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ABSTRACT

THE EFFECT OF MODEL FORMULATION ON THE COMPARATIVE
PERFORMANCE OF ARTIFICIAL NEURAL NETWORKS AND REGRESSION

Michael Francis Cochrane
Old Dominion University, 2000
Director: Dr. Derya A. Jacobs

Multiple linear regression techniques have been traditionally used to construct
predictive statistical models, relating one or more independent variables (inputs) to a
dependent variable (output). Artificial neural networks can also be constructed and
trained to learn these complex relationships, and have been shown to perform at least as
well as linear regression on the same data sets. Research on the use of neural network
models as alternatives to multivariate linear regression has focused predominantly on the
effects of sample size, noise, and input vector size on the comparative performance of
these two modeling techniques. However, research has also shown that a mis-specified
regression model or an incorrect neural network architecture also contributes significantly
to poor model performance. This dissertation compares the effects on model
performance of various formulations of regression and neural network models, measuring
performance in terms of mean squared error and variance. A factorial experiment is
conducted in which model parameters are varied. Simulated data from three different
functions are used to generate training and testing data sets. Statistical tests are used to
determine differences in performance as well as the degree of model robustness, or the

degree to which model performance is insensitive to changes in model formulation.
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Based on the experimental results and conclusions, a predictive modeling methodology is
proposed that capitalizes on the advantages of both neural network and regression
approaches and assists practitioners in constructing accurate and robust predictive

models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This dissertation is dedicated to Almighty God
for His grace and strength, and for His abiding
love. With God, all things are possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv



ACKNOWLEDGEMENTS

This dissertation would not have been possible without the vision and support of a
number of people. I am grateful to Mr. Tom Collinsworth for providing the opportunity
of a lifetime. My thanks also go to Bruce Hines and Pete Lennon, for their patience and
restraint in allowing me the time away from my job and the resources to complete two
graduate degrees in less than four years. To my advisor, Dr. Derya Jacobs, I extend my
appreciation for her guidance and confidence in me. Finally, I am grateful to my family

and friends for their love and support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



vi

TABLE OF CONTENTS

Page

ABSTRACT ... et eeeeeeeteteeseetetee e ssasssassasessne s saeasessmsaeee et bensaeeesstsaasneeanannsencnssnn ii
DEDICATION .....ceeeeeeeeeeee e eeeeeeee s ttesessaea e ee s s sessessssmareeaseeesstesesesesseaessssneseesseennns iv
ACKNOWLEDGEMENTS ... .ottt rtesenee e ae s s e s e e et s s e s ssabe e et e s e anee s s s s sa s \%
LISTOF FIGURES .......... et cernee e eeee e eeeereeeeeeerareteeateaaraaeaanennans viii
LIST OF TABLES ...ttt e ecceeeeete e e s eaeesaaesesesesesaeaasee s s arsetesenasasassnnas s ennnnas ix
CHAPTER I: INTRODUCGCTION.... .o oteeiteeeeerrcrteeeeeesestaeeeeessssenesaesssaesssnsasensnsnsnsnsen 1
Background.............oooooiiiiiee ettt nnnee 1

Problem Statement.........ccoiiiimieieeeeeeee e e et cc e e e e e eree s e e e e nenee s 3

Purpose of StUAY .......ccooeiriiiiiec et e e 6

Research QUESHIONS........ccouueiiiiiiie it eeeeree et s e e ccneeeesesseenassaseensnnes 6
CHAPTER II: REVIEW OF LITERATURE ...ttt e 8
Parametric and Non-Parametric Predictive Modeling ..............ccccooeinnninnnnn. 8

Artificial Neural NetWOrKS .........ooiiiiiiiieeeee ettt eceee e s 9

Applied Neural Network Models...........cccccoooiiiiiiiiiiiicccceeeeees 10
Experiment-Based Literature..............c..cooociiiiiiiiiiiniiiireenecveneniecnee e 13
Conclusions of Literature ReVIEW .............ccociiiiieeiiiiieeeiiiiiccetnceeeees e e 16
Contribution to the Literature .........c....ooiviieeciereieeeeeeereteceeeeceneeeee s eseneeeecnes 17
CHAPTER III: RESEARCH METHODOLOGY ......oootioieeeeieeeeeeeecceneeenneeeeeneeaesenseneens 18
Data ColleCtion ..........cooiieeiemiiiiiiiiiecitiie et eee e reeee e e s e r e ee et e e s e nne 20
Experimental DeSign..........cooiiiiiiiiiiiicieecrree ettt 22

Data ANALYSIS......ccoeiieeieieeeeeiiiieaiiieeeecteeeeeeeereeeeeesees e e see e s e eetaeeaeeeasserasarenarannnnanees 29
CHAPTER IV: EXPERIMENTAL RESULTS AND DISCUSSION.......cciviiirreeneee 30
Research Question 1: Model Performance ............coooeeieeiiiiimiiiiiiiiieees 30
Summary of ANN and MLR Comparison Results .............coooiiiiiiiiiiiinnnnenennnn. 39

Sample Size 50 Excursion: Performance Comparison ...........cccccoeceeeecceecenccnns 40

Research Question 2: Model Robustness............ccoeeeoeeeieeciiriieiirnieneeeneeaaneae s 44
Summary of ANN/MLR Robustness Analysis........c.ccccceemenuiiinnenininiicinceneennns 64

Model Robustness for Sample Size 50 EXCUrsion...........ccccceeeeeiiiiccerneiivereneenes 66
Summary of ReSUlts.....ccooiiiiiiiieeere et 69
CHAPTER V: PROPOSED PREDICTIVE MODELING METHODOLOGY ............... 75
CHAPTER VI: CONCLUSIONS AND FURTHER RESEARCH ........cccccccocvvririennn. 87
Summary of CONCIUSIONS .........uuiiiiiiiiiiiiireciteecccerreee ettt e e eecerreese s s saneaeeeeenes 87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



wvil

Limitations Of RESEATCR .o.e.oeeeieeee et eteeceveesrcreneerenennsssennaesssnrnsssnneen 88
CONITIDULIONS ... oo eeeceeeeee e e eeeeete e teeeeeeeeeaeeomassssessessasesssssesssnsssessssensnnnsrnnnnns 89
FUMBET RESEATCH «....ooeeeeeeeeieeeeeeeeee ettt tteeeeeeeeeessssesessnsnessnsassssnnsessseesnsnnossnnnns 89
Concluding COmMmMENLS ..........coccoiiiiienieececeeereeesiee s ssee s see e 93
REFERENCES ... oo eeeeeeeeeeeeeeteeeeeeeteeeeessessesssssssmananaesesesseasssesssessssnssnssnssnsssssessesssnnnsseannns 94
APPENDIX A: NEURAL NETWORK EXPERIMENT MATRIX ....ccoveerieeeeeeen 98
APPENDIX B: MLR EXPERIMENT MATRIX .....cooiiiiieeeereeteeeeeeeereeeeeeeereneeeennans 100
APPENDIX C: MLR MODELS .....ooeeeeeeeeeeeeeetteeeeeeeeeeeestsseesessssnsessnsasssseesssssssessnsssnsnns 102

APPENDIX D: ANN TRAINING AND TESTING DATA AND ESTIMATED Y-
VALUES FOR FUNCTION 1 ...ttt niearenres e naeeeees 109
APPENDIX E: MLR TRAINING AND TESTING DATA AND ESTIMATED Y-

VALUES FOR FUNCTION T ..ttt 128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



viii

LIST OF FIGURES
FIGURE Page
Figure 1. Area of ReSEArCh .......coveuemieiiiiiiicierteeec et 8
Figure 2. Experiment flowchart ... 24
Figure 3. Variance Comparison between modeling techniques.............ccooeriinniennnne. 65
Figure 4. Scatterplot and trendlines for X1 vs Y ......cccooiiiiiniiiiiiicccecc e 82
Figure 5. Scatterplot and trendline for X2 vs Y....cocccoomiinee 83
Figure 6. Scatterplot and trendline for X3 vs Y.....cocoiiiiiii e 83
Figure 7. Rate of change in performance of ANN and MLR vs sample size .................... 92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ix

LIST OF TABLES
TABLE Page
Table 1. Summary of Experimental Studies .........c.c.oooeivmiiiimimmeeeecee 16
Table 2. Variables in the StudY ......ccoooeiiiiiieecreteieeeeir e 20
Table 3. Independent variables and €ITor terms..........c.coooumiiremiieeiiiee e 21
Table 4. Sample data using a polynomial function.............cccooevieriiioiinins 22
Table 5. Neural network parameters and levels..............cooiiiiie 27
Table 6. Function forms for regression models ............ocoooeoieeeieiiiiiiiiiiiiiiiricccerreeeeeeenn. 28
Table 7. Software used in research ..........cccoooieiiiiiiiiniicrreccre e 29
Table 8. Function 1 ANN mMOdels......ccccoiiiiiiiiiiiiiiieiiiitee et 31
Table 9. Function 1 MLR Models.........ccooiiiimiriiecccencine et 32
Table 10. Performance comparison, Function 1 ..............ccoooiiiiiiiiireee 33
Table 11. Function 2 ANN MOdelS .......cooociiiiiiiniiiieiiiiiineieeeeeecetee e 34
Table 12. Function 2 MLR MOdEIS .......cooiiiiiiiiiiiiiceeciectrecetcccee et 35
Table 13. Performance comparison, Function 2 .........c.cccccoiciimiminiiiinneeeeeeees 36
Table 14. Function 3 ANN mMOdelS .....coooeiriimiiiiiieeeeeeecteceereec et 37
Table 15. Function 3 MLR mModels .......ccoooiimiiie e 38
Table 16. Performance comparison, Function 3 ...........c.cccooiimmniiiiniieececeees 39
Table 17. Summary of ANN and MLR comparison results .............ccoooeenmininienniennns 39
Table 18. Percent change in ANN model performance withn =50..........c.cccccocoii. 41
Table 19. Percent change in MLR model performance withn =50.........cc.ccci. 42
Table 20. Performance comparison, Function l and n=50.........c..ccccoiiinniiiiinnenn. 43
Table 21. Linear model for Function | ANN results........cccccocomimmiiiiiinnices 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE

Table 22.

Table 23.

Table 24.

Table 25.

Table 26.

Table 27.

Table 28.

Table 29.

Table 30.

Table 31.

Table 32.

Table 33.

Table 34.

Table 35.

Table 36.

Table 38.

Table 39.

Table 40.

Page
ANOVA of Function 1 ANN linear model.........ccccooeiiininins 46
ANOVA of Function 1 ANN linear model without transfer function factor.....47
R-Squared values for Function 1 ANN linear models............ccccoocnniniinn. 48
Linear model for Function 1 ANN results........coooeeimimiioiieeee 49
ANOVA of Function 1 linear model: MLR results .............cccooiiiiinnnnnnn. 50
R-Squared values for Function 1 linear model .........c.oocccoiii 51
Linear model for Function 2 ANN results........cccocvieeieniiiiiie, 52
SPSS output for Function 2 ANN linear models ..., 53
ANOVA of Function 2 ANN linear model eliminating sigmoid models.......... 54
SPSS output for Function 2 ANN linear model eliminating hyperbolic tangent
............................................................................................................................. 55
Linear model for Function 2 MLR results.........coooreeomiiieeiieeee 56
R-Squared values and ANOVA for Function 2 MLR linear model .................. 57
Linear model for Function 3 ANN results.........ccccooiiieiieiieiiceee 58
SPSS output for Function 3 ANN linear models.........cocooeriiiiiiiniiinincninnnnn. 59
SPSS output for Function 3 ANN linear model eliminating sigmoid-based
............................................................................................................................. 60
SPSS output for Function 3 ANN linear model eliminating hyperbolic tangent
............................................................................................................................. 61
Linear model for Function 3 MLR results.......ccooooveoiiiieiiieeeee 62
SPSS output for Function 3 MLR linear model...........cocccooiiiiiiiiiiiinicinnnnnnn. 63
Summary of ANN/MLR ANOVA analysis.....cccccceoeeiiiiinniecvieee 64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE

Table 41.

Table 42.

Table 43.

Table 44.

Table 45.

Table 46.

Table 47.

Table 48.

Table 49.

Table 50.

Page
SPSS output for MLR linear model of sample size 50 excursion ..................... 66
SPSS output for ANN linear model of excursion (with transfer function)........ 67
SPSS output for ANN linear model of excursion (w/o sigmoid models).......... 68
SPSS output for ANN linear model of excursion (w/o TanH models).............. 69
Carbon steel pipe data.........cocccoomiiiiiiiiiieececeeee e 79
Performance of ANN modelson pipedata...........ccccooomiiiiiieenee. 81
R-squared values for partial regression plots............cccoeeeemmieeirnniiiciineineceeens 84
Comparison of ANN and MLR models..........ccccccccomiimiiiiniiiiccciicccennnne 84
Bridge COStAata ...........ooeeieeeceecceiieciee e e et eee s 85
Creese and Li vs 10-step methodology ...........ccccoevemimiiiiiiiecicaeee 86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTERI: INTRODUCTION

Background

The heart of predictive modeling is the search for relationships between and
among data. If a strong relationship is suspected to exist between two sets of data, a
predictive mathematical model can be constructed that may be able to relate these two
data sets in such a way that one can infer the properties of this relationship to new data,
unrelated to the original set.

Muitiple linear regression (MLR), a statistical data analysis technique, has been
traditionally used to discover these data relationships by hypothesizing a type of
functional relationship between these data (typically one or more independent variables
and one dependent variable) and computing coefficients for the resulting equation.
Researchers experimenting with neural computing and artificial neural networks (ANN)
learned early on that these “black box™ parallel computing architectures could solve
regression problems without the requirement for a hypothesized regression function. By
presenting the ANN with a sequence of input and desired output data examples, it learns
the data relationship and can reproduce it with new data from the same population. A
small, but growing body of research is attempting to understand how ANN can be used as
a surrogate or an alternative to traditional predictive statistical model building techniques.

Multiple Linear Regression is one of the most popular and useful statistical tools
available for quantitative analysis (Marquez, et al.. 1991). Through the process of
minimizing the squared distance from the data points to the population mean, commonly
called least squares estimation, MLR allows an analyst to build a parametric model, or

curve, fitted to a set of data points. Such a curve is represented by a function relating one

Journal Model: APA
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or more independent variables to a dependent variable of interest. Armed with such a
function, the analyst can, within the scope of the population being studied, generalize a
predictive relationship between values of the independent variables and the dependent
variable.

However, MLR has several limitations. Three important assumptions must be
made concerning the distribution of the regression errors: they must be independent,
normally distributed, and have a constant variance. But perhaps the most significant
limitation of MLR is the requirement for an a priori hypothesis about the form of the
function for which MLR will estimate the coefficients. The “true” functional relationship
between the independent variables and the dependent variable is, of course, unknown.
The analyst must study the data and provide a best estimate of this functional
relationship. An analysis of the residual errors of the regression will show how well the
hypothesized model explained the relationship of the data to the dependent variable. If
the relationship is assumed to be linear, for example, and the true functional relationship
is exponential, this mis-specification is reflected in a low value for the coefficient of
determination, or R-squared, which is an indicator of how well the hypothesized model
explains the relationship between the data.

Because the true, underlying functional relationship between the independent
variables (inputs) and the dependent variable (outputs) is unknown, the analyst is never
sure how much of the unexplained relationship is due to an under- or over-specified
model, or simply variability in the data itself. A good predictive model should come as
close as possible to discovering the theoretical function relating the input to the output

variables.
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Artificial Neural Networks (ANN) may be the tools that come closest to finding
this relationship and improving the accuracy of predictive models. A typical ANN
consists of a layer of one or more input nodes, called neurodes, a layer of one or more
output neurodes, and may contain one or more hidden layers. Each of the neurodes in a
layer is connected to every node in the adjacent layer, forming a “fully connected”
network. Many types of ANN exist, including self-organizing maps, attractor networks
and radial-basis function networks. However, the ANN being studied in this research are
multilayer perceptrons. The term ANN, as used in this document, will refer to this type
of network.

Neural networks differ from multiple regression in that the network learns the
relationship between input and output responses through a process of changing weight
values on the connections between the neurodes. Neural networks must be trained in
order for them to learn these relationships between input and output patterns. For
networks in which each input stimulus is related to a specific desired output, a series of
example patterns is presented to the network along with the desired output. The output
responses to the patterns are compared to the desired response and the resulting error is
used to modify the weights on the interconnections between the neurodes. The patterns

are repeatedly presented to the network until the error is minimized.

Problem Statement
In recent years, practitioners and researchers in a number of fields have
successfully used ANN as a surrogate for MLR in building predictive models, generally

experiencing greater accuracy. However, while the use of ANN as an alternative to
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traditional statistical analysis methods appears promising, very little experimental
research has been done to determine the conditions under which one technique may be
more appropriate than the other. Controlled studies in which MLR and ANN models
have been compared directly have concluded that there are situations in which regression
models may be more appropriate. These studies examined the effects of data sample size
and variability on the relative performance of regression models and ANN. There is
general agreement that larger training samples (more data) produce better results,
although there is some disagreement as to comparative performance when sample sizes
are small. Some studies suggest that neural networks are unable to discover underlying
relationships from data samples of fewer than 50 exemplars, while some have shown that
ANN can discern patterns in training samples as small as 10 exemplars (Robinson, 1991;
Marquez, et al., 1991; Markham and Rakes, 1998). Robinson (1991) concluded that
training sample sizes greater then 50 are needed, although his conclusions are not
supported by rigorous designed experiment.

There is also some disagreement over the significance of the size of the input
vector on relative performance. Some studies conclude that neural networks should be
able to handle a large number of cost drivers (independent variables) when used in cost
estimating problems, and some imply that, as the size of the input vector increases, ANN
should be a more attractive alternative to MLR (de-la-Garza and Rouhana, 1995; Smith
and Mason, 1997). Another study disagrees, suggesting that a larger input vector creates
an unnecessarily large network that could inhibit training speed and accuracy (Bode,

1998). It should be noted, however, that Bode’s (1998) concern regarding longer
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computing times for large networks is largely a function of computing power. Expected
future advancements in computing technology will likely make this issue less significant.

Although there are some conflicting conclusions regarding sample or input vector
size, the effects of model formulation may overshadow the importance of these factors.
Model formulation may play an even more significant role in the performance of
regression and ANN models than training sample size, variability of data (noise) or other
factors (Smith and Mason, 1997). Neural network models have a similar problem: the
choice of network architecture or topology must be made before training the network on
the data. Some researchers suggest that neural networks may not be very robust with
respect to changes in this topology. In other words, the performance of a network on the
same data should vary given changes to the structure of the network. This “robustness” is
not examined in Smith and Mason (1997).

Of the experimental studies in the literature, only one attempts to examine what
happens when the hypothesized regression function is different from the “true” function
(Smith and Mason, 1997). Other studies appear to be biased in favor of regression
models over neural networks because the simple linear functions used to estimate the
regression model have the same form as the true function used to generate the data
(Markham and Rakes, 1998; Marquez, et al.., 1991).

None of the experimental studies provide a comprehensive comparison of
multivariable regression and neural network models in which the only experimental
factors are the model formulations. There is a need for a thorough comparative study to
determine not only which data analysis technique is more appropriate, but also the

conditions under which the cost of refining a particular statistical model is worth the
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increased accuracy of the model. Additionally, there is no published methodology that

assists practitioners in choosing between MLR and ANN when building predictive

models.

Purpose of Study

The purpose of this experimental study is to compare the performance of multiple
linear regression and artificial neural networks as data analysis tools in a controlled
environment and develop a methodology for guiding practitioners in selecting an
appropriate modeling technique. In the experiments, the only variable factors are the a
priori formulations of the regression function and the neural network topology. The
study is designed to test the robustness of regression and neural network models with
respect to model accuracy and predictive ability. Robustness is defined as the degree to
which a regression function or a neural network can be modified without a significant
loss of predictive ability. The independent variable in this study is defined as formulation
of the regression and neural network models. The dependent variable is defined as the
mean squared error of the regression and neural network models. The null hypothesis
being tested is that the root mean squared error (RMSE) for the artificial neural network

models is less than the RMSE for the multiple linear regression models.

Research Questions
Two research questions have been developed to guide this study. These questions

distill the research problem and purpose of the study into specific issues to be addressed
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by the designed experiments. The research questions help define the scope of the
research:

e Given identical input vectors, identical training (construction) sample sizes,
and identical validation samples, to what degree do variations in model
formulation affect the comparative performance of ANN and MLR as
measured by root mean squared error (RMSE)?

e How robust are ANN and MLR models to changes in formulation or topology

as measured by the variability of the RMSE performance?
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CHAPTER II: REVIEW OF LITERATURE

This research focuses on the intersection of two very broad areas of study:
statistical modeling and artificial neural networks. This review of the literature begins
with the general area of predictive modeling, gradually narrowing the focus to
applications of ANN to statistical modeling problems, and finally to the small, but
expanding body of knowledge represented by experimental studies of ANN as a surrogate
for MLR to which this research will add.

Figure 1 is a Venn diagram illustration of the representative literature areas. The

intersection of all the circles is the focus of this research.

Figure 1. Area of Research

Parametric and Non-Parametric Predictive Modeling

The tools and techniques for the quantitative analysis of data are found in
standard applied statistics texts, such as Mendenhall and Sincich (1995) or research-based
statistics textbooks such as Dowdy and Wearden (1991) or Kerlinger (1992). Much of
this literature covers the foundations of statistical analysis to include both descriptive and
inferential statistics. However, these texts also treat extensively the topic of statistical

model building, or the creation of an equation that will provide a good fit to a set of data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



as well as give good predictions of future values of the dependent variable for given
values of the independent variables. Regression analysis is only one part of model
building, perhaps the least significant part, given the prevalence of powerful statistical
analysis software (Berk and Carey, 1995). The actual model construction occurs when
one hypothesizes the functional form of the model. According to Mendenhall and
Sincich (1995), “if the hypothesized model does not reflect, at least approximately, the
true nature of the relationship between the mean response E(y) and the independent
variables x,,x,,...,x, , the modeling effort will usually be unrewarded” (p. 700).
Traditional statistics and regression modeling is parametric in nature, that is, it is
based on probability distributions. The assumption of normality governs the analysis of
the residual errors of the regression, for example. The field of non-parametric, or
distribution-free statistics opens up the possibility of data analysis in which assumptions
regarding an underlying population are not necessary (Gibbons and Chakraborti, 1992;
Puri, 1970). Geman (1992) relates the properties of non-parametric model building to
artificial neural networks. Non-parametric statistical models have “arbitrary decision
boundaries...in the sense that no particular structure, or class of boundaries, is assumed a
priori” (p. 1). The link between statistical modeling and neural network modeling is that

learning in a neural network “...can be formulated as a (nonlinear) regression problem”

(p- 2).
Artificial Neural Networks

As neural network-based applications have become more commonplace, so the

basic literature on neural networks has diverged from the theoretical to the practical. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

acknowledged seminal work on backpropagation-based neural networks is Rumelhart and
McClelland (1986). However, since this research is application oriented, some of the
current general texts on neural networks such as Haykin (1999) and Skapura (1996)
provide a very good theoretical basis as well as practical guidance on the construction
and application of ANN.

Data presentation and representation in a neural network is critical to a successful
application. The previously-cited works also discuss this important area of neural
network applications as do Veelenturf (1995) and Lawrence (1991).

Theoretical discussions of the ability of neural networks to serve as universal
function approximators are found in Hornik, et al.. (1989), Hartman, et al.. (1990) and

White (1989; 1990).

Applied Neural Network Models

Because of their ability to learn complex, non-linear relationships and generalize
this learning to out-of-sample population data, neural networks have been successfully
used as prediction models. Artificial neural network prediction models have been used in
such diverse areas as economic time series, stock price analysis, academic grading
analysis, chemical analysis, meteorology and oceanography.

Much of the application-based literature exploring the use of ANN as surrogates
for regression models comes from the field of cost engineering, or more specifically,
parametric cost estimating. In parametric cost estimating, physical or performance
characteristics of many similar products or processes are collected, along with the cost of

the product or process. The object is to use this historical data to build a regression-based
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predictive model that relates characteristics to cost. The model is then used to predict the
cost of a new product or process based on its physical or performance characteristics.

Various application-oriented studies comparing the performance of ANN and
MLR are discussed, including several examples from the parametric cost estimating
literature.

Paruelo and Tomasel (1997) compared the predictive power of both ANN and
MLR in modeling ecosystem attributes. They used 13 years of temperature and
precipitation data to empirically derive values for six ecological indices. They found that
the ANN generally performed better than regression models based on mean absolute
percentage error (MAPE) and coefficient of correlation.

Kwan, et al., (1995) compared both MLR and ANN to previously-derived models
for estimating the optimal “tour length” of the traditional traveling salesman problem
(TSP). Training data for both MLR and ANN was simulated using variables derived
from several configurations of the tour area shape, and the number and location of points
in the area. Both MLR and ANN models performed better than the models from the
literature, but the neural network models were slightly better than the regression models.

Zeng (1999) discovered that neural network models were a much better prediction
tool in social science choice/classification problems than the traditional logit or probit
models (which are, typically, linear classifiers). Also using simulated data with a known,
“true” function, Zeng (1999) reached the interesting conclusion that the ANN model is
statistically indistinguishable from the “true” model.

In a civil engineering application, Owusu-Ababio (1995) used ANN as an

alternative to MLR in modeling pavement surface friction as a function of several
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pavement variables such as regional location and age. The ANN models in this study
consistently outperformed the MLR models on both in- and out-of-sample data.

In a pharmacological study focusing on modeling the properties of powders using
very limited data, Zolotariov and Anwar (1998) concluded that there was no statistical
difference in performance between ANN and MLR models. Their study used a sample
size of 33, but a total of 9 independent variables.

Practitioners using ANN as a surrogate for MLR in estimating cost based on
historical data have had generally positive results. Bode (1998a,b) collected data for 4
dimensional attributes of 573 different bearings, along with their cost. The resulting
network with 4 input nodes, one output node and 6 nodes in one hidden layer (4, 6, 1)
performed consistently better than the traditional parametric estimation using regression,
even when as few as 20 exemplars were used to train the network.

De-la-Garza and Rouhana (1995) used even fewer data points to train a 3, 4, 1
backpropagation network. Having 16 examples of attribute and cost data for carbon steel
pipe, they used only 10 exemplars to train the network and the remaining 6 for testing.
Although the data had a strong linear relationship (R? = 0.95), the neural network
provided a 78 percent improvement over a linear regression model. Smith and Mason
(1997) take issue with the methodology of de-la-Garza in that all 16 exemplars were used
to construct the linear regression models; nevertheless, de-la-Garza concluded that the
neural network does represent a significant improvement.

None of the cited cost estimating applications uses more than 4 cost drivers (input
neurodes). De-la-Garza and Rouhana (1995) conclude that neural networks can handle a

large number of cost drivers when used in cost estimating problems. Bode (1998a,b),
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however, disagrees, stating that the number of input variables should be limited so as to

avoid an overly complex neural network architecture.

Experiment-Based Literature

Although applications of ANN as an alternative to MLR for predictive modeling
have shown promise, these studies are limited because they rely on actual cost, or other
modeling data. Research into the nature of neural networks as surrogates to regression
necessitates a degree of control over variables in the problem in order to conduct
experiments. The ability to generate simulated data based on known functions allows the
researcher to control the most important variable in experiment, the mathematical
function underlying the data being analyzed.

Several researchers, using simulated data, have experimented with neural
networks as alternatives to regression. In most of these studies, the variables of interest
were training sample size and noise in the data (represented by the variance of the error
term in the underlying function) and their effect on the comparative performance of ANN
and regression. Measures of performance were typically mean squared error (MSE) or
mean absolute percentage error (MAPE).

Marquez et al. (1991) varied the training sample size, variance of the error term,
and the form of the data-generation function. Using linear, logarithmic and reciprocal
functions with one independent variable, and sample sizes of 15, 30 and 60 exemplars,
the authors compared ANN and regression under a total of 27 different conditions. They
used backpropagation to train a network with one hidden layer consisting of 6 neurodes

(1, 6, 1). They concluded that ANN outperform regression when sample sizes are small.
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Bansal et al. (1993) compared ANN and MLR performance on the same

financial data set after simulating the degradation of data. They found that, for this
type of data, MLR performed better using R-squared as a performance measure.
However, ANN did better when using a payoff criterion tailored to the problem being
modeled. They concluded that MLR may have performed better because of a strong
linear relationship in the data. They suggested that ANN would likely perform better
with non linear relationships in the data, pointing out that specification of a regression
model then becomes problematic.

Robinson (1991) conducted a limited experiment with a known function in four
independent variables. This function, a second order quadratic with an exponential term,
could be considered more representative of the nature of the unknown functions that
would be encountered in an application. Both the network and the regression model were
“trained” on 100 samples from a set of 200. Only a linear model formulation was used
for the regression equation, however. The backpropagation neural network with two
hidden layers (4, 15, 7, 1) improved the RMS error over regression by a factor of 10. The
author suggests that a neural network cannot discover an underlying relationship from a
data sample of fewer than 50 exemplars. This suggestion is questionable, however, given
that the author used only a training set of 100 exemplars. Other authors test this notion
using factorial experiments and reach different conclusions.

In a very comprehensive experimental study, Smith and Mason (1997) directly
compared neural networks to multiple linear regression in determining cost estimating
relationships (CER). They examined stability and ease of use as well as performance. A

key feature of this study that separates it from previous studies is the attempt to measure
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the significance of the assumption of the regression model form. The authors compared
one neural network (2, 2, 2, 1) to three regression equations representing a best case to
worst case estimate of the “known” function. Additionally, they varied training sample
size and variance of the error term in the data-generation function. After performing
ANOVA on their experimental results, the authors found that CER type (model
formulation) was the largest contributor to variability in the data. Size of the training
sample contributed relatively little.

Smith and Mason (1997) conclude that an ANN “may be an attractive substitute
for regression if... the cost data does not enable fitting a commonly chosen model, or
does not allow the analyst to discern the appropriate CER” (p. 156). They also suggest
that, as the dimensionality of the input vector increases, the problem is more acute. This
implies that ANN should perform much better than regression given a large number of
independent variables or cost drivers.

Finally, Markham and Rakes (1998) studied simple linear regression (one
independent variable) and neural networks, varying the training sample size and the
variance of the error term of the known function. A good deal of pre-optimization was
done to determine the “best” neural network to use for the experiments. Once arrived at
(1, 2, 1) this network was used for all the experiments. The authors varied sample size
from 20 to 500 and variance of the error term from 25 to 400. They concluded
(expectedly) that large sample sizes work well for both regression and ANN; however,
they favor ANN because of their ability to perform well with large variance levels. When

sample size was small, ANN performed better only when variance was high.
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Performance of ANN and regression models tended to stabilize and converge rapidly at

sample sizes greater than 100.

Table 1 is a summary of some of the salient features of the experimental studies

comparing ANN to regression.

16

Marquez et Robinson Smith/Mason Markham/ Bansal et al.
al. (1991) (1991) (1997) Rakes (1998) (1993)
Variables | Form of None (non- Form of VAR of error Data quality
underlying factorial) regression term; sample (simulated by
function; VAR model; VAR size randomly
of error term; of error term; deviating
sample size sample size; existing data
sample bias set)
ANN 1,6, 1 4,15,7,1 2,2,2,1 1,2,1 85,1
topology
Conclusions | ANN perform | ANN perform | ANN perform | Regression MLR performs
better w/small | better when better when performs better if data is
sample sizes significant significant better when linear using R?
non-linearity non-linearity variance low; as criterion.
present in data. | present in data; | ANN when ANN better
ANN cannot also when variance high. | w/Payoff
perform well dimensionality criterion.
when n<50. is large.
Model
formulation
significant.

Conclusions of Literature Review

Table 1. Summary of Experimental Studies

A review of the literature linking artificial neural networks and multiple linear

regression leads to the experimental studies summarized above. All but one of these

analyses addresses the effects of sample size and data “noise” on the comparative

performance of ANN and regression. After considering the results of the application-

oriented literature, it can be concluded that for most types of data, neural networks tend
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to produce better results than MLR when sample sizes are small. Additionally, neural
networks appear to be much better at detecting non-linearities in the data. As Robinson
(1991) suggests, traditional regression results might attribute the unexplained
relationships in the data to “measurement or environmental noise”, when in fact, there are

non-linearities in the data that only neural networks can uncover.

Contribution to the Literature

A gap in the literature on neural networks as a surrogate for regression appears to
exist in the area of model formulation. Much has been studied about the effect of sample
size and noise on relative performance. However, no comprehensive experimental study
has isolated model formulation as a variable for research in this area. Additionally, there
has been no published methodology for the combined use of ANN and MLR in predictive
modeling. This research should make a necessary contribution to both the theoretical and
practical categories of the literature in this area by quantifying the effect of model
formulation on the comparative performance of artificial neural networks and regression,
and by providing a predictive modeling methodology based on the combined use of ANN

and MLR techniques.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

CHAPTER III: RESEARCH METHODOLOGY

The purpose of this research is to explore the robustness of both regression and
neural network models with respect to model accuracy and predictive ability. A full-
factorial experiment is designed for the comparison of MLR and ANN. Model
formulation and its subsequent effect on model performance is studied. To isolate the
effects of model formulation on comparative model performance, sample size
(construction and validation), dimensionality of the input vector, and variability of the
data (as represented by the variance of the error term), are controlled. The

backpropagation algorithm is used to train the ANN used in the experiment.

Sample Size

The construction sample is that portion of the data set used to train, or construct
the neural network or upon which the regression is based. In a regression analysis, the
construction sample is the data set used to derive the least-square coefficients for the
regression model. Validation of the model’s generalizability can only be accomplished
by testing the model against another sample, drawn from the same population. Although
a large data set is helpful when building statistical or ANN models, sometimes data
(particularly cost data) may be difficult to come by, forcing the analyst to build a model
on a limited number of data points. An assumption of‘small construction sample size is
conservative in that larger data sets can only enhance the quality of the model’s output.

This study, therefore, assumes a construction sample size of n = 25.
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Size of Input Vector

The term “input vector” is used to describe the number of input neurodes in an
ANN. It also represents the number of independent variables in a multivariable
regression analysis. In the experimental studies comparing neural networks and
regression, some studies use simple linear regression (SLR) with only one independent
variable, and some studies use MLR with two independent variables (Marquez, et al.,
1991; Markham and Rakes, 1998). However, the typical application-oriented comparison
of MLR and ANN used models with three and four independent variables (de la Garza
and Rouhana, 1995; Refenes, et al., 1994; Creese and Li, 1995; Bode, 1998; Moselhi and
Siquerra, 1998; McKim, 1993).

This research builds on the previous experimental literature by attempting to
replicate the conditions found in typical applications of predictive modeling. For this
reason the number of independent variables in the study is set at four, providing a more

realistic structure for the experimental design of the study.

Backpropagation Algorithm

The backpropagation algorithm is used to train the neural network models.
Backpropagation is a variation of the delta rule, which is a minimum-error learning
algorithm (Skapura, 1996; Veelenturf, 1995). Since regression analysis techniques also
attempt to fit a minimized error surface to the data, minimum-error algorithms such as
backpropagation are appropriate for training neural networks used as surrogates for

multiple linear regression. Backpropagation-based ANN have been shown to be robust
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and easy to implement in a variety of applications, as well as demonstrating the ability to
model any continuous, nonlinear function (Haykin, 1999; Eksioglu, 1996).

Table 2 summarizes both the variables under study and the variables to be

controlled.
Variable Type (study or controlled) Value
Formulation of MLR function Study Variable
Neural network architecture Study Variable
Construction sample size Controlled N =25
Validation sample size Controlled N=25
Dimensionality of input vector Controlled 4

Table 2. Variables in the Study

Data Collection

The data for this study is generated using Monte Carlo simulation. The advantage
of using simulated data based on a known, multivariable function is that it allows for
comparison between the model results and the “true” function. A suitably large
population is generated from three separate functions, which has normally distributed
error terms with a mean of 0 and a known variance. Introducing an error term into the
known function simulates the type of random “noise” found in real-world data. The
regression and neural network models built using data samples drawn from this
population can then be directly compared to this underlying, known function. Simulated
data was also used in previous studies comparing regression and ANN (Marquez et al.,

1991; Markham and Rakes, 1998; Smith and Mason, 1997).
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There are an infinite number of possible functions that could be used to generate

the data for the experiments in this research. The following three functions are chosen:

y = x2 + x,.x, + x} +20x, + £(0,10), (1)
0.5 x5
y= nex, £(0,6), )
4
y =4x, +2.8xx, +0.2x, + x, + £(0,3.5). 3)

These functions are chosen because they include four independent variables, representing
either variables in a regression model or an input vector for a neural network with a
dimensionality of four. They also generate three distinctly different pools of random
variates demonstrating varying types of data. Equation 1 is a polynomial function with
two nonlinear terms and one interaction term. Equation 2 shows a complex function with
both quadratic and exponential relationships between the dependent and independent
variables. Finally, equation 3 is a purely linear relationship made slightly more complex

with the addition of an interaction term.

Independent Variables Error Terms
X, X5 X3 X4 e(Eql) €(Eq2) e(Eq3)
Distribution Uniform | Normal | Uniform | Normal Normal Normal Normal
Range Sl | Na a2 NA NA NA NA
Mean 5.5 2.8 5 4 0 0 0
Variance 6.75 0.25 3 0.04 100 36 12.25

Table 3. Independent Variables and error terms

Table 3 shows the distribution of each of the independent variables, x, through

x, . The expected range or variance of these independent variables was chosen to keep
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the dependent variable within a reasonable range across all three functions. Each
function has an error term, € which is normally distributed with a mean of zero and a
variance of approximately ten percent of the expected range of the dependent variable.

These three true functions, equations 1, 2, and 3, are used to generate three
separate “pools” of 500 exemplars consisting of a dependent variable Y, and four
independent variables, X, through Xs. The spreadsheet add-in @Risk is used to generate
random variates for these exemplars based on the distributions in Table 3.

Table 4 is a representative listing of 10 exemplars generated using a function
similar to equation 1. Each pool consists of 500 exemplars similar in structure to those in
Table 4. Although the values of € are not shown in the table, the effect of this error term

is reflected in the value of Y in the exemplar data.

Y X, X; X3 X
1495.82 3.62 10.16 24.03 36.66
1609.44 3.51 15.53 16.38 57.29
1489.35 2.80 20.50 13.28 56.49
2012.00 8.78 7.61 10.18 53.45
1778.09 0.31 9.08 22.87 57.29
2771.06 9.77 17.13 19.23 59.45
1371.24 1.12 2.37 22.29 38.50
2548.84 8.08 10.96 23.08 64.14
2865.44 9.55 14.86 22.82 60.35
1880.79 8.34 16.14 18.62 36.66

Table 4. Sample data using a polynomial function

Experimental Design
The functions introduced in equations 1, 2, and 3 are used to generate three

separate pools of 500 data exemplars. Each exemplar consists of four independent
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variables and a corresponding dependent variable. Two random samples of size n = 25
are drawn from these pools to be used as construction samples for building the regression
models and training the neural networks. Once the models are constructed, an additional

random sample of size n = 25 is drawn. The X values from this sample are used to

generate the estimated values, ¥ . These values are compared to the actual Y value from

the sample. The difference is measured in terms of root mean squared error (RMSE):

4)

where n =25, or the data sample size.

Experiment Steps

The following steps outline the procedure for conducting the computer
experiments for both ANN and MLR models. Figure 2 represents this process in
flowchart form:

1) Using Monte Carlo simulation, generate 500 exemplars using the function in equation
1 and the distributions of the random variables x,; through x;.

2) Take three random samples of 25 exemplars each from this pool of 500.
a) Designate two as training/construction samples.

b) Designate the remaining sample as a testing/validation sample.
3) Train ANN model 1 with training set 1. Construct MLR model | with training set 1.

a) Use testing/validation set to determine Y.
b) Compare with true value, Y.
¢) Determine RMSE.
4) Train ANN model 1 with training set 2. Construct MLR model 2 with training set 2.

a) Use testing/validation set to determine Y.
b) Compare with true value, Y.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

¢) Determine RMSE.

5) Average the two RMSE values to produce one RMSE value for ANN model 1 and
MLR model 1.

6) Repeat for all remaining ANN and MLR models. There should be one RMSE value
for each model.

7) Compare each ANN model with each MLR model using RMSE as a measure of
performance (MOP).

8) Repeat steps 1 through 8 for each of the remaining two data-generating functions,
equations 2 and 3.

szms >—s{oay

Figure 2. Experiment flowchart

Neural Network Experiment

A factorial experiment is conducted to vary the architecture (model formulation)
of the ANN. Three different ANN parameters are varied: the number of processing
elements (PE) in the hidden layer, the learning constant value, and the transfer function.
The number of PE and the learning constant parameters are set at three levels; the transfer
function is set at two levels, for a total of 18 separate ANN models. (The complete

factorial experiment matrix can be found at Appendix A). All the models have four input
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layer neurodes, one for each independent variable, and one output layer neurode for the
dependent variable.

The number of processing elements, or neurodes, in the hidden layer(s) has been
found to have a significant effect on the ability of ANN to both converge (train to a low
level of RMS error) and generalize (Flitman, 1997). However, selecting the number of
neurodes and the number of hidden layers is not necessarily a straightforward process.
The free parameters within the ANN are the weighted connections between the neurodes.
Too many weights (too large a hidden layer) for the data may cause the network to
converge quickly, yet not be able to generalize the training to a testing set. Conversely,
too few weights for the example data may prevent the network from leaming to an
acceptable degree of accuracy. Several heuristics exist for determining the number of
neurodes in the hidden layer. Flitman (1997) suggests this number can be determined by
the following formula:

Number of hidden neurons = %: (Inputs + Outputs) + Sqrt(# of training patterns)

For this research problem, this formula suggests the number of neurodes be limited to
approximately 7. Another heuristic, also suggested by Flitman (1997) is simply two
times the square root of the sum of the inputs and the outputs, rounded down to the
nearest integer. This would result in a hidden layer of 4 neurodes for this experiment.
Clearly, it is important to first determine a reasonable value for the number of hidden
neurons, and then vary this for purposes of experimentation. For this research, the hidden
layers will consist of 3, 6, and 9 neurodes respectively (Table 5).

The type of transfer, or activation, function used in the hidden layer neurodes has
an effect on the ability of the network to converge, or minimize the backpropagated error.

Typically, a sigmoidal function (Equation 5) is recommended for these networks;
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however, other functions such as hyperbolic tangent (Equation 6) have been used
successfully (Haykin, 1999; Veelenturf, 1995; Flitman, 1997).

1

y= (5)
l+e
e’ —e”
= (6)
e’ +e

Both have the characteristic of being monotonically increasing between 0 and 1
(sigmoid) and —1 and 1 (hyperbolic tangent). Since most modern neural network
simulation environments offer either sigmoid or hyperbolic tangent (tanh) functions as
the defauit transfer function settings, these two functions are used in the experiments
(Table 5).

The learning constant, 3, takes values between 0 and 1, and modifies the weight
changes between neurodes according to the following equation:

Aw, = BEF() 7
where Aw; is the weight change, E is the error value being propagated back through the
neurode, and f(I) is the input to the neurode. A larger value for § makes the individual
weight changes larger, which causes the network to train faster. This may or may not
have an impact on the quality of training as represented by the RMS error level achieved
when the network reaches convergence. Varying the learning constant from 0.3 to 0.9

ensures that a broad range of weight change values is covered.
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Table 5 summarizes the various levels of each parameter being modified in the
neural networks experiments. The ANN models are developed using NeuroSolutions

version 3.02.

Parameter Levels
Number of processing elements in 3 6 9
hidden layer
Learning constant value 0.3 0.6 0.9
Transfer function Sigmoid Hyperbolic Tangent N/A

Table 5. Neural Network parameters and levels

MLR Experiment

For the regression model formulations, a number of different function types are
assumed. The objective of using a variety of function types is twofold: 1) to simulate the
approach an analyst might take in attempting to fit a regression model to a set of data
with an unknown relationship, and 2) to inject variability into the regression estimates of
the true functions so the robustness of MLR can be evaluated.

The regression equations are based on the following five types: linear, second
and third order polynomials, exponential, and power. Since each model will have one,
two, or three interaction terms, there are a total of 15 possible regression models. The
functions are listed in Table 6 and the full equations for the regression models can be
found at appsndix B.

Each of the 15 regression models is built using data sets sampled from the same
pools used to construct the ANN models. The estimated values of Y are determined by
running the testing data sets drawn from the three data pools through the regression

models.
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Model Function Type Interaction Terms
Linear 0

2" order polynomial
3" order polynomial
Exponential

Power

Linear

2™ order polynomial
3% order polynomial
Exponential

Power

Linear

2™ order polynomial
3 order polynomial
Exponential

Power
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Table 6. Funiction forms for regression models

Three of the regression models are functionally identical to the respective data
generating functions with the exception of the coefficients (models 4, 6 and 8). These
models would, theoretically, be correctly specified, providing a best case scenario for
regression. A baseline linear formulation (models 1, 6, and 11) provides the worst case
scenario for this study. The best case is a model identical to the true function for which
the coefficients must be estimated from the data. Regression models are developed using
SPSS for Windows, version 7.5.1.

Normally, when constructing a regression model, a residual analysis is performed
to ensure the basic assumptions are met concerning independence, constant variance and
normal distribution. Additionally, regression models are normally checked for
multicollinearity, or correlations between independent variables. The models in the

designed experiments are used directly without this more detailed refinement.
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Data Analysis

For each of the three data pools, every ANN model and MLR model is
constructed using the same sample data. Therefore, a one-to-one comparison can be
performed using RMSE as a measure of performance. There is a total of 15 x 18 =270
comparisons per data pool. A matched pair statistical test is used to compare the means
of the RMSE differences between ANN and MLR models. The difference is computed
using the following equation:

Hygr = Bavw = Has C))

where 4, and u,,, are the RMSE values for the ANN models and MLR models

respectively for each pair comparison, and x, is the difference between these values.

If the 95 percent confidence interval for this statistic does not include 0, it can be
concluded that one or the other modeling approach is superior depending on whether the
sign is negative or positive. If the sign is positive, the ANN models have the lower
RMSE values and therefore can be shown to be better predictors than the MLR models.
Table 7 shows the software used in constructing the MLR models, constructing and

training the ANN models, and analyzing the output of the experiments.

Application Vendor Research Use

Excel 97 SR-2 Microsoft Corp. Spreadsheet software for data management
and selecting samples from population.

@Risk for Windows, | Palisade Corp. Spreadsheet add-in for Excel. Generates

ver. 3.5e Monte Cario simulations. Used for generating
random variates in the population.

SPSS for Windows, SPSS, Inc. Statistical analysis package used for building

ver 7.5.1 (standard) regression models.

NeuroSolutions, ver. | NeuroDimensions | Neural networks simulation package for
3.02 building and training neural network models.

Table 7. Software used in research
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CHAPTER IV: EXPERIMENTAL RESULTS AND DISCUSSION

This chapter presents the experimental results and relates those results to the
research questions posed in Chapter I. The first research question asked how variations
in model formulation affect the comparative performance of ANN and MLR as measured
by RMSE. Each of the 18 ANN models and the 15 MLR models were compared on a
one-for-one basis on their ability to accurately estimate three different functional
relationships on the basis of artificially generated data. The second research question

asked how robust ANN and MLR models were to changes in model formulation or

topology.

Research Question 1: Model Performance
The function in Equations 1 through 3 were used to generate pseudo-populations,
or pools, of 500 data exemplars. The experiment steps in Chapter III were followed to

train the ANN models and construct the MLR models using the simulated data.

Function 1 Experiments: ANN Models

The resulting RMSE values for the ANN models trained and tested with the Function 1
data are shown in Table 8. The training and testing samples and the estimated Y values
for each of the ANN models are found in Appendix D. These results appear to indicate
that the ANN models with the hyperbolic tangent transfer function performed much
better than those with the sigmoidal transfer function. A pairwise, two-tailed t-test
comparing the nine sigmoid models and the nine hyperbolic tangent models shows a

significant difference at an alpha = 0.01 (t-critical = 2.638, and t = 15.08). The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

hyperbolic tangent models, in addition to having a lower mean RMSE than the sigmoidal
models, also had a lower variance, suggesting they are much less sensitive to changes in
topology, or model formulation. The variance of the sigmoid models was 1679.00, while

the variance of the hyperbolic tangent models was 353.368. The difference is significant

at an alpha = 0.05 (F-critical = 3.438, and F = 4.728).

Processing . . .
Model Elements Learning Coefficient Transfer Function Average RMSE

3 0.3 Sigmoid  109.10

Table 8. Function | ANN Models

Function 1 Experiments: MLR Models

The resulting RMSE values for the MLR models constructed and tested with the
Function 1 data are shown in Table 9. The coastruction and testing samples and the
estimated Y values for each of the MLR models are found in Appendix E. The mean

RMSE value for all 15 models was 69.24 with a variance of 2580.65.
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Model Function Type Interaction Terms

Linear

Yen e een s T g aly
LTI h

Poly-3
IR BT ST

Table 9. Function | MLR Models

Performance Comparison

A paired t-test was performed comparing each of the 18 ANN models with each
of the 15 MLR models for a total of 270 pairs with a hypothesized mean difference of 0.
The t-statistic based on the overall paired differences was —~7.546, which indicates a
significant difference in performance between the ANN models and the MLR models at
an alpha of 0.01 (t-critical = -2.576). The 99 percent confidence interval for the mean
difference between the two model types was entirely negative, indicating that the MLR
models performed better overall in estimating the data generated by Function 1. Table 10
is a summary of the performance comparison and clearly shows the overall performance
of the MLR models is better than that of the ANN models. Even a direct comparison of
just the linear formulations of the MLR models showed no significant difference in
performance from the ANN models. However, it is the ANN models with the sigmoidal
transfer functions that bring down the overall performance of the neural networks. A

comparison of the hyperbolic tangent ANN models and the MLR models shows no
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significant difference in performance at an alpha of 0.05, indicating that the best ANN
models do not outperform the MLR models for n = 25.

The lower variance for the hyperbolic tangent ANN models suggests they are
more robust with respect to changes in the other parameters (number of processing
elements and learning constant) than MLR models. The difference is significant at the 1

percent level (F-critical = 3.237, F = 6.540).

ANN Models MLR Models
Tan H Sigmoid Linear
Mean 63.467 139.05 101.943
Variance 353.368 1679.00 68.632

Table 10. Performance Comparison, Function |

The same 18 ANN models and 15 MLR models were then used to estimate

Function 2 from the data generated by Equation 2.
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Function 2 Experiments: ANN Models

The resulting RMSE values for the ANN models trained and tested with the
Function 2 data are shown in Table 11. As with the results from Function 1, the models
with the hyperbolic tangent transfer function performed significantly better than those
with the sigmoid transfer function at an alpha = 0.01 (t-critical = 2.638 and a t-statistic of
5.962). Again, the hyperbolic tangent models had a lower variance than the sigmoid
models, indicating a higher level of robustness. The variance of the sigmoid models was
94.368 while the variance of the hyperbolic tangent models was 19.120. The difference

is significant at the 5 percent level (F-critical = 3.438, F =4.935).

Modei ProcessiniElements Learniﬂ Coefficient  Transfer Function Aﬂaje RMSE
1 3 0.3 Sigmoid ‘ 23.97
) 3 9 0.3 Sigmoid 23.14
E 5 6 0.6 Sigmoid 19.12
- 0.42

7 . 3 R S

»-

9 9 0.9 Sigmoid 19.90

b
11 6 0.3 TanH 14.47

13 3 0.6 TanH 20.85

Table 11. Function 2 ANN Models

Function 2 Experiments: MLR Models

The RMSE values for the MLR models constructed and tested with the Function 2
data are shown in Table 12. The mean RMSE value for all 15 models was 15.18 with a

variance of 26.49. Function 2 had an exponential term as well as a square root term and
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the power and exponential model formulations appeared to perform the best on these

data.
Model Function Type Intsraction Terms Avonﬁ RMSE

1 Linear 0 12.61

3 Poly-3 0 20.00

5 Power 0 .7.56

7 Poly-2 1 17.17

9 Exp 1 11.97

11 Linear 2 10.89

13 Poly-3 2 2183

) 15 Power 2 16.91

Table 12. Function 2 MLR Models

Performance Comparison

As with Function 1, a paired t-test was performed comparing the results of each of
the 18 ANN models with those of each of the 15 MLR models, for a total of 270 pairs.
The hypothesized mean difference was 0. The t-statistic based on the overall paired
differences was —6.629, indicating a significant difference in performance between the
ANN and the MLR models at an alpha of 0.01 (t-critical = -2.594). The 99 percent
confidence interval for the mean difference between the two model types was again
entirely negative, indicating the MLR models performed better overall in estimating
Function 2 based on the generated data. Table 13 summarizes the performance
comparison and shows the overall performance of the MLR models as superior to that of
the ANN models. Overall variance was significantly lower for the MLR models at the 5

percent level of significance (F-critical = 0.412, F = 0.390). A simple linear formulation
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of the MLR models performed better than the ANN models overall. In addition, the
linear MLR formulations performed better than the best ANN models, which were the
hyperbolic tangent models. The variance of the hyperbolic tangent ANN models was not
statistically different than the overall variance of the MLR models, suggesting that for

this function type, the MLR models were more robust overall than the ANN models.

ANN Models MLR Models
Tan H Sigmoid : Linear
Mean 15.594 22.651 12.113
Variance 12.120 94.368 0.792

Table 13. Performance Comparison, Function 2

The function in Equation 3 was used to generate the data exemplars for the third
set of experiments comparing the 18 ANN models with the 15 MLR models. It wasa

simple linear function with one interaction term, or cross product.

Function 3 Experiments: ANN Models

The resulting RMSE values for the ANN models trained and tested with the
Function 3 data are shown in Table 14. As with the previous two data sets, these results
appear to indicate that the ANN models with the hyperbolic tangent transfer function
performed much better than those with the sigmoid transfer function. A two-tailed paired
t-test comparing the nine hyperbolic tangent models and the nine sigmoid models shows
a significant difference in performance at an alpha of 0.01 (t-critical = 2.638, and t-
statistic = 14.183). However, the variance of the hyperbolic tangent models was not
statistically different than that of the sigmoid models at an alpha = 0.05 (F-critical =

3.438, F =2.151).
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Processing
Learning Coefficient Transfer Function Average RMSE
Model Elements "9

3 _ 0.3 _Sigmoid 12.78

 Sigmoid. 12.23

Sigmoid 13.55
Sigmo 12.0

_Sigmoid » 10.60

e T

TanH

TanH

7.50

Table 14. Function 3 ANN Models

Function 3 Experiments: MLR Models

The resulting RMSE values for the MLR models constructed and tested with the
Function 3 data are shown in Table 15. The mean RMSE value for all 15 models was
7.55 with a variance of 10.71. As expected, because of the linear data-generating
function, the linear formulations performed slightly better than the other MLR models.
However, it is interesting to note that MLR model 6, the exact specification of the
underlying function, did not perform as well as either MLR Model 1 or Model 11, with

zero and 2 interaction terms, respectively.
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Model Function Type Interaction Terms Avg!! RMSE

1 Linear 0 4.22

3 Poly-3 0 11.36

5 Power 0 3.85

7 Poty-2 1 11.55

9 Exp 1 11.82

11 Linear 2 3.39

13 Poly-3 2 4.77

i ;
15 Power 2 7.21

Table 15. Function 3 MLR Models

Performance Comparison

As with the previous two functions, the 18 ANN models and the 15 MLR models
were compared on a one-for-one basis using the training and testing data generated by
Function 3. A paired t-test was performed on the 270 pairs of RMSE results with a
hypothesized mean difference of zero. The t-statistic based on the overall paired
differences was —10.829, which indicates a significant difference in performance between
the ANN models and the MLR models at an alpha of 0.01 (t-critical = -2.594). The 99
percent confidence interval for the mean difference between the two model types was,
again, entirely negative, indicating the MLR models performed better overall in
estimating the Function 3 based on the simulated data. Table 16 is a summary of the
performance comparison and shows that the overall performance of the MLR models
based on mean RMSE values is better than that of the ANN models. The variances are

not statistically different. Eliminating the sigmoid-based ANN models reduces both the
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mean RMSE as well as the variance. However, there is no statistical difference (at the 5
percent level of significance) between the performance of the hyperbolic tangent-based
ANN models and the overall MLR models. The linear models performed better than the
best ANN models, probably because the underlying functional relationship was based on
a first order linear function. The variance of the hyperbolic tangent models is lower than
the overall variance of the MLR models, however the ratio is only statistically significant
at the 10 percent level, (F-critical =2.475, F = 2.979) suggesting a slightly higher degree

of robustness with respect to model formulation.

ANN Models MLR Models
TanH Sigmoid liEE Linear
Mean 8.108 13.306 4.265
Variance 3.435 7.426 ‘ 0.562

Table 16. Performance Comparison, Function 3

Summary of ANN and MLR Comparison Results

Table 17 summarizes the statistical comparison between the 18 ANN models and
the 15 MLR in their ability to estimate the three test functions based on the simulated
data. The overall comparison of means across the three data sets shows the MLR models
performing better than the neural networks. There was no statistical difference in the

model variances except for Function 2, in which the MLR models had a lower variance.

Lowest Mean RMSE Lowest Variance
Eliminating Eliminating
Overall Sigmoid Models Overall Sigmoid Models
Function 1 MLR No Difference
Function 2 MLR MLR
Function 3 MLR No Difference

Table 17. Summary of ANN and MLR comparison results
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However, it is apparent that, for all three data sets, there is improvement in the
performance of the ANN models when those with sigmoid transfer functions are
eliminated from the comparison. This may be an indication that the hyperbolic tangent
transfer function is more suitable for these types of data analysis problems. After
eliminating the sigmoid-based ANN models from the comparison, there is no statistical
difference in mean RMSE performance between the ANN and MLR models. In addition,
the hyperbolic tangent-based ANN models have a generally lower variance than the MLR
models. This lower variance is statistically significant for the Function 1 data and
suggests that neural network models may be less sensitive to changes in model

formulation and therefore, more robust.

Sample Size 50 Excursion: Performance Comparison

The literature suggests that when sample size is small and data variance fairly
high, neural network models should perform better than multivariate linear regression
models (Markham and Rakes, 1998). The fact that, across all three data sets, there was
no significant difference in performance between the ANN (hyperbolic tangent) and
MLR models for n = 25 may suggest that the error terms used in the data-generating
functions (equations 1, 2, and 3) did not contribute a great deal of noise to the data
relative to the sample size.

An excursion experiment was performed in which the same 18 ANN models and
15 MLR models were compared on the Function 1 data set but with training and testing

sample sizes of n = 50. The purpose of this excursion was to learn how an increase in
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sample size without changing the noise level would affect the comparative performance

of these models.

ANN Models

Table 18 shows the change in performance of the 18 ANN models for Function 1
when the sample size is increased to 50. On a model-for-model basis, there was an
average overall improvement of 17.09 percent. A paired t-test between the two sets of
results shows that this improvement is statistically significant at the S percent

significance level (p = 0.022).

Processing Learning Transfer Avg RMSE Avg RMSE Percent
Elements Coefficient Function (n = 25) {n = 50) Improvement

C.3 i 137.42
” ; Mt P Le

1.ﬁ!w X R
provement: 17.09 %

Average im

Table 18. Percent change in ANN model performance with n = 50

The overall variance of the model results improves as well when sample size is
increased. The variance of the RMSE performance for the 18 ANN models trained and

tested on sample sizes of 25 was 2,575.85. Increasing the sample size to 50 for the same
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18 models reduced the variance to 1,403.31, a reduction of almost 50 percent. However,

this variance reduction was not statistically significant at the S percent level (p =0.11).

MLR Models

Table 19 shows the change in performance of the 15 MLR models when the
sample size was increased from 25 to 50 for both construction and validation samples.
Although the overall average performance of the MLR models declined when compared
on a one-for-one basis, a paired t-test indicates no significant difference in performance at
the 5 percent level (p = 0.866). Likewise, there is no statistically significant difference in
variance (p = 0.288). Essentially, increasing the sample size did nothing to improve the

performance of the regression models.

Interaction Average RMSE Average RMSE Percent
Terms {n = 25) I (n = 50) lrovomont

e

Average Improvement: -8.17

Table 19. Percent change in MLR model performance with n = 50
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Performance Comparison

There is still a significant difference in overall mean performance between the 18
ANN models and the 15 MLR models: The regression models still perform better based
on mean RMSE values; however, there is still no statistically significant difference in
variance. As with the smalier sample sizes, the hyperbolic tangent ANN models
performed significantly better than the sigmoid models, suggesting that transfer function
type is not an appropriate model parameter for adjustment in regression problems using
neural network models. When the hyperbolic tangent ANN models are compared to the
MLR models, there is an improvement in performance by the ANN models which is
significantly different from that of the MLR models at the 1 percent level. Table 20
summarizes the performance comparison between the ANN and MLR models for sample
size 50. Eliminating the transfer function as a model parameter also improves the
variance of the model results. The difference is highly significant (p = 0.0000297). In
the following sections, an extensive analysis of variance (ANOVA) is performed to
determine which model parameters (experimental factors) contribute the most variation in

model performance.

ANN Models MLR Models
Tan H Sigmoid Linear
Mean 45.029 115.623 105.592
Variance 60.501 100.108 ' 46.703

Table 20. Performance comparison, Function | and n = 50
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Research Question 2: Model Robustness

The remaining research question related to the robustness of MLR and ANN
models. It would be desirable for a predictive modeling technique to be robust with
respect to changes in model parameters. In the case of MLR models, the predicted
outcome should not only be as accurate as possible, it should be relatively insensitive to
the bias between the *“true” functional relationship between the independent and
dependent variables and the hypothesized functional relationship. Such robustness is
useful when the underlying functional relationship is not easily discerned from a study of
the data. For ANN models, predicted results should be insensitive to changes in the
magnitude of learning coefficients or numbers of processing elements in the hidden layer.

The variability of the RMSE results from model to model is a measure of the
robustness of the modeling technique. Low variability indicates a robust approach, while
high variability indicates a correspondingly high degree of sensitivity of model
performance to changes in model parameters, and hence, a non-robust approach.

For each of the three data sets, the variance of the experimental results of the 18
ANN models and the 15 MLR models was studied using the analysis of variance, or
ANOVA. Analysis of variance can provide information about which experimental
factors (model parameters) contribute the most to the variability of the results.

The approach used in this study is that suggested by Mendenhall and Sincich
(1995) in their chapter on designed experiments when the experimental factors are
qualitative. The authors suggest building a linear model of the factorial design of
experiments, taking into consideration both the main effects of each factor as well as the

interaction effects. Dummy variables can be used if some or all of the factors are
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qualitative. A multiple linear regression of this linear model is performed using SPSS

with the resulting ANOV A output.

;
f

ll

e —

el
m
r
O
~

R4

y

i3] ]xs o]
A R ”

3 03 Sg 10910 [1Jo]1]o]1 2
6 03 sSig 12937 [OJT[T]0]T O
9 03 sSig 12719 [0]0[1]0]1
3 06 Sig 12446 [1]0J0[1]1
6 06 Sig 16115 [0 T[O[1][1
9 06 Sig 127.61[0J0JO[1]1
3 09 Sig 24128 [1]0 g_ﬁ 1
6 09 Sig 14224 [0[T[0J0[1[& 4
9 09 Sig 89.06 [0]0j0]0]1
3 03 TanH 5121 [1j0[1]0]0
6§ 03 TanH 3661 [0]1]1]0]0E0=IE0E
9 03 TanH 75.03 [0]0[71]0]0 [S05[0: =
3 06 TanH 97.56 [1]0]O0] 1|0} i1 .
6 06 TanH 6037 [O]1[0]1]0 0RO g
9 06 TanH 3868 [0]0]0]1]0[c0s}z0=lx F0¢
3 09 TanH 5868 [1|{0[0]0]0 {55 FLER
6 09 TanH 76.08 [0]1[0]0]0 [50z[z0z]: s O
9 09 TanH 76.99 [0[0]0]0]0[?0z]z05L S|=0=

Dummy Variables:
x1=1if3PE, Oifnot
x2=1if6PE, 0if not
x3=1fLCis .3, 0ifnot
x4 =1 LCis .6, 0if not
x5 = 1 if Sigmoid, 0 if not

Table 21. Linear model for Function | ANN results

Function 1 Robustness Analysis: ANN Results

Table 21 details the linear model for the experimental results from the Function 1
data for the 18 ANN models. The binary dummy variables x1 through x5 describe the
relationship of the three factors, number of processing elements in the hidden layer,
learning coefficient, and transfer function type, to the resulting RMSE. The variables x1
and x2 correspond to number of processing elements, x3 and x4 correspond to learning
coefficient value, and x5 corresponds to transfer function type. The linear model takes
the form:

y=0, +Bxl+ B, x2+ B,x3+ f,x4 + B,x5+ B, x1x3 + F,xIxd + S xIx5 + S,x2x3
B x2x4 + B, x2x5+ B,,x3x5 + B,,x4x5 + B,,x1x3x5 + B, x1x4x5 + B, x2x3x5 + f,,x2x4x5 9)
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where the coefficients g, through g, describe the main effects of the factors and g,

through g, describe the interaction effects.

Table 22 shows the SPSS ANOVA output with regression results of the model in
Equation 9. The criterion for inclusion in the stepwise regression process was a
probability of an F-statistic of less than or equal to 0.15. Only one linear model was
significant with the variable x$, representing the factor transfer function type, as the only
predictor. This result is consistent with the finding that there is a significant
improvement in the performance of the ANN models when the transfer function is
changed from sigmoid to hyperbolic tangent. It is clear from the ANOVA that transfer
function should not have been included as an experimental factor. Its overwhelming
contribution to the performance of the models suggests that the clear choice for ANN

models used as surrogates for MLR is a hyperbolic tangent transfer function.

ANOVAP
Sum of Mean
Model Squares df Square F Sig.
T — Regression  [25707.978 T 125767975 22.735 'EUUU"
Residual 18081.212 16 | 1130.076
Total 43789.191 17

3. predictors: (Constant), X5
b. Dependent Variable: Y

Table 22. ANOVA of Function I ANN linear model
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ANOVAP
Sum of Mean
Model uares df Square F Sig.
[T tegression | 1307.824 | 1 | 1307.824 | 4.951 061°
Residual 1848.934 7 264.133
Total 3156.758 | 8
2 Regression | 1891269 { 2 | 945634 | 4.483 .064°
Residual 1265489 | 6 | 210915
Total 3156.758 | 8
3 Regression | 2357.831 | 3 | 785944 4.919 .059°
Residual 798927 | 5 159.785
Total 3156.758 | 8
4 Regression | 2891616 | 4 722904 | 10.906 .020¢
Residual 265.142 | 4 66.285
Total 3156.758 | 8
5 Regression | 3126928 | 5 | 625386 | 62.894 003°®
Residual 29830 | 3 9.943
Total 3156.758 | 8
6 Regression | 3154.850 | 6 | 525.808 [551.078 002
Residual 1.908 2 954
Total 3156.758 | 8

- Predictors: (Constant), X1X4

- Predictors: (Constant), X1X4, X2X3

- Predictors: (Constant), X1X4, X2X3, X4

- Predictors: (Constant), X 1X4, X2X3, X4, X1

. Predictors: (Constant), X1X4, X2X3, X4, X1, X2X4
Predictors: (Constant), X1X4, X2X3, X4, X1, X2X4, X1X3

- Dependent Variable: Y

Q@ =~ 6 a O o m

Table 23. ANOVA of Function | ANN linear model without transfer function factor

To determine how sensitive the ANN models are to changes in the remaining
factors (number of processing elements and learning coefficient) the linear model
(Equation 9) was altered to eliminate the variable x5 from the main effects and the
interaction effects. Table 23 contains the SPSS ANOVA output with the results of the
altered linear model. The F-statistics are less significant (still significant at the 10
percent level) and the criterion for inclusion in the stepwise regression process had to be
raised to a probability of F of less than or equal to 0.15 to capture several variations of
the linear model. It is notable that all the resulting linear regression models contain one

or more interaction terms. From Table 24 it can be seen that interactions between the
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factors account for almost half of the variability of the RMSE values. These results
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suggest that ANN models are more tightly knit and less sensitive to changes in individual

model parameters. In other words, the ANN models are more robust than the MLR

models.

Model Summary
Std. Error
Adjusted of the

Model R R Square | R Square | Estimate
1 K 414 ok 10.
2 774 599 465 14.5229
3 .864¢ 747 595 12.6406
4 9574 916 .832 8.1416
5 .995¢ 991 975 3.1533
6 1.000f .999 .998 .9768

a. predictors: (Constant), X1X4
b. predictors: (Constant), X1X4, X2X3

C- Predictors: (Constant), X 1X4, X2X3, X4

d. predictors: (Constant), X1X4, X2X3, X4, X1
€. Predictors: (Constant), X1X4, X2X3, X4, X1, X2X4

f. Predictors: (Constant), X1X4, X2X3, X4, X1, X2X4, X1X3

Table 24. R-Squared values for Function 1 ANN linear models
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Table 25 details the linear model for the experimental results from the Function 1

data. The binary “dummy” variables x1 through x6 describe the relationship of the two

factors, function type and number of interaction terms, to RMSE. The variables x1

through x4 relate to function type, while x5 and x6 relate to number of interaction terms.

The actual linear model takes the form:

y=8+px1+Bx2+ fx3+ x4+ x5+ fx6+
B.x1x5+ B, x1x6+ B,x2x5 + B, x2x6 + , x3x5 + f,,x3x6 + B,,x4x5 + B,, x4x6

where the coefficients S, through g, describe the main effects of the factors and £,

through f,, describe the interaction effects.

Main Effects
Function Interaction v
ol b i ) S 1
Linear 0 108731 j10jo0jJoj1]0
Poly-2 0 49980 |1 JOJO[T]0
Poly-3 0 1356{ 0 JO[1]O|T[0
Exp 0 14603 0[O O[T
Power 0 17722[ 0[O JOJOJ 1[0 520:
Linear 1 1w670[1 |0JoJOjoO]1 = 0%
Poly-2 1 53.36| 0 | 1 ]O0 10} O} 1 sl e
Poly-3 1 11.95_0__0_ 1J0101]1 =
Exp 1 29250 [0JO[1f0]3 1:20:
Power 1 4949/ 01010] 0O} 1[5 Re: O
Linear 2 90401 ]0]0]0]0]0 =
Poly-2 2 4456/ 0 | 1] 0]0]0] =0=
Poly-3 2 9770 [0 [1]0f0]0 [
Exp 2 4239(0 [0 [0 |1 ]0[0fe =073[<50¢
Power 2 105310 ] 0] 01 0fO] 0 |:x0: 133 2702
Dummy Variables:

X1 =1 if Linear, O if not

X2 = 1 if Polynomial-2, 0 if not

X3 = 1 if Polynomial-3, O if not

X4 = 1 if Exponential, 0 if not

X5 = 1 if O interaction terms, O if not
X6 = 1 if 1 interaction term, O if not

Table 25. Linear model for Function | MLR results
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Table 26 contains the SPSS ANOV A output of the resuits of the regression of the
model in Equation 10. The criterion for inclusion in the stepwise regression process was
a probability of an F-statistic of less than or equal to 0.100. All the variables are
significant at the 5 percent level. The ANOVA results show that the most significant
variables in the linear model are x3 and x5, which relate directly to the factor function
type. The fact that the main effects in this model predominate suggests that MLR models
are highly sensitive to the nature of the hypothesized function and therefore, not very

robust with respect to this model parameter.

ANOVA
Sum of
Model uares df Mean Square F Sig.
7 32Y T 3 B.787 oy il
Residuai 23736.811 13 1825.909
Total 36129.132 14
2 Regression 19078 446 2 9539.223 6714 011F
Residual 17050.685 12 1420.890
Total 36129.132 14
3 Regression 24225.640 3 8075.213 7.462 10057 |
Residual 11903.492 1 1082.136
Total 36129.132 14
3 Regression 27163.705 r] 6795926 7537 5047 |
Residual 8945.427 10 894.543
Total 36129.132 14

3. Predictors: (Constant), X3

b. predictors: (Constant), X3, X5

C. Predictors: (Constant), X3, X5, X2X5

d. predictors: (Constant), X3, X§, X2X5, X3X5
€. Dependent Variable: Y

Table 26. ANOVA of Function | linear model: MLR results
Table 27 summarizes the adjusted R-squared values for four possible linear
models of the Function 1 results. The variable x3 (Poly-3) contributes almost 30 percent
of the variability of the model. Main effects in general (x3 and x5) contribute 45 percent
or almost half of the variability in this linear model. Interaction effects do not enter the

regression process until model 3.
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Mode! Summary
Std. Error
Adjusted of the

Model R R Square | R Square | Estimate
1 .586°* 343 .292 42.7307
2 727° .528 449 37.6947
3 .819¢ 671 .581 32.8958
4 .867¢ .752 653 29.9089

a. Predictors: (Constant), X3

b. Predictors: (Constant), X3, X5
C. Predictors: (Constant), X3, X5, X2X5

d. Predictors: (Constant), X3, X5, X2X5, X3X5

Table 27. R-Squared values for Function 1 linear model

The signs for the coefficients are negative for all but x5 (number of interaction

51

terms) indicating that, in this case, it is either function type or the interaction of function

type and number of cross terms that are associated with lower RMSE values.

Function 2 Robustness Analysis: ANN Results

Table 28 details the linear model for the experimental results from the Function 2

data for the 18 ANN models. The binary dummy variables x1 and x2 correspond to the

number of processing elements, x3 and x4 to the level of the learning coefficient, and x5

to the transfer function type. The linear model is identical to Equation 9 where the

coefficients describe both the main effects and the interactions of the three experimental

factors.
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Main Effects
ISR R ] £3 £ £
et
3~ 0.3 Sigmoid 23.97 [1]0[1]0;:¢
6 0.3 Sigmoid 14.49 [OJ1]1J0]1
9 0.3 Sigmoid 23.14 [010]1]O0]1.
3 0.6 Sigmoid 48.46 [1J0]01111.
6 0.6 Sigmoid 19.12 [6]1jO[1]1
9 0.6 Sigmoid 14.08 [0J0]0] 111
3 0.9 Sigmoid 2042 [1]0J01011
6 0.9 Sigmoid 20.29 1101011
9 0.9 Sigmoid 19.90 [0]0J0[0O]1
3 03 TanH 1031 [1]0]1]0]0
6 03 TanH 1447 [0[1]110]
9 03 TanH 2419 {0]J0J110]
3 06 TanH 2085{1J010]1
6 06 TanH 1540 [OFT]O[T
9 06 TanH 1249 |0J0j0]T1]0
3 09 TanH 1472[71]0]0j0]0
6 09 TanH 1053[011]010[0
9 09 TanH 17.38[0]0J010]0
Dummy Variables:
x1 =1if3PE, 0ifnot x4 =1ifLCis .6, 0if not
x2 =1if6 PE, 0 if not x5 = 1 if Sigmoid, 0 if not

x3 =1ifLCis .3, 0if not

Table 28. Linear model for Function 2 ANN results

Table 29 contains the SPSS output of the results of the regression of the model in
Equation 9 for the Function 2 data. The criterion for inclusion in the stepwise regression
was a probability of an F-statistic of less than or equal to 0.10. As expected, the variable
x5, corresponding to transfer function type, was highly significant. However, what is
notable by its overwhelming significance in the ANOVA is the three-way interaction
between the factors. The fact that this interaction is more significant than the effect on
the model of function type is another strong suggestion that the ANN models are much
more robust than the regression models. No individual factor or model parameter appears

to dominate.
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Model Summary
Std. Error of
Adjusted the
Model R R Square | R Square Estimate
T . ; 123 X
2 .889 .790 .762 41577
ANOVAF
Sum of Mean
Model Squares | df | Square F Sig.
T Regression | . T | 911.37 | 45.37 o&"
Residual 321.465 | 16 | 20.092
Total 1232.94 | 17
r Regression | 973645 | 2 | 486.82 | 28.16 | .000°|
Residual 259.295 | 15 | 17.286
Total 1232.94 | 17

3. Predictors: (Constant), X1X4X5
b. predictors: (Constant), X1X4X5, X5
C. Dependent Variable: Y

Table 29. SPSS output for Function 2 ANN linear models

As with the ANN models for the Function 1 data, the linear model was again
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altered to eliminate the variable x5 (transfer function type) from the main and interaction

effects. The ANOVA of this linear regression is in Table 30. After eliminating the

results associated with sigmoid-based ANN models, the remaining ANN models show no

significant variables at all in the linear model. This may be due to a combination of the

low variance of the results and the small number of degrees of freedom for the ANOVA'.

There may not be enough information to determine the significant interactions.

! It should be noted, however, that the small degrees of freedom limitation applies to all three

functions.
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ANOVA®
Sum of Mean
Model Squares | df | Square F Sig.
B T B o o e £
Residual 138554 | 7 | 19.793
Total 169.956 | 8
Regression 68678 | 2 | 34339 | 2034 | 212°
Residual 101278 | 6 | 16.880
Total 169.956 | 8
3 Regression | 104685 | 3 | 34895 | 2673 | .158°
Residual 65.271 | 5 | 13.054
Total 169.956 | 8
4 Regression | 126.387 | 4 | 31587 | 2901 | .163°%
Residual 43569 | 4 | 10.892
Total 169.956 | 8
5 Regression | 149256 | 5 | 29.851 | 4.326 | .129°|
Residual 20699 | 3 6.900
Total 169.956 | 8
6 Regression | 161378 | 6 | 26.896 6.271 | .1447
Residual 8577 | 2 4289
Total 169.956 | 8
7 Regression | 167.899 | 7 | 23.986 | 11.665 | .2229]
Residual 2.056 1 2.056
Total 169.956 | 8

3. predictors: (Constant), X1X3

®. predictors: (Constant), X1X3, X2

S Predictors: (Constant), X1X3, X2, X3
9. predictors: (Constant), X1X3, X2, X3, X2X4

Fa ~o0

Table 30. ANOVA of Function 2 ANN linear model eliminating sigmoid

On the other hand, eliminating the hyperbolic tangent-based ANN models and
performing the regression again shows that the interaction between number of PE and
learning coefficient is highly significant (Table 31). This is likely due to the larger

variance imparted to the model by the large RMSE value of ANN model 4 (Table 28).

models

Predictors: (Constant), X1X3, X2, X3, X2X4, X1X4
Predictors: (Constant), X1X3, X2, X3, X2X4, X1X4, X4
Predictors: (Constant}, X1X3, X2, X3, X2X4, X 1X4, X4, X1
Dependent Variable: Y
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The very strong interaction (F = 58.725) between the number of processing elements and
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the learning coefficient explains over 87 percent of the prediction in the model (adjusted
R-squared = 0.878).

Taking all this into consideration, it remains clear that interactions between
experimental factors predominate in the results of the ANN models. This may be

additional evidence that ANN models are more robust and interconnected than MLR

models.
Mode! Summary
Std. Error
Adjusted of the
Model R R Square | R Square Estimate
T 8452 893 . ‘
a. Predictors: (Constant), X1X4
ANOVAP
Sum of Mean
Model Squares df Square Sig.
[T Regression | - 1 749.353 43066“
Residual 89.339 7 12.763
Total 838.832 8

a. pPredictors: (Constant), X1X4
b. Dependent Variable: Y

Table 31. SPSS output for Function 2 ANN linear model eliminating hyperbolic tangent
models
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Function Interaction X3, L P e
Type Terms y |¥1jXx
Linear 0 12.61]:1:):
Poly-2 0 13.12[0
Poly-3 0 20.00[0;;
Exp 0 8.10[ 04
Power 0 7.56[ 0]
Linear 1 12.84 _1
Poly-2 1 17.171.0.]:1
Poly-3 1 22.691.0-}:
Exp 1 11.97F0.T
Power 1 16.33[:0.}
Linear 2 10.89]:1:
Poly-2 2 13.92[0 1T
Poly-3 2 27.531 0.
Exp 2 16.14f0 [
Power 2 16.91 T =]
Dummy Variables:
x1 = 1 if Linear, O if not
x2 = 1 if Poly-2, 0 if not
x3 =1 if Poly-3, 0 if not
x4 = 1 if Exp, O if not
x5 = 1 if O interaction terms, 0 i not
x6 = 1 if 1 interaction term, 0 if not

Table 32. Linear model for Function 2 MLR results

Function 2 Robustness Analysis: MLR Resulits

Table 32 details the linear model for the experimental results from the Function 2
data. The binary dummy variables x1 through x4 correspond to function type, while the
variables x5 and x6 correspond to the factor, number of interaction terms. The linear
model is identical to Equation 10 where the coefficients of the 14 terms describe the main
effects and interaction effects of the two experimental factors.

Table 33 contains the SPSS output of the Function 2 results of the regression of
the linear model represented by Equation 10. The criterion for.inclusion in the stepwise
regression process was a probability of an F-statistic of less than or equal to 0.05. Both
models are highly significant (at the 1 percent level) and both contain only main effects
for the experimental factors. This again suggests that the MLR models are highly

sensitive to the nature of the hypothesized function and therefore, riot very robust with
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respect to either function type or number of interaction terms. The R-squared values
reinforce this suggestion. Model 2, containing only main effect terms, explains over 76

percent of the variability of the RMSE results.

Model Summary
Std. Error
Adjusted of the
Model R R Square | R Square | Estimate
T 3 040 612 .
2 .894 .800 .766 2.5711
ANOVAF
Sum of Mean
Model Squares df Square F Sig.
=" Regression | 253.303 T [253.308 | 23.073 D%U'
Residual 142.717 13 10.978
Total 396.026 | 14
] Regression 316.700 2 | 158.350 | 23.954 | 000"
Residual 79.326 | 12 6.611
Total 396.026 | 14

3. predictors: (Constant), X3
b. predictors: (Constant), X3, X5
C.- Dependent Variable: Y

Table 33. R-Squared values and ANOVA for Function 2 MLR linear
model

Function 3 Linear Model: ANN Results

Table 34 details the linear model for the experimental results from the Function 3
data for the 18 ANN models. As in the previous analyses, the dummy variables x1 and
x2 correspond to the number of processing elements, x3 and x4 to the level of the
learning coefficient, and xS to transfer function type. The linear model is identical to
Equation 9 where the coefficients describe both the main effects and the interactions of

the three experimental factors.
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Main Effects
PE LC TF y x1 | 2 | x3 ] x4 ]| x5 B
3 0.3 Sigmoid 12.78] 1 0j1]0]1 QR
6 03 Sigmoid 1663] 0 | 1 110]1EF
9 03 Sigmoid 1223 0 | O [ 1 [0 |1k
3 06 Sigmoid 12.84] 1 ojojJ1t1]1
6 06 Sigmoid 1355/ 0 | 1 J O |11
9 06 Sigmoid 1002 O J]O[OJ1] 1R
3 09 Sigmoid 12.03f 1 0OjojJof1E
6 09 Sigmoid 19.09/ 0 | 1 ] 0] O] 1 H
9 09 Sigmoid 1060 O O J O[O 1R
3 03 TanH 1079 1 0]1]0[0BH
6 03 TanH 7zsol o1t 1]0]O0R
g 03 TanH 756 0 {0 | 1][0]O
3 06 TanW 1015 1 ] 0] O0]1]0
6 06 TanH 5.65 __g_ 1]0]1108
g9 06 TanH ses3l 0 JO0jJOoj]1}]0O
3 09 TanH 8.53f 1 0]J]O0OjoO}foO
6 09 TanH 687 0O 1 0j0] O
9 09 TanH 1030/ 0 ] O 1 O0]JO]O
Dummy Variables:
x1=1f3PE,Oifnotx4=1ifLCis .6, 0if not
x2 = 1 if 6 PE, 0 if not x5 = 1 if Sigmoid, 0 if not
x3=1#LCis .3, 0ifnot

Table 34. Linear model for Function 3 ANN results
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Table 35 contains the SPSS output of the results of the regression of the model in

equation 9 for the Function 3 data. The criterion for inclusion in the stepwise regression

was a probability of an F-statistic of less than or equal to 0.05. As expected, x5 (transfer

function type) was again highly significant; however, it was not overwhelmingly so. The

variable x1 (number of PE) and two interaction variables were also highly significant.
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Model Summary
Std. Error
R Adjusted of the
Model R Square | R Square | Estimate
T 738 | 557 | 528 | 24584
2 .870 757 .725 1.8796
3 917 .841 .807 1.5754
4 .946 .896 .863 1.3244
Sum of Mean
Model Squares | df | Square F Sig.
T ~T21.570 T | 121570 | 20.115 036"
Residual 96.699 | 16 6.044
Total 218.268 | 17
) Regression | 165274 | 2 | 82.637 | 23.390 | .0007
Residual 52.995 | 15 3.533
Total 218.268 | 17
3 —Regression | 183520 | 3 | 61.173 | 24.647 | .000°
Residual 34.748 | 14 2.482
Total 218.268 | 17
¥ Regression | 195466 | 4 48.866 | 27.859 | .0009
Residual 22.803 | 13 1.754
Total 218.268 | 17

a. Predictors: (Constant), X5

b. predictors: (Constant), X5, X2X5

C. Predictors: (Constant), X5, X2X5, X2X4

d. Predictors: (Constant), X5, X2X5, X2X4, X1

Table 35. SPSS output for Function 3 ANN linear models
By eliminating the factor relating to transfer function type, it is again possible to
expiore the impact of the remaining model parameters on the performance of the ANN
models. The sigmoid-based ANN models were then removed from the linear model,
leaving only the hyperbolic tangent models. The results of the ANOVA and the model
summary in Table 36 show that, unlike the previous ANN model results, individual
factors predominate in this data set. The variable x1, relating to number of processing

elements, predominates in the linear model. Interaction terms do not show up in the
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stepwise regression until the third iteration. Likewise, when the hyperbolic tangent
models were removed from the linear model, individual factors predominated. Table 37
shows that variable x2, also corresponding to the number of processing elements, is the
first variable to enter the stepwise regression process. This may be an indication that
ANN models are not as robust when estimating linear functions as are MLR models. All

the models are significant at the 5 percent level.

Model Summary

Std. Error
Adjusted of the
Model R R Square | R Square | Estimate
; 330 349 15
2 752 .566 421 1.4899
3 .830 .689 .502 1.3826
ANOVAE
Sum of Mean
Model Squares | df | Square F Sig.
T Régression | . T 13.195 | '5'2'81"‘0‘35“
Residual 17.491 7 2.499
Total 30.686 8
7 Regression 17.367 | 2 | 8683 | 3.912 | .082°
Residual 13319 | 6 2.220
Total 30.686 8
3 Regression 21128 | 3 7.043 | 3.684 | .097°
Residual 9.558 5 1912
Total 30.686 8

3. Predictors: (Constant), X1

b. predictors: (Constant), X1, X4

C. Predictors: (Constant), X1, X4, X1X4
d. Dependent Variable: Y

Table 36. SPSS output for Function 3 ANN linear model
eliminating sigmoid-based models

An analysis of the signs of the coefficients for the ANN linear models reveals that
negative signs are associated predominantly with interaction variables, suggesting that
lower RMSE values (better performance) are associated with interactions between factors

as opposed to the factors themselves.
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Model Summary
Std. Emror
Adjusted of the
Model R R Square | R Square | Estimate
1 814 .662 614 1.7852
2 922 .850 799 1.2868
3 953 .08 .853 1.1028
4 977 .954 .808 .8716
5 .990 .980 .46 6660
ANOVA
Sum of Mean
Model Squares | df | Square | F Sig.
1 egression 43704 | 1 | 43.704 | 13.713 | .008°
Residual 22309 | 7 3.187
Total 66.013 | 8
2 Regression 56.078 | 2 | 28.039 | 16.934 | .003°
Residual 9935 | 6 1.656
Total 66.013 | 8
3 Regression 59.932 [ 3 | 19.977 | 16.425 | .005°
Residual 6.081 | 5 1.216
Total 66.013 | 8
4 Regression 62974 | 4 | 15744 | 20.725 | .006°
Residuai 3.039 | 4 .760
Total 66.013 | 8
5 Regression 64682 | 5 | 12936 | 29.165 | .010°
Residual 1.331 3 444
Total 66.013 | 8

3. Predictors: (Constant), X2
b. Predictors: (Constant), X2, X2X4

C. Predictors: (Constant), X2, X2X4, X1

d. Predictors: (Constant), X2, X2X4, X1, X2X3
€. Predictors: (Constant), X2, X2X4, X1, X2X3, X3
f. Dependent Variable: Y

Table 37. SPSS output for Function 3 ANN linear model
eliminating hyperbolic tangent models

Function 3 Linear Model: MLR Results
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Table 38 details the linear model for the experimental results from the Function 3

data. The dummy variables x1 through x4 correspond to function type (in this case, a

linear function is being estimated) while the variables x5 and x6 correspond to the

number of interaction terms. The linear model is based on that in Equation 10, the basic

linear model for the analysis of the MLR models for all three data sets.
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x5 = 1 if O interaction terms, 0 if not
x6 = 1 if 1 interaction term, O if not

. Main Effects

Function Interaction
Type Terms y x1 x:.xi x4 | x5 | x6
Linear 0 42211 ]0j0]0 1 ]
Poly-2 0 644{0|1]0JOJ1]0
Poly-3 0 11.38{0J0]1J0}j1]0
Exp c «q0JOJO]1[1]0
Power 0 385{0[0]0[0|1]0
Linear 1 5191110 O__Q__O_‘l
Poly-2 1 1155(0]1]J0}]O _O 1
Poly-3 1 702{0 011001
Exp 1 1182[0[0|0|1]0]1
Power 1 756/0|0JojojoOi1
Linear 2 3371 |0]0[0[0]
Poly-2 2 12400 [1]0]0[0[0
Poly-3 2 47710]0}J1]j0]J0]0
Exp 2 1213[ 0] 0J0[1]0]0
Power 2 72110(0}0}0]0

Dummy Variables:

x1 = 1 if Linear, 0 if not x4 = 1 if Exp, 0 if not

x2 = 1 if Poly-2, 0 if not

x3 = 1 if Poly-3, 0 if not

Table 39 contains the SPSS output of the Function 3 results of the regression of

the linear model. The criterion for inclusion in the stepwise regression process was a

Table 38. Linear model for Function 3 MLR results
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probability of an F-statistic of less than or equal to 0.183. The four models represented in

this table are significant at the 5 and 10 percent levels, but not as significant as those from

the Function 1 or 2 data. The variable x1 shows up as the first variable to enter the

stepwise regression. This is consistent with good performance of the linear formulations

on the linear data-generating function. Additionally, interactions are more prominent in

this ANOV A than in previous analyses of variance, appearing in the second model of the

stepwise regression process.
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Model Summary
Std. Error
R Adjusted of the
Model R Square | R Square | Estimate
1 504 . - .
2 .600 .361 254 2.9199
3 721 .520 .390 2.6413
4 .804 646 504 2.3804
Sum of Mean
|_Model Sclu?res d: Sqn.:am '1;25- _Sulgp_
Residual 119.393 13 9.184
Total 159.986 | 14
z “Regression | 57678 | 2 | 28.839 | 3.383 | .068P
Residual 102.308 12 8.526
Total 159.986 | 14
3 Regression 83.244 3 [ 27.748 | 3.977 | 038%
Residual 76.741 | 11 6.976
Total 159.986 14
? Regression | 103325 | 4 | 25831 | 4.559 | 0249
Residual 56.661 10 5.666
Total 159.986 14
3. predictors: (Constant), X1
b. Predictors: (Constant), X1, X4X5
:' Predictors: (Constant), X1, X4X5, X4

" Predictors: (Constant), X1, X4X5, X4, X2

Table 39. SPSS output for Function 3 MLR linear mode!

The above factors suggest that the MLR models were more robust when
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estimating a linear function than the non-linear functions represented by Equations 1 and

2. As expected, the linear formulations of the MLR models performed better than the

others, however, the polynomial formulations and the exponential formulations were very

robust with respect to this linear function, bringing the robustness of the MLR models

closer to that of ANN.
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Summary of ANN/MLR Robustness Analysis

Table 40 summarizes the analysis of the robustness of the 18 ANN models and
the 15 MLR models. The models are divided into three categories: ANN models with
the transfer function factor included, ANN models with the transfer function factor
eliminated, and MLR models. These three categories are further broken down by data set
and the Function being estimated. Finally, an X appears in either the “Main Effects” or
the “Interaction Effects” column of the table, depending on whether the first model in the

stepwise regression included a main effect or interaction effect predictor variable.

Main Effects Interaction Effects
ANN Models (with Function 1 X
transfer function Function 2 X
included) BT on3z X
ANN Models (without ::3:2:3: ; X
transfer function) e
b’t(f. J ,M...,L‘g x
Function 1 X
MLR Models Function 2 X
ZEUNChom: 3= X

Table 40. Summary of ANN/MLR ANOVA analysis

When sorted by model type, it is evident that main effects predominate in the
MLR models. Interaction effects were not significant across all three functions for the
MLR models. For the linear models in which all 18 ANN models were included, main
effects predominated for Functions 1 and 3. The primary reason for this is the
overwhelming significance of the model parameter, “transfer function.” Those ANN
models with sigmoid-based transfer functions had markedly higher variance than the
hyperbolic tangent based models. This contributed to the significance of this parameter
in the linear models. For the linear models that contained either sigmoid or hyperbolic
tangent ANN models, the interaction effects predominated, suggesting these models are

less sensitive to parameter changes than the others.
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When sorted by function type, main effects predominate with Function 3, the
linear data-generating function. Main effects also are important in Function 1 with two
of three model types having a main effect model as the initial regression model in the
stepwise regression. Interaction effects appear to be significant in the models estimating
Function 2. It is notable that, for this non-linear function, the interaction effects were

more significant than the effect of transfer function type for all 18 ANN models.

Variance Comparison

!.Am (overall)

;.Am (Tanhonly) -
B AN (sigmoi o) |
g mMR !

Function 1 Function 2 Function 3

Figure 3. Variance Comparison between modeling techniques

Low variance is associated with robust predictive modeling techniques. Figure 3
is a comparison of the variance of the results of the ANN models (including sigmoid and
hyperbolic tangent only) and MLR models. The variances are scaled between 0.1 and 0.9
to allow for comparison between functions. The hyperbolic tangent-based ANN models
clearly have the lowest variance across all function types. Because of the sigmoid ANN

models, the overall ANN model variance is generally higher across all three functions.
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Mode! Summary
Std. Error
Adjusted of the
Model R R Square | R Square | Estimate
1 663 440 .397 33.8886
2 831 .691 639 26.2016
3 .940 .883 .851 16.8181
4 984 .969 956 9.1144
ANOVA®
Sum of Mean
Mode! uares df Square F Sig._
1 Regression 11729.639 1| 11729.639 | 10.214 | .007®
Residual 14929.646 | 13 1148.434
Total 26659.285 | 14
2 Regression 18420.994 2 9210.497 | 13.416 | .001°
Residual 8238.291 | 12 686.524
Total 26659.285 | 14
3 Regression |} 23547.934 3 7849.31% | 27.751 | .000¢
Residual 3111.352 | 1 282.850
Total 26659.285 | 14
4 Regression | 25828.568 | 4 | 6457.142 | 77.730 | .000¢
Residual 830.717 | 10 83.072
Total 26659.285 | 14

a. Predictors: (Constant), X3

b. Predictors: (Constant), X3, X2
C. Predictors: (Constant), X3, X2, X4
d. Predictors: (Constant), X3, X2, X4, X4X5
e. Dependent Variable: Y

Table 41. SPSS output for MLR linear model of sample size 50

excursion

Model Robustness for Sample Size 50 Excursion

Table 41 contains the SPSS output for the linear model (Equation 10) regressed
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on the RMSE results of the MLR models using the Function 1 data with the larger sample

size. Each of the linear regression models in the ANOVA table is highly significant (at

the 1 percent level) and main effects predominate. Main effects account for over 85

percent of the prediction in this linear model.

In Table 42, the model summary and ANOVA are detailed for the linear model

(Equation 9) regressed on the RMSE results for the ANN models using the Function 1

data and the larger sample size. Each of the linear models in the ANOVA is very highly
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significant. As expected, the variable x5, corresponding to transfer function type is
overwhelmingly predominant in the linear model, with an adjusted R-squared value of

0.936. A three-way interaction between the factors is also significant in the models.

Model Summary
Std. Error
Adjusted of the
Model R R Square | R guare Estimate
2 .981 .962 .957 7.7276
3 .986 .972 .966 6.8610
ANOVA
Sum of Mean
f uare F Sig.
B B L B L A o
Residual 1430.296 | 16 89.393
Total 23856.251 17
2 Regression | 22960.520 2 | 11480.260 | 192.250 | .00Q°
Residual 895.731 | 15 59.715
Total 23856.251 17
3 Regression | 23197.226 3 7732.409 | 164.264 | .000°
Residual 659.024 | 14 47.073
Total 23856.251 17

a. predictors: (Constant), X5
b. predictors: (Constant), X5, X1X3X5
C. Predictors: (Constant), X5, X1X3X5, X3

Table 42. SPSS output for ANN linear model of excursion (with
transfer function)

Eliminating the sigmoid-based ANN models as well as the variable in the linear
model corresponding to transfer function type gives very different results from those
obtained from the models trained on samples of size n = 25. Table 43 contains the SPSS
output with the ANOVA based solely on ANN models using the hyperbolic tangent
function. In this linear model, main effects account for the preponderance of the
variability of the results, which is inconsistent with the previous linear model outcomes
for the ANN models. Interactions do not appear in the stepwise regression until the fifth

iteration. All the models are significant at the 5 percent level.
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Model! Summary
Std. Error
Adjusted of the
Model R R Square | R Square Estimate
1 692 .479 404 6.3453
2 .846 715 620 5.0643
3 .898§ .802 683 4.6280
4 944 .890 781 3.8503
5 .981 .963 .901 2.5892
6 .994 .988 .951 1.8159
ANOVA
Sum of Mean
Model Squares | df uare F SL
1 Regression | 258.632 | 1 | 258.632 6.424 | .039*
Residual 281842 | 7 40.263
Total 540.474 8
2 Regression 386.592 | 2 | 193.296 7.537 | .023b
Residual 153883 | 6 25.647
Total 540.474 | 8
3 Regression | 433.380 | 3 | 144.460 6.745 | .033°
Residual 107094 | 5 21.419
Total 540474 | 8
4 Regression | 481.175 | 4 | 120.294 | 8.114 | 033¢
Residual 59.299 4 14.825
Total 540474 | 8
5 Regression 520.362 | 5 | 104.072 | 15.524 | .024°
Residual 20112 | 3 6.704
Total 540.474 | 8
6 Regression | 533.879 | 6 88.980 | 26.983 | .036'
Residual 6.595 | 2 3.298
Total 540.474 | 8

a. Predictors: (Constant), X3

b. Predictors: (Constant), X3, X4

C. Predictors: (Constant), X3, X4, X1
d. Predictors: (Constant), X3, X4, X1, X2

€. Predictors: (Constant), X3, X4, X1, X2, X2X4

f. Predictors: (Constant), X3, X4, X1, X2, X2X4, X2X3

Table 43. SPSS output for ANN linear model of excursion (w/0

sigmoid models)
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Eliminating the hyperbolic tangent-based ANN models from the linear model and

running the regression generates a result that is similar to the pattern seen with the ANN

models for the smaller sample sizes. Interactions between the factors again predominate.

Table 44 contains the SPSS output for this linear model. Two-way interactions between

the factors are the only significant variables. Main effects are not present. The entering

criterion had to be raised to a probability of an F-statistic less than or equal to 0.30 in
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order to capture the second interaction variable. The F-statistics for both variables are

significant at the 5 percent level.

Model Summary
Std. Error
Adjusted of the
Model R R Square | R Square | Estimate
T 775 BOT R.” " ¢ 7.1230 |
2 .826 .683 577 6.8596
ANOVAF
Sum of Mean
Model Squares | df | Square F Sig.
T Regression | - ~T | 533584 | 10537 | "'UI'?!"
Residual 355257 | 7 50.751
Total 889.821 8
2 Regression | 607493 | 2 | 303.747 455 [ .032°
Residual 282328 | 6 47.055
Total 889.821 8

3. Predictors: (Constant), X1X3
b. predictors: (Constant), X1X3, X2X3
C. Dependent Variable: Y

Table 44. SPSS output for ANN linear model of excursion (w/o
TanH models

Summary of Results

In this section, the significant findings are discussed, to include the significance of
the transfer function type, the sensitivity of ANN and MLR models to training sample
size, the robustness of ANN and MLR models, and the contributions of interactions

among parameters to model performance.

Significance of transfer function type

For the ANN models in this research, and the type of data being analyzed, the
hyperbolic tangent transfer function performed much better than the sigmoid transfer

function. The models with hyperbolic tangent functions had lower mean RMSE values as
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well as lower variances across all three data sets. The ANN models were highly sensitive
to changes in transfer function type, masking the significance of factor interactions in the
linear models.

That the sensitivity to transfer function type is so high across several different
types of data relationships may be an indication that the sigmoid function was an
inappropriate transfer function for this type of mapping problem.

The issue of appropriateness of transfer function type for a specific modeling
problem is still an area for ongoing research. Caudill and Butler (1992) suggest that the
most effective neural networks use a sigmoidal, or S-shaped, transfer function, and that
the “...exact form of the sigmoid function is not particularly important; it is merely
important that the function be monotonically increasing and bounded with both lower and
upper limits” (p. 6). However, it is clear that there is a marked difference between the
performance of the sigmoid function (Equation 5) and the hyperbolic tangent function
(Equation 6) at least as far as this study is concerned. Both functions are monotonically
increasing and have an upper bound of +1, while the sigmoid function has a lower bound
of 0 and the hyperbolic tangent function a lower bound of —1. The hyperbolic tangent
function performed significantly better in terms of lower mean and variance for the
RMSE model results.

On the other hand, most of the examples from the literature in which the transfer
function type was mentioned used the sigmoid function (Equation 5). Markham and
Rakes (1998) also adopted the sigmoid function; however, they attempted to optimize
their ANN model by manipulating transfer function type as well as number of processing

elements and hidden layers. They determined that the sigmoidal transfer function
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performed better than the hyperbolic tangent function. However, their simulated data
was generated using a simple linear function with one independent variable and a
normally distributed error term. It is possible that a sigmoid function is more suited to a
simple linear data relationship.

This researcher concludes based on the evidence of these experiments, that the
hyperbolic tangent function is generally more suitable as an activation function for
backpropagation ANN with multiple inputs and one output, and used as predictive
models. However, further research should explore, in both a practical and theoretical
way, the suitability of various nonlinear activation or transfer functions for
backpropagation artificial neural networks. This is addressed again in the following

chapter.

Sensitivity of ANN and MLR models to training sample size

One of the premises under which this study was conducted was that a high signal
to noise ratio in the data set contributes to a more accurate predictive model with a lower
variance. One way to achieve a high signal to noise ratio is to increase the number of
training samples in the data set. Previous research on the effects of sample size on model
performance has shown that the performance of both MLR and ANN models improves
when a larger training data set is used (Markham and Rakes, 1998; Smith and Mason,
1997; Marquez et al., 1991).

However, it is not always possible to obtain a sufficient number of data points in a
modeling problem. Very often, data is sparse and the effects of noise on the quality of

the data set is larger. Training sample sizes were kept intentionally small (n < 50) in this
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study to provide a more realistic experimental scenario in which data set sizes might be
more reflective of the actual data available.

The experimental results of this study suggest that, without considering
robustness, either MLR or ANN modeling approaches work well with small sample sizes.
The performance of the best ANN models (hyperbolic tangent) was not statistically
different from that of the MLR models. This may have been because the amount of noise
imparted to the data through the error term of the data-generating function was
insufficiently large relative to the sample size for a detectable difference in performance.

The results of the experiments conducted with the larger sample size of 50
showed a marked improvement in the ANN model performance. There was no
improvement in the MLR models with this larger sample size. It can be inferred that
ANN models are more sensitive to sample size than MLR models, and that improvement
takes place in ANN models at a faster rate with increases in training sample size than the

rate of improvement for MLR models with a comparable training sample size increase.

Robustness of ANN and MLR models

Variance of the RMSE results from model to model when estimating a particular
function is a measure of the sensitivity of the model to changes in model formulation. A
predictive modeling technique may be considered robust if variations in model
formulation do not cause a disproportionately large change in model performance (as
measured by a lower-the-better RMSE value).

The hyperbolic tangent-based ANN models appear to be the most robust. The

scaled comparison of variances presented in Figure 2 clearly shows that the lowest
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variances are consistently associated with the hyperbolic tangent ANN models, although
there is not a statistically significant difference in the variances of the hyperbolic tangent
models and the MLR models for Function 2. This variance was consistently low for the
estimates of three widely differing function types, which tends to point to ANN models
as being a good first choice for building predictive models in the absence of knowledge
about the functional data relationships.

An unexpected finding was the strong and robust performance of the simple linear
formulation of the regression function. The linear MLR models (with 0, 1, or 2
interaction terms) actually performed better (in terms of mean RMSE) in estimating
Functions 2 (exponential) and 3 (linear) than the best ANN models. This might have
been expected for Function 3, but not Function 2. The exponential and power model
formulations performed predictably better on the Function 2 data; however, there was no
significant difference in estimating performance between the exponential, power, and
linear models.

This finding is also consistent with the standard practice in multivariate linear
regression modeling of starting the process with a linear formulation, then proceeding to
improve the model fit through either polynomial or log transformations of the linear

terms (Mendenhall and Sincich, 1995).

Contribution of interactions to model performance

The ANOVA analysis of the experimental results showed that MLR models were
much more sensitive to changes in individual parameters than the ANN models. The

model parameter that most often generated the highest variability in the MLR models was
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the hypothesized function type. This was an expected conclusion, and suggests that if an
analyst is unsure about the underlying functional relationship of a data set, or a clear
function type does not become evident after several trial and error scatter plots, then it
would be safer to build a model using a neural network.

By contrast, ANOVA on the ANN model results shows the overwhelming
significance of interaction effects on performance variability. Interactions between the
experimental factors are associated with lower variances across the board. It may be
concluded from this finding that the parallel and fault-tolerant architecture of ANN
models captures the subtle nonlinearities in the data. The large number of free
parameters (network weights) in a neural network appear to create sufficient redundancy
in the network to reduce its sensitivity to a change in a single model parameter.

These experimental results have shown that both ANN and MLR models can
obtain a high degree of accuracy on various types of data. However, ANN models using
the hyperbolic tangent transfer function were consistently more robust than ML R models.
This characteristic suggests that ANN models might be useful as initial “target” models
in a predictive modeling methodology. Subsequent MLR and ANN models could be
compared to this target, in an effort to improve and refine the predictive model. In the
next chapter, a predictive modeling methodology using both ANN and MLR is proposed.
Data sets from two applications from the literature are used to validate the modeling

methodology.
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CHAPTER V: PROPOSED PREDICTIVE MODELING
METHODOLOGY

In general, ANN models were not overwhelmingly superior to MLR models. One
should not conclude, therefore, that one technique is invariably superior to the other.
However, these two modeling approaches can be very complementary when combined in
a methodology that draws from the advantages and strengths of each. As a resuit of the
findings of this research, a methodology has been developed to provide analysts with a
rigorous and practical way to build useful and robust predictive models. It is then applied
to two cases taken from the literature involving real-world cost estimating problems.

Ideally, a mathematical function is the preferred form of a model relating
independent to dependent variables. Such an equation has two advantages: 1) Itis
portable, easily understandable, and can be readily incorporated into either spreadsheets
or computer source code for further analysis, and 2) the visibility of the functional
relationships between the variables provides a level of insight into the nature of the
process being modeled. A neural network model, with its “black box™ nature, is at a
comparative disadvantage to the regression equation.

This research, however, suggests that ANN models have the advantage of being
more robust with respect to variations in model formulation. Because of this robust
nature, an ANN model might be used initially as a “target” model for an analyst to fix a
reasonably achievable target value for coefficient of determination (adjusted R-squared).
A recent study concluded through experimentation with artificially generated data that
neural network models were very often statistically indistinguishable from the “true

model”, or the data-generating function (Zeng, 1999). The lower variance of the ANN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

models increases the likelihood of a good first modeling attempt. Subsequent regression

models could be built and compared to the initial target ANN model, continually refining

this process until a MLR model is achieved that is, if not better, at least statistically

indistinguishable from the ANN model.

As a result of this study, a predictive modeling methodology is proposed and

evaluated. The following ten-step methodology incorporates both regression and neural

network modeling techniques, capitalizing on the strengths of each. It will provide

practitioners with a rigorous and structured way to derive the best possible predictive

model:

ANN/MLR Modeling Methodology

D

2)

3)

4)

5)

Step 1: Build a neural network using the independent variables as the input layer,
the dependent variable as the output layer, and one hidden layer. The number of
processing elements in the hidden layer should be determined by heuristic. Use the
hyperbolic tangent transfer function and a learning constant around 0.5 initially.
Step 2: Train the neural network using the entire data set as a training set and save
the network weights.

Step 3: Run the data set through the network with the learning turned off and
compare the desired output (y) with the actual result from the network. Calculate
the adjusted R-squared value.

Step 4: Repeat step 1 through step 3 two more times to build two more networks.
With each subsequent network, vary the learning constant slightly up or down.

Step 5S: Choose the network with the largest R-Squared value as the target model.
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6) Step 6: Construct a stepwise linear regression model starting with all the
independent variables and no transformed variables. This becomes the baseline
regression model. Calculate its R-squared value. If it is larger than the best NN
model value, use the linear model.

7) Step 7: If the R-squared is lower than that of the best NN model, compare the
output of the linear model against that of the best NN model using a pairwise t-test.
If there is a statistical difference in the means of the two results, then it is likely the
best model is the ANN model. If there is no statistical difference between the two
outputs, it is possible that a better MLR model can be constructed using non-linear
transformations of the independent variables. In either case, proceed to step 8.

8) Step 8: Build a scatterplot for each of the independent variables with the
independent variable on the X axis and the dependent variable on the Y axis. Adda
trendline to this scatterplot using the data analysis functions of the spreadsheet
software. Determine the equation for this line and the R-squared value. Go through
each of the possible variations of the trendline (logarithmic, exponential,
polynomial, etc.), observing the change in the R-squared value. If the R-squared
improves, note the nature of the nonlinear relationship to the dependent variable.
For example, if the best R-squared is associated with a cubic polynomial
relationship, then in the MLR meodel, additional nonlinear terms should be added to
the model reflecting the cubic relationship.

9) Step 9: Reconstruct a more detailed MLR model using the nonlinear

transformations of the independent variables that were determined in Step 8.
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Perform both a stepwise regression and one in which all the terms are entered in the
model. Calculate the predicted output as well as the R-squared.

10) Step 10: Compare the transformed MLR model with both the baseline linear model
and the ANN model using both R-squared and a pairwise t-test. If the R-squared of
the transformed MLR model is better than the ANN model, use the MLR model. If
the R-squared value of the transformed MLR model is still lower than the ANN
model, but there is no significant difference between the output of the two models,
then the transformed MLR model should still be used. If there is still a statistical
difference between both the baseline and the transformed MLR models and the
ANN model, the ANN model should be used.

The objective is to use a regression model whenever possible, using the best ANN model

as a gauge to validate the effectiveness of the MLR model. The more data available to

build the ANN and MLR models, the better this technique should perform.
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An Example Using the Data from de la Garza and Rouhana (1995)

De la Garza and Rouhana (1995) used three different characteristics of carbon
steel pipe to build a predictive cost model. The data for their study are shown in Table
45. They compared the traditional linear regression-based parametric model with a
neural network model, concluding that the neural network model outperformed the
regression models. Using the above modeling methodology, it is shown that de la Garza

and Rouhana arrived at their conclusions prematurely; without a thorough analysis of the

data.

Job X1 Diameter X2 Number of X3 Flange Y Nominal Cost
(in) Elbows RatiE per 100 ft

Step 1. A neural network was constructed with an input layer of 3 processing
elements, corresponding to the 3 independent variables and an output layer of one
processing element for the dependent variable. Using the heuristic of Flitman (1997), the

number of neurodes in the hidden layer is determined using the following formula:

Number of hidden neurons = /: (Inputs + Outputs) + Sqri(# of training patterns)
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With three inputs, one output, and 16 training patterns, the number of hidden neurodes
for the network is set at six. The hyperbolic tangent is used as the transfer function and
the learning constant is set at 0.5.

Step 2. The entire data set was used to train the neural network. Normally only a
portion of the available data would be used to train a neural network. The remaining
exemplars would be withheld as a testing/validation set to determine how well the neural
network was able to generalize its learning. However, in this methodology, the entire set
was used both to train and evaluate the network so that a residual analysis could be
performed and an adjusted R-squared determined, similar to the procedure used in a
regression analysis.

Step 3. The weights of the trained network (Network 1) were saved and the
backpropagation learning was turned off. The independent variable exemplars were run
through the model to generate an estimated y value. This estimate was compared to the
desired y values (cost) for each exemplar to calculate an adjusted R-squared for the
model. Table 46 contains the desired and actual output, adjusted R-squared, and learning
constant for the three networks constructed to determine the “target” model. The
adjusted R-squared takes into consideration both the sample size and the number of
independent variables in the model. It is considered a more conservative measure of
model adequacy than the R-squared (Mendenhall and Sincich, 1995). The adjusted R-

squared is given by:

-1
R:=1 n=f (-gr? , 11
“ n—(k+l)( ) (h
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. Network 1 Network 2 Network 3
Desired LC=05 LC=07 LC=0.3

26.10 44.00 44.06 4368
4320 44.19 43.45 43.07
42.10 43.81 41.88 41.99
1.90 5.79 5.38 512
16.80 15.12 14.94 14.70
11.70 12.44 12.90 12.84
26.30 27.25 25.90 25.87
26.10 25.00 2427 24.66
2.50 5.04 4.50 373
50.20 46.41 45.90 4568
28.40 28.38 27.10 28.01
41.30 41.07 4168 41.35
6.50 7.24 6.94 6.65
42.30 4165 41.28 42.32
10.80 8.68 7.01 5.97
28.90 30.12 30.07 29.99

Table 46. Performance of ANN models on pipe data

where n is the sample size and & is the number of independent variables. The R-squared
is calculated by taking the square of the coefficient of correlation between the desired and
actual output.

Step 4. Two more ANN models (Network 2 and Network 3) were constructed
and trained using the same data (Table 46). The learning constant was varied by 0.2 from
Network 1 in each direction for these two networks.

Step S. Although the adjusted R-squared values for the three ANN models were
very close, Network 1 had the highest value and was chosen as the target model.

Step 6. SPSS was used to construct a baseline linear regression model. A
stepwise regression procedure resulted in the following linear model:

y=-17.926 +2.205x, +1.012x,, (12)
with an adjusted R-squared of 0.94. Since this value is lower than the ANN models, we

must proceed to step 7.
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Step 7. Although the R-squared value of equation 9 is less than that of Network
1, a paired t-test comparing the output of Network 1 with the output of the model in
equation 9 indicates there is insufficient evidence to reject the hypothesis that they are
drawn from the same population (probability that T <= t-critical is 0.9428). However, it

is possible that a better MLR model can be constructed using non-linear transformations

of the independent variables.

% power vs Linear Trendline for de la Garza Datu §
Pipe Diameter vs Cost E

e Lineer Trendiine
Y = 2.2358x - 7.2472

Y (Coet)

R?=0.8999

At (Dinsnatar)

Figure 4. Scatterplot and trendlines for X1 vs ¥
Step 8. Figures 4 through 6 show two-way scatterplots of each of the three
independent variables against the dependent cost variable. A baseline linear trendline
was calculated for each scatterplot along with the associated R-squared. Then a sequence
of non-linear trendlines was fitted to the data in each of the scatterplots. As can be seen
in figures 5 and 6, as well as the R-squared values in table 47, there is very little

correlation between the variables X2 and X3 and Y. The scatterplot analysis revealed
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that a power function (model coefficients in the exponents) provides a much better fit for

the data in figure 4. Therefore a power model is constructed in the next step.

¥ (cost)

s el

- y = 1.2651x ¢ 12 .
. R =0.0752 e

X2 (elbows)

Figure 5. Scatterplot and trendline for X2 vs Y

b

Linear Trendsine for Flangs Rating vs Cost _'_.

250 300

100 150 200
X3 (Flange Rating)

Figure 6. Scatterplot and trendline for X3 vs Y

Step 9. Another regression model was constructed using power transformations

of the linear terms in the baseline model. In order to perform the stepwise regression, the
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Linear Poly-2 Poly-3 Log Exp Power
X1vsY| 0.8999 09121 0.9189 0.7557 0.912
X2vsY| 00752 0.244 BN 0.1213 0.0551 0.1034

X3vsY| 0.0458 0.0465MNANd 0.049 0.1161 0.1158

Table 47. R-squared values for partial regression plots

equation must be in a linear form. Taking the natural logarithm of both sides of the
power function makes this transformation possible. The resulting model,

y=0.07x,*"x3°x{*, (13)
has an adjusted R-squared value of 0.997, a considerable improvement over both the
baseline MLR model and the Network 1 ANN model.

Step 10. Table 48 summarizes the comparison between the Network 1 ANN
model, the baseline MLR model, and the transformed power MLR model. There is no
statistically significant difference between any of these three models; however, the power
MLR model has a larger adjusted R-squared, implying it does a better job of explaining
the variability in the cost data. It is also interesting to note that the ANN model Las the

lowest variance of the three models.

Power Network 1 Baseline

R-Squared (adj) 0.997 0.985 0.940
Variance 248.088 245.404 258.137

Table 48. Comparison of ANN and MLR models

The steel pipe cost data from de la Garza and Rouhana (1995) submitted readily
to linear regression analysis, providing an unusually well-fitted model after several
attempts at non-linear transformations of the variables. However, unless a thorough
parametric modeling process is followed, an analyst may easily reach the premature
conclusion that a neural network model is generally better than a regression model. This

was the case in de la Garza and Rouhana (1995).
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Example 2: Data from Creese and Li (1995)

Creese and Li (1995) also compared neural network cost models to parametric
regression cost models using cost data on 12 bridges (Table 49). The Creese and Li
(1995) data set is similar to de la Garza and Rouhana (1995) in that both have a small
number of exemplars (12 and 16 respectively) as well as three independent variables or

cost drivers.

Web Vol Deck Vol Steel Wt Actual Cost

() () (Ib) )

Bridge X1 X2 X3 Y
662.86 542.34 527.98 74,982
791.15 566.72 651.08 87,602
265.58 25454 352.67 45,400
78141 737.70 67612 92,850
336.88 753.38 434.06 75,000
348.05 83025 39441 60,894
45518 567.50 53527 61,354
1164.17 89297 83472 79512
1661.65 2825.00 1316.25 201,600
1665.04 2484.38 1168.81 194,599
383.90 408.30 367.00 55,113
2320.00 144400 1331.00. 174,000

Table 49. Bridge cost data

NAQCRENRPOEWN =

Creese and Li (1995) concluded that ANN models outperformed MLR models
using R-squared as a performance criterion. However, they used only simple linear
formulations of the independent variables for the regression equation, never attempting to
fit the data to a nonlinear transformation of the independent variables.

Using the above ten-step methodology, the most appropriate linear model was
based on a cubic transformation of the independent variables. Such a regression model
performed slightly better than neural network models constructed using the Flitman

(1997) heuristic and a hyperbolic tangent transfer function although not quite as well as
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the neural model constructed by Creese and Li (1995). Table 50 compares the results of
Creese and Li (1995) and the methodology in this research. As with the models in de la
Garza and Rouhana, there is not a statistically significant difference between any of the
models in Table 50 (at the 5-percent significance level). However, the probability that
the means of the cubic model results and the 10-step network results (based on a paired t-
test) are the same is only 0.118, suggesting that the cubic MLR model is fairly close to

being significantly better.

Liriear Cubic  Creese/Li "10-step”
N del Model Network Network

R-squared 0.e70 0.989 0.991 0.971
R-squared (adj) 0.958 0.985 0.988 0.960

Table 50. Creese and Li vs 10-step methodology

Summary

In this chapter, a predictive modeling methodology was proposed that combines
the use of ANN and MLR models. The robust nature of ANN models makes them good
candidates for an initial target model. The ultimate form of the predictive model may be
either an MLR equation or an ANN: however, by using both modeling techniques, the
methodology can increase the leve! of confidence in the accuracy and robustness of the
model.

Applying the methodolog to the two case studies from the literature confirms
that a combined approach can result 1n a better model than one or the other technique
alone. The example from de-la-Garza and Rouhana (1995) confirmed the utility of the
ANN model, but also pointed cut the incomplete regression analysis. In the Creese and
Li (1995) example, although the ANN is the better model (using R-squared), it is shown

that a cubic MLR model vizy be close enough to be the more useful of the two.
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CHAPTER VI: CONCLUSIONS AND FURTHER RESEARCH

In this chapter, the conclusions of this research are summarized, the limitations of
the research are noted, and the contribution to the literature is described. In addition,

areas for further research are discussed.

Summary of Conclusions

Hyperbolic tangent-based ANN models can serve as credible and effective
surrogates for least squares regression models. They are accurate and robust with respect
to changes in network topology. However, the ANN models in this research were not
overwhelmingly superior to the MLR models. One should not conclude, therefore, that
one technique is invariably superior to the other.

As the data available for training increases, the signal to noise ratio also increases
and ANN model performance appears to improve at a faster rate than that of MLR
models in response to the same expanded data set.

Linear formulations of MLR models exhibit surprisingly robust characteristics
even when estimating non-linear functions. This is testimony to the power and utility of
the least squares estimator.

If the training sample size is less than 50, hyperbolic tangent neural network
models may not necessarily produce better resuits than regression models in terms of
lower RMSE or higher R-squared. However, because of their lower variance, they could
be used in conjunction with MLR models to provide a more complete modeling
methodology. Based on the experimental results and conclusions, a predictive modeling

methodology has been developed that capitalizes on the advantages of both neural
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network and regression approaches and may assist practitioners in constructing accurate
and robust predictive models. Applying the methodology to two case studies from the
application literature showed that this approach can result in a better model than one or

the other technique alone.

Limitations of Research

The results of this research are limited by the type of data, the formulations of the
ANN and MLR models used in the experiments, the sample sizes chosen, and the size of
the input vector.

The research relied on simulated data with artificially generated noise in the form
of a normally distributed error term. The functions used to generate the data pools were
chosen because they represented widely varying types of data relationships; however, it is
not implied that the three data generating functions are representative of all the potential
data types a practitioner might be faced with in a predictive modeling situation.
Additionally, the ranges of the independent variables in the data-generating functions
may have affected the comparative performance.

The ANN and MLR model formulations used were designed to be indicative of
“real world” approaches an analyst might use in dealing with various data sets. This
research is, therefore, limited to a fairly narrow range of ANN topologies. Other
combinations of activation function, learning constant, momentum, number of processing
elements, and training algorithm could have been used in structuring the ANN models.

As was discussed in the research methodology chapter, the sample size was fixed

at n = 25. The researcher does not feel this is a significant limitation of the research, as it
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has been shown that performance of both ANN and MLR predictive models improves
with larger sample sizes.

Finally, the input vector was constrained to four input variables. This limits the
generalizability of this research to similar types of regression problems. In actual
applications, however, this may not be a practical limitation, as larger input vectors are
often “pruned” through techniques such as Principal Components Analysis and stepwise
regression to reflect only those independent variables most highly correlated with the

dependent variable.

Contributions

This research provides a theoretical and practical contribution to the predictive
modeling literature by quantifying the effect of model formulation on the comparative
performance of ANN and MLR, and by providing a predictive modeling methodology
based on the combined use of ANN and MLR modeling techniques.

Additionally, linear models of the experimental results were generated that
provided insight into the variance contributions of individual model parameters. This
extensive ANOV A approach is unique to the study of ANN and MLR, and is also a

contribution.

Further Research
This research attempted to address specific questions regarding the comparative
performance of ANN and MLR models. In the process, more questions were raised

which might form the basis for further inquiry into this research area. Three areas are
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discussed in this chapter: 1) Appropriateness of neural network transfer function type for
specific modeling problems, 2) Relative rates of performance improvement between
ANN and MLR models with increases in sample size (signal-to-noise ratio), 3)

Robustness of linear and various nonlinear regression model formulations with respect to

varying types of data.

Transfer Function Type

Caudill and Butler (1992) were quoted in the previous chapter as stating that the
“...exact form of the sigmoid function is not particularly important.”> However, the
results of this research suggest otherwise. It is clear that transfer function type has a
significant effect on the performance of neural network models used as surrogates for
regression models. This research concluded that, because of the consistent and
significantly better performance of the hyperbolic tangent function over the sigmoid
function, the hyperbolic tangent activation function may be more appropriate in
predictive modeling problems in which there is one dependent variable.

Further research into the use of ANN as surrogates to MLR models should
include experimentation with various transfer function types. It is still unclear how the
transfer function affects the performance of a neural network. It would be useful to know

whether the type of neural network problem (regression, classification, etc.), or the type

? By “sigmoid function,” Caudill and Butler (1992) are referring to any S-shaped function having
the properties of mapping the function argument onto a point between a narrowly defined upper and lower

bound, such as 0 and 1, or -1 and +1. In this research, the term “sigmoid function” refers to the logistic

function shown in equation 5.
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of data relationship (linear, nonlinear) has any bearing on the appropriateness of a certain
transfer function type.

A designed experiment could be conducted in which the only manipulated
variable would be transfer function type. All other variables such as sample size, input
vector, number of processing elements, learning coefficient, and any other model
parameters could be held constant to isolate just the effects on performance due to change
in transfer function type. In such an experiment, it would be important to test the
performance of each of the ANN models on various data sets generated using a variety of
linear and nonlinear functions.

A likely outcome of this experiment would be confirmation that the hyperbolic
tangent transfer function performs significantly better than other transfer functions for a
range of data relationships in neural network models used as surrogates for linear

regression models.

Sensitivity of ANN and MLR Models to Sample Size Increases

Alihough much experimentation has been done on the effects of sample size on
the performance of neural network and regression models, additional experimentation
could be done to detect the rate of change of performance of these models given various
sample sizes. The objective of such an experiment might be to discover the “inflection
points™ of the curve describing model performance over sample size. Figure 7 illustrates
the hypothetical comparative performance between ANN and MLR models on a given
data set. Development of such a series of curves might help define what constitutes

“small” and “large™ sample sizes for given modeling situations.
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Figure 7. Rate of change in performance of ANN and MLR vs sample size
Perhaps more specifically, signal-to-noise (S/N) ratio could be compared against
model performance. The S/N ratio takes into consideration the effect of noise, or
randomness, in the data. A given sample size can have a variety S/N ratios depending on
the quality of the data. Therefore, S/N ratio might be a more effective measure of

performance.

Robustness of Linear MLR Formulations

One of the conclusions of this research was the unexpectedly strong and robust
performance of simple linear formulations of the regression function. Further research in
the area of predictive modeling techniques should compare the relative robustness of
these linear formulations against that of nonlinear (polynomial and log-transformed)
formulations. Such an investigation might yield useful information about the utility of

simple model formulations for rapid but accurate statistical modeling.
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Concluding Comments

This research has shown that the chief advantage of ANN predictive models over
MLR models is their relative insensitivity to changes in model parameters. It has also
shown that, within the limitations and scope of the research problem, ANN and MLR
predictive models have comparable levels of accuracy. Given these conclusions, this
researcher suggests a predictive modeling approach that involves both ANN and MLR
models. Such an approach may assist practitioners in constructing accurate and robust

predictive models by capitalizing on the advantages of each individual technique.
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Model Numbc;;:'ll;:l‘-:essing Learning Coefficient Transf;;::nction
1 3 0.3 Sigmoid
2 6 03 Sigmoid
3 9 03 Sigmoid
4 3 0.6 Sigmoid
5 6 0.6 Sigmoid
6 9 0.6 Sigmoid
7 3 0.9 Sigmoid
8 6 0.9 Sigmoid
9 9 0.9 Sigmoid
10 3 0.3 Hyperbolic Tangent
11 6 0.3 Hyperbolic Tangent
12 9 0.3 Hyperbolic Tangent
13 3 0.6 Hyperbolic Tangent
14 6 0.6 Hyperbolic Tangent
15 9 0.6 Hyperbolic Tangent
16 3 09 Hyperbolic Tangent
17 6 0.9 Hyperbolic Tangent
18 9 09 Hyperbolic Tangent
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Model Function Type Equation Log-Transformed Equations
] Linear y=p0y+Bx, + fx, + Bix; + Byx, N/A
2 2 order polynomial | y = B, + Bx} + fox3 + Bix, + B,x, N/A
3 order polynomial | y = B, + B.x; + B,x; + Bix; + B,x, N/A

ﬂoxlo 3hel Bix; *

Exponential - B, Iny=1Ing,+0.58,Inx, + f,x, + f,Inx; - B, Inx,

| »5 | Power y=Bxlxbhixh i Iny=Ing, + B, Inx, + f,Inx, + f;Inx, + f, Inx,
i il;nit'lcr:«r:t‘i:)i;htg:s y =P+ Bix + Boxxy + Pixy + Bix, N/A

T ot | ¥ =B+ B+ Buxix, + By + i

[ T 0
T order polynomial Wi | _ g+ ) + B, + By + B "

9 Ex!:::::::?;n:l;:ne y= ﬂoe”""e” M ghn pht Iny =Ing, + B,x, + B,x,x, + Byx; + f3,

10 ::?::Lt‘i‘,;:\ht::: y = Poxlixbo b’ Iny=Ing, + B, Inx, +f,x,Inx, + B, Inx, + B, Inx,

1 ill;::re::tx:':cm Y= Po+ Bix, + Byxx, + Bixyxy + Bix; + fix, N/A

2 | o | = Fo+ Bt + Byxix, + Boxix,+ B

13 372\:??;‘2:);132:\:::"\:’:&h y =By + B+ Boxix, + Bxsx, + Bix, N/A

14 E’?:\?:;T:ﬂﬂ‘:i‘:xo y = Belelimehnnehnehn » Iny=Ing, +px + f,xx, + Bix,x, + B, x, + fx,

15 B o o y = Poxlixfxfmxl s Iny=Ing, + B Inx, +f,x,Inx, + fix,Inx, + §, Inx,

interaction terms

** Note: Highlighted rows represent Best case regression model (same specification as true function)
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APPENDIX C: MLR MODELS
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Function 3
N":":’lfe'r Formulation Stepwise Regression Model "“_‘s"‘;:;'::d
la | y=p,+Bx +5x, + Bx; + Bx, y=-27.416+11916x, +11.496x, 0.984
Ib | y=pB,+B8x +B,x,+B.x, +B.x, y =-47.648+11.779x, +18.471x, 0.978
2a y =Py + Bxl+ Box; + Bixy + Byx, y=16.134+0.987x} +2.356x] 0.937
2b y =B+ Bx + Bx; + fix, + Pix, y =5.696+1.008x] +3.012x; 0.909
3a y =0+ Bx + Bx; + Bix; + Bix, y=22.996+0.115x, +2.05x; 0.758
3b | y=pB,+B8x + Bxl+ Bxi+ Px, y=21.665+0.104x; +2.393x? 0.886
| y=Perle B Iny =1.887+0.929Inx, +0.276x, 0.984
Bix,
|y Bl B, Iny=2.371+08565Inx, +0.15x, 0.977
Bix,
S5a y = ByxP xt xxl Iny=2.152+0.9081nx, +0.555Inx, 0.982
5b | y=pgxPixlixbxh Iny =2.045+0.924Inx, +0.6241n x, 0.981
6a y =0y + 0x, + fx,x, + Byx; + Byx, y=8.958+4.552x, +2.317x,x, 0.985
6b y =By + Bix, + Box,x;, + Byx; + Byx, y=2.173+5.002x, +2.563x,x, 0.982
Ta | y=B+Bx +px;x; + Bix, + Byx, y=34.752+0.934x; 0.886
To | y=B+Bxl + Bxix, + Bix, + Bx, y =35.402+0.997x; 0.908
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detf:r Formulation Stepwise Regression Model l;‘_‘:(’;:i‘:fd
8a | y=f,+Bx +5xx, + Bxi+ f,x, ¥ =9.198+3.949x,x, 0.968
8b | y=p4,+Bx + foxx, + fixl + fx, y =12.802+0.0204x” +3.334x,x, 0.982
9 | y=pfehnefrimelneh Iny =2.944 +0.209x, 0.895
9 | y=pelmelrimelel Iny =3.208+0.102x, +0.0257x,x, 0.960
10a | y=gxPxloxlxl Iny=2.624+0.891Inx, +0.01954x, Inx, 0.972
10b | y= g xPxlnxhyd Iny =4.154+0.7881n x, -0.924x, Inx, 0.957
Na | y=f,+Bx+Bxx, + Bxx,+ B+ fx, | y=5899+3.766x, +2.918xx, 0.990
11b y =P+ Bx + Boxixy + fyxxy + foxs + fix, | y=0.297+4.325x, +2.596x,x, +0.377x,x, 0.984
12 | y=B,+ Bxl+ Boxix, + Bixix, + Bx, | y=18.638+1.19x7 +0.284x2x, 0.945
12b | y=B,+Bx+Bxix; + Bxix, + Bx, | y=27.614+0.956x] +0.444x}x, ~0.0817x]x, 0.951
13a | y=f+Bx +Bxx,+B8xx+px, | y=15075-0.03657x +2.936x,x, 0.976
13b | y=B,+Bx +Bxx, + Bixix, + Byx, | y=11.308-0.01623x’ +3.464x,x, 0.979
4a | y=felnelinelhnnelnels Iny =4.432+0.092x, +0.0281x,x, —0.299x, 0.942
14b | y = BePtmeliimehnuelnghn Iny =3.052+0.07857x, +0.0434x,x, 0.931
15a | y=Bxlxloxhixl Iny=2.621+0.891inx, +0.028x, Inx, 0.946
15b | y=Bxlxioxfox Iny =2.742+0.8941In x, +0.0822x, Inx, -0.0654x,Inx, | 0.984
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APPENDIX D: ANN TRAINING AND TESTING DATA AND

ESTIMATED Y-VALUES FOR FUNCTION 1
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17063
221.79

Training Sample 1

X3
392
547
209
367
672
568
654
207

X4
375
444
382
392
Iq
410
405
431
3s2
426
420
389
418
420
397
404
423
413
3Jes
422
384
418
422
408
418

RMSE
107 54

Y
116 08
887 32
8569
478 04
369 1
688 11
20511
102.08
736 81
128.38
105 80
818.72
180 22
176 23
87.02
967 23
89378
113.92
169.26
483 61
192 66
97.01
109 24
107.74
569 89

Desired

41333

86 91
138 80
140 27
862 69
141 22
16177
316 19
196 33
357.59
845 92
458 89

9959
860 20
356.75
71360

98 04
1003.16
656.66
33530
2468.75
15510
165.89
137.45
136 89

Average
RMSE:

Model b
Actual
551.92
287 43
157 84
20011
627.31
2735
17831
39248
41027
417.70
583 68
42068
202.06
656 08
382 87
70373
19199
6684 52
546.83
39582
508 01
19153
294.14
18966
25937

127 61

Traning Sample 2
X3 X4
637 423
547 3as
615 394
597 405
389 401
604 389
478 362
527 379
380 404
340 n
360 422
303 368
304 421
580 398
206 4.20
7.42 an
7.44 384
2.72 422
39% 394
390 430
215 409
259 417
L X3 404
761 402
259 443
SE RMSE
1920666 14769
40208 51
358 57
370169
55402 83
17513 92
13N
5820 32
4577196
361314
68771.93
1460 02
10499 69
41663 38
682 50
97 45
8826 19
101530 33
12491 81
3662 46
68256.19
1327 41
16447.78
272568
15001.61

28376
35077
459 86
12424
136 89
81872
24875
656 89
289 91
71360
109.24
110166
101.58
655.40
105.80
147.10
208.11
16833
33530
181.20
37025
10375
893.12
356.75
126.01

Tesling Sample
X3
746
315
746
603
640
232
793
502
463
469
450
565
291
208
761
340
467
702
657
396
478
754
569
752
3es

X4

ANN Model 6 xIs
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12293
147.10
499.42
25290
208 11
238 50
118.78

17559
167 .51
681.74
17126
905 39
20225

Training Sample 1

X3
m
272
763
756
580
744
524
661
322
n
5.00
285
701
303
560
461
574
225
612
4N

2511.18
923574
56249 49
15759.24
1077.69
65 91
44413.04
2455 81
352 48
6676.91
1929 46
15882 16
5681 14
n
367
6906 86
236 25
4074 54
487.72
6636 27
2635.10
23610 02
1651083

X4
402
424
367
409
398
379
419
401
404
420
410
413
422
368
378
380
389
aer
369
401
411

137 50
1109 20
349.75
488 64
655 40
419 52
79363
96115
361.47
22529
585 09
169.88
483 61
1101.66
141.42
347.85
979.19
23256
18578
21747
33863
27298
154 07
893 12
36077

X1 x2
877 232
329 310
803 355
103 430
924 236
713 253
8.79 326
590 193
281 300
1.35 250
125 332
664 261
618 224
1.64 259
(1) 236
2.3 262
130 1.78
585 In
5§62 213
451 324
27 256
7.45 270
624 272
898 293
764 257

Mode! b
Desyed  Actual

489 89 546 84

760 18 €98 77

138.34 143 90

11562 150 51

31536 36599

98371 81048

17424 15183

466 64 45375

105038 83192

89659 793688

86020 77263

122.93 146 77

14710 14527

49942 42654

25290 25689

208.11 179.66

238 50 196.77

11878 14568

488 64 47901

175.59  169.13

167.51 1563.08

681.74 62448

17126 16609

90539 77411

20225 22688

Average
RMSE 8906

Traning Sample 2
X3 X4
692 376
434 s
5§27 379
587 398
225 393
788 389
604 389
622 3o
276 385
474 g
240 415
466 409
531 353
565 396
2.02 398
293 416
30t 395
300 402
221 385
458 437
329 389
422 418
359 ae87
640 399
599 433
SE RMSE
324282 7433
3771 08
3093
1217.07
2563 38
30008 82
502 02
171 40
47726 09
10548 63
7668 30
568.17
34
531219
1592
809 68
174174
72354
92 82
41N
208 31
3278 55
2673
1723483
606 72

Y
81219
14975
656 89

899 85
517.70
81872
34319
13315
10281
1m27
427 61
34935
137.57
429.73
130.54
489 89
a1.22
269 32
21465
116 91
53613
723
86269
569 96

Tesung Sample
X3
in
345
635
425
278
223
765
515
262
3.92
208
326
7.42
6.42
428
744
73
362
156
533
701
Kk 74
346
661
232

x4

489 89
760 18
138 34
116 62
31536
983.71
174.24

1050 38
896 59
860 20
12293
147.10
499 42
252,90
208.11
238 50
11878

17559
167.51
668174
171.26
905.39
20225
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X2
248
292
282
410
207

Training Sample 1

X3
641
304
457
an
449
580
549
744
683
523
368
461
663
500
279
554
219
302
285
73
425
661

X4
410
393
389
375
421
398
395
413
398
375
an
390
an
410
397
420
392
400
413
434
398
413
389
390
374

RMSE
6589

Desired

1003 16
164 56
485 61
12195
3178
97 67
1090 68
102 97
161.77
7679
72434
127 63
147 47
925 54
182 66
877 45
217 86
106 91
401.24
83.17
862.69
§79.69
466 B4
656 89
16.72

Average
RMSE:

X2
292
328
251
259
261

3N

Model b
Actual
997.94
134 32
35364
155 24
214.69
11902
1020 95
11767
11828
121.10
78476
13929
15393
981 47
198 00
904.99
194 65
12535
57201
117.18
945 53
747.60
546 72
930 83
11915

7699

Training Sample 2

X3
502
483
668
565
289
701
784
442
444
395
457
225
579
360
239
530
784
257
603
597
459
455
554
643
404

SE
2722
914 36
1741710
1108 22
9425 80
45563
4889 76
216.00
1891 48
1963 31
3650.37
136 00
4176
312793
234 82
758 65
538 80
33991
29163 23
1156 70
6861.98
28193 98
6381.02
75045 83
592

X4
402
419
401

316 19
21805
18291
137.57
977 08
167 51
231N
10983
394 49
139.79
1006 50

967.23
11848
109088
867.33
31422
107.74
694 60
124.24
120 52
1088.51
526.04
484 24
13249

X2
359
314
248
221
289
322
342

Testing Sample

X3
702
496
798
646
641
29
239
346
793
218

X4

1003 16
164 56
485 61
12195
31178

9767

1090.88
102 97
161.77

76.78
12434
127.63
14747
92554
18268
877.45
21788
10691
401 24

8317
862 69
57969

656 89
1672

ANN Model 18 xIs



128

APPENDIX E: MLR TRAINING AND TESTING DATA AND

ESTIMATED Y-VALUES FOR FUNCTION 1
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6.92

Desred
1088 51
13026
17559
18022
206 65
33863
836 10
117.62
644.06
22479
98 27
18578
51515
18291
925 54
17424
42327
1101.66
49421
750 31
41427
10580
16019
21786
466 84

Model a
Actual

451.37

78
204.24
299.13
34329
3r8.12
503 58
137.17
ar9.27
27048
142,89
20094

23.09
23905
563 86
181.31
|2
436.91
463.24
447.96
34547
177.81
347.60
326 26
426 87

Training Sampte 1

X3 X4
710 399
275 423
541 384
521 409
591 389
502 402
304 42
449 n
505 412
6.35 n
637 423
794 405
622 39
635 388
6.20 413
569 433
227 394
728 403
4.02 409
4 397
2 395
748 423
735 383
701 422
515 404

SE RMSE

40595528 23377
2750.77
82079
14140 64
10670.15
1559 58
110568 19
386.18
70108 96
2088.04
1991.77
23002
8475 05
315166
130606 33
4997
1766 82
441892 94
959.06
9141529
473287
5184.90
35196.48
11751.37
1697.51

Y
150 85
89378
12132
893 12
32275
31619
10158
36077
468 41
138 34
28376
152 47
M3 19
15926
917.3%7

27161
14127
23074
526 45
26932
138.90
248 68
48361
466 84

X2
244
344
316
an
145
243
221
222
314
262
289
222
381
293
269
310
212
234
219
363
304
231
a0
200
204

Mode! b
Actual

768 66

3918
191.02
23563
274 44
357.61
64127

51.78
554 94
257.00

8196
23215
498.72
20152
703 14
140 29
460 27
767.57
489 47
62589
447 B4
101 42
231.91
29163
47038

17722

Training Sample 2
X3 X4
346 384
653 407
m 405
671 416
372 413
368 431
279 367
7.84 414
496 402
6.20 413
6.41 419
™ 4.00
685 425
561 404
236 437
763 367
4.57 376
260 394
7.52 3N
560 418
751 417
764 364
434 381
449 n
6 58 4n
SE RMSE
102307.21 12067
8294 80
23813
3070.23
4595 45
360 50
3795587
432196
841 41
1037.49
266 00
2150 66
27010
346 32
49461 16
1153 07
1369 10
111618 09
22 45
15479.70
12711
19.19
514288
5443 05
1251

X2

Testing Sample

X3
455
705
533
308
435
658
787
624
663
568
354
6.12
425
668
380
165
219
303

X4
an
395
386
416
421
411
309
445
an
396
410
369
390
401
408
398
392
368
an
aer
ae
420
437
409
404

Y
1088 51
130 26
17559
180 22
206 65
33863
836 10
11752
644 06
22479
9827
185.78
515.15
18291
925 54
17424
A7
1101 66
494 21
75031
41427
105 80
160 19
217.86
466 64

MLR Model 5 xis
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