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ABSTRACT

DEVELOPMENT OF AN AGGREGATION METHODOLOGY FOR RISK 
ANALYSIS IN AEROSPACE CONCEPTUAL VEHICLE DESIGN

Trina Marsh Chytka 
Old Dominion University 
Director: Dr. Resit Unal

The growing complexity of technical systems has emphasized a need to gather as 

much information as possible regarding specific systems of interest in order to make 

robust, sound decisions about their design and deployment. Acquiring as much data as 

possible requires the use of empirical statistics, historical information and expert opinion 

In much of the aerospace conceptual design environment, the lack of historical 

information and infeasibility of gathering empirical data relegates the data collection to 

expert opinion.

The conceptual design of a space vehicle requires input from several disciplines 

(weights and sizing, operations, trajectory, etc.). In this multidisciplinary environment, 

the design variables are often not easily quantified and have a high degree of uncertainty 

associated with their values. Decision-makers must rely on expert assessments of the 

uncertainty associated with the design variables to evaluate the risk level of a conceptual 

design. Since multiple experts are often queried for their evaluation of uncertainty, a 

means to combine/aggregate multiple expert assessments must be developed. Providing 

decision-makers with a solitary assessment that captures the consensus of the multiple 

experts would greatly enhance the ability to evaluate risk associated with a conceptual 

design.
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The objective of this research has been to develop an aggregation methodology 

that efficiently combines the uncertainty assessments of multiple experts in multiple 

disciplines involved in aerospace conceptual design. Bayesian probability augmented by 

uncertainty modeling and expert calibration was employed in the methodology 

construction. Appropriate questionnaire techniques were used to acquire expert opinion; 

the responses served as input distributions to the aggregation algorithm. Application of 

the derived techniques were applied as part of a larger expert assessment elicitation and 

calibration study.

Results of this research demonstrate that aggregation of uncertainty assessments 

in environments where likelihood functions and empirically assessed expert credibility 

factors are deficient is possible. Validation of the methodology provides evidence that 

decision-makers find the aggregated responses useful in formulating decision strategies.
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1

CHAPTER I 

INTRODUCTION

Background

When challenged with understanding complex, technological systems, managers 

often use analysis to characterize risk. Managers use this information to guide the design of 

projects, develop policy, increase reliability and ultimately reduce costs. The complexity of 

modem systems has required a level of rigor in risk analysis that necessitates the gathering of 

as much information as possible for a more robust view of risk and uncertainty. Traditional 

data gathering techniques have been historical information and empirical statistics from 

which trends, likelihood functions and regression algorithms could be employed in risk 

analysis. When the traditional data methods have been deficient, the use of expert judgments , 

to provide uncertainty assessments has been used. The subjective nature of expert 

assessments has prompted decision-makers to elicit uncertainty judgments from multiple 

experts in an attempt to have a more comprehensive understanding of the uncertainty 

involved in the analysis. However, multiple subjective judgments does not guarantee a 

consensus assessment of uncertainty -  often the multiple experts have divergent opinions.

In an attempt to resolve non-consensus and provide useful information to decision-makers, 

aggregation methods have been developed to combine divergent opinions. Numerous 

methods for combining information across experts have been proposed in the literature- from 

group interaction techniques and brainstorming to opinion pools and Bayesian techniques. 

There appears to be no consensus regarding the best method to use or relevant attributes for 

making that determination. An extensive literature review reveals that there has been little to

The journal model for the references herein is The American Psychologist, the journal of the 
American Psychological Association
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over another. This research focuses on the evaluation and selection of an expert opinion 

aggregation methodology and its viability in satisfactorily combining multiple opinions in the 

conceptual design domain.

Problem Domain

The National Aeronautics and Space Administration (NASA) is chartered with the 

task of developing versatile space transports with improved reliability, lower cost, and with 

more payload-to-orbit capability. These future vehicles are of revolutionary designs 

employing innovative and often yet-to-be-developed state of the art systems To determine 

the attributes associated with these conceptual design vehicles, NASA utilizes various 

resources. These resources involve current space transport designs and technology, which 

must be extrapolated to address the requirements and anticipated technology of the future 

vehicle. The process of extrapolating from the current technology requires engineering 

judgment; the application of which is based upon the availability of data and the level of 

expertise of the analyst performing the extrapolation.

To develop a comprehensive framework to examine the feasibility of some future 

system, analysts and decision-makers often rely on output from models of behavior, 

simulation models or other mechanisms of prediction and couple those outputs with expert 

judgment to assess the credibility of the predictions. The instrument of interest for this 

research is a methodology that gathers assessments from recognized experts in fields of

aerospace engineering and technology and utilizes those estimations to determine the risk and
!

uncertainty associated with some future embodiment of space transportation.

When the value of an uncertain quantity is needed in an analysis and limits in data or 

understanding preclude the use of traditional statistical techniques, the only remaining option

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is to query experts for their best professional judgment (Morgan & Henrion, 1990). Issues 

with significant variability, issues that are controversial and issues that are highly complex 

and/or have a high consequence associated with them are well suited for expert opinion 

elicitation (Ayyub, 2001; Morgan & Henrion, 1990; Beach, 1975). Expert judgments have 

been used informally for many years; more formal approaches to expert assessment have 

become prevalent since World War II (Ayyub, 2001). Application areas for expert 

assessment have been diverse, including nuclear engineering, various types of forecasting 

(economic, meteorological, technical, etc), military intelligence, seismic risk and 

environmental risk from toxic chemicals (Clemen & Winkler, 1997; Winkler & Poses, 1993; 

Chen, Fine & Hubermann, 2003; Schuenemeyer, 2002; Cornell, 1996). Additionally, 

experts have been tasked with providing estimates of parameters of systems that have yet to 

be developed. In such cases, experts have relied on values from similar parameters and 

extrapolated the unknown parameter value (Monroe, 1997; Hampton, 2001).

In some situations, it may be sufficient to gather information from a single subject 

matter expert. The solitary assessment may then be accepted as the estimate for the quantity 

or parameter of interest (Ayyub, 2001). However, in many of today’s more complex 

systems, the need to gather as much information as possible for a robust, comprehensive 

assessment has become vital. The use of multiple experts is often employed when very little 

empirical data is available and/or when multiple disciplines are involved in the analysis. A 

consequence of querying opinions from multiple experts may be a lack of consensus or 

elicited estimations may be quite divergent (Clemen & Winkler, 1997; Rantilla & Budescu, 

1999). Decision-makers may not find this type of non-consensus information useful when

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



evaluating conceptual designs with high levels of uncertainty. Therefore, a means to 

adjudicate the disparity is necessary.

The manner in which multiple opinions are combined into a solitary assessment is 

known as aggregation. Aggregation is a term which has been widely used in the literature on 

problems of group interaction, consensus belief formation and decision-making. The 

combination of information can occur via group interaction processes (behavioral methods), 

mathematical algorithms (mathematical methods) or a combination thereof.

The behavioral methods are rooted in the assumption that group interaction will 

stimulate reduced variability among the expert assessments, thus reducing the uncertainty in 

the aggregated response (Genest & Zidek, 1986). The objective of a group interaction 

process may be to reach agreement or consensus about phenomena of interest or simply to 

share information and have experts learn from each other. Traditional group interaction 

techniques are the Delphi Method, Nominal Group Technique and Brainstorming (Genest & 

Zidek, 1986; Lawrence, Edmundson & O’Connor, 1986). Interaction processes can also be 

altered to suit a particular situation or assessment objective.

The mathematical methods seek to remove the highly subjective group interaction 

attributes from the combination process and integrate opinions from a more objective 

principle. Initial mathematical paradigms were postulated on axiom-based formulas. The 

strategy was to assume certain properties that the combined distribution should follow and 

then derive the functional form of the combined distribution. The opinion pool algorithms, 

which use weighted combinations of expert reliability, are the predominant methods utilized 

in the axiomatic approach (Clemen & Winkler, 1997; Winkler & Poses, 1993; Stael von 

Holstein, 1970). As complexities of phenomena were revealed, Bayesian approaches

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



emerged. The Bayesian paradigm asserts that as new information is obtained concerning the 

variable of interest, prior distributions and likelihood functions can be updated to improve the 

credibility of the aggregated response. This particular method accounts for expert 

independence, information redundancy and variable dependencies, which makes it a much 

more complex technique. The Bayesian approach appears more comprehensive than the 

axiomatic methods; however, experts agree that it is discouragingly difficult to apply and 

invalidated if likelihood functions and expert credibility are unavailable (Clemen & Winkler, 

1997; Morris, 1977).

Aggregation methods have found wide acceptance in decision science domains where 

likelihood functions and expert reliability can be easily observed or calculated, such as stock 

market predictions, weather forecasting, and medical diagnosis (Chen, Fine & Hubermann, 

2003; Morris, 1977; Engemann, Miller & Yager, 1995; Stael von Holstein, 1970). More 

profoundly, combination methods have proven quite useful in environments fraught with 

high uncertainty and/or high consequence and in areas with limited empirical data (nuclear 

engineering, petroleum resources, seismic analysis) (Schuenemeyer, 2002; Cornell, 1996). 

The versatility in combining multiple forms of information (qualitative, discrete, 

probabilistic) and the flexibility of being applicable to many decision domains has increased 

the use of combination paradigms to aid analyst and decision-makers in risk assessments.

Ensuring the aggregated result provides useful information to the decision-maker 

requires careful construction of the data acquisition instrument (Genest & Zidek, 1986). 

There are several possible impediments that must be identified and mitigated when creating 

and deploying an expert elicitation mechanism. The identification and selection of 

appropriate expert(s) whose assessments will be queried is paramount. The experts should.
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at a minimum, satisfy predetermined qualification criteria tailored for the specific analysis 

and show consistency in providing reliable judgments (Ayyub, 20G1; Morgan & Henrion, 

1990).

Once an appropriate expert base is identified, the form of elicitation must be 

established. An information gathering mechanism (such as a questionnaire) must be both 

efficient and effective, ensuring that the time commitment of the participants is considered. 

Great care must be taken to ensure the elicitation instrument is concise, follows a logical 

pattern and abides by the highest standards of professional ethics (Ayyub, 2001; Genest & 

Zidek, 19B6).

A third impediment with potential ramifications is the decision about the number of 

experts to be queried. The number of available experts in a specific discipline may negate 

this concern if only one expert exists in a particular field. Realistically, however, multiple 

experts (n>l) should be part of the population from which expert selection may occur. If 

more than one expert is used for the same discipline, a means to aggregate the responses in a 

meaningful way must be implemented. Otherwise, individual differences in experts’ 

experience, confidence in judgment, and innate baseline from which judgments are based 

will likely render inconclusive (or at least less precise) results (Conway, 2003).

Significance of Problem

Traditionally, uncertainty has been quantified using historical data or empirical 

statistics. In domains where data is negligible and experimentation infeasible, the use of 

expert opinion has become a viable uncertainty quantification method. In order to gain as 

much knowledge about a system of interest, multiple experts are often queried for their 

opinion. However, expert assessments may not always agree. Additionally, the individual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

assessments, if contradictory or non-uniform, may cause decision-makers more confusion 

rather than clarity when using these expert judgments as inputs to their decision strategy. To 

strengthen decision-making strategies, a means to adjudicate the disparity in expert opinions 

and provide decision-makers with a comprehensive solitary assessment of uncertainty is 

needed (Rantilla & Budescu, 1999; Morris, 1986). Aggregation is the mechanism to capture 

multiple opinions and combine them into a single assessment.

Most aggregation paradigms are premised on the availability of likelihood functions 

and expert credibility factors derived from historical data or empirical statistics. Aggregation 

methods, conventionally, have been applied to environments laden with data and to states of 

interest with known outcomes or with outcomes that could be verified in a reasonable time 

afterwards (knowable outcomes). On the other hand, aggregating multiple assessments in the 

conceptual domain is problematic since no prior distributions are available to determine 

likelihood functions of the variable(s) of interest. Without prior distributions or empirical 

data sets from which to extrapolate variable values/outcomes, the credibility of experts in the 

prediction of conceptual variables/outcomes is not possible. Additionally, in the present 

research case (advanced launch vehicle concept development) the wait for validation of an 

aggregated response could take more than twenty years. The characteristics of no likelihood 

functions, lack of empirical data sets and extended time horizons gives rise to a class of 

outcomes labeled “unknown”. The term “unknown” for this research case may need to be 

clarified at this point. In the aerospace conceptual domain, the state of a system at the time 

decisions need to be made is unknown not necessarily unknowable. Given twenty to thirty 

years the state of knowledge may progress to such a point that the outcome becomes known. 

The relevance of the term (known versus unknown) must be coupled with a time reference
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and for this research the time reference are decision milestones within a project or times in 

close proximity to the decision milestones. Currently, there does not exist a holistic 

methodology to mathematically aggregate multiple opinions of conceptual design experts in 

the absence of likelihood functions and expert credibility factors and in a domain assessing 

the “unknown future.”
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CHAPTER II

LITERATURE REVIEW 

Decisions & Uncertainty 

The use of expert elicitation and aggregation methods in a conceptual design 

environment involves the domain of decision sciences. Decision science involves not only 

the use of models to implement classical decision-making and strategic initiatives but also 

the use of decision processes as a predictive tool for risk assessment and evaluation of 

unknown outcomes. A key premise of decision science is that, ultimately, humans are 

responsible for making and implementing decisions, either directly or through the use of 

surrogate algorithms and simulations. There are many methods and models for analyzing 

decisions and designing strategies for implementing them. Each seek to augment or 

supplement human abilities in some manner.

Sound risk decision strategies cannot be formulated without prior identification and 

quantification of uncertainties (Morgan & Henrion, 1990). Uncertainty is the inability to 

determine the true state of a system and is caused by incomplete knowledge or stochastic 

variability (Haimes, 1998). There have been several attempts to create taxonomies of 

different kinds of uncertainty (Morgan & Henrion, 1990). Ayyub (2001) outlines a variety of 

uncertainty categories encountered in engineering design problems. Du and Chen (1999) 

further classify Ayyub’s uncertainty structure into internal and external uncertainties. Internal 

uncertainty has two primary sources (Apostolakis, 1994; Lasky, 1996). (1) Limited 

information in estimating the characteristics of model parameters for a given, fixed model 

structure, often called model parameter uncertainty. (2) Limited information regarding the 

model structure itself, including uncertainty in the validity of the assumptions underlying the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

model. External uncertainty comes from the variability in model prediction arising from 

plausible alternatives for input values (including both design parameters and decision 

variables)(Du & Chen, 1999). External uncertainty is also referred to as input parameter 

uncertainty. Gu, Renaud and Batill (1998) summarize and provide illustrations of the 

various categories of approximation error (uncertainty) associated with modeling and 

simulation. Computational error is also identified as an uncertainty that may be quantified 

but iterative refinement in a model usually negates quantification of this type of uncertainty 

(Sargent, 1999). An uncertainty category known as linguistic imprecision introduces 

uncertainty because the problem domain often involves imprecise terms such as “maybe 

false” or “sort of true” (Ayyub, 2001). The discipline of fuzzy logic was borne out of the 

need to quantify and mitigate implications of linguistic imprecision (Zadeh, 1992). Failure to 

account for uncertainties in decision strategies can produce results, which are suspect, 

misleading and erroneous (Ayyub, 2001).

The task of incorporating uncertainty into decision strategies does not stop at the 

identification of the uncertainty. Once the uncertainty has been identified, it must be 

quantified (Hampton, 2001). When assessing a high consequence course of action, most 

decision-makers prefer to evaluate pertinent information within a range (distribution) of 

possible values instead of a single discrete value (Ayyub, 2001). A probability distribution 

allows for the most comprehensive evaluation of uncertainty over a decision domain. 

Traditionally, probability has been classified as either objective or subjective. The objective 

view, often called Classical or Frequentist, is associated with such environments as the 

physical sciences, statistical formulations and modeling. The Subjective view or Bayesian
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probabilities are not as easily quantified and are based on the lack of empirical data and 

reliance on expert based assessment of engineering variables.

The Classical / Frequentist view defines probability as the probability of an event 

occurring in a particular trial, given by the frequency with which it occurs in a long sequence 

of similar trials (Morgan & Henrion, 1990). While this view may be applicable to laboratory 

experiments or academic postulation, in practical application, decision-making is not quite so 

succinct and the relevant population of trials or even outcomes in unclear. The Bayesian 

view emphasizes that the probability of an event is the degree of belief that a person has that 

the event will occur, given all relevant information known to the person. Therefore, the 

probability now becomes not only the function of the probability of the event but also of the 

state of information involved. The Bayesian view of events is more aligned with a complex 

systems perspective and thus more applicable to the ever-increasing complexity of modem 

decision-making environments (Morris, 1977). While the Bayesian view is indeed based on 

subjectivity, the Bayesian approach must be consistent with the axioms of probability. For 

example, if one assigns probability p  that an event will occur, then probability 1-p is its 

complement that the event does not occur (Morgan & Henrion, 1990).

Once the framing of the decision domain has been accomplished and the 

identification of uncertainty and uncertainty quantification method chosen, the next phase of 

the risk analysis is to query experts for their “best judgments” for the uncertainty of interest 

(Ayyub, 2001).

Expert Judgment Elicitation 

Decision and policy makers are routinely interested in speculative knowledge and 

often query experts for their opinions (Ayyub, 2001). Decision-making using expert opinion
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is not a new domain; however using a structured mechanism for their acquisition and 

elicitation did not emerge until after World War H Expert opinion reached its peak in terms 

of public confidence during the Vietnam War but waned during the Nixon administration 

(Ayyub, 2001). Renewed interest in structured mechanisms for expert judgment elicitation 

can be attributed in part to the challenges of increased technological innovations and the 

complexity of modem day problems.

Simplistically, expert judgment is an expert’s informed opinion, based on knowledge 

and experience, given in response to. a technical problem (Meyer, et al., 2000). It can be 

viewed as a snapshot of the expert’s state of mind and knowledge at the time his or her 

response to a technical problem is elicited. The use of expert opinion can be utilized to 

predict future events, provide estimates on new, complex or poorly understood phenomena, - 

or integrate or interpret existing information (Meyer, et al., 2000).

The definition of expert and expert performance is vital to any analysis using 

expertise. If external standards exist for assessing the accuracy of expert judgment, the 

evaluation is straightforward. However, external standards rarely exist in domains requiring 

expertise, which is why experts exist in the first place. Ayyub (2001) asserts that an expert is 

someone who has had much training and has knowledge in some special field. This is a 

rather vague and generalized definition and often rather insufficient in determining 

appropriate individuals to elicit for expert opinion. A more detailed definition is necessary to 

fully comprehend the degree and type of knowledge required to qualify an individual as an 

expert. Prior conceptions of an expert used the number of years on the job (relevant 

experience) as a surrogate to expertise. Unfortunately, while many experts do indeed have 

significant length in service, time on the job does not necessarily equate to expertise. Some
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individuals may work along side experts but never acquire the skills and knowledge to reach 

true expertise (Shanteau, et al., 2002). Although there are certain instances of positive 

correlation between experience and expertise, there is no evidence to support applying this 

standard universally (Jackson, 1999).

In many professions, accreditation has been used as a benchmark of expertise. For 

example, doctors may become “board certified” and engineers may achieve “Professional 

Engineer” status, these convocations imply a more skilled individual than someone not 

certified. The problem with accreditation is that it is often tied to time on the job or passing a 

one-time exam. Accreditation does not reflect sustained performance, even if a person’s 

performance declines, the title and rank of accreditation remains (Shanteau, et al., 2002).

Peer identification seems to be the most widely utilized method of expert 

identification. Professionals are asked whom they would consider to be an expert. When 

there is some agreement on the identity of such individuals, then they are labeled as having 

expertise (Shanteau, et al., 2002). A drawback to this approach may be in the inherent 

“popularity effect” - someone who is better known or more popular with their peers is likely 

to be identified as an expert. (Shanteau, et al,, 2002). Someone on the outside will unlikely 

be viewed as an expert although that person may be on the cutting edge of new insights.

In many fields, the identification of one or more “super experts” becomes a way to 

establish expert criteria. The answers of the Subject Matter Experts (SMEs) become the de 

facto standard from which all other experts are measured (Shanteau, et al., 2002). This 

approach is commonly used when no credible correct answers exist and when outcomes of 

events are unknown. SMEs offer valuable expertise in the domain of uncertainty because, in 

addition to knowing what the facts are, they understand what to do with those facts.
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Expertise isn’t just possessing knowledge or having qualifications; it is a highly 

specialized set of skills that have been honed in a particular situation of a specific purpose 

(Morgan & Henrion, 1990; Shanteau, et al., 2002; Jackson, 1999). As such, being an expert 

is quite distinct from having an education. Experts need to know more than just mere facts or 

principles of a domain in order to solve problems. Experts need to know which kinds of 

information are relevant to which kinds of judgments, how reliable different information 

sources are and how to make hard problems easier by decomposing them into smaller, more 

manageable units. Querying this type of knowledge, w hich is normally based on personal 

experience rather than formal training, is difficult to elicit (Jackson, 1999).

Several studies in the domain of expert elicitation have been performed- primarily in 

five fields of study: weather forecasting, medical diagnosis, psychology, business 

applications and military intelligence. The most notable work in the field of meteorological 

expert elicitation has been done by Murphy and Winkler (1974) with comparable studies 

performed by Fryback and Erdman (1979), and Daan and Murphy (1985). Murphy and 

Winkler (1974) demonstrated via the use of a calibration curve that although there was a 

slight tendency of meteorologists to over-predict the probability of precipitation, calibration 

was nearly perfect and the mean square error between the forecast probabilities and actual 

observed frequencies of the event was 0.028. An interesting finding of this study is that not 

only were the forecasts well calibrated, but they represented a 31% improvement over the 

climatological probabilities (Wallensten & Budescu, 1983). Fryback and Erdman (1979) 

suggest that forecasters are so erudite because they have available the climatological data on 

which to anchor their judgments. Murphy and Winkler (1974) counter this argument,
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asserting that forecasters consult but do not necessarily rely upon the forecasting models 

when formulating their probabilities.

Psychology and expert opinion studies have primarily revolved around the issue of 

subjective probabilities. Beenen (1970) has done some interesting research using subjective 

probabilities to improve diagnoses in psychiatric clinical cases. Beenen asserts that while the 

clinical psychologist showed substantial individual differences in their probability 

assessments, they all display reasonable stability in their diagnosis processes. Tversky and 

Kahneman (1971) build upon the work of Beenen but concluded that most psychologist 

overestimate the power of “hypothetical research designs and underestimate the width of 

confidence intervals” .

Subjective probabilities play an important role in different business applications 

(Druzdzel, 1989; Beach, 1975; Wallensten & Budescu, 1983). Subjective probability studies 

using expert elicitation in the business domain have included predicting the future interest 

rate of certificates of deposits and predicting the price of international stocks. Stael von 

Holstein (1970) had 72 experts predict prices of shares on the Stockholm Stock Exchange. 

Only three outperformed their predictions based upon a uniform distribution. The experts 

were able to observe their performance and received extensive feedback from the 

investigator. Future prediction iterations resulted in improved average variance indicating 

the experts were partially able to overcome their overconfidence bias (Wallensten &

Budescu, 1983).

In earlier work related to the current research problem, Monroe (1997) developed a 

methodology for eliciting expert judgment tp reduce uncertainty in decision analysis. The 

elicitation method developed by Monroe incoiporated both qualitative and quantitative
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elements to the elicitation process. The decision domain from which this methodology was 

applied was a launch vehicle conceptual design, specifically an application to a single-stage- 

to-orbit advance aerospace vehicle. Monroe investigated qualitatively assessing uncertainty 

of weight estimates for the various major components of an advanced orbital craft and then 

anchored those qualitative assessments quantitatively. The methodology consisted of a series 

of questions to determine the expert assessed qualitative rating of uncertainty for the 

parameter under investigation, followed by the anchoring of a most likely value. The 

qualitative rating of uncertainty was then coupled with a quantitative assessment of what that 

uncertainty rating meant. The questionnaire results were subsequently used in a Monte Carlo 

simulation to converge to a “summated” weight estimate for the vehicle under study. While 

the Monroe expert elicitation methodology is applicable to the current research problem, it 

does not address the use of multiple experts and multiple disciplines in the decision analysis.

Hampton (2001) adapted Monroe’s expert elicitation methodology to quantify risk in 

a multidisciplinary design environment. The expert elicitation methodology was then 

combined with a Latin Hypercube Sampling simulation to propagate uncertainties across a 

multidisciplinary environment for the overall system (Hampton, 2001). Hampton’s work 

addresses expert elicitation and uncertainty assessments but in the context of uncertainty 

propagation utilizing two disciplines (weights and sizing and aerodynamics). The element 

not found in these two pertinent research cases is aggregating the multiple opinions used in 

aerospace vehicle conceptual design. Neither the work of Monroe or Hampton addresses a 

holistic expert elicitation with aggregation methodology for uncertainty assessment.
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Aggregation

The role experts play in a conceptual design environment is critical - their judgments 

provide valuable information and insight into areas where limited empirical data is available. 

The motivation to use multiple experts is a desire to obtain as much information as possible. 

Furthermore, conceptual design of complex systems is multidisciplinary, involving several 

experts in each discipline. Having multiple, independent assessments of an event or entity 

causes great concern for decision-makers -  whose assessment is most viable? Should one 

assessment be weighted more strongly than another? To counter this dilemma, scientists and 

researchers propose an aggregation strategy to combine assessments that can “ideally be 

viewed as representing a summary of the current state of the expert opinions regarding the 

uncertainty of interest” (Clemen & Winkler, 1997).

Aggregation procedures are often divided into two approaches: mathematical and 

behavioral (Hampton, 2001; Clemen & Winkler, 1997; Rantilla & Budescu, 1999). 

Mathematical aggregation involves the integration of various independent assessments into 

one singular judgment. The mathematical methods range from simple summary measures 

(arithmetic or weighted averaging) to complex analysis involving the characteristics of the 

expert opinions such as the quality and dependence among the expert’s assessments (Clemen 

& Winkler, 1997). Generally, this method is best suited for predictive and prescriptive 

models along with Bayesian probabilities.

The behavior aggregation methods attempt to generate agreement into a solitary 

assessment by having the experts interact in some way. This interaction can be either face- 

to-face group settings or information exchange without direct contact. The focus of the 

behavior aggregation method is on the quality of the individual expert judgments and the
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dependence among such judgments implicitly rather than explicitly (Clemen & Winkler, 

1997). Many researchers feel the behavior method reduces the amount of redundant 

information that must be aggregated and the bias of experts is more easily smoothed (Rantilla 

& Budescu, 1999; Clemen & Winkler, 1997; Genest & Zidek, 1986). However, no strategy 

has been discussed on how to eliminate the dominance factor and group polarization so often 

associated with group techniques.

Regardless of the aggregation method chosen, research indicates that combining the 

assessments of three experts yields the most advantage to aggregation (Rantilla &. Budescu, 

1999). There is little to no empirical evidence that adding additional experts improves the 

effectiveness or efficiency of the model outputs. In fact, a recent study by Rantilla and 

Budescu (1999) found that utilizing more than three experts led to less confidence in the 

estimate, a rather counter-intuitive result. The work of Clemen and Winkler (1997), Hogarth 

(1990), and Rantilla and Budescu (1999) support the three-expert postulate.

Many researchers on the subject of multiple expert aggregation methods agree that 

modeling is the most appropriate method to facilitate combining of assessments (Hampton, 

2001; Vose, 2000; Molak, 1997). Much research has been done on aggregating point 

estimates from multiple experts but limited research has been done on modeling of 

aggregated opinions in probability distribution form (Hogarth, 1990; Vose, 2000; Rantilla & 

Budescu, 1999). The results of research have been mixed; however one theme seems to 

pervade each study -  simpler aggregation methods perform better than complex methods. 

Clemen and Winkler (1997) assert the advantages of more simplistic approaches are the ease 

of use, robust performance and defensibility in public-policy settings. In addition, there is a 

lack of consistent empirical data to support the notion that more complex mathematical
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models result in any greater accuracy of performance. Consequently, caution should be 

taken when evaluating combination methods. More simplistic methods do not allow for 

explicit consideration of such factors as over confidence and dependence among experts 

(Clemen & Winkler, 1997). Many researchers feel that further work with Bayesian models 

for multiple expert aggregation with careful attention to ease of use and sensitivity to 

intrinsic variability would improve performance. Clemen and Winkler (1997, p.24) quote 

from a study performed in 1994: “ The Bayesian aggregation tool is demonstrably powerful 

but it is not well understood. Further studies to understand its behavior.. .need to be . 

undertaken to realize its full potential.”

Aggregation Methods 

Consulting multiple experts may be viewed as a subjective version of increasing the 

sample size in an experiment. Because subjective information is often viewed as being 

“softer” than “hard scientific data”, it seems particularly appropriate to consult multiple 

experts in an attempt to beef up the information base (Clemen & Winkler, 1997). The 

principle that underlies the use of multiple experts is that a set of experts can provide more 

information and/or clarity than a single expert. The form of the elicited response from the 

experts can be varied - qualitative, discrete, or probabilistic; and the elicitation methods 

themselves can be numerous (group interaction, independent assessment, questionnaires, 

etc.). To accommodate the multiple forms of elicited data and numerous elicitation 

approaches available, various forms of aggregation methods have emerged to address 

different combination protocols.
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Mathematical Approaches 

There are primarily two classes of algorithms for mathematically combining 

distributions of elicited experts: weighted averages (opinion pools) and Bayesian 

combinations. The opinion pool approaches are simple, intuitively appealing, and can 

generate a wide range of combination rules with ease. Bayesian approaches are motivated by 

treating each expert’s judgment as data to be used in updating a prior distribution (Hammitt 

& Shlyakhter, 1999). A large variety of aggregation models for these algorithms have been 

developed, most of which have been reviewed descripti vely by Clemen and Winkler (1997). 

Rantilla and Budescu (1999) assert that the simple mean models tend to work quite well in 

most applications and that in certain cases simple averaging is the optimal model to utilize. 

Hammitt and Shlyakhter (1999) affirm that the limited available evidence on relative 

performance of alternative combination methods suggests that simple averages often perform 

nearly as well as the theoretically superior Bayesian methods. A breakdown of the most 

common mathematical approaches follows.

The linear opinion pool (also known as weighted average) is the most simplistic of the 

mathematical approaches and merely a weighted linear combination of each expert’s 

probability assessment as shown in Equation 1:

p (0 )=  S w  .p .(0 )
i= l 1 1

Equation 1: Linear Opinion Pool

where n is the number of experts, 6 is the unknown variable of interest, />,(#) represents 

expert Vs probability distribution, p(6) represents the combined probability distribution, and 

the weights w,- sum to one. The weights (w; ) assigned to each probability represent the
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relative quality of assessment assigned to each expert. The linear opinion pool method can 

be generalized to provide a broad set of combination rules, however, it does not allow for 

convenient representation of dependence among experts’ judgments (Genest & Zidek, 1986).

A common argument regarding the use of the linear opinion pool is the selection of 

the weighting values, which are assigned to the experts’ probability distribution. The 

weighting assignments may be based purely on the subjectivity of the decision-maker and 

his/her assessment of the reliability of the expert in estimating values or it may be based upon 

proven correlation among past performance of prediction tasks. Additionally, Genest and 

Zidek (1986) warn that the linear opinion pool is not well suited for the aggregation of 

density functions because the combined results typically become multimodal and do not 

provide a concise domain for decision-making.

A considerable advantage of the linear opinion pool is the ease of use and robustness 

in assigning reliability to the experts’ assessments. The linear opinion pool is also less 

complex by not assessing the non-independence of experts. Non-independence is extremely 

difficult to quantify and can be attributed to three fundamental sources (Genest & Zidek, 

1986, p .141):

■ Overlapping data -  in most cases, experts assess the same fundamental data 
from the same basic body of knowledge.

■ Overlapping methodology -  experts in particular fields have the same 
academic backgrounds and professional training. This is particularly 
prevalent in specialized fields or where expertise is scare.

■ Direct observation and exchange of viewpoints -  the presentation of reports 
and papers to the discipline community will result in commonalities due to 
the shared viewpoints.

By not addressing non-independence, the linear opinion pool reduces to a methodology of 

combining probabilities based upon the credibility assigned to each expert’s assessment. The
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simplicity of this technique is appealing for use in conceptual environments if a 

comprehensive framework for assigning weighting factors to the assessments can be 

developed.

The primary applications of the linear opinion pool method have been in forecasting 

and trending in such fields as meteorology, banking, medical diagnosis, and marketing 

(Clemen & Winkler, 1990; Stael von Holstein, 1970; Winkler & Poses, 1993; Engemann, 

Miller & Yager, 1995; Hurley & Lior, 2002). Hurley and Lior (2002) used linear opinion 

pool aggregation to forecast the selection of all-stars in a football conference, Stael von 

Holstein (1970) incorporated this method to forecast the interest rate on short term 

certificates of deposit while Engemann, Miller and Yager (1995) applied linear opinion pool 

aggregation to a decision regarding alternative configurations of power generators for money 

center banking. These applications employed empirical techniques to assign expert 

weighting factors and validated the aggregation outcomes with either historical data or 

validation from observance because the occurrence of the event was very near term. The use 

of subjective assessments for expert credibility and the application of the linear opinion pool 

method to an analysis where the outcome is in the very distant future (unknown) have not 

been supported in the literature.

The logarithmic opinion pool is a second form of the opinion pool approach and uses 

multiplicative averaging to aggregate probabilities. It is mathematically represented in 

Equation 2:

n w-
p(0)  = n  p.(0)

1

Equation 2: Logarithmic Opinion Pool
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where pi(0) represents expert Vs probability distribution, p{6) represents the combined 

probability distribution, 9 is the unknown variable of interest, and the weights w,- sum to one. 

If the individual weights are equal to 1/n, then the combined distribution is proportional to 

the geometric mean of the individual distributions.

The logarithmic opinion method also utilizes a weighting element and thus suffers 

from the dilemma of assigning a reliability factor to the expert assessments. However, this 

approach is typically unimodal and less dispersed (Genest & Zidek, 1986) and, therefore, 

more likely to represent consensual values for the decision domain. Genest and Zidek (1986) 

also contend the most compelling reason for using a logarithmic opinion pool is that it is 

externally Bayesian. The property of external Bayesianity requires that when new data is 

added to the analysis, the posterior distribution result must be consistent whether the 

updating of distributions occurs prior to the combination of judgments or to the combined 

distribution itself. Winkler (Genest & Zidek, 1986) argues, however, that he would expect 

the weights assigned to the experts to change as new data are seen and therefore questions the 

advantage of the external Bayesian property.

Like the linear opinion pool, the logarithmic opinion pool does not address expert 

non-independence and is therefore unencumbered by the task of quantifying the level of 

expert dependence. Research does not present a clear-cut advantage of using one opinion 

pool method over the other. The form of the acquired elicited assessments, the depth of pre­

existing data and the preference of the analyst are the primary discriminators in choosing one 

of the two opinion pool methods. Either method (linear or logarithmic) shows promise in 

combining expert assessments of uncertainty in a conceptual design environment.
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The applications of the logarithmic opinion pool aggregation method have been very 

similar to that of the linear opinion pool method. Weather forecasting, stock market analysis, 

and medical diagnosis have been the primary domains of application (Clemen & Winkler, 

1990; Stael von Holstein, 1970; Winkler & Poses, 1993; Chen, Fine & Hubermann, 2003). 

Much of the work has been to investigate the advantage of using one opinion pool method 

over another with the vast majority of research concluding there is no universal advantage to 

either system -  both perform equally well (Rantilla & Budescu, 1999). Rantilla and Budescu 

continue however, that in light of their finding, simple weighted averaging is the optimal 

model due to ease of use and mathematical simplicity.

The conjugate aggregation method is more complex than the linear opinion pool or 

logarithmic opinion pool paradigms. This aggregation approach demands that all individual 

probability distributions belong to the family of beta distributions. The probability 

assignment that expert i attributes to hypothesis 8 is generated by a beta distribution with 

parameters (ay, (30. The consensus of n experts’ opinions is obtained by applying Baye’s 

Rule in order to obtain n beta distributions on hypothesis 8. The conjugate aggregation 

algorithms is represented by Equation 3:

For the current research, there is neither guarantee nor assumption that a beta 

distribution will be elicited from the experts. Beta distributions are plausible distribution 

alternatives for the final form of aggregated opinion but the initial assessments of uncertainty 

from the experts is expected to take the triangular distribution form. The triangular

a
a  . = X w.. * a . . , B = .,

J 8 iJ y  J

Equation 3: Conjugate Algorithm
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distribution form is a viable distribution when the range of a and b and most likely value c 

can be approximated. The triangular distribution offers considerable flexibility in its shape 

and coupled with the intuitive nature of its defining parameters and speed of use makes it a 

compatible distribution for this research.

Additionally, the conjugate method also fails to solve the problem of how to assign 

applicable weighting factors to each expert’s opinion in the combination process. While this 

approach presents limited promise for the current case, other methods discussed provide a 

more robust method for the aggregation of opinion in the current research domain.

An alternative approach to combining expert judgments is based on Bayes’ Rule. 

Beginning with a prior distribution, the analyst treats each expert’s distribution as new 

information and updates the prior distribution using Bayes Rule. The updating technique is 

dependent upon the likelihood function defined by the analyst. The likelihood function 

represents the probability that each expert will give the assessment as a function of the 

underlying state of nature and consequently incorporates the relative quality of experts’ 

judgments (biases and confidence level). Genest and Zidek (1986) conclude that for typical 

risk analysis situations, in which a group of experts must provide information to a decision­

maker, a Bayesian updating scheme is the most appropriate method. Equation 4 represents 

this approach:

p{&)L{g ,.,.,gn | 9)
P* = p{0  | C)  -----------------------------

Equation 4: Bayesian Updating Scheme

where L represents the likelihood function associated with the experts’ information. The 

notion of this paradigm is relatively straightforward. If n experts provide information gi,
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gn to a decision-maker regarding a variable of interest 0, then the decision-maker should use 

Bayes theorem to update a prior distribution. This formulation can be applied to any type of 

information from discrete forecasts or estimates to the combination of individual 

probabilities.

While this approach seems compelling, Clemen and Winkler (1997) caution that 

applying the method is frustratingly difficult. The primary problem associated with this 

method is the development of the likelihood function L(gi,..., gn \ 0 )• The likelihood 

function amounts to the probabilistic model for the information gj,..., gn and thus must also 

capture the interrelations among 0 and gi,..., gn ■ If the interrelations are unknown or vague, 

trying to capture interrelations becomes problematic and introduces a measure of uncertainty 

that is difficult to quantify. In addition, if Genest and Zidek’s (1986) assertion that the 

Bayesian techniques are most appropriate for typical risk analysis is accepted, the clarity in 

defining what constitutes a “typical risk analysis” is deficient.

The difficulty in assessing the likelihood function has given rise to the creation of 

“off-the-shelf’ models (Genest & Schervish, 1985; French, 1981) for aggregating 

probabilities. Although these models apply various combination algorithms, common 

elements emerge from their function. Most of these models assume that prior distributions 

can be obtained for the variable(s) of interest and each expert’s precision at forecasting can 

be observed. Often in the conceptual design environment, prior distributions for the variable 

of interest do not exist nor is it possible to assess the experts’ precision in forecasting since 

the variables of interest are either state-of-the-art and/or yet to be developed systems. The 

difficulty in applying the Bayesian approaches, coupled with the inability to assess prior
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distributions, makes this combination paradigm ill-suited for the conceptual design 

environment.

Behavioral Approaches 

The focus of the behavior aggregation methods is on the quality of the individual expert 

judgments and the dependence among such judgments implicitly rather than explicitly 

(Clemen & Winkler, 1997). Behavioral combination approaches seek to gain consensus 

among the participants through various forms of interaction. Common behavioral techniques 

include the Delphi Method, Nominal Group Technique and Brainstorming. Many 

researchers feel the behavior methods reduce the amount of redundant information that must 

be aggregated and the bias of experts is more easily smoothed.

Brainstorming is the simplest behavioral combination technique (Morris, 1977). The 

objective is to assemble participants together and assign the task of generating a “group” 

consensus on a variable, event or phenomena of interest. Discussion and debate is the chosen 

forum with consensus reached through iterative sharing of information. Dialogue with 

unrestricted feedback is natural and easy if the individuals are able to communicate with each 

other (Genest & Zidek, 1986). The chief merit to brainstorming is the free exchange of 

information which may result in a reduction in the range of views presented. In practice 

however, this same interaction may induce conformity, “a degree of agreement beyond that 

which would be commensurate with the amount of information that is exchanged” (Genest & 

Zidek, 1986, p .125). Furthermore, experts are often unable to reach group consensus or 

agreement and thus group interaction breaks down into a process of negotiation and 

compromise. This may not reflect the “true” combination of opinions of the group but a
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consensus of acceptable trade-offs often facilitated by a dominant group member (Clemen & 

Winkler, 1997).

Cornell (1996) applied the brainstorming technique to a problem domain with a 

comparable characteristic to the current research domain. Cornell developed a Probabilistic 

Seismic Hazard Analysis method designed to estimate the likelihood that various levels of 

earthquake caused ground-motions will be exceeded at a given location in a given future time 

period. He used the brainstorming technique to query a panel of experts on the validity of his 

methodology. Of particular significance and relevance to the current research case is that the 

validity of the brainstorming outcome cannot be empirically validated and the occurrence of 

the event is not knowable in a specific timeline.

The Delphi Method is perhaps the most widely known method for eliciting and 

synthesizing expert opinions (Morgan & Henrion, 1990). Although different variations exist, 

experts typically make individual judgments from a distance -  no interaction is permitted. 

These judgments are shared anonymously with the participants. Each expert may then revise 

his or her assessment and the process is reiterated until the different opinions converge 

toward a common distribution. The purpose and specific steps of the Delphi method depend 

on the nature and purpose of use. Primarily, the uses can be categorized into technological 

forecasting and policy analysis (Ayyub, 2001). Technological forecasting relies on a group 

of subject matter experts for the problem being investigated and relies heavily on study 

facilitators to implement the method. Policy analysis seeks to incorporate opinion and views 

from the entire spectrum of stakeholders and seeks to communicate the spread of opinions to 

decision-makers (Ayyub, 2001). The Delphi Method can be inexpensive compared to other
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group interaction techniques since experts need not communicate and the anonymity of the 

technique reduces social pressure often associated with group interactions (Hampton, 2001).

The Nominal Group Technique (NGT) is a related behavioral method. Experts first 

assess their probabilities individually and then present their distributions to the other group 

members. No discussion is to occur during the first round until all judgments have been 

presented (Morgan & Henrion, 1990). Each opinion is subsequently discussed in a structured 

format designed to prevent anyone from dominating the proceedings (Gustafson et al., 1973) 

followed by each expert ranking the list of opinions silently. Following silent assessment, 

each member calls out their ranking profile, rankings are then tallied and a consensus opinion 

emerges.

Delbecq et al. (1975) offer the following guidelines and cautions when using NGT. (1) 

NGT is best used for small group meetings called for the purpose of fact-finding, idea 

generation, or the search of problems or solutions. Once this technique becomes familiar, 

some steps will seem more important than others in different situations. For instance, 

clarification is more important when people in the group do not know one another or are 

from different backgrounds. (2) Formal balloting may not be necessary for relatively simple 

issues or for agenda setting when only a small number of topics emerge. (3) It is often 

difficult to convince people to use NGT for the first time. The usual question is, "why is all 

this structure necessary"? Explanations help to overcome this resistance, but a successful 

experience helps much more. It is a good idea to try out the process on an issue that can be 

covered completely in one meeting so that the group can sense the value of the entire 

process. (4) During early experiences using NGT, it is most difficult for people to keep from
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discussing issues before all points are listed, clarified, and prioritized. So, extra care must be 

taken by the facilitator to prevent discussion from starting too soon.

Although group interaction methods seem relatively straightforward, they can suffer from 

many complications. Hogarth (1978) notes that some individuals tend to dominate the 

discussions thus discouraging the emergence of new ideas. Groupthink, or the propensity to 

adopt a more extreme opinion than would each individual member, is another possible 

complication of the behavioral methods. Hogarth (1978) counters these arguments by 

implying that interaction techniques need not be dysfunctional if experienced facilitator’s 

assist in the process. Facilitators would serve to promote open dialogue, direct the 

discussions to maintain focus and guide participants to a consensus solution (Phillips & 

Phillips, 1990). However, no strategy has been developed to eliminate the dominance factor 

and group polarization so often associated with group techniques.

Synopsis of Literature 

Aggregation is a methodology deployed for the combination of multiple assessments 

of uncertainty. The majority of research involves decision domains where data is either 

empirically or historically available thus likelihood functions and expert credibility factors 

are grounded in “hard” data. Additionally, the ability to validate an aggregated outcome has 

been feasible due to the preponderance of the event occurring in the near term. In the current 

research domain, “hard” data is negligible or non-existent therefore relying on subjective 

assessments for both uncertainty quantification and expert credibility is necessary.

Behavioral aggregation techniques are well suited for subjective combination of expert 

opinions but suffer from many drawbacks including participant dominance, polarization, 

groupthink and compromise instead of optimization. Mathematical aggregation methods
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remove subjectiveness from the combination process and seek to combine assessments from 

a more objective principle. Decision-makers and technologians are more comfortable with 

information based on “hard science” (objective) rather than soft science (subjective) (Sousa- 

Poza, 2003). Therefore, mathematical aggregation is appropriate for technical domains such 

as aerospace conceptual design environments. An extensive literature review helps to 

identify the research relevant to the current study and frames the context of the research case 

under investigation. Identification of a deficiency in the research domain has resulted in the 

development of a methodology to enhance the mathematical aggregation body of knowledge.

The literature review shows that much research has been accomplished in the domain 

of expert elicitation (Beenen, 1970; Murphy & Winkler, 1974; Beach, 1975; Wallensten & 

Budescu, 1983). The literature also indicates moderate research has been performed in the 

domain of expert elicitation with risk and uncertainty (Druzdzel, 1989; Hampton, 2001; 

Monroe, 1997). Aggregation of multiple expert judgments has also been moderately 

investigated but not sufficiently examined in the risk and uncertainty environment 

(Schuenemeyer, 2002; Cornell, 1996). Furthermore, the literature concerning investigation of 

risk and uncertainty as it applies to multiple expert elicitation and/or multiple disciplines is 

scarce (Hampton, 2001). Of complementary importance is the lack of research in a domain 

where the accuracy of elicited results cannot be empirically verified (Cornell, 1996). 

Concentrating research in domains with precise and quantifiable data and in environments 

where validation of results is observable or empirically capable does not enhance decision 

strategies to domains where data is negligible and outcomes unknown (Morris, 2003). Many 

of today’s more complex engineering systems find themselves working in the latter 

environment and, thus, methodologies to assist in the reduction of risk and uncertainties for
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more robust and efficient engineering designs would be an improvement to conceptual 

decision strategies.

The results of the literature study indicate the development of a methodology for 

multi-expert judgment elicitation employing an aggregation function in a multidisciplinary 

and multi-expert environment has yet to be investigated. Formulation of this methodology 

and its proven effectiveness by application to a conceptual launch vehicle design concept is a 

unique contribution to the aggregation literature. Table 1 summarizes the more prominent 

research related to the current problem and Figure 1 places the current research into context

with past and current work in this field.

Author Application
Aggregation Method

R esults
verified

Linear
Opinion

Pool
Logarithmic 

Opinion Pool
B ayesian
Method

Behavioral
Method

Lindiev, D.V. (1983) Unknown V V
Morris, P.A. (1977) Unknown V V
Clemen & Winkler (1990) W eather forecasting V V V
Stael von Holstein (1970) Stock Market prices V V
Winkler & P o se s  (1993) Medical D iagnosis V V i
Weerahandi & Zidek 
(1978) Unknown V V
Engemann, Miller & Yager 
(1995) Banking V V
Hurley & Lior (2002) Football polling V V
Lawrence, Edmundson & 
O'Connor (1986)

M agazine advertising 
dollars V V V

Chen, Fine & Hubermann 
(2003) Stock Market prices V V
Schuenem eyer (2002) Oil & G as resources V
Cornell (1996) Seism ic Risk analysis V

Table 1: Aggregation Literature Summary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

Expert Elicitation Techniques

Multiple Experts

Aggregation Algorithms

Unknown Results 
(Future events)

Known Results 
(Past events)

Behavioral Method 
(1,2) Behavioral Method

Logarithmic Opinion Pool
(4,5,6,7,8) Linear Opinion Pool

(13)

Bayesian Method 
(4,9,10)

Linear Opinion Pool 
(1,4,5,6,7, 11,12)

(1) Lawrence, et al. (1986)
(2) Schuenemeyer (2002)
(3) Cornell (1996)
(4) Clemen & Winkler (1990)
(5) Stael von Holstein (1970)
(6) Winkler & Poses (1993)
(7) Weerahandi & Zidek (1978)

Researchers
(8) Chen, Fine & Hubermann (2003)
(9) Lindley, D.V. (1983)
(10) Morris, P .A . (1977)
(11) Engemann, Miller & Yager (1995)
(12) Hurley & Lior (1986)
(13) Chytka (2003)

Figure 1: Context of Current Research
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Research Objectives 

The role of experts in theoretical environments is critical - their judgments can 

provide valuable information and insight in areas where limited “hard” data is available. 

Decision-makers often rely on multiple opinions as a data set when historical or empirical 

statistics are deficient in a specific decision domain.

The prime concern of most researchers in risk analysis when using multiple experts is 

how the multiple opinions should be combined or aggregated to ensure adequate capture of 

diverse judgments. In order to make an expert elicitation data set useful, a means to 

adjudicate the disparity is necessary. Aggregation provides a means to combine divergent 

opinions to aid decision-makers in highly uncertain decision domains. To date, aggregation 

methods that directly address the combination of multiple opinions in an environment where 

likelihood functions cannot be determined and prior distribution availability is negligible has 

been deficient. The development of a complete methodology for expert judgment elicitation 

utilizing aggregation methods in a multi-discipline, multi-expert environment would be a 

significant asset to decision-makers in domains plagued with high uncertainty. By applying 

this methodology, the decision- maker can select the best, most cost-effective, risk tolerant 

solutions to provide the greatest long-term benefits.

The objective of this research is to develop and demonstrate a methodology to 

mathematically aggregate expert opinion in an environment where likelihood functions and 

expert creditability assessments are not available. To meet this objecti ve, expert elicitation 

of uncertainty assessment must be queried from subject matter experts in disciplines of 

aerospace design. Uncertainty assessments must be quantified into probability distribution 

form. Because empirical statistics are not available, a technique to determine subjectively
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the weighting factors assigned to each uncertainty assessment must be developed and 

deployed prior to aggregation. The linear opinion pool aggregation algorithm will be applied 

to the coupling of weighting factors and uncertainty distributions resulting in a “consensus” 

distribution of multiple experts. The methodology will be validated through subjective 

assessment by decision-makers on the usefulness of the combined response to enhance their 

decision strategies in risk assessments of future space transports.
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CHAPTER III 

RESEARCH METHODOLOGY

Approach

The thrust of this work is the development of a functional aggregation methodology 

to combine opinions from multiple experts who have assessed the uncertainty associated with 

multidisciplinary conceptual space vehicle design parameters. In most of the expert 

elicitation utilizing aggregation applications, the case studies involved scenarios in which the 

result could be validated because the phenomenon was either a past event of near term future 

event. Confirmation of the forecasted event allows for the development of likelihood 

functions, and precise expert reliability calculations. In the present research application, the 

confirmation of occurrences being assessed is infeasible; the designs are in the distant future. 

Due to this constraint, the validation of the methodology becomes subjective. The validation 

component of this research is a compilation of validation paradigms from Pederson et al. 

(2000), Sargent (1999) and Monroe (1997). The expert elicitation methodology deployed for 

this study is guided by the research of Conway (2003) and Monroe (1997). The linear 

opinion pool aggregation methodology is a synthesis of the approaches used by the 

researchers detailed in Chapter II but is draws specifically from the work of Rantilla and 

Budescu (1999), Clemen and Winkler (1997) and Genest and Zidek (1986).

For a more holistic capture of the research methodology, the design, development and 

deployment of the data acquisition technique (questionnaire), the design and deployment of 

the expert elicitation process as well as the aggregation methodology itself will be detailed in 

this section. The methodology in its entirety is represented in Figure 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

Validation of Methodology

Results
• Data collection

Calibration and Aggregation

Probability Distribution 
Selection

Qualification of Experts
• Establish criteria for expert 

selection

Administration of the 
Questionnaire

• Microsoft Excel

Problem Definition
Performance characteristics,

Disciplines
Pool of potential experts

3 Determination of Parameters
to be Included in Uncertainty 

Study, xy
• Nominal Group Technique
• Weighting

Questionnaire Design
Generalized elements 
Multidisciplinary elements 
Anchoring and cueing 
Calibration elements

Figure 2: Outline of Research Methodology

Questionnaire Instrument 

The questionnaire instrument for this research is of vital importance -  it is the 

mechanism from which input distributions for the aggregation process will be obtained. The 

quality of information obtained from a questionnaire is directly proportional to the quality of 

the questionnaire, which in turn is directly proportional to the quality of the question 

construction process (Peterson, 2000). Determining the type of questions to be asked in a 

questionnaire is a function of the objective of the research, the nature of information to be 

collected, and the analysis method of the responses elicited. The two basic types of research
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questions are open-end questions and close-end questions. Open-end questions are very 

general in nature and allow the participants to freely provide any answers they believe are 

appropriate. The open-end question structure works remarkably well when a researcher has 

no precognition of how a participant will answer a question or when researchers want to 

ensure the answers will not unduly be influenced by the presence of predetermined answer 

alternatives (Cox, 1980).

An alternative to the open-end question is the closed-end question. The 

distinguishing characteristic of a closed-end question is that answer alternatives are provided 

to the respondent. Much of the questionnaire strategies center around two closed-end forms: 

Dichotomous questions and Monadic scale (Peterson, 2000). Dichotomous questions are 

closed-end questions with only two possible answers or response categories. This question 

structure is best suited for obtaining demographic or behavioral information, they are not 

recommended when asking questions about psychological characteristics, such as attitudes, 

preferences or opinions (Ayyub, 2001). Monadic questions are a closed-end questions in 

which the answers are somehow graduated to measure a continuous construct, such as an 

attitude, opinion, perception or preference. The number of answer alternatives from closed- 

end questions can range from two to infinity however, in practice, seldom are there more 

than nine possible answers (Peterson, 2000).

In addition to constructing the question configuration (open-end versus closed-end), it 

is important to incorporate elicitation heuristics into the question structure. As the literature 

review indicates, anchoring and cueing is a common heuristic used when eliciting expert 

opinion (Lichtenstein & Newman, 1967; Budescu & Wallsten, 1987). The approach of 

cognitive cueing may be useful in helping experts to achieve anchoring of their opinions.
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Cueing elicits specific judgment patterns from experts based upon experience or information 

and can aid in the adjustment of anchored values. The solicited experts will be asked to 

anchor their opinion of the parameter of interest via a mode (most likely) value, then cued to 

provide a response of least likely and most likely. To be effective, anchoring must be 

consistent, repetitious and use identical methods for eliciting a particular response pattern.

Once the questioning structure has been established, an appropriate scaling measure 

needs to be defined. A rating scale is a closed-end question whose answer alternatives are 

graduated to measure a continuous construct, such as an attitude, opinion, intention, 

perception or preference (Peterson, 2000). The most commonly used scales are 

unidimensional scales, scales that measure single predefined attributes. The unidimensional 

scales are further categorized into comparative scales and monadic scales. Comparative 

scales are simply rank-ordered while monadic scales are interval or ratio scales. In 

comparative scaling, the objects being scaled are directly compared to one another; 

consequently, the objects are scales relative to each other. A major benefit to comparative 

scaling is that it detects small difference among objects (Trochirn, 2000). However, a major 

limitation to this scaling method is that it is not possible to generalize beyond the object 

being scaled. In monadic scaling, each object is measured independently of the other thus 

providing considerable scaling freedom. Although monadic scaling allows for scaling 

freedom, it prohibits the detection of the fine discriminations that are possible in comparative 

scaling (Peterson, 2000).

The appropriate number of rating scale categories is dictated by such factors as the 

mode the questionnaire will be administered, characteristics of the objects being scaled, the 

function of the research, and the ability of the researcher to handle multiple scaling
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categories (Cox, 1980). In general, most rating scales have fewer than 12 categories with 

more than two thirds having either five or seven categories (Peterson, 2000). However, in 

practice, there is a widely held belief that the proper number of rating scales should be 7 plus 

or minus 2; no consensus exists on the proper number of categories (Peterson, 2000; Cox, 

1980; Trochim, 2000). In general, there is no single, optimal number of rating scale 

categories for all scaling situations (Cox, 1980).

Once the number of rating categories has been determined, the form of the rating 

scale needs to be chosen. Three specific rating scales are most commonly used in 

measurement and scaling -  semantic differential scaling, the Likert scale and the Stapel 

scale. The semantic differential scale developed by Charles Osgood is a seven-category, 

multi-dimensional scale that has only the extreme end points labeled. The semantic 

differential scale measures the meaning of any stimulus object on three dimensions: 

evaluation (good-bad), potency (strong-weak), and activity (active-passive) (Peterson, 2000).

Another widely used rating scale is the Likert scale, so named for its developer 

Rensis Likert. The Likert scale differs from the semantic scale in several distinct ways.

First, it is a five-category, not seven-category rating scale and generally consists of two-parts: 

a declarative statement and a list of response categories. Unlike the semantic differential 

scale, all scale categories are labeled. The Likert scale is best suited for research involving 

summated opinion or attitude rating (Trochim, 2000). Several modified versions of the 

Likert scale have emerged since its inception, however the same general format holds true.

Jan Stapel developed a 10-category, uni-polar rating scale with categories numbered 

+5 to -5  (Trochim, 2000). This rating schema is aptly named the Stapel scale. Because of its 

unique numbering system, the Stapel scale is best represented vertically as opposed to
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horizontally (as is the format for the Semantic differential scale and Likert scale). The Stapel 

scale is perhaps the most controversial rating scale and the least used (Peterson, 2000). 

Advocates of this rating scale assert that finer discriminations are permitted as compared to 

the other scaling schemes however opponents contend it is confusing and difficult to apply 

(Cox, 1980; Trochim, 2000).

The questionnaire methodology developed for this research application expands upon 

the work of Monroe (1997) and the literature cited above. The questioning style of Monroe 

is that of an open-end structure allowing the expert to answer questions freely and provide 

anchoring and cueing descriptions. Monroe also adopted Likert scaling for his questionnaire 

using the 5-point scaling system for both quantitative and qualitative ratings. The Monroe 

methodology also assumes a default symmetrical triangular distribution associated with an 

expert’s assessed uncertainty about a parameter of interest. For the current research, the 

Monroe questionnaire methodology was adopted and modified in two distinct ways. First, 

the format for which respondents were able to provide the high and low values for a variable 

of interest was more explicitly detailed. The Monroe questionnaire, as structured, allowed 

the respondents to contradict their evaluations of uncertainty around a variable of interest. 

Peterson (2000) asserts that a properly structured questionnaire prohibits contradiction and 

ambiguity. The questionnaire structure was altered to reflect clarity in defining the 

uncertainty of the variable. Figure 3 presents the set of instructions for the experts 

responding to the questionnaire; in particular, instruction 3 reflects the primary modification 

made to Monroe’s approach.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

A list of (discipline specific model) input parameters whose values are potentially uncertain will be 
provided on a subsequent screen. You will be asked to evaluate these parameters using the following 
guidelines.

1. Rate each INPUT parameter uncertainty QUALITATIVELY using a 5-point rating scale (Low, 
Low/Moderate, Moderate, Moderate/High, High). Focus only on those INPUT parameters that you feel 
should be evaluated in this manner.

2. If you feel a parameter’s default value should be modified, you may provide a new point estimate for the 
nominal value.

3. If you feel the range of possible values (due to uncertainty, physical limitations /  design constraints, etc.) 
around the nominal value is not symmetrical, please provide your own estimates of minimum and 
maximum values.

4. Describe the reason for the uncertainty and the reasoning behind the parameter value ranges for the 
UNCERTAIN INPUTS that you rated. Include a rationale for those parameters to which you have assigned 
new nominal values. Do this simultaneously while rating each INPUT parameter to document your 
thinking.

5. Think of any other cues (or reasons that you have not documented) and record that information at this time.
6. Once the INPUT parameters provided have been rated for uncertainty, you may add parameters not shown 

which you assess to have a level of uncertainty associated with their value. Use the OTHER option listed 
at the bottom of the INPUT parameter listing for this purpose.

7. After rating all INPUT parameters, next anchor your Low, Moderate, and High QUALITATIVE measures 
of uncertainty to QUANTITATIVE measures on the 5-point scales (provided).

8. Describe any scenarios that may change INPUT parameter values. Provide the alternate INPUT parameter 
values that in your judgment would be appropriate for the scenario______________

Figure 3: Expert Elicitation Questionnaire Instructions

Secondly, a Background section was added to the questionnaire to allow for the 

calibration of expert assessments prior to the aggregation process. The Background section 

was added in support of the research efforts of Conway (2003) who developed an Expert 

Calibration Function to reduce the variability (uncertainty) of the assessment values. The 

input distributions for the aggregation algorithm are the calibrated distributions resulting 

from the Expert Calibration Function applied to the raw distributions from the questionnaire 

responses.

The context of the questionnaire centers on the elicited assessments from various 

disciplinary experts (Ey) on design parameters evaluated most prone to uncertainty. The 

experts are queried to evaluate input design parameters (%) as well as uncertainty associated 

with the analysis tools (Zy) they employ in the conceptual design process. The questionnaire 

participants are asked to provide their assessments of the level of uncertainty associated with
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the parameter (high, medium or low) and to adjust the nominal value provided if they feel the 

value is inaccurate. The nominal value (or adjusted value if provided) coupled with the level 

of uncertainty assigned to the parameter will determine the probability distribution assigned 

to the design parameter [(xy), (Zy)] from expert (1%). The questionnaire results from each 

disciplinary expert are the input distributions to the Expert Calibration Function developed 

by Conway (2003). The output of applying the calibration function to the distributions 

results in reduced variability distributions, which, in turn, are the inputs into the aggregation 

process.

The platform from which the questionnaire is launched is a Microsoft Excel® 

(Microsoft Corporation, 2000, Version 9.0 3821 SR-1) workbook. The Excel workbook 

includes a “tab” spreadsheet for instructions, a “tab” for a sample questionnaire, a “tab” for 

the Background section, multiple “tabs” for the variables of interest, and a “tab” to tool 

uncertainty assessment. The use of multiple “tabs” within the Excel shell enables the 

questionnaire to be exported to the experts in one compact file which makes for ease of use 

and practicality. The questionnaire is electronically mailed (e-mailed) to each SME for the 

respective disciplines. The advantage of using e-mail to distribute the questionnaire is that is 

allows the experts to assess uncertainty ratings on their own time and in a familiar setting -  

their workspace.

Population

The target population for this questionnaire is the pool of NASA aerospace engineers 

and design manager teams in multiple NASA, locations. The chosen participants are 

recognized experts in their respective fields of study. In the present instance, familiarity with 

multidisciplinary launch vehicle design and optimization applications are also a key criteria.
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The selection of appropriate subject matter experts by the design managers will be guided by 

the adherence to characteristics of expertise assembled from the literature. Much of the 

literature on identification of expertise (Shanteau, et al., 2002; Jackson, 1999; Ayyub, 2001) 

asserts that no one criteria should be used as a selection basis or disqualifier for the 

identification of an expert. For example, the literature does not support that “x” number of 

years of experience or “y” minimum educational background is used explicitly as selection 

criteria for the identification of experts. While there has been some positive correlation 

between years of experience or educational background, there is no evidence to support 

applying this standard universally (Conway 2003). The number of years of experience, 

educational background, cognitive skills, etc. are criteria to be integrated together in the 

selection process. No one criterion is considered a disqualifier for expertise; expertise is an 

integrated summation of the characteristics (criteria) described. The design team managers 

were given instructions to reflect upon the selection criteria listed in Table 2 as an integrated 

compilation of characteristics of an expert and then identify discipline specific experts based 

upon their subjective assessments of an individual’s expertise.

 _____ Expert Characteristics_________
Domain knowledge

■ Years of experience
■ Educational background_____________________

Cognitive skills

■ Ability to discern usefulness of data 

Decision strategies

Expert-task congruence

■ Appropriate expertise for discipline specific task

Table 2: Characteristics of an Expert
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Aggregation Methodology

There has been much research relevant to the basic question of how people aggregate 

a variety of expert opinions to generate their own judgment and make decisions. Sound 

research for the selection of an aggregation methodology is explicitly guided by the answers 

to these 5 questions:

1. Who is doing the aggregation: a normative model, a decision-maker or a 
group?

2. What is the form of the information elicited and the response the decision­
maker generates?

3. What is the nature of events that are relevant to aggregation: is uncertainty 
epistemic or aleatory?

4. Are there any inherent characterizations that can be made about the 
information pattern or information sources such as biases or redundancy in 
information?

5. What combination rule is to be utilized?

1. Who is doing the aggregation; a normative model, a decision-maker or a group ?

For the present research effort, a normative model is chosen to facilitate aggregation 

of the elicited expert opinions. The mathematical aggregation methods can be performed 

manually, however several commercial off the shelf programs exist that facilitate the 

aggregation process and allow for higher order sampling techniques. Examples of such 

software include @RISK® (Palisade Software), Predict!® (Risk Decisions, Ltd.), and Crystal 

Ball® (Decisioneering, Inc.). @RISK® (Palisade Software, 2002, Version 4.5.2) works well 

within Microsoft Excel® and is utilized to facilitate the aggregation of multiple distributions.

2. What is the form o f the information elicited and the response the decision-maker 

generates?

Each discipline expert is queried to provide the input parameters they feel are most 

prone to uncertainty for the design parameter under study. The initial uncertainty rating is 

qualitative (low, low/moderate, moderate, moderate/high, high). If the expert feels the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

design parameter default value provided should be modified, a section is provided to 

document a new nominal value. The experts are then asked to describe the reason for the 

uncertainty associated with the design parameter and to document any cues related to the 

assessment. A sample questionnaire for Operations Support is provided in Appendix A.

After rating the input design parameters, the experts anchor their qualitative 

assessments of uncertainty to a quantitative measure as shown in Figure 4.

The amount of uncertainty or variation that I associate with Low Uncertainty is:

Less 5% 7.5% 10% 12.5% 15% More

The amount of uncertainty or variation that I associate with Moderate Uncertainty is: 

Less 10% 15% 20% a  V> 25% 30% More

The amount of uncertainty or variation that I associate with High Uncertainty is:

Less 20%_________ 30%________40% 50%_________60%_________More

Figure 4: Quantitative assessment rating of uncertainty

The increments for this portion of the questionnaire were chosen as an extension of the 

format validated in the Monroe (1997) research. A slight modification was made to the 

increments however, to make the ordinal values more uniform. For example, in the Monroe 

study, the ordinal increments were non-uniform (for low uncertainty -  5%, 7.5%, 10%, 15%, 

20%). Morgan and Henrion (1990) assert that when considering patterns relating to 

uncertainty, people are more comfortable assessing uncertainty with common incremental 

values. Assessing uncertainties that are not based on common increments imposes undue 

psychological stress on participants as they wrestle with the decision on which rating is more
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appropriate. Additionally, the increments used in this research for low uncertainty ratings 

were based on an incremental scaling of 2.5%, the moderate uncertainty ratings were based 

on an incremental scaling of 5% and the high uncertainty rating incremented at 10% 

intervals. The chosen increments are a reflection of the work of Ayyub (2001) who contends 

that participants in an elicitation study prefer to think in smaller increments as the cognitive 

complexity to answer a question increases. As a participant evaluates an answer with a 

secure comfort level, the discriminators between answers become smaller. If a participant 

answers a question where the level of comfort in the answer is not so certain, participants 

generally think in larger incremental values. The incremental values associated with the 

assessment ratings reflect the cognitive complexity of assessing uncertainty in a conceptual 

design environment.

To construct the expert elicited uncertainty distribution, the default value provided on 

the questionnaire or the modified value provided by the expert becomes the “most likely” 

design parameter value. The quantitative value the expert assigns to the uncertainty 

associated with the “most likely” value constrains the outer tails of the distribution. For 

example: Expert A assigns a low uncertainty rating to design parameter x,. Expert A agrees 

that the default value for x; should be 5.96. The amount of uncertainty Expert A associates 

with a low uncertainty rating is 7.5%. Therefore, xi has a value range of [5.96 * 7.5% = ±

0.447]; minimum =5.51, most likely =5.96 and maximum =6.41 (see Figure 5). The 

minimum, most likely and maximum values are calculated but little knowledge is available 

of what the “shoulder” values of the distribution resemble therefore, a triangular distribution 

is used.
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5.51 5.96 6.41

Figure 5: Triangular distribution example

The uncertainty distributions constructed and calibrated for each discipline specific design 

parameter become the input distributions to the aggregation process as shown in Figure 6.
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Figure 6: Aggregation Process Model

3.0 What is the nature o f events that are relevant to aggregation: is uncertainty epistemic or 

aleatory?

The type of uncertainty encountered in a decision analysis should help determine 

which combination rule would be most appropriate. Epistemic uncertainty is the uncertainty 

associated with events that are uncertain due to internal factors such as incomplete 

knowledge or unreliable evidence (Rantilla & Budescu, 1999). Epistemic uncertainty can be 

abridged with increased knowledge about the phenomena and is reducible through research
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and better data. Epistemic uncertainties are better suited for behavioral techniques since the 

sharing of views, opinions and ideas can enhance knowledge about the variable of interest.

Aleatory uncertainty concerns events that are uncertain due to external factors; they 

cannot be known in full detail nor are they reducible. Aleatory uncertainties are best 

aggregated using one of the mathematical approaches. The nature of events relevant to this 

aggregation case are primarily associated with the aleatory uncertainty domain since they are 

irreducible and not fully known.

4.0 Are there any inherent characterizations that can be made about the information pattern 

or information sources such as biases or redundancy in information ?

Inherent characteristics of the information and redundancy in information may be 

handled through a calibration function. A calibration function was utilized by Conway 

(2003) as part of the larger research but is not a component of the aggregation algorithm 

itself.

5.0 What combination rule is to be utilized?

The deployment of an aggregation methodology to combine multiple expert opinions

in a conceptual design environment is not straightforward nor has there been experimentation 

in this context to test one method’s compatibility with conceptual environments over another. 

Most combination algorithms rely on an expert’s prior distribution of the variable of interest 

or on known distributions for the variable to calculate likelihood functions and determine an 

expert’s credibility. Neither of these two elements are available in the current research 

domain. Additionally, with no clear consensus among the literature of an aggregation 

method explicitly applicable to the attributes embedded in the conceptual design 

environment, the selection of an appropriate combination method is indeed the preference of 

the analyst. The attributes of the current research case coupled with extensive literature
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review supports the use of a mathematical aggregation method, specifically an approach from 

the opinion pool sector. An extensive literature review reveals the linear opinion pool 

presents the most straightforward method of combining the opinions of the experts.

The design of the aggregation process itself is rather intuitive. The inputs for 

aggregation are the calibrated design parameter uncertainty assessments provided by each 

discipline specific expert. The experts are queried for their assessments of parameter 

uncertainty via a questionnaire and the expert assessments are calibrated using a calibration 

function derived from the answers in the Background section of the questionnaire. The 

calibrated distributions are input into a Microsoft Excel® spreadsheet to be read into a risk 

assessment model. The calibrated uncertainty assessments are then used as input 

distributions to the aggregation process.

Prior to the aggregation of the calibrated distributions, appropriate weighting factors 

are applied to each derived distribution. A weighting factor reflects the perceived credibility 

of an expert by the decision-maker. Since empirical statistics are not available from which to 

derive expert credibility, design managers are asked to provide credibility ratings for each 

expert. For the current research case, discipline specific design managers are queried to 

provide credibility ratings (weighting factors) which are applied to the distributions of the 

respective expert. The elicitation of weighting factors by the design managers occurs via an 

interview process in which the design managers are given a list of the experts who provide 

uncertainty assessments for design variables. The design managers, in the presence of a 

facilitator, rank the experts in terms of reliability of prediction on a scale from 0 to 1. For 

example, discipline Design Manager A may rate two experts who will provide uncertainty 

assessments for design variables for discipline A. Design Manager A may rank Expert 1 with
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a 0.70 credibility rating while Expert 2 may receive a 0.30 credibility rating. The combined 

weighting factors for all experts being assessed by the design manager must equal 1.0. The 

design manager may base these weighting factors on subjective reasoning and his/her 

knowledge of each assessor’s expertise, experience, and prediction capability (Morgan & 

Henrion, 1990).

The next task in the aggregation process is to import the calibrated uncertainty 

distributions and the experts weighting factors into an aggregation platform. The risk 

assessment model, @RISK® is utilized within the Microsoft Excel® shell to perform 

mathematical aggregation using the linear opinion pool algorithm. @RISK® allows for the 

specification of 37 distribution types including Beta, Erlang, Gamma, Normal, Triangular, 

Uniform, etc. For the current research case, uncertainty assessments are queried in triangular 

distribution form -  the experts assess the minimum, most likely and maximum values for a 

parameter of interest. The calibration function applied to the initial assessments do not alter 

the distribution structure therefore the calibrated distributions are also in triangular form.

The @RISK® function l=RiskTriang(minimum, most likely .maximum)’ converts values in 

spreadsheet cells into a triangular distribution from which weighting factors and combination 

algorithms are applied. The application of the aggregation algorithm results in a “most 

likely” value of the combined assessments. In order to determine the minimum and 

maximum values of combined responses, sampling of the distributions is performed.

The sampling simulation module within @RISK® samples from each of the expert 

assessed uncertainty distributions and applies the appropriate weighting factor to each 

distribution during the sampling process. The advantage of using the @RISK® software is 

that either a Monte Carlo or Latin Hypercube Sampling technique can be chosen for the
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sampling process thus providing a more robust aggregated response. Monte Carlo Sampling 

is the more traditional sampling technique and is entirely random. Monte Carlo algorithms 

are available for all the distributions considered feasible for expert assessment (Vose, 2000) 

however, Monte Carlo suffers from efficiency issues. To increase the accuracy of Monte 

Carlo simulations Morgan and Henrion (1990) advocate increasing sample size. 

Consequently, to improve the accuracy of a Monte Carlo simulation a large number of 

iterations are typically required. This can become quite problematic when computing 

resources and/or time are limited. One of the variance reduction techniques employed to 

reduce the number of iterations required to improve computation efficiency is known as 

Latin Hypercube Sampling. The principle behind Latin Hypercube Sampling is stratification 

of the input probability distributions. Stratification divides the distribution into equal 

segments and a sample is then taken randomly from each segment. In this method, sampling 

is forced to represent values in each interval and thus, is forced to recreate the input 

probability distributions (Palisade, 2002). Latin Hypercube Sampling provides for faster run 

times by requiring less iteration for convergence. For this reason, Latin Hypercube 

Sampling is chosen as the sampling technique for this research.

The ©RISK® software also has an embedded module called BESTFIT® which allows 

a user to call up the BESTFIT® subroutine and have the software perform goodness-of-fit 

tests on the sampled results and fit the most appropriate probability distribution to the 

resultant data. Once the simulation has been performed using the Latin Hypercube Sampling 

technique, the distribution fitting solution BESTFIT® takes the sampled data and finds the 

distribution function that best fits that data. BESTFIT® tests up to 26 distribution types using
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advanced optimization algorithms. Results are displayed graphically and through a statistical 

report including goodness-of-fit statistics.

Once aggregation of multiple distributions has been applied and Latin Hypercube 

Sampling performed to determine a resultant distribution, the BESTFIT® module is used in 

this research to determine the most compatible aggregated probability distribution for the 

sample data. Since the inputs into the sampling process are probability distributions, a 

statistical goodness-of-fit statistic is used to verify the selection of the most compatible 

aggregated distribution response. BESTFIT® ranks all fitted distributions using one or more 

fit statistics. For continuous sampled data, the Chi-Square, Anderson-Darling or 

Kolmogorov-Smimov statistics can be used. Molak (1997) and Vose (2000) contend the best 

representation of expert opinions is with a discrete distribution therefore the Chi-Square 

statistic will be used as the goodness-of-fit measure. For discrete sampled data, only the Chi- 

Square statistic is appropriate (Palisade, 2002). The Chi-Square statistic is the most well 

known goodness-of-fit statistic but it does have a weakness: there are no clear guidelines for 

selecting the number and location of the bins (Palisade, 2002). To minimize this weakness, 

@RISK® has an option that allows the user to set the number of bins to “Auto” and set the 

bin style to “Equal Probabilities”. These choices are selected for the simulation.

Results Evaluation

The selection of the resultant aggregated distribution will be based on goodness-of-fit 

test statistics. The goodness-of-fit test compares a null hypothesis (Ho) with an alternative 

hypothesis (Hi). The test consists of computing a statistic based on sampled data. The 

goodness-of-fit statistic reports a measure of the deviation of the fitted distribution from the 

input data; the smaller the fit statistic, the better the fit (Palisade, 2002). For this research,
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two test statistic values are important, the chi-square fit statistic and the p-value. The p-value 

or observed significance level, explains how likely it is that a set of N samples drawn from a 

fitted distribution would generate a fit statistic greater than or equal to a critical value. As the 

p-value decreases to zero, there is less confidence the fitted distribution could have generated 

the original data set (Ebeling, 1997). Conversely, as the p-value approaches one, there is no 

basis to reject the hypothesis that the fitted distribution actually generated the data set. For

the chi-square goodness-of-fit statistic, if the p-value for the calculated A,2 is p > 0.05, fail to

reject the hypothesis that the deviation from the expected value(s) is small enough that

chance alone accounts for it. If the p-value for the calculated A2 is p < 0.05, reject the

hypothesis, and conclude that some factor other than chance is operating for the deviation to 

be so great. For example, a p-value of 0.01 means that there is only a 1% chance that this 

deviation is due to chance alone. Therefore, other factors, like linkage, must be involved 

(Ebeling, 1997).

The calculation of the chi-square test statistic is straightforward. The chi-square test 

statistic is based upon observed frequencies and expected frequencies of sampled data 

grouped into interval classes (bins). Samples are drawn from a population of data and 

observed frequencies (f0) are documented and expected frequencies (fe) postulated. A 

statistic can be calculated from the comparison:

,2

fe

Equation 5: Chi-Square Test Statistic
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The computed chi-square value can be compared to the chi-square critical value

(A,2crit) available from statistical reference books or computed using Microsoft Excel

(CHHNV(probability, degrees of freedom)). If the calculated value is less than the critical 

value, the hypothesis about the underlying population is not rejected (Hanke & Reitsch, 

1998). If the calculated test statistic is larger than the critical value, a poor f i t  is indicated. To 

determine the chi-square critical value, the Microsoft Excel CHHNV formula was used based 

upon a 95% confidence interval.

Table 10 summarizes the chi-square fit statistic and p-value for the aggregated 

responses. The hypothesis set forth is:

Ho: data fit the expected pattern 

Hi: data do not fit expected pattern

If X 2 > critical value reject Ho.

X 2a it (0.05,87) 109.77

A,2crit (0.05,73) 93.75

X 2cdt (0.05,21) 36.67

Validation

Validation of engineering research has conventionally demanded “formal, rigorous, 

and quantitative validation” (Barlas & Carpenter, 1990). Traditional validation methods are 

based primarily on logical inductive and/or deductive reasoning which works well in 

predictable, stable, data rich environments. These validation methods have traditionally been 

classified as objective -  based on deviance measures and statistical tests (Law & Kelton,
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1991; Sargent, 1999). Objective methods align quite well with the empiricisms that “formal, 

rigorous and quantitative” validation demands. There are, however, areas of engineering 

research that rely on subjective assessments, which makes strict adherence to “formal, 

rigorous and quantitative” validation problematic. Science progresses, according to Thomas 

Kuhn (1970), when the ruling paradigms cannot provide adequate explanations to scientific 

problems under investigation and this inadequacy makes way for new paradigms. The 

inadequacy of objective methods in validating non-empirical environments gave rise to a new 

validation paradigm -  the subjective method. Subjective validation, often used in knowledge 

based systems and simulation modeling (Sargent, 1999; Bawcom, 1997; Pederson et al., 

2000) utilizes conversational, contextual and subjective validation. When observed data does 

not exist this method must obligatorily be used (Braga, unknown).

Pederson, et al. (2000) prefer to think of objective and subjective validation in terms 

of epistemological views of knowledge. The logical empiricist validation (objective) is 

strictly formal, algorithmic, reductionist and a “confrontational process” where new 

knowledge is either true or false. This view asserts validation is more a matter of formal 

accuracy than practical use and works well for closed problems such as mathematical 

postulates or algorithms (Preece, 2001). The relativist validation (subjective) is a semiformal 

and conversational process, where validation is assessed as the confidence in usefulness of 

the new knowledge with respect to a purpose (Sargent, 1999). This approach is appropriate 

for open problems where new knowledge is, associated with heuristics and non-precise 

representations (Pederson, et al., 2000). The validation method for the current research case 

is an adaptation of a method from the relativist validation paradigm referred to as the 

Validation Square- a method developed, deployed and validated by Pederson et al.
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The Validation Square is a validation method designed to evaluate the effectiveness 

and efficiency of a research method based on qualitative and quantitative measures. The 

Validation Square is represented in Figure 7.
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Figure 7: Validation Square (Pederson et al., 2000)

Structural validation is a qualitative process evaluating the effectiveness of the 

research method at three levels: (1) accepting the individual constructs constituting the 

method; (2) accepting the internal consistency of the way the constructs are put together in 

the methods; and (3) accepting the appropriateness of the case study to be used to verify the 

performance of the method. Theoretical structural validity denotes the “soundness” of the 

method in a general sense while the empirical structural validity denotes the “soundness” of 

the method in the applied sense.

Performance validation is a quantitative process evaluating the efficiency of the 

research method at three levels: (1) accepting that the outcome of the method is useful with 

respect to the initial purpose; (2) accepting that the achieved usefulness is linked to applying 

the method; and (3) accepting that the usefulness of the method is beyond the case study.
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Performance validation as described by Pederson, et ai. 2000 reflects knowledge that can be 

articulated with statistical grounding, meaning the results of the research method can be 

evaluated comparatively with a “measure of improvement” allowing a quantitative 

evaluation. Empirical performance validity refers to the usefulness of the method for some 

limited case while theoretical performance validity evaluates the usefulness of the method 

beyond the specific test application. Sargent (1999) offers an argument to the quantitative 

nature of the performance validation process. Sargent supported by Preece (1994) asserts 

quantitative evaluation is not always possible in a research domain and thus performance 

validation must be extended to allow for qualitative measurements. Following this postulate, 

the current research case will adopt a qualitative evaluation of performance validation.

The Validation Square makes reference to the use of questionnaires and interviews 

but does not explicitly define how the stmctural validity and performance validity are to be 

evaluated. Pederson et al. (2000) do, however, assert that the validation enablers should be 

consistent with the context from which the application case is embedded. A framework has 

been established of what needs to be validated in the research methodology, the question now 

becomes how to validate. Researchers (Sargent, 1999; Hyrkas, Appelqvist-Schmidlechner & 

Oksa, 2003; Jensen, Klee, & Groenvold, 2002; Preece, 2001) have successfully used panels 

of experts as validation approaches. Both structured and unstructured interviews (Sargent, 

1999; Preece, 2001) as well as diagnostic questionnaires (Hyrkas, Appelqvist-Schmidlechner 

& Oksa, 2003; Jensen, Klee, & Groenvold, 2002) have been successfully used. The research 

validation method for the current study will follow the validation success of Sargent and 

Preece and use an unstructured interview process to determine methodology validity.
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The validation method set forth in this research incorporates the principles of the 

Validation Square and adds another tier to the validation process -  content validity of the 

elicitation instrument. The data acquisition instrument is a vital component to this research 

therefore the validation process would not be complete without a component to address 

instrument validity. As discussed, the questionnaire used in this research is an extension of 

the questionnaire used by Monroe (1997). Monroe validated his elicitation instrument 

through the use of an independent expert panel whose members evaluated the instrument 

asynchronously through the use of a questionnaire. Since the Monroe questionnaire was . 

modified and incorporated in this research, re-validation of the questionnaire is prudent.

Hyrkas, Appelqvist-Schmidlechner and Okas (2003) used an expert panel interview 

process to validate their questionnaire in terms of content validity in a clinical supervision 

setting. Content validity expresses how well the instrument (questionnaire) represents the 

content domain being applied. Content validity can be assessed through face validity and 

expert assessment. Face validity is asking people knowledgeable about the system whether 

the model or its behavior is reasonable (Sargent, 1999). Expert assessment is achieved by 

asking experts to review the content of the instrument either qualitatively or quantitatively. 

For the current research, the validation paradigm will adopt qualitative content validity as the 

validation process for the data collection instrument.

The validation methodology developed herein adopts principles from the Validation 

Square philosophy specifically structural and performance validation and couples them with 

a data acquisition instrument content validation process to create a more holistic validation 

paradigm. The validation of the aggregation methodology for risk assessment using expert 

elicitation is therefore, tri-fold. First, performance validity of the methodology is evaluated
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at the three levels defined in the Validation Square. An expert panel consisting of the design 

managers in an unstructured interview process (performed individually) qualitatively 

comment on (1) the acceptability that the outcome of the method is useful with respect to the 

initial purpose; (2) acceptability that the achieved usefulness is linked to applying the 

method; and (3) the usefulness of the method is beyond the case study. Second, the 

aggregation methodology itself must be proven to be compatible with conceptual vehicle 

design environments. Assessing the structural validity of the aggregation method is not 

empirically possible. There does not exist a validation data set from which to compare the 

results of the aggregation to an observed data point. The objective is to determine the 

usability and compatibility of the methodology based upon the confidence of design 

managers in its output. Therefore the aggregation method is determined defensible when it is 

shown the combination result is reproducible, accountable, subject to peer review, and 

unbiased. Structural validation is performed in an identical manner as performance 

validation -  individual, unstructured, conversational interviews. Lastly, content validity of 

the data collection instrument is necessary. Evaluation of face validity through expert 

assessment is intended to determine that the questionnaire is precise, reproducible, and 

accountable. Figure 8 represents the validation triad.
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Figure 8: Validation Triad

Although the validation interview process is unstructured and conversational in 

nature, three specific areas are identified as necessary to be covered to ensure sufficient 

capture of the elements of the validation triad (see Table 3). The interview process will take 

place between each member of the expert panel (design team) and the researcher. The 

researcher will guide the discussion of the interview to capture the minimum elements to 

satisfy the validation triad. The design managers are given the opportunity to comment on 

any aspect of the methodology, however the researcher must ensure that at minimum the 

elements listed in Table 3 are covered.
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Performance validity * Feedback on which uncertainty representation they find 
most useful in their decision-making strategies

* Usefulness of method is beyond case study
Structural Validity ■ Usability and value added of an aggregated response to 

decision strategies
■ Applicability of method beyond test case

Content validity ■ Ease of use of the questionnaire instrument
■ Appropriateness of questionnaire structure and scaling 

method chosen
■ Comprehension of content and context of questionnaire

Table 3: Elements of validation interview

The only material the design managers are given in the interview is a detailed report 

containing individual uncertainty distributions for discipline specific design variables as well 

as the aggregated distributions of the combined assessments. The uncertainty distributions 

and aggregated response representations are necessary to evaluate the performance and 

structural validity components of the validation methodology. As each expert panel member 

reviews the documentation and is guided to provide responses to the elements of the 

validation triad, the researcher captures the responses and documents the comments. If the 

majority of design managers assert the aggregated responses provide value added to their 

decision strategies and the aggregation methodology is appropriate to the conceptual domain, 

the aggregation methodology is considered validated

Issues and Challenges to Research Methodology 

The current research case has encountered some issues and challenges that could 

impact its effectiveness in dealing with large-scale systems. One challenge is the sparse 

population of identifiable experts in the respective disciplines. The uniqueness of conceptual 

aerospace design and the very specific knowledge required to perform aerospace analysis
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heavily constrains the acceptable population pool. It may be difficult to find more than one 

experts from which to elicit expert opinion in a discipline. This limitation is addressed in the 

work of Monroe (1997) and Hampton (2001).

An additional challenge to this research methodology is the inability to empirically 

validate the “correctness” of the aggregated response. The validation methodology 

developed herein assesses the usefulness of the aggregated response to decision-makers -  it 

does not determine the correctness of the response. Being able to observe and/or compare 

the aggregated response to a data point would certainly enhance the strength of this 

methodology. Morris (2003a), however, acknowledges the near impossibility of this 

observance and thus asserts this is indeed the “heart of the problem”.

A third, and perhaps most daunting issue regarding this research, is the lack of 

understanding by some in the research community on the difficulties of working in a data 

vacuum. Many researchers and scientist have difficulty believing that domains exist that do 

not have perfectly precise and completely available information and thus find it hard to give 

credibility to research based on subjective data. Baecher (unknown) identifies two elements 

of research credibility; research must be traceable and defensible. In data rich environments, 

tracebility is to historical information or empirical statistics and defensibility comes from the 

postulates, algorithms and laws of physics employed in the research. In conceptual domains 

(domains with little to no data) tracability refers back to the experts providing the data 

(assessments) and defensibility refers to the documented assumptions that go into the expert 

assessments. It is difficult to overcome the barriers of perception that credible research must 

be tied to empiricisms. Research in domains dominated by subjective data is equally credible 

and subject to the same rigors of proving tracability and defensibility (Morris, 2003a).
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CHAPTER IV 

DEMONSTRATION OF METHODOLOGY

Overview

Working with program management from NASA Langley Research Center, two 

aerospace vehicle disciplines and a concept design vehicle were selected for the application 

of the aggregation methodology. The development and deployment of an aggregation 

methodology was in conjunction with a larger research effort incorporating expert judgment 

elicitation and calibration research. In the larger context, an expert judgment elicitation 

methodology including background data on experts for the purpose of calibration has been 

developed. The requirements specified by the Institutional Review Board for the protection 

of experimental subjects were achieved through careful design and deployment of the 

questionnaire instrument. The current mechanism for distribution of the data acquisition 

instrument (questionnaire) is through electronic mail however; the questionnaire is capable of 

being administered via the World Wide Web.

The vehicle chosen for application of the aggregation methodology is a Two-Stage-To- 

Orbit (TSTO), staged at Mach 3, conceptual vehicle. This vehicle has a First Stage Booster 

and a Second Stage Orbiter, both stages having highly uncertain design variables. Two 

disciplines were chosen to elicit uncertainty assessments for input variables, Weights and 

Sizing and Operations Support. The Weights and Sizing discipline had 2 identified subject 

matter experts who were selected by the design managers based upon the expertise criteria 

outlined. The Operations Support discipline had 3 identified subject matter experts based 

upon the same expertise criteria.
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Weights and Sizing Case Description 

NASA Langley Research Center utilizes a Configuration Sizing program (CONSIZ) 

to size a vehicle and determine the weights of subsystem components. CONSIZ is a program 

developed specifically at Langley Research Center and provides capability of sizing and 

estimating weights for a vehicle based upon Weight Estimating Relationships (WERs) 

derived from historical regression using Shuttle data, finite element analysis and technology 

readiness level. The CONSIZ program has a predefined initial list of user-defined 

parameters which make up the input variables to the program. Additional design parameters 

are necessary to run a CONSIZ model but are provided as “pass through” variables from 

other discipline applications. For the TSTO staged at Mach 3 vehicle; the Booster has 104 

input variables, 54 of which are user defined and the Orbiter has 109 input variables -  58 

user defined. A complete listing of the user defined input parameters for the TSTO -  Mach 3 

vehicle is located in Appendix B.

Operations Support Case Description 

For Operational Support analyses, NASA Langley Research Center utilizes a 

Reliability and Maintainability Analysis Tool (RMAT) to calculate and assess vehicle 

maintenance burden, ground processing times and manpower requirements for conceptual 

vehicles. The underlying algorithms for the RMAT computations are regression models built 

from historical aircraft maintenance data and extrapolations to meet technology readiness 

level. RMAT is a complex, stand-alone, operational analysis code requiring expert user 

inputs (Unal, 2002). RMAT utilizes over 200 user defined input variables for an analysis 

and like CONSIZ, RMAT performs analysis on each element of the vehicle configuration.
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Questionnaire Design, Implementation and Deployment

Discipline design team managers agreed that to ensure efficiency in questionnaire 

content and to reduce the time burden for the experts to provide uncertainty assessments, 

only those design inputs having the most impact on vehicle performance or operational 

support need to be queried. To this end, a modified Nominal Group Technique (NGT) was 

utilized to elicit the most highly uncertain design parameters for each discipline. As 

discussed, the Nominal Group Technique requires that participants meet in the same location 

and rank order alternatives synchronously. The modified NGT developed for this research 

does not require experts to evaluate and rank alternatives synchronously but allows them to 

rank alternatives at their workstations. The tally of alternatives for the modified NGT is 

identical to the NGT; the only deviation from common procedure is the allowance of experts 

to rank alternatives in the privacy of their own workspace.

The modified NGT was implemented by listing all discipline specific user inputs (112 

for Weights and Sizing, 200 for Operations Support) in an Excel spreadsheet. Each 

discipline design team member was given an electronic version of the Excel spreadsheet 

along with the instructions presented in Figure 9.

Instructions for Classification of Parameter Impact
1. Please examine the list of ‘user input” variables provided.
2. On a scale from 1 to 5 (5 least significant -  1 most significant) please rate each of the 

variables according to your assessment of impact significance on performance 
characteristics.

Figure 9: Instructions for Parameter Impact Classification
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Once the design team managers completed the rankings, the results were tallied. Design 

team managers supported the use of the Pareto Principle as the discretionary paradigm from 

which the tally list would be reduced therefore, adhering to the Pareto Principle, the 20 

percent of responses deemed to have the most impact on vehicle design or operational 

support were selected for inclusion in the uncertainty expert elicitation questionnaire. The 

reduced parameter list for the Booster and Orbiter for each discipline is given in Appendix C.

From the reduced list of input parameters, discipline specific questionnaires were 

constructed. The questionnaires were electronically mailed to each subject matter expert 

with a request to complete the questionnaire and return it electronically to the researcher 

within five days of receipt. The five-day time limit was simply the discretion of this 

researcher but it did afford the experts sufficient time to complete the questionnaire and not 

feel too hurried. Each expert, working independently was asked to evaluate each design 

variable for uncertainty. The expert was first asked to rate the degree of uncertainty 

associated with the design parameter based on a qualitative 5 unit rating scale (Low, 

Low/moderate, Moderate, Moderate/high, High). Next, the expert was asked to evaluate the 

nominal value provided for the variable -  the expert could accept this nominal value or 

provide a value he/she believed more appropriately represented the nominal value for the test 

case parameter. Additionally, the expert was given an opportunity to establish a non- 

symmetrical distribution around the nominal value if he/she felt it appropriate.

The expert was next asked to describe the reason for the uncertainty rating for the 

parameter and the resultant parameter ranges if they were modified. The expert was asked to 

provide rationale for those parameter values that were altered. Additionally, the expert was
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asked to provide any other cues or insights into his/her logic and record that information in 

the block provided.

Once all input parameters had been assessed, the expert was given the opportunity to 

add parameters not shown which he/she believed to have a level of uncertainty associated 

with their value. After rating all input parameters, the experts were asked to anchor their 

qualitative measure of uncertainty to a quantitative value using the 5-point scale provided.

Institutional Review Board Considerations 

Questionnaires were developed for two disciplines for this study: Weights and Sizing 

and Operations Support. The questionnaires and questionnaire application process utilized in 

the supporting NASA study were reported to the Institutional Review Board (IRB) 

representatives at Old Dominion University. The IRB concluded that this research would 

qualify for an exemption from full IRB procedures for human subject research based on the 

output from the questionnaires not being harmful or damaging (civil or criminal liability, 

financial and/or employment implications) in any way to the subject participants.

Expert Judgment Data Collection 

The experts provided uncertainty assessments via Microsoft Excel® spreadsheet 

questionnaires. For each design parameter assessed for uncertainty, the nominal value 

represented the “most likely” value for the parameter. If the expert assumed a symmetrical 

distribution about he nominal value, the minimum and maximum values were calculated 

from the expert’s quantitative assessments of uncertainty associated with their qualitative 

value they assigned to the design parameter. If an asymmetrical distribution was assessed, 

those values were read directly from the respondents values provided in the questionnaire. 

The triangular distributions resulting from the “raw” data coupled with the outputs from the
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Expert Calibration Function applied to the distributions as part of the Conway (2003) 

research, resulted in the calibrated distributions that were inputs to the aggregation algorithm.

Calibrated Assessments 

The application of the Expert Calibration Function (ECF) is a result of 

complementary research performed by Conway (2003). Conway derived an ECF by 

analyzing the responses in the Background section of the questionnaire. Elements of the 

ECF were subsequently applied to the uncertainty distributions. The development and 

deployment of an ECF for this research enhances the credibility of the aggregated responses 

by reducing the variability in the input distributions themselves. The application of the ECF 

yields uncertainty levels around estimates that are more consistent with an expert’s 

experience and risk philosophy. While the calibrated assessments are inputs into the 

aggregation process, the ECF is not part of the aggregation methodology per se, therefore 

will not be expounded on further. However, building upon the work of Conway (2003) the 

calibrated distributions which are used as inputs to the aggregation algorithm are provided in 

Appendix D.

Aggregation Process

Prior to the aggregation of multiple assessments using the linear opinion pool method, 

weighting factors (expert credibility) are assessed for each subject matter expert. The 

discipline specific design managers (often the elicited experts themselves) were asked to 

provide credibility assessments for the discipline experts providing the uncertainty 

assessments. For Weights and Sizing and Operations Support the design managers and the 

elicited experts were synonymous. A facilitator interviewed each discipline specific design
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manager separately and asked for his/her credibility ranking for each of the experts elicited 

for responses. The results of the interview process follow (Tables 4 and 5):

'"Design Manager A Design Manager B

Expert A 0.30 0.30

Expert B 0.70 0.70

Table 4: Weighting Factors for Weights & Sizing

Design Manager A Design Manager B Design; Manager C ;

Expert A 0.40 0.40 0.40

Expert B 0.40 0.40 0.40

Expert C 0.20 0.20 0.20

Table 5: Weighting Factors for Operations Support

Calibrated distributions are imported into the @RISK® software in basic form 

(minimum, most likely, maximum values) and triangular distributions are built for each 

variable assessed for uncertainty using the “RiskTriang” function. An example using 

Operations Support VAR01 is provided for illustrative purposes in Table 6 and Figure 10.

Variable . Var Name Nom Value 
VAR 01 : Sclied H rs 7' :1147$D "

MOST
Expert MIN LIKELY MAX

Expert A 40,000.0000 120,487.5000 125,000.0000
Expert B 90,000.0000 135,460.3618 140,000.0000
Expert C 90,000.0000 100,000.0000 110,000.0000

Table 6: Operations Support VAR01 Calibrated distribution
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Booster Operations & Support Expert Assessment 
VAR01: Schedhrs

140 16012060 10040 8020

Value in thousands

Figure 10: Operations Support VAR01 assessments

Weighting factors, as provided by the decision managers, are applied to each of the

expert’s assessments (Table 7).

Variable V ar .Name Nom Value

: : ‘VAR01 ' : SchedxHrS' ■114750 v
Weighting MOST

factor Expert MIN LIKELY MAX
0.40 Expert A 40,000.0000 120,487.5000 125,000.0000
0.40 Expert B 90,000.0000 135,460.3618 140,000.0000
0.20 Expert C 90,000.0000 100,000.0000 110,000.0000

Table 7: Calibrated distributions with Weighting Factors
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A linear opinion pool aggregation algorithm (Equation 6) is coded into a separate 

input cell.

Aggregated Weighted Distribution

= RiskTriang(40,000, 120487.5,125000)*0.40 + RiskTriang(90000,135460.3618,140000)*0.4Q + 
RiskTriang(90000,100000,110000)*0.20______________________________________________

Equation 6: Linear Opinion Pool Equation

The result of executing this equation is simply an aggregated “most likely” value of the > 

combined distribution. For a more robust answer and to determine the minimum and 

maximum values of the distribution, a simulation approach is necessary. To perform 

simulation on the expert assessments, the addition of the variable “RiskOutput” to the 

aggregation equation is required and should not be considered part of the linear opinion pool 

equation itself (Equation 7).

Aggregated Weighted Distribution

= RiskOutput(“0&S Booster VAR01”) + RiskTriang(40,000, 120487.5,125000)*0.40 + 
RiskTriang(90000,135460.3618,140000)*0.40 + RiskTriang(90000,100000,11Q000)*0.2Q

Equation 7: @RISK® Simulation Equation

To run a simulation, a variety of setting may be used to control the type of simulation 

@RISK® performs. A simulation in @RISK® supports unlimited iterations and multiple 

simulations (Palisade, 2002). The “Simulation Settings” module allows you to specify the 

number of iterations to run as well as whether you want to use Monte Carlo or Latin 

Hypercube sampling. For this research case, 4 iterations were run (500, 1,000, 10,000, 

15,000) using the Latin Hypercube sampling technique. The number of iterations chosen
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was simply to monitor convergence of results and to compare aggregated values at different 

sampling iterations. Since increased iterations increases accuracy of simulated results (Vose, 

2000), the results from running 15,000 iterations are evaluated.

Data Analysis - Aggregated Responses 

The numerical results of performing the aggregation process on the calibrated 

assessments are summarized in Appendix E. Minimum, most likely, maximum, and mode 

are represented. The resultant aggregated distributions are formulated by the module 

BESTFIT® which runs goodness-of-fit algorithms to determine the most compatible 

distribution that best represents the sampled data. As discussed earlier, the selected 

distribution from the simulated aggregation process is based upon the Chi-Square statistic. A 

graphical illustration with test statistics of ari aggregated result follows (Figure 11 and Table 

8):

BetaGeneral(5.1405,2.6091,69162,125877)
X <= 90519 

5.0%
X<= 120181 

95.0%4.5

3.5 -

2.5 -

0.5 -

100 110 120 130

Values in Thousands

Figure 11: Operations Support VAR01 Aggregated results
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Chi Square Statistics
Test Value 107.5
P Value 0.0675
Rank 1
C.Val @  0.75 77.7774
C.Val @ 0.5 86.3342
C.Val @ 0.25 95.4972
C.Val @ 0.15 100.6695
C.Val @ 0.1 104.275
C.Val @ 0.05 109.7733
C.Val @ 0.025 114.6929
C.Val @ 0.01 120.591
C.Val @ 0.005 124.7177
C.Val @ 0.001 133.5121
# Bins 88

Summary Data
FIT Beta Distribution

a l 5.153360407

a2 2.646831156
min 69354.10984
max 126007.711
Left X 90579
LeftP 5.00%
Right X 120191
Right P 95.00%
Diff. X 2.96E+04
Diff. P 90.00%
Minimum 69354
Maximum 126008
Mean 106784
Mode 109922
Median 107595
Std. 9042.4
Variance 81765319
Skewness -0.4109

Table 8: Operations & Support VAR01 Summary Data

Uncertainty assessments were queried for 33 variables (10 from Weights and Sizing 

and 23 from Operations Support) and the aggregation methodology applied to the calibrated 

distributions. Duplicate variables were not aggregated if their values were identical for the 

Booster and Orbiter. Determining the most appropriate distribution to fit the aggregated 

responses resulted in 25 variables being most compatible with the Beta distribution, 2 

variables best represented with the Triangular distribution and 1 aggregated variable best 

represented with a Weibull curve. A summary of the variables and the best-fit aggregated 

distributions are in Appendix F. Appendix G shows graphical representations of the 

aggregated responses with associated test statistics.
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CHAPTER V 

RESEARCH FINDINGS

A summary of the BESTFIT® aggregated responses is represented in Table 9.

Variable Distribution DF Fit Statistic
Fail to Reject 

Reject H0 p-value
Weights & Sizing

Booster VAR02 Beta 73 74.14 Fail to reject 0.4408
Booster VAR03 Beta 87 86.49 Fail to reject 0.4954
Booster VAR08 Beta 87 108.7 Fail to reject 0.0577
Booster VAR09 Beta 87 68.94 Fail to reject 0.923
Booster VAR10 Beta 87 88.44 Fail to reject 0.4367
Booster VAR11 Beta 87 92.89 Fail to reject 0.313
Orbiter VAR03 Beta 87 76.65 Fail to reject 0.7784
Orbiter VAR12 Beta 87 64.78 Fail to reject 0.9643
Orbiter VAR 13 Beta 87 94.89 Fail to reject 0.2646
Orbiter VAR 14 Beta 87 92.89 Fail to reject 0.313

Operations Support
Booster VAR01 Beta 21 10.84 Fail to reject 0.9658
Booster VAR04 Beta 87 93.57 Fail to reject 0.2958
Booster VAR05 Beta 87 85.11 Fail to reject 0.5372
Booster VAR06 Beta 87 69.73 Fail to reject 0.9125
Booster VAR07 Beta 87 78.58 Fail to reject 0.7289
Booster VAR08 Beta 87 87.51 Fail to reject 0.4646
Booster VAR09 Beta 87 98.54 Fail to reject 0.1871
Booster VAR 10 Beta 87 86.65 Fail to reject 0.4904
Booster VAR 12 Triangular 73 258.2 Reject 0
Booster VAR14 Beta 87 93.41 Fail to reject 0.2999
Booster VAR 15 Beta 87 69.34 Fail to reject 0.9178
Orbiter VAR01 Beta 87 163.9 Reject 1.21E-05
Orbiter VAR06 Beta 87 106 Fail to reject 0.0817
Orbiter VAR09 Triangular 87 113.1 Reject 0.0316
Orbiter VAR10 Weibull 87 81.7 Fail to reject 0.6404
Orbiter VAR11 Beta 87 79.67 Fail to reject 0.6989
Orbiter VAR 14 Beta 73 69.92 Fail to reject 0.5805
Orbiter VAR 15 Beta 87 104.9 Fail to reject 0.0928

Table 9: Summary of Chi-Square Test Statistics
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The majority of fitted data mapped quite well to a beta distribution. The beta 

distribution is very flexible and useful and can be used when a variable is bounded by two 

limits. The normal distribution is valid between -  oo and + co and the lognormal distribution 

is valid between 0 and + oo. The beta distribution has long been the distribution of “choice” 

for subjective assessments (Haidar & Mahadevan, 2000). Because the beta distribution is 

bounded on both sides, it is often used for representing processes with natural lower and 

upper limits (Hahn & Shapiro, 1967). The beta function is characterized by two parameters 

a l  and a 2  representing the scale parameter and shape parameter respectively. When otl = a2 

=1 the beta distribution essentially becomes a uniform distribution. When a l  >  a 2  the 

distribution becomes skewed towards higher values; essentially mimicking a right skewed 

triangular distribution. When a l<  a 2  the distribution becomes skewed towards lower values 

essentially becoming a left skewed triangular distribution. If a l  is set equal to « 2 ,  the 

distribution is symmetric around the mean (Garvey, 2000). Because the beta function can 

take a wide variety of shapes, the beta distribution is among the most diverse and flexible 

distribution (Haidar & Mahadevan, 2000). The versatility of the beta distribution and its 

compatibility with subjective assessments supports the results that 26 out of 29 variables 

aggregated resulted in a beta distribution fit.

The triangular distribution was a best fit match to two operations support variables 

(Booster VAR12 and Orbiter VAR09). The triangular distribution is the most commonly 

used distribution for modeling expert opinion due to its simplicity and is defined in terms of 

minimum (a), most likely (c) and maximum values (b) (Molak, 1997). The location of c 

relative to a and b determines how much probability there is on either side of c. The closer
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the mode is to the variables maximum possible value b, the less likely it is the variable will 

exceed the mode. The closer the mode is to the variables minimum possible value a, the 

more likely the variable will exceed its mode (Garvey, 2000). In examining possible clues 

as to why these two variables deviated from the pattern of beta distribution, a look at the 

input distributions reveals some insight. Both input distributions for Booster VAR12 and 

Orbiter VAR09 look remarkably similar. Both are heavily skewed with one distribution 

significantly dissimilar from the other two assessments. This “outlier” distribution is 

significant enough to skew the goodness of fit away from the beta distribution and cause 

enough discontinuity to reject the null hypothesis.

Lastly, one variable, operations support VAR 10 was a best fit match to the Weibull 

distribution. The Weibull distribution is often used to represent distributions of failure time in 

reliability models and is similar in shape the beta distribution (Morgan & Henrion, 1990). 

The Weibull function, like the beta, has a shape parameter (a) and a scale parameter (b). It is 

unclear why this particular variable has a better fit to a Weibull rather than a beta distribution 

but it is interesting to note the goodness-of-fit statistic indicates the beta distribution is the 

second most “best-fit” curve of the 22 distributions examined.

Validation

Validation of the aggregation methodology is a one-on-one unstructured interview 

process consisting of a three-part construct. Content validity is assessed by the decision­

makers in regards to ease of use of the questionnaire instrument, appropriateness of the 

questionnaire stmcture to the problem domain and comprehension of content and context of 

the questionnaire. Structural validity is assessed in regards to usability and value added of an 

aggregated response to decision strategies and the applicability of the method beyond the test
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case. Lastly, performance validity is based upon feedback from the decision-makers on 

which uncertainty representation they find most useful in their decision strategies.

The discipline design managers were separately interviewed and allowed to discuss 

any aspect of the methodology. This researcher guided the discussion when necessary to 

ensure the minimum requirements listed in Table 3 were covered. The researcher recorded 

all responses and comments. The design managers unanimously agreed the questionnaire 

content, structure and deployment was efficient, well developed and user friendly. Each 

concurred the questionnaire could easily be applied to other test cases and successfully 

captured the qualitative and quantitative uncertainty of design parameters. Two specific 

suggestions for improving the questionnaire were reported by the design managers. The 

design managers suggest that instead of having the subject matter experts tab through the 

variables on Microsoft Excel® worksheet tabs, automate the process so that when the experts 

finish assessing the uncertainty of a variable, the sheet immediately scrolls to the next 

variable. Additionally, the design managers would like to see the questionnaire transported 

into the World Wide Web environment. Both of these suggestions have been previously 

identified in the larger context research from which this methodology is embedded and are to 

be implemented as an extension of the larger research.

Determining whether the aggregated responses are useful to decision-makers 

(structural validity) and which uncertainty representation decision-makers find most useful in 

decision strategies (performance validity) is a completely subject assessment. Design 

managers were presented 3 representations of the aggregated data -  aggregated numerical 

values of minimum, most likely and maximum, as presented in Appendix E; expert calibrated 

assessments layered onto one graph as presented in Appendix G; and the BESTFIT®
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aggregated responses represented in Appendix G. The discipline design managers were 

asked to review each of the representations and comment. One design manager believes all 

three representations are valuable in that each presents a different interpretable reference to 

the aggregated data. The numerical representation (Appendix E) provides more of a discrete 

value to the aggregation while the representation of layered calibrated assessments allows the 

design manager to assess the level of agreement between the experts. The BESTFIT® 

aggregated representation is valuable “when you are ready to implement a decision”.

Another design manager focused in more on the aggregated graphical representation and 

responded this representation gave him a better idea of where to go with his decision 

strategies instead of relying on “heavy interpolation”. In the design manager’s opinion, the 

aggregated response provides mathematical validity to the “eye-ball” method which is so 

prevalent in conceptual design. Additionally he felt the methodology took “amalgamous data 

and transformed it into something useful”.

Each design manager also commented on the usefulness and applicability of this 

methodology beyond the test case. One of the operations support design managers hopes to 

extend this methodology to a full scale conceptual vehicle, integrating each discipline 

necessary to develop a space transport concept. A weights and sizing design manager asserts 

this methodology is transportable to planetary exploration projects and would like to see this 

methodology employed in other projects within the Vehicle Analysis Branch at NASA 

Langley Research Center.
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DISCUSSION

As technology systems continue to evolve in complexity and conceptual designers 

seek to stretch the limits of feasibility of engineering design, strategies to holistically capture 

and represent risk associated with such highly uncertain and high consequence enterprises 

becomes paramount. In order to quantify risk with confidence, better quantification 

strategies need to be developed (Proffitt, 2003). Coupled with improved quantification 

strategies is the need for morejobust combination methods when multiple uncertainties for 

the same variable have been quantified. Many aggregation methods exist that combine 

expert opinions when past data is available from which to ascertain likelihood functions and 

expert credibility. The current research case is embedded in a domain in which these two 

factors are absent and, therefore, a combination method which does not rely on likelihood 

functions and with an alternate way to determine expert credibility has been developed.

The development of this aggregation methodology for uncertainty assessment 

required the integration of many elements; a thorough understanding of the research domain 

and uncertainties under investigation, the development of an efficient, relevant and 

appropriate data elicitation mechanism, an aggregation approach compatible with the type of 

uncertainty being investigated and the decision model chosen, and the validation 

methodology had to be congruent with a subjective research paradigm.

The aerospace conceptual design environment is a unique domain in that there is very 

limited “hard” data to base decisions on and the preponderance to fully know the outcome of 

an event is difficult. Aerospace conceptual designs are normally initiated 20-30 years from 

the time the vehicle needs to be in service and the technology projected to be incorporated
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into these new designs is unique and revolutionary. For this very reason, the values of design 

variables and the uncertainties associated with those values is considered unknown. These 

values are not completely unknowable since in 20-30 years the vehicles should come to 

fruition, however at the time of a decision milestone the values are not known quantities.

This distinction is important in understanding the research domain and uncertainties under 

investigation in this study.

The data elicitation mechanism used in the current case was a modification of a 

questionnaire developed by Monroe (1997). The Monroe questionnaire was chosen as a base 

model because it had been developed and deployed in the conceptual aerospace environment 

with success in estimating the Weight Estimating Relationships (WERs) for weights and 

sizing variables. However, in examining the compatibility of the Monroe questionnaire in the 

deployment of the aggregation methodology, several issues arose. The structure of the 

Monroe questionnaire allowed the experts to contradict their own assessments of uncertainty 

and many of the participants of that study did not find the questionnaire time efficient. None 

of these complications were too great to overcome but a modification of the questionnaire 

was necessary to ensure time efficiency and prevent expert contradiction of their own 

assessments. A strength of the questionnaire for application to the current research is the 

elicitation of values in triangular distribution form. Triangular distributions work remarkably 

well when knowledge of the “shoulders” of a distribution is unclear. A weakness of the 

Monroe structure however, was that he disallowed skewed triangular distributions; the 

structure of the questions forced experts to give a symmetrical answer around the mean. For 

this study, experts must be allowed to provide skewed distributions to properly capture the 

uncertainties of a variable of interest. Physical limitations of a variable may constrain an
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extreme value (minimum or maximum) thus impacting the uncertainty associated with a 

mean value. The questionnaire was modified to allow for skewed distributions to 

acknowledge possible physical limitations of design variables.

Relating to the uncertainty assessments of the experts is the question of how to assign 

credibility factors to each expert’s assessment in the absence of historical data or observable 

outcomes. The expert weighting factors are a critical component to the opinion pool 

aggregation algorithms. Some researchers assign credibility factors based upon years of 

experience or educational level but as the literature indicates, these characteristics are not 

necessarily qualifiers for expertise. For this research study, it was determined that eliciting 

credibility factors from the design managers themselves, would be the most appropriate 

method to gather these factors. This method of subjectively ascertaining credibility factors 

would incorporate all the relevant characteristics of expertise (see Chapter HI, p. 43) and 

provide the most comprehensive weighting of the experts judgments.

The execution of the linear opinion pool aggregation algorithm provides a “most 

likely” value of the combined distributions. For a more robust representation of the 

combination algorithm, simulation sampling was incorporated. The Latin Hypercube 

sampling technique was run with 500, 1000, 10000, and 15000 iterations; 15000 iterations 

was the convergence point of the majority of variables. It is interesting to note that on almost 

all variable sampling, the smaller iterations resulted in either normal or lognormal 

distributions while the higher iterations (10000 and 15000) converged to a beta distribution. 

It would be interesting to extend this research to investigate the correlation between input 

distributions and output distributions and to hypothesize on the relationship between the two.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

Perhaps the biggest challenge in the development of the present research was 

determining a means to validate the aggregation methodology. The distant-future nature of 

aerospace technology impact rendered classic (objective) validation techniques moot. A 

means to subjectively validate the usefulness of the aggregated responses to decision-makers 

was necessary. To access how useful decision-makers found the aggregated responses, a 

validation technique that allowed free exchange of ideas, thoughts, criticisms and opinions 

was necessary. The use of an unstructured interview process provided greater depth of detail 

in the validation analysis; much more detail than if a questionnaire instrument were used. 

When eliciting qualitative assessments in a questionnaire, participants may not provide as 

detailed a response as a researcher might like. Frary (unknown) discourages open-end 

questions on a questionnaire because participants are likely to suppress responses to save on 

time commitment to the process. Conversational, context driven dialogue enabled a more 

comprehensive evaluation of the usability of the aggregated response to conceptual decision­

makers.
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CHAPTER VII 

CONCLUSIONS

The development and deployment of an aggregation methodology has resulted in a 

process that permits aggregation of multiple expert opinions into a single consensus 

distribution. While research and application of aggregation techniques is not new, the 

development of an aggregation methodology in the absence of likelihood functions and 

expert credibility assessments is unique. The use of simulation in the aggregation process 

expands aggregation from a single point outcome, generally a most likely value to the 

aggregation of distributions which more effectively represent risk and uncertainty. The 

application of a distribution-fitting tool such as BESTFIT® adds a level of robustness to the 

aggregation outcome by allowing an analyst to vary distribution types to compare aggregated 

outcome ranges. This methodology, applied in the aerospace discipline, which is very 

dynamic and continuously evolving, should prove an effective aid to decision-making 

associated with aerospace development.

Research Contributions

The primary focus of this research is the aggregation of multiple opinions in 

conceptual design environments. The contribution of this research falls within the landscape 

of aggregation application as well as combination methodology. Prior studies in expert 

elicitation have been performed in environments where historical data or empirical statistics 

have been available to determine likelihood functions and to assess expert credibility. These 

two attributes do not exist in the current research case.

The development of an aggregation methodology which does not rely on prior 

distributions or known expert credibility factors and the demonstration of the methodology in
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a highly dynamic and uncertain domain provides decision-makers with a viable decision 

strategy to reduce uncertainty in conceptual designs. The aggregation methodology 

developed and demonstrated herein, provides a method capable of improving the robustness 

of engineering designs, improve cost estimates of conceptual vehicles and abate variability, 

which leads to risk and uncertainty. By applying this methodology, the decision-maker can 

select the best, most cost-effective, risk tolerant solutions to provide the greatest long-term 

benefits.

Study Limitations & Delimitations 

The use of expert judgment elicitation techniques should be reserved for those 

environments where little “historical” data is known about the parameter of interest. Where 

sufficient data exists or can be feasibly obtained, traditional statistical strategies are 

preferable to expert opinion.

Another limitation of this research is the variability of output from the aggregation 

tool used to combine multiple opinions. Uncertainty estimates of design parameters are 

queried and uncertainty estimates of error associated with discipline specific analysis tools 

are elicited; however, the uncertainty associated with the variability from the output from the 

aggregation tool itself is not investigated. It is not the intent of this research to examine the 

sensitivity of the combination protocol.

Additionally, this research does not investigate the propagation of uncertainty in the 

combination of expert opinions. The intent of this research is to develop a viable aggregation 

methodology that sufficiently combines multiple opinions in conceptual design 

environments. The propagation of uncertainties in combination methods is outside the intent 

of this research.
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Extensions of Research 

The present study has great potential for future expansion. In particular, this research 

has utilized the triangular distribution for its expert elicitation process. This follows previous 

work in expert elicitation related to aerospace conceptual design environments (Hampton, 

2001; Monroe, 1997). Extending the elicitation process to include other representations of 

uncertainty assessments such as a beta or exponential distribution may enhance the 

robustness of the aggregation methodology.

As mentioned in the literature review, the logarithmic opinion pool method is a viable 

mathematical aggregation method to deploy in subjective probability combination schemes. 

Advancing this research to include the logarithmic opinion pool method and evaluating the 

fidelity of results with the linear opinion pool method would be an interesting and valuable 

comparative analysis.

Lastly, extension of the aggregation methodology developed herein could be applied 

to domains outside the aerospace conceptual design environment. Many decision domains 

such as military intelligence, automobile manufacturing, national security/terror analysis and 

medical/pharmaceutical fields consistently deal with highly uncertain, high consequence 

decisions. Extension of this methodology to other decision domains may serve to 

demonstrate the methodologies use as a template and add to the generalizability of this 

research.
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Sample Questionnaire -  Operations Support

From the RMAT INPUT parameters you have 
Variable Scheduled

Nominal 114750

Rate the degree of uncertainty that you associate with this 
Low Low/moderate Moderate Moderate/high High 

Uncertainty Rating

If you feel this INPUT parameter’s default value should be modified, you may provide a new 
estimate for the INPUT parameter’s nominal 
New Nominal Value I

If you feel the range of possible values around the nominal value is not symmetrical, please provide 
own estimates of minimum and maximum

Min | Max |~ ~ ~ ......... |

Now that you have rated the uncertainty for this INPUT parameter, please provide a reason or 
for your rating. Include a rationale for any change you made to the parameter’s nominal

To further document your thinking, please provide any cues (or triggers) that influence your 
about this

After completing the preceding steps for all parameters you have rated as uncertain, please provide a 
quantitative explanation of your understanding of Low, Moderate and High uncertainty, 
using the 5-point scales provided.

The amount of uncertainty or variation that I associate with Low Uncertainty is:
LOW Uncertainty; I 1

Less 5% 7.50% 10% 12.50% 15% More

The amount of uncertainty or variation that I associate with Moderate Uncertainty is:
MODERATE Uncertainty f~

Less 10% 15% 20% 25% 30% More

The amount of uncertainty or variation that I associate with High Uncertainty is:

20% 30% 40% 50% 60% More
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TSTO Launch Vehicle Param eter List

Weights & Sizing -Stage: Orbiter
Innut Variable Description Variable Name Value Data Source

ballast weight fraction of empty wt cballast 0 user input
growth allowance fraction cgrow 0.15 user input
payload weight (lb) payld 35000 user input
additional down-payload (lb.) adpay 25000 user input
space radiator area (ft2) srad 700 user input
mission duration (days), design tday 10.5 user input
mission duration (days), reserve tmar 2 user input
number of crew ncrew 0 user input
maximum man-day capability tmday 0 user input
nominal fuel cell power (kw) pfcnom 14 user input
oms delta v for tank sizing (ft./sec.) delvt 900 user input
oms delta v (ft./sec.) - bum 1 delvl 348 user input
oms delta v (ft./sec.) - burn 2 delv2 0 user input
oms delta v (ft./sec.) - burn 3 delv3 0 user input
oms delta v (ft./sec.) - station appr. delv_sa 100 user input
oms delta v (ft./sec.) - deorbit delv_do 366 user input
max dynamic pressure, psf qmax 700 user input
cruise distance (nmi) dcruise 0 user input
number of main engines neng 9 user input
total number of fly-back jet engines njeng 0 user input
initial t/w, orbiter tow 1.3113 user input
lift-off t/w, 2-stage vehicle towi 1.3369 user input
engine power level fraction pwr 1.04 user input
design max engine power level fraction pwrmax 1.04 user input
oxidizer-to-fuel ratio rmix 6 user input
propellant bulk density, o/f=6.0 dbulk 22.54 user input
fuel density (lb./cu. ft.) d_pfl 4.42 user input
lox density (lb./cu. ft.) d_lox 71.14 user input
ullage volume fraction ull 0.015 user input
ullage volume fraction, wing wull 0.03 user input
wing loading (psf) wos 65 user input
technology factor - wing str fwstr 1 user input
technology factor - vertical fin str fvstr 1 user input
technology factor - body dry str fbstr 1 user input
technology factor - fuel tank fpfltnk 1 user input
technology factor - L02 tank flo2tnk 1 user input
technology factor - fuselage TPS fbtps 1 user input
technology factor - wing & fin TPS fwtps 1 user input
technology factor - body flap TPS fbftps 1 user input
technology factor - landing gear fgear 1 user input
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Weights & Sizing - Stage: Orbiter (Continued)
Input Variable Description Variable Name Value Data Source

technology factor - main engines fmeng 1 user input
technology factor - propellant feed sys fpfs 1 user input
technology factor - gimbal actuation fgim 1 user input
technology factor - main engine ht shld fhtsld 1 user input
technology factor - he pneumatic sys fhesys 1 user input
technology factor - RCS frcs 1 user input
technology factor - OMS foms 1 user input
technology factor - APU fapu 1 user input
technology factor - fuel cell sys ffcell 1 user input
technology factor - BCD feed 1 user input
technology factor - hydr conv & distr fhed 1 user input
technology factor - control surface act. fcs 1 user input
technology factor - avionics fav 1 user input
technology factor - environmental contrl fee 1 user input
technology factor - internal insulation finsl 1 user input
technology factor - purge, vent, & dm fpvd 1 user input
technology factor - range safety frng 1 user input
technology factor - payload container fplcon 1 user input

Weights & Sizing - Stage: Booster

Input Variable Description Variable Name Value Data Source
number of common booster stages nbst 1 user input
ballast weight fraction of empty wt cballast 0 user input
growth allowance fraction cgrow 0.15 user input
ascent time (min) t_asc 2 user input
descent time (min) t_desc 20 user input
operating time margin (min) t_mar 5 user input
number of crew ncrew 0 user input
maximum man-day capability tmday 0 user input
electrical power req. (kw), ascent p_asc 11.3 user input
electrical power req. (kw), descent p_desc 7.7 user input
nominal electrical power (kw) pfcnom 11.3 user input
max dynamic pressure, psf qmax 700 user input
cruise distance (nmi) dcruise 0 user input
number of main engines neng 8 user input
total number of fly-back jet engines njeng 0 user input

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



101

Weights & Sizing - Stage: Booster (Continued)

Input Variable Description Variable Name Value Data Source

lift-off t/w, 2-stage vehicle tow .1.3372 user input
initial t/w, orbiter toworb 1.3113 user input
engine power level fraction pwr 1.04 user input
design max engine power level fraction pwrmax 1.04 user input
oxidizer-to-fuel ratio rmix 6 user input
propellant bulk density, o/f=6.0 dbulk 22.54 user input
propellant bulk density, o/f=6.0 (orb.) dbulk2 22.54 user input
fuel density (lb./cu. ft.) d_pfl 4.42 user input
lox density (lb./cu. ft.) d_lox 71.14 user input
ullage volume fraction - ull 0.015 user input
ullage volume fraction, wing wull 0.03 user input
wing loading (psf) wos 65 user input
technology factor - wing str fwstr 1 user input
technology factor - vertical fin str fvstr 1 user input
technology factor - body dry str fbstr 1 user input
technology factor - fuel tank fpfltnk 1 user input
technology factor - L02 tank flo2tnk user input
technology factor - fuselage TPS fbtps user input
technology factor - wing & fin TPS fwtps 1 user input
technology factor - body flap TPS fbftps 1 user input
technology factor - landing gear fgear 1 user input
technology factor - main engines fmeng 1 user input
technology factor - propellant feed sys fpfs 1 user input
technology factor - gimbal actuation fgim user input
technology factor - main engine ht shld fhtsld user input
technology factor - he pneumatic sys fhesys 1 user input
technology factor - RCS frcs 1 user input
technology factor - OMS foms user input
technology factor - APU fapu 1 user input
technology factor - fuel cell sys ffcell 1 user input
technology factor - ECD feed 1 user input
technology factor - hydr conv & distr fhed 1 user input
technology factor - control surface act. fcs 1 user input
technology factor - avionics fav 1 user input
technology factor - environmental contrl fee 1 user input
technology factor - internal insulation finsl user input
technology factor - purge, vent, & drn fpvd user input
technology factor - range safety frng 1 user input
technology factor - payload container fplcon 1 user input
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Weights & Sizing 
Booster

■ v Variable'-Name. Description.,; Nominal Value
nbst: number of common booster stages 1
tow: lift-off t/w, 2-stage vehicle 1.3372
pwr: engine power level fraction 1.04
fmeng: technology factor - main engines 1
fbstr: technology factor - body dry str 1
fpfltnk: technology factor - fuel tank 1
flo2tnk: technology factor - L02 tank 1
cgrow: growth allowance fraction 0.15
d_pf: fuel density (lb./cu. ft.) 4.42
d_lox: lox density (lb./cu.ft.) 71.14
wos: wing loading (psf) 65
fwstr: technology factor - wing str 1

Weights & Sizing 
Orbiter

: V a ria b le  N a m e : D e s c r ip t io n : ' v N o m in a l V a lu e .
cgrow growth allowance fraction 0.15
payld payload weight (lb) 35000
tow initial t/w, orbiter 1.3113
towi lift-off t/w, 2-stage vehicle 1.3369
pwr engine power level fraction 1.04
fmeng technology factor - m ain engines 1
fbstr technology factor - body dry str 1
fp fltnk technology factor - fuel tank 1
flo2tnk technology factor - L 0 2  tank 1
fbtps technology factor - fuselage TPS 1
delvt oms delta v for tank sizing (ft./sec.) 900
delvl oms delta v (ft./sec.) - bum  1 348
delv_sa oms delta v (ft./sec.) - station appr. 100
delv_do oms delta v (ft./sec.) - deorbit 366
d_pfl fuel density (lb./cu. ft.) 4.42
d_lox lox density (lb./cu. ft.) 71.14
wos wing loading (psf) 65
fwstr technology factor - wing str 1
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Operations Support 
Booster

Variable Name Hpnunal Valper:;
Scheduled Hours 114750
Shifts per Day 2
Missions per Year 8
MHMA Calibration 1*
Fraction of sequential (independent) work 0.05
Ground Processing 7689
Target minimum vehicle processing days 30
Launch Pad Time in Days 25.3
Number of Crews Assigned per shift 1
MTBM Calibration ' 0.833 *
Orbit Time 0
Vehicle Integration Time (days) 5.5
Technology Growth 0
Critical Failure Rate 0.0006052 *
Fraction Inherent Failures 0.1836 *

* reflects average value over all

Operations Support 
Orbiter

Variable Name Nominal Value; ;
Scheduled Hours 159897
Shifts per Day 2
Missions per Year 8
MHMA Calibration 1 *
Fraction of sequential (independent) 0.05
Ground Processing 7771
Target minimum vehicle processing 30
Launch Pad Time in Days 25.3
Number of Crews Assigned per shift 1
MTBM Calibration 0.804 *
Orbit Time 252 *
Vehicle Integration Time (days) 5.5
Technology Growth 0
Critical Failure Rate 0.0005745 *
Fraction Inherent Failures 0.1645 *

* reflects average value over all
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Operations & Support 
TSTO Mach 3 Booster

Variable Var N am e Mom V alue
Expert A C alibrated D istribution

a2 s2 £2
Expert B C alibrated Distribution

a2 e2 m
E xpert C C alibrated D istribution

a2 £2 ia2
VAR 01 Sch ed  Mrs 114750 40000 .00 120487.50 125000.00 90000 .00 135460.36 140000.00 90000 .00 100000 .00 110000.00
VAR 04 MHMA Cal 1 0.25 1.05 1.25 0.25 1.18 1.50 0.25 1 .00 1.50
VAR 05 FractsequentW k 0.05 0.02 0.05 0 .08 0 .03 0 .06 0.06 0.05 0 .1 0 0.15
VAR 06 GroundProc 7689 150.00 672 .00 1250.00 150.00 755.51 1250.00 150.00 6 4 0 .0 0 1250.00
VAR 07 TargM inVehProcDays 30 30 .44 31.50 32.56 33 .58 35.41 37.25 27 .00 3 0 .00 33 .00
VAR 08 LPadTimeDays 25.3 15.00 26.57 45 .00 15.00 29.87 45.00 15.00 2 5 .30 45 .00
VAR 09 No.CrewsAss/shift 1 1.00 1.05 3 .00 1.00 1.18 3.00 1.00 1.00 3 .00
VAR 10 MTBMCal 0 .833 0.70 0.87 1.40 0 .60 0 .98 1.20 0 .60 0 .83 1.20
VAR 12 VehlntTim eDays 5.5 2.00 5.78 6 .00 6 .16 6 .49 6.83 4.95 5 .50 6.05
VAR 14 CritFailRate 0 .0006052 0.00 0 .00 0.00 0.00 0.00 0.00 0.00 0 .0 0 0 .00
VAR 15 FractlnheFailures 0 .1836 0.17 0 .19 0 .19 0 .17 0.22 0.26 0 .13 0 .18 0.24

Operations & Support 
TSTO Mach 3 Orbiter

Expert A C alibrated D istribution Expert B C alibrated D istribution Expert C C alibrated  D istribution
Variable Var Name Norn Value a2 c2 b2 a2 c2 b2 a2 c2 b2
VAR 01 Sched  Hrs 159897 50000 167892 170000 140000 188756 195000 140000 159897 195000
VAR 04 MHMA Cal 1 0 .2500 1.0500 1.2500 0.2500 1.1805 1.5000 0.2500 1 .0000 1.5000
VAR 05 FractsequentW k 0.05 0 .0200 0.0525 0 .0800 0 .0300 0 .0590 0 .0600 0 .0500 0 .1 0 0 0 0 .1500
VAR 06 GroundProc 7771 160.0000 680 .4000 1250.0000 150.000 764 .953 1250.000 150.000 6 4 8 .0 0 0 1250 .000
VAR 07 TargMinVehProcDay 30 30 .4393 31 .5000 32 .5607 33 .5774 35 .4145 37.2516 2 7 .0000 3 0 .0 0 0 0 33 .0000

VAR 08 LPadTimeDay 25 .3 15 .0000 26 .5650 4 5 .0000 15.0000 29 .8662 45 .0000 15 .0000 2 5 .3 0 0 0 45 .0000
VAR 09 N o.Crew sAss/shif 1 1.0000 1.0500 3 .0000 1.1192 1.1805 1.2417 0 .9000 1.0000 1.1000

VAR 10 MTBMCal 0.804 0 .6000 0 .8442 1.1000 0 .6000 0.9491 1.2000 0 .6000 0 .8 0 4 0 1.2000
VAR 11 Orbit Time 252 255 .6905 264 .6000 273 .5095 282 .0498 297 .4816 312 .9134 226 .8 0 0 0 2 5 2 .0 0 0 0 2 7 7 .2000
VAR 12 VehlntTimeDay 5.5 2 .0000 5 .7750 6 .0000 6.1558 6 .4927 6.8295 4 .9500 5 .5 0 0 0 6 .0500
VAR 14 CritFailRate 0 .0005745 0 .0006 0 .0006 0 .0006 0.0006 0 .0007 0 .0007 0 .0005 0 .0 0 0 6 0 .0007
VAR 15 FractlnheFailure 0.1645 0 .1500 0.1727 0 .1800 0 .1539 0.1942 0.2345 0.1151 0 .1 6 4 5 0 .2139
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Weights & Sizing 
TSTO Mach 3 Booster

Expert A Calibrated Distribution Expert A Calibrated Distribution

Variable Var Nona a2 c2 b2 a2 c2 b2

VAR tow: 1.3372 1.6027 1.6632 1.7237 1.6382 1.6854 1.7327

VAR pwr: 1.04 0.8500 0.9500 0.9500 1.2251 1.2604 1.2958

VAR cgrow: 0.15 0.1000 0.2661 0.3500 0.1519 0.1891 0.2262

VAR d_pf: 4.42 5.5601 5.8811 6.2020 5.4148 5.5710 5.7273
VAR djlox 71.14 91.2117 94.6557 98.0998 87.1509 89.6600 92.1812

VAR wos: 65 55.0000 70.0000 70.0000 72.7347 81.9271 91.1195

Weights & Sizing 
TSTO Mach 3 Orbiter

Variable Var Nom

Expert A Calibrated Distribution

a2 c2 b2

Expert B Calibrated Distribtuion

a2 c2 b2

VAR 03 tow 1.3113 1.3208 1.3971 1.4733 1.6064 1.6528 1.6991

VAR 12 delvl 348 429.3384 463.0333 496.7283 426.3213 438.6250 450.9287

VAR 13 delv_sa 100 123.3731 133.0556 142.7380 111.8995 126.0417 140.1838

VAR 14 delv_do 366 451.5455 486.9833 522.4211 428.9624 461.3125 493.6626



Appendix E: Numerical Results of Aggregation
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Weights & Sizing: Booster
Aggregated Uncertainty Assessments

Variable
VAR02

Name
-tow

Nom Value 
1.3372

Weighting factor Expert Min Most Likely Max Mode
0.3 Expert A 1.6027 1.6632 1.7237
0.7 Expert B 1.6382 1.6854 1.7327

Aggregated'Response 1.6242 1.6787 1.7341 1.6787

Variable Name Nom Value 
VAR03 -pwr 1.0400

Weighting factor Expert Min Most Likely Max Mode
0.3 Expert A 0.8500 0.9500 0.9500
0.7 Expert B 1.2251 1.2604 1.2958

Aggregated Response 1.1095 1.1573 1.1962 1.1583

Variable Name Nom Value 
VAR08 -cgrow 0.1500

Weighting factor Expert Min Most Likely Max Mode
0.3 Expert A 0.1000 0.2661 0.3500
0.7 Expert B 0.1519 0.1891 .02262

Aggregated Response 0.1183 0.2040 0.2649 0.2061

Variable Name Nom Value 
VAR09 -d_pf 4.4200

Weighting factor Expert Min Most Likely Max Mode
0.3 Expert A 5.5601 5.8811 6.2020
0.7 Expert B 5.4148 5.5710 5.7273

Aggregated Response 5.41786 5.640 5.9152 5.5537

Variable Name Nom Value 
VAR10 -djox 71.1400

Weighting factor Expert Min Most Likely Max Mode
0.3 Expert A 91.2117 94.6557 98.0998
0.7 Expert B 87.1509 89.66 92.1812

A ggregated:Response 88.0210 91.1617 94.2747 91.1642

Variable Name Nom Value 
VAR11 -wos 65.0000

Weighting factor Expert Min Most Likely Max Mode
0.3 Expert A 55.0000 70.0000 70.0000
0.7 Expert B 72.7347 81.9271 91.1195

Aggregated Response 67.6310 76.8500 85.4620 76.9380
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Weights & Sizing: Orbiter
Aggregated Uncertainty Assessments

Variable
VAR03

Name
-tow

Nom Value 
1.3113

Weighting factor Expert Min Most Likely Max Mode
0.3 Expert A 1.3208 1.3971 1.4733
0.7 Expert B 1.6064 1.6528 1.6991

Aggregated Response 1.5103 1.5761 1.6416 1.5761

Variable Name Nom Value 
VAR12 -delvl 348.000

Weighting factor Expert Min Most Likely Max Mode
0.3 Expert A 429:3384 463.0333 496.7283
0.7 Expert B 426.3213 438.6250 450.9287

Aggregated Response 426.3313 445.9480 470.4040 445.9340

Variable Name Nom Value 
VAR13 -delv sa 100.000

Weighting factor Expert Min Most Likely Max Mode
0.3 Expert A 123.3731 133.0556 142.7380
0.7 Expert B 111.8995 126.0417 140.1838

Aggregated Response 115.4150 128.1460 140.7320 128.1700

Variable Name Nom Value 
VAR14 -delv_do 366.000

Weighting factor Expert Min Most Likely Max Mode
0.3 Expert A 451.5455 486.9833 522.4211
0.7 Expert B 428.9324 461.31.2 493.6626

Aggregated:Response 433.8230 469.0050 505.1810 468.8950
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Operations Support: Booster
Aggregated Uncertainty Assessments

Variable

VAR01

Name

-Schedhrs

N om
Value
114750

Weighting factor Expert Min Most Likely Max Mode
0.4 Expert A 40000 120488 125000
0.4 Expert B 90000 135460 140000
0.2 Expert C 90000 100000 110000

Aggregated Response 69162 106782 125877 110004

Variable

VAR04

Name V ’ 

-MHMACal

Nom
Value
1.0000

Weighting factor Expert Min Most Likely Max Mode
0.4 Expert A 0.2500 1.0500 1.2500
0.4 Expert B 0.2500 1.1805 1.5000
0.2 Expert C 0.2500 1.0000 1.5000

Aggregated Response 2.2500 0.9141 1.3376 0.94331

Variable

VAR05

Name 

-F ractsequentWk

Nom
Value
0.0500

Weighting factor Expert Min Most Likely Max Mode
0.4 Expert A 0.0200 0.0525 0.0800
0.4 Expert B 0.0300 0.0590 0.0600
0.2 Expert C 0.0500 0.1000 0.1500

Aggregated Response 0.0239 0.0602 0.0924 0.06039

Variable

VAR06

Name

-GroundProc

Nom
Value
7689

Weighting factor Expert Min Most Likely Max Mode
0.4 Expert A 150 672 1250
0.4 Expert B 150 756 1250
0.2 Expert C 150 640 1250

Aggregated Response 79 700 1 2 5 0 1 700

Variable

VAR07

Name

-TargMinVehProcDays

No m
Value

30.0000
Weighting factor Expert Min Most Likely Max Mode

0.4 Expert A 30.4393 31.5000 32.5607
0.4 Expert B 33.5774 35.4145 37.2516
0.2 Expert C 27.0000 30.0000 33.0000

Aggregated Response 30.6516 32.7658 34.7260 32.7735
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Operations Support: Booster-Continued
Aggregated Uncertainty Assessments

Variable

VAR08

Name

-LpadTimeDays

Nom
Value

25.3000
Weighting factor Expert Min Most Likely Max Mode

0.4 Expert A 15.0000 26.5650 45.0000
0.4 Expert B ; 15.0000 29.8662 45.0000
0.2 Expert C 15.0000 25.3000 45.0000

Aggregated Response 15.0000 29.2110 47.5209 29.013

Variable

VAR09

Name

-No.CrewsAss/shift

Nom
Value
1.0000

Weighting factor Expert Min Most Likely Max Mode
0.4 Expert A 1.0000 1.0500 3.0000
0.4 Expert B 1.0000 1.1805 3.0000
0.2 Expert C 1.0000 1.0000 3.0000

Aggregated Response 1.0167 1.1697 3.0000 1.625

Variable

VAR10

Name

MTBMCal

Nom
Value
0.8330

Weighting factor Expert Min Most Likely Max Mode
0.4 Expert A 0.7000 0.8747 1.4000
0.4 Expert B 0.6000 0.9833 1.2000
0.2 Expert C 0.6000 0.8330 1.2000 !

Aggregated Response 0.6442 0.9433 1.3216 0193758

Variable

VAR12

Name

-VehlntTimeDays

Nom
Value
5.5000

Weighting factor Expert Min Most Likely Max Mode
0.4 Expert A 2.0000 5.7750 6.0000
0.4 Expert B 6.1558 6.4927 6.8295
0.2 Expert C 4.9500 5.5000 6.0500

Aggregated Response 4.4074 5.5176 6.2581 5.8875

Variable

VAR14

Name

-CritFailRate

Nom
Value
0.0006

Weighting factor Expert Min Most Likely Max Mode
0.4 Expert A 0.0006 0.0006 0.0007
0.4 Expert B 0.0007 0.0007 0.0008
0.2 Expert C 0.0005 0.0006 0.0007

Aggregated Response 0.00061 0.00066 0.00075 0.00066
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Operations Support: Booster-Continued
Aggregated Uncertainty Assessments

Variable

VAR15

Name

-FractlnheFailures

Nom
Value
0.1836

Weighting factor Expert Min Most Likely Max Mode
0.4 Expert A 0.1700 0.1900 0.1900
0.4 Expert B 0.1718 0.2167 0.2617
0.2 Expert C 0.1285 0.1836 0.2387

Aggregated Response 0.1606 0.1967 0.2306 0.1969

Operations Support: Orbiter 
Aggregated Uncertainty Assessments

Variable

VAR01

Name

-SchedHrs

Nom
Value

159897
Weighting factor Expert Min Most Likely Max Mode

0.4 Expert A 50000 167892 170000
0.4 Expert B 140000 188756 195000
0.2 Expert C 140000 159897 195000

Aggregated Response 101153 154519 181044 158807

Variable

VAR06

Name

-GroundProc

Nom
Value
7771

Weighting factor Expert Min Most Likely Max Mode
0.4 Expert A 160 680 1250
0.4 Expert B 150 765 1250
0.2 Expert C 150 648 1250

Aggregated Response 142.319 703.9100 1250.000 705.470

Variable

VAR09

Name

-No.CrewsAss/shift

Nom
Value
1.0000

Weighting factor Expert Min Most Likely Max Mode
0.4 Expert A 1.0000 1.0500 3.0000
0.4 Expert B 1.1192 1.1805 1.2417
0.2 Expert C 0.9000 1.0000 1.1000

Aggregated Response 1.0509 1.3476 1.8779 1.1139
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Operations Support: Orbiter-Continued
Aggregated Uncertainty Assessments

Variable

VAR10

Name

-MTBMCal

Nom
Value
0.8040

Weighting factor Expert Min Most Likely Max Mode
0.4 Expert A 0.6000 0.8442 1.1000
0.4 Expert B 0.6000 0.9491 1.2000
0.2 Expert C 0.6000 0.8040 1.2000

Aggregated Response 0.6000 0.8794 0.1120 0.8862

Variable

VAR11

Name

-OrbitTime

Nom
Value
252.00

Weighting factor Expert Min Most Likely Max Mode
0.4 Expert A 255.69 264.60 273.51
0.4 Expert B 282.05 297.48 312.91
0.2 Expert C 226.80 252.00 277.20

Aggregated Response 258.76 275.23 291.53 275.24

Variable

VAR14

Name

-CritFailRate

Nom
Value

0.00057
Weighting factor Expert Min Most Likely Max Mode

0.4 Expert A 0.0006 0.0006 0.0006
0.4 Expert B 0.0006 0.0007 0.0007
0.2 Expert C 0.0005 0.0006 0.0007

Aggregated Response 0.00057 0.00063 0.00066 0.00063

Variable

VAR15

Name 

-F ractlnheF ailures

Nom
Value
0.1645

Weighting factor Expert Min Most Likely Max Mode
0.4 Expert A 0.1500 0.1727 0.1800
0.4 Expert B 0.1539 0.1942 0.2345
0.2 Expert C 0.1151 0.1645 0.2139

Aggregated Response 0.1416 0.1776 0.2131 0.1776
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BESTFIT® Distributions by Variable

OPS Booster VAR01 Beta Distribution

OPS Booster VAR04 Beta Distribution

OPS Booster VAR05 Beta Distribution

OPS Booster VAR06 Beta Distribution

OPS Booster VAR07 Beta Distribution

OPS Booster VAR08 Beta Distribution

OPS Booster VAR09 Beta Distribution

OPS Booster VAR 10 Beta Distribution

OPS Booster VAR11 Beta Distribution

OPS Booster VAR 12 Triangular Distribution

OPS Booster VAR14 Beta Distribution
OPS Booster VAR15 Beta Distribution
OPS Orbiter VAR01 Beta Distribution
OPS Orbiter VAR06 Beta Distribution
OPS Orbiter VAR09 Triangular Distribution
OPS Orbiter VAR 10 Weibull Distribution
OPS Orbiter VAR 11 Beta Distribution
OPS Orbiter VAR14 Beta Distribution
OPS Orbiter VAR 15 Beta Distribution

W&S Booster VAR02 Beta Distribution
W&S Booster VAR03 Beta Distribution
W&S Booster VAR08 Beta Distribution
W&S Booster VAR09 Beta Distribution
W&S Booster VAR 10 Beta Distribution
W&S Booster VAR11 Beta Distribution
W&S Orbiter VAR03 Beta Distribution
W&S Orbiter VAR 12 Beta Distribution
W&S Orbiter VAR 13 Beta Distribution
W&S Orbiter VAR 14 Beta Distribution
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Booster Weights & Sizing Expert Assessment 
VAR02: tow

1.72 1.741.71.58 1.6 1.62 1.64 1.66 1.68

Weights & Sizing Booster: VAR02 Calibrated Expert Assessments

Weights & Sizing Booster: VAR02
Beta Distribution

X<= 1.6634 
5.0%

X <= 1.7042 
95.0%

1.62 1.64 1.66 1.68 1.7 1.72 1.74

Weights & Sizing Booster: VAR02 Aggregated Response
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Eit Beta
ocl 5.834870331
a2 5.919257795
Minimum 1.62422
Maximum 1.7341
Mean 1.67876
Mode 1.67868
Median 1.67874
Std. Deviation 0.015384
Variance 0.00023667
Skewness 0.0075
Kurtosis 2.5934

CM-Stj V A-D K-S
Test Value 74.14 0.2928 0.005005
P Value 0.4408 N/A N/A
Rank 1 1 1
# Bins 74 N/A N/A
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Booster Weights & Sizing Expert Assessment 
VAR03: pwr

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

Weights & Sizing Booster: VAR03 Calibrated Expert Assessments

Weights & Sizing Booster: VAR03 
Beta Distribution

X<= 1.13642 
5.0%

X <= 1.17723 
95.0%

1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.2

Weights & Sizing Booster: VAR03 Aggregated Response
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m ^ s s i A-D K-S ,

Test Value 86.49 0.4867 0.004959
P Value 0.4954 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A

Fit B eta
a l 6.140046566
a 2 4.989750747
Minimum 1.109497
Maximum 1.196155
Mean 1.157304
Mode 1.158285
Median 1.157582
Std. Deviation 0.012374
Variance c- 0.00015312
Skewness -0.1103
Kurtosis 2.5923
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Booster Weights & Sizing Expert Assessment 
VAR08: c_grow

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Weights & Sizing Booster: VAR08 Calibrated Expert Assessments

Weights & Sizing Booster: VAR08 
Beta Distribution

X <=0,1718 ' , X <=0.2339
5.0% 95.0%

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

Weights & Sizing Booster: VAR08 Aggregated Response
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-  OM-Sjg- A-D " . K-S
Test Value 108.7 0.993 0.007553
P Value 0.0577 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A

Fit Beta;
ocl 7.999166469
a2 5.69352126
Minimum 0.11832
Maximum 0.2649
Mean 0.20395
Mode 0.20606
Median 0.20457
Std. Deviation 0.018847
Variance 0.0003552
Skewness -0.1669
Kurtosis 2.6798
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Booster Weights & Sizing Expert Assessment 
VAR09: d_pf

6.1 6.2. 6.35.3 5.4 5.5 5.6 5.7 5.8 5.9 6

Weights & Sizing Booster: VAR09 Calibrated Expert Assessments

Weights & Sizing Booster: VAR09 
Beta Distribution

X <= 5.5660 X <= 5.7624
5.0% 95.0%

5.45 5.5 5.55 5.655.6 5.7 5.75 5.8 5.85 5.9

Weights & Sizing Booster: VAR09 Aggregated Response
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F i t  , : 7 Beta . 7 ’
(Xl 8.141951904
«2 8.308056587
Minimum 5.41786
Maximum 5.91526
Mean 5.66405
Mode 5.6637
Median 5.66394
Std. Deviation 0.059534
Variance 0.0035442
Skewness 0.0091
Kurtosis 2.6916

ChfeSq A -P K-S .

Test Value 68.94 0.4938 0.005596
P Value 0.923 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A
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Booster Weights & Sizing Expert Assessment 
VAR10: djox

96 98 1009486 88 90 92

Weights & Sizing Booster: VAR10 Calibrated Expert Assessments

Weights & Sizing Booster: VAR10 
Beta Distribution

X<= 89.781 
5.0%

X <= 92.539 
95.0%

88 89 90 91 92 93 94

Weights & Sizing Booster: VAR10 Aggregated Response
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Fit Beta
ccl 6.523616218
a2 6.466299656
Minimum 88.021
Maximum 94.2747
Mean 91.1617
Mode 91.1642
Median 91.1624
Std. Deviation 0.83598
Variance 0.69886
Skewness -0.0044
Kurtosis 2.6248

;-v-Chi4S<j '. V; A-D : K-S
Test Value 88.44 0.3761 0.005245
P Value 0.4367 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A
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Booster Weights & Sizing Expert Assessment 
VAR11: was

85 9050 55 60 65 75 8070 95

Weights & Sizing Booster: VAR11 Calibrated Expert Assessments

Weights & Sizing Booster: VAR11 
Beta Distribution

X<= 72.15 
5.0%

X <= 81.47 
95.0%

Weights & Sizing Booster: VAR11 Aggregated Response
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Fit:. . Beta
a l 4.624613159
a2 4.319765245
Mean 76.85
Mode 76.938
Median 76.874
Std. Deviation 2.8255
Variance 7.9836
Skewness -0.0393
Kurtosis 2.4998

CM-Sq ...-. A-D ' K-S
Test Value 92.89 1.191 0.008877
P Value 0.313 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A
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Orbiter Weights & Sizing Expert Assessment 
VAR03: tow

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

Weights & Sizing Orbiter: VAR03 Calibrated Expert Assessments

Weights & Sizing Orbiter: VAR03 
Beta Distribution

X <= 1.5493 
5.0%

X <= 1.6028 
95.0%

1.52 1.54 1.56 1.58 1.6 1.62 1.64

Weights & Sizing Orbiter: VAR03 Aggregated Response

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



Fit Beta A
a l 7.695706374
a2 7.660219686
Minimum 1.51025
Maximum 1.64156
Mean 1.57606
Mode 1.57608
Median 1.57606
Std. Deviation 0.016234
Variance 0.00026356
Skewness -0.0022
Kurtosis 2.6731

? Cfai-Sq ; A-D K -s c:
Test Value 76.65 0.2516 0.003759
P Value 0.7784 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



132

Orbiter Weights & Sizing Expert Assessment 
VAR12: delvl
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Weights & Sizing Orbiter: VAR12 Calibrated Expert Assessments

Weights & Sizing Orbiter: VAR12 
Beta Distribution

X<= 437.01 
5.0%

X<= 454.90 
95.0%
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Weights & Sizing Orbiter: VAR12 Aggregated Response
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Fit;!: Beta
a l 9.523694865
a2 9.619120999
Minimum 421.734
Maximum 470.404
Mean 445.948
Mode 445.934
Median 445.943
Std. Deviation 5.4221
Variance 29.399
Skewness 0.0042
Kurtosis 2.7291

v -Cbi-Sq 7: ; A-D. - V:-; 7 K-S
Test Value 64.78 0.2211 0.004905
P Value 0.9643 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A
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Orbiter Weights & Sizing Ekpert Assessment 
VAR13: delv_sa
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Weights & Sizing Orbiter: VAR13 Calibrated Expert Assessments

Weights & Sizing Orbiter: VAR13 
Beta Distribution

X<= 121.19 X<= 135.08
5.0% 95.0%

t k
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Weights & Sizing Orbiter: YAR13 Aggregated Response
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Fit Beta :
a l 4.038315296
a2 3.992221032
Minimum 115.415
Maximum 140.732
Mean 128.146
Mode 128.17
Median 128.153
Std. Deviation 4.2124
Variance 17.744
Skewness -0.0069
Kurtosis 2.4561

. : 7 Chi-Sq K-S •
Test Value 94.86 1.193 0.008244
P Value 0.2646 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A
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Orbiter Weights & Sizing Expert Assessment 
VAR14: delv_do

520 540500480440 460420

Weights & Sizing Orbiter: YAR14 Calibrated Expert Assessments

Weights & Sizing Orbiter: VAR14 
Beta Distribution

X<= 485.97 
95.0%

X <= 452.14 
5.0%

430 440 450 460 470 480 490 500 510

Weights & Sizing Orbiter: VAR14 Aggregated Response
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Fit Beta General
ocl 5.474717161
a2 5.629576718
Minimum 433.823
Maximum 505.181
Mean 469.005
Mode 468.895
Median 468.974
Std. Deviation 10.254
Variance 105.149
Skewness 0.0148
Kurtosis 2.5749

; Chi-Sq A-D >..;K-S
Test Value 92.89 0.9795 0.008724
P Value 0.313 N/A N/A
Rank 1 1 2
# Bins 88 N/A N/A
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Booster Operations &Support Expert Assessment 
VAR01: Sched hrs
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Operations Support Booster: VAR01 
Beta Distribution

X<= 90519 
5.0%

X<= 120181 
95.0%

70 80 90 100 110 120 130

Values in Thousands

Operations Support Booster: VAR01 Aggregated Response

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



Fit s Beta-.-:
a l 5.140453499
a2 2.609091461
Minimum 69162
Maximum 125877
Mean 106782
Mode 110004
Median 107614
Std. Deviation 9060.8
Variance 82098795
Skewness -0.4194
Kurtosis 2.6812

CM-Sq . t -V A -P
Test Value 10.84 0.1571 0.02064
P Value 0.9658 N/A N/A
Rank 1 1 1
# Bins 22 N/A N/A
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Booster Operations Support Expert Assessment 
VAR04: MHMACal
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Operations Support Booster: VAR04 Calibrated Expert Assessments

Operations Support Booster: VAR04 
Beta Distribution

X<= 0.657 
5.0%

X <= 1.141
95.0%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Operations Support Booster: VAR04 Aggregated Response
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Fit Beta
ocl 9.337673152
a2 5.03523762
Minimum 0.12871
Maximum 1.3376
Mean 0.91406
Mode 0.94331
Median 0.92266
Std. Deviation 0.14709
Variance 0.021635
Skewness -0.3005
Kurtosis 2.7823

Chi-Sq A-D :
Test Value 93.57 0.3214 0.004555
P Value 0.2958 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A
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Booster Operations Support Expert Assessment 
VAR05: FractSequentWk
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Operations Support Booster: VAR05 Calibrated Expert Assessments

Operations Support Booster: VAR05 
Beta Distribution

X <=0.04857 X<= 0.07162
5.0% 95.0%

30 40 50 60 70 80 90

Values in Thousandths 

Operations Support Booster: VAR05 Aggregated Response
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Cfti-Sq. A-D K-S:
Test Value 85.11 0.1489 0.002961
P Value 0.5372 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A

Fit 4 Beta ,-:a -
Oil 12.13246469
oc2 10.78008335
Minimum 0.023926
Maximum 0.09243
Mean 0.0602
Mode 0.060393
Median 0.06026
Std. Deviation 0.0069922
Variance 4.89E-05
Skewness -0.0464
Kurtosis 2.7716
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Booster Operations Support Expert Assessment 
VAR06: GroundProc
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Operations Support Booster: VAR06 Calibrated Expert Assessments

Operations Support Booster: VAR06 
Beta Distribution

X <= 477 
5.0%

X <=922
95,0%

/
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Values in Thousands

0.9 1 1.1 1.2

Operations Support Booster: VAR06 Aggregated Response
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Fit B e ta ’
a l 10.03695467
a2 9.924773075
Minimum 78.747
Maximum 1313.6
Mean 699.67
Mode 700.05
Median 699.78
Std. Deviation 134.86
Variance 18187
Skewness -0.0047
Kurtosis 2.7387

vCM-Sti ;v /:a -D ; . K-S V
Test Value 69.73 0.1982 0.004558
P Value 0.9125 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A
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Booster Operations Support Expert Assessment 
VAR07: TargMinVehProcDays

26 28 30 3432 36 38

Operations Support Booster: VAR07 Calibrated Expert Assessments

Operations Support Booster: VAR07 
Beta Distribution

X<= 32,062 X<= 33.461
5.0% 95.0%

31 31.5 32 32.5 33 33.5 34 34.5

Operations Support Booster: VAR07 Aggregated Response
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Fit'"- Beta
ocl 11.43004864
a2 10.59704847
Minimum 30.6516
Maximum 34.726
Mean 32.7658
Mode 32.7735
Median 32.7682
Std. Deviation 0.42423
Variance 0.17997
Skewness -0.0302
Kurtosis 2.7616

; C M -Sr- 'K-SA V
Test Value 78.58 0.2857 0.005094
P Value 0.7289 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A
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Booster Operations Support Expert As s es s s ment 
VAR08: LPadTime Days

15 20 2510 3530 40 45 50

Operations Support Booster: VAR08 Calibrated Expert Assessments

Operations Support Booster: VAR08 
Beta Distribution

X <= 23.26 
5.0%

X<= 35.37 
95.0%

2015 25 30 35 40 45

Operations Support Booster: VAR08 Aggregated Response
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Fit Beta
od 8.626816248
cx2 10.60274763
Minimum 14.313
Maximum 47.521
Mean 29.211
Mode 29.013
Median 29.15
Std. Deviation 3.6721
Variance 13.484
Skewness 0.0875
Kurtosis 2.7411

CM.Sq A-BV ; K-Sr
Test Value 87.51 0.2318 0.004299
P Value 0.4646 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A
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Booster Operations Support Expert Assessment 
VAR09: No.CrewsAss/shift
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Operations Support Booster: VAR09 Calibrated Expert Assessments

Operations Support Booster: VAR09 
Beta Distribution

X <= 1.279 
5.0%

X<= 2.185 
95.0%

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

Operations Support Booster: VAR09 Aggregated Response
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Fit: Beta ... ■ ;
a l 3.663078491
a2 7.063993664
Minimum 1.0167
Maximum 3.0101
Mean 1.6974
Mode 1.625
Median 1.6771
Std. Deviation 0.27604
Variance 0.076198
Skewness 0.3598
Kurtosis 2.7429

‘Chi-Sq 3V A-D K-S, V :
Test Value 98.54 0.2044 0.004606
P Value 0.1871 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A
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Booster Operations Support Expert Assessment 
VAR10: MTBMCal
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Operations Support Booster: VAR10 Calibrated Expert Assessments

Operations Support Booster: VAR10 
Beta Distribution

X<= 0.8114 X<= 1.0811
95.0%

Operations Support Booster: VAR10 Aggregated Response
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■ '' CM-Sq ■: ; a -d K-S
Test Value 86.65 0.4522 0.006008
P Value 0.4904 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A

Fit Beta: v
ocl 7.024850555
a2 8.888380558
Minimum 0.64424
Maximum 1.32165
Mean 0.94328
Mode 0.93758
Median 0.94158
Std. Deviation 0.081792
Variance 0.0066899
Skewness 0.1083
Kurtosis 2.6994
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Booster Operations Support Expert Assessment 
VAR12: VehlntHmeDays

1 2 3 6 74 5 8

Operations Support Booster: VAR12 Calibrated Expert Assessments

Operations Support Booster: VAR12 
Triangular Distribution

X <= 6.073
95,0%

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

Operations Support Booster: VAR12 Aggregated Response
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Fit. V Triangular'' :
min 4.407380717
m. likely 5.887459121
max 6.258085919
Mean 5.5176
Mode 5.8875
Median 5.5777
Std. Deviation 0.39976
Variance 0.15981
Skewness -0.4759
Kurtosis 2.4

Chi-Sq : a -d v. K.-S.-',:-
Test Value 258.2 24.36 0.02559
P Value 0 N/A N/A
Rank 1 1 1
# Bins 74 N/A N/A
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Booster Operations Support Expert Assement 
VAR14: CritFailRate

500 550 650 750 800450 600 700 850

Values in Millionths

Operations Support Booster: VAR14 Calibrated Expert Assessments

Operations Support Booster: VAR14 
Beta Distribution

X <= 0.0006422 
5.0%

X<= 0.0006939 
95.0%

600 620 640 660 680 700 720 740

Values in Millionths

Operations Support Booster: VAR14 Aggregated Response
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Fit v; Beta
a l 5.950694734
a2 10.64872231
Minimum 0.00061735
Maximum 0.00075493
Mean 0.00066667
Mode 0.000664
Median 0.00066587
Std. Deviation 1.57E-05
Variance 2.47E-10
Skewness 0.2662
Kurtosis 2.7948

Chi-Sq ' : . A-D - V : K-S - 7
Test Value 93.41 0.2513 0.005086
P Value 0.2999 N/A N/A
Rank ' 1 1 1
# Bins 88 N/A N/A
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Booster Operations Support Expert Assessment 
VAR15: FractlnheFailures
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Operations Support Booster: VAR15 Calibrated Expert Assessments

Operations Support Booster: VAR15 
Beta Distribution

X<= 0.18213 X<= 0.21118
5.0% 9 5 ,0%
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Operations Support Booster: VAR15 Aggregated Response
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: - Ghl-Sq - A-D ; •i/:; -K“S '
Test Value 69.34 0.3588 0.005855
P Value 0.9178 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A

Fit Beta-:
ocl 7.614081068
a2 7.14177643
Minimum 0.160643
Maximum 0.230608
Mean 0.196745
Mode 0.19692
Median 0.196797
Std. Deviation 0.0088086
Variance 7.76E-05
Skewness . -0.0303
Kurtosis 2.6634

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Orbiter Operations Support Expert Assessment 
VAR01: SchedHrs
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Values in Thousands

Operations Support Orbiter: VAR01 Calibrated Expert Assessments

Operations Support Orbiter: VAR01 
Beta Distribution

X<= 90519 
5.0%

X <= 120181 
95.0%

70 80 90 100

Values in Thousands
110 120 130

Operations Support Orbiter: VAR01 Aggregated Response
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Fit Beta
OCl 5.517947578
a2 2.74263955
Minimum 101153
Maximum 181044
Mean 154519
Mode 158807
Median 155647
Std. Deviation 12363
Variance 152855679
Skewness -0.4232
Kurtosis 2.7119

Chi-Sq' ; A-D: . Y K-S
Test Value 163.9 6.106 0.01569
P Value 1.21E-06 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A
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Orbiter Operations Support licpert Assessment 
VAR06: GroundProc
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Operations Support Booster: VAR06 Calibrated Expert Assessments

Operations Support Orbiter: VAR06 
Beta Distribution

X <= 483 X <= 924
5.0% 95.0%
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Operations Support Orbiter: VAR06 Aggregated Response
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Fit B e ta . ■
a l 12.30813973
ct2 11.69327062
M inimum 17.989
M aximum 1355.6
Mean 703.91
Mode 705.47
M edian 704.39
Std. Deviation 133.71
Variance 17878.3
Skewness -0.0197
Kurtosis 2.7784

Chi-Sq ' A-D -: K -S :
Test Value 106 0.6183 0.006211
P Value 0.0817 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A
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Orbiter Operations Support Expert Assessment 
VAR09: No.Crews As s/s hift
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Operations Support Booster: VAR09 Calibrated Expert Assessments

Operations Support Orbiter: VAR09 
Triangular Distribution

X <= 1.102 
5.0%

X <= 1.700 
95.0%

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Operations Support Orbiter: VAR09 Aggregated Response 
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Fit Triangular.
min 1.05088871
m. likely 1.11389028
max 1.877917847
Mean 1.34757
Mode 1.11389
Median 1.31584
Std. Deviation 0.18795
Variance 0.035325
Skewness 0.5538
Kurtosis 2.4

. Chi-Sq ' A -tt ' :K-S
Test Value 113.1 1.563 0.006011
P Value 0.0316 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A
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Or biter Operations Support Expert Assessment 
VAR10: MTBMCal
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Operations Support Booster: VAR10 Calibrated Expert Assessments

Operations Support Orbiter: VAR10 
Weibull Curve

X<= 0.7626 
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X <= 0.9900 
95.0%
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Operations Support Orbiter: VAR10 Aggregated Response
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F it  - Weibull :: '-
Shift 0.631584272
a 4.039811394
b 0.273194651
Minimum 0.63158
Maximum 1.112
Mean 0.87935
Mode 0.88621
Median 0.88108
Std. Deviation 0.068889
Variance 0.0047457
Skewness -0.0989 [est]
Kurtosis 2.6678 [est]

; ■, .Chi-Sq A-P. 'K=S '
Test Value 81.7 0.3641 0.00504
P Value 0.6404 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A
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Orbiter Operations Support Expert Assessment 
VAR11: OrhitTime
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Operations Support Booster: VAR11 Calibrated Expert Assessments

Operations Support Orbiter: VAR11 
Beta Distribution

X<= 269.33 X<= 281.12
5,0% 95.0%
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Operations Support Orbiter: VAR 11 Aggregated Response
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Fit Beta
od 10.05353371
a2 9.943891453
Minimum 258.756
Maximum 291.53
Mean 275.233
Mode 275.243
Median 275.236
Std. Deviation 3.5761
Variance 12.788
Skewness -0.0046
Kurtosis 2.7391

•V-Cbi-Sq ; : A -D ;: K-S
Test Value 79.67 0.2768 0.005328
P Value 0.6989 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A
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Orbiter Operations Support Expert Assessment 
VAR14: CritFailRate

450 500 600 650 700550 750
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Operations Support Booster: VAR14 Calibrated Expert Assessments

Operations Support Orbiter: VAR14 
Beta Distribution

X<= 0.00060526 X <= 0.00064608
5.0% 95.0%
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Fit Beta
a l 8.095481556
a2 5.046064715
Minimum 0.000567606
Maximum 0.000663481
Mean 0.000626667
Mode 0.000628664
Median 0.000627247
Std. Deviation 1.24E-05
Variance 1.54E-10
Skewness -0.237
Kurtosis 2.7073

Chi-Scj A-D - k -s ;  :
Test Value 69.92 0.3875 0.005147
P Value 0.5805 N/A N/A
Rank 1 1 1
# Bins 74 N/A N/A
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Orbiter Operations Support Expert Assessment 
VAR15: FractlnheFailures

172

0.220.12 0.16 0.18 0.2 0.240.140.1

Operations Support Booster: VAR15 Calibrated Expert Assessments

Operations Support Orbiter: VAR15 
Beta Distribution

X<= 0.16412 X <=0.19106
5.0% 95.0%

0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21

Operations Support Orbiter: VAR15 Aggregated Response 
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Fit Beta
od 9.143904816
a2 9.026762083
Minimum 0.141613
Maximum 0.213138
Mean 0.177606
Mode 0.177634
Median 0.177614
Std. Deviation 0.0081677
Variance 6.67E-05
Skewness -0.0056
Kurtosis 2.7166

e w - s q . . : - ; A,D K-S : .
Test Value 104.9 0.7071 0.007456
P Value 0.0928 N/A N/A
Rank 1 1 1
# Bins 88 N/A N/A
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