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ABSTRACT

DYNAMIC SCALE GENETIC ALGORITHM:

AN ENHANCED GENETIC SEARCH FOR DISCRETE OPTIMIZATION

Bela Dange Joshi 
Old Dominion University, 1996 

Director: Dr. Resit Unal

The minimization of operations and support resources of reusable launch vehicles 

is a complex task, involving discrete optimization and the simulation domain. Genetic 

algorithms, offering a robust search strategy suitable for integer variables and the 

simulation domain, can be applied to minimize these resources. This research developed 

an enhanced genetic algorithm for problems with a linear objective function, the most 

common class of discrete optimization problems. The dynamic scale genetic algorithm 

developed here incorporates concepts of implicit enumeration to enhance search. This is 

achieved by utilizing problem specific information to refine the solution space over 

successive generations. The utility of the proposed algorithm was demonstrated by 

comparing its performance, in terms of quality of solutions produced, to that of the simple 

genetic algorithm. For all test problems, the dynamic scale genetic algorithm consistently 

produced better solutions in fewer generations. The proposed algorithm was successfully 

applied to optimize the operation and support resources of reusable launch vehicles, 

through a discrete event simulation model. The least cost solution so obtained represents
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an improvement over both the simple genetic algorithm, and the previous manual 

approach of minimizing operation and support resources.
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I

CHAPTER 1 

BACKGROUND AND MOTIVATION

1.1 Introduction

The design of complex systems, such as aerospace systems, has historically 

emphasized the performance requirements aspect. However, global competition and 

declining budgets of recent years has prompted the need for developing economically 

competitive systems, without compromising the design objectives of quality, 

produceability, operability and supportability (Unal et al. 1990). This can only be achieved 

by a thorough understanding and inception of life cycle economic impacts in the early 

design phase. Studies show that Operations and Support (O&S) activities can account for 

60% to 80% of life cycle costs of reusable space systems (Griffin 1988, Fabrycky and 

Blanchard 1991). Therefore, in order to design affordable spacecraft and minimize life 

cycle costs, it is essential to study and optimize the operation and support resources and 

activities early in the design phase itself.

The interactions between the various operation and support activities of a complex 

system such as a reusable launch vehicle, are also complex. There is uncertainty due to 

the stochastic nature of failure rates and maintenance activities. Therefore, a closed form 

analytical formulation realistically describing the complex activities does not exist. 

Furthermore, operational data is generally not available in the early design stages. Due to 

these reasons, studying the operation and support considerations during conceptual design
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remains a difficult and challenging task. As a result, O&S models and optimization 

approaches for the early design phase of launch vehicles have been generally lacking in the 

literature.

Recently, the operation and support requirements of reusable launch vehicles have 

begun to be modeled and examined at Langley Research Center (LaRC) of the National 

Aeronautics and Space Administration (NASA), by employing stochastic discrete event 

simulation (Morris et al. 1983, 1995; Ebeling and Donohoe 1994). Simulation models can 

be thought of as theoretical mechanisms or functions that translate feasible input 

parameter sets into probabilistic output performance measures. Simulation provides an 

effective means of studying complex, non-linear systems characterized by random 

processes, which cannot be described analytically, or whose explicit form is unknown. 

Simulation is therefore an efficient and cost effective tool, for studying the impact of 

various parameters on the system response, without having to actually build the system 

and perform expensive experiments. The O&S discrete event models used at NASA 

Langley Research Center, simulate the mission and the pre- and post- flight maintenance 

activities of a fleet of vehicles in a particular space program (Morris et al. 1983, 1995; 

Ebeling and Donohoe 1994). The simulation can be run for as many alternative designs as 

desired, to gain an insight into and obtain projections of the maintenance resource 

requirements for a proposed space program. These estimates can then be used to compare 

the acquisition and O&S costs for various alternate conceptual designs.

In order to effectively compare candidate designs, one has to ensure that the overall 

maintenance resources are minimized for a particular O&S scenario and space program.
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This O&S problem, involving the determination of the minimum resources to meet a given 

mission rate constitutes an optimization problem. The decision variables for the above 

optimization problem, are restricted to be integer values, within a certain "user-specified" 

range. Examples of the integer input variables include: launch vehicles, launch pads, 

facility bays, scheduled and unscheduled maintenance crew. These decision variables are 

usually combined in the form of a linear additive cost function. The constraints, specified 

in terms of the performance measures, such as meeting a given mission rate in a timely 

manner, are non-linear and evaluated through stochastic simulation.

Such operation and support studies can be viewed as simulation optimization 

problems, characterized by integer decision variables, a linear objective function and non­

linear constraints. Simulation optimization problems are known to be difficult to solve 

(Jacobson and Schruben 1989). Although the particular case of minimizing operation and 

support resources of space vehicles has been considered here, problems belonging to this 

general class commonly occur in industry. Constrained optimization problems involving 

integer variables and a linear objective function, widely occur in the management and 

efficient use of scarce resources to increase productivity (Nemhauser and Wolsey 1988, 

Parker and Rardin 1988). For example, the transportation industry, such as the airlines 

and the car rental agencies, face similar problems. The airline industry needs to maintain a 

fleet of airplanes in order to meet a specific schedule of flights. Similarly, a car rental 

agency maintains a fleet of cars to meet customer demand. The primary objective for the 

airline or the car rental agency, as in any industry, is to make money, which can be
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achieved through minimum acquisition cost of equipment (planes and cars) and efficient 

allocation of operational resources, so as to minimize the overall operating expenses.

1.2 The Operations and Support Problem

Two distinguishing features characterize the present launch vehicle operations and 

support optimization problem. First, it deals with determining the optimal levels of the 

deterministic input parameters which minimize the required resources of the overall 

system, subject to constraints and performance criteria that are computed through 

stochastic simulation. Simulation becomes necessary since constraint violations and 

measures of the performance cannot be obtained or predicted through closed form 

analytical formulations. This is often a result of the non-deterministic nature of the system 

under study. For instance, an O&S model simulates the processes of component and 

system failure, repair and replacement times, and maintenance delays. These underlying 

processes are non-deterministic in nature and hence the simulation model itself and its 

outputs are stochastic. Such simulation optimization problems are traditionally solved by 

techniques borrowed from nonlinear programming. However, these techniques, such as 

gradient estimation and pattern search, originally developed for deterministic optimization, 

are in many cases impractical for the computationally intensive non-deterministic 

simulation domain.

Secondly, the problem involves integer variables, and hence like other discrete 

domain problems is difficult to solve. Optimization problems with integer variables, such 

as integer programming problems, are in the class of so called NP-hard problems
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(Papadimitriou and Steiglitz 1982, Garey and Johnson 1983). It is conjectured that such 

problems cannot be exactly solved by polynomial-time algorithms, i.e., algorithms that are 

guaranteed to terminate in a finite time. For such problems one is generally willing to 

settle for less ambitious goals, such as an improved or near-global solution rather than a 

globally optimum solution.

1.3 Simulation Optimization in the Discrete Domain

Simulation models enable one to observe the effect of a set of input parameters 

(such as the maintenance crew size), on the output parameters (such as the mission rate). 

However, simulation models in general do not provide a way to directly minimize 

(maximize) the input parameters. To achieve this, the following steps are usually carried 

out:

1. The simulation is run at a particular set of input parameter levels,

2. The output results so obtained are analyzed, and

3. The input parameters are modified in accordance with an existing simulation 

optimization scheme to obtain a desired change in the output parameters.

The above steps have to be repeated until either the optimal value is reached or some 

stopping criteria is met.

It is evident from a study of the literature that solving an optimization problem 

through a simulation involving integer variables is difficult -- in terms of the quality of the 

solution and the computational burden (Fu 1994). The optimization methods that are 

traditionally used for the discrete domain are the pattern search methods, statistical
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methods, complete enumeration and the random method. Pattern search methods are 

local optimum seeking approaches that start with an initial randomly selected point in the 

solution space. The search proceeds by applying suitable transformations to the initial 

point to other solutions in the problem landscape.

For instance, the pattern search method of Hooke and Jeeves starts at an initial base 

point and increments the input variables, by a fixed value, one at a time, if doing so 

improves the solution (Hooke and Jeeves 1961, Friedman and Savage 1972). Input 

variables are incremented in this manner until no more improvement in the solution is 

obtained. Next, the incremental values are decreased and the entire process is repeated, 

starting from the last point reached. The search terminates when a pre-determined 

incremental value is reached. Another pattern search method, Nelder and Mead’s simplex 

search, similarly starts with an initial set of factor settings (Nelder and Mead 1965, 

Spendley et al. 1962). In case of maximization, it successively replaces the factor with the 

least value with the centroid of all current factor settings. The procedure is repeated until 

no more improvement is possible. It is therefore evident that the performance of these 

search methods is extremely sensitive to the initial point chosen. Furthermore, the pattern 

search strategies are local-optimum seeking techniques. Consequently, in the simulation 

domain, typically characterized by a vast solution space of unknown topology, there is a 

risk of sub-optimization. (Tabu search is another promising technique applicable for 

discrete optimization, that combines local search with other more advanced search 

mechanisms (Glover 1989). However, its applicability to the simulation domain remains 

to be explored.)
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When the solution space is finite, statistical methods such as multiple comparison, 

and ranking and selection may be used. Multiple comparison uses certain pair-wise 

comparisons to make inferences in the form of confidence intervals. Ranking and 

selection specifies some criterion, such as choosing the best alternative with some pre­

specified confidence level. The procedure selects a combination that guarantees with a 

user-specified probability, that the response will be within a certain range of the optimal 

value. Although these statistical methods yield the global optimum, their applicability is 

limited to problems with a very small solution space due to their high computation burden.

As the name suggests, complete enumeration performs an exhaustive search of the 

entire solution space and yields the global optimum (Farrell 1977). This method is 

computationally very intensive, and once again, applicability is severely restricted to small 

search spaces. The random method evaluates random points in the search space and 

terminates when a pre-specified number of evaluations are reached (Smith 1973).

Recent years have seen the emergence of directed random searches such as genetic 

algorithms and simulated annealing. Genetic algorithms (GAs) have been proven, both 

theoretically and empirically, to provide a robust search in complex spaces (Holland 1975, 

Goldberg 1989). Genetic algorithms do not impose constraints such as continuity and 

differentiability and hence can be used in the integer valued discrete domain. They have 

shown promise as simulation optimizers in preliminary studies (Yunker and Tew 1994, 

Elketroussi and Fan 1994, Tompkins and Azadivar 1995). Inspired by natural selection 

and genetics, a genetic algorithm uses crossover and mutation to form a generation of 

candidate solutions from an initial randomly selected population. Candidates with above
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average fitness are mated to produce offspring in the successive generations. In this 

manner, new candidates with improving fitness are formed.

A summary of the various optimization approaches available in the literature for 

simulation studies involving integer variables is provided in Table 1.1 below.

Technique Domain Optimum Solution space
Pattern Search

Hooke-Jeeves C,D L B,S
Simplex, Constrained Simplex C,D L B,S

Statistical Methods
Multiple Comparison Approach D G S
Ranking and Selection D G S

Complete Enumeration D G S
Random Method D L S
Genetic Algorithm C,D L B,S

Key: C Continuous D Discrete L Local G Global
B Big S Small

Table 1.1 Simulation optimization techniques applicable for the discrete domain

The literature review indicates that the approaches guaranteeing the global optimum, such 

as the statistical methods and the complete enumeration, are too computationally intensive 

to be practically useful. Of the practical approaches, such as pattern search, random 

search and the genetic search, the genetic algorithm seems a promising heuristic. Unlike
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pattern search, genetic algorithms explore several areas of the solution space 

simultaneously, and do not terminate upon finding a local optimum.

1.4 Purpose of the Study

Thus, of the optimization techniques that can be implemented in practical situations, 

the search strategy of the genetic algorithm appears to be more effective compared to the 

pattern search approaches. The simple genetic algorithm utilizes the operations of 

random crossover of genetic material and mutation to obtain solutions with above average 

fitness. However, in doing so, it ignores any information that might be contained in the 

problem under consideration. In this research it is hypothesized that combining problem- 

specific information into the genetic search, by intelligently pruning the search space, 

makes for a more efficient search strategy.

Specifically, the research aims to improve the performance of the genetic algorithm 

for constrained optimization problems involving integer variables and a linear objective 

function. A conventional genetic algorithm maintains a set of candidate strings 

representing solutions in the search space. The search space itselfj and the mapping of the 

candidate strings to the search space, is defined at run-time by the user and is unchanging 

over the run of the genetic algorithm. Thus, even when the population has converged to 

an optimal or sub-optimal region, the entire original search space defined by the user at 

run-time is used to map the strings. In this research, it is hypothesized that employing a 

fixed search space reduces the effectiveness with which the genetic algorithm finds a 

solution. It is hypothesized that by suitably shrinking or refining the original solution
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space, and hence changing the mapping through successive generations, the performance 

of the genetic algorithm can be improved. The proposed dynamic scale genetic algorithm 

(DyScGA) utilizes problem-specific information to successively refine the search space.

There is also a built-in memory feature, which retains the boundaries of the refined 

search space from one application of the algorithm to the other for a particular problem. 

Due to the memory, consequent searches are started from solution spaces that have been 

previously refined by the proposed modified algorithm. This feature enables a more 

effective exploration of the portion of the original solution space that is most likely to 

contain the optimum. Furthermore, it also reduces the computational requirements to 

perform the exploration from one application to another.

It is therefore hypothesized that the DyScGA improves the performance of the 

simple genetic algorithm, for discrete optimization with a linear objective, twofold: it 

produces better solutions with lower computational requirements. This is a contribution 

to the genetic algorithm literature. Most of the search-space-refining improvements 

suggested for GAs in the literature (such as dynamic parameter encoding, delta coding and 

adaptive representation genetic optimizer), employ population convergence measurements 

and do not have a ‘memory’. Genetic algorithms with learning that have been suggested 

in the past (such as classifier systems and GAs combined with expert systems) employ 

rule-based systems. However, these are limited in that they either do not preserve 

memory, or are restricted to machine learning and cannot be used for optimization. A 

multi-leveled environment for learning that preserves memory and can be used for 

optimization has been proposed earlier (Nutter and Ding 1992). However, this expert
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system based genetic search is extremely complicated and consists of ten different modules 

consisting of three levels of representation, two transformations and three levels of 

learning.

In contrast, the dynamic scale genetic algorithm proposed in this research is very 

simple to implement. It consists of an add-on module that contains code to dynamically 

assign boundaries of the solution space, by exploiting the information provided by the 

current best objective function. It does not need any additional parameters to be set by the 

user at run-time. The enhanced search strategy proposed here is applicable for 

constrained optimization problems with a linear objective function and discrete integer 

valued variables. There is no restriction on the constraints, which can be linear or non­

linear. This genetic algorithm modified for discrete optimization can be applied to 

simulation as well as non-simulation situations. On a practical level, this research also 

contributes to the life cycle cost analysis of launch vehicles. The operations model can be 

integrated with other disciplinary models to achieve a systems level design optimization 

for a reusable launch vehicle.

l.S Contribution

This research makes a contribution to the genetic algorithm literature by proposing 

an enhanced genetic search for discrete optimization. Specifically, the dynamic scale 

genetic algorithm differs from earlier search-space-refining modifications in the following 

manner:
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1. It uses problem specific information and not population convergence to refine the 

search space.

2. The user does not have to set any additional control parameters during run-time.

3. The search space is refined if and only if mathematical evidence indicates that the 

discarded portion does not contain the optimum.

4. Refining the search space in this manner negates the necessity for an ‘inverse’ 

pruning operator to recover the discarded portion that is employed by the other 

modified genetic search strategies.

5. It retains the new boundaries of the refined search space over subsequent 

applications of the genetic algorithm. This provides for a memory feature that can 

significantly improve the performance of the DyScGA from one run to another.

The research also indirectly contributes to the life cycle cost analysis of launch vehicles. 

An O&S model in conjunction with the optimization methodology developed here can be 

integrated with other disciplinary models. By enabling the consideration of operations and 

support costs early in the design phase, a total life cycle cost approach to design can be 

used.

1.6 Outline

The general outline of this dissertation is as follows. A review of literature devoted 

to the relevant improvements and enhancements made to the basic genetic algorithm is 

summarized in Chapter 2. The foundations of the proposed dynamic scale genetic 

algorithm are then described in Chapter 3. In Chapter 4, the DyScGA is tested and
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validated. The DyScGA is used in conjunction with a NASA LaRC discrete event 

simulation model to optimize the operations and support resources for reusable launch 

vehicles. Conclusions based on the results obtained and suggestions for future research 

are outlined in Chapter 5.
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CHAPTER 2 

LITERATURE REVIEW

This chapter provides a brief description of the basic genetic algorithm. It also 

contains a summary o f the relevant enhancements and modifications to the genetic 

algorithm, as proposed in the literature.

2.1 The Genetic Algorithm

Genetic Algorithms (GAs), first introduced by Holland (1975), are stochastic search 

algorithms inspired by the mechanics of natural selection and natural genetics. GAs 

combine the principle o f survival o f the fittest among string structures with a structured 

yet randomized information exchange. GAs have been used primarily in the fields of 

search, optimization and machine learning. Traditional calculus based methods and 

mathematical programming techniques impose constraints on the search space, such as 

continuity, convexity and differentiability. In practical situations with large unknown 

solution spaces, these local optimum search methods are susceptible to getting trapped in 

a local minimum (Goldberg 1989). Biased random search algorithms, such as genetic 

algorithms and simulated annealing, have gained popularity as researchers have recognized 

the shortcomings of the traditional optimization techniques. GAs are attractive in 

application due to the following reasons:
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1. Robust over a broad spectrum of problems.

2. Require no auxiliary information such as derivatives, as they use the performance 

metric itself to guide towards better and better solutions.

3. Easy to implement GAs and to interface to simulation and other models.

A simple genetic algorithm maintains a population consisting of candidate solutions, 

made of binary strings representing the parameters of the optimization problem. Strings 

with above average fitness are selected to form a mating pool. Two such strings are 

randomly mated to produce offspring by exchanging parts o f their binary string. The 

mutation operator acts on the offspring by flipping a bit from 0 to 1 and vice versa with a 

certain probability. The mutation feature inserts diversity into the current population and 

helps the genetic algorithm escape from local optima. The reproduction and mutation 

cycle is repeated until a desired termination criterion is reached (for example, a predefined 

number of generations are processed). Figure 2.1 depicts a graphical schematic of the 

simple genetic algorithm.

Encoding Mechanism

Fundamental to the GA structure is the encoding mechanism for representing the 

variables o f the optimization problem. The encoding mechanism depends upon the nature 

of the problem variables. Integer variables are encoded using a fixed number of binary bits 

within a user-specified range. In the case of continuous variables, each variable is first 

linearly mapped to an integer defined in the specified range, and then encoded using binary 

bits.
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Fitness Function

Each population member has an associated fitness function which represents a 

solution to the optimization problem. To maintain uniformity over various problem 

domains, a fitness function that normalizes the objective function of a problem between 0 

and 1, is used. For example, the objective function x10 where x  is coded with 30 bits is

f  x V °normalized as —-J . The normalized value of the objective function is the fitness of

the string, which the selection mechanism uses to evaluate members of the population.

Yes

No

Stop Maximum generations?

Subsequent generation formed through crossover and mutation

Fitness of population members evaluated.

An initial population is formed by randomly selecting 
strings from the solution space.

Figure 2.1 Flowchart: Simple Genetic Algorithm
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Selection Schemes

A selection scheme chooses the members o f the population that will reproduce. A 

number of different selection schemes have been proposed over the years. In a simple 

genetic algorithm, a string with higher fitness function receives a higher number of 

offspring and has a higher chance of surviving in subsequent generations.

Crossover

Pairs of strings are picked from the population based on the selection scheme being 

used, to be subjected to a single-point crossover. Assuming / is the string length, it 

randomly chooses a crossover point greater than 1 and less than /. An offspring is created 

by the portion of the first string up to the crossover point and the portion of the second 

string after the crossover point. After choosing a pair of strings the genetic algorithm 

invokes crossover only if a randomly generated number in the range 0 and 1 is greater than 

P c  the crossover probability. The crossover probability influences the outcome of the 

genetic algorithm and is generally selected by the user.

0 0 1 0  

1 0  1 1

1 1 

0 1

0 0 1 0 0 1

1 0  1 1 1 1

Figure 2.2 Crossover

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Mutation

After crossover, strings are subjected to mutation. Mutation of a bit involves 

flipping it, i.e. changing a 0 to 1 and vice versa. The mutation rate pm controls the 

probability that a bit will be flipped, and is set by the user. The bits of a string are mutated 

independently of one another. Usually, the mutation rate is set to a small value, to avoid 

excessive mutation. Mutation provides an effective mechanism for introducing diversity 

into the genetic pool, exploring new regions of the problem landscape, and escaping local 

optima.

2.2 Review of Literature

Over the past decade, several modifications and enhancements have been proposed 

to the simple genetic algorithm with a view to improving its performance. The following 

sections contain suggested modifications that are pertinent to GA learning and 

optimization. Accordingly, the literature review is divided into three sections: GA 

optimization without memory, GA learning without optimization, and GA optimization 

with memory. (Learning implies knowledge acquired over successive generations of a 

single application of a GA. Memory implies retention of this acquired knowledge across 

successive applications of the GA.)

2.2.1 GA optimization without memory

Several improvements have been suggested in the literature to improve the 

performance of genetic algorithms for function optimization. It was evident from the
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literature, that most of such GA modifications have focused on continuous variables. 

Encoding real valued parameters onto a discrete domain consisting of binary string 

representations is usually a complex task. Typically, the higher the number of bits utilized 

to encode a parameter, the better is the resolution of the genetic search. However, as the 

number of bits in the encoding increases, the effectiveness of the genetic search suffers. 

Consequently, a large body of literature is devoted to improving the encoding and the 

corresponding mapping strategy and search space for continuous variables. This section 

describes these improved genetic search strategies.

Delta Coding

Delta coding employs a novel encoding structure to achieve efficient optimization 

(Whitley et al. 1991). In a simple genetic algorithm, a population member takes the form 

of binary strings representing the various parameters involved. In delta coding, the 

encoding represents a particular distance delta ‘5’ away from some previous solution. The 

first run of the GA is like a conventional GA However, subsequent runs are made by 

using the best solution obtained in the most recent run as a partial solution. The genetic 

algorithm is restarted with the substring coding for each parameter representing a distance 

§ away from the value of the corresponding ‘best’ parameter. The delta values 

represented by the encoding are added to the partial solution to evaluate fitness. 

Therefore, a neighborhood about the current best solution is explored. With each delta 

iteration, the number of bits used for encoding is typically reduced, and the solution space
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is made smaller. There is also provision for an inverse operator to increase the number of 

bits if required.

Delta coding preserves diversity in the population by having an entirely new and 

random population for each generation. Each individual iteration can be viewed as a 

single run of a genetic algorithm; with the only change being in the mapping strategy. 

Hence, the theoretical foundations of genetic algorithms still apply.

Delta coding results in an efficient optimization strategy. However, there is no 

memory or retention of learning across successive applications of the genetic algorithm. 

Furthermore, implementing delta coding requires additional effort by the user at run time. 

Reduction and expansion strategies have to be tested and incorporated. Also, the user 

needs to set additional parameters such as the smallest number of bits for a parameter, and 

the number of bits by which to reduce and expand each parameter during each new 

iteration. The performance of the delta coding strategy is greatly influenced by these 

strategies and parameters that the user selects, often in an ad-hoc manner.

Distributed Genetic Algorithm

A distributed genetic algorithm attempts to improve search and maintain diversity by 

using distributed populations (Whitley and Starkweather 1990). Small sub-populations 

represent an independent search except that the sub-populations exchange information by 

swapping copies of their best strings at fixed intervals. Thir provides for an effective 

exploration of the parameter space for optimization. The sub-population size, number of 

sub-populations, and number of strings exchanged are user defined. However, there is no
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memory or retention of learning within independent runs of the distributed genetic 

algorithm.

Adaptive Representation Genetic Optimizer 

Adaptive Representation Genetic Optimizer Technique (ARGOT) 'learns' a strategy 

for solving a particular optimization problem (Shaefer 1987). Intermediate mappings are 

introduced between the strings representing candidate solutions and the search space. 

Several population based operators alter these intermediate mappings during the search. 

These operators are based on population measurements such as parameter convergence 

(uniformity of parameter or substring), parameter variance (spread of the parameter or 

substring distribution), and parameter positioning (relative average position of the 

parameter within a permissible range of parameter values). ARGOT uses these 

measurements to dynamically adjust parameter resolution by changing the number of bits, 

and to adjust the location of parameter boundaries.

If the parameter or substring population has converged (i.e., if a user-defined 

proportion of the population contains a fixed parameter or substring value), the resolution 

of a parameter is increased by adding bits to perform a finer search of the parameter space. 

If the parameter population has not converged, the resolution is decreased by reducing the 

number of bits, leading to a coarser evaluation of the search space.

As the parameter value approaches the moving boundary, it is shifted in an attempt 

to better center the parameter. (There is a rigid parameter boundary within which the 

moving boundaries must lie). Shifting the parameter boundary causes the search space to
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either contract or expand. The moving boundaries are 'dithered' or shifted by random 

small increments when the parameter has neither converged nor been completely randomly 

distributed. When the distribution of a parameter is narrow, the moving boundary interval 

is contracted. Similarly, when this distribution is wide the roving boundaries are 

expanded.

Besides these primary operators, there are several secondary operators. The 

Metropolis operator accepts a bit mutation based upon the change in fitness. A homotopy 

operator is switched on when a parameter has converged, and a local search to locate the 

solution within a promising region, is initiated.

Although ARGOT has shown good results for optimization purposes, the strategy 

and its implementation is very complex. Furthermore, threshold levels for triggering all 

the above operators, such as parameter convergence, need to be set by the user at run­

time. It has been pointed out that it is difficult to establish these trigger threshold levels 

for each problem (Schraudolph and Belew 1992). The performance of the ARGOT 

strategy depends significantly on these settings. Additionally, ARGOT does not preserve 

the learning strategy for future applications within a problem domain, i.e. it does not have 

a memory feature.

Adaptive search space scaling algorithm

An adaptive search space scaling algorithm has been developed for medical image 

registration (Mandava et al. 1989). It searches a real-valued domain of transformations 

for the optimum transformation. Adaptive search space scaling dynamically estimates a
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sub-space to focus the investigation from the allowable search space. Distributions of the 

best solutions are used to contract and expand the sub-space in a manner similar to the 

ARGOT roving boundaries. A histogram of best solutions is formed after every 

generation. The user determines the maximum permissible number of best solutions to 

include in the histogram. A separate histogram is constructed for each parameter. The 

smallest number of consecutive bins in the histogram that contain 80% of the best 

structures are used to assign the new boundaries. By setting these boundaries to be larger 

than the theoretical assignment, a previously contracted sub-space can be expanded if 

future parameter values fall near the boundaries.

Adaptive search space scaling performs an effective search by zooming in on a sub­

space most likely to contain the optimum. However, it requires the user to specify the 

number of best solutions for histogram generation during run-time, which has an impact 

on the performance of the algorithm. Furthermore, there is no memory or retention across 

successive applications of the genetic algorithm.

Dynamic Parameter Encoding 

Dynamic parameter encoding (DPE) dynamically adjusts the accuracy of the 

encoded parameters to increase the resolution of the solution and to zoom in on the most 

promising area of the search space (Schraudolph and Belew 1992). It uses concepts 

similar to ARGOT. The heuristic DPE employed for triggering the zoom operator is 

based on populatici convergence. A histogram over the current search interval formed by 

the two most significant bits of the parameter is constructed. By summing over two
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neighboring quarters, population counts for the three overlapping target intervals are 

computed. The largest of these counts is used as a basis for indicating population 

convergence. When this convergence indicator exceeds a trigger threshold level, set by 

the user during run-time, the population is considered to have converged, and the zoom 

operator is invoked. The zoom operator restricts the GA search to target intervals.

DPE does not add bits to increase the parameter or search resolution. It keeps the 

number of bits constant. However, it drops the significant bits as the population 

converges and the search progresses. In the beginning of the search the binary string 

representation encodes only the most significant bits of the parameter, representing a 

coarse grain partitioning of the search space. As the genetic algorithm begins to converge, 

the most significant bit is recorded and dropped from the encoding, and a new bit is 

introduced. The new bit adds to the precision and creates a finer grain partitioning of the 

search space. While the number of bits remains constant, the optimization function is 

searched using an increasing level of detail.

Dynamic parameter encoding improves the optimization performance of the genetic 

algorithm. However, since DPE does not employ an inverse zoom operator, there exists a 

possibility, for highly complex landscapes, that the region of the search space that contains 

the optimal gets permanently discarded. Furthermore, the user is required to set a trigger 

threshold, which influences the performance of the algorithm. Finally, DPE does not 

provide for learning across successive applications of the GA or for knowledge retention.
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2.2.2. GA learning without optimization

The genetic algorithm has also been modified in the literature to include learning 

aspects. This section describes enhancements to the simple genetic algorithm that provide 

for a learning feature.

Machine Learning

Classifier systems are a special class of rule-based systems (Holland 1986). A 

classifier system is a machine learning system that learns simple rules to guide its 

performance in an arbitrary environment. Knowledge is stored in “If-Then” rules. Each 

rule is associated with a real number representing a measure of its performance. Genetic 

algorithms explore the space of permissible rules and provide the learning algorithm in 

classifier systems. The genetic algorithm used in classifier systems is slightly different 

from the simple GA used for optimization, although it is still largely based on 

reproduction, crossover and mutation. New rules are created and placed in the population 

and processed to evaluate their role in the system. The knowledge in classifier systems is 

not retained across individual GA runs, thus jeopardizing their ability to improve their 

performance. Additionally, classifier systems cannot perform optimization, because 

instead of storing candidate solutions in the populations as required for optimization, they 

store ‘If-Then’ rules.

To overcome the lack of knowledge retention, Zhou (1990) developed a rule-based 

learning system called Classifier System with Memory (CSM). This kind of classifier 

system preserves problem solving expertise and tailors it to fit a new situation, so that
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learned knowledge can be transferred within a domain. However, since CSM is still 

fundamentally a classifier system, which stores ‘If-Then’ rules as individuals in the 

population, it cannot be used for optimization.

Strategy Acquisition Method Using Empirical Learning (SAMUEL) is based on the 

classifier system (GTefenstette et al. 1990), and learns expert system rules and control 

strategies with GAs. Unlike other machine learning systems, SAMUEL learns rules in a 

high-level language by adapting high-level genetic operators for that language from basic 

genetic algorithms. However, SAMUEL does not preserve memory across successive 

applications of the GA, and cannot be applied for optimization.

Expert Systems and Genetic Algorithms 

Powell et al. (1989) developed an optimization system, EnGENEous, that combines 

an expert system and genetic algorithm, to exploit domain-specific knowledge for the 

design of aircraft turbine engines. In this approach, the rule base for the expert system is 

first created by the engineer. The expert system starts from a single design point specified 

by the engineer and uses selective rules from the rule base to achieve a desired change in 

the fitness function. Additional specialized control methods are built in to augment the 

rules provided by the expert system. The expert system continues to change input 

parameter levels in this fashion. Eventually, the expert system may get stuck in local 

minima or at constraint boundaries. When this occurs, the genetic algorithm is used to 

escape the minima or avoid constraints. The initial population is formed from promising 

design points already explored by the expert system and past designs. The solution found
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by the genetic algorithm is fed back to the expert system and the entire process is repeated 

until some stopping criterion is satisfied.

This hybrid model provides for a more efficient optimization procedure. However, 

it does not address knowledge retention across future applications of the genetic algorithm 

system.

2.2.3 GA optimization with memory

Nutter and Ding (1992) have combined expert system learning with GAs to achieve 

optimization and retain domain specific knowledge across successive applications. The 

specific application domain they have considered is a computer network system. The 

proposed Multi-Leveled Environment for Learning (MEL), acts as a bridge between the 

different data and knowledge representational formats required by the genetic algorithm 

(typically binary strings) and the expert system (typically ‘If-Then’ rules). MEL consists 

often modules operating on a layered knowledge base. Knowledge can be projected from 

one layer to another through the use of appropriate transformations. Three levels of 

representation and two transformations, along with three levels of learning are used. The 

low-level representation takes the form of binary strings that encode parameters to form 

candidate solutions for the optimization problem. Mid-level representations use an expert 

system to store information about background knowledge, interpretation of system 

parameters that comprise individuals and experiences, and generalization of hierarchies. 

High level representation consists of ‘If-Then’ types o f rules. The two transformations 

help to convert knowledge from one representation to another. These are the low-to-
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middle-level transformation and the middle-to-high-level transformation. The three levels 

of learning include: low-level genetic search, mid-level accumulation and abstraction, and 

high-level inductive generalization. The low-level genetic search is provided by the GA. 

Mid-level learning comes from the analysis of past experiences. An individual's fitness is 

compared with the past history, and if it lies at the limits of or outside that range, it is 

stored permanently in the middle-level representation. These best and worst experiences 

accumulated in the mid-level are analyzed. The analysis is used to generate new ‘If-Then’ 

rules which provide the high-level learning.

Thus MEL, designed for application in the computer network system, provides for a 

learning mechanism and can be used for optimization. However, with its ten modules 

operating on layers, three levels of representation, two transformations and three levels of 

learning, it is extremely complex to build and implement. Furthermore, as it was 

developed for the computer network system, its applicability is restricted.

2.3 Summary of Literature Review Results

A number of enhancements have been proposed to the basic genetic algorithm over 

the past years, with a view to improving its performance. In this chapter some of those 

enhancements pertinent to the algorithm proposed in this research (i.e., involving learning 

and dynamic search space) have been reviewed. The following table summarizes the 

literature review presented in the preceding sections.
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Name Improvement or modification Optimi­
zation?

Mem­
ory ?

Comment

Delta coding Encodes parameters as 8 distance Yes No
Distributed GA Sub-GAs performing searches Yes No
ARGOT Leams problem solving strategy 

based on population convergence
Yes No Complex

Adaptive
scaling

Adapts search space based on 
population convergence

Yes No

DPE Contracts search space based on 
population convergence

Yes No

Classifier Machine learning No No
CSM Machine learning with memory No Yes
SAMUEL High level GA based machine 

learning
No No

EnGENEous Hybrid expert system and GA Yes No
MEL Combines GA and expert system 

learning to provide for memory
Yes Yes Complex.

Table 2.1 Summary of literature review

Modifications to the simple genetic algorithm have been proposed for incorporating 

learning or ‘intelligence’. Systems with learning, such as classifier, SAMUEL, and CSM 

are limited in that they are restricted to machine learning and cannot be used for 

optimization. EnGENEous, performs optimization through knowledge contained in an 

expert system rule base, and uses GA for escaping local minima and constraint boundaries. 

However, it does not retain learning across successive applications. Furthermore, creating 

the rule base for a problem domain, for example design of aircraft turbine engines, requires 

an additional effort. MEL is a problem specific optimization system that preserves
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memory. However, this expert system based genetic search is extremely complicated in 

structure and implementation. It consists of ten different modules that operate on a 

knowledge base with three levels of representation, and employs two transformations and 

three levels of learning. Thus it requires tremendous additional effort in implementation, 

for each new problem domain.

The idea of search space scaling or refining has been tested in several modifications, 

including delta coding, adaptive representation genetic optimizer, adaptive search space 

scaling, and dynamic parameter encoding. However, all these methods use population 

convergence as a basis for trimming the search space. This dependence on population 

convergence makes the above techniques independent of the problem domain. 

Consequently, they can be applied to a wide range of problems, without imposing 

constraints on the nature of the problem that can be solved. However, ignoring problem- 

specific information also gives rise to the possibility of trimming off the area containing the 

optimal point, and hence of sub-optimization. (This concern is of special importance in 

the simulation domain, where the simulation is typically a ‘black box’ with a complex and 

unknown landscape). Most of these techniques consequently incorporate an ‘inverse trim’ 

operator to overcome such situations. However, incorporation of an inverse trim operator 

necessarily increases complexity of the algorithm. Moreover, there still is no guarantee 

that the optimal area will not be discarded and sub-optimization will not occur.

Furthermore, all these techniques utilize algorithm parameters that have to be set by 

the user at run-time. The performance of the improved algorithms is sensitive to the 

values of these parameters, which often have to be determined in an ad-hoc manner.
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Additionally, most modifications suggested to improve the optimization performance of 

GAs (dynamic parameter encoding, delta coding, adaptive search space scaling, and 

adaptive representation genetic optimizer) do not ‘Ieam’ over successive applications.

In summary, although there have been several modifications proposed to improve 

the performance of GAs, the results of practical implementation have been decidedly 

mixed. It seems there has not been any single accepted strategy to deal with constrained 

optimization problems. The reason for this might be experimental evidence that 

incorporation o f problem-specific knowledge into the evolutionary algorithm enhances its 

performance (Michalewicz 1993).

In this research, an improved genetic algorithm that is applicable for the class of 

discrete constrained optimization problems with linear objective functions, is proposed. It 

exploits problem-specific information to improve the performance of genetic algorithms, 

by refining the search spaces over successive generations. The proposed dynamic scale 

genetic algorithm overcomes the deficiencies o f the prevalent methods in the literature in 

the following manner:

1. Search space is trimmed conservatively, if and only if there is mathematical 

evidence that the eliminated portion does not contain the optimum.

2. Does not require an inverse zoom operator, hence is simpler to use and implement.

3. Does not employ parameters that have to be arbitrarily set by user at run-time, 

hence its performance is consistent.

4. Has a built-in memory feature that retains the knowledge acquired over successive 

applications.
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CHAPTER 3

METHODOLOGY: DYNAMIC SCALE GENETIC ALGORITHM

3.1 Introduction

The simple genetic algorithm allocates reproductive opportunities to members of a 

population based on their relative fitness. By so doing, the search is directed towards 

regions that contain solutions with above average fitness. The fitness of the binary coded 

strings is evaluated by mapping them onto a fixed search space. The search space is 

unchanging through the run of the genetic algorithm, and is defined in accordance with the 

problem specification. This fixed mapping aspect has been recognized, at some times, as 

placing an unnecessary burden on the performance of a simple genetic algorithm. For 

instance, when the genetic algorithm has located a sub-space that contains the optimum, it 

might be more efficient to concentrate on this region alone.

The idea of refining the solution space by altering its boundaries as the genetic 

search progresses has consequently received attention in the literature. All these strategies 

(dynamic parameter encoding, adaptive representation genetic optimizer, and adaptive 

search space scaling) utilize population convergence measurements to dynamically change 

the mapping strategy. Michalewicz and Arabas (1994) observe that no single genetic 

algorithm strategy seems to have been accepted in practice for the general constrained 

optimization problem. The reason for this, they speculate, might be that the biased
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random search strategy considers only relative fitness and ignores problem specific 

information contained in its objective function, constraints and bounds. Experimental 

evidence suggests that incorporation of problem specific information into the genetic 

algorithm (representation and genetic operators), enhances its performance in a significant 

manner (Michalewicz 1993).

As a step in this direction, this research proposes to incorporate into the genetic 

algorithm, problem specific information contained in the objective function and 

constraints, so as to dynamically allocate tighter boundaries by changing the mapping 

strategy. The proposed dynamic scale genetic algorithm is applicable for a broad class of 

discrete optimization problems, zip , defined as

z!p = min{cx:x g S} (3.1)

The linear objective function denoted by cx is of the form ctxt + cix2 +...+C*x, +...+cjc„ 

where c, represents the cost coefficient associated with the 7th variable x , . The objective 

function is assumed to comprise of n such variables X/ through x„. The solution space S 

is defined by (linear or non-linear) inequality constraints on the non-negative, discrete 

variables. Thus, the only restriction placed on the general discrete optimization problem is 

that of linearity of the objective function. This class of problems, ziP, commonly occurs in 

the management and efficient use of scarce resources to increase productivity (Nemhauser 

and Wolsey 1988, Parker and Rardin 1988). It includes the following well-known types of 

discrete optimization problems (all of which have linear constraints): traveling salesman, 

postman's, knapsack, parallel machine scheduling, vertex coloring, spanning tree, shortest 

path, bin packing, matching, set covering, maximum flow, p-median, and fixed charge
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(Nemhauser and Wolsey 1988, Parker and Rardin 1988). Thus, it can be seen that the 

proposed strategy is applicable to a wide range of discrete problems.

3.2 Theoretical Basis

The dynamic scale genetic algorithm proposed in this research is based on partial 

enumeration, a discrete optimization technique also known as branch and bound. The 

partial enumeration scheme employs tests of feasibility and value dominance to eliminate 

from consideration subsets of the solution space. Generally in commercial codes, subsets 

are formed by adding constraints that divide the original problem, and solved as linear 

programs with the integrality constraints relaxed. In this section, the theoretical 

foundations of partial enumeration, used for the dynamic scale genetic algorithm proposed 

in this research, are presented.

3.2.1 Partial Enumeration Concepts for Integer Programming

Total enumeration is not a viable strategy for most practical discrete optimization 

problems, however partial or implicit enumeration can be used with better results. Partial 

enumeration is usually performed by eliminating entire subsets of the search space, 

without actually enumerating their individual candidate solutions. Consider the discrete 

linear integer programming problem given by zIP = min{cx:x e 5} . The solution space S  

can be considered to be made up of i divisions or mutually exclusive sets S1, such that 

^ S ' = S  where {S' :i = The following proposition holds true:
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Proposition 1 (Nemhauser and Wolsey 1988):

Let z'IP = min (cx:x eS '} ,  where [S' }*, is a division o f  S. Then zip = minf=UJt zjp.

Therefore, a large optimization problem can be solved by attacking several smaller and 

consequently more manageable sub-problems, which are formed by dividing the original 

solution space into mutually exclusive subsets. Generally these subsets are formed 

through the addition of mutually exclusive constraints so that the original problem is 

divided into smaller subsets. Subsets are also formed by dividing the permissible range of 

a variable, into two or more ranges. Figure 3.1 depicts such subset divisions.

© ©
121 122

Figure 3.1 An enumeration tree showing subset divisions
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(An extreme case of achieving such divisions would be by means of a complete 

enumeration tree). Further, suppose S  has been divided into subsets {S l,. .Si..fSk} . If 

we can establish by the methods given in Proposition 2 below, that S1 does not contain the 

optimal value and hence need not be divided further, we say that the enumeration tree is 

‘pruned’ at S1. A subset is pruned if any of the conditions stated in Proposition 2 occur.

Proposition 2 (Nemhauser and Wolsey 1988):

No further division of a subset S1 is needed (and the enumeration tree can be pruned at 

the node corresponding to Si), if any one of the following conditions hold:

1. Infeasibility: If subset contains no feasible solutions.

2. Optimality: If an optimal solution z\p is known.

3. Value dominance: z\p >zlp, where zlp is the value of some feasible solution.

By using the infeasibility, optimality and value dominance conditions of proposition 

2, a subset can be fathomed, or eliminated from consideration. For example, if it can be 

established that a subset S1 cannot produce a feasible solution, then it need not be 

considered further. If the optimal solution is known, subsets can be eliminated as they do 

not contain a solution better than the known optimal. Similarly, a subset can be fathomed 

using the condition of value dominance. If it can be established that the best solution 

contained in a subset is inferior compared to the current best solution, the subset can be 

fathomed. Thus, the current best feasible solution of a subset ZjP , obtained during a
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previous partial enumeration can be used to determine whether a subset needs to be 

investigated further.

Fathoming subsets that are formed by dividing the permissible range of variables, 

yields tighter upper and lower limits on the concerned variable. This concept 

demonstrated in Figure 3.2, is known as pegging and aids in compacting the solution 

space further (Parker and Rardin 1988). Pegging is achieved through value dominance. If 

it can be established that for a certain range of a variable, the solutions produced are 

inferior to the best feasible solution so far, tighter limits can be placed on the variable by 

eliminating the range under consideration. In Figure 3.2, the original solution space S° is 

bounded by the variables x, and x2 with permissible ranges of 0 <Xi< 18 and 0 <x2 <12 

respectively. This solution space can be compacted by restricting the upper limits or 

permissible scale ranges of the variables, as shown below. Subsets Sl and S2, are formed 

by dividing the scale range of variable xt at 15, i.e. 0 <x, <15 and 16 <xt <18. If subset 

S2 can be fathomed, a tighter upper bound 0 < xt <15 can be placed on variable xt. 

Similarly, subset S‘ can be further divided into subsets Su and S12, which are formed by 

dividing the permissible scale range of variable x2 at 12. Once again, if subset S12 can be 

fathomed, then a tighter upper bound can be placed on variable x2, as 0 <x, < 12. The 

remaining subspace S“ , bounded by tighter permissible scale ranges, can be solved by 

enumeration, or any other optimization strategy.
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Figure 3.2 Tightening scale ranges of variables

3.3 Incorporating Partial Enumeration Concepts

In terms of the foregoing discussion, a genetic algorithm can be viewed as a biased 

random partial enumeration scheme, where relative fitness information is used to partially
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enumerate the solution space. As such there are similarities between partial enumeration 

and the genetic search schemes. Both strategies attempt to produce an optimal solution 

by using fitness or objective function (not indirect information such as derivatives), 

without enumerating the entire search space. However, there is an important difference. 

The partial enumeration scheme works by shrinking its target solution space as it 

proceeds, whereas the genetic algorithm works with the entire original solution space.

This research attempts to build some intelligence into genetic search, by using partial 

enumeration concepts to shrink the target solution space. Specifically, constraint and 

objective function information of the current best feasible solution in the population is 

used to form mutually exclusive subsets, by dividing the permissible ranges of variables. A 

rule involving elementary mathematical operations was developed in this research to 

achieve this subdivision. Subsets so obtained are subsequently fathomed through value 

dominance, thus tightening permissible ranges and refining the solution space. It is 

hypothesized that eliminating subsets from consideration in this manner enables the genetic 

algorithm to concentrate on the more promising areas of the solution space, thus 

improving its performance.

3.4 Dynamic Scale Genetic Algorithm (DyScGA)

The concepts of value dominance and pegging described above were incorporated 

into the simple genetic algorithm. A rule utilizing the elementary operations of division 

and multiplication was developed for forming and fathoming subsets. The rule is based on 

the following proposition:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

Proposition 3:

Let a be the current best feasible solution to the constrained optimization problem 

z]p = min{cx:x s S }, where c,. are non-negative cost coefficients associated with the 

non-negative decision variables x ,. Let the subsets formed by dividing the permissible 

scale o f variable x, ( 0  < x, < z,) be S' ( 0  ^  x, < \a/c,\) and S2 (\a/c,\+1 <x,< z,), where 

the symbol |>>| represents the integer part of a real number y. Then subset S2 can be 

fathomed.

Proof:

Let X/ = \a/ci\+l thereby guaranteeing membership in the subset S2. In order to 

compute the least objective function value associated with X/ = \a/ct\+l, set all other 

variables x, = 0, i *  I. Since C/ are non-negative, the lowest objective function value 

can only be attained if all other variables x, = 0, i *  1. In this case, the objective 

function value is (c/ \a/ci\+l) = a+Ci > a. Therefore, through value dominance the 

subset S2 can be fathomed.

The above rule was incorporated into the simple genetic algorithm. The resulting 

dynamic scale genetic algorithm is presented in the form of a flow chart in Figure 3.3. It is 

seen that the DyScGA adds some steps to the simple genetic algorithm. The following 

sections describe these additional steps that achieve fathoming through value dominance. 

Step 1. Forming an initial population

As shown in the flow chart, an initial population of randomly selected solutions 

from the search space is formed in a manner identical to the simple genetic algorithm.
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Yes

No
Yes

No

Stop

New scale range?

Maximum generations?

Subsequent generation formed through crossover and mutation

Fitness of population evaluated. The best feasible 
solution (bfs) is not re-evaluated.

The bfs is found. If better than previous bfs, new scale 
ranges assigned to variables through value dominance.

An initial population is formed by randomly selecting 
strings from the solution space.

Figure 3.3 Flowchart: Dynamic Scale Genetic Algorithm

Step 3. Assigning new scale ranges based on the best feasible solution

After these initial steps which are similar to the simple genetic algorithm, the 

DyScGA requires some additional steps for forming subsets based on scale ranges and 

pegging through value dominance. The best feasible solution (bfs) among the current
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population is first determined. The bfs is used to divide the permissible scale ranges of 

decision variables by the formation of subsets, in accordance with the rule developed 

above. The rule is explained here through a numerical example. Consider the objective 

function of a constrained optimization problem (Gass 1985):

M inimize 4x, + I2x2 + 2x3 + 5xs + 10x6

such that 2 x, + x2 + x3

x2 + 3x 4 + 2xs + x6

2 x3 + x s + 2 xs +

0 < x, < 99, / = 1,...,7
xf are non - negative integers

The original scale range for all seven variables is 0 to 99, i.e., each variable can take any of 

the values 0, 1, 2, ..., 99. Therefore, the search space is made up of 1014 discrete 

combinations. (Since this is a constrained optimization problem, several of these 

combinations may be infeasible). Let the best feasible objective function or solution in the 

randomly chosen initial population of the DyScGA be evaluated as 989 (x/ = 32, x2 =  38, 

Xj = 40, x4 = 1 0 , Xs = 37, x6 = 1 4 , x? = 9 0 ) .  The contribution of each variable to the 

best feasible solution is computed in order to determine whether its permissible range can 

be subdivided. This is done simply by dividing the best feasible solution, 989, by the cost 

coefficient or weightage of each variable. Therefore, for the first variable X/ with 

coefficient 4, this yields a contribution of 247.25 (989/4). Since this value is higher than

> 30
> 60

4x 7 > 48 (3.2)
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the upper bound of the original scale range (99), it does not divide the scale range and no 

subset can be formed.

Next the contribution by variable x2 to the best feasible solution is determined as 

82.4 (989/12). Since the contribution 82.4 divides the original permissible scale range of 

99, subsets can be formed at its absolute value. (The absolute value is used, since all 

variables are restricted to be integers). The subsets are defined by changing the 

permissible scale range 0 < x2 < 99 of the original problem. The first subset is formed by 

restricting the original scale range of variable x2 to the absolute value of the contribution 

82, i.e., 0 < x2 < 82. The second mutually exclusive subset is formed by modifying the 

original scale range so that variable x2 exceeds 82, i.e., 83 < x2 < 99. Next, value 

dominance based on the best feasible solution (989) is used to fathom one of these 

subsets. It is established that when the variable x2 exceeds 83, i.e., x2 lies in the second 

subset, its contribution to the linear objective function is greater than or equal to 996 

(=12*83). Therefore the best objective function associated with the second subset is at 

least 996. Since we already have a best feasible solution that is better (989), the second 

subset can be fathomed through value dominance. The permissible scale range of variable 

x2 is tightened by limiting it to 82 (0 <x2 < 82) and the original search space is reduced.

The above process of forming subsets and fathoming through value dominance is 

repeated for all the variables. The scale ranges for variables x3, x4, x5, x7 cannot be divided 

based on the value of the current best feasible solution. (Variables x4 and x 7 do not 

contribute to the objective function at all, and hence their respective scale ranges will not 

be divided through the entire run.) Variable x<j contributes 98.9 (989/10=98.9) to the best
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feasible solution and hence its original scale range is divided at its absolute value, 98. The 

first subset contains the scale range 0 < x6 < 98, and the second subset is formed by fixing 

the variable x6 at 99. Using value dominance, the subset with variable x6 = 99 can be 

fathomed, as the contribution of this variable to the objective function is at least 990 

(=9 9 * io)s which is greater than the best feasible solution of 989.

By forming and fathoming the above two subsets, the search space is reduced to 

80.36*1012 combinations. Since the permissible scale ranges of the variables x2 and x6 

have been reduced, new boundaries for these variables are assigned within the dynamic 

scale genetic algorithm. It may be worth noting that, as the permissible scale ranges for 

variables shrink, the corresponding number of bits required to encode the range of 

variables may also shrink. Dropping bits has the added benefit of improving the 

performance of the GA, as fewer bits prove more effective during the genetic search. (In 

keeping with the elitist strategy which preserves the current best solution through the 

subsequent generation, the number of bits are dictated by the current best feasible 

solution. Therefore, although new scale ranges are immediately assigned for the entire 

population, reducing the number of bits is delayed until the current bfs demands it.)

Step 4. Determining i f  new scale ranges are assigned

If no new scale ranges are assigned in Step 3 above, the dynamic scale genetic 

algorithm proceeds to Step 5. However, if new scale ranges are assigned in Step 3, 

dynamic scale genetic algorithm loops back to Step 2. The population is re-evaluated 

with the new mapping strategy. This feature injects diversity into the population, a key 

requirement for an effective genetic search, as the binary encoding is mapped onto
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different points in the solution space. Thus, the DyScGA has a built-in mechanism for 

enhancing diversity.

Step 5. Determining i f  maximum generations are reached

If the maximum number of generations specified by the user at run-time has been 

reached, the program terminates. If not, the program advances to Step 6 , for the 

formation of the subsequent generation.

Step 6. Forming subsequent generation through crossover and mutation

Through the genetic operators of crossover and mutation, the next generation is 

formed in a manner identical to the simple genetic algorithm. After a new generation is 

formed through reproduction, DyScGA loops back to Step 2, and the entire cycle of 

population evaluation, new scale range assignments and reproduction repeats.

3.5 Features of the Dynamic Scale Genetic Algorithm

3.5.1 Theoretical Basis

The dynamic scale genetic algorithm applies a simple genetic algorithm to 

successively refined search spaces. The genetic operators are not modified and the basic 

scheme of the simple genetic algorithm remains unchanged. Therefore, the theoretical 

basis of the simple genetic algorithm still holds over successive adjustments to the scale 

ranges and hence the solution space (Whitley et al. 1991, Schraudolph and Belew 1992).

3.5.2 Diversity

The DyScGA re-evaluates the members of a population with progressively tighter 

scale ranges. This improves the sampling of the solution space by mapping the candidates
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onto different points in the search space. This feature injects diversity, a key component 

in the quality o f the solution produced by a genetic algorithm (Goldberg 1989).

3.5.3 Learning and Memory

Unlike the genetic algorithm, the dynamic scale genetic algorithm learns problem 

specific information and retains it in the form of a memory for future use. During a single 

run, the dynamic scale genetic algorithm progressively refines the solution space, by 

trimming areas that do not contain the optimum. Therefore, the algorithm 'learns' about 

the solution space over successive generations. This knowledge is retained for future use 

across subsequent runs of the DyScGA to avoid having to re-leam. This constitutes a 

permanent memory, a feature which improves the performance of the DyScGA It has 

been established in the genetic algorithm literature that if problem specific knowledge from 

past experience is retained, it can help seed the initial population of a subsequent run to 

improve the performance in a significant manner (Davis 1987).

3.6 Advantages of DyScGA

Most of the enhancements to the simple genetic algorithm suggested in the literature 

pertain to continuous variables. The dynamic scale genetic algorithm proposed in this 

research is the first enhancement specifically applicable for discrete variables. In addition 

to the unique application area, it has several advantages over other GA-modifications 

suggested in the literature.
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1. Unlike other permissible scale range adjusting improvements suggested in the 

literature (dynamic parameter encoding, adaptive search space scaling, adaptive 

representation genetic optimizer technique, and delta coding), DyScGA does not 

require additional control parameters that have to be arbitrarily set by the user. 

For example, Schraudolph and Belew's dynamic parameter encoding (DPE) (1992) 

requires the user to set a trigger threshold in order to adjust the resolution of a 

parameter. The authors note that setting the trigger threshold is complicated and 

no rules are available to guide the selection process. If the trigger threshold is too 

high, the DPE will not be able to eliminate suboptimal areas of the search space 

from consideration. On the other hand, if the threshold is too low the algorithm 

may easily be triggered by noise. The performance of the DPE algorithm is thus 

dependent on the value of the trigger threshold. The proposed DyScGA does not 

employ such parameters, thus eliminating subjectivity and guess-work and 

simplifying the implementation of the algorithm.

2. DyScGA does not require inverse operators, such as those employed by the 

adaptive search space scaling, the adaptive representation genetic optimizer 

technique, and the delta coding techniques. Unlike these methods, the search 

space is trimmed conservatively if and only if there is mathematical evidence that 

the optimal does not lie in the eliminated search space. This simplifies the 

implementation of the dynamic scale genetic algorithm.

3. The DyScGA has a built in learning and memory feature. Problem specific 

learning occurs over successive generations and is stored for use with future runs.
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There is no such learning or memory in a simple genetic algorithm. Nutter and 

Ding’s (1992) multi-leveled environment for learning provides for learning and 

memory in a computer network system application domain. However, with its ten 

modules operating on layers, three levels of representation, two transformations 

and three levels of learning, it is extremely complex to build and implement.

4. By re-evaluating a population with different mapping strategies, the diversity of the 

population is significantly enhanced. This promotes the exploration of the search 

space, an essential ingredient to effective genetic search.

5. DyScGA does not alter the structural properties of the genetic operators of a 

standard genetic algorithm, and hence retains all the features of the latter. 

DyScGA can be characterized by successive GAs applied iteratively to search 

spaces refined through pruning. Therefore, the theoretical foundations and 

analysis for GAs still applies.

3.7 Limitations of DyScGA

The main limitation of the dynamic scale genetic algorithm proposed is that its 

applicability is not independent of the problem domain. The DyScGA can only be applied 

to discrete optimization problems employing a linear objective function. Therefore, 

generality is sacrificed for performance. However, this can be justified for two reasons. 

First, discrete optimization problems with a linear objective function include most of the 

commonly occurring discrete optimization problems in industry and management settings, 

and encompass the integer programming problems. Second, GA-modifications that are
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independent of the problem domain, such as DPE, ARGOT, adaptive search space scaling, 

and delta coding, have a performance that varies vastly from problem to problem. This 

implies that, while these strategies may give good results for a particular problem domain, 

its performance on another problem domain may be poor (Michalewicz and Arabas 1994). 

This occurs mainly due to their dependence on population convergence measurements, 

which can sometimes produce mis-leading indications for triggering the trimming action.

A second limitation of the DyScGA is that the enhanced diversity comes at a price — 

an increased computational burden associated with re-evaluation of the population. In the 

case of a simple genetic algorithm, diversity is enhanced by employing a large population. 

However, a large population also implies greater computational requirements associated 

with reproduction (crossover and mutation), in addition to population evaluation. There 

is, however, an important difference between the nature of computational requirements of 

the two algorithms. An increased population size in the simple genetic algorithm demands 

higher computational requirements, regardless of the state of the population. Thus, even 

when the population has converged, reproduction and population evaluation are 

performed until the pre-specified number of generations is reached. On the other hand, 

the dynamic scale range genetic algorithm re-evaluates populations and hence requires 

more computations, if and only if there is a change in the scale range of a variable. As a 

result, if the population has converged, there will be no extra population evaluations and 

the computational burden does not increase.
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3.8 Implementation of DyScGA

DyScGA was implemented by incorporating a module into an existing simple

genetic algorithm, written in FORTRAN 77® and run on a SUN SPARC® workstation.

The simple genetic algorithm has been validated and tested, and is used extensively at 

NASA Langley Research Center (Gage 1995). It uses the elitist strategy, i.e., it carries 

the best solution unchanged into the next generation, thus preserving it. It uses a 

tournament selection scheme, which determines parents by picking the best of two 

potential mates.

3.9 Verification and Validation

Verification was performed to ensure that the computer code, written to translate 

the DyScGA concepts developed in this research into machine language, was appropriate. 

This was done by solving a problem with a known optimal value, and verifying the outputs 

of the computer program as it progressed. Once it was ascertained that the computer 

code was satisfactory, validation was performed to establish that the DyScGA does indeed 

have a superior performance compared to the simple genetic algorithm. By using identical 

values for the initial random number seed and control parameters, the performance of both 

algorithms can be compared directly.

3.9.1 Verification

Verification was performed to ensure that the software code written for DyScGA is 

accurate. This was done by examining and verifying each step of the algorithm as it
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proceeded. The problem given by equation (3.2), with a known objective function of go 

(Gass 1985), was selected as a test case for the purpose of verification. A genetic 

algorithm (and the dynamic scale genetic algorithm) does not make provisions for explicit 

constraint formulation. Instead, a constraint is stated in terms of a penalty for violating 

The objective function of problem (3.2) was therefore modified to accommodate 

constraint violation through appropriate penalty functions. The penalty function, in case 

of constraint violation, was selected by trial and error on the simple genetic algorithm as 

follows:

I00((2x , + x2 + x 3) - 30)2

I00((x2 + 3x4 +  2xs + Xf)-6Q)2 (3.3)

100((2x3 +  xs +  2x6 + 4x7)-4 8 )2 

The following values were used for the random number generator seed and control 

parameters: initial random number seed 1 0 0 , population size 1 0 0 , crossover probability

0.95, mutation probability 0.2 (De Jong 1975, Grefenstette 1986, Schaffer et al. 1989).

The DyScGA was run for ten generations with the above configuration. The 

results and outputs generated as the dynamic scale genetic algorithm stepped through the 

generations are presented in Table 3.1. The following steps were executed by the 

DyScGA

1 . Step 1. Forming cm initial population

An initial population was randomly selected. This step is carried out by the simple 

genetic algorithm code.
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Gen Bfs Scale ranges Best feasible solution /  coefficient Re-eval
Xl

\bfs/4\
x2

\bfs/12\
x3

\bfs/2\
x4 X$

\bfs/5\
x6

\bfs/10\
Xi

Gen 1 2593 - - - - - - -

1307 - - - - - - -

721 - 60 - - - 72 -

359 89 29 - - 71 35 - Yes
Gen 2 153 38 1 2 76 - 30 15 - Yes

151 37 1 2 75 - 30 15 - Yes
149 37 1 2 74 - 29 14 -

69 17 5 34 - 13 6 - Yes
64 16 5 32 - 1 2 6 -

62 15 5 31 - 1 2 6 - Yes
60 15 5 30 - 1 2 6 - Yes

Gen 3 60 15 5 30 - 1 2 6 -

Gen 4 60 15 5 30 - 1 2 6 -

Gen 5 60 15 5 30 - 1 2 6 -

Gen 6 60 15 5 30 - 12 6 -

Gen 7 60 15 5 30 - 1 2 6 -

Gen 8 60 15 5 30 - 1 2 6 -

Gen 9 60 15 5 30 - 1 2 6 -

Gen 10 60 15 5 30 - 1 2 6 -

(Underlined values indicate intermediate scale ranges that were not actually implemented)

Table 3.1 Stepping through the DyScGA

2 . Step 2. Evaluating fitness o f population

The fitness, in terms of objective function and constraints, was evaluated for the 

entire population. This step was also performed by the simple genetic algorithm.
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3. Step 3. Assigning new scale ranges based on the best feasible solution

This step involves the dynamic scale genetic algorithm module. The DyScGA 

determined the best feasible solution in the initial population by comparing the fitness 

values of each member determined in Step 2 above. The best feasible solutions are listed 

in Table 3.1 in the order in which they were found. The first best feasible solution found 

was 2593. New scale ranges, if any, were determined by computing the contributions of 

each variable to the bfs of 2593. As the table indicates, no new scale ranges were required 

at this best feasible solution. This occurred because the contribution of each variable to 

the bfs was greater than the original scale range of 99. For example, the contribution of 

variable X/ to this bfs, determined as 648 (|2593/4|), does not divide the original scale 

range of 99. Hence, subsets of the original search cannot be formed, and no new scale 

ranges were assigned.

Next, a best feasible solution of 1307 was found. Once again no new scale ranges 

were required. Following this, a best feasible solution was found at 721. Based on the 

contributions of the variables to this bfs value, the scale ranges of variables x2 and x6 can 

be divided at 60 (=|721/12|) and 72 (=|721/10|) respectively. Subsets can be formed by 

supplying the following permissible scale ranges instead of the original: Subset11 : 0 < x2 

< 60, Subset12 : 61 < X/ <99. Subset12 can be fathomed through value dominance, as it 

contains solutions with fitness of at least 732 (=61*12), which are greater than the best 

feasible solution of 721. The new permissible scale range of variable x2 was now limited 

to 60, i.e., 0  < x2 < 60.
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Similarly, for variable x6 the following subsets can be formed: Subset21: 0  <x6 < 

72, and Subset22 : 73 < xt < 99. Once again, Subset22 can be fathomed through value 

dominance, as it produces solutions that have fitness of at least 730 (=73*10), which are 

greater than the best feasible solution of 721. Therefore, the new permissible scale ranges 

for variable x6 were limited to 72, i.e., 0  < < 72. Next, a best feasible solution of 359

was found. In a similar manner, variables xj , x2„ x3 , and X* were assigned tighter scale 

ranges of 89, 29, 71 and 35, respectively. There was no scale change for the variables x3, 

x4, and x7 as their respective contributions were higher than their original scale ranges of 

99. For example, for variable x3 , the contribution was 179 (=|359/2|), which is higher 

than 99. Variables x4 and x7 do not figure into the objective function, and hence no scale 

change was required for them.

4. Step 4. Determining i f  new scale ranges were assigned

The scale ranges for the problem were now refined as follows: 0  < x/ < 89, 0  < x2 < 

29, 0 < x3 < 99, 0 < x4 < 99, 0 £ xs < 71, 0 < x 6 £ 35, and 0 < x 7 < 99. Since new scale 

ranges were assigned, the program looped back to Step 2  for re-evaluation of the 

population.

5. Step 2. Evaluating fitness o f population

Since scale ranges were tightened, the population members now represented 

different points in the solution space. The population was re-evaluated with the new 

mapping strategy (scale ranges 89, 29, 99, 99, 71, 35, 99). The population member 

representing the best feasible solution of 359 was left unchanged without re-evaluation, 

since the elitist strategy which preserves the bfs was used.
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6 . Step 3. Assigning new scale ranges based on the best feasible solution

The best feasible solution was found to be 359 again, since the re-mapped 

population did not produce a better solution. Therefore, no new scale ranges were 

required.

7. Step 4. Determining i f  new scale ranges were assigned

Since the scale ranges were unchanged (89, 29, 99, 99, 71, 35, 99) the program 

advanced to Step 5.

8 . Step 5. Determining i f  maximum generations were reached

The current generation was the first generation, which is less than the maximum 

allowable generations of 1 0 . Therefore, the computer code progressed to Step 6 .

9. Step 6. Forming subsequent generation through crossover and mutation

The next generation was formed through the genetic operators of crossover and 

mutation. The program then moved to Step 2 for evaluation of the new population.

10. Step 2. Evaluatingfitness o f population

The new population was re-evaluated. The best feasible solution which was 

preserved by the elitist strategy was left unchanged.

11. Step 3. Assigning new scale ranges based on the best feasible solution

The best feasible solution from among the newly produced population was found as 

153. New scale ranges were assigned based on this bfs as: 0 <Xi < 38, 0 < x2 £ 12, 0 < 

x3 < 7 6 , 0 < x 4 < 99, 0 <Xs < 30, 0 < Xg <15, and 0 < x 7 < 99.
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12. Step 4. Determining i f  new scale ranges were assigned

Since new scale ranges were assigned, the program looped back to Step 2 for 

population re-evaluation.

13. Step 2. Evaluating fitness o f population

The population was re-evaluated with the new mapping strategy, except for the best 

feasible solution.

14. Step 3. Assigning new scale ranges based on the best feasible solution

The best feasible solution from among the newly produced population was found as 

151. New scale ranges were assigned based on this bfs as: 0 < X/ < 37, 0 < x2 < 12, 0 < 

x3 < 75, 0 <x4 < 99, 0 <x5 < 30, 0 <x6 < 15, and 0 < x 7 < 99.

As Table 3.1 indicates, the program continued in this manner until there was no 

more improvement in the best feasible solution. This occurred at fitness value 60, and 

new scale ranges were set as follows: 15, 5, 30, 99, 12, 6 , 99. At this point the third 

generation was formed through reproduction and crossover. Since this third generation 

did not contain a better feasible solution, the DyScGA proceeded in the manner of a 

simple genetic algorithm through generation 1 0 .

In this way, the computer code written for the DyScGA was fully verified.

3.9.2. Validation

The verified dynamic scale genetic algorithm code was validated to ensure that it 

performs better than the simple genetic algorithm. For the purpose of validation, the 

performance of both algorithms was compared by solving problem 3 .2 above. To enable a
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direct comparison, the same initial random number seed ( 1 0 0 ) and algorithm parameters 

(population size 100, crossover probability 0.95, mutation probability 0.2) were used for 

both cases. Doing so enables an exact comparison between the results obtained by the 

simple GA and the DyScGA. It can be seen that the performance of the DyScGA at these 

settings has been examined in the preceding section.

The simple GA was run with the above control parameter settings and initial 

random number generator seed. It was run for a total of 25 generations, greater than the 

dynamic scale genetic algorithm generations (10). Table 3.2 presents the performance of 

the simple GA. It contains the best fitness and average fitness values found during each 

generation. The results demonstrate and underscore the utility of the DyScGA

It can be seen, from Table 3.2, that the quality of the best fitness improved with each 

subsequent generation for the simple genetic algorithm. The average fitness value was 

observed to fluctuate through the generations. This can be attributed to the incidence of 

infeasible solutions in the population, for each generation. Occurrences of infeasible 

solutions are due to constraint violations that are penalized by increasing the objective 

function value. This increase contributes to a higher average fitness over the generation. 

The final solution corresponding to the best fitness was found by the simple genetic 

algorithm, in the 24th generation, as 83. This fitness value given in Table 3.2, turned out 

to be considerably higher than the known optimal value of 60.

Next the dynamic scale genetic algorithm with identical control parameters, which 

was applied to the same problem (3.2) for 10 generations, is considered. The results are 

tabulated in Table 3.3. Table 3.3 contains an additional column that depicts the number of
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Gen Best fitness Avg fitness
1 359 1637
2 251 1426
3 227 1254
4 227 1092
5 213 901.2
6 213 922.5
7 193 1095
8 193 964.1
9 193 890.2
1 0 193 965.5
1 1 123 1520
1 2 123 1065
13 87 909.1
14 87 1303
15 87 1350
16 87 968.5
17 87 880.9
18 87 1441
19 87 1006
2 0 87 1070
2 1 87 2632
2 2 87 843.2
23 87 1190
24 83 880
25 83 1827

Table 3.2 Results obtained by simple genetic algorithm

times the population was re-evaluated due to a change in the scale range of a variable. 

Identical settings of the control parameters and the starting random number generator seed 

enable a direct comparison with the simple genetic algorithm. Care was taken to run the
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simple genetic algorithm for extra generations (25), due to the population re-evaluations 

performed by the dynamic scale genetic algorithm which was run for only 1 0  generations.

Gen Best fitness Average fitness Population re- 
evaluation

1 359 1346 1

2 60 1.33E+04 5
3 60 6558 —

4 60 4738 —

5 60 5562 —

6 60 6249 —

7 60 9644 —

8 60 1.21E+04 —

9 60 1.10E+04 —

1 0 60 3362 - -

Table 3.3 Results obtained by the DyScGA

The first generation for both the plain GA and the DyScGA was formed by the 

random selection of an initial population. This population, as expected, was identical for 

both algorithms, and the best fitness was 359. It can be seen that as with the simple GA 

the best fitness improved with each generation. In the case of DyScGA however, the rate 

of improvement in the best fitness can be observed to be more rapid. Furthermore, the 

quality of the final solution produced by the DyScGA at 60 was superior to that found by
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the simple genetic algorithm (83). This optimal solution of 60 was found in the second 

generation itself, after a total of six extra population evaluations as in section 3.9.1.

Average fitness values in Table 3.3 are noticeably higher than the corresponding 

values for the simple genetic algorithm. This can be explained by the higher percentage of 

infeasible solutions present in the search space refined by the DyScGA. Typically, the 

optimal for constrained optimization problems is located near the boundary of the feasible 

and infeasible regions. As the DyScGA tightens bounds, the search space is constricted 

and progressively contains a larger percentage of infeasible solutions in comparison to 

feasible solutions. Therefore, chances of generating infeasible solutions in a constrained 

optimization problem increase, driving the average fitness value for DyScGA higher.

A graphical depiction of the improvement associated with the DyScGA, based on 

the results in Tables 3.2 and 3.3, is given in Figure 3.4. From the above comparison, it 

can be concluded that the overall performance of the DyScGA, in terms of final solution 

(60 versus 83) and computational requirements (2 generations and 6  extra population 

evaluations, versus 24 generations with no extra population evaluations), is considerably 

superior to the simple genetic algorithm. This validates the dynamic scale genetic 

algorithm. It demonstrates the learning feature of the DyScGA which results in a 

noticeable improvement in its performance.
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Figure 3.4 Graphical comparison of the simple GA and the DyScGA

Next, we turn to the memory feature of the dynamic scale genetic algorithm which 

enables the permanent storage of the information learned during each independent run. To 

validate the memory feature and its benefit, the DyScGA was compared to the simple 

genetic algorithm and to the DyScGA with memory feature disabled for validation 

purposes. These three strategies were used to solve the problem given by equation (3.2). 

As before the dynamic scale genetic algorithm was run for 10 generations, and the simple 

genetic algorithm for 25 generations. Each independent run of each algorithm was 

initialized by identical random number generator seeds. That is, the first run of all the 

three strategies started with seed 100, the second run started with seed 200, and so on. In
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addition, the control environment for all three strategies was maintained at: population 

size 100, crossover probability 0.95, and mutation probability 0.2.

These two measures promote a direct comparison between the DyScGA with 

memory disabled and the simple GA, in the sense that they start out with an identical 

control environment and an identical population. However, in the case of DyScGA with 

memory, although the control environment is the same, the population may not necessarily 

be so. This is because, due to the memory effect, each run of the DyScGA may have 

variables whose permissible scale ranges have been progressively tightened. Therefore, 

although the initial binary population may be the same as that of the simple GA and 

DyScGA with memory, it may represent different solutions when mapped onto a more 

compact solution space. The first independent run of both the DyScGA and the DyScGA 

with memory disabled were identical. They both produced a final solution of 89, with 21 

population re-evaluations. (The simple GA produced a final solution of 145 during its first 

run). During the second run, all three strategies started out with an identical seed. 

However, while DyScGA remembered the tighter scale ranges learned during its previous 

run, DyScGA with memory disabled did not store these. Therefore, it started with the 

original scale ranges of the problem. Table 3.4 contains the solutions obtained by the 

DyScGA, simple GA and DyScGA with memory feature disabled, for the second 

independent run. Figure 3.5 contains a graphical depiction of the memory effect, based on 

the second independent run of Table 3.4. It is observed that DyScGA produced a final 

solution of 64, with five population re-evaluations. In comparison, DyScGA with memory 

disabled produced a higher final solution of 84 and required more population re­
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evaluations (11). This can be attributed to its lack of memory of the new scale ranges 

obtained during its first independent run. On the other hand, DyScGA retained the refined 

scale ranges learned during its first independent run. Thus the learning and memory 

feature of the DyScGA has been demonstrated and validated.

Gen Simple GA 
Best fitness

Dy
Best fitness

ScGA
Pop. re-evals

DyScGA wit 
Best fitness

i memory disabled 
Pop. re-evals

1 533 115 0 174 6

2 382 1 1 1 0 174 6

3 352 84 1 143 . 8

4 352 84 1 143 8

5 352 76 4 98 1 0

6 322 76 4 98 1 0

7 322 64 5 98 1 0

8 322 64 5 84 11

9 2 1 2 64 5 84 11

1 0 2 1 2 64 5 84 1 1

1 1 2 1 2

1 2 204
13 184
14 184
15 184
16 164
17 164
18 164
19 164
2 0 164
2 1 164
2 2 164
23 164
24 164
25 164

Table 3.4 Comparison of DyScGA, simple GA and DyScGA with memory disabled

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

520 Simple GA 
DyScGA
DyScGA with memory disabled440

360

280

200

120

5 7 9 11 13 15 17 19 21 23 251 3

Generation

Figure 3.5 Graphical comparison of the simple GA, the DyScGA, and the DyScGA 
with memory disabled

3.10 Summary

The dynamic scale genetic algorithm, which is based on the theoretical foundation of 

the discrete optimization technique of implicit enumeration, was presented in this chapter. 

The DyScGA incorporates the concept of forming mutually exclusive subsets of a problem 

through an appropriate division of the scale ranges of its variables into the simple genetic 

algorithm. It then uses value dominance to systematically eliminate these subsets from 

consideration. The DyScGA can be viewed as multiple applications of the simple genetic 

algorithm to a solution space that is successively refined, by dynamically changing the
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mapping strategy. By refining the associated solution space over successive generations, 

the DyScGA aims to improve the performance of the simple GA.

The DyScGA eliminates subsets of the solution space if and only if there is 

mathematical evidence that the subset does not contain the optimum. Therefore, unlike 

other enhancements suggested in the GA literature it does not require inverse operators to 

re-claim previously discarded subsets. Furthermore, the other methods in the literature are 

triggered by population convergence measurements. This requires the user to arbitrarily 

set threshold levels for determining convergence, a process which impacts the 

performance of the method itself. The DyScGA, on the other hand, requires no additional 

inputs other than the problem itself. In addition, through the use of a changing mapping 

strategy, genetic diversity, an essential component for a successful genetic search is 

introduced into the population of the DyScGA The DyScGA also has a built-in memory 

that retains the refined scale ranges and solution space over subsequent runs of the 

algorithms. Due to these features, the DyScGA stands apart from the existing GA 

enhancing strategies.

The dynamic scale genetic algorithm was implemented. Verification of the 

algorithm code was performed. The DyScGA was validated by demonstrating the 

improvement in performance over the simple genetic algorithm.
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CHAPTER 4 

RESULTS AND DISCUSSION

4.1 Introduction

The dynamic scale genetic algorithm was subjected to extensive testing by 

comparing its performance with that of the simple genetic algorithm on a testbed of 

problems. The testbed consisted of three discrete optimization problems with a linear 

objective function, each suitable for DyScGA. Two of these problems were listed in 

standard books on optimization (Gass 1985, Nemhauser and Wolsey 1988). The third 

problem considered in the testbed was the operations and support optimization problem 

being studied at the Vehicle Analysis Branch of LaRC. The size of the problems 

considered ranged from six to nineteen variables. The constraints of the problems 

included a wide variety: linearity and non-linearity, deterministic and stochastic, analytical 

formulation and lack of analytical formulation (predicted by simulation). Therefore, in 

terms of the size of the problems and nature of constraints, the testbed is considered to be 

adequately varied and representative of the general discrete optimization problem.

The dynamic scale genetic algorithm and the simple genetic algorithm are 

characterized by their stochastic nature and their dependence on control parameter 

settings. Hence any attempt at comparing the performance of these two algorithms needs 

to explicitly address these aspects. In this research, care was taken to assign identical 

random number generator seeds to both algorithms, during each experiment. Therefore,
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both DyScGA and the simple GA started out with identical populations for each individual 

run in each experiment. Furthermore, the same control parameter settings (crossover 

probability, mutation probability and population size) were used, thus making for a similar 

control environment for both algorithms, during each experiment. In addition, in order to 

perform a thorough investigation, testing was performed at various levels of the control 

parameters for at least one testbed problem. All of the above measures ensured an exact 

comparison between each experiment and each run of the DyScGA and the simple GA.

4.2 Problem I

Problem 3.2 which was presented in Chapter 3, formed Problem I of the testbed 

(Gass 1985). The original objective function of equation (3.2) was modified to 

accommodate penalties due to constraint violation. The penalty functions given by 

equation (3.3) were used. Testing on Problem I involved comparing the performance of 

the DyScGA and the simple GA at various levels of control parameters. Since the 

dynamic scale genetic algorithm does not alter the basic mechanism and fundamental 

properties of the simple GA, the theoretical basis of the latter still applies. Therefore, it is 

hypothesized that the control environment will affect the simple genetic algorithm and the 

dynamic scale genetic algorithm in the same manner. That is, the performance of both the 

simple GA and the DyScGA will simultaneously either improve or deteriorate as the levels 

of the control parameters change. For example, increasing the crossover rate would result 

in a performance improvement (or degradation) for both algorithms. This hypothesis was 

tested on Problem I by varying all the control parameters in a full factorial manner.
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4.2.1 Dynamic scale and simple genetic algorithm at various control parameters

This section describes the experiments conducted to compare the performance of 

the two algorithms at different control parameter levels. The three control parameters of 

population size, crossover rate, and mutation rate were varied at two levels each in a full 

factorial manner. Commonly used control parameter levels were selected: population size 

50, 1 0 0 ; crossover probability 0.9, 0.95; and mutation probability 0 .1 , 0.2 (De Jong 1975, 

Grefenstette 1986, Schaffer et al. 1989). The experimentation plan used appears in Table

4.1.

Pop.
size

Crossover
prob.

Mutation
prob.

DyScGA (10 gens, 
1 0 0  replications)

GA (25 gens, 
1 0 0  eplications)

Expt. 1 50 0.9 0 . 1 XDyScGA (50.0.9.0.1) 

SDvScGA (50.0.9.0.1)

X ga (50,0.9.0.1) 
SgA (50.0.9.0.1)

Expt. 2 50 0.9 0 . 2 X DyScGA (50.0.9.0.2) 

SDyScGA (50.0.9.0.2)

X ga (50.0.9.0.2) 
Sga (50.0.9.0.2)

Expt. 3 50 0.95 0 . 1 X DyScGA (50,0.95.0.1) 

SDvScGA (50.0.95.0.1)

X GA (50.0.95.0.1) 
Sga (50.0.95.0.1)

Expt. 4 50 0.95 0 . 2 x  DyScGA (50.0.9.0.2) 

SovScGA (50.0.9.0.2)

Xga (50.0.9.0.2) 
Sga (50.0.9.0.2)

Expt. 5 1 0 0 0.9 0 . 1 XDyScGA (100.0.9.0.1) 

SovScGA (100.0.9.0.1)

Xga (100.0.9.0.1) 
Sga doo.o.9.0.1)

Expt. 6 1 0 0 0.9 0 . 2 XDyScGA (100,0.9.0.2) 

SDyScGA (100.0.9.0.2)

X ga (100.0.9.0.2) 
Sga doo.o.9.0.2)

Expt. 7 1 0 0 0.95 0 . 1 X  DyScGA (100.0.95.0.1) 

SDvScGA (100.0.95.0.1)

X ga (100.0.95.0.1) 
Sga (100.0.95.0.1)

Expt. 8 1 0 0 0.95 0 . 2 XDyScGA (100.0.95.0.2) 

SovScGA (100.0.95.0.2)

Xga (100.0.95.0.2) 
Sga (100.0.95.0.2)

Table 4.1 Problem I: Experimentation plan
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Each experiment was replicated 100 times, starting with a new random number 

generator seed for both the simple and the dynamic scale genetic algorithms. This 

generated a statistically large sample size of 100. Experiments were conducted first on the 

DyScGA. In accordance with the plan outlined in Table 4.1, the DyScGA was run for 

eight experiments at 1 0 0  replications each, for ten generations. (Therefore a total of 800 

experiments consisting of 10 generations each were run.) Each independent run was 

obtained by initializing the scale ranges of each variable to the limits specified in the 

original problem. The final solution obtained at the end of each replication of each 

experiment was used to compute the associated sample mean (XpyscOA), and standard 

deviation (sDySccA)■ Based on the outcomes of these experiments and replications, it was 

evident that an average of 14.8 population re-evaluations were performed by the DyScGA.

Next, experiments were performed on the simple GA. In order to compensate for 

the diversity-enhancing population re-evaluations performed by the DyScGA the simple 

genetic algorithm was run for a higher number of generations. This turned out to be 25 

generations (=10+14.8 generations) for this particular problem because of the 14.8 extra 

population evaluations required by the DyScGA One hundred replications, starting with 

the same random number generator seeds as the DyScGA for each of the eight 

experiments with the simple GA were conducted. Once again, the final solution obtained 

at the end of each replication of each experiment was used to compute the associated 

sample mean ( xGa ) and standard deviation (sCA).

The sample mean and standard deviation values were utilized to test the following 

hypotheses fo r  each o f the eight experiments:
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H0: The performance of both the genetic algorithm and the dynamic scale genetic 
algorithm is equivalent (i.e., population mean of the solutions found by both 
techniques are not different /Jga ~ fktyscod-

H i: The performance of the dynamic scale genetic algorithm is superior to that of 
the genetic algorithm (i.e., population mean of the solutions found by the genetic 
algorithm is higher than the population mean of the solutions found by the dynamic 
scale range genetic algorithm for a minimization problem ̂ ga > MoyScGA)-

The hypothesis tests were performed by using the z statistic for unknown variances and a 

large sample size. The z statistic was estimated by the following relation (4.1)

X GA ~’ X DyScGA
z = T T — TT— ”  (4-i)

l SGA , DyScGA

where xCA and XoyScCA are the sample means of the final solutions, and sCA and sDySCGA are 

the sample standard deviations of the final solutions, obtained by the simple GA and the 

DyScGA through a large sample size (n>30). The resulting z statistics obtained for 

Problem I are tabulated in Table 4.2.

The high z statistic values in each row of Table 4.2 indicate that the null hypothesis 

Ho can be rejected for each experiment at a very high confidence level (more than 99.9% 

confidence). Thus, regardless of the particular control parameter settings selected, the 

dynamic scale genetic algorithm outperforms the simple genetic algorithm. Additionally, it 

can be noted from the table that as we travel down the rows, the means and standard 

deviations obtained by both algorithms change in the same direction. Thus as the settings
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Experiment No.. 
(Popln, CrossMutn)

DyScGA ( 1 0  gens) 
Mean Xoysccu >
Sid. Dev

GA (25 gens) 
Mean ,
Std. Dev So,

z statistic p-value

Expt. 1 70.97, 105.92 12.54 < 0 . 0 0 1

(50,0.9,0.1) 1 0 . 8 6 27.43
Expt. 2 75.41, 128.11 14.98 < 0 . 0 0 1

(50,0.9,0.2) 13.72 33.25
Expt. 3 69.71, 108.96 13.64 < 0 . 0 0 1

(50,0.95,0.1) 9.66 29.77
Expt. 4 73.92, 134.53 16.93 < 0 . 0 0 1

(50,0.95,0.2) 13.46 35.67
Expt. 5 65.78, 89.24 13.49 < 0 . 0 0 1

(100,0.9,0.1) 6.30 15.50
Expt. 6 68.75, 120.28 19.57 < 0 . 0 0 1

(100,0.9,0.2) 7.68 28.43
Expt. 7 64.83, 90.18 14.19 < 0 . 0 0 1

(100,0.95,0.1) 5.48 18.00
Expt. 8 68.41, 118.08 17.87 < 0 . 0 0 1

(100,0.95,0.2) 8.69 27.48

Table 4.2 Problem I: z statistics for experiments of Table 4.1

of the control parameters change, the simple GA and the DyScGA either simultaneously 

improve or degrade in performance, implying that the control environment has a similar 

effect on their performances. It can be stated from these individual hypotheses tests at 

each experiment that the performance of the dynamic scale genetic algorithm is superior to 

the genetic algorithm regardless of the particular control parameters settings.
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As an illustration, Figure 4.1 depicts a graphical comparison of the simple genetic 

algorithm and the dynamic scale genetic algorithm, with an identical initial population and 

control environment. This figure depicts an experiment conducted at the following control 

parameter levels: Population size 100, crossover probability 0.95, mutation probability

0.2. Since the same random number generator seed was used for both the DyScGA and 

the simple GA, both algorithms started with an identical initial population.

360

320 Simple GA 
DyScGA280

240

200

160

120

Figure 4.1 Problem I: Graphical comparison of the simple GA and the DyScGA
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It can be observed from Figure 4.1 that, in the first generation, both had a best 

fitness of 359. However, in the second generation, DyScGA obtained a best fitness of 64 

with five population re-evaluations, while the simple GA obtained a best fitness of 251. 

By the fifth generation, DyScGA achieved the global optimum of 60 at a cost of two more 

population re-evaluations. On the other hand, the simple GA terminated with a best 

fitness of 83 found in the 24th generation. Therefore, it is observed that the DyScGA 

found a better solution, and its computational requirements at five generations and seven 

population re-evaluations were less than the 24 generations of the simple GA.

In the 800 runs conducted, the dynamic scale genetic algorithm found the global 

optimum (60) 173 times, while the simple genetic algorithm found it only three times.

4.2.2 Testing for the Memory Effect of DvScGA

In the experiments of section 4.2.1, independent runs of the DyScGA were 

obtained by initializing each run with the original scale ranges of the problem, for 

statistical testing purposes. However, in reality, the DyScGA will be run so that the 

memory feature, which retains the scale ranges attained during the previous run comes 

into play. In this section, the outcomes of additional experiments that were performed to 

test this memory feature are described. During these experiments, the DyScGA with 

memory was compared to the simple GA and the DyScGA with its memory feature 

disabled. As before, the DyScGA with memory was run for one hundred trials. The 

control environment (population 100, crossover rate 0.95, mutation rate 0.2), and random 

number generator seeds were identical to those o f the corresponding experiments of the
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simple GA and the DyScGA with memory disabled. Each run of the DyScGA (and 

DyScGA with memory disabled) consisted of 10 generations, lower than the 25 

generations of the simple GA

A histogram of the final solutions obtained by each algorithm is presented in Figure

4.2. It is observed that the performance of the DyScGA surpasses that of the simple GA 

and DyScGA with memory feature disabled.

70

60

so ■

■  DyScGA 
□  DyScGA mem. disabled 

Simple GA

S ' 40 
g
o’u
£  30

20 -

Solutions with fitness between 60 and 66 
DyScGA: 70%
DyScGA without memory: 51%
Simple GA: 1%

10 •

flui-ll a. I, I i, I, 8, I, 1, I I, I b,- a.

F nal sokidon (fitness)

Figure 4.2 Problem I: Histogram of solutions
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Seventy percent of the final solutions obtained by the runs of DyScGA were 

between the global optimum of 60 and 6 6 . DyScGA found the global optimum a total of 

28 times. The DyScGA with memory disabled resulted in a final solution between 60 and 

6 6 , 51% of the time. It found the global optimum a total of 23 times. Thus, it can be seen 

that when the memory of the DyScGA is disabled, its performance deteriorates. The 

simple GA resulted in just one solution between 60 and 6 6 , which occurred at a fitness of 

64. It did not find the global optimum of 60 in all of its 100 runs. It is apparent, 

therefore, that the memory feature enhances the performance of the DyScGA in a 

substantial manner.

4.3 Problem EE

The second problem in the testbed is given by the following equation (4.2) 

(Nemhauser and Wolsey 1988):

Minimize x  + x2 + x3 + 2x 4 + 0.5xs
such that x, -  2 x2 -  x3 < - 2

1 lx2 + 3x 4 + 2xs + x6 > 2 9

The penalty function was selected by running the simple genetic algorithm with 

several trial penalties. The penalty functions in case o f constraint violation were:

-  6 x 2 -  2 x 3 +  x s

0<x,. <99 x = 1, . . . , 6  

x, are non - negative integers

< -9
(4 .2)

10 {-2-(xi -2x2+x3 )}2 
10 {29-(llx2+3x4Jr2x5+x6)}2 
10 {-9-(-6x2-2x3+x5)}2

(4 .3)
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The problem was solved by the simple as well as dynamic scale genetic algorithm, at

control parameter settings of population size 20, crossover probability 0.9 and mutation

probability 0.1. The dynamic scale genetic algorithm was run for 10 generations, and used

100 replications starting with a new random number generator seed. Each independent

run was obtained by initializing the scale ranges of variables to the limits set in the original

problem. The final solution obtained at the end of each replication was used to compute

the associated sample mean (xqy&ca) and standard deviation (soyseat). Based on the extra

evaluations required in each of the 100 replications, it was noted that an average of 18.3

extra population evaluations were performed. To compensate for the extra evaluations

the simple genetic algorithm was run for 30 generations (more than 10+18.3). One

hundred replications, starting with the same random number generator seeds as the

DyScGA, were conducted. The final solution obtained at the end of each replication was

used to compute the associated mean (xGA), and standard deviation (sGA ). The sample

means and standard deviations were used to test the following hypothesis:

Ha: The performance of both the simple genetic algorithm and the dynamic scale 
genetic algorithm is equivalent (i.e., the population mean of the final solutions 
found by both techniques are not different, uga = MDyScai)-

H i: The performance of the dynamic scale genetic algorithm is superior to the 
performance of the simple genetic algorithm (i.e., the mean of the solutions found 
by the simple genetic algorithm is higher than the mean of the solutions found by 
the dynamic scale genetic algorithm, for a minimization problem, jjca > HdyScga).

The z statistic was computed using the relation given in equation (4.1) as 5.427. Resulting

statistics including sample mean and standard deviations and z statistic are given below.
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DyScGA ( 1 0  gens) 
Mean Std. Dev

GA (30 gens) 
Mean Std. Dev z statistic p-value

13.425 11.14 20.635 7.24 5.427 < 0 . 0 0 1

The high value of the z statistic (5.427), once again enables the rejection of the null 

hypothesis Hi) with 99.9% confidence. Thus, it can be stated that the performance of the 

dynamic scale genetic algorithm is superior to that o f the genetic algorithm.

As an illustration, Figure 4.3 contains a graphical comparison of a single run of the 

DyScGA and the simple GA. Both the algorithms were initialized with the same random 

number generator seed and control environment. Therefore, the initial population for both 

was identical. It is observed that both algorithms started out with a best fitness of 148.5 in 

the first generation. However, DyScGA progressed to find a final solution of 20, in the 8 th 

generation, which required 16 re-evaluations of the population. On the other hand, the 

simple GA found a higher solution of 32.5 in the 27th generation. Therefore, in this case, 

the DyScGA found a better solution, and its computational requirements at 10 generations 

and 16 population re-evaluations were less than the 27 generations of the simple GA.

In the experiments conducted above, the DyScGA found the best solution at a 

fitness of 7.5. Out of the one hundred runs, 18 runs of the DyScGA resulted in a solution 

of 7.5. For the simple GA, however, the best solution found was at a fitness of nine.
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Figure 4.3 Problem II: Graphical comparison o f the simple GA and the DyScGA

4.3.1 Testing for Memory Effect of DvScGA

The DyScGA in the preceding experiments consisted of independent runs in order 

to permit a statistical analysis. Independence was achieved by initializing each run of the 

DyScGA with the original scale ranges of the problem. In so doing the DyScGA was 

operated without the benefit of its memory feature. An additional aspect of testing was 

therefore to verify the merit of this memory feature. Additional experiments were 

conducted to test this feature, by comparing the performance of the DyScGA with 

memory to that of the simple GA and the DyScGA without the memory feature. Once
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again, 100 runs o f each strategy were compared. The runs were conducted at conditions 

comparable to the experiments in section 4.3 (population size 20, crossover probability 0.9 

and mutation probability 0.1). Random number generator seeds were identical to those 

used in the corresponding runs for the SGA and DyScGA with memory disabled of the 

preceding section. The DyScGA was run for 1 0  generations.

Figure 4.4 contains a histogram of the final solutions obtained by these experiments 

with DyScGA, as well as by the SGA and the DyScGA with memory feature disabled.
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■  Simple GA
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Solutions with fitness between 7.5 and 10.5
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en'T
Final solutions (fitness)

Figure 4.4 Problem II: Histogram of solutions
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It can be observed that once again, the performance of the DyScGA surpasses that 

of the simple GA and the DyScGA with memory feature disabled. O f the 100 rus of 

DyScGA (with memory), 99 resulted in a solution between 7.5 and 10.5, with 25 of these 

solutions at 7.5. DyScGA with memory feature disabled, on the other hand, had 6 8 % of 

its solutions between 7.5 and 10.5. Of these, 18 were at the optimum of 7.5. The simple 

GA had 6 % of its solutions between 7.5 and 10.5, with none occurring at 7.5. Thus, it is 

apparent that the memory feature improves the quality of solutions found by the DyScGA

4.4 Problem III: Operations and Support Simulation Optimization

This section describes the simulation optimization problem studied at NASA 

Langley Research Center. The problem involves the optimization of operation and 

support resources required for the maintenance of proposed spacecraft, through a discrete 

event simulation model. The simulation model was built using Simulation Language for 

Alternative Modeling (SLAM) (Pritsker 1984). It uses estimated values of component 

reliability and maintainability to simulate the preflight maintenance, the mission and the 

post flight maintenance (Ebeling and Donohue 1994).

Underlying processes such as component and system failure, repair and 

replacement times, and maintenance delays are simulated. Due to the random nature of 

these processes, the simulation model and its outputs are stochastic. For the purposes of 

simulation, maintenance, which includes scheduled and unscheduled activities, was divided 

into nine subsystems (power, structure, tanks, avionics, thermal, auxiliary, life support, 

mechanical and propulsion).
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The user specified inputs to the simulation include the different crew and fleet sizes. 

A scheduled and unscheduled maintenance crew is assigned by the user at run-time, to 

each of the maintenance subsystems. ( A fraction of the unscheduled crew is designated 

by the user to perform scheduled maintenance activities.) The number of vehicles 

employed or fleet size is also assigned by the user at run-time. Based on these user 

specified crew and fleet sizes, the simulation model predicts the successful missions flown 

and the mean vehicle turn-time between successive missions.

Thus, the model serves as a tool to observe how the decision variables (such as fleet 

and crew size) assigned by the user at run-time, affect the stochastic responses (such as 

mission rate and launch delays) for a particular space program. However, a problem faced 

by the LaRC engineers is that of determining the smallest fleet size and least manpower, 

that enables meeting the target mission rate in a timely manner. While the simulation 

model can predict the mission rate for a certain fleet and crew size, it cannot directly 

estimate the least fleet and smallest crew size to do so.

The problem was, therefore, to determine the least cost allocation of vehicles and 

manpower for a particular launch vehicle conceptual design that achieves the overall 

objectives of a space program. The minimization function was specified by LaRC 

engineers in terms of the relative cost attributed to the vehicles in the fleet and the 

maintenance manpower. The decision variables were non-zero, positive integers within a 

specified range. The constraints were specified in terms of the goals of a space program, 

as (i) The average mission launch delay is limited to a maximum of 48 hours, and (ii) The 

mean missions flown are at least 140 flights in five years. These constraints are dependent
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on random processes (such sis component failures and repair times) and hence require 

stochastic evaluation through the simulation. The problem can be stated symbolically as 

optimizing over a discrete region S  c  f ,

Min (X) = 100 v + Cj + c2 + c3 + c4 + cs + c6 + c7 + c8 + c9 e  S
ScIP

subject to

E(delqy) < 48 hours E(sucjnis) <> 140
2 <v <7 4 <Cj <9 6 <c2 < 9 6 <c3 <12 4 <c4 <9
15 <c5 <39 4 < c 6 <10 5 <c7 <10 4 < c 8 <10 8 <c9 <25
3 <c„ £ 4 3 < c 2j <6 3 <cSj <6 3 < c 4s <4 7 — 5̂s <15
3 £ c & <4 3 <c7s <5 3 * c 8s <4 3 <c9s <8

where the non-negative integer variables are defined as:

p  denotes the dimension of the discrete solution space, is 19 
v denotes vehicles in the fleet
Cj , c ls denote unscheduled and scheduled crew assigned to power subsystem 
c2, c2s denote unscheduled and scheduled crew assigned to structure subsystem 
c 3 > c 3s denote unscheduled and scheduled crew assigned to tanks subsystem 
c4, c4s denote unscheduled and scheduled crew assigned to avionics subsystem 
cj . c*  denote unscheduled and scheduled crew assigned to thermal subsystem 
c6, c6s denote unscheduled and scheduled crew assigned to auxiliary subsystem 
c7, c7s denote unscheduled and scheduled crew assigned to life support subsystem 
c8 , c8s denote unscheduled and scheduled crew assigned to mechanical subsystem 
c 9 > c 9i  denote unscheduled and scheduled crew assigned to propulsion subsystem 
E(delay), is a random variable representing the expected value of launch delay over the 

specified time horizon, as predicted by the simulation model 
E(suc_mis), is a random variable representing the expected value of the number of 

missions completed successfully over the specified time horizon, as 
predicted by the simulation model

4.5 Simulation Optimization Framework

The average launch delay time and missions flown constraints are stochastic and 

observed through simulation. This means that each replication of the simulation has the
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potential to give rise to a varying average delay and successful missions flown. Stochastic 

measures or constraints require special consideration during optimization. In this research 

a unifying framework, based on well-established procedures in mathematical programming 

and statistics, was outlined and developed for the optimization of the simulated systems. 

Such a methodology has generally been lacking in the simulation optimization literature, 

which largely focuses on developing new approaches for optimization. The framework 

used in this research employs the chance constraint approach (Chames and Cooper 1959) 

for treating stochastic constraints for the purpose of problem formulation. Standard 

statistical procedures recommended in the simulation literature are used to estimate the 

stochastic responses (Law and Kelton 1991, Pritsker 1984, Kleijnen 1987, Fishman 1978). 

These are based on the following assumptions:

1. The stochastic process is covariance stationary.

2. The sample variance is an unbiased estimator of the population variance.

3. The observations are independent and identically distributed.

The above assumptions do not always hold true in simulation studies. For instance, 

covariance stationarity may not rigorously hold for terminating simulations, unless the 

simulation time span is sufficiently long to warrant stationarity. (In terminating 

simulations, a simulation stops when a natural event signaling the end of the simulation run 

occurs. For instance, in the LaRC case, the simulation time span is specified as a five year 

period.) Since we do not necessarily run the terminating simulation until steady state, the 

underlying joint distributions of the random variables may change over time. Also, in 

order to generate independent and identically distributed observations, a true random
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number generator is required. However, in practice, pseudo-random number generators 

are used. Furthermore, Law and Kelton (1991) observe that simulation output data is 

usually correlated.

In practice, the above assumptions do not hold in the strictest sense and may be 

violated to a varying degree. However, due to a lack of alternative analyses methods for 

simulation data, it is recommended that standard statistical estimation be used regardless 

of slight violations (Law and Kelton 1991, Pritsker 1984, Kleijnen 1987, Fishman 1978). 

This practical strategy has been followed here.

The following sections describe an integrated and consistent simulation optimization 

framework.

4.5.1 Accuracy

One of the issues associated with a stochastic simulation is the accuracy with which 

a stochastic variable is to be estimated. The desired accuracy for each parameter can be 

specified by the decision maker in terms of statistical confidence intervals. Confidence 

intervals state the probability (1-a) that the true mean is actually contained in an interval 

of width (w), about the estimated mean.

When a simulation involves multiple stochastic variable, the overall confidence (1-a) 

associated with an optimization study is based on satisfying the individual confidence 

intervals (1-a,) simultaneously. Thus the overall confidence satisfying the Bonferroni 

inequality given by equation (4.5) implies a lower overall accuracy:

P ±1-1.01, (4.5)
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For studies involving ten or less stochastic variables, if an overall confidence (1-a) is 

desired, then the individual confidences (7-or, )  can be selected by the following relation:

S a f = «  (4.6)

However, for more than ten stochastic variables, the accuracy required of individual 

variables obtained by the Bonferroni inequality may be prohibitively high. For example, if 

an overall confidence of 90% is desired for a simulation involving ten variables, the 

individual confidences have to be at least 99%. (Similarly, if the individual confidence 

intervals of ten stochastic variables is 90%, the overall confidence is only greater than or 

equal to zero.) Therefore, for such cases, standard 90% or 95% individual confidence 

intervals are recommended (Law and Kelton 1991). The analysis results in such cases 

should be interpreted with caution, as one or more of the individual confidence intervals 

may not contain the corresponding true mean.

4.5.2. Replications

Once the accuracy for each stochastic variable is established, the number of 

replications or sample size required for the optimization study can be determined. The 

number of replications can be computed based on the specified confidence level (1-a) of 

the true mean being within an interval ±w of the estimated mean. A large sample size 

implies that the estimated mean is closer to the true mean, and hence increases the 

accuracy. A high level of accuracy is usually desired so that the results of the simulation 

study and hence subsequent decisions can be made with a satisfactory level of confidence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

However, due to the finite resource constraints (CPU time, time available for the 

simulation study), the number of replications that can be carried out are usually limited.

In order to estimate the replications, the following steps are undertaken (Law and 

Kelton 1991, Kleijnen 1987):

1. In an initial pilot experiment, the simulation model is run for 1000 or more 

replications to obtain a representative distribution for the stochastic responses.

2. The sample mean and standard deviations for the stochastic parameters are 

computed from the distributions obtained from the pilot experiment.

3. Based on the desired confidence or probability (1-a) that an interval (width ±w 

about the estimated mean) contains the true mean, the number of replications are 

determined using the following relation:

where zt.a represents the standard normal statistic covering an area (1-a), and s is 

the standard deviation of the sample.

4.5.3. Chance Constraints

The variability inherent in stochastic constraints complicates the simulation 

optimization problem by forming fuzzy boundaries for the feasible region. This presents a 

danger of erroneously accepting a solution as feasible, while it may have a high probability 

of being infeasible, and vice versa. The chance constraint approach can be used to convert 

the stochastic constraints into deterministic constraints. Chance constraints (Chames and

(4.7)
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Cooper 1959) permit constraint violation up to a pre-specified probability limit. The 

decision maker expresses a risk tolerance, in terms of a permissible probability of 

constraint violation. Consider a stochastic constraint of the form A(x) <b, where A(x) is a 

simulation response. Using the chance constraint approach, this can be reformulated in 

terms of risk tolerance as P(A(x) > b) < a, where a  denotes the extent to which constraint 

violation is permitted.

The chance constraints can be implemented through confidence interval estimates 

(Teleb and Azadivar 1994). We know that the confidence associated with an interval 

estimate denotes the probability that the interval contains the true parameter. For 

example, the upper limit associated with an interval of confidence (1-a) states that the 

probability that the true mean exceeds this limit is at most a .. Thus, the upper and lower 

limits of the interval at the specified confidence (1-a) (or risk a) provide deterministic 

boundaries for the infeasible region. In this manner, confidence intervals provide a means 

of implementing chance constraints.

Using confidence intervals, the upper limit at confidence (1-a) can be used to denote 

the chance constraint P(A(x) > b) < a, as A f e ) ^ ^  a <b. The confidence intervals are 

estimated by using the Student’s t distribution in the standard manner:

Upp_Lim = x + ('t("--> l^
Vn

(4.8)

Law _ Lim = x -
V«

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



88

where n is the number of replications, x  is the estimated mean, s is the standard deviation,

coverage.

The above confidence intervals based on Student’s t are robust to minor deviations 

from normality. However, in cases of serious non-normality and very small sample size,

1978, Kleijnen 1987). This adjusted statistic approximates the Student's t distribution by 

accounting for the skewness of the distribution, thus permitting its use for hypothesis 

testing and confidence intervals. Johnson's modified t statistic has been used successfully 

on distributions with varying degrees of non-normality, including the exponential 

distribution (Johnson 1978, Kleijnen 1986). The confidence intervals by the modified 

statistic are given by

and is obtained from the Student t distribution at (n-1) degrees of freedom and a

the Johnson’s modified t statistic for non-normal distributions is recommended (Johnson

Upp_Lim = x + ft- ,,-  s) , ^3
Vw 6^/7

(4.9)

Low Lim = x ~ ft.-,,- J) , /*,
■Jn 6s2n

where p3 is the third central moment estimated in the standard manner:

(4.10)
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4.6 Problem HI: Formulation

Based on the framework outlined in section 4.5, the NASA simulation optimization 

problem was formulated. The following steps were undertaken to achieve this.

Step 1.

The LaRC engineers were asked to state the desired accuracy in terms of confidence 

intervals. The desired accuracy was specified as follows:

Desired width ±w Desired conf. (1-a)
Delay ± 48 hours 80% confidence
Successful Missions ± 2  missions 95% confidence

Table 4.3 Desired accuracy

This implies that the mean of the average delay is to be estimated within ± 2 days of 

the true mean, with an accuracy or confidence of 80%. Similarly, the mean successful 

missions flown are to be estimated within ± 2 missions, with a 95% confidence.
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Step 2.

The individual confidence levels specified by the LaRC engineers were used to obtain the 

required sample size for the desired accuracy in estimating the individual means. The 

following steps were undertaken to compute the sample size (Law and Kelton 1991, 

Kleijnen 1987):

i) In a pilot experiment, the simulation model was run for 1000 replications to obtain a 

representative distribution for both the stochastic responses. The decision variables at 

this pilot experiment were selected by a process of trial-and-error, so as to yield a 

relatively wide distribution for the delay and successful missions variables. These 

levels are presented in Table 4.4.

Vehicles in fleet: 2

Maintenance Su d systems
Crew Pcrwr Struc Tank Avio Thrm Auxl Life Mech Prop

Unscheduled 5 6 7 4 22 6 4 7 8

Scheduled 3 5 4 3 1 1 3 4 4 6

Table 4.4 Decision variables at the pilot experiment
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it) The sample mean and standard deviation for both the stochastic parameters were 

computed from the distributions obtained from the pilot experiment as:

Delay Successful Missions
Mean x 2.45 days 138.8 missions
Std. Deviations 6 . 8  days 4.29 missions

Table 4.5 Statistics estimated from pilot experiment

iii) Based on the desired confidence or probability given in Table 4.3, and the statistics 

given in Table 4.5, the number of replications were determined as follows:

Delay 19 replications.
Successful missions 18 replications.

Based on these sample size estimations, a conservative sample size of 2 0  was selected.

Step 3.

For the present problem LaRC engineers were asked to express risk tolerances for the 

stochastic parameters. These were expressed as follows:

5% risk that mean of average delay exceeds 2 days.
5% risk that mean missions lag target of 140.
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The above risk tolerances can be stated as:

P[E(delay) > 48 hours] <0.05 (4.11)
P[E(suc_mis) < 140] <0.05

Chance constraints were implemented through statistical interval estimates for a pre­

specified confidence, by using the modified Student’s t distribution given in Equation 4.8. 

The limits at the specified confidence (5% risk or 95% confidence) provide deterministic 

boundaries for the infeasible region, as follows:

delayupp 48 hours (4.12)
sucjn islowJim,.os 2  140

Step 4.

Based on the above steps the LaRC simulation optimization problem was formulated as:

Min (X) = 100 v + c; + c2 + c3 + c4 + c5 + c6 + c7 + c8 + c9 e  S
S c I P

subject to
(4.13)

delayupp im.0.5 < 48 hours suc_mislawJim_.05 > 140
2 <v <7 4 <Cj <9 6 <e2 <9 6 <cs <12 4 <c4 <9
15 <cs <39 4 <c6 <10 5 <c7 <10 4 <c8 <10 8 <c9 <25
3 <cls <4 3 <C2s<6 3 <6 3 — C4s — 4 7 ~^5s <15
3 <c6s <4 3 <c7s <5 3 < C8s <4 3 <c9s <8

all variables are non-negative integers

where,

mean average delay is estimated at 80% confidence of being within ± 2  days; and, 

mean successful missions are estimated at 95% confidence of being within ± 2 

missions, giving an overall 75% accuracy for the optimization study.
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4.7 Problem III: Experimental Results

The NASA LaRC simulation optimization problem was solved by both the simple 

genetic algorithm and the dynamic scale genetic algorithm, and their performance was 

compared statistically. The following penalties in case of constraint violation, determined 

experimentally on the simple genetic algorithm, were added to the objective function:

1000*(48 hours - average delay uppjm. o.s)2
1000*(140- successful missions lawjm. o.s)2 (4.14)

Control parameters were set as follows: population size 50, crossover probability 0.9, 

mutation probability 0.2. Each independent run of the dynamic scale genetic algorithm 

consisted of 10 generations. The DyScGA was run for 34 such independent runs, each 

run initialized with a different random number generator seed. The scale ranges for 

variables were set in accordance with the original problem for each independent run. The 

final solution (least cost allocation of vehicles and crew) obtained at the end of each of the

33 replications was used to compute the associated sample mean ( xoyscat) and standard 

deviation (SDyscat )■ On an average, the dynamic scale genetic algorithm took 5.18 extra 

population evaluations. To compensate for the extra population evaluations, the simple 

genetic algorithm was run for 16 generations (=10+5.18). The simple genetic algorithm 

was run for 33 independent runs, each run being initialized by different random number 

generator seeds. Once again, the final solutions obtained at the end of each of the 33

replications were used to compute the associated sample mean ( xga ), and the standard
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deviation (soyScGA )■ The sample mean and standard deviation values were utilized to test 

the following hypothesis:

H0: The performance of the both the genetic algorithm and the dynamic scale 
genetic algorithm is equivalent (i.e., population mean of the solutions found by 
both techniques are not different /Jga -  Moyscat, )-

H r The performance of the dynamic scale genetic algorithm is superior to that of 
the simple genetic algorithm (i.e., population mean of the solutions found by the 
simple GA is higher than the population mean of the solutions found by the 
dynamic scale genetic algorithm for a minimization problem /jga > Md/Scga, )•

The hypothesis was tested by using the z statistic for unknown variances and large 

sample size, given by the relation (4.1). A large sample size of observations (33) for both 

the dynamic scale range genetic algorithm and the simple genetic algorithm was used.

The following results were obtained:

DyScGA (10 gens) 
Mean Std. Dev

GA (16 gens) 
Mean Std. Dev z statistic p-value

273.24 36.27 321.12 40.86 5.03 < 0 . 0 0 1

Based on the rather high z-statistic value of 5.03, the null hypothesis Ho can be rejected 

with 99.9% confidence. Therefore, we reject the hypothesis that the dynamic scale 

genetic algorithm and the simple genetic algorithm are equivalent in performance.

As an illustration, Figures 4.5 (a), (b), (c) and (d) depict graphical comparisons of 

the DyScGA and the simple GA, initialized by different random number generator seeds.
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Figure 4.5a Problem IE: Graphical comparison of the SGA and the DyScGA (Case i)
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Figure 4.5b Problem IE: Graphical comparison of the SGA and the DyScGA (Case ii)
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Figure 4.5c Problem IE: Graphical comparison of the SGA and the DyScGA (Case iii)
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Figure 4.5d Problem DI: Graphical comparison of the SGA and the DyScGA (Case iv)
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Each figure contains runs obtained from an identical control environment and initialized by 

identical random number generator seeds. For instance, both the runs in Figure 4.5 (a) 

were initialized by a random number generator seed of 2.4. Therefore, the DyScGA and 

the simple GA both started with an identical initial population. However, the DyScGA 

very quickly progressed to a solution of 266 in the third generation, with 3 population re- 

evaluations. By the tenth generation, it produced a solution of 257 with 3 more re- 

evaluations. The simple GA on the other hand, produced a final solution of 285 at the 

end of the twelfth generation. Figures 4.5 (b), (c) and (d), contain similar examples, 

where the DyScGA always produced better solutions than the simple GA. It is therefore 

demonstrated that the performance of the dynamic scale genetic algorithm on the NASA 

LaRC simulation optimization problem is superior.

4.7.1 Testing for Memory Effect

In the above section, the DyScGA was run by re-setting the scale ranges of 

variables to their original limits, so that the resulting independent runs would permit a 

statistical analysis. However, in reality, the memory feature of the DyScGA will retain the 

refinements made to the scale range. In this section, the benefits associated with the 

memory feature are verified. In order to verify the benefit associated with the memory 

feature, additional experiments were conducted. The DyScGA was run in order to retain 

learned information over subsequent runs. Thirty four such runs were conducted, with the 

same control parameters as the preceding section: population size 50, crossover 

probability 0.9, mutation probability 0.2. Each run was initialized with a different random
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number seed. Figure 4.6 contains a histogram of the outcomes of these experiments with 

the DyScGA, as well the simple GA and the DyScGA with memory disabled of the 

previous section. It is observed in Figure 4.6 that the majority of solutions (91.2%) 

produced by DyScGA resulted in a fitness between 256 and 265, with 85.3% of these at a 

fitness of 256. The DyScGA with memory disabled produced 73.5% solutions between 

256 and 265, with 27.3% of these being at fitness 256. The simple GA, however, did not 

produce a single solution below a fitness o f273. Therefore, it is evident that the DyScGA 

produced better solutions than the simple GA, and the memory feature produced a 

dramatic improvement in its performance.

35

S’su
3O'u

265 275 285 295 305 315 325 335

Final solution (fitness)

■DyScGA.
□ DyScGA with memory disabled
H Simple GA

Solutions with fitness at 256
DyScGA: 85.3%

b  DyScGA without memory: 27.3% B
1  Simple GA: °°/0 9

■J 1
345 355 365 375

Figure 4.6 Problem HI: Histogram of solutions
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4.8 Problem HI: Least Cost Allocation of Resources

The lowest cost allocation of operation and support resources for the NASA LaRC 

simulation optimization problem found by the simple GA was at 273. The least cost 

allocation found by the DyScGA was at cost 2S6. Several solutions with the fitness of 

256 were produced by the DyScGA. These are given in Table 4.6. It is seen that the 

number of vehicles in the fleet (2) and the unscheduled crew allocation to the nine 

maintenance subsystems were constant. The scheduled crew assigned to the individual 

maintenance subsystems changed from solution to solution. The stochastic constraints 

(average delay not exceeding 48 hours and a total of at least 140 missions flown) were 

satisfied and well within their tolerance levels, as shown in the Table 4.6.

Although all the sets of crew and vehicle allocations in Table 4.6 had a cost of 256, 

the solution with the least average delay is preferred. The last row of Table 4.6 contains 

resource levels which yielded a mean of 2.3 hours average delay, with 95% confidence 

that the mean does not exceed 3.4 hours. Similarly, the target mission rate of 140 

missions in a five year time span was achieved with 95% confidence. The above 

stochastic measures for the means of average delay and successful missions were 

estimated at the desired confidence specified by the LaRC engineers. The mean of 

average delay was estimated at an 80% confidence of being within ± 2 days of the true 

mean. The mean successful missions was estimated at a 95% confidence of being within ± 

2 missions of the true mean. Thus the problem of optimizing the operations and support 

resources for future space vehicles using LaRC’s discrete-event simulation model was 

successfully solved.
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Crew allocation for maintenance subsystems 
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Powr Struc Tank Avio Thrm Auxl Life Mech Prop Mean U.lim Mean L.lim
U S U S U 5 U 5 U S U S U S U 5 U S

2 4 3 6 3 6 3 4 3 15 11 4 3 5 4 4 3 8 6 7.4 13.9 140 140
2 4 3 6 5 6 5 4 3 15 10 4 3 5 4 4 3 8 3 7.4 10.1 140 140
2 4 3 6 5 6 3 4 3 15 8 4 3 5 4 4 3 8 7 5.1 7.4 140 140
2 4 3 6 4 6 3 4 3 15 9 4 3 5 4 4 3 8 5 2.3 3.4 140 140

Table 4.6 Solutions produced by DyScGA at fitness 256

o
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4.9 Summary

The proposed DyScGA, based on the idea that the performance of the simple GA 

can be improved by refining a problem’s solution space through successive generations, 

was subjected to extensive testing. A testbed consisting of problems that represent a 

range of discrete optimization problems was selected The DyScGA and the simple GA 

were both used to solve the testbed problems, and their performance was compared 

statistically. Care was taken to use identical control parameter settings and random 

number generator seeds, so that an exact comparison between runs of the two algorithms 

could be made. Based on these experiments, it was demonstrated that the performance of 

the DyScGA surpassed that of the simple GA on the problems considered. The benefit 

associated with the in-built memory feature of the dynamic scale genetic algorithm was 

also validated.
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CHAPTER 5 

CONCLUSIONS AND FUTURE RESEARCH

5.1 Introduction

The main motivation behind this research was to develop an efficient genetic 

algorithm based methodology to minimize the operation and support resources for 

reusable launch vehicles through simulation models. In this dissertation, the simple 

genetic algorithm was enhanced to provide for a more effective and efficient search in 

conjunction with discrete optimization. Specifically, the enhanced genetic search was 

designed for constrained discrete optimization problems with a linear objective function. 

This class of problems is the most commonly occurring integer optimization problem in 

industry and practical applications. Hence, the proposed dynamic scale genetic algorithm 

is widely applicable for discrete optimization. In addressing the main objective, issues 

related to the optimization of stochastic simulated systems, in general, were also identified 

and studied. A unifying framework for the optimization of simulated studies was 

presented based on existing statistical estimation techniques and mathematical 

programming approaches. The NASA LaRC operation and support resource optimization 

problem was addressed by using the dynamic scale genetic algorithm in conjunction with 

the above simulation optimization framework. In this chapter the main accomplishments 

of this research are highlighted, followed by a discussion of future research.
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5.2 Dynamic Scale Genetic Algorithm

This research developed an enhanced genetic algorithm, the dynamic scale genetic 

algorithm, for constrained discrete optimization problems with linear objective functions. 

Based on the concepts of implicit enumeration, the DyScGA utilizes problem specific 

information to successively refine the search space and improve the effectiveness of 

genetic search. The DyScGA is not the first search-space-scaling genetic algorithm 

proposed in the literature. The dynamic parameter encoding, delta coding, adaptive search 

space scaling and adaptive representation genetic optimizer strategies all refine the search 

space in order to improve the genetic search. However, since these other methods use 

population convergence measurements to trigger search space pruning, there exists the 

possibility that the portion that contains the optimum is trimmed off accidentally. In 

addition, they do not have a built-in memory feature that retains the boundaries of the 

refined search space over subsequent applications of the GA. The DyScGA overcomes 

these basic deficiencies inherent in the other search-space-scaling strategies . Specifically, 

the following features of the DyScGA make it an attractive search strategy:

1. Unlike other proposed modifications, DyScGA refines the search space if and only if 

there is mathematical evidence that the discarded portion does not contain the 

optimum.

2. Therefore an ‘inverse’ prune operator to recover a discarded portion of the search 

space, such as required by the other proposed techniques, is not necessary.

3. Unlike the other methods, the user does not have to arbitrarily set additional control 

parameters during run-time. Therefore, its performance is consistent.
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4. Has a built-in memory feature that retains the new refined boundaries of the search 

space across successive applications of the algorithm, unlike the other proposed 

enhancements.

5. Enhances diversity of the population by re-evaluating candidates with a new 

mapping strategy.

Experiments were conducted to statistically test the effectiveness of the dynamic scale 

genetic algorithm by comparing its performance to that o f the simple genetic algorithm on 

a testbed of three problems. The results of the experiments clearly indicate that the 

DyScGA produced better solutions in less generations. The performance of the dynamic 

scale genetic algorithm was superior in all the experiments, with the z statistic ranging in 

value from 5.03 to 19.57, at a confidence level of over 99.9%. Table 5.1 contains a 

comparison of the quality of solutions obtained by both the algorithms.

Best solution Percentage of runs that produced best soln. 
DyScGA Simple GA

Problem I 
(100,0.95,0.2)

60 28% 0%

Problem II 
(20,0.9,0.1)

7.5 25% 0%

Problem IH 
(100,0.95,0.2)

256 85.3% 0%

figures in parent lesis indicate the settings of the control environment.

Table 5.1 Comparison of solutions obtained by the simple GA and the DyScGA
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It is evident from the above table that the DyScGA consistently found a better solution 

than the simple GA

5.3 Simulation Optimization Framework

With the growing incidence of simulation modeling in industry, it is essential to 

extend the role of traditional optimization to include the simulation domain. Some of the 

issues associated with a stochastic simulation optimization study that require special 

consideration are: (i) desired accuracy of the study, (ii) number of replications required 

for the study, and (iii) treating stochastic constraints. In this research, a statistically sound 

and consistent framework for optimization of simulation studies that addresses the above 

aspects was presented. It is based on standard statistical estimation and mathematical 

programming techniques.

Under this framework, the desired accuracy for the optimization study is specified 

by the decision maker in terms of statistical confidence intervals associated with each 

stochastic parameter or variable. The replications required to estimate the stochastic 

parameters with the pre-specified confidence intervals are then computed. The 

optimization study is subsequently carried out by replicating each simulation run with a 

new random number generator seed. Another aspect that complicates the simulation 

optimization problem is the stochastic nature of the constraints. Stochastic constraints 

present fuzzy boundaries between feasible and infeasible regions of the solution space. 

Thus there is a danger of erroneously accepting a solution as feasible when it may have a 

high probability of being infeasible, vice versa. The mathematical programming approach
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of chance constraints is used to convert the stochastic constraints to deterministic 

constraints. This approach requires the decision maker to specify a ‘risk tolerance’ or a 

permissible probability of constraint violation. Statistical confidence intervals provide a 

means of implementing the chance constraints.

Use of this framework ensures that the optimization study is conducted in a 

consistent and statistically sound manner. Specifically, the following objectives are 

achieved:

1. The stochastic parameters predicted by the simulation are estimated with the desired 

confidence specified by the decision maker.

2. The fuzzy boundaries provided by stochastic constraints are converted to 

deterministic boundaries. The violation of constraints is limited to the risk tolerance 

specified by the decision maker.

3. The inferences drawn from the study and subsequent decisions are based on 

statistical levels of confidence.

5.4 Operation and Support Problem

The NASA LaRC simulation optimization problem involving minimization of 

operation and support activities of reusable launch vehicles was addressed by using the 

dynamic scale genetic algorithm in conjunction with the framework outlined above. The 

best solution found by the dynamic scale genetic algorithm occurred at a cost (or utility) of 

256. (The best solution found by the simple genetic algorithm occurred at a cost or utility 

of 273). There were several solutions with an objective function value of 256. The
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solution with the least average delay was selected from among these as having a superior 

relative utility. At this solution, the operation and support resources were allocated as 

follows:

Fleet size: 2 vehicles

Maintenance Sub-System
Crew Powr. Struc. Tank Avio. Thrm. Auxl. Life. Mech. Prop.
Urtsched 4 6 6 4 15 4 5 4 8
Sched 3 4 3 3 9 3 4 3 5

The stochastic parameter of average launch delay was estimated within ± 2 days of the 

true mean with an accuracy or confidence of 80%. Similarly successful missions were 

estimated within ±2 missions with a 95% confidence. The constraints were well within 

their target levels. The mean of average launch delay was estimated at 2.3 hours, with a 

95% confidence that it does not exceed 3.4 hours, well below the permissible delay of 48 

hours. The expected number of successful missions was estimated with 95% achievement 

of the target mission rate of 140 missions in five years. The overall accuracy of the study 

was 75%.

The above solution represents a 23% improvement over the previous optimization 

approach followed at NASA LaRC. This was the one-variable-at-a-time approach, which 

involved varying the levels, of the input parameters of the simulation manually, one at a
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time, until a desired change in the output of the simulation was obtained. This approach 

resulted in a solution o f utility 353, including a fleet size of three vehicles and a total of 53 

maintenance crew. The approach was tedious to use and involved a lot of guess-work. 

Furthermore, the optimization study itself was carried out by ignoring its stochastic 

nature.

5.5 Future Research

The methodology developed in this research can be extended and applied to other 

applications and problems. Opportunities for future research include the following.

1. The DyScGA can be applied in conjunction with the simulation optimization 

framework to other operation and support simulation models that are in use at NASA 

LaRC.

2. The DyScGA can also be applied to various other situations involving discrete 

optimization problems with linear objective functions. The car rental agency and the 

commercial airline industry are two such examples. The car rental agency needs to 

maintain a fleet of cars to meet customer demand. Similarly, an airline is required to 

maintain a fleet of airplanes in order to meet a specific schedule of flights. The scope of 

these problems need not be limited to the simulation domain, but can include the non­

simulation domain.

3. The research can be extended to perform cost optimization of operation and 

support resources for launch vehicles. Appropriate cost models would need to be 

developed for these resources. The cost models could be of the form of cost estimating
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relations obtained through a statistical analysis of historical launch data. The dynamic 

scale genetic algorithm could then be applied to minimize the cost of operation and 

support resources.

4. The research can also be extended to multi-disciplinary design optimization. The 

cost models so developed could be integrated with other disciplinary models, in order to 

achieve a systems level multi-disciplinary design optimization of launch vehicles. This will 

enable an analysis of the life cycle cost of launch vehicles during the conceptual design 

phase.
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