
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Engineering Management & Systems 
Engineering Theses & Dissertations 

Engineering Management & Systems 
Engineering 

Summer 2010 

The Influence of Network Factors on Network Centric Operations The Influence of Network Factors on Network Centric Operations 

Mehmet Fidanci 
Old Dominion University 

Follow this and additional works at: https://digitalcommons.odu.edu/emse_etds 

 Part of the Industrial Engineering Commons, Military and Veterans Studies Commons, and the 

Operational Research Commons 

Recommended Citation Recommended Citation 
Fidanci, Mehmet. "The Influence of Network Factors on Network Centric Operations" (2010). Doctor of 
Philosophy (PhD), Dissertation, Engineering Management & Systems Engineering, Old Dominion 
University, DOI: 10.25777/bgyr-kt71 
https://digitalcommons.odu.edu/emse_etds/70 

This Dissertation is brought to you for free and open access by the Engineering Management & Systems 
Engineering at ODU Digital Commons. It has been accepted for inclusion in Engineering Management & Systems 
Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, 
please contact digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/emse_etds
https://digitalcommons.odu.edu/emse_etds
https://digitalcommons.odu.edu/emse
https://digitalcommons.odu.edu/emse
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.odu.edu%2Femse_etds%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/396?utm_source=digitalcommons.odu.edu%2Femse_etds%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.odu.edu%2Femse_etds%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds/70?utm_source=digitalcommons.odu.edu%2Femse_etds%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


THE INFLUENCE OF NETWORK FACTORS 

ON NETWORK CENTRIC OPERATIONS 

by 

Mehmet Fidanci 
B.S. August 1993, Turkish Air Force Academy, Istanbul.Turkey 

M.S. March 2000, Air Force Institute of Technology, Dayton, Ohio 

A Dissertation Submitted to the Faculty of 
Old Dominion University in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

ENGINEERING MANAGEMENT 

OLD DOMINION UNIVERSITY 

August 2010 

Approved by: 

Shannon Bowling (Dirjeefor) 

Resit Unal (Member) 

Ghaith Rabadi (Member) 

Sean Deller (Member) 

Kerem Aytulun (Member) 



ABSTRACT 

THE INFLUENCE OF NETWORK FACTORS 
ON NETWORK CENTRIC OPERATIONS 

Mehmet Fidanci 
Old Dominion University, 2010 
Director: Dr. Shannon Bowling 

As Information Age changes the lifestyle of all humankinds, it also 

changes the way how to defense and secure the borders are secured and 

defended. The Informartion Age is about information superiority. It evolves the 

command and control concept, proactively, to optimize the size of the units and 

their connections within a combat force for effective mission accomplishment. 

The biggest issue is how big a unit will be and how they will arrange and connect 

it to the command and control structure in order for the unit to be effective on the 

battlefield. While some arrangements connect to each other so well that they 

endure and perform effectively during combat, other arrangements that connect 

each other are so cumbersome that they either barely succeed or are killed. 

Network Centric Operations concentrate on how to provide a warfighting 

unit with enough assets so that it can accomplish the assigned mission by itself 

effectively within its chain of command. The first thing that Network Centric 

Operations tries to achieve is to gain the shared awareness of the battlefield. 

This can be done by scouts, ground or air patrol, satellite image, radio frequency, 

etc. The situational awareness and the information superiority of the battlefield 

will definitely effect the enemy's operations so that the enemy needs to change 

its strategy. The second thing that Network Centric Operations tries to achieve is 

to have an impact on every occasion being reported or unexpectedly sensed in 

order to disrupt the enemy's will. How can a force achieve this? A well organized 

and a well connected force can have the information superiority and be able to 

transform that superiority to a success. For effectiveness, each asset in a combat 

force should have reliable connection capacity with command and control centers 

and other assets. 



The number of Sensors and Influencers being the driving entities of the 

war unit in the battlefield are integer-partitioned and connected to a Decider. 

There are well defined rules, regulations, and well established connections 

between the entities. They are initially placed random to the simulation 

environment as the BLUE and RED forces. Each force starts sensing, tracking, 

reporting, and killing the opposing side. Each force tries to win the other side. 

Each combination of an experiment replicates 30 times and then results are 

reported. The probability of a BLUE force win was studied to measure the 

performance of a networked force. 

The objectives of this research are to explore how units vary in size of 

organization, how they behave in a networked environment and to investigate 

how to increase the performance of a networked force. This research explores 

sufficient search space to understand the influence of network factors on 

Network Centric Operations. 
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1. INTRODUCTION 

War is an inevitable reality of life and has been as long as humanity has 

existed. Countries go to war to defend themselves, or they use war to support 

their policies and beliefs. The tools and tactics of how we fight have always 

changed along as technology enables us to advance as the years go by. 

War in the Information Age has different characteristics than the war in the 

Industrial Age. Technology was the dominant factor of the power in the industrial 

age. The Information Age focuses on the value and superiority of information 

(Lalbakhsh et al., 2009). These characteristics affect warfare capability, 

processes, and evaluation that are brought to combat as well as the nature of the 

environment in which conflicts occur. 

Experience learned from past wars shows that traditional warfare is far 

from satisfying its initial intended purpose in the Information Age. The 

consequences of the information age and cultural changes from technology to 

information and the new concept of power to the edge affected and changed our 

lifestyle as well as the way we fight and defend. 

The mains concept that causes a military organization to achieve the 

optimum combat success and efficiency by means of network technology has 

emerged over the last decade. This revolutionary concept is called Network 

Centric Warfare (NCW) or it's civilian version Network Centric Operations 

(NCOs). A primary goal of this new transformation is to put a military organization 

at the leading edge of warfare technology, tactics, and awareness about the 

enemy. Its definition and applications are continually evolving. 

Both success and failure of operations, in the Information Age, often rely 

heavily on necessary and sufficient data and information gathering, processing, 

and sharing. 

Often in the past, countries' large military budgets allowed military 

organizations to pioneer both the development of technology and its applications. 
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Nowadays, commercial sectors seem to have taken over this role as pioneers in 

the technology. They have applied information technology effectively to run 

business worldwide. 

In today's business, dominant enterpreneurs want to gain information 

superiority and transform it into a competitive advantage by adapting their 

traditional management and operations concept into NCOs. They have 

dramatically exploited information technology and coevolved their organizations 

and processes to best serve their customers (Honabarger, 2006). 

Information Age technology has significantly reconfigured our concept of 

time and distance. Large amounts of information, data, and images can be 

securely shared online over a long distance. Time and distance are no longer a 

hindrance for communication. A boss can watch his or her employees during a 

manufacturing process and give them directives over a screen. A commander, as 

a decision maker, can be aware of warfighters' orientation in the battlespace over 

a computer and can develop a new tactics to increase the mission effectiveness 

and efficiency. 

The concept of NCW has changed force composition and individual 

platform capabilities with force spatial distribution and tactics as important and 

scenario-dependent factors. NCW concentrates on the information-based 

aspects of force tactics: information collection, communication, and exploitation. 

The ability of a force to manage and exploit the information as centric depends 

on its connectivity: the existence, capacity, reliability of the links that connect its 

platforms, command and control centers, and other entities. 

No matter what physical proximity or strict hierarchy during the 

unpredictable war environment, commanders can now use robust communication 

networks to scatter their forces and synchronize their behavior for synergy in real 

time, generating massed effect. These two factors, distributed forces and 

networked control, look to revolutionize all aspects of warfare. A suitable 
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analytical model is needed to describe distributed, networked combat (Cares, 

2005). 

1.1. BACKGROUND 

Information is the most vital (crucial) asset of an organization in the 

information age. How it is attained and exploited affects the ability of any 

organization to cope with the competitive challenges it encounters. 

Improvements in communication and information technology in the 1990s made it 

easier and cheaper to distribute information wider than ever before. But this 

wider information distribution might have adverse unintended consequences. 

Command, Control, Communications, Computers and Intelligence (C4I) 

for the Warrior, a concept that advocated vastly increased access to information 

at all echelons, prior to the articulation of Network Centric Warfare was the 

highest concern of the military authority: How is automated information flow 

controlled? Alberts (1996) wrote a book about the unintended consequences of 

information age technologies to clarify these concerns and made appropriate 

recommendations. 

Mission Capacity Packages (MCPs) was recommended as a major 

conclusion from the analysis to answer these concerns. MCPs describe the 

answers of how to: operate, organize, command and control, design systems, as 

well as provide training and education. MCPs must coevolve according to 

changes in the force. Command and control should not be considered as a 

solved issue, but is needed to be coevolve as force capabilities and concepts of 

the operation change. 

There are a lot of choices, of course, in how to shape and arrange an 

organization; this will have different impacts on the operation effectiveness of the 

organization. Some arrangements will improve self-synchronization, while other 

arrangements will exacerbate it. The goal of this study is to find the optimum 

arrangement according to the intent. How should an Information Age combat 

force be arranged in order to get its optimum effectiveness? 
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1.2. PROBLEM DEFINITION 

"There is still, however, a gulf between a philosophical understanding of 

adaptation and the engineering prowess to make purposeful, stable and 

controllable adaptation a reality in the battlespace"(Cares, 2005). The main 

reason for this gulf is not having an acceptable and reasonable combat model in 

the Information Age. An Information Age Combat Model will be a good tool to 

help in observing and understanding a new system design, invention, and 

testing. 

An Information Age Combat Model explicitly represents interdependecies 

in between agents and appropriately comes up with delicate tactical 

arrangements. The model will help to set a rule of thumb to guide the Information 

Age concept overview through development, systems engineering, operational 

experimentation, and program analysis. 

The purpose of this research is to understand what causes Network 

Centric Operations to be effective and to understand the influence of network 

factors on NCOs. In this research, a second attempt will be studied to identify up 

to what configuration the utility of the Perron-Frobenius Eigenvalue (APFE) is 

valued as a good metric to predict the perfomance of a network in general and 

particularly combat power of the Information Age (Cares, 2005). As the number 

of distinct APFE values increases gradually, the ratio of the distinct APFE values with 

respect to the different meaningful combinations decreases dramatically. 

Therefore, the power of the APFE value as performance measure (predictor) will 

be expected to diminish exponentially from smaller networks to larger networks 

and be asymptotic to the horizontal line. The third attempt is to find some 

functions and algebraic operations to explain the relation in between the IACM 

configuration and its performance. These functions and operations can generate 

some numbers varry in a range as in the APFE and those numbers, with or without 

APFE, might give better explanation of its performance. 
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Since an Information Age Combat Model must explicitly point out 

networks, a mathematical structure of networks and its structure should be 

clearly defined. An ubiquitous term used for connected system is called as 

"network". It has other synonyms in business language such as "grid", "chain", or 

"mesh". But only very few can understand that the terms have very specific 

definitions in mathematical Network Theory. There are two practical reasons in 

selecting a network type: different networks have different properties, many of 

the characteristics of new operational concepts have specific mathematical 

definitions derived from the science of the networks. Any model of distributed 

networked combat that discards these mathematical properties would be 

inacceptable model of Information Age combat. 

There are three main perspectives of networks comprehensibly. These are 

network structure, network dynamics, and network evolution. 
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2. LITERATURE REVIEW 

As David et al. (2002) indicated, the information age has brought 

outstanding changes to the US military organization and operations. The term 

related with this change is Network Centric Warfare. From an information point of 

view, NCW is described as an information superiority-enabled concept of 

operations that creates advanced combat power by networking Sensors, 

decision-makers, and Influencers to accomplish mutual awareness, advanced 

speed of command, higher speed of operations, greater lethality, advanced 

survivability, and a degree of self synchronization. In essence, NCW capitalizes 

information superiority into combat power enhancement by effectively linking 

knowledgeable entities in the battlespace. 

Hanratty et al. (2003) discussed the disadvantage of network centric 

warfare if not carefully arranged. Tomorrow's digitally networked battlefield will 

not only enable unprecedented access to data, information, and knowledge, but 

if not carefully arranged threatens to overload commanders and staff with this 

new technology and information overload. Structured and semi-structured data 

sources from all over the battlefield need to be monitored, filtered, and secured 

against information requirements with the given appropriate alert level to 

commanders and staff. 

Wong-Juri et al. (2006) introduced a multi-layered model (MLM) with an 

interlayer mapping to address the interdependent contributions of processes, 

people, and systems to the success of Network Centric Operations. They 

proposed a methodology to model and analyze improvement in the development 

and implementation of Network Centric Warfare that extends the metrics 

described in the NCO Conceptual Framework. This methodology allows a 

commander to have the ability to determine and trace how desired military 

objectives are affected by changes in specific areas across the doctrine, 

organization, training, material, leadership, education, personnel, and facilities 

trade space. This type of information helps a commander develop a strategy in 

decision making. 
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Honda et al. (2006) evaluated agent-based combat simulation by 

introducing a synthetic approach and adaptive evolutionary learning to action 

rules by using EINSTein. EINSTein was developed by the Japanese Center for 

Naval Analyses. It is a multi-agent artificial war simulation consisting of a 2-

dimensional lattice-shaped battlefield and agents of two groups, which are called 

the red force and the blue force, fighting in the battlefield. Action rules are 

expressed by a combination of parameters in combat simulation. The 

researchers iteratively changed the number of sets of action rules to decide how 

many of them work well. They made statistical analysis between homogeneity 

and diversity and showed that there is a trade-off between them. By using the 

synthetic approach, the total gain of a group is maximum at the stage that 

homogeneity and diversity are in the middle. 

Qing et al. (2009) studied the C4ISR system effectiveness under the 

model of Network Centric Warfare and Platform Centric Warfare by utilizing 

graph theory, information entropy, knowledge function theory, and complexity 

theory. They concluded that information sharing has an active (positive) impact 

and network complexity has a negative impact which are both raised as a whole 

when the degree increases. 

McCormick et al. (2004) introduced a new service-oreiented architecture 

(SOA) approach that has gained popularity in the commercial sector by 

integrating totally different enterprise applications, and representing a practicable 

approach to network-centric warfare applications. They described how agents 

provide a critical technology to apply emerging commercial technologies, such as 

web services, into network centric warfare problems. Their objecive is to develop 

and share battlespace awareness and understanding. Their information service 

supervises information collection and dissemination/publishing activities on 

behalf of fusion services in an autonomous, yet controllable fashion. 
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2.1. DEFINITION OF NETWORK CENTRIC WARFARE 

No matter whether it is called Network Centric Warfare, Network Centric 

Operations, or Netcentric Warfare, it is a new military concept of war pioneered 

by the United States Department of Defense. 

It attempts to transform an information advantage, gained by information 

technology, into a challenging warfighting advantage by the virtue of robust 

secure networking and geographically dispersed forces. This new design 

networks with updates in technology, organization, process, and people and can 

create a better organizational behavior. 

There are three tenets in Network Centric Warfare to create synergy that 

dramatically increase mission effectiveness. These tenets cause and enable 

chain reactions to each other. Network Centric Warfare is built and depends on a 

well designed, easy to access, wide band, robust network. Geographically 

dispersed forces share information, collaborate with their echelons to have better 

information, and orient themselves to the battlespace for situational awareness. 

Shared situational awareness enables self synchronization. Overall, everything 

dramatically increase mission efectiveness. 

Network Centric Warfare has some architectural and design challenges. 

Providing secure communications in Network Centric Warfare is a challenging 

task. First of all, coordinating bandwith usage in a battlespace is a difficult issue. 

Whenever a unit logs in and data transfer starts, it will be source or relay of radio 

frequency (RF). For example, there were more than 500,000 troops who were 

supported with 100 Mbit/s of bandwith during the Desert Storm Operation. Today, 

there are about 350,000 warfighters, supported by more than 3,000 Mbit/s of 

satellite bandwith in the Iraqi Freedom Operation. The bandwith, number of 

access and speed of network, is 30 times more than they had about a decade 

ago. They essentially used the same weaponries in timely close operations with 

significantly increased effectiveness. 
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Second, providing secure and reliable information transfer in network 

centric warfare is another difficult issue. Succesful key management for 

encryption must be supported for secure information over the network. 

Third, every unit in network has different levels of access authority for 

information. This makes difficult to efficiently transfer information between 

networks with different levels of security classification. There are a lot of issues 

still needed to be determined for secure and reliable network. Although multi 

level access security systems seem to resolve the issue, to what extent specific 

data should or should not be transfered still needs to be determined during the 

decision making process. 

Fourth, situational awareness is limited when maneuvering in weak or 

non-existent GPS coverage. Spare systems in case of GPS outage for a variety 

of reasons needs to be considered as a backup for reliable fusion of positional 

data (triangulation technics can be used to locate yourself from multiple sensors 

as backup).1 

2.2. NETWORK STRUCTURE 

The most fundamental level of the Information Age Combat Model is the 

mathematical structure of a network as a collection of nodes connected by links. 

Nodes are the processing elements called Sensors, Deciders, Influencers, or 

Targets. These nodes are well defined (Cares, 2005) and have the following 

properties: 

• Sensors detect unusual or hostile activities in their responsility areas and 

locate them or receive those activities' locations from friendly nodes and 

send the information to their linked Deciders, 

• Deciders receive information from their linked Sensors and make 

decisions and command their linked Influencers about the present and 

future arrangement, 

1 See http://en.wikipedia.org/wiki/Network-centricwarfare for more information 

http://en.wikipedia.org/wiki/Network-centricwarfare
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• Influencers receive direction from their linked Deciders to render the given 

hostile nodes states useless, 

• Targets are nodes that have military value but are not Sensors, Deciders, 

or Influencers. 

These are the minimum properties required to define each node. There 

are still some characteristics needed to be defined to clarify the rules between 

nodes. 

First, each node must belong to a "side" of at least two (e.g., blue, red, 

friend, foe, neutral). For simplicity and a better fit to the combat model, there are 

two sides, conventionally termed BLUE (depicted in black) and RED (depicted in 

gray). 

Second, Targets always belong to the other side, adversary. Targets are 

anything of military value on each side except a Sensor, Decider, or Influencer. 

Third, sensor logic (signal reception) is not a decision making capacity. 

Signal reception is already considered as an embeded function within Sensors. 

Fourth, all Sensor information must pass through a Decider. Deciders 

know their side's nodes location even if they are killed or inoperative accepting 

they are all in their own side Sensors' coverage. 

Nodes are connected to each other by directional links. Links might be 

observable phenomenon like radio frequency energy, infrared signals, light 

signals, communications or acoustic energy that emanate from a node and are 

detected by a Sensor. These detected links by Sensors are sent to Deciders. 

Deciders issue orders to Influencers, Sensors, and Targets. Influencers typically 

destroy or render useless the nodes they interact with. Most of the links in the 

Information Age Combat Model are tactical and operational interactions between 

nodes. 
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2.3. COMBAT NETWORKS 

The links and nodes described above establish a combat network. Figure 

2.1 graphically represents the most basic one-sided combat network, while 

Figure 2.2 represents a two-sided system. Black nodes denotes the friendly side, 

while light grey denotes the enemy side. Different line styles represent various 

kinds of links between nodes. 

(°> - © 
i 

(t> T 

Figure 2.1. One-Sided Basic Combat Network (Cares, 2005) 

(D) (T) T D 

xs • 
Figure 2.2. Two-Sided Basic Combat Network (Cares, 2005) 

Figure 2.3 represents the basic complete combat network that can be 

established from what has been mentioned so far. It represents all possible 

meaningful links in which Sensors, Deciders, Influencers, and Targets interact 

with each other. 
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Figure 2.3. Two-Sided Basic Complete Combat Network (Cares, 2005) 

2.4. DIMENSIONS AND COMPLEXITY 

The number of possible links for eight nodes is equal to 28=64. As Cares 

(2005) described, two-sided basic complete combat network for eight nodes 

(SDIT nodes for the BLUE side and SDIT nodes for the RED side) (see Figure 

2.3). This is depicted in the adjacency matrix (Figure 2.4) as having at least 36 

different dimensions (i.e.,possible meaningful links). An adjacency matrix is an 

easier representation for understanding the dimensionality of different types of 

network. Figure 2.4 reflects the same eight node network in Figure 2.3 in matrix 

form. 

A, if there is a link from row i to column j 
IJ 0, otherwise 
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1 
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0 
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1 
0 
1 
1 
1 
0 

I 
0 
0 
1 
0 
0 
1 
1 
0 

T 
0 
0 
1 
0 
0 
1 
1 
0 

Figure 2.4. Adjacency Matrix 
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The number of possible links for eight nodes is reduced from 64 to 36 

based on the following important assumptions as Deller (2009) mentioned and 

tabulated in his research as follows: 

• Targets are inactive nodes; they can only be sensed. As seen in 

Figure 2.3 and Figure 2.4, there are only two arrows out from Targets to 

Sensors. Therefore, 12 links from Targets to Deciders, Influences, and 

Targets are excluded. There are no links from Targets to Deciders, 

Influencers, and Targets. 

• Sensors are also inactive nodes; they just relay information to linked 

Deciders and to both sides of the Sensors. There are three arrows out 

from Sensors to linked Deciders and both sides of the Sensors. 

Therefore, there are 10 links from Sensors to Influencers, and Targets are 

excluded. 

• Deciders act through all linked nodes and can sense adversary Sensors. 

There are five arrows out from Deciders to all linked nodes and adversary 

Sensors. Therefore, there are 6 links from Deciders to adversary 

Deciders, Influencers, and Targets are excluded. 
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Deller further reduced the number of link types from 36 to 18 based on the 

BLUE/RED symmetry. Links from a node to itself in Figure 2.3 have been 

interpreted as connecting two different nodes of the same type and side. 

Table 2.1. Available Links Types in the IACM (Tabulated by Deller 2009) 

Link 

Typa 

1 

2 

3 

4 

5 

S 

7 

8 

9 

From 

^ 3 3 3 

S330 

Da-.ua 

C333 

Da-.us 

D333 

DEJJE 

Da-.us 

D « 0 

•sSQ 

To 

D#_ys 

S « 3 

S..3SO 

C'33 3 

<ftS3 

Tsso 

Ssso 

Sa.ua 

s S i 0 

Interpretation 

S detecting own S, or S 

coordinating with own S 

S reporting to own D 

S detecting adversary S 

S detecting own D. o r D 

commanding own S 

D commanding own D 

D commanding own 1 

D commanding own T 

5 detecting adversary D 

1 attacking own S, o r S 

detecting own 1 

Link 

Type 

ID 

11 

12 

13 

14 

15 

15 

17 

IB 

From 

ISSD 

"a-jjs 

1*33 

Uao 

ls_us 

UEO 

l*=3 

'EJJE 

U E 3 

U=3 

T ^ J S 

Taso 

T:EUJE 

Tsso 

To 

Da-.us 

U E * 

T M 3 

S S = 3 

S = .UE 

Da.-JB 

1*33 

IE-UE 

Tsso 

TffjJB 

sa' .ys 

Sssa 

Ssso 

Sg'.'JE 

Interpretation 

1 attacking own D, or 1 

reporting to own D 

1 attacking own 1, or 1 

coordinating with own 1 

1 attacking own T 

1 attacking adversary S. 

orS detecting adversary 

1 attacking adversary D 

1 attacking adversary-1 

1 attacking adversary T 

S detecting own T 

S detecting adversary T 

Cares (2005) employs only basic combat networks similar to Figure 2.1 with one 
replacement. He replaced Target by an adversary Sensor or Influences His 
combat cycles contain only links of types 2,3,6,13, and 15. Type 13 has two 
interpretations. Its both interpretations will be used and distinguished by the 
model context. 

http://Da-.ua
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2.5. NETWORK DYNAMICS 

Advantages of networked centric warfare occur in local tactical operations 

because of the persistent dynamic interaction between specifically arranged 

nodes over links. This dynamic interaction process is called a cycle, sub-network 

in which the functions of nodes are sent to each other over a path that revisits at 

least one node once. Useful networked functions depend on presence of a cycle. 
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3. METHODOLOGY AND PROPOSED APPROACH 

In this chapter, the methodology that will be used in the dissertation will be 
explained. 

3.1. WHY DO WE USE (AGENT-BASED) MODELING? 

Models are designed, developed, and implemented as simulations to 

evaluate and gain insight about systems' behaviors in regulated environments. 

Modeling is a simple collation of the important entities, processes, and their 

relations to aspects of the real world. As Tolk et al. (2008) mentioned in their 

paper, current modeling paradigm is mostly intention-based. Entity capability and 

process are, in most cases, shaped by the models according to the intention and 

desired effect, which is in turn essentially reduces the probability of success to 

desired effect. They proposed a new modeling paradigm based on the agent 

metaphor: effect-based modeling. The new modeling paradigm uses agents as 

having multi-roles entities, as well as processes, with their potential effects. In 

other words; everything is defined as an agent with more flexible evaluation 

algorithm to capture the effects and higher-order effects of complex and non­

linear systems that generate. 

The modeler has a preset purpose in mind while building a model. He or 

she wants to see if that purpose is achievable. He or she wants to evaluate 

several alternatives, optimize his decision based on several situations, train 

people using a simulator, etc. In any case, he or she is first inspired a model 

conceptually by the real world. The concept can either be a feature that is 

situation independent and describes entities, or a fluent that is situation 

dependent and describes processes. In other words, modeling involves entity, 

process, and their relations. An entity might have many roles; but, it is often 

reduced to a main intended role in the modeling process. A process is a course 

of action to change the current situation into a desired direction for the desired 

outcome. 
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The current, intention-based, modeling paradigm has three main 

shortcomings. These are intention-based capability modeling, intention-based 

process modeling and intention-based evaluation. 

Intention-based capability modeling, in general, concentrates on the main 

role or the intended use and not inherent capabilities, which can restrict its 

applicability for new domains with changing scopes. 

Intention-based process modeling, in general, models the probable 

desired outcome. It normally ignores unintended outcomes, side effects, and 

follow-on effects. 

Intention-based evaluation modeling often narrows down its performance 

metrics after action reviews for efficiency evaluation to measure intended effects. 

Therefore, evaluation procedures are too strict regarding new scopes. 

On the other hand, Tolk et al. (2008) proposed a new modeling paradigm 

"effect-based modeling" to compensate for the shortcomings of the current 

modeling paradigm. Effect-based modeling in the military domain means effect-

based operations that Smith (2002) defined as "coordinated set of actions 

directed at shaping the behavior of friends, neutrals, and foes in peace, crisis, 

and war." 

Effect-based operations introduce the idea of multi-level, cascading effects 

as shown in Figure 3.1 below. Not only entities can produce effects, but effects 

themselves can produce essentially decreasing effects. 
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First Cascade Second Cascade 
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Figure 3.1. Chain Effects (Smith 2002) 

Tolk et al. (2008) recommends that modeled entities should not be used 

just for intended purposes, but they should be able to conduct all possible 

purposes and functions with identified capabilities based on their available 

properties. Using entities with ready to use or that have a multi-purpose use is a 

more complex but a more efficient way for simulation. New modeling paradigms 

aim for each simulated entity to be equipped with actual capabilities with potential 

capabilites described in sufficient detail using properties and associations. 

Anything (role, capability, function, purpose, uses, etc.) needs to be described in 

each simulated entity and should be embedded to its property so that each entity 

is ready to support any potential roles described in its properties. 

The whole process and its possible interactions with all entities, as well as 

other processes, are also necessary to model with the same detail as entities, 

their properties, and associations. 

Intention-based evaluation criteria should also be changed accordingly to 

meet the requirements of effect-based evaluation criteria. Specifically, when 

agent-based simulation is used in human behavior modeling with computer 

support, running into structural variances based inadequate evaluation criteria is 

obvious, as shown in Tolk (1999). The internal decision logic, the external 

evaluation logic, model entities, and processes should be consistent with each 

other. The internal logic controls the entities behavior with respect to the situated 
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simulation environment. The external evaluation logic checks and evaluates if the 

objectives have been met. Therefore, corelation metrics are needed to be 

working as fitness function between internal decision logic and external 

evaluation logic. 

In order to analyze effect-based net-centric operations, intention-based 

modeling falls short. Discrete event simulation is a high level and not sufficient 

enough to explore the micro aspect relation and the interactions between entities. 

Agent-directed simulation provides the metaphors needed to build the necessary 

models. Using agents to not only represent Influencers and Targets but also the 

processes, it becomes possible to capture all effects and move from "what I 

intended to accomplish" to "what I really accomplished" including side and 

secondary effects. Computational challenges exist, but they seem to be easier to 

overcome than the conceptual weaknesses of alternatives (Tolk et al. 2008). 

3.2. AN AGENT-BASED SIMULATION MODEL USING THE IACM 

The APFE is a reasonable metric for the IACM structure with which to 

measure the performance of a networked force (Deller, 2009). To determine if it 

is an indicator of combat effectiveness, the agent-based simulation of the IACM 

coded in NetLogo was modified with a more powerful and more flexible one 

coded in AnyLogic to conduct a series of force engagements between opposing 

forces of equal assets and capabilities with differences in their connectivity 

arrangements or configurations for large cases. 

The agent-based model was used for two purposes: the primary focus of 

this investigation is to explore how various sizes of units inside organizations 

behave in a networked environment. The secondary focus of this investigation 

was to determine how to increase the performance of a networked force. 

As Deller (2009) mentioned in his research, both sides of equal forces 

seek for what is best for their benefit as opposed to what is worst for the enemy 

side. For this reason, it is necessary to calculate ABLUE and ARED separately to 

analyze the performance of both sides for all their configurations. In order to 
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separately calculate APFE value for BLUE and RED sides, the single-sided 

adjacency matrix in Figure 3.2 is given below as an example for the 4-3-4-1 

configuration used with a single Target node; its eigenvalue for combination 

{2,1,1,2,1,1} is 1.565. Target node symbolizes all the enemy forces capable of 

being targeted. 

S S S S D D D I I I I T 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

1 1 1 1 

1 0 0 
1 0 0 
0 1 0 
0 0 1 

0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

1 1 0 0 
0 0 1 0 
0 0 0 1 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 

0 
0 
0 
0 

0 
0 
0 

1 
1 
1 
1 

0 

Figure 3.2. Single-Sided Adjacency Matrix for 4-3-4-1 Configuration 

3.3. STRUCTURE OF THE EXPERIMENT 

Any difference in force effectiveness can be best explained with the 

difference in connectivity. The more Sensors and Influencers are linked to a 

Decider, the better performance it will respond with. For unbiased simulation and 

simplicity, the same assumptions as in Deller (2009) are held as containing an 

equal number of Sensors and Influencers with both having the identical 

performance capabilities. So the structure of both sides is represented by an X-

Y-X-1 template as S-D-l-T. 

No matter what the structure will be and therefore the template of both 

sides, a better Java code was scripted to distinguish the different meaningful 

combinations and a more flexible agent-based simulation model was developed 

in a more powerful environment. The adjacency matrix will always have the same 
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number of rows as the number of columns and it is always a square no matter 

what their arrangements are. So, solely the value of APFE can be calculated. 

For example, a 6-4-6-1 friendly force and a 7-3-7-1 enemy force 

arrangements are given. Their meaningful combinations are also always 

independent from each other. 

6-4-6-1 friendly force 7-3-7-1 enemy force 
S S S S S S S D D D I I I I I I I 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
1 1 1 1 1 1 1 

1 0 0 
1 0 0 
1 0 0 
1 0 0 
1 0 0 
0 1 0 
0 0 1 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
1 1 1 1 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
1 1 1 1 1 1 

1 0 0 0 
1 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
1 1 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
0 

Figure 3.3. Single-Sided Adjacency Matrices for 6-4-6-1 vs. 7-3-7-1 Configurations 

There is a finite number of ways to link Xs and Ys to each other for their 

certain numbers. Deller (2009) made two important scoping decisions for the 

rules of the game, IACM; those decisions were also held in this study. First, each 

Sensor and Influencer would only be linked to one Decider (a vertical / 

execution I operation / hierarchial link in the chain of command), not two or 

more Deciders (but the given Decider does not have that limitation; it could be 

linked to multiple Sensors and Influencers). Second, the connectivity within any 

X-Y-X-1 arrangements was subjected to only those hierarchial links in the chain 

of command (links in between dissimilar entities) necessary to create the combat 

(adjacency matrix) cycles (i.e., link types 2,3,6,13 and 15 in Table 2.1 as stated 

earlier), which are the fundamental links to calculate APFE (Deller, 2009). 
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For example, for a 7-3-7-1 arrangement, there are 7 Sensors, 3 Deciders, 7 

Influencers. 

, . , . \ .M Execution/ 

Oi ] f Di ] operation/chain 

/"'"7'"* of command link 

o ©y 

No dashed lines 

(horizontal/ 

coordination/ 

} information/ 

^ • ' " / handover link) 

/ are considered in 

this research 

Figure 3.4. A Sample Type of Links 

Future works should include "horizontal / coordination / information / 

handover / peer-to-peer" links in between similar entities like Sensors to Sensors, 

Deciders to Deciders, and Influencers to Influencers such link types 1, 5, 11 or 

direct coordination links from Sensors to Influencers such a link type 9. A new 

rule or function to determine what is going to happen to a Decider with enough 

influencers but no Sensors or vice versa can be another future study. These 

additional links and rules will definitely increase the performance of a networked 

force as well as its structure and eigenvalues. 

The number of possible configurations for an X-Y-X-1 force becomes large 

very fast as X increases. The number of different meaningful combinations for 

any number of a template is a combinatorial coupling relation of X and Y. Three 

modular Java codes were written to determine the different meaningful 

combinations. For example, there are a total of thirty six possible ways to 

distribute five Sensors and five Influencers across three Deciders. When we 

integer partition and permute five by three, we get six possible configurations 

between five Sensors and three Deciders (or five Influencers and three 

Deciders); let's say a sub matrix, A, m by three in dimension. Since we have the 

same number of Influencers, we will get the same six possible configurations 

between three Deciders and five Influencers; the same sub matrix, A, m by three 

in dimension. Then the total number of possible configurations for a 5-3-5-1 force 
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will be six times six, equal to thirty six. In order to distinguish the different 

meaningful combinations from the possible configurations, we will pretend as if 

multiplying the sub matrix (as being the connectivity matrix of Sensors and 

Deciders) by its transpose (as being the connectivity matrix of Deciders and 

Influencers); but in reality we apply special matrix operation. This special matrix 

operation gives us thirty six real numbers with fractions; some are repeated, but 

some are distinct. Those numbers with fractions work as an index. The fractional 

numbers detect the difference among all possible combinations. As the number 

of Sensors/Influencers and the number of Deciders get closer to each other, the 

number of all possible meaningful combinations and therefore the number of 

different meaningful combinations decrease. The constituents of the distinct 

results (real numbers) are our different meaningful combinations. The special 

matrix operation is defined as below: 

AoA' = 

a n 

•ml 

Where 

a l y 

amy. 

ra 

A = 
11 

'ml 

a l l 

a y l 

*ly 

•my. 

a l m 

lym 

= H i - i ~TT Equation 3.1 
>~x /y a i i 

A = 
* n 

i y l 

l l m 

1ym 

1 < i < m and y as nDeciders 

The 5-3-5 case is given below as an example to explain how to obtain different 

meaningful combinations. The case has six possible combinations in between 

Sensors and Deciders and therefore it has the same number of possible 

combinations between Deciders and Influencers. These combinations are 

depicted in matrix form for convenience. 
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Ĵ _ 
33 = 

il 
3 ' 3 

il 
3 P 34 3 

l 3 

1J 3 

l 3 

+ — 

r3 

i 3 
+r= 

2 3 

+ -=-
1" ! 
I3 

+ — 
V 3 

23 

3 3 

+ F1 

33 1= l 3 

— + — + — 
1 3 2 3 2 3 

23 23 1-' 
- ^ + — + ^ r -
1 3 2 3 2" = 

il il il 
1 : J 2*" -' 23 3 

l3 33 l3 

— + — + — 
1" 3 2 - -' 2 = 
l3 23 23 

T - + - T - + - J -
1 3 2 3 2 3 

il il il 
l"* s 2 : 3 2 3 3 

3-' 1: 

— + — 
l ' 3 1" 
23 2: 

23 1! 

r 
i3 

_i= 

i : 

i 3 

r 
3 : 

2 : 

+ — 
r 
i : 

+ — r 

3 +F 
i : 

- + — 
3 3 

2 3 

3 +F 
i3 

1+F 
2 3 

1 + F 
3 3 

- + — 
3 3" 

20,7208 23.2236 23.2236 28.6934 28.5874 28.6934" 
14.5469 13.6992 15.1433 14.5469 15.1433 16.6934 
14.5469 15.1433 13.6992 16.6934 15.1433 14.5469 
28.6934 23.2236 28.5874 20.7208 23.2236 28.6934 
16.6934 15.1433 15.1433 14.5469 13.6992 14.5469 
28.6934 28.5874 23.2236 28.6934 23.2236 20.7208-

Figure 3.5. The Calculation of Different Meaningful Combinations for the 5-3-5 Case With 
Special Matrix Operation 

If matrix multiplication is applied, it yields the below matrix. 

11 
9 
9 
7 
7 
7 
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9 
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7 
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8 
9 

7 
9 
7 
11 
9 
7 

7 
8 
8 
9 
9 
9 

7 
7 
9 
7 
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11 

Figure 3.6. The Calculation of Different Meaningful Combinations for the 5-3-5 Case With 
Matrix Multiplication 

This matrix operation can not be just addition, subtraction, multiplication, 

or division or any combination of these. Because, the same number in different 

place or different numbers in the same place might give the same result. The two 

resulting matrices in Figure 3.5 and Figure 3.6 for the same case are clear the 
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rationale behind why it is necessary to have a special function or an operator. 

The first resulting matrix detected the exact result as eight; but the second one is 

so rough it missed half of the different meaningful combinations and detected 

four. These basic calculus operators are not sensitive enough to distinguish the 

different meaningful combinations. The desired operation can not be a 

logarithmic, natural logarithmic, or exponential function because these functions 

are not sensitive to one, for example, ln(1)=0, log(1)=0. A special function and 

an operation are required to detect the difference for the intended purpose. What 

is the intended purpose? It is to identify the different meaningful combinations. 

What is meant from different meaningful combinations is how many different 

ways of links in between Deciders, Sensors, and Influencers have. The sequence 

is not important. In the case above, there are eight different meaningful 

combinations out of 36 possible configurations. The numbers in the resultant 

matrix are nothing but the keys show us their constituents of different meaningful 

combinations. There are three "20.7208" in the resultant matrix showing that they 

have the same configuration hanging together that no matter where they are, one 

Decider has three Sensors and three Influencers linked to it. The other two 

Deciders have one Sensor and one Influences The order is not important; but the 

number of Sensors and Influencers linked to each Decider is the key structure 

here. They go out to the battle field; it is known that one of the war units has one 

Decider with three Sensors and three Influencers fighting together as a team, the 

other two Deciders have one Sensor and one Influencer fighting together as the 

other team. 

©ft Or 0 »000 
Figure 3.7. A Sample of Different Meaningful Combination for the 5-3-5 Case 
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The formula with the powers will be so sensitive to detect the different 

meaningful combinations as the numbers increase. But this formula takes time as 

the numbers increase to get the results. For a future work, some other 

mathematical formula or an algorithm for this purpose can be developed to get 

faster results. The remaining twenty eight possible configurations in the above 

5-3-5-1 case are all modeled identically to these eight configurations in the IACM. 

Adding a single Sensor and Influencer yields a 6-3-6-1 networked force, 

which can be organized in 100 possible ways. By applying the same formula, 

those 100 possible configurations are reduced to only 19 meaningful different 

configurations. The ratio between the number of meaningful different 

configurations and number of possible configurations diminishes as the number 

of Sensors and Influencers increases. 

Identifying the different meaningful combinations is so crucial for the 

purpose of the problem. It is necessary to run different meaningful combinations 

to get all possible different results. It is not necessary to run the recursive 

combinations. They give nothing and waste time. For example, with a 6-3-6-1 

arrangement, there are 100 possible combinations. Testing each of the 100 

possible configurations of a 6-3-6-1 BLUE networked force against all 100 

possible configurations of an opposing 6-3-6-1 RED networked force would 

require 10,000 similar engagements, but 19 different meaningful combinations 

would only require 361 unique engagements. The numbers of different 

meaningful combinations for all X-Y-X-1 forces where X<19 and Y <19 are 

calculated by using the Java coded algorithms based on the numbers of unique 

values for the distributions of Sensors and Influencers across the Deciders. 
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The resulting totals are consistent with Deller (2009) to where he left and are 

summarized in Table 3.1: 

Table 3.1. The number of different meaningful combinations of all X-Y-X-1 networked 
forces where X<19 and Y<19 
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Each combination has its own adjacency matrix representation showing its 

node connectivity. The adjacency matrices for all configurations will only change 

in SD and Dl sub-matrices (see the two white sections of an example adjacency 

matrix in Figure 3.8), with S by D and D by I in dimensions. These sub-matrices 

reflect the connectivity of each Sensor and Influencer to and from a particular 

Decider, and change by combination based on the allocation of Sensors and 

Influencers across the Deciders. The sub-matrices with zeros in gray areas 

represent the absolute absence of any links from the letters in the rows to the 

letters in the column. The sub-matrices with ones (1) in gray areas represent the 

existence of links from the letters in the rows to the letters in the column. No 

matter what X-Y-X-1 arrangements are, there are 16 sub-matrices in the 

adjacency matrix; 14 of them are steady as zeros or ones in varying dimensions 

depending on Sensors, Deciders, Influencers, and Target. Since two of sixteen 

sub-matrices of the adjacency matrices for each combination are varying, the 

variance between the APFE values is small. 
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S S S S S S D D D D I I I I T 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
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0 0 0 0 0 0 
0 0 0 0 0 0 
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0 0 0 0 0 0 
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1 1 1 1 1 1 
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0 0 0 0 0 0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
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1 
1 
1 
1 
1 
1 
0 

Figure 3.8. An Adjacency Matrix for one of the 42 Different Meaningful combinations of a 7-
3-7-1 network. 

No matter what type of arrangements, there are always four eigenvalues. 

By definition, the maximum number of eigenvalues is n out of n by n square 

matrix. Four out of n have some values and the rest are zeros. The first four of 

the eigenvalues basically have the same pattern: two real and two complex 

numbers. The first eigenvalue is negative real number, the second one is positive 

complex number, the third one is complex conjugate of the second one, and the 

fourth one is positive of the first one. 

In the case of a 7-3-7-1 networked force, 18 eigenvalues are given below 

for its first combination (5-1-1 vs. 5-1-1) as an example; 

Table 3.2. The Eigenvalues of a 7-3-7-1 Networked Force for its First Combination 

-2.2795 

-0.0 + O.Oi 

0.0 + O.Oi 

-0.0 - O.Oi 

0 

-0.0 + 2.2795i 

-0.0 - O.Oi 

0.0 - O.Oi 

-0.0 

0 

-0.0 - 2.2795i 

0.0 + O.Oi 

-0.0 

-0.0 

2.2795 

0.0-O.Oi 

-0.0 + O.Oi 

0.0 

The positive real eigenvalue is taken and is called as Perron-Frobenius 

eigenvalue (APFE) as Deller mentioned in his study. In a 7-3-7-1 networked force 

case, the 42 different meaningful combinations have 13 unique APFE ranging from 
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1.821 to 2.280. The APFE'S were calculated by using a code in Matlab (available in 

the Appendix). The Matlab code reads X_Y_X.txt file (meaningful combinations 

file) for each arrangement and gives output as X_Y_X.xlsx woorkbook in 

realeigenvalues, imag_eigenvalues, PFE_eigenvalues, variance worksheets. 

As Deller (2009) mentioned in his research, identical combinations always 

have the same APFE ; but, somehow different meaningful combinations also have 

the same APFE • The combinations having the same eigenvalue are called the 

eigenspace. By definition "[t]he eigenspace corresponding to one eigenvalue of a 

given matrix is the set of all eigenvectors of the matrix with that eigenvalue."2. As 

the number of different meaningful combinations increases, the number of 

distinct eigenvalues decreases, and thus the ratio between the two. The APFE 

loses its power gradually as a metric as the value of X increases. For a small 

number of cases, the eigenvalue alone can be a good metric; but, as the case 

and numbers increases, it needs to be supported by better defined (sensitive) 

metrics to enhance performance prediction of a networked force. 

The numbers of unique APFE'S for the different meaningful combinations for 

all X-Y-X-1 forces where X<19 and Y<19 are listed in Table 3.2. 

2 See http://en.wikipedia.org/wiki/Eiqenvalue. eigenvector and eigenspace for more information 

http://en.wikipedia.org/wiki/Eiqenvalue
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Table 3.3. The Numbers of Unique APFE's of all X-Y-X-1 Networked Forces where X<19 and 
Y<19. 
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There is no simple relation between the numbers of unique APFE'S and the 

numbers of different meaningful combinations (Deller, 2009). It is interesting that 

the numbers of different APFE'S are recursive over diagonals with two exceptions. 

The numbers of unique APFE'S are increasing by rows (each row it increases; it 

increases as Sensors/Influencers increase) and decreasing by columns (each 

column it decreases, it decreases as the Deciders increase). Table 3.3 depicts 

the percentages of unique APFE'S over the numbers of the different meaningful 

combinations of all X-Y-X-1 networked forces where X<19 and Y<19: 
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Table 3.4. The Percentages of Unique APFE's over the Numbers of the Different Meaningful Combinations fo all X-Y-X-1 
Networked Forces where X<19 and Y<19. 

N
u
m

b
e
rs

 o
f 
S

e
n
s
o
rs

 (
X

) 
a
n
d
 I
n
flu

e
n
c
e
rs

 (
X

) 
Number of Deciders |Y} 

3 

4 

5 

5 
•y 

8 

3 

10 

11 

12 

13 

14 

15 

IS 

17 

18 

3 4 5 5 7 8 9 ID 11 12 13 14 15 15 17 18 

10033% 

13333% 

5333% 

42.11% 

33,95% 

25.54% 

19.42% 

13.93% 

13.71% 

1153% 

1322% 

931% 

7.75% 

734% 

551% 

559% 

10033% 

10033% 

44.44% 

2953% 

1757% 

11.93% 

7,44% 

5.41% 

3.7*3% 

171% 

233% 

155% 

1.19% 

0.95% 

0.75% 

i 

100.03% 

100.03% 

44.44% 

25.57% 

13.53% 

3.05% 

4.43% 

2.73% 

157% 

1.03% 

0.71% 

0.49% 

0.33% 

024% 

ioo30% 

10333% 

44.44% 

2551% 

1253% 

5.54% 

3.32% 

1.90% 

1J33% 

050% 

055% 

022% 

0.13% 

103.00% 

100/33% 

44.44% 

2551% 

12J34% 

5.13% 

253% 

1.47% 

0.72% 

0.37% 

0.19% 

0.11% 

10333% 

10350% 

44.44% 

25/30% 

1152% 

553% 

257% 

1.25% 

057% 

027% 

0.13% 

13333% 

133.03% 

44.44% 

2551% 

1121% 

553% 

2.19% 

1.03% 

0,43% 

0.19% 

103)33% 

103.33% 

44.44% 

2353% 

1357% 

4.75% 

157% 

053% 

053% 

103.03% 

103.03% 

44,44% 

25.03% 

1324% 

454% 

1.75% 

0.75% 

103.00% 

103.03% 

44:44% 

2424% 

9.-33% 

4.12% 

159% 

10030% 

10333% 

44,41% 

2353% 

955% 

421% 

103)33% 

100.30% 

43.03% 

21.52% 

3,44% 

103/33% 

103.03% 

43.03% 

2222% 

103.03% 

103.03% 

43.03% 

100)30% 

100)33% 103)33% 



32 

As Deller (2009) mentioned in his research, if an n by n square adjacency 

matrix contains no links at all, its n eigenvalues are all zero. If it contains a 

maximally connected network, one of its eigenvalues is n, the rest are zero. Note 

that the ranges of APFE'S for the numbers of different meaningful combinations of 

a X-Y-X-1 networked forces are stuck in a narrow band of the full range, n, due to 

the relatively small differences of the links within two of 16 sub matrices. The 

number of discrete points within the range of eigenvalues will become insufficient 

for statistical analysis to explain the performance measure of a networked force. 

The APFE'S vary infinitesimally. They reflect the relationship between the 

probability and the combinations quite well. The APFE'S are important measures 

up to around 15 Sensors and Influencers. From that point on, the numbers of 

unique APFE'S over the numbers of different meaningful combinations percentage 

is around 1% or even less as seen from the Table 3.3, which really doesn't give 

anything to measure. 

When the results are evaluated, it is seen that the weak BLUE 

configurations versus the strong RED configurations have a lower probability of a 

BLUE win over the equal assets of RED forces. If a Decider has only one Sensor 

or only one Influencer, it is very easy for that Decider to be rendered useless 

once its only entity is killed no matter how many other Decider the other entity 

has. This is the mechanism through how the agent-based modeling of the IACM 

works. For example, if the BLUE force with 5-1-1 Sensors vs. 1-5-1 Influencers is 

fighting against the RED force with 5-1-1 Sensors vs. 5-1-1, the probability of 

BLUE win, the actual result of the experiment, is zero. 



33 

BLUE Force RED Force 

S H E 
D D D 

Figure 3.9. The Weakest BLUE Configuration vs the Strongest RED Configuration 

In the above example, the BLUE force has the weakest configuration and 

the RED force has the strongest configuration. Once the only entities of each 

Decider are killed, the BLUE force is out of fight right away. But the RED force 

still has at least one Decider with enough entities linked to it that are ready for 

fight. There are only hierarchial links in the chain of command and no peer-to-

peer links between the entities. On the other hand, the probability of a BLUE win 

with opposite configurations, the experiment result, is 0.967. The strength of the 

configuration can be defined as the number, which is greater than one, of each 

entity linked to each Decider (i.e. each Decider which has more than one Sensor 

and one Influencer is strong, the more entities linked to each Decider, the 

stronger the deciders and therefore the configuration will be). 

Once the mechanism, that causes higher probability to win the fight, is 

understood, the intent is to detect how strong and determined each Decider is. In 

other words, give the highest weight in rank to the deciders with maximum 

number of Sensors and Influencers as possible and give the lowest weight in 

rank to the ones with one Sensor and one Influencer. That weight could be 

calculated by linear algebraic operations, like the max-min difference of Sensors 

and Influencers as "Disparity", or the summation of minimum of each Sensor-

Decider pair as "Robustness". That weight could be calculated by linear matrix 

operations, like eigenvalues. The weight could be calculated by manipulating 

some functions sensitive to ones (1), like logarithmic function, or the squareroot. 

The logarithm and natural logarithm of one (1) is all zero. The logarithmic 
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functions and the squareroot are fairly sensitive to the changes in numbers the 

way in which to detect the strength of the connectivity in between each Deciders 

and its respective Sensors and Influencers. 

Once the probability of BLUE win is sorted from small to large, it is easily 

seen that from the weakest BLUE force configuration vs. the strongest RED force 

configuration is at the top, and pretty much, all the way down to the opposite 

configuration at the bottom. No matter what metrics are used to measure the 

performance of the networked forces, they will vary in narrow bands (range) with 

increments as natural as the input of this process integer partitioning varies in 

narrow band. 

3.4. DEVELOPING THE ANYLOGIC MODEL 

The agent-based simulation environment used for this research was 

AnyLogic 6.4.1 University Version by Copyright (c) XJ Technologies, 1991-2009. 

The purpose of this section is to explain the underlying logic of key parts of the 

AnyLogic code used in this research; the entire code is provided in the Appendix. 

The same rules as Deller (2009) used in his research were used. Sensors, 

Deciders, and Influencers act as agents. Targets did not serve as an agent since 

it acted to absorb the opposing side's losses and its representation in the X-Y-X-

1 arrangement is always one as the absorbing (null) element. Target agents only 

serve to collect the results. 

Since the Deciders are the key nodes (agents) to link multiple Sensors 

and Influencers, we don't want them destroyed. Deciders are immortal agents. All 

targets are equal importance and priority in order to generate unbiased results. 

All agents placed randomly upon initiation. Once Deciders are placed, 

they never move. Sensors sense and detect enemy nodes within the sensing 

range, and pass that information to the Deciders they connected. Deciders pass 

the sensing information to their connected Influencers. Influencers kill the nearest 

assigned (directed) enemy node within the influencing range. Deciders have the 
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situational awareness to proact with the Sensors and Influencers to suspicious 

areas. All agents are assumed to perform their jobs according to the rules set 

forth perfectly and instantaneously. Agent-based model is built deterministically; 

that means whatever the agents' jobs are, their probability to be done is all 100% 

(Deller, 2009). 

Each agent in the model is defined turtle object set of BLUE Deciders and 

RED Deciders with index (as being the number of Deciders). The code below is 

just given for BLUE Deciders to see how it works. With the same fashion, similar 

code is applied for RED Deciders. 

void onChangenBDecidersQ { 
int index; 

index = 0; 
for ( Turtle object: influencersB ) { 
object.set_nFleets(nBDeciders); 
index++; 

} 
index = 0; 
for ( Turtle object: sensorsB ) { 
object.set_nFleets(nBDeciders); 
index++; 

} 
} 

Sensing range parameter is defined as sRange. Influencing range 

parameter is defined as iRange. Both of these parameters values are set 10 as a 

default value. They can be changed. For simplicity, consistent and unbiased 

results, they were kept as default value during the entire search space 

experiments. The agent-based model created in AnyLogic is so flexible that any 

experiment can be run by just plugging the predetermined Java output X-Y-X list 

of configurations and changing two parameters: nBDeciders, nRDeciders. The 

total number of agents will be seen under the environment and each agent 

respectively under their names on startup in Simulation:Main. Simulation:Main 

just runs the experiment with the first configurations of both BLUE and RED 

forces with one replicate for demonstration purpose only. Once it starts, the 

numbers will decrease till one side's Sensors and Influencers are all killed. The 

numbers of Deciders stay constant; because, Deciders can't be killed as a rule 

described earlier. 
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There are functions defined to establish the hierarchial links in the chain of 

command in between agents (entities). These functions are "sense', "track", 

"shoot", "kill", "movelnfluencers", "moveSensors", and "reset". 

3.4.1. SENSE FUNCTION 

There are three nesting loops as shown in the code below. The first loop is 

DecidersB loop goes for all decidersB. The second loop is InTurtles loop. They 

are the attributes of the DecidersB, which are the turtles linked to DecidersB 

(SensorsB and InfluencersB). The third two loops are for the opposing side 

Targets; InfluencersR and SensorsR. If the distance from InfluencersR to 

inTurtles of DecidersB is less than or equal to sRange, that indexed InfluencersR 

is sensed. With the same fashion, if the distance from SensorsR to inTurtles of 

DecidersB is less than or equal to sRange, that indexed SensorsR is sensed. 

The same thing is also applied for the RED side in the same fashion. The sense 

function code is given as an example to explain how it works: 

void 
sense( ) { 

for (Turtle d: deciderB) { 
int ind = d.getlndex(); 
for (Turtle s: d.inTurtles) { 

for (Turtle e: influencersR) { 
if (s.distanceTo(e) <= sRange) 

e.sensedBD[ind] = true; 
} 
for (Turtle e: sensorsR) { 

if (s.distanceTo(e) <= sRange) 
e.sensedBD[ind] = true; 

} 
} 

} 

for (Turtle d: deciderR) { 
int ind = d.getlndex(); 
for (Turtle s: d.inTurtles) { 

for (Turtle e: influencersB) { 
if (s.distanceTo(e) <= sRange) 

e.sensedRD[ind] = true; 
} 
for (Turtle e: sensorsB) { 

if (s.distanceTo(e) <= sRange) 
e.sensedRD[ind] = true; 

} 
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} 
} 

} 

3.4.2. TRACK FUNCTION 

This function just shows the tracking links. There are also three nesting 

loops as shown in the code below. The first loop is DecidersB loop goes for all 

DecidersB. The second loop is OutTurtles loop. They are the attributes of the 

DecidersB, which are the turtles linked to DecidersB (SensorsB and 

InfluencersB). The third two loops are for the opposing side Targets; 

InfluencersR and SensorsR. If the distance from InfluencersR to OutTurtles of 

DecidersB is less than or equal to iRange, that InfluencersR is added to 

OutTurtles list and tracked. In the same fashion, if the distance from SensorsR to 

outTurtles of DecidersB is less than or equal to iRange, that SensorsR is added 

to outTurtle list and tracked. The same thing is also applied for the RED side with 

the same fashion. The track function code is given as an example to explain how 

it works: 

void 
track( ) { 

for (Turtle d: deciderB) { 
for (Turtle s: d.outTurtles) { 

for (Turtle e: influencersR) { 
if (s.distanceTo(e) <= iRange) 

s.outTurtles.add(e); 
} 
for (Turtle e: sensorsR) { 

if (s.distanceTo(e) <= iRange) 
s.outTurtles.add(e); 

} 
} 

} 

for (Turtle d: deciderR) { 
for (Turtle s: d.outTurtles) { 

for (Turtle e: influencersB) { 
if (s.distanceTo(e) <= iRange) 

s.outTurtles.add(e); 
} 
for (Turtle e: sensorsB) { 

if (s.distanceTo(e) <= iRange) 
s.outTurtles.add(e); 

} 
} 
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} 
} 

3.4.3. SHOOT FUNCTION 

There are also three nesting loops and three new variables defined here. 

These variables are closestTarget, closestDistance and dist. The closestTarget is 

defined as turtle and initiated as null. The closestdDistance defined as double 

variable and initiated as positive infinity. The dist is defined as distance from 

possible targets to outTurtles of DecidersB. Turtle e, defined as outTurtles 

attribute of turtle s of outTurtles of DecidersB, if not sensed, if dist is less than 

positive infinity (dist is definitely less), then that turtle e is closest target and the 

dist is the closestDistance. If closestTarget is not null, then closestTarget is dead. 

Likewise, the RED shooting function is explained in the code below: 

void 
shoot( ){ 

for (Turtle d: deciderB) { 
int ind = d.getlndex(); 
for (Turtle s: d.outTurtles) { 

Turtle closestTarget = null; 
double closestDistance = Double.POSITIVEJNFINITY; 
for (Turtle e: s.outTurtles) { 

if (!e.sensedBD[ind]) { 
continue; 

} 
double dist = s.distanceTo(e); 
if (dist < closestDistance) { 

closestTarget = e; 
closestDistance = dist; 

} 
} 
if (closestTarget != null) { 

closestTarget.dead = 1; 

} 
} 

} 
for (Turtle d: deciderR) { 

int ind = d.getlndex(); 
for (Turtle s: d.outTurtles) { 

Turtle closestTarget = null; 
double closestDistance = Double.POSITIVEJNFINITY; 
for (Turtle e: s.outTurtles) { 

if (!e.sensedRD[ind]) 
continue; 

double dist = s.distanceTo(e); 
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if (dist < closestDistance) { 
closestTarget = e; 
closestDistance = dist; 

} 

} 
if (closestTarget != null) { 

closestTarget.dead = 1; 

} 
} 

} 
} 

3.4.4. KILL FUNCTION 

There are four loops for every possible target from each side. The 

possible targets are InfluencersR, InfluencersB, SensorsR, and SensorsB. The 

loops go for their sizes and check if their attribute "dead' equals to 1. If they are 

dead, they are removed the each agent list as seen in the code below: 

void 
kili( ){ 

for (int i = influencersR.size()-1; i>=0; i~) { 
Turtle t = influencersR.get(i); 
i f( t .dead==1){ 

remove_influencersR(t); 
} 

} 
for (int i = influencersB.size()-1; i>=0; i~) { 

Turtle t = influencersB.get(i); 
if (t.dead ==1){ 

remove_influencersB(t); 
} 

} 
for (int i = sensorsR.size()-1; i>=0; i-) { 

Turtle t = sensorsR.get(i); 
i f( t .dead==1){ 

remove_sensorsR(t); 
} 

} 

for (int i = sensorsB.size()-1; i>=0; i--) { 
Turtle t = sensorsB.get(i); 
i f( t .dead==1){ 

removesensorsB(t); 
} 

} 

} 
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3.4.5. MOVEINFLUENCERS FUNCTION 

There are three nesting loops. The outer loop goes for all Decidersb. The 

second loop goes for all indexed outTurtles of DecidersB. There are two 

variables defined and initiated; closestTarget as turtle and it is null, 

closestDistance as double variable and it is positive infinity. In the inner loop, for 

every InfluencersR, if they are not sensed or dead, continue, if the distance from 

each InfluencersR to outTurtles of DecidersB is less than positive infinity (it is 

obviously less than infinity) and the same thing applied for the SensorsR. Then if 

closestTarget is not null, move the InfluencersB to a calculated i.set XY 

coordinates as in the code below. The same thing is applied for the RED side in 

the same fashion. 

void 
movelnfluencers( ) { 

for (Turtle d: deciderB) { 
int ind = d.getlndex(); 
for (Turtle i: d.outTurtles) { 

Turtle closestTarget = null; 
double closestDistance = Double.POSITIVEJNFINITY; 
for (Turtle e: influencersR) { 

if (!e.sensedBD[ind] || e.dead == 1) 
continue; 

double dist = i.distanceTo(e); 
if (dist < closestDistance) { 

closestTarget = e; 
closestDistance = dist; 

} 
} 
for (Turtle e: sensorsR) { 

if (!e.sensedBD[ind] || e.dead == 1) 
continue; 

double dist = i.distanceTo(e); 
if (dist < closestDistance) { 

closestTarget = e; 
closestDistance = dist; 

} 
} 
// move 
if (closestTarget != null) { 

i.setXY(i.getX() + (closestTarget.getX() -
i.getX())/closestDistance , i.getY() + (closestTarget.getY() - LgetY())/closestDistance); 

} 
} 

} 
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moveSensors Function: There are two separate two nesting loops. The first loop 

goes for all DecidersB. Within the first loop, for every InfluencersR and 

SensorsR, if they are not sensed and are not dead, sense them. If they are 

sensed, continue. 

The second loop goes for all inTurtles of DecidersB. 
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4. MODELING RESULTS 

The search space was limited to a reasonable numbers due to the 

enormous computational requirements as the number of different meaningful 

combinations grew exponentially. The experiments started from three Deciders 

and Sensors-lnfluencers to 12 Deciders and Sensors-lnfluencers as shown in 

Table 4.1. A total of 55 experiments were conducted in this research. Each 

experiment consisted of all possible force-on-force engagements of the number 

of different meaningful combinations of two networked forces (BLUE and RED) 

containing X Sensors, Y Deciders, X Influencers, and one (1) Target. The sole 

Target node represents all the possible enemy nodes vulnerable to being 

targeted and it clusters the hit enemy nodes. 

Table 4.1. The Numbers of Different Meaningful Combinations of all X-Y-X-1 Networked 
Forces where X<13 and Y<13 

N
u

m
b

er
s 

o
f 

S
en

so
rs

 (
X

) a
n

d
 

In
flu

en
ce

rs
 (X

) 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Number of Deciders (Y) 

3 
1 
2 
8 
19 
42 
78 
139 
224 
350 
517 

4 5 

1 | 
2 
9 

27 
74 
168 
363 
703 
1297 

1 
2 
9 
30 
95 

248 
614 
1367 

6 

1 
2 
9 

31 
105_ 
301 
814 

7 | 8 
i 

1 I 
2 j 1 
9 ! 2 

31 | 9 
108 j 32 
325 ! 110 

9 

1 
2 
9 
31 

10 

1 
2 
9 

11 

1 
2 

12 

1 

Each side has equal assets of force with identical capabilities for similar 

nodes. Since each side has exactly the same number of nodes, then, the 

outcome of the experiments most likely reflects the result of how variously they 

are connected to the IACM structure. A comprehensive test of each combination 

against each other requires so many engagements as the square of the number 

of different meaningful combinations. For normally and random distribution of 

both sides nodes across the battlespace, each engagement replicates 30 times. 
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The number of different meaningful combinations versus the same number times 

30 replications of iterations are run for each case. Every iteration might result in 

one of the following; a BLUE win, a RED Win, or an undecided result (no winner). 

The probability of each BLUE combination win against for all RED 

combinations was calculated as the percentage of that particular BLUE 

combination Wins within the number of all different meaningful RED 

combinations of 30 replicates. 

P(BLUEWiri)i = - ^ — 
n*p 

The probability of each BLUE combination win against each RED 

combination was calculated as the percentage of that particular BLUE 

combination Wins versus the same RED combination of 30 replicates. 

PiBLUEWin^j = } — -

Where, / is the number of different meaningful BLUE combinations, 1<i<m 

j is the number of different meaningful RED combinations, 1^j£n 

k is the number of replicates, 1<k^p=30 

This chapter was split into three sections. The first section gives the 

definition of each metric that will be used to measure the performance of a 

networked force. 

The second section investigates each BLUE combination versus all RED 

combinations performance of all 55 experiments aggregated data and each 

individual experiment data with respect to metrics used before and metrics 

proposed in this research. 

The third section investigates each BLUE combination versus each RED 

combination performance of all 55 experiments aggregated data and each 

individual experiment data in the same fashion. 
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4.1. DEFINITION OF EACH METRICS. 

4.1.1. EIGENVALUES 

They are a special set of scalars associated with a linear system of 

equations that are also known as characteristic roots, characteristic values, 

proper values, or latent roots. The determination of the eigenvalues and 

eigenvectors of a system is extremely important in physics and engineering to 

explain the characteristic behavior of a system. Therefore, eigenvalues are used 

in this research to explain the performance of a networked force. 

The greater the eigenvalue of a combination, the grater the likelihood of a 

high value for probability to win. 

4.1.2. DISPARITY 

It is the sum of the max-min difference of Sensors and Influencers across 

the Deciders. This can be formulated as (Deller 2009): 

Disparity = [max(Sn) — min (5n)] + [max(/n) — min (/n)] 

Where, Sn: the number of Sensors assigned to each of n Deciders 

l n : the number of Influencers assigned to each of n Deciders 

The greater disparity most likely creates either an extremely high or low 
value for probability to win. 

4.1.3. ROBUSTNESS 

It is the minimum number of either Sensors or Influencers lost that would 

render all the Deciders and the rest of the nodes nonfunctional. This can be 

formulated as: 

n 

Robustness = j min (Sj, /[) 
i = l 

Where, S,: the number of Sensors assigned to Decider / 

I,: the number of Influencers assigned to Deciders /' 
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The greater the robustness value, most likely the larger the probability to 

win the fight. The higher robustness value reflects how Sensor-Decider-

Influencer fighting triad strongly connected to one another in the IACM structure 

to maintain the combat effectiveness. 

4.1.4. STRENGTH 

One of the proposed metrics in this research is "the strength of 

connectivity'. For simplicity, it is called as "Strength". 

It is the sum of weighted average according to the logarithmic function of 

each Decider and so the combination that reflects how many nodes of Sensors 

and Influencers linked to each Decider so that the entire combination maintains 

the combat effectiveness. This can be formulated as : 

n 

Strength = /{ log^C* of Sensor, + 1) *log10(# of Influence^ + 1)} 
i = l 

To clarify the rationale, the logarithmic values of some numbers and the 

strength of a configuration are given below in Table 4.2; 

Table 4.2. A Sample Strength Calculation 

Number 

LOCJM 

1 
0 

2 
0.301 

3 
0.477 

4 
0.602 

5 
0.699 

6 
0.778 

7 
0.845 

8 
0.903 

9 
0.954 

10 
1.000 

11 
1.041 

12 
1.079 

13 
1.114 

#of 
BSenls 

5 
1 

#ofBlnf1s 

#of 
RSents 

5 
5 

#o!Rlnf1s 

#of 
BSen2s 

1 
5 

# of Blnf2s 
versus 

#of 
RSen2s 

1 
1 

# of Rlnf2s 

#of 
BSert3s 

1 
1 

#ofBInf3s 

#of 
RSert3s 

t 
1 

#ofRlnf3s 

Strength 
0.210411 

Strength 
0.4885591 

As seen in the above configuration, the BLUE force has the weakest 

configuration and the RED force has the strongest configuration and the strength 
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varies in between zero and 0.4885591. The strength values are confined to a 

narrow range ([0.210411 - 0.4885591]) as in the eigenvalues. 

The greater the strength value, most likely the larger the probability to win 

the fight just like the other metrics except disparity. 

4.1.5. POWER 

Another proposed metric in this research is "the power of the Deciders". It 
is also called as "Power". 

It is also another sum of weighted average according to the squareroot 

function of each decider and so the combination that reflects how many nodes of 

Sensors and Influencers linked to each Decider so that the entire combination 

maintains the combat effectiveness. This can be formulated as : 

n 

Power = y {Sqrt(# of Sensor,) * Sqrt(# of Influencer,)} 
i = l 

To clarify the rationale, the squareroot values of some numbers and the 

power of a configuration are given below in Table 4.3; 

Table 4.3. A Sample Power Calculation 

Number 

Sqrt 

1 

1 

2 

1.414 

3 

1.732 

4 

2.000 

5 

2.23S 

6 

2.449 

7 

2.646 

8 

2.828 

9 

3.000 

10 

3.162 

11 

3.317 

12 

3.464 

13 

3.606 

# 0 f 
BSenls 

5 

1 

#o f Blnfls 

#o f 
BSenls 

5 
5 

# of Blnf ls 

#o f 
BSen2s 

1 

5 

# of Blnf2s 
versus 

# o f 
BSen2s 

1 
1 

#ofBlnf2s 

# o f 
BSen3s 

1 

1 

# of B!nf3s 

#o f 
BSen3s 

1 
1 

#ofBlnf3s 

Power 

5.472136 

Power 
7 

This time, the power range varies in between 5.4721 to 7. 
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The larger the power value, the more reliable and readily available fighting 
units maintains the combat effectiveness. 

4.1.6. STABILITY 

Another proposed metric in this research is "Stability of Deciders", referred 
to as Stability. 

It is the sum of quotient of Sensors and Influencers connected to each 
Decider and it can be describes as: 

n 

Stability = y {Quotient(# of Sensor,, # of Influencer,)} 
i = l 

There is a negative correlation in between the combat performance and 

the stability value. It shows the number of ineffectively used Decider nodes. 

4.1.7. CONNECTIVITY 

The last metric prosed in this research is "Connectivity of 

Sensors/I nfluencers", referred to as Connectivity. 

It is the sum of unbalanced absolute number of Sensors and Influencers of 
the Deciders. 

n 

Connectivity = Y{ABS(# of Sensory) - (# of Influencer,)} 
i= l 

There is a fair degree of negative correlation between the combat 

performance and the connectivity value. It represents the number of unproductive 

Sensors/I nfluencers. 

4.2. PERFORMANCE OF EACH BLUE COMBINATION VS ALL RED 
COMBINATIONS 

Each BLUE combination vs. all RED combinations respective of all 55 

experiments have a total number of 8,340 datasets. These datasets contain the 

probability of each BLUE combination win (dependent variable) versus all RED 

combinations, and metrics such as eigenvalue, disparity, robustness, power of 

Deciders, strength of connectivity, and stability of Deciders. In this section, the 
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probability of BLUE win for its each combination is studied for all combinations of 

the RED side. They are run in the SPSS Statistics 17.0 software package. 

4.2.1. THE ANALYSIS OF EXPERIMENTS WITH RESPECT TO EIGENVALUE 

4.2.1.1. The Analysis of All Experiments With Respect To Eigenvalue 

When Table 4.4 is examined, the eigenvalues are not a good predictor or 

performance metric by itself alone for a networked force. It must be enhanced by 

some other metrics to measure the performance or predict the probability of win 

of a networked force. 

Table 4.4. Regression Result for the Aggregated Data of each BLUE Combination vs. all 
RED Combinations WRT Eigenvalue 

Descriptive Statistics 

Mean 

.48 

2.29 

Std. Deviation 

.119 

.207 

N 

8340 

8340 

wiwiei .svroniaog 

Model 

1 

R 

580a 

R Square 

.336 

Adjusted R 

Square 

.336 

Std. Error of the 

Estimate 

.097 

Change Statistics 

R Square 

Change 

.336 

FChange 

4224.768 

df1 

1 

df2 

8338 

Sig. F Change 

.000 

a. Predictors: (Constant), aUJEJEjyjejjy^Jugs, 

b. Dependent Variable: PQSJXiu) 

vSwRmjW^AitK^v1 

Model 

1 (Constant) 

U05tMJJaCdJSel Coefficients 

B 

-.289 

.335 

Std. Error 

.012 

.005 

Standardized 

Coefficients 

Beta 

.580 

t 

-24.412 

64.998 

Sig. 

.000 

.000 

95.0% Confidence Interval for B 

Lower Bound 

-.313 

.325 

Upper Bound 

-.266 

.345 

a. DependentVariable: PCffiMn) 

The multiple correlation coefficient, R, is the linear correlation between the 

observed and model predicted values of the probability of a BLUE win. Its value 

is 58% which indicates a moderate relationship. 

The coefficient of determination, R Square (R2), is the squared value of 

the multiple correlation coefficient. It shows that about 33.6% of the variation in 

probability of a BLUE win is explained by the model, which is very low. 



Histogram Normal P-P Plot of Regression Standardized 
Residual 

Dependent Variable: P(BWirt) Dependent Variable: P(BWIn) 

-> a 7 

Regression Standaidlzed Residual 

Figure 4.1. Regression Result for the Aggregated Data of each BLUE Combination vs. all 
RED Combinations WRT Eigenvalue 

The results of the linear regression yield the following equation: 

y = 0.335x - 0.289 

Where, y: the average probability of a BLUE win for that configuration 

x: the APFE value of a configuration 
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4.2.1.2. The Analysis of Each Experiment With Respect To Eigenvalue 

Table 4.5. Collective Regression Results for the Aggregated Data of each BLUE 
Combination vs. all RED Combinations WRT Eigenvalue 

Model 

Model3.3.3 
Model4.3.4 
Model4.4.4 
Model5.3.5 
Model5.4.5 
Model5.5.5 
Model6.3.6 
Model6.4.6 
Model6.5.6 
Model6.6.6 
Model7.3.7 
Model7.4.7 
Model7.5.7 
Model7.6.7 
Model7.7.7 
Model8.3.8 
Model8.4.8 
Model8.5.8 
Model8.6.8 
Model8.7.8 
Model8.8.8 
Model9.3.9 
Model9.4.9 
Model9.5.9 
Model9.6.9 
Model9.7.9 
Model9.8.9 
Model9.9.9 
Model10.3.10 
Model10.4.10 
Model10.5.10 
Model10.6.10 
Model10.7.10 
Model 10.8.10 
Modell 0.9.10 
Modell 0.10.10 

R R Square 
Adjusted R 

Square 

Std.Error of 
the 

Estimate 
Sig. 

There is only one iteration that is not enough to calculate linear regression. 
1 1 

There is only one iteration that is not enough to calculate linear regression. 
.869 

1 
.755 

1 
.714 .040 .005 

There is only one iteration that is not enough to calculate linear regression. 
.912 
.933 

1 

.832 

.871 
1 

.822 

.852 
.043 
.032 

.000 

.000 

There is only one iteration that is not enough to calculate linear regression. 
.932 
.935 
.901 

1 

.868 

.874 

.812 
1 

.865 

.868 

.785 

.042 

.027 

.030 

.000 

.000 

.001 

There is only one iteration that is not enough to calculate linear regression. 
.936 
.913 
.862 
.884 

1 

.877 

.833 

.743 

.782 
1 

.875 

.831 

.733 

.751 

.043 

.040 

.037 

.047 

.000 

.000 

.000 

.002 

There is only one iteration that is not enough to calculate linear regression. 
.931 
.925 
.903 
.871 
.830 

1 

.866 

.855 

.815 

.759 

.688 
1 

.865 

.854 

.813 

.751 

.644 

.049 

.040 

.038 

.038 

.039 

.000 

.000 

.000 

.000 

.006 

There is only one iteration that is not enough to calculate linear regression. 
.933 
.924 
.903 
.892 
.840 
.563 

1 

.870 

.854 

.815 

.797 

.706 

.317 
1 

.870 

.853 

.815 

.795 

.696 

.220 

.052 

.044 

.041 

.037 

.031 

.034 

.000 

.000 

.000 

.000 

.000 

.114 

There is only one iteration that is not enough to calculate linear regression. 
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Table 4.5. (continued) 

Model 

ModelH.3.11 
Model 11.4.11 
ModeM 1.5.11 
ModeM 1.6.11 
ModeM 1.7.11 
Modell 1.8.11 
ModeM 1.9.11 
ModelH.10.11 
ModelH.11.11 
ModeM 2.3.12 
ModeM 2.4.12 
ModeM 2.5.12 
ModeM 2.6.12 
ModeM 2.7.12 
ModeM 2.8.12 
ModeM 2.9.12 
ModeM 2.10.12 
ModeM 2.11.12 
ModeM 2.12.12 

R 

.932 

.918 

.905 

.874 

.866 

.739 

.425 
1 

R Square 

.868 

.843 

.819 

.764 

.750 

.546 

.181 
1 

Adjusted R 
Square 

.868 

.843 

.819 

.763 

.747 

.531 

.064 

Std.Error of 
the Estimate 

.056 

.051 

.046 

.043 

.038 

.036 

.034 

Sig. 

.000 

.000 

.000 

.000 

.000 

.000 

.254 

There is only one iteration that is not enough to calculate linear regression. 
.912 
.922 
.892 
.893 
.869 
.887 
.752 
.755 

1 

.833 

.851 

.795 

.798 

.756 

.787 

.565 

.570 
1 

.832 

.851 

.795 

.798 

.755 

.785 

.550 

.509 

.067 

.053 

.053 

.043 

.041 

.036 

.034 

.036 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.019 

There is only one iteration that is not enough to calculate linear regression. 

When the individual experiment results calculated by just the eigenvalues 

are examined in Table 4.5, above, the models with large number of Sensors and 

Influencers with respect to low number of Deciders have higher R and R square 

values. The experiments with two iterations have R and R square value of one; a 

perfect regression line needs only two points. When the difference between the 

number of Sensors/Influencers and Deciders get closer to each other, the R and 

R square values drop dramatically, then the experiments become insignificant. 
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4.2.1.3. The Analysis of Decider Basis Experiments With Respect To 
Eigenvalue 

Table 4.6. Collective Regression Results for the Decider Basis Aggregated Data of each 
BLUE Combination vs. all RED Combinations WRT Eigenvalue 

Model 

ModelX3X 
ModelX4X 
ModelX5X 
ModelX6X 
ModelX7X 
ModelX8X 
ModelX9X 
ModelXlOX 
ModelXHX 
ModelX12X 

R 

.628 

.672 

.659 

.715 

.676 

.716 

.531 

.162 

.752 

R Square 

.394 

.452 

.434 

.511 

.457 

.512 

.282 

.026 

.565 

Adjusted R 
Square 

.394 

.452 

.434 

.511 

.456 

.509 

.265 
-.071 
.130 

Std.Error of 
the Estimate 

.117 

.095 

.083 

.064 

.059 

.051 

.044 

.082 

.078 

Sig. 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.614 

.459 
There is only one iteration that is not enough to calculate linear regression. 

When the experiments results calculated by just the eigenvalues along with 

the Deciders (column-wise) are examined in Table 4.6, above, the R and R 

square values are quiet low. Moreover, the experiments get insignificant as the 

number of Deciders increases and the number of total iterations decreases. The 

experiments with 10 Deciders and further are insignificant. 

4.2.1.4. The Analysis of Sensor/lnfluencer Basis Experiments With 
Respect To Eigenvalue 

Table 4.7. Collective Regression Results for the Sensor/lnfluencer Basis Aggregated Data 
of each BLUE Combination vs. all RED Combinations WRT Eigenvalue 

Model 
Model3Y3 
Model4Y4 
Model5Y5 
Model6Y6 
Model7Y7 
Model8Y8 
Model9Y9 
Model10Y10 
Model11Y11 
Model12Y12 

R R Square Adjusted R 
Square 

Std.Error of 
the Estimate Sig. 

There is only one iteration that is not enough to calculate linear regression. 
.865 
.547 
.480 
.564 
.613 
.646 
.648 
.645 
.650 

.748 

.299 

.230 

.318 

.375 

.418 

.420 

.416 

.422 

.496 

.221 

.204 

.309 

.372 

.416 

.419 

.416 

.422 

.095 

.061 

.083 

.079 

.081 

.084 

.086 

.092 

.093 

.335 

.082 

.006 

.000 

.000 

.000 

.000 

.000 

.000 

When the experiments results are calculated by applying just the 

eigenvalues along with the Sensors/Influencers (row-wise) (examined in Table 
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4.7 above), the R and R square values are also quiet low but they are stable. The 

value of Rs stays in the mid-60's percentage-wise, and the value of R squares 

stays low-in the 40's percentage-wise. The experiments start insignificant initially 

due to low number of total iterations, as the number of Sensors/Influencers 

increases so does and the sum of total iterations, they become significant after 5 

Senosrs/I nfluencers. 

4.2.2. THE ANALYSIS OF EXPERIMENT WITH RESPECT TO EIGENVALUE, 
DISPARITY, AND ROBUSTNESS 

4.2.2.1. The Analysis of All Experiments With Respect To Eigenvalue, 
Disparity, and Robustness 

Table 4.8. Regression Result for the Aggregated Data of each BLUE Combination vs. all 
RED Combinations WRT Eigenvalue, Disparity, and Robustness 

Descriptive Statistics 

SD&ifl 

SU3£~£SO*3te!: 

SU^vIeJiKJiJSBfe!' 

gUfi&^SaftM^oaet 

Mean 

.48 

2.29 

7.22 

7.71 

Std Deviation 

.119 

.207 

2.555 

1.737 

N 

8340 

8340 

8340 

8340 

Medal 

1 

R 

.891" 

R Square 

.794 

Adjusted R 

Square 

.794 

Std. Error of the 

Estimate 

.054 

Change Statistics 

R Square 

Change 

.794 

F Change 

10685.395 

df1 

3 

df2 

8335 

Sg. F Change 

.000 

a. Predictors: (Constant §JW§JRsfeiJjJSS§.mA4S-JiS)3feiaK&. BJJjJEJE3ajKaJya3v 

b. Da pa nds nt Varia bie: fjjjjjgn, 

id 
Coeffiai&jLTts.', 

Made I 

1 (Constant) 

au&^BaiiasiSnss? 

yastm3&&K«i!Co2ffo-i>rife 

B 

-.364 

.320 

-.018 

.031 

Std. Error 

.008 

.005 

.000 

.001 

Standardized 

Coefficients 

Beta 

.554 

-.393 

.455 

t 

-48.234 

60.980 

-48.033 

55.135 

Stg. 

.000 

.000 

.000 

.000 

95.0% Confidence Interval for B 

Lower Bound 

-.378 

.310 

-.019 

.030 

Upper Bound 

-.349 

.330 

-.018 

.032 

a. Dependent Varia bie: gJB̂SSO-



54 

Normal P«P Plot of Regression Standardized 
Residua! Histogram 

Dependent Variable: PBWin 

OH CZ UJ 

Observed Cum Prob 

Dependent Variable: PBWin 

r p i n i | in | , 
-24 CD 2.1 SO 
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a « t w - i 
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Figure 4.2. Regression Result for the Aggregated Data of each BLUE Combination vs. all 
RED Combinations WRT Eigenvalue, Disparity, and Robustness 

When the experiment results of collected 8,340 datasets were calculated 

by applying eigenvalues, disparities, and robustnesses and are examined in the 

Table 4.8 above. A regression analysis of the APFE, the disparity, and the 

robustness values yields a tremendous increase in the coefficient of 

determination, R square (R2) from a value of 0.336 to 0.794 and provides the 

following equation: 

y = 0.320*! - 0.018*2 + 0.031x3 - 0.364 

Where, y: the average probability of a BLUE win for that configuration 

xi: the APFE value of a configuration 

X2: the disparity value of a configuration 

X3: the robustness value of a configuration 
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4.2.2.2. The Analysis of Each Experiment With Respect To Eigenvalue, 
Disparity, and Robustness 

Table 4.9. Collective Regression Results for the Aggregated Data of each BLUE 
Combination vs. all RED Combinations WRT Eigenvalue, Disparity, and Robustness 

Model 

Model3.3.3 
Model4.3.4 
Model4.4.4 
Model5.3.5 
Model5.4.5 
Model5.5.5 
Model6.3.6 
Model6.4.6 
Model6.5.6 
Model6.6.6 
Model7.3.7 
Model7.4.7 
Model7.5.7 
Model7.6.7 
Model7.7.7 
Model8.3.8 
Model8.4.8 
Model8.5.8 
Model8.6.8 
Model8.7.8 
Model8.8.8 
Modeig.3.9 
Model9.4.9 
Model9.5.9 
Model9.6.9 
Model9.7.9 
Model9.8.9 
Model9.9.9 
Model 10.3.10 
Model 10.4.10 
Model10.5.10 
Model10.6.10 
Model10.7.10 
Model10.8.10 
Model10.9.10 
Model10.10.10 

R R Square 
Adjusted R 

Square 
Std.Error of 
the Estimate 

Sig. 

There is only one iteration that is not enough to calculate linear regression. 
1 1 

There is only one iteration that is not enough to calculate linear regression. 
.911 

1 
.829 

1 
.701 .040 .051 

There is only one iteration that is not enough to calculate linear regression. 
.965 
.961 

1 

.931 

.924 
1 

.918 

.879 
.029 
.029 

.000* 

.003* 

There is only one iteration that is not enough to calculate linear regression. 
.987 
.969 
.929 

1 

.974 

.939 

.863 
1 

.972 

.931 

.780 

.019 

.020 

.031 

.000 
.000* 
.014* 

There is only one iteration that is not enough to calculate linear regression. 
.987 
.976 
.956 
.948 

1 

.975 

.953 

.914 

.899 
1 

.974 

.951 

.904 

.838 

.019 

.021 

.022 

.038 

.000 

.000 
.000** 
.006* 

There is only one iteration that is not enough to calculate linear regression. 
.991 
.988 
.979 
.974 
.982 

1 

.982 

.976 

.959 

.950 

.964 
1 

.981 

.976 

.958 

.944 

.943 

.018 

.017 

.018 

.018 

.016 

.000 

.000 

.000 
.000** 
.000** 

There is only one iteration that is not enough to calculate linear regression. 
.993 
.989 
.982 
.972 
.953 
.707 

1 

.987 

.978 

.964 

.944 

.909 

.500 
1 

.986 

.978 

.964 

.942 

.899 

.200 

.017 

.017 

.018 

.020 

.018 

.035 

.000 

.000 

.000 

.000 

.000 

.288 

There is only one iteration that is not enough to calculate linear regression. 
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Table 4.9. (continued) 

Model 

ModeM 1.3.11 
ModeM 1.4.11 
ModeM 1.5.11 
ModeM 1.6.11 
ModeM 1.7.11 
ModeM 1.8.11 
ModeM 1.9.11 
ModeM 1.10.11 
ModeM 1.11.11 
ModeM 2.3.12 
ModeM 2.4.12 
ModeM 2.5.12 
ModeM 2.6.12 
ModeM 2.7.12 
ModeM 2.8.12 
ModeM 2.9.12 
ModeM2.10.12 
Model12.11.12 
ModeM2.12.12 

R 

.992 

.991 

.988 

.985 

.966 

.892 

.694 
1 

R Square 

.985 

.982 

.975 

.971 

.933 

.796 

.482 
1 

Adjusted R 
Square 

.984 

.982 

.975 

.971 

.931 

.773 

.171 

Std.Error of 
the Estimate 

.019 

.018 

.017 

.015 

.020 

.025 

.032 

Sig. 

.000 

.000 

.000 

.000 

.000 
.000** 
.311 

There is only one iteration that is not enough to calculate linear regression. 
.992 
.992 
.989 
.985 
.982 
.971 
.866 
.962 

1 

.983 

.984 

.977 

.971 

.965 

.943 

.750 

.925 
1 

.983 

.984 

.977 

.971 

.965 

.941 

.722 

.881 

.021 

.018 

.018 

.016 

.016 

.019 

.026 

.018 

.000 

.000 

.000 

.000 

.000 

.000 
.000* 
.003* 

There is only one iteration that is not enough to calculate linear regression. 

When the individual experiment results calculated by applying 

eigenvalues, disparities, and robustnesses are examined in Table 4.9 above, the 

models with large number of Sensors and Influencers with respect to low number 

of Deciders have higher R and R square values. When the difference between 

the number of Sensors/Influencers and Deciders gets closer to each other, the 

number of different meaningful combinaions and thereby the number of iterations 

drops. So R and R square values drop dramatically as a consequence of this; 

then the experiments become insignificant. The models that have less than or 

equal to 30 number of iterations (i.e., the sample size, the number of different 

meaningful combinations) are insignificant. The models with one or two asterisks 

in the significant column are insignificant models due to individual insignificance 

in its independent variables even if they look significant as a whole model. 
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4.2.2.3. The Analysis of Decider Basis Experiments With Respect To 
Eigenvalue, Total Disparity, and Robustness 

Table 4.10. Collective Regression Results for the Decider Basis Aggregated Data of each 
BLUE Combination vs. all RED Combinations WRT Eigenvalue, Disparity, and Robustness 

Model 

ModelX3X 
ModelX4X 
ModelX5X 
ModelX6X 
ModelX7X 
ModelX8X 
ModelX9X 
ModelXlOX 
ModelXHX 
ModelX12X 

R 

.907 

.905 

.903 

.923 

.912 

.908 

.763 

.610 
1 

R Square 

.823 

.818 

.815 

.853 

.832 

.825 

.582 

.372 
1 

Adjusted R 
Square 

.823 

.818 

.814 

.852 

.831 

.821 

.550 

.137 

Std.Error of 
the Estimate 

.063 

.055 

.048 

.035 

.033 

.031 

.034 

.073 

Sig. 

.000 

.000 

.000 

.000 

.000 

.000 
.000* 
.268 

There is only one iteration that is not enough to calculate linear regression. 

When the experiments results calculated by applying eigenvalues, 

disparities, and robustnesses along with the deciders (column-wise) are 

examined in Table 4.10, above, the R and R square values are at least 50% 

higher than the results calculated by just applying eigenvalues. The experiments 

with 9 Deciders and further are insignificant. The models with 9 Deciders looks 

significant as a whole model. But indeed, it is an insignificant model from an 

individual independent variables perpective. 
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4.2.2.4. The Analysis of Sensor/lnfluencer Basis Experiments With 
Respect To Eigenvalue, Total Disparity, and Robustness 

Table 4.11. Collective Regression Results for the Sensor/lnfluencer Basis Aggregated Data 
of each BLUE Combination vs. all RED Combinations WRT Eigenvalue, Disparity, and 
Robustness 

Model 

Model3Y3 
Model4Y4 
Model5Y5 
Model6Y6 
Model7Y7 
Model8Y8 
Model9Y9 
Model10Y10 
Model11Y11 
Model12Y12 

R R Square Adjusted R 
Square 

Std.Error of 
the Estimate Sig. 

There is only one iteration that is not enough to calculate linear regression. 
1 

.894 

.937 

.953 

.950 

.956 

.959 

.964 

.972 

1 
.798 
.878 
.908 
.903 
.914 
.920 
.930 
.945 

.712 

.864 

.904 

.902 

.913 

.920 

.930 

.945 

.037 

.034 

.029 

.032 

.032 

.032 

.032 

.029 

.008* 

.000* 
.000 
.000 
.000 
.000 
.000 
.000 

When the experiments results calculated by applying eigenvalues, 

disparities and robustnesses along with the sensors/influencers (row-wise) are 

examined in Table 4.11, above, the R and R square values are so much better 

than the results calculated by just applying eigenvalues. The value of Rs 

increases up to the mid 90's percent, and the value of R squares increases up to 

the 90's percent. The experiments start initially insignificant due to small number 

of total iterations, as the number of Sensors/influencers increases so does and 

the sum of total iterations, they become significant after 6 Senosrs/lnfluencers. 
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4.2.3. THE ANALYSIS OF ALL EXPERIMENTS WITH RESPECT TO 
EIGENVALUE, DISPARITY, ROBUSTNESS, POWER, AND CONNECTIVITY 

Table 4.12. Regression Result for the Aggregated Data of each BLUE Combination vs. all 
RED Combinations WRT Eigenvalue, Disparity, Robustness, Power, and Connectivity 

Descriptive Statistics 

Bffi&ia 

KU!&£i9jen3iste% 

RUiSJ^taiaisEaSx 

RlWS-Rafe«5toS55 

BUJfe^ssss): 

giUUgJJsnoedrate 

Mean 

.48 

2.29 

7.22 

7.71 

10.27 

8.93 

Std. Deviation 

.119 

.207 

2.555 

1.737 

1.231 

3.322 

N 

8340 

8340 

8340 

8340 

8340 

8340 

Model &muPSQ£ 

Model 

1 

R 

.983= 

R Square 

.988 

Adjusted R 

Square 

.988 

Std. Error of the 

Estimate 

.022 

Change Statistics 

R Square 

Change 

.sss 

F Change 

48789.119 

df1 

5 

df2 

8334 

Sig. F Change 

.000 

a. Predictors: (Constant), gUiEjg loj3ne£ti5!i&, aUiEJygjerajajujgs, BJLJAE^Eojagr, ftUJB^JpiaJOJSBacte, ftUJE^RoJajsJnesjs 

b. 0ependentVariable:gg)&i(3 

SasBisisoM 

Model 

1 (Constant) 

aUiE_RpJy;ito£§$ 

JJj3StftadAcd.tsed. Coefficients 

B 

.181 

.188 

.003 

-.118 

.124 

-.088 

Std. Error 

.004 

.003 

.000 

.001 

.001 

.000 

Standardized 

Coefficients 

Beta 

.288 

.071 

-1.721 

1.283 

-1.823 

t 

39.258 

83.581 

15.977 

-84.137 

87.817 

-132.021 

Sig. 

.000 

.000 

.000 

.000 

.000 

.000 

95.0% Confidence Interval for B 

Lower Bound 

.153 

.181 

.003 

-.121 

.122 

-.088 

Upper Bound 

.189 

.172 

.004 

-.118 

.127 

-.085 

a. Dependent Variable: EgXXJO 
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Histogram Normal P-P Plot of Regression Standardized 
Residual 

Dependent Variable: PBWin Dependent Variable: PBWin 

I 

nteat) =4.746-13 
Std. D=v. =1 

N =3.340 

Regression Standardized Residual 
02 04 0 6 OB 

Observed Cum Prob 

Figure 4.3. Regression Result for the Aggregated Data of each BLUE Combination vs. all 
RED Combinations WRT Eigenvalue, Disparity, Robustness, Power, and Connectivity 

When the experiment result of the collected 8,340 datasets calculated by 

applying eigenvalue, disparity, robustness, power, and connectivity are examined 

in the Table 4.12 above, a regression analysis of the APFE, the disparity, the 

robustness, the power, and the connectivity values yields a significant increase in 

the coefficient of determination, R square (R2) from a value of 0.794 to 0.966 and 

provides the following equation: 

y = 0.161 + 0.166% + 0.003% - 0.118% + 0.124% - 0.066% 

Where, y: the average probability of a BLUE win for that configuration 

x-i: the APFE value of a configuration 

x2: the disparity value of a configuration 

x3: the robustness value of a configuration 

X4: the power value of a configuration 

x5: the connectivity value of a configuration 

Since the overall R2 value is high, and the corresponding P value is zero, 

the model fits the data well. The independent variables used in the regression 

analysis have a significant impact on the model. 
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Hovewer, substraction of strength and stability values from the regression 

analysis gives exactly the same result even though they have lower P values and 

small coefficients. Then it can easily be said that these two independent 

variables are redundant. The strength and the power values are highly 

correlated (0.954); they both convey essentially the same information. The 

stability value is moderately corelated with the connectivity value (0.495) and the 

eigenvalue (0.558): both the connectivity and the eigenvalue convey fairly the 

same information as the stability does. Each independent variable is derived from 

the structure of different meaningful combinations by applying various operations 

as described earlier. 

4.2.3.1. Multicolinearity 

There is a perfect linear relationship among the independent variables 

since R and R2 values are very high. When there is a perfect linear relationship 

among the independent variables, the estimates for the model can be computed 

in several ways. 

When a regression analysis is applied to each experiment by using the 

eigenvalue, the disparity, the robustness, the power, the strength, the 

connectivity and the stability, there seems to be a good linear relationship among 

the independent variables since R and R2 are still high and the overall P is very 

low. Even though the overall P value is very low, all of the individual P values are 

high. This means that the model fits the data well, even though none of the 

independent variables have a statistically significant impact on predicting the 

probability of a BLUE win. This relation is called multicolinearity or ill conditioning 

(Alin, 2010). Colinearity refers to the linear relationship among two variables 

while multicolinearity does more variables, which also means lack of 

orthogonality among them. 

The goal of this research is to understand how the various metrics 

(independent variables) impact the performance of a networked force. For that 

reason, multicolinearity is a big problem to solve. One problem is that the 
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individual P values can be misleading (a P value can be high, even though the 

variable is important). The second problem is that the confidence intervals on the 

regression coefficients will be very wide. This will cause another problem: 

excluding an independent variable (or adding a new one) can change the 

coefficients dramatically - may even change their signs. 

4.2.3.2. What Can Be Done About Multicolinearity 

The best solution is to find a way to understand what causes the 

multicolinearity and remove it. Multicolinearity occurs when two or more variables 

are related. They measure essentially the same thing. If one of the variables 

does not seem logically essential to the model, removing it may reduce or 

eliminate multicolinearity. The impact of multicolinearity can also be reduced by 

increasing the sample size. That way confidence intervals get narrower, despite 

multicolinearity, with more data. 

The regression analysis of the model 8.5.8 is given as an example to 
explain the multicolinearity in three steps. 
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Table 4.13. Regression Result for the Aggregated Data of each BLUE Combination vs. all 
RED Combinations WRT all Metrics (Multicolinearity Analysis-Step 1) 

Descriptive Statistics 

PBWin 

BLUE_Ei g env alu es 

BLUESensors_Oisparity 

BLUEI nfl uen ceisJ3isparity 

BLUE_Total Disparity 

BLUE_Robiistness 

BLUE__Power 

BLUE_Strength 

BLUE_Connedivity 

BLUE_Stabllity 

Mean 

.48 

1.91 

1.93 

1.93 

3.87 

6.17 

7.80 

.79 

3.87 

5.27 

Std. Deviat ion 

.071 

.075 

.740 

.740 

1.074 

.950 

.277 

.047 

1.500 

.868 

N 

30 

30 

30 

30 

30 

30 

30 

30 

30 

30 

Model Summary* 

Model 

1 

R 

958' 

R Square 

.91B 

Adjusted R 

Square 

892 

Std. Error of t he 

Estimate 

.023 

Change Statistics 

R Square 

Change 

.918 

F Change 

35.317 

df1 

7 

df2 

22 

Sig. F Change 

.000 

a. Predictors: (Constant). BLUE_Stability. BLUESensoraJDisparity. BLUE_Eigenva!ues. BLUEInfluencers_Dlsparity. BLUE_Connectlvity. 

BLUE_Strengtrh BLUE_Power 

b. Dependent Van able: PBWin 

Coefficients8 

Model 

1 (Constant] 

BLUE_Ei gen values 

BLUESens ors_DJ5pariry 

BLUEInflu encers_Disparity 

BLUE_Power 

BLUE_Strength 

BLUE_Conneotivay 

BLUE_Stability 

Unstandardized Coefficients 

B 

-2.028 

.497 

-.023 

-.003 

.480 

-2.447 

.000 

-.020 

Std. Error 

2.442 

93E 

.037 

.03' 

.937 

4.40G 

.OK 

.028 

Standardized 

Coefficients 

Beta 

.524 

-.236 

-.030 

1.878 

-1.611 

-.005 

- 2 4 3 

t 

-.830 

.532 

-.605 

-.086 

.513 

-.656 

-.011 

-.713 

Sig. 

.416 

.600 

.551 

.933 

.613 

.584 

.991 

.483 

95.0% Conf idence Interval for B 

Lower Bound 

-7.091 

-1.442 

-.100 

-.072 

-1.462 

-11.573 

-.034 

-.078 

Upper Bound 

3.039 

2.435 

.055 

.087 

2.423 

6.676 

.033 

.038 

Correlat ions 

Zero-order 

.862 

-.111 

-.112 

.938 

.928 

-.861 

-.693 

Partial 

.113 

-.128 

-.018 

.109 

-.118 

-.002 

-.150 

Part 

.032 

-.037 

-.005 

.031 

-.034 

.000 

-.043 

Col linearity Statistics 

Tolerance 

004 

024 

030 

000 

000 

020 

032 

VIF 

281.855 

40.542 

32.904 

3602.538 

2259.475 

50.483 

31.203 

a Dependent Variable: PBWin 

When the Table 4.13 above is examined carefully, the model has a perfect 

linear relationship among the independent variables since R and R2 values are 

very high and the overall P is very low; but all of the individual P values are high. 

There are two values displayed in the the colinearity statistics column for 

each variable as a check for multicolinearity: tolerance and variance inflation 

factor "VIF". The tolerance is an indication of the percent of variance in the 

independent variable that cannot be accounted for by the other variables; hence 

very small values indicate that a variable is redundant, and values that are less 

than 0.10 may merit further investigation. The VIF is inversely proportional to the 

tolerance and as a rule of thumb, a variable whose VIF values is greater than 10 

may merit further investigation. 
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All variables have less than 0.10 value in tolerance. The numbers in the 

tolerance column indicate that only 0.4, 2.4, 3, 0, 0, 2, and 3.2% of the variance 

in respective independent variables are not predictable given the other variables 

in the model. All of these variables measure probability of BLUE win and the very 

low "tolerance" values indicate that these variables contain redundant 

information. Multicolinearity arises because too many variables have been put in 

that measure the same thing, probability of BLUE win. 

When the BLUE_Power and BLUE_Strength with zero in tolerance value 

are omited from the regression model, the new VIF values in the analysis in 

Table 4.14 below appears much better, but it still needs some work. 

Table 4.14. Regression Result for the Aggregated Data of each BLUE Combination vs. all 
RED Combinations WRT all Metrics (Multicolinearity Analysis-Step 2) 

Model Summary" 

Model 

1 

R 

.558" 

R Square 

.917 

Adjusted R 

Square 

.900 

Std. Error of the 

Estimate 

.022 

Change Statistics 

R Square 

Change 

.917 

F Change 

53.102 

df1 

5 

df2 

24 

Sig. F Change 

.000 

a. Predictors: (Constant). BLUE_StabilftyT BLUESensors_Dispanty. BLUE_Eigenvalues. BLUEInfluencers_Db parity. BLUE_ConnectM1y 

b. Dependent Variable; PBWin 

Coefficients* 

Model 

1 (Constant) 

BLUE_Eigenvatues 

BLUESensors_Disparsy 

BLUBnfluencefS_Di5panty 

BLUE_ConnectMy 

BLUE_Stabllity 

Unstandardized Coefficients 

B 

-1.053 

.887 

-.032 

-.017 

.003 

-.015 

Std. Error 

.575 

27! 

.007 

018 

.007 

.016 

Standardized 

Coefficients 

Beta 

.938 

-.330 

-.176 

.082 

-.182 

t 

-1.817 

3.228 

-4.454 

-.931 

.425 

-.954 

Sig. 

.082 

.004 

.000 

.361 

.575 

.350 

S5.0% Confidence Interval for B 

Lower Bound 

-2.248 

.320 

-.046 

-.054 

-.012 

-.047 

Upper Bound 

.143 

1.455 

-.017 

.021 

.018 

.017 

Correlations 

Zero-order 

.852 

-.111 

-.112 

-.881 

-.693 

Partial 

.550 

-.673 

-.187 

.086 

.191 

Part 

.190 

-.252 

-.055 

.025 

-.056 

Colltnearity Statistics 

Tolerance 

.041 

.628 

.097 

.090 

.095 

VIF 

24.385 

1.592 

10.355 

11.146 

10.520 

a. Dependent Variable: PBWin 

In Table 4.14 above, there are four out of five variables that have less than 

0.10 value in tolerance. The BLUE_Connectivity and BLUEInfluencers_Disparity 

are omitted from the regression model in the second attempt to solve the 

multicolinearity issue. The newest VIF values in the analysis in Table 4.13 

below appear just fine. 
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Table 4.15. Regression Result for the Aggregated Data of each BLUE Combination vs. all 
RED Combinations WRT all Metrics (Multicolinearity Analysis-Step 3) 

Model Summary0 

Model 

1 

R 

.956" 

R Square 

.914 

Adjusted R 

Square 

.904 

Std. Error of the 

Estimate 

.022 

Change Statistics 

R Square 

Change 

.914 

F Change 

91.78! 

df1 

3 

df2 

25 

Sig. F Change 

.000 

a. Predictors: (Constant). BLUE_Stability. BLUESensorc_Disparity. BLUE_Eigenvalues 

b. Dependent Variable; PBWin 

Model 

1 (Constant) 

BLUEJEigenvalues 

BLUESen5ors_Olsparity 

BLUE_Stability 

Un5tandardized Coefficients 

S 

-.838 

.887 

-.031 

-.029 

Std. Error 

.142 

OS! 

.00! 

.00! 

Standardized 

Coefficients 

Beta 

.735 

-.324 

-353 

-4,478 

10.816 

-5.494 

-5.115 

Sig. 

.000 

.000 

.000 

.000 

95.0% Confidence Interval tor B 

Lower Bound 

-.931 

.582 

-.043 

-.040 

Upper Bound 

-.345 

.831 

-.018 

-.017 

Correlations 

Zero-order 

.882 

-.111 

-.593 

Partial 

.901 

-.733 

-.708 

Part 

.812 

-.316 

-.295 

Collinearity Statistics 

Tolerance 

.693 

.551 

.697 

V1F 

1.443 

1.051 

1.435 

a. Dependent Variable: PBWin 

When the experiment results of the model 8.5.8 with the perfectly newest 

VIF values calculated by applying eigenvalue, sensors disparity, and stability are 

examined in the Table 4.15 above, a regression analysis yields the same 

coefficient of determination, R square (R2) value as 0.914 and provides the 

following equation: 

y = 0.697*! - 0.031x2 - 0.029x3 - 0.638 

Where, y: the average probability of a BLUE win for that configuration 

x-i: the APFE value of a configuration 

X2. the sensors disparity value of a configuration 

X3: the stability value of a configuration 



4.2.3.3. The Analysis of Each Experiment With Respect To Eigenvalue, 
Disparity, Stability 

Table 4.16. Collective Regression Results for the Aggregated Data of each BLUE 
Combination vs. all RED Combinations WRT Eigenvalue, Disparity, and Stability 

Model 

Model3.3.3 
Model4.3.4 
Model4.4.4 
Model5.3.5 
Model5.4.5 
Model5.5.5 
Model6.3.6 
Model6.4.6 
Model6.5.6 
Model6.6.6 
Model7.3.7 
Model7.4.7 
Model7.5.7 
Model7.6.7 
Model7.7.7 
Model8.3.8 
Model8.4.8 
Model8.5.8 
Mode!8.6.8 
Model8.7.8 
Model8.8.8 
Model9.3.9 
Model9.4.9 
Model9.5.9 
Model9.6.9 
Model9.7.9 
Model9.8.9 
Model9.9.9 
Model10.3.10 
Model10.4.10 
Model10.5.10 
Model10.6.10 
Model10.7.10 
Model10.8.10 
Model10.9.10 
ModeM 0.10.10 

R R Square 
Adjusted R 

Square 
Std.Error of 
the Estimate 

Sig. 

There is only one iteration that is not enough to calculate linear regression. 
1 1 

There is only one iteration that is not enough to calculate linear regression. 
.942 

1 
.888 

1 
.804 .033 .023* 

There is only one iteration that is not enough to calculate linear regression. 
.966 
.934 

1 

.933 

.873 
1 

.920 

.797 
.029 
.038 

.000 
.011** 

There is only one iteration that is not enough to calculate linear regression. 
.980 
.959 
.939 

1 

.960 

.920 

.882 
1 

.957 

.910 

.812 

.024 

.023 

.028 

.000 

.000 
.009** 

There is only one iteration that is not enough to calculate linear regression. 
.983 
.962 
.956 
.954 

1 

.965 

.926 

.914 

.910 
1 

.964 

.923 

.904 
.0856 

.023 

.027 

.022 

.036 

.000 

.000 

.000 
.005** 

There is only one iteration that is not enough to calculate linear regression. 
.980 
.978 
.973 
.967 
.984 

1 

.960 

.957 

.947 

.936 

.967 
1 

.959 

.957 

.946 

.928 

.948 

.027 

.022 

.020 

.020 

.015 

.000 

.000 

.000 

.000 

.000 

There is only one iteration that is not enough to calculate linear regression. 
.980 
.982 
.972 
.967 
.955 
.717 

1 

.961 

.964 

.945 

.935 

.911 

.513 
1 

.960 

.963 

.945 

.933 

.901 

.221 

.029 

.022 

.022 

.021 

.018 

.034 

.000 

.000 

.000 

.000 

.000 

.271 

There is only one iteration that is not enough to calculate linear regression. 
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Table 4.16. (continued) 

Model 

ModeM 1.3.11 
ModeM 1.4.11 
ModeM 1.5.11 
ModeM 1.6.11 
ModeM 1.7.11 
ModeM 1.8.11 
ModeM 1.9.11 
ModeM 1.10.11 
ModeM 1.11.11 
ModeM 2.3.12 
ModeM 2.4.12 
ModeM 2.5.12 
ModeM 2.6.12 
ModeM 2.7.12 
ModeM 2.8.12 
ModeM 2.9.12 
ModeM 2.10.12 
ModeM2.11.12 
ModeM 2.12.12 

• * The overall 

R 

.976 

.983 

.979 

.975 

.960 

.879 

.636 
1 

R Square 

.953 

.967 

.958 

.950 

.921 

.773 

.405 
1 

There is only one iteration that 
.973 
.981 
.961 
.974 
.972 
.970 
.874 
.814 

1 
There is only or 

P value is low; t 

.947 

.962 

.924 

.948 

.944 

.940 

.764 

.662 
1 

e iteration that 
>ut the individu 

Adjusted R 
Square 

.953 

.967 

.958 

.950 

.919 

.748 

.048 

Std.Error of 
the Estimate 

.034 

.024 

.022 

.020 

.021 

.026 

.035 

Sig. 

.000 

.000 

.000 

.000 

.000 
.000* 
.419 

s not enough to calculate linear regression. 
.947 
.962 
.924 
.948 
.944 
.939 
.738 
.460 

.038 

.027 

.032 

.022 

.020 

.019 

.026 

.038 

.000 

.000 

.000 

.000 

.000 

.000 
.000** 
.117 

s not enough to calculate linear regression. 
al P values are high. There is lot a large 

enough dataset to have a perfect linear regression. 
• ** The overall P values is low; but some of the individual P values are high. There is 
not a large enough dataset to have a perfect linear regression. 

When the individual experiment results calculated by applying eigenvalues, 

sensors disparities, and coefficients are examined in Table 4.16 above, the 

results are almost identical with minor differences. The perfomance of each 

experiment drops as the ratio between Sensors/Influencers and Deciders drops. 

The experiments with less than about 30 iterations have insignificant results. 
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4.2.3.4. The Analysis of Decider Basis Experiments With Respect To 
Eigenvalue, Disparity, Coefficient 

Table 4.17. Collective Regression Results for the Decider Basis Aggregated Data of each 
BLUE Combination vs. all RED Combinations WRT Eigenvalue, Disparity, and Coefficient 

Model 

ModelX3X 
ModelX4X 
ModelX5X 
ModelX6X 
ModelX7X 
ModelX8X 
ModelX9X 
ModelXlOX 
ModelXHX 
ModelX12X 

R 

.933 

.929 

.926 

.927 

.913 

.906 

.750 

.516 
1 

R Square 

.871 

.863 

.857 

.860 

.833 

.822 

.563 

.266 
1 

Adjusted R 
Square 

.870 

.863 

.857 

.859 

.832 

.818 

.529 
-.009 

Std.Error of 
the Estimate 

.054 

.048 

.042 

.034 

.033 

.031 

.035 

.079 

Sig. 

.000 

.000 

.000 

.000 

.000 

.000 
.000* 
.454 

There is only one iteration that is not enough to calculate linear regression. 

When the experiments results calculated by applying eigenvalues, 

Sensors disparities and stabilities along with the Deciders (column-wise) are 

examined in Table 4.17, above, the R and R square values of the first three 

columns are about 5% higher than the results calculated by just applying 

eigenvalues, total disparities, and robustnesses. The rest of the columns follow 

the same pattern.The experiments with 9 Deciders and further are also 

insignificant. The models with 9 Deciders looks significant as a whole model. But 

indeed, it is an insignificant model from individual independent variables 

perpective. 
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4.2.3.5. The Analysis of Sensor/lnfluencer Basis Experiments With 
Respect To Eigenvalue, Sensors Disparity, Stability 

Table 4.18. Collective Regression Results for the Sensor/lnfluencer Basis Aggregated Data 
of each BLUE Combination vs. all RED Combinations WRT Eigenvalue, Disparity, and 
Stability 

Model 
Model3Y3 
Model4Y4 
Model5Y5 
Model6Y6 
Model7Y7 
Model8Y8 
Model9Y9 
Model10Y10 
Model11Y11 
Model12Y12 

R R Square Adjusted R 
Square 

Std.Error of 
the Estimate Sig. 

There is only one iteration that is not enough to calculate linear regression. 
1 

.909 

.949 

.972 

.971 

.974 

.976 

.982 

.986 

1 
.826 
.900 
.945 
.943 
.950 
.953 
.964 
.973 

.751 

.889 

.942 

.943 

.949 

.953 

.964 

.973 

.034 

.031 

.023 

.025 

.025 

.024 

.023 

.020 

.005* 
.000 
.000 
.000 
.000 
.000 
.000 
.000 

When the experiments results calculated by applying eigenvalues, 

powers, and stabilities along with the sensors/influencers (row-wise) are 

examined in Table 4.18, above, the R and R square values are about 1-2% 

higher than the results calculated by just applying eigenvalues, total disparities, 

and robustnesses. The row with five Sensors/influencers seems significant; but 

its independent variables individually have higher P values due to insufficient 

number of iterations. This row is, in fact, insignificant. 

4.3. PERFORMANCE OF EACH BLUE COMBINATION VS EACH RED 
COMBINATION 

Each BLUE combination vs. each RED combination has a total number of 

6,024,756 datasets. These datasets (iterations) are the sum of square of each 

experiment's total number of different meaningful arrangements. These datasets 

contain the probability of BLUE win (dependent variable) for each BLUE 

combination versus each RED combination, and metrics such as eigenvalue, 

disparity, robustness, power of deciders, strength of connectivity, and coefficient 

of deciders. In this section, the probability of BLUE win is studied for known 

combinations of each side. They were run in the SPSS Statistics 17.0 software 

package, as well. 
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4.3.1. THE ANALYSIS OF EXPERIMENTS WITH RESPECT TO EIGENVALUE 

4.3.1.1. The Analysis of All Experiments With Respect To Eigenvalue 

When Table 4.19 is examined, the eigenvalue is a fair predictor or 
performance metric by itself alone for a networked force. It must be enhanced by 
some other metrics to measure the performance or predict the probability of win 
of a networked force. 

Table 4.19. Regression Result for the Aggregated Data of each BLUE Combination vs. 
each RED Combination WRT Eigenvalue 

Model Summary 

Model 

1 

R 

.815' 

R Square 

.664 

Adjusted R 

Square 

.664 

Sid. Error of the 

Estimate 

.112163166045 

Change Statistics 

R Square 

Change 

.664 

F Change 

5963B27.B9! 

dt1 

2 

012 

6024753 

Sig. F Change 

.000 

a. Predictors: (Constant), eSUSasm^USlSUH^BasmsHtl^ 

Cesfltelgj)?; 

Model 

1 (Constant) 

R!0,.HnKSf9!ues 

.Uj35tajirjatdjse.fl Coefficients 

B 

.420 

.870 

-.845 

Std. Error 

.001 

.000 

.000 

Standardized 

Coefficients 

Beta 

.770 

-.748 

t 

566.248 

2954.509 

-2870.831 

sig. 

.000 

.000 

.000 

95.0% Confidence Interval for B 

Lower Bound 

.419 

.869 

-.846 

Upper Bound 

.422 

.871 

-.845 

Correlations 

Zero-order 

.453 

-.422 

Partial 

.769 

-.760 

Part 

.697 

-.678 

CMLaeMtr statistics 

Tolerance 

.821 

.821 

VIF 

1.218 

1.218 

a.DependentVariable:Egi5(iij. 

The multiple correlation coefficient, R, is 81.5% that indicates a fair 

relationship. The coefficient of determination, R Square (R2), 66.4% of the 

variation in probability of BLUE win is explained by the model which is very 

moderate. The results of the linear regression yield the following equation: 

y = 0.420 + 0.870*! - 0.845x2 

Where, y: the average probability of a BLUE win for that configuration 

x-i: the APFE value of BLUE configuration 

X2: the APFE value of RED configuration 

http://Uj35tajirjatdjse.fl
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4.3.1.2. The Analysis of Each Experiment With Respect To Eigenvalue 

Table 4.20. Collective Regression Results for the Aggregated Data of each BLUE 
Combination vs. each RED Combination WRT Eigenvalue 

Model 

Model3.3.3 
Model4.3.4 
Model4.4.4 
Model5.3.5 
Model5.4.5 
Model5.5.5 
Model6.3.6 
Model6.4.6 
Model6.5.6 
Model6.6.6 
Model7.3.7 
Model7.4.7 
Model7.5.7 
Model7.6.7 
Model7.7.7 
Model8.3.8 
Model8.4.8 
Model8.5.8 
Model8.6.8 
Model8.7.8 
Model8.8.8 
Model9.3.9 
Model9.4.9 
Model9.5.9 
Model9.6.9 
Model9.7.9 
Model9.8.9 
Model9.9.9 
ModeM 0.3.10 
Model 10.4.10 
Model10.5.10 
Model 10.6.10 
Model10.7.10 
Model10.8.10 
Model10.9.10 
Modell 0.10.10 

R R Square 
Adjusted R 

Square 
Std.Error of 
the Estimate 

Sig. 

There is only one iteration that is not enough to calculate linear regression. 
.960 .922 .765 .050 .280 

There is only one iteration that is not enough to calculate linear regression. 
.726 

1 
.527 

1 
.511 

1 
.092 
.000 

.000** 
-

There is only one iteration that is not enough to calculate linear regression. 
.788 
.681 
.973 

.620 

.464 

.947 

.618 

.450 

.842 

.095 

.101 

.017 

.000** 

.000** 
.229 

There is only one iteration that is not enough to calculate linear regression. 
.817 
.713 
.714 
.577 

.667 

.508 

.509 

.333 

.667 

.507 

.497 
-1.000 

.103 

.097 

.086 

.067 

.000 

.000 
.000** 
.867 

There is only one iteration that is not enough to calculate linear regression. 
.834 
.772 
.665 
.734 
.686 

.695 

.596 

.442 

.539 

.471 

.695 

.596 

.440 

.527 
-.588 

.103 

.100 

.097 

.092 

.100 

.000 

.000 

.000 
.000** 
.728 

There is only one iteration that is not enough to calculate linear regression. 
.856 
.802 
.739 
.687 
.542 
.875 

.734 

.644 

.547 

.472 

.294 

.766 

.734 

.644 

.547 

.471 

.276 

.299 

.107 

.103 

.099 

.100 

.095 

.083 

.000 

.000 

.000 

.000 
.000** 
.483 

There is only one iteration that is not enough to calculate linear regression. 
.860 
.817 
.761 
.720 
.612 
.586 
.981 

.740 

.668 

.579 

.519 

.374 

.343 

.963 

.740 

.668 

.579 

.519 

.373 

.326 

.889 

.112 

.106 

.102 

.100 

.090 

.088 

.033 . 

.000 

.000 

.000 

.000 

.000 

.000 

.192 
There is only one iteration that is not enough to calculate linear regression. 
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Table 4.20. (continued) 

Model 

ModelH.3.11 
ModelH.4.11 
ModelH.5.11 
ModelH.6.11 
ModelH.7.11 
ModelH.8.11 
ModelH.9.11 
ModelH. 10.11 
ModeM 1.11.11 
Model12.3.12 
ModeM 2.4.12 
ModeM 2.5.12 
ModeM 2.6.12 
ModeM 2.7.12 
ModeM 2.8.12 
ModeM 2.9.12 
ModeM 2.10.12 
ModeM2.11.12 
ModeM 2.12.12 

R 

.868 

.832 

.786 

.725 

.687 

.569 

.491 

.944 

R Square 

.754 

.693 

.618 

.525 

.472 

.324 

.241 

.892 

Adjusted R 
Square 

.754 

.693 

.618 

.525 

.472 

.323 

.221 

.675 

Std.Error of 
the Estimate 

.117 

.111 

.108 

.105 

.102 

.097 

.089 

.050 

Sig. 

.000 

.000 

.000 

.000 

.000 

.000 
.000** 
.329 

There is only one iteration that is not enough to calculate linear regression. 
.862 
.843 
.790 
.751 
.700 
.677 
.554 
.575 

1 

.743 

.710 

.624 

.563 

.490 

.458 

.307 

.331 
1 

.743 

.710 

.624 

.563 

.490 

.458 

.305 

.314 
1 

.125 

.113 

.112 

.107 

.103 

.099 

.093 

.093 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 
.000** 

-
There is only one iteration that is not enough to calculate linear regression. 

When the individual experiment results calculated by just the eigenvalues 

are examined in Table 4.20 above, the experiments with less than approximately 

30 different meaningful combinations (iterations) have insignificant results. 

The multiple correlation coefficients, Rs, are about 75% that indicates a 

fair relationship. The coefficients of determination, R Square (R2), are about 55% 

of the variation in probability of BLUE win is explained by the model which is very 

moderate. 
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4.3.1.3. The Analysis of Decider Basis Experiments With Respect To 
Eigenvalue 

Table 4.21. Collective Regression Results for the Decider Basis Aggregated Data of each 
BLUE Combination vs. each RED Combination WRT Eigenvalue 

Model 

ModelX3X 
ModelX4X 
ModelX5X 
ModelX6X 
ModelX7X 
ModelX8X 
ModelX9X 
ModelXlOX 
ModelXHX 
ModelX12X 

R 

.862 

.839 

.788 

.747 

.698 

.670 

.544 

.554 

.975 

R Square 

.744 

.704 

.621 

.558 

.488 

.448 

.296 

.307 

.951 

Adjusted R 
Square 

.744 

.704 

.621 

.558 

.488 

.448 

.295 

.290 

.902 

Std.Error of 
the Estimate 

.120 

.112 

.111 

.107 

.103 

.099 

.092 

.094 

.023 

Sig. 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 
.049* 

There is only one iteration that is not enough to calculate linear regression. 

When the experiments results calculated by just the eigenvalues along 

with the deciders (column-wise) are examined in Table 4.21, above, the R and R 

square values are low; they decrease gradually as the number of deciders 

increases. The experiments are significant until 11 deciders. 

4.3.1.4. The Analysis of Sensor/lnfluencer Basis Experiments With 
Respect To Eigenvalue 

Table 4.22. Collective Regression Results for the Sensor/lnfluencer Basis Aggregated Data 
of each BLUE Combination vs. each RED Combination WRT Eigenvalue 

Model 
Model3Y3 
Model4Y4 
Model5Y5 
Model6Y6 
Model7Y7 
Model8Y8 
Model9Y9 
Model10Y10 
Model11Y11 
Model12Y12 

R R Square Adjusted R 
Square 

Std.Error of 
the Estimate Sig. 

There is only one iteration that is not enough to calculate linear regression. 
.931 
.728 
.770 
.795 
.804 
.819 
.817 
.819 
.814 

.866 

.530 

.593 

.633 

.646 

.671 

.667 

.671 

.663 

.733 

.516 

.591 

.632 

.646 

.671 

.667 

.671 

.663 

.063 

.089 

.096 

.101 

.101 

.104 

.106 

.110 

.113 

.134 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

When the experiments results calculated by applying eigenvalues along 

with the sensors/influencers (row-wise) are examined in Table 4.22, above, the R 

and R square values are stuck to lower 80% and mid-60%, respectively. 
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4.3.2. THE ANALYSIS OF EXPERIMENT WITH RESPECT TO EIGENVALUE, 
TOTAL DISPARITY, AND ROBUSTNESS 

4.3.2.1. The Analysis of All Experiments With Respect To Eigenvalue, 
Total Disparity, and Robustness 

Table 4.23. Regression Result for the Aggregated Data of each BLUE Combination vs. 
each RED Combination WRT Eigenvalue, Disparity, and Robustness 

Descriptive Statistics 

eas» 

akue-rjissmatoja 

SSSLSsmaUsi 

BU*_jm_Qrararfe 

SEQJJJaLBiasfly 

8kU£_BuMaeK 

Mean 

.47818620 

2.34332659 

2.34332669 

7.74 

7.74 

791 

791 

Std. Deviation 

.193616202 

.171281309 

.171281309 

2335 

2.335 

1.667 

1.667 

N 

6024756 

6024756 

6024756 

6024756 

6024756 

6024756 

6024756 

Model Summary 

Model 

1 

R 

.888* 

R Square 

.789 

Adjusted R 

Square 

789 

Std. Error of the 

Estimate 

.088920171 

Change Statistics 

R Square 

Change 

.789 

F Change 

3756576.700 

df1 

6 

df2 

6024749 

Sig.F Change 

.000 

a. Predictors: (Constant), E£P_E&tatnm 6JA!£JraiS<])ffltei BUJ&JSAaLSIISMM, BHj.-.lBW-BijB.iill'g.akU.P-rlflP.aap.jjXBBP-Jjae.P.'ffljW.i 

SBMESrDsI 

Model 

1 (Constant) 

BUE-BflSrralWS 

BHLHoSEyaluas 

BU&JsSsLSism& 

BEftJMaLBIaaflv. 

8i.UE_R9l?.W|nsa 

Unstaj]d.Kdjz.ej1. Coefficients 

B 

.422 

.607 

-.580 

-.013 

.013 

.02( 

-.027 

Std. Error 

.001 

.001 

.001 

.000 

.000 

.000 

.000 

Standardized 

Coefficients 

Seta 

.537 

-.513 

-.156 

.162 

.226 

-.235 

t 

647.169 

1181.503 

-1130.191 

-513.767 

530.694 

547.702 

-571.402 

Sig. 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

95.0% Confidence Interval for B 

Lower Bound 

.421 

.606 

-.581 

-.013 

.013 

.026 

-.027 

Upper Bound 

.423 

.608 

-.579 

-.013 

.013 

.026 

-.027 

Correlations 

Zero-order 

.453 

-.422 

-.178 

.204 

.583 

-.582 

Partial 

.434 

-.418 

-.205 

.211 

.216 

-.227 

Part 

.221 

-.211 

-.096 

.099 

.102 

-.107 

GPJUDSaiitt Statistics 

Tolerance 

.170 

.170 

.378 

.378 

.206 

.206 

VIF 

5.895 

5.895 

2.648 

2.649 

4.847 

4.847 

a. Dependent Variable: EfiJ&Ul 

When the experiments results of collected 6,024,756 datasets calculated 

by applying eigenvalues, disparities, and robustnesses are examined in Table 

4.23 above, a regression analysis of the APFE. the disparity and the robustness 

values yields an 18.8% increase in the coefficient of determination, the R square 

(R2) forms a value of 0.664 to 0.789 and provides the following equation: 

y = 0.422 + 0.607*! - 0.580x2 - 0.013x3 + 0.013x4 + 0.026x5 - 0.027x6 

Where, y: the average probability of a BLUE win for that configuration 

xi: the APFE value of a BLUE configuration 

X2m. the APFE value of a RED configuration 

X3: the disparity value of a BLUE configuration 
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X4: the disparity value of a RED configuration 

x5: the robustness value of a BLUE configuration 

X6: the robustness value of a RED configuration 

4.3.2.2. The Analysis of Each Experiment With Respect To Eigenvalue, 
Disparity, and Robustness 

Table 4.24. Collective Regression Results for the Aggregated Data of each BLUE 
Combination vs. each RED Combination WRT Eigenvalue, Disparity, and Robustness 

Model 

Model3.3.3 
Model4.3.4 
Model4.4.4 
Model5.3.5 
Model5.4.5 
Model5.5.5 
Model6.3.6 
Model6.4.6 
Model6.5.6 
Model6.6.6 
Model7.3.7 
Model7.4.7 
Model7.5.7 
Model7.6.7 
Model7.7.7 
Model8.3.8 
Model8.4.8 
Model8.5.8 
Model8.6.8 
Model8.7.8 
Model8.8.8 
Model9.3.9 
Modeig.4.9 
Model9.5.9 
Model9.6.9 
Model9.7.9 
Model9.8.9 
Model9.9.9 

R R Square Adjusted R 
Square 

Std.Error of 
the Estimate Sig. 

There is only one iteration that is not enough to calculate linear regression. 
.960 .922 .765 .050 .280 

There is only one iteration that is not enough to calculate linear regression. 
.755 

1 
.571 

1 
.526 

1 
.091 
.000 

.000* 

There is only one iteration that is not enough to calculate linear regression. 
.831 
.713 
.973 

.691 

.508 

.947 

.685 

.468 

.842 

.086 

.100 

.017 

.000** 
.000* 
.229 

There is only one iteration that is not enough to calculate linear regression. 
.870 
.768 
.736 
.577 

.757 

.590 

.542 

.333 

.756 

.587 

.504 
-1.000 

.089 

.088 

.085 

.067 

.000 
.000** 
.000* 
.816 

There is only one iteration that is not enough to calculate linear regression. 
.883 
.819 
.744 
.815 
.686 

.779 

.671 

.554 

.664 

.471 

.779 

.670 

.551 

.637 
-.588 

.088 

.090 

.087 

.081 

.100 

.000 

.000 
.000** 
.000* 
.728 

There is only one iteration that is not enough to calculate linear regression. 
.908 
.857 
.804 
.754 
.737 
.875 

.824 

.735 

.646 

.568 

.544 

.766 

.824 

.735 

.646 

.566 

.507 

.299 

.087 

.089 

.088 

.091 

.078 

.083 

.000 

.000 

.000 
.000** 
.000* 
.483 

There is only one iteration that is not enough to calculate linear regression. 
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Table 4.24. (continued) 

Model 

Model10.3.10 
Model10.4.10 
Model10.5.10 
Model10.6.10 
Model10.7.10 
Model 10.8.10 
ModeM 0.9.10 
Modell 0.10.10 
ModeM 1.3.11 
Modell 1.4.11 
ModelH.5.11 
ModeM 1.6.11 
ModeM 1.7.11 
ModeM 1.8.11 
ModeM 1.9.11 
ModeM 1.10.11 
ModeM 1.11.11 
ModeM 2.3.12 
ModeM 2.4.12 
ModeM 2.5.12 
ModeM2.6.12 
ModeM2.7.12 
ModeM2.8.12 
ModeM2.9.12 
ModeM 2.10.12 
ModeM 2.11.12 
Model12.12.12 

R 

.918 

.877 

.827 

.784 

.682 

.640 

.981 

R Square 

.843 

.769 

.683 

.614 

.465 

.409 

.963 

Adjusted R 
Square 

.843 

.769 

.683 

.614 

.462 

.361 

.889 

Std.Error of 
the Estimate 

.087 

.088 

.088 

.090 

.083 

.086 

.033 

Sig. 

.000 

.000 

.000 

.000 
.000** 
.000* 
.192 

There is only one iteration that is not enough to calculate linear regression. 
.928 
.899 
.861 
.813 
.773 
.642 
.608 
.944 

.861 

.809 

.741 

.662 

.597 

.412 

.369 

.892 

.861 

.809 

.741 

.622 

.597 

.409 

.318 

.675 

.088 

.088 

.089 

.089 

.089 

.091 

.083 

.050 

.000 

.000 

.000 

.000 

.000 
.000** 
.000* 
.329 

There is only one iteration that is not enough to calculate linear regression. 
.932 
.909 
.878 
.837 
.789 
.745 
.628 
.654 

1 

.868 

.826 

.770 

.700 

.622 

.556 

.394 

.427 
1 

.868 

.826 

.770 

.700 

.622 

.555 

.390 

.381 
1 

.089 

.088 

.088 

.089 

.089 

.090 

.087 

.088 

.000 

.000 

.000 

.000 

.000 

.000 

.000 
.000** 
.000* 

There is only one iteration that is not enough to calculate linear regression. 

When the individual experiment results calculated by eigenvalues, 

disparities, and robustnesses are examined in Table 4.24 above, the significant 

experiments have the multiple correlation coefficients, Rs, varying from 74.5% to 

93.2% that indicate a good relationship. The coefficients of determination, R 

Square (R2) - varying from 55.6% to 86.8%, of the variation in probability of BLUE 

win are explained by the model that are fair. 
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4.3.2.3. The Analysis of Column-wise Experiments With Respect To 
Eigenvalue, Disparity, and Robustness 

Table 4.25. Collective Regression Results for the Decider Basis Aggregated Data of each 
BLUE Combination vs. each RED Combination WRT Eigenvalue, Disparity, and 
Robustness 

Model 

ModelX3X 
ModelX4X 
ModelX5X 
ModelX6X 
ModelX7X 
ModelX8X 
ModelX9X 
ModelXlOX 
ModelXHX 
ModelX12X 

R 

.927 

.904 

.874 

.833 

.786 

.738 

.619 

.606 
1 

R Square 

.860 

.818 

.763 

.694 

.619 

.544 

.383 

.368 
1 

Adjusted R 
Square 

.860 

.818 

.763 

.694 

.619 

.544 

.380 

.320 
1 

Std.Error of 
the Estimate 

.089 

.088 

.088 

.089 

.089 

.090 

.087 

.093 

.000 

Sig. 

.000 

.000 

.000 

.000 

.000 

.000 
.000** 
.000* 

There is only one iteration that is not enough to calculate linear regression. 

When the experiments results calculated by eigenvalues, disparities, and 

robustnesses along with the deciders (column-wise) are examined in Table 4.25 

above, the R values for significant experiments vary from 73.8% to 92.7%, and 

the R square values for significant experiments vary from 54.4% to 86%. They 

decrease exponentially as the number of deciders increases. The experiments 

are significant up to 9 Deciders. 
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4.3.2.4. The Analysis of Row-wise Experiments With Respect To 
Eigenvalue, Total Disparity, and Robustness 

Table 4.26. Collective Regression Results for the Decider Basis Aggregated Data of each 
BLUE Combination vs. each RED Combination WRT Eigenvalue, Disparity, and 
Robustness 

Model 
Model3Y3 
Model4Y4 
Model5Y5 
Model6Y6 
Model7Y7 
Model8Y8 
Model9Y9 
Model10Y10 
Model11Y11 
Model12Y12 

R R Square Adjusted R 
Square 

Std.Error of 
the Estimate Sig. 

There is only one iteration that is not enough to calculate linear regression. 
.979 
.756 
.811 
.848 
.852 
.873 
.877 
.888 
.889 

.959 

.571 

.658 

.719 

.727 

.762 

.768 

.788 

.791 

.837 

.530 

.653 

.718 

.727 

.762 

.768 

.788 

.791 

.050 

.087 

.088 

.088 

.089 

.088 

.088 

.088 

.089 

.255 
.000* 
.000 
.000 
.000 
.000 
.000 
.000 
.000 

When the experiments results calculated by applying eigenvalues, 

disparities, and robustnesses along with the Sensors/Influencers (row-wise) are 

examined in Table 4.26 above, the R values are increased logarithmically from 

0.811 to 0.889 as the number of Sensors/I nfluencers increases, likewise the R 

square values are increased logarithmically from 0.658 to 0.791. They look like 

they are asymptotic to 0.9 and 0.8, respectively. 
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4.3.3. THE ANALYSIS OF ALL EXPERIMENTS WITH RESPECT TO ALL 
METRICS 

Table 4.27. Regression Result for the Aggregated Data of each BLUE Combination vs. 
each RED Combination WRT All Metrics 

Model Summary 

Model 

1 

2 

3 

4 

5 

S 

7 

8 

9 

10 

11 

12 

13 

R 

.591= 

.854° 

.859= 

.879= 

.883' 

.888' 

.885" 

.891' 

.892 

.892-

.892' 

.892! 

.892'" 

R Square 

.349 

.729 

.737 

.772 

.780 

.789 

.790 

.795 

.795 

.795 

.795 

.795 

.795 

Adjusted R 

Square 

.349 

.729 

.737 

.772 

.780 

.789 

.790 

.795 

.795 

.795 

.795 

.795 

.795 

Std. Error of the 

Estimate 

.15818S295051 

.100882088398 

.099215141985 

.092437890888 

.090792881422 

.088923590518 

.088740137758 

.087717097880 

.087710550839 

.087707057592 

.087599907205 

.087593995994 

.087593881370 

Change Statistics 

R Square 

Change 

.345 

.379 

.009 

.035 

,008 

.009 

.001 

.005 

.000 

.000 

.001 

.000 

.000 

F Change 

3238038.849 

8418272.986 

201577.434 

915817.345 

220322.335 

255917.883 

24950.319 

141353.178 

888.885 

494.863 

14748.700 

814.178 

47.031 

df1 df2 

8024754 

8024753 

8024752 

8024751 

8024750 

8024749 

8024748 

8024747 

8024748 

8024745 

8024744 

8024743 

8024742 

Sig. F Change 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

a. Predictors: (Constant), RED_Connectivity 

b. Predictors: (Constant), RED_Conneotivity, BLUE_Connectivity 

c. Predictors: (Constant), RED_ConnectMty, BLUE_Connectivity, BLUE_Eigenvalues 

d. Predictors: (Constant), RED_Connectivity, BLUE_Connectivity, BLUE_Eigenvalues, RED_Eigenvalues 

e. Predictors: (Constant), RED_Connectivity, BLUE_Connectivity, BLUE_Eigenvalues, RED_Eigenvalues, RED_Total_D is parity 

f. Predictors: (Constant). RED_Connectivity, BLUE_Connectivity, BLUE_Eigenvalues, RED_Eigenvalues, RED_Total_Disparity, BLUE_Total_Oisparity 

g. Predictors: (Constant), RED_Conneotivity, BLUE_Connecth/ity, BLUE_Eigenvalues, RED_Eigenvalues, RED_Total_D is parity, 

BLUE_Total_Disparity, RED_Strength 

h. Predictors: (Constant), RED_Connectivity, BLUE_Connectivlty, BLUE_Eigenvalues, REO_Eigenvalues, RED_Total_Disparity, 

BLUE_Total_Disparity, RED_Strength, BLUE_Strength 

l Predictors: (Constant), RED_Connectivity, BLUE_Connectivity, BLUE_Eigenvalues, RED_Eigenvalues, RED_Total_Disparity, BLUE_Total_Disparity, 

RED_Strength, BLUE_Strength, RED_Stability 

j . Predictors: (Constant), RED_Connectwity, BLUE_Connectivity, BLUE_Eigenvalues, RED_Eigenvalues, RED_Total_Disparity, BLUE_Total_Disparity, 

RED_Strength, BLUE_Strength, RED_Stability, RED_Power 

k. Predictors: (Constant), RED_Connectivity: BLUE_Connectivity, BLUE_Eigenvalues, RED_Eigenvalues, RED_Total_Disparity, 

BLUE_Total_Disparity, RED_Strength, BLUE_Strength, RED_Stability, RED_Power, BLUE_Power 

I. Predictors: (Constant), RED_Connectivity, BLUE_ConnedivityT BLUE_Eigenvalues, RED_Eigenvalues, RED_Total_Disparity, BLUE_Total_Disparity, 

RED_Strength, BLUE_Strength, RED_Stability, RED_Power, BLUE_Power, BLUE_Robustness 

m. Predictors: (Constant), RED_Connectivity, BLUE_Connectwity, BLUE_Eigenvalues, RED_Eigenvalues, RED_Total_D is parity, 

BLUE_Total_Disparity, RED_Strength, BLUE_Strength, RED_Stability, RED_Power, BLUE_Power, BLUE_Robustness, BLUE_Stability 

When the experiments results of collected 6,024,756 datasets calculated 

by applying all metrics are examined in Table 4.27 above, the result of best 

performance has R and R square values of 0.892 and 0.795, respectively. They 

are close to each other and can be accepted as high. Since there is a perfect 



80 

linear relationship among the independent variables, the estimates for the model 

can be computed in five different ways. 

Table 4.28. Regression Result for the Aggregated Data of each BLUE Combination vs. 
each RED Combination WRT Eigenvalue, Power, and Connectivity 

Model Summary 

Model 

1 

R 

892j 

R Square 

795 

Adjusted R 

Square 

.795 

Std. Error of the 

Estimate 

.087644566852 

Change Statistics 

R Square 

Change 

.795 

FChange 

3896162379 

dfl 

6 

df2 

6024749 

Sig. F Change 

.000 

a. Predictors: (Constant), RED_Conned)vity, BLUE_Connectivity, RED_Eigenvalues, BLUE_Power, BLUE.Eigenvaluas, RED_Power 

Coefficients9 

Model 

1 (Constant) 

BLUE__Eigenvalues 

RED_Eigenvalues 

BLUE_Power 

RED_Power 

BLUE_Conneco'vity 

RED_ConnectJvity 

Unstandardized Coefficients 

e 
.426 

.292 

-.260 

.098 

-.101 

-.006 

.007 

Std. Error 

.001 

.000 

.000 

.000 

.000 

.000 

.000 

Standardized 

Coefficients 

Beta 

259 

-.230 

.455 

-.467 

-.110 

.115 

t 

546.292 

765.060 

-680.122 

788.326 

-808.020 

-244.592 

256.655 

Sig. 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

95.0% Confidence IntervalforB 

Lower Bound 

.424 

.292 

-.261 

.098 

-.101 

-.007 

.007 

Upper Bound 

.427 

.293 

-.259 

.099 

-.101 

-.006 

.007 

Conelatlons 

Zero-order 

.453 

-.422 

.486 

-.485 

-.590 

.591 

Partial 

298 

-267 

.306 

-.313 

-.099 

.104 

Part 

.141 

-.125 

.145 

-.149 

-.045 

.047 

Colllnearity Statistics 

Tolerance 

298 

298 

.102 

.102 

.168 

.168 

VIF 

3.360 

3.360 

9.802 

9.802 

5.948 

5.948 

a. Dependent Variable: PBWIn 

After the multicolinearity check, a regression analysis of the APFE* the 

power, and the connectivity values yields very small increase in the R and R 

square values by 0.45% and 0.76%, respectively. This yields the following 

equation: 

y = 0.426 + 0.292*! - 0.260x2 + 0.098x3 - 0.101x4 - 0.006% + 0.007% 

Where, y: the average probability of a BLUE win for that configuration 

x-i: the APFE value of a BLUE configuration 

x2: the APFE value of a RED configuration 

X3: the power value of a BLUE configuration 

X4: the power value of a RED configuration 

X5: the connectivity value of a BLUE configuration 

X6: the connectivity value of a RED configuration 
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4.3.3.1. The Analysis of Each Experiment With Respect To Eigenvalue, 
Power, and Connectivity 

Table 4.29. Collective Regression Results for the Aggregated Data of each BLUE 
Combination vs. each RED Combination WRT Eigenvalue, Power, and Connectivity 

Model 

Model3.3.3 
Model4.3.4 
Model4.4.4 
Model5.3.5 
Model5.4.5 
Model5.5.5 
Model6.3.6 
Model6.4.6 
Model6.5.6 
Model6.6.6 
Model7.3.7 
Model7.4.7 
Model7.5.7 
Model7.6.7 
Model7.7.7 
Model8.3.8 
Model8.4.8 
Model8.5.8 
Model8.6.8 
Model8.7.8 
Model8.8.8 
Model9.3.9 
Model9.4.9 
Model9.5.9 
Model9.6.9 
Model9.7.9 
Model9.8.9 
Model9.9.9 
Model10.3.10 
Model10.4.10 
Model10.5.10 
Model10.6.10 
Model10.7.10 
Model10.8.10 
Model10.9.10 
Model 10.10.10 

R R Square 
Adjusted R 

Square 

Std.Error 
of the 

Estimate 
Sig. 

There is only one iteration that is not enough to calculate linear regression. 
.960 .922 .765 .050 .280 

There is only one iteration that is not enough to calculate linear regression. 
.755 

1 
.570 

1 
.525 

1 
.091 
.000 

.000* 

There is only one iteration that is not enough to calculate linear regression. 
.836 
.711 
.973 

.699 

.506 

.947 

.694 

.466 

.842 

.085 

.100 

.017 

.000** 
.000* 
.229 

There is only one iteration that is not enough to calculate linear regression. 
.872 
.766 
.737 
.577 

.760 

.587 

.543 

.333 

.759 

.584 

.506 
-1.000 

.088 
.89 

.085 

.067 

.000** 

.000** 
.000* 
.816 

There is only one iteration that is not enough to calculate linear regression. 
.885 
.827 
.743 
.813 
.686 

.783 

.684 

.552 

.660 

.471 

.783 

.683 

.549 

.633 
-.588 

.087 

.089 

.087 

.081 

.100 

.000 

.000 
.000** 
.000* 
.728 

There is only one iteration that is not enough to calculate linear regression. 
.911 
.860 
.805 
.748 
.722 
.875 

.830 

.740 

.649 

.560 

.522 

.766 

.830 

.740 

.648 

.557 

.483 

.299 

.086 

.088 

.088 

.092 

.080 

.083 

.000 

.000 

.000 
.000** 
.000* 
.483 

There is only one iteration that is not enough to calculate linear regression. 
.920 
.880 
.830 
.788 
.679 
.642 
.981 

.847 

.775 

.688 

.621 

.462 

.412 

.963 

.847 

.775 

.688 

.621 

.458 

.365 

.889 

.086 

.087 

.088 

.089 

.083 

.086 

.033 

.000 

.000 

.000 

.000 
.000** 
.000* 
.192 

There is only one iteration that is not enough to calculate linear regression. 
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Table 4.29. (continued) 

Model 

Modell 1.3.11 
Model 11.4.11 
Modell 1.5.11 
Modell 1.6.11 
Modell 1.7.11 
ModeM 1.8.11 
Modell 1.9.11 
ModelH.10.11 
ModeM 1.11.11 
Model12.3.12 
Model12.4.12 
Model12.5.12 
Model12.6.12 
Model12.7.12 
Model12.8.12 
Model12.9.12 
Model12.10.12 
Model12.11.12 
Model12.12.12 

R 

.930 

.902 

.864 

.817 

.779 

.640 

.604 

.944 

R Square 

.865 

.814 

.747 

.667 

.607 

.410 

.364 

.892 

Adjusted R 
Square 

.865 

.814 

.747 

.667 

.607 

.407 

.313 

.675 

Std.Error 
of the 

Estimate 
.087 
.086 
.088 
.088 
.088 
.091 
.083 
.050 

Sig. 

.000 

.000 

.000 

.000 
.000** 
.000* 
.000* 
.329 

There is only one iteration that is not enough to calculate linear regression. 
.935 
.912 
.881 
.841 
.792 
.751 
.632 
.653 

1 

.873 

.831 

.777 

.708 

.627 

.564 

.399 

.426 
1 

.873 

.831 

.777 

.708 

.627 

.564 

.396 

.379 
1 

.088 

.086 

.087 

.088 

.088 

.089 

.086 

.088 

.000 

.000 

.000 

.000 

.000 

.000 
.000** 
.000** 
.000* 

There is only one iteration that is not enough to calculate linear regression. 

When the individual experiment results calculated by eigenvalues, powers, and 

connectivies are examined in Table 4.29 above, the significant experiments have 

the multiple correlation coefficients, Rs, varying from 78.8% to 93.5% that 

indicate a good relationship. The coefficients of determination, R Square (R2) -

varying from 62.1% to 87.3%, of the variation in probability of a BLUE win are 

explained by the model that are fair. 
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4.3.3.2. The Analysis of Decider Basis Experiments With Respect To 
Eigenvalue, Power, and Connectivity 

Table 4.30. Collective Regression Results for the Decider Basis Aggregated Data of each 
BLUE Combination vs. each RED Combination WRT Eigenvalue, Power, and Connectivity 

Model 

ModelX3X 
ModelX4X 
ModelX5X 
ModelX6X 
ModelX7X 
ModelX8X 
ModelX9X 
ModelXlOX 
ModelXHX 
ModelX12X 

R 

.930 

.907 

.877 

.837 

.789 

.744 

.624 

.610 
1 

R Square 

.864 

.823 

.770 

.701 

.623 

.553 

.389 

.372 
1 

Adjusted R 
Square 

.864 

.823 

.770 

.701 

.623 

.553 

.386 

.324 
1 

Std.Error of 
the 

Estimate 
.088 
.087 
.087 
.088 
.088 
.089 
.086 
.093 
.000 

Sig. 

.000 

.000 

.000 

.000 

.000 

.000 
.000** 
.000* 

There is only one iteration that is not enough to calculate linear regression. 

When the experiments results calculated by eigenvalues, powers, and 

connectivites along with the deciders (column-wise) are examined in Table 4.30 

above, the R values for significant experiments vary from 74.4% to 93%, and the 

R square values for significant experiments vary from 55.3% to 86.4%. They 

decrease exponentially as the number of deciders increases. The experiments 

are significant up to 9 Deciders. 
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4.3.3.3. The Analysis of Row-wise Experiments With Respect To 
Eigenvalue, Total Disparity, and Robustness 

Table 4.31. Collective Regression Results for the Sensor/lnfluencer Basis Aggregated Data 
of each BLUE Combination vs. each RED Combination WRT Eigenvalue, Power, and 
Connectivity 

Model 

Model3Y3 
Model4Y4 
Model5Y5 
Model6Y6 
Model7Y7 
Model8Y8 
Model9Y9 
Model"! 0Y10 
Model11Y11 
Model12Y12 

R R Square Adjusted R 
Square 

Std. Error of 
the 

Estimate 
Sig. 

There is only one iteration that is not enough to calculate linear regression. 
.979 
.757 
.816 
.849 
.856 
.876 
.880 
.891 
.893 

.959 

.573 

.666 

.721 

.733 

.767 

.774 

.793 

.798 

.837 

.531 

.661 

.720 

.733 

.767 

.774 

.793 

.798 

.050 

.088 

.087 

.088 

.088 

.088 

.087 

.087 

.088 

.255 
.000* 
.000** 
.000** 
.000 
.000 
.000 
.000 
.000 

When the experiments results calculated by applying eigenvalues, 

disparities, and robustnesses along with the sensors/influencers (row-wise) are 

examined in Table 4.31 above, the R values are increased logarithmically from 

0.856 to 0.893 as the number of Sensors/influencers increases, likewise the R 

square values are increased logarithmically from 0.733 to 0.798. They look like 

they are asymptotic to 0.9 and 0.8, respectively. 



85 

5. CONCLUSION 

5.1. GENERAL EVALUATION OF THE RESEARCH PURPOSE 

The purpose of this research is to explore what causes Network Centric 

Operations to be effective and the influence of network factors on NCOs. 

This research is the second attempt to identify up to what configuration the 

utility of the Perron-Frobenius Eigenvalue (APFE) can be determined as a good 

metric to predict the perfomance of a network in general and particularly combat 

power of the Information Age (Cares, 2005). 

The only known parameter about each experiment is a specially designed 

binary coded adjacency matrix according to the defined rules in Table 2.1. The 

adjacency matrix points out the relationships between the entites. Each entity is 

initially displaced randomly. Then entities except for Deciders move around 

according to rule set forth to do their designated functions: sense, track, shoot, 

kill, and move. From only that adjacency matrix in hand, that differs solely in 

entities arrangements, various metrics have been derived to measure the ability 

of a network to generate the feedback effects in general and combat power in the 

environment of the Information Age Combat Model (Cares, 2005). The total of 55 

experiments with various force combinations were executed to test its 

effectiveness and influence in an agent based simulation model. 

The Sensor-Decider-lnfluencer triad as a squad (minimum structure) of a 

war unit is interdependent to sensors and influencers since Deciders are 

accepted as everlasting entities during the experiment. The war unit without 

Sensors can not sense and track; likewise it can not shoot and kill without 

Influencers, either. The war unit with equal number of Sensors and Influencers 

(called as balanced) is more effective and durable for the war job. The war unit 

without the other half is not effective; it is no longer a war unit in the battlefield, it 

just waits to be killed. 
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When the probability of a BLUE win is ranked from lowest to highest for its 

each combination vs. all RED combinations, the BLUE force with maximum 

unbalanced (completely scattered deciders) has the lowest probability of BLUE 

win; the BLUE force with maximum balanced deciders has the highest probability 

of BLUE win. Intermediate values lay between these two extreme combinations. 

For example, the war unit that one of its Deciders with one Sensor and maximum 

Influencers, the other Decider with maximum Sensors and one Influencer and the 

rest of its Deciders with one Sensor and one Influencer can be thought as a 

maximum unbalanced war unit. A war unit that has one of its Deciders with 

maximum Sensors and Influencers and the rest of its Deciders with one Sensor 

and one Influencer can be thought as a maximum balanced war unit. The mid­

points in the ranking are almost evenly balanced (have almost the same number 

of Sensors and Influencers) war unit (i.e., each Decider has two Sensors and two 

Influencers or three Sensors and three Influencers, etc.; a minor deviation might 

have seen due to randomness). The more balanced the war unit, the better the 

performance of a networked force. 

The eigenvalues, disparity, robustness, strength, power, stability, and 

connectivity are some metrics generated from the different meaningful 

combinations of Sensors and Influencers linked to each Decider by applying 

various operations described earlier. These metrics are the tools to detect the 

maximum points from unbalanced to balanced intervals. Some of the metrics are 

Integers and some of them are real numbers to give the balance issue a weight; 

low number if it is unbalanced, there is high number otherwise. 

The results of 55 experiments with each BLUE combination vs all RED 

combinations in the agent-based simulation modeling presented in this research 

show that the multiple correlation coefficient, R, is 58% and the coefficients of 

determination, R Square (R2) is 33.6%. There is a very poor degree of correlation 

between the APFE value and the average probability of a BLUE win. Therefore, the 

value of the APFE is a very poor metric by itself to measure the performance of an 

Information Age Combat Force. 
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The results of 55 experiments with each BLUE combination vs each RED 

combination in the agent-based simulation modeling presented in this research 

show that the multiple correlation coefficient, R, is 81.5% and the coefficients of 

determination, R Square (R2) is 66.4%. There is a very fair degree of positive 

correlation between the BLUE APFE value and the average probability of a BLUE 

win; there is a very fair degree of negative corelation between the RED APFE 

value and the average probability of a BLUE win. Therefore, the value of the APFE 

is a very fair predictor or metric by itself to measure the performance of an 

Information Age Combat Force. 

While the APFE value alone was a sufficient predictor as poor/fair for a 

networked forces up to with seven (excluded) Deciders, it was not a sufficient 

predictor by itself for a networked force with larger than or equal to seven 

Deciders. As the ratio between the the number of distinct eigenvalues and the 

number of different meaningful combinations decreases as the number of 

Sensor-lnfluencer and Decider increases. This effect diminishes the power of the 

APFE value as a metric to measure the probability of a BLUE win. So additional 

metrics should be taken into consideration to measure the performance of a 

networked force. 

Two additional metrics introduced before (Deller, 2009) are applied with 

the eigenvalues increasing the performance measure of a networked force very 

significantly in the results of 55 experiments with each BLUE combination vs all 

RED combinations. The multiple correlation coefficient, R, is increased from 

0.580 to 0.891 by 53.62%; and the coefficients of determination, R square, is 

increased from 0.336 to 0.794 by 136.3%. There are a fair degree of positive 

corelation (0.580) in between the eigenvalue and the probability of a BLUE win, a 

poor degree of negative corelation (-0.232) in between the disparity and the 

probability of a BLUE win and a good degree of positive corelation (0.838) in 

between the robustness and the probability of a BLUE win. 
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When the same metrics are applied to the results of 55 experiments with 

each BLUE combination vs each RED combination in the agent-based simulation 

modeling, they increase the the performance measure of a networked force well. 

The multiple correlation coefficient, R, is increased from 0.815 to 0.888 by 

8.95%; and the coefficients of determination, R square, is increased from 0.664 

to 0.789 by 18.83%. There are a fair degree of positive corelations (0.483) 

between the BLUE eigenvalue and the probability of a BLUE win, a poor degree 

of negative corelation (-0.178) between the BLUE total disparity and the 

probability of a BLUE win and a fair degree of positive corelation (0.583) in 

between the BLUE robustness and the probability of a BLUE win, a fair degree of 

negative corelation (-0.422) between the RED eigenvalue and the probability of a 

BLUE win, a poor degree of positive corelation (0.204) between the RED total 

disparity and the probability of a BLUE win and a fair degree of negative 

corelation (-0.582) between the BLUE robustness and the probability of a BLUE 

win. 

The additional new metrics, power and connectivity, introduced in this 

research can increase the performance measure of a networked force better 

once they are applied together with the previous metrics to the results of 55 

experiments with each BLUE combination vs all RED combinations. The R value 

is increased from 0.891 to 0.983 by 10.32% and the R square valeu is increased 

from 0.794 to 0.966 by 21.66%. There are a fair positive degrees of corelation 

(0.528) between the power and the probability of a BLUE win, a good degree of 

negative corelation (-0.866) between the connectivity and the probability of a 

BLUE win. 

When the eigenvalue, the power and the connectivity values are applied to 

the results of 55 experiments with each BLUE combination vs each RED 

combination as metrics to measure the performance of a networked force, they 

yield a little bit better performance, less than 1%. The R value is slightly 

increased from 0.888 to 0.892 by 0.45%, and the R square value is also slightly 
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increased from 0.789 to 0.795 by 0.76%. There are a fair degree of positive 

corelations (0.453) between the BLUE eigenvalue and the probability of a BLUE 

win, a fair degree of positive corelation (0.486) between the BLUE power and 

the probability of a BLUE win, a fair degree of negative corelation (-0.590) 

between the BLUE connectivity and the probability of a BLUE win, a fair degree 

of negative corelation (-0.422) between the RED eigenvalue and the probability 

of a BLUE win, a poor degree of negative corelation (-0.485) between the RED 

power and the probability of a BLUE win and a fair degree of positive corelation 

(0.591) between the RED connectivity and the probability of a BLUE win. 

5.2. RECOMMENDATIONS FOR FUTURE WORK 

There is still plenty of room to explore in the agent-based modeling of the 

Information Age Combat Modeling. 

Java code based on the mathematical function defined in this research 

runs fast to a certain point then it turns out to be cumbersome script that looks 

like it is frozen. It runs fast for a small number of Deciders, but when the number 

of Deciders is increased, the computation time gets higher exponentially. The 

code ran for almost a month for 30 Sensors, 6 Deciders, and 30 Influencers; but 

it could not finish running the code in cluster of lunix High Performance Computer 

Group. The same mathematical function or a better one can be created and 

converted into a better performing environment. 

A more powerful agent-based modeling and simulation environment 

supporting 64-bit operating system can be used to explore a larger research 

space. A 32-bit opearing system has a memory issue, it can allocate up to 3 GB 

RAM memory. If a large model is run, there are two options; either split the inputs 

into small groups and run them individually, then gather the data (it takes a lot of 

time) or run the whole model in 64-bit operating system in cluster. A 64-bit 

operating system has enough memory allocation to run larger models. NetLogo 

and AnyLogic are both Java based agent-based modeling and simulation 

packages. NetLogo does not need user to know Java to build the models in it; 
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but it is very cumbersome and not flexible to varying stuations. AnyLogic is very 

powerful and flexible, but it is does not support a 64-bit operating system, and 

user needs to know Java coding to build the models. 

A significant contribution will be to add some links and define some 

functions accordingly to activate the inactive deciders that have neither a Sensor 

nor an Influencer. "Echelon" links between Sensors to Sensors, Deciders to 

Deciders, and Influencers to Influencers, such as link types 1, 5, 11, or direct 

coordination links from Sensors to Influencers, such as a link type 9, should be 

thought as a good contribution for the future work. Moreover, Deciders are set 

forth as invulnerable targets for opposing Influencers. Without a Sensor or an 

Influencer, Deciders are set aside. Letting the Deciders be vulnerable Targets for 

opposing Influencers make the models more realistic combined with the 

proposed links for the future work. These additional links and rules will definitely 

increase the performance of a networked force and change its adjacency matrix 

structure. 

Multiple regression analysis with the interactions of the metrics will be a 

good research area for the future work. 

Both Sensors and Influencers with identical features are used in this 

research. Different research for the whole search space will be a good study for 

varying sensing and influencing ranges. 

It is also a good contribution to analyze the performance of networked 

forces of unequal assets. 

The whole experiments are done deterministically. The biggest 

contribution could be to redesign and analyse the whole model with new rules in 

a stochastic manner. 

5.3. SUMMARY 

The concept of attack, defense, and security in the twenty-first century is 

very robust and dynamic as the threat changes in the Information Age. There is 
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no pitched battle anymore that require large units from both sides. There are 

regional or local battles that require small units that are used more effectively. 

For security reasons, geographically dispersed and functionally diverse units are 

required. The challenge is how to orchestrate or control these units for their 

intended purpose. How does command and control function? What type of units 

are required? The answers to these questions are obviously a complex matter. 

The concept of distributed networked operations must be understood thoroughly 

in order to command and control the required units effectively. The entities 

represent the units and the links represent the relationship in between them. If 

some quantifiable metrics (parameters) that represent the characteristics of the 

distributed networked operations are comprehended, then it is easy to construct 

the units for the intended purpose and orchestrate them accordingly. There is not 

just a good quantifiable metric that can explain the relationship between the 

nodes, in general, as the network structure grows. But the combination of the 

metrics that are derived from a nodes partitioning structure can explain the 

relationship more precisely. The structure of the networked centric operations as 

in the Information Age Combat Modeling is also applicable for non-military 

applications for distributed, networked operations. 
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APPENDIX B: JAVA CODES OF IACM IN ANYLOGIC 

package sidtmodel; 
import java.sql.Connection; 
import java.sql.SQLException; 

import java.util.ArrayList; 
import j ava.ut i1.Arrays; 
import java.util.Calendar; 
import java.util.Collection; 
import java.util.Collections; 
import java.util.Comparator; 
import java.util.Currency; 
import java.util.Date; 
import java.util.Enumeration; 
import java.util.HashMap; 
import java.util.HashSet; 
import java.util.Hashtable; 
import java.util.Iterator; 
import java.util.LinkedList; 
import java.util.List; 
import java.util.Listlterator; 
import java.util.Locale; 
import java.util.Map; 
import j ava.ut i1.Random; 
import java.util.Set; 
import java.util.SortedMap; 
import java.util.SortedSet; 
import java.util.Stack; 
import java.util.Timer; 
import j ava.ut i1.TreeMap; 
import java.util.TreeSet; 
import java.util.Vector; 

import java.awt.Color; 
import j ava.awt.Font; 
import java.awt.Graphics2D; 
import java.awt.geom.AffineTransform; 

import static java.lang.Math.*; 
import static com.xj.anylogic.engine.presentation.UtilitiesColor.*; 
import static com.xj.anylogic.engine.presentation.UtilitiesDrawing. 
import static com.xj.anylogic.engine.HyperArray.*; 

import com.xj.anylogic.engine.*; 
import com.xj.anylogic.engine.analysis.*; 
import com.xj.anylogic.engine.connectivity.*; 
import com.xj .anylogic.engine.connectivity.ResultSet; 
import com.xj.anylogic.engine.connectivity.Statement; 
import com.xj.anylogic.engine.presentation.*; 

import java.awt.geom.Arc2D; 

public class Main extends ActiveObject 
{ 



// Parameters 

public 
int nBDeciders; 

/ * * 
* Returns default value for parameter <code>nBDeciders</code>. 
*/ 

public 
int _nBDeciders_DefaultValue_xjal() { 

return 
4 

} 

public void set_nBDeciders( 
int nBDeciders ) { 

i£ (nBDeciders == this.nBDeciders) { 
return; 

} 
this.nBDeciders = nBDeciders; 
onChange_nBDeciders() ; 
onChange(); 

} 

void onChange_nBDeciders() { 
int index; 

index = 0; 
for ( Turtle object : influencersB ) { 
object.set_nFleets(nBDeciders) ; 
index++; 

} 
index = 0; 
for ( Turtle object : sensorsB ) { 
object.set_nFleets(nBDeciders); 
index++; 

} 

} 

public 
double sRange; 

/ ** 
* Returns default value for parameter <code>sRange</code>. 
*/ 

public 
double _sRange_DefaultValue_xjal() { 

return 
10 

} 

public void set_sRange( 
double sRange ) { 

if (sRange == this.sRange) { 



return; 
} 
this.sRange = sRange; 
onChange_sRange(); 
onChange(); 

} 

void onChange_sRange() { 
} 

public 
double iRange; 

* Returns default value for parameter <code>iRange</code>. 
*/ 

public 
double _iRange_DefaultValue_xjal() { 

return 
10 

} 

public void set_iRange( 
double iRange ) { 

if (iRange == this.iRange) { 
return; 

} 
this.iRange = iRange; 
onChange_iRange(); 
onChange(); 

} 

void onChange_iRange() { 
} 

public 
int BID; 

/ ** 
* Returns default value for parameter <code>BID</code>. 
*/ 

public 
int _BID_DefaultValue_xjal() { 

return 0; 
} 

public void set_BID( 
int BID ) { 

if (BID == this.BID) { 
return; 

} 
this.BID = BID; 
onChange_BID(); 
onChange(); 



} 

void onChange_BID() { 
} 

public 
int RID; 

/ * * 

* Returns default value for parameter <code>RID</code>. 
*/ 

public 
int _RID_DefaultValue_xjal() { 

return 0; 
} 

public void set_RID( 
int RID ) { 

if (RID == this.RID) { 
return; 

} 
this.RID = RID; 
onChange_RID(); 
onChange(); 

void onChange_RID() { 
} 

public 
int seed; 

/ ** 
* Returns default value for parameter <code>seed</code>. 
*/ 

public 
int _seed_DefaultValue_xjal() { 

return 0; 
} 

public void set_seed( 
int seed ) { 

if (seed == this.seed) { 
return; 

} 
this.seed = seed; 
onChange_seed(); 
onChange(); 

void onChange_seed() { 
} 

public 



int nRDeciders; 

/ ** 
* Returns default value for parameter <code>nRDeciders</code>. 
*/ 

public 
int _nRDeciders_DefaultValue_xjal() { 

return 
4 

} 

public void set_nRDeciders( 
int nRDeciders ) { 

if (nRDeciders == this.nRDeciders) { 
return; 

} 
this.nRDeciders = nRDeciders; 
onChange_nRDeciders() ; 
onChange(); 

} 

void onChange_nRDeciders() { 
int index; 

index = 0; 
for ( Turtle object : influencersR ) { 
object.set_nFleets(nRDeciders) ; 
index++; 

} 
index = 0; 
for ( Turtle object : sensorsR ) { 
object.set_nFleets(nRDeciders) ; 
index++; 

} 

} 

// Plain Variables 

public 
int 
tick; 
public 

Object[] 
result; 
public 

int 
bWin ; 
public 

int 
rWin ; 
// Events 

public EventTimeout event = new EventTimeout(this); 

©Override 
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public String getNameOf( EventTimeout _e ) { 
iff _e == event ) return "event"; 
return super.getNameOf( _e ); 

} 

©Override 
public int getModeOf( EventTimeout _e ) { 

if ( _e == event ) return EVENT_TIMEOUT_MODE_CYCLIC; 
return super.getModeOf( _e ) ; 

} 

©Override 
public double getFirstOccurrenceTime( EventTimeout _e ) { 

if ( _e == event ) return 
0 

return super.getFirstOccurrenceTime( _e ); 
} 

©Override 
public double evaluateTimeoutOf( EventTimeout _e ) { 

if( _e == event) return 
1 

return super.evaluateTimeoutOf( _e ); 
} 

©Override 
public void executeActionOf( EventTimeout _e ) { 

if ( _e == event ) { 

tick++; 
if (influencersR.size() + sensorsR.size() == 0) { 

// Blue team wins 
bWin = 1; 
event.reset(); 

// getEngine().stop(); 
} 

if (influencersB.size() + sensorsB.size() ==0) { 
// Red team wins 
rWin = 1; 
event.reset(); 

// getEngine().stop(); 
} 

reset(); 
sense(); 
track(); 
shoot(); 
killO ; 
movelnfluencers() 
movelnfluencers() 
movelnfluencers() 
movelnfluencers() 
movelnfluencers() 
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moveSensors() 
moveSensors() 
moveSensors() 
moveSensors() 
moveSensors() 

return ; 
} 
super.executeActionOf( _e ) ; 

} 
// Embedded Objects 

public String getNameOf( ActiveObject ao ) { 
return null; 

} 

public ActiveObjectArrayList<Turtle> deciderB = new 
ActiveObjectArrayList<Turtle>(); 

public ActiveObjectArrayList<Turtle> deciderR = new 
ActiveObjectArrayList<Turtle>(); 

public ActiveObjectArrayList<Turtle> influencersB = new 
ActiveObjectArrayList<Turtle>(); 

public ActiveObjectArrayList<Turtle> influencersR = new 
ActiveObjectArrayList<Turtle>(); 

public ActiveObjectArrayList<Turtle> sensorsB = new 
ActiveObjectArrayList<Turtle>(); 
public ActiveObjectArrayList<Turtle> sensorsR = new 

ActiveObjectArrayList<Turtle>(); 

public String getNameOf( ActiveObjectCollection<?> aolist ) { 
iff aolist == deciderB ) return "deciderB"; 
iff aolist == deciderR ) return "deciderR"; 
iff aolist == influencersB ) return "influencersB"; 
iff aolist == influencersR ) return "influencersR"; 
iff aolist == sensorsB ) return "sensorsB"; 
iff aolist == sensorsR ) return "sensorsR"; 
return null; 

} 

/ ** 
* This method creates and adds new embedded object in the replicated 

embedded object collection >deciderB<br> 
* ©return newly created embedded object 
*/ 

public Turtle add_deciderB() { 
int index = deciderB.size(); 
Turtle object = instantiate_deciderB_xjal( index ); 
setupParameters_deciderB_xjal( object, index ); 
create_deciderB_xjal( object, index ); 
object.start(); 
return object; 

} 

/ * * 
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* This method creates and adds new embedded object in the replicated 
embedded object collection deciderB<br> 

* This method uses given parameter values to setup created embedded 
object<br> 

* Index of this new embedded object instance can be obtained through 
calling <code>deciderB.size()</code> method <strong>before</strong> 
this method is called 

* ©param type 
* ©param nFleets 
* ©param teamColor 
* ©return newly created embedded object 
*/ 

public Turtle add_deciderB( int type, int nFleets, Color teamColor ) 
{ 

int index = deciderB.size(); 
Turtle object = instantiate_deciderB_xjal( index ); 
// Setup parameters 
object.type = type; 
object.nFleets = nFleets; 
object.teamColor = teamColor; 
// Finish embedded object creation 
create_deciderB_xjal( object, index ); 
obj ect.start(); 
return object; 

/ * * 
* This method removes the given embedded object from the replicated 

embedded object collection deciderB<br> 
* The given object is destroyed, but not immediately in common case. 
* ©param object the active object - element of replicated embedded 

object deciderB - which should be removed 
* ©return <code>true</code> if object was removed successfully, 

<code>false</code> if it doesn't belong to deciderB 
*/ 

public boolean remove_deciderB( Turtle object ) { 
if( ! deciderB._remove( object ) ){ 
return false; 

} 
obj ect.setDestroyed(); 
return true; 

} 
/ ** 
* This method creates and adds new embedded object in the replicated 

embedded object collection deciderR<br> 
* ©return newly created embedded object 
*/ 

public Turtle add_deciderR() { 
int index = deciderR.size() ; 
Turtle object = instantiate_deciderR_xjal( index ); 
setupParameters_deciderR_xjal( object, index ); 
create_deciderR_xjal( object, index ); 
obj ect.start(); 
return object; 

/ * * 
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* This method creates and adds new embedded object in the replicated 
embedded object collection deciderR<br> 

* This method uses given parameter values to setup created embedded 
object<br> 

* Index of this new embedded object instance can be obtained through 
calling <code>deciderR.size()</code> method <strong>before</strong> 
this method is called 

* ©param type 
* ©param nFleets 
* ©param teamColor 
* ©return newly created embedded object 
*/ 

public Turtle add_deciderR( int type, int nFleets, Color teamColor ) 
{ 

int index = deciderR.size(); 
Turtle object = instantiate_deciderR_xjal( index ); 
// Setup parameters 
object.type = type; 
object.nFleets = nFleets; 
object.teamColor = teamColor; 
// Finish embedded object creation 
create_deciderR_xjal( object, index ); 
object.start(); 
return object; 

} 

I ** 
* This method removes the given embedded object from the replicated 

embedded object collection deciderR<br> 
* The given object is destroyed, but not immediately in common case. 
* ©param object the active object - element of replicated embedded 

object deciderR - which should be removed 
* ©return <code>true</code> if object was removed successfully, 

<code>false</code> if it doesn't belong to deciderR 
*/ 

public boolean remove_deciderR( Turtle object ) { 
if( ! deciderR._remove( object ) ){ 

return false; 
} 
obj ect.setDestroyed(); 
return true; 

} 
/* * 
* This method creates and adds new embedded object in the replicated 

embedded object collection influencersB<br> 
* ©return newly created embedded object 
*/ 

public Turtle add_influencersB() { 
int index = influencersB.size(); 
Turtle object = instantiate_influencersB_xjal( index ); 
setupParameters_influencersB_xjal( object, index ); 
create_influencersB_xjal( object, index ); 
object.start(); 
return object; 

} 

/ * * 
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* This method creates and adds new embedded object in the replicated 
embedded object collection influencersB<br> 

* This method uses given parameter values to setup created embedded 
object<br> 

* Index of this new embedded object instance can be obtained through 
calling <code>influencersB.size()</code> method <strong>before</strong> 
this method is called 

* @param type 
* ©param nFleets 
* ©param teamColor 
* ©return newly created embedded object 
*/ 

public Turtle add_influencersB( int type, int nFleets, Color 
teamColor ) { 

int index = influencersB.size(); 
Turtle object = instantiate_influencersB_xjal( index ); 
// Setup parameters 
object.type = type; 
object.nFleets = nFleets; 
object.teamColor = teamColor; 
// Finish embedded object creation 
create_influencersB_xjal( object, index ); 
object.start(); 
return object; 

} 

/ ** 
* This method removes the given embedded object from the replicated 

embedded object collection influencersB<br> 
* The given object is destroyed, but not immediately in common case. 
* ©param object the active object - element of replicated embedded 

object influencersB - which should be removed 
* ©return <code>true</code> if object was removed successfully, 

<code>false</code> if it doesn't belong to influencersB 
*/ 

public boolean remove_influencersB( Turtle object ) { 
iff ! influencersB._remove( object ) ){ 
return false; 

} 
object.setDestroyed() ; 
return true; 

} 
/ * * 
* This method creates and adds new embedded object in the replicated 

embedded object collection influencersR<br> 
* ©return newly created embedded object 
*/ 

public Turtle add_influencersR() { 
int index = influencersR.size(); 
Turtle object = instantiate_influencersR_xjal( index ); 
setupParameters_influencersR_xjal( object, index ); 
create_influencersR_xjal( object, index ); 
object.start(); 
return object; 

} 

/** 
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* This method creates and adds new embedded object in the replicated 
embedded object collection influencersR<br> 

* This method uses given parameter values to setup created embedded 
object<br> 

* Index of this new embedded object instance can be obtained through 
calling <code>influencersR.size()</code> method <strong>before</strong> 
this method is called 

* ©param type 
* ©param nFleets 
* ©param teamColor 
* ©return newly created embedded object 
*/ 

public Turtle add_influencersR( int type, int nFleets, Color 
teamColor ) { 

int index = influencersR.size(); 
Turtle object = instantiate_influencersR_xjal( index ); 
// Setup parameters 
object.type = type; 
object.nFleets = nFleets; 
object.teamColor = teamColor; 
// Finish embedded object creation 
create_influencersR_xjal( object, index ); 
object.start(),-
return object; 

} 

* This method removes the given embedded object from the replicated 
embedded object collection influencersR<br> 

* The given object is destroyed, but not immediately in common case. 
* ©param object the active object - element of replicated embedded 

object influencersR - which should be removed 
* ©return <code>true</code> if object was removed successfully, 

<code>false</code> if it doesn't belong to influencersR 
*/ 

public boolean remove_influencersR( Turtle object ) { 
iff ! influencersR._remove( object ) ){ 

return false; 
} 
obj ect.setDestroyed(); 
return true; 

} 

* This method creates and adds new embedded object in the replicated 
embedded object collection sensorsB<br> 

* ©return newly created embedded object 
*/ 

public Turtle add_sensorsB() { 
int index = sensorsB.size(); 
Turtle object = instantiate_sensorsB_xjal( index ); 
setupParameters_sensorsB_xjal( object, index ); 
create_sensorsB_xjal( object, index ); 
object.start(); 
return object; 

} 

/ ** 
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* This method creates and adds new embedded object in the replicated 
embedded object collection sensorsB<br> 

* This method uses given parameter values to setup created embedded 
object<br> 

* Index of this new embedded object instance can be obtained through 
calling <code>sensorsB.size()</code> method <strong>before</strong> 
this method is called 

* ©param type 
* ©param nFleets 
* ©param teamColor 
* ©return newly created embedded object 
*/ 

public Turtle add__sensorsB( int type, int nFleets, Color teamColor ) 
{ 

int index = sensorsB.size(); 
Turtle object = instantiate_sensorsB_xjal( index ); 
// Setup parameters 
object.type = type; 
object.nFleets = nFleets; 
object.teamColor = teamColor; 
// Finish embedded object creation 
create_sensorsB_xjal( object, index ); 
object.start(); 
return object; 

} 

* This method removes the given embedded object from the replicated 
embedded object collection sensorsB<br> 

* The given object is destroyed, but not immediately in common case. 
* ©param object the active object - element of replicated embedded 

object sensorsB - which should be removed 
* ©return <code>true</code> if object was removed successfully, 

<code>false</code> if it doesn't belong to sensorsB 
*/ 

public boolean remove_sensorsB( Turtle object ) { 
if( ! sensorsB._remove( object ) ){ 
return false; 

} 
object.setDestroyed() ; 
return true; 

} 
/ ** 

* This method creates and adds new embedded object in the replicated 
embedded object collection sensorsR<br> 

* ©return newly created embedded object 
*/ 

public Turtle add_sensorsR() { 
int index = sensorsR.size(); 
Turtle object = instantiate_sensorsR_xjal( index ); 
setupParameters_sensorsR_xjal( object, index ); 
create_sensorsR_xjal( object, index ); 
object.start(); 
return object; 

} 

/ * * 



116 

* This method creates and adds new embedded object in the replicated 
embedded object collection sensorsR<br> 

* This method uses given parameter values to setup created embedded 
object<br> 

* Index of this new embedded object instance can be obtained through 
calling <code>sensorsR.size()</code> method <strong>before</strong> 
this method is called 

* @param type 
* @param nFleets 
* @param teamColor 
* ©return newly created embedded object 
*/ 

public Turtle add_sensorsR( int type, int nFleets, Color teamColor ) 
{ 

int index = sensorsR.size(); 
Turtle object = instantiate_sensorsR_xjal( index ); 
// Setup parameters 
object.type = type; 
object.nFleets = nFleets; 
object.teamColor = teamColor; 
// Finish embedded object creation 
create_sensorsR_xjal( object, index ); 
object.start(); 
return object; 

} 

/ ** 

* This method removes the given embedded object from the replicated 
embedded object collection sensorsR<br> 

* The given object is destroyed, but not immediately in common case. 
* @param object the active object - element of replicated embedded 

object sensorsR - which should be removed 
* ©return <code>true</code> if object was removed successfully, 

<code>false</code> if it doesn't belong to sensorsR 
*/ 

public boolean remove_sensorsR( Turtle object ) { 
if( ! sensorsR._remove( object ) ){ 

return false; 

} 
obj ect.setDestroyed(); 
return true; 

} 

/** 

* Creates an embedded object instance and adds it to the end of 
replicated embedded object list<br> 

*/ 
private Turtle instantiate_deciderB_xjal( final int index ) { 

Turtle object = new Turtle( getEngine(), this, deciderB ),-

deciderB._add(object); 

return object; 
} 

/ * * 

* Setups parameters of an embedded object instance<br> 
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*/ 
private void setupParameters_deciderB_xjal(Turtle object, final int 

index ) { 
object.type = 

3 

object.nFleets = object._nFleets_DefaultValue_xjal(); 
object.teamColor = 

lightSteelBlue 

} 

* Setups an embedded object instance<br> 
*/ 

private void create_deciderB_xjal(Turtle object, final int index ) { 
obj ect.setEnvironment( 

environment 
) ; 

obj ect.create() ; 

// Port connections 
} 
/ ** 

* Creates an embedded object instance and adds it to the end of 
replicated embedded object list<br> 

*/ 
private Turtle instantiate_deciderR_xjal( final int index ) { 

Turtle object = new Turtle( getEngine(), this, deciderR ); 

deciderR._add(object); 

return object; 
} 

* Setups parameters of an embedded object instance<br> 
*/ 

private void setupParameters_deciderR_xjal(Turtle object, final int 
index ) { 

object.type = 
3 
t 

object.nFleets = object._nFleets_DefaultValue_xjal(); 
object.teamColor = 

red 

} 

/ ** 

* Setups an embedded object instance<br> 
*/ 

private void create_deciderR_xjal(Turtle object, final int index ) { 
object.setEnvironment( 

environment 
); 

obj ect.create(); 
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// Port connections 
} 
/ ** 

* Creates an embedded object instance and adds it to the end of 
replicated embedded object list<br> 

*/ 
private Turtle instantiate_influencersB_xjal( final int index ) { 

Turtle object = new Turtle( getEngineO, this, influencersB ) ; 

influencersB._add(object); 

return object; 
} 

/ ** 

* Setups parameters of an embedded object instance<br> 
*/ 

private void setupParameters_influencersB_xjal(Turtle object, final 
int index ) { 

object.type = 
1 

object.nFleets = 
nBDeciders 

object.teamColor = 
lightSteelBlue 

} 

* Setups an embedded object instance<br> 
*/ 

private void create_influencersB_xjal(Turtle object, final int index 
) { 

object.setEnvironment( 
environment 
J.-

ob j ect.create(); 

// Port connections 
} 
/ ** 

* Creates an embedded object instance and adds it to the end of 
replicated embedded object list<br> 

*/ 
private Turtle instantiate_influencersR_xjal( final int index ) { 

Turtle object = new Turtle( getEngine(), this, influencersR ); 

influencersR._add(object); 

return object; 
} 

/ ** 

* Setups parameters of an embedded object instance<br> 
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*/ ,—-
private void setupParameters_influencersR_xjal(Turtle object, final 

int index ) { 
object.type = 

1 

object.nFleets = 
nRDeciders 

object.teamColor = 
red 

} 

/ ** 

* Setups an embedded object instance<br> 
*/ 

private void create_influencersR_xjal(Turtle object, final int index 
) { 

object.setEnvironment( 
environment 
) ; 

obj ect.create(); 

// Port connections 
} 

* Creates an embedded object instance and adds it to the end of 
replicated embedded object list<br> 

*/ 
private Turtle instantiate_sensorsB_xjal( final int index ) { 

Turtle object = new Turtle( getEngine(), this, sensorsB ); 

sensorsB._add(object) ; 

return object; 
} 

/ ** 

* Setups parameters of an embedded object instance<br> 
*/ 

private void setupParameters_sensorsB_xjal(Turtle object, final int 
index ) { 

object.type = 
2 

object.nFleets = 
nBDeciders 
t 

object.teamColor = 
lightSteelBlue 
t 

} 

* Setups an embedded object instance<br> 
*/ 
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private void create_sensorsB_xjal(Turtle object, final int index ) { 
obj ect.setEnvironment( 

envi ronment 
); 

obj ect.create() ; 

// Port connections 
} 
/ ** 
* Creates an embedded object instance and adds it to the end of 

replicated embedded object list<br> 
*/ 

private Turtle instantiate_sensorsR_xjal( final int index ) { 
Turtle object = new Turtle( getEngineO, this, sensorsR ) ; 

sensorsR._add(object) ; 

return object; 
} 

/* * 
* Setups parameters of an embedded object instance<br> 
*/ 

private void setupParameters_sensorsR_xjal(Turtle object, final int 
index ) { 

object.type = 
2 

object.nFleets = 
nRDeciders 

object.teamColor = 
red 
t 

} 

* Setups an embedded object instance<br> 
*/ 

private void create_sensorsR_xjal(Turtle object, final int index ) { 
obj ect.setEnvironment( 

environment 
J.-

ob j ect.create(); 

// Port connections 
} 

// Functions 

void 
sense( ) { 

for (Turtle d: deciderB) { 
int ind = d.getIndex(); 
for (Turtle s: d.inTurtles) { 



for 

} 
for 

(Turtle e: influencersR) { 
if (s.distanceTo(e) <= sRange) 

e.sensedBD[ind] = true; 

(Turtle e: sensorsR) { 
if (s.distanceTo(e) <= sRange) 

e.sensedBDfind] = true; 

} 

for (Turtle d 
int ind 
for 

deciderR) { 
d.getIndex(); 

(Turtle s: d.inTurtles) { 
for (Turtle e: influencersB) { 

if (s.distanceTo(e) <= sRange) 
e.sensedRD[ind] = true; 

} 
for (Turtle e: sensorsB) { 

if (s.distanceTo(e) <= sRange) 

e.sensedRD[ind] = true; 
} 

void 
track( ) { 

// THIS FUNCTION JUST SHOWS TRACKING LINKS 

for (Turtle d: deciderB) { 
for (Turtle s: d.outTurtles) { 

for (Turtle e: influencersR) { 
if (s.distanceTo(e) <= iRange) 

s.outTurtles.add(e); 
} 
for (Turtle e: sensorsR) { 

if (s.distanceTo(e) <= iRange) 
s.outTurtles.add(e); 

} 

for (Turtle d: deciderR) { 
for (Turtle s: d.outTurtles) { 

for (Turtle e: influencersB) { 
if (s.distanceTo(e) <= iRange) 

s.outTurtles.add(e); 
} 
for (Turtle e: sensorsB) { 

if (s.distanceTo(e) <= iRange) 

s.outTurtles.add(e); 
} 



void 
shoot( ) { 

for (Turtle d: deciderB) { 
int ind = d.getlndex(); 
for (Turtle s: d.outTurtles) { 

Turtle closestTarget = null; 
double closestDistance = Double.POSITIVE_INFINITY; 
for (Turtle e: s.outTurtles) { 

if (!e.sensedBD[ind]) { 
continue; 

} 
double dist = s.distanceTo(e); 
if (dist < closestDistance) { 

closestTarget = e; 
closestDistance = dist; 

} 
} 
if (closestTarget != null) { 

closestTarget.dead = 1; 

} 
} 

} 
for (Turtle d: deciderR) { 

int ind = d.getlndex(); 
for (Turtle s: d.outTurtles) { 

Turtle closestTarget = null; 
double closestDistance = Double.POSITIVE_INFINITY; 
for (Turtle e: s.outTurtles) { 

if (!e.sensedRD[ind]) 
continue; 

double dist = s.distanceTo(e) ; 
if (dist < closestDistance) { 

closestTarget = e; 
closestDistance = dist; 

} 

} 
if (closestTarget != null) { 

closestTarget.dead = 1; 

} 
} 

} 
} 

void 
kill( ) { 

for (int i = influencersR.size()-1; i>=0; i--) { 
Turtle t = influencersR.get(i) ; 
if (t.dead == 1) { 

remove_influencersR(t); 
} 



} 
for (int i = influencersB.size()-1; i>=0; i--) { 

Turtle t = influencersB.get(i) ; 
if (t.dead == 1) { 

remove_influencersB(t); 
} 

} 
for (int i = sensorsR.size()-1; i>=0; i--) { 

Turtle t = sensorsR.get(i) ; 
if (t.dead == 1) { 

remove_sensorsR(t) ; 
} 

} 

for (int i = sensorsB.size()-1; i>=0; i--) { 
Turtle t = sensorsB.get(i); 
if (t.dead == 1) { 

remove_sensorsB(t); 
} 

} 

} 

void 
movelnfluencers( ) { 

for (Turtle d: deciderB) { 
int ind = d.getlndex(); 
for (Turtle i: d.outTurtles) { 

Turtle closestTarget = null; 
double closestDistance = Double. POSITIVE_INFINITY; 
for (Turtle e: influencersR) { 

if (!e.sensedBD[ind] || e.dead == 1) 
continue; 

double dist = i.distanceTo(e) ; 
if (dist < closestDistance) { 

closestTarget = e; 
closestDistance = dist; 

} 
} 
for (Turtle e: sensorsR) { 

if (!e.sensedBD[ind] || e.dead == 1) 
continue; 

double dist = i.distanceTo(e); 
if (dist < closestDistance) { 

closestTarget = e; 
closestDistance = dist; 

} 
} 
// move 
if (closestTarget != null) { 

i.setXY(i.getx() + (closestTarget.getx() -
i.getX())/closestDistance , i.getYO + (closestTarget.getY() -
i.getY())/closestDistance); 

} 
} 



} 
for (Turtle d: deciderR) { 

int ind = d.getIndex(); 
for (Turtle i: d.outTurtles) { 

Turtle closestTarget = null; 
double closestDistance = Double. POSITIVE_INFINITY; 
for (Turtle e: influencersB) { 

if (!e.sensedRD[ind] || e.dead == 1) 
continue; 

double dist = i.distanceTo(e); 
if (dist < closestDistance) { 

closestTarget = e; 
closestDistance = dist; 

} 
} 
for (Turtle e: sensorsB) { 

if (!e.sensedRD[ind] || e.dead == 1) 
continue; 

double dist = i.distanceTo(e); 
if (dist < closestDistance) { 

closestTarget = e; 
closestDistance = dist; 

} 
} 
// move 
if (closestTarget != null) { 

i.setXY(i.getX() + (closestTarget.getX() -
i.getX())/closestDistance , i.getY() + (closestTarget.getY() -
i.getY())/closestDistance); 

} 
} 

} 
} 

void 
moveSensors( ) { 

for (Turtle d: deciderB) { 
int ind = d.getlndex(); 
boolean sensed = false; 
for (Turtle e:influencersR) { 

if (e.sensedBD[ind] && e.dead ! 
sensed = true; 
break; 

} 
} 
if (sensed) 

continue; 
for (Turtle e:sensorsR) { 

if (e.sensedBDfind] && e.dead ! 
sensed = true; 
break; 

} 
} 
if (sensed) 

continue; 

1) { 

1) { 



for (Turtle s: d.inTurtles) { 
Turtle closestTarget = null; 
double closestDistance = Double.POSITIVE_lNFINITY; 
for (Turtle e: influencersR) { 

if (e.sensedBD[ind] || e.dead == 1) 
continue; 

double dist = s.distanceTo(e); 
if (dist < closestDistance) { 

closestTarget = e; 
closestDistance = dist; 

} 
} 
for (Turtle e: sensorsR) { 

if (e.sensedBDfind] || e.dead == 1) 
continue; 

double dist = s.distanceTo(e) ; 
if (dist < closestDistance) { 

closestTarget = e; 
closestDistance = dist; 

} 
} 
// move 
if (closestTarget != null) { 

s.setXY(s.getX() + (closestTarget.getX() -
s.getXf))/closestDistance , s.getYO + (closestTarget.getY() -
s.getY())/closestDistance); 

} 
} 

} 
for (Turtle d: deciderR) { 

int ind = d.getlndexf); 
boolean sensed = false; 
for (Turtle e:influencersB) { 

if (e.sensedRD[ind] && e.dead != 1) { 
sensed = true; 
break; 

} 
} 
if (sensed) 

continue; 
for (Turtle e:sensorsB) { 

if (e.sensedRD[ind] && e.dead != 1) { 
sensed = true; 
break; 

} 
} 
if (sensed) 

continue; 

for (Turtle s: d.inTurtles) { 
Turtle closestTarget = null; 
double closestDistance = Double.POSITIVE_lNFINITY; 
for (Turtle e: influencersB) { 

if (e.sensedRD[ind] || e.dead == 1) 
continue; 

double dist = s.distanceTo(e); 



if (dist < closestDistance) { 
closestTarget = e; 
closestDistance = dist; 

} 
} 
for (Turtle e: sensorsB) { 

if (e.sensedRD[ind] || e.dead == 1) 
continue; 

double dist = s.distanceTo(e); 
if (dist < closestDistance) { 

closestTarget = e; 
closestDistance = dist; 

} 
} 
// move 
if (closestTarget != null) { 

s.setXY(s.getX() + (closestTarget.getx() -
s.getX())/closestDistance , s.getY() + (closestTarget.getY() -
s.getY())/closestDistance); 

} 
} 

} 
} 

void 
reset( ) { 

for (Turtle t: influencersR) { 
Arrays.fill(t.sensedRD, false); 
Arrays.fill(t.sensedBD, false); 
t.outTurtles.clear(); 
t.inTurtles.clear(); 

} 
for (Turtle t: influencersB) { 

Arrays.fill(t.sensedRD, 
Arrays.fill(t.sensedBD, 
t.outTurtles.clear(); 
t.inTurtles.clear(); 

} 
for (Turtle t: sensorsR) { 

Arrays.fill(t.sensedRD, 
Arrays.fill(t.sensedBD, 
t.outTurtles.clear(); 
t.inTurtles.clear(); 

} 
for (Turtle t: sensorsB) { 

Arrays.fill(t.sensedRD, 
Arrays.fill(t.sensedBD, 
t.outTurtles.clear(); 
t.inTurtles.clear(); 

} 
for (Turtle t: deciderB) { 

for (int i = t.outTurtles.size()-l;i>=0;i--) { 
Turtle k = t.outTurtles.get(i); 
if (k.getlndex()==-l) 

t.outTurtles.remove(i); 

false); 
false); 

false); 
false); 

false); 
false); 
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} 
for 

} 

(Turtle t: deciderR) { 
for (int i = t.outTurtles.size()-1;i>=0;i--) 

Turtle k = t.outTurtles.get(i); 
if (k.getlndex()==-l) 

t.outTurtles.remove(i); 
} 

} 
static final Color _rectangle_FillColor = new Color( 0xFFEFF9FE, true 

static final int _rectangle = 1; 
static final int influencersB_Presentation 
static final int sensorsB_Presentation = 3 
static final int influencersR_Presentation 
static final int sensorsR_Presentation = 5 
static final int deciderR_Presentation = 6 
static final int deciderB_Presentation = 7 

2; 

4; 

/ * * 
* Top-level presentation group id 
*/ 
static final int _presentation = 0; 

/ * * 
* Top-level icon group id 
*/ 

static final int _icon = -1; 

©Override 
public String getNameOfShape( int _shape ) { 
switch( _shape ) { 
case influencersB_Presentation: return 

"influencersB_Presentation"; 
case sensorsB_Presentation: return "sensorsB_Presentation" 
case influencersR_Presentation: return 

"influencersR_Presentation"; 
case sensorsR_Presentation: return "sensorsR_Presentation" 
case deciderR_Presentation: return "deciderR_Presentation" 
case deciderB_Presentation: return "deciderB_Presentation" 
default: return super.getNameOfShape( _shape ); 

} 
} 

©Override 
public int getShapeType( int _shape ) { 
switch( _shape ) { 
case influencersB_Presentation: return SHAPE_EMBEDDED_OBJECT; 
case sensorsB_Presentation: return SHAPE_EMBEDDED_OBJECT; 
case influencersR_Presentation: return SHAPE_EMBEDDED_OBJECT; 
case sensorsR_Presentation: return SHAPE_EMBEDDED_OBJECT; 
case deciderR_Presentation: return SHAPE_EMBEDDED_OBJECT; 
case deciderB_Presentation: return SHAPE_EMBEDDED_OBJECT; 
default: return super.getShapeType( _shape ); 



} 
} 

©Override 
public int getShapeReplication( int _shape ) { 

switch( _shape ) { 
case influencersB_Presentation: return 

influencersB.size() 

case sensorsB_Presentation: return 
sensorsB.size() 

case influencersR_Presentation: return 
influencersR.size() 

case sensorsR_Presentation: return 
sensorsR.size() 
/ 

case deciderR_Presentation: return 
deciderR.size() 

case deciderB_Presentation: return 
deciderB.size() 

default: return super.getShapeReplication( _shape ); 
} 

} 

©Override 
public double getShapeX( int _shape, int index ) { 

switch( _shape ) { 
case influencersB_Presentation: return 40; 
case sensorsB_Presentation: return 40; 
case influencersR_Presentation: return 40; 
case sensorsR_Presentation: return 40; 
case deciderR_Presentation: return 40; 
case deciderB_Presentation: return 40; 
default: return super.getShapeX( _shape, index ); 

} 
} 

©Override 
public double getShapeY( int _shape, int index ) { 

switch( _shape ) { 
case influencersB_Presentation: return 40; 
case sensorsB_Presentation: return 40; 
case influencersR_Presentation: return 40; 
case sensorsR_Presentation: return 40; 
case deciderR_Presentation: return 40; 
case deciderB_Presentation: return 40; 
default: return super.getShapeY( _shape, index ); 

} 
} 

©Override 
public Object getShapeEmbeddedObject( int _shape ) { 

switch( _shape ) { 



case deciderB_Presentation: return deciderB; 
case deciderR_Presentation: return deciderR; 
case influencersB_Presentation: return influencersB; 
case influencersR_Presentation: return influencersR; 
case sensorsB_Presentation: return sensorsB; 
case sensorsR_Presentation: return sensorsR; 
default: return super.getShapeEmbeddedObject( _shape ); 

} 

ShapeRectangle rectangle; 

// Static initialization of persistent elements 
{ 
rectangle = new ShapeRectangle( 

true,0, 0, 0.0, 
black, _rectangle_FillColor, 

180, 180, 
1, LINE_STYLE_SOLID 

); 
} 
ShapeGroup presentation; 
ShapeGroup icon; 

©Override 
public Object getPersistentShape( int _shape ) { 

switch(_shape){ 
case _presentation: return presentation; 
case _icon: return icon; 

case _rectangle: return rectangle; 
default: return null; 

} 
} 

©Override 
public void drawModelElements(Panel _panel, Graphics2D _g, boolean 

_publicOnly ) { 
if (!_publicOnly) { 
drawEventf _panel, _g, 780, 70, 10, 0, "event", event ); 

} 
if (!_publicOnly) { 
drawParameter( _panel, _g, 270, 50, 10, 0, "nBDeciders", 

nBDeciders, false, false ); 
} 
if (!_publicOnly) { 
drawParameter( _panel, _g, 450, 110, 10, 0, "sRange", sRange, 

false, false ); 
} 
if (!_publicOnly) { 
drawParameter( _panel, _g, 450, 130, 10, 0, "iRange", iRange, 

false, false ); 



130 

} 
if (!_publicOnly) { 
drawParameter( _panel, _g, 450, 50, 10, 0, "BID", BID, false, 

false ); 
} 
if (!_publicOnly) { 
drawParameter( _panel, _g, 450, 70, 10, 0, "RID", RID, false, 

false ); 
} 
if (!_publicOnly) { 
drawParameter( _panel, _g, 450, 90, 10, 0, "seed", seed, false, 

false ); 
} 
if (!_publicOnly) { 
drawParameter( _panel, _g, 270, 70, 10, 0, "nRDeciders", 

nRDeciders, false, false ); 
} 
if (!_publicOnly) { 
drawPlainVariable( _panel, _g, 640, 160, 10, 0, "tick", tick, 

false ); 
} 
if (!_publicOnly) { 
drawPlainVariable( _panel, _g, 640, 180, 10, 0, "result", result, 

false ) ,-
} 
if (!_publicOnly) { 
drawPlainVariable( _panel, _g, 780, 20, 10, 0, "bWin", bWin, 

false ); 
} 
if (!_publicOnly) { 
drawPlainVariable( _panel, _g, 780, 40, 10, 0, "rWin", rWin, 

false ); 
} 
if (!_publicOnly) { 
drawFunction( _panel, _g, 640, 20, 10, 0, "sense"); 

} 
if (!_publicOnly) { 
drawFunction( _panel, _g, 640, 40, 10, 0, "track"); 

} 
if (!_publicOnly) { 
drawFunction( _panel, _g, 640, 60, 10, 0, "shoot"); 

} 
if (!_publicOnly) { 
drawFunction( _panel, _g, 640, 80, 10, 0, "kill"); 

} 
if (!_publicOnly) { 
drawFunction( _panel, _g, 640, 100, 10, 0, "movelnfluencers"); 

} 
if (!_publicOnly) { 
drawFunction( _panel, _g, 640, 120, 10, 0, "moveSensors"); 

} 
if (!_publicOnly) { 
drawFunction( _j?anel, _g, 640, 140, 10, 0, "reset"); 

} 
// Embedded object "deciderB" 
if (!_publicOnly) { 



drawEmbeddedObjectModelDefault( _panel, _g, 270 , 150 , -19 
"deciderB", this.deciderB ); 

} 
// Embedded object "deciderR" 
if (!_publicOnly) { 
drawEmbeddedObjectModelDefault( _panel, _g, 360 , 150 , -19 

"deciderR", this.deciderR ); 
} 
// Embedded object "influencersB" 
if (!_publicOnly) { 
drawEmbeddedObjectModelDefault( _panel, _g, 270 , 210 , -19 

"influencersB", this.influencersB ) ; 
} 
// Embedded object "influencersR" 
if (!_publicOnly) { 
drawEmbeddedObjectModelDefault( _panel, _g, 360 , 210 , -19 

"influencersR", this.influencersR ); 
} 
// Embedded object "sensorsB" 
if (!_publicOnly) { 
drawEmbeddedObjectModelDefault( _jpanel, _g, 270 , 260 , -19 

"sensorsB", this.sensorsB ) ; 
} 
// Embedded object "sensorsR" 
if (!_publicOnly) { 

drawEmbeddedObjectModelDefault( _panel, _g, 360 , 260 , -19 
"sensorsR", this.sensorsR ); 

} 
if (!_publicOnly) { 
drawEnvironment( _panel, _g, 270, 20, 10, 0, "environment", 

environment ); 
} 

} 

©Override 
public boolean onClickModelAt( Panel panel, double x, double y, 

clickCount, boolean publicOnly ) { 
if( IpublicOnly && modelElementContains(x, y, 270, 50) ) { 
panel.addlnspect( 270, 50, this, "nBDeciders" ); 
return true; 

} 
if( ipublicOnly && modelElementContains(x, y, 450, 110) ) { 
panel.addlnspect( 450, 110, this, "sRange" ); 
return true; 

} 
if( IpublicOnly && modelElementContains(x, y, 450, 130) ) { 
panel.addlnspect( 450, 130, this, "iRange" ); 
return true; 

} 
if( IpublicOnly && modelElementContains(x, y, 450, 50) ) { 
panel.addlnspect( 450, 50, this, "BID" ); 
return true; 

} 
if( IpublicOnly && modelElementContains(x, y, 450, 70) ) { 
panel.addlnspect( 450, 70, this, "RID" ); 

return true; 
} 



{ 

iff IpublicOnly && modelElementContains(x, y, 450, 90) ) { 
panel.addlnspect( 450, 90, this, "seed" ); 
return true; 

} 
i£( IpublicOnly && modelElementContains(x, y, 270, 70) ) { 
panel.addlnspect( 270, 70, this, "nRDeciders" ); 
return true; 

} 
if( IpublicOnly && modelElementContains(x, y, 640, 160) ) { 
panel.addlnspect( 640, 160, this, "tick" ); 
return true; 

} 
if( IpublicOnly && modelElementContains(x, y, 640, 180) ) { 
panel.addlnspect( 640, 180, this, "result" ); 
return true; 

} 
if( IpublicOnly && modelElementContains(x, y, 780, 20) ) { 
panel.addlnspect( 780, 20, this, "bWin" ); 
return true; 

} 
iff IpublicOnly && modelElementContains(x, y, 780, 40) ) { 
panel.addlnspect( 780, 40, this, "rWin" ); 
return true; 

} 
iff IpublicOnly && modelElementContains(x, y, 780, 70) ) { 
panel.addlnspect( 780, 70, this, "event" ); 
return true; 

} 
iff IpublicOnly && modelElementContains(x, y, 270, 20) ) { 
panel.addlnspect( 270, 20, this, "environment" ); 
return true; 

} 
if ( IdeciderB.isEmpty() && modelElementContains(x, y, 270, 150) 

if ( clickCount == 2 ) { 
panel.browseEmbeddedObject( 270, 150, this, "deciderB" ); 

} else { 
panel.addlnspect( 270, 150, this, "deciderB" ); 

} 
return true; 

} 
if f IdeciderR.isEmpty() && modelElementContains(x, y, 360, 150) 

if ( clickCount == 2 ) { 
panel.browseEmbeddedObject( 360, 150, this, "deciderR" ); 

} else { 
panel.addlnspect( 360, 150, this, "deciderR" ); 

} 
return true; 

} 
if ( IinfluencersB.isEmpty() && modelElementContains(x, y, 270, 

210) ) { 
if ( clickCount == 2 ) { 
panel.browseEmbeddedObject( 270, 210, this, "influencersB" ) 

} else { 
panel.addlnspect( 270, 210, this, "influencersB" ); 

} 



1 

return true; 
} 
if ( !influencersR.isEmpty() && modelElementContains(x, y, 360, 

210) ) { 
if ( clickCount == 2 ) { 
panel.browseEmbeddedObject( 360, 210, this, "influencersR" ); 

} else { 
panel.addlnspect( 360, 210, this, "influencersR" ); 

} 
return true; 

} 
if ( !sensorsB.isEmpty() && modelElementContains(x, y, 270, 260) ) 

{ 
if ( clickCount == 2 ) { 
panel.browseEmbeddedObject( 270, 260, this, "sensorsB" ); 

} else { 
panel.addlnspect( 270, 260, this, "sensorsB" ); 

} 
return true; 

} 
if ( !sensorsR.isEmpty() && modelElementContains(x, y, 360, 260) ) 

{ 
if ( clickCount == 2 ) { 
panel.browseEmbeddedObject( 360, 260, this, "sensorsR" ); 

} else { 
panel.addlnspect( 360, 260, this, "sensorsR" ); 

} 
return true; 

} 
return false; 

} 

// Environments 
public final Environment environment = new Environment( this ); 

/ ** 
* Constructor 
*/ 

public Main( Engine engine, ActiveObject owner, 
ActiveObjectCollection<? extends Main> collection ) { 

super( engine, owner, collection ); 
} 

©Override 
public void create() { 

// Creating embedded object instances 
for ( int i = 0; i < 

nBDeciders 

; i++ ) { 
instantiate_deciderB_xjal( i ); 

} 
for ( int i = 0; i < 

nRDeciders 
; i++ ) { 

instantiate_deciderR_xjal( i ); 
} 
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for ( int i = 0; i < 
0 
; i++ ) { 

instantiate_influencersB_xjal( i ); 
} 
for ( int i = 0; i < 

0 
; i++ ) { 

instantiate_influencersR_xjal( i ); 
} 
for ( int i = 0; i < 

0 
; i++ ) { 

instantiate_sensorsB_xjal( i ); 
} 
for ( int i = 0; i < 

0 
; i++ ) { 

instantiate_sensorsR_xjal( i ); 
} 
// Assigning initial values for plain variables 
bWin = 0 

0 
rWin = 

// Dynamic initialization of persistent elements 
presentation = new ShapeGroup( Main.this, true, 0, 0, 0, rectangle, 

influencersB_Presentation, sensorsB_Presentation, 
influencersR_Presentation, sensorsR_Presentation, 
deciderR_Presentation, deciderB_Presentation ); 

icon = new ShapeGroup( Main.this, true, 0, 0, 0 
); 

// Environments setup 
environment.disableSteps(); 
environment.setSpaceContinuous( 

100 , 
100 ) ; 

environment.setNetworkUserDefined(); 
environment.setLayoutType( Environment.LAYOUT_RANDOM ); 

// Port connectors with non-replicated objects 
// Creating replicated embedded objects 
for ( int i = 0; i < deciderB.size(); i++ ) { 

setupParameters_deciderB_xjal( deciderB.get(i), i ); 
create_deciderB_xjal( deciderB.get(i), i ); 

} 
for ( int i = 0; i < deciderR.size(); i++ ) { 

setupParameters_deciderR_xjal( deciderR.get(i), i ); 
create_deciderR_xjal( deciderR.get(i), i ); 

} 
for ( int i = 0; i < influencersB.size(); i++ ) { 

setupParameters_influencersB_xjal( influencersB.get(i), i ); 
create_influencersB_xjal( influencersB.get(i), i ); 

} 
for ( int i = 0; i < influencersR.size(); i++ ) { 

setupParameters_influencersR_xjal( influencersR.get(i), i ); 
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create_influencersR_xjal( influencersR.get(i), i ); 
} 
for ( int i = 0; i < sensorsB.size(); i++ ) { 

setupParameters_sensorsB_xjal( sensorsB.get(i), i ) ; 
create_sensorsB_xjal( sensorsB.get(i), i ); 

} 
for ( int i = 0;. i < sensorsR.size(); i++ ) { 

setupParameters_sensorsR_xjal( sensorsR.get(i), i ) ; 
create_sensorsR_xjal( sensorsR.get(i), i ); 

} 
assignlnitialConditions(); 
onCreate(); 

} 

©Override 
public void start() { 

event.start(); 
environment.applyLayout(); 
for (Ac t iveObj ec t embeddedObj ec t 

embeddedObj ect.start(); 
} 
for (ActiveObject embeddedObject 

embeddedObj ect.start() ; 
} 
for (ActiveObject embeddedObject 

embeddedObj ect.start() ; 
} 
for (ActiveObject embeddedObject 

embeddedObject.start(); 
} 
for (ActiveObject embeddedObject 

embeddedObject.start(); 
} 
for (ActiveObject embeddedObject 

embeddedObject.start(); 
} 
onStartupt); 

} 

public void onStartup() { 
super.onStartup(); 

for (int i = 0; i < nBDeciders; i++) { 
for (int j = 0; j < cB[BID][i]; j++) { 

Turtle t = add_sensorsB(); 
t.sensedRD = new boolean[nRDeciders]; 
t.decider = deciderB.get(i); 
deciderB.get(i).inTurtles.add(t); 

} 
} 
for (int i = 0; i < nBDeciders; i++) { 

for (int j = 0; j < cB[BID][nBDeciders + i]; j++) { 
Turtle t = add_influencersB(); 
t.sensedRD = new boolean[nRDeciders]; 
t.decider = deciderB.get(i); 
deciderB.get(i).outTurtles.add(t); 

} 

: deciderB){ 

: deciderR){ 

: influencersB){ 

: influencersR){ 

: sensorsB){ 

: sensorsR){ 
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} 
for (int i = 0; i < nRDeciders; i++) { 

for (int j = 0; j < cR[RID][i]; j++) { 
Turtle t = add_sensorsR(); 
t.sensedBD = new boolean[nBDeciders]; 
t.decider = deciderB.get(i); 
deciderR.get(i).inTurtles.add(t); 

} 
} 
for (int i = 0; i < nRDeciders; i++) { 

for (int j = 0; j < cR[RID][nRDeciders + i]; j++) { 
Turtle t = add_influencersR() ; 
t.sensedBD = new boolean[nBDeciders] ; 
t.decider = deciderB.get(i); 
deciderR.get(i).outTurtles.add(t); 

} 
} 

public List<Object> getEmbeddedObjects() { 
LinkedList<Object> list = new LinkedList<Object>(); 
list.add( deciderB ); 
list.addf deciderR ); 
list.add( influencersB ); 
list.add( influencersR ); 
list.add( sensorsB ); 
list.add( sensorsR ); 
return list; 

public void onDestroyf) { 
super.onDestroy(); 
event.onDestroy(); 
environment.onDestroy(); 
for (ActiveObject embeddedObject : deciderB) { 
embeddedObj ect.onDestroy(); 

} 
for (ActiveObject embeddedObject : deciderR) { 
embeddedObj ect.onDestroy(); 

} 
for (ActiveObject embeddedObject : influencersB) { 
embeddedObject.onDestroy(); 

} 
for (ActiveObject embeddedObject : influencersR) { 
embeddedObj ect.onDestroy(); 

} 
for (ActiveObject embeddedObject : sensorsB) { 
embeddedObj ect.onDestroy(); 

} 
for (ActiveObject embeddedObject : sensorsR) { 
embeddedObj ect.onDestroy(); 

} 

// Additional class code 



int[][] cB = { 
{4,3,3,2,1,4,1,6}, 
{4,3,3,2,1,3,3,5}, 
{4,3,3,2,1,3,2,6}, 
{4,3,3,2,1,3,1,7}, 

{3,3,3,3,5,4,2,1}, 

{3,3,3,3,4,4,3,1}, 
{3,3,3,3,4,4,2,2}, 
{3,3,3,3,4,3,3,2}, 
{3,3,3,3,3,3,3,3} 
}; 
int[][] cR = { 
{9,1,1,1,9,1,1,1}, 
{9,1,1,1,8,2,1,1}, 
{9,1,1,1,7,3,1,1}, 
{9,1,1,1,7,2,2,1}, 
{9,1,1,1,6,4,1,1}, 
{9,1,1,1,6,3,2,1}, 
{9,1,1,1,6,2,2,2}, 
{9,1,1,1,5,5,1,1}, 

{9,1,1,1,2,4,3,3}, 
{9,1,1,1,1,9,1,1}, 
{9,1,1,1,1,8,2,1}, 
{9,1,1,1,1,7,3,1}, 
{9,1,1,1,1,7,2,2}, 
{9,1,1,1,1,6,4,1}, 
{9,1,1,1,1,6,3,2}, 
{3,3,3,3,4,4,3,1}, 
{3,3,3,3,4,4,2,2}, 
{3,3,3,3,4,3,3,2}, 
{3,3,3,3,3,3,3,3} 
}; 
// End of additional class code 

} 
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