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ABSTRACT

CALIBRATING EXPERT ASSESSMENTS OF ADVANCED 
AEROSPACE TECHNOLOGY ADOPTION IMPACT

Brace A. Conway 
Old Dominion University 
Director: Dr. Resit Unal

This dissertation describes the development of expert judgment calibration 

methodology as part of elicitation of the expert j udgments to assist in the task of 

quantifying parameter uncertainty for proposed new aerospace vehicles. From previous 

work, it has been shown that experts in the field of aerospace systems design and 

development can provide valuable input into the sizing and conceptual design of future 

space launch vehicles employing advanced technology. In particular (and of specific 

interest in this case), assessment of operations and support cost implications o f adopting 

proposed new technology is frequently asked of the experts. Often the input consisting of 

estimates and opinions is imprecise and may be offered with less than a high degree of 

confidence in its efficacy. Since the sizing and design of advanced space or launch 

vehicles must ultimately have costs attached to them (for subsequent program advocacy 

and tradeoff studies), the lack of precision in parameter estimates will be detrimental to 

the development of viable cost models to support the advocacy and tradeoffs. It is 

postulated that a system, which could accurately apply a measure of calibration to the 

imprecise and/or low-confidence estimates of the surveyed experts, would greatly 

enhance the derived parametric data. The development of such a calibration aid has been 

the thrust of this effort. Bayesian network methodology, augmented by uncertainty 

modeling and aggregation techniques, among others, were employed in the tool
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construction. Appropriate survey questionnaire instruments were compiled for use in 

acquiring the experts’ input; the responses served as input to a test case for validation of 

the resulting calibration model. Application of the derived techniques were applied as 

part o f a larger expert assessment elicitation and aggregation study. Results of this 

research show that calibration of expert judgments, particularly for far-term events, 

appears to be possible. Suggestions for refinement and extension of the development are 

presented.
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CHAPTER I 

INTRODUCTION

Background

The National Aeronautics and Space Administration (NASA) Langley Research 

Center has long been responsible for advanced aerospace vehicle conceptual 

development. In determining attributes for an advanced concept vehicle, NASA utilizes 

various resources. Among these are current designs and technology, extrapolated to 

address future requirements and anticipated technology levels. The process of 

extrapolating current technology requires engineering judgment, and the degree to which 

the projections will be borne out is dependent upon the expertise of those forecasters 

performing the extrapolations.

In addition to ascertaining what technologies can or should be included in an 

advanced vehicle concept, it is important that the cost impact (positive or negative) of 

incorporating unproven technology be determined. The technologies under consideration 

can cover many disciplines and affect most, if  not all, o f the proposed vehicle’s systems 

and subsystems (see, for example, Rowell, Olds, and Unal, 1999). In fact, adoption of a 

specific technology may impact more than one subsystem, to differing degrees. Because 

conceptual design specialists do not usually have expertise in every single vehicle system 

and their technologies, they may not always be able to judge accurately the projected 

impacts of incorporating future technology. Thus, a methodology to systematically guide 

the technology forecasting and assess the cost impact of adopting advanced concepts 

would be very desirable.

The journal model for the references herein is The American Psychologist, the journal of 
the American Psychological Association
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In developing a methodology to examine what might happen as a result of some 

future course of action, forecasters typically rely on such things as past experience, 

models of behavior or chance, systems models, or several other types o f tools. One 

means that has come into increasing use in the last 20 years is the so-called "expert 

system." Expert systems come in many levels of sophistication, thoroughness, and ease 

of use. A common characteristic of these systems is their use of information (facts, 

preferences, opinions, and other types o f knowledge) gleaned from acknowledged experts 

in the area(s) the expert system is supposed to cover. Studies suggest that expertise 

results primarily from the ability to perceive, or recognize and differentiate the patterns 

and invariants in the environment, as opposed to the use of rules and facts. An expert 

system seeks to capture such expertise (or knowledge) through carefully constructed 

knowledge acquisition means.

The use of expert systems may cover many scenarios. An expert system may be 

established to capture "best design practices" as developed over many years by retired (or 

soon-to-be-retiring) practitioners. Or, an expert system might be constructed to guide a 

repetitive process for untrained personnel (such as the computer online completion of 

tests, questionnaires, and the like). Yet another use could involve the design of an expert 

system to handle some remote operation where a human could not be either physically or 

virtually present such as in the preparation of robotic planetary exploration craft that must 

operate out of contact with human controllers for long periods. Finally, an expert system 

may be designed to capture information needed to establish an architecture or program 

structure, such as a quality program (see, for example, Kahn and Hafiz, 1999).

The type or class of expert system of interest in this research, however, is one that 

gathers knowledge and considered opinions from expert practitioners in several related

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

fields of science and technology and applies that knowledge to the conceptual design and 

analysis of some future embodiment utilizing current or advanced state of the art in their 

respective areas of expertise. In the current case, the specific application of an expert 

system is in the area of developing new concepts (technologies and configurations) for 

single-stage-to orbit aerospace vehicles designed for efficient access to space. One 

concern that arises in considering new-technology-solutions to either long-standing or 

newly developed problems or requirements is the cost of the technology -  both its 

development cost, and its cost impact on operations and support o f a particular new 

vehicle if built and deployed. A knowledge of these cost impacts is crucial in developing 

tradeoffs when considering more than one potential advanced design. Knowledge of 

costs is also critical in assessing the life cycle costs of competing vehicle concepts.

The use of expert judgment or opinion to aid in decision-making is reasonably 

well known. The knowledge of subject matter experts (SMEs) has been “mined” to 

develop procedures to handle complicated manufacturing or implementation tasks, for 

example or responses to presented options such as the diagnosis and treatment of medical 

conditions. More specifically, experts have been tasked with providing estimates for 

parameters associated with yet-to-be-developed systems (such as advanced space launch 

vehicles). In utilizing the expertise of an acknowledged expert in a given field, there is 

often no need to query more than a single expert. The expert’s carefully elicited opinion, 

judgment, or estimate can be accepted as the point estimate for the quantity or parameter 

under consideration.

There are, however, situations in which it is necessary or desirable to employ the 

expertise of multiple experts to address a design-related estimating task. The use of 

multiple experts allows for the coverage of most, if  not all, aspects of veiy sophisticated
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design concepts, which may incorporate advances in several disciplines. The potential 

arises in this scenario for there to be a lack of consensus among the estimators. Such a 

lack can produce widely divergent estimates of the parameters or quantities being judged, 

particularly if the estimates are elicited through an anonymous Delphi-type process 

(where experts independently submit responses to an elicitation of assessments, rather 

than doing so together in a group). The subsequent utilization of divergent multiple 

estimates (in projecting associated costs, for example) becomes problematical without a 

means to adjudicate the disagreement between the estimates.

Complicating the variability of estimates is a degree of uncertainty associated 

with each expert’s judgment. The basis of an individual’s uncertainty may arise from an 

innate (constant) lack of conviction in any projection or estimate, or it may be related to 

his or her degree of comfort with knowledge in the subject area (which could vary from 

task to task). Whatever the reason for the uncertainty, the combination of uncertainty 

with the estimate variability results in a two-dimensional measure that exacerbates the 

problem of arriving at a single point estimate for the parameter or quantity under 

consideration.

Elicitation of an expert’s degree of certainty about his estimate is crucial to the 

subsequent use that may be made of that estimate. The level or degree of uncertainty 

affects the weight that a user of the estimate may assign to the information produced by 

the assessment. If aggregation of multiple assessments is the use to be made, then 

weights must be assigned not only to factors associated with the experts producing the 

assessments (as many aggregation techniques do), but also to the information itself. If 

decisions are to be made based on the elicited assessments, then the decision maker must 

perform his own (informal) calibration based on the level of uncertainty in order to make
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effective use of the assessments. Uncertainty is thus associated with the assessments of 

each expert; aggregation of multiple assessments does nothing to reduce that uncertainty, 

it only masks it.

The elicitation of judgments from subject experts is fraught with several potential 

pitfalls. Perhaps first among these is identification of an appropriate expert (or experts) 

whose judgment may be relied upon to produce judgment of acceptable reliability. 

Ideally, an expert would render consistent judgments in similar environments.

A second hurdle that must be overcome is the development of an appropriate 

questionnaire or other information elicitation mechanism that is both efficient (time-wise) 

and effective (content-wise). The time commitment of participating experts must be 

honored, and an ineffective elicitation instrument would yield information of dubious 

value.

A third issue with potential ramifications is the decision about the number of 

experts to be queried. If more than one are used for the same topic, then some means of 

either “calibrating” each expert’s judgments or aggregating the responses of multiple 

experts in a meaningful way (or both) must be implemented. Otherwise, individual 

differences in experts’ experience, confidence in judgment, and innate baseline from 

which judgments are based will likely render inconclusive (or at least less precise) 

results.

It is this last issue that forms the motivation for the present research. While 

calibration o f experts has been studied for some time, the predominance o f calibrated 

judgments have dealt with outcomes which could be verified either at the time of the 

calibration or within a reasonable time afterwards. In the present instance (advanced 

launch vehicle concept development), however, the wait for validation of an expert’s
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judgment could take more than 20 years. In a word, a way must be found to calibrate 

experts assessing the “unknowable future,” to handle information characteristics and 

content redundancy The subsequent use of calibrated judgments in aggregation 

techniques using a combination rule that is most compatible with conceptual aerospace 

vehicle design would thus be made easier.

Problem Statement

Multiple experts can produce widely varied estimates of their tasked judgments; 

this variability is aggravated by disparate uncertainty in the “calls” made by each of the 

experts. “Which is the estimate to be used?” Similarly, even a single expert assessing 

events or state-of-the-art of the future may produce judgments with associated confidence 

that, without calibration, could be subject to question. In the overall framework of 

multidisciplinary analysis of advanced conceptual designs, reductions in uncertainty 

through calibration would be expected to facilitate efficient aggregation and ultimate 

decision-making that will be based on the expert assessments and analysis.

Synopsis of Report

How then to develop an expert system that can assist in the task of evaluating 

weight and size estimates, operations and support resource requirements, and 

multidisciplinary design and optimization questions for proposed new aerospace 

vehicles? That is the problem that was addressed in this research effort. In particular, a 

means for effectively calibrating experts whose judgments may not be validated for many 

years was sought. Both single- and multiple-expert judgment scenarios were examined, 

and a calibration methodology was successfully developed.
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The next section will review predecessor and related research and relevant 

literature applicable to the topic area. A research methodology is presented which (a) 

covers continuation of previously begun work by the author in this area, and (b) 

addresses extension o f the effort to define the development of a more robust system, 

including expert judgment calibration, which efficiently handles a variety of conceptual 

design-related questions. Next, the application of the methodology as part of a wider 

study supported by NASA is discussed, followed by a presentation of the results of the 

investigation pertaining to the expert calibration problem. A discussion of results is 

followed by conclusions drawn from the application of the methodology and the results 

of the study. Limitations associated with the current study and recommendations for 

future effort are presented as the final section of this dissertation.
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CHAPTER II

REVIEW OF RELEVANT LITERATURE AND RELATED RESEARCH

Uncertainty

Dealing with uncertainty by those engaged in the physical sciences (including 

engineering) is almost second nature (Morgan and Henrion, 1990). In engineering, it is 

common to perform uncertainty modeling and analysis of a system’s abstract aspects, 

with proper consideration of its realized aspects (Ayyub, 2001). Reporting the results of 

experiments, or designing a new experiment or survey, without attention to uncertainty is 

deemed risky at best. However, the treatment of the uncertainty associated with an 

investigation or, as Morgan and Henrion (1990) note, in policy analysis is not uniformly 

understood; there is no single method of including uncertainty factors in assessing a 

problem. In addition, risk is usually associated with uncertainty, and means of 

quantitatively treating the ever-present uncertainty are desirable. Morgan and Henrion 

include many techniques -  philosophical, graphical, and analytic -  for handling 

uncertainty in a given problem or research area.

One aspect of uncertainty is the error associated with making estimates. The 

credibility o f estimates is associated with a variety of fields. Brown (1969) developed a 

methodology, which, although aimed principally at business-oriented problems, includes 

tools for a practitioner to use in analyzing (appraising) estimates. His techniques include 

the use of “credence distributions”, which resemble classical probability distributions but 

which involve personal viewpoints of an investigator in addition to the pure observed 

research findings. The decomposition of “target variables” which have uncertainty
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associated with their values) into several components, each of whose assessment is 

tractable. Results are combined to yield an overall assessment for the target variable.

There are many methodologies to apply to problems that involve uncertainty. 

Among them are Bayesian networks (Neil, Fenton, and Nielson, 2000), fuzzy logic 

(Zadeh 1992, Kosko, 1993), and default reasoning (Antoniou, 1998). Each of these 

methods provides some means of logically handling the assignment of values 

(probabilities in the present case). Each method is different, however, and it is 

problematical as to which (or possibly some other) may be the best to employ in 

assessing the uncertain probability that specific new technologies will reduce the 

operations and support costs associated with advanced launch vehicles.

Bayesian networks utilize a directed graph model of causality following Bayes’ 

Rule for influence. Schmitt (1969) and Cyert and DeGroot (1987) provide insight into a 

variety of applications of Bayesian statistics, which include techniques of modifying 

probabilities based on accumulating experience. Cyert and DeGroot (1987) focus their 

work in the field of economics, but develop a concept referred to as “adaptive utility”. 

This concept, analyzing utility functions instead of probabilities, should be directly 

applicable to the current research problem of cost assessment functions for individual 

experts. The use of Bayesian networks in expert judgment elicitation for uncertainty has 

been carried out for many years (see, for example, Renooij, 2001, Neil, Fenton, and 

Nelson, 2000, and Coupe, van der Gaag and Habbema, 2000). In most cases, the efficacy 

of the methodology is dependent on the degree of expertise and the comfort of the experts 

in providing accurate (precise) estimates.

Fuzzy logic methods have been developed over the past 35 years to address 

uncertainty (“fuzziness”) in describing probabilities of certain types of events. Fuzzy
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logic treats everything associated with probability as a matter of degree, and thus is not 

limited to step-function types of probabilities for events (see, for example, Zadeh, 1992 

and Kosko, 1993). Hardy (1994) discusses fuzzy logic approaches to multi-objective 

decision-making in aerospace applications, a work that may be directly applicable to the 

proposed research. Hardy and Rapp (1994) apply the approach specifically to rocket 

engine reliability analysis.

In the fields of artificial intelligence and, in particular, knowledge-based systems, 

researchers have been working for years on the problem of modeling (or quantifying) 

beliefs, reasoning and opinions, and the uncertainty that, in varying degrees, accompanies 

those thought processes. For example Mantaras (1990), in his discussion of the modeling 

of approximate reasoning, focuses on numerical approaches in the framework of rule- 

based systems. He highlights probabilistic approaches, a fuzzy logic/possibility theory 

approach, and an approach based on the Dempster-Shafer theory of evidence.

A study related to intuition and analysis cognitive activity, and which produces 

the more accurate judgments, has found that intuitive and quasi-rational cognition often 

outperforms analytical cognition in the empirical accuracy of judgments (Hammond, 

Hamm, Grassia, and Pearson, 1987). The study by Hammond, et al, focused on judgment 

tasks that ranged on a continuum from purely intuitive to highly analytical; the cognitive 

tasks would seem to cover a similar range of thought modeling that includes the fuzzy 

logic and approximate reasoning approaches by Hardy (1994) and Mantaras (1990) have 

pursued. Their finding would seem to suggest that application of expert judgment 

elicitation in less-well-defined areas could produce efficacious results.
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Expert Judgment Elicitation

The process of obtaining expert opinions, judgments, or assessments with some 

appellation of confidence (probability of the event being as assessed) must be well 

structured to minimize or avoid the introduction of bias (Renooij, 2001). The elicitation 

process would ideally include the selection, motivation and training of experts, proper 

structuring of the questions to preclude bias, the actual elicitation and documentation 

phase, and verification of results (Renooij, 2001). There are many forms that the 

elicitation process can take, as well as a number of different forms of the desired 

elicitation output.

There have been numerous situations over the years in which it has been desirable 

to obtain information or assessments from acknowledged experts in a field. Techniques 

have been developed to “mine” the requisite knowledge or assessments from the experts. 

Such techniques range from basic one-on-one sessions between an elicitor and expert 

using specially tailored elicitation aids (see, for example, Keppell, 2001), to methods 

involving assessments from multiple experts, acting either individually or as a group. 

Some of the multiple-expert techniques that have been used include brainstorming, the 

Nominal Group Technique (NGT -  see Gustafson, et al, 1973), and Delphi panels (see 

Dalkey, 1969, Tinstone and Turot, 1975, and Rowe, Wright, and Bolger, 1991). In each 

of these techniques involving groups of experts, the process is designed to develop a 

consensus among the experts. Decisions would then be made based on the group 

consensus, provided that one was achieved.

While a consensus approach to eliciting knowledge or judgments from subject 

matter experts may yield acceptable results, it can be a time consuming process; it may be
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hard to assign a degree of certainty to those decisions involving quantitative estimates. In 

certain fields, notably meteorology, efforts have been underway for several decades to 

elicit judgments in terms of a probability, sometimes accompanied by an associated 

degree of confidence in the rendered assessment. Murphy and Winkler (1974) describe 

experiments whereby a weather forecaster expressed forecasts o f (say) a daily maximum 

temperature in terms of what is referred to as a “credible interval,” or interval of values 

with a probability reflecting the forecasters’ degree of belief that the temperature will fall 

in the given interval. Validation of the forecast methodology is straightforward in this 

scenario, since the forecasts are for a very short time-horizon (from a few hours to a few 

days).

Other early work by Beach (1975) found that use of subjective probabilities and 

Bayes’ theorem in real-world decision-making is potentially profitable (or, has economic 

value). Military decision-making, meteorology, medical diagnosis, and business trend 

analysis are examples of the classes o f problems amenable to probabilistic forecast 

techniques. Beach also found that, in the majority of the situations she studied, group (or 

consensus) probability judgments generally yielded results that were superior to those 

achieved by individuals. The methodology of combining opinions from multiple experts 

varied and no one technique was found to be better in all cases than another.

To avoid some of the problems resulting from group dynamics, Rush and Wallace 

(1997) developed a technique for eliciting knowledge from multiple experts that were not 

members of an interacting group. Influence diagrams are used, along with assigned 

probabilities, to represent an expert’s understanding of the problem situation; a multiple 

expert influence diagram is a composite representation of the multiple experts’ 

knowledge (Rush and Wallace, 1997). This technique appears to be well suited to those
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problems where the elicitation is intended to support the making of a decision (go -  no 

go) type of problem.

In another use of experts in judgment or knowledge elicitation, the development 

of Bayesian belief networks in a medical diagnosis application appears to benefit by 

sensitivity analysis o f a belief-network-in-the-making (Coupe, van der Gaag, and 

Habbema, 2000). The analysis provides insight into those probabilities requiring a high 

level of accuracy, and is useful in those problems where there are a large number of 

probabilities to be assessed by an expert. Subsequent or future elicitations can then be 

focused in specific areas, based on the sensitivity analysis. It is possible to build rather 

large Bayesian networks using building blocks (Neil, Fenton and Neilson, 2000). This 

technique can be applied much like computer-aided design in manufacturing or 

electronics “assembles” simple elements into larger, more complex structures.

In earlier work related to the present problem, Monroe (1997) developed a 

methodology for eliciting expert judgment to help overcome uncertainty in decision 

analysis. The work used as an application example the development of weight estimates 

for the various major components o f advanced single-stage-to-orbit vehicle concepts. A 

questionnaire was developed to enable the elicitation of expert judgments about weight 

fractions of the vehicle components. A novel aspect of the technique developed by 

Monroe was the inclusion of a methodology to allow degrees of uncertainty of the 

surveyed expert’s estimate to be attached to the weight quantities judgments. The 

methodology consisted of a series o f questions to anchor most likely and least likely 

points and then assign intermediate uncertainty levels. The uncertainty levels were then 

used to construct probability distributions for the various weight parameters; these 

probabilities were subsequently used in Monte Carlo simulations to converge to “final”
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weight estimates for a vehicle under study. Hampton (2001) adapted Monroe’s 

methodology to the area of integrated risk analysis in a multidisciplinary design 

environment, aggregating the uncertainty identification and quantification assessments of 

two experts in a risk analysis problem.

The technique developed by Monroe (1997) was modified and applied to the 

determination of impact on operations and support costs of proposed vehicle concepts 

resulting from the adoption of various technologies. The expert judgments of design 

engineers at three NASA Centers were acquired through a formal questionnaire, which 

also asked the respondents to provide a confidence level for their estimate, based on a 

scale developed by the researchers (Unal and Conway, 2000).

The work by Monroe (1997) and Unal and Conway (2000) employed a set of 

structured guidelines, or rules, by which the experts could apply their knowledge in a 

consistent manner. In the operations and support costs-related study, the candidate 

technology spectra were formulated by an advanced vehicles concept group, and refined 

through pilot surveys of selected experts, who were able to suggest additions or 

modifications to the technology “menu.” The uncertainty levels were applied based on a 

scale established by the researchers. In an attempt to promote consistent application of 

the uncertainty levels, this scale provided narrative “anchors” for the expert’s use in 

assigning his rating. In contrast, Monroe (1997) allowed the expert to establish the range 

and anchors for the uncertainty level (in other words, a subjective probability 

distribution). The work by Unal and Conway did not include a method to quantitatively 

apply the confidence levels over multiple experts to enhance the assessment of 

technology cost savings, nor did the work employ a calibration of experts, a shortcoming 

that will be discussed in the next section.
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A concern that has arisen in some past expert judgment studies is the effect of 

temporal setting on the elicitation task (specifically, is the assignment of likelihood 

estimates to past and future outcomes the same or different?). Fischhoff (1976) found 

that there was no consistent differences in likelihood judgments regarding past and future 

events which differed solely in their temporal setting. In contrast Wright (1982), in a 

study involving probability assessment as a function of question type, found that 

differences did exist: probability assessments for future event questions tended to be less 

certain than probability assessments for past-event questions. The question thus remains 

as to the effect o f temporal setting on probability or likelihood estimates, and the 

concomitant effect on the possibility for calibration of expert assessments.

Calibration of Experts

One of the phases of a properly structured expert elicitation process is verification 

of results (Renooij, 2001). Verification includes ascertaining that the assessments 

(usually probabilities) are reliable (in a test-retest sense), coherent (obey the laws of 

probability), and well calibrated (conform to observed frequencies). This last step, 

calibration, is reasonably straightforward for “knowable” outcomes, but is most difficult 

for “unknowable” or unobservable events or outcomes, such as those that are future 

occurrences.

Many authors have discussed calibration of experts in judgment elicitation 

scenarios. Morgan and Henrion (1990) note that there have been many empirical studies 

focused on the calibration aspects of people’s abilities as probability assessors. Keren 

(1991) points out that most of the calibration studies he reviewed focused on technical 

formal issues, presumably because the dominant perspective is that uncertainty is a
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reflection of the external world and thus of the events or outcomes being assessed. He 

proposes that uncertainty is more a characteristic of the assessor, although the two views 

are often entwined.

Johnson and Bruce (2001) focused on a narrow field (horse wagering) and found 

that the naturalistic setting of actual wagering facilities at racetracks, as opposed to 

laboratory settings and experiments, resulted in close correlation between subjective 

(bettors’) probability of winning and objective probability (based on race results).

Perhaps one of the earliest attempts at calibrating expert assessments involved the 

verification of weather forecasts expressed in terms of probability (Brier, 1950). The 

methodology was based on a verification score, P, that is a function of outcomes and 

assessed probabilities associated with the various outcomes, and the actual outcomes 

themselves (post priori). The P-score would be smaller for “good” forecasting (with zero 

being perfect) and larger for “bad” forecasting (a score of 2 would be the worst). With 

appropriate feedback to the forecaster expert, it can be seen that this verification process 

could also serve a training purpose, because the P-score is minimized by avoiding bias or 

gamesmanship with the score. In a somewhat similar manner, Schaefer (1976) used a 

logarithmic form of a proper scoring rule. [Note: a proper scoring rule is one where no 

strategy by the assessor will produce a better expected score than always reporting one’s 

true beliefs (Lichtenstein and Fischhoff, 1980)]. Schaefer’s experiments provided 

feedback to the subjects for calibration and training purposes. As with the weather 

forecasts, however, the determination o f the actual values of estimated proportions was 

straightforward.

More recent work on scoring rules and calibration of expert assessments 

employed an interactive computer-aided graphical means to feed-forward scoring rules
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based on assumed subjective probability distributions (SPD) (van Lenthe, 1994). In this 

technique, assessors could see the effect on their scores o f their assumed distribution. In 

variations of his experiments, van Lenthe presented only the scoring curves or the 

estimated probability distribution, rather than both. In all experiments where proper 

scoring rules were used to evaluate subjective probability distributions, the graphical 

feed-forward technique (both SPD and derived scoring curve) tended to produce better 

calibrations than those where only the SPD or scoring curve was displayed.

In examining the results of calibration studies, some researchers have addressed 

differences between actual experts participating in an experiment and non-expert (novice) 

subjects. Spence (1996) found that experts were less likely to include the actual outcome 

in their range of probable results than were novices performing the same assessment task, 

for reasonably straightforward problems. For more complex problems, the experts 

produced better estimates than did novices. Spence attributes this decline in novice 

performance to underestimation of the complexity of difficult problems. In contrast, 

Lichtenstein and Fischhoff (1977) found that calibration is unaffected by differences in 

expertise or by differences in intelligence or elements of context in the problem setting.

In a survey of calibration of probabilities, Lichtenstein, Fischhoff and Phillips (1980) 

report mixed results: in some studies, experts performed well (were better calibrated), and 

in other studies they did not. In the cases of poorer performance, difficulty of tasks 

involving continuous quantities was seen to be a contributing factor.

In the types o f applications under consideration in this research, complexity is 

much more present than is simplicity. The performance of experts in their environment is 

dependent on their view of the world, or “world view” (Feltovich, Spiro, and Coulson, 

1997). Inflexibility in the acquiring or interpretation of knowledge would be expected to
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render an expert less effective in his practice or imparting of knowledge to others. While 

the automation of knowledge-based systems (expert systems) is becoming increasingly 

more sophisticated, the builders and users o f the underlying expert systems must have 

some assurance that the contributing experts in fact have not been “stuck in a rut” but, 

rather, have the requisite broader view (and flexibility) demanded by today’s 

applications.

In a study of the relationship between judgmental probability forecasting 

performance, self-rated expertise, and degree of coherence, it was found that self-rated 

expertise was found to be a good predictor of subsequent performance (Wright, Rowe, 

Bolger, and Gammack, 1994). Measures of individual coherence (extent to which a 

probability assessor’s forecasts conform to the axioms of probability theory — 

probabilities of mutually exclusive and exhaustive events summing to one, for example) 

were found to be less predictive. The researchers also recomposed the straightforward 

holistic and marginal probability assessment tasks into more basic intersections, 

disjunctions and unions, and found that improved performance resulted when compared 

to the holistic and marginal results. Dawid (1982) makes a case that a well-calibrated 

assessor will likely not be coherent, because any recalibration required to bring prediction 

more in line with reality leads to incoherence. He acknowledges, however, that it is 

theoretically possible that a forecaster’s assessed probability distribution could not even 

potentially miscalibrated by essentially keeping track of and updating past calibration 

performance when making each succeeding forecast.

Others elicitation practitioners have been working in the field of modeling, to take 

into account constraints which arise from a given task and applied judgments and which 

must be propagated through the design process. This can also be aided by the use of
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knowledge organization. Kolb (1994) discusses the implementation of a modeling 

package which combines an approach using object-modeling to organize knowledge 

about design components and analyses in a modular fashion, and an approach of 

constraint propagation in analysis and computation. The end result is a flexible schema 

to undertake the evolutionary design process. Object modeling is a way to organize 

design knowledge, where the design knowledge is stored in object classes, which are 

inserted into the design by the user at appropriate times in the design evolution.

A somewhat easy to grasp example of applying expert systems to a problem 

involving constraints (or at least guidelines) is the design of road bridges that have an 

esthetic appeal as well as the proper structural strength characteristics (Zuk, 1990). 

Through the extraction of “rules” from books, articles, or reports (going back more than 

100 years), a “comparator bridge” is defined with a given rating (assigned by experts 

using four separate criteria); target designs would then be compared to the “standard” 

and assigned ratings higher or lower. All target bridges would first have to meet 

constraint criteria with respect to design strength. While some of the esthetic guidance 

involves mathematical criteria, much of it involves criteria that are subject to judgment 

by either the designer or the evaluator, or both. The knowledge of the experts involved is 

the key to an objective design or evaluation, but there is no means given to quantify the 

disparity or provide for consistency among a larger group of evaluators.

In addition to some measure of an expert’s level of expertise, a meaningful 

indication of the expert’s tendency toward overconfidence or underconfidence in his or 

her judgments of probabilities and uncertainties is also needed. Wright, Rowe, Bolger 

and Gammack (1994) address the over- and underconfidence question, but only in the 

context o f verifiable forecasts. Investigations such as the present one, where judgments
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are made about distant-future events and conditions, must necessarily rely on risk- 

oriented techniques to assess the overconfidence/underconfidence tendency. Utility 

theory offers tools for such applications. In particular, utility-theory-based techniques 

that do not depend on the classical monetary wager lottery risk tolerance evaluation 

would be most helpful. Duarte (2001) has developed a methodology using utility theory 

that elicits alternative choices in a socio-technieal environment that includes qualitative 

as well as quantitative factors.

For experts whose judgment are being elicited on distant-future concepts and 

parameters (as in the current research application), it has been noted that calibration 

(verification of accuracy) will not be possible in the near term. For this situation, then, 

other means of “verifying” an expert’s judgment performance have been sought. One 

method, developed by James, Demaree, and Wolf (1984) estimates interrater reliability 

for a group of judges performing the same task. Their methodology seeks to determine 

the systematic variance among judges participating in an evaluation task. The 

methodology includes means for addressing influences of response bias that may be 

com m on to the multiple judges. Application of the James, Demaree, and Wolf interxater 

reliability estimation techniques is expected to be useful in assessing the efficacy of 

calibration of multiple experts on the same judgment tasks.

This section has covered many aspects of expert assessment calibration. Table 1 

summarizes some of the more salient literature related to the current problem. The works 

cited in Table 1 serve to highlight tractable aspects of this research. Incorporation and 

extension of these concepts are addressed in subsequent sections.
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Table 1. Summary of Expert Calibration Literature

Author(s) Major Points/Findings Current Research 
Implications

Brier (1950) An early “proper scoring rule” 
for calibration

Use proper scoring rules to 
avoid gamesmanship

Johnson & Brace 
(2001)

“Naturalistic” environments 
produce better calibration -  
better performance

Avoid sterile environments 
or purely academic settings

Lichtenstein & 
Fischhoff (1977)

Overconfidence increases with 
knowledge - to  a point, then 
decreases

Take level o f knowledge into 
account during processing of 
elicitation results

Wright, Rowe, 
Bolger & Gammack 
(1994)

Self-rated expertise good 
predictor of subsequent 
performance

Include self-designation of 
expertise in calibration 
models

Spence(1996) Calibration varies with 
expertise for complex 
problems

Attempt to pinpoint expertise 
level of assessors

Wright (1982) Probability estimates for future 
events less certain than for past 
events

A key motivator for present 
study

Keren (1991) Calibration is a characteristic 
of assessor, not event

Distinguish between event 
uncertainty and assessor 
uncertainty

Dawid (1982) Calibration and coherence can 
clash for an assessor

Minimize by updating 
calibration forward through 
subsequent assessments

Morgan & Henrion 
(1990)

Unclear feedback to experts 
can lead to worse subsequent 
results

Stress clear feedback In 
calibration process

Renooij (2001) Calibration only part of 
structured elicitation process

Properly structure the 
assessment elicitation 
process to include calibration

Duarte (2001) Non-wager types of 
alternatives can be used in 
establishment of utility

Apply to questionnaire 
construction for calibration

Hammond, et al 
(1987)

Intuitive and quasi-rational 
cognition often outperforms 
analytical in empirical 
accuracy of judgment

Supports application of 
expert judgment elicitation 
and calibration to less-well- 
defined areas

James, Demaree and 
Wolf (1984)

Technique for determining 
interrater reliability addressed

Useful in developing 
methodology for ascertaining 
calibration efficacy
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Calibration Questionnaire Development

Designing an appropriate instrument to elicit information specific to 

establishment of a calibration for an expert is important. Elements of this instrument 

(usually a questionnaire) must ascertain the expert’s accuracy (closeness to numerical 

values of sought responses) as well as the variability of his response. This second 

quantity (variability) takes the form of a variance of the probability distribution which 

can be used to models the expert’s response. Since variability is typically measured over 

a number of trials (which would be impractical in the real world of expert elicitation), the 

associated variance may be obtained through elicitation of a confidence level.

Accuracy of an expert’s response is related to his or her level of expertise in the 

subject area for which judgments are being elicited. As noted previously, self-rated 

expertise has been found to be a good predictor of performance (Wright, Rowe, Bolger, 

and Gammack, 1994), suggesting that any elicitation instruments include such a self- 

rating.

There is at least one other potential indicator of expertise: Crawford and Stankov 

(1996) and MacCrimmon and Wehring (1986) have found that age and expertise of 

experts are related. In contrast, studies show that, although there are certain instances of 

positive correlation between experience and expertise, there is no evidence to support 

applying this standard universally. It is true that prior conceptions of an expert’s level of 

expertise used the number of years on the job (relevant experience) as a surrogate to 

expertise. It had been found, however, that while many experts do indeed have 

significant length in service, time on the job or years in a discipline or field does not
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necessarily equate to expertise. Some individuals may work along side experts but never 

acquire the skills and knowledge to reach true expertise, Shanteau, et a! 2002).

A classic means of determining confidence level, which can be equated to as risk 

tolerance (see, for example, Miller and Byrnes, 1997, and Wang, 2001), has been 

through the use of utility theory and the determination of an individual’s utility function. 

Typically, monetary wagers are postulated with varying payoffs and associated odds and 

the “bettor” is asked to indicate a preference between or among alternative wagers. 

However, some researchers have been able to apply utility theory using non-monetary 

alternatives to elicit judgments, with confidence being inferred from the choices made. 

Duarte (2001) has developed a method to solve industrial decision problems using 

expected utility theory. In his method, Duarte develops technical alternatives with multi

value attributes evaluated for each alternative. While some attributes were measured in 

terms of monetary value, others, such as image, environmental impact, and flexibility 

were assigned values by a panel of experts on rating scales established for the attribute.

As in traditional (using monetary wagers) applications of utility theory to ascertain 

choices or risk tolerance, the non-monetaiy attributes were evaluated along with 

monetary ones in adjustments to determine indifference to a choice between two 

alternatives.

MacCrimmon and Wehrung (1986) have conducted studies with executives on the 

handling of risk in certain business situations. The analysis of risk propensity involved 

utility-function simulations with monetary and non-monetary situations such as 

impending threats and opportunities. Their use of situation alternatives to ascertain risk 

propensity reflects favorably on the concept that risk and confidence level are related. 

Several researchers, in fields such as finance, entrepreneurship, and psychology have
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found that risk-takers tend to be overconfident while risk-averseness is associated with 

underconfidence (see, for example, Wang, 2001, Simon, Houghton, and Aquino ,1999, 

and Miller and Byrnes, 1997). Simon, Houghton and Aquino (1999) also found that the 

risk propensity may not always be conscious but rather may be the result of cognitive 

biases such as overconfidence. These findings suggest that use of a qualitative form of 

utility theory application would be appropriate to elicit a risk or confidence-level 

propensity from a participating expert.

One final aspect of the calibration questionnaire-related research: it has been 

found by MacCrimmon and Wehrung (1986) that older managers in their studies tended 

to be more averse to risk than did younger managers. This suggests that there is a 

relation between age and risk tolerance and also suggests the calibration-related portion 

of the elicitation instrument include the participant’s age.

Other Calibration Considerations

A key consideration in attempting to calibrate expert assessments is training o f the 

assessor. Training is performed in an attempt to improve the quality o f an assessor’s 

probability assessments. Lichtenstein and Fischhoff (1980) found that training produced 

considerable learning, almost all o f it after receipt o f the first feedback. They found that 

training could be modestly generalized to some related probability assessment tasks but 

not to others. Alpert and Raiffa (1982), in an experiment whereby assessors utilized 

direct fractile assessments in the elicitation process for probability ranges, and found that 

providing feedback on performance generally improved subsequent performance.

Ayyub (2001) stresses that training should involve experts, observers and 

facilitators, with one aim of the training being the identification and o f sources of
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potential bias and their minimization or elimination. In addition, Ayyub notes that 

experts need to be trained to provide answers or assessments in an acceptable format that 

facilitates their use in subsequent analysis and application of the elicitation results. For 

those experts not familiar with probability-related concepts and terminology, additional 

related instruction might be required.

Another aspect of elicitation methodology and calibration is whether to 

implement assessor-defined categories (such as the fractiles just mentioned) or allow the 

subject (expert) to define their own probability categories. Researchers (Browne, Curley, 

and Benson, 1999) have found that use o f subject-defined categories involved a tradeoff 

in performance: calibration generally became worse as the number o f categories 

increased, but discrimination generally improved.

There are several pitfalls involved with the verification or calibration of 

probability forecasts, including the key one of calibrating or comparing abilities of 

assessors forecasters) on the basis of assessments that are not comparable to the issue 

under study (Panofsky and Brier, 1968). Also, interpretation of results can be made 

difficult through indiscriminate combining of unrelated results to form a single index to 

be used for comparison purposes. Panofsky and Brier (1968) point out that lack of care 

in elicitor-provided classes (ranges of probability), such as the use o f overlapping classes, 

can tend to encourage forecasters to hedge by choosing classes with the widest range. 

Morgan and Henrion (1990) report that unclear feedback to experts regarding their 

performance can actually lead to worse subsequent results, because of introduced bias 

that could, for example, result in increased overconfidence. Lichtenstein and Fischhoff 

(1980) indicate that feedback should include personal discussion of results, since that 

may be less easy to dismiss than a written numerical summary.
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A summary of the key relevant literature applicable specifically to expert 

judgment calibration questionnaire features and related considerations is given in Table 2.

Table 2. Summary of Calibration Questionnaire-related Literature

Authorfs) Major Points/Findings Current Research 
Implications

Lichtenstein & 
Fischhoff (1980)

Feedback improves learning; 
should include personal 
discussion of results

Provide feedback to 
respondents, stressing 
personal interaction

Miller & Byrnes 
(1977)

Links risk-taking philosophy 
with over- or underconfidence

Use in design of calibration 
questionnaire

Wang (2001) Describes risk-taking in non
wager terms

Use concept in design of 
calibration questionnaire

Ayyub (2001) Elicitation training can 
identify sources of bias

Apply to careful design of 
questions

Panofsky & Brier
(1968)

Avoid calibration assessments 
not related or comparable to 
issue under study

Tailor calibration questions 
to reflect appropriate 
technical “flavor”

Browne, Curley & 
Benson (1999)

Using subject-defined 
(response) categories involves 
tradeoff in performance

Use elicitor-provided 
categories to eliminate 
potential disparity among 
experts

Research Question

Based on the diverse work reported herein, it is seen that tools exist to support the 

current study. Further, it is also evident that there is a firm basis for moving beyond the 

immediate effort to the ultimate goal o f developing a comprehensive modeling aid for 

technology cost or impact assessments for advanced launch vehicle operation, support 

and performance. The question that has been answered by this research is: can a 

“calibration” function be developed to apply to experts’ assessment of technology 

impacts in order to improve accuracy of those assessments when applied to aerospace
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vehicle development? The purpose of the research is to ascertain a means for effectively 

calibrating experts whose judgments may not be validated for many years.

Significance of the Research

The vast majority of studies on calibration of expert judgments involving 

probability assessments have dealt with outcomes that could be observed or recorded, 

either as past events or occurrences or as near-term future events. Little to no 

applications have been found that address calibration of likelihood estimation of 

uncertain events in the distant future, where even problem boundary and constraints may 

be nebulous. Such is the case with the thrust of the proposed effort -  the calibration of 

expert assessments related to operations and support, weights and sizing, and 

multidisciplinary design considerations in future aerospace vehicle concepts employing 

many as-yet-unproven technology advances. In particular, the use of multiple experts can 

exacerbate the assessment problem without some means o f calibrating widely divergent 

raw predictions (Unal and Conway, 2000).

Development of a more robust system, including expert judgment calibration, 

which can efficiently handle the various disciplines will yield a tool for conceptual 

designers of advanced-technology systems to assess ultimately critical weight, cost, and 

multidisciplinary integration impact questions in an upfront (more timely) manner. A 

properly validated tool can be expected to provide higher levels of confidence in these 

earlier assessments, resulting in a decision aid for program planners and advocates.

Figure 1 places the current research into context with past and current work in this field.
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Figure 1. Setting for Current Research
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The current effort in development of calibration algorithms which can be applied 

in either single- or multiple-expert scenarios is thus seen to fill a prominent void in the 

expert judgment calibration methodology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



29

CHAPTER III 

RESEARCH METHODOLOGY

Introduction

The thrust o f this work was the development of calibration algorithms to apply to 

elicited expert judgment information on operation and support, weight and size, and 

multidisciplinary system requirements for advanced launch vehicles. The purpose is to 

aid designers in determining a “best” expert estimate of the value of discipline-related 

parameters in achieving projected performance in the realization of new systems. For 

example, in the operations and support discipline, improved supportability implies a 

reduction in the number of failures recorded against a system (measured as a percentage) 

that then require maintenance actions in order to return the system to flight readiness. It 

also implies the same reduction in the time and manpower required to maintain and 

service the system.

Many expert judgment elicitation scenarios involve events whose occurrence can 

be validated, because they are either past events or near term future events. In such 

cases, calibration of the expert assessors can include feedback on their performance, 

which could be expected to improve future performance (self-calibration). In the present 

research problem application, however, the preponderance of occurrences being assessed 

are in the distant future -  as much as 20 or 30 years. Feedback involving actual results or 

occurrences is impossible. It is imperative, then, that a calibration technique be found for 

use by decision makers that does not rely on feedback for credible estimates. Thus, in the 

present research, an external calibration based on a pre-elicitation calibration 

questionnaire was sought. Figure 2 presents a schematic of this concept.
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Figure 2. Calibration Technique
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Calibration Algorithm Development

Fuzzy logic and Bayesian statistical techniques were employed to develop an 

Expert Calibration Function (ECF) based on degree (level and time) of past experience 

and current philosophy. For this study, the ECF has been developed for experts in 

several technology areas associated with advanced launch vehicles. A simple 

questionnaire was designed to “pigeon-hole” a responding expert into one of a set of 

experience classification categories, essentially a self-designation o f expertise , Wright, 

Rowe, Bolger and Gammack, 1994). A second part of the questionnaire attempts to place 

the expert in his or her natural confidence level category, such as overconfident 

(presumes higher success probability than is actually achieved), underconfident 

(presumes lower), or neutral (places the correct probability). This was achieved through 

the use of utility theory and the outlining of several “wagers” (or choices of options) 

related to topics with which the experts are familiar. The questionnaire (and the 

validation discussed in the next section) were administered to a pilot group of several 

experts at the Langley Research Center.
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From the experience and philosophy responses, calibration factors are determined 

such that an adjusted probability distribution for the expert’s uncertainty for each 

parameter or analysis tool considered in the elicitation questionnaire can be subsequently 

constructed. The adjustment takes the following general form, where E is expertise, P is 

philosophy (confidence level), p and o  are statistics from the parameter uncertainty

distribution, and Aj and A2 are arbitrary constants (which will be initially set to 1 for this 

study) of the adjustment relations:

Apt = f(E ,P,|i)A |
(1)

Ao2 = f(P ,o 2)A2

It should be noted that the adjustment factors so determined will only be 

placeholder estimates until validated (and possibly modified) through a validation 

procedure as outlined next.

Expert Calibration Function Validation

Validation of the calibration methodology and resulting calibration functions is 

accomplished through an interrater comparison between initial and calibrated results from 

multiple experts participating in trial testing of an overall expert judgment elicitation, 

calibration, and aggregation methodology. One of the principal motivators for the current 

research was the (sometimes wide) disparity among multiple experts addressing the same 

uncertainty-related questions. A successful reduction in disparity among expert 

respondents’ results would suggest at least partial validation of the calibration 

methodology. Further support would be provided by “movement” of the results from
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respondents with a somewhat lower level of expertise toward results from respondents 

possessing a higher level of expertise.

Calibration Function Reliability

Consistency of the expert calibration function’s performance, or reliability, is 

expected to be high, given the mathematical nature of its form. This assumes that 

interpretation by experts of questions in the Background section of the expert elicitation 

instrument is consistent. Care was taken in the phrasing of the questions, and formulation 

followed guidance from the literature on similar constructions (see, for example, Monroe, 

1997 and Duarte, 2001). Administration of the questionnaires was such that each 

participating expert responded without consultation or influence (bias) from other 

experts.
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CHAPTER IV 

APPLICATION OF THE METHODOLOGY

Application of Technique -  Overview

Working with program officials from NASA Langley Research Center, three 

aerospace vehicle disciplines and an example conceptual design case were selected to 

apply the calibration technique in conjunction with other ongoing expert judgment 

elicitation and aggregation research. In this larger scale research effort, a survey for 

eliciting expert judgment for the selected disciplines has been developed. Included in the 

questionnaire development is elicitation of background data on experts for the purpose of 

calibration. The satisfaction o f Institutional Review Board requirements for protection of 

experimental subjects was achieved through careful design and handling of the 

questionnaire instruments. The final survey design is capable o f being administered to 

selected experts via the World Wide Web.

The administration of the overall expert judgment elicitation questionnaire, 

including calibration-specific questions, was accomplished by querying discipline experts 

at NASA Langley Research Center. The questions were administered using a Microsoft 

Excel® spreadsheet, on which responses were entered for subsequent data collection and 

analysis. Because expert participants will likely be in geographically dispersed locations, 

and responding to the expert elicitation questionnaire by the several experts involved will 

be asynchronous, use of web-based tools is deemed crucial to the efficient collection of 

information. Accordingly, automated web-based survey software, Inquisite® (Catapult 

Systems, Austin TX), has been used to develop a web-based version of the expert
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judgment elicitation questionnaire for future application. The Inquisite® web version 

was also used in parts of the current study.

Calibration Questionnaire Design and Implementation

Specific questions were designed to be used in a Background section of the expert 

judgment elicitation questionnaire, based on previously noted findings from the hterature 

review. To ascertain level of expertise, questions to ascertain the participating expert’s 

self-assessment of his own expertise were posed, per Wright, Rowe, Bolger and 

Gammack (1994). Another background question asked the responding expert to compare 

his degree of expertise in the discipline being addressed with those of his peers in the 

discipline. This was intended to provide a second indicator of the expert’s self

designated level of expertise related to a more absolute scale. Also, age was included as 

a requested background response, in accordance with findings by MacCrimmon and 

Wehring (1986) and Crawford and Stankov (1996) that expertise can be related to the age 

of an elicitee.

Several Background questions attempted to place an expert on a continuum with 

respect to his confidence level, or comfort with expert judgments rendered in response to 

an elicitation. The first of these was included as the second part of a question designed to 

gauge an expert’s knowledge of the discipline by asking a discipline-specific question 

(with a numerical answer) that practitioner experts would be able to answer. Another set 

of questions was designed to help ascertain the expert’s assessment of his attitude or 

philosophy with respect to manifesting confidence in judgments made in his specific field 

(discipline). These questions’ purpose was to develop a baseline to help gauge response 

to the final set of Background entries.
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The last Background questions consisted of a series of options for which the 

participating expert was asked to make a choice. The available choices for each set of 

options were designed to reflect (1) a more risky situation whose choice would imply a 

tendency toward overconfidence, or (2) a less risky situation whose choice would signal a 

tendency away from overconfidence and toward neutrality or underconfidence.

The relatively brief Background section to the expert judgment elicitation 

questionnaire provided the necessary input to develop a calibration function for the 

responding expert. The complete Background section is shown in Figure 3.

Figure 3. Background Question Section of Questionnaire (Weight and Sizing 
Example)

BACKGROUND (Weight and Sizing Specific)

1. Name or USERID:___________________________

2. Your age______

3. In this subject area, rate your own level of expertise on a scale of 1 (least) to 5 (most)____

4. Think of others with similar experience working in this discipline. On a scale of 1 (much less than 
peers), to 3 (about the same), to 5 (much more than peers), how would you compare yourself to your 
peers with respect to expertise?_____

5. Payload mass fraction for the Space Shuttle is  . Your assessment of the probability that your
estimate is correct:______ . [Discipline-specific]

6. Think about predicting weights of hardware system elements; do you usually predict more than 
actually occurs (5), less than actually occurs (1), or about the amount/number of times that actually 
occur (3)?___

7. In estimating in your subject area in areas that have associated uncertainty, do you think it is better 
to be (a) close to the actual value without a lot of confidence in the estimate, or (b) not very close to 
the actual value, but with a high degree of confidence in your estimate? ___

8. In making estimates related to weight and sizing model input parameters, would you say you were,
(a) usually right-on with a high degree of confidence, (b) right-on without a high degree of confidence, 
or (c) not very close but with a high degree of confidence, or (d) not very close, and with not much 
confidence_____

For the following pairs of choices, please select the one in each pair that is most comfortable or 
appealing to you:
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Figure 3. Background Question Section of Questionnaire (concluded)

9.
(a) Setting, in advance, the completion date for a multi-year project

OR

(b) Establishing, in advance, technical milestones for a multi-year project

10.

(a) Estimating, in advance, total cost outlays for a multi-year project 

OR

(b) Identifying, in advance, cost elements for a multi-year project 

11 .
(a) Identifying, at conceptual design review, utilization scenarios for the successful project 

OR

(b) Predicting, at conceptual design review, technical performance characteristics of the completed
hardware

Principal Expert Judgment Questionnaire Design and Implementation

Introduction

In order to evaluate a conceptual launch vehicle, the vehicle must be defined in 

terms of performance characteristics (length, width, height, thrust level, payload delivery 

capability, etc.) These performance characteristics are the direct result of the vehicle 

configuration and mission requirements. For each discipline of interest in conceptual 

launch vehicle design, the disciplinary analysis tools have estimating relationships (ER) 

associated with them. Each estimating relationship may be comprised of a set of 

parameters, which define the ER. For example, in the weights and sizing discipline, a 

subsystem may be the wing, the ER may be the wing surface area and the parameters
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would be a set o f configurable inputs which are used to compute the estimated wing 

surface area value.

For each of the discipline questionnaires used in this study, a list of input 

parameter variables (with associated nominal values) for a vehicle concept were 

compiled by subject matter experts associated with the conceptual design team. A form 

of the classical Nominal Group Technique was employed to identify the most highly 

uncertain input parameters from the list, using a Pareto principle approach.

Questionnaire Flow Process

The questionnaires included instructions for the respondent as well as the 

calibration-related Background section discussed previously. The questionnaire 

methodology follows that of Monroe (1997). This methodology assumes a default 

symmetrical triangular probability distribution associated with expert’s assessed 

uncertainty about parameter values, where the distribution variance is proportional to the 

level of uncertainty. However, to avoid possibilities of respondents contradicting 

themselves with respect to the shape (skewness) and variance of assumed uncertainty 

distributions, an instruction was included early in the parameter uncertainty 

quantification sequence (rather than later as in Monroe) to permit the specification of a 

skewed (triangular) distribution. Figure 4 presents the set of instruction for the experts 

responding to the questionnaire; instruction 3 reflects the key modification made to 

Monroe’s methodology.
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Figure 4. Expert Elicitation Questionnaire Instructions

A list of (discipline specific model) input parameters whose values are potentially uncertain will 
be provided on a subsequent screen. You will be asked to evaluate these parameters using the 
following guidelines.

1. Rate each INPUT parameter uncertainty QUALITATIVELY using a 5-point rating scale (Low, 
Low/Moderate, Moderate, Moderate/High, High). Focus only on those INPUT parameters that you 
feel should be evaluated in this manner.
2. If you feel a parameter’s default value should be modified, you may provide a new point 
estimate for the nominal value.
3. If you feel the range of possible values (due to uncertainty, physical limitations, design 
constraints, etc.) around the nominal value is not symmetrical, please provide your own estimates of
minimum and maximum values.
4. Describe the reason for the uncertainty and the reasoning behind the parameter value ranges for 
the UNCERTAIN INPUTS that you rated. Include a rationale for those parameters to which you have 
assigned new nominal values. Do this simultaneously while rating each INPUT parameter to 
document your thinking.
5. Think of any other cues (or reasons that you have not documented) and record that information 
at this time.
6. Once the INPUT parameters provided have been rated for uncertainty, you may add parameters 
not shown which you assess to have a level of uncertainty associated with their value. Use the 
OTHER option listed at the bottom of the INPUT parameter listing for this purpose.
7. After rating all INPUT parameters, next anchor your Low, Moderate, and High QUALITATIVE 
measures of uncertainty to QUANTITATIVE measures on the 5-point scales (provided).
8. Describe any scenarios that may change INPUT parameter values. Provide the alternate INPUT
parameter values that in your judgment would be appropriate for the scenario________________ ____

Each expert, working alone, was asked in the questionnaire to consider each of 

the input parameters in turn for what he believed to be the degree o f uncertainty 

associated with it. For those which he believed to have no uncertainty he simply 

accepted the provided nominal value. For those which were deemed to have a degree of 

uncertainty associated with them, additional questions were asked of the expert to 

ascertain his estimate of the amount of uncertainty. He was asked to rate each input 

parameter uncertainty qualitatively using a 5-point rating scale (Low, Low/Moderate, 

Moderate, Moderate/High, High). If the expert believed a parameter’s default value
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should be modified, he was asked to provide a new point estimate for the nominal value. 

He was also allowed to establish a nonsymmetrical distribution of he deemed appropriate.

The expert was next asked to describe the reason for the uncertainty and the 

reasoning behind the resultant parameter value ranges for the uncertain inputs that he 

rated. He was asked to include a rationale for those parameters to which he assigned new 

nominal values.

The expert subject was then asked to think of any other cues (or reasons that he 

had not documented) and record that information. Once the input parameters provided 

had been rated for uncertainty, the expert was given a chance to add parameters not 

shown which he believed to have a level o f uncertainty associated with their value. After 

rating all input parameters, the expert anchored his Low, Moderate, and High qualitative 

measures of uncertainty to quantitative measures on 5-point scales provided. He was 

asked to describe any scenarios that could change input parameter values, and to provide 

the alternate input parameter values that in his judgment were appropriate for the 

scenario.

Figure 5 illustrates the questionnaire response process, using Weights and Sizing 

as an example discipline. A complete questionnaire for the Weight and Sizing discipline 

is presented in Appendix A as an example.
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Figure 5. Questionnaire response flow schematic

Expert examines input variables 
and makes a selection for 
uncertainty assessment.

Example:
700.

Questionnaire complete with “qmax” as uncertain input variable
assessed

Expert continues to answer the questionnaire with “qmax” as the
variable of interest

Expert may again answer the questionnaire choosing another 
variable until all variables within the list have been exhausted. 
The expert also has the opportunity to add a variable not in the 
list and making an uncertainty assessment for that variable.

List of most uncertain 
INPUT parameter 
uncertainty (from modified
NOT)

Expert uses these input parameter choices to select for uncertainty 
qualification and quantification. Expert does not have to rate all input 
choices; only those he feels are the most uncertain. Expert also has an 
opportunity to add a parameter not listed which they may deem highly 
uncertain.

.15
1747111
1747111
700.

1.901

growth allowance fraction 
orbiter prelaunch gross w t (lb) 
orbiter gross lift-off weight (lb) 
max dynamic pressure, psf 
mass ratio

Institutional Review Board Considerations

Questionnaires were developed for two disciplines for this study: weights and 

sizing, and operations and support. In addition, for each discipline separate questions 

were developed to address analysis tool uncertainty for the discipline. Examples of 

complete questionnaires for these disciplines and uncertainty type are given in Appendix 

A. The questionnaires and the questionnaire application process were reported to
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Institutional Review Board (IRB) representatives at Old Dominion University, and copies 

of the questionnaires were furnished. It was concluded that this research would qualify 

for an exemption from full IRB procedures for human subject research based on the 

questionnaire output NOT being damaging in any way (civil or criminal liability, 

employability, or financial) to subject participants, and NOT dealing with sensitive 

aspects of any subject's behavior.

Data Collection and Handling

For this study, the experts provided input via Microsoft Excel® spreadsheet 

questionnaires. The information from the Background portion of each expert’s 

questionnaire was maintained in a separate file for subsequent analysis and application to 

that expert’s responses to the main uncertainty elicitation questionnaire sections. The 

responses to the uncertainty portions of the questionnaires were also maintained in 

separate files for the calibration application, and will be subsequently processed in trials 

of aggregation schemes that are being studied in a related investigation. Figure 6 is a 

schematic of the entire expert elicitation, calibration, and aggregation process.

Figure 6. Expert Data Collection and Handling Process

.JESOMaBX-
..EXPEB3L
EXPERT

ELICITATION

CALIBRATION
QUESTIONNAIRE

MAIN
QUESTIONS

DECISION AGGREGATION
CMJSRATHM OF 

ELICITATION 
OUTPUT
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Data Analysis

Expertise

Data analysis was carried out using analysis routines in Microsoft Excel®. The 

first analysis performed was the determination of each participating expert’s level of 

expertise, based on his or her response to Questions 2 -  5 of the Background portion of 

the questionnaire. The following relation was used in the determination.

'AGE
60

+SEL+ECP+5

Expertise, E = •
1 +

DSK -  ACT
ACT

(2)

The variables AGE, SEL, ECP, DSK, and ACT are described in Table 3.

Table 3. Definitions of Expertise Relation Variables

Variable in Expertise Relation Definition

AGE Expert’s age, years

SEL Expert’s self-designation of expertise in the discipline 
area being elicited, scale of 1 (least) -  5 (most)

ECP
Expert’s perception of expertise compared to peers in 
the discipline area being elicited, scale of 1 (least) -  5 
(most)

DSK Expert’s numerical response to question involving 
discipline-specific knowledge

ACT Actual (true) value of the response to the question 
involving discipline-specific knowledge
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Since none of the research cited in the literature presented any rationale for 

differentiating weighting factors affecting expertise, equal weights were assigned to the 

four factors age, self-assessment of expertise, perceived expertise compared to peers, and 

discipline-specific knowledge. These initial weights could be allowed to vary in order to 

ascertain if different values would yield more consistent results in the main questionnaire 

elicitation responses. However, if  responses appear consistent, no adjustments would be 

made.

Confidence/Risk Philosophy

Background responses to questions 6 - 1 1  were compiled in a confidence/utility 

(risk) philosophy profile, as shown in Figure 7 with an example set o f responses. Table 4 

maps questionnaire response options for questions 6-11 to the scale used in Figure 7.

Figure 7. Confidence/Utility Philosophy Profile, from Background Questionnaire

PDO
Q6

PVvC
Q7

PerfVvC
Q8

CDvTM
Q9

TCvCE
QIO

USvTPC
Qll

RISK TOLERANT .  
(OVERCONFIDENT) 5 X X X X

2.5 X

RISK NEUTRAL 0

-7 S

RISK AVERSE _
UNDERCONFIDENT X
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Table 4. Questionnaire Response (Questions 6-11) vs. Philosophy Profile Scale

Question
Assigned Philosophy Profile Response

5 2.5 0 -2.5 -5
6 5 3 1
7 (b) (a)
8 (c) (a) (b) (d)
9 (a) (b)
10 (a) (b)
11 (bT (a)

Although not all questions from numbers 6-11 permitted responses that covered 

every philosophy “level,” the mapping shown in Table 3 proved useful in defining an 

overall confidence or risk philosophy factor for an expert.

From the confidence/risk profile, a confidence/risk philosophy was defined as

„ [Responses, Questions 6-11)1P = — -------      (3)

Here the responses could take on values from -5  to 5, according to the criteria in 

Table 3.

Determination o f Adjustment Factors

The expertise and confidence philosophy determined from the Background 

responses are utilized to adjust the mode, c (most likely value), o f that expert’s 

uncertainty distribution for a parameter according to the following:

:=c|-s*Ac = cj -sign(P) i - i
5

(4)

Similarly, the confidence philosophy was utilized in determining a variance 

adjustment factor as shown in the following:
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Ao2 = o 2 — A 2 
5 1

(5)

For symmetrical distributions, the mean and mode are equivalent; they are 

different for unsymmetrical distributions. For a symmetrical triangular distribution, the 

adjusted distribution’s parameters are given by the following:

The new distribution’s endpoints are calculated using the above by solving the 

simultaneous equations for mean and variance of a triangular distribution:

When an expert judges a parameter’s distribution to be unsymmetrical (skewed), 

it will be assumed that this judgment reflects (possibly) some physical or other 

constraints that must be obeyed. Thus, for the skewed distribution cases, the end points 

will be taken as fixed, and

The mean and variance of the new distribution will then be calculated from equations (7) 

above.

As suggested in the previous chapter, arbitrary constants denoted A] and A j may

be used in equations (4) and (5) and allowed to vary, ultimately resulting in a “best fit” 

calibration that maximizes the interrater reliability among multiple experts responding to 

the same elicitation questionnaire (after James, Demaree, and Wolf, 1984). This type of

Ii 2 - p j  +Ac
2 2

0 2 -  o , + Ao

c 2 = Cj + Ac

(6)

(7)
2 a 22 + b22 + c22 - a ,b 2 - a 2c2 - b jc 2
! 18

c 2 =  Cj +  Ac (8)
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parametric or optimization study was not performed as part of the present research, but is 

a strong candidate for future expansion of the current methodology development.

Interrater reliability is defined as the degree to which judges “agree” on a set of 

judgments (James, Demaree, and Wolf, 1984). Interrater reliability can be defined as a 

proportion, or ratio, of systematic variance to total variance for the set of judgments. In 

the present case, this will be given as follows:

_ J [ l - ( q 2* / q „ f t ]  ( 9 )

j [ l - ( 0 2 2/ a EU2) ]  +  ( o 22 / o e v 2)

In equation (9), r is interrater reliability, I is the number of experts participating on a

— 2given set of questions, 0 2  is the mean variance among the J experts for the set of 

2
questions, and is the expected variance if  every choice of parameter value by the

experts was equally likely (from a continuous uniform distribution).

While the data analysis methodology presented thus far could be extended to 

types of distributions other than the triangular distribution used as an example for the 

parameter uncertainty judgments elicited from each expert, the questionnaire 

methodology does result in a triangular distribution being the default function. 

Accordingly, for purposes of the present research, calibration adjustments are assumed 

made to a triangular distribution to yield another (adjusted) triangular distribution. The 

adjusted distributions from multiple experts then becomes the input for a follow-on 

aggregation process, which might be expected to take into account such factors as level 

of expertise or other weighting factors associated with the experts and their elicitation.
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Methodology Application Example

To demonstrate the application of the calibration methodology presented in this 

report, the following example will be used. It is assumed that an expert has completed 

the background section of the expert elicitation questionnaire in the manner shown in 

Table 5:

Table 5. Example Background Input

Question
No.

Topic Response Point
Conversion

EXPERTISE

1 Name or USERID 5551212 -
2 Age (years) 50 50
3 Self-rated expertise Most 5
4 Expertise compared to others in field Much more 5
5 Discipline-specific knowledge question 300

CONFIDENCE/RISK PHIOSOPHY (Table 4)

6 Predicting discipline-related quantities (3) 0
pj Estimating uncertainty preference (a) -5
8 Estimating trend in discipline (a) 2.5
9 Completion vs. milestones (a) 5
10 Total outlays vs. cost elements (a) 5
11 Utilization scenarios vs. performance (b) 5

From the responses in Table 5, given that the actual value of the discipline 

knowledge question parameter (Question 5) is 295, the expertise of the subject is 

calculated from equation (2) as 4.448. This value places the expert high in the expertise 

category. The expert’s confidence/risk philosophy determined from equation (3), is 

2.083. This indicates a mild tendency to overconfidence, or risk tolerance.
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It is next assumed that the expert evaluates a sample parameter whose nominal 

value is given as 1. Accepting the symmetrical nature of his uncertainty about this 

parameter, the example expert rates the uncertainty as “moderate”; he subsequently 

assigns a quantitative value of 30 per cent as his interpretation of “moderate” uncertainty. 

Interpreting the expert’s assessment of uncertainty as a triangular probability distribution, 

the parameters o f the distribution (lowest value most likely value, highest value) are 

given as (0.7, 1.0, 1.3).

Applying the adjustments to mean and variance given by equations (4) and (5), 

parameters for the calibrated distribution are found to be (0.53,0.89,1.25). The adjusted 

distribution has lowered the most likely value (also the mean of the distribution) and has 

increased the variance, commensurate with the expertise and philosophy of the expert 

following, among others, Wright, Rowe, Bolger, and Gammack, 1994, MacCrimmon 

and Wehring, 1986, Crawford and Stankov, 1996, and Duarte, 2001. Figure 8 compares 

the two distributions: uncalibrated (from the questionnaire response) and calibrated.
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Figure 8. Results of Sample Methodology Application
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The methodology described in this chapter was applied to cases utilizing 

advanced conceptual vehicle parameters provided by NASA-Langley. The results of 

these cases are presented in the next chapter.
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CHAPTER Y

RESULTS

Case Descriptions 

Weights and Sizing

Two separate cases were considered to exercise the calibration methodology 

developed and described in the preceding chapter. The first case involved weight and 

sizing study input parameter uncertainty for a two-stage-to-orbit (TSTO) reference 

configuration (orbiter and booster), which features staging at Mach 3. The initial list of 

user-defmed parameters for this case is given in Appendix B (booster and orbiter 

parameters are listed separately). Additional parameters are also provided as “pass

through” parameters from another application. The parameters are utilized in a NASA 

configuration sizing program (CONSIZ) developed at the Langley Research Center to 

size a vehicle and determine the weights of its components. CONSIZ provides the 

capability of sizing and estimating weights for a variety of aerospace vehicles using 

weight estimating relationships based on historical regression, finite element analysis, 

and technology readiness or maturity level. Within CONSIZ, the vehicle is modeled as a 

collection of components representing structure, subsystem, and propulsion elements 

(Monroe, Lepsch, and Unal, 2002).

A modified Nominal Group Technique (NGT) evaluation of the initial user- 

defined parameter list was conducted by NASA project team personnel to identify which 

of the parameters would be expected to have the most impact on vehicle performance. 

The modified NGT yielded parameters rated by each team member from 1 (most impact)
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to 5 (least impact) for the 112 user input parameters in the list. Ratings for each 

parameter were totaled over all team members.

From the list of rated parameters, assuming adherence to the Pareto principle, the 

20 per cent of parameters deemed to have the most impact were selected for inclusion in 

the uncertainty judgment elicitation questionnaire. The reduced parameter list for the 

booster and the orbiter is given as Appendix C.

For this case, two experts participated in the elicitation. They received 

questionnaires via e-mail, and were given a week to provide responses. They worked at 

their own pace, in their normal work setting (office). Background questionnaire section 

results for these experts are presented in Appendix D, along with interpretation of the 

responses in terms of the expertise and confidence or risk philosophy ratings calculated.

Operations and Support

The second case evaluated expert j udgments of uncertainty involving input 

parameters associated with a NASA reliability and maintainability analysis tool (RMAT), 

used at NASA-Langley. The target vehicle was the same one described in the weight and 

sizing section above -  a TSTO vehicle with Mach 3 staging. RMAT is based on 

evaluating comparability between support requirements for current operational aircraft 

and launch vehicles and proposed future vehicle concepts. Using RMAT, operational 

characteristics such as mission completion reliability, maintenance actions per mission, 

manpower and support requirements can be estimated for a particular vehicle concept and 

mission scenario. RMAT is a complex, stand-alone, operational analysis code requiring 

expert user inputs (Unal, 2002). The reduced RMAT input variable list for the booster
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and the orbiter, after applying the modified NGT discussed above, is given as .

Appendix E.

Three experts participated in the operations and support case elicitation, working 

in an environment and time frame similar to that of the weights and sizing experts. 

Background questionnaire section results for these operations and support experts are 

presented in Appendix F, along with interpretation of the responses in terms of the 

expertise and confidence or risk philosophy ratings calculated.

Case Study Output -  Uncertainty Distributions 

Weights and Sizing

The reduced parameter lists for both the booster and orbiter in the weights and 

sizing case contained variables that either were fixed, such as a physical constant that 

could be maintained during a launch mission (liquid oxygen density is an example) or 

that would be held constant in any analyses (such as the number of common booster 

stages). These parameters had virtually no uncertainty associated with them and were 

thus not considered in further probability distribution calibration analysis. In addition, 

there were other variables that one expert felt could not be addressed without knowledge 

of an assumed technology and for which the other expert established a triangular 

distribution with tight tolerances, thus essentially fixing the final distribution. These also 

were omitted from the calibration analysis. The remaining variables were addressed 

consistently by both experts and were included in the remainder of the analyses. 

Appendix G presents the data for the weights and sizing case, giving both the expert’s
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input-derived uncertainty distributions and the distributions obtained by applying the 

calibration algorithms derived in this study.

Operations and Support

Experts participating in the operations and support case elicitation provided 

consistent responses on most variables in the reduced parameter list. As in the weights 

and sizing case, there were a few variables for which uncertainty was either not present 

(defined constants for a study) or for which application of the continuous-distribution- 

oriented methodology made little sense (such as in determining a number of work shifts 

to assign. These parameters were excluded from the summary analysis. Appendix H 

provides uncertainty distribution data for the operations and support case in a similar 

format as that of Appendix G.

Case Study Output -  Interrater Reliability

A key measure of the efficacy of the present calibration methodology 

development is the degree to which interrater reliability (equation (9)) for the group of 

experts responding to a given elicitation questionnaire improves following calibration. 

Thus, interrater reliability was determined for both the initial set of uncertainty 

distributions and the calibrated set, for each of the two cases studied. Tables 6 and 7 

present in tabular form the interrater reliability results for the initial and calibrated 

distribution. Note that the interrater reliability, r, is determined for each variable 

addressed in the output.
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Following Tables 6 and 7, Figures 9 - 1 2  present the interrater reliability 

comparisons in graphical form for the weights and sizing and operations and support 

cases. Discussion of the results presented will follow in the next chapter.

Table 6. Interrater Reliability for Weights and Sizing

Interrater Reliability, Booster

Initial ERR Calibrated IRR

I 
0

4 u , rinit

11 
D

“ e u , real

VAR 02 0.0011 0.0051 0.8790 0.0005 0.0014 0.7888

VAR 03 0.0004 0.0033 0.9333 0.0004 0.0166 0.9883

VAR 08 0.0015 0.0053 0.8293 0.0015 0.0052 0.8365

VAR 09 0.0247 0.0824 0.8240 0.0106 0.0516 0.8854

VAR 11 18.9444 56.3333 0.7979 13.2917 108.7180 0.9349

Interrater Reliability, Orbiter

Initial IRR Calibrated IRR

I 
0

4 u , rinit 02 4 u , rCa!

VAR 03 0.0015 0.0165 0.9517 0.0007 0.0119 0.9714

VAR 12 252.3000 908.2800 0.8387 107.2275 413.0948 0.8509

VAR 13 52.0833 133.3333 0.7573 24.4792 79.2510 0.8174

VAR 14 425.5894 1004.6700 0.7313 191.8641 727.8784 0.8482
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Table 7. Iuterrater Reliability for Operations and Support

Interrater Reliability, Booster

Initial IRR Calibrated IRR

aj °E U ! rinit

I pnes
1 

D 2
a EU2 rcal

VAR 01 159886574 833333333 0.9267 175100492 833333333 0.9186

VAR 04 0.0590 0.1302 0.7834 0.0610 0.1302 0.7730

VAR 05 0.0005 0.0012 0.8067 0.0004 0.0012 0.8470

VAR 06 50616.667 100833.333 0.7485 50554.912 100833.333 0.7490

VAR 07 0.9063 3.0000 0.8739 0.7500 8.7579 0.9697

VAR 08 38.7272 75.0000 0.7375 38.1279 75.0000 0.7437

VAR 09 0.2222 0.3333 0.6000 0.2143 0.3333 0.6248

VAR 10 0.0178 0.0533 0.8565 0.0176 0.0533 0.8591

VAR 12 0.2901 1.3669 0.9176 0.3037 1.9436 0.9419

VAR 14 0.0000 0.0000 0.9109 0.0000 0.0000 0.9646

VAR 15 0.0003 0.0010 0.8540 0.0003 0.0015 0.9253

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

Table 7. Interrater Reliability for Operations and Support (concluded)

Interrater Reliability, Orbiter

Initial IRR Calibrated IRR

iI 
D

4 b , r Init ° 2 “ e u , rcal

VAR 01 332274478 1752083333 0.9276 355529122 1752083333 0.9218

VAR 04 0.0590 0.1302 0.7834 0.0610 0.1302 0.7730

VAR 05 0.0002 0.0014 0.9472 0.0002 0.0014 0.9462

VAR 06 50272.815 100833.333 0.7511 50251.907 100833.333 0.7512

VAR 07 0.9063 3.0000 0.8739 0.7500 8.7579 0.9697

VAR 08 38.7272 75.0000 0.7375 38.1279 75.0000 0.7437

VAR 09 0.0749 0.3675 0.9213 0.0730 0.3675 0.9236

VAR 10 0.0139 0.0300 0.7776 0.0137 0.0300 0.7814

VAR 11 63.9450 211.6800 0.8739 52.9200 617.9593 0.9697

VAR 12 0.2901 1.3669 0.9176 0.3037 1.9436 0.9419

VAR 14 0.0000 0.0000 0.9109 0.0000 0.0000 0.9652

VAR 15 0.0003 0.0008 0.8485 0.0002 0.0012 0.9224
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Figure 9. Interrater Reliability for Weights and Sizing, Booster
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Figure 10. Interrater Reliability for Weights and Sizing, Orbiter
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Figure 11. Interrater Reliability for Operations and Support, Booster
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Figure 12. Interrater Reliability for Operations and Support, Orbiter
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CHAPTER VI 

DISCUSSION

Methodology Development and Application

While several references were consulted in the development of the expert 

elicitation calibration methodology reported herein, the decisions about how to weight the 

various factors that appear to be involved in such concepts as expertise and confidence or 

risk philosophy ultimately rest with the researcher. As was discussed earlier in the 

chapter about applying this methodology there is no indication, let alone consensus, as to 

weights for individual factors in the two quantities. Thus, the equal weights chosen for 

this study were felt to be a reasonable starting set. There were some adjustments in 

arriving at the final form of the expertise and philosophy relationships. In particular, the 

influence of age on expertise, which had originally been taken as multiplicative, was 

allowed to be additive to factors such as expertise self-designation. Also, the age chosen 

to serve as the ultimate benchmark — originally set at 70 years — was finally set at 60, in 

recognition of the typical retirement age of the experts participating in this study (and 

expected follow-on applications involving advanced aerospace technology impact 

judgments). It is suggested that perhaps the particular field of knowledge involved in 

comparable elicitations might better determine the benchmark age.

Related to the arbitrary nature of assigning weights to factors affecting expertise 

and philosophy is determining the means for ascertaining pertinent information from an 

expert to allow his correct (or at least reasonable) placement at appropriate locations on 

the expertise and philosophy scale. As noted in the literature review and in the discussion 

about applying the methodology, the classic means for determination of someone’s
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attitude about risk or confidence involves the proposing of monetary wagers to ascertain 

a point at which the subject would be indifferent in the choice of two or more options. 

Here a somewhat similar technique (presenting options) was used wherein the expert 

respondent to the background section of the elicitation questionnaire was asked to choose 

between two non-monetary preferences for three separate scenarios. While it is believed 

that the responses taken together reasonably assigned participating experts to appropriate 

broad philosophy categories based on knowledge of the subjects’ professional 

backgrounds), there is likely room for improvement of the granularity of the philosophy 

classification.

Two experts responding to the operations and support case questionnaires omitted 

answers to two of the philosophy-related background questions, explaining that they did 

not understand what the questions were looking for. Because the default point 

assignments in this case offset each other (see Appendix F), the end result was neutral 

with respect to causing an undue shift in perceived philosophy (this result helped to 

demonstrate the robustness o f the background questionnaire and its scoring). The other 

operations and support participant and the two weights and sizing participants completed 

the background portion with no comments or omissions.

Perhaps the biggest challenge in the development of the present methodology was 

determining a means for validating the calibration technique. The distant-future nature of 

the aerospace technology impact render classic judgment- or prediction-verification 

techniques moot. A concept explored early in the current research involved the 

identification of an already-accomplished aerospace development program whose 

performance characteristics would be unknown to a selected set o f aerospace discipline 

experts (who would be questioned about relevant technology impacts and
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accomplishments). One potential source of such a program might be a foreign country- 

based development. The difficulties associated with establishing credible baseline 

performance characteristics in the selected experts’ discipline for an unfamiliar 

benchmark development program included access to the appropriate program 

documentation and the small likelihood that a discipline expert would not have at least 

some knowledge about other development programs in his field. It was determined that 

an alternate means for validating the current calibration approach would be more 

appropriate and efficient to carry out. Interrater reliability was identified as a viable 

alternative. This concept has been discussed in an earlier chapter (Chapter IV), and will 

be discussed further later in this chapter.

Finally, the discipline questionnaire development and implementation should be 

addressed. The basic techniques employed followed earlier work related to the present 

effort in both discipline-related and expert elicitation areas. The questionnaire was 

developed as part of a larger related effort that will include aggregation of expert 

responses. The questionnaire used in this work seems to have been generally efficient in 

eliciting the appropriate judgments. There were some cases of inconsistency among 

experts in a case that rendered responses with respect to the affected variables 

questionable for use in the calibration portion of the data analysis activity. The 

inconsistency suggests that vigilance in questionnaire development and testing be 

maintained and emphasized. There was m  ore consistency among the operations and 

support experts, compared to the weights and sizing experts.
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Methodology Application Results 

Calibration

Applying the calibration methodology to the experts’ variable-related 

uncertainty responses was straightforward. The expert’s initial uncertainty distribution 

was easily determined from his responses and displayed for subsequent comparison to the 

distribution obtained after applying a calibration adjustment, determined from responses 

to the background questionnaire for each expert.

The calibrated distributions follow the trends (compared to the initial 

distributions) suggested by the present research. For those experts whose confidence/risk 

philosophy tended toward risk-averse (denoted by negative philosophy scores, the 

calibrated distributions reflected a lower variance. There were no participating experts in 

either case whose philosophy score was positive, so observation of an expanded 

distribution was not possible. For the one expert with a zero philosophy score (in the 

operations and support case), the expected constancy of variance was observed in the 

case results.

The calibrated distributions also reflected the expected response to difference in 

expertise. Those experts with a higher expertise score displayed less adjustment in “most 

likely” values than did those with lower expertise scores. The shifts in modes also 

occurred in the direction established by the adjustment algorithm (which in turn is based 

on the expertise and confidence philosophy of each expert). There were responses that 

resulted in calibrated distributions that did not completely follow precisely those 

suggested by expertise and philosophy scores; these distributions were the result of an 

experts assignment of either an alternate “most likely” value to a parameter, or to the
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assignment of minimum and/or maximum values that resulted in a nonsymmetrical 

distribution. As noted in an earlier discussion, endpoints so assigned to a distribution 

were honored in the subsequent analysis.

It is observed that applying the variance adjustments (based on the philosophy 

ratings of the experts) will tend to equalize variances among participants. This tendency 

reflects that associated with more traditional calibrations (that of measuring instruments, 

for example). A principal reason for applying calibrations is the reduction or elimination 

of measurement errors resulting from bias, thus rendering measurements more consistent 

from trial to trial. The use of multiple instruments to improve system redundancy often 

necessitates the aggregation of the output of these instruments to provide a “best” value 

for system operation. The removal of biases renders the aggregation task more easy, 

whether it be simple averaging or the use of more sophisticated weighting functions. In 

the present case, using the experts’ calibrated distributions for the subsequent aggregation 

process should likewise result in more consistent output for use in the disciplinary or 

multidisciplinary analysis upon which programmatic decisions may ultimately be based.

Feedback of calibration results to participating experts is considered an important 

part of the methodology. Such feedback can perhaps indicate to an expert tendencies that 

could prove helpful in other analysis situations. The feedback will also allow the expert 

to contribute to the optimization and efficiency of the calibration methodology.

Feedback and subsequent adjustment of the calibration techniques would be expected to 

occur over a period of time, since adjustments based on only a few respondents may not 

be representative those resulting from a larger pool of expert participants.
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Validation

Interrater reliability was chosen as a reasonable means of validating the efficacy 

of the current calibration methodology. The results of applying the technique developed 

by James, Demaree, and Wolf (1984) indicate that the calibration techniques are 

successful in increasing the interrater reliability for the groups of experts addressing each 

case. Because the nature of the parameters involved in the evaluation was not uniform 

(different physical quantities and different ranges of possible values), each variable was 

considered separately. To evaluate the overall effectiveness o f the calibrations, the 

individual interrater reliabilities (r’s) were tabulated and displayed. It can be seen (see 

Tables 6 and 7, and Figures 9 -  12) that the preponderance of calibrated r’s were higher 

than those for the uncalibrated distribution for the variable. This general result, even 

though attained with a small number of participating experts, indicates that the calibration 

has a positive effect on moving expert responses toward agreement (this was one of the 

key motivators for the present research, as discussed in Chapter I). It should be pointed 

out, however, that interrater reliability should not be interpreted as an aggregation 

technique. An effective aggregation technique must (usually) employ knowledge about 

an expert, with weighting factors assigned to experience along with other factors not 

considered in the present study. Much research has been undertaken in the aggregation 

techniques area, including a companion study to the present one.

Further validation of these techniques may be expected in the future with 

feedback from participating experts, as noted in the previous section.
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CHAPTER VII 

CONCLUSIONS

General

The research and application study reported herein has resulted in a tool that 

permits calibration of experts’ judgments for future-occurring events or developments. 

While the tool may permit calibrated predictions that ultimately turn out to be inaccurate 

(given the time horizon of their fulfillment), it has been shown that the methodology 

employed yield uncertainty levels around estimates that are more consistent with an 

estimator’s (or expert judge’s) experience and risk philosophy than other attempts thus 

far. Since it is a somewhat new area of research (calibration for distant-future events) 

being initially applied to aerospace disciplines that are dynamic and continuously 

evolving, the methodology and algorithms developed here should prove an effective aid 

to decision making associated with aerospace development. In particular, the techniques 

will facilitate the investigations associated with examining impact on aerospace vehicle 

performance of adopting new technology for future concepts.

The methodology that includes the calibration technique developed here, along 

with ongoing work on aggregation of uncertainty distributions from multiple experts, is 

already being utilized in multidisciplinary conceptual design and analysis programs. The 

calibration methodology itself possesses rigor that is expected to lead to more informed 

decisions than those made without the benefits of this new technique that reduces the 

effects of uncertainty in expert assessments.
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Based on the results of this research, then, the answer to the research question 

posed earlier is, ”yes”: a calibration function has been developed that can be applied to 

experts’ assessment of technology concepts and impacts.

Expertise and Philosophy Characterization

It appears that the use of factors such as self-identified expertise and age in 

determining an expertise adjustment to an elicited uncertainty distributions is a 

reasonable aspect of a calibration methodology. As noted in the Discussion (Chapter VI), 

weighting factors for the various elements of the expertise determination may be subject 

to future adjustments after experience with these tools.

Risk or confidence philosophy characterization also seems to be feasible to 

include in an expert judgment calibration scheme. Elicitation of appropriate background 

to assign a philosophy score may represent a continuing challenge.

Limitations and Suggestions for Future Work

The present study has been subject to some limitations that may reduce its 

efficacy in dealing with large-scale applications. The pool of experts for the cases 

included here was small, with judges for each case having similar work and 

organizational settings. Ascertainment of interrater reliability (for example) would be 

more prone to what James, Demaree, and Wolf (1984) refer to as “response bias.” While 

response bias can include other factors such as psychological or social attitudes, the 

current effort did not attempt to qualify these. It would be desirable to reduce any 

potential bias resulting from similarity in organizational or work setting by employing 

experts from multiple organizations. The experts in such a broader group would also be
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expected to possess similar backgrounds in their discipline, and approximately 

comparable levels of expertise.

This work has utilized triangular distributions for its elicitation and subsequent 

analysis and calibration. This follows previous work in expert judgment elicitation, 

specifically in related aerospace conceptual design applications. Other distributions may 

provide better representations of uncertainty; these other models are amenable to the 

same calibration methodology development steps reported here, including adjustments 

for expertise and confidence/risk philosophy. Broadening the set of uncertainty 

distribution calibration tools would be expected to facilitate application to other 

disciplines or different expert elicitation protocols than those reported herein.

Yet another limitation of the current research may be an inability to ascertain 

whether a participating expert whose initial assessment may be correct, but whose 

expertise and philosophy scores are such that his calibrated assessment uncertainty 

distribution would not include the ultimate actual value (of a parameter, say). This 

scenario is equivalent to committing a Type I error in statistical hypothesis testing 

(rejecting a true null hypothesis). The question thus arises, what is the danger of losing 

information that may be of value? While the likelihood of this occurrence is thought to 

be low in the present research because o f the care taken in selection of expert 

participants, it would not be zero. For the target application of the current methodology, 

conceptual design and analysis of conceptual aerospace vehicles, the assessment of a 

single expert in a single discipline would be expected to have relatively little influence on 

the entire set of analyses that use input from the expert elicitations. The possibility of 

occurrence, however, suggests that sensitivity studies would be a profitable area of study 

in future extensions of this methodology.
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A fourth and to some perhaps key limitation is the lack of actual performance, 

cost, or other results by which to gauge the effectiveness of the calibration methods 

developed. The interrater reliability determination discussed above provides some 

measure of validation for the methodology, but can never be as effective as real-world 

results. Because these would not be available for many years, if ever, the testing of the 

methodology in an aerospace application would be desirable. It has been suggested that 

evaluation involving a past program with documented performance could be used with 

experts uninvolved in the program unknowledgeable about the outcomes (performance, 

cost, or final geometry. Another alternative might be involvement of discipline experts in 

related applications areas (such as automotive or hydrodynamics) in a similar evaluation 

as the foregoing suggestion. Such an experiment could help provide a more robust 

validation of the developed methodology.

Two additional areas for possible future research in extension or application of the 

methodology are noted here. First, the addition of experts from the fields of construction 

and operation of aerospace vehicles as similar as possible to the concepts be studied 

could bring fresh perspectives to some of the analyses, particularly in the assessments of 

impacts on performance and the lessening of uncertainty about operational- or 

performance-related parameters. Second, the potential exists for utilizing the current 

approach as a means of developing expertise in younger practitioners in a field or 

discipline. The questionnaire and calibration process, with feedback, might be useful in a 

training syllabus to help compress the learning experience of future experts.
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Summary

This work began through motivation from expert elicitation applications that 

resulted in widely disparate evaluations of advanced technology impact on future 

aerospace vehicle design, performance and operations. Through an extensive review of 

literature on uncertainty, expert judgment elicitation, and calibration, a methodology has 

been developed that utilizes characteristics of an expert elicitee to adjust the rendered 

judgments. These adjusted, or calibrated judgments lead to uncertainty distribution that 

provided a more consistent response among multiple experts in analytical modeling of 

aerospace vehicle concepts, performance and cost.
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APPENDIX A 

EXPERT JUDGMENT ELICITATION QUESTIONNAIRE 

(WEIGHTS AND SIZING EXAMPLE)
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INPUT PARAMETER UNCERTAINTY QUESTIONNAIRE

Input Parameter Uncertainty: Weights & Sizing (Mach 5 booster)

Select the INPUT parameters from the following list that you want to evaluate for 
uncertainty. If you wish to add a parameter not listed, select “OTHER”.

INPUT parameters
‘nbsf 1. number of common booster stages
‘cballasf .0000 ballast weight fraction of empty weight
‘ cgrow’ . 15 growth allowance fraction
‘ preorb’ 1747111 orbiter prelaunch gross weight (lb)
‘grsorb’ 1747 111 orbiter gross lift-off weight (lb)

‘qmax’ 700. max dynamic pressure, psf
‘demise’ 150. cmise distance (nmi)

towe’ 61.3 main engine thrust/weight (vacuum) at 100% power
ispvac’ 452.5 main engine Isp (vacuum)
ispvac2’ 452.5 main engine Isp (vacuum), orbiter

‘ s tf 374.481 tip fin planform area (ft2)
‘sfiap’ 260.376 body flap planform area (ft2)
‘mr’ 1.9011 mass ratio

OTHER

From the WEIGHT and SIZING INPUT parameters you have selected:

‘__ ‘ [name] [value]

Rate the degree of uncertainty that you associate with this parameter:

Low Low/moderate Moderate Moderate/high High

If you feel this INPUT parameter’s default value should be modified, you may provide a 
new point estimate for the INPUT parameter’s nominal value.

If you feel the range of possible values around the nominal value is not symmetrical, 
please provide your own estimates of minimum and maximum values.
Min Max
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Now that you have rated the uncertainty for this INPUT parameter, please provide a 
reason or reasons for your rating. Include a rationale for any change you made to the
parameter’s nominal value. __________ _______ _______________________

To further document your thinking, please provide any cues (or triggers) that influence
your thinking about this parameter.____________________    ________

After completing the preceding steps for all parameters you have rated as 
uncertain, please provide a quantitative explanation of your understanding of Low, 
Moderate and High uncertainty, using the 5-point scales provided.

The amount of uncertainty or variation that I associate with Low Uncertainty is:

Less 5% 7.5% 10% 12.5% 15% More

The amount of uncertainty or variation that I associate with Moderate Uncertainty 
is:

Less 10% 15% 20% 25% 30% More

The amount of uncertainty or variation that I associate with High Uncertainty is:

Less 20% 30% 40% 50% 60% More
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APPENDIX B

INITIAL PARAMETER LIST (WEIGHTS AND SIZING)

(TWO -STAGE-TO-ORBIT LAUNCH VEHICLE WITH MACH 3 STAGING)
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INITIAL PARAMETER LIST -  TSTO LAUNCH VEHICLE

Stage: Orbiter
Input Variable Description Variable Name Value Data Source

ballast weight fraction of empty wt cballast 0 user input
growth allowance fraction cgrow 0.15 user input
payload weight (lb) payld 35000 user input
additional down-payload (lb.) adpay 25000 user input
space radiator area (ft2) srad 700 user input
mission duration (days), design tday 10.5 user input
mission duration (days), reserve tmar 2 user input
number of crew ncrew 0 user input
maximum man-day capability today 0 user input
nominal fuel cell power (kw) pfcnom 14 user input
oms delta v for tank sizing (ft/sec.) delvt 900 user input
oms delta v (ft/sec.) - bum 1 delvl 348 user input
oms delta v (ft./sec.) - bum 2 delv2 0 user input
oms delta v (fiL/sec.) - bum 3 delv3 0 user input
oms delta v (ft./sec.) - station appr. delvsa 100 user input
oms delta v (ft./sec.) - deorbit delvdo 366 user input
max dynamic pressure, psf qmax 700 user input
cruise distance (nmi) demise 0 user input
number of main engines neng 9 user input
total number of fly-back jet engines njeng 0 user input
initial t/w, orbiter tow 1.3113 user input
lift-off t/w, 2-stage vehicle towi 1.3369 user input
engine power level fraction pwr 1.04 user input
design max engine power level fraction pwrmax 1.04 user input
oxidizer-to-fliel ratio rmix 6 user input
propellant bulk density, o/f=6.0 dbulk 22.54 user input
fuel density (Ib./cu. ft.) djpfl 4.42 user input
lox density (lb./cu. ft.) d lox 71.14 user input
ullage volume fraction ull 0.015 user input
ullage volume fraction, wing wull 0.03 user input
wing loading (psf) wos 65 user input
technology factor - wing str fwstr 1 user input
technology factor - vertical fin str fVstr 1 user input
technology factor - body dry str fbstr 1 user input
technology factor - fuel tank fpfltak 1 user input
technology factor - L02 tank f!o2tnk 1 user input
technology factor - fuselage TPS fbtps - 1 user input
technology factor - wing & fin TPS fwtps 1 user input
technology factor - body flap TPS fbftps 1 user input
technology factor - landing gear fgear 1 user input
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Stage: Orbiter (continued)

Inout Variabie Description Variable Name Value Data Source

technology factor - main engines ftneng 1 user input
technology factor - propellant feed sys fpfs 1 user input
technology factor - gimbal actuation fgim 1 user input
technology factor - main engine ht shld fhtsld 1 user input
technology factor - he pneumatic sys fhesys 1 user input
technology factor - RCS frcs 1 user input
technology factor - OMS foms 1 user input
technology factor - APU fapu 1 user input
technology factor - fuel cell sys ffcell 1 user input
technology factor - ECD feed 1 user input
technology factor - hydr conv & distr flicd 1 user input
technology factor - control surface act. fcs 1 user input
technology factor - avionics fav 1 user input
technology factor - environmental contrl fee 1 user input
technology factor - internal insulation finsi 1 user input
technology factor - purge, vent, & dm fpvd 1 user input
technology factor - range safety frng 1 user input
technology factor - payload container fplcon 1 user input

Stage: Booster
Inout Variable Descriotion Variable Name Value Data Source

number of common booster stages nbst 1 user input
ballast weight fraction of empty wt cballast 0 user input
growth allowance fraction cgrow 0.15 user input
ascent time (min) t_asc 2 user input
descent time (min) t_de$c 20 user input
operating time margin (min) tmar 5 user input
number of crew ncrew 0 user input
maximum man-day capability today 0 user input
electrical power req. (kw), ascent p asc 11.3 user input
electrical power req. (kw), descent pdesc 7.7 user input
nominal electrical power (kw) pfcnom 11.3 user input
max dynamic pressure, psf qmax 700 user input
cruise distance (rani) demise 0 user input
number of main engines neng 8 user input
total number of fly-back jet engines njeng 0 user input
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Stage: Booster (continued)
.Input Variable Description Variable Name Value Data Source

lift-off t/w, 2-stage vehicle tow 1.3372 user input
initial t/w, orbiter toworb 1.3113 user input
engine power level fraction pwr 1.04 user input
design max engine power level fraction pwrmax 1.04 user input
oxidizer-to-fuel ratio rmix 6 user input
propellant bulk density, o/f=6.Q dbulk 22.54 user input
propellant bulk density, o/f=6.0 (orb.) dbulk2 22.54 user input
fuel density (lb./cu. ft.) dj»f! 4.42 user input
lox density (lb./cu. ft.) djox 71.14 user input
ullage volume fraction ull 0.015 user input
ullage volume fraction, wing wull 0.03 user input
wing loading (psf) wos 65 user input
technology factor - wing str fwstr 1 user input
technology factor - vertical fin str fVstr 1 user input
technology factor - body dry str fbstr 1 user input
technology factor - fuel tank fpfltnk 1 user input
technology factor - L02 tank flo2tnk 1 user input
technology factor - fuselage TPS fbtps user input
technology factor - wing & fin TPS fwtps 1 user input
technology factor - body flap TPS fbftps 1 user input
technology factor - landing gear fgear user input
technology factor - main engines ftneng 1 user input
technology factor - propellant feed sys fpfs 1 user input
technology factor - gimbal actuation fgim user input
technology factor - main engine ht shld fhtsld 1 user input
technology factor - he pneumatic sys fhesys 1 user input
technology factor - RCS ffcs 1 user input
technology factor - OMS fonts user input
technology factor - APU fapu 1 user input
technology factor - fuel cell sys ffcell 1 user input
technology factor - BCD feed 1 user input
technology factor - hydr conv & distr fhed 1 user input
technology factor - control surface act fcs 1 user input
technology factor - avionics fav 1 user input
technology factor - environmental contrl fee 1 user input
technology factor - internal insulation finsl 1 user input
technology factor - purge, vent, & dm fpvd 1 user input
technology factor - range safety frng 1 user input
technology factor - payload container fplcon 1 user input
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APPENDIX C

REDUCED PARAMETER LIST (MOST IMPACT ON PERFORMANCE) 

TWO -STAGE-TO-ORBIT LAUNCH VEHICLE WITH MACH 3 STAGING 

AFTER MODIFIED NGT - ASSUMING PARETO DISTRIBUTION 

WEIGHTS AND SIZING
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REDUCED PARAMER LIST AFTER APPLICATION OF MODIFIED NGT

TSTO LAUNCH VEHICLE -  WEIGHTS AND SIZING

Vehicle: ISAT Ref TSTO - M3 Staging
Model: CONSIZ
Stage: Orbiter

Variable Name Description Nominal Value

cgrow growth allowance fraction 0.15
payid payload weight (lb) 35000
tow initial t/w, orbiter 1.3113
towi lift-off t/w, 2-stage vehicle 1.3369
pwr engine power level fraction 1.04
fmeng technology factor - main engines 1
fbstr technology factor - body dry str 1
fpfltnk technology factor - fuel tank 1
flo2tnk technology factor - L02 tank .1
fbtps technology factor - fuselage TPS 1
delvt oms delta v for tank sizing (ft./sec.) 900
delvl oms delta v (ft/sec.) - bum 1 348
delvjsa oms delta v (ft./sec.) - station appr. 100
delvdo oms delta v (ft./sec.) - deorbit 366
dpfl fuel density (lb./cu. ft.) 4.42
d lox lox density (lb./cu. ft.) 71.14
wos wing loading (psf) 65
fwstr technology factor - wing str 1

Stage: Booster
Variable Name Description Nominal Value

nbst: number of common booster stages 1
tow: lift-off t/w, 2-stage vehicle 1.3372
pwr: engine power level fraction 1.04
fineng: technology factor - main engines 1
fbstr: technology factor - body dry str 1
fpfltnk: technology factor - fuel tank 1
flo2tnk: technology factor - L02 tank 1
cgrow: growth allowance fraction 0.15
d_pf: fuel density (lb./cu. ft.) 4.42
dlox: lox density (lb./cu.ft.) 71.14
wos: wing loading (psf) 65
fwstr: technology factor - wing str 1
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APPENDIX D

EXPERT BACKGROUND RESPONSE RESULTS 

WEIGHTS AND SIZING 

TWO -STAGE-TO-ORBIT LAUNCH VEHICLE WITH MACH 3 STAGING
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EXPERT BACKGROUND RESPONSE RESULTS 

WEIGHTS AND SIZING

Question
No.

Topic 1 Expertl p j Response
Point

Conversion
Expert 2 
Response

Point
Conversion

EXPERTISE

1 Name or USERID 8646275 - 8647643 -

2 Age (years) 42 3.5 41 3.4

3 Self-rated expertise Less 2 More 4

4 Expertise compared to 
others in field

More 4 Same 3

5 Discipl ine-specific 
knowledge question

.01 3.9 .012 4.3

Expertise = 3.347 3.675

PHILOSOPHY

6 Predicting discipline- 
related quantities

(1) -5 (3) 0

7 Estimating uncertainty 
preference

(b) 5 (a) -5

8 Estimating trend in 
discipline

(b) -2.5 (d) -5

9 Completion vs. milestones (b) -5 (b) -5

10 Total outlays vs. cost 
elements

(b) -5 (b) -5

11 Utilization scenarios vs. 
performance

(a) -5 (b) 5

Philosophy = -2.917 -2.5
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APPENDIX E

REDUCED PARAMETER LIST (MOST IMPACT ON PERFORMANCE) 

TWO -STAGE-TO-ORBIT LAUNCH VEHICLE WITH MACH 3 STAGING 

AFTER MODIFIED NGT - ASSUMING PARETO DISTRIBUTION 

OPERATIONS AND SUPPORT
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REDUCED PARAMER LIST AFTER APPLICATION OF MODIFIED NGT 

TSTO LAUNCH VEHICLE -  OPERATIONS AND SUPPORT

Vehicle: ISAT Ref TSTO - M3 Staging
Booster
Model: RMAT

Variable Name Nominal Value
Scheduled Hours 114750
Shifts per Day 2
Missions per Year 8
MHMA Calibration 1
Fraction of sequential (independent) work 0.05
Ground Processing 7689
Target minimum vehicle processing days 30
Launch Pad Time in Days 25.3
Number of Crews Assigned per shift 1
MTBM Calibration 0.833
Orbit Time 0
Vehicle Integration Time (days) 5.5
Technology Growth 0
Critical Failure Rate 0.0006052
Fraction Inherent Failures 0.1836
Vehicle: ISAT Ref TSTO - M3 Staging
Orbiter
Model: RMAT

Variable Name Nominal Value
Scheduled Hours 159897
Shifts per Day 2
Missions per Year 8
MHMA Calibration 1
Fraction of sequential (independent) work 0.05
Ground Processing 7771
Target minimum vehicle processing days 30
Launch Pad Time in Days 25.3
Number of Crews Assigned per shift 1
MTBM Calibration 0.804
Orbit Time 252
Vehicle Integration Time (days) 5.5
Technology Growth 0
Critical Failure Rate 0.0005745
Fraction Inherent Failures 0.1645
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APPENDIX F

EXPERT BACKGROUND RESPONSE RESULTS 

OPERATIONS AND SUPPORT 

TWO -STAGE-TO-ORBIT LAUNCH VEHICLE WITH MACH 3 STAGING
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EXPERT BACKGROUND RESPONSE RESULTS 

WEIGHTS AND SIZING

Quest
No.

Topic
Exp’t 1 

Resp
Point 1 Exp’t 2
Conv | Resp

Point
Conv

Exp’t 3
Resp

Point
Cony

EXPERTISE

1 Name or USERID 8643684 - 8646262 - 8643425

2 Age (years) 60 5 59 4.9 51 4.3

3 Self-rated expertise More 4 Average 3 More 4

4 Expertise compared
to others in field

Most 5 More 4 Same 3

5 Discipline-specific 
knowledge question

$85 5 $75 4.5 $75 4.5

Expertise = 4.750 4,098 3.931

PHILOSOPHY

6 Predicting
discipline-related

(3) 0 (5) 5 5 5

7 Estimating
uncertainty

- 5 - 5 (b) 5

8 Estimating trend in 
discipline

- -5 - -5 (c) 5

9 Completion vs. 
milestones

(b) -5 (b) -5 (b) -5

10 Total outlays vs. 
cost elements

(b) -5 (b) -5 (b) -5

11 Utilization scenarios 
vs. performance

(a) -5 (b) 5 (a) -5

Philosophy = -2.500 -1.667 0.000
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APPENDIX G 

UNCERTAINTY DISTRIBUTION RESULTS 

WEIGHTS AND SIZING 

TWO -STAGE-TO-ORBIT LAUNCH VEHICLE WITH MACH 3 STAGING
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WEIGHT AND SIZING CASE RESULTS

Summary Uncertainty Distributions, Booster
Expert 8646275 Initial Distribution Expert 8646275 Calibrated Distribution

aj Cl bi G | a s C2 bs 20 2

VAR 02 1.1563 1.2500 1.3438 0.0015 1.6027 1.6632 1.7237 0.0006

VAR 03 0.8500 0.9000 0.9500 0.0004 0.8500 0.9500 0.9500 0.0006

VAR 08 0.1000 0.2000 0.3500 0.0026 0.1000 0.2661 0.3500 0.0027

VAR 09 3.9228 4.4200 4.9173 0.0412 5.5601 5.8811 6.2020 0.0172

VAR 11 55.0000 65.0000 70.0000 9.7222 55.0000 70.0000 70.0000 12.5000

Expert 8647643 Initial Distribution Expert 8647643 Calibrated Distribution

ai Cl bi ° i 32 €2 b2 2
° 2

VAR 02 1.2703 1.3372 1.4041 0.0007 1.6382 1.6854 1.7327 0.0004

VAR 03 0.9500 1.0000 1.0500 0.0004 1.2251 1.2604 1.2958 0.0002

VAR 08 0.0975 0.1500 0.2025 0.0005 0.1519 0.1891 0.2262 0.0002

VAR 09 4.1990 4.4200 4.6410 0.0081 5.4148 5.5710 5.7273 0.0041

VAR 11 52.0000 65.0000 78.0000 28.1667 72.7347 81.9271 91.1195 14.0833
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WEIGHT AND SIZING CASE RESULTS

(CONTINUED)

Summary Uncertainty Distributions, Orbiter
Expert 8646275 Initial Distribution Expert 8646275 Calibrated Distribution

ai ci bi o f a2 c2 bi 02

VAR 03 0.9319 1.0500 1.1681 0.0023 1.3208 1.3971 1.4733 0.0010

VAR 12 295.8000 348.0000 400.2000 454.1400 429.3384 463.0333 496.7283 189.2250

VAR 13 85.0000 100.0000 115.0000 37.5000 123.3731 133.0556 142.7380 15.6250

VAR 14 311.1000 366.0000 420.9000 502.3350 451.5455 486.9833 522.4211 209.3063

Expert 8647643 Initial Distribution Expert 8647643 Calibrated Distribution

at Cl bi of 32 €2 bi of
VAR 03 1.245735 1.3113 1.376865 0.0007 1.6064 1.6528 1.6991 0.0004

VAR 12 330.600 348.000 365.400 50.4600 426.3213 438.6250 450.9287 25.2300

VAR 13 80.000 100.000 120.000 66.6667 111.8995 126.0417 140.1838 33.3333

VAR 14 320.250 366.000 411.750 348.8438 428.9624 461.3125 493.6626 174.4219
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APPENDIX H

UNCERTAINTY DISTRIBUTION RESULTS 

OPERATIONS AND SUPPORT 

TWO -STAGE-TO-ORBIT LAUNCH VEHICLE WITH MACH 3 STAGING
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OPERATIONS AND SUPPORT CASE RESULTS

Summary Uncertainty Distributions, Booster
Expert 8643684 Initial Distribution Expert 8643684 Calibrated Distribution

aj Cl bi 2 »2 C2 b2 2
° 2

VAR 01 40000 114750 125000 358822917 40000 120488 125000 381211120

VAR 04 0.2500 1.0000 1.2500 0.0451 0.2500 1.0500 1.2500 0.0467

VAR 05 0.2000 0.0500 0.0800 0.0011 0 .2 0 0 0 0.2000 0.0800 0.0008

VAR 06 150.0000 640.0000 1250.0000 50616.667 150.0000 672.0000 1250.0000 50460.222

VAR 07 28.5000 30.0000 31.5000 0.3750 30.4393 31.5000 32.5607 0.1875

VAR 08 15.0000 25.3000 45.0000 38.7272 15.0000 26.5650 45.0000 38.1555

VAR 09 1.0000 1.0000 3.0000 0.2222 1.0000 1.0500 3.0000 0.2168

VAR 10 0.7000 0.8330 1.4000 0.0230 0.7000 0.8747 1.4000 0.0221

VAR 12 2.0000 5.5000 6.0000 0.7917 2.0000 5.7750 6.0000 0.8417

VAR 14 0.0006 0.0006 0.0006 0.0000 0.0006 0.0006 0.0007 0.0000

VAR 15 0.1700 0.1836 0.1900 0.0000 0.1700 0.1900 0.1900 0.0000

Expert 8646262 Initial Distribution Expert 8646262 Calibrated Distribution

ax Cl bj 2 a i U2 C2 b2 2
o 2

VAR 01 90000 114750 140000 104170139 90000 135460 140000 127423689

VAR 04 0.2500 1.0000 1.5000 0.0660 0.2500 1.1805 1.5000 0.0703

VAR 05 0.0300 0.0500 0.0600 0.0000 0.0300 0.0590 0.0600 0.0000

VAR 06 150.0000 640.0000 1250.0000 50616.667 150.0000 755.5088 1250.0000 50587.845

VAR 07 27.7500 30.0000 32.2500 0.8438 33.5774 35.4145 37.2516 0.5625

VAR 08 15.0000 25.3000 45.0000 38.7272 15.0000 29.8662 45.0000 37.5010

VAR 09 1.0000 1.0000 3.0000 0.2222 1.0000 1.1805 3.0000 0.2040

VAR 10 0.6000 0.8330 1.2000 0.0152 0.6000 0.9833 1.2000 0.0154

VAR 12 5.0875 5.5000 5.9125 0.0284 6.1558 6.4927 6.8295 0.0189

VAR 14 0.0006 0.0006 0.0007 0.0000 0.0007 0.0007 0.0008 0.0000

VAR 15 0.1285 0.1836 0.2387 0.0005 0.1718 0.2167 0.2617 0.0003
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OPERATIONS AND SUPPORT CASE RESULTS

(CONTINUED)

Summary Uncertainty Distributions, Booster
Expert 8643425 Initial Distribution Expert 8643425 Calibrated Distribution

ai Cl bi or? 82 C2 t>2 <?2
VAR 01 90000 100000 110000 16666667 90000 100000 110000 16666667

VAR 04 0.2500 1.0000 1.5000 0.0660 0.2500 1.0000 1.5000 0.0660

VAR 05 0.0500 0.1000 0.1500 0.0004 0.0500 0.1000 0.1500 0.0004

VAR 06 150.0000 640.000 1250.000 50616.667 150.0000 640.000 1250.000 50616.667

VAR 07 27.0000 30.0000 33.0000 1.5000 27.0000 30.0000 33.0000 1.5000

VAR 08 15.0000 25.3000 45.0000 38.7272 15.0000 25.3000 45.0000 38.7272

VAR 09 1.0000 1.0000 3.0000 0.2222 1.0000 1.0000 3.0000 0.2222

VAR 10 0.6000 0.8330 1.2000 0.0152 0.6000 0.8330 1.2000 0.0152

VAR 12 4.9500 5.5000 6.0500 0.0504 4.9500 5.5000 6.0500 0.0504

VAR 14 0.0005 0.0006 0.0007 0.0000 0.0005 0.0006 0.0007 0.0000

VAR 15 0.1285 0.1836 0.2387 0.0005 0.1285 0.1836 0.2387 0.0005
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OPERATIONS AND SUPPORT CASE RESULTS

(CONTINUED)

Summary Uncertainty Distributions, Orbiter
Expert 8643684 Initial Distribution t^xpert 8643684

at Cl bi 2
a l S2 C2 bj 2

° 2

VAR 01 50000 159897 170000 738317256 50000 167892 170000 786192572

VAR 04 0.2500 1.0000 1.2500 0.0451 0.2500 1.0500 1.2500 0.0467

VAR 05 0.0200 0.0500 0.0800 0.0002 0.0200 0.0525 0.0800 0.0002

VAR 06 160.0000 648.0000 1250.0000 49684.666 160.0000 680.4000 1250.0000 49537.786

VAR 07 28.5000 30.0000 31.5000 0.3750 30.4393 31.5000 32.5607 0.1875

VAR 08 15.0000 25.3000 45.0000 38.7272 15.0000 26.5650 45.0000 38.1555

VAR 09 1.0000 1.0000 3.0000 0.2222 1.0000 1.0500 3.0000 0.2168

VAR 10 0.6000 0.8040 1.1000 0.0105 0.6000 0.8442 1.1000 0.0104

VAR 11 239.400 252.000 264.600 26.460 255.691 264.600 273.5095 13.230

VAR 12 2.0000 5.5000 6.0000 0.7917 2.0000 5.7750 6.0000 0.8417

VAR 14 0.0005 0.0006 0.0006 0.0000 0.0006 0.0006 0.0006 0.0000

VAR 15 0.1500 0.1645 0.1800 0.0000 0.1500 0.1727 0.1800 0.0000
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OPERATIONS AND SUPPORT CASE RESULTS

(CONTINUED)

Summary Uncertainty Distributions, Orbiter

Expert 8646262 Initial Distribution Expert 8646262 Calibrated Distribution

ai ci hi 2a j S2 C2 ba 2
a 2

VAR 01 140000 159897 195000 129253089 140000 188756 195000 151141704

VAR 04 0.2500 1.0000 1.5000 0.0660 0.2500 1.1805 1.5000 0.0703

VAR 05 0.0300 0.0500 0.0600 0.0000 0.0300 0.0590 0.0600 0.0000

VAR 06 150.000 648.000 1250.000 50566.889 150.000 764.953 1250.000 50651.047

VAR 07 27.7500 30.0000 32.2500 0.8438 33.5774 35.4145 37.2516 0.5625

VAR 08 15.0000 25.3000 45.0000 38.7272 15.0000 29.8662 45.0000 37.5010

VAR 09 0.9250 1.0000 1.0750 0.0009 1.1192 1.1805 1.2417 0.0006

VAR 10 0.6000 0.8040 1.2000 0.0155 0.6000 0.9491 1.2000 0.0151

VAR 11 233.1000 252.0000 270.9000 59.5350 282.0498 297.4816 312.9134 39.6900

VAR 12 5.0875 5.5000 5.9125 0.0284 6.1558 6.4927 6.8295 0.0189

VAR 14 0.0005 0.0006 0.0006 0.0000 0.0006 0.0007 0.0007 0.0000

VAR 15 0.1152 0.1645 0.2139 0.0004 0.1539 0.1942 0.2345 0.0003
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OPERATIONS AND SUPPORT CASE RESULTS

(CONCLUDED)

Summary Uncertainty Distributions, Orbiter
Expert 86434252 Initial Distribution Expert 8643425 Calibrated Distribution

ai CJ bj 2O j 32 C2 ba 2 I

VAR 01 140000 159897 195000 129253089 140000 159897 195000 129253089

VAR 04 0.2500 1.0000 1.5000 0.0660 0.2500 1.0000 1.5000 0.0660

VAR 05 0.0500 0.1000 0.1500 0.0004 0.0500 0.1000 0.1500 0.0004

VAR 06 150.000 648.000 1250.000 50566.889 150.000 648.000 1250.000 50566.889

VAR 07 27.0000 30.0000 33.0000 1.5000 27.0000 30.0000 33.0000 1.5000

VAR 08 15.0000 25.3000 45.0000 38.7272 15.0000 25.3000 45.0000 38.7272

VAR 09 0.9000 1.0000 1.1000 0.0017 0.9000 1.0000 1.1000 0.0017

VAR 10 0.6000 0.8040 1.2000 0.0155 0.6000 0.8040 1.2000 0.0155

VAR 11 226.8000 252.0000 277.2000 105.8400 226.8000 252.0000 277.2000 105.8400

VAR 12 4.9500 5.5000 6.0500 0.0504 4.9500 5.5000 6.0500 0.0504

VAR 14 0.0005 0.0006 0.0007 0.0000 0.0005 0.0006 0.0007 0.0000

VAR 15 0.1152 0.1645 0.2139 0.0004 0.1151 0.1645 0.2139 0.0004
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