
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Engineering Management & Systems
Engineering Theses & Dissertations

Engineering Management & Systems
Engineering

Summer 2010

The Influence of Network Factors on Network Centric Operations The Influence of Network Factors on Network Centric Operations

Mehmet Fidanci
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/emse_etds

 Part of the Industrial Engineering Commons, Military and Veterans Studies Commons, and the

Operational Research Commons

Recommended Citation Recommended Citation
Fidanci, Mehmet. "The Influence of Network Factors on Network Centric Operations" (2010). Doctor of
Philosophy (PhD), Dissertation, Engineering Management & Systems Engineering, Old Dominion
University, DOI: 10.25777/bgyr-kt71
https://digitalcommons.odu.edu/emse_etds/70

This Dissertation is brought to you for free and open access by the Engineering Management & Systems
Engineering at ODU Digital Commons. It has been accepted for inclusion in Engineering Management & Systems
Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information,
please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/emse_etds
https://digitalcommons.odu.edu/emse_etds
https://digitalcommons.odu.edu/emse
https://digitalcommons.odu.edu/emse
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.odu.edu%2Femse_etds%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/396?utm_source=digitalcommons.odu.edu%2Femse_etds%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.odu.edu%2Femse_etds%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds/70?utm_source=digitalcommons.odu.edu%2Femse_etds%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

THE INFLUENCE OF NETWORK FACTORS

ON NETWORK CENTRIC OPERATIONS

by

Mehmet Fidanci
B.S. August 1993, Turkish Air Force Academy, Istanbul.Turkey

M.S. March 2000, Air Force Institute of Technology, Dayton, Ohio

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ENGINEERING MANAGEMENT

OLD DOMINION UNIVERSITY

August 2010

Approved by:

Shannon Bowling (Dirjeefor)

Resit Unal (Member)

Ghaith Rabadi (Member)

Sean Deller (Member)

Kerem Aytulun (Member)

ABSTRACT

THE INFLUENCE OF NETWORK FACTORS
ON NETWORK CENTRIC OPERATIONS

Mehmet Fidanci
Old Dominion University, 2010
Director: Dr. Shannon Bowling

As Information Age changes the lifestyle of all humankinds, it also

changes the way how to defense and secure the borders are secured and

defended. The Informartion Age is about information superiority. It evolves the

command and control concept, proactively, to optimize the size of the units and

their connections within a combat force for effective mission accomplishment.

The biggest issue is how big a unit will be and how they will arrange and connect

it to the command and control structure in order for the unit to be effective on the

battlefield. While some arrangements connect to each other so well that they

endure and perform effectively during combat, other arrangements that connect

each other are so cumbersome that they either barely succeed or are killed.

Network Centric Operations concentrate on how to provide a warfighting

unit with enough assets so that it can accomplish the assigned mission by itself

effectively within its chain of command. The first thing that Network Centric

Operations tries to achieve is to gain the shared awareness of the battlefield.

This can be done by scouts, ground or air patrol, satellite image, radio frequency,

etc. The situational awareness and the information superiority of the battlefield

will definitely effect the enemy's operations so that the enemy needs to change

its strategy. The second thing that Network Centric Operations tries to achieve is

to have an impact on every occasion being reported or unexpectedly sensed in

order to disrupt the enemy's will. How can a force achieve this? A well organized

and a well connected force can have the information superiority and be able to

transform that superiority to a success. For effectiveness, each asset in a combat

force should have reliable connection capacity with command and control centers

and other assets.

The number of Sensors and Influencers being the driving entities of the

war unit in the battlefield are integer-partitioned and connected to a Decider.

There are well defined rules, regulations, and well established connections

between the entities. They are initially placed random to the simulation

environment as the BLUE and RED forces. Each force starts sensing, tracking,

reporting, and killing the opposing side. Each force tries to win the other side.

Each combination of an experiment replicates 30 times and then results are

reported. The probability of a BLUE force win was studied to measure the

performance of a networked force.

The objectives of this research are to explore how units vary in size of

organization, how they behave in a networked environment and to investigate

how to increase the performance of a networked force. This research explores

sufficient search space to understand the influence of network factors on

Network Centric Operations.

iv

ACKNOWLEDGEMENTS

A simple "thank you" cannot express how grateful I am to my advisor, Dr.

Shannon Bowling. This research study would not have been completed without

his experience, skill, and guidance. His knowledge of the topics,

recommendations for appropriate and reachable goals, decisiveness, and clear

communication style have made the difference to the undertaking reaching

fruition and a final conclusion.

Sincere gratitude also goes out to the other members of the dissertation

committee, Dr.Ghaith Rabadi, Dr. Resit Unal, and Dr. Sean Deller, for their

advice and support in my research.

I would like to thank all the faculty in Aeronautics and Space Technologies

Institute (ASTIN) and Old Dominion University (ODU) who had given me a

fascinating learning experience in graduate school.

I am also very thankful to Turkish Air Force Headquarters for supporting

and sponsoring my research study.

I would like to express my gratitude to Dr.Oktay Baysal and Dr. Osman

Akan for their decisiveness in construction of collaborative Ph.D. program

between ASTIN and ODU.

I also would like to thank my seniors and friend Dr. Murat Ermis, Dr.
Kerem Aytulun, and Selami Yildiz for their support and guidance.

I thank my friends in graduate school at ODU: Ersin Ancel, Anil Ustun,

Christopher Garcia, Elkin Rodrigues, and Yaw Mensah. Their friendship had

made this part of my life very colorful and enjoyable.

I am always thankful and forever indebted to my dear wife and my only

lovely sweet hearth daughter, Gulser and Maide Duru, for making me smile even

during the most difficult times. Their love, patience, encouragement, and

understanding has given me the greatest strength. Without my beloved family,

this work would not have been possible.

I am forever indebted to my mother and father, Ayse and Ahmet, for their

unconditional and selfless love.

V

I am very grateful to my in-laws, Remziye and Leyla, for their enthusiasm,

and support during this journey.

Thank you all.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES viii

LIST OF FIGURES xii

1. INTRODUCTION 1

1.1. BACKGROUND 3

1.2. PROBLEM DEFINITION 4

2. LITERATURE REVIEW 6

2.1. DEFINITION OF NETWORK CENTRIC WARFARE 8

2.2. NETWORK STRUCTURE 9

2.3. COMBAT NETWORKS 11

2.4. DIMENSIONS AND COMPLEXITY 12

2.5. NETWORK DYNAMICS 15

3. METHODOLOGY AND PROPOSED APPROACH 16

3.1. WHY DO WE USE (AGENT-BASED) MODELING? 16

3.2. AN AGENT-BASED SIMULATION MODEL USING THE IACM 19

3.3. STRUCTURE OF THE EXPERIMENT 20

3.4. DEVELOPING THE ANYLOGIC MODEL 34

4. MODELING RESULTS 42

4.1. DEFINITION OF EACH METRICS 44

4.2. PERFORMANCE OF EACH BLUE COMBINATION VS ALL RED
COMBINATIONS 47

4.3. PERFORMANCE OF EACH BLUE COMBINATION VS EACH RED
COMBINATION 69

5. CONCLUSION 85

5.1. GENERAL EVALUATION OF THE RESEARCH PURPOSE 85

5.2. RECOMMENDATIONS FOR FUTURE WORK 89

5.3. SUMMARY 90

REFERENCES 92

vii

APPENDIX A: JAVA CODES DIFFERENT MEANINGFUL COMBINATIONS94

A.1. JAVA CODE FOR INTEGER PARTITIONING AND PERMUTATIONS
ALGORITHM 94

A2. JAVA CODE FOR INTEGER PARTITIONING AND PERMUTATIONS 97

A3. JAVA CODE FOR CROSSING ALGORITHM 99

APPENDIX B: JAVA CODES OF IACM IN ANYLOGIC 104

APPENDIX C: MATLAB CODES TO CALCULATE THE EIGENVALUES OF
DIFFERENT MEANINGFUL COMBINATIONS 138

C.1. MATLAB CODE TO CALCULATE EIGENVALUES OF DIFFERENT
MEANINGFUL COMBINATIONS OF 4 DECIDERS 138

C.2. MATLAB CODE TO CALCULATE EIGENVALUES OF DIFFERENT
MEANINGFUL COMBINATIONS OF 4 DECIDERS 140

VITA 142

viii

LIST OF TABLES

Page

Table 2.1. Available Links Types in the IACM (Tabulated by Deller 2009) 14

Table 3.1. The number of different meaningful combinations of all X-Y-X-1

networked forces where X< 19 and Y<19 27

Table 3.2. The Eigenvalues of a 7-3-7-1 Networked Force for its First

Combination 28

Table 3.3. The Numbers of Unique APFE's of all X-Y-X-1 Networked Forces

where X<19 and Y<19 30

Table 3.4. The Percentages of Unique APFE's over the Numbers of the Different

Meaningful Combinations fo all X-Y-X-1 Networked Forces where X<19 and

Y<19 31

Table 4.1. The Numbers of Different Meaningful Combinations of all X-Y-X-1

Networked Forces where X<13 and Y<13 42

Table 4.2. A Sample Strength Calculation 45

Table 4.3. A Sample Power Calculation 46

Table 4.4. Regression Result for the Aggregated Data of each BLUE

Combination vs. all RED Combinations WRT Eigenvalue 48

Table 4.5. Collective Regression Results for the Aggregated Data of each BLUE

Combination vs. all RED Combinations WRT Eigenvalue 50

Table 4.6. Collective Regression Results for the Decider Basis Aggregated Data

of each BLUE Combination vs. all RED Combinations WRT Eigenvalue 52

Table 4.7. Collective Regression Results for the Sensor/Influencer Basis

Aggregated Data of each BLUE Combination vs. all RED Combinations

WRT Eigenvalue 52

Table 4.8. Regression Result for the Aggregated Data of each BLUE

Combination vs. all RED Combinations WRT Eigenvalue, Disparity, and

Robustness 53

ix

Table 4.9. Collective Regression Results for the Aggregated Data of each BLUE

Combination vs. all RED Combinations WRT Eigenvalue, Disparity, and

Robustness 55

Table 4.10. Collective Regression Results for the Decider Basis Aggregated Data

of each BLUE Combination vs. all RED Combinations WRT Eigenvalue,

Disparity, and Robustness 57

Table 4.11. Collective Regression Results for the Sensor/Influencer Basis

Aggregated Data of each BLUE Combination vs. all RED Combinations

WRT Eigenvalue, Disparity, and Robustness 58

Table 4.12. Regression Result for the Aggregated Data of each BLUE

Combination vs. all RED Combinations WRT Eigenvalue, Disparity,

Robustness, Power, and Connectivity 59

Table 4.13. Regression Result for the Aggregated Data of each BLUE

Combination vs. all RED Combinations WRT all Metrics (Multicolinearity

Analysis-Step 1) 63

Table 4.14. Regression Result for the Aggregated Data of each BLUE

Combination vs. all RED Combinations WRT all Metrics (Multicolinearity

Analysis-Step 2) 64

Table 4.15. Regression Result for the Aggregated Data of each BLUE

Combination vs. all RED Combinations WRT all Metrics (Multicolinearity

Analysis-Step 3) 65

Table 4.16. Collective Regression Results for the Aggregated Data of each BLUE

Combination vs. all RED Combinations WRT Eigenvalue, Disparity, and

Stability 66

Table 4.17. Collective Regression Results for the Decider Basis Aggregated Data

of each BLUE Combination vs. all RED Combinations WRT Eigenvalue,

Disparity, and Coefficient 68

Table 4.18. Collective Regression Results for the Sensor/I nfluencer Basis

Aggregated Data of each BLUE Combination vs. all RED Combinations

WRT Eigenvalue, Disparity, and Stability 69

X

Table 4.19. Regression Result for the Aggregated Data of each BLUE

Combination vs. each RED Combination WRT Eigenvalue 70

Table 4.20. Collective Regression Results for the Aggregated Data of each BLUE

Combination vs. each RED Combination WRT Eigenvalue 71

Table 4.21. Collective Regression Results for the Decider Basis Aggregated Data

of each BLUE Combination vs. each RED Combination WRT Eigenvalue ..73

Table 4.22. Collective Regression Results for the Sensor/Influencer Basis

Aggregated Data of each BLUE Combination vs. each RED Combination

WRT Eigenvalue 73

Table 4.23. Regression Result for the Aggregated Data of each BLUE

Combination vs. each RED Combination WRT Eigenvalue, Disparity, and

Robustness 74

Table 4.24. Collective Regression Results for the Aggregated Data of each BLUE

Combination vs. each RED Combination WRT Eigenvalue, Disparity, and

Robustness 75

Table 4.25. Collective Regression Results for the Decider Basis Aggregated Data

of each BLUE Combination vs. each RED Combination WRT Eigenvalue,

Disparity, and Robustness 77

Table 4.26. Collective Regression Results for the Decider Basis Aggregated Data

of each BLUE Combination vs. each RED Combination WRT Eigenvalue,

Disparity, and Robustness 78

Table 4.27. Regression Result for the Aggregated Data of each BLUE

Combination vs. each RED Combination WRT All Metrics 79

Table 4.28. Regression Result for the Aggregated Data of each BLUE

Combination vs. each RED Combination WRT Eigenvalue, Power, and

Connectivity 80

Table 4.29. Collective Regression Results for the Aggregated Data of each BLUE

Combination vs. each RED Combination WRT Eigenvalue, Power, and

Connectivity 81

xi

Table 4.30. Collective Regression Results for the Decider Basis Aggregated Data

of each BLUE Combination vs. each RED Combination WRT Eigenvalue,

Power, and Connectivity 83

Table 4.31. Collective Regression Results for the Sensor/lnfluencer Basis

Aggregated Data of each BLUE Combination vs. each RED Combination

WRT Eigenvalue, Power, and Connectivity 84

xii

LIST OF FIGURES

Page

Figure 2.1. One-Sided Basic Combat Network (Cares, 2005) 11

Figure 2.2. Two-Sided Basic Combat Network (Cares, 2005) 11

Figure 2.3. Two-Sided Basic Complete Combat Network (Cares, 2005) 12

Figure 2.4. Adjacency Matrix 12

Figure 3.1. Chain Effects (Smith 2002) 18

Figure 3.2. Single-Sided Adjacency Matrix for 4-3-4-1 Configuration 20

Figure 3.3. Single-Sided Adjacency Matrices for 6-4-6-1 vs. 7-3-7-1

Configurations 21

Figure 3.4. A Sample Type of Links 22

Figure 3.5. The Calculation of Different Meaningful Combinations for the 5-3-5

Case With Special Matrix Operation 24

Figure 3.6. The Calculation of Different Meaningful Combinations for the 5-3-5

Case With Matrix Multiplication 24

Figure 3.7. A Sample of Different Meaningful Combination for the 5-3-5 Case...25

Figure 3.8. An Adjacency Matrix for one of the 42 Different Meaningful

combinations of a 7-3-7-1 network 28

Figure 3.9. The Weakest BLUE Configuration vs the Strongest RED

Configuration 33

Figure 4.1. Regression Result for the Aggregated Data of each BLUE

Combination vs. all RED Combinations WRT Eigenvalue 49

Figure 4.2. Regression Result for the Aggregated Data of each BLUE

Combination vs. all RED Combinations WRT Eigenvalue, Disparity, and

Robustness 54

Figure 4.3. Regression Result for the Aggregated Data of each BLUE

Combination vs. all RED Combinations WRT Eigenvalue, Disparity,

Robustness, Power, and Connectivity 60

1

1. INTRODUCTION

War is an inevitable reality of life and has been as long as humanity has

existed. Countries go to war to defend themselves, or they use war to support

their policies and beliefs. The tools and tactics of how we fight have always

changed along as technology enables us to advance as the years go by.

War in the Information Age has different characteristics than the war in the

Industrial Age. Technology was the dominant factor of the power in the industrial

age. The Information Age focuses on the value and superiority of information

(Lalbakhsh et al., 2009). These characteristics affect warfare capability,

processes, and evaluation that are brought to combat as well as the nature of the

environment in which conflicts occur.

Experience learned from past wars shows that traditional warfare is far

from satisfying its initial intended purpose in the Information Age. The

consequences of the information age and cultural changes from technology to

information and the new concept of power to the edge affected and changed our

lifestyle as well as the way we fight and defend.

The mains concept that causes a military organization to achieve the

optimum combat success and efficiency by means of network technology has

emerged over the last decade. This revolutionary concept is called Network

Centric Warfare (NCW) or it's civilian version Network Centric Operations

(NCOs). A primary goal of this new transformation is to put a military organization

at the leading edge of warfare technology, tactics, and awareness about the

enemy. Its definition and applications are continually evolving.

Both success and failure of operations, in the Information Age, often rely

heavily on necessary and sufficient data and information gathering, processing,

and sharing.

Often in the past, countries' large military budgets allowed military

organizations to pioneer both the development of technology and its applications.

2

Nowadays, commercial sectors seem to have taken over this role as pioneers in

the technology. They have applied information technology effectively to run

business worldwide.

In today's business, dominant enterpreneurs want to gain information

superiority and transform it into a competitive advantage by adapting their

traditional management and operations concept into NCOs. They have

dramatically exploited information technology and coevolved their organizations

and processes to best serve their customers (Honabarger, 2006).

Information Age technology has significantly reconfigured our concept of

time and distance. Large amounts of information, data, and images can be

securely shared online over a long distance. Time and distance are no longer a

hindrance for communication. A boss can watch his or her employees during a

manufacturing process and give them directives over a screen. A commander, as

a decision maker, can be aware of warfighters' orientation in the battlespace over

a computer and can develop a new tactics to increase the mission effectiveness

and efficiency.

The concept of NCW has changed force composition and individual

platform capabilities with force spatial distribution and tactics as important and

scenario-dependent factors. NCW concentrates on the information-based

aspects of force tactics: information collection, communication, and exploitation.

The ability of a force to manage and exploit the information as centric depends

on its connectivity: the existence, capacity, reliability of the links that connect its

platforms, command and control centers, and other entities.

No matter what physical proximity or strict hierarchy during the

unpredictable war environment, commanders can now use robust communication

networks to scatter their forces and synchronize their behavior for synergy in real

time, generating massed effect. These two factors, distributed forces and

networked control, look to revolutionize all aspects of warfare. A suitable

3

analytical model is needed to describe distributed, networked combat (Cares,

2005).

1.1. BACKGROUND

Information is the most vital (crucial) asset of an organization in the

information age. How it is attained and exploited affects the ability of any

organization to cope with the competitive challenges it encounters.

Improvements in communication and information technology in the 1990s made it

easier and cheaper to distribute information wider than ever before. But this

wider information distribution might have adverse unintended consequences.

Command, Control, Communications, Computers and Intelligence (C4I)

for the Warrior, a concept that advocated vastly increased access to information

at all echelons, prior to the articulation of Network Centric Warfare was the

highest concern of the military authority: How is automated information flow

controlled? Alberts (1996) wrote a book about the unintended consequences of

information age technologies to clarify these concerns and made appropriate

recommendations.

Mission Capacity Packages (MCPs) was recommended as a major

conclusion from the analysis to answer these concerns. MCPs describe the

answers of how to: operate, organize, command and control, design systems, as

well as provide training and education. MCPs must coevolve according to

changes in the force. Command and control should not be considered as a

solved issue, but is needed to be coevolve as force capabilities and concepts of

the operation change.

There are a lot of choices, of course, in how to shape and arrange an

organization; this will have different impacts on the operation effectiveness of the

organization. Some arrangements will improve self-synchronization, while other

arrangements will exacerbate it. The goal of this study is to find the optimum

arrangement according to the intent. How should an Information Age combat

force be arranged in order to get its optimum effectiveness?

4

1.2. PROBLEM DEFINITION

"There is still, however, a gulf between a philosophical understanding of

adaptation and the engineering prowess to make purposeful, stable and

controllable adaptation a reality in the battlespace"(Cares, 2005). The main

reason for this gulf is not having an acceptable and reasonable combat model in

the Information Age. An Information Age Combat Model will be a good tool to

help in observing and understanding a new system design, invention, and

testing.

An Information Age Combat Model explicitly represents interdependecies

in between agents and appropriately comes up with delicate tactical

arrangements. The model will help to set a rule of thumb to guide the Information

Age concept overview through development, systems engineering, operational

experimentation, and program analysis.

The purpose of this research is to understand what causes Network

Centric Operations to be effective and to understand the influence of network

factors on NCOs. In this research, a second attempt will be studied to identify up

to what configuration the utility of the Perron-Frobenius Eigenvalue (APFE) is

valued as a good metric to predict the perfomance of a network in general and

particularly combat power of the Information Age (Cares, 2005). As the number

of distinct APFE values increases gradually, the ratio of the distinct APFE values with

respect to the different meaningful combinations decreases dramatically.

Therefore, the power of the APFE value as performance measure (predictor) will

be expected to diminish exponentially from smaller networks to larger networks

and be asymptotic to the horizontal line. The third attempt is to find some

functions and algebraic operations to explain the relation in between the IACM

configuration and its performance. These functions and operations can generate

some numbers varry in a range as in the APFE and those numbers, with or without

APFE, might give better explanation of its performance.

5

Since an Information Age Combat Model must explicitly point out

networks, a mathematical structure of networks and its structure should be

clearly defined. An ubiquitous term used for connected system is called as

"network". It has other synonyms in business language such as "grid", "chain", or

"mesh". But only very few can understand that the terms have very specific

definitions in mathematical Network Theory. There are two practical reasons in

selecting a network type: different networks have different properties, many of

the characteristics of new operational concepts have specific mathematical

definitions derived from the science of the networks. Any model of distributed

networked combat that discards these mathematical properties would be

inacceptable model of Information Age combat.

There are three main perspectives of networks comprehensibly. These are

network structure, network dynamics, and network evolution.

6

2. LITERATURE REVIEW

As David et al. (2002) indicated, the information age has brought

outstanding changes to the US military organization and operations. The term

related with this change is Network Centric Warfare. From an information point of

view, NCW is described as an information superiority-enabled concept of

operations that creates advanced combat power by networking Sensors,

decision-makers, and Influencers to accomplish mutual awareness, advanced

speed of command, higher speed of operations, greater lethality, advanced

survivability, and a degree of self synchronization. In essence, NCW capitalizes

information superiority into combat power enhancement by effectively linking

knowledgeable entities in the battlespace.

Hanratty et al. (2003) discussed the disadvantage of network centric

warfare if not carefully arranged. Tomorrow's digitally networked battlefield will

not only enable unprecedented access to data, information, and knowledge, but

if not carefully arranged threatens to overload commanders and staff with this

new technology and information overload. Structured and semi-structured data

sources from all over the battlefield need to be monitored, filtered, and secured

against information requirements with the given appropriate alert level to

commanders and staff.

Wong-Juri et al. (2006) introduced a multi-layered model (MLM) with an

interlayer mapping to address the interdependent contributions of processes,

people, and systems to the success of Network Centric Operations. They

proposed a methodology to model and analyze improvement in the development

and implementation of Network Centric Warfare that extends the metrics

described in the NCO Conceptual Framework. This methodology allows a

commander to have the ability to determine and trace how desired military

objectives are affected by changes in specific areas across the doctrine,

organization, training, material, leadership, education, personnel, and facilities

trade space. This type of information helps a commander develop a strategy in

decision making.

7

Honda et al. (2006) evaluated agent-based combat simulation by

introducing a synthetic approach and adaptive evolutionary learning to action

rules by using EINSTein. EINSTein was developed by the Japanese Center for

Naval Analyses. It is a multi-agent artificial war simulation consisting of a 2-

dimensional lattice-shaped battlefield and agents of two groups, which are called

the red force and the blue force, fighting in the battlefield. Action rules are

expressed by a combination of parameters in combat simulation. The

researchers iteratively changed the number of sets of action rules to decide how

many of them work well. They made statistical analysis between homogeneity

and diversity and showed that there is a trade-off between them. By using the

synthetic approach, the total gain of a group is maximum at the stage that

homogeneity and diversity are in the middle.

Qing et al. (2009) studied the C4ISR system effectiveness under the

model of Network Centric Warfare and Platform Centric Warfare by utilizing

graph theory, information entropy, knowledge function theory, and complexity

theory. They concluded that information sharing has an active (positive) impact

and network complexity has a negative impact which are both raised as a whole

when the degree increases.

McCormick et al. (2004) introduced a new service-oreiented architecture

(SOA) approach that has gained popularity in the commercial sector by

integrating totally different enterprise applications, and representing a practicable

approach to network-centric warfare applications. They described how agents

provide a critical technology to apply emerging commercial technologies, such as

web services, into network centric warfare problems. Their objecive is to develop

and share battlespace awareness and understanding. Their information service

supervises information collection and dissemination/publishing activities on

behalf of fusion services in an autonomous, yet controllable fashion.

8

2.1. DEFINITION OF NETWORK CENTRIC WARFARE

No matter whether it is called Network Centric Warfare, Network Centric

Operations, or Netcentric Warfare, it is a new military concept of war pioneered

by the United States Department of Defense.

It attempts to transform an information advantage, gained by information

technology, into a challenging warfighting advantage by the virtue of robust

secure networking and geographically dispersed forces. This new design

networks with updates in technology, organization, process, and people and can

create a better organizational behavior.

There are three tenets in Network Centric Warfare to create synergy that

dramatically increase mission effectiveness. These tenets cause and enable

chain reactions to each other. Network Centric Warfare is built and depends on a

well designed, easy to access, wide band, robust network. Geographically

dispersed forces share information, collaborate with their echelons to have better

information, and orient themselves to the battlespace for situational awareness.

Shared situational awareness enables self synchronization. Overall, everything

dramatically increase mission efectiveness.

Network Centric Warfare has some architectural and design challenges.

Providing secure communications in Network Centric Warfare is a challenging

task. First of all, coordinating bandwith usage in a battlespace is a difficult issue.

Whenever a unit logs in and data transfer starts, it will be source or relay of radio

frequency (RF). For example, there were more than 500,000 troops who were

supported with 100 Mbit/s of bandwith during the Desert Storm Operation. Today,

there are about 350,000 warfighters, supported by more than 3,000 Mbit/s of

satellite bandwith in the Iraqi Freedom Operation. The bandwith, number of

access and speed of network, is 30 times more than they had about a decade

ago. They essentially used the same weaponries in timely close operations with

significantly increased effectiveness.

9

Second, providing secure and reliable information transfer in network

centric warfare is another difficult issue. Succesful key management for

encryption must be supported for secure information over the network.

Third, every unit in network has different levels of access authority for

information. This makes difficult to efficiently transfer information between

networks with different levels of security classification. There are a lot of issues

still needed to be determined for secure and reliable network. Although multi

level access security systems seem to resolve the issue, to what extent specific

data should or should not be transfered still needs to be determined during the

decision making process.

Fourth, situational awareness is limited when maneuvering in weak or

non-existent GPS coverage. Spare systems in case of GPS outage for a variety

of reasons needs to be considered as a backup for reliable fusion of positional

data (triangulation technics can be used to locate yourself from multiple sensors

as backup).1

2.2. NETWORK STRUCTURE

The most fundamental level of the Information Age Combat Model is the

mathematical structure of a network as a collection of nodes connected by links.

Nodes are the processing elements called Sensors, Deciders, Influencers, or

Targets. These nodes are well defined (Cares, 2005) and have the following

properties:

• Sensors detect unusual or hostile activities in their responsility areas and

locate them or receive those activities' locations from friendly nodes and

send the information to their linked Deciders,

• Deciders receive information from their linked Sensors and make

decisions and command their linked Influencers about the present and

future arrangement,

1 See http://en.wikipedia.org/wiki/Network-centricwarfare for more information

http://en.wikipedia.org/wiki/Network-centricwarfare

10

• Influencers receive direction from their linked Deciders to render the given

hostile nodes states useless,

• Targets are nodes that have military value but are not Sensors, Deciders,

or Influencers.

These are the minimum properties required to define each node. There

are still some characteristics needed to be defined to clarify the rules between

nodes.

First, each node must belong to a "side" of at least two (e.g., blue, red,

friend, foe, neutral). For simplicity and a better fit to the combat model, there are

two sides, conventionally termed BLUE (depicted in black) and RED (depicted in

gray).

Second, Targets always belong to the other side, adversary. Targets are

anything of military value on each side except a Sensor, Decider, or Influencer.

Third, sensor logic (signal reception) is not a decision making capacity.

Signal reception is already considered as an embeded function within Sensors.

Fourth, all Sensor information must pass through a Decider. Deciders

know their side's nodes location even if they are killed or inoperative accepting

they are all in their own side Sensors' coverage.

Nodes are connected to each other by directional links. Links might be

observable phenomenon like radio frequency energy, infrared signals, light

signals, communications or acoustic energy that emanate from a node and are

detected by a Sensor. These detected links by Sensors are sent to Deciders.

Deciders issue orders to Influencers, Sensors, and Targets. Influencers typically

destroy or render useless the nodes they interact with. Most of the links in the

Information Age Combat Model are tactical and operational interactions between

nodes.

11

2.3. COMBAT NETWORKS

The links and nodes described above establish a combat network. Figure

2.1 graphically represents the most basic one-sided combat network, while

Figure 2.2 represents a two-sided system. Black nodes denotes the friendly side,

while light grey denotes the enemy side. Different line styles represent various

kinds of links between nodes.

(°> - ©
i

(t> T

Figure 2.1. One-Sided Basic Combat Network (Cares, 2005)

(D) (T) T D

xs •
Figure 2.2. Two-Sided Basic Combat Network (Cares, 2005)

Figure 2.3 represents the basic complete combat network that can be

established from what has been mentioned so far. It represents all possible

meaningful links in which Sensors, Deciders, Influencers, and Targets interact

with each other.

12

Figure 2.3. Two-Sided Basic Complete Combat Network (Cares, 2005)

2.4. DIMENSIONS AND COMPLEXITY

The number of possible links for eight nodes is equal to 28=64. As Cares

(2005) described, two-sided basic complete combat network for eight nodes

(SDIT nodes for the BLUE side and SDIT nodes for the RED side) (see Figure

2.3). This is depicted in the adjacency matrix (Figure 2.4) as having at least 36

different dimensions (i.e.,possible meaningful links). An adjacency matrix is an

easier representation for understanding the dimensionality of different types of

network. Figure 2.4 reflects the same eight node network in Figure 2.3 in matrix

form.

A, if there is a link from row i to column j
IJ 0, otherwise

"

s
D
I
T
S
D
I

LT

S
1
1
1
1
1
1
1
1

D
1
1
1
0
0
0
1
0

I
0
1
1
0
0
0
1
0

T
0
1
1
0
0
0
1
0

S
1
1
1
1
1
1
1
1

D
0
0
1
0
1
1
1
0

I
0
0
1
0
0
1
1
0

T
0
0
1
0
0
1
1
0

Figure 2.4. Adjacency Matrix

13

The number of possible links for eight nodes is reduced from 64 to 36

based on the following important assumptions as Deller (2009) mentioned and

tabulated in his research as follows:

• Targets are inactive nodes; they can only be sensed. As seen in

Figure 2.3 and Figure 2.4, there are only two arrows out from Targets to

Sensors. Therefore, 12 links from Targets to Deciders, Influences, and

Targets are excluded. There are no links from Targets to Deciders,

Influencers, and Targets.

• Sensors are also inactive nodes; they just relay information to linked

Deciders and to both sides of the Sensors. There are three arrows out

from Sensors to linked Deciders and both sides of the Sensors.

Therefore, there are 10 links from Sensors to Influencers, and Targets are

excluded.

• Deciders act through all linked nodes and can sense adversary Sensors.

There are five arrows out from Deciders to all linked nodes and adversary

Sensors. Therefore, there are 6 links from Deciders to adversary

Deciders, Influencers, and Targets are excluded.

14

Deller further reduced the number of link types from 36 to 18 based on the

BLUE/RED symmetry. Links from a node to itself in Figure 2.3 have been

interpreted as connecting two different nodes of the same type and side.

Table 2.1. Available Links Types in the IACM (Tabulated by Deller 2009)

Link

Typa

1

2

3

4

5

S

7

8

9

From

^ 3 3 3

S330

Da-.ua

C333

Da-.us

D333

DEJJE

Da-.us

D « 0

•sSQ

To

D#_ys

S « 3

S..3SO

C'33 3

<ftS3

Tsso

Ssso

Sa.ua

s S i 0

Interpretation

S detecting own S, or S

coordinating with own S

S reporting to own D

S detecting adversary S

S detecting own D. o r D

commanding own S

D commanding own D

D commanding own 1

D commanding own T

5 detecting adversary D

1 attacking own S, o r S

detecting own 1

Link

Type

ID

11

12

13

14

15

15

17

IB

From

ISSD

"a-jjs

1*33

Uao

ls_us

UEO

l*=3

'EJJE

U E 3

U=3

T ^ J S

Taso

T:EUJE

Tsso

To

Da-.us

U E *

T M 3

S S = 3

S = .UE

Da.-JB

1*33

IE-UE

Tsso

TffjJB

sa' .ys

Sssa

Ssso

Sg'.'JE

Interpretation

1 attacking own D, or 1

reporting to own D

1 attacking own 1, or 1

coordinating with own 1

1 attacking own T

1 attacking adversary S.

orS detecting adversary

1 attacking adversary D

1 attacking adversary-1

1 attacking adversary T

S detecting own T

S detecting adversary T

Cares (2005) employs only basic combat networks similar to Figure 2.1 with one
replacement. He replaced Target by an adversary Sensor or Influences His
combat cycles contain only links of types 2,3,6,13, and 15. Type 13 has two
interpretations. Its both interpretations will be used and distinguished by the
model context.

http://Da-.ua

15

2.5. NETWORK DYNAMICS

Advantages of networked centric warfare occur in local tactical operations

because of the persistent dynamic interaction between specifically arranged

nodes over links. This dynamic interaction process is called a cycle, sub-network

in which the functions of nodes are sent to each other over a path that revisits at

least one node once. Useful networked functions depend on presence of a cycle.

16

3. METHODOLOGY AND PROPOSED APPROACH

In this chapter, the methodology that will be used in the dissertation will be
explained.

3.1. WHY DO WE USE (AGENT-BASED) MODELING?

Models are designed, developed, and implemented as simulations to

evaluate and gain insight about systems' behaviors in regulated environments.

Modeling is a simple collation of the important entities, processes, and their

relations to aspects of the real world. As Tolk et al. (2008) mentioned in their

paper, current modeling paradigm is mostly intention-based. Entity capability and

process are, in most cases, shaped by the models according to the intention and

desired effect, which is in turn essentially reduces the probability of success to

desired effect. They proposed a new modeling paradigm based on the agent

metaphor: effect-based modeling. The new modeling paradigm uses agents as

having multi-roles entities, as well as processes, with their potential effects. In

other words; everything is defined as an agent with more flexible evaluation

algorithm to capture the effects and higher-order effects of complex and non­

linear systems that generate.

The modeler has a preset purpose in mind while building a model. He or

she wants to see if that purpose is achievable. He or she wants to evaluate

several alternatives, optimize his decision based on several situations, train

people using a simulator, etc. In any case, he or she is first inspired a model

conceptually by the real world. The concept can either be a feature that is

situation independent and describes entities, or a fluent that is situation

dependent and describes processes. In other words, modeling involves entity,

process, and their relations. An entity might have many roles; but, it is often

reduced to a main intended role in the modeling process. A process is a course

of action to change the current situation into a desired direction for the desired

outcome.

17

The current, intention-based, modeling paradigm has three main

shortcomings. These are intention-based capability modeling, intention-based

process modeling and intention-based evaluation.

Intention-based capability modeling, in general, concentrates on the main

role or the intended use and not inherent capabilities, which can restrict its

applicability for new domains with changing scopes.

Intention-based process modeling, in general, models the probable

desired outcome. It normally ignores unintended outcomes, side effects, and

follow-on effects.

Intention-based evaluation modeling often narrows down its performance

metrics after action reviews for efficiency evaluation to measure intended effects.

Therefore, evaluation procedures are too strict regarding new scopes.

On the other hand, Tolk et al. (2008) proposed a new modeling paradigm

"effect-based modeling" to compensate for the shortcomings of the current

modeling paradigm. Effect-based modeling in the military domain means effect-

based operations that Smith (2002) defined as "coordinated set of actions

directed at shaping the behavior of friends, neutrals, and foes in peace, crisis,

and war."

Effect-based operations introduce the idea of multi-level, cascading effects

as shown in Figure 3.1 below. Not only entities can produce effects, but effects

themselves can produce essentially decreasing effects.

18

First Cascade Second Cascade

Physical Action

Object/Event

Direct

Physical Effect

Indirect

Psychological

Effect

Effect

2
I?

Effect

Indirect

Physical Effect

Indirect

Psychological

Effect

Effect

ft?
"2

Second Indirect

Physical Effect

Indirect

Psychological

Effect

Effect

Effect

ft?
t?

Figure 3.1. Chain Effects (Smith 2002)

Tolk et al. (2008) recommends that modeled entities should not be used

just for intended purposes, but they should be able to conduct all possible

purposes and functions with identified capabilities based on their available

properties. Using entities with ready to use or that have a multi-purpose use is a

more complex but a more efficient way for simulation. New modeling paradigms

aim for each simulated entity to be equipped with actual capabilities with potential

capabilites described in sufficient detail using properties and associations.

Anything (role, capability, function, purpose, uses, etc.) needs to be described in

each simulated entity and should be embedded to its property so that each entity

is ready to support any potential roles described in its properties.

The whole process and its possible interactions with all entities, as well as

other processes, are also necessary to model with the same detail as entities,

their properties, and associations.

Intention-based evaluation criteria should also be changed accordingly to

meet the requirements of effect-based evaluation criteria. Specifically, when

agent-based simulation is used in human behavior modeling with computer

support, running into structural variances based inadequate evaluation criteria is

obvious, as shown in Tolk (1999). The internal decision logic, the external

evaluation logic, model entities, and processes should be consistent with each

other. The internal logic controls the entities behavior with respect to the situated

19

simulation environment. The external evaluation logic checks and evaluates if the

objectives have been met. Therefore, corelation metrics are needed to be

working as fitness function between internal decision logic and external

evaluation logic.

In order to analyze effect-based net-centric operations, intention-based

modeling falls short. Discrete event simulation is a high level and not sufficient

enough to explore the micro aspect relation and the interactions between entities.

Agent-directed simulation provides the metaphors needed to build the necessary

models. Using agents to not only represent Influencers and Targets but also the

processes, it becomes possible to capture all effects and move from "what I

intended to accomplish" to "what I really accomplished" including side and

secondary effects. Computational challenges exist, but they seem to be easier to

overcome than the conceptual weaknesses of alternatives (Tolk et al. 2008).

3.2. AN AGENT-BASED SIMULATION MODEL USING THE IACM

The APFE is a reasonable metric for the IACM structure with which to

measure the performance of a networked force (Deller, 2009). To determine if it

is an indicator of combat effectiveness, the agent-based simulation of the IACM

coded in NetLogo was modified with a more powerful and more flexible one

coded in AnyLogic to conduct a series of force engagements between opposing

forces of equal assets and capabilities with differences in their connectivity

arrangements or configurations for large cases.

The agent-based model was used for two purposes: the primary focus of

this investigation is to explore how various sizes of units inside organizations

behave in a networked environment. The secondary focus of this investigation

was to determine how to increase the performance of a networked force.

As Deller (2009) mentioned in his research, both sides of equal forces

seek for what is best for their benefit as opposed to what is worst for the enemy

side. For this reason, it is necessary to calculate ABLUE and ARED separately to

analyze the performance of both sides for all their configurations. In order to

20

separately calculate APFE value for BLUE and RED sides, the single-sided

adjacency matrix in Figure 3.2 is given below as an example for the 4-3-4-1

configuration used with a single Target node; its eigenvalue for combination

{2,1,1,2,1,1} is 1.565. Target node symbolizes all the enemy forces capable of

being targeted.

S S S S D D D I I I I T

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1

1 0 0
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0
0 0 0

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 1 0 0
0 0 1 0
0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0

0
0
0
0

0
0
0

1
1
1
1

0

Figure 3.2. Single-Sided Adjacency Matrix for 4-3-4-1 Configuration

3.3. STRUCTURE OF THE EXPERIMENT

Any difference in force effectiveness can be best explained with the

difference in connectivity. The more Sensors and Influencers are linked to a

Decider, the better performance it will respond with. For unbiased simulation and

simplicity, the same assumptions as in Deller (2009) are held as containing an

equal number of Sensors and Influencers with both having the identical

performance capabilities. So the structure of both sides is represented by an X-

Y-X-1 template as S-D-l-T.

No matter what the structure will be and therefore the template of both

sides, a better Java code was scripted to distinguish the different meaningful

combinations and a more flexible agent-based simulation model was developed

in a more powerful environment. The adjacency matrix will always have the same

21

number of rows as the number of columns and it is always a square no matter

what their arrangements are. So, solely the value of APFE can be calculated.

For example, a 6-4-6-1 friendly force and a 7-3-7-1 enemy force

arrangements are given. Their meaningful combinations are also always

independent from each other.

6-4-6-1 friendly force 7-3-7-1 enemy force
S S S S S S S D D D I I I I I I I
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 1 1 1 1 1

1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 1 1 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1

1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0

Figure 3.3. Single-Sided Adjacency Matrices for 6-4-6-1 vs. 7-3-7-1 Configurations

There is a finite number of ways to link Xs and Ys to each other for their

certain numbers. Deller (2009) made two important scoping decisions for the

rules of the game, IACM; those decisions were also held in this study. First, each

Sensor and Influencer would only be linked to one Decider (a vertical /

execution I operation / hierarchial link in the chain of command), not two or

more Deciders (but the given Decider does not have that limitation; it could be

linked to multiple Sensors and Influencers). Second, the connectivity within any

X-Y-X-1 arrangements was subjected to only those hierarchial links in the chain

of command (links in between dissimilar entities) necessary to create the combat

(adjacency matrix) cycles (i.e., link types 2,3,6,13 and 15 in Table 2.1 as stated

earlier), which are the fundamental links to calculate APFE (Deller, 2009).

22

For example, for a 7-3-7-1 arrangement, there are 7 Sensors, 3 Deciders, 7

Influencers.

, . , . \ .M Execution/

Oi] f Di] operation/chain

/"'"7'"* of command link

o ©y

No dashed lines

(horizontal/

coordination/

} information/

^ • ' " / handover link)

/ are considered in

this research

Figure 3.4. A Sample Type of Links

Future works should include "horizontal / coordination / information /

handover / peer-to-peer" links in between similar entities like Sensors to Sensors,

Deciders to Deciders, and Influencers to Influencers such link types 1, 5, 11 or

direct coordination links from Sensors to Influencers such a link type 9. A new

rule or function to determine what is going to happen to a Decider with enough

influencers but no Sensors or vice versa can be another future study. These

additional links and rules will definitely increase the performance of a networked

force as well as its structure and eigenvalues.

The number of possible configurations for an X-Y-X-1 force becomes large

very fast as X increases. The number of different meaningful combinations for

any number of a template is a combinatorial coupling relation of X and Y. Three

modular Java codes were written to determine the different meaningful

combinations. For example, there are a total of thirty six possible ways to

distribute five Sensors and five Influencers across three Deciders. When we

integer partition and permute five by three, we get six possible configurations

between five Sensors and three Deciders (or five Influencers and three

Deciders); let's say a sub matrix, A, m by three in dimension. Since we have the

same number of Influencers, we will get the same six possible configurations

between three Deciders and five Influencers; the same sub matrix, A, m by three

in dimension. Then the total number of possible configurations for a 5-3-5-1 force

23

will be six times six, equal to thirty six. In order to distinguish the different

meaningful combinations from the possible configurations, we will pretend as if

multiplying the sub matrix (as being the connectivity matrix of Sensors and

Deciders) by its transpose (as being the connectivity matrix of Deciders and

Influencers); but in reality we apply special matrix operation. This special matrix

operation gives us thirty six real numbers with fractions; some are repeated, but

some are distinct. Those numbers with fractions work as an index. The fractional

numbers detect the difference among all possible combinations. As the number

of Sensors/Influencers and the number of Deciders get closer to each other, the

number of all possible meaningful combinations and therefore the number of

different meaningful combinations decrease. The constituents of the distinct

results (real numbers) are our different meaningful combinations. The special

matrix operation is defined as below:

AoA' =

a n

•ml

Where

a l y

amy.

ra

A =
11

'ml

a l l

a y l

*ly

•my.

a l m

lym

= H i - i ~TT Equation 3.1
>~x /y a i i

A =
* n

i y l

l l m

1ym

1 < i < m and y as nDeciders

The 5-3-5 case is given below as an example to explain how to obtain different

meaningful combinations. The case has six possible combinations in between

Sensors and Deciders and therefore it has the same number of possible

combinations between Deciders and Influencers. These combinations are

depicted in matrix form for convenience.

24

1
3
2
1

[3 2 2 1 1 1 '
1 2 1 3 2 1
11 1 2 1 2 3.

il
2 3

i l
v_

i l

r - v

l 3

3 3 =

l 3

V3

1=
+ ^ -r =

i !

+ - = -
1 :
2= r =
1=

+ ^ -

r:
2 ;

+ —
1" -r-

il
F3

i l
2'" =

il
2' 3

1 =
2 : =
1 =

r =
2S =

1-' 1!
+ — + —

2 3 1 3

23 1= + — + —
1 ! 2 :

3= 1 :

+ — + —
i2 • r-
23 2 : + — + — 2 - 1 -
l3 33

33 l3 l3

2" : r s 2 3

23 23 l3

— + — + — 2 = 1 3 2 3

23 1 ! 23

F 3 i: s fl
1 ! 33 1-'
r : i: s 2 : =
1= 23 23

— + -=- + — 2 3 1 ' 2 3

l3 l3 3 :

— + — + — 2 3 1 3 2 3

y. V.

F + F
2- V

il
i 3 = '
l3

i 3 = '
l3

3 ' 3

Ĵ _
33 =

il
3 ' 3

il
3 P 34 3

l 3

1J 3

l 3

+ —

r3

i 3
+r=

2 3

+ -=-
1" !
I3

+ —
V 3

23

3 3

+ F1

33 1= l 3

— + — + —
1 3 2 3 2 3

23 23 1-'
- ^ + — + ^ r -
1 3 2 3 2" =

il il il
1 : J 2*" -' 23 3

l3 33 l3

— + — + —
1" 3 2 - -' 2 =
l3 23 23

T - + - T - + - J -
1 3 2 3 2 3

il il il
l"* s 2 : 3 2 3 3

3-' 1:

— + —
l ' 3 1"
23 2:

23 1!

r
i3

_i=

i :

i 3

r
3 :

2 :

+ —
r
i :

+ — r

3 +F
i :

- + —
3 3

2 3

3 +F
i3

1+F
2 3

1 + F
3 3

- + —
3 3"

20,7208 23.2236 23.2236 28.6934 28.5874 28.6934"
14.5469 13.6992 15.1433 14.5469 15.1433 16.6934
14.5469 15.1433 13.6992 16.6934 15.1433 14.5469
28.6934 23.2236 28.5874 20.7208 23.2236 28.6934
16.6934 15.1433 15.1433 14.5469 13.6992 14.5469
28.6934 28.5874 23.2236 28.6934 23.2236 20.7208-

Figure 3.5. The Calculation of Different Meaningful Combinations for the 5-3-5 Case With
Special Matrix Operation

If matrix multiplication is applied, it yields the below matrix.

11
9
9
7
7
7

9
9
8
9
8
7

9
8
9
7
8
9

7
9
7
11
9
7

7
8
8
9
9
9

7
7
9
7
9
11

Figure 3.6. The Calculation of Different Meaningful Combinations for the 5-3-5 Case With
Matrix Multiplication

This matrix operation can not be just addition, subtraction, multiplication,

or division or any combination of these. Because, the same number in different

place or different numbers in the same place might give the same result. The two

resulting matrices in Figure 3.5 and Figure 3.6 for the same case are clear the

25

rationale behind why it is necessary to have a special function or an operator.

The first resulting matrix detected the exact result as eight; but the second one is

so rough it missed half of the different meaningful combinations and detected

four. These basic calculus operators are not sensitive enough to distinguish the

different meaningful combinations. The desired operation can not be a

logarithmic, natural logarithmic, or exponential function because these functions

are not sensitive to one, for example, ln(1)=0, log(1)=0. A special function and

an operation are required to detect the difference for the intended purpose. What

is the intended purpose? It is to identify the different meaningful combinations.

What is meant from different meaningful combinations is how many different

ways of links in between Deciders, Sensors, and Influencers have. The sequence

is not important. In the case above, there are eight different meaningful

combinations out of 36 possible configurations. The numbers in the resultant

matrix are nothing but the keys show us their constituents of different meaningful

combinations. There are three "20.7208" in the resultant matrix showing that they

have the same configuration hanging together that no matter where they are, one

Decider has three Sensors and three Influencers linked to it. The other two

Deciders have one Sensor and one Influences The order is not important; but the

number of Sensors and Influencers linked to each Decider is the key structure

here. They go out to the battle field; it is known that one of the war units has one

Decider with three Sensors and three Influencers fighting together as a team, the

other two Deciders have one Sensor and one Influencer fighting together as the

other team.

©ft Or 0 »000
Figure 3.7. A Sample of Different Meaningful Combination for the 5-3-5 Case

26

The formula with the powers will be so sensitive to detect the different

meaningful combinations as the numbers increase. But this formula takes time as

the numbers increase to get the results. For a future work, some other

mathematical formula or an algorithm for this purpose can be developed to get

faster results. The remaining twenty eight possible configurations in the above

5-3-5-1 case are all modeled identically to these eight configurations in the IACM.

Adding a single Sensor and Influencer yields a 6-3-6-1 networked force,

which can be organized in 100 possible ways. By applying the same formula,

those 100 possible configurations are reduced to only 19 meaningful different

configurations. The ratio between the number of meaningful different

configurations and number of possible configurations diminishes as the number

of Sensors and Influencers increases.

Identifying the different meaningful combinations is so crucial for the

purpose of the problem. It is necessary to run different meaningful combinations

to get all possible different results. It is not necessary to run the recursive

combinations. They give nothing and waste time. For example, with a 6-3-6-1

arrangement, there are 100 possible combinations. Testing each of the 100

possible configurations of a 6-3-6-1 BLUE networked force against all 100

possible configurations of an opposing 6-3-6-1 RED networked force would

require 10,000 similar engagements, but 19 different meaningful combinations

would only require 361 unique engagements. The numbers of different

meaningful combinations for all X-Y-X-1 forces where X<19 and Y <19 are

calculated by using the Java coded algorithms based on the numbers of unique

values for the distributions of Sensors and Influencers across the Deciders.

27

The resulting totals are consistent with Deller (2009) to where he left and are

summarized in Table 3.1:

Table 3.1. The number of different meaningful combinations of all X-Y-X-1 networked
forces where X<19 and Y<19

N
um

be
rs

 o
f

S
en

so
rs

 (
X

ja
n

d
In

flu
e
n
ce

rs
 (

X
)

Number of Deciders |Y)

3

4

5

6
-r

5

"Z

"3
"4
•5
"5
" 7

• 5

3 4 5 6 7 S 3 • • : • - - "2 "J "4 ' 5 "6 "7 "5

-
2

5
~3

42

75
•33

224
351
5-7

744

"032

-405

*H52

2432
j - - 5

-
2
3

27

74

•5£
363

703
•237
2247

3742
5357

324"
*3553
20307

i

-
2

3
30

35
245
6" 4
"367

2573

5674
-065-

"3-63
332:5

555-5

-
2
3

3-

"05

M"
5-4

"336

4643
•0-22

2-"55
4233"

5-376

-
2

3
3"

•05
325

364
2552

6704
"6465

33335

55735

-
2

3
32

- -0

340
-05-

3203
5354

2232"

57702

•
2
3

3'
- -6

375

'235
3753
--2"6

3-556

-
2
5

34
-23

420
•447

4572

-3524

-
2
3
32

•27

44"

•543
4337

-
2
3

33
"44

456
-635

-
2

3
34
"35

475

-
2

"0
37

-54

•
2

"0
36

•
2

"0

-
2 -

Each combination has its own adjacency matrix representation showing its

node connectivity. The adjacency matrices for all configurations will only change

in SD and Dl sub-matrices (see the two white sections of an example adjacency

matrix in Figure 3.8), with S by D and D by I in dimensions. These sub-matrices

reflect the connectivity of each Sensor and Influencer to and from a particular

Decider, and change by combination based on the allocation of Sensors and

Influencers across the Deciders. The sub-matrices with zeros in gray areas

represent the absolute absence of any links from the letters in the rows to the

letters in the column. The sub-matrices with ones (1) in gray areas represent the

existence of links from the letters in the rows to the letters in the column. No

matter what X-Y-X-1 arrangements are, there are 16 sub-matrices in the

adjacency matrix; 14 of them are steady as zeros or ones in varying dimensions

depending on Sensors, Deciders, Influencers, and Target. Since two of sixteen

sub-matrices of the adjacency matrices for each combination are varying, the

variance between the APFE values is small.

28

S S S S S S D D D D I I I I T

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1

1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0

Figure 3.8. An Adjacency Matrix for one of the 42 Different Meaningful combinations of a 7-
3-7-1 network.

No matter what type of arrangements, there are always four eigenvalues.

By definition, the maximum number of eigenvalues is n out of n by n square

matrix. Four out of n have some values and the rest are zeros. The first four of

the eigenvalues basically have the same pattern: two real and two complex

numbers. The first eigenvalue is negative real number, the second one is positive

complex number, the third one is complex conjugate of the second one, and the

fourth one is positive of the first one.

In the case of a 7-3-7-1 networked force, 18 eigenvalues are given below

for its first combination (5-1-1 vs. 5-1-1) as an example;

Table 3.2. The Eigenvalues of a 7-3-7-1 Networked Force for its First Combination

-2.2795

-0.0 + O.Oi

0.0 + O.Oi

-0.0 - O.Oi

0

-0.0 + 2.2795i

-0.0 - O.Oi

0.0 - O.Oi

-0.0

0

-0.0 - 2.2795i

0.0 + O.Oi

-0.0

-0.0

2.2795

0.0-O.Oi

-0.0 + O.Oi

0.0

The positive real eigenvalue is taken and is called as Perron-Frobenius

eigenvalue (APFE) as Deller mentioned in his study. In a 7-3-7-1 networked force

case, the 42 different meaningful combinations have 13 unique APFE ranging from

29

1.821 to 2.280. The APFE'S were calculated by using a code in Matlab (available in

the Appendix). The Matlab code reads X_Y_X.txt file (meaningful combinations

file) for each arrangement and gives output as X_Y_X.xlsx woorkbook in

realeigenvalues, imag_eigenvalues, PFE_eigenvalues, variance worksheets.

As Deller (2009) mentioned in his research, identical combinations always

have the same APFE ; but, somehow different meaningful combinations also have

the same APFE • The combinations having the same eigenvalue are called the

eigenspace. By definition "[t]he eigenspace corresponding to one eigenvalue of a

given matrix is the set of all eigenvectors of the matrix with that eigenvalue."2. As

the number of different meaningful combinations increases, the number of

distinct eigenvalues decreases, and thus the ratio between the two. The APFE

loses its power gradually as a metric as the value of X increases. For a small

number of cases, the eigenvalue alone can be a good metric; but, as the case

and numbers increases, it needs to be supported by better defined (sensitive)

metrics to enhance performance prediction of a networked force.

The numbers of unique APFE'S for the different meaningful combinations for

all X-Y-X-1 forces where X<19 and Y<19 are listed in Table 3.2.

2 See http://en.wikipedia.org/wiki/Eiqenvalue. eigenvector and eigenspace for more information

http://en.wikipedia.org/wiki/Eiqenvalue

30

Table 3.3. The Numbers of Unique APFE's of all X-Y-X-1 Networked Forces where X<19 and
Y<19.

m
L_
<D
U
C
m

1
T3
C m
X
IB
L.
o
19
C m
to

"5
w
<B
A
E
z

Number of Deciders (YJ

3

5

5

i"

8

3

ID

11

12

13

14

15

15

17

IS

3 41 5 5 7 8 3 ID 11 12 13 14 15 15 17 13

1

2

4

3

13

20

27

38

43

51

75

33

W9
131

f5f
174

1

2

4

3

13

2D

27

33

43

51

75

33

110

131

152

i

i

1

2

4

3

13

2D

27

33

43

51

75

33

11D

131

1

2

4

3

13

2D

27

33

43

51

75

33

110

1

2

4

3

13

2D

27

33

43

51

75

33

1

2

4

3

13

2D

27

33

43

51

75

1

2

4

3

13

2D

27

33

43

51

1

2

4

3

13

2D

27

^33.

43

1

2

4

3

13

20

27

33

1

2

4

3

13

20

27

1

2

4

3

13

2D

1

2

4

3

13

1

2

4

3

1

2

4

1

2 1

There is no simple relation between the numbers of unique APFE'S and the

numbers of different meaningful combinations (Deller, 2009). It is interesting that

the numbers of different APFE'S are recursive over diagonals with two exceptions.

The numbers of unique APFE'S are increasing by rows (each row it increases; it

increases as Sensors/Influencers increase) and decreasing by columns (each

column it decreases, it decreases as the Deciders increase). Table 3.3 depicts

the percentages of unique APFE'S over the numbers of the different meaningful

combinations of all X-Y-X-1 networked forces where X<19 and Y<19:

31

Table 3.4. The Percentages of Unique APFE's over the Numbers of the Different Meaningful Combinations fo all X-Y-X-1
Networked Forces where X<19 and Y<19.

N
u
m

b
e
rs

 o
f
S

e
n
s
o
rs

 (
X

)
a
n
d
 I
n
flu

e
n
c
e
rs

 (
X

)
Number of Deciders |Y}

3

4

5

5
•y

8

3

10

11

12

13

14

15

IS

17

18

3 4 5 5 7 8 9 ID 11 12 13 14 15 15 17 18

10033%

13333%

5333%

42.11%

33,95%

25.54%

19.42%

13.93%

13.71%

1153%

1322%

931%

7.75%

734%

551%

559%

10033%

10033%

44.44%

2953%

1757%

11.93%

7,44%

5.41%

3.7*3%

171%

233%

155%

1.19%

0.95%

0.75%

i

100.03%

100.03%

44.44%

25.57%

13.53%

3.05%

4.43%

2.73%

157%

1.03%

0.71%

0.49%

0.33%

024%

ioo30%

10333%

44.44%

2551%

1253%

5.54%

3.32%

1.90%

1J33%

050%

055%

022%

0.13%

103.00%

100/33%

44.44%

2551%

12J34%

5.13%

253%

1.47%

0.72%

0.37%

0.19%

0.11%

10333%

10350%

44.44%

25/30%

1152%

553%

257%

1.25%

057%

027%

0.13%

13333%

133.03%

44.44%

2551%

1121%

553%

2.19%

1.03%

0,43%

0.19%

103)33%

103.33%

44.44%

2353%

1357%

4.75%

157%

053%

053%

103.03%

103.03%

44,44%

25.03%

1324%

454%

1.75%

0.75%

103.00%

103.03%

44:44%

2424%

9.-33%

4.12%

159%

10030%

10333%

44,41%

2353%

955%

421%

103)33%

100.30%

43.03%

21.52%

3,44%

103/33%

103.03%

43.03%

2222%

103.03%

103.03%

43.03%

100)30%

100)33% 103)33%

32

As Deller (2009) mentioned in his research, if an n by n square adjacency

matrix contains no links at all, its n eigenvalues are all zero. If it contains a

maximally connected network, one of its eigenvalues is n, the rest are zero. Note

that the ranges of APFE'S for the numbers of different meaningful combinations of

a X-Y-X-1 networked forces are stuck in a narrow band of the full range, n, due to

the relatively small differences of the links within two of 16 sub matrices. The

number of discrete points within the range of eigenvalues will become insufficient

for statistical analysis to explain the performance measure of a networked force.

The APFE'S vary infinitesimally. They reflect the relationship between the

probability and the combinations quite well. The APFE'S are important measures

up to around 15 Sensors and Influencers. From that point on, the numbers of

unique APFE'S over the numbers of different meaningful combinations percentage

is around 1% or even less as seen from the Table 3.3, which really doesn't give

anything to measure.

When the results are evaluated, it is seen that the weak BLUE

configurations versus the strong RED configurations have a lower probability of a

BLUE win over the equal assets of RED forces. If a Decider has only one Sensor

or only one Influencer, it is very easy for that Decider to be rendered useless

once its only entity is killed no matter how many other Decider the other entity

has. This is the mechanism through how the agent-based modeling of the IACM

works. For example, if the BLUE force with 5-1-1 Sensors vs. 1-5-1 Influencers is

fighting against the RED force with 5-1-1 Sensors vs. 5-1-1, the probability of

BLUE win, the actual result of the experiment, is zero.

33

BLUE Force RED Force

S H E
D D D

Figure 3.9. The Weakest BLUE Configuration vs the Strongest RED Configuration

In the above example, the BLUE force has the weakest configuration and

the RED force has the strongest configuration. Once the only entities of each

Decider are killed, the BLUE force is out of fight right away. But the RED force

still has at least one Decider with enough entities linked to it that are ready for

fight. There are only hierarchial links in the chain of command and no peer-to-

peer links between the entities. On the other hand, the probability of a BLUE win

with opposite configurations, the experiment result, is 0.967. The strength of the

configuration can be defined as the number, which is greater than one, of each

entity linked to each Decider (i.e. each Decider which has more than one Sensor

and one Influencer is strong, the more entities linked to each Decider, the

stronger the deciders and therefore the configuration will be).

Once the mechanism, that causes higher probability to win the fight, is

understood, the intent is to detect how strong and determined each Decider is. In

other words, give the highest weight in rank to the deciders with maximum

number of Sensors and Influencers as possible and give the lowest weight in

rank to the ones with one Sensor and one Influencer. That weight could be

calculated by linear algebraic operations, like the max-min difference of Sensors

and Influencers as "Disparity", or the summation of minimum of each Sensor-

Decider pair as "Robustness". That weight could be calculated by linear matrix

operations, like eigenvalues. The weight could be calculated by manipulating

some functions sensitive to ones (1), like logarithmic function, or the squareroot.

The logarithm and natural logarithm of one (1) is all zero. The logarithmic

34

functions and the squareroot are fairly sensitive to the changes in numbers the

way in which to detect the strength of the connectivity in between each Deciders

and its respective Sensors and Influencers.

Once the probability of BLUE win is sorted from small to large, it is easily

seen that from the weakest BLUE force configuration vs. the strongest RED force

configuration is at the top, and pretty much, all the way down to the opposite

configuration at the bottom. No matter what metrics are used to measure the

performance of the networked forces, they will vary in narrow bands (range) with

increments as natural as the input of this process integer partitioning varies in

narrow band.

3.4. DEVELOPING THE ANYLOGIC MODEL

The agent-based simulation environment used for this research was

AnyLogic 6.4.1 University Version by Copyright (c) XJ Technologies, 1991-2009.

The purpose of this section is to explain the underlying logic of key parts of the

AnyLogic code used in this research; the entire code is provided in the Appendix.

The same rules as Deller (2009) used in his research were used. Sensors,

Deciders, and Influencers act as agents. Targets did not serve as an agent since

it acted to absorb the opposing side's losses and its representation in the X-Y-X-

1 arrangement is always one as the absorbing (null) element. Target agents only

serve to collect the results.

Since the Deciders are the key nodes (agents) to link multiple Sensors

and Influencers, we don't want them destroyed. Deciders are immortal agents. All

targets are equal importance and priority in order to generate unbiased results.

All agents placed randomly upon initiation. Once Deciders are placed,

they never move. Sensors sense and detect enemy nodes within the sensing

range, and pass that information to the Deciders they connected. Deciders pass

the sensing information to their connected Influencers. Influencers kill the nearest

assigned (directed) enemy node within the influencing range. Deciders have the

35

situational awareness to proact with the Sensors and Influencers to suspicious

areas. All agents are assumed to perform their jobs according to the rules set

forth perfectly and instantaneously. Agent-based model is built deterministically;

that means whatever the agents' jobs are, their probability to be done is all 100%

(Deller, 2009).

Each agent in the model is defined turtle object set of BLUE Deciders and

RED Deciders with index (as being the number of Deciders). The code below is

just given for BLUE Deciders to see how it works. With the same fashion, similar

code is applied for RED Deciders.

void onChangenBDecidersQ {
int index;

index = 0;
for (Turtle object: influencersB) {
object.set_nFleets(nBDeciders);
index++;

}
index = 0;
for (Turtle object: sensorsB) {
object.set_nFleets(nBDeciders);
index++;

}
}

Sensing range parameter is defined as sRange. Influencing range

parameter is defined as iRange. Both of these parameters values are set 10 as a

default value. They can be changed. For simplicity, consistent and unbiased

results, they were kept as default value during the entire search space

experiments. The agent-based model created in AnyLogic is so flexible that any

experiment can be run by just plugging the predetermined Java output X-Y-X list

of configurations and changing two parameters: nBDeciders, nRDeciders. The

total number of agents will be seen under the environment and each agent

respectively under their names on startup in Simulation:Main. Simulation:Main

just runs the experiment with the first configurations of both BLUE and RED

forces with one replicate for demonstration purpose only. Once it starts, the

numbers will decrease till one side's Sensors and Influencers are all killed. The

numbers of Deciders stay constant; because, Deciders can't be killed as a rule

described earlier.

36

There are functions defined to establish the hierarchial links in the chain of

command in between agents (entities). These functions are "sense', "track",

"shoot", "kill", "movelnfluencers", "moveSensors", and "reset".

3.4.1. SENSE FUNCTION

There are three nesting loops as shown in the code below. The first loop is

DecidersB loop goes for all decidersB. The second loop is InTurtles loop. They

are the attributes of the DecidersB, which are the turtles linked to DecidersB

(SensorsB and InfluencersB). The third two loops are for the opposing side

Targets; InfluencersR and SensorsR. If the distance from InfluencersR to

inTurtles of DecidersB is less than or equal to sRange, that indexed InfluencersR

is sensed. With the same fashion, if the distance from SensorsR to inTurtles of

DecidersB is less than or equal to sRange, that indexed SensorsR is sensed.

The same thing is also applied for the RED side in the same fashion. The sense

function code is given as an example to explain how it works:

void
sense() {

for (Turtle d: deciderB) {
int ind = d.getlndex();
for (Turtle s: d.inTurtles) {

for (Turtle e: influencersR) {
if (s.distanceTo(e) <= sRange)

e.sensedBD[ind] = true;
}
for (Turtle e: sensorsR) {

if (s.distanceTo(e) <= sRange)
e.sensedBD[ind] = true;

}
}

}

for (Turtle d: deciderR) {
int ind = d.getlndex();
for (Turtle s: d.inTurtles) {

for (Turtle e: influencersB) {
if (s.distanceTo(e) <= sRange)

e.sensedRD[ind] = true;
}
for (Turtle e: sensorsB) {

if (s.distanceTo(e) <= sRange)
e.sensedRD[ind] = true;

}

37

}
}

}

3.4.2. TRACK FUNCTION

This function just shows the tracking links. There are also three nesting

loops as shown in the code below. The first loop is DecidersB loop goes for all

DecidersB. The second loop is OutTurtles loop. They are the attributes of the

DecidersB, which are the turtles linked to DecidersB (SensorsB and

InfluencersB). The third two loops are for the opposing side Targets;

InfluencersR and SensorsR. If the distance from InfluencersR to OutTurtles of

DecidersB is less than or equal to iRange, that InfluencersR is added to

OutTurtles list and tracked. In the same fashion, if the distance from SensorsR to

outTurtles of DecidersB is less than or equal to iRange, that SensorsR is added

to outTurtle list and tracked. The same thing is also applied for the RED side with

the same fashion. The track function code is given as an example to explain how

it works:

void
track() {

for (Turtle d: deciderB) {
for (Turtle s: d.outTurtles) {

for (Turtle e: influencersR) {
if (s.distanceTo(e) <= iRange)

s.outTurtles.add(e);
}
for (Turtle e: sensorsR) {

if (s.distanceTo(e) <= iRange)
s.outTurtles.add(e);

}
}

}

for (Turtle d: deciderR) {
for (Turtle s: d.outTurtles) {

for (Turtle e: influencersB) {
if (s.distanceTo(e) <= iRange)

s.outTurtles.add(e);
}
for (Turtle e: sensorsB) {

if (s.distanceTo(e) <= iRange)
s.outTurtles.add(e);

}
}

38

}
}

3.4.3. SHOOT FUNCTION

There are also three nesting loops and three new variables defined here.

These variables are closestTarget, closestDistance and dist. The closestTarget is

defined as turtle and initiated as null. The closestdDistance defined as double

variable and initiated as positive infinity. The dist is defined as distance from

possible targets to outTurtles of DecidersB. Turtle e, defined as outTurtles

attribute of turtle s of outTurtles of DecidersB, if not sensed, if dist is less than

positive infinity (dist is definitely less), then that turtle e is closest target and the

dist is the closestDistance. If closestTarget is not null, then closestTarget is dead.

Likewise, the RED shooting function is explained in the code below:

void
shoot(){

for (Turtle d: deciderB) {
int ind = d.getlndex();
for (Turtle s: d.outTurtles) {

Turtle closestTarget = null;
double closestDistance = Double.POSITIVEJNFINITY;
for (Turtle e: s.outTurtles) {

if (!e.sensedBD[ind]) {
continue;

}
double dist = s.distanceTo(e);
if (dist < closestDistance) {

closestTarget = e;
closestDistance = dist;

}
}
if (closestTarget != null) {

closestTarget.dead = 1;

}
}

}
for (Turtle d: deciderR) {

int ind = d.getlndex();
for (Turtle s: d.outTurtles) {

Turtle closestTarget = null;
double closestDistance = Double.POSITIVEJNFINITY;
for (Turtle e: s.outTurtles) {

if (!e.sensedRD[ind])
continue;

double dist = s.distanceTo(e);

39

if (dist < closestDistance) {
closestTarget = e;
closestDistance = dist;

}

}
if (closestTarget != null) {

closestTarget.dead = 1;

}
}

}
}

3.4.4. KILL FUNCTION

There are four loops for every possible target from each side. The

possible targets are InfluencersR, InfluencersB, SensorsR, and SensorsB. The

loops go for their sizes and check if their attribute "dead' equals to 1. If they are

dead, they are removed the each agent list as seen in the code below:

void
kili(){

for (int i = influencersR.size()-1; i>=0; i~) {
Turtle t = influencersR.get(i);
i f(t .dead==1){

remove_influencersR(t);
}

}
for (int i = influencersB.size()-1; i>=0; i~) {

Turtle t = influencersB.get(i);
if (t.dead ==1){

remove_influencersB(t);
}

}
for (int i = sensorsR.size()-1; i>=0; i-) {

Turtle t = sensorsR.get(i);
i f(t .dead==1){

remove_sensorsR(t);
}

}

for (int i = sensorsB.size()-1; i>=0; i--) {
Turtle t = sensorsB.get(i);
i f(t .dead==1){

removesensorsB(t);
}

}

}

40

3.4.5. MOVEINFLUENCERS FUNCTION

There are three nesting loops. The outer loop goes for all Decidersb. The

second loop goes for all indexed outTurtles of DecidersB. There are two

variables defined and initiated; closestTarget as turtle and it is null,

closestDistance as double variable and it is positive infinity. In the inner loop, for

every InfluencersR, if they are not sensed or dead, continue, if the distance from

each InfluencersR to outTurtles of DecidersB is less than positive infinity (it is

obviously less than infinity) and the same thing applied for the SensorsR. Then if

closestTarget is not null, move the InfluencersB to a calculated i.set XY

coordinates as in the code below. The same thing is applied for the RED side in

the same fashion.

void
movelnfluencers() {

for (Turtle d: deciderB) {
int ind = d.getlndex();
for (Turtle i: d.outTurtles) {

Turtle closestTarget = null;
double closestDistance = Double.POSITIVEJNFINITY;
for (Turtle e: influencersR) {

if (!e.sensedBD[ind] || e.dead == 1)
continue;

double dist = i.distanceTo(e);
if (dist < closestDistance) {

closestTarget = e;
closestDistance = dist;

}
}
for (Turtle e: sensorsR) {

if (!e.sensedBD[ind] || e.dead == 1)
continue;

double dist = i.distanceTo(e);
if (dist < closestDistance) {

closestTarget = e;
closestDistance = dist;

}
}
// move
if (closestTarget != null) {

i.setXY(i.getX() + (closestTarget.getX() -
i.getX())/closestDistance , i.getY() + (closestTarget.getY() - LgetY())/closestDistance);

}
}

}

41

moveSensors Function: There are two separate two nesting loops. The first loop

goes for all DecidersB. Within the first loop, for every InfluencersR and

SensorsR, if they are not sensed and are not dead, sense them. If they are

sensed, continue.

The second loop goes for all inTurtles of DecidersB.

42

4. MODELING RESULTS

The search space was limited to a reasonable numbers due to the

enormous computational requirements as the number of different meaningful

combinations grew exponentially. The experiments started from three Deciders

and Sensors-lnfluencers to 12 Deciders and Sensors-lnfluencers as shown in

Table 4.1. A total of 55 experiments were conducted in this research. Each

experiment consisted of all possible force-on-force engagements of the number

of different meaningful combinations of two networked forces (BLUE and RED)

containing X Sensors, Y Deciders, X Influencers, and one (1) Target. The sole

Target node represents all the possible enemy nodes vulnerable to being

targeted and it clusters the hit enemy nodes.

Table 4.1. The Numbers of Different Meaningful Combinations of all X-Y-X-1 Networked
Forces where X<13 and Y<13

N
u

m
b

er
s

o
f

S
en

so
rs

 (
X

) a
n

d

In
flu

en
ce

rs
 (X

)

3
4
5
6
7
8
9
10
11
12

Number of Deciders (Y)

3
1
2
8
19
42
78
139
224
350
517

4 5

1 |
2
9

27
74
168
363
703
1297

1
2
9
30
95

248
614
1367

6

1
2
9

31
105_
301
814

7 | 8
i

1 I
2 j 1
9 ! 2

31 | 9
108 j 32
325 ! 110

9

1
2
9
31

10

1
2
9

11

1
2

12

1

Each side has equal assets of force with identical capabilities for similar

nodes. Since each side has exactly the same number of nodes, then, the

outcome of the experiments most likely reflects the result of how variously they

are connected to the IACM structure. A comprehensive test of each combination

against each other requires so many engagements as the square of the number

of different meaningful combinations. For normally and random distribution of

both sides nodes across the battlespace, each engagement replicates 30 times.

43

The number of different meaningful combinations versus the same number times

30 replications of iterations are run for each case. Every iteration might result in

one of the following; a BLUE win, a RED Win, or an undecided result (no winner).

The probability of each BLUE combination win against for all RED

combinations was calculated as the percentage of that particular BLUE

combination Wins within the number of all different meaningful RED

combinations of 30 replicates.

P(BLUEWiri)i = - ^ —
n*p

The probability of each BLUE combination win against each RED

combination was calculated as the percentage of that particular BLUE

combination Wins versus the same RED combination of 30 replicates.

PiBLUEWin^j = } — -

Where, / is the number of different meaningful BLUE combinations, 1<i<m

j is the number of different meaningful RED combinations, 1^j£n

k is the number of replicates, 1<k^p=30

This chapter was split into three sections. The first section gives the

definition of each metric that will be used to measure the performance of a

networked force.

The second section investigates each BLUE combination versus all RED

combinations performance of all 55 experiments aggregated data and each

individual experiment data with respect to metrics used before and metrics

proposed in this research.

The third section investigates each BLUE combination versus each RED

combination performance of all 55 experiments aggregated data and each

individual experiment data in the same fashion.

44

4.1. DEFINITION OF EACH METRICS.

4.1.1. EIGENVALUES

They are a special set of scalars associated with a linear system of

equations that are also known as characteristic roots, characteristic values,

proper values, or latent roots. The determination of the eigenvalues and

eigenvectors of a system is extremely important in physics and engineering to

explain the characteristic behavior of a system. Therefore, eigenvalues are used

in this research to explain the performance of a networked force.

The greater the eigenvalue of a combination, the grater the likelihood of a

high value for probability to win.

4.1.2. DISPARITY

It is the sum of the max-min difference of Sensors and Influencers across

the Deciders. This can be formulated as (Deller 2009):

Disparity = [max(Sn) — min (5n)] + [max(/n) — min (/n)]

Where, Sn: the number of Sensors assigned to each of n Deciders

l n : the number of Influencers assigned to each of n Deciders

The greater disparity most likely creates either an extremely high or low
value for probability to win.

4.1.3. ROBUSTNESS

It is the minimum number of either Sensors or Influencers lost that would

render all the Deciders and the rest of the nodes nonfunctional. This can be

formulated as:

n

Robustness = j min (Sj, /[)
i = l

Where, S,: the number of Sensors assigned to Decider /

I,: the number of Influencers assigned to Deciders /'

45

The greater the robustness value, most likely the larger the probability to

win the fight. The higher robustness value reflects how Sensor-Decider-

Influencer fighting triad strongly connected to one another in the IACM structure

to maintain the combat effectiveness.

4.1.4. STRENGTH

One of the proposed metrics in this research is "the strength of

connectivity'. For simplicity, it is called as "Strength".

It is the sum of weighted average according to the logarithmic function of

each Decider and so the combination that reflects how many nodes of Sensors

and Influencers linked to each Decider so that the entire combination maintains

the combat effectiveness. This can be formulated as :

n

Strength = /{ log^C* of Sensor, + 1) *log10(# of Influence^ + 1)}
i = l

To clarify the rationale, the logarithmic values of some numbers and the

strength of a configuration are given below in Table 4.2;

Table 4.2. A Sample Strength Calculation

Number

LOCJM

1
0

2
0.301

3
0.477

4
0.602

5
0.699

6
0.778

7
0.845

8
0.903

9
0.954

10
1.000

11
1.041

12
1.079

13
1.114

#of
BSenls

5
1

#ofBlnf1s

#of
RSents

5
5

#o!Rlnf1s

#of
BSen2s

1
5

of Blnf2s
versus

#of
RSen2s

1
1

of Rlnf2s

#of
BSert3s

1
1

#ofBInf3s

#of
RSert3s

t
1

#ofRlnf3s

Strength
0.210411

Strength
0.4885591

As seen in the above configuration, the BLUE force has the weakest

configuration and the RED force has the strongest configuration and the strength

46

varies in between zero and 0.4885591. The strength values are confined to a

narrow range ([0.210411 - 0.4885591]) as in the eigenvalues.

The greater the strength value, most likely the larger the probability to win

the fight just like the other metrics except disparity.

4.1.5. POWER

Another proposed metric in this research is "the power of the Deciders". It
is also called as "Power".

It is also another sum of weighted average according to the squareroot

function of each decider and so the combination that reflects how many nodes of

Sensors and Influencers linked to each Decider so that the entire combination

maintains the combat effectiveness. This can be formulated as :

n

Power = y {Sqrt(# of Sensor,) * Sqrt(# of Influencer,)}
i = l

To clarify the rationale, the squareroot values of some numbers and the

power of a configuration are given below in Table 4.3;

Table 4.3. A Sample Power Calculation

Number

Sqrt

1

1

2

1.414

3

1.732

4

2.000

5

2.23S

6

2.449

7

2.646

8

2.828

9

3.000

10

3.162

11

3.317

12

3.464

13

3.606

0 f
BSenls

5

1

#o f Blnfls

#o f
BSenls

5
5

of Blnf ls

#o f
BSen2s

1

5

of Blnf2s
versus

o f
BSen2s

1
1

#ofBlnf2s

o f
BSen3s

1

1

of B!nf3s

#o f
BSen3s

1
1

#ofBlnf3s

Power

5.472136

Power
7

This time, the power range varies in between 5.4721 to 7.

47

The larger the power value, the more reliable and readily available fighting
units maintains the combat effectiveness.

4.1.6. STABILITY

Another proposed metric in this research is "Stability of Deciders", referred
to as Stability.

It is the sum of quotient of Sensors and Influencers connected to each
Decider and it can be describes as:

n

Stability = y {Quotient(# of Sensor,, # of Influencer,)}
i = l

There is a negative correlation in between the combat performance and

the stability value. It shows the number of ineffectively used Decider nodes.

4.1.7. CONNECTIVITY

The last metric prosed in this research is "Connectivity of

Sensors/I nfluencers", referred to as Connectivity.

It is the sum of unbalanced absolute number of Sensors and Influencers of
the Deciders.

n

Connectivity = Y{ABS(# of Sensory) - (# of Influencer,)}
i= l

There is a fair degree of negative correlation between the combat

performance and the connectivity value. It represents the number of unproductive

Sensors/I nfluencers.

4.2. PERFORMANCE OF EACH BLUE COMBINATION VS ALL RED
COMBINATIONS

Each BLUE combination vs. all RED combinations respective of all 55

experiments have a total number of 8,340 datasets. These datasets contain the

probability of each BLUE combination win (dependent variable) versus all RED

combinations, and metrics such as eigenvalue, disparity, robustness, power of

Deciders, strength of connectivity, and stability of Deciders. In this section, the

48

probability of BLUE win for its each combination is studied for all combinations of

the RED side. They are run in the SPSS Statistics 17.0 software package.

4.2.1. THE ANALYSIS OF EXPERIMENTS WITH RESPECT TO EIGENVALUE

4.2.1.1. The Analysis of All Experiments With Respect To Eigenvalue

When Table 4.4 is examined, the eigenvalues are not a good predictor or

performance metric by itself alone for a networked force. It must be enhanced by

some other metrics to measure the performance or predict the probability of win

of a networked force.

Table 4.4. Regression Result for the Aggregated Data of each BLUE Combination vs. all
RED Combinations WRT Eigenvalue

Descriptive Statistics

Mean

.48

2.29

Std. Deviation

.119

.207

N

8340

8340

wiwiei .svroniaog

Model

1

R

580a

R Square

.336

Adjusted R

Square

.336

Std. Error of the

Estimate

.097

Change Statistics

R Square

Change

.336

FChange

4224.768

df1

1

df2

8338

Sig. F Change

.000

a. Predictors: (Constant), aUJEJEjyjejjy^Jugs,

b. Dependent Variable: PQSJXiu)

vSwRmjW^AitK^v1

Model

1 (Constant)

U05tMJJaCdJSel Coefficients

B

-.289

.335

Std. Error

.012

.005

Standardized

Coefficients

Beta

.580

t

-24.412

64.998

Sig.

.000

.000

95.0% Confidence Interval for B

Lower Bound

-.313

.325

Upper Bound

-.266

.345

a. DependentVariable: PCffiMn)

The multiple correlation coefficient, R, is the linear correlation between the

observed and model predicted values of the probability of a BLUE win. Its value

is 58% which indicates a moderate relationship.

The coefficient of determination, R Square (R2), is the squared value of

the multiple correlation coefficient. It shows that about 33.6% of the variation in

probability of a BLUE win is explained by the model, which is very low.

Histogram Normal P-P Plot of Regression Standardized
Residual

Dependent Variable: P(BWirt) Dependent Variable: P(BWIn)

-> a 7

Regression Standaidlzed Residual

Figure 4.1. Regression Result for the Aggregated Data of each BLUE Combination vs. all
RED Combinations WRT Eigenvalue

The results of the linear regression yield the following equation:

y = 0.335x - 0.289

Where, y: the average probability of a BLUE win for that configuration

x: the APFE value of a configuration

50

4.2.1.2. The Analysis of Each Experiment With Respect To Eigenvalue

Table 4.5. Collective Regression Results for the Aggregated Data of each BLUE
Combination vs. all RED Combinations WRT Eigenvalue

Model

Model3.3.3
Model4.3.4
Model4.4.4
Model5.3.5
Model5.4.5
Model5.5.5
Model6.3.6
Model6.4.6
Model6.5.6
Model6.6.6
Model7.3.7
Model7.4.7
Model7.5.7
Model7.6.7
Model7.7.7
Model8.3.8
Model8.4.8
Model8.5.8
Model8.6.8
Model8.7.8
Model8.8.8
Model9.3.9
Model9.4.9
Model9.5.9
Model9.6.9
Model9.7.9
Model9.8.9
Model9.9.9
Model10.3.10
Model10.4.10
Model10.5.10
Model10.6.10
Model10.7.10
Model 10.8.10
Modell 0.9.10
Modell 0.10.10

R R Square
Adjusted R

Square

Std.Error of
the

Estimate
Sig.

There is only one iteration that is not enough to calculate linear regression.
1 1

There is only one iteration that is not enough to calculate linear regression.
.869

1
.755

1
.714 .040 .005

There is only one iteration that is not enough to calculate linear regression.
.912
.933

1

.832

.871
1

.822

.852
.043
.032

.000

.000

There is only one iteration that is not enough to calculate linear regression.
.932
.935
.901

1

.868

.874

.812
1

.865

.868

.785

.042

.027

.030

.000

.000

.001

There is only one iteration that is not enough to calculate linear regression.
.936
.913
.862
.884

1

.877

.833

.743

.782
1

.875

.831

.733

.751

.043

.040

.037

.047

.000

.000

.000

.002

There is only one iteration that is not enough to calculate linear regression.
.931
.925
.903
.871
.830

1

.866

.855

.815

.759

.688
1

.865

.854

.813

.751

.644

.049

.040

.038

.038

.039

.000

.000

.000

.000

.006

There is only one iteration that is not enough to calculate linear regression.
.933
.924
.903
.892
.840
.563

1

.870

.854

.815

.797

.706

.317
1

.870

.853

.815

.795

.696

.220

.052

.044

.041

.037

.031

.034

.000

.000

.000

.000

.000

.114

There is only one iteration that is not enough to calculate linear regression.

51

Table 4.5. (continued)

Model

ModelH.3.11
Model 11.4.11
ModeM 1.5.11
ModeM 1.6.11
ModeM 1.7.11
Modell 1.8.11
ModeM 1.9.11
ModelH.10.11
ModelH.11.11
ModeM 2.3.12
ModeM 2.4.12
ModeM 2.5.12
ModeM 2.6.12
ModeM 2.7.12
ModeM 2.8.12
ModeM 2.9.12
ModeM 2.10.12
ModeM 2.11.12
ModeM 2.12.12

R

.932

.918

.905

.874

.866

.739

.425
1

R Square

.868

.843

.819

.764

.750

.546

.181
1

Adjusted R
Square

.868

.843

.819

.763

.747

.531

.064

Std.Error of
the Estimate

.056

.051

.046

.043

.038

.036

.034

Sig.

.000

.000

.000

.000

.000

.000

.254

There is only one iteration that is not enough to calculate linear regression.
.912
.922
.892
.893
.869
.887
.752
.755

1

.833

.851

.795

.798

.756

.787

.565

.570
1

.832

.851

.795

.798

.755

.785

.550

.509

.067

.053

.053

.043

.041

.036

.034

.036

.000

.000

.000

.000

.000

.000

.000

.019

There is only one iteration that is not enough to calculate linear regression.

When the individual experiment results calculated by just the eigenvalues

are examined in Table 4.5, above, the models with large number of Sensors and

Influencers with respect to low number of Deciders have higher R and R square

values. The experiments with two iterations have R and R square value of one; a

perfect regression line needs only two points. When the difference between the

number of Sensors/Influencers and Deciders get closer to each other, the R and

R square values drop dramatically, then the experiments become insignificant.

52

4.2.1.3. The Analysis of Decider Basis Experiments With Respect To
Eigenvalue

Table 4.6. Collective Regression Results for the Decider Basis Aggregated Data of each
BLUE Combination vs. all RED Combinations WRT Eigenvalue

Model

ModelX3X
ModelX4X
ModelX5X
ModelX6X
ModelX7X
ModelX8X
ModelX9X
ModelXlOX
ModelXHX
ModelX12X

R

.628

.672

.659

.715

.676

.716

.531

.162

.752

R Square

.394

.452

.434

.511

.457

.512

.282

.026

.565

Adjusted R
Square

.394

.452

.434

.511

.456

.509

.265
-.071
.130

Std.Error of
the Estimate

.117

.095

.083

.064

.059

.051

.044

.082

.078

Sig.

.000

.000

.000

.000

.000

.000

.000

.614

.459
There is only one iteration that is not enough to calculate linear regression.

When the experiments results calculated by just the eigenvalues along with

the Deciders (column-wise) are examined in Table 4.6, above, the R and R

square values are quiet low. Moreover, the experiments get insignificant as the

number of Deciders increases and the number of total iterations decreases. The

experiments with 10 Deciders and further are insignificant.

4.2.1.4. The Analysis of Sensor/lnfluencer Basis Experiments With
Respect To Eigenvalue

Table 4.7. Collective Regression Results for the Sensor/lnfluencer Basis Aggregated Data
of each BLUE Combination vs. all RED Combinations WRT Eigenvalue

Model
Model3Y3
Model4Y4
Model5Y5
Model6Y6
Model7Y7
Model8Y8
Model9Y9
Model10Y10
Model11Y11
Model12Y12

R R Square Adjusted R
Square

Std.Error of
the Estimate Sig.

There is only one iteration that is not enough to calculate linear regression.
.865
.547
.480
.564
.613
.646
.648
.645
.650

.748

.299

.230

.318

.375

.418

.420

.416

.422

.496

.221

.204

.309

.372

.416

.419

.416

.422

.095

.061

.083

.079

.081

.084

.086

.092

.093

.335

.082

.006

.000

.000

.000

.000

.000

.000

When the experiments results are calculated by applying just the

eigenvalues along with the Sensors/Influencers (row-wise) (examined in Table

53

4.7 above), the R and R square values are also quiet low but they are stable. The

value of Rs stays in the mid-60's percentage-wise, and the value of R squares

stays low-in the 40's percentage-wise. The experiments start insignificant initially

due to low number of total iterations, as the number of Sensors/Influencers

increases so does and the sum of total iterations, they become significant after 5

Senosrs/I nfluencers.

4.2.2. THE ANALYSIS OF EXPERIMENT WITH RESPECT TO EIGENVALUE,
DISPARITY, AND ROBUSTNESS

4.2.2.1. The Analysis of All Experiments With Respect To Eigenvalue,
Disparity, and Robustness

Table 4.8. Regression Result for the Aggregated Data of each BLUE Combination vs. all
RED Combinations WRT Eigenvalue, Disparity, and Robustness

Descriptive Statistics

SD&ifl

SU3£~£SO*3te!:

SU^vIeJiKJiJSBfe!'

gUfi&^SaftM^oaet

Mean

.48

2.29

7.22

7.71

Std Deviation

.119

.207

2.555

1.737

N

8340

8340

8340

8340

Medal

1

R

.891"

R Square

.794

Adjusted R

Square

.794

Std. Error of the

Estimate

.054

Change Statistics

R Square

Change

.794

F Change

10685.395

df1

3

df2

8335

Sg. F Change

.000

a. Predictors: (Constant §JW§JRsfeiJjJSS§.mA4S-JiS)3feiaK&. BJJjJEJE3ajKaJya3v

b. Da pa nds nt Varia bie: fjjjjjgn,

id
Coeffiai&jLTts.',

Made I

1 (Constant)

au&^BaiiasiSnss?

yastm3&&K«i!Co2ffo-i>rife

B

-.364

.320

-.018

.031

Std. Error

.008

.005

.000

.001

Standardized

Coefficients

Beta

.554

-.393

.455

t

-48.234

60.980

-48.033

55.135

Stg.

.000

.000

.000

.000

95.0% Confidence Interval for B

Lower Bound

-.378

.310

-.019

.030

Upper Bound

-.349

.330

-.018

.032

a. Dependent Varia bie: gJB̂SSO-

54

Normal P«P Plot of Regression Standardized
Residua! Histogram

Dependent Variable: PBWin

OH CZ UJ

Observed Cum Prob

Dependent Variable: PBWin

r p i n i | in | ,
-24 CD 2.1 SO

Regression Standardized Residual

a « t w - i
N-5,MG

Figure 4.2. Regression Result for the Aggregated Data of each BLUE Combination vs. all
RED Combinations WRT Eigenvalue, Disparity, and Robustness

When the experiment results of collected 8,340 datasets were calculated

by applying eigenvalues, disparities, and robustnesses and are examined in the

Table 4.8 above. A regression analysis of the APFE, the disparity, and the

robustness values yields a tremendous increase in the coefficient of

determination, R square (R2) from a value of 0.336 to 0.794 and provides the

following equation:

y = 0.320*! - 0.018*2 + 0.031x3 - 0.364

Where, y: the average probability of a BLUE win for that configuration

xi: the APFE value of a configuration

X2: the disparity value of a configuration

X3: the robustness value of a configuration

55

4.2.2.2. The Analysis of Each Experiment With Respect To Eigenvalue,
Disparity, and Robustness

Table 4.9. Collective Regression Results for the Aggregated Data of each BLUE
Combination vs. all RED Combinations WRT Eigenvalue, Disparity, and Robustness

Model

Model3.3.3
Model4.3.4
Model4.4.4
Model5.3.5
Model5.4.5
Model5.5.5
Model6.3.6
Model6.4.6
Model6.5.6
Model6.6.6
Model7.3.7
Model7.4.7
Model7.5.7
Model7.6.7
Model7.7.7
Model8.3.8
Model8.4.8
Model8.5.8
Model8.6.8
Model8.7.8
Model8.8.8
Modeig.3.9
Model9.4.9
Model9.5.9
Model9.6.9
Model9.7.9
Model9.8.9
Model9.9.9
Model 10.3.10
Model 10.4.10
Model10.5.10
Model10.6.10
Model10.7.10
Model10.8.10
Model10.9.10
Model10.10.10

R R Square
Adjusted R

Square
Std.Error of
the Estimate

Sig.

There is only one iteration that is not enough to calculate linear regression.
1 1

There is only one iteration that is not enough to calculate linear regression.
.911

1
.829

1
.701 .040 .051

There is only one iteration that is not enough to calculate linear regression.
.965
.961

1

.931

.924
1

.918

.879
.029
.029

.000*

.003*

There is only one iteration that is not enough to calculate linear regression.
.987
.969
.929

1

.974

.939

.863
1

.972

.931

.780

.019

.020

.031

.000
.000*
.014*

There is only one iteration that is not enough to calculate linear regression.
.987
.976
.956
.948

1

.975

.953

.914

.899
1

.974

.951

.904

.838

.019

.021

.022

.038

.000

.000
.000**
.006*

There is only one iteration that is not enough to calculate linear regression.
.991
.988
.979
.974
.982

1

.982

.976

.959

.950

.964
1

.981

.976

.958

.944

.943

.018

.017

.018

.018

.016

.000

.000

.000
.000**
.000**

There is only one iteration that is not enough to calculate linear regression.
.993
.989
.982
.972
.953
.707

1

.987

.978

.964

.944

.909

.500
1

.986

.978

.964

.942

.899

.200

.017

.017

.018

.020

.018

.035

.000

.000

.000

.000

.000

.288

There is only one iteration that is not enough to calculate linear regression.

56

Table 4.9. (continued)

Model

ModeM 1.3.11
ModeM 1.4.11
ModeM 1.5.11
ModeM 1.6.11
ModeM 1.7.11
ModeM 1.8.11
ModeM 1.9.11
ModeM 1.10.11
ModeM 1.11.11
ModeM 2.3.12
ModeM 2.4.12
ModeM 2.5.12
ModeM 2.6.12
ModeM 2.7.12
ModeM 2.8.12
ModeM 2.9.12
ModeM2.10.12
Model12.11.12
ModeM2.12.12

R

.992

.991

.988

.985

.966

.892

.694
1

R Square

.985

.982

.975

.971

.933

.796

.482
1

Adjusted R
Square

.984

.982

.975

.971

.931

.773

.171

Std.Error of
the Estimate

.019

.018

.017

.015

.020

.025

.032

Sig.

.000

.000

.000

.000

.000
.000**
.311

There is only one iteration that is not enough to calculate linear regression.
.992
.992
.989
.985
.982
.971
.866
.962

1

.983

.984

.977

.971

.965

.943

.750

.925
1

.983

.984

.977

.971

.965

.941

.722

.881

.021

.018

.018

.016

.016

.019

.026

.018

.000

.000

.000

.000

.000

.000
.000*
.003*

There is only one iteration that is not enough to calculate linear regression.

When the individual experiment results calculated by applying

eigenvalues, disparities, and robustnesses are examined in Table 4.9 above, the

models with large number of Sensors and Influencers with respect to low number

of Deciders have higher R and R square values. When the difference between

the number of Sensors/Influencers and Deciders gets closer to each other, the

number of different meaningful combinaions and thereby the number of iterations

drops. So R and R square values drop dramatically as a consequence of this;

then the experiments become insignificant. The models that have less than or

equal to 30 number of iterations (i.e., the sample size, the number of different

meaningful combinations) are insignificant. The models with one or two asterisks

in the significant column are insignificant models due to individual insignificance

in its independent variables even if they look significant as a whole model.

57

4.2.2.3. The Analysis of Decider Basis Experiments With Respect To
Eigenvalue, Total Disparity, and Robustness

Table 4.10. Collective Regression Results for the Decider Basis Aggregated Data of each
BLUE Combination vs. all RED Combinations WRT Eigenvalue, Disparity, and Robustness

Model

ModelX3X
ModelX4X
ModelX5X
ModelX6X
ModelX7X
ModelX8X
ModelX9X
ModelXlOX
ModelXHX
ModelX12X

R

.907

.905

.903

.923

.912

.908

.763

.610
1

R Square

.823

.818

.815

.853

.832

.825

.582

.372
1

Adjusted R
Square

.823

.818

.814

.852

.831

.821

.550

.137

Std.Error of
the Estimate

.063

.055

.048

.035

.033

.031

.034

.073

Sig.

.000

.000

.000

.000

.000

.000
.000*
.268

There is only one iteration that is not enough to calculate linear regression.

When the experiments results calculated by applying eigenvalues,

disparities, and robustnesses along with the deciders (column-wise) are

examined in Table 4.10, above, the R and R square values are at least 50%

higher than the results calculated by just applying eigenvalues. The experiments

with 9 Deciders and further are insignificant. The models with 9 Deciders looks

significant as a whole model. But indeed, it is an insignificant model from an

individual independent variables perpective.

58

4.2.2.4. The Analysis of Sensor/lnfluencer Basis Experiments With
Respect To Eigenvalue, Total Disparity, and Robustness

Table 4.11. Collective Regression Results for the Sensor/lnfluencer Basis Aggregated Data
of each BLUE Combination vs. all RED Combinations WRT Eigenvalue, Disparity, and
Robustness

Model

Model3Y3
Model4Y4
Model5Y5
Model6Y6
Model7Y7
Model8Y8
Model9Y9
Model10Y10
Model11Y11
Model12Y12

R R Square Adjusted R
Square

Std.Error of
the Estimate Sig.

There is only one iteration that is not enough to calculate linear regression.
1

.894

.937

.953

.950

.956

.959

.964

.972

1
.798
.878
.908
.903
.914
.920
.930
.945

.712

.864

.904

.902

.913

.920

.930

.945

.037

.034

.029

.032

.032

.032

.032

.029

.008*

.000*
.000
.000
.000
.000
.000
.000

When the experiments results calculated by applying eigenvalues,

disparities and robustnesses along with the sensors/influencers (row-wise) are

examined in Table 4.11, above, the R and R square values are so much better

than the results calculated by just applying eigenvalues. The value of Rs

increases up to the mid 90's percent, and the value of R squares increases up to

the 90's percent. The experiments start initially insignificant due to small number

of total iterations, as the number of Sensors/influencers increases so does and

the sum of total iterations, they become significant after 6 Senosrs/lnfluencers.

59

4.2.3. THE ANALYSIS OF ALL EXPERIMENTS WITH RESPECT TO
EIGENVALUE, DISPARITY, ROBUSTNESS, POWER, AND CONNECTIVITY

Table 4.12. Regression Result for the Aggregated Data of each BLUE Combination vs. all
RED Combinations WRT Eigenvalue, Disparity, Robustness, Power, and Connectivity

Descriptive Statistics

Bffi&ia

KU!&£i9jen3iste%

RUiSJ^taiaisEaSx

RlWS-Rafe«5toS55

BUJfe^ssss):

giUUgJJsnoedrate

Mean

.48

2.29

7.22

7.71

10.27

8.93

Std. Deviation

.119

.207

2.555

1.737

1.231

3.322

N

8340

8340

8340

8340

8340

8340

Model &muPSQ£

Model

1

R

.983=

R Square

.988

Adjusted R

Square

.988

Std. Error of the

Estimate

.022

Change Statistics

R Square

Change

.sss

F Change

48789.119

df1

5

df2

8334

Sig. F Change

.000

a. Predictors: (Constant), gUiEjg loj3ne£ti5!i&, aUiEJygjerajajujgs, BJLJAE^Eojagr, ftUJB^JpiaJOJSBacte, ftUJE^RoJajsJnesjs

b. 0ependentVariable:gg)&i(3

SasBisisoM

Model

1 (Constant)

aUiE_RpJy;ito£§$

JJj3StftadAcd.tsed. Coefficients

B

.181

.188

.003

-.118

.124

-.088

Std. Error

.004

.003

.000

.001

.001

.000

Standardized

Coefficients

Beta

.288

.071

-1.721

1.283

-1.823

t

39.258

83.581

15.977

-84.137

87.817

-132.021

Sig.

.000

.000

.000

.000

.000

.000

95.0% Confidence Interval for B

Lower Bound

.153

.181

.003

-.121

.122

-.088

Upper Bound

.189

.172

.004

-.118

.127

-.085

a. Dependent Variable: EgXXJO

60

Histogram Normal P-P Plot of Regression Standardized
Residual

Dependent Variable: PBWin Dependent Variable: PBWin

I

nteat) =4.746-13
Std. D=v. =1

N =3.340

Regression Standardized Residual
02 04 0 6 OB

Observed Cum Prob

Figure 4.3. Regression Result for the Aggregated Data of each BLUE Combination vs. all
RED Combinations WRT Eigenvalue, Disparity, Robustness, Power, and Connectivity

When the experiment result of the collected 8,340 datasets calculated by

applying eigenvalue, disparity, robustness, power, and connectivity are examined

in the Table 4.12 above, a regression analysis of the APFE, the disparity, the

robustness, the power, and the connectivity values yields a significant increase in

the coefficient of determination, R square (R2) from a value of 0.794 to 0.966 and

provides the following equation:

y = 0.161 + 0.166% + 0.003% - 0.118% + 0.124% - 0.066%

Where, y: the average probability of a BLUE win for that configuration

x-i: the APFE value of a configuration

x2: the disparity value of a configuration

x3: the robustness value of a configuration

X4: the power value of a configuration

x5: the connectivity value of a configuration

Since the overall R2 value is high, and the corresponding P value is zero,

the model fits the data well. The independent variables used in the regression

analysis have a significant impact on the model.

61

Hovewer, substraction of strength and stability values from the regression

analysis gives exactly the same result even though they have lower P values and

small coefficients. Then it can easily be said that these two independent

variables are redundant. The strength and the power values are highly

correlated (0.954); they both convey essentially the same information. The

stability value is moderately corelated with the connectivity value (0.495) and the

eigenvalue (0.558): both the connectivity and the eigenvalue convey fairly the

same information as the stability does. Each independent variable is derived from

the structure of different meaningful combinations by applying various operations

as described earlier.

4.2.3.1. Multicolinearity

There is a perfect linear relationship among the independent variables

since R and R2 values are very high. When there is a perfect linear relationship

among the independent variables, the estimates for the model can be computed

in several ways.

When a regression analysis is applied to each experiment by using the

eigenvalue, the disparity, the robustness, the power, the strength, the

connectivity and the stability, there seems to be a good linear relationship among

the independent variables since R and R2 are still high and the overall P is very

low. Even though the overall P value is very low, all of the individual P values are

high. This means that the model fits the data well, even though none of the

independent variables have a statistically significant impact on predicting the

probability of a BLUE win. This relation is called multicolinearity or ill conditioning

(Alin, 2010). Colinearity refers to the linear relationship among two variables

while multicolinearity does more variables, which also means lack of

orthogonality among them.

The goal of this research is to understand how the various metrics

(independent variables) impact the performance of a networked force. For that

reason, multicolinearity is a big problem to solve. One problem is that the

62

individual P values can be misleading (a P value can be high, even though the

variable is important). The second problem is that the confidence intervals on the

regression coefficients will be very wide. This will cause another problem:

excluding an independent variable (or adding a new one) can change the

coefficients dramatically - may even change their signs.

4.2.3.2. What Can Be Done About Multicolinearity

The best solution is to find a way to understand what causes the

multicolinearity and remove it. Multicolinearity occurs when two or more variables

are related. They measure essentially the same thing. If one of the variables

does not seem logically essential to the model, removing it may reduce or

eliminate multicolinearity. The impact of multicolinearity can also be reduced by

increasing the sample size. That way confidence intervals get narrower, despite

multicolinearity, with more data.

The regression analysis of the model 8.5.8 is given as an example to
explain the multicolinearity in three steps.

63

Table 4.13. Regression Result for the Aggregated Data of each BLUE Combination vs. all
RED Combinations WRT all Metrics (Multicolinearity Analysis-Step 1)

Descriptive Statistics

PBWin

BLUE_Ei g env alu es

BLUESensors_Oisparity

BLUEI nfl uen ceisJ3isparity

BLUE_Total Disparity

BLUE_Robiistness

BLUE__Power

BLUE_Strength

BLUE_Connedivity

BLUE_Stabllity

Mean

.48

1.91

1.93

1.93

3.87

6.17

7.80

.79

3.87

5.27

Std. Deviat ion

.071

.075

.740

.740

1.074

.950

.277

.047

1.500

.868

N

30

30

30

30

30

30

30

30

30

30

Model Summary*

Model

1

R

958'

R Square

.91B

Adjusted R

Square

892

Std. Error of t he

Estimate

.023

Change Statistics

R Square

Change

.918

F Change

35.317

df1

7

df2

22

Sig. F Change

.000

a. Predictors: (Constant). BLUE_Stability. BLUESensoraJDisparity. BLUE_Eigenva!ues. BLUEInfluencers_Dlsparity. BLUE_Connectlvity.

BLUE_Strengtrh BLUE_Power

b. Dependent Van able: PBWin

Coefficients8

Model

1 (Constant]

BLUE_Ei gen values

BLUESens ors_DJ5pariry

BLUEInflu encers_Disparity

BLUE_Power

BLUE_Strength

BLUE_Conneotivay

BLUE_Stability

Unstandardized Coefficients

B

-2.028

.497

-.023

-.003

.480

-2.447

.000

-.020

Std. Error

2.442

93E

.037

.03'

.937

4.40G

.OK

.028

Standardized

Coefficients

Beta

.524

-.236

-.030

1.878

-1.611

-.005

- 2 4 3

t

-.830

.532

-.605

-.086

.513

-.656

-.011

-.713

Sig.

.416

.600

.551

.933

.613

.584

.991

.483

95.0% Conf idence Interval for B

Lower Bound

-7.091

-1.442

-.100

-.072

-1.462

-11.573

-.034

-.078

Upper Bound

3.039

2.435

.055

.087

2.423

6.676

.033

.038

Correlat ions

Zero-order

.862

-.111

-.112

.938

.928

-.861

-.693

Partial

.113

-.128

-.018

.109

-.118

-.002

-.150

Part

.032

-.037

-.005

.031

-.034

.000

-.043

Col linearity Statistics

Tolerance

004

024

030

000

000

020

032

VIF

281.855

40.542

32.904

3602.538

2259.475

50.483

31.203

a Dependent Variable: PBWin

When the Table 4.13 above is examined carefully, the model has a perfect

linear relationship among the independent variables since R and R2 values are

very high and the overall P is very low; but all of the individual P values are high.

There are two values displayed in the the colinearity statistics column for

each variable as a check for multicolinearity: tolerance and variance inflation

factor "VIF". The tolerance is an indication of the percent of variance in the

independent variable that cannot be accounted for by the other variables; hence

very small values indicate that a variable is redundant, and values that are less

than 0.10 may merit further investigation. The VIF is inversely proportional to the

tolerance and as a rule of thumb, a variable whose VIF values is greater than 10

may merit further investigation.

64

All variables have less than 0.10 value in tolerance. The numbers in the

tolerance column indicate that only 0.4, 2.4, 3, 0, 0, 2, and 3.2% of the variance

in respective independent variables are not predictable given the other variables

in the model. All of these variables measure probability of BLUE win and the very

low "tolerance" values indicate that these variables contain redundant

information. Multicolinearity arises because too many variables have been put in

that measure the same thing, probability of BLUE win.

When the BLUE_Power and BLUE_Strength with zero in tolerance value

are omited from the regression model, the new VIF values in the analysis in

Table 4.14 below appears much better, but it still needs some work.

Table 4.14. Regression Result for the Aggregated Data of each BLUE Combination vs. all
RED Combinations WRT all Metrics (Multicolinearity Analysis-Step 2)

Model Summary"

Model

1

R

.558"

R Square

.917

Adjusted R

Square

.900

Std. Error of the

Estimate

.022

Change Statistics

R Square

Change

.917

F Change

53.102

df1

5

df2

24

Sig. F Change

.000

a. Predictors: (Constant). BLUE_StabilftyT BLUESensors_Dispanty. BLUE_Eigenvalues. BLUEInfluencers_Db parity. BLUE_ConnectM1y

b. Dependent Variable; PBWin

Coefficients*

Model

1 (Constant)

BLUE_Eigenvatues

BLUESensors_Disparsy

BLUBnfluencefS_Di5panty

BLUE_ConnectMy

BLUE_Stabllity

Unstandardized Coefficients

B

-1.053

.887

-.032

-.017

.003

-.015

Std. Error

.575

27!

.007

018

.007

.016

Standardized

Coefficients

Beta

.938

-.330

-.176

.082

-.182

t

-1.817

3.228

-4.454

-.931

.425

-.954

Sig.

.082

.004

.000

.361

.575

.350

S5.0% Confidence Interval for B

Lower Bound

-2.248

.320

-.046

-.054

-.012

-.047

Upper Bound

.143

1.455

-.017

.021

.018

.017

Correlations

Zero-order

.852

-.111

-.112

-.881

-.693

Partial

.550

-.673

-.187

.086

.191

Part

.190

-.252

-.055

.025

-.056

Colltnearity Statistics

Tolerance

.041

.628

.097

.090

.095

VIF

24.385

1.592

10.355

11.146

10.520

a. Dependent Variable: PBWin

In Table 4.14 above, there are four out of five variables that have less than

0.10 value in tolerance. The BLUE_Connectivity and BLUEInfluencers_Disparity

are omitted from the regression model in the second attempt to solve the

multicolinearity issue. The newest VIF values in the analysis in Table 4.13

below appear just fine.

65

Table 4.15. Regression Result for the Aggregated Data of each BLUE Combination vs. all
RED Combinations WRT all Metrics (Multicolinearity Analysis-Step 3)

Model Summary0

Model

1

R

.956"

R Square

.914

Adjusted R

Square

.904

Std. Error of the

Estimate

.022

Change Statistics

R Square

Change

.914

F Change

91.78!

df1

3

df2

25

Sig. F Change

.000

a. Predictors: (Constant). BLUE_Stability. BLUESensorc_Disparity. BLUE_Eigenvalues

b. Dependent Variable; PBWin

Model

1 (Constant)

BLUEJEigenvalues

BLUESen5ors_Olsparity

BLUE_Stability

Un5tandardized Coefficients

S

-.838

.887

-.031

-.029

Std. Error

.142

OS!

.00!

.00!

Standardized

Coefficients

Beta

.735

-.324

-353

-4,478

10.816

-5.494

-5.115

Sig.

.000

.000

.000

.000

95.0% Confidence Interval tor B

Lower Bound

-.931

.582

-.043

-.040

Upper Bound

-.345

.831

-.018

-.017

Correlations

Zero-order

.882

-.111

-.593

Partial

.901

-.733

-.708

Part

.812

-.316

-.295

Collinearity Statistics

Tolerance

.693

.551

.697

V1F

1.443

1.051

1.435

a. Dependent Variable: PBWin

When the experiment results of the model 8.5.8 with the perfectly newest

VIF values calculated by applying eigenvalue, sensors disparity, and stability are

examined in the Table 4.15 above, a regression analysis yields the same

coefficient of determination, R square (R2) value as 0.914 and provides the

following equation:

y = 0.697*! - 0.031x2 - 0.029x3 - 0.638

Where, y: the average probability of a BLUE win for that configuration

x-i: the APFE value of a configuration

X2. the sensors disparity value of a configuration

X3: the stability value of a configuration

4.2.3.3. The Analysis of Each Experiment With Respect To Eigenvalue,
Disparity, Stability

Table 4.16. Collective Regression Results for the Aggregated Data of each BLUE
Combination vs. all RED Combinations WRT Eigenvalue, Disparity, and Stability

Model

Model3.3.3
Model4.3.4
Model4.4.4
Model5.3.5
Model5.4.5
Model5.5.5
Model6.3.6
Model6.4.6
Model6.5.6
Model6.6.6
Model7.3.7
Model7.4.7
Model7.5.7
Model7.6.7
Model7.7.7
Model8.3.8
Model8.4.8
Model8.5.8
Mode!8.6.8
Model8.7.8
Model8.8.8
Model9.3.9
Model9.4.9
Model9.5.9
Model9.6.9
Model9.7.9
Model9.8.9
Model9.9.9
Model10.3.10
Model10.4.10
Model10.5.10
Model10.6.10
Model10.7.10
Model10.8.10
Model10.9.10
ModeM 0.10.10

R R Square
Adjusted R

Square
Std.Error of
the Estimate

Sig.

There is only one iteration that is not enough to calculate linear regression.
1 1

There is only one iteration that is not enough to calculate linear regression.
.942

1
.888

1
.804 .033 .023*

There is only one iteration that is not enough to calculate linear regression.
.966
.934

1

.933

.873
1

.920

.797
.029
.038

.000
.011**

There is only one iteration that is not enough to calculate linear regression.
.980
.959
.939

1

.960

.920

.882
1

.957

.910

.812

.024

.023

.028

.000

.000
.009**

There is only one iteration that is not enough to calculate linear regression.
.983
.962
.956
.954

1

.965

.926

.914

.910
1

.964

.923

.904
.0856

.023

.027

.022

.036

.000

.000

.000
.005**

There is only one iteration that is not enough to calculate linear regression.
.980
.978
.973
.967
.984

1

.960

.957

.947

.936

.967
1

.959

.957

.946

.928

.948

.027

.022

.020

.020

.015

.000

.000

.000

.000

.000

There is only one iteration that is not enough to calculate linear regression.
.980
.982
.972
.967
.955
.717

1

.961

.964

.945

.935

.911

.513
1

.960

.963

.945

.933

.901

.221

.029

.022

.022

.021

.018

.034

.000

.000

.000

.000

.000

.271

There is only one iteration that is not enough to calculate linear regression.

67

Table 4.16. (continued)

Model

ModeM 1.3.11
ModeM 1.4.11
ModeM 1.5.11
ModeM 1.6.11
ModeM 1.7.11
ModeM 1.8.11
ModeM 1.9.11
ModeM 1.10.11
ModeM 1.11.11
ModeM 2.3.12
ModeM 2.4.12
ModeM 2.5.12
ModeM 2.6.12
ModeM 2.7.12
ModeM 2.8.12
ModeM 2.9.12
ModeM 2.10.12
ModeM2.11.12
ModeM 2.12.12

• * The overall

R

.976

.983

.979

.975

.960

.879

.636
1

R Square

.953

.967

.958

.950

.921

.773

.405
1

There is only one iteration that
.973
.981
.961
.974
.972
.970
.874
.814

1
There is only or

P value is low; t

.947

.962

.924

.948

.944

.940

.764

.662
1

e iteration that
>ut the individu

Adjusted R
Square

.953

.967

.958

.950

.919

.748

.048

Std.Error of
the Estimate

.034

.024

.022

.020

.021

.026

.035

Sig.

.000

.000

.000

.000

.000
.000*
.419

s not enough to calculate linear regression.
.947
.962
.924
.948
.944
.939
.738
.460

.038

.027

.032

.022

.020

.019

.026

.038

.000

.000

.000

.000

.000

.000
.000**
.117

s not enough to calculate linear regression.
al P values are high. There is lot a large

enough dataset to have a perfect linear regression.
• ** The overall P values is low; but some of the individual P values are high. There is
not a large enough dataset to have a perfect linear regression.

When the individual experiment results calculated by applying eigenvalues,

sensors disparities, and coefficients are examined in Table 4.16 above, the

results are almost identical with minor differences. The perfomance of each

experiment drops as the ratio between Sensors/Influencers and Deciders drops.

The experiments with less than about 30 iterations have insignificant results.

68

4.2.3.4. The Analysis of Decider Basis Experiments With Respect To
Eigenvalue, Disparity, Coefficient

Table 4.17. Collective Regression Results for the Decider Basis Aggregated Data of each
BLUE Combination vs. all RED Combinations WRT Eigenvalue, Disparity, and Coefficient

Model

ModelX3X
ModelX4X
ModelX5X
ModelX6X
ModelX7X
ModelX8X
ModelX9X
ModelXlOX
ModelXHX
ModelX12X

R

.933

.929

.926

.927

.913

.906

.750

.516
1

R Square

.871

.863

.857

.860

.833

.822

.563

.266
1

Adjusted R
Square

.870

.863

.857

.859

.832

.818

.529
-.009

Std.Error of
the Estimate

.054

.048

.042

.034

.033

.031

.035

.079

Sig.

.000

.000

.000

.000

.000

.000
.000*
.454

There is only one iteration that is not enough to calculate linear regression.

When the experiments results calculated by applying eigenvalues,

Sensors disparities and stabilities along with the Deciders (column-wise) are

examined in Table 4.17, above, the R and R square values of the first three

columns are about 5% higher than the results calculated by just applying

eigenvalues, total disparities, and robustnesses. The rest of the columns follow

the same pattern.The experiments with 9 Deciders and further are also

insignificant. The models with 9 Deciders looks significant as a whole model. But

indeed, it is an insignificant model from individual independent variables

perpective.

69

4.2.3.5. The Analysis of Sensor/lnfluencer Basis Experiments With
Respect To Eigenvalue, Sensors Disparity, Stability

Table 4.18. Collective Regression Results for the Sensor/lnfluencer Basis Aggregated Data
of each BLUE Combination vs. all RED Combinations WRT Eigenvalue, Disparity, and
Stability

Model
Model3Y3
Model4Y4
Model5Y5
Model6Y6
Model7Y7
Model8Y8
Model9Y9
Model10Y10
Model11Y11
Model12Y12

R R Square Adjusted R
Square

Std.Error of
the Estimate Sig.

There is only one iteration that is not enough to calculate linear regression.
1

.909

.949

.972

.971

.974

.976

.982

.986

1
.826
.900
.945
.943
.950
.953
.964
.973

.751

.889

.942

.943

.949

.953

.964

.973

.034

.031

.023

.025

.025

.024

.023

.020

.005*
.000
.000
.000
.000
.000
.000
.000

When the experiments results calculated by applying eigenvalues,

powers, and stabilities along with the sensors/influencers (row-wise) are

examined in Table 4.18, above, the R and R square values are about 1-2%

higher than the results calculated by just applying eigenvalues, total disparities,

and robustnesses. The row with five Sensors/influencers seems significant; but

its independent variables individually have higher P values due to insufficient

number of iterations. This row is, in fact, insignificant.

4.3. PERFORMANCE OF EACH BLUE COMBINATION VS EACH RED
COMBINATION

Each BLUE combination vs. each RED combination has a total number of

6,024,756 datasets. These datasets (iterations) are the sum of square of each

experiment's total number of different meaningful arrangements. These datasets

contain the probability of BLUE win (dependent variable) for each BLUE

combination versus each RED combination, and metrics such as eigenvalue,

disparity, robustness, power of deciders, strength of connectivity, and coefficient

of deciders. In this section, the probability of BLUE win is studied for known

combinations of each side. They were run in the SPSS Statistics 17.0 software

package, as well.

70

4.3.1. THE ANALYSIS OF EXPERIMENTS WITH RESPECT TO EIGENVALUE

4.3.1.1. The Analysis of All Experiments With Respect To Eigenvalue

When Table 4.19 is examined, the eigenvalue is a fair predictor or
performance metric by itself alone for a networked force. It must be enhanced by
some other metrics to measure the performance or predict the probability of win
of a networked force.

Table 4.19. Regression Result for the Aggregated Data of each BLUE Combination vs.
each RED Combination WRT Eigenvalue

Model Summary

Model

1

R

.815'

R Square

.664

Adjusted R

Square

.664

Sid. Error of the

Estimate

.112163166045

Change Statistics

R Square

Change

.664

F Change

5963B27.B9!

dt1

2

012

6024753

Sig. F Change

.000

a. Predictors: (Constant), eSUSasm^USlSUH^BasmsHtl^

Cesfltelgj)?;

Model

1 (Constant)

R!0,.HnKSf9!ues

.Uj35tajirjatdjse.fl Coefficients

B

.420

.870

-.845

Std. Error

.001

.000

.000

Standardized

Coefficients

Beta

.770

-.748

t

566.248

2954.509

-2870.831

sig.

.000

.000

.000

95.0% Confidence Interval for B

Lower Bound

.419

.869

-.846

Upper Bound

.422

.871

-.845

Correlations

Zero-order

.453

-.422

Partial

.769

-.760

Part

.697

-.678

CMLaeMtr statistics

Tolerance

.821

.821

VIF

1.218

1.218

a.DependentVariable:Egi5(iij.

The multiple correlation coefficient, R, is 81.5% that indicates a fair

relationship. The coefficient of determination, R Square (R2), 66.4% of the

variation in probability of BLUE win is explained by the model which is very

moderate. The results of the linear regression yield the following equation:

y = 0.420 + 0.870*! - 0.845x2

Where, y: the average probability of a BLUE win for that configuration

x-i: the APFE value of BLUE configuration

X2: the APFE value of RED configuration

http://Uj35tajirjatdjse.fl

71

4.3.1.2. The Analysis of Each Experiment With Respect To Eigenvalue

Table 4.20. Collective Regression Results for the Aggregated Data of each BLUE
Combination vs. each RED Combination WRT Eigenvalue

Model

Model3.3.3
Model4.3.4
Model4.4.4
Model5.3.5
Model5.4.5
Model5.5.5
Model6.3.6
Model6.4.6
Model6.5.6
Model6.6.6
Model7.3.7
Model7.4.7
Model7.5.7
Model7.6.7
Model7.7.7
Model8.3.8
Model8.4.8
Model8.5.8
Model8.6.8
Model8.7.8
Model8.8.8
Model9.3.9
Model9.4.9
Model9.5.9
Model9.6.9
Model9.7.9
Model9.8.9
Model9.9.9
ModeM 0.3.10
Model 10.4.10
Model10.5.10
Model 10.6.10
Model10.7.10
Model10.8.10
Model10.9.10
Modell 0.10.10

R R Square
Adjusted R

Square
Std.Error of
the Estimate

Sig.

There is only one iteration that is not enough to calculate linear regression.
.960 .922 .765 .050 .280

There is only one iteration that is not enough to calculate linear regression.
.726

1
.527

1
.511

1
.092
.000

.000**
-

There is only one iteration that is not enough to calculate linear regression.
.788
.681
.973

.620

.464

.947

.618

.450

.842

.095

.101

.017

.000**

.000**
.229

There is only one iteration that is not enough to calculate linear regression.
.817
.713
.714
.577

.667

.508

.509

.333

.667

.507

.497
-1.000

.103

.097

.086

.067

.000

.000
.000**
.867

There is only one iteration that is not enough to calculate linear regression.
.834
.772
.665
.734
.686

.695

.596

.442

.539

.471

.695

.596

.440

.527
-.588

.103

.100

.097

.092

.100

.000

.000

.000
.000**
.728

There is only one iteration that is not enough to calculate linear regression.
.856
.802
.739
.687
.542
.875

.734

.644

.547

.472

.294

.766

.734

.644

.547

.471

.276

.299

.107

.103

.099

.100

.095

.083

.000

.000

.000

.000
.000**
.483

There is only one iteration that is not enough to calculate linear regression.
.860
.817
.761
.720
.612
.586
.981

.740

.668

.579

.519

.374

.343

.963

.740

.668

.579

.519

.373

.326

.889

.112

.106

.102

.100

.090

.088

.033 .

.000

.000

.000

.000

.000

.000

.192
There is only one iteration that is not enough to calculate linear regression.

72

Table 4.20. (continued)

Model

ModelH.3.11
ModelH.4.11
ModelH.5.11
ModelH.6.11
ModelH.7.11
ModelH.8.11
ModelH.9.11
ModelH. 10.11
ModeM 1.11.11
Model12.3.12
ModeM 2.4.12
ModeM 2.5.12
ModeM 2.6.12
ModeM 2.7.12
ModeM 2.8.12
ModeM 2.9.12
ModeM 2.10.12
ModeM2.11.12
ModeM 2.12.12

R

.868

.832

.786

.725

.687

.569

.491

.944

R Square

.754

.693

.618

.525

.472

.324

.241

.892

Adjusted R
Square

.754

.693

.618

.525

.472

.323

.221

.675

Std.Error of
the Estimate

.117

.111

.108

.105

.102

.097

.089

.050

Sig.

.000

.000

.000

.000

.000

.000
.000**
.329

There is only one iteration that is not enough to calculate linear regression.
.862
.843
.790
.751
.700
.677
.554
.575

1

.743

.710

.624

.563

.490

.458

.307

.331
1

.743

.710

.624

.563

.490

.458

.305

.314
1

.125

.113

.112

.107

.103

.099

.093

.093

.000

.000

.000

.000

.000

.000

.000

.000
.000**

-
There is only one iteration that is not enough to calculate linear regression.

When the individual experiment results calculated by just the eigenvalues

are examined in Table 4.20 above, the experiments with less than approximately

30 different meaningful combinations (iterations) have insignificant results.

The multiple correlation coefficients, Rs, are about 75% that indicates a

fair relationship. The coefficients of determination, R Square (R2), are about 55%

of the variation in probability of BLUE win is explained by the model which is very

moderate.

73

4.3.1.3. The Analysis of Decider Basis Experiments With Respect To
Eigenvalue

Table 4.21. Collective Regression Results for the Decider Basis Aggregated Data of each
BLUE Combination vs. each RED Combination WRT Eigenvalue

Model

ModelX3X
ModelX4X
ModelX5X
ModelX6X
ModelX7X
ModelX8X
ModelX9X
ModelXlOX
ModelXHX
ModelX12X

R

.862

.839

.788

.747

.698

.670

.544

.554

.975

R Square

.744

.704

.621

.558

.488

.448

.296

.307

.951

Adjusted R
Square

.744

.704

.621

.558

.488

.448

.295

.290

.902

Std.Error of
the Estimate

.120

.112

.111

.107

.103

.099

.092

.094

.023

Sig.

.000

.000

.000

.000

.000

.000

.000

.000
.049*

There is only one iteration that is not enough to calculate linear regression.

When the experiments results calculated by just the eigenvalues along

with the deciders (column-wise) are examined in Table 4.21, above, the R and R

square values are low; they decrease gradually as the number of deciders

increases. The experiments are significant until 11 deciders.

4.3.1.4. The Analysis of Sensor/lnfluencer Basis Experiments With
Respect To Eigenvalue

Table 4.22. Collective Regression Results for the Sensor/lnfluencer Basis Aggregated Data
of each BLUE Combination vs. each RED Combination WRT Eigenvalue

Model
Model3Y3
Model4Y4
Model5Y5
Model6Y6
Model7Y7
Model8Y8
Model9Y9
Model10Y10
Model11Y11
Model12Y12

R R Square Adjusted R
Square

Std.Error of
the Estimate Sig.

There is only one iteration that is not enough to calculate linear regression.
.931
.728
.770
.795
.804
.819
.817
.819
.814

.866

.530

.593

.633

.646

.671

.667

.671

.663

.733

.516

.591

.632

.646

.671

.667

.671

.663

.063

.089

.096

.101

.101

.104

.106

.110

.113

.134

.000

.000

.000

.000

.000

.000

.000

.000

When the experiments results calculated by applying eigenvalues along

with the sensors/influencers (row-wise) are examined in Table 4.22, above, the R

and R square values are stuck to lower 80% and mid-60%, respectively.

74

4.3.2. THE ANALYSIS OF EXPERIMENT WITH RESPECT TO EIGENVALUE,
TOTAL DISPARITY, AND ROBUSTNESS

4.3.2.1. The Analysis of All Experiments With Respect To Eigenvalue,
Total Disparity, and Robustness

Table 4.23. Regression Result for the Aggregated Data of each BLUE Combination vs.
each RED Combination WRT Eigenvalue, Disparity, and Robustness

Descriptive Statistics

eas»

akue-rjissmatoja

SSSLSsmaUsi

BU*_jm_Qrararfe

SEQJJJaLBiasfly

8kU£_BuMaeK

Mean

.47818620

2.34332659

2.34332669

7.74

7.74

791

791

Std. Deviation

.193616202

.171281309

.171281309

2335

2.335

1.667

1.667

N

6024756

6024756

6024756

6024756

6024756

6024756

6024756

Model Summary

Model

1

R

.888*

R Square

.789

Adjusted R

Square

789

Std. Error of the

Estimate

.088920171

Change Statistics

R Square

Change

.789

F Change

3756576.700

df1

6

df2

6024749

Sig.F Change

.000

a. Predictors: (Constant), E£P_E&tatnm 6JA!£JraiS<])ffltei BUJ&JSAaLSIISMM, BHj.-.lBW-BijB.iill'g.akU.P-rlflP.aap.jjXBBP-Jjae.P.'ffljW.i

SBMESrDsI

Model

1 (Constant)

BUE-BflSrralWS

BHLHoSEyaluas

BU&JsSsLSism&

BEftJMaLBIaaflv.

8i.UE_R9l?.W|nsa

Unstaj]d.Kdjz.ej1. Coefficients

B

.422

.607

-.580

-.013

.013

.02(

-.027

Std. Error

.001

.001

.001

.000

.000

.000

.000

Standardized

Coefficients

Seta

.537

-.513

-.156

.162

.226

-.235

t

647.169

1181.503

-1130.191

-513.767

530.694

547.702

-571.402

Sig.

.000

.000

.000

.000

.000

.000

.000

95.0% Confidence Interval for B

Lower Bound

.421

.606

-.581

-.013

.013

.026

-.027

Upper Bound

.423

.608

-.579

-.013

.013

.026

-.027

Correlations

Zero-order

.453

-.422

-.178

.204

.583

-.582

Partial

.434

-.418

-.205

.211

.216

-.227

Part

.221

-.211

-.096

.099

.102

-.107

GPJUDSaiitt Statistics

Tolerance

.170

.170

.378

.378

.206

.206

VIF

5.895

5.895

2.648

2.649

4.847

4.847

a. Dependent Variable: EfiJ&Ul

When the experiments results of collected 6,024,756 datasets calculated

by applying eigenvalues, disparities, and robustnesses are examined in Table

4.23 above, a regression analysis of the APFE. the disparity and the robustness

values yields an 18.8% increase in the coefficient of determination, the R square

(R2) forms a value of 0.664 to 0.789 and provides the following equation:

y = 0.422 + 0.607*! - 0.580x2 - 0.013x3 + 0.013x4 + 0.026x5 - 0.027x6

Where, y: the average probability of a BLUE win for that configuration

xi: the APFE value of a BLUE configuration

X2m. the APFE value of a RED configuration

X3: the disparity value of a BLUE configuration

75

X4: the disparity value of a RED configuration

x5: the robustness value of a BLUE configuration

X6: the robustness value of a RED configuration

4.3.2.2. The Analysis of Each Experiment With Respect To Eigenvalue,
Disparity, and Robustness

Table 4.24. Collective Regression Results for the Aggregated Data of each BLUE
Combination vs. each RED Combination WRT Eigenvalue, Disparity, and Robustness

Model

Model3.3.3
Model4.3.4
Model4.4.4
Model5.3.5
Model5.4.5
Model5.5.5
Model6.3.6
Model6.4.6
Model6.5.6
Model6.6.6
Model7.3.7
Model7.4.7
Model7.5.7
Model7.6.7
Model7.7.7
Model8.3.8
Model8.4.8
Model8.5.8
Model8.6.8
Model8.7.8
Model8.8.8
Model9.3.9
Modeig.4.9
Model9.5.9
Model9.6.9
Model9.7.9
Model9.8.9
Model9.9.9

R R Square Adjusted R
Square

Std.Error of
the Estimate Sig.

There is only one iteration that is not enough to calculate linear regression.
.960 .922 .765 .050 .280

There is only one iteration that is not enough to calculate linear regression.
.755

1
.571

1
.526

1
.091
.000

.000*

There is only one iteration that is not enough to calculate linear regression.
.831
.713
.973

.691

.508

.947

.685

.468

.842

.086

.100

.017

.000**
.000*
.229

There is only one iteration that is not enough to calculate linear regression.
.870
.768
.736
.577

.757

.590

.542

.333

.756

.587

.504
-1.000

.089

.088

.085

.067

.000
.000**
.000*
.816

There is only one iteration that is not enough to calculate linear regression.
.883
.819
.744
.815
.686

.779

.671

.554

.664

.471

.779

.670

.551

.637
-.588

.088

.090

.087

.081

.100

.000

.000
.000**
.000*
.728

There is only one iteration that is not enough to calculate linear regression.
.908
.857
.804
.754
.737
.875

.824

.735

.646

.568

.544

.766

.824

.735

.646

.566

.507

.299

.087

.089

.088

.091

.078

.083

.000

.000

.000
.000**
.000*
.483

There is only one iteration that is not enough to calculate linear regression.

76

Table 4.24. (continued)

Model

Model10.3.10
Model10.4.10
Model10.5.10
Model10.6.10
Model10.7.10
Model 10.8.10
ModeM 0.9.10
Modell 0.10.10
ModeM 1.3.11
Modell 1.4.11
ModelH.5.11
ModeM 1.6.11
ModeM 1.7.11
ModeM 1.8.11
ModeM 1.9.11
ModeM 1.10.11
ModeM 1.11.11
ModeM 2.3.12
ModeM 2.4.12
ModeM 2.5.12
ModeM2.6.12
ModeM2.7.12
ModeM2.8.12
ModeM2.9.12
ModeM 2.10.12
ModeM 2.11.12
Model12.12.12

R

.918

.877

.827

.784

.682

.640

.981

R Square

.843

.769

.683

.614

.465

.409

.963

Adjusted R
Square

.843

.769

.683

.614

.462

.361

.889

Std.Error of
the Estimate

.087

.088

.088

.090

.083

.086

.033

Sig.

.000

.000

.000

.000
.000**
.000*
.192

There is only one iteration that is not enough to calculate linear regression.
.928
.899
.861
.813
.773
.642
.608
.944

.861

.809

.741

.662

.597

.412

.369

.892

.861

.809

.741

.622

.597

.409

.318

.675

.088

.088

.089

.089

.089

.091

.083

.050

.000

.000

.000

.000

.000
.000**
.000*
.329

There is only one iteration that is not enough to calculate linear regression.
.932
.909
.878
.837
.789
.745
.628
.654

1

.868

.826

.770

.700

.622

.556

.394

.427
1

.868

.826

.770

.700

.622

.555

.390

.381
1

.089

.088

.088

.089

.089

.090

.087

.088

.000

.000

.000

.000

.000

.000

.000
.000**
.000*

There is only one iteration that is not enough to calculate linear regression.

When the individual experiment results calculated by eigenvalues,

disparities, and robustnesses are examined in Table 4.24 above, the significant

experiments have the multiple correlation coefficients, Rs, varying from 74.5% to

93.2% that indicate a good relationship. The coefficients of determination, R

Square (R2) - varying from 55.6% to 86.8%, of the variation in probability of BLUE

win are explained by the model that are fair.

77

4.3.2.3. The Analysis of Column-wise Experiments With Respect To
Eigenvalue, Disparity, and Robustness

Table 4.25. Collective Regression Results for the Decider Basis Aggregated Data of each
BLUE Combination vs. each RED Combination WRT Eigenvalue, Disparity, and
Robustness

Model

ModelX3X
ModelX4X
ModelX5X
ModelX6X
ModelX7X
ModelX8X
ModelX9X
ModelXlOX
ModelXHX
ModelX12X

R

.927

.904

.874

.833

.786

.738

.619

.606
1

R Square

.860

.818

.763

.694

.619

.544

.383

.368
1

Adjusted R
Square

.860

.818

.763

.694

.619

.544

.380

.320
1

Std.Error of
the Estimate

.089

.088

.088

.089

.089

.090

.087

.093

.000

Sig.

.000

.000

.000

.000

.000

.000
.000**
.000*

There is only one iteration that is not enough to calculate linear regression.

When the experiments results calculated by eigenvalues, disparities, and

robustnesses along with the deciders (column-wise) are examined in Table 4.25

above, the R values for significant experiments vary from 73.8% to 92.7%, and

the R square values for significant experiments vary from 54.4% to 86%. They

decrease exponentially as the number of deciders increases. The experiments

are significant up to 9 Deciders.

78

4.3.2.4. The Analysis of Row-wise Experiments With Respect To
Eigenvalue, Total Disparity, and Robustness

Table 4.26. Collective Regression Results for the Decider Basis Aggregated Data of each
BLUE Combination vs. each RED Combination WRT Eigenvalue, Disparity, and
Robustness

Model
Model3Y3
Model4Y4
Model5Y5
Model6Y6
Model7Y7
Model8Y8
Model9Y9
Model10Y10
Model11Y11
Model12Y12

R R Square Adjusted R
Square

Std.Error of
the Estimate Sig.

There is only one iteration that is not enough to calculate linear regression.
.979
.756
.811
.848
.852
.873
.877
.888
.889

.959

.571

.658

.719

.727

.762

.768

.788

.791

.837

.530

.653

.718

.727

.762

.768

.788

.791

.050

.087

.088

.088

.089

.088

.088

.088

.089

.255
.000*
.000
.000
.000
.000
.000
.000
.000

When the experiments results calculated by applying eigenvalues,

disparities, and robustnesses along with the Sensors/Influencers (row-wise) are

examined in Table 4.26 above, the R values are increased logarithmically from

0.811 to 0.889 as the number of Sensors/I nfluencers increases, likewise the R

square values are increased logarithmically from 0.658 to 0.791. They look like

they are asymptotic to 0.9 and 0.8, respectively.

79

4.3.3. THE ANALYSIS OF ALL EXPERIMENTS WITH RESPECT TO ALL
METRICS

Table 4.27. Regression Result for the Aggregated Data of each BLUE Combination vs.
each RED Combination WRT All Metrics

Model Summary

Model

1

2

3

4

5

S

7

8

9

10

11

12

13

R

.591=

.854°

.859=

.879=

.883'

.888'

.885"

.891'

.892

.892-

.892'

.892!

.892'"

R Square

.349

.729

.737

.772

.780

.789

.790

.795

.795

.795

.795

.795

.795

Adjusted R

Square

.349

.729

.737

.772

.780

.789

.790

.795

.795

.795

.795

.795

.795

Std. Error of the

Estimate

.15818S295051

.100882088398

.099215141985

.092437890888

.090792881422

.088923590518

.088740137758

.087717097880

.087710550839

.087707057592

.087599907205

.087593995994

.087593881370

Change Statistics

R Square

Change

.345

.379

.009

.035

,008

.009

.001

.005

.000

.000

.001

.000

.000

F Change

3238038.849

8418272.986

201577.434

915817.345

220322.335

255917.883

24950.319

141353.178

888.885

494.863

14748.700

814.178

47.031

df1 df2

8024754

8024753

8024752

8024751

8024750

8024749

8024748

8024747

8024748

8024745

8024744

8024743

8024742

Sig. F Change

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

a. Predictors: (Constant), RED_Connectivity

b. Predictors: (Constant), RED_Conneotivity, BLUE_Connectivity

c. Predictors: (Constant), RED_ConnectMty, BLUE_Connectivity, BLUE_Eigenvalues

d. Predictors: (Constant), RED_Connectivity, BLUE_Connectivity, BLUE_Eigenvalues, RED_Eigenvalues

e. Predictors: (Constant), RED_Connectivity, BLUE_Connectivity, BLUE_Eigenvalues, RED_Eigenvalues, RED_Total_D is parity

f. Predictors: (Constant). RED_Connectivity, BLUE_Connectivity, BLUE_Eigenvalues, RED_Eigenvalues, RED_Total_Disparity, BLUE_Total_Oisparity

g. Predictors: (Constant), RED_Conneotivity, BLUE_Connecth/ity, BLUE_Eigenvalues, RED_Eigenvalues, RED_Total_D is parity,

BLUE_Total_Disparity, RED_Strength

h. Predictors: (Constant), RED_Connectivity, BLUE_Connectivlty, BLUE_Eigenvalues, REO_Eigenvalues, RED_Total_Disparity,

BLUE_Total_Disparity, RED_Strength, BLUE_Strength

l Predictors: (Constant), RED_Connectivity, BLUE_Connectivity, BLUE_Eigenvalues, RED_Eigenvalues, RED_Total_Disparity, BLUE_Total_Disparity,

RED_Strength, BLUE_Strength, RED_Stability

j . Predictors: (Constant), RED_Connectwity, BLUE_Connectivity, BLUE_Eigenvalues, RED_Eigenvalues, RED_Total_Disparity, BLUE_Total_Disparity,

RED_Strength, BLUE_Strength, RED_Stability, RED_Power

k. Predictors: (Constant), RED_Connectivity: BLUE_Connectivity, BLUE_Eigenvalues, RED_Eigenvalues, RED_Total_Disparity,

BLUE_Total_Disparity, RED_Strength, BLUE_Strength, RED_Stability, RED_Power, BLUE_Power

I. Predictors: (Constant), RED_Connectivity, BLUE_ConnedivityT BLUE_Eigenvalues, RED_Eigenvalues, RED_Total_Disparity, BLUE_Total_Disparity,

RED_Strength, BLUE_Strength, RED_Stability, RED_Power, BLUE_Power, BLUE_Robustness

m. Predictors: (Constant), RED_Connectivity, BLUE_Connectwity, BLUE_Eigenvalues, RED_Eigenvalues, RED_Total_D is parity,

BLUE_Total_Disparity, RED_Strength, BLUE_Strength, RED_Stability, RED_Power, BLUE_Power, BLUE_Robustness, BLUE_Stability

When the experiments results of collected 6,024,756 datasets calculated

by applying all metrics are examined in Table 4.27 above, the result of best

performance has R and R square values of 0.892 and 0.795, respectively. They

are close to each other and can be accepted as high. Since there is a perfect

80

linear relationship among the independent variables, the estimates for the model

can be computed in five different ways.

Table 4.28. Regression Result for the Aggregated Data of each BLUE Combination vs.
each RED Combination WRT Eigenvalue, Power, and Connectivity

Model Summary

Model

1

R

892j

R Square

795

Adjusted R

Square

.795

Std. Error of the

Estimate

.087644566852

Change Statistics

R Square

Change

.795

FChange

3896162379

dfl

6

df2

6024749

Sig. F Change

.000

a. Predictors: (Constant), RED_Conned)vity, BLUE_Connectivity, RED_Eigenvalues, BLUE_Power, BLUE.Eigenvaluas, RED_Power

Coefficients9

Model

1 (Constant)

BLUE__Eigenvalues

RED_Eigenvalues

BLUE_Power

RED_Power

BLUE_Conneco'vity

RED_ConnectJvity

Unstandardized Coefficients

e
.426

.292

-.260

.098

-.101

-.006

.007

Std. Error

.001

.000

.000

.000

.000

.000

.000

Standardized

Coefficients

Beta

259

-.230

.455

-.467

-.110

.115

t

546.292

765.060

-680.122

788.326

-808.020

-244.592

256.655

Sig.

.000

.000

.000

.000

.000

.000

.000

95.0% Confidence IntervalforB

Lower Bound

.424

.292

-.261

.098

-.101

-.007

.007

Upper Bound

.427

.293

-.259

.099

-.101

-.006

.007

Conelatlons

Zero-order

.453

-.422

.486

-.485

-.590

.591

Partial

298

-267

.306

-.313

-.099

.104

Part

.141

-.125

.145

-.149

-.045

.047

Colllnearity Statistics

Tolerance

298

298

.102

.102

.168

.168

VIF

3.360

3.360

9.802

9.802

5.948

5.948

a. Dependent Variable: PBWIn

After the multicolinearity check, a regression analysis of the APFE* the

power, and the connectivity values yields very small increase in the R and R

square values by 0.45% and 0.76%, respectively. This yields the following

equation:

y = 0.426 + 0.292*! - 0.260x2 + 0.098x3 - 0.101x4 - 0.006% + 0.007%

Where, y: the average probability of a BLUE win for that configuration

x-i: the APFE value of a BLUE configuration

x2: the APFE value of a RED configuration

X3: the power value of a BLUE configuration

X4: the power value of a RED configuration

X5: the connectivity value of a BLUE configuration

X6: the connectivity value of a RED configuration

81

4.3.3.1. The Analysis of Each Experiment With Respect To Eigenvalue,
Power, and Connectivity

Table 4.29. Collective Regression Results for the Aggregated Data of each BLUE
Combination vs. each RED Combination WRT Eigenvalue, Power, and Connectivity

Model

Model3.3.3
Model4.3.4
Model4.4.4
Model5.3.5
Model5.4.5
Model5.5.5
Model6.3.6
Model6.4.6
Model6.5.6
Model6.6.6
Model7.3.7
Model7.4.7
Model7.5.7
Model7.6.7
Model7.7.7
Model8.3.8
Model8.4.8
Model8.5.8
Model8.6.8
Model8.7.8
Model8.8.8
Model9.3.9
Model9.4.9
Model9.5.9
Model9.6.9
Model9.7.9
Model9.8.9
Model9.9.9
Model10.3.10
Model10.4.10
Model10.5.10
Model10.6.10
Model10.7.10
Model10.8.10
Model10.9.10
Model 10.10.10

R R Square
Adjusted R

Square

Std.Error
of the

Estimate
Sig.

There is only one iteration that is not enough to calculate linear regression.
.960 .922 .765 .050 .280

There is only one iteration that is not enough to calculate linear regression.
.755

1
.570

1
.525

1
.091
.000

.000*

There is only one iteration that is not enough to calculate linear regression.
.836
.711
.973

.699

.506

.947

.694

.466

.842

.085

.100

.017

.000**
.000*
.229

There is only one iteration that is not enough to calculate linear regression.
.872
.766
.737
.577

.760

.587

.543

.333

.759

.584

.506
-1.000

.088
.89

.085

.067

.000**

.000**
.000*
.816

There is only one iteration that is not enough to calculate linear regression.
.885
.827
.743
.813
.686

.783

.684

.552

.660

.471

.783

.683

.549

.633
-.588

.087

.089

.087

.081

.100

.000

.000
.000**
.000*
.728

There is only one iteration that is not enough to calculate linear regression.
.911
.860
.805
.748
.722
.875

.830

.740

.649

.560

.522

.766

.830

.740

.648

.557

.483

.299

.086

.088

.088

.092

.080

.083

.000

.000

.000
.000**
.000*
.483

There is only one iteration that is not enough to calculate linear regression.
.920
.880
.830
.788
.679
.642
.981

.847

.775

.688

.621

.462

.412

.963

.847

.775

.688

.621

.458

.365

.889

.086

.087

.088

.089

.083

.086

.033

.000

.000

.000

.000
.000**
.000*
.192

There is only one iteration that is not enough to calculate linear regression.

82

Table 4.29. (continued)

Model

Modell 1.3.11
Model 11.4.11
Modell 1.5.11
Modell 1.6.11
Modell 1.7.11
ModeM 1.8.11
Modell 1.9.11
ModelH.10.11
ModeM 1.11.11
Model12.3.12
Model12.4.12
Model12.5.12
Model12.6.12
Model12.7.12
Model12.8.12
Model12.9.12
Model12.10.12
Model12.11.12
Model12.12.12

R

.930

.902

.864

.817

.779

.640

.604

.944

R Square

.865

.814

.747

.667

.607

.410

.364

.892

Adjusted R
Square

.865

.814

.747

.667

.607

.407

.313

.675

Std.Error
of the

Estimate
.087
.086
.088
.088
.088
.091
.083
.050

Sig.

.000

.000

.000

.000
.000**
.000*
.000*
.329

There is only one iteration that is not enough to calculate linear regression.
.935
.912
.881
.841
.792
.751
.632
.653

1

.873

.831

.777

.708

.627

.564

.399

.426
1

.873

.831

.777

.708

.627

.564

.396

.379
1

.088

.086

.087

.088

.088

.089

.086

.088

.000

.000

.000

.000

.000

.000
.000**
.000**
.000*

There is only one iteration that is not enough to calculate linear regression.

When the individual experiment results calculated by eigenvalues, powers, and

connectivies are examined in Table 4.29 above, the significant experiments have

the multiple correlation coefficients, Rs, varying from 78.8% to 93.5% that

indicate a good relationship. The coefficients of determination, R Square (R2) -

varying from 62.1% to 87.3%, of the variation in probability of a BLUE win are

explained by the model that are fair.

83

4.3.3.2. The Analysis of Decider Basis Experiments With Respect To
Eigenvalue, Power, and Connectivity

Table 4.30. Collective Regression Results for the Decider Basis Aggregated Data of each
BLUE Combination vs. each RED Combination WRT Eigenvalue, Power, and Connectivity

Model

ModelX3X
ModelX4X
ModelX5X
ModelX6X
ModelX7X
ModelX8X
ModelX9X
ModelXlOX
ModelXHX
ModelX12X

R

.930

.907

.877

.837

.789

.744

.624

.610
1

R Square

.864

.823

.770

.701

.623

.553

.389

.372
1

Adjusted R
Square

.864

.823

.770

.701

.623

.553

.386

.324
1

Std.Error of
the

Estimate
.088
.087
.087
.088
.088
.089
.086
.093
.000

Sig.

.000

.000

.000

.000

.000

.000
.000**
.000*

There is only one iteration that is not enough to calculate linear regression.

When the experiments results calculated by eigenvalues, powers, and

connectivites along with the deciders (column-wise) are examined in Table 4.30

above, the R values for significant experiments vary from 74.4% to 93%, and the

R square values for significant experiments vary from 55.3% to 86.4%. They

decrease exponentially as the number of deciders increases. The experiments

are significant up to 9 Deciders.

84

4.3.3.3. The Analysis of Row-wise Experiments With Respect To
Eigenvalue, Total Disparity, and Robustness

Table 4.31. Collective Regression Results for the Sensor/lnfluencer Basis Aggregated Data
of each BLUE Combination vs. each RED Combination WRT Eigenvalue, Power, and
Connectivity

Model

Model3Y3
Model4Y4
Model5Y5
Model6Y6
Model7Y7
Model8Y8
Model9Y9
Model"! 0Y10
Model11Y11
Model12Y12

R R Square Adjusted R
Square

Std. Error of
the

Estimate
Sig.

There is only one iteration that is not enough to calculate linear regression.
.979
.757
.816
.849
.856
.876
.880
.891
.893

.959

.573

.666

.721

.733

.767

.774

.793

.798

.837

.531

.661

.720

.733

.767

.774

.793

.798

.050

.088

.087

.088

.088

.088

.087

.087

.088

.255
.000*
.000**
.000**
.000
.000
.000
.000
.000

When the experiments results calculated by applying eigenvalues,

disparities, and robustnesses along with the sensors/influencers (row-wise) are

examined in Table 4.31 above, the R values are increased logarithmically from

0.856 to 0.893 as the number of Sensors/influencers increases, likewise the R

square values are increased logarithmically from 0.733 to 0.798. They look like

they are asymptotic to 0.9 and 0.8, respectively.

85

5. CONCLUSION

5.1. GENERAL EVALUATION OF THE RESEARCH PURPOSE

The purpose of this research is to explore what causes Network Centric

Operations to be effective and the influence of network factors on NCOs.

This research is the second attempt to identify up to what configuration the

utility of the Perron-Frobenius Eigenvalue (APFE) can be determined as a good

metric to predict the perfomance of a network in general and particularly combat

power of the Information Age (Cares, 2005).

The only known parameter about each experiment is a specially designed

binary coded adjacency matrix according to the defined rules in Table 2.1. The

adjacency matrix points out the relationships between the entites. Each entity is

initially displaced randomly. Then entities except for Deciders move around

according to rule set forth to do their designated functions: sense, track, shoot,

kill, and move. From only that adjacency matrix in hand, that differs solely in

entities arrangements, various metrics have been derived to measure the ability

of a network to generate the feedback effects in general and combat power in the

environment of the Information Age Combat Model (Cares, 2005). The total of 55

experiments with various force combinations were executed to test its

effectiveness and influence in an agent based simulation model.

The Sensor-Decider-lnfluencer triad as a squad (minimum structure) of a

war unit is interdependent to sensors and influencers since Deciders are

accepted as everlasting entities during the experiment. The war unit without

Sensors can not sense and track; likewise it can not shoot and kill without

Influencers, either. The war unit with equal number of Sensors and Influencers

(called as balanced) is more effective and durable for the war job. The war unit

without the other half is not effective; it is no longer a war unit in the battlefield, it

just waits to be killed.

86

When the probability of a BLUE win is ranked from lowest to highest for its

each combination vs. all RED combinations, the BLUE force with maximum

unbalanced (completely scattered deciders) has the lowest probability of BLUE

win; the BLUE force with maximum balanced deciders has the highest probability

of BLUE win. Intermediate values lay between these two extreme combinations.

For example, the war unit that one of its Deciders with one Sensor and maximum

Influencers, the other Decider with maximum Sensors and one Influencer and the

rest of its Deciders with one Sensor and one Influencer can be thought as a

maximum unbalanced war unit. A war unit that has one of its Deciders with

maximum Sensors and Influencers and the rest of its Deciders with one Sensor

and one Influencer can be thought as a maximum balanced war unit. The mid­

points in the ranking are almost evenly balanced (have almost the same number

of Sensors and Influencers) war unit (i.e., each Decider has two Sensors and two

Influencers or three Sensors and three Influencers, etc.; a minor deviation might

have seen due to randomness). The more balanced the war unit, the better the

performance of a networked force.

The eigenvalues, disparity, robustness, strength, power, stability, and

connectivity are some metrics generated from the different meaningful

combinations of Sensors and Influencers linked to each Decider by applying

various operations described earlier. These metrics are the tools to detect the

maximum points from unbalanced to balanced intervals. Some of the metrics are

Integers and some of them are real numbers to give the balance issue a weight;

low number if it is unbalanced, there is high number otherwise.

The results of 55 experiments with each BLUE combination vs all RED

combinations in the agent-based simulation modeling presented in this research

show that the multiple correlation coefficient, R, is 58% and the coefficients of

determination, R Square (R2) is 33.6%. There is a very poor degree of correlation

between the APFE value and the average probability of a BLUE win. Therefore, the

value of the APFE is a very poor metric by itself to measure the performance of an

Information Age Combat Force.

87

The results of 55 experiments with each BLUE combination vs each RED

combination in the agent-based simulation modeling presented in this research

show that the multiple correlation coefficient, R, is 81.5% and the coefficients of

determination, R Square (R2) is 66.4%. There is a very fair degree of positive

correlation between the BLUE APFE value and the average probability of a BLUE

win; there is a very fair degree of negative corelation between the RED APFE

value and the average probability of a BLUE win. Therefore, the value of the APFE

is a very fair predictor or metric by itself to measure the performance of an

Information Age Combat Force.

While the APFE value alone was a sufficient predictor as poor/fair for a

networked forces up to with seven (excluded) Deciders, it was not a sufficient

predictor by itself for a networked force with larger than or equal to seven

Deciders. As the ratio between the the number of distinct eigenvalues and the

number of different meaningful combinations decreases as the number of

Sensor-lnfluencer and Decider increases. This effect diminishes the power of the

APFE value as a metric to measure the probability of a BLUE win. So additional

metrics should be taken into consideration to measure the performance of a

networked force.

Two additional metrics introduced before (Deller, 2009) are applied with

the eigenvalues increasing the performance measure of a networked force very

significantly in the results of 55 experiments with each BLUE combination vs all

RED combinations. The multiple correlation coefficient, R, is increased from

0.580 to 0.891 by 53.62%; and the coefficients of determination, R square, is

increased from 0.336 to 0.794 by 136.3%. There are a fair degree of positive

corelation (0.580) in between the eigenvalue and the probability of a BLUE win, a

poor degree of negative corelation (-0.232) in between the disparity and the

probability of a BLUE win and a good degree of positive corelation (0.838) in

between the robustness and the probability of a BLUE win.

88

When the same metrics are applied to the results of 55 experiments with

each BLUE combination vs each RED combination in the agent-based simulation

modeling, they increase the the performance measure of a networked force well.

The multiple correlation coefficient, R, is increased from 0.815 to 0.888 by

8.95%; and the coefficients of determination, R square, is increased from 0.664

to 0.789 by 18.83%. There are a fair degree of positive corelations (0.483)

between the BLUE eigenvalue and the probability of a BLUE win, a poor degree

of negative corelation (-0.178) between the BLUE total disparity and the

probability of a BLUE win and a fair degree of positive corelation (0.583) in

between the BLUE robustness and the probability of a BLUE win, a fair degree of

negative corelation (-0.422) between the RED eigenvalue and the probability of a

BLUE win, a poor degree of positive corelation (0.204) between the RED total

disparity and the probability of a BLUE win and a fair degree of negative

corelation (-0.582) between the BLUE robustness and the probability of a BLUE

win.

The additional new metrics, power and connectivity, introduced in this

research can increase the performance measure of a networked force better

once they are applied together with the previous metrics to the results of 55

experiments with each BLUE combination vs all RED combinations. The R value

is increased from 0.891 to 0.983 by 10.32% and the R square valeu is increased

from 0.794 to 0.966 by 21.66%. There are a fair positive degrees of corelation

(0.528) between the power and the probability of a BLUE win, a good degree of

negative corelation (-0.866) between the connectivity and the probability of a

BLUE win.

When the eigenvalue, the power and the connectivity values are applied to

the results of 55 experiments with each BLUE combination vs each RED

combination as metrics to measure the performance of a networked force, they

yield a little bit better performance, less than 1%. The R value is slightly

increased from 0.888 to 0.892 by 0.45%, and the R square value is also slightly

89

increased from 0.789 to 0.795 by 0.76%. There are a fair degree of positive

corelations (0.453) between the BLUE eigenvalue and the probability of a BLUE

win, a fair degree of positive corelation (0.486) between the BLUE power and

the probability of a BLUE win, a fair degree of negative corelation (-0.590)

between the BLUE connectivity and the probability of a BLUE win, a fair degree

of negative corelation (-0.422) between the RED eigenvalue and the probability

of a BLUE win, a poor degree of negative corelation (-0.485) between the RED

power and the probability of a BLUE win and a fair degree of positive corelation

(0.591) between the RED connectivity and the probability of a BLUE win.

5.2. RECOMMENDATIONS FOR FUTURE WORK

There is still plenty of room to explore in the agent-based modeling of the

Information Age Combat Modeling.

Java code based on the mathematical function defined in this research

runs fast to a certain point then it turns out to be cumbersome script that looks

like it is frozen. It runs fast for a small number of Deciders, but when the number

of Deciders is increased, the computation time gets higher exponentially. The

code ran for almost a month for 30 Sensors, 6 Deciders, and 30 Influencers; but

it could not finish running the code in cluster of lunix High Performance Computer

Group. The same mathematical function or a better one can be created and

converted into a better performing environment.

A more powerful agent-based modeling and simulation environment

supporting 64-bit operating system can be used to explore a larger research

space. A 32-bit opearing system has a memory issue, it can allocate up to 3 GB

RAM memory. If a large model is run, there are two options; either split the inputs

into small groups and run them individually, then gather the data (it takes a lot of

time) or run the whole model in 64-bit operating system in cluster. A 64-bit

operating system has enough memory allocation to run larger models. NetLogo

and AnyLogic are both Java based agent-based modeling and simulation

packages. NetLogo does not need user to know Java to build the models in it;

90

but it is very cumbersome and not flexible to varying stuations. AnyLogic is very

powerful and flexible, but it is does not support a 64-bit operating system, and

user needs to know Java coding to build the models.

A significant contribution will be to add some links and define some

functions accordingly to activate the inactive deciders that have neither a Sensor

nor an Influencer. "Echelon" links between Sensors to Sensors, Deciders to

Deciders, and Influencers to Influencers, such as link types 1, 5, 11, or direct

coordination links from Sensors to Influencers, such as a link type 9, should be

thought as a good contribution for the future work. Moreover, Deciders are set

forth as invulnerable targets for opposing Influencers. Without a Sensor or an

Influencer, Deciders are set aside. Letting the Deciders be vulnerable Targets for

opposing Influencers make the models more realistic combined with the

proposed links for the future work. These additional links and rules will definitely

increase the performance of a networked force and change its adjacency matrix

structure.

Multiple regression analysis with the interactions of the metrics will be a

good research area for the future work.

Both Sensors and Influencers with identical features are used in this

research. Different research for the whole search space will be a good study for

varying sensing and influencing ranges.

It is also a good contribution to analyze the performance of networked

forces of unequal assets.

The whole experiments are done deterministically. The biggest

contribution could be to redesign and analyse the whole model with new rules in

a stochastic manner.

5.3. SUMMARY

The concept of attack, defense, and security in the twenty-first century is

very robust and dynamic as the threat changes in the Information Age. There is

91

no pitched battle anymore that require large units from both sides. There are

regional or local battles that require small units that are used more effectively.

For security reasons, geographically dispersed and functionally diverse units are

required. The challenge is how to orchestrate or control these units for their

intended purpose. How does command and control function? What type of units

are required? The answers to these questions are obviously a complex matter.

The concept of distributed networked operations must be understood thoroughly

in order to command and control the required units effectively. The entities

represent the units and the links represent the relationship in between them. If

some quantifiable metrics (parameters) that represent the characteristics of the

distributed networked operations are comprehended, then it is easy to construct

the units for the intended purpose and orchestrate them accordingly. There is not

just a good quantifiable metric that can explain the relationship between the

nodes, in general, as the network structure grows. But the combination of the

metrics that are derived from a nodes partitioning structure can explain the

relationship more precisely. The structure of the networked centric operations as

in the Information Age Combat Modeling is also applicable for non-military

applications for distributed, networked operations.

92

REFERENCES

1. Deller, Sean. Towards The Quantitative Analysis Of The Connectivity Value

Of Networked Operations, Ph.D.Dissertation, Old Dominion University, Norfolk,

VA, USA, 2009.

2. Cares, Jeff. Distributed Networked Operations. iUniverse, New York, 2005.

3. Honabarger, Jason B., Modeling Network Centric Warfare (NCW) With The

System Effectiveness Analysis Simulation (SEAS),M.S.Thessis, Air Force

Institute of Technology, Dayton, OH, USA, 2006.

4. Tolk, Andreas, Bowen, Robert J., and Hester, Patrick T. Using Agent

Technology to Move From Intention-Based to effect-Based Models. Winter

Simulation Conference Proceedings, IEEE Press, 863-871, 2008.

5. Hanratty, Timothy, Dumer, John, Yen, John, Fan Xiaocong 2003. Using

Agents with Shared Mental Model to Support Network-Centric Warfare. In

Proceedings of the 7th World Multiconference on Systemics, Cybernetics and

Informatics (SCI 2003), Orlando, USA, July 27-30, 2003.

6. David Alberts, John Garstka, Frederick Stein, Network Centric Warfare,

CCRP, July 2002.

7. Wong-Jim, Ann, Colombi, John, Suzuki, Laura, Robert Mills, Graph

Theoretical Analysis of network Centric Operations Using Multi-Layer Models, Air

Force Institute of Technology, Sep 2006.

8. Honda, Tomonari, Sato, Hirosji, Namatame, Akira, Evolutionary Learning in

Agent-Based Combat Simulation, Dept. of Computer Science, National Defense

Academy, Japan, 2006.

9. Qing, Xue, Guo-Hui Zhang, Bing-Bing Lei, Xing-Dong Peng, The Study of

C4ISR System Effectiveness Evaluation Based on Information Entropy in the

Network Centric Warfare, International Conference on Intelligent Human-

Machine Systems and Cybernetics, 2009.

10. McCormick, John M., Gerken, Peter M., Barry, Kevin P., Sidharta Brian,

Achieving Battlespace Awareness in Network-Centric Warfare by Integrating

Web and Agent Technologies, Lockheed Martin Advanced Technology

Laboratories, 2004.

93

11. http://en.wikipedia.org/wiki/Network-centric warfare.

12. Lalbakhsh, Pooia, Sohrabi, Nasrin, Fesharaki, Mehdi N., The Role of

Service Oriented Architecture in Battlefield Situational Awareness, Islamic AZAD

University-Science & Research Campus, Tehran, IRAN, 2009.

13. http://en.wikipedia.org/wiki/Eigenvalue,_eigenvector_and_eigenspace.

14. R. L. Ott, An Introduction To Statistical Methods and Data Analysis, Fourth

ed. Belmont, California: Duxbury Press, 1993.

15. A. Alin, "Multicolinearity," Wiley Interdisciplinary Reviews: Computational

Statistics, vol. 2, pp. 370-374, 2010.

16. F. Ozturk and F. Akdeniz, "Ill-Conditioning and Multicolinearity," Linear

Algebra and Its Applications, vol. 321, pp. 295-305, 2000.

17. G. Chartrand, Introductory Graph Theory. Mineola, New York: Dover

Publications, 1985.

18. David S. Alberts, Richard E. Hayes, David A. Signori, Understanding

Information Age Warfare. Washington D.C.: CCRP Press, August 2001.

http://en.wikipedia.org/wiki/Network-centric
http://en.wikipedia.org/wiki/Eigenvalue,_eigenvector_and_eigenspace

A
P

P
E

N
D

IX
 A

: J
A

V
A

 C
O

D
E

S
 D

IF
FE

R
E

N
T

 M
E

A
N

IN
G

FU
L

 C
O

M
B

IN
A

TI
O

N
S

A
.1

. J
A

V
A

 C
O

D
E

 F
O

R
 IN

TE
G

E
R

 P
A

R
TI

TI
O

N
IN

G
 A

N
D

 P
E

R
M

U
TA

TI
O

N
S

 A
LG

O
R

IT
H

M

im
po

rt
ja

va
.u

til
.V

ec
to

r;

pu
bl

ic
 c

la
ss

 A
lg

or
ith

m
Li

b
{

/*
*

*
Th

is
 fu

nc
tio

n
re

tu
rn

s
a

lis
t c

on
ta

in
in

g
al

l p
os

si
bl

e
pe

rm
ut

at
io

ns
 o

f

*
th

e
in

te
ge

r
pa

rti
tio

n
fo

r t
he

 n
um

be
r

n
of

 s
iz

e
i.

Th
is

 is
 a

 re
cu

rs
iv

e
al

go
rit

hm
.

*
Fo

r
br

ev
ity

 o
f e

xp
la

na
tio

n,
 s

up
po

se
 th

e
na

m
e

of
 th

e
fu

nc
tio

n
in

tP
ar

tit
io

nP
er

m
s

is
 f.

*
Th

en
 f

ca
n

be
 c

om
pu

te
d

re
cu

rs
iv

el
y

as
 fo

llo
w

s:

* *
1.

f(
n,

 1
) =

 {{
n}

}
(b

as
e

ca
se

)

* *
2.

 f(
n,

 i)
 =

 {{
k}

 U
 f

(n
-k

, i
-1

)
| k

 =
 n

-1
 ..

.1
 a

nd
 n

-k
 >

=
 i-

1}

(r
ec

ur
si

ve
 s

te
p)

* *
@

pa
ra

m
 n

: T
he

 n
um

be
r t

o
ge

t i
nt

eg
er

 p
ar

tit
io

ns
 fo

r

*
@

pa
ra

m
 i:

 T
he

 s
iz

e
of

 th
e

pa
rti

tio
n

*
©

re
tu

rn

a
V

ec
to

r
of

 V
ec

to
rs

 if
 I

nt
eg

er
s

*/

pu
bl

ic
 s

ta
tic

 V
e

ct
o

r<
V

e
ct

o
r<

ln
te

g
e

r»
 i

nt
P

ar
tio

nP
er

m
s(

in
t

n,
 in

t
i)

{

//
In

iti
al

iz
e

th
e

lis
t t

o
ho

ld
 th

e
pe

rm
ut

at
io

ns

V
e

ct
o

r<
V

e
ct

o
r<

ln
te

g
e

r»
 l

is
t

=
 n

ew
 V

e
ct

o
r<

V
e

ct
o

r<
ln

te
g

e
r»

()
;

//
If

i =
 1

, t
he

n
th

e
in

te
ge

r
pa

rt
iti

on
 is

 ju
st

 {
{n

}}
 -

 b
as

e
ca

se

if
(i

=
=

1
){

V
ec

to
r<

ln
te

ge
r>

 v
 =

 n
ew

 V
ec

to
r<

ln
te

ge
r>

()
;

v.
ad

d(
ne

w
 I

nt
eg

er
(n

))
;

lis
t.a

dd
(v

);

} el
se

 {
 fo

r(
in

tk
 =

n

-1
;k

>
=

1
;k

-)
{

//
In

 c
as

es
 w

he
re

 n
-k

 >
 i-

1,
 n

o
so

lu
tio

n
ex

is
ts

 -
 s

o
ig

no
re

 t
he

se

if
((

n
-k

)>
=

i-
1

){

//
R

ec
ur

si
ve

 s
te

p
fo

r
ne

xt
 k

V
e

ct
o

r<
V

e
ct

o
r<

ln
te

g
e

r»
 n

ex
t

=
 in

tP
ar

tio
nP

er
m

s(
n

-
k,

 i
-1

);

/*
 n

ex
t

is
 a

 s
et

 o
f

pe
rm

ut
at

io
ns

 e
ac

h
of

 s
iz

e
i -

1.

H
er

e

w
e

ad
d

{n
} t

o
th

e
fro

nt
 o

f e
ac

h
pe

rm
ut

at
io

n,
 tu

rn
in

g

ne
xt

 in
to

 a
 s

et
 o

f p
er

m
ut

at
io

ns
 o

f l
en

gt
h

n.
 */

fo
r(

in
t j

 =
 0

; j
 <

 n
ex

t.s
iz

e(
);

j +
+)

 {

V
ec

to
r<

ln
te

ge
r>

 c
ur

r
=

 n
ex

t.g
et

(j)
;

cu
rr

.in
se

rtE
le

m
en

tA
t(n

ew
 I

nt
eg

er
(k

),
0)

;

} //
A

dd
 th

is
 n

ex
t s

et
 o

f p
er

m
ut

at
io

ns
 to

 th
e

lis
t.

lis
t.a

dd
A

II(
ne

xt
);

A
.2

. J
A

V
A

 C
O

D
E

 F
O

R
 I

N
T

E
G

E
R

 P
A

R
T

IT
IO

N
IN

G
 A

N
D

 P
E

R
M

U
T

A
T

IO
N

S

im
po

rt
 ja

va
.u

til
.V

ec
to

r;

pu
bl

ic
 c

la
ss

 I
nt

eg
er

P
ar

tit
io

nP
er

m
s

{

//
R

ea
d

in
 n

 a
nd

 i,
 a

nd
 c

al
l t

he
 fu

nc
tio

n,

pu
bl

ic
 s

ta
tic

 v
oi

d
m

ai
n(

S
tri

ng
D

 a
rg

s)
 {

in
t

n
=

 l
nt

eg
er

.p
ar

se
ln

t(
ar

gs
[0

])
;

in
t

i =
 l

nt
eg

er
.p

ar
se

ln
t(

ar
gs

[1
])

;

S
ys

te
m

.o
ut

.p
rin

tln
("

")
;

S
ys

te
m

.o
ut

.p
ri

nt
ln

fn
 =

 "
 +

 a
rg

s[
0]

 +
",

 i
 =

 "
 +

 a
rg

s[
1]

);

S
ys

te
m

.o
ut

.p
rin

tln
("

")
;

S
ys

te
m

.o
ut

.p
rin

tln
("

A
II

In
te

ge
r

P
er

m
ut

at
io

n
P

er
m

ut
at

io
ns

:"
);

pr
in

t(
A

lg
or

ith
m

Li
b.

in
tP

ar
tio

nP
er

m
s(

n,
 i

))
;

//p
rin

t(
ne

w
 l

nt
eg

er
P

ar
tit

io
nA

lg
or

ith
m

()
.s

ol
ve

(n
,

i))
;

} //
P

ro
vi

de
 a

 fu
nc

tio
n

fo
r

pr
in

tin
g.

pu
bl

ic
 s

ta
tic

 v
oi

d
pr

in
t(

V
ec

to
r<

V
ec

to
r<

ln
te

ge
r»

 l
is

ts
)

{

fo
r(

in
t

i =
 0

;
i <

 li
st

s.
si

ze
()

;
i +

+)
 {

fo
r(

in
t j

 =
 0

; j
 <

 li
st

s.
ge

t(
i).

si
ze

()
; j

 +
+)

 {

S
ys

te
m

.o
ut

.p
rin

t(
lis

ts
.g

et
(i)

.g
et

(j)
.to

S
tr

in
g(

)
+

"

} S
ys

te
m

.o
ut

.p
rin

tln
("

")
;

}

}

}

98

")
;

A.
3.
 J
A
V
A
 C
O
D
E
 F
O
R
 C
R
O
S
S
I
N
G
 A
L
G
O
R
I
T
H
M

im
po

rt
ja

va
.u

til
.H

as
ht

ab
le

;

im
po

rt
ja

va
.u

til
.V

ec
to

r;

im
po

rt
ja

va
.u

til
.C

ol
le

ct
io

n;

im
po

rt
Ja

va
.u

til
.C

ol
le

ct
io

ns
;

im
po

rt
Ja

va
.m

at
h.

*;

pu
bl

ic
 c

la
ss

 C
ro

ss
in

gA
lg

or
ith

m
 {

pu
bl

ic
 s

ta
tic

 d
ou

bl
e

to
le

ra
nc

e
=

 0
.0

00
00

00
00

1;

pu
bl

ic
 s

ta
tic

 v
oi

d
m

ai
n(

S
tri

ng
fl

ar
gs

) {

in
t n

1
=

 ln
te

ge
r.p

ar
se

ln
t(a

rg
s[

0]
);

in
t i

 =
 ln

te
ge

r.p
ar

se
ln

t(a
rg

s[
1]

);

in
t n

2
=

 ln
te

ge
r.p

ar
se

ln
t(a

rg
s[

2]
);

S
ys

te
m

.o
ut

.p
rin

tln
("

C
ro

ss
in

g
(n

1,
 i,

 n
2)

:"
 +

 a
rg

s[
0]

 +
 ",

"
+

 a
rg

s[
1]

 +
 ",

"
+

 a
rg

s[
2]

);

S
ys

te
m

.o
ut

.p
rin

tln
("

")
;

//
Th

e
lin

e
of

 c
od

e
be

lo
w

 il
lu

st
ra

te
s

ho
w

 to
 c

al
l t

hi
s.

V
ec

to
r<

S
tri

ng
>

 s
tri

ng
s

=
 n

ew
 C

ro
ss

in
gA

lg
or

ith
m

()
.c

ro
ss

To
S

tri
ng

s(
n1

, i
, n

2)
;

fo
r(

S
tri

ng
 c

om
bi

na
tio

n
: s

tri
ng

s)
 {

S
ys

te
m

.o
ut

.p
rin

tln
(c

om
bi

na
tio

n)
;

10
0

} S
ys

te
m

.o
ut

.p
rin

tln
("

T
ot

al
 C

om
bi

na
tio

ns
:"

 +
 s

tr
in

gs
.s

iz
e(

))
;

} pu
bl

ic
 V

e
ct

o
r<

V
e

ct
o

r<
ln

te
g

e
r»

 c
ro

ss
(in

t
n1

,
in

t
i,

in
t

n2
)

{

V
e

ct
o

r<
V

e
ct

o
r<

ln
te

g
e

r»
 l

ef
t

=
 A

lg
or

ith
m

l_
ib

.in
tP

ar
tio

nP
er

m
s(

n1
, i

);

V
e

ct
o

r<
V

e
ct

o
r<

ln
te

g
e

r»
 t

op
 =

 A
lg

or
ith

m
Li

b.
in

tP
ar

tio
nP

er
m

s(
n2

,
i);

V
ec

to
r<

D
ou

bl
e>

 k
ey

s
=

 n
ew

 V
ec

to
r<

D
ou

bl
e>

()
;

V
e

ct
o

r<
V

e
ct

o
r<

ln
te

g
e

r»
 c

om
bi

na
tio

ns
 =

 n
ew

 V
e

ct
o

r<
V

e
ct

o
r<

ln
te

g
e

r»
()

;

fo
r(

V
ec

to
r<

ln
te

ge
r>

 p
1

: l
ef

t)
 {

fo
r(

V
ec

to
r<

ln
te

ge
r>

 p
2

: t
op

)
{

in
t

po
w

er
 =

 i;

do
ub

le
 k

ey
 =

 0
;

fo
r(

in
t j

 =
 0

; j
 <

 p
1

.s
iz

e(
);

 j
++

)
{

do
ub

le
 a

 =
 M

at
h.

po
w

(p
1.

ge
t(

j).
do

ub
le

V
al

ue
()

,
((

in
t)

po
w

er
))

;

do
ub

le
 b

 =
 M

at
h.

po
w

(p
2.

ge
t(

j).
do

ub
le

V
al

ue
()

,
(1

/(
(d

ou
bl

e)
po

w
er

))
);

ke
y

+=
 a

 /
b;

} V
ec

to
r<

ln
te

ge
r>

 p
ai

r
=

 n
ew

 V
ec

to
r<

ln
te

ge
r>

()
;

pa
ir.

ad
dA

II
(p

l);

pa
ir.

ad
dA

II(
p2

);

if(
!c

on
ta

in
sK

ey
(k

ey
s,

 k
ey

))
 {

ke
ys

.a
dd

(n
ew

 D
ou

bl
e(

ke
y)

);

co
m

bi
na

tio
ns

.a
dd

(p
ai

r)
;

}

}

} re
tu

rn
 c

om
bi

na
tio

ns
;

} pr
iv

at
e

bo
ol

ea
n

co
nt

ai
ns

K
ey

(V
ec

to
r<

D
ou

bl
e>

 k
ey

s,
 d

ou
bl

e
ke

y)
 {

fo
r(

D
ou

bl
e

d
: k

ey
s)

 {

if(
M

at
h.

ab
s(

d.
do

ub
le

V
al

ue
()

 -
 k

ey
)

<=
 to

le
ra

nc
e)

re
tu

rn
 tr

ue
;

} re
tu

rn
 fa

ls
e;

} pu
bl

ic
 V

ec
to

r<
S

tr
in

g>
 c

ro
ss

T
oS

tr
in

gs
(in

t
n1

,
in

t
i,

in
t

n2
)

{

S
tr

in
gB

uf
fe

r
s

=
 n

ew
 S

tr
in

gB
uf

fe
r(

);

C
ol

le
ct

io
n<

V
ec

to
r<

ln
te

ge
r»

 v
al

s
=

 c
ro

ss
(n

1,
 i,

 n
2)

;

V
ec

to
r<

S
tr

in
g>

 s
tr

in
gs

 =
 n

ew
 V

ec
to

r<
S

tr
in

g>
()

;

fo
r(

V
ec

to
r<

ln
te

ge
r>

 p
ai

rs
 :

 v
al

s)
 {

s.
a

p
p

e
n

d
(T

);

bo
ol

ea
n

is
F

irs
t

=
 tr

ue
;

fo
r(

ln
te

ge
r

nu
m

 :
 p

ai
rs

)
{

if(
!is

F
irs

t)
 {

s.
ap

pe
nd

("
,"

);

} s.
ap

pe
nd

(n
um

.to
S

tr
in

gO
);

is
F

irs
t

=
 fa

ls
e;

} s.
a

p
p

e
n

d
(T

);

st
rin

gs
.a

dd
(s

.to
S

tr
in

gO
);

s
=

 n
ew

 S
tr

in
gB

uf
fe

r(
);

} re
tu

rn
 s

tr
in

gs
;

10
2

10
3

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

"r

i-.
ic

 j
c

th
p

 p
n

H
 n

f
IP

\/
P

C
^

n
r\

&
 *

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**

In
 c

om
m

an
d

pr
om

pt
, t

yp
e:

C
ro

ss
 <

nu
m

be
r

of
 s

en
so

rs
>

 <
nu

m
be

r
of

 d
ec

id
er

s>
 <

nu
m

be
r o

f i
nf

lu
en

ce
rs

>

Li
ke

cr
os

s
7

3
7

APPENDIX B: JAVA CODES OF IACM IN ANYLOGIC

package sidtmodel;
import java.sql.Connection;
import java.sql.SQLException;

import java.util.ArrayList;
import j ava.ut i1.Arrays;
import java.util.Calendar;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.Currency;
import java.util.Date;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Hashtable;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Listlterator;
import java.util.Locale;
import java.util.Map;
import j ava.ut i1.Random;
import java.util.Set;
import java.util.SortedMap;
import java.util.SortedSet;
import java.util.Stack;
import java.util.Timer;
import j ava.ut i1.TreeMap;
import java.util.TreeSet;
import java.util.Vector;

import java.awt.Color;
import j ava.awt.Font;
import java.awt.Graphics2D;
import java.awt.geom.AffineTransform;

import static java.lang.Math.*;
import static com.xj.anylogic.engine.presentation.UtilitiesColor.*;
import static com.xj.anylogic.engine.presentation.UtilitiesDrawing.
import static com.xj.anylogic.engine.HyperArray.*;

import com.xj.anylogic.engine.*;
import com.xj.anylogic.engine.analysis.*;
import com.xj.anylogic.engine.connectivity.*;
import com.xj .anylogic.engine.connectivity.ResultSet;
import com.xj.anylogic.engine.connectivity.Statement;
import com.xj.anylogic.engine.presentation.*;

import java.awt.geom.Arc2D;

public class Main extends ActiveObject
{

// Parameters

public
int nBDeciders;

/ * *
* Returns default value for parameter <code>nBDeciders</code>.
*/

public
int _nBDeciders_DefaultValue_xjal() {

return
4

}

public void set_nBDeciders(
int nBDeciders) {

i£ (nBDeciders == this.nBDeciders) {
return;

}
this.nBDeciders = nBDeciders;
onChange_nBDeciders() ;
onChange();

}

void onChange_nBDeciders() {
int index;

index = 0;
for (Turtle object : influencersB) {
object.set_nFleets(nBDeciders) ;
index++;

}
index = 0;
for (Turtle object : sensorsB) {
object.set_nFleets(nBDeciders);
index++;

}

}

public
double sRange;

/ **
* Returns default value for parameter <code>sRange</code>.
*/

public
double _sRange_DefaultValue_xjal() {

return
10

}

public void set_sRange(
double sRange) {

if (sRange == this.sRange) {

return;
}
this.sRange = sRange;
onChange_sRange();
onChange();

}

void onChange_sRange() {
}

public
double iRange;

* Returns default value for parameter <code>iRange</code>.
*/

public
double _iRange_DefaultValue_xjal() {

return
10

}

public void set_iRange(
double iRange) {

if (iRange == this.iRange) {
return;

}
this.iRange = iRange;
onChange_iRange();
onChange();

}

void onChange_iRange() {
}

public
int BID;

/ **
* Returns default value for parameter <code>BID</code>.
*/

public
int _BID_DefaultValue_xjal() {

return 0;
}

public void set_BID(
int BID) {

if (BID == this.BID) {
return;

}
this.BID = BID;
onChange_BID();
onChange();

}

void onChange_BID() {
}

public
int RID;

/ * *

* Returns default value for parameter <code>RID</code>.
*/

public
int _RID_DefaultValue_xjal() {

return 0;
}

public void set_RID(
int RID) {

if (RID == this.RID) {
return;

}
this.RID = RID;
onChange_RID();
onChange();

void onChange_RID() {
}

public
int seed;

/ **
* Returns default value for parameter <code>seed</code>.
*/

public
int _seed_DefaultValue_xjal() {

return 0;
}

public void set_seed(
int seed) {

if (seed == this.seed) {
return;

}
this.seed = seed;
onChange_seed();
onChange();

void onChange_seed() {
}

public

int nRDeciders;

/ **
* Returns default value for parameter <code>nRDeciders</code>.
*/

public
int _nRDeciders_DefaultValue_xjal() {

return
4

}

public void set_nRDeciders(
int nRDeciders) {

if (nRDeciders == this.nRDeciders) {
return;

}
this.nRDeciders = nRDeciders;
onChange_nRDeciders() ;
onChange();

}

void onChange_nRDeciders() {
int index;

index = 0;
for (Turtle object : influencersR) {
object.set_nFleets(nRDeciders) ;
index++;

}
index = 0;
for (Turtle object : sensorsR) {
object.set_nFleets(nRDeciders) ;
index++;

}

}

// Plain Variables

public
int
tick;
public

Object[]
result;
public

int
bWin ;
public

int
rWin ;
// Events

public EventTimeout event = new EventTimeout(this);

©Override

109

public String getNameOf(EventTimeout _e) {
iff _e == event) return "event";
return super.getNameOf(_e);

}

©Override
public int getModeOf(EventTimeout _e) {

if (_e == event) return EVENT_TIMEOUT_MODE_CYCLIC;
return super.getModeOf(_e) ;

}

©Override
public double getFirstOccurrenceTime(EventTimeout _e) {

if (_e == event) return
0

return super.getFirstOccurrenceTime(_e);
}

©Override
public double evaluateTimeoutOf(EventTimeout _e) {

if(_e == event) return
1

return super.evaluateTimeoutOf(_e);
}

©Override
public void executeActionOf(EventTimeout _e) {

if (_e == event) {

tick++;
if (influencersR.size() + sensorsR.size() == 0) {

// Blue team wins
bWin = 1;
event.reset();

// getEngine().stop();
}

if (influencersB.size() + sensorsB.size() ==0) {
// Red team wins
rWin = 1;
event.reset();

// getEngine().stop();
}

reset();
sense();
track();
shoot();
killO ;
movelnfluencers()
movelnfluencers()
movelnfluencers()
movelnfluencers()
movelnfluencers()

110

moveSensors()
moveSensors()
moveSensors()
moveSensors()
moveSensors()

return ;
}
super.executeActionOf(_e) ;

}
// Embedded Objects

public String getNameOf(ActiveObject ao) {
return null;

}

public ActiveObjectArrayList<Turtle> deciderB = new
ActiveObjectArrayList<Turtle>();

public ActiveObjectArrayList<Turtle> deciderR = new
ActiveObjectArrayList<Turtle>();

public ActiveObjectArrayList<Turtle> influencersB = new
ActiveObjectArrayList<Turtle>();

public ActiveObjectArrayList<Turtle> influencersR = new
ActiveObjectArrayList<Turtle>();

public ActiveObjectArrayList<Turtle> sensorsB = new
ActiveObjectArrayList<Turtle>();
public ActiveObjectArrayList<Turtle> sensorsR = new

ActiveObjectArrayList<Turtle>();

public String getNameOf(ActiveObjectCollection<?> aolist) {
iff aolist == deciderB) return "deciderB";
iff aolist == deciderR) return "deciderR";
iff aolist == influencersB) return "influencersB";
iff aolist == influencersR) return "influencersR";
iff aolist == sensorsB) return "sensorsB";
iff aolist == sensorsR) return "sensorsR";
return null;

}

/ **
* This method creates and adds new embedded object in the replicated

embedded object collection >deciderB

* ©return newly created embedded object
*/

public Turtle add_deciderB() {
int index = deciderB.size();
Turtle object = instantiate_deciderB_xjal(index);
setupParameters_deciderB_xjal(object, index);
create_deciderB_xjal(object, index);
object.start();
return object;

}

/ * *

111

* This method creates and adds new embedded object in the replicated
embedded object collection deciderB

* This method uses given parameter values to setup created embedded
object

* Index of this new embedded object instance can be obtained through
calling <code>deciderB.size()</code> method before
this method is called

* ©param type
* ©param nFleets
* ©param teamColor
* ©return newly created embedded object
*/

public Turtle add_deciderB(int type, int nFleets, Color teamColor)
{

int index = deciderB.size();
Turtle object = instantiate_deciderB_xjal(index);
// Setup parameters
object.type = type;
object.nFleets = nFleets;
object.teamColor = teamColor;
// Finish embedded object creation
create_deciderB_xjal(object, index);
obj ect.start();
return object;

/ * *
* This method removes the given embedded object from the replicated

embedded object collection deciderB

* The given object is destroyed, but not immediately in common case.
* ©param object the active object - element of replicated embedded

object deciderB - which should be removed
* ©return <code>true</code> if object was removed successfully,

<code>false</code> if it doesn't belong to deciderB
*/

public boolean remove_deciderB(Turtle object) {
if(! deciderB._remove(object)){
return false;

}
obj ect.setDestroyed();
return true;

}
/ **
* This method creates and adds new embedded object in the replicated

embedded object collection deciderR

* ©return newly created embedded object
*/

public Turtle add_deciderR() {
int index = deciderR.size() ;
Turtle object = instantiate_deciderR_xjal(index);
setupParameters_deciderR_xjal(object, index);
create_deciderR_xjal(object, index);
obj ect.start();
return object;

/ * *

112

* This method creates and adds new embedded object in the replicated
embedded object collection deciderR

* This method uses given parameter values to setup created embedded
object

* Index of this new embedded object instance can be obtained through
calling <code>deciderR.size()</code> method before
this method is called

* ©param type
* ©param nFleets
* ©param teamColor
* ©return newly created embedded object
*/

public Turtle add_deciderR(int type, int nFleets, Color teamColor)
{

int index = deciderR.size();
Turtle object = instantiate_deciderR_xjal(index);
// Setup parameters
object.type = type;
object.nFleets = nFleets;
object.teamColor = teamColor;
// Finish embedded object creation
create_deciderR_xjal(object, index);
object.start();
return object;

}

I **
* This method removes the given embedded object from the replicated

embedded object collection deciderR

* The given object is destroyed, but not immediately in common case.
* ©param object the active object - element of replicated embedded

object deciderR - which should be removed
* ©return <code>true</code> if object was removed successfully,

<code>false</code> if it doesn't belong to deciderR
*/

public boolean remove_deciderR(Turtle object) {
if(! deciderR._remove(object)){

return false;
}
obj ect.setDestroyed();
return true;

}
/* *
* This method creates and adds new embedded object in the replicated

embedded object collection influencersB

* ©return newly created embedded object
*/

public Turtle add_influencersB() {
int index = influencersB.size();
Turtle object = instantiate_influencersB_xjal(index);
setupParameters_influencersB_xjal(object, index);
create_influencersB_xjal(object, index);
object.start();
return object;

}

/ * *

113

* This method creates and adds new embedded object in the replicated
embedded object collection influencersB

* This method uses given parameter values to setup created embedded
object

* Index of this new embedded object instance can be obtained through
calling <code>influencersB.size()</code> method before
this method is called

* @param type
* ©param nFleets
* ©param teamColor
* ©return newly created embedded object
*/

public Turtle add_influencersB(int type, int nFleets, Color
teamColor) {

int index = influencersB.size();
Turtle object = instantiate_influencersB_xjal(index);
// Setup parameters
object.type = type;
object.nFleets = nFleets;
object.teamColor = teamColor;
// Finish embedded object creation
create_influencersB_xjal(object, index);
object.start();
return object;

}

/ **
* This method removes the given embedded object from the replicated

embedded object collection influencersB

* The given object is destroyed, but not immediately in common case.
* ©param object the active object - element of replicated embedded

object influencersB - which should be removed
* ©return <code>true</code> if object was removed successfully,

<code>false</code> if it doesn't belong to influencersB
*/

public boolean remove_influencersB(Turtle object) {
iff ! influencersB._remove(object)){
return false;

}
object.setDestroyed() ;
return true;

}
/ * *
* This method creates and adds new embedded object in the replicated

embedded object collection influencersR

* ©return newly created embedded object
*/

public Turtle add_influencersR() {
int index = influencersR.size();
Turtle object = instantiate_influencersR_xjal(index);
setupParameters_influencersR_xjal(object, index);
create_influencersR_xjal(object, index);
object.start();
return object;

}

/**

114

* This method creates and adds new embedded object in the replicated
embedded object collection influencersR

* This method uses given parameter values to setup created embedded
object

* Index of this new embedded object instance can be obtained through
calling <code>influencersR.size()</code> method before
this method is called

* ©param type
* ©param nFleets
* ©param teamColor
* ©return newly created embedded object
*/

public Turtle add_influencersR(int type, int nFleets, Color
teamColor) {

int index = influencersR.size();
Turtle object = instantiate_influencersR_xjal(index);
// Setup parameters
object.type = type;
object.nFleets = nFleets;
object.teamColor = teamColor;
// Finish embedded object creation
create_influencersR_xjal(object, index);
object.start(),-
return object;

}

* This method removes the given embedded object from the replicated
embedded object collection influencersR

* The given object is destroyed, but not immediately in common case.
* ©param object the active object - element of replicated embedded

object influencersR - which should be removed
* ©return <code>true</code> if object was removed successfully,

<code>false</code> if it doesn't belong to influencersR
*/

public boolean remove_influencersR(Turtle object) {
iff ! influencersR._remove(object)){

return false;
}
obj ect.setDestroyed();
return true;

}

* This method creates and adds new embedded object in the replicated
embedded object collection sensorsB

* ©return newly created embedded object
*/

public Turtle add_sensorsB() {
int index = sensorsB.size();
Turtle object = instantiate_sensorsB_xjal(index);
setupParameters_sensorsB_xjal(object, index);
create_sensorsB_xjal(object, index);
object.start();
return object;

}

/ **

115

* This method creates and adds new embedded object in the replicated
embedded object collection sensorsB

* This method uses given parameter values to setup created embedded
object

* Index of this new embedded object instance can be obtained through
calling <code>sensorsB.size()</code> method before
this method is called

* ©param type
* ©param nFleets
* ©param teamColor
* ©return newly created embedded object
*/

public Turtle add__sensorsB(int type, int nFleets, Color teamColor)
{

int index = sensorsB.size();
Turtle object = instantiate_sensorsB_xjal(index);
// Setup parameters
object.type = type;
object.nFleets = nFleets;
object.teamColor = teamColor;
// Finish embedded object creation
create_sensorsB_xjal(object, index);
object.start();
return object;

}

* This method removes the given embedded object from the replicated
embedded object collection sensorsB

* The given object is destroyed, but not immediately in common case.
* ©param object the active object - element of replicated embedded

object sensorsB - which should be removed
* ©return <code>true</code> if object was removed successfully,

<code>false</code> if it doesn't belong to sensorsB
*/

public boolean remove_sensorsB(Turtle object) {
if(! sensorsB._remove(object)){
return false;

}
object.setDestroyed() ;
return true;

}
/ **

* This method creates and adds new embedded object in the replicated
embedded object collection sensorsR

* ©return newly created embedded object
*/

public Turtle add_sensorsR() {
int index = sensorsR.size();
Turtle object = instantiate_sensorsR_xjal(index);
setupParameters_sensorsR_xjal(object, index);
create_sensorsR_xjal(object, index);
object.start();
return object;

}

/ * *

116

* This method creates and adds new embedded object in the replicated
embedded object collection sensorsR

* This method uses given parameter values to setup created embedded
object

* Index of this new embedded object instance can be obtained through
calling <code>sensorsR.size()</code> method before
this method is called

* @param type
* @param nFleets
* @param teamColor
* ©return newly created embedded object
*/

public Turtle add_sensorsR(int type, int nFleets, Color teamColor)
{

int index = sensorsR.size();
Turtle object = instantiate_sensorsR_xjal(index);
// Setup parameters
object.type = type;
object.nFleets = nFleets;
object.teamColor = teamColor;
// Finish embedded object creation
create_sensorsR_xjal(object, index);
object.start();
return object;

}

/ **

* This method removes the given embedded object from the replicated
embedded object collection sensorsR

* The given object is destroyed, but not immediately in common case.
* @param object the active object - element of replicated embedded

object sensorsR - which should be removed
* ©return <code>true</code> if object was removed successfully,

<code>false</code> if it doesn't belong to sensorsR
*/

public boolean remove_sensorsR(Turtle object) {
if(! sensorsR._remove(object)){

return false;

}
obj ect.setDestroyed();
return true;

}

/**

* Creates an embedded object instance and adds it to the end of
replicated embedded object list

*/
private Turtle instantiate_deciderB_xjal(final int index) {

Turtle object = new Turtle(getEngine(), this, deciderB),-

deciderB._add(object);

return object;
}

/ * *

* Setups parameters of an embedded object instance

117

*/
private void setupParameters_deciderB_xjal(Turtle object, final int

index) {
object.type =

3

object.nFleets = object._nFleets_DefaultValue_xjal();
object.teamColor =

lightSteelBlue

}

* Setups an embedded object instance

*/

private void create_deciderB_xjal(Turtle object, final int index) {
obj ect.setEnvironment(

environment
) ;

obj ect.create() ;

// Port connections
}
/ **

* Creates an embedded object instance and adds it to the end of
replicated embedded object list

*/
private Turtle instantiate_deciderR_xjal(final int index) {

Turtle object = new Turtle(getEngine(), this, deciderR);

deciderR._add(object);

return object;
}

* Setups parameters of an embedded object instance

*/

private void setupParameters_deciderR_xjal(Turtle object, final int
index) {

object.type =
3
t

object.nFleets = object._nFleets_DefaultValue_xjal();
object.teamColor =

red

}

/ **

* Setups an embedded object instance

*/

private void create_deciderR_xjal(Turtle object, final int index) {
object.setEnvironment(

environment
);

obj ect.create();

118

// Port connections
}
/ **

* Creates an embedded object instance and adds it to the end of
replicated embedded object list

*/
private Turtle instantiate_influencersB_xjal(final int index) {

Turtle object = new Turtle(getEngineO, this, influencersB) ;

influencersB._add(object);

return object;
}

/ **

* Setups parameters of an embedded object instance

*/

private void setupParameters_influencersB_xjal(Turtle object, final
int index) {

object.type =
1

object.nFleets =
nBDeciders

object.teamColor =
lightSteelBlue

}

* Setups an embedded object instance

*/

private void create_influencersB_xjal(Turtle object, final int index
) {

object.setEnvironment(
environment
J.-

ob j ect.create();

// Port connections
}
/ **

* Creates an embedded object instance and adds it to the end of
replicated embedded object list

*/
private Turtle instantiate_influencersR_xjal(final int index) {

Turtle object = new Turtle(getEngine(), this, influencersR);

influencersR._add(object);

return object;
}

/ **

* Setups parameters of an embedded object instance

119

*/ ,—-
private void setupParameters_influencersR_xjal(Turtle object, final

int index) {
object.type =

1

object.nFleets =
nRDeciders

object.teamColor =
red

}

/ **

* Setups an embedded object instance

*/

private void create_influencersR_xjal(Turtle object, final int index
) {

object.setEnvironment(
environment
) ;

obj ect.create();

// Port connections
}

* Creates an embedded object instance and adds it to the end of
replicated embedded object list

*/
private Turtle instantiate_sensorsB_xjal(final int index) {

Turtle object = new Turtle(getEngine(), this, sensorsB);

sensorsB._add(object) ;

return object;
}

/ **

* Setups parameters of an embedded object instance

*/

private void setupParameters_sensorsB_xjal(Turtle object, final int
index) {

object.type =
2

object.nFleets =
nBDeciders
t

object.teamColor =
lightSteelBlue
t

}

* Setups an embedded object instance

*/

1

private void create_sensorsB_xjal(Turtle object, final int index) {
obj ect.setEnvironment(

envi ronment
);

obj ect.create() ;

// Port connections
}
/ **
* Creates an embedded object instance and adds it to the end of

replicated embedded object list

*/

private Turtle instantiate_sensorsR_xjal(final int index) {
Turtle object = new Turtle(getEngineO, this, sensorsR) ;

sensorsR._add(object) ;

return object;
}

/* *
* Setups parameters of an embedded object instance

*/

private void setupParameters_sensorsR_xjal(Turtle object, final int
index) {

object.type =
2

object.nFleets =
nRDeciders

object.teamColor =
red
t

}

* Setups an embedded object instance

*/

private void create_sensorsR_xjal(Turtle object, final int index) {
obj ect.setEnvironment(

environment
J.-

ob j ect.create();

// Port connections
}

// Functions

void
sense() {

for (Turtle d: deciderB) {
int ind = d.getIndex();
for (Turtle s: d.inTurtles) {

for

}
for

(Turtle e: influencersR) {
if (s.distanceTo(e) <= sRange)

e.sensedBD[ind] = true;

(Turtle e: sensorsR) {
if (s.distanceTo(e) <= sRange)

e.sensedBDfind] = true;

}

for (Turtle d
int ind
for

deciderR) {
d.getIndex();

(Turtle s: d.inTurtles) {
for (Turtle e: influencersB) {

if (s.distanceTo(e) <= sRange)
e.sensedRD[ind] = true;

}
for (Turtle e: sensorsB) {

if (s.distanceTo(e) <= sRange)

e.sensedRD[ind] = true;
}

void
track() {

// THIS FUNCTION JUST SHOWS TRACKING LINKS

for (Turtle d: deciderB) {
for (Turtle s: d.outTurtles) {

for (Turtle e: influencersR) {
if (s.distanceTo(e) <= iRange)

s.outTurtles.add(e);
}
for (Turtle e: sensorsR) {

if (s.distanceTo(e) <= iRange)
s.outTurtles.add(e);

}

for (Turtle d: deciderR) {
for (Turtle s: d.outTurtles) {

for (Turtle e: influencersB) {
if (s.distanceTo(e) <= iRange)

s.outTurtles.add(e);
}
for (Turtle e: sensorsB) {

if (s.distanceTo(e) <= iRange)

s.outTurtles.add(e);
}

void
shoot() {

for (Turtle d: deciderB) {
int ind = d.getlndex();
for (Turtle s: d.outTurtles) {

Turtle closestTarget = null;
double closestDistance = Double.POSITIVE_INFINITY;
for (Turtle e: s.outTurtles) {

if (!e.sensedBD[ind]) {
continue;

}
double dist = s.distanceTo(e);
if (dist < closestDistance) {

closestTarget = e;
closestDistance = dist;

}
}
if (closestTarget != null) {

closestTarget.dead = 1;

}
}

}
for (Turtle d: deciderR) {

int ind = d.getlndex();
for (Turtle s: d.outTurtles) {

Turtle closestTarget = null;
double closestDistance = Double.POSITIVE_INFINITY;
for (Turtle e: s.outTurtles) {

if (!e.sensedRD[ind])
continue;

double dist = s.distanceTo(e) ;
if (dist < closestDistance) {

closestTarget = e;
closestDistance = dist;

}

}
if (closestTarget != null) {

closestTarget.dead = 1;

}
}

}
}

void
kill() {

for (int i = influencersR.size()-1; i>=0; i--) {
Turtle t = influencersR.get(i) ;
if (t.dead == 1) {

remove_influencersR(t);
}

}
for (int i = influencersB.size()-1; i>=0; i--) {

Turtle t = influencersB.get(i) ;
if (t.dead == 1) {

remove_influencersB(t);
}

}
for (int i = sensorsR.size()-1; i>=0; i--) {

Turtle t = sensorsR.get(i) ;
if (t.dead == 1) {

remove_sensorsR(t) ;
}

}

for (int i = sensorsB.size()-1; i>=0; i--) {
Turtle t = sensorsB.get(i);
if (t.dead == 1) {

remove_sensorsB(t);
}

}

}

void
movelnfluencers() {

for (Turtle d: deciderB) {
int ind = d.getlndex();
for (Turtle i: d.outTurtles) {

Turtle closestTarget = null;
double closestDistance = Double. POSITIVE_INFINITY;
for (Turtle e: influencersR) {

if (!e.sensedBD[ind] || e.dead == 1)
continue;

double dist = i.distanceTo(e) ;
if (dist < closestDistance) {

closestTarget = e;
closestDistance = dist;

}
}
for (Turtle e: sensorsR) {

if (!e.sensedBD[ind] || e.dead == 1)
continue;

double dist = i.distanceTo(e);
if (dist < closestDistance) {

closestTarget = e;
closestDistance = dist;

}
}
// move
if (closestTarget != null) {

i.setXY(i.getx() + (closestTarget.getx() -
i.getX())/closestDistance , i.getYO + (closestTarget.getY() -
i.getY())/closestDistance);

}
}

}
for (Turtle d: deciderR) {

int ind = d.getIndex();
for (Turtle i: d.outTurtles) {

Turtle closestTarget = null;
double closestDistance = Double. POSITIVE_INFINITY;
for (Turtle e: influencersB) {

if (!e.sensedRD[ind] || e.dead == 1)
continue;

double dist = i.distanceTo(e);
if (dist < closestDistance) {

closestTarget = e;
closestDistance = dist;

}
}
for (Turtle e: sensorsB) {

if (!e.sensedRD[ind] || e.dead == 1)
continue;

double dist = i.distanceTo(e);
if (dist < closestDistance) {

closestTarget = e;
closestDistance = dist;

}
}
// move
if (closestTarget != null) {

i.setXY(i.getX() + (closestTarget.getX() -
i.getX())/closestDistance , i.getY() + (closestTarget.getY() -
i.getY())/closestDistance);

}
}

}
}

void
moveSensors() {

for (Turtle d: deciderB) {
int ind = d.getlndex();
boolean sensed = false;
for (Turtle e:influencersR) {

if (e.sensedBD[ind] && e.dead !
sensed = true;
break;

}
}
if (sensed)

continue;
for (Turtle e:sensorsR) {

if (e.sensedBDfind] && e.dead !
sensed = true;
break;

}
}
if (sensed)

continue;

1) {

1) {

for (Turtle s: d.inTurtles) {
Turtle closestTarget = null;
double closestDistance = Double.POSITIVE_lNFINITY;
for (Turtle e: influencersR) {

if (e.sensedBD[ind] || e.dead == 1)
continue;

double dist = s.distanceTo(e);
if (dist < closestDistance) {

closestTarget = e;
closestDistance = dist;

}
}
for (Turtle e: sensorsR) {

if (e.sensedBDfind] || e.dead == 1)
continue;

double dist = s.distanceTo(e) ;
if (dist < closestDistance) {

closestTarget = e;
closestDistance = dist;

}
}
// move
if (closestTarget != null) {

s.setXY(s.getX() + (closestTarget.getX() -
s.getXf))/closestDistance , s.getYO + (closestTarget.getY() -
s.getY())/closestDistance);

}
}

}
for (Turtle d: deciderR) {

int ind = d.getlndexf);
boolean sensed = false;
for (Turtle e:influencersB) {

if (e.sensedRD[ind] && e.dead != 1) {
sensed = true;
break;

}
}
if (sensed)

continue;
for (Turtle e:sensorsB) {

if (e.sensedRD[ind] && e.dead != 1) {
sensed = true;
break;

}
}
if (sensed)

continue;

for (Turtle s: d.inTurtles) {
Turtle closestTarget = null;
double closestDistance = Double.POSITIVE_lNFINITY;
for (Turtle e: influencersB) {

if (e.sensedRD[ind] || e.dead == 1)
continue;

double dist = s.distanceTo(e);

if (dist < closestDistance) {
closestTarget = e;
closestDistance = dist;

}
}
for (Turtle e: sensorsB) {

if (e.sensedRD[ind] || e.dead == 1)
continue;

double dist = s.distanceTo(e);
if (dist < closestDistance) {

closestTarget = e;
closestDistance = dist;

}
}
// move
if (closestTarget != null) {

s.setXY(s.getX() + (closestTarget.getx() -
s.getX())/closestDistance , s.getY() + (closestTarget.getY() -
s.getY())/closestDistance);

}
}

}
}

void
reset() {

for (Turtle t: influencersR) {
Arrays.fill(t.sensedRD, false);
Arrays.fill(t.sensedBD, false);
t.outTurtles.clear();
t.inTurtles.clear();

}
for (Turtle t: influencersB) {

Arrays.fill(t.sensedRD,
Arrays.fill(t.sensedBD,
t.outTurtles.clear();
t.inTurtles.clear();

}
for (Turtle t: sensorsR) {

Arrays.fill(t.sensedRD,
Arrays.fill(t.sensedBD,
t.outTurtles.clear();
t.inTurtles.clear();

}
for (Turtle t: sensorsB) {

Arrays.fill(t.sensedRD,
Arrays.fill(t.sensedBD,
t.outTurtles.clear();
t.inTurtles.clear();

}
for (Turtle t: deciderB) {

for (int i = t.outTurtles.size()-l;i>=0;i--) {
Turtle k = t.outTurtles.get(i);
if (k.getlndex()==-l)

t.outTurtles.remove(i);

false);
false);

false);
false);

false);
false);

127

}
for

}

(Turtle t: deciderR) {
for (int i = t.outTurtles.size()-1;i>=0;i--)

Turtle k = t.outTurtles.get(i);
if (k.getlndex()==-l)

t.outTurtles.remove(i);
}

}
static final Color _rectangle_FillColor = new Color(0xFFEFF9FE, true

static final int _rectangle = 1;
static final int influencersB_Presentation
static final int sensorsB_Presentation = 3
static final int influencersR_Presentation
static final int sensorsR_Presentation = 5
static final int deciderR_Presentation = 6
static final int deciderB_Presentation = 7

2;

4;

/ * *
* Top-level presentation group id
*/
static final int _presentation = 0;

/ * *
* Top-level icon group id
*/

static final int _icon = -1;

©Override
public String getNameOfShape(int _shape) {
switch(_shape) {
case influencersB_Presentation: return

"influencersB_Presentation";
case sensorsB_Presentation: return "sensorsB_Presentation"
case influencersR_Presentation: return

"influencersR_Presentation";
case sensorsR_Presentation: return "sensorsR_Presentation"
case deciderR_Presentation: return "deciderR_Presentation"
case deciderB_Presentation: return "deciderB_Presentation"
default: return super.getNameOfShape(_shape);

}
}

©Override
public int getShapeType(int _shape) {
switch(_shape) {
case influencersB_Presentation: return SHAPE_EMBEDDED_OBJECT;
case sensorsB_Presentation: return SHAPE_EMBEDDED_OBJECT;
case influencersR_Presentation: return SHAPE_EMBEDDED_OBJECT;
case sensorsR_Presentation: return SHAPE_EMBEDDED_OBJECT;
case deciderR_Presentation: return SHAPE_EMBEDDED_OBJECT;
case deciderB_Presentation: return SHAPE_EMBEDDED_OBJECT;
default: return super.getShapeType(_shape);

}
}

©Override
public int getShapeReplication(int _shape) {

switch(_shape) {
case influencersB_Presentation: return

influencersB.size()

case sensorsB_Presentation: return
sensorsB.size()

case influencersR_Presentation: return
influencersR.size()

case sensorsR_Presentation: return
sensorsR.size()
/

case deciderR_Presentation: return
deciderR.size()

case deciderB_Presentation: return
deciderB.size()

default: return super.getShapeReplication(_shape);
}

}

©Override
public double getShapeX(int _shape, int index) {

switch(_shape) {
case influencersB_Presentation: return 40;
case sensorsB_Presentation: return 40;
case influencersR_Presentation: return 40;
case sensorsR_Presentation: return 40;
case deciderR_Presentation: return 40;
case deciderB_Presentation: return 40;
default: return super.getShapeX(_shape, index);

}
}

©Override
public double getShapeY(int _shape, int index) {

switch(_shape) {
case influencersB_Presentation: return 40;
case sensorsB_Presentation: return 40;
case influencersR_Presentation: return 40;
case sensorsR_Presentation: return 40;
case deciderR_Presentation: return 40;
case deciderB_Presentation: return 40;
default: return super.getShapeY(_shape, index);

}
}

©Override
public Object getShapeEmbeddedObject(int _shape) {

switch(_shape) {

case deciderB_Presentation: return deciderB;
case deciderR_Presentation: return deciderR;
case influencersB_Presentation: return influencersB;
case influencersR_Presentation: return influencersR;
case sensorsB_Presentation: return sensorsB;
case sensorsR_Presentation: return sensorsR;
default: return super.getShapeEmbeddedObject(_shape);

}

ShapeRectangle rectangle;

// Static initialization of persistent elements
{
rectangle = new ShapeRectangle(

true,0, 0, 0.0,
black, _rectangle_FillColor,

180, 180,
1, LINE_STYLE_SOLID

);
}
ShapeGroup presentation;
ShapeGroup icon;

©Override
public Object getPersistentShape(int _shape) {

switch(_shape){
case _presentation: return presentation;
case _icon: return icon;

case _rectangle: return rectangle;
default: return null;

}
}

©Override
public void drawModelElements(Panel _panel, Graphics2D _g, boolean

_publicOnly) {
if (!_publicOnly) {
drawEventf _panel, _g, 780, 70, 10, 0, "event", event);

}
if (!_publicOnly) {
drawParameter(_panel, _g, 270, 50, 10, 0, "nBDeciders",

nBDeciders, false, false);
}
if (!_publicOnly) {
drawParameter(_panel, _g, 450, 110, 10, 0, "sRange", sRange,

false, false);
}
if (!_publicOnly) {
drawParameter(_panel, _g, 450, 130, 10, 0, "iRange", iRange,

false, false);

130

}
if (!_publicOnly) {
drawParameter(_panel, _g, 450, 50, 10, 0, "BID", BID, false,

false);
}
if (!_publicOnly) {
drawParameter(_panel, _g, 450, 70, 10, 0, "RID", RID, false,

false);
}
if (!_publicOnly) {
drawParameter(_panel, _g, 450, 90, 10, 0, "seed", seed, false,

false);
}
if (!_publicOnly) {
drawParameter(_panel, _g, 270, 70, 10, 0, "nRDeciders",

nRDeciders, false, false);
}
if (!_publicOnly) {
drawPlainVariable(_panel, _g, 640, 160, 10, 0, "tick", tick,

false);
}
if (!_publicOnly) {
drawPlainVariable(_panel, _g, 640, 180, 10, 0, "result", result,

false) ,-
}
if (!_publicOnly) {
drawPlainVariable(_panel, _g, 780, 20, 10, 0, "bWin", bWin,

false);
}
if (!_publicOnly) {
drawPlainVariable(_panel, _g, 780, 40, 10, 0, "rWin", rWin,

false);
}
if (!_publicOnly) {
drawFunction(_panel, _g, 640, 20, 10, 0, "sense");

}
if (!_publicOnly) {
drawFunction(_panel, _g, 640, 40, 10, 0, "track");

}
if (!_publicOnly) {
drawFunction(_panel, _g, 640, 60, 10, 0, "shoot");

}
if (!_publicOnly) {
drawFunction(_panel, _g, 640, 80, 10, 0, "kill");

}
if (!_publicOnly) {
drawFunction(_panel, _g, 640, 100, 10, 0, "movelnfluencers");

}
if (!_publicOnly) {
drawFunction(_panel, _g, 640, 120, 10, 0, "moveSensors");

}
if (!_publicOnly) {
drawFunction(_j?anel, _g, 640, 140, 10, 0, "reset");

}
// Embedded object "deciderB"
if (!_publicOnly) {

drawEmbeddedObjectModelDefault(_panel, _g, 270 , 150 , -19
"deciderB", this.deciderB);

}
// Embedded object "deciderR"
if (!_publicOnly) {
drawEmbeddedObjectModelDefault(_panel, _g, 360 , 150 , -19

"deciderR", this.deciderR);
}
// Embedded object "influencersB"
if (!_publicOnly) {
drawEmbeddedObjectModelDefault(_panel, _g, 270 , 210 , -19

"influencersB", this.influencersB) ;
}
// Embedded object "influencersR"
if (!_publicOnly) {
drawEmbeddedObjectModelDefault(_panel, _g, 360 , 210 , -19

"influencersR", this.influencersR);
}
// Embedded object "sensorsB"
if (!_publicOnly) {
drawEmbeddedObjectModelDefault(_jpanel, _g, 270 , 260 , -19

"sensorsB", this.sensorsB) ;
}
// Embedded object "sensorsR"
if (!_publicOnly) {

drawEmbeddedObjectModelDefault(_panel, _g, 360 , 260 , -19
"sensorsR", this.sensorsR);

}
if (!_publicOnly) {
drawEnvironment(_panel, _g, 270, 20, 10, 0, "environment",

environment);
}

}

©Override
public boolean onClickModelAt(Panel panel, double x, double y,

clickCount, boolean publicOnly) {
if(IpublicOnly && modelElementContains(x, y, 270, 50)) {
panel.addlnspect(270, 50, this, "nBDeciders");
return true;

}
if(ipublicOnly && modelElementContains(x, y, 450, 110)) {
panel.addlnspect(450, 110, this, "sRange");
return true;

}
if(IpublicOnly && modelElementContains(x, y, 450, 130)) {
panel.addlnspect(450, 130, this, "iRange");
return true;

}
if(IpublicOnly && modelElementContains(x, y, 450, 50)) {
panel.addlnspect(450, 50, this, "BID");
return true;

}
if(IpublicOnly && modelElementContains(x, y, 450, 70)) {
panel.addlnspect(450, 70, this, "RID");

return true;
}

{

iff IpublicOnly && modelElementContains(x, y, 450, 90)) {
panel.addlnspect(450, 90, this, "seed");
return true;

}
i£(IpublicOnly && modelElementContains(x, y, 270, 70)) {
panel.addlnspect(270, 70, this, "nRDeciders");
return true;

}
if(IpublicOnly && modelElementContains(x, y, 640, 160)) {
panel.addlnspect(640, 160, this, "tick");
return true;

}
if(IpublicOnly && modelElementContains(x, y, 640, 180)) {
panel.addlnspect(640, 180, this, "result");
return true;

}
if(IpublicOnly && modelElementContains(x, y, 780, 20)) {
panel.addlnspect(780, 20, this, "bWin");
return true;

}
iff IpublicOnly && modelElementContains(x, y, 780, 40)) {
panel.addlnspect(780, 40, this, "rWin");
return true;

}
iff IpublicOnly && modelElementContains(x, y, 780, 70)) {
panel.addlnspect(780, 70, this, "event");
return true;

}
iff IpublicOnly && modelElementContains(x, y, 270, 20)) {
panel.addlnspect(270, 20, this, "environment");
return true;

}
if (IdeciderB.isEmpty() && modelElementContains(x, y, 270, 150)

if (clickCount == 2) {
panel.browseEmbeddedObject(270, 150, this, "deciderB");

} else {
panel.addlnspect(270, 150, this, "deciderB");

}
return true;

}
if f IdeciderR.isEmpty() && modelElementContains(x, y, 360, 150)

if (clickCount == 2) {
panel.browseEmbeddedObject(360, 150, this, "deciderR");

} else {
panel.addlnspect(360, 150, this, "deciderR");

}
return true;

}
if (IinfluencersB.isEmpty() && modelElementContains(x, y, 270,

210)) {
if (clickCount == 2) {
panel.browseEmbeddedObject(270, 210, this, "influencersB")

} else {
panel.addlnspect(270, 210, this, "influencersB");

}

1

return true;
}
if (!influencersR.isEmpty() && modelElementContains(x, y, 360,

210)) {
if (clickCount == 2) {
panel.browseEmbeddedObject(360, 210, this, "influencersR");

} else {
panel.addlnspect(360, 210, this, "influencersR");

}
return true;

}
if (!sensorsB.isEmpty() && modelElementContains(x, y, 270, 260))

{
if (clickCount == 2) {
panel.browseEmbeddedObject(270, 260, this, "sensorsB");

} else {
panel.addlnspect(270, 260, this, "sensorsB");

}
return true;

}
if (!sensorsR.isEmpty() && modelElementContains(x, y, 360, 260))

{
if (clickCount == 2) {
panel.browseEmbeddedObject(360, 260, this, "sensorsR");

} else {
panel.addlnspect(360, 260, this, "sensorsR");

}
return true;

}
return false;

}

// Environments
public final Environment environment = new Environment(this);

/ **
* Constructor
*/

public Main(Engine engine, ActiveObject owner,
ActiveObjectCollection<? extends Main> collection) {

super(engine, owner, collection);
}

©Override
public void create() {

// Creating embedded object instances
for (int i = 0; i <

nBDeciders

; i++) {
instantiate_deciderB_xjal(i);

}
for (int i = 0; i <

nRDeciders
; i++) {

instantiate_deciderR_xjal(i);
}

134

for (int i = 0; i <
0
; i++) {

instantiate_influencersB_xjal(i);
}
for (int i = 0; i <

0
; i++) {

instantiate_influencersR_xjal(i);
}
for (int i = 0; i <

0
; i++) {

instantiate_sensorsB_xjal(i);
}
for (int i = 0; i <

0
; i++) {

instantiate_sensorsR_xjal(i);
}
// Assigning initial values for plain variables
bWin = 0

0
rWin =

// Dynamic initialization of persistent elements
presentation = new ShapeGroup(Main.this, true, 0, 0, 0, rectangle,

influencersB_Presentation, sensorsB_Presentation,
influencersR_Presentation, sensorsR_Presentation,
deciderR_Presentation, deciderB_Presentation);

icon = new ShapeGroup(Main.this, true, 0, 0, 0
);

// Environments setup
environment.disableSteps();
environment.setSpaceContinuous(

100 ,
100) ;

environment.setNetworkUserDefined();
environment.setLayoutType(Environment.LAYOUT_RANDOM);

// Port connectors with non-replicated objects
// Creating replicated embedded objects
for (int i = 0; i < deciderB.size(); i++) {

setupParameters_deciderB_xjal(deciderB.get(i), i);
create_deciderB_xjal(deciderB.get(i), i);

}
for (int i = 0; i < deciderR.size(); i++) {

setupParameters_deciderR_xjal(deciderR.get(i), i);
create_deciderR_xjal(deciderR.get(i), i);

}
for (int i = 0; i < influencersB.size(); i++) {

setupParameters_influencersB_xjal(influencersB.get(i), i);
create_influencersB_xjal(influencersB.get(i), i);

}
for (int i = 0; i < influencersR.size(); i++) {

setupParameters_influencersR_xjal(influencersR.get(i), i);

135

create_influencersR_xjal(influencersR.get(i), i);
}
for (int i = 0; i < sensorsB.size(); i++) {

setupParameters_sensorsB_xjal(sensorsB.get(i), i) ;
create_sensorsB_xjal(sensorsB.get(i), i);

}
for (int i = 0;. i < sensorsR.size(); i++) {

setupParameters_sensorsR_xjal(sensorsR.get(i), i) ;
create_sensorsR_xjal(sensorsR.get(i), i);

}
assignlnitialConditions();
onCreate();

}

©Override
public void start() {

event.start();
environment.applyLayout();
for (Ac t iveObj ec t embeddedObj ec t

embeddedObj ect.start();
}
for (ActiveObject embeddedObject

embeddedObj ect.start() ;
}
for (ActiveObject embeddedObject

embeddedObj ect.start() ;
}
for (ActiveObject embeddedObject

embeddedObject.start();
}
for (ActiveObject embeddedObject

embeddedObject.start();
}
for (ActiveObject embeddedObject

embeddedObject.start();
}
onStartupt);

}

public void onStartup() {
super.onStartup();

for (int i = 0; i < nBDeciders; i++) {
for (int j = 0; j < cB[BID][i]; j++) {

Turtle t = add_sensorsB();
t.sensedRD = new boolean[nRDeciders];
t.decider = deciderB.get(i);
deciderB.get(i).inTurtles.add(t);

}
}
for (int i = 0; i < nBDeciders; i++) {

for (int j = 0; j < cB[BID][nBDeciders + i]; j++) {
Turtle t = add_influencersB();
t.sensedRD = new boolean[nRDeciders];
t.decider = deciderB.get(i);
deciderB.get(i).outTurtles.add(t);

}

: deciderB){

: deciderR){

: influencersB){

: influencersR){

: sensorsB){

: sensorsR){

136

}
for (int i = 0; i < nRDeciders; i++) {

for (int j = 0; j < cR[RID][i]; j++) {
Turtle t = add_sensorsR();
t.sensedBD = new boolean[nBDeciders];
t.decider = deciderB.get(i);
deciderR.get(i).inTurtles.add(t);

}
}
for (int i = 0; i < nRDeciders; i++) {

for (int j = 0; j < cR[RID][nRDeciders + i]; j++) {
Turtle t = add_influencersR() ;
t.sensedBD = new boolean[nBDeciders] ;
t.decider = deciderB.get(i);
deciderR.get(i).outTurtles.add(t);

}
}

public List<Object> getEmbeddedObjects() {
LinkedList<Object> list = new LinkedList<Object>();
list.add(deciderB);
list.addf deciderR);
list.add(influencersB);
list.add(influencersR);
list.add(sensorsB);
list.add(sensorsR);
return list;

public void onDestroyf) {
super.onDestroy();
event.onDestroy();
environment.onDestroy();
for (ActiveObject embeddedObject : deciderB) {
embeddedObj ect.onDestroy();

}
for (ActiveObject embeddedObject : deciderR) {
embeddedObj ect.onDestroy();

}
for (ActiveObject embeddedObject : influencersB) {
embeddedObject.onDestroy();

}
for (ActiveObject embeddedObject : influencersR) {
embeddedObj ect.onDestroy();

}
for (ActiveObject embeddedObject : sensorsB) {
embeddedObj ect.onDestroy();

}
for (ActiveObject embeddedObject : sensorsR) {
embeddedObj ect.onDestroy();

}

// Additional class code

int[][] cB = {
{4,3,3,2,1,4,1,6},
{4,3,3,2,1,3,3,5},
{4,3,3,2,1,3,2,6},
{4,3,3,2,1,3,1,7},

{3,3,3,3,5,4,2,1},

{3,3,3,3,4,4,3,1},
{3,3,3,3,4,4,2,2},
{3,3,3,3,4,3,3,2},
{3,3,3,3,3,3,3,3}
};
int[][] cR = {
{9,1,1,1,9,1,1,1},
{9,1,1,1,8,2,1,1},
{9,1,1,1,7,3,1,1},
{9,1,1,1,7,2,2,1},
{9,1,1,1,6,4,1,1},
{9,1,1,1,6,3,2,1},
{9,1,1,1,6,2,2,2},
{9,1,1,1,5,5,1,1},

{9,1,1,1,2,4,3,3},
{9,1,1,1,1,9,1,1},
{9,1,1,1,1,8,2,1},
{9,1,1,1,1,7,3,1},
{9,1,1,1,1,7,2,2},
{9,1,1,1,1,6,4,1},
{9,1,1,1,1,6,3,2},
{3,3,3,3,4,4,3,1},
{3,3,3,3,4,4,2,2},
{3,3,3,3,4,3,3,2},
{3,3,3,3,3,3,3,3}
};
// End of additional class code

}

13
8

A
P

P
E

N
D

IX
 C

: M
A

TL
A

B
 C

O
D

E
S

 T
O

 C
A

LC
U

LA
TE

 T
H

E
 E

IG
E

N
V

A
LU

E
S

 O
F

 D
IF

FE
R

E
N

T

M
E

A
N

IN
G

FU
L

 C
O

M
B

IN
A

TI
O

N
S

In
 th

is
 a

pp
en

di
x,

 tw
o

M
at

la
b

co
de

s
fo

r
4-

D
ec

id
er

 a
nd

 6
-D

ec
id

er
 a

re
 ju

st
 p

re
se

nt
ed

 to
 c

al
cu

la
te

 th
e

ei
ge

nv
al

ue
s

of

D
ec

id
er

 b
as

is
 d

iff
er

en
t

m
ea

ni
ng

fu
l c

om
bi

na
tio

ns
. T

he
se

 M
at

la
b

co
de

s
gi

ve
 th

e
ra

tio
na

le
 o

f h
ow

 it
 w

or
ks

 fo
r

di
ffe

re
nt

nu
m

be
rs

 o
f D

ec
id

er
s.

C
.1

.
M

A
TL

A
B

 C
O

D
E

 T
O

 C
A

LC
U

LA
TE

 E
IG

E
N

V
A

LU
E

S
 O

F
 D

IF
FE

R
E

N
T

 M
E

A
N

IN
G

FU
L

 C
O

M
B

IN
A

TI
O

N
S

 O
F

 4

D
E

C
ID

E
R

S
.

c
l
c

c
l
e
a
r

a
l
l

f
o
r
m
a
t

(
'
s
h
o
r
t
'
)
;

l
o
a
d
f
i
l
e

=

'
C
:
\
D
o
c
u
m
e
n
t
s

a
n
d

S
e
t
t
i
n
g
s
\
m
f
i
d
a
0
0
1
\
M
y

D
o
c
u
m
e
n
t
s
\
M
A
T
L
A
B
\
I
n
P
u
t
s
\
I
n
P
u
t
X
_
4
\
6
_
4
_
6
.
t
x
t
'
;

a
=
l
o
a
d
(
l
o
a
d
f
i
l
e
)
;

b
=
s
i
z
e
(
a
)
;

c
=
0
;

f
o
r

j
=
l
:
b
(
l
,
2
)
/
2
;

c
=
c
+
a
(
l
,
j
)
;

e
n
d
;

f
o
r

i
=
l
:
b
(
l
,
l
)
;

v
l
 =

v
2
 =

v
3
 =

v
4
=

g
i
=

v
5
 =

v
6
 =

v
7
 =

v
8
 =

g
2
=

o
n
e
s
(
a
(
i
,
1
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
2
)
,
1
)

z
e
r
o
s
(
a
(
i
,
1
)
,
1
)
;
o
n
e
s
(
a
(
i
,
2
)
,
1
)

:
z
e
r
o
s
(
a
(
i
,
3
)

:
z
e
r
o
s
(
a
(
i
,
3
)

1
)
;
z
e
r
o
s
(
a
i

1
)
;
z
e
r
o
s
(
a
i

•
4
)

•
4
)

[
z
e
r
o
s
(
a
(
i
,
1
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
2
)
,
1
)
;
o
n
e
s
(
a
(
i
,
3
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
4
)

[
z
e
r
o
s
(
a
(
i
,
1
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
2
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
3
)
,
1
)
;
o
n
e
s
(
a
(
i
,
4
)

[
v
l
,
v
2
,
v
3
,
v
4
]
;

[
o
n
e
s
(
a
(
i
,
5
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
6
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
7
)

,
1
)
;
z
e
r
o
s
(
a
(
i
,
 8
)

[
z
e
r
o
s
(
a
(
i
,
5
)
,
1
)
;
o
n
e
s
(
a
(
i
,
6
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
7
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
8
)

[
z
e
r
o
s
(
a
(
i
,
5
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
6
)
,
1
)
;
o
n
e
s
(
a
(
i
,
7
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
8
)

[
z
e
r
o
s
(
a
(
i
,
5
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
6
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
7
)
,
1
)
;
o
n
e
s
(
a
(
i
,
8
)

[
v
5
,
v
6
,
v
7
,
v
8
]
;

h
=
z
e
r
o
s
(
c
)
;

m
=
z
e
r
o
s
(
c
,
1
)
;

n
=
z
e
r
o
s
(
b
(
l
,
2
)
/
2
,
c
)
 ;

1
)
]

1
)
]

1
)
]

1
)
]

1
)
]

1
)
]

1
)
]

1
)
]

file://'C:/Documents
file://Documents/MATLAB/InPuts/InPutX_4/6_4_6.txt'

o
=
z
e
r
o
s
(
b
(
l
,
2
)
/
2
)
;

p
=
z
e
r
o
s
(
b
(
l
,
2
)
/
2
,
1
)
;

q
=
o
n
e
s
(
c
,
1
)
;

r
=
0
;

s
=
[
h
,
g
l
,
h
/
m
;
n
,
o
,
g
2
'
,
p
;
h
,
n
'
,
h
,
q
;
q
'
,
p
'
,
m
'
,
r
]
;

t
(
:
,
i
)
=
(
e
i
g
(
s
)
)
;

t
_
r
e
a
l
(
:
,
i
)
 =
 r
e
a
l
(
t
(
:
,
i
)
)
;

t
_
i
m
a
g
(
:
,
i
)
 =
 i
m
a
g
(
t
(
:
,
i
)
)
;

P
f
e
(
i
)
=
m
a
x
(
a
b
s
(
e
i
g
(
s
)
)
)
;

V
a
r
(
i
)
=
v
a
r
(
t
(
:
,
i
)
)
;

e
n
d
;

x
l
s
w
r
i
t
e
(
'
C
:
\
D
o
c
u
m
e
n
t
s

a
n
d

S
e
t
t
i
n
g
s
\
m
f
i
d
a
0
0
1
\
M
y

t
_
r
e
a
l
'
,
'
r
e
a
l
_
e
i
g
e
n
v
a
l
u
e
s
'
)
;

x
l
s
w
r
i
t
e
(
'
C
:
\
D
o
c
u
m
e
n
t
s

a
n
d

S
e
t
t
i
n
g
s
\
m
f
i
d
a
0
0
1
\
M
y

t
_
i
m
a
g
'
,
'
i
m
a
g
_
e
i
g
e
n
v
a
l
u
e
s
'
)
;

x
l
s
w
r
i
t
e
(
'
C
:
\
D
o
c
u
m
e
n
t
s

a
n
d

S
e
t
t
i
n
g
s
X
m
f
i
d
a
0
0
1
\
M
y

P
f
e
'
,
'
P
F
E
_
e
i
g
e
n
v
a
l
u
e
s
'
)
;

x
l
s
w
r
i
t
e
(
'
C
:
\
D
o
c
u
m
e
n
t
s

a
n
d

S
e
t
t
i
n
g
s
X
m
f
i
d
a
0
0
1
\
M
y

V
a
r
'
,
'
V
a
r
i
a
n
c
e
'
)
;

D
o
c
u
m
e
n
t
s
X
M
A
T
L
A
B
X
O
u
t
P
u
t
s
\
O
u
t
P
u
t
X
_
4
\
6
_
4
_
6
.
x
l
s
'
,

D
o
c
u
m
e
n
t
s
\
M
A
T
L
A
B
\
O
u
t
P
u
t
s
\
O
u
t
P
u
t
X
_
4
\
6
_
4
_
6
.
x
l
s
'
,

D
o
c
u
m
e
n
t
s
\
M
A
T
L
A
B
\
O
u
t
P
u
t
s
\
O
u
t
P
u
t
X
_
4
\
6
_
4
_
6
.
x
l
s
'
,

D
o
c
u
m
e
n
t
s
\
M
A
T
L
A
B
\
O
u
t
P
u
t
s
\
O
u
t
P
u
t
X
_
4
\
6
_
4
_
6
.
x
l
s
'
,

file:///Documents
file:///Documents
file:///mfida001/My
file:///Documents
file:///Documents
file:///OutPutX_4

14
0

C
.2

.
M

A
TL

A
B

 C
O

D
E

 T
O

 C
A

LC
U

LA
TE

 E
IG

E
N

V
A

LU
E

S
 O

F
 D

IF
FE

R
E

N
T

 M
E

A
N

IN
G

FU
L

 C
O

M
B

IN
A

TI
O

N
S

 O
F

 4

D
E

C
ID

E
R

S
.

c
l
c

c
l
e
a
r

a
l
l

f
o
r
m
a
t

(
'
s
h
o
r
t
'
)
;

l
o
a
d
f
i
l
e

=

'
C
:
\
D
o
c
u
m
e
n
t
s

a
n
d

S
e
t
t
i
n
g
s
\
m
f
i
d
a
0
0
1
\
M
y

D
o
c
u
m
e
n
t
s
\
M
A
T
L
A
B
\
I
n
P
u
t
s
\
I
n
P
u
t
X
_
6
\
6
_
6
_
6
.
t
x
t
1
;

a
=
l
o
a
d
(
l
o
a
d
f
i
l
e
)
;

b
=
s
i
z
e
(
a
)
;

c
=
0
;

f
o
r

j
=
l
:
b
(
l
,
2
)
/
2
;

c
=
c
+
a
(
l
,
j
)
;

e
n
d
;

f
o
r

i
=
l
:
b
(
l
,
l
)
;

v
l
=
[
o
n
e
s
(
a
(
i
,
1
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
2
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
3
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
4
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
5
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
6
)
,
1
)
]
;

v
2
=
[
z
e
r
o
s
(
a
(
i
,
1
)
,
1
)
;
o
n
e
s
(
a
(
i
,
2
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
3
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
4
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
5
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
6
)
 ,
1
)
]
 ;

v
3
=
[
z
e
r
o
s
(
a
(
i
,
1
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
2
)
,
1
)
;
o
n
e
s
(
a
(
i
,
 3
)
 ,
1
)
;
z
e
r
o
s
(
a
(
i
,
 4
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
 5
)
 ,
1
)
;
z
e
r
o
s
(
a
(
i
,
6
)
,
1
)
]
 ;

v
4
=
[
z
e
r
o
s
(
a
(
i
,
1
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
2
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
3
)
,
1
)
;
o
n
e
s
(
a
(
i
,
4
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
 5
)
 ,
1
)
;
z
e
r
o
s
(
a
(
i
,
6
)
,
1
)
]
 ;

v
5
=
[
z
e
r
o
s
(
a
(
i
,
1
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
2
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
3
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
4
)
,
1
)
;
o
n
e
s
(
a
(
i
,
5
)
 ,
1
)
;
z
e
r
o
s
(
a
(
i
,
 6
)
 ,
1
)
]
 ;

v
6
=
[
z
e
r
o
s
(
a
(
i
,
1
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
2
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
3
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
4
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
5
)
,
1
)
;
o
n
e
s
(
a
(
i
,
6
)
,
1
)
]
;

g
l
=
[
v
l
,
v
2
,
v
3
,
v
4
,
v
5
,
v
6
]
;

v
7
 =
[
o
n
e
s
(
a
(
i
,
7
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
8
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
9
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
1
0
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
1
1
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
1
2
)
 ,
1
)

];

v
8
=
[
z
e
r
o
s
(
a
(
i
,
7
)
,
1
)
;
o
n
e
s
(
a
(
i
,
8
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
9
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
1
0
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
1
1
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
1
2
)
,
1
)

];

v
9
=
[
z
e
r
o
s
(
a
(
i
,
7
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
8
)
,
1
)
;
o
n
e
s
(
a
(
i
,
9
)
,
 1
)

;z
e
r
o
s
(
a
(
i
,
1
0
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
1
1
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
1
2
)
,
1
)

];

v
l
0
=
[
z
e
r
o
s
(
a
(
i
,
7
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
8
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
9
)
,
1
)
;
o
n
e
s
(
a
(
i
,
1
0
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
1
1
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
 1
2
)
 ,
 1

)
]
;

v
l
l
=
[
z
e
r
o
s
(
a
(
i
,
7
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
8
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
9
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
1
0
)
,
1
)
;
o
n
e
s
(
a
(
i
,
1
1
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
1
2
)
,
1

)
]
;

v
l
2
=
[
z
e
r
o
s
(
a
(
i
,
7
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
8
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
9
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
1
0
)
,
1
)
;
z
e
r
o
s
(
a
(
i
,
1
1
)
,
1
)
;
o
n
e
s
(
a
(
i
,
1
2
)
,
1

)
]
;

g
2
=
[
v
7
,
v
8
,
v
9
,
v
l
0
,
v
l
l
,
v
l
2
]
;

h
=
z
e
r
o
s
(
c
)
 ;

m
=
z
e
r
o
s
(
c
,
1
)
 ;

n
=
z
e
r
o
s
(
b
(
l
,
2
)
/
2
,
c
)
;

o
=
z
e
r
o
s
(
b
(
l
,
2
)
/
2
)
 ;

p
=
z
e
r
o
s
(
b
(
l
,
2
)
/
2
,
1
)
;

q
=
o
n
e
s
(
c
,
1
)
 ;

file://'C:/Documents
file://Documents/MATLAB/InPuts/InPutX_6/6_6_6.txt1

r
=
0
;

s
=
[
h
,
g
l
,
h
,
m
;
n
/o
,
g
2
'
,
p
;
h
,
n
'
,
h
,
q
;
q
'
,
p
'
,
m
'
,
 r
];

t
(
:
,
i
)
=
(
e
i
g
(
s
)
)
;

t
_
r
e
a
l
(
:
,
i
)
 =
 r
e
a
l
(
t
(
:
,
i
)
)
;

t
_
i
m
a
g
(
:
,
i
)
 =
 i
m
a
g
(
t
(
:
,
i
)
)
;

P
f
e
(
i
)
=
m
a
x
(
a
b
s
(
e
i
g
(
s
)
)
)
 ;

V
a
r
(
i
)
=
v
a
r
(
t
(
:
,
i
)
)
;

e
n
d
;

x
l
s
w
r
i
t
e
(
'
C
:
\
D
o
c
u
m
e
n
t
s

a
n
d

S
e
t
t
i
n
g
s
N
m
f
i
d
a
0
0
1
\
M
y

D
o
c
u
m
e
n
t
s
\
M
A
T
L
A
B
\
O
u
t
P
u
t
s
\
O
u
t
P
u
t
X
_
6
\
6
_
6
_
6
.
x
l
s
'
,

t
_
r
e
a
l
'
,
'
r
e
a
l
_
e
i
g
e
n
v
a
l
u
e
s
'
)
;

xl
sw
ri
te
('
C:
\D
oc
\i
me
nt
s

a
n
d

S
e
t
t
i
n
g
s
\
m
f
i
d
a
0
0
1
\
M
y

D
o
c
u
m
e
n
t
s
\
M
A
T
L
A
B
\
O
u
t
P
u
t
s
\
O
u
t
P
u
t
X
_
6
\
6
_
6
_
6
.
x
l
s
'
,

t
_
i
m
a
g
'
,
'
i
m
a
g
_
e
i
g
e
n
v
a
l
u
e
s
'
)
;

x
l
s
w
r
i
t
e
(
'
C
:
\
D
o
c
u
m
e
n
t
s

a
n
d

S
e
t
t
i
n
g
s
\
m
f
i
d
a
0
0
1
\
M
y

D
o
c
u
m
e
n
t
s
\
M
A
T
L
A
B
\
O
u
t
P
u
t
s
\
O
u
t
P
u
t
X
_
6
\
6
_
6
_
6
.
x
l
s
'
,

P
f
e
'
,
'
P
F
E
_
e
i
g
e
n
v
a
l
u
e
s
'
)
;

x
l
s
w
r
i
t
e
(
'
C
:
\
D
o
c
u
m
e
n
t
s

a
n
d

S
e
t
t
i
n
g
s
\
m
f
i
d
a
0
0
1
\
M
y

D
o
c
u
m
e
n
t
s
\
M
A
T
L
A
B
\
O
u
t
P
u
t
s
\
O
u
t
P
u
t
X
_
6
\
6
_
6
_
6
.
x
l
s
'
,

V
a
r
'
,
'
V
a
r
i
a
n
c
e
'
)
;

file:///Documents
file://Documents/MATLAB/OutPuts/OutPutX_6/6_6_6.xls'
file://'C:/Doc/iments
file://Documents/MATLAB/OutPuts/OutPutX_6/6_6_6.xls'
file:///Documents
file://Documents/MATLAB/OutPuts/OutPutX_6/6_6_6.xls'
file:///Documents
file://Documents/MATLAB/OutPuts/OutPutX_6/6_6_6.xls'

142

VITA

Major Mehmet Fidanci was born in Kayseri, Turkey on March 20,1971. He

graduated from the Turkish Air Force Academy, in Istanbul, Turkey in 1993 with a

B.S. in Aeronautical Engineering and was commissioned as a Second Lieutenant

to the Undergraduate Pilot Training Wing Command. He received a M.S. in

Systems Engineering from the Air Force Institute of Technology (AFIT) Dayton,

Ohio in 2000. He performed this research while a student of the Department of

Engineering Management and Systems Engineering, Old Dominion University, in

Norfolk, Virginia.

During his 17 years of active service, he trained for undergraduate pilot

training for two years, then he served as a radar interceptor for almost two and a

half years. Then, he taught Probabilistic Theory and Statistics in the Department

of Industrial Engineering in Turkish Air Force Academy for seven years. He has

also served as a research and development officer in the Department of

Planning, Evaluation and Research & Development and Scheduler Officier in

Aeronautics and Space Technologies Institute during his years in the Turkish Air

Force Academy.

	The Influence of Network Factors on Network Centric Operations
	Recommended Citation

	ProQuest Dissertations

