DACE framework,

significant efficiencies could be gained in both schedule and cost of a projects effort.

Engineering Management, from a federal market perspective, has a heavy focus

on the cost of an overall product development effort. The utilization of a common

application to integrate a system provides a significant cost savings relative to reduced

schedule and/or to resource allocation costs of developing a custom application to

interface components. The cost savings gained could even be across multiple projects.

This savings could translate to quicker break-even scenarios allowing companies to start

making profits on their designs, faster. If the project is able to leverage a reduction in

schedule based on not having to develop custom interfaces, this also could allow for

faster time to market.

System engineers will also gain significant benefit on projects that require quick

prototypes, feasibility studies, complex analysis methodology, and custom analysis

methods. This could possibly provide them additional justification to get buy-in for

internal research and development projects based on a common tool which does not

require a long programming cycle or purchase o f a different tool for each IRAD exercise.

To address “System of System” or highly complex problems, a tool with this type

of capability could be used. Even if the design does not predict or solve every issue, it

should at least provide a mechanism for moving forward on additional tool set

capabilities to address these types of situations.

86

5.2 Future Direction

This project, Phase I, focused on the Business Service Layer and interfacing

modules which are the heart o f the system. Additional testing and two more phases need

to occur to complete the full DACE framework. Since there are over 4,096 quantifiable

test cases based on the 12 variable elements defined, a fairly defined subset o f tests has

been defined (see Figure 31). Both phases provide a significant development challenge.

Both will have to support generic interfacing and expandability.

Test la s (Corel ICpmpenantillhraaangitwcwllonlVpe !Cm Mode Im m M | Metrics loata IcaweletiBwlamepetarieelMemw i
S in g le m a c h in e , 1 W in d o w s s in g le E x e c u ta b le D e b u g lo c a l Enabled Captured Enabled Enabled Sind*
j u s t t h e C o re 2 W in d o w s s in g le E x e c u ta b le D e b u g lo c a l Enabled Captured Enabled Enabled Single

3 W in d o w s s in g le E x e c u ta b le M h n lo c a l Enabled Captured Enabled Enabled Single
4 W in d o w s s in g le E x e c u ta b le R e le a s e lo c a l Enabled Caotured Enabled Enabled Sind*
S U M s in g l e E x e c u ta b le D e b u g lo c a l Enabled Captured Enabled Enabled Single
6 L inux s in g le E x e c u ta b le D e b u g lo c a l Enabled Captured Enabled Enabled Sind*
7 L inux s in g le * * • E x e c u ta b le M n n lo c a l Enabled Captured Enabled Enabled Single
8 L inux s in g le naK M i E x e c u ta b le R e le a s e lo c a l Enabled Captured Enabled Enabled Single
9 W in d o w s s in g le Servfea/Daemen D e b u g lo c a l Enabled Captured Enabled Enabled Sind*

1 0 W in d o w s s in g le multi pi* S e r v ic e /D a e m o n D e b u g lo c a l Enabled Captured Enabled Enabled Single
11 W in d o w s s in g le tingle S e r v ic e /D a e m o n Release lo c a l Enabled Captured Enabled Enabled Slngl*
12 W in d o w s s in g le muttlpte S e r v ic e /D a e m o n R e le a s e lo c a l Enabled Captured Enabled Enabled Sinde
13 Limn s in g l e sing!* S e r v ic e /D a e m o n D e b u g lo c a l Enabled Captured Enabled Enabled Sind*
14 L inux s in g le multiple S e r v ic e /D a e m o n D e b u g lo c al Enabled Captured Enabled Enabled Sind*
15 L inux s in g le slngl* S e r v ic e /D a e m o n Release lo c al Enabled Captured Enabled Enabled Slngl*
16 L inux s in g le multi pi* S e r v ic e /D a e m o n R e le a s e lo c al Enabled Captured Enabled Enabled Slnde

3 m a c h in e s . 17 W in d o w s s in g le t i i t f * E x e c u ta b le D e b u g d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
C o r e a n d 2 PE M s 18 W in d o w s s in g le muttipl* E x e c u ta b le D e b u g d i s t r i b u t e d Enabled Captured Enabled Enabled Single
2 P E M s W in d o w s 19 W in d o w s s in g le t if* e E x e c u ta b le fMease d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
2 PE M s L inux 2 0 W in d o w s s in g le E x e c u ta b le R e le a s e d i s t r i b u t e d Enabled Captured Enabled Enabled Slnde
a . W in d o w s P E M s a re 21 U l l U K s in g le ringN E x e c u ta b le D e b u g d i s t r i b u t e d Enabled Captured Enabled Enabled Slnde
o n t h e s a m e m a c h in e 22 L inux s in g le multiple E x e c u ta b le D e b u g d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
b . L inux PE M S a r e o n 23 L inux s in g le E x e c u ta b le M n m d i s t r i b u t e d Enabled Captured Enabled Enabled Single
o n t h e s a m e m a c h in e 24 L inux s in g le muMsfa E x e c u ta b le R e le a s e d i s t r i b u t e d Enabled Caotured Enabled Enabled Single

2 5 W in d o w s s in g le tingle Sente/Daemon D e b u g d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
2 6 W in d o w s s in g le muttipl* S e r v ic e /D a e m o n D e b u g d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
2 7 W in d o w s s in g le rind# S e r v ic e /D a e m o n Raiaas* d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
2 8 W in d o w s s in g le muttipl* S e r v ic e /D a e m o n R e le a s e d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
29 UnuK s in g l e Xf*l* S e r v ic e /D a e m o n D e b u g d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
3 0 L inux s in g le muttipl* S e r v ic e /D a e m o n D e b u g d i s t r i b u t e d Enabled Captured Enabled Enabled Single
3 1 L inux s in g le ting)* S e r v ic e /O a e m o n ft*t*M* d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
3 2 L inux s in g le multiple S e r v ic e /D a e m o n R e le a s e d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*

S m a c h in e s , 3 3 W in d o w s s in g le tingle E x e c u ta b le D e b u g d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
C o r e a n d 2 PE M s 3 4 W in d o w s s in g le muttipl* E x e c u ta b le D e b u g d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
2 PE M s W in d o w s 35 W in d o w s s in g le sir*** E x e c u ta b le R*i*as* d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
2 PE M s L inux 3 6 W in d o w s s in g le muttipl* E x e c u ta b le R e le a s e d i s t r i b u t e d Enabled Captured Enabled Enabled Sin**
a . W in d o w s P E M s a r e 3 7 Unux s in g le single E x e c u ta b le D e b u g d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
o n th e d i f f e r e n t m a c h in e 3 8 U n u x s in g le muttipl* E x e c u ta b le D e b u g d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
b . L inux PE M S a r e o n 3 9 L inux s in g le tlngi* E x e c u ta b le Release d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
o n th e d i f f e r e n t m a c h in e 4 0 L inux s in g le multiple E x e c u ta b le R e le a s e d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*

4 1 W in d o w s s in g le slngl* Sendee/Daemon D e b u g d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
4 2 W in d o w s s in g le multiple S e r v ic e /D a e m o n D e b u g d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
4 3 W in d o w s s in g le slngl* S e r v ic e /D a e m o n Release d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
4 4 W in d o w s s in g le multiple S e r v i c e /D a e m o n R e le a s e d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
45 Unux s in g le single S e r v i c e /D a e m o n D e b u g d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
4 6 L inux s in g le mutt! pit S e r v ic e /D a e m o n D e b u g d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
4 7 L inux s in g le sing)* S e r v ic e /D a e m o n Release d i s t r i b u t e d Enabled Captured Enabled Enabled Sind*
4 8 L inux s in g le multiple S e r v ic e /D a e m o n R e le a s e d i s t r i b u t e d Enabled Captured Enabled Enabled Sinde

Figure 31. Additional System Test Cases

87

The next phase of the development will focus on the Common Data Engine within

the Data Service Layer. This will provide a generic interface into multiple types o f data

warehouses, which can be extendable. It will also require the ability to duplicate, share,

and synchronize across multiple types of data warehouses. This phase will also have to

address redundancy and fail safes for the Core, the W CF server, the Pman, and the Dman.

Additionally, based on the premise o f DACE, which is to provide a framework where any

system design restrictions would be on the end users ability to implement the system not

the frameworks inability to support, some additions and changes will be implemented.

These are:

1. Providing a Business Layer interface that does not require M ono into the

Pman.

2. Move the Extrapolation and Correlation engines into the Processing Entity

component. This will allow for each PEMs to perform extrapolation and

correlations prior to posting its data back to the Core Module. It will also

allow for them to be more flexible on where they can reside within the

physical system.

The third and last phase will focus on the D CU’s graphical interface. It will

provide a graphical system design canvas. The canvas will allow users to drag and drop

system components from a toolbox and organize them in a fashion that suits the

application. The result would look similar to the system diagrams provided in this paper.

The end user will be able to either double click or right click on the object and configure

the module as the design requires. This includes specifying component settings and even

88

defining the module’s Procedures. Procedure development will have several options.

These include:

1. Using a flow chart symbols.

2. Using a software development module that will be provided that allows

programmers to develop their procedures in C#.

3. Editing the DACE Configuration Template directly within the DCU.

5.3 Lessons Learned

This project’s major focus was to provide an analytic tool that provided various

degrees of flexibility while not limiting the end user in its implementation. To do this

required a lot of design considerations. The use o f Agile development methods for

iterative design considerations was necessary to align the design back to its requirements.

This method was used during the design and development phases which resulted in

modules evolving through multiple iterative changes. These changes led to schedule

slippages and documentation rework, ultimately making the scope o f the project much

larger than anticipated. The full scope o f this project was initially estimated to be

equivalent to four man years. After looking back on the project and what still needs to be

completed, the project resource allocation is estimated to be equivalent to eight man years

o f software engineering and testing.

Additional Lessons:

1. The level o f application complexity increases as the level of application

flexibility/usability increases.

Current technologies have significant capabilities; the key to developing

something new with significant value is to keep up with the technologies and look

for synergies to use them together to develop something that fulfills a need or gap.

90

REFERENCES

Burgelman, R., Christensen, C. M., Wheelwright, S. C. (2004). Strategic M anagement o f

technology and innovation. New York, NY: The McGraw-Hill Companies, Inc.

Clemen. R. T (1996). Making H ard Decisions: An Introduction to Decision Analysis.

Pacific Grove, CA: Brooks/Cole Publishing Company

Eisner, H. (2002). Essentials o f Project and Systems Engineering Management. New

York, NY: John W iley & Sons, Inc.

Gheorghe, A. (2005). Integrated Risk and Vulnerability M anagement Assisted by

Decision Support Systems: Relevance and Impact on Governance. Dordrecht,

Netherlands: Springer

Kerzner, H. (2006). Project Management: A Systems Approach to Planning, Scheduling,

and Controlling. Hoboken, NJ: John W iley & Sons, Inc.

Phadke, M. S. (1989). Quality Engineering Using Robust Design. Upper Saddler River,

NJ: P T R Prentice-Hall, Inc.

Royer, P. S. (2002). Project Risk Management: A Proactive Approach. Vienna, VA:

Management Concepts, Inc.

Shilo, O. (2014). CS-Script (Version 3.8.2) [software]. Retrieved from

http://www.csscript.net/

http://www.csscript.net/

91

APPENDICES

APPENDIX A: DACE REQUIREMENTS TRACEABILITY MATRIX

Table 16. DACE Requirements Traceability Matrix

ID
Functional

Requirem ent
Status

Software
Com ponent(s)
o r M odule (s)

Implemented
In

001 Cross platform compatibility ALL ALL

002
Ability for work flow logic to be single or
multiple threaded PEMs PEMs

003 Ability to perform data Correlation
Correlation
Engine

Correlation
Engine

004 Ability to perform data Extrapolation
Extrapolation
Engine

Extrapolation
Engine

005 Ability to store data in various forms Dman Dman
006 Ability to provide system health status DSM DSM
007 Ability to provide performance metrics ALL ALL

008
Ability to provide access level
authorization Pman Pman

009 Ability to encrypt data
WCF server and
client

WCF server
and client

010 Ability to transfer data
WCF server and
client

WCF server
and client

Oil Ability to provide reliable messaging
WCF server and
client

WCF server
and client

012 Ability to interact with real time data PEMs PEMs
013 Ability to utilize stored or captured data PEMs, PEMs,

014
Ability to execute flow logic on a single
or multiple cores PEMs PEMs

015
Ability to support distributed
configurations ALL ALL

016
Ability to dynamically configure and
update a system DCU DCU

017 Ability to be expandable
Pman, Dman,
PEMs

Pman, Dman,
PEMs

018 Ability to create executable applications DCU DCU
019 Ability to create service applications DCU
020 Ability to run in a debug mode PEMs

Group 2 Group 3

1 2 V a r i a b l e E e m e n t s
3 T i e r A r c h i t e c t u r e
P r e s e n t a t i o n S e r v i c e L a y e r
(P S L)
B u s i n e s s S e r v i c e L a y e r (B S L)
D a t a S e r v i c e L a y e r (D S L)

C o m p o n e n t s T e c h n o l o g y

«•o
0

2 Pr
oc

es
s

|
Pr

oc
es

si
ng

|

A
pp

lic
at

io
n

|
«
05

a C
or

re
la

tio
n

|
Ex

tra
pl

oa
tio

n
|

St
or

ag
e

|
He

al
th

|

M
et

ric
s

|
Se

cu
rit

y
|

£
•Qm
e

cc

D A C E
C o n f ig u r a t i o n
U tility (D C U)

P r e s e n t a t i o n
M a n a g e r

(P M a n)

C o r e P r o c e s s
E n t i t y (P E)

D a t a
M a n a g e r
(D m a n)

.N
E

T
/M

on
o

a t
O W

C
F

X P S L , B S L W C F S e r v e r X X X X

X P S L , B S L , D S L W C F C l ie n t X X X X X X X X

X X X X X X X X X X X X P S L , B S L S c r i p t E n q in e X X X X

X X X X X X X X X X X X B S L S y s t e m M a n a g e r (D S M) X X X

X X B S L • C o r r e l a t i o n E n g in e X X X

X X B S L 3
■o E x t r a p o la t i o n E n g in e X X X

X X B S L
0

3 r C o m m o n D a ta E n g in e X X X

X X X X X X X X X X X X P S L S y s t e m T r a n s l a t o r X X X

P S L M a t h E d i to r X X X

X X X X X X X X X X X X P S L S y s t e m P a r s e r X X X

K X X X P S L S c r iD t G e n e r a t o r X ft)<

3 T i e r A r c h i t e c t u r e P S L P S L B S L B S L D S L

1 . M o d e l : L o c a l v s . D i s t r ib u te d M o d e l X X X X

2 . P r o c e s s : S in g le T h r e a d v s . M u l t ip le T h r e a d P r o c e s s X X

3 . P r o c e s s i n g : S i n g l e C o r e P r o c e s s i n g v s . M u lti C o r e P r o c e s s i n g a
■g P r o c e s s i n g X X

4 . A p p l ic a t io n : E x e c u t a b l e v s . S e r v i c e A p p l ic a t io n • A p p l ic a t io n X X X

5 . D a t a : R e a l - t im e D a t a v s . C a p t u r e d D a t a i D a t a X X X
6 . C o r r e l a t i o n : C o r r e l a t e d A n a l y s i s (F u s io n) v s . U n c o r r e l a t e d

Ui C o r r r e l a t i o n X X

7 . E x t r a p o la t i o n : A c t iv e v s . In -A c t iv e 1 E x t r a p o la t i o n X X - - Group 4

8 . S t o r a g e : S in g le v s . M u lt ip le S t o r a g e C o n t a i n e r s X S t o r a g e X X X

9 . H e a l th : S y s t e m C o n f ig u r a t io n H e a l th m o n ito r in g : A c t iv e v s In -A c t iv e > H e a l th X X X X

1 0 . M e t r i c s : S y s t e m O p e r a t i o n a l m e t r i c s : A c t iv e v s . I n - A c t iv e T" M e t r i c s X X X X

1 1 . S e c u r i t y : A c c e s s c o n t r o l , e n c r y p t i o n , r e d u n d a n c y c h e c k S e c u r i t y X X X X
1 2 . R e l ia b i l ity : G u a r a n t e e d D e l iv e ry , R e d u n d a n c y R e l ia b i l i ty X X X X X

Figure 32. DACE Infrastructure Relationship

vo
NJ

APPENDIX
B: DACE

IN
FR

A
STR

U
C

TU
R

E
R

ELA
TIO

N
SH

IP
M

A
T

R
IX

93

APPENDIX C: DCU CONFIGURATION PARAMETERS

1. Definition o f client access

a. Number of clients

i. Each Client

1. Definition o f Client ID

2. Definition o f Client IP

3. Definition o f Client Operating System

4. Definition of Client Access Level

5. Definition of Data Encryption

6. Definition of Data Cyclic Redundancy Check (CRC)

7. Definition of Performance Metrics Reporting

2. Definition o f number o f components (Each component)

a. Each Component

i. Definition o f Component ID

ii. Definition o f Components IP

iii. Definition o f Components Operating System

iv. Definition of Execution Process (Threads)

v. Definition o f Processing (CPU Cores)

vi. Definition of components operations

1. Definition o f input data

a. Definition o f data source

b. Definition of data format

94

c. Definition o f data types

2. Definition o f operations on data

a. Definition of process

b. Definition of internal variables

3. Definition of output data

a. Definition of distribution rights

b. Definition of encryption option

c. Definition of storage options

4. Definition of Performance Metrics

3. Definition of Correlation Operations

a. Definition o f input data

i. Definition o f data source

ii. Definition o f data format

iii. Definition of data types

b. Definition o f operations on data

i. Definition of process

ii. Definition of internal variables

c. Definition of output data

i. Definition of distribution rights

ii. Definition of encryption option

iii. Definition of storage options

d. Definition o f Performance Metrics

4. Definition of Extrapolation Operations

95

a. Definition o f input data

i. Definition of data source

ii. Definition of data format

iii. Definition of data types

b. Definition of operations on data

i. Definition o f process

ii. Definition o f internal variables

c. Definition o f output data

i. Definition of distribution rights

ii. Definition of encryption option

iii. Definition of storage options

d. Definition of Performance Metrics

APPENDIX D: DACE ALIGNMENT WITH LEVELS OF INFORMATION

SYSTEMS INTEROPERABILITY (LISI)

In 1993, it was recognized that there were different levels of technical

interoperability within military departments and the systems did not interact well. The

Levels of Information Systems Interoperability (LISI) was developed to provide a

maturity model and process for determining overall joint interoperability requirements,

assessing information systems against those requirements, and providing guidance for

solutions and transition paths to meet those requirements. LISI is comprised of seven

elements; the LISI Interoperability M aturity Model, LISI Reference Model, LISI

Capabilities Model, LISI Implementation Options Tables, Interoperability Profile, LISI

Metric, and LISI Products.

The LISI Reference Model is the pinnacle of the LISI process. It is designed to

provide guidance towards compliance to technical characteristics supported by the

Department o f Defense (DoD). The reference model is essentially a lookup table where

the rows refer to the five interoperability levels and the columns refer to defined

attributes (see Table 17). The five levels of interoperability are Level 0: Isolated, Level 1

Connected, Level 2: Functional, Level 3: Domain, and Level 4: Enterprise. The four

attributes are Procedural (P), Applications (A), Infrastructure (I), and Data (D).

97

Table 17. LISI Reference Model

Description
C om puting
Environm ent Level P A I D

Enterprise Universal 4
Enterprise
Level Interactive

Multi-
Dimensional
Topologies

Enterprise
Model

Domain Integrated 3
Domain
Level Groupware

World-wide
Network

Domain
Model

Functional Distributed 2
Program
Level

Desktop
Automation Local Networks

Program
Model

Connected Peer-to-Peer 1
Local/Site
Level

Standard
System
Drivers

Simple
Connection Local

Isolated Manual 0
Access
Control N/A Independent Private

Over the last four years, a major focus for me has been designing Unmanned

Surface Vessels (USVs) for the Navy. The major challenge besides designing algorithms

for machines to operate in various conditions as a human would operate the craft, is the

ability to integrate systems. In this project, we are constantly evaluating new products.

This often means a custom development effort to be able to integrate and utilize the

system to test, collect and analyze the systems. There are essentially two types o f possible

solutions that we test, Government off the shelf (GOTS) and commercial designs. Both

options require time and money. For GOTS systems, agencies and their contractors need

to get involved to determine the feasibility, schedule, and cost to make the changes to

integrate which costs significant money and time. For commercial systems, the biggest

challenge is to get a company to agree to make changes for testing since there is no

guarantee o f future sales. One would deduce that the goal would be to create a plug and

play system which is based on a mature standard that is global in nature. Even with this,

which was done, it has not been enough. There are too many vendors outside of the

98

normal military focused market that have very good products that do not comply with

standards within the maritime and robotic industry.

The DACE concept was designed to include the ability to function as a translator

and interconnection agent between components, systems, and even system o f systems

designs. The construct was to address the common issue of interoperability between

systems down at a mission critical warfighter level. This goal was not disjoint to the goal

of providing a Common Knowledge Engineering Framework for Data Assimilation,

Correlation, and Extrapolation. The architecture construct had already encapsulated the

process distribution capability for data assimilation. The DACE model, due to the

configuration flexibility, aligns to three levels with the LISI model and possibly provides

value to a fourth level for non-compliant systems to operate in.

To be considered interoperable to any level within the LISI Reference Model, an

application needs to be evaluated against the four attributes: Procedural (P), Applications

(A), Infrastructure (I), and Data (D) at each level. The next sections will evaluate DACE

concept against these four attributes at all levels. W ithin each level, one attribute is

considered the key attribute for that level.

Level 0 consists o f isolated systems that employ manual data transfer process.

This includes end user copying data to CDs and other memory devices and physically

carrying them to another computer for utilization. The primary enabler for the key

interoperability category for this level is the “Procedures” attribute within the LISI

Reference Model.

At this level, the “Procedures” attribute is described to focus on access control

features. Systems access needs to be defined and documented to have procedure clarity.

99

This includes system login, security, data movement, and data disposal. The DACE

model can be configured to operate on a local machine with no external connections. This

assumes that all data to be utilized resides on the computer system in question, either in

memory or in the unit’s peripherals.

The “Applications” attribute, at this level, plays no role at this level. The transfer

of data is controlled by manual operation and is independent of applications.

The “Infrastructure” attribute, at this level, is independent. Since there is no

connection between systems, then there is no common infrastructure required. Again, the

DACE model can be configured to run in a stand-alone configuration provided its data set

is local. This means that there are simple data exchanges with independent databases. The

DACE model allows for various types o f information exchanges. General interactions

with sensors and embedded systems comply with this level’s data distribution attribute.

The last attribute is the “Data” attribute, at this level, the focus is on local data

models. This means that data schemas are independent and give little consideration to

interoperability. The DACE concept planned to provide generic data storage operations

with a translation layer for interfacing within the DACE architecture. This construct

aligns with the levels “Data” attribute. This does bring up a good point on future data

interoperability. The Data Service Layer will need a customizable data extraction

mechanism, which allows the end user to define what format/presentation data extraction

will be extracted too.

Level 1 consists of peer-to-peer connectivity within the environment. This means

that there is a communication link for device to device. This could be serial (RS-232, RS-

422, RS-485), Ethernet (Telnet, FTP, etc.) or even buses (I2C, CANBUS, etc.). The data

100

exchange is typically small amounts of data like, small sensor messages up to text files.

The connections are local such as on a Local Area Network (LAN) and the primary

enabler for the key interoperability category is “Infrastructure” within LISI Reference

Model table.

At this level, the “Procedures” attribute is described to focus on local and sight

level procedures. The DACE model can be configured to connect locally. This means that

the application can connect to a LAN, RS-232, or even a USB. There is a direct

dependence on the computers I/O capabilities but the model provides no limitation to the

LISI Level 1 specification in this configuration.

The “Applications” attribute, at this level, is characterized to focus on simple data

exchanges electronically. The DACE model can be configured to exchange, or to gather,

data from sensors, embedded devices, and other components for utilization within the

DACE framework. DACE could then do higher level operations to correlate and

extrapolate information to provide additional situational awareness or understanding.

The “Infrastructure” attribute, at this level, is focused on electronic connections

among components. Specific focus is on peer-to-peer wired connections with common

protocols. The DACE model allows for various types of communications which include

Ethernet and serial. W ithin the Ethernet method are mechanisms such as Telnet, TCP/IP,

UDP, and FTP, all of which align with this level’s infrastructure focus.

The last attribute is the “Data” attribute, at this level, is focused on local data

models. This means that there are simple data exchanges with independent databases. The

DACE model allows for various types of information exchanges. General interactions

with sensors and embedded systems comply with this level’s data distribution attribute.

101

Level 2 consists of distributed interoperability within the environment. The ability

to provide and access web-based data is a key component. The ability of independent

applications to interact and process complex information in both a direct and a distributed

fashion is the key feature for this level. Information can consist of simple data to audio,

video, and picture images. The primary enabler for the key interoperability category is

“Applications” within LISI Reference Model table.

At this level, the “Procedures” attribute is described to focus on program type

procedures. This means that systems, at this level, should have similar procedures such as

planning, training, and staffing, which align to a common operating environment. The

DACE model general configuration capabilities can be configured to operate in this level.

This is based on the concept o f moving complex data in a distributed environment. The

DACE model does have a limiting factor that has not been considered to function at this

level. Applications that run at this level should comply with Department of Defense

(DoD) 8320 data standards or have a migration plan to comply to this standard.

Assuming this is still the primary standard for DoD, there are two possible solutions to

meet this requirement. The first is to plan to comply and build to this standard. A review

of this standard is needed to determine the impact to the development time frame. It may

provide setbacks and expand the scope o f this project effort. The second option is to

create a plan to comply. This would be determined after a review of the standard and the

impact to the project.

The “Applications” attribute, at this level, is characterized by the increased

complexity o f applications and their ability to have a common comprehension o f the data

set. The DACE model concept has not specifically called out any government

102

applications on which to interact. The concept is to provide a generic means to interact

with applications, not bound the design to certain fixed applications. If the end user

wishes to interact with another application and they understand the communication

mechanisms for that application, then the end user has to define a component within the

framework and its communication characteristics.

The “Infrastructure” attribute, at this level, is focused on electronic connections

among many components on LANs. Specific focus is on the ability to establish

communications with other systems without the need to change hardware. The DACE

model allows for various types of communications which includes network

communications. The Ethernet method contains mechanisms that align with this level

such as Transmission Control Protocol (TCP)/Intemet Protocol (IP), Hypertext Transfer

Protocol (HTTP), and Real Time Streaming Protocol (RTSP); all align with this levels

infrastructure.

The last attribute is the “Data” attribute, at this level, is focused program-wide,

independent and sometimes duplicate databases. This means that there are complex data

exchanges with independent databases and there are common tools like data dictionaries.

The DACE model allows for various types o f information exchanges. As long as the end

user knows the information to interact with a system, it can be configured to interoperate.

Level 3 consists of interoperability within an integrated environment. W here there

are domain level data models and procedures for interaction and sharing. In this level

there is multiple application to application interactions but only have a local

understanding of the domain. At this level, the primary enabler is the data attribute.

103

At this level, the “Procedures” attribute is described to focus on an application’s

ability to conform to the doctrine of the domain. This is difficult due to each service

containing their own doctrine for development of systems for Joint operations. The

DACE model could be operated within this level. The framework would not be the

limiting factor. The limiting factor would again be the ability o f the end user to acquire

the doctrine and configure DACE to meet the dom ain’s requirements. The DACE

concept is not a limiter, it is an enabler. The model provides a generic capability that

allows end users the ability to configure it to their situational needs.

The “Applications” attribute, at this level, is characterized to focus on the ability

to cross discipline or organization boundaries. The utilization of higher level

development languages that possess Object Oriented capabilities is strong. The DACE

model is planned to be developed in C# for Business and Data Service Layers, and ASP

for its Presentation Service Layer. Both languages are considered higher order languages

with advanced capabilities. The DACE model has no designed restrictions to

organizational boundaries. If there was to be a boundary issue when utilizing the DACE

model, this would be in the organizational IT restrictions. The only way to resolve that

issue is for the DACE model to get LA certified for Nonsecure Internet Protocol Router

Network (NIPRNet) and Secret Internet Protocol Router Network (SIPRNet).

The “Infrastructure” attribute, at this level, is focused on a wide area network

(WAN) capability. Specific focus is on the ability to interact over a broader domain,

consisting o f many LANs. The DACE model has no designed restrictions to

organizational boundaries.

104

The last attribute is the “Data” attribute, at this level, the focus allows for direct

database interactions. This includes having domain support artifacts such as data

dictionaries and standard data elements. The DACE m odel’s only restrictions under this

attribute would again be the compliance to DoD standard 8320.

Level 4 consists of interoperability from an enterprise level in a universal

environment. It is comprised o f enterprise level data modules and procedures for

interaction. At this level, applications share data and interact in a universal, integrated

manner. This level is considered the ultimate goal of interoperability.

At this level, the “Procedures” attribute is described to focus on how well a

system complies with the enterprise doctrine. Its enterprise system directly meets

enterprise requirements and provided cross domain functions. The DACE model has no

designed restrictions to enterprise operations. The biggest concern would be the end

user’s ability to obtain and define the enterprise doctrine within DACE.

The “Applications” attribute, at this level, is characterized to focus on multiple or

redundant applications. In this context the DACE model would most likely fit as either a

data assimilation and correlation engine, or a means to pull system data into this level that

are not compliant at this level. This capability provides significant value to level

capabilities. If the ultimate goal is to provide a level where all data interaction complies

to an enterprise doctrine, then DACE could provide an interface at this level to allow sub

compliant systems the ability to have their data sets present. It is import to specify data,

because this would not make the application itself capable o f running at this level.

The “Infrastructure” attribute, at this level, is focused on multi-dimensional

networks. This can be in the form of location, security, or even virtual networks. A major

105

characteristic is its ability to replicate capabilities at lower levels. As in the previous

statement, the ability to provide lower level functionalities to a higher level is a capability

within DACE.

The last attribute is the “Data” attribute, at this level, the focus allows for

universal data models and supporting artifacts. This level is indicative o f a fully

interoperable data environment with shared databases and servers. The DACE model

complies with interoperability and the ability to correlate and extrapolate information for

advanced analysis.

The DACE model, when evaluated against the LISI Reference Model held up

fairly well. It has been shown that in general, the architecture could operate in theory

within Levels 1 through 4. There are three deficiencies that have been identified,

compliance to DoD 8320, IA compliance, and a possible issue of end users acquisition of

the system doctrine and procedures to utilize DACE to interact with other applications

within a DoD domain. Out of these deficiencies only the DoD 8320 can be addressed

initially. The IA compliance item cannot be addressed until the full application is

complete.

106

VITA

Edward P W eaver
Department o f Engineering Management and Systems Engineering

Old Dominion University
5155 Hampton Boulevard

Norfolk, VA 23529

Mr. W eaver has more than 20 years of engineering experience in design, development,
and testing o f complex systems. He has extensible experience in both software and
electrical engineering disciplines and has provided engineering expertise for both the
military and commercial applications in: unmanned surface vessels and intelligent
systems; industrial sensors; modeling and simulation; embedded systems; audio and
video, analog and digital high speed designs.

EDUCATION
M aster of Science Degree in Engineering Management
George W ashington University, M ay 2007

Bachelor in Computer Engineering
Old Dominion University, May 2001

PROFESSIONAL EXPERIENCE
October 2008 to Present
Project Manager/Principal Systems Engineer, W. R. Systems, Ltd.

May 2007 to October 2008
Project M anager/Senior Engineer, MTS Technologies, Inc.

December 2003 to May 2007
Design Engineer/Product Manager, Teledyne Hastings Instruments

September 2000 to December 2003
Design Engineer, Leitch, Inc.

PATENTS
#: 8,184,296 B2, Emissions Monitoring Apparatus, System, and Method

AWARDS & CERTIFICATIONS
Certified Project M anagement Professional (PMP)
Certified Software Development Processional (CSDP)
Reliability Centered M aintenance (RCM), Level 2 Certification

	Old Dominion University
	ODU Digital Commons
	Spring 2015

	A Common Knowledge Engineering Framework for Data Assimilation, Correlation, and Extrapolation (DACE)
	Edward P. Weaver
	Recommended Citation

	00001.tif

