
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Engineering Management & Systems
Engineering Theses & Dissertations

Engineering Management & Systems
Engineering

Winter 1996

Dynamic Scale Genetic Algorithm: An Enhanced Genetic Search Dynamic Scale Genetic Algorithm: An Enhanced Genetic Search

for Discrete Optimization for Discrete Optimization

Bela Dange Joshi
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/emse_etds

 Part of the Industrial Engineering Commons, Operational Research Commons, and the Structures and

Materials Commons

Recommended Citation Recommended Citation
Joshi, Bela D.. "Dynamic Scale Genetic Algorithm: An Enhanced Genetic Search for Discrete Optimization"
(1996). Doctor of Philosophy (PhD), Dissertation, Engineering Management & Systems Engineering, Old
Dominion University, DOI: 10.25777/hnhx-xw61
https://digitalcommons.odu.edu/emse_etds/98

This Dissertation is brought to you for free and open access by the Engineering Management & Systems
Engineering at ODU Digital Commons. It has been accepted for inclusion in Engineering Management & Systems
Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information,
please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/emse_etds
https://digitalcommons.odu.edu/emse_etds
https://digitalcommons.odu.edu/emse
https://digitalcommons.odu.edu/emse
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.odu.edu%2Femse_etds%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.odu.edu%2Femse_etds%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/224?utm_source=digitalcommons.odu.edu%2Femse_etds%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/224?utm_source=digitalcommons.odu.edu%2Femse_etds%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds/98?utm_source=digitalcommons.odu.edu%2Femse_etds%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

DYNAMIC SCALE GENETIC ALGORITHM:

AN ENHANCED GENETIC SEARCH FOR DISCRETE OPTIMIZATION

by

Bela Dange Joshi
M.S. December 1992, University of Tennessee

A Dissertation submitted to the Faculty of Old Dominion University in Partial Fulfillment
of the Requirement for the Degree of

DOCTOR OF PHILOSOPHY

ENGINEERING MANAGEMENT

OLD DOMINION UNIVERSITY
December 1996

Approved by:

Resit Unal (Director)

Laurence D. Richards (Member)

Bilhe M. Reed (Member)

M^rk Fleischer (Member)

m e s Schwing (Member)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

DYNAMIC SCALE GENETIC ALGORITHM:

AN ENHANCED GENETIC SEARCH FOR DISCRETE OPTIMIZATION

Bela Dange Joshi
Old Dominion University, 1996

Director: Dr. Resit Unal

The minimization of operations and support resources of reusable launch vehicles

is a complex task, involving discrete optimization and the simulation domain. Genetic

algorithms, offering a robust search strategy suitable for integer variables and the

simulation domain, can be applied to minimize these resources. This research developed

an enhanced genetic algorithm for problems with a linear objective function, the most

common class of discrete optimization problems. The dynamic scale genetic algorithm

developed here incorporates concepts of implicit enumeration to enhance search. This is

achieved by utilizing problem specific information to refine the solution space over

successive generations. The utility of the proposed algorithm was demonstrated by

comparing its performance, in terms of quality of solutions produced, to that of the simple

genetic algorithm. For all test problems, the dynamic scale genetic algorithm consistently

produced better solutions in fewer generations. The proposed algorithm was successfully

applied to optimize the operation and support resources of reusable launch vehicles,

through a discrete event simulation model. The least cost solution so obtained represents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

an improvement over both the simple genetic algorithm, and the previous manual

approach of minimizing operation and support resources.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my first teachers, my parents

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I express sincere appreciation and gratitude to Dr. Resit Unal, whose unswerving

enthusiasm, patience, and guidance helped me throughout the research and graduate

program. I am grateful that he supported me as a research assistant while working on this

project. I also thank Dr. Laurence Richards, Dr. Billie Reed, and Dr. Mark Fleischer for

their interest and insightful suggestions. Sincere thanks to Dr. James Schwing for helpful

comments.

This research was sponsored by NASA Langley Research Center. I would like to

especially thank Doug Morris and Nancy White of the Vehicle Analysis Branch, NASA

for the support they extended during this research. All computations were performed on

the SUN SPARC® Station of the Vehicle Analysis Branch.

Finally, I thank my husband Ravi Joshi for making the dream possible. His

undying faith, patience and belief through the course of my graduate program, were a

tremendous source of inspiration and support.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Page

LIST OF TABLES...viii

LIST OF FIGURES..ix

Chapter

1. BACKGROUND AND MOTIVATION.. 1

1.1 Introduction... 1
1.2 The Operations and Support Problem..4
1.3 Simulation Optimization in the Discrete Domain..5
1.4 Purpose of the Study...9
1.5 Contribution... 11
1.6 Outline..12

2. LITERATURE REVIEW..14

2.1 The Genetic Algorithm... 14
2.2 Review of Literature..18
2.3 Summary of Literature Review Results..28

3. METHODOLOGY: DYNAMIC SCALE GENETIC ALGORITHM....................32

3.1 Introduction.. 32
3.2 Theoretical Basis...34
3.3 Incorporating Partial Enumeration Concepts..38
3.4 Dynamic Scale Genetic Algorithm (DyScGA)....................................... 39
3.5 Features of the Dynamic Scale Genetic Algorithm.................................. 45
3.6 Advantages of DyScGA.. 46
3.7 Limitations of DyScGA..48
3.8 Implementation of DyScGA..50
3.9 Verification and Validation...50
3.10 Summary... 64

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Page

4. RESULTS AND DISCUSSION... 66

4.1 Introduction.. 66
4.2 Problem 1.. 67
4.3 Problem I I .. 74
4.4 Problem m : Operations and Support Simulation Optimization..............80
4.5 Simulation Optimization Framework...82
4.6 Problem HI: Formulation...88
4.7 Problem HI: Experimental Results...93
4.8 Problem HI: Least Cost Allocation of Resources....................................99
4.9 Summary.. 101

5. CONCLUSIONS AND FUTURE RESEARCH..102

5.1 Introduction.. 102
5.2 Dynamic Scale Genetic Algorithm... 103
5.3 Simulation Optimization Framework...105
5.4 Operation and Support Problem.. 106
5.5 Future Research.. 108

REFERENCES.. 110

VITA.. 114

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table Page

1.1 Simulation optimization techniques applicable for the discrete domain........................ 8

2.1 Summary of literature review...29

3.1 Stepping through the DyScGA... 53

3.2 Results obtained by simple genetic algorithm...58

3.3 Results obtained by the DyScGA...59

3.4 Comparison of DyScGA, simple GA and DyScGA with memory disabled................63

4.1 Problem I: Experimentation plan..68

4.2 Problem I: z statistics for experiments of Table 4.1...71

4.3 Desired accuracy...89

4.4 Decision variables at the pilot experiement..90

4.5 Statistics estimated from pilot experiment...91

4.6 Solutions produced by DyScGA at fitness 256 ... 100

5.1 Comparison of solutions obtained by the simple GA and the DyScGA.................... 104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure Page

2.1 Flowchart: Simple Genetic Algorithm.. 16

2.2 Crossover.. 17

3.1 An enumeration tree showing subset divisions...35

3.2 Tightening scale ranges of variables...38

3.3 Flowchart: Dynamic scale genetic algorithm..41

3.4 Graphical comparison of the simple GA and the DyScGA....................................... 61

3.5 Graphical comparison of the simple GA, the DyScGA,
and the DyScGA with memory disabled...64

4.1 Problem I: Graphical comparison of the simple GA and the DyScGA..................... 72

4.2 Problem I: Histogram of solutions..74

4.3 Problem II: Graphical comparison of the simple GA and the DyScGA.................... 78

4.4 Problem II: Histogram of solutions.. 79

4.5a Problem IE: Graphical comparison of the SGA and the DyScGA (Case i)...............95

4.5b Problem HI: Graphical comparison of the SGA and the DyScGA (Case ii)............. 95

4.5c Problem HI: Graphical comparison of the SGA and the DyScGA (Case iii).............96

4.5d Problem HI: Graphical comparison of the SGA and the DyScGA (Case iv)............ 96

4.6 Problem IE: Histogram of solutions..98

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

CHAPTER 1

BACKGROUND AND MOTIVATION

1.1 Introduction

The design of complex systems, such as aerospace systems, has historically

emphasized the performance requirements aspect. However, global competition and

declining budgets of recent years has prompted the need for developing economically

competitive systems, without compromising the design objectives of quality,

produceability, operability and supportability (Unal et al. 1990). This can only be achieved

by a thorough understanding and inception of life cycle economic impacts in the early

design phase. Studies show that Operations and Support (O&S) activities can account for

60% to 80% of life cycle costs of reusable space systems (Griffin 1988, Fabrycky and

Blanchard 1991). Therefore, in order to design affordable spacecraft and minimize life

cycle costs, it is essential to study and optimize the operation and support resources and

activities early in the design phase itself.

The interactions between the various operation and support activities of a complex

system such as a reusable launch vehicle, are also complex. There is uncertainty due to

the stochastic nature of failure rates and maintenance activities. Therefore, a closed form

analytical formulation realistically describing the complex activities does not exist.

Furthermore, operational data is generally not available in the early design stages. Due to

these reasons, studying the operation and support considerations during conceptual design

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

remains a difficult and challenging task. As a result, O&S models and optimization

approaches for the early design phase of launch vehicles have been generally lacking in the

literature.

Recently, the operation and support requirements of reusable launch vehicles have

begun to be modeled and examined at Langley Research Center (LaRC) of the National

Aeronautics and Space Administration (NASA), by employing stochastic discrete event

simulation (Morris et al. 1983, 1995; Ebeling and Donohoe 1994). Simulation models can

be thought of as theoretical mechanisms or functions that translate feasible input

parameter sets into probabilistic output performance measures. Simulation provides an

effective means of studying complex, non-linear systems characterized by random

processes, which cannot be described analytically, or whose explicit form is unknown.

Simulation is therefore an efficient and cost effective tool, for studying the impact of

various parameters on the system response, without having to actually build the system

and perform expensive experiments. The O&S discrete event models used at NASA

Langley Research Center, simulate the mission and the pre- and post- flight maintenance

activities of a fleet of vehicles in a particular space program (Morris et al. 1983, 1995;

Ebeling and Donohoe 1994). The simulation can be run for as many alternative designs as

desired, to gain an insight into and obtain projections of the maintenance resource

requirements for a proposed space program. These estimates can then be used to compare

the acquisition and O&S costs for various alternate conceptual designs.

In order to effectively compare candidate designs, one has to ensure that the overall

maintenance resources are minimized for a particular O&S scenario and space program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

This O&S problem, involving the determination of the minimum resources to meet a given

mission rate constitutes an optimization problem. The decision variables for the above

optimization problem, are restricted to be integer values, within a certain "user-specified"

range. Examples of the integer input variables include: launch vehicles, launch pads,

facility bays, scheduled and unscheduled maintenance crew. These decision variables are

usually combined in the form of a linear additive cost function. The constraints, specified

in terms of the performance measures, such as meeting a given mission rate in a timely

manner, are non-linear and evaluated through stochastic simulation.

Such operation and support studies can be viewed as simulation optimization

problems, characterized by integer decision variables, a linear objective function and non­

linear constraints. Simulation optimization problems are known to be difficult to solve

(Jacobson and Schruben 1989). Although the particular case of minimizing operation and

support resources of space vehicles has been considered here, problems belonging to this

general class commonly occur in industry. Constrained optimization problems involving

integer variables and a linear objective function, widely occur in the management and

efficient use of scarce resources to increase productivity (Nemhauser and Wolsey 1988,

Parker and Rardin 1988). For example, the transportation industry, such as the airlines

and the car rental agencies, face similar problems. The airline industry needs to maintain a

fleet of airplanes in order to meet a specific schedule of flights. Similarly, a car rental

agency maintains a fleet of cars to meet customer demand. The primary objective for the

airline or the car rental agency, as in any industry, is to make money, which can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

achieved through minimum acquisition cost of equipment (planes and cars) and efficient

allocation of operational resources, so as to minimize the overall operating expenses.

1.2 The Operations and Support Problem

Two distinguishing features characterize the present launch vehicle operations and

support optimization problem. First, it deals with determining the optimal levels of the

deterministic input parameters which minimize the required resources of the overall

system, subject to constraints and performance criteria that are computed through

stochastic simulation. Simulation becomes necessary since constraint violations and

measures of the performance cannot be obtained or predicted through closed form

analytical formulations. This is often a result of the non-deterministic nature of the system

under study. For instance, an O&S model simulates the processes of component and

system failure, repair and replacement times, and maintenance delays. These underlying

processes are non-deterministic in nature and hence the simulation model itself and its

outputs are stochastic. Such simulation optimization problems are traditionally solved by

techniques borrowed from nonlinear programming. However, these techniques, such as

gradient estimation and pattern search, originally developed for deterministic optimization,

are in many cases impractical for the computationally intensive non-deterministic

simulation domain.

Secondly, the problem involves integer variables, and hence like other discrete

domain problems is difficult to solve. Optimization problems with integer variables, such

as integer programming problems, are in the class of so called NP-hard problems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

(Papadimitriou and Steiglitz 1982, Garey and Johnson 1983). It is conjectured that such

problems cannot be exactly solved by polynomial-time algorithms, i.e., algorithms that are

guaranteed to terminate in a finite time. For such problems one is generally willing to

settle for less ambitious goals, such as an improved or near-global solution rather than a

globally optimum solution.

1.3 Simulation Optimization in the Discrete Domain

Simulation models enable one to observe the effect of a set of input parameters

(such as the maintenance crew size), on the output parameters (such as the mission rate).

However, simulation models in general do not provide a way to directly minimize

(maximize) the input parameters. To achieve this, the following steps are usually carried

out:

1. The simulation is run at a particular set of input parameter levels,

2. The output results so obtained are analyzed, and

3. The input parameters are modified in accordance with an existing simulation

optimization scheme to obtain a desired change in the output parameters.

The above steps have to be repeated until either the optimal value is reached or some

stopping criteria is met.

It is evident from a study of the literature that solving an optimization problem

through a simulation involving integer variables is difficult -- in terms of the quality of the

solution and the computational burden (Fu 1994). The optimization methods that are

traditionally used for the discrete domain are the pattern search methods, statistical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

methods, complete enumeration and the random method. Pattern search methods are

local optimum seeking approaches that start with an initial randomly selected point in the

solution space. The search proceeds by applying suitable transformations to the initial

point to other solutions in the problem landscape.

For instance, the pattern search method of Hooke and Jeeves starts at an initial base

point and increments the input variables, by a fixed value, one at a time, if doing so

improves the solution (Hooke and Jeeves 1961, Friedman and Savage 1972). Input

variables are incremented in this manner until no more improvement in the solution is

obtained. Next, the incremental values are decreased and the entire process is repeated,

starting from the last point reached. The search terminates when a pre-determined

incremental value is reached. Another pattern search method, Nelder and Mead’s simplex

search, similarly starts with an initial set of factor settings (Nelder and Mead 1965,

Spendley et al. 1962). In case of maximization, it successively replaces the factor with the

least value with the centroid of all current factor settings. The procedure is repeated until

no more improvement is possible. It is therefore evident that the performance of these

search methods is extremely sensitive to the initial point chosen. Furthermore, the pattern

search strategies are local-optimum seeking techniques. Consequently, in the simulation

domain, typically characterized by a vast solution space of unknown topology, there is a

risk of sub-optimization. (Tabu search is another promising technique applicable for

discrete optimization, that combines local search with other more advanced search

mechanisms (Glover 1989). However, its applicability to the simulation domain remains

to be explored.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

When the solution space is finite, statistical methods such as multiple comparison,

and ranking and selection may be used. Multiple comparison uses certain pair-wise

comparisons to make inferences in the form of confidence intervals. Ranking and

selection specifies some criterion, such as choosing the best alternative with some pre­

specified confidence level. The procedure selects a combination that guarantees with a

user-specified probability, that the response will be within a certain range of the optimal

value. Although these statistical methods yield the global optimum, their applicability is

limited to problems with a very small solution space due to their high computation burden.

As the name suggests, complete enumeration performs an exhaustive search of the

entire solution space and yields the global optimum (Farrell 1977). This method is

computationally very intensive, and once again, applicability is severely restricted to small

search spaces. The random method evaluates random points in the search space and

terminates when a pre-specified number of evaluations are reached (Smith 1973).

Recent years have seen the emergence of directed random searches such as genetic

algorithms and simulated annealing. Genetic algorithms (GAs) have been proven, both

theoretically and empirically, to provide a robust search in complex spaces (Holland 1975,

Goldberg 1989). Genetic algorithms do not impose constraints such as continuity and

differentiability and hence can be used in the integer valued discrete domain. They have

shown promise as simulation optimizers in preliminary studies (Yunker and Tew 1994,

Elketroussi and Fan 1994, Tompkins and Azadivar 1995). Inspired by natural selection

and genetics, a genetic algorithm uses crossover and mutation to form a generation of

candidate solutions from an initial randomly selected population. Candidates with above

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

average fitness are mated to produce offspring in the successive generations. In this

manner, new candidates with improving fitness are formed.

A summary of the various optimization approaches available in the literature for

simulation studies involving integer variables is provided in Table 1.1 below.

Technique Domain Optimum Solution space
Pattern Search

Hooke-Jeeves C,D L B,S
Simplex, Constrained Simplex C,D L B,S

Statistical Methods
Multiple Comparison Approach D G S
Ranking and Selection D G S

Complete Enumeration D G S
Random Method D L S
Genetic Algorithm C,D L B,S

Key: C Continuous D Discrete L Local G Global
B Big S Small

Table 1.1 Simulation optimization techniques applicable for the discrete domain

The literature review indicates that the approaches guaranteeing the global optimum, such

as the statistical methods and the complete enumeration, are too computationally intensive

to be practically useful. Of the practical approaches, such as pattern search, random

search and the genetic search, the genetic algorithm seems a promising heuristic. Unlike

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

pattern search, genetic algorithms explore several areas of the solution space

simultaneously, and do not terminate upon finding a local optimum.

1.4 Purpose of the Study

Thus, of the optimization techniques that can be implemented in practical situations,

the search strategy of the genetic algorithm appears to be more effective compared to the

pattern search approaches. The simple genetic algorithm utilizes the operations of

random crossover of genetic material and mutation to obtain solutions with above average

fitness. However, in doing so, it ignores any information that might be contained in the

problem under consideration. In this research it is hypothesized that combining problem-

specific information into the genetic search, by intelligently pruning the search space,

makes for a more efficient search strategy.

Specifically, the research aims to improve the performance of the genetic algorithm

for constrained optimization problems involving integer variables and a linear objective

function. A conventional genetic algorithm maintains a set of candidate strings

representing solutions in the search space. The search space itselfj and the mapping of the

candidate strings to the search space, is defined at run-time by the user and is unchanging

over the run of the genetic algorithm. Thus, even when the population has converged to

an optimal or sub-optimal region, the entire original search space defined by the user at

run-time is used to map the strings. In this research, it is hypothesized that employing a

fixed search space reduces the effectiveness with which the genetic algorithm finds a

solution. It is hypothesized that by suitably shrinking or refining the original solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

space, and hence changing the mapping through successive generations, the performance

of the genetic algorithm can be improved. The proposed dynamic scale genetic algorithm

(DyScGA) utilizes problem-specific information to successively refine the search space.

There is also a built-in memory feature, which retains the boundaries of the refined

search space from one application of the algorithm to the other for a particular problem.

Due to the memory, consequent searches are started from solution spaces that have been

previously refined by the proposed modified algorithm. This feature enables a more

effective exploration of the portion of the original solution space that is most likely to

contain the optimum. Furthermore, it also reduces the computational requirements to

perform the exploration from one application to another.

It is therefore hypothesized that the DyScGA improves the performance of the

simple genetic algorithm, for discrete optimization with a linear objective, twofold: it

produces better solutions with lower computational requirements. This is a contribution

to the genetic algorithm literature. Most of the search-space-refining improvements

suggested for GAs in the literature (such as dynamic parameter encoding, delta coding and

adaptive representation genetic optimizer), employ population convergence measurements

and do not have a ‘memory’. Genetic algorithms with learning that have been suggested

in the past (such as classifier systems and GAs combined with expert systems) employ

rule-based systems. However, these are limited in that they either do not preserve

memory, or are restricted to machine learning and cannot be used for optimization. A

multi-leveled environment for learning that preserves memory and can be used for

optimization has been proposed earlier (Nutter and Ding 1992). However, this expert

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

system based genetic search is extremely complicated and consists of ten different modules

consisting of three levels of representation, two transformations and three levels of

learning.

In contrast, the dynamic scale genetic algorithm proposed in this research is very

simple to implement. It consists of an add-on module that contains code to dynamically

assign boundaries of the solution space, by exploiting the information provided by the

current best objective function. It does not need any additional parameters to be set by the

user at run-time. The enhanced search strategy proposed here is applicable for

constrained optimization problems with a linear objective function and discrete integer

valued variables. There is no restriction on the constraints, which can be linear or non­

linear. This genetic algorithm modified for discrete optimization can be applied to

simulation as well as non-simulation situations. On a practical level, this research also

contributes to the life cycle cost analysis of launch vehicles. The operations model can be

integrated with other disciplinary models to achieve a systems level design optimization

for a reusable launch vehicle.

l.S Contribution

This research makes a contribution to the genetic algorithm literature by proposing

an enhanced genetic search for discrete optimization. Specifically, the dynamic scale

genetic algorithm differs from earlier search-space-refining modifications in the following

manner:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

1. It uses problem specific information and not population convergence to refine the

search space.

2. The user does not have to set any additional control parameters during run-time.

3. The search space is refined if and only if mathematical evidence indicates that the

discarded portion does not contain the optimum.

4. Refining the search space in this manner negates the necessity for an ‘inverse’

pruning operator to recover the discarded portion that is employed by the other

modified genetic search strategies.

5. It retains the new boundaries of the refined search space over subsequent

applications of the genetic algorithm. This provides for a memory feature that can

significantly improve the performance of the DyScGA from one run to another.

The research also indirectly contributes to the life cycle cost analysis of launch vehicles.

An O&S model in conjunction with the optimization methodology developed here can be

integrated with other disciplinary models. By enabling the consideration of operations and

support costs early in the design phase, a total life cycle cost approach to design can be

used.

1.6 Outline

The general outline of this dissertation is as follows. A review of literature devoted

to the relevant improvements and enhancements made to the basic genetic algorithm is

summarized in Chapter 2. The foundations of the proposed dynamic scale genetic

algorithm are then described in Chapter 3. In Chapter 4, the DyScGA is tested and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

validated. The DyScGA is used in conjunction with a NASA LaRC discrete event

simulation model to optimize the operations and support resources for reusable launch

vehicles. Conclusions based on the results obtained and suggestions for future research

are outlined in Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

CHAPTER 2

LITERATURE REVIEW

This chapter provides a brief description of the basic genetic algorithm. It also

contains a summary o f the relevant enhancements and modifications to the genetic

algorithm, as proposed in the literature.

2.1 The Genetic Algorithm

Genetic Algorithms (GAs), first introduced by Holland (1975), are stochastic search

algorithms inspired by the mechanics of natural selection and natural genetics. GAs

combine the principle o f survival o f the fittest among string structures with a structured

yet randomized information exchange. GAs have been used primarily in the fields of

search, optimization and machine learning. Traditional calculus based methods and

mathematical programming techniques impose constraints on the search space, such as

continuity, convexity and differentiability. In practical situations with large unknown

solution spaces, these local optimum search methods are susceptible to getting trapped in

a local minimum (Goldberg 1989). Biased random search algorithms, such as genetic

algorithms and simulated annealing, have gained popularity as researchers have recognized

the shortcomings of the traditional optimization techniques. GAs are attractive in

application due to the following reasons:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Robust over a broad spectrum of problems.

2. Require no auxiliary information such as derivatives, as they use the performance

metric itself to guide towards better and better solutions.

3. Easy to implement GAs and to interface to simulation and other models.

A simple genetic algorithm maintains a population consisting of candidate solutions,

made of binary strings representing the parameters of the optimization problem. Strings

with above average fitness are selected to form a mating pool. Two such strings are

randomly mated to produce offspring by exchanging parts o f their binary string. The

mutation operator acts on the offspring by flipping a bit from 0 to 1 and vice versa with a

certain probability. The mutation feature inserts diversity into the current population and

helps the genetic algorithm escape from local optima. The reproduction and mutation

cycle is repeated until a desired termination criterion is reached (for example, a predefined

number of generations are processed). Figure 2.1 depicts a graphical schematic of the

simple genetic algorithm.

Encoding Mechanism

Fundamental to the GA structure is the encoding mechanism for representing the

variables o f the optimization problem. The encoding mechanism depends upon the nature

of the problem variables. Integer variables are encoded using a fixed number of binary bits

within a user-specified range. In the case of continuous variables, each variable is first

linearly mapped to an integer defined in the specified range, and then encoded using binary

bits.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Fitness Function

Each population member has an associated fitness function which represents a

solution to the optimization problem. To maintain uniformity over various problem

domains, a fitness function that normalizes the objective function of a problem between 0

and 1, is used. For example, the objective function x10 where x is coded with 30 bits is

f x V °normalized as —-J . The normalized value of the objective function is the fitness of

the string, which the selection mechanism uses to evaluate members of the population.

Yes

No

Stop Maximum generations?

Subsequent generation formed through crossover and mutation

Fitness of population members evaluated.

An initial population is formed by randomly selecting
strings from the solution space.

Figure 2.1 Flowchart: Simple Genetic Algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

Selection Schemes

A selection scheme chooses the members o f the population that will reproduce. A

number of different selection schemes have been proposed over the years. In a simple

genetic algorithm, a string with higher fitness function receives a higher number of

offspring and has a higher chance of surviving in subsequent generations.

Crossover

Pairs of strings are picked from the population based on the selection scheme being

used, to be subjected to a single-point crossover. Assuming / is the string length, it

randomly chooses a crossover point greater than 1 and less than /. An offspring is created

by the portion of the first string up to the crossover point and the portion of the second

string after the crossover point. After choosing a pair of strings the genetic algorithm

invokes crossover only if a randomly generated number in the range 0 and 1 is greater than

P c the crossover probability. The crossover probability influences the outcome of the

genetic algorithm and is generally selected by the user.

0 0 1 0

1 0 1 1

1 1

0 1

0 0 1 0 0 1

1 0 1 1 1 1

Figure 2.2 Crossover

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mutation

After crossover, strings are subjected to mutation. Mutation of a bit involves

flipping it, i.e. changing a 0 to 1 and vice versa. The mutation rate pm controls the

probability that a bit will be flipped, and is set by the user. The bits of a string are mutated

independently of one another. Usually, the mutation rate is set to a small value, to avoid

excessive mutation. Mutation provides an effective mechanism for introducing diversity

into the genetic pool, exploring new regions of the problem landscape, and escaping local

optima.

2.2 Review of Literature

Over the past decade, several modifications and enhancements have been proposed

to the simple genetic algorithm with a view to improving its performance. The following

sections contain suggested modifications that are pertinent to GA learning and

optimization. Accordingly, the literature review is divided into three sections: GA

optimization without memory, GA learning without optimization, and GA optimization

with memory. (Learning implies knowledge acquired over successive generations of a

single application of a GA. Memory implies retention of this acquired knowledge across

successive applications of the GA.)

2.2.1 GA optimization without memory

Several improvements have been suggested in the literature to improve the

performance of genetic algorithms for function optimization. It was evident from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

literature, that most of such GA modifications have focused on continuous variables.

Encoding real valued parameters onto a discrete domain consisting of binary string

representations is usually a complex task. Typically, the higher the number of bits utilized

to encode a parameter, the better is the resolution of the genetic search. However, as the

number of bits in the encoding increases, the effectiveness of the genetic search suffers.

Consequently, a large body of literature is devoted to improving the encoding and the

corresponding mapping strategy and search space for continuous variables. This section

describes these improved genetic search strategies.

Delta Coding

Delta coding employs a novel encoding structure to achieve efficient optimization

(Whitley et al. 1991). In a simple genetic algorithm, a population member takes the form

of binary strings representing the various parameters involved. In delta coding, the

encoding represents a particular distance delta ‘5’ away from some previous solution. The

first run of the GA is like a conventional GA However, subsequent runs are made by

using the best solution obtained in the most recent run as a partial solution. The genetic

algorithm is restarted with the substring coding for each parameter representing a distance

§ away from the value of the corresponding ‘best’ parameter. The delta values

represented by the encoding are added to the partial solution to evaluate fitness.

Therefore, a neighborhood about the current best solution is explored. With each delta

iteration, the number of bits used for encoding is typically reduced, and the solution space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

is made smaller. There is also provision for an inverse operator to increase the number of

bits if required.

Delta coding preserves diversity in the population by having an entirely new and

random population for each generation. Each individual iteration can be viewed as a

single run of a genetic algorithm; with the only change being in the mapping strategy.

Hence, the theoretical foundations of genetic algorithms still apply.

Delta coding results in an efficient optimization strategy. However, there is no

memory or retention of learning across successive applications of the genetic algorithm.

Furthermore, implementing delta coding requires additional effort by the user at run time.

Reduction and expansion strategies have to be tested and incorporated. Also, the user

needs to set additional parameters such as the smallest number of bits for a parameter, and

the number of bits by which to reduce and expand each parameter during each new

iteration. The performance of the delta coding strategy is greatly influenced by these

strategies and parameters that the user selects, often in an ad-hoc manner.

Distributed Genetic Algorithm

A distributed genetic algorithm attempts to improve search and maintain diversity by

using distributed populations (Whitley and Starkweather 1990). Small sub-populations

represent an independent search except that the sub-populations exchange information by

swapping copies of their best strings at fixed intervals. Thir provides for an effective

exploration of the parameter space for optimization. The sub-population size, number of

sub-populations, and number of strings exchanged are user defined. However, there is no

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

memory or retention of learning within independent runs of the distributed genetic

algorithm.

Adaptive Representation Genetic Optimizer

Adaptive Representation Genetic Optimizer Technique (ARGOT) 'learns' a strategy

for solving a particular optimization problem (Shaefer 1987). Intermediate mappings are

introduced between the strings representing candidate solutions and the search space.

Several population based operators alter these intermediate mappings during the search.

These operators are based on population measurements such as parameter convergence

(uniformity of parameter or substring), parameter variance (spread of the parameter or

substring distribution), and parameter positioning (relative average position of the

parameter within a permissible range of parameter values). ARGOT uses these

measurements to dynamically adjust parameter resolution by changing the number of bits,

and to adjust the location of parameter boundaries.

If the parameter or substring population has converged (i.e., if a user-defined

proportion of the population contains a fixed parameter or substring value), the resolution

of a parameter is increased by adding bits to perform a finer search of the parameter space.

If the parameter population has not converged, the resolution is decreased by reducing the

number of bits, leading to a coarser evaluation of the search space.

As the parameter value approaches the moving boundary, it is shifted in an attempt

to better center the parameter. (There is a rigid parameter boundary within which the

moving boundaries must lie). Shifting the parameter boundary causes the search space to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

either contract or expand. The moving boundaries are 'dithered' or shifted by random

small increments when the parameter has neither converged nor been completely randomly

distributed. When the distribution of a parameter is narrow, the moving boundary interval

is contracted. Similarly, when this distribution is wide the roving boundaries are

expanded.

Besides these primary operators, there are several secondary operators. The

Metropolis operator accepts a bit mutation based upon the change in fitness. A homotopy

operator is switched on when a parameter has converged, and a local search to locate the

solution within a promising region, is initiated.

Although ARGOT has shown good results for optimization purposes, the strategy

and its implementation is very complex. Furthermore, threshold levels for triggering all

the above operators, such as parameter convergence, need to be set by the user at run­

time. It has been pointed out that it is difficult to establish these trigger threshold levels

for each problem (Schraudolph and Belew 1992). The performance of the ARGOT

strategy depends significantly on these settings. Additionally, ARGOT does not preserve

the learning strategy for future applications within a problem domain, i.e. it does not have

a memory feature.

Adaptive search space scaling algorithm

An adaptive search space scaling algorithm has been developed for medical image

registration (Mandava et al. 1989). It searches a real-valued domain of transformations

for the optimum transformation. Adaptive search space scaling dynamically estimates a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

sub-space to focus the investigation from the allowable search space. Distributions of the

best solutions are used to contract and expand the sub-space in a manner similar to the

ARGOT roving boundaries. A histogram of best solutions is formed after every

generation. The user determines the maximum permissible number of best solutions to

include in the histogram. A separate histogram is constructed for each parameter. The

smallest number of consecutive bins in the histogram that contain 80% of the best

structures are used to assign the new boundaries. By setting these boundaries to be larger

than the theoretical assignment, a previously contracted sub-space can be expanded if

future parameter values fall near the boundaries.

Adaptive search space scaling performs an effective search by zooming in on a sub­

space most likely to contain the optimum. However, it requires the user to specify the

number of best solutions for histogram generation during run-time, which has an impact

on the performance of the algorithm. Furthermore, there is no memory or retention across

successive applications of the genetic algorithm.

Dynamic Parameter Encoding

Dynamic parameter encoding (DPE) dynamically adjusts the accuracy of the

encoded parameters to increase the resolution of the solution and to zoom in on the most

promising area of the search space (Schraudolph and Belew 1992). It uses concepts

similar to ARGOT. The heuristic DPE employed for triggering the zoom operator is

based on populatici convergence. A histogram over the current search interval formed by

the two most significant bits of the parameter is constructed. By summing over two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

neighboring quarters, population counts for the three overlapping target intervals are

computed. The largest of these counts is used as a basis for indicating population

convergence. When this convergence indicator exceeds a trigger threshold level, set by

the user during run-time, the population is considered to have converged, and the zoom

operator is invoked. The zoom operator restricts the GA search to target intervals.

DPE does not add bits to increase the parameter or search resolution. It keeps the

number of bits constant. However, it drops the significant bits as the population

converges and the search progresses. In the beginning of the search the binary string

representation encodes only the most significant bits of the parameter, representing a

coarse grain partitioning of the search space. As the genetic algorithm begins to converge,

the most significant bit is recorded and dropped from the encoding, and a new bit is

introduced. The new bit adds to the precision and creates a finer grain partitioning of the

search space. While the number of bits remains constant, the optimization function is

searched using an increasing level of detail.

Dynamic parameter encoding improves the optimization performance of the genetic

algorithm. However, since DPE does not employ an inverse zoom operator, there exists a

possibility, for highly complex landscapes, that the region of the search space that contains

the optimal gets permanently discarded. Furthermore, the user is required to set a trigger

threshold, which influences the performance of the algorithm. Finally, DPE does not

provide for learning across successive applications of the GA or for knowledge retention.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

2.2.2. GA learning without optimization

The genetic algorithm has also been modified in the literature to include learning

aspects. This section describes enhancements to the simple genetic algorithm that provide

for a learning feature.

Machine Learning

Classifier systems are a special class of rule-based systems (Holland 1986). A

classifier system is a machine learning system that learns simple rules to guide its

performance in an arbitrary environment. Knowledge is stored in “If-Then” rules. Each

rule is associated with a real number representing a measure of its performance. Genetic

algorithms explore the space of permissible rules and provide the learning algorithm in

classifier systems. The genetic algorithm used in classifier systems is slightly different

from the simple GA used for optimization, although it is still largely based on

reproduction, crossover and mutation. New rules are created and placed in the population

and processed to evaluate their role in the system. The knowledge in classifier systems is

not retained across individual GA runs, thus jeopardizing their ability to improve their

performance. Additionally, classifier systems cannot perform optimization, because

instead of storing candidate solutions in the populations as required for optimization, they

store ‘If-Then’ rules.

To overcome the lack of knowledge retention, Zhou (1990) developed a rule-based

learning system called Classifier System with Memory (CSM). This kind of classifier

system preserves problem solving expertise and tailors it to fit a new situation, so that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

learned knowledge can be transferred within a domain. However, since CSM is still

fundamentally a classifier system, which stores ‘If-Then’ rules as individuals in the

population, it cannot be used for optimization.

Strategy Acquisition Method Using Empirical Learning (SAMUEL) is based on the

classifier system (GTefenstette et al. 1990), and learns expert system rules and control

strategies with GAs. Unlike other machine learning systems, SAMUEL learns rules in a

high-level language by adapting high-level genetic operators for that language from basic

genetic algorithms. However, SAMUEL does not preserve memory across successive

applications of the GA, and cannot be applied for optimization.

Expert Systems and Genetic Algorithms

Powell et al. (1989) developed an optimization system, EnGENEous, that combines

an expert system and genetic algorithm, to exploit domain-specific knowledge for the

design of aircraft turbine engines. In this approach, the rule base for the expert system is

first created by the engineer. The expert system starts from a single design point specified

by the engineer and uses selective rules from the rule base to achieve a desired change in

the fitness function. Additional specialized control methods are built in to augment the

rules provided by the expert system. The expert system continues to change input

parameter levels in this fashion. Eventually, the expert system may get stuck in local

minima or at constraint boundaries. When this occurs, the genetic algorithm is used to

escape the minima or avoid constraints. The initial population is formed from promising

design points already explored by the expert system and past designs. The solution found

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

by the genetic algorithm is fed back to the expert system and the entire process is repeated

until some stopping criterion is satisfied.

This hybrid model provides for a more efficient optimization procedure. However,

it does not address knowledge retention across future applications of the genetic algorithm

system.

2.2.3 GA optimization with memory

Nutter and Ding (1992) have combined expert system learning with GAs to achieve

optimization and retain domain specific knowledge across successive applications. The

specific application domain they have considered is a computer network system. The

proposed Multi-Leveled Environment for Learning (MEL), acts as a bridge between the

different data and knowledge representational formats required by the genetic algorithm

(typically binary strings) and the expert system (typically ‘If-Then’ rules). MEL consists

often modules operating on a layered knowledge base. Knowledge can be projected from

one layer to another through the use of appropriate transformations. Three levels of

representation and two transformations, along with three levels of learning are used. The

low-level representation takes the form of binary strings that encode parameters to form

candidate solutions for the optimization problem. Mid-level representations use an expert

system to store information about background knowledge, interpretation of system

parameters that comprise individuals and experiences, and generalization of hierarchies.

High level representation consists of ‘If-Then’ types o f rules. The two transformations

help to convert knowledge from one representation to another. These are the low-to-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

middle-level transformation and the middle-to-high-level transformation. The three levels

of learning include: low-level genetic search, mid-level accumulation and abstraction, and

high-level inductive generalization. The low-level genetic search is provided by the GA.

Mid-level learning comes from the analysis of past experiences. An individual's fitness is

compared with the past history, and if it lies at the limits of or outside that range, it is

stored permanently in the middle-level representation. These best and worst experiences

accumulated in the mid-level are analyzed. The analysis is used to generate new ‘If-Then’

rules which provide the high-level learning.

Thus MEL, designed for application in the computer network system, provides for a

learning mechanism and can be used for optimization. However, with its ten modules

operating on layers, three levels of representation, two transformations and three levels of

learning, it is extremely complex to build and implement. Furthermore, as it was

developed for the computer network system, its applicability is restricted.

2.3 Summary of Literature Review Results

A number of enhancements have been proposed to the basic genetic algorithm over

the past years, with a view to improving its performance. In this chapter some of those

enhancements pertinent to the algorithm proposed in this research (i.e., involving learning

and dynamic search space) have been reviewed. The following table summarizes the

literature review presented in the preceding sections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

Name Improvement or modification Optimi­
zation?

Mem­
ory ?

Comment

Delta coding Encodes parameters as 8 distance Yes No
Distributed GA Sub-GAs performing searches Yes No
ARGOT Leams problem solving strategy

based on population convergence
Yes No Complex

Adaptive
scaling

Adapts search space based on
population convergence

Yes No

DPE Contracts search space based on
population convergence

Yes No

Classifier Machine learning No No
CSM Machine learning with memory No Yes
SAMUEL High level GA based machine

learning
No No

EnGENEous Hybrid expert system and GA Yes No
MEL Combines GA and expert system

learning to provide for memory
Yes Yes Complex.

Table 2.1 Summary of literature review

Modifications to the simple genetic algorithm have been proposed for incorporating

learning or ‘intelligence’. Systems with learning, such as classifier, SAMUEL, and CSM

are limited in that they are restricted to machine learning and cannot be used for

optimization. EnGENEous, performs optimization through knowledge contained in an

expert system rule base, and uses GA for escaping local minima and constraint boundaries.

However, it does not retain learning across successive applications. Furthermore, creating

the rule base for a problem domain, for example design of aircraft turbine engines, requires

an additional effort. MEL is a problem specific optimization system that preserves

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

memory. However, this expert system based genetic search is extremely complicated in

structure and implementation. It consists of ten different modules that operate on a

knowledge base with three levels of representation, and employs two transformations and

three levels of learning. Thus it requires tremendous additional effort in implementation,

for each new problem domain.

The idea of search space scaling or refining has been tested in several modifications,

including delta coding, adaptive representation genetic optimizer, adaptive search space

scaling, and dynamic parameter encoding. However, all these methods use population

convergence as a basis for trimming the search space. This dependence on population

convergence makes the above techniques independent of the problem domain.

Consequently, they can be applied to a wide range of problems, without imposing

constraints on the nature of the problem that can be solved. However, ignoring problem-

specific information also gives rise to the possibility of trimming off the area containing the

optimal point, and hence of sub-optimization. (This concern is of special importance in

the simulation domain, where the simulation is typically a ‘black box’ with a complex and

unknown landscape). Most of these techniques consequently incorporate an ‘inverse trim’

operator to overcome such situations. However, incorporation of an inverse trim operator

necessarily increases complexity of the algorithm. Moreover, there still is no guarantee

that the optimal area will not be discarded and sub-optimization will not occur.

Furthermore, all these techniques utilize algorithm parameters that have to be set by

the user at run-time. The performance of the improved algorithms is sensitive to the

values of these parameters, which often have to be determined in an ad-hoc manner.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Additionally, most modifications suggested to improve the optimization performance of

GAs (dynamic parameter encoding, delta coding, adaptive search space scaling, and

adaptive representation genetic optimizer) do not ‘Ieam’ over successive applications.

In summary, although there have been several modifications proposed to improve

the performance of GAs, the results of practical implementation have been decidedly

mixed. It seems there has not been any single accepted strategy to deal with constrained

optimization problems. The reason for this might be experimental evidence that

incorporation o f problem-specific knowledge into the evolutionary algorithm enhances its

performance (Michalewicz 1993).

In this research, an improved genetic algorithm that is applicable for the class of

discrete constrained optimization problems with linear objective functions, is proposed. It

exploits problem-specific information to improve the performance of genetic algorithms,

by refining the search spaces over successive generations. The proposed dynamic scale

genetic algorithm overcomes the deficiencies o f the prevalent methods in the literature in

the following manner:

1. Search space is trimmed conservatively, if and only if there is mathematical

evidence that the eliminated portion does not contain the optimum.

2. Does not require an inverse zoom operator, hence is simpler to use and implement.

3. Does not employ parameters that have to be arbitrarily set by user at run-time,

hence its performance is consistent.

4. Has a built-in memory feature that retains the knowledge acquired over successive

applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

CHAPTER 3

METHODOLOGY: DYNAMIC SCALE GENETIC ALGORITHM

3.1 Introduction

The simple genetic algorithm allocates reproductive opportunities to members of a

population based on their relative fitness. By so doing, the search is directed towards

regions that contain solutions with above average fitness. The fitness of the binary coded

strings is evaluated by mapping them onto a fixed search space. The search space is

unchanging through the run of the genetic algorithm, and is defined in accordance with the

problem specification. This fixed mapping aspect has been recognized, at some times, as

placing an unnecessary burden on the performance of a simple genetic algorithm. For

instance, when the genetic algorithm has located a sub-space that contains the optimum, it

might be more efficient to concentrate on this region alone.

The idea of refining the solution space by altering its boundaries as the genetic

search progresses has consequently received attention in the literature. All these strategies

(dynamic parameter encoding, adaptive representation genetic optimizer, and adaptive

search space scaling) utilize population convergence measurements to dynamically change

the mapping strategy. Michalewicz and Arabas (1994) observe that no single genetic

algorithm strategy seems to have been accepted in practice for the general constrained

optimization problem. The reason for this, they speculate, might be that the biased

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

random search strategy considers only relative fitness and ignores problem specific

information contained in its objective function, constraints and bounds. Experimental

evidence suggests that incorporation of problem specific information into the genetic

algorithm (representation and genetic operators), enhances its performance in a significant

manner (Michalewicz 1993).

As a step in this direction, this research proposes to incorporate into the genetic

algorithm, problem specific information contained in the objective function and

constraints, so as to dynamically allocate tighter boundaries by changing the mapping

strategy. The proposed dynamic scale genetic algorithm is applicable for a broad class of

discrete optimization problems, zip , defined as

z!p = min{cx:x g S} (3.1)

The linear objective function denoted by cx is of the form ctxt + cix2 +...+C*x, +...+cjc„

where c, represents the cost coefficient associated with the 7th variable x , . The objective

function is assumed to comprise of n such variables X/ through x„. The solution space S

is defined by (linear or non-linear) inequality constraints on the non-negative, discrete

variables. Thus, the only restriction placed on the general discrete optimization problem is

that of linearity of the objective function. This class of problems, ziP, commonly occurs in

the management and efficient use of scarce resources to increase productivity (Nemhauser

and Wolsey 1988, Parker and Rardin 1988). It includes the following well-known types of

discrete optimization problems (all of which have linear constraints): traveling salesman,

postman's, knapsack, parallel machine scheduling, vertex coloring, spanning tree, shortest

path, bin packing, matching, set covering, maximum flow, p-median, and fixed charge

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

(Nemhauser and Wolsey 1988, Parker and Rardin 1988). Thus, it can be seen that the

proposed strategy is applicable to a wide range of discrete problems.

3.2 Theoretical Basis

The dynamic scale genetic algorithm proposed in this research is based on partial

enumeration, a discrete optimization technique also known as branch and bound. The

partial enumeration scheme employs tests of feasibility and value dominance to eliminate

from consideration subsets of the solution space. Generally in commercial codes, subsets

are formed by adding constraints that divide the original problem, and solved as linear

programs with the integrality constraints relaxed. In this section, the theoretical

foundations of partial enumeration, used for the dynamic scale genetic algorithm proposed

in this research, are presented.

3.2.1 Partial Enumeration Concepts for Integer Programming

Total enumeration is not a viable strategy for most practical discrete optimization

problems, however partial or implicit enumeration can be used with better results. Partial

enumeration is usually performed by eliminating entire subsets of the search space,

without actually enumerating their individual candidate solutions. Consider the discrete

linear integer programming problem given by zIP = min{cx:x e 5} . The solution space S

can be considered to be made up of i divisions or mutually exclusive sets S1, such that

^ S ' = S where {S' :i = The following proposition holds true:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

Proposition 1 (Nemhauser and Wolsey 1988):

Let z'IP = min (cx:x eS '} , where [S' }*, is a division o f S. Then zip = minf=UJt zjp.

Therefore, a large optimization problem can be solved by attacking several smaller and

consequently more manageable sub-problems, which are formed by dividing the original

solution space into mutually exclusive subsets. Generally these subsets are formed

through the addition of mutually exclusive constraints so that the original problem is

divided into smaller subsets. Subsets are also formed by dividing the permissible range of

a variable, into two or more ranges. Figure 3.1 depicts such subset divisions.

© ©
121 122

Figure 3.1 An enumeration tree showing subset divisions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

(An extreme case of achieving such divisions would be by means of a complete

enumeration tree). Further, suppose S has been divided into subsets {S l,. .Si..fSk} . If

we can establish by the methods given in Proposition 2 below, that S1 does not contain the

optimal value and hence need not be divided further, we say that the enumeration tree is

‘pruned’ at S1. A subset is pruned if any of the conditions stated in Proposition 2 occur.

Proposition 2 (Nemhauser and Wolsey 1988):

No further division of a subset S1 is needed (and the enumeration tree can be pruned at

the node corresponding to Si), if any one of the following conditions hold:

1. Infeasibility: If subset contains no feasible solutions.

2. Optimality: If an optimal solution z\p is known.

3. Value dominance: z\p >zlp, where zlp is the value of some feasible solution.

By using the infeasibility, optimality and value dominance conditions of proposition

2, a subset can be fathomed, or eliminated from consideration. For example, if it can be

established that a subset S1 cannot produce a feasible solution, then it need not be

considered further. If the optimal solution is known, subsets can be eliminated as they do

not contain a solution better than the known optimal. Similarly, a subset can be fathomed

using the condition of value dominance. If it can be established that the best solution

contained in a subset is inferior compared to the current best solution, the subset can be

fathomed. Thus, the current best feasible solution of a subset ZjP , obtained during a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

previous partial enumeration can be used to determine whether a subset needs to be

investigated further.

Fathoming subsets that are formed by dividing the permissible range of variables,

yields tighter upper and lower limits on the concerned variable. This concept

demonstrated in Figure 3.2, is known as pegging and aids in compacting the solution

space further (Parker and Rardin 1988). Pegging is achieved through value dominance. If

it can be established that for a certain range of a variable, the solutions produced are

inferior to the best feasible solution so far, tighter limits can be placed on the variable by

eliminating the range under consideration. In Figure 3.2, the original solution space S° is

bounded by the variables x, and x2 with permissible ranges of 0 <Xi< 18 and 0 <x2 <12

respectively. This solution space can be compacted by restricting the upper limits or

permissible scale ranges of the variables, as shown below. Subsets Sl and S2, are formed

by dividing the scale range of variable xt at 15, i.e. 0 <x, <15 and 16 <xt <18. If subset

S2 can be fathomed, a tighter upper bound 0 < xt <15 can be placed on variable xt.

Similarly, subset S‘ can be further divided into subsets Su and S12, which are formed by

dividing the permissible scale range of variable x2 at 12. Once again, if subset S12 can be

fathomed, then a tighter upper bound can be placed on variable x2, as 0 <x, < 12. The

remaining subspace S“ , bounded by tighter permissible scale ranges, can be solved by

enumeration, or any other optimization strategy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

Solution space o Subsets

0 <x, <18, 0 <x2 <12 0 <xt <18, 0 <x2 <12

Subset S12

t

Subset Sn
t

Subset Sn

x2

H —i—r n " r i t t i i i " ■ r " i i

1
X2

r i i 1 I f 1 1 1 1 1 1 1 1 "

xt —
0 <x, <15, 0 <x2 <12

Xi

0 <Xj <15, 0 <x2 <8

Figure 3.2 Tightening scale ranges of variables

3.3 Incorporating Partial Enumeration Concepts

In terms of the foregoing discussion, a genetic algorithm can be viewed as a biased

random partial enumeration scheme, where relative fitness information is used to partially

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

enumerate the solution space. As such there are similarities between partial enumeration

and the genetic search schemes. Both strategies attempt to produce an optimal solution

by using fitness or objective function (not indirect information such as derivatives),

without enumerating the entire search space. However, there is an important difference.

The partial enumeration scheme works by shrinking its target solution space as it

proceeds, whereas the genetic algorithm works with the entire original solution space.

This research attempts to build some intelligence into genetic search, by using partial

enumeration concepts to shrink the target solution space. Specifically, constraint and

objective function information of the current best feasible solution in the population is

used to form mutually exclusive subsets, by dividing the permissible ranges of variables. A

rule involving elementary mathematical operations was developed in this research to

achieve this subdivision. Subsets so obtained are subsequently fathomed through value

dominance, thus tightening permissible ranges and refining the solution space. It is

hypothesized that eliminating subsets from consideration in this manner enables the genetic

algorithm to concentrate on the more promising areas of the solution space, thus

improving its performance.

3.4 Dynamic Scale Genetic Algorithm (DyScGA)

The concepts of value dominance and pegging described above were incorporated

into the simple genetic algorithm. A rule utilizing the elementary operations of division

and multiplication was developed for forming and fathoming subsets. The rule is based on

the following proposition:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

Proposition 3:

Let a be the current best feasible solution to the constrained optimization problem

z]p = min{cx:x s S }, where c,. are non-negative cost coefficients associated with the

non-negative decision variables x ,. Let the subsets formed by dividing the permissible

scale o f variable x, (0 < x, < z,) be S' (0 ^ x, < \a/c,\) and S2 (\a/c,\+1 <x,< z,), where

the symbol |>>| represents the integer part of a real number y. Then subset S2 can be

fathomed.

Proof:

Let X/ = \a/ci\+l thereby guaranteeing membership in the subset S2. In order to

compute the least objective function value associated with X/ = \a/ct\+l, set all other

variables x, = 0, i * I. Since C/ are non-negative, the lowest objective function value

can only be attained if all other variables x, = 0, i * 1. In this case, the objective

function value is (c/ \a/ci\+l) = a+Ci > a. Therefore, through value dominance the

subset S2 can be fathomed.

The above rule was incorporated into the simple genetic algorithm. The resulting

dynamic scale genetic algorithm is presented in the form of a flow chart in Figure 3.3. It is

seen that the DyScGA adds some steps to the simple genetic algorithm. The following

sections describe these additional steps that achieve fathoming through value dominance.

Step 1. Forming an initial population

As shown in the flow chart, an initial population of randomly selected solutions

from the search space is formed in a manner identical to the simple genetic algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Yes

No
Yes

No

Stop

New scale range?

Maximum generations?

Subsequent generation formed through crossover and mutation

Fitness of population evaluated. The best feasible
solution (bfs) is not re-evaluated.

The bfs is found. If better than previous bfs, new scale
ranges assigned to variables through value dominance.

An initial population is formed by randomly selecting
strings from the solution space.

Figure 3.3 Flowchart: Dynamic Scale Genetic Algorithm

Step 3. Assigning new scale ranges based on the best feasible solution

After these initial steps which are similar to the simple genetic algorithm, the

DyScGA requires some additional steps for forming subsets based on scale ranges and

pegging through value dominance. The best feasible solution (bfs) among the current

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

population is first determined. The bfs is used to divide the permissible scale ranges of

decision variables by the formation of subsets, in accordance with the rule developed

above. The rule is explained here through a numerical example. Consider the objective

function of a constrained optimization problem (Gass 1985):

M inimize 4x, + I2x2 + 2x3 + 5xs + 10x6

such that 2 x, + x2 + x3

x2 + 3x 4 + 2xs + x6

2 x3 + x s + 2 xs +

0 < x, < 99, / = 1,...,7
xf are non - negative integers

The original scale range for all seven variables is 0 to 99, i.e., each variable can take any of

the values 0, 1, 2, ..., 99. Therefore, the search space is made up of 1014 discrete

combinations. (Since this is a constrained optimization problem, several of these

combinations may be infeasible). Let the best feasible objective function or solution in the

randomly chosen initial population of the DyScGA be evaluated as 989 (x/ = 32, x2 = 38,

Xj = 40, x4 = 1 0 , Xs = 37, x6 = 1 4 , x? = 9 0) . The contribution of each variable to the

best feasible solution is computed in order to determine whether its permissible range can

be subdivided. This is done simply by dividing the best feasible solution, 989, by the cost

coefficient or weightage of each variable. Therefore, for the first variable X/ with

coefficient 4, this yields a contribution of 247.25 (989/4). Since this value is higher than

> 30
> 60

4x 7 > 48 (3.2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

the upper bound of the original scale range (99), it does not divide the scale range and no

subset can be formed.

Next the contribution by variable x2 to the best feasible solution is determined as

82.4 (989/12). Since the contribution 82.4 divides the original permissible scale range of

99, subsets can be formed at its absolute value. (The absolute value is used, since all

variables are restricted to be integers). The subsets are defined by changing the

permissible scale range 0 < x2 < 99 of the original problem. The first subset is formed by

restricting the original scale range of variable x2 to the absolute value of the contribution

82, i.e., 0 < x2 < 82. The second mutually exclusive subset is formed by modifying the

original scale range so that variable x2 exceeds 82, i.e., 83 < x2 < 99. Next, value

dominance based on the best feasible solution (989) is used to fathom one of these

subsets. It is established that when the variable x2 exceeds 83, i.e., x2 lies in the second

subset, its contribution to the linear objective function is greater than or equal to 996

(=12*83). Therefore the best objective function associated with the second subset is at

least 996. Since we already have a best feasible solution that is better (989), the second

subset can be fathomed through value dominance. The permissible scale range of variable

x2 is tightened by limiting it to 82 (0 <x2 < 82) and the original search space is reduced.

The above process of forming subsets and fathoming through value dominance is

repeated for all the variables. The scale ranges for variables x3, x4, x5, x7 cannot be divided

based on the value of the current best feasible solution. (Variables x4 and x 7 do not

contribute to the objective function at all, and hence their respective scale ranges will not

be divided through the entire run.) Variable x<j contributes 98.9 (989/10=98.9) to the best

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

feasible solution and hence its original scale range is divided at its absolute value, 98. The

first subset contains the scale range 0 < x6 < 98, and the second subset is formed by fixing

the variable x6 at 99. Using value dominance, the subset with variable x6 = 99 can be

fathomed, as the contribution of this variable to the objective function is at least 990

(=9 9 * io)s which is greater than the best feasible solution of 989.

By forming and fathoming the above two subsets, the search space is reduced to

80.36*1012 combinations. Since the permissible scale ranges of the variables x2 and x6

have been reduced, new boundaries for these variables are assigned within the dynamic

scale genetic algorithm. It may be worth noting that, as the permissible scale ranges for

variables shrink, the corresponding number of bits required to encode the range of

variables may also shrink. Dropping bits has the added benefit of improving the

performance of the GA, as fewer bits prove more effective during the genetic search. (In

keeping with the elitist strategy which preserves the current best solution through the

subsequent generation, the number of bits are dictated by the current best feasible

solution. Therefore, although new scale ranges are immediately assigned for the entire

population, reducing the number of bits is delayed until the current bfs demands it.)

Step 4. Determining i f new scale ranges are assigned

If no new scale ranges are assigned in Step 3 above, the dynamic scale genetic

algorithm proceeds to Step 5. However, if new scale ranges are assigned in Step 3,

dynamic scale genetic algorithm loops back to Step 2. The population is re-evaluated

with the new mapping strategy. This feature injects diversity into the population, a key

requirement for an effective genetic search, as the binary encoding is mapped onto

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

different points in the solution space. Thus, the DyScGA has a built-in mechanism for

enhancing diversity.

Step 5. Determining i f maximum generations are reached

If the maximum number of generations specified by the user at run-time has been

reached, the program terminates. If not, the program advances to Step 6 , for the

formation of the subsequent generation.

Step 6. Forming subsequent generation through crossover and mutation

Through the genetic operators of crossover and mutation, the next generation is

formed in a manner identical to the simple genetic algorithm. After a new generation is

formed through reproduction, DyScGA loops back to Step 2, and the entire cycle of

population evaluation, new scale range assignments and reproduction repeats.

3.5 Features of the Dynamic Scale Genetic Algorithm

3.5.1 Theoretical Basis

The dynamic scale genetic algorithm applies a simple genetic algorithm to

successively refined search spaces. The genetic operators are not modified and the basic

scheme of the simple genetic algorithm remains unchanged. Therefore, the theoretical

basis of the simple genetic algorithm still holds over successive adjustments to the scale

ranges and hence the solution space (Whitley et al. 1991, Schraudolph and Belew 1992).

3.5.2 Diversity

The DyScGA re-evaluates the members of a population with progressively tighter

scale ranges. This improves the sampling of the solution space by mapping the candidates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

onto different points in the search space. This feature injects diversity, a key component

in the quality o f the solution produced by a genetic algorithm (Goldberg 1989).

3.5.3 Learning and Memory

Unlike the genetic algorithm, the dynamic scale genetic algorithm learns problem

specific information and retains it in the form of a memory for future use. During a single

run, the dynamic scale genetic algorithm progressively refines the solution space, by

trimming areas that do not contain the optimum. Therefore, the algorithm 'learns' about

the solution space over successive generations. This knowledge is retained for future use

across subsequent runs of the DyScGA to avoid having to re-leam. This constitutes a

permanent memory, a feature which improves the performance of the DyScGA It has

been established in the genetic algorithm literature that if problem specific knowledge from

past experience is retained, it can help seed the initial population of a subsequent run to

improve the performance in a significant manner (Davis 1987).

3.6 Advantages of DyScGA

Most of the enhancements to the simple genetic algorithm suggested in the literature

pertain to continuous variables. The dynamic scale genetic algorithm proposed in this

research is the first enhancement specifically applicable for discrete variables. In addition

to the unique application area, it has several advantages over other GA-modifications

suggested in the literature.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

1. Unlike other permissible scale range adjusting improvements suggested in the

literature (dynamic parameter encoding, adaptive search space scaling, adaptive

representation genetic optimizer technique, and delta coding), DyScGA does not

require additional control parameters that have to be arbitrarily set by the user.

For example, Schraudolph and Belew's dynamic parameter encoding (DPE) (1992)

requires the user to set a trigger threshold in order to adjust the resolution of a

parameter. The authors note that setting the trigger threshold is complicated and

no rules are available to guide the selection process. If the trigger threshold is too

high, the DPE will not be able to eliminate suboptimal areas of the search space

from consideration. On the other hand, if the threshold is too low the algorithm

may easily be triggered by noise. The performance of the DPE algorithm is thus

dependent on the value of the trigger threshold. The proposed DyScGA does not

employ such parameters, thus eliminating subjectivity and guess-work and

simplifying the implementation of the algorithm.

2. DyScGA does not require inverse operators, such as those employed by the

adaptive search space scaling, the adaptive representation genetic optimizer

technique, and the delta coding techniques. Unlike these methods, the search

space is trimmed conservatively if and only if there is mathematical evidence that

the optimal does not lie in the eliminated search space. This simplifies the

implementation of the dynamic scale genetic algorithm.

3. The DyScGA has a built in learning and memory feature. Problem specific

learning occurs over successive generations and is stored for use with future runs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

There is no such learning or memory in a simple genetic algorithm. Nutter and

Ding’s (1992) multi-leveled environment for learning provides for learning and

memory in a computer network system application domain. However, with its ten

modules operating on layers, three levels of representation, two transformations

and three levels of learning, it is extremely complex to build and implement.

4. By re-evaluating a population with different mapping strategies, the diversity of the

population is significantly enhanced. This promotes the exploration of the search

space, an essential ingredient to effective genetic search.

5. DyScGA does not alter the structural properties of the genetic operators of a

standard genetic algorithm, and hence retains all the features of the latter.

DyScGA can be characterized by successive GAs applied iteratively to search

spaces refined through pruning. Therefore, the theoretical foundations and

analysis for GAs still applies.

3.7 Limitations of DyScGA

The main limitation of the dynamic scale genetic algorithm proposed is that its

applicability is not independent of the problem domain. The DyScGA can only be applied

to discrete optimization problems employing a linear objective function. Therefore,

generality is sacrificed for performance. However, this can be justified for two reasons.

First, discrete optimization problems with a linear objective function include most of the

commonly occurring discrete optimization problems in industry and management settings,

and encompass the integer programming problems. Second, GA-modifications that are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

independent of the problem domain, such as DPE, ARGOT, adaptive search space scaling,

and delta coding, have a performance that varies vastly from problem to problem. This

implies that, while these strategies may give good results for a particular problem domain,

its performance on another problem domain may be poor (Michalewicz and Arabas 1994).

This occurs mainly due to their dependence on population convergence measurements,

which can sometimes produce mis-leading indications for triggering the trimming action.

A second limitation of the DyScGA is that the enhanced diversity comes at a price —

an increased computational burden associated with re-evaluation of the population. In the

case of a simple genetic algorithm, diversity is enhanced by employing a large population.

However, a large population also implies greater computational requirements associated

with reproduction (crossover and mutation), in addition to population evaluation. There

is, however, an important difference between the nature of computational requirements of

the two algorithms. An increased population size in the simple genetic algorithm demands

higher computational requirements, regardless of the state of the population. Thus, even

when the population has converged, reproduction and population evaluation are

performed until the pre-specified number of generations is reached. On the other hand,

the dynamic scale range genetic algorithm re-evaluates populations and hence requires

more computations, if and only if there is a change in the scale range of a variable. As a

result, if the population has converged, there will be no extra population evaluations and

the computational burden does not increase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

3.8 Implementation of DyScGA

DyScGA was implemented by incorporating a module into an existing simple

genetic algorithm, written in FORTRAN 77® and run on a SUN SPARC® workstation.

The simple genetic algorithm has been validated and tested, and is used extensively at

NASA Langley Research Center (Gage 1995). It uses the elitist strategy, i.e., it carries

the best solution unchanged into the next generation, thus preserving it. It uses a

tournament selection scheme, which determines parents by picking the best of two

potential mates.

3.9 Verification and Validation

Verification was performed to ensure that the computer code, written to translate

the DyScGA concepts developed in this research into machine language, was appropriate.

This was done by solving a problem with a known optimal value, and verifying the outputs

of the computer program as it progressed. Once it was ascertained that the computer

code was satisfactory, validation was performed to establish that the DyScGA does indeed

have a superior performance compared to the simple genetic algorithm. By using identical

values for the initial random number seed and control parameters, the performance of both

algorithms can be compared directly.

3.9.1 Verification

Verification was performed to ensure that the software code written for DyScGA is

accurate. This was done by examining and verifying each step of the algorithm as it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

si

proceeded. The problem given by equation (3.2), with a known objective function of go

(Gass 1985), was selected as a test case for the purpose of verification. A genetic

algorithm (and the dynamic scale genetic algorithm) does not make provisions for explicit

constraint formulation. Instead, a constraint is stated in terms of a penalty for violating

The objective function of problem (3.2) was therefore modified to accommodate

constraint violation through appropriate penalty functions. The penalty function, in case

of constraint violation, was selected by trial and error on the simple genetic algorithm as

follows:

I00((2x , + x2 + x 3) - 30)2

I00((x2 + 3x4 + 2xs + Xf)-6Q)2 (3.3)

100((2x3 + xs + 2x6 + 4x7)-4 8)2

The following values were used for the random number generator seed and control

parameters: initial random number seed 1 0 0 , population size 1 0 0 , crossover probability

0.95, mutation probability 0.2 (De Jong 1975, Grefenstette 1986, Schaffer et al. 1989).

The DyScGA was run for ten generations with the above configuration. The

results and outputs generated as the dynamic scale genetic algorithm stepped through the

generations are presented in Table 3.1. The following steps were executed by the

DyScGA

1 . Step 1. Forming cm initial population

An initial population was randomly selected. This step is carried out by the simple

genetic algorithm code.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

Gen Bfs Scale ranges Best feasible solution / coefficient Re-eval
Xl

\bfs/4\
x2

\bfs/12\
x3

\bfs/2\
x4 X$

\bfs/5\
x6

\bfs/10\
Xi

Gen 1 2593 - - - - - - -

1307 - - - - - - -

721 - 60 - - - 72 -

359 89 29 - - 71 35 - Yes
Gen 2 153 38 1 2 76 - 30 15 - Yes

151 37 1 2 75 - 30 15 - Yes
149 37 1 2 74 - 29 14 -

69 17 5 34 - 13 6 - Yes
64 16 5 32 - 1 2 6 -

62 15 5 31 - 1 2 6 - Yes
60 15 5 30 - 1 2 6 - Yes

Gen 3 60 15 5 30 - 1 2 6 -

Gen 4 60 15 5 30 - 1 2 6 -

Gen 5 60 15 5 30 - 1 2 6 -

Gen 6 60 15 5 30 - 12 6 -

Gen 7 60 15 5 30 - 1 2 6 -

Gen 8 60 15 5 30 - 1 2 6 -

Gen 9 60 15 5 30 - 1 2 6 -

Gen 10 60 15 5 30 - 1 2 6 -

(Underlined values indicate intermediate scale ranges that were not actually implemented)

Table 3.1 Stepping through the DyScGA

2 . Step 2. Evaluating fitness o f population

The fitness, in terms of objective function and constraints, was evaluated for the

entire population. This step was also performed by the simple genetic algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

3. Step 3. Assigning new scale ranges based on the best feasible solution

This step involves the dynamic scale genetic algorithm module. The DyScGA

determined the best feasible solution in the initial population by comparing the fitness

values of each member determined in Step 2 above. The best feasible solutions are listed

in Table 3.1 in the order in which they were found. The first best feasible solution found

was 2593. New scale ranges, if any, were determined by computing the contributions of

each variable to the bfs of 2593. As the table indicates, no new scale ranges were required

at this best feasible solution. This occurred because the contribution of each variable to

the bfs was greater than the original scale range of 99. For example, the contribution of

variable X/ to this bfs, determined as 648 (|2593/4|), does not divide the original scale

range of 99. Hence, subsets of the original search cannot be formed, and no new scale

ranges were assigned.

Next, a best feasible solution of 1307 was found. Once again no new scale ranges

were required. Following this, a best feasible solution was found at 721. Based on the

contributions of the variables to this bfs value, the scale ranges of variables x2 and x6 can

be divided at 60 (=|721/12|) and 72 (=|721/10|) respectively. Subsets can be formed by

supplying the following permissible scale ranges instead of the original: Subset11 : 0 < x2

< 60, Subset12 : 61 < X/ <99. Subset12 can be fathomed through value dominance, as it

contains solutions with fitness of at least 732 (=61*12), which are greater than the best

feasible solution of 721. The new permissible scale range of variable x2 was now limited

to 60, i.e., 0 < x2 < 60.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

Similarly, for variable x6 the following subsets can be formed: Subset21: 0 <x6 <

72, and Subset22 : 73 < xt < 99. Once again, Subset22 can be fathomed through value

dominance, as it produces solutions that have fitness of at least 730 (=73*10), which are

greater than the best feasible solution of 721. Therefore, the new permissible scale ranges

for variable x6 were limited to 72, i.e., 0 < < 72. Next, a best feasible solution of 359

was found. In a similar manner, variables xj , x2„ x3 , and X* were assigned tighter scale

ranges of 89, 29, 71 and 35, respectively. There was no scale change for the variables x3,

x4, and x7 as their respective contributions were higher than their original scale ranges of

99. For example, for variable x3 , the contribution was 179 (=|359/2|), which is higher

than 99. Variables x4 and x7 do not figure into the objective function, and hence no scale

change was required for them.

4. Step 4. Determining i f new scale ranges were assigned

The scale ranges for the problem were now refined as follows: 0 < x/ < 89, 0 < x2 <

29, 0 < x3 < 99, 0 < x4 < 99, 0 £ xs < 71, 0 < x 6 £ 35, and 0 < x 7 < 99. Since new scale

ranges were assigned, the program looped back to Step 2 for re-evaluation of the

population.

5. Step 2. Evaluating fitness o f population

Since scale ranges were tightened, the population members now represented

different points in the solution space. The population was re-evaluated with the new

mapping strategy (scale ranges 89, 29, 99, 99, 71, 35, 99). The population member

representing the best feasible solution of 359 was left unchanged without re-evaluation,

since the elitist strategy which preserves the bfs was used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

6 . Step 3. Assigning new scale ranges based on the best feasible solution

The best feasible solution was found to be 359 again, since the re-mapped

population did not produce a better solution. Therefore, no new scale ranges were

required.

7. Step 4. Determining i f new scale ranges were assigned

Since the scale ranges were unchanged (89, 29, 99, 99, 71, 35, 99) the program

advanced to Step 5.

8 . Step 5. Determining i f maximum generations were reached

The current generation was the first generation, which is less than the maximum

allowable generations of 1 0 . Therefore, the computer code progressed to Step 6 .

9. Step 6. Forming subsequent generation through crossover and mutation

The next generation was formed through the genetic operators of crossover and

mutation. The program then moved to Step 2 for evaluation of the new population.

10. Step 2. Evaluatingfitness o f population

The new population was re-evaluated. The best feasible solution which was

preserved by the elitist strategy was left unchanged.

11. Step 3. Assigning new scale ranges based on the best feasible solution

The best feasible solution from among the newly produced population was found as

153. New scale ranges were assigned based on this bfs as: 0 <Xi < 38, 0 < x2 £ 12, 0 <

x3 < 7 6 , 0 < x 4 < 99, 0 <Xs < 30, 0 < Xg <15, and 0 < x 7 < 99.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

12. Step 4. Determining i f new scale ranges were assigned

Since new scale ranges were assigned, the program looped back to Step 2 for

population re-evaluation.

13. Step 2. Evaluating fitness o f population

The population was re-evaluated with the new mapping strategy, except for the best

feasible solution.

14. Step 3. Assigning new scale ranges based on the best feasible solution

The best feasible solution from among the newly produced population was found as

151. New scale ranges were assigned based on this bfs as: 0 < X/ < 37, 0 < x2 < 12, 0 <

x3 < 75, 0 <x4 < 99, 0 <x5 < 30, 0 <x6 < 15, and 0 < x 7 < 99.

As Table 3.1 indicates, the program continued in this manner until there was no

more improvement in the best feasible solution. This occurred at fitness value 60, and

new scale ranges were set as follows: 15, 5, 30, 99, 12, 6 , 99. At this point the third

generation was formed through reproduction and crossover. Since this third generation

did not contain a better feasible solution, the DyScGA proceeded in the manner of a

simple genetic algorithm through generation 1 0 .

In this way, the computer code written for the DyScGA was fully verified.

3.9.2. Validation

The verified dynamic scale genetic algorithm code was validated to ensure that it

performs better than the simple genetic algorithm. For the purpose of validation, the

performance of both algorithms was compared by solving problem 3 .2 above. To enable a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

direct comparison, the same initial random number seed (1 0 0) and algorithm parameters

(population size 100, crossover probability 0.95, mutation probability 0.2) were used for

both cases. Doing so enables an exact comparison between the results obtained by the

simple GA and the DyScGA. It can be seen that the performance of the DyScGA at these

settings has been examined in the preceding section.

The simple GA was run with the above control parameter settings and initial

random number generator seed. It was run for a total of 25 generations, greater than the

dynamic scale genetic algorithm generations (10). Table 3.2 presents the performance of

the simple GA. It contains the best fitness and average fitness values found during each

generation. The results demonstrate and underscore the utility of the DyScGA

It can be seen, from Table 3.2, that the quality of the best fitness improved with each

subsequent generation for the simple genetic algorithm. The average fitness value was

observed to fluctuate through the generations. This can be attributed to the incidence of

infeasible solutions in the population, for each generation. Occurrences of infeasible

solutions are due to constraint violations that are penalized by increasing the objective

function value. This increase contributes to a higher average fitness over the generation.

The final solution corresponding to the best fitness was found by the simple genetic

algorithm, in the 24th generation, as 83. This fitness value given in Table 3.2, turned out

to be considerably higher than the known optimal value of 60.

Next the dynamic scale genetic algorithm with identical control parameters, which

was applied to the same problem (3.2) for 10 generations, is considered. The results are

tabulated in Table 3.3. Table 3.3 contains an additional column that depicts the number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

Gen Best fitness Avg fitness
1 359 1637
2 251 1426
3 227 1254
4 227 1092
5 213 901.2
6 213 922.5
7 193 1095
8 193 964.1
9 193 890.2
1 0 193 965.5
1 1 123 1520
1 2 123 1065
13 87 909.1
14 87 1303
15 87 1350
16 87 968.5
17 87 880.9
18 87 1441
19 87 1006
2 0 87 1070
2 1 87 2632
2 2 87 843.2
23 87 1190
24 83 880
25 83 1827

Table 3.2 Results obtained by simple genetic algorithm

times the population was re-evaluated due to a change in the scale range of a variable.

Identical settings of the control parameters and the starting random number generator seed

enable a direct comparison with the simple genetic algorithm. Care was taken to run the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

simple genetic algorithm for extra generations (25), due to the population re-evaluations

performed by the dynamic scale genetic algorithm which was run for only 1 0 generations.

Gen Best fitness Average fitness Population re-
evaluation

1 359 1346 1

2 60 1.33E+04 5
3 60 6558 —

4 60 4738 —

5 60 5562 —

6 60 6249 —

7 60 9644 —

8 60 1.21E+04 —

9 60 1.10E+04 —

1 0 60 3362 - -

Table 3.3 Results obtained by the DyScGA

The first generation for both the plain GA and the DyScGA was formed by the

random selection of an initial population. This population, as expected, was identical for

both algorithms, and the best fitness was 359. It can be seen that as with the simple GA

the best fitness improved with each generation. In the case of DyScGA however, the rate

of improvement in the best fitness can be observed to be more rapid. Furthermore, the

quality of the final solution produced by the DyScGA at 60 was superior to that found by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

the simple genetic algorithm (83). This optimal solution of 60 was found in the second

generation itself, after a total of six extra population evaluations as in section 3.9.1.

Average fitness values in Table 3.3 are noticeably higher than the corresponding

values for the simple genetic algorithm. This can be explained by the higher percentage of

infeasible solutions present in the search space refined by the DyScGA. Typically, the

optimal for constrained optimization problems is located near the boundary of the feasible

and infeasible regions. As the DyScGA tightens bounds, the search space is constricted

and progressively contains a larger percentage of infeasible solutions in comparison to

feasible solutions. Therefore, chances of generating infeasible solutions in a constrained

optimization problem increase, driving the average fitness value for DyScGA higher.

A graphical depiction of the improvement associated with the DyScGA, based on

the results in Tables 3.2 and 3.3, is given in Figure 3.4. From the above comparison, it

can be concluded that the overall performance of the DyScGA, in terms of final solution

(60 versus 83) and computational requirements (2 generations and 6 extra population

evaluations, versus 24 generations with no extra population evaluations), is considerably

superior to the simple genetic algorithm. This validates the dynamic scale genetic

algorithm. It demonstrates the learning feature of the DyScGA which results in a

noticeable improvement in its performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

340
Simple GA
DyScGA290 ■

240 -
Best fitness

190 •

140 -

90 -

71 53 9 11 13 15 17 19 21 23 25

Generation

Figure 3.4 Graphical comparison of the simple GA and the DyScGA

Next, we turn to the memory feature of the dynamic scale genetic algorithm which

enables the permanent storage of the information learned during each independent run. To

validate the memory feature and its benefit, the DyScGA was compared to the simple

genetic algorithm and to the DyScGA with memory feature disabled for validation

purposes. These three strategies were used to solve the problem given by equation (3.2).

As before the dynamic scale genetic algorithm was run for 10 generations, and the simple

genetic algorithm for 25 generations. Each independent run of each algorithm was

initialized by identical random number generator seeds. That is, the first run of all the

three strategies started with seed 100, the second run started with seed 200, and so on. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

addition, the control environment for all three strategies was maintained at: population

size 100, crossover probability 0.95, and mutation probability 0.2.

These two measures promote a direct comparison between the DyScGA with

memory disabled and the simple GA, in the sense that they start out with an identical

control environment and an identical population. However, in the case of DyScGA with

memory, although the control environment is the same, the population may not necessarily

be so. This is because, due to the memory effect, each run of the DyScGA may have

variables whose permissible scale ranges have been progressively tightened. Therefore,

although the initial binary population may be the same as that of the simple GA and

DyScGA with memory, it may represent different solutions when mapped onto a more

compact solution space. The first independent run of both the DyScGA and the DyScGA

with memory disabled were identical. They both produced a final solution of 89, with 21

population re-evaluations. (The simple GA produced a final solution of 145 during its first

run). During the second run, all three strategies started out with an identical seed.

However, while DyScGA remembered the tighter scale ranges learned during its previous

run, DyScGA with memory disabled did not store these. Therefore, it started with the

original scale ranges of the problem. Table 3.4 contains the solutions obtained by the

DyScGA, simple GA and DyScGA with memory feature disabled, for the second

independent run. Figure 3.5 contains a graphical depiction of the memory effect, based on

the second independent run of Table 3.4. It is observed that DyScGA produced a final

solution of 64, with five population re-evaluations. In comparison, DyScGA with memory

disabled produced a higher final solution of 84 and required more population re­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

evaluations (11). This can be attributed to its lack of memory of the new scale ranges

obtained during its first independent run. On the other hand, DyScGA retained the refined

scale ranges learned during its first independent run. Thus the learning and memory

feature of the DyScGA has been demonstrated and validated.

Gen Simple GA
Best fitness

Dy
Best fitness

ScGA
Pop. re-evals

DyScGA wit
Best fitness

i memory disabled
Pop. re-evals

1 533 115 0 174 6

2 382 1 1 1 0 174 6

3 352 84 1 143 . 8

4 352 84 1 143 8

5 352 76 4 98 1 0

6 322 76 4 98 1 0

7 322 64 5 98 1 0

8 322 64 5 84 11

9 2 1 2 64 5 84 11

1 0 2 1 2 64 5 84 1 1

1 1 2 1 2

1 2 204
13 184
14 184
15 184
16 164
17 164
18 164
19 164
2 0 164
2 1 164
2 2 164
23 164
24 164
25 164

Table 3.4 Comparison of DyScGA, simple GA and DyScGA with memory disabled

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

520 Simple GA
DyScGA
DyScGA with memory disabled440

360

280

200

120

5 7 9 11 13 15 17 19 21 23 251 3

Generation

Figure 3.5 Graphical comparison of the simple GA, the DyScGA, and the DyScGA
with memory disabled

3.10 Summary

The dynamic scale genetic algorithm, which is based on the theoretical foundation of

the discrete optimization technique of implicit enumeration, was presented in this chapter.

The DyScGA incorporates the concept of forming mutually exclusive subsets of a problem

through an appropriate division of the scale ranges of its variables into the simple genetic

algorithm. It then uses value dominance to systematically eliminate these subsets from

consideration. The DyScGA can be viewed as multiple applications of the simple genetic

algorithm to a solution space that is successively refined, by dynamically changing the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

mapping strategy. By refining the associated solution space over successive generations,

the DyScGA aims to improve the performance of the simple GA.

The DyScGA eliminates subsets of the solution space if and only if there is

mathematical evidence that the subset does not contain the optimum. Therefore, unlike

other enhancements suggested in the GA literature it does not require inverse operators to

re-claim previously discarded subsets. Furthermore, the other methods in the literature are

triggered by population convergence measurements. This requires the user to arbitrarily

set threshold levels for determining convergence, a process which impacts the

performance of the method itself. The DyScGA, on the other hand, requires no additional

inputs other than the problem itself. In addition, through the use of a changing mapping

strategy, genetic diversity, an essential component for a successful genetic search is

introduced into the population of the DyScGA The DyScGA also has a built-in memory

that retains the refined scale ranges and solution space over subsequent runs of the

algorithms. Due to these features, the DyScGA stands apart from the existing GA

enhancing strategies.

The dynamic scale genetic algorithm was implemented. Verification of the

algorithm code was performed. The DyScGA was validated by demonstrating the

improvement in performance over the simple genetic algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

The dynamic scale genetic algorithm was subjected to extensive testing by

comparing its performance with that of the simple genetic algorithm on a testbed of

problems. The testbed consisted of three discrete optimization problems with a linear

objective function, each suitable for DyScGA. Two of these problems were listed in

standard books on optimization (Gass 1985, Nemhauser and Wolsey 1988). The third

problem considered in the testbed was the operations and support optimization problem

being studied at the Vehicle Analysis Branch of LaRC. The size of the problems

considered ranged from six to nineteen variables. The constraints of the problems

included a wide variety: linearity and non-linearity, deterministic and stochastic, analytical

formulation and lack of analytical formulation (predicted by simulation). Therefore, in

terms of the size of the problems and nature of constraints, the testbed is considered to be

adequately varied and representative of the general discrete optimization problem.

The dynamic scale genetic algorithm and the simple genetic algorithm are

characterized by their stochastic nature and their dependence on control parameter

settings. Hence any attempt at comparing the performance of these two algorithms needs

to explicitly address these aspects. In this research, care was taken to assign identical

random number generator seeds to both algorithms, during each experiment. Therefore,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

both DyScGA and the simple GA started out with identical populations for each individual

run in each experiment. Furthermore, the same control parameter settings (crossover

probability, mutation probability and population size) were used, thus making for a similar

control environment for both algorithms, during each experiment. In addition, in order to

perform a thorough investigation, testing was performed at various levels of the control

parameters for at least one testbed problem. All of the above measures ensured an exact

comparison between each experiment and each run of the DyScGA and the simple GA.

4.2 Problem I

Problem 3.2 which was presented in Chapter 3, formed Problem I of the testbed

(Gass 1985). The original objective function of equation (3.2) was modified to

accommodate penalties due to constraint violation. The penalty functions given by

equation (3.3) were used. Testing on Problem I involved comparing the performance of

the DyScGA and the simple GA at various levels of control parameters. Since the

dynamic scale genetic algorithm does not alter the basic mechanism and fundamental

properties of the simple GA, the theoretical basis of the latter still applies. Therefore, it is

hypothesized that the control environment will affect the simple genetic algorithm and the

dynamic scale genetic algorithm in the same manner. That is, the performance of both the

simple GA and the DyScGA will simultaneously either improve or deteriorate as the levels

of the control parameters change. For example, increasing the crossover rate would result

in a performance improvement (or degradation) for both algorithms. This hypothesis was

tested on Problem I by varying all the control parameters in a full factorial manner.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

4.2.1 Dynamic scale and simple genetic algorithm at various control parameters

This section describes the experiments conducted to compare the performance of

the two algorithms at different control parameter levels. The three control parameters of

population size, crossover rate, and mutation rate were varied at two levels each in a full

factorial manner. Commonly used control parameter levels were selected: population size

50, 1 0 0 ; crossover probability 0.9, 0.95; and mutation probability 0 .1 , 0.2 (De Jong 1975,

Grefenstette 1986, Schaffer et al. 1989). The experimentation plan used appears in Table

4.1.

Pop.
size

Crossover
prob.

Mutation
prob.

DyScGA (10 gens,
1 0 0 replications)

GA (25 gens,
1 0 0 eplications)

Expt. 1 50 0.9 0 . 1 XDyScGA (50.0.9.0.1)

SDvScGA (50.0.9.0.1)

X ga (50,0.9.0.1)
SgA (50.0.9.0.1)

Expt. 2 50 0.9 0 . 2 X DyScGA (50.0.9.0.2)

SDyScGA (50.0.9.0.2)

X ga (50.0.9.0.2)
Sga (50.0.9.0.2)

Expt. 3 50 0.95 0 . 1 X DyScGA (50,0.95.0.1)

SDvScGA (50.0.95.0.1)

X GA (50.0.95.0.1)
Sga (50.0.95.0.1)

Expt. 4 50 0.95 0 . 2 x DyScGA (50.0.9.0.2)

SovScGA (50.0.9.0.2)

Xga (50.0.9.0.2)
Sga (50.0.9.0.2)

Expt. 5 1 0 0 0.9 0 . 1 XDyScGA (100.0.9.0.1)

SovScGA (100.0.9.0.1)

Xga (100.0.9.0.1)
Sga doo.o.9.0.1)

Expt. 6 1 0 0 0.9 0 . 2 XDyScGA (100,0.9.0.2)

SDyScGA (100.0.9.0.2)

X ga (100.0.9.0.2)
Sga doo.o.9.0.2)

Expt. 7 1 0 0 0.95 0 . 1 X DyScGA (100.0.95.0.1)

SDvScGA (100.0.95.0.1)

X ga (100.0.95.0.1)
Sga (100.0.95.0.1)

Expt. 8 1 0 0 0.95 0 . 2 XDyScGA (100.0.95.0.2)

SovScGA (100.0.95.0.2)

Xga (100.0.95.0.2)
Sga (100.0.95.0.2)

Table 4.1 Problem I: Experimentation plan

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Each experiment was replicated 100 times, starting with a new random number

generator seed for both the simple and the dynamic scale genetic algorithms. This

generated a statistically large sample size of 100. Experiments were conducted first on the

DyScGA. In accordance with the plan outlined in Table 4.1, the DyScGA was run for

eight experiments at 1 0 0 replications each, for ten generations. (Therefore a total of 800

experiments consisting of 10 generations each were run.) Each independent run was

obtained by initializing the scale ranges of each variable to the limits specified in the

original problem. The final solution obtained at the end of each replication of each

experiment was used to compute the associated sample mean (XpyscOA), and standard

deviation (sDySccA)■ Based on the outcomes of these experiments and replications, it was

evident that an average of 14.8 population re-evaluations were performed by the DyScGA.

Next, experiments were performed on the simple GA. In order to compensate for

the diversity-enhancing population re-evaluations performed by the DyScGA the simple

genetic algorithm was run for a higher number of generations. This turned out to be 25

generations (=10+14.8 generations) for this particular problem because of the 14.8 extra

population evaluations required by the DyScGA One hundred replications, starting with

the same random number generator seeds as the DyScGA for each of the eight

experiments with the simple GA were conducted. Once again, the final solution obtained

at the end of each replication of each experiment was used to compute the associated

sample mean (xGa) and standard deviation (sCA).

The sample mean and standard deviation values were utilized to test the following

hypotheses fo r each o f the eight experiments:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

H0: The performance of both the genetic algorithm and the dynamic scale genetic
algorithm is equivalent (i.e., population mean of the solutions found by both
techniques are not different /Jga ~ fktyscod-

H i: The performance of the dynamic scale genetic algorithm is superior to that of
the genetic algorithm (i.e., population mean of the solutions found by the genetic
algorithm is higher than the population mean of the solutions found by the dynamic
scale range genetic algorithm for a minimization problem ̂ ga > MoyScGA)-

The hypothesis tests were performed by using the z statistic for unknown variances and a

large sample size. The z statistic was estimated by the following relation (4.1)

X GA ~’ X DyScGA
z = T T — TT— ” (4-i)

l SGA , DyScGA

where xCA and XoyScCA are the sample means of the final solutions, and sCA and sDySCGA are

the sample standard deviations of the final solutions, obtained by the simple GA and the

DyScGA through a large sample size (n>30). The resulting z statistics obtained for

Problem I are tabulated in Table 4.2.

The high z statistic values in each row of Table 4.2 indicate that the null hypothesis

Ho can be rejected for each experiment at a very high confidence level (more than 99.9%

confidence). Thus, regardless of the particular control parameter settings selected, the

dynamic scale genetic algorithm outperforms the simple genetic algorithm. Additionally, it

can be noted from the table that as we travel down the rows, the means and standard

deviations obtained by both algorithms change in the same direction. Thus as the settings

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

Experiment No..
(Popln, CrossMutn)

DyScGA (1 0 gens)
Mean Xoysccu >
Sid. Dev

GA (25 gens)
Mean ,
Std. Dev So,

z statistic p-value

Expt. 1 70.97, 105.92 12.54 < 0 . 0 0 1

(50,0.9,0.1) 1 0 . 8 6 27.43
Expt. 2 75.41, 128.11 14.98 < 0 . 0 0 1

(50,0.9,0.2) 13.72 33.25
Expt. 3 69.71, 108.96 13.64 < 0 . 0 0 1

(50,0.95,0.1) 9.66 29.77
Expt. 4 73.92, 134.53 16.93 < 0 . 0 0 1

(50,0.95,0.2) 13.46 35.67
Expt. 5 65.78, 89.24 13.49 < 0 . 0 0 1

(100,0.9,0.1) 6.30 15.50
Expt. 6 68.75, 120.28 19.57 < 0 . 0 0 1

(100,0.9,0.2) 7.68 28.43
Expt. 7 64.83, 90.18 14.19 < 0 . 0 0 1

(100,0.95,0.1) 5.48 18.00
Expt. 8 68.41, 118.08 17.87 < 0 . 0 0 1

(100,0.95,0.2) 8.69 27.48

Table 4.2 Problem I: z statistics for experiments of Table 4.1

of the control parameters change, the simple GA and the DyScGA either simultaneously

improve or degrade in performance, implying that the control environment has a similar

effect on their performances. It can be stated from these individual hypotheses tests at

each experiment that the performance of the dynamic scale genetic algorithm is superior to

the genetic algorithm regardless of the particular control parameters settings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

As an illustration, Figure 4.1 depicts a graphical comparison of the simple genetic

algorithm and the dynamic scale genetic algorithm, with an identical initial population and

control environment. This figure depicts an experiment conducted at the following control

parameter levels: Population size 100, crossover probability 0.95, mutation probability

0.2. Since the same random number generator seed was used for both the DyScGA and

the simple GA, both algorithms started with an identical initial population.

360

320 Simple GA
DyScGA280

240

200

160

120

Figure 4.1 Problem I: Graphical comparison of the simple GA and the DyScGA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

It can be observed from Figure 4.1 that, in the first generation, both had a best

fitness of 359. However, in the second generation, DyScGA obtained a best fitness of 64

with five population re-evaluations, while the simple GA obtained a best fitness of 251.

By the fifth generation, DyScGA achieved the global optimum of 60 at a cost of two more

population re-evaluations. On the other hand, the simple GA terminated with a best

fitness of 83 found in the 24th generation. Therefore, it is observed that the DyScGA

found a better solution, and its computational requirements at five generations and seven

population re-evaluations were less than the 24 generations of the simple GA.

In the 800 runs conducted, the dynamic scale genetic algorithm found the global

optimum (60) 173 times, while the simple genetic algorithm found it only three times.

4.2.2 Testing for the Memory Effect of DvScGA

In the experiments of section 4.2.1, independent runs of the DyScGA were

obtained by initializing each run with the original scale ranges of the problem, for

statistical testing purposes. However, in reality, the DyScGA will be run so that the

memory feature, which retains the scale ranges attained during the previous run comes

into play. In this section, the outcomes of additional experiments that were performed to

test this memory feature are described. During these experiments, the DyScGA with

memory was compared to the simple GA and the DyScGA with its memory feature

disabled. As before, the DyScGA with memory was run for one hundred trials. The

control environment (population 100, crossover rate 0.95, mutation rate 0.2), and random

number generator seeds were identical to those o f the corresponding experiments of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

simple GA and the DyScGA with memory disabled. Each run of the DyScGA (and

DyScGA with memory disabled) consisted of 10 generations, lower than the 25

generations of the simple GA

A histogram of the final solutions obtained by each algorithm is presented in Figure

4.2. It is observed that the performance of the DyScGA surpasses that of the simple GA

and DyScGA with memory feature disabled.

70

60

so ■

■ DyScGA
□ DyScGA mem. disabled

Simple GA

S ' 40
g
o’u
£ 30

20 -

Solutions with fitness between 60 and 66
DyScGA: 70%
DyScGA without memory: 51%
Simple GA: 1%

10 •

flui-ll a. I, I i, I, 8, I, 1, I I, I b,- a.

F nal sokidon (fitness)

Figure 4.2 Problem I: Histogram of solutions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

Seventy percent of the final solutions obtained by the runs of DyScGA were

between the global optimum of 60 and 6 6 . DyScGA found the global optimum a total of

28 times. The DyScGA with memory disabled resulted in a final solution between 60 and

6 6 , 51% of the time. It found the global optimum a total of 23 times. Thus, it can be seen

that when the memory of the DyScGA is disabled, its performance deteriorates. The

simple GA resulted in just one solution between 60 and 6 6 , which occurred at a fitness of

64. It did not find the global optimum of 60 in all of its 100 runs. It is apparent,

therefore, that the memory feature enhances the performance of the DyScGA in a

substantial manner.

4.3 Problem EE

The second problem in the testbed is given by the following equation (4.2)

(Nemhauser and Wolsey 1988):

Minimize x + x2 + x3 + 2x 4 + 0.5xs
such that x, - 2 x2 - x3 < - 2

1 lx2 + 3x 4 + 2xs + x6 > 2 9

The penalty function was selected by running the simple genetic algorithm with

several trial penalties. The penalty functions in case o f constraint violation were:

- 6 x 2 - 2 x 3 + x s

0<x,. <99 x = 1, . . . , 6

x, are non - negative integers

< -9
(4 .2)

10 {-2-(xi -2x2+x3)}2
10 {29-(llx2+3x4Jr2x5+x6)}2
10 {-9-(-6x2-2x3+x5)}2

(4 .3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

The problem was solved by the simple as well as dynamic scale genetic algorithm, at

control parameter settings of population size 20, crossover probability 0.9 and mutation

probability 0.1. The dynamic scale genetic algorithm was run for 10 generations, and used

100 replications starting with a new random number generator seed. Each independent

run was obtained by initializing the scale ranges of variables to the limits set in the original

problem. The final solution obtained at the end of each replication was used to compute

the associated sample mean (xqy&ca) and standard deviation (soyseat). Based on the extra

evaluations required in each of the 100 replications, it was noted that an average of 18.3

extra population evaluations were performed. To compensate for the extra evaluations

the simple genetic algorithm was run for 30 generations (more than 10+18.3). One

hundred replications, starting with the same random number generator seeds as the

DyScGA, were conducted. The final solution obtained at the end of each replication was

used to compute the associated mean (xGA), and standard deviation (sGA). The sample

means and standard deviations were used to test the following hypothesis:

Ha: The performance of both the simple genetic algorithm and the dynamic scale
genetic algorithm is equivalent (i.e., the population mean of the final solutions
found by both techniques are not different, uga = MDyScai)-

H i: The performance of the dynamic scale genetic algorithm is superior to the
performance of the simple genetic algorithm (i.e., the mean of the solutions found
by the simple genetic algorithm is higher than the mean of the solutions found by
the dynamic scale genetic algorithm, for a minimization problem, jjca > HdyScga).

The z statistic was computed using the relation given in equation (4.1) as 5.427. Resulting

statistics including sample mean and standard deviations and z statistic are given below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

DyScGA (1 0 gens)
Mean Std. Dev

GA (30 gens)
Mean Std. Dev z statistic p-value

13.425 11.14 20.635 7.24 5.427 < 0 . 0 0 1

The high value of the z statistic (5.427), once again enables the rejection of the null

hypothesis Hi) with 99.9% confidence. Thus, it can be stated that the performance of the

dynamic scale genetic algorithm is superior to that o f the genetic algorithm.

As an illustration, Figure 4.3 contains a graphical comparison of a single run of the

DyScGA and the simple GA. Both the algorithms were initialized with the same random

number generator seed and control environment. Therefore, the initial population for both

was identical. It is observed that both algorithms started out with a best fitness of 148.5 in

the first generation. However, DyScGA progressed to find a final solution of 20, in the 8 th

generation, which required 16 re-evaluations of the population. On the other hand, the

simple GA found a higher solution of 32.5 in the 27th generation. Therefore, in this case,

the DyScGA found a better solution, and its computational requirements at 10 generations

and 16 population re-evaluations were less than the 27 generations of the simple GA.

In the experiments conducted above, the DyScGA found the best solution at a

fitness of 7.5. Out of the one hundred runs, 18 runs of the DyScGA resulted in a solution

of 7.5. For the simple GA, however, the best solution found was at a fitness of nine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

150

DyScGA
Simple GA

130 --

no --
oio>
« 90"

70 -

50 --

30 --

5 7 9 11 13 15 17 19 21 23 25 27 291 3
Generation

Figure 4.3 Problem II: Graphical comparison o f the simple GA and the DyScGA

4.3.1 Testing for Memory Effect of DvScGA

The DyScGA in the preceding experiments consisted of independent runs in order

to permit a statistical analysis. Independence was achieved by initializing each run of the

DyScGA with the original scale ranges of the problem. In so doing the DyScGA was

operated without the benefit of its memory feature. An additional aspect of testing was

therefore to verify the merit of this memory feature. Additional experiments were

conducted to test this feature, by comparing the performance of the DyScGA with

memory to that of the simple GA and the DyScGA without the memory feature. Once

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

again, 100 runs o f each strategy were compared. The runs were conducted at conditions

comparable to the experiments in section 4.3 (population size 20, crossover probability 0.9

and mutation probability 0.1). Random number generator seeds were identical to those

used in the corresponding runs for the SGA and DyScGA with memory disabled of the

preceding section. The DyScGA was run for 1 0 generations.

Figure 4.4 contains a histogram of the final solutions obtained by these experiments

with DyScGA, as well as by the SGA and the DyScGA with memory feature disabled.

100

80 -

90 - ■ DyScGA.
□ DyScGA with memory disabled
■ Simple GA

70 -

50 -
Solutions with fitness between 7.5 and 10.5
DyScGA: 99%

40 - DyScGA without memory: 68%
Simple GA: 6%

30 -

20 -

en'T
Final solutions (fitness)

Figure 4.4 Problem II: Histogram of solutions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

It can be observed that once again, the performance of the DyScGA surpasses that

of the simple GA and the DyScGA with memory feature disabled. O f the 100 rus of

DyScGA (with memory), 99 resulted in a solution between 7.5 and 10.5, with 25 of these

solutions at 7.5. DyScGA with memory feature disabled, on the other hand, had 6 8 % of

its solutions between 7.5 and 10.5. Of these, 18 were at the optimum of 7.5. The simple

GA had 6 % of its solutions between 7.5 and 10.5, with none occurring at 7.5. Thus, it is

apparent that the memory feature improves the quality of solutions found by the DyScGA

4.4 Problem III: Operations and Support Simulation Optimization

This section describes the simulation optimization problem studied at NASA

Langley Research Center. The problem involves the optimization of operation and

support resources required for the maintenance of proposed spacecraft, through a discrete

event simulation model. The simulation model was built using Simulation Language for

Alternative Modeling (SLAM) (Pritsker 1984). It uses estimated values of component

reliability and maintainability to simulate the preflight maintenance, the mission and the

post flight maintenance (Ebeling and Donohue 1994).

Underlying processes such as component and system failure, repair and

replacement times, and maintenance delays are simulated. Due to the random nature of

these processes, the simulation model and its outputs are stochastic. For the purposes of

simulation, maintenance, which includes scheduled and unscheduled activities, was divided

into nine subsystems (power, structure, tanks, avionics, thermal, auxiliary, life support,

mechanical and propulsion).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

The user specified inputs to the simulation include the different crew and fleet sizes.

A scheduled and unscheduled maintenance crew is assigned by the user at run-time, to

each of the maintenance subsystems. (A fraction of the unscheduled crew is designated

by the user to perform scheduled maintenance activities.) The number of vehicles

employed or fleet size is also assigned by the user at run-time. Based on these user

specified crew and fleet sizes, the simulation model predicts the successful missions flown

and the mean vehicle turn-time between successive missions.

Thus, the model serves as a tool to observe how the decision variables (such as fleet

and crew size) assigned by the user at run-time, affect the stochastic responses (such as

mission rate and launch delays) for a particular space program. However, a problem faced

by the LaRC engineers is that of determining the smallest fleet size and least manpower,

that enables meeting the target mission rate in a timely manner. While the simulation

model can predict the mission rate for a certain fleet and crew size, it cannot directly

estimate the least fleet and smallest crew size to do so.

The problem was, therefore, to determine the least cost allocation of vehicles and

manpower for a particular launch vehicle conceptual design that achieves the overall

objectives of a space program. The minimization function was specified by LaRC

engineers in terms of the relative cost attributed to the vehicles in the fleet and the

maintenance manpower. The decision variables were non-zero, positive integers within a

specified range. The constraints were specified in terms of the goals of a space program,

as (i) The average mission launch delay is limited to a maximum of 48 hours, and (ii) The

mean missions flown are at least 140 flights in five years. These constraints are dependent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

on random processes (such sis component failures and repair times) and hence require

stochastic evaluation through the simulation. The problem can be stated symbolically as

optimizing over a discrete region S c f ,

Min (X) = 100 v + Cj + c2 + c3 + c4 + cs + c6 + c7 + c8 + c9 e S
ScIP

subject to

E(delqy) < 48 hours E(sucjnis) <> 140
2 <v <7 4 <Cj <9 6 <c2 < 9 6 <c3 <12 4 <c4 <9
15 <c5 <39 4 < c 6 <10 5 <c7 <10 4 < c 8 <10 8 <c9 <25
3 <c„ £ 4 3 < c 2j <6 3 <cSj <6 3 < c 4s <4 7 — 5̂s <15
3 £ c & <4 3 <c7s <5 3 * c 8s <4 3 <c9s <8

where the non-negative integer variables are defined as:

p denotes the dimension of the discrete solution space, is 19
v denotes vehicles in the fleet
Cj , c ls denote unscheduled and scheduled crew assigned to power subsystem
c2, c2s denote unscheduled and scheduled crew assigned to structure subsystem
c 3 > c 3s denote unscheduled and scheduled crew assigned to tanks subsystem
c4, c4s denote unscheduled and scheduled crew assigned to avionics subsystem
cj . c* denote unscheduled and scheduled crew assigned to thermal subsystem
c6, c6s denote unscheduled and scheduled crew assigned to auxiliary subsystem
c7, c7s denote unscheduled and scheduled crew assigned to life support subsystem
c8 , c8s denote unscheduled and scheduled crew assigned to mechanical subsystem
c 9 > c 9i denote unscheduled and scheduled crew assigned to propulsion subsystem
E(delay), is a random variable representing the expected value of launch delay over the

specified time horizon, as predicted by the simulation model
E(suc_mis), is a random variable representing the expected value of the number of

missions completed successfully over the specified time horizon, as
predicted by the simulation model

4.5 Simulation Optimization Framework

The average launch delay time and missions flown constraints are stochastic and

observed through simulation. This means that each replication of the simulation has the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

potential to give rise to a varying average delay and successful missions flown. Stochastic

measures or constraints require special consideration during optimization. In this research

a unifying framework, based on well-established procedures in mathematical programming

and statistics, was outlined and developed for the optimization of the simulated systems.

Such a methodology has generally been lacking in the simulation optimization literature,

which largely focuses on developing new approaches for optimization. The framework

used in this research employs the chance constraint approach (Chames and Cooper 1959)

for treating stochastic constraints for the purpose of problem formulation. Standard

statistical procedures recommended in the simulation literature are used to estimate the

stochastic responses (Law and Kelton 1991, Pritsker 1984, Kleijnen 1987, Fishman 1978).

These are based on the following assumptions:

1. The stochastic process is covariance stationary.

2. The sample variance is an unbiased estimator of the population variance.

3. The observations are independent and identically distributed.

The above assumptions do not always hold true in simulation studies. For instance,

covariance stationarity may not rigorously hold for terminating simulations, unless the

simulation time span is sufficiently long to warrant stationarity. (In terminating

simulations, a simulation stops when a natural event signaling the end of the simulation run

occurs. For instance, in the LaRC case, the simulation time span is specified as a five year

period.) Since we do not necessarily run the terminating simulation until steady state, the

underlying joint distributions of the random variables may change over time. Also, in

order to generate independent and identically distributed observations, a true random

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

number generator is required. However, in practice, pseudo-random number generators

are used. Furthermore, Law and Kelton (1991) observe that simulation output data is

usually correlated.

In practice, the above assumptions do not hold in the strictest sense and may be

violated to a varying degree. However, due to a lack of alternative analyses methods for

simulation data, it is recommended that standard statistical estimation be used regardless

of slight violations (Law and Kelton 1991, Pritsker 1984, Kleijnen 1987, Fishman 1978).

This practical strategy has been followed here.

The following sections describe an integrated and consistent simulation optimization

framework.

4.5.1 Accuracy

One of the issues associated with a stochastic simulation is the accuracy with which

a stochastic variable is to be estimated. The desired accuracy for each parameter can be

specified by the decision maker in terms of statistical confidence intervals. Confidence

intervals state the probability (1-a) that the true mean is actually contained in an interval

of width (w), about the estimated mean.

When a simulation involves multiple stochastic variable, the overall confidence (1-a)

associated with an optimization study is based on satisfying the individual confidence

intervals (1-a,) simultaneously. Thus the overall confidence satisfying the Bonferroni

inequality given by equation (4.5) implies a lower overall accuracy:

P ±1-1.01, (4.5)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

For studies involving ten or less stochastic variables, if an overall confidence (1-a) is

desired, then the individual confidences (7-or,) can be selected by the following relation:

S a f = « (4.6)

However, for more than ten stochastic variables, the accuracy required of individual

variables obtained by the Bonferroni inequality may be prohibitively high. For example, if

an overall confidence of 90% is desired for a simulation involving ten variables, the

individual confidences have to be at least 99%. (Similarly, if the individual confidence

intervals of ten stochastic variables is 90%, the overall confidence is only greater than or

equal to zero.) Therefore, for such cases, standard 90% or 95% individual confidence

intervals are recommended (Law and Kelton 1991). The analysis results in such cases

should be interpreted with caution, as one or more of the individual confidence intervals

may not contain the corresponding true mean.

4.5.2. Replications

Once the accuracy for each stochastic variable is established, the number of

replications or sample size required for the optimization study can be determined. The

number of replications can be computed based on the specified confidence level (1-a) of

the true mean being within an interval ±w of the estimated mean. A large sample size

implies that the estimated mean is closer to the true mean, and hence increases the

accuracy. A high level of accuracy is usually desired so that the results of the simulation

study and hence subsequent decisions can be made with a satisfactory level of confidence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

However, due to the finite resource constraints (CPU time, time available for the

simulation study), the number of replications that can be carried out are usually limited.

In order to estimate the replications, the following steps are undertaken (Law and

Kelton 1991, Kleijnen 1987):

1. In an initial pilot experiment, the simulation model is run for 1000 or more

replications to obtain a representative distribution for the stochastic responses.

2. The sample mean and standard deviations for the stochastic parameters are

computed from the distributions obtained from the pilot experiment.

3. Based on the desired confidence or probability (1-a) that an interval (width ±w

about the estimated mean) contains the true mean, the number of replications are

determined using the following relation:

where zt.a represents the standard normal statistic covering an area (1-a), and s is

the standard deviation of the sample.

4.5.3. Chance Constraints

The variability inherent in stochastic constraints complicates the simulation

optimization problem by forming fuzzy boundaries for the feasible region. This presents a

danger of erroneously accepting a solution as feasible, while it may have a high probability

of being infeasible, and vice versa. The chance constraint approach can be used to convert

the stochastic constraints into deterministic constraints. Chance constraints (Chames and

(4.7)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

Cooper 1959) permit constraint violation up to a pre-specified probability limit. The

decision maker expresses a risk tolerance, in terms of a permissible probability of

constraint violation. Consider a stochastic constraint of the form A(x) <b, where A(x) is a

simulation response. Using the chance constraint approach, this can be reformulated in

terms of risk tolerance as P(A(x) > b) < a, where a denotes the extent to which constraint

violation is permitted.

The chance constraints can be implemented through confidence interval estimates

(Teleb and Azadivar 1994). We know that the confidence associated with an interval

estimate denotes the probability that the interval contains the true parameter. For

example, the upper limit associated with an interval of confidence (1-a) states that the

probability that the true mean exceeds this limit is at most a .. Thus, the upper and lower

limits of the interval at the specified confidence (1-a) (or risk a) provide deterministic

boundaries for the infeasible region. In this manner, confidence intervals provide a means

of implementing chance constraints.

Using confidence intervals, the upper limit at confidence (1-a) can be used to denote

the chance constraint P(A(x) > b) < a, as A f e) ^ ^ a <b. The confidence intervals are

estimated by using the Student’s t distribution in the standard manner:

Upp_Lim = x + ('t("--> l^
Vn

(4.8)

Law _ Lim = x -
V«

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

where n is the number of replications, x is the estimated mean, s is the standard deviation,

coverage.

The above confidence intervals based on Student’s t are robust to minor deviations

from normality. However, in cases of serious non-normality and very small sample size,

1978, Kleijnen 1987). This adjusted statistic approximates the Student's t distribution by

accounting for the skewness of the distribution, thus permitting its use for hypothesis

testing and confidence intervals. Johnson's modified t statistic has been used successfully

on distributions with varying degrees of non-normality, including the exponential

distribution (Johnson 1978, Kleijnen 1986). The confidence intervals by the modified

statistic are given by

and is obtained from the Student t distribution at (n-1) degrees of freedom and a

the Johnson’s modified t statistic for non-normal distributions is recommended (Johnson

Upp_Lim = x + ft- ,,- s) , ^3
Vw 6^/7

(4.9)

Low Lim = x ~ ft.-,,- J) , /*,
■Jn 6s2n

where p3 is the third central moment estimated in the standard manner:

(4.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

4.6 Problem HI: Formulation

Based on the framework outlined in section 4.5, the NASA simulation optimization

problem was formulated. The following steps were undertaken to achieve this.

Step 1.

The LaRC engineers were asked to state the desired accuracy in terms of confidence

intervals. The desired accuracy was specified as follows:

Desired width ±w Desired conf. (1-a)
Delay ± 48 hours 80% confidence
Successful Missions ± 2 missions 95% confidence

Table 4.3 Desired accuracy

This implies that the mean of the average delay is to be estimated within ± 2 days of

the true mean, with an accuracy or confidence of 80%. Similarly, the mean successful

missions flown are to be estimated within ± 2 missions, with a 95% confidence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

Step 2.

The individual confidence levels specified by the LaRC engineers were used to obtain the

required sample size for the desired accuracy in estimating the individual means. The

following steps were undertaken to compute the sample size (Law and Kelton 1991,

Kleijnen 1987):

i) In a pilot experiment, the simulation model was run for 1000 replications to obtain a

representative distribution for both the stochastic responses. The decision variables at

this pilot experiment were selected by a process of trial-and-error, so as to yield a

relatively wide distribution for the delay and successful missions variables. These

levels are presented in Table 4.4.

Vehicles in fleet: 2

Maintenance Su d systems
Crew Pcrwr Struc Tank Avio Thrm Auxl Life Mech Prop

Unscheduled 5 6 7 4 22 6 4 7 8

Scheduled 3 5 4 3 1 1 3 4 4 6

Table 4.4 Decision variables at the pilot experiment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

it) The sample mean and standard deviation for both the stochastic parameters were

computed from the distributions obtained from the pilot experiment as:

Delay Successful Missions
Mean x 2.45 days 138.8 missions
Std. Deviations 6 . 8 days 4.29 missions

Table 4.5 Statistics estimated from pilot experiment

iii) Based on the desired confidence or probability given in Table 4.3, and the statistics

given in Table 4.5, the number of replications were determined as follows:

Delay 19 replications.
Successful missions 18 replications.

Based on these sample size estimations, a conservative sample size of 2 0 was selected.

Step 3.

For the present problem LaRC engineers were asked to express risk tolerances for the

stochastic parameters. These were expressed as follows:

5% risk that mean of average delay exceeds 2 days.
5% risk that mean missions lag target of 140.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

The above risk tolerances can be stated as:

P[E(delay) > 48 hours] <0.05 (4.11)
P[E(suc_mis) < 140] <0.05

Chance constraints were implemented through statistical interval estimates for a pre­

specified confidence, by using the modified Student’s t distribution given in Equation 4.8.

The limits at the specified confidence (5% risk or 95% confidence) provide deterministic

boundaries for the infeasible region, as follows:

delayupp 48 hours (4.12)
sucjn islowJim,.os 2 140

Step 4.

Based on the above steps the LaRC simulation optimization problem was formulated as:

Min (X) = 100 v + c; + c2 + c3 + c4 + c5 + c6 + c7 + c8 + c9 e S
S c I P

subject to
(4.13)

delayupp im.0.5 < 48 hours suc_mislawJim_.05 > 140
2 <v <7 4 <Cj <9 6 <e2 <9 6 <cs <12 4 <c4 <9
15 <cs <39 4 <c6 <10 5 <c7 <10 4 <c8 <10 8 <c9 <25
3 <cls <4 3 <C2s<6 3 <6 3 — C4s — 4 7 ~^5s <15
3 <c6s <4 3 <c7s <5 3 < C8s <4 3 <c9s <8

all variables are non-negative integers

where,

mean average delay is estimated at 80% confidence of being within ± 2 days; and,

mean successful missions are estimated at 95% confidence of being within ± 2

missions, giving an overall 75% accuracy for the optimization study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

4.7 Problem III: Experimental Results

The NASA LaRC simulation optimization problem was solved by both the simple

genetic algorithm and the dynamic scale genetic algorithm, and their performance was

compared statistically. The following penalties in case of constraint violation, determined

experimentally on the simple genetic algorithm, were added to the objective function:

1000*(48 hours - average delay uppjm. o.s)2
1000*(140- successful missions lawjm. o.s)2 (4.14)

Control parameters were set as follows: population size 50, crossover probability 0.9,

mutation probability 0.2. Each independent run of the dynamic scale genetic algorithm

consisted of 10 generations. The DyScGA was run for 34 such independent runs, each

run initialized with a different random number generator seed. The scale ranges for

variables were set in accordance with the original problem for each independent run. The

final solution (least cost allocation of vehicles and crew) obtained at the end of each of the

33 replications was used to compute the associated sample mean (xoyscat) and standard

deviation (SDyscat)■ On an average, the dynamic scale genetic algorithm took 5.18 extra

population evaluations. To compensate for the extra population evaluations, the simple

genetic algorithm was run for 16 generations (=10+5.18). The simple genetic algorithm

was run for 33 independent runs, each run being initialized by different random number

generator seeds. Once again, the final solutions obtained at the end of each of the 33

replications were used to compute the associated sample mean (xga), and the standard

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

deviation (soyScGA)■ The sample mean and standard deviation values were utilized to test

the following hypothesis:

H0: The performance of the both the genetic algorithm and the dynamic scale
genetic algorithm is equivalent (i.e., population mean of the solutions found by
both techniques are not different /Jga - Moyscat,)-

H r The performance of the dynamic scale genetic algorithm is superior to that of
the simple genetic algorithm (i.e., population mean of the solutions found by the
simple GA is higher than the population mean of the solutions found by the
dynamic scale genetic algorithm for a minimization problem /jga > Md/Scga,)•

The hypothesis was tested by using the z statistic for unknown variances and large

sample size, given by the relation (4.1). A large sample size of observations (33) for both

the dynamic scale range genetic algorithm and the simple genetic algorithm was used.

The following results were obtained:

DyScGA (10 gens)
Mean Std. Dev

GA (16 gens)
Mean Std. Dev z statistic p-value

273.24 36.27 321.12 40.86 5.03 < 0 . 0 0 1

Based on the rather high z-statistic value of 5.03, the null hypothesis Ho can be rejected

with 99.9% confidence. Therefore, we reject the hypothesis that the dynamic scale

genetic algorithm and the simple genetic algorithm are equivalent in performance.

As an illustration, Figures 4.5 (a), (b), (c) and (d) depict graphical comparisons of

the DyScGA and the simple GA, initialized by different random number generator seeds.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

380

360 --
Simple GA.

DyScGA340 --

320 --l / J
(A
0>B 300 -

280 -•

260 -•

240 --

220 - -

200
1 2 3 5 6 7 8 9 10 11 12 13 14 15 164

Generation

Figure 4.5a Problem IE: Graphical comparison of the SGA and the DyScGA (Case i)

400

380

360

340 --
l/J

| 3 2 0 -

K 300 - -

280 --

260 --

240 -•

220 -

200
1 2 3 64 7 8 9 10 11 12 13 14 15 16

Generation

Figure 4.5b Problem IE: Graphical comparison of the SGA and the DyScGA (Case ii)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

400

380 -,i
360 --

340 --
CO

320 --

300 -■

280 --

260 --
240 -- Simple GA

DyScGA220 - •

200

Generation

Figure 4.5c Problem IE: Graphical comparison of the SGA and the DyScGA (Case iii)

400

380 -

360 -

340 ■
CO „_
2 320 - c
-*—*

E 300 -
4 - i
COO
CQ 280 -

260 -

240 -
Simple GA
DyScGA220 -

200
1 2 73 4 5 6 9 10 11 12 13 14 15 168

Generation

Figure 4.5d Problem DI: Graphical comparison of the SGA and the DyScGA (Case iv)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

Each figure contains runs obtained from an identical control environment and initialized by

identical random number generator seeds. For instance, both the runs in Figure 4.5 (a)

were initialized by a random number generator seed of 2.4. Therefore, the DyScGA and

the simple GA both started with an identical initial population. However, the DyScGA

very quickly progressed to a solution of 266 in the third generation, with 3 population re-

evaluations. By the tenth generation, it produced a solution of 257 with 3 more re-

evaluations. The simple GA on the other hand, produced a final solution of 285 at the

end of the twelfth generation. Figures 4.5 (b), (c) and (d), contain similar examples,

where the DyScGA always produced better solutions than the simple GA. It is therefore

demonstrated that the performance of the dynamic scale genetic algorithm on the NASA

LaRC simulation optimization problem is superior.

4.7.1 Testing for Memory Effect

In the above section, the DyScGA was run by re-setting the scale ranges of

variables to their original limits, so that the resulting independent runs would permit a

statistical analysis. However, in reality, the memory feature of the DyScGA will retain the

refinements made to the scale range. In this section, the benefits associated with the

memory feature are verified. In order to verify the benefit associated with the memory

feature, additional experiments were conducted. The DyScGA was run in order to retain

learned information over subsequent runs. Thirty four such runs were conducted, with the

same control parameters as the preceding section: population size 50, crossover

probability 0.9, mutation probability 0.2. Each run was initialized with a different random

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

number seed. Figure 4.6 contains a histogram of the outcomes of these experiments with

the DyScGA, as well the simple GA and the DyScGA with memory disabled of the

previous section. It is observed in Figure 4.6 that the majority of solutions (91.2%)

produced by DyScGA resulted in a fitness between 256 and 265, with 85.3% of these at a

fitness of 256. The DyScGA with memory disabled produced 73.5% solutions between

256 and 265, with 27.3% of these being at fitness 256. The simple GA, however, did not

produce a single solution below a fitness o f273. Therefore, it is evident that the DyScGA

produced better solutions than the simple GA, and the memory feature produced a

dramatic improvement in its performance.

35

S’su
3O'u

265 275 285 295 305 315 325 335

Final solution (fitness)

■DyScGA.
□ DyScGA with memory disabled
H Simple GA

Solutions with fitness at 256
DyScGA: 85.3%

b DyScGA without memory: 27.3% B
1 Simple GA: °°/0 9

■J 1
345 355 365 375

Figure 4.6 Problem HI: Histogram of solutions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

4.8 Problem HI: Least Cost Allocation of Resources

The lowest cost allocation of operation and support resources for the NASA LaRC

simulation optimization problem found by the simple GA was at 273. The least cost

allocation found by the DyScGA was at cost 2S6. Several solutions with the fitness of

256 were produced by the DyScGA. These are given in Table 4.6. It is seen that the

number of vehicles in the fleet (2) and the unscheduled crew allocation to the nine

maintenance subsystems were constant. The scheduled crew assigned to the individual

maintenance subsystems changed from solution to solution. The stochastic constraints

(average delay not exceeding 48 hours and a total of at least 140 missions flown) were

satisfied and well within their tolerance levels, as shown in the Table 4.6.

Although all the sets of crew and vehicle allocations in Table 4.6 had a cost of 256,

the solution with the least average delay is preferred. The last row of Table 4.6 contains

resource levels which yielded a mean of 2.3 hours average delay, with 95% confidence

that the mean does not exceed 3.4 hours. Similarly, the target mission rate of 140

missions in a five year time span was achieved with 95% confidence. The above

stochastic measures for the means of average delay and successful missions were

estimated at the desired confidence specified by the LaRC engineers. The mean of

average delay was estimated at an 80% confidence of being within ± 2 days of the true

mean. The mean successful missions was estimated at a 95% confidence of being within ±

2 missions of the true mean. Thus the problem of optimizing the operations and support

resources for future space vehicles using LaRC’s discrete-event simulation model was

successfully solved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Fit.
sze

Crew allocation for maintenance subsystems
U: Unscheduled crew S: Scheduled crew

Avg. delay
(hours)

Missions

Powr Struc Tank Avio Thrm Auxl Life Mech Prop Mean U.lim Mean L.lim
U S U S U 5 U 5 U S U S U S U 5 U S

2 4 3 6 3 6 3 4 3 15 11 4 3 5 4 4 3 8 6 7.4 13.9 140 140
2 4 3 6 5 6 5 4 3 15 10 4 3 5 4 4 3 8 3 7.4 10.1 140 140
2 4 3 6 5 6 3 4 3 15 8 4 3 5 4 4 3 8 7 5.1 7.4 140 140
2 4 3 6 4 6 3 4 3 15 9 4 3 5 4 4 3 8 5 2.3 3.4 140 140

Table 4.6 Solutions produced by DyScGA at fitness 256

o
o

4.9 Summary

The proposed DyScGA, based on the idea that the performance of the simple GA

can be improved by refining a problem’s solution space through successive generations,

was subjected to extensive testing. A testbed consisting of problems that represent a

range of discrete optimization problems was selected The DyScGA and the simple GA

were both used to solve the testbed problems, and their performance was compared

statistically. Care was taken to use identical control parameter settings and random

number generator seeds, so that an exact comparison between runs of the two algorithms

could be made. Based on these experiments, it was demonstrated that the performance of

the DyScGA surpassed that of the simple GA on the problems considered. The benefit

associated with the in-built memory feature of the dynamic scale genetic algorithm was

also validated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Introduction

The main motivation behind this research was to develop an efficient genetic

algorithm based methodology to minimize the operation and support resources for

reusable launch vehicles through simulation models. In this dissertation, the simple

genetic algorithm was enhanced to provide for a more effective and efficient search in

conjunction with discrete optimization. Specifically, the enhanced genetic search was

designed for constrained discrete optimization problems with a linear objective function.

This class of problems is the most commonly occurring integer optimization problem in

industry and practical applications. Hence, the proposed dynamic scale genetic algorithm

is widely applicable for discrete optimization. In addressing the main objective, issues

related to the optimization of stochastic simulated systems, in general, were also identified

and studied. A unifying framework for the optimization of simulated studies was

presented based on existing statistical estimation techniques and mathematical

programming approaches. The NASA LaRC operation and support resource optimization

problem was addressed by using the dynamic scale genetic algorithm in conjunction with

the above simulation optimization framework. In this chapter the main accomplishments

of this research are highlighted, followed by a discussion of future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

5.2 Dynamic Scale Genetic Algorithm

This research developed an enhanced genetic algorithm, the dynamic scale genetic

algorithm, for constrained discrete optimization problems with linear objective functions.

Based on the concepts of implicit enumeration, the DyScGA utilizes problem specific

information to successively refine the search space and improve the effectiveness of

genetic search. The DyScGA is not the first search-space-scaling genetic algorithm

proposed in the literature. The dynamic parameter encoding, delta coding, adaptive search

space scaling and adaptive representation genetic optimizer strategies all refine the search

space in order to improve the genetic search. However, since these other methods use

population convergence measurements to trigger search space pruning, there exists the

possibility that the portion that contains the optimum is trimmed off accidentally. In

addition, they do not have a built-in memory feature that retains the boundaries of the

refined search space over subsequent applications of the GA. The DyScGA overcomes

these basic deficiencies inherent in the other search-space-scaling strategies . Specifically,

the following features of the DyScGA make it an attractive search strategy:

1. Unlike other proposed modifications, DyScGA refines the search space if and only if

there is mathematical evidence that the discarded portion does not contain the

optimum.

2. Therefore an ‘inverse’ prune operator to recover a discarded portion of the search

space, such as required by the other proposed techniques, is not necessary.

3. Unlike the other methods, the user does not have to arbitrarily set additional control

parameters during run-time. Therefore, its performance is consistent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

4. Has a built-in memory feature that retains the new refined boundaries of the search

space across successive applications of the algorithm, unlike the other proposed

enhancements.

5. Enhances diversity of the population by re-evaluating candidates with a new

mapping strategy.

Experiments were conducted to statistically test the effectiveness of the dynamic scale

genetic algorithm by comparing its performance to that o f the simple genetic algorithm on

a testbed of three problems. The results of the experiments clearly indicate that the

DyScGA produced better solutions in less generations. The performance of the dynamic

scale genetic algorithm was superior in all the experiments, with the z statistic ranging in

value from 5.03 to 19.57, at a confidence level of over 99.9%. Table 5.1 contains a

comparison of the quality of solutions obtained by both the algorithms.

Best solution Percentage of runs that produced best soln.
DyScGA Simple GA

Problem I
(100,0.95,0.2)

60 28% 0%

Problem II
(20,0.9,0.1)

7.5 25% 0%

Problem IH
(100,0.95,0.2)

256 85.3% 0%

figures in parent lesis indicate the settings of the control environment.

Table 5.1 Comparison of solutions obtained by the simple GA and the DyScGA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

It is evident from the above table that the DyScGA consistently found a better solution

than the simple GA

5.3 Simulation Optimization Framework

With the growing incidence of simulation modeling in industry, it is essential to

extend the role of traditional optimization to include the simulation domain. Some of the

issues associated with a stochastic simulation optimization study that require special

consideration are: (i) desired accuracy of the study, (ii) number of replications required

for the study, and (iii) treating stochastic constraints. In this research, a statistically sound

and consistent framework for optimization of simulation studies that addresses the above

aspects was presented. It is based on standard statistical estimation and mathematical

programming techniques.

Under this framework, the desired accuracy for the optimization study is specified

by the decision maker in terms of statistical confidence intervals associated with each

stochastic parameter or variable. The replications required to estimate the stochastic

parameters with the pre-specified confidence intervals are then computed. The

optimization study is subsequently carried out by replicating each simulation run with a

new random number generator seed. Another aspect that complicates the simulation

optimization problem is the stochastic nature of the constraints. Stochastic constraints

present fuzzy boundaries between feasible and infeasible regions of the solution space.

Thus there is a danger of erroneously accepting a solution as feasible when it may have a

high probability of being infeasible, vice versa. The mathematical programming approach

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

of chance constraints is used to convert the stochastic constraints to deterministic

constraints. This approach requires the decision maker to specify a ‘risk tolerance’ or a

permissible probability of constraint violation. Statistical confidence intervals provide a

means of implementing the chance constraints.

Use of this framework ensures that the optimization study is conducted in a

consistent and statistically sound manner. Specifically, the following objectives are

achieved:

1. The stochastic parameters predicted by the simulation are estimated with the desired

confidence specified by the decision maker.

2. The fuzzy boundaries provided by stochastic constraints are converted to

deterministic boundaries. The violation of constraints is limited to the risk tolerance

specified by the decision maker.

3. The inferences drawn from the study and subsequent decisions are based on

statistical levels of confidence.

5.4 Operation and Support Problem

The NASA LaRC simulation optimization problem involving minimization of

operation and support activities of reusable launch vehicles was addressed by using the

dynamic scale genetic algorithm in conjunction with the framework outlined above. The

best solution found by the dynamic scale genetic algorithm occurred at a cost (or utility) of

256. (The best solution found by the simple genetic algorithm occurred at a cost or utility

of 273). There were several solutions with an objective function value of 256. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

solution with the least average delay was selected from among these as having a superior

relative utility. At this solution, the operation and support resources were allocated as

follows:

Fleet size: 2 vehicles

Maintenance Sub-System
Crew Powr. Struc. Tank Avio. Thrm. Auxl. Life. Mech. Prop.
Urtsched 4 6 6 4 15 4 5 4 8
Sched 3 4 3 3 9 3 4 3 5

The stochastic parameter of average launch delay was estimated within ± 2 days of the

true mean with an accuracy or confidence of 80%. Similarly successful missions were

estimated within ±2 missions with a 95% confidence. The constraints were well within

their target levels. The mean of average launch delay was estimated at 2.3 hours, with a

95% confidence that it does not exceed 3.4 hours, well below the permissible delay of 48

hours. The expected number of successful missions was estimated with 95% achievement

of the target mission rate of 140 missions in five years. The overall accuracy of the study

was 75%.

The above solution represents a 23% improvement over the previous optimization

approach followed at NASA LaRC. This was the one-variable-at-a-time approach, which

involved varying the levels, of the input parameters of the simulation manually, one at a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

time, until a desired change in the output of the simulation was obtained. This approach

resulted in a solution o f utility 353, including a fleet size of three vehicles and a total of 53

maintenance crew. The approach was tedious to use and involved a lot of guess-work.

Furthermore, the optimization study itself was carried out by ignoring its stochastic

nature.

5.5 Future Research

The methodology developed in this research can be extended and applied to other

applications and problems. Opportunities for future research include the following.

1. The DyScGA can be applied in conjunction with the simulation optimization

framework to other operation and support simulation models that are in use at NASA

LaRC.

2. The DyScGA can also be applied to various other situations involving discrete

optimization problems with linear objective functions. The car rental agency and the

commercial airline industry are two such examples. The car rental agency needs to

maintain a fleet of cars to meet customer demand. Similarly, an airline is required to

maintain a fleet of airplanes in order to meet a specific schedule of flights. The scope of

these problems need not be limited to the simulation domain, but can include the non­

simulation domain.

3. The research can be extended to perform cost optimization of operation and

support resources for launch vehicles. Appropriate cost models would need to be

developed for these resources. The cost models could be of the form of cost estimating

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relations obtained through a statistical analysis of historical launch data. The dynamic

scale genetic algorithm could then be applied to minimize the cost of operation and

support resources.

4. The research can also be extended to multi-disciplinary design optimization. The

cost models so developed could be integrated with other disciplinary models, in order to

achieve a systems level multi-disciplinary design optimization of launch vehicles. This will

enable an analysis of the life cycle cost of launch vehicles during the conceptual design

phase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

REFERENCES

Brearly, AX., G. Mitra and H. P. Williams, “An Analysis of Mathematical Programming
Problems Prior to Applying the Simplex Method’, M athematical Programming, 8
(1975), 54-83.

Chames A. and W. W. Cooper, "Chance Constrained Programming" Management
Science, 6, 1 (1959), 73-79.

Ebeling, C. E., and C.B. Donohoe, “Integrating O&S Models During Conceptual Design -
Part IIF’, Annual NASA Report, Grant No. NAG1-1-1327, 1994.

Elketroussi, M., and D. P. Fan, "Optimization of simulation models with GADELO: a
multi-population genetic algorithm", International Journal o f Bio-Medical
Computing, 35, 1 (1994), 61-77.

Davis, X, Genetic Algorithms and Simulated Annealing, Pitman, N.Y., 1987.

De Jong, K., “An Analysis of the Behavior of a Class of Genetic Adaptive Systems”,
PhD. dissertation, University of Michigan, Ann Arbor, 1975.

Fabrycky, W.J. and B.S. Blanchard, Life Cycle Cost and Economic Analysis, Prentice
Hall, New Jersey, 1991.

Farrell, W., "Literature Review and Bibliography of Simulation Optimization", in
Proceedings o f the 1977 Winter Simulation Conference, 1977, 117-124.

Fishman, G., Principles o f Discrete Event Simulation, John Wiley, New York, 1978.

Friedman, M., and L.G. Savage, "Multiparametric Linear Programming", in , C. Gal, T.
and J. Nedoma (Eds.), Techniques o f Statistical Analysis, Management Science, 18,
7 (1972), 406-421.

Fu, M.C., "Optimization Via Simulation: A Review", Annals o f Operations Research, 53,
(1994), 199-247.

Gage, P. J., “New Approaches to Optimization in Aerospace Conceptual Design”, NASA
Report 196695, Contract Number NAG2-640, 1995.

Garey, M.R. and D. S. Johnson, Computers and Intractability: A Guide to the Theory o f
NP-Completeness, W.H. Freeman and Company, N.Y., 1983.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ill

Gass, S. L, Linear Programming - M ethods and Applications, 5th Edition, Mc-Graw-Hill,
New York, 1985.

Glover, F., “Tabu Search — Part F , ORSA Journal on Computing, 1 (1989), 190-206.

Goldberg, D., Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, Reading, PA, 1989.

Grefenstette, J. J., "Optimization of Control Parameters for Genetic Algorithms", TREE
Transactions on Systems, Man and Cybernetics, 1 (1986), 122-128.

Grefenstette, J. J., CX. Ramsey, and A. Schultz, "Learning sequential decision rules using
simulation models and competition", M achine Learning, 5 (1990), 355-381.

Griffin, J.J, "Whole Life Cost Studies: A Defense Management Perspective", Engineering
Costs and Production Economics, 14(1988), 107-115.

Holland, J., Adaptation in Natural and A rtificial Systems, The University of Michigan
Press, Ann Arbor, MI, 1975.

Holland, J.H., "Escaping brittleness: The possibilities of general purpose learning
algorithms applied to parallel rule-based systems", in R.S. Michalski, J.G. Carbonell
and T.M. Mitchell (Eds.), M achine Learning: An Artificial Intelligence Approach,
2, Morgan Kaufmann, Los Altos, CA, 1986, 593-624

Hooke, R., and T.A. Jeeves, "A Direct Search Solution of Numerical and Statistical
Problems", Journal o f Association fo r Computing Machinery, 8 (1961), 212-229.

Jacobson, S.H., and L.W. Schruben, "Techniques for Simulation Response Optimization11,
Operation Research Letters, 8 (1989), 1-9.

Johnson, M., "Modified t Tests and Confidence Intervals for Asymmetrical Populations",
Journal o f the American Statistical Association, 73 (1978), 536-544.

Kleijnen, J., G. Kloppenburg and F. Meeuwsen, "Testing the Means of an Asymmetric
Population: Johnson's Modified t Test Revisited", Communications in Statistics,
Simulation and Computation, 15, 3 (1986), 715-732.

Kleijnen, J., Statistical Tools fo r Simulation Practitioners, Marcel Dekker, New York,
1987.

Law, A., and W. D. Kelton, Simulation M odeling and Analysis, Mc-Graw Hill, New
York, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

Mandava, V.R, J.M. Fitzpatrick and D.R. Pickens, HI, "Adpative Search Space Scaling in
Digital Image Registration", IEEE Transactions on M edical Imaging, 8, 3 (1989)
251-262.

Michalewicz, Z., "A Hierarchy of Evolution Programs: An Experimental Study",
Evolutionary Computing, 1, 1 (1993), 51-76.

Michalewicz, Z. and J. Arab as, "Genetic Algorithms for 0/1 Knapsack Problem", Lecture
Notes in Computer Science, 869 (1994), 135-143.

Morris, W.E., T.A. Talay, and D.G. Eide, "Operations Simulation for the Design of a
Future Space Transportation System", in Proceedings o f the AIAA 21st Aerospace
Sciences M eeting, 1983.

Morris, W.D., NJH. White, W.T. Davis, and CJE. Ebeling, "Defining Support
Requirements During Conceptual Design of Reusable Launch Vehicles", in
Proceedings o f the AIAA 1995 Space Programs and Technologies Conference,
1995.

Nelder, J.A., and R Mead, "A Simplex Method for Function Minimization", Computer
Journal, 7 (1965) 308-313.

Nemhauser, G. L. and L. A. Wolsey, Integer and Combinatorial Optimization, John
Wiley and Sons, 1988.

Nutter, T., and Y. Ding, "Bridging the Gap: Combining High and Low Level
Representations for Knowledge Retention with Genetic Algorithms", International
Journal o f Expert Systems, 4, 3 (1992), 249-280.

Papadimitriou, CH., and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity, Prentice-Hall, New Jersey, 1982.

Parker, R G., and R L. Rardin, Discrete Optimization, Academic Press, Inc., New York,
1988.

Pritsker, A.A.B., Introduction to Simulation and SLAM II, Systems Publishing, West
Lafayette, IN, 1984.

Powell, D.J, S.S. Tong, M.M. Skolnick, "EnGENEous domain independent, machine
learning for design optimization", in J.D. Schaffer (Ed.), Proceedings o f the Third
International Conference on Genetic Algorithms, 1989, 151-159.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

Schaffer, J.D., R. Caruana, L. Eshelman and R. Das, "A Study of Control Parameters
Affecting On-Line Performance o f Genetic Algorithms for Function Optimization",
in JJD. Schaffer (Ed.), Proceedings o f the 3rd International Conference on Genetic
Algorithms, 1989, 50-61.

Schraudolph, N.N., and R. K. Belew, "Dynamic Parameter Encoding for Genetic
Algorithms", Machine Learning, 9, 1 (1992), 9-21.

Shaefer, C., "The ARGOT Strategy: Adaptive Representation Genetic Optimization
Technique", in J. Grefenstette, (Ed.), Proceedings o f the Second International
Conference on Genetic Algorithms, Lawrence Erlbaum, N.J., Cambridge, MA,
1987.

Smith, D. E., "An Empirical Investigation of Optimum-Seeking in the Computer
Simulation Situation", Operations Research, 21 (1973), 475-497.

Spendley, W., G.R. Hext, and F.R. Himsworth, "Sequential application of simplex designs
in optimization and evolutionary operations", Technometrics, 4 (1962), 441-461.

Teleb, R., and F. Azadivar, "A Methodology for solving multi-objective simulation-
optimization problems", European Journal o f Operational Research, 72 (1994),
135-145.

Tompkins, G. and R. Azadivar, “Genetic Algorithms in Optimizing Simulated Systems’, in
C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman (Eds.), Proceedings o f
the 1995 Winter Simulation Conference, 1995.

Unal, R , E. B. Dean and A A Moore, "Space Transportation System Operations and
Support Cost Modelling Approach", Journal ofParametrics, X, 4 (1990), 35-51.

Whitley, D, K. Mathias and P. Fitzhom, "Delta Coding: An Iterative Search Strategy for
Genetic Algorithms", in RK. Belew and L.B. Booker (Eds.), Proceedings o f the
Fourth International Conference on Genetic Algorithms, Morgan Kaufinann, San
Mateo, CA 1991.

Whitley, D. and T. Starkweather, "GENITOR H: A Distributed Genetic Algorithm",
Journal o f Experimental and Theoretical Artificial Intelligence, 2 (1990), 189-214.

Yunker, J. M. and J. D. Tew, "Simulation optimization by genetic search", Mathematics
and Computers in Simulation, 37, 1 (1994), 17-28.

Zhou, H.H., "CSM: A computational model of cumulative learning”, Machine Learning, 5
(1990), 383-406.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

VITA

Bela Dange Joshi was bom on March 28, 1966 in Bombay, India. In 1987 she received a

Bachelor’s degree in Electrical Engineering from the Government College of Engineering,

Pune. After working for a few years in India as an Electrical Engineer, Bela returned to

education. In 1992 she graduated from the University of Tennessee at Knoxville with a

Master of Science degree in Engineering Science with an emphasis in Artificial

Intelligence. In the spring of 1993 she joined Old Dominion University to pursue a

doctoral degree in Engineering Management. Her NASA funded doctoral research

involved the optimization of operations resources of launch vehicles through stochastic

discrete-event simulation modeling. She graduated with a Ph.D. in 1996. Her research

interests are in the area of simulation, optimization and robust engineering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Dynamic Scale Genetic Algorithm: An Enhanced Genetic Search for Discrete Optimization
	Recommended Citation

	tmp.1552660175.pdf.XoZyg

