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ABSTRACT

UNCERTAINTY ASSESSMENT IN HIGH-RISK ENVIRONMENTS USING

PROBABILITY, EVIDENCE THEORY AND EXPERT JUDGMENT

ELICITATION

Stella B. Bondi 

Old Dominion University, 2007 

Director: Dr. Resit Unal

The level of uncertainty in advanced system design is assessed by comparing the 

results of expert judgment elicitation to probability and evidence theory. This research 

shows how one type of monotone measure, namely Dempster-Shafer Theory of Evidence 

can expand the framework of uncertainty to provide decision makers a more robust 

solution space. The issues imbedded in this research are focused on how the relevant 

predictive uncertainty produced by similar action is measured.

This methodology uses the established approach from traditional probability 

theory and Dempster-Shafer evidence theory to combine two classes of uncertainty, 

aleatory and epistemic. Probability theory provides the mathematical structure 

traditionally used in the representation of aleatory uncertainty. The uncertainty in 

analysis outcomes is represented by probability distributions and typically summarized as 

Complimentary Cumulative Distribution Functions (CCDFs). The main components of 

this research are probability of X in the probability theory compared to mx in evidence 

theory. Using this comparison, an epistemic model is developed to obtain the upper
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“CCPF -  Complimentary Cumulative Plausibility Function” limits and the lower 

“CCBF -  Complimentary Cumulative Belief Function” limits compared to the traditional 

probability function.

A conceptual design for the Thermal Protection System (TPS) of future Crew 

Exploration Vehicles (CEV) is used as an initial test case. A questionnaire is tailored to 

elicit judgment from experts in high-risk environments. Based on description and 

characteristics, the answers of the questionnaire produces information, that serves as 

qualitative semantics used for the evidence theory functions. The computational 

mechanism provides a heuristic approach for the compilation and presentation of the 

results. A follow-up evaluation serves as validation of the findings and provides useful 

information in terms of consistency and adoptability to other domains.

The results of this methodology provide a useful and practical approach in 

conceptual design to aid the decision maker in assessing the level of uncertainty of the 

experts. The methodology presented is well-suited for decision makers that encompass 

similar conceptual design instruments.
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1

1. Introduction

1.1 Background

NASA’s endeavor of exploring space and developing corresponding enabling 

technologies requires operating in extreme risk environments. In order to advance 

operational, technological, and explorative missions and assess acceptable safety 

parameters, NASA relies on experts to evaluate available data, interpret the significance 

of risk, and minimize the uncertainty between known and unknown variables (Chytka, 

2003). Using a broad range of experts with focused specialties allows scientists and 

engineers to expand and utilize their knowledge in a specific area that could lead to safer 

operating environments.

Quantitative risk assessment is an attempt to answer questions of uncertainty such 

as: What can go wrong? How likely is it to go wrong? What are the consequences of 

going wrong? What is the level of confidence in the answers to each of the previous 

questions? In answering these questions for formal quantitative risk assessments one 

should: a) state the assumptions clearly and give appropriate justification; b) construct 

initiating events, fault trees, and event trees; c) quantify likelihoods typically using 

probability theory; d) conduct a sensitivity analysis; and e) document the entire analysis 

(Oberkampf, 2005). For several centuries, the idea of numerical degree of belief has 

been identified in both popular and scholarly form with the idea of chance: The two 

ideas are united under the name probability (Shafer, 1976). Aleatory uncertainty is a

The format for this dissertation follows American Psychological Association style.
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chance of a descriptive experiment, such as the throw of a dice or the toss of a coin 

(Shafer, 1976). Another example is the variations due to the physical system of the 

environment in the fatigue life of compressor and turbine blades, which are referred to as 

variability, irreducible, stochastic and random uncertainty (Oberkampf, 2005). Figure 1 

represents the two forms of uncertainty and the means with which the information could 

be used properly to develop a quantification strategy based on the characteristics of the 

information.

m m m v

f

Ale*«#ry1 [Inrerfciinty

1
1

>

ProbaMiity Timmy EvUUmov Tlmmrj

Figure 1. Uncertainty quantification strategy (adopted from Bae et al., 2003)
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Epistemic uncertainty is due to a lack of knowledge of quantities or processes of 

the system or the environment and is also referred to as subjective, reducible and model 

form uncertainty. Examples include the lack of experimental data to characterize new 

material and processes, or the poor understanding of coupled physics phenomena 

(Oberkampf, 2005). Parameter uncertainties are most times aleatory but can be epistemic 

when insufficient data are available to construct a probability distribution function.

Model form and scenario abstraction uncertainties, can emerge from boundary 

conditions, different choices of solution approaches, and unexpected failure modes due to 

lack of knowledge and information (Bae, 2003).

1.2 Problem Statement

Dangerous breakdowns in assessing uncertainty run rampant in high-risk 

environments. The key to finding the core of assessing uncertainty is to institute a system 

providing more accurate data and more effective transmittal of critical warnings to 

decision makers. Could the use of Dempster-Shafer’s Evidence Theory aid decision 

makers in assessing operational uncertainty by providing an additional non-probabilistic 

measure?

A formal elicitation process by multiple experts is prepared to obtain probable 

reasoning based on previous experience from experts in high-risk environments. 

Combination and aggregation of the experts’ input addresses and quantifies uncertainty. 

Since the distribution of probability needs to be characterized for large, complex systems, 

classic probability might not be suitable due to incomplete information as a result of lack 

of knowledge and statistical data. The results for each input or contribution of expert
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judgment are used for the development and comparison of Probabilistic and Non- 

Probabilistic methodology.

1.3 Synopsis o f  Dissertation

For high-risk, one-of-a-kind complex projects such as space exploration, 

historical data is scarce or does not exist; therefore, the use of probabilistic risk and 

uncertainty analysis approaches becomes a challenge. In such cases, asking the opinions 

of experts maybe the only alternative to data collection for making risk and uncertainty 

assessments (Conway, 2003). This is especially true for new space exploration system 

operational capabilities. Section 2 details the review of relevant literature including 

predecessor research and related research.

The previous work by others includes probability theory, which is a well- 

researched and practiced methodology that provides the mathematical structure 

traditionally used in the representation of aleatory and epistemic uncertainty. The 

probabilistic uncertainties in analysis outcomes are represented with probability 

distributions and are typically summarized as cumulative distribution functions (CDF) 

and complimentary cumulative distribution functions (CCDF). The most familiar 

technique is the Monte Carlo simulation. On the other hand, the extension of the efforts 

to define the development of a more robust system is the Evidence theory. Evidence 

theory provides a promising alternative to probability theory. It allows for a fuller 

representation of the implications of uncertainty as compared to a probabilistic 

representation of uncertainty. Evidence theory can handle not only aleatory uncertainty 

but epistemic uncertainty as well. As the probability of a given occurrence increases, the
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uncertainty logically will decrease. Probability theory and Evidence theory are 

comparable methodologies; however, they are conceptually inverse functions. In this 

study, Probability theory is utilized to addresses the probability of the occurrence of an 

event (system failure due to an anomaly) while Evidence theory is used to addresses the 

degree of uncertainty of whether an event will occur. This research suggests that the 

assessment of uncertainty of experts in high-risk environments may be better conveyed to 

decision makers by using both probabilistic and non-probabilistic theories. Figure 2 

illustrates this process.

Expert
Judgment
Elicitation

Risk & Uncertainty

Decision Making

Mathematical 
Approach to 

Risk & Uncertainty

Analysis 
Based on Probabilistic 

Approach

Analysis 
Based onNon-Probabilistic 

Approach

Assessing Uncertainty

Figure 2. Literature review of relevant research
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In Section 3, a research methodology is then presented as an extension of previous 

efforts to define the development of a more robust system. The mathematical structure of 

Probability theory, the Evidence theory based on Dempster-Shafer’s work and the 

benefits of the proposed aggregation are explored. Cumulative Distribution Function 

(CDF) shows the probability of an occurrence is less than a given value, whereas the 

Complementary Cumulative Distribution Function (CCDF) shows whether the 

probability of an occurrence will exceed a given value; therefore, the CCDF enables the 

comparison of the graphical results of using both Probability theory and Evidence theory.

In Section 4, the proposed methodology is applied. This research relies heavily 

upon the inputs from the high-risk experts. The first part of this section involves eliciting 

expert judgment to derive the numerical raw data used in the analyses. An initial 

questionnaire is developed that addresses conditions encountered during high-risk 

operations and includes questions that will be proven useful for both Probability and 

Evidence theories. The questionnaire is utilized for uncertainty assessment, using 

NASA’s Crew Exploration Vehicle (CEV) Thermal Protection System (TPS) as an 

example. The second part of this section focuses on the combination and aggregation of 

variables while taking into consideration the uncertainty of each expert’s input. The last 

part of this section includes the results of the input of each expert, which are then applied 

in the development of the CDF and CCDF, relying strictly upon aleatory uncertainties. 

Then the upper plausible limits and lower belief limits are derived based upon a 

combination of aleatory and epistemic uncertainties.
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Using a graphical method, this research provides various visual representations of 

the experts’ uncertainty values to assist in the integration and assimilation of a decision 

strategy. This is accomplished by combining the graphs of the CCDF derived by the 

Probability theory and the upper and lower limits derived by the Evidence theory, which 

provides the decision maker with a very clear comparison of multiple experts’ 

probabilistic risk assessment relative to their non-probabilistic risk assessment.

Traditional validation methods do not apply to this research; however, validation 

of contents and structure of the methodology was found appropriate for this research.

This was accomplished through follow-up interviews with the experts in terms of 

interpretation of the questionnaire and usefulness of its application. Also, follow-up with 

the decision maker in regards to the overall methodology confirmed the usefulness of the 

results.

A combined approach utilizing Evidence Theory for assessment of both aleatory 

and epistemic uncertainties facilitates the assessment of subject matter expert’s expertise 

and confidence, may be utilized for calibration, and has developed a tool that may allow 

decision makers in high-risk environments to assess uncertainty levels presented by 

multiple experts. In addition, the methodology presented could be applicable in a variety 

of disciplines including the aerospace technology, and could be used especially for 

adopting new technologies for future concepts. Figure 3 summarizes the research 

mapping.
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1

2

3 (1+  2 + 3 + 4 +5)
4

5

Figure 3. Research mapping

LEGEND:

1 Develop a questionnaire

2 Obtain pool of high-risk experts

3 Elicit high-risk experts to provide information regarding CEV addressing 

Construction, Installation, and Operations and the combination of all

4 Train experts and conduct a survey

5 Probabilistic analysis of findings using CDF and Monte Carlo simulation

6 Mathematically analyze results by using Evidence theory

7 Normalize results and aggregate findings

8 Assess results by identifying the level of uncertainty

9 Graph upper and lower limits of uncertainty and incorporate CCDF

10 Provide conclusions
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2. Literature Review

2.1 Expert Judgm ent Elicitation

Expert-opinion elicitation has been defined as a formal, heuristic process of 

obtaining information or answers to specific questions about certain quantities, called 

issues, such as failure rates, failure consequences, and expected service lives (Ayyub, 

2001). The role of experts in theoretical environments is critical in which their 

judgments can provide valuable information and insight in areas where limited “hard” 

data is available. Decision makers often rely on multiple opinions as a data set when 

historical or empirical statistics are deficient in a specific decision domain (Chytka, 

2003). To explore the challenge problem issues, it is necessary to understand how 

experts solve problems. The problem solving process itself—the choice of parameters, 

the appropriate model, and interpretation of outputs—is a form of tacit, rather than 

explicit, knowledge, requiring the use of formal expert elicitation (Booker, 2004). 

Research in experimental psychology has shown that simply asking a person to provide a 

(numerical) probability, results in biased probability judgments (Shanteau, 1989). While 

a consensus approach to elicit knowledge or judgments from subject matter experts may 

yield acceptable results, it can be a time consuming process, and it may be hard to assign 

a degree of certainty to those decisions involving quantitative estimates (Conway, 2003).

The process for obtaining expert judgments with some appellation of confidence 

must be well structured to avoid the introduction of bias. To overcome biases, it seems 

necessary to have a well-structured process for probability elicitation. Such a process is
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called an elicitation process (Renooij, 2001), and it can be roughly divided into five 

stages:

1. Select and motivate the expert

2. Train the expert

3. Structure the questions

4. Elicit and document the expert judgments

5. Verify the results.

1. Expert selection. Ideally, for probability elicitation, an expert should be 

selected who has the necessary domain knowledge and who is familiar with assessing 

probabilities. However, due to the nature of expertise, there is often not a very large pool 

of experts to choose from. When eliciting probabilities for probabilistic networks, it is 

best to select an expert who has also been involved in building the structure of the 

network. This will also assist in preventing errors due to the possible existence of 

different definitions for certain variables (Renooij, 2001).

2. Train the expert. Once an expert has been selected and is willing to 

participate, he has to learn the art of probability assessment. To this end, the expert 

should first become familiar with the concept of probability and should learn to express 

his knowledge in the format required by the elicitation method used. Part of the training 

is done with probabilities for events whose frequencies can be checked. This allows for 

exposing biases in the expert’s assessments and to practice the elicitation method.

Several elicitation methods and representation formats can be tried to see which best fit 

the task, the experience and preferences of the expert. The amount of time spent on 

training depends on available time and other constraints. At the end of the training
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period, however, the expert should fully understand and feel comfortable with the 

methods to be used (Renooij, 2001).

3. Structure the questions. Before the actual elicitation takes place, several 

issues need to be addressed. The definitions of the variables and values for which 

probabilities are to be assessed should be documented so that this information can be 

easily and promptly conveyed to the expert during the elicitation (Renooij, 2001). The 

goal of elicitation is to capture the current state of knowledge however poor and uncertain 

it may be. At some point in the process, the expert and interviewer will reach the limits 

of what is currently known (Booker, 2004). After the important variables and values are 

determined, the conditioning circumstances that influence a variable’s uncertainty need to 

be determined. For probabilistic networks, these conditioning contexts follow directly 

from the structure of the network. For each probability to be assessed, a question 

describing this probability should be prepared (Renooij, 2001).

4. Elicit and document the expert judgments. Various people will be present 

during the actual elicitation interviews. Initially, there will be one or more experts 

involved, interacting during elicitation (Renooij, 2001). The elicitor has to perform the 

following tasks:

• Clarify the inevitable problems of the experts with the interpretation of questions, 

definitions of variables and values;

• Record all information stated by the experts that cannot be expressed in the 

answering format, but may still be of use;

• Ascertain that the questionnaire was completed and all information was recorded 

appropriately;

• Insure expert awareness of the biases in the event of expectation of easy 

introduction.
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Lastly, the elicitor should avoid coaching the expert and taking too much control; 

the expert should feel relaxed, not challenged, for he is the expert and the elicitor is not 

(Booker, 2003, Renooij, 2001). The elicitation method that is used should be 

straightforward, easy to handle, and not difficult to learn.

5. Verify the results. Verification is the process of checking whether the 

probabilities provided by the expert are well calibrated (conform to observed 

frequencies), obeys the laws of probability (are coherent) and is reliable (Booker, 2003).

In every field, there are some who are considered by their peers to be the best at 

what they do (Shanteau, 1992). In some domains, this is reflected by official recognition 

or job titles. In others, it comes from consensual acclamation. Experts are operationally 

defined as those who have been recognized within their profession as having the 

necessary skills and abilities to perform at the highest level (Shanteau, 1992).

Finally, asking experts for their “best professional judgment” is sometimes the 

only option when faced with a situation that has limited data or it is not fully understood 

(Morgan, 1990). Table 1 lists selected literature and their contributions in expert 

judgment elicitation.

Reference Summary of selected literature in 
expert judgment elicitation

Ayyub (2001)

Expert-opinion elicitation has been defined as a formal, 
heuristic process of obtaining information or answers to 
specific questions about certain quantities, called issues, 
such as failure rates, failure consequences, and expected 
service lives.

Table 1. Summary of selected literature in expert judgment elicitation
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Reference
Summary of selected literature in 

expert judgment elicitation

Booker et al. (2004)

To explore the challenge problem issues, it is necessary to 
understand how experts solve problems. The problem 
solving process itself is a form of tacit, rather than explicit, 
knowledge, requiring the use of formal expert elicitation.

Booker & McNamara 
(2004)

Verification is the process of checking whether the 
probabilities provided by the expert are well calibrated 
(conform to observed frequencies), obeys the laws of 
probability (are coherent) and is reliable

Booker & McNamara 
(2004)

To explore the challenge problem issues, it is necessary to 
understand how experts solve problems. The problem 
solving process itself is a form of tacit, rather than explicit, 
knowledge, requiring the use of formal expert elicitation.

Booker & McNamara 
(2004)

The goal of elicitation is to capture the current state of 
knowledge, however poor and uncertain it may be. At 
some point in the process, the expert and interviewer will 
reach the limits of what is currently known.

Chytka (2003)

The role of experts in theoretical environments is critical- 
their judgments can provide valuable information and 
insight in areas where limited “hard” data is available. 
Decision makers often rely on multiple opinions as a data 
set when historical or empirical statistics are deficient in a 
specific decision domain.

Conway (2003)

While a consensus approach to elicit knowledge or 
judgments from subject matter experts may yield 
acceptable results, it can be a time consuming process; it 
may be hard to assign a degree of certainty to those 
decisions involving quantitative estimates.

Morgan & Henrion 
(1990)

Asking experts for their “best professional judgment” is 
sometimes the only option when faced with a situation that 
has limited data or it is not fully understood.

Renooij (2001)

The process for obtaining expert judgments with some 
appellation of confidence must be well structured to avoid 
the introduction of bias. The elicitation process would 
ideally include the selection, motivation and training of 
experts, proper structuring of the questions to preclude 
bias, the actual elicitation and documentation phase, and 
verification of results.

Shanteau (1987)
Suggested to let those in a domain define the experts. In 
every field, there are some who are considered by their 
peers to be best at what they do.

Table 1. Continued - Summary of selected literature in expert judgment elicitation
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Reference Summary of selected literature in 
expert judgment elicitation

Shanteau (1989)

First, the characteristics originally were intended as a 
generic description for experts of all types. It is clear, 
however, that some characteristics apply more to one 
profession than another. Three characteristics -  creativity, 
confidence, and communication -  appear to have particular 
significance for auditing and accounting.

Shanteau (1992)

In some domains this is reflected by official recognition or 
job titles. In others, it comes from consensual acclamation. 
Experts are operationally defined as those who have been 
recognized within their profession as having the necessary 
skills and abilities to perform at the highest level.

Table 1. Continued - Summary of selected literature in expert judgment elicitation

2.2 Characteristics o f  High-Risk Environments

The report of the President’s Commission on Implementation of US Space 

Exploration Policy, 2004, - “A Journey to Inspire, Innovate, and Discover”, (Report by a 

Panel of National Academy of Public Administration for the NASA) claimed that NASA 

commonly is challenged with projects that are unique to global levels of knowledge 

without any proven record. In addition to the risk of catastrophic failures, personnel 

performing in high-risk environments are typically challenged by significant lack of 

historical data gaps. In some circumstances (like those explored by NASA), not only are 

data not readily available, but also are beyond the limits of global experience. Experts 

operating within this environment are usually confronted by significant data gaps, 

absence of rules and facts, and realization that their decisions may result in catastrophic 

failure (Kotra, 1996).
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Booker (2004) claimed that complex problems tend to have one or more of the 

following characteristics:

• A poorly defined or understood system or process, such as high cycle fatigue 

effects on a turbine engine

• A process characterized by multiple exogenous factors whose contributions are 

not fully understood, such as properties of exotic materials

• Any engineered system in the very early stages of design, such as a new concept 

design for a fuel cell

• Any system, process, or problem that involves experts from different 

disciplinary backgrounds, who work in different geographical locations, and/or whose 

problem-solving tools vary widely, such as the reliability of a manned mission to Mars

• Any problem that brings together new groups of experts in novel configurations 

for its solution, such as detection of biological agents in war (Booker, 2004).

NASA’s missions are complex and high-risk to say the least. Before setting out 

into the solar system or in any type of mission, there are a seemingly endless number of 

factors to take into consideration. These factors range from transit vehicles and 

trajectories, to crew safety and stay-times, to required resources and equipment, and 

much, much more (Young, 2000).
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Table 2 lists selected literature and their contributions in high-risk environments.

Reference Summary of selected literature in 
high-risk environments

Apostolakis (2003)

Quantitative Risk Assessment introduces the “risk informed” 
rather than “risk based” decision-making.
Comparison of NASA technology to Nuclear Power industry 
by criticizing the level of accuracy of probabilistic findings.

Booker et al. (2004)

Concepts such as reliability and risk remain suitable for 
probabilistic interpretation and its use as a reference or 
standard for the entire complex problem. In addition, 
probability theory can also be consistent with the way 
some technical communities of experts think.

Booker & McNamara 
(2004)

Complex problems tend to have one or more of the 
following characteristics:
• A poorly defined or understood system or process, such 
as high cycle fatigue effects on a turbine engine
• A process characterized by multiple exogenous factors 
whose contributions are not fully understood, such as 
properties of exotic materials
• Any engineered system in the very early stages of 
design, such as a new concept design for a fuel cell
• Any system, process, or problem that involves experts 
from different disciplinary backgrounds, who work in 
different geographical locations, and/or whose problem
solving tools vary widely, such as the reliability of a 
manned mission to Mars
• Any problem that brings together new groups of experts 
in novel configurations for its solution, such as detection 
of biological agents in war

Forester (1995)

Accident scenario characteristics, as represented by the 
behavior of critical parameters, can elicit or interact with 
certain human responses (e.g., complacency or anxiety) 
that facilitate the occurrence of an unsafe action or create 
situations that make certain processing mechanisms, 
strategies, or biases (e.g., recency effects, confirmation 
bias, and fixation) inappropriate or ineffective.

Table 2. Summary of selected literature in high-risk environments
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Reference Summary of selected literature in 
high-risk environments

Fragola & Bedford (2005)

For engineering applications it is common to use expert 
input in many areas of analysis.
The impact of human activities in for example 
management, operating procedures, emergency 
procedures, maintenance, testing and inspection 
procedures.

Shanteau, Weiss & 
Thomas (1996)

A validity based approach. A CWS (Cochran-Weiss- 
Shanteau) tool that is useful in evaluating expert 
performance. It has been applied to air control simulation 
(High-risk environment).

Young (2000) Interspace missions are, by virtue of the nature of the 
missions, characterized as high-risk.

Table 2. Continued - Summary of selected literature in high-risk environments

2.3 Risk and Uncertainty in Expert’s Decision Making

Risk is often defined as a measure of the probability and severity of adverse 

effects. Even though some may use the term risk management to connote the entire 

process of risk assessment and management, it is commonly distinguished from risk 

assessment (Pinto, 2005). In risk assessment, the analyst often attempts to answer the 

following set of triplet questions: What can go wrong? What is the likelihood that it 

would go wrong? And, what are the consequences? Answers to these questions help 

risk analysts identify, measure, quantify, and evaluate risks and their consequences and 

impacts (Kaplan & Garrick, 1981). Risk management builds on the risk assessment 

process by seeking answers to a second set of three questions: What can be done and 

what options are available? What are the associated trade-offs in terms of all costs, 

benefits, and risks? And, what are the impacts of current management decisions on
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future options? Risk can be viewed as either objective or subjective (Haimes 1991, 

1998). Objective risk is based strictly on probabilities of events, and subjective are tied 

to human judgment where further information would alter the person’s assessment 

(Monroe, 1997).

“Uncertainty is the gap between certainty and the present state of knowledge” 

(Nikolaidis, 2005). Uncertainty is caused by lack of knowledge that also takes three 

forms: These forms are model, parameter and decision uncertainty. Modeling 

uncertainty can be the result of the use of approximations, conflicting expert opinions or 

using an incorrect form for the basic model. Parameter uncertainties can be the result of 

random errors in direct measurement. Decision uncertainty arises when there is 

controversy over how to compare or weigh objectives, how to select an index to 

determine risk, or how to quantify value and acceptable level of risk (Hampton, 2001). 

Extreme event risk is present in all areas of risk management (Haimes, 2004). Regardless 

weather the areas of concern are operational risk, insurance, market or credit, one of the 

most challenging items of risk management is the implementation of the most appropriate 

risk management models. This enables one to assess the rare but devastating events and 

permits the measurement of their consequences (McNeil, 1999).

Uncertainty plays a central role in the adaptive intelligence of human beings. 

Human intelligence categorizes and stores past experience in the form of generalized 

conditions to avoid unnecessary usage of the mental storage capacity required to retain 

“exhaustive” trial and error methods (Klir, 2001). Apostolakis identified the various 

phases that decision makers could follow in order to avoid risk and uncertainty. In his 

work he stated, “In every application a familiar pattern of progress is observed. Phase 1,
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the safety community of that industry is very skeptical about the usefulness of this new 

technology. Then during Phase 2, as engineers and decision makers become more 

familiar with the technology, they begin to pay attention to the insights produced by 

Quantitative Risk Assessment (QRA). Phase 3, confidence in QRA increases as more 

safety analysts use it and they begin to pay attention to the ‘positive’ insights. Entering 

Phase 3 usually requires a cultural change regarding safety management. This change is 

not always easy for engineers who have been using traditional ‘deterministic’ methods 

for years. In all three phases, risk insights alone are never the sole basis for decision

making” (Apostolakis, 2003).

“In the present research problem application, the preponderance of occurrences 

being assessed are in the distant future -  as much as 20 or 30 years. Feedback involving 

actual results or occurrences is impossible” (Conway, 2003). Under extreme events, and 

given an intense level of interference with the decisional processes, modeling of 

uncertainty by a scientist could be challenging to develop (Coles and Powell, 1996).

Booker suggested that “because uncertainties (especially epistemic ones) are 

difficult to estimate, it is important to establish the uncertainty and analysis reference or 

standard for the entire problem as early as possible” (Booker, 2004-a). On the other 

hand, Conway and Unal argued that algorithm development is an important tool to 

minimization of risk and uncertainty (Unal et al., 2004). However, Tolson stated that 

when the space mission is at stake, “managing and modeling uncertainty plays a major 

role in aero-assisted missions at Mars and other planets. Atmospheric uncertainty plays a 

major role to “worse-case” or numerous “safety-margin” approaches that would probably 

lead to unforeseeable anomalies and may risk mission feasibility. Although improved
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understanding and modeling will contribute to reducing risk, there will always be a 

residual uncertainty” (Tolson, 2004). Table 3 lists a summary of selected literature on 

risk and uncertainty in decision-making process.

Reference Risk and uncertainty in decision-making process

Apostolakis (2003)

In every application a familiar pattern of progress is observed. 
Phase 1, the safety community of that industry is very skeptical 
about the usefulness of this new technology. Then during Phase 2, 
as engineers and decision makers become more familiar with the 
technology, they begin to pay attention to the insights produced 
by Quantitative Risk Assessment (QRA). Phase 3, confidence in 
QRA increases as more safety analysts use it and they begin to 
pay attention to the “positive” insights. Entering Phase 3 usually 
requires a cultural change regarding safety management. This 
change is not always easy for engineers who have been using 
traditional “deterministic” methods for years. In all three phases, 
risk insights alone are never the sole basis for decision-making.

Baenen (1994)
Incorporates and exploits information about the structure of the 
knowledge representation to reduce the problem size and 
complexity taking into consideration risk and uncertainty.

Booker & McNamara 
(2004-a)

Because uncertainties (especially epistemic ones) are difficult to 
estimate, it is important to establish the uncertainty and analysis 
reference or standard for the entire problem as early as possible.

Hampton (2001)

Uncertainty caused by a lack of knowledge also takes three 
forms. These forms are model, parameter and decision 
uncertainty. Modeling uncertainty can also be the result of the use 
of approximations, conflicting expert opinions or using an 
incorrect form for the basic model. Parameter uncertainties can be 
the result of random errors in direct measurement. Decision 
uncertainty arises when there is controversy over how to compare 
or weigh objectives, selection of an index to determine risk, 
quantification of value and acceptable level of risk.

Table 3. Summary of selected literature to uncertainty in decision making
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Reference Risk and uncertainty in decision-making process

Helton (2004)

Epistemic uncertainty in model inputs are described:
An initial exploratory analysis to assess model behavior and 
provide insights for additional analysis; A stepwise analysis 
showing the incremental effects of uncertain variables on 
complementary cumulative belief functions and complementary 
cumulative plausibility functions; A summary analysis showing a 
spectrum of variance-based sensitivity analysis results that 
derives from probability spaces.

Klir & Smith (2001)

Uncertainty plays a central role in the adaptive intelligence of 
human beings. Human intelligence generalizes past experience to 
conditions in order to avoid the combinational explosion in 
storage capacity required for “exhaustive” intelligent human 
beings employ trail and error methods that have yet to be fully 
realized in machines.

Monroe (1997)

Risk can be viewed as either objective or subjective. Objective 
risk is based strictly on probabilities of events, and subjective are 
tied to human judgment where further information would alter the 
person’s assessment.

Nikolaidis (2005) Uncertainty is the gap between certainty and the present state of 
knowledge

Oberkampf et al. (2005)

Aleatory Uncertainty is an inherent variation associated with 
physical system of the environment also referred to as variability, 
irreducible uncertainty, stodiastic and random uncertainty. 
Epistemic Uncertainty is an uncertainty that is due to a lack of 
knowledge of quantities or processes of the system or the 
environment. Also referred to as subjective, reductive and model 
form uncertainties.

Pinto (2005)

Risk is often defined as a measure of the probability and severity 
of adverse effects. Even though some may use the term risk 
management to connote the entire process of risk assessment and 
management, it is commonly distinguished from risk assessment.

Tolson et al. (2004)

Managing and modeling uncertainty plays a major role in aero- 
assisted missions at Mars and other planets. Atmospheric 
uncertainty plays a major role to “worse-case” or numerous 
“safety-margin” approaches that would probably lead to 
unacceptable payload penalties and may risk mission feasibility. 
Although improved understanding and modeling will contribute 
to reducing risk, there will always be a residual uncertainty.

Unal et al. (2004) Algorithm development to minimization of risk and uncertainty.

Table 3. Continued - Summary of selected literature to uncertainty in decision

making
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2.4 Mathematical Approach to Risk and Uncertainty

In his classic 1976 book, Shafer stated the paradigm shift, which led him to 

formulate an alternative to the existing Bayesian formalism for automated reasoning, thus 

leading to what is commonly known as Dempster-Shafer (DS) evidential reasoning. The 

basic concept was that an expert’s complete ignorance about a statement need not 

translate into giving 1/2 a probability to the statement and the other 1/2 to its 

complement, as was assumed in Bayesian reasoning (Shafer, 1976). Recently, engineers 

and scientists began recognizing the absolute necessity of defining and addressing 

uncertainty. In the new era of super-speed personal computers, technology is equipped to 

better handle complex analyses, yet only one mathematical framework is relied upon and 

used to represent uncertainty: the probability theory.

Probability theory and evidence theory are introduced as possible mathematical 

structures for the representation of the epistemic uncertainty associated with the 

performance of safety systems. A representation of this type is illustrated with a 

hypothetical safety system involving one weak link and one strong link that is exposed to 

a high temperature fire environment. Topics considered include: (1) the nature of diffuse 

uncertainty information involving a system and its environment; (2) the conversion of 

diffuse uncertainty information into the mathematical structures associated with 

probability theory and evidence theory; and (3) the propagation of these uncertainty 

structures through a model for a safety system to obtain representations in the context of 

probability theory and evidence theory with an uncertainty in the probability (Oberkampf, 

2005).
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Probabilistic networks are graphical models supporting the modeling of 

uncertainty in large complex domains. The framework of probabilistic networks was 

designed for reasoning and uncertainty (Renooij, 2001). Uncertainties exist in every 

aspect of decision-making process. Previous work has shown that experts in the field of 

aerospace technology, employing advanced knowledge, can provide extremely valuable 

information during the life cycle of the operation of the space launch vehicles (Monroe, 

1997, Conway, 2003, Chytka, 2003). The proposed methodology is to develop a model 

utilizing high-risk environment experts and evidence theory that can assist in the task of 

quantifying uncertainty for aerospace vehicle technology. There are three types of 

uncertainty: Aleatory uncertainty, epistemic uncertainty and error as shown in Figure 4 

(Agarwal, 2004).

TYPES OF UNCERTAINTY

Aleatory Uncertainty 
(variability, irreducible)
Inherent variation of the 
system

It can be mathematically 
modeled using 
probability theory

T
Epistemic Uncertainty 
(reducible)
Incomplete information

Lack of Knowledge

Not enouh experimental data

Different mathematical models

Error

Figure 4. Classification of uncertainty (adopted by Agarwal, 2004)

Probability theory provides the two mathematical structures traditionally used in 

the representation of uncertainty:
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1. Aleatory or random uncertainty is an inherent uncertainty associated with the 

environment or some kind of physical system. Variability, random 

uncertainty, irreducible uncertainty, and stochastic uncertainty are other terms 

used describing aleatory uncertainty (Bae et al., 2003). An example is the 

atmospheric reaction of two different metals due to changes in temperature.

2. Epistemic uncertainty is due to lack of knowledge of quantities or processes of 

the system or the environment and appears to be subjective. Subjective 

uncertainty, incertitude uncertainty, and reducible uncertainty are other terms 

used describing epistemic uncertainty (Bae et al., 2003). An example is the 

presence of minimum amount of data that characterizes new processes and 

material.

3. Error. Estimation error is due to incompleteness of sampling information and 

our inability to estimate accurately the model parameters that describe 

inherent variability. Model imperfection is due to lack of knowledge or 

understanding of physical phenomena, or ignorance, and the use of simplified 

structural models, or errors of simplification (Der Kiureghian as cited by 

Nikolaidis, 2005).

Upper and lower probabilities are the basis that led to combination theory. 

Dempster’s rule of combination can be directly extended for the combination of N 

independent and equally reliable sources of evidence and its major interest comes 

essentially from its commutativity and associativity properties. When Dempster’s 

orthogonal sum rule is used for combining (fusing) information from experts who might
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disagree with each other, one obtains the usual Dempster-Shafer (DS) theory (Dempster, 

1967a).

Debois stated that absolute reliability implies that the analyst is qualified to make 

distinctions between the reliability of experts, sensors and/or other sources of information 

and can express this distinction between sources mathematically (Dubois et al., 1992). 

According to Klir when he was describing the Generalized Information Theory (GIT), the 

following axiomatic requirements, each expressed in a generic form, must be satisfied 

whenever applicable:

1. Subadditivity-the amount of uncertainty in a joint representation of evidence 

(defined on a Cartesian product) cannot be greater than the sum of the 

amounts of uncertainty in the associated marginal representations of evidence.

2. Additivity-the two amounts of uncertainty considered under subadditivity 

become equal if and only if the marginal representations of evidence are non

interactive according to the rules of the uncertainty calculus involved.

3. Range-the range of uncertainty is [0, M], where 0 must be assigned to the 

unique uncertainty function that describes full certainty and M depends on the 

size of the universal set involved and on the chosen unit of measurement.

4. Continuity-any measure of uncertainty must be a continuous functional.

5. Expansibility-expanding the universal set by alternatives that are not 

supported by evidence must not affect the amount of uncertainty.

6 . Branching/Consistency-when uncertainty can be computed in more ways, 

which are all acceptable within the calculus of the uncertainty theory 

involved, the results must be the same (consistent).
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7. Monotonocity-when evidence can be ordered in the uncertainty theory 

employed (as in possibility theory), the relevant uncertainty measure must 

preserve this ordering.

8 . Coordinate invariance-when evidence is described within the n-dimensional 

Euclidean space ( 1), the relevant uncertainty measure must not change 

under isometric transformations of coordinates.

When distinct types of uncertainty coexist in a given uncertainty theory, it is not 

necessary that these requirements be satisfied by each uncertainty type. However, they 

must be satisfied by an overall uncertainty measure, which appropriately aggregates 

measures of the individual uncertainty types (Klir, 2004). Table 4 describes contributions 

and summary of selected literature in mathematical approach to uncertainty.

Reference Summary of selected literature in mathematical 
approach to uncertainty

Ayyub (2001)

The purpose of aggregation of information is to 
meaningfully summarize and simplify a corpus of data 
whether the data is coming from a single source or 
multiple sources. Familiar examples of aggregation 
techniques include arithmetic averages, geometric 
averages, harmonic averages, maximum values, and 
minimum values.

Booker et al. (2004)

Aggregation of multiple expert estimates is a continuing 
research topic, but in the context of the challenge 
problems, it encompasses aggregation of the multiple 
interval estimates. Some common schemes include 
equal weights (maximum entropy solution), decision 
maker supplied weights, analyst supplied weights, 
experts weighting other experts, experts supplying self
weights, and Bayesian methods.

Table 4. Summary selected literature in mathematical approach to uncertainty
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Reference Summary of selected literature in mathematical 
approach to uncertainty

Dempster (1967a)

Upper and lower probabilities that led to combination 
theory. Dempster’s rule of combination can be directly 
extended for the combination of N independent and 
equally reliable sources of evidence and its major 
interest comes essentially from its commutativity and 
associativity properties. When Dempster’s orthogonal 
sum rule is used for combining (fusing) information 
from experts who might disagree with each other, one 
obtains the usual Dempster-Shafer (DS) theory.

Dubois & Prade (1992)

Absolute reliability implies that the analyst is qualified 
to make distinctions between the reliability of experts, 
sensors, or other sources of information and can express 
this distinction between sources mathematically.

Hampton (2001) Probabilistic methods, Latin hypercube and traditional 
triangular distribution.

Klir (2004)

The following axiomatic requirements, each expressed 
in a generic form, must be satisfied whenever 
applicable: Subadditivity, Additivity, Range, 
Continuity, Expansibility, Branching/Consistency, 
Monotonocity, Coordinate invariance. When distinct 
types of uncertainty coexist in a given uncertainty 
theory, it is not necessary that these requirements be 
satisfied by each uncertainty type. However, they must 
be satisfied by an overall uncertainty measure, which 
appropriately aggregates measures of the individual 
uncertainty types.

Monroe (1997) Risk and uncertainty was directly related to the 
complexity of system.

Table 4: Continued - Summary selected literature in mathematical approach to

uncertainty
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Reference Summary of selected literature in mathematical 
approach to uncertainty

Oberkampf et al. (2005)

Probability theory and evidence theory are introduced as 
possible mathematical structures for the representation 
of the epistemic uncertainty associated with the 
performance of safety systems. A representation of this 
type is illustrated with a hypothetical safety system 
involving one weak link and one strong link that is 
exposed to a high temperature fire environment. Topics 
considered include (1) the nature of diffuse uncertainty 
information involving a system and its environment, (2) 
the conversion of diffuse uncertainty information into 
the mathematical structures associated with probability 
theory and evidence theory, and (3) the propagation of 
these uncertainty structures through a model for a safety 
system to obtain representations in the context of 
probability theory and evidence theory of the 
uncertainty in the probability.

Shafer (1976)

Shafer stated the paradigm shift, which led him to 
formulate an alternative to the existing Bayesian 
formalism for automated reasoning, thus leading to 
what is commonly known as Dempster-Shafer (DS) 
evidential reasoning. The basic concept showed that an 
expert’s complete ignorance about a statement need not 
translate into giving 1/2 a probability to the statement 
and the other 1/2 to its complement, as was assumed in 
Bayesian reasoning.

Zadeh (1965) Fuzzy sets, unions and intersections, properties and 
mathematical solutions.

Table 4: Continued - Summary selected literature in mathematical approach to

uncertainty
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2.5 Analyses based in Probabilistic Approach

Probability theory is a popular approach in uncertainty quantification in 

engineering problems. Ayyub stated this in his definition as “With the term probability 

elicitation method, we denote any aid that is used to acquire a probability from an expert” 

(Ayyub, 2001). Generally, a distinction is made between direct and indirect methods. 

With direct methods, experts are asked to directly express their degree of belief as a 

number, be it a probability, a frequency or an odds ratio. For expressing probabilities, 

however, people find words more appealing than numbers. This is probably because the 

vagueness of words captures the uncertainty they feel about their probability assessment; 

the use of numerical probabilities can produce considerable discomfort and resistance 

among those not used to it (Renooij, 2001). In addition, since directly assessed numbers 

tend to be biased, various indirect elicitation methods have also been developed. With 

these methods, an expert is asked not for a direct assessment, but for a decision from 

which his degree of belief is conditional (Renooij, 2001).

A complicating factor, as noted by Clemen (1986) and French (1986), is that 

everything is conditional on the decision maker. Moreover, the issue not only involves 

the decision maker’s information about the events or variables of interest, but the 

possibility of dependence between this information and the experts’ information. Even 

without these complications, the decision maker’s perception of the experts (e.g., whether 

they are calibrated, whether there is dependence among the experts, whether cognitive 

biases are influencing the probabilities) plays an important role in the modeling process 

(Clemen, 1986, French, 1986). The need to combine expert’s probabilities frequently 

arises in cases in which other available information about the events or variables of
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interest is very limited. Indeed, the lack of relevant data is often what motivates a 

decision maker to seek out expert opinions (Winkler, 1986).

Based on Baenen, Bayesian belief networks are rooted in traditional subjective 

probability theory, which builds on the foundation of Pascalian calculus. In subjective 

probability theory, the probability of a proposition represents the degree of confidence an 

individual has about that proposition’s truth. This matches quite well to our knowledge 

base of information from a human expert in addition to his or her subjective beliefs about 

the accuracy of that information (Baenen, 1994). Before Bayesian belief networks are 

described, we must begin with the fundamentals of probability theory. Let A be some 

event within the context of all possible events E, within some domain, such that AO E 

and E  is the event space.

The probability of A occurring is denoted by P(A). P (A) is the probability 

assigned to A prior to the observation of any evidence and is also called the apriori 

probability. This probability must conform to certain laws. First, the probability must be 

non-negative and must also be less than one; therefore,

'’rfA € E, 0 < PC4) — 1 (j)

A probability of 0 means the event will not occur while a probability of 1 means the 

event will always occur. Second, the total probability of the event space is 1 or in other 

words the sum of the probabilities of all of the events Aj in E  must equal 1.

'iAeE,T.Ai=l (2)
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Finally, we consider the compliment of A, 5  A, which is all events in E  except for A. 

From equation (2) we then get:

?(A) + n ^ A )  = l  (3)

Now consider another event in E, B such that E  0 B. The probability that event A will 

occur given that event B has occurred is called the conditional probability of A given B 

and is represented by P(A | B). The probability that both A and B will occur is called the 

joint probability and is defined by P(A 1 B) . P(A \ B) is defined in terms of the joint 

probability of A and B by:

P (A n B )
P(A B) = —-------- }—  (4)

P(A | B)  ̂ }

Equation (4) can be further manipulated to yield Bayes Rule:

p( * | B ) = « M .  (5)
P(B)

If these two events are independent, in that the occurrence of one event has no effect on 

the occurrence of the other, then P(A | B) = P(^4) and P(2? | A) = Pf5). If we manipulate 

equation 5 still further we get:
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P(A | B) = ------------- P(B I A) X P(A)---------------  (6)
[P(B|A) X P(A)] + [P(B | A) X P(-iA)

This lays the foundation for managing and manipulating uncertainty using probability 

theory in expert systems. It allows us to turn a rule around and calculate the conditional 

probability of A given B from the conditional probability of B given A.

Some of the advantages of Bayesian belief networks are that the representation is 

visual and easy to understand. It is also relatively straightforward to implement as the 

methodology for combining uncertainty follows set rules and procedures. Probability 

theory is a well-refined method for dealing with knowledge of unknown certainty 

(Baenen, 1994).

Bayesian belief networks still have some problems. They require large numbers 

of probabilities that must be obtained from the human expert. The number of 

probabilities is dependent on the complexity of the conditional dependencies in the 

domain. They also cannot represent cycles (eg. A implies B and B implies A) or infinite 

loops would occur during inference. Additionally, because the sum of all possible states 

must equal 1, when evidence reinforces the belief in some possible world, it 

correspondingly decreases our belief in all other worlds. This is not necessarily the case 

in real life (Baenen, 1994). Bayesian networks require us to make certain artificial 

assumptions about the independence of information/events leading to counter intuitive, 

possibly incorrect results (ibid, pp. 6-10). Table 4 is a summary of selected literature in 

probabilistic approach.

The CDF describes the probability distribution of a random variable X. For every 

real number x, the distribution function of X is defined by:
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where the right of x represents the probability that X takes on a value less than or equal to 

x and the left of x represents the probability that X takes on a value greater than x. The 

probability that X lies in the interval [a, b] is, therefore, F(b) -  F(a) if a < b (Ayyub, 

2001).

In this research, the analysis of how often the random variable is above a 

particular level. This is referred to “the exceedance question” and is necessary for the 

correlation with Evidence theory. This graphical analysis called the complementary 

cumulative distribution function (CCDF), which can be defined by:

Fc(x) = P(X > x) = 1 -  F(x) (8)

CCDF curve is typically obtained by sampling based techniques and are, therefore, 

approximate. “These distributions mathematically describe a degree of belief, based on 

all of the available evidence (e.g., data, background knowledge, analysis, experiments, 

expert judgment), of the range and weight, in terms of likelihood, of the input values used 

in the analysis” (National Research Council, 1996). The complementary nature of the 

CCDF results in the right of x representing the probability that X takes on a value greater 

than or equal to x and the left of x representing the probability that X takes on a value 

less than x. Table 5 summarizes selected literature and previous contributions in 

probabilistic approach.
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Reference Selected literature in probabilistic approach

Ayyub (2001)
With the term probability elicitation method, it was 
denoted any aid that could be used to acquire a 
probability from an expert.

Baenen (1994)

Advantages of Bayesian belief networks: Representation 
is visual and easy to understand. It is also relatively 
straightforward to implement as the methodology for 
combining uncertainty follows set rules and procedures. 
Probability theory is a well-refined method for dealing 
with knowledge of unknown certainty

Baenen (1994)

Disadvantages of Bayesian belief networks: They require 
large numbers of probabilities that must be obtained from 
the human expert. The number of probabilities is 
dependent on the complexity of the conditional 
dependencies in the domain. They also cannot represent 
cycles or infinite loops would occur during inferencing. 
Additionally because the sum of all possible states must 
equal 1, when evidence reinforces the belief in some 
possible world, it correspondingly decreases our belief in 
all other worlds.

Booker & McNamara (2003) Statistical Analysis based on probably theory.

Booker & McNamara (2004)

Because uncertainties (especially epistemic ones) are 
difficult to estimate, it is important to establish the 
uncertainty and analysis reference or standard for the 
entire problem as early as possible.
Probability theory has become a fundamental theory for 
characterizing aleatoric uncertainty—uncertainty 
associated with phenomena such as random noise, 
measurement error, and uncontrollable variation.
With aleatoric uncertainty, the common conception is that 
uncertainty cannot be further reduced or eliminated by 
additional information (data or knowledge).

Chytka (2003) Bayesian methods and probability theory

Conway (2003) Calibration based on a new developed logarithm using 
probability theory

Dempster (1967a)

Presented evidence theory in terms of probability. 
Subjective probability theory assumes that individuals are 
always able to conceive compound events out of union, 
intersection and complementation of a given list of 
elementary events.

Table 5. Summary of selected literature in probabilistic approach
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Reference Selected literature in probabilistic approach

Hampton (2001) Uncertainty quantification based on Probabilistic 
methods.

Helton (2005)

Probability theory provides the mathematical structure 
traditionally used in the representation of epistemic (i.e., 
state of knowledge) uncertainty, with the uncertainty in 
analysis outcomes typically represented with probability 
distributions and summarized as cumulative distribution 
functions (CDFs).

Levi(1980) Bayesian decision theory, an approach to probability

Monroe (1997) Analyzed finding with cumulative distribution function 
and probability based principles.

Oberkampf et al. (2005)

In probability theory likelihood is assigned to a 
probability density function PDF.
Treat epistemic uncertainty as possible realizations with 
no probability associated with those realizations obtained 
from sampling.

Park et al. (2005) Uses Microsoft Excel Multiple Regression analysis and 
Probability Theory.

Renooij (2001)

This is probably because the vagueness of words captures 
the uncertainty they feel about their probability 
assessment; the use of numerical probabilities can 
produce considerable discomfort and resistance among 
those not used to it.

National Research Council 
(1996)

It is sometimes necessary to study how often the random 
variable is above a particular level. This is referred to 
“the exceedance question.”

Table 5. Continue - Summary of selected literature in probabilistic approach

2.6 Analyses based on a Non-Probabilistic Approach

Dempster-Shafer Theory. The advantages of Dempster-Shafer theory lie in its 

ability to better represent ignorance as well as its structure allowing evidence supporting 

one possible world to not necessarily detract from belief in all other worlds. The 

disadvantages occur because of its implementational complexity and the requirement for
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exhaustive enumeration of all possible combinations of hypotheses. Dempster Shafer 

theory also lacks an effective methodology for extracting inferences (Baenan, 1994).

Before an analysis is performed, the relationship among the Fuzzy Measures must 

be explained. According to Klir (1995) it is obvious from their mathematical properties 

that possibility, necessity, and probability measures do not overlap with one another 

except for one very special measure, characterized by only one focal element, which is 

called a singleton. Probability theory coincides with the sub-areas of Evidence Theory in 

which Belief measures and Plausibility measures are equal. The differences in 

mathematical properties of these theories make each theory suitable for modeling certain 

types of uncertainty and less suitable for modeling others which is shown in Figure 5 

(Klir, 1995).

FUZZV MEASURES

EVIDENCE 1HE0KY

PROBABILITY l l i l i E

PO S SIB IL IT Y  \C r i s p

Figure 5. Relationship between plausibility, probability and belief 

(adopted/modified from Klir, 1995)
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Is fuzzy logic better science than probability? No, it is a different science. Fuzzy 

logic and probability offer solutions to slightly different classes of problems. Fuzzy logic 

allows engineers to make explicit precision-versus-cost trade-offs. A fuzzy logistician 

would embrace the vagueness and make a model; if the model did not work, he would 

learn from the failure and build a better model (Almond, 1995).

Dubois used decision-maker uncertainty, which only require bounded, linearly 

ordered, valuation sets for expressing uncertainty and preferences, which is a testable 

descriptive approach of possibility theory. In this framework, pessimistic (uncertainty 

adverse) and optimistic attitudes can be captured (Dubois, 1992). A synthesis of the 

literature on non-probabilistic approach and their findings are listed in Table 6 .

Reference Selected literature on non-probabilistic approach

Almond (1995)

Is fuzzy logic better science than probability? No, it is a 
different science. Fuzzy logic and probability offer solutions to 
slightly different classes of problems. Fuzzy logic allows 
engineers to make explicit precision-versus-cost trade-offs. A 
fuzzy logistician would embrace the vagueness and make a 
model; if the model did not work, he would leam from the 
failure and build a better model.

Baenen (1994) Comparison of Probabilistic with non-probabilistic methods.

Booker & McNamara (2003)

Epistemic (lack of knowledge, reducible with more information) 
refers to an absence of complete knowledge—uncertainty that 
can be reduced or eliminated by increasing knowledge or sample 
size.

Dubois & Prade (1992)

Decision-maker uncertainty, which only require bounded, 
linearly ordered, valuation, sets for expressing uncertainty and 
preferences.
A testable descriptive approach of possibility theory. In this 
framework, pessimistic (uncertainty adverse) and optimistic 
attitudes can be captured.

Table 6. Summary of selected literature on non-probabilistic approach
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Reference Selected literature on non-probabilistic approach

Dubois, Prade (2001)

Nearest Neighbor” classifier method suggests (guarantees) the 
development of the model of uncertainty and handling of 
incomplete information.
Formalized the principles of evidence expressed in terms of 
possibility and tested in hypothetical cases.

Klir (1995)

It is obvious from their mathematical properties that possibility, 
necessity and probability measures do not overlap with one 
another except for one very special measure, characterized by 
only one focal element, which is called a singleton. Probability 
theory coincides with the sub areas of Evidence Theory in which 
belief measures and Plausibility measures are equal. The 
differences in mathematical properties of these theories make 
each theory suitable for modeling certain types of uncertainty 
and less suitable for modeling others.

Table 6. Continued - Summary of selected literature on non-probabilistic approach

2.7 Evidence Theory

Dempster-Shafer Theory (DST) was started by Arthur Dempster in the 1960’s and 

expanded by Glen Shafer in the 1970’s (Dempster, 1967a, Shafer, 1976). Dempster felt 

there was a need for a new system of dealing with uncertainty because of two 

shortcomings he saw with the probability theory. The Evidence theory can be defined as 

a mathematical model that establishes upper and lower limits of likelihood -  plausibility 

and belief respectively (Oberkampf, 2005).

There are three important functions in Dempster-Shafer theory: the basic 

probability assignment function (BPA or m), the Belief function (Bel), and the 

Plausibility function (PI). The basic probability assignment (BPA) is a primitive of 

evidence theory. Generally speaking, the term “basic probability assignment” does not 

refer to probability in the classical sense. The BPA, represented by m, defines a mapping 

of the power set to the interval between 0 and 1, where the BPA of the null set is 0 and
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the summation of the BPA’s of all the subsets of the power set is 1. The value of the 

BPA for a given set A (represented as m(A)), expresses the proportion of all relevant and 

available evidence that supports the claim that a particular element of A  (the universal 

set) belongs to the set A but to no particular subset of A (Klir, 1998, Dempster, 1967a, 

Shafer, 1976).

The value of m(A) pertains only to the set A and makes no additional claims about 

any subsets of A. Any further evidence on the subsets of A would be represented by 

another BPA, i.e. B clA, m(B) would the BPA for the subset B. Formally, this 

description of m can be represented with the following three equations:

m: P (A) -> [0,1] (9)

m(0) = 0 (10)

.Y jn (A )=  1 (11)
A e P  (W )

where P(A) represents the power set of A, 0  is the null set, and A is a set in the power set 

(.4 gP (A)) (Klir, 1998).

Some researchers have found it useful to interpret the basic probability 

assignment as a classical probability, such as (Chokr & Kreinovich, 1994), and the 

framework of Dempster-Shafer theory can support this interpretation. The theoretical 

implications of this interpretation are well developed in (Kramosil, 2001). This is a very 

important and useful interpretation of Dempster-Shafer theory but it does not demonstrate
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the full scope of the representational power of the basic probability assignment. As such, 

the BPA cannot be equated with a classical probability in general.

From the basic probability assignment, the upper and lower bounds of an interval 

can be defined. This interval contains the precise probability of a set of interest (in the 

classical sense) and is bounded by two no additive continuous measures called Belief and 

Plausibility. The lower bound Belief for a set A is defined as the sum of all the basic 

probability assignments of the proper subsets (B) of the set of interest (A) (B c  A). The 

upper bound, Plausibility, is the sum of all the basic probability assignments of the sets 

(B) that intersect the set of interest (A) (B n  A * 0 ) . Formally, for all sets A that are 

elements of the power set (/feP (A)), the following equations apply (Klir, 1998):

Bel (A) = X m(B) (12)
B | B<j>A

P l ( A ) = Z m ( B )  (13)
B | B 1 A ^  0  v  '

The two measures, Belief and Plausibility are non-additive.

It is possible to obtain the basic probability assignment from the Belief measure 

with the following inverse function:

where \A-B\ is the difference of the cardinality of the two sets. In addition to deriving 

these measures from the basic probability assignment (m), these two measures can be
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derived from each other. For example, Plausibility can be derived from Belief in the 

following way:

Pl(A) = 1 -  Bel(A ) (15)

where A is the classical complement of A. This definition of Plausibility in terms of 

Belief comes from the fact that all basic assignments must sum to 1.

Bel(A)= £m(B)  = Zm(B)  (16)
B | B 1 0

X m(B) = 1 - 1  m(B) n 7)
B|B<)>^t B | B 1 A ^ 0

From the definitions of Belief and Plausibility, it follows that Pl(A) = 1 -  Bel(A ). As a 

consequence of Equations 14 and 15, given any one of these measures (m(A), Bel(A), 

Pl(A)), it is possible to derive the values of the other two measures.

The precise probability of an event (in the classical sense) lies within the lower 

and upper bounds of Belief and Plausibility, respectively.

Bel (A) = P(A) = Pl(A) (18)

The probability is uniquely determined if Bel (A) = Pl(A). In this case, which 

corresponds to classical probability, all the probabilities, P(A) are uniquely determined 

for all subsets A of the universal set Y  (Yager, 1987). Otherwise, Bel (A) and PI (A) may
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be viewed as lower and upper bounds on probabilities respectively, where the actual 

probability is contained in the interval described by the bounds. Upper and lower 

probabilities derived by the other frameworks in generalized information theory cannot 

be directly interpreted as Belief and Plausibility functions (Dubois and Prade, 1992).

In summary, Basic Belief Assignment (BBA) is not probability, but just a belief 

in a particular proposition irrespective of other propositions. The BBA structure gives 

the flexibility to express belief for possible propositions with partial and insufficient 

evidence and also avoids our making excessive or baseless assumptions in assigning our 

belief to propositions (Bae, 2003). The summary of selected literature on evidence 

theory is shown in Table 7.

Reference Selected literature on evidence theory

Ayyub (2001)

A basic assignment can be related to the belief and 
plausibility measures; basic assignments of evidence are 
represented by a family of sets (Ai, A2., An) that are 
constructed for convenience and for facilitating the 
expression and modeling of expert opinions.

Bae & Graudhi (2003)

Basic Belief Assignment (BBA) is not probability, but just 
a belief in a particular proposition irrespective of other 
propositions. The BBA structure gives the flexibility to 
express belief for possible propositions with partial and 
insufficient evidence and also avoids our making excessive 
or baseless assumptions in assigning our belief to 
propositions.

Booker (2004)

Expert judgment is a subjective probability—a quantitative 
statement that reflects an individual’s degree of belief in the 
likelihood of a future and uncertain event, based on the 
knowledge and experience that the individual holds about 
similar past events. Subjective probability is part of 
epistemic uncertainty hence partially related to evidence 
theory.

Table 7. Summary of selected literature in evidence theory
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Reference Selected literature on evidence theory

Dempster (1967a)

An original contribution to evidence theory. Introduces the 
multi valued mapping from a space X to a space S carries a 
probability measure defined over subsets of X into a system 
of upper and lower probabilities over subsets of S.

Dubois & Prade (1992)
Upper and lower probabilities derived by the other 
frameworks in generalized information theory cannot be 
directly interpreted as Belief and Plausibility functions.

Hiillermeir, Dubois & 
Prade (2001)

Formalized the principles of evidence expressed in terms of 
possibility and tested in hypothetical cases.

Klir (1998)

From the basic probability assignment, the upper and lower 
bounds of an interval can be defined. This interval contains 
the precise probability of a set of interest (in the classical 
sense) and is bounded by two no additive continuous 
measures called Belief and Plausibility.

Klir & Smith (2001)

Explained the classification of uncertainties for evidence 
theory as monotone measures and non-additive measures 
that are called belief measures. When all focal elements in a 
given body of evidence are singleton’s, the associated belief 
measure and plausibility measure collapse into a single 
measure that is formally equivalent to the classical 
probability measure which is additive.

Klir & Wierman (1998)

The basic probability assignment (BPA) is a primitive of 
evidence theory. Generally speaking, the term “basic 
probability assignment” does not refer to probability in the 
classical sense. The BPA, represented by m, defines a 
mapping of the power set to the interval between 0 and 1, 
where the bpa of the null set is 0 and the summation of the 
BPA’s of all the subsets of the power set is 1. The value of 
the bpa for a given set A (represented as m(A)), expresses 
the proportion of all relevant and available evidence that 
supports the claim that a particular element of A (the 
universal set) belongs to the set A, but to no particular 
subset of A.

Table 7. Continued - Summary of selected literature in evidence theory
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Reference Selected literature on evidence theory

Oberkampf et al. (2005)

The Evidence theory can be defined as a mathematical 
model that establishes upper and lower limits of likelihood 
-  plausibility and belief respectively. Evidence theory can 
correctly represent uncertainties from intervals, degrees of 
belief and probabilistic information. Early in development 
and use for complex engineering systems. In evidence 
theory likelihood is assigned to sets. CPF and CBF can be 
viewed as upper and lower probabilities of possible values.

1) Focus debate on epistemic uncertainty issues in 
uncertainty quantification.

2) Better understand the effect of assumptions 
commonly made in uncertainty quantification 
analyses.

3) Move towards agreement on the most effective 
ways of representing uncertainty for decision 
makers.

Sentz & Ferson (2002)

Dempster-Shafer theory does not require an assumption 
regarding the probability of the individual constituents of 
the set or interval. This is a potentially valuable tool for the 
evaluation of risk and reliability in engineering applications 
when it is not possible to obtain a precise measurement 
from experiments, or when knowledge is obtained from 
expert elicitation.
An important aspect of this theory is the combination of 
evidence obtained from multiple sources and the modeling 
of conflict between them.

Shafer (1976)

The mathematical theory of Evidence. Deals with weights 
of evidence and with numerical degrees of support based on 
evidence. This theory does not focus on the act of judgment 
instead is amendable to mathematical analysis: the 
combination of degrees of belief or support based on one 
body of evidence.

Yager (1987)

Discusses Dempster-Shafer approach and measures of 
entropy, specificity for belief structures. Introduces 
alternative techniques for combining belief structures. 
Points out an important feature of combination rules as the 
ability to update an already combined structure when new 
information becomes available. This is frequently referred 
to as updating and the algebraic property that facilitates this 
is associativity.

Table 7. Continued - Summary of selected literature in evidence theory
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2.8 Literature Summary - Gap Analysis

Table 8 summarizes the authors’ contributions under their respective area of

research. Although this table does not contain all reference in used in this document, it

represents a comprehensive list of significant references:

T i: Experts Judgment Elicitation
T2: Risk and Uncertainty in Decision Making
T3: Mathematical Approach to Risk and Uncertainty
T4: Analyses based on Probabilistic Approach
T5: Analyses based on Non-Probabilistic Approach
T6: Evidence Theory

Authors T! T 2 t 3 t 4 Ts t 6
Almond (1995) X
Apostolakis (2003) X
Ayyub (2001) X X X X
Bae & Graudhi. (2003) X X X
Baenen (1994) X X X
Booker et al. (2004) X X X
Booker & McNamara (2003) X X X
Booker & McNamara (2004) X X X
Booker & McNamara (2004-b) X
Chytka (2003) X X
Conway (2003) X X
Dempster (1967a) X X X
Dempster (1967b) X X X
Dubois & Prade (1995) X X X
Fishoff (1984) X
Friel et al. (1990) X
Fragola & Bedford (2005) X
Groen (2000) X X
Hampton (2001) X X

Table 8. Literature summary and author’s contributions
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Authors Ti t 2 T3 t 4 Ts t 6
Harmanec (1996) X
Helton (2005) X X
Harmanec & Klir (1996) X
Helton & Oberkampf (2004) X X
Hixllermeir, Dubois & Prade (2001) X X
Klir (1995) X X X
Klir (2004) X
Klir & Folger (1998) X
Klir & Smith (2001) X X
Levi (1971) X
Liu (2004) X
Monroe (1997) X X X
Morgan & Henrion (1990) X
Mourelatos & Zhoou (2005) X
Mullin (1986) X
Nikolaidis (2005) X X
Oberkampf et al. (2005) X X X X
Park et al. (2005) X
Polya(1941) X
Renooij (2001) X X
Sentz (2002) X
Shafer (1976) X X
Shanteau (1987) X
Shanteau (1992) X
Shanteau & Peters (1989) X
Tolson et al. (2004) X
Unal et al. (2003) X
Yager (1987) X
Zadeh(1965) X
Zadeh (1995) X
Bondi (2007) X X X X X X

Table 8. Continued - Literature summary and author’s contributions
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The literature review indicates that much research has been done on expert 

judgment elicitation and probabilistic risk analysis. Recent work combined expert 

judgment and probabilistic risk analysis to quantify input parameter uncertainty so that 

risk analysis can be performed. The literature review also suggests Evidence theory may 

be a useful approach to extend uncertainty and risk assessment; however, as Table 8 

indicates, there does not appear to be much research on combining the three approaches 

of expert judgment, probabilistic risk analysis and Evidence theory, particularly with 

regard to high-risk operations. Such a methodology may prove to be a valuable addition 

to the literature in uncertainty and risk assessment.

2.9 The Research Problem and Significance

To support the study proposed, diverse work has been reported and used as tools 

of findings. Further, it is also evident that there is a firm basis for moving beyond the 

immediate effort to the ultimate goal of developing a comprehensive modeling aid for 

technology assessments for advanced launch vehicles. This research seeks to develop an 

approach that combines Expert Judgment Elicitation, Probabilistic risk assessment, and 

Evidence theory to better aid the decision maker in a high-risk environment. The 

questions to be answered by this proposed research are:

• Could Evidence theory be effectively utilized together with a Probabilistic 

approach for uncertainty assessments in high-risk environments?

• Could the use of Dempster-Shafer’s Evidence Theory lead to better informing 

decision makers?
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In particular, this research seeks a means of improvement in the methods of relaying 

information taken from high-risk experts to decision makers in order to identify levels of 

uncertainty and increase reliability in expert’s assessments.

The vast majority of studies on calibration of expert judgment involving 

probability assessments have dealt with outcomes that are observed or recorded, either as 

past events or occurrences or as near-term future events. In contrast with probability 

studies, this particular research is expected to result in a tool that produces more 

meaningful limits of uncertainty, based on calibrated high-risk judgment elicitation and 

evidence theory. The tool enables calibrated predictions that ultimately turn out to be 

inaccurate; however, it is anticipated that the technique provides the assessment of 

uncertainty. Such is the case with the thrust of this effort -expert judgment elicitation, 

application of evidence theory and probability theory, and the combination data relative 

to construction, operations and installation, for multidisciplinary design considerations in 

future CEV concepts employing many as-yet-unproven technology advances.
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3.1 Overview

This research further develops the high-risk expert judgment elicitation 

methodology in an attempt to assess and quantify input parameter uncertainties. The 

findings are applied to conceptual launch vehicle design study by using Dempster- 

Shafer’s Evidence Theory in conjunction with the Probability theory. Even though the 

parameter of uncertainty is quantified in terms of probabilistic distribution, a similar 

approach can be used with the Evidence theory. This involves tailoring for data collection 

and uncertainty quantification through interactions with the disciplinary experts. The 

methodology includes a capability for multi-expert judgment calibration and aggregation. 

The research results extend to quantify upper and lower limits of uncertainty over the 

construction, installation and operations anomalies that occur on the TPS in CEV.

This work is unique because calibration algorithms simulated by Monte Carlo 

random variable selection are created and applied to elicited expert judgment information 

using both Probability theory and Evidence theory. The elicitation is taken from selected 

experts of the Thermal Protection System in determining an expert’s best estimate based 

on their knowledge, information and belief regarding the number of potential anomalies 

during the lifecycle of the CEV.

Through the use of a graphical method this research provides various visual 

representations of the experts’ uncertainty values to assist in the integration and 

assimilation of a decision strategy. This is accomplished by combining the graphs of the 

CCDF derived by the Probability theory and the upper and lower limits derived by the
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Evidence theory. As a result of the means with which the aggregated results are 

conveyed, the decision makers may have more confidence in their decisions. The end 

result is that levels of uncertainty can then be propagated throughout the overall system 

using simulation or analytical methods to determine overall design risk. This 

methodology provides the decision maker with a very clear comparison of multiple 

experts’ probabilistic risk assessment relative to their non-probabilistic risk assessment, 

which addresses aleatory uncertainty that contains inherent randomness, epistemic 

uncertainty due to lack of knowledge, or a combination of both.

3.2 Expert Selection and Questionnaire Development

A primary problem in conducting risk analysis in conceptual launch vehicle 

design is the lack of historical data to quantify input parameter of uncertainty. Asking 

disciplinary high-risk experts for their best professional judgment may sometimes be the 

only option when data available is limited. In reference to launch vehicle design, 

Conway states, “[M]any expert judgment elicitation scenarios involve events whose 

occurrence can be validated, because they are either past events or near term future 

events. In such cases, calibration of the expert assessors can include feedback on their 

performance, which could be expected to improve future performance (self-calibration). 

In the present research problem application, however, the preponderance of occurrences 

being assessed is in the distant future -  as much as 20 or 30 years. Feedback involving 

actual results or occurrences is impossible” (Conway, 2003).

An expert judgment elicitation methodology for assessing uncertainty was 

developed in a prior study (conducted for Vehicle Analysis Branch at NASA, Langley

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

Research Center). The methodology borrowed features from the fields of psychology, 

knowledge engineering, operations research and computer science (Monroe, 1997).

In the present study, the high-risk experts were selected by NASA, ensuring 

objectivity and assessing subjective conclusions. The researcher has no prior knowledge 

of the background and level of expertise of the experts. A questionnaire was developed 

to qualify and quantify uncertainty associated with design parameters as a probability 

distribution and is used by many researchers (Monroe, 1997, Conway, 2003, Chytka, 

2004).

3.3 Definition o f  Input Variables

Designers of the TPS must address a series of complex problems as a result of the 

extreme variations of environmental factors in which the orbiter must operate. As a 

result, “a complete, integrated system was developed relying on different components to 

solve different problems” (Cooper and Holloway, 1981, Pate-Comell & Fischbeck,

1990). It is thought that critical subsystem anomalies of the TPS maybe a function of 

Construction, Installation, and Operations. For the purposes of this research,

Construction can be defined as the production portion of the TPS lifecycle, including 

design and manufacturing. Anomalies during this phase can include contamination of the 

tiles during fabrication, impurities in the raw materials, and lack of uniformity in 

tempering the tiles. Installation is defined as the portion of the TPS lifecycle that 

includes the original installation. Anomalies in this phase include misaligned tiles which 

reduces the strength of the bond, debonding of tiles, and pull test failure. Finally, 

Operations can be defined as the portion of the TPS lifecycle from initial lift-off through
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landing. Anomalies in this phase include extreme levels of pressure, heat, debris impact, 

and vibration (Pate-Comell & Fischbeck, 1990).

3.4 Probabilistic Approach: Cum ulative Distribution Function,

Complementary Cumulative Distribution Function and Monte Carlo 

Simulation

Probability theory provides the mathematical structure traditionally used in the 

representation of aleatory uncertainty, with the uncertainty in analysis outcomes being 

represented with probability distributions and summarized as Cumulative Distribution 

Functions (CDFs) (Helton, 1997).

The probability distribution of a discrete random variable is a list of probabilities 

associated with each of its possible values. It is also sometimes called the probability 

function or the probability mass function. All random variables (discrete and continuous) 

have a CDF. It is a function giving the probability that the random variable X is less than 

or equal to x, for every value x (Mendenhall, 1995).

Any cumulative probability distribution may be expressed in cumulative form.

The horizontal axis is the allowable domain for the given probability function. Since the 

vertical axis is a probability, it must fall between zero and one. It increases from zero to 

one as we go from left to right on the horizontal axis. A cumulative curve is typically 

scaled from 0 to 1 on the Y-axis, with Y-axis values representing the cumulative 

probability up to the corresponding X-axis value as shown in Figure 6 .
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Figure 6. CDF Curve

The CDF describes the probability distribution of a random variable X. For every 

real number x, the distribution function of X is defined by:

F(x) = P(X < x) (19)

where the right of x represents the probability that X takes on a value less than or equal to 

x and the left of x represents the probability that X takes on a value greater than x. The 

probability that X lies in the interval [a, b] is, therefore, F(b) -  F(a) if a < b (Ayyub, 

2001). If one bases the level of inherent uncertainty to probabilistic methods only, the 

relative frequency of findings will be expressed as:
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F(x)= j / ( x )d x  (20)

Using Monte Carlo simulation, the CDF curve could be obtained by:

m = (2 i)
ax

The reasoning is very important in understanding the cumulative curve in 

terms of sampling because the curve shape is based on the shape of the input probability 

distribution. The more likely outcomes will be more likely to be sampled. The more 

likely outcomes are in the range where the cumulative curve is the steepest. The more 

iterations, the smoother the cumulative curve becomes. This is referred to as “the 

exceedance question” and is necessary for the correlation with Evidence theory. This 

graphical analysis called the complementary cumulative distribution function (CCDF), 

which can be defined by:

Fc(x) = P(X > x) = 1 -  F(x) (22)

CCDF curve is typically obtained by sampling based techniques and are, therefore, 

approximate. “These distributions mathematically describe a degree of belief, based on 

all of the available evidence (e.g., data, background knowledge, analysis, experiments, 

expert judgment), of the range and weight, in terms of likelihood, of the input values used 

in the analysis” (National Research Council, 1996). The complementary nature of the
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CCDF results in the area right of x representing the probability that X takes on a value 

greater than or equal to x and the area left of x representing the probability that X takes 

on a value less than x (Ayyub, 2001). This study involves the analysis of how often the 

random variable is above a particular level as seen in Figure 7.

1.0

0.6—

PROBABILITY

o.i—

XMAXIMUM
DISTRIBUTION

MINIMUM
DISTRIBUTION

VALUE VALUE

Figure 7: CCDF Curve

The application of aggregation of multiple judgments using the linear opinion 

pool method was developed for each subject matter expert by Chytka (2003). Chytka 

derived the aggregation process by using the calibrated distributions through importing 

the calibrated variables into @RISK® Software in terms of minimum, most likely and 

maximum values. The “RiskTriang” function provided an adequate number of data 

points, resulting in the Cumulative Distribution Function (CDF) by the use of Monte 

Carlo Simulation as well as the Complementary Distribution Function (CCDF).
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Monte Carlo is a simulation tool capable of providing a relatively realistic 

representation of graphical results of “real data.” Monte Carlo simulation uses random or 

pseudo-random numbers to sample from several specified probability distributions. The 

sampling in Monte Carlo is entirely random, meaning that a single sample may fall 

anywhere within the distribution range of the inputs. Given enough iterations, also 

known as repeated sampling, the input distributions can be entirely recreated. A sample 

of 1000 or more is usually sufficient to avoid clustering and fully sample the input 

(Monroe, 1997).

The computerized program @RISK®uses the input of sampling in a simulation to 

generate possible values from distribution functions. These sets of possible values are 

then evaluated using the Microsoft® Excel worksheet. As a result, sampling is the basis 

for the hundreds of thousands of “what-if ’ scenarios the program calculates from the 

worksheet.

An important factor to examine when evaluating sampling techniques is the 

number of iterations required to accurately recreate an input distribution through 

sampling. Less iteration results in less “efficient” methods of deriving the approximate 

distributions. Monte Carlo sampling often requires a large number of samples to 

approximate an input distribution, especially if  the input distribution is highly skewed or 

has some outcomes of low probability.

3.5 Non-Probabilistic Approach: Evidence Theory

Probability theory has been criticized for lacking the capability of capturing 

epistemic uncertainty (Sentz and Ferson, 2002). Many theories have been developed and
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categorized into the “fuzzy measure theory” as a consequence of this criticism (Klir, 

2004). Further, “neither classical probability theory nor classical possibility theory are 

sufficiently general to fully recognize our ignorance without ignoring available 

information” (p. 36). The Evidence theory can be defined as a mathematical model that 

establishes upper and lower limits of likelihood -  plausibility and belief respectively 

(Oberkampf, 2005). It takes into account aleatory and epistemic uncertainty bounded by 

the belief and plausibility functions [Bel(Aj), Pl(Aj)] and is found without any 

assumptions made on the information obtained from the experts.

This theory has numerous applications, including engineering, medicine, 

statistics, psychology, philosophy and accounting (Sun & Farooq, 2004). The following 

is a listing and brief overview of two rules used to aggregate evidence for this research:

3.5.1 Dempster-Shafer's combination rule

The Dempster-Shafer’s combination rule is the first of its kind and the foundation 

for the other rules. The combination of basic assignments from two sources of 

information can be defined as (Ayyub, 2001):

w 1,2^4) :

X m\ (A,) m2 (Aj)
all A , r \ A j  = A

l - X m\ (4) m2 (AJ)
all Aj C\Ak = 0

A = 0 (23)
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The combination of independent sources of information is the basis of this rule, and it is 

characterized by the product combination rule. Shaffer explains this in his own 

statements as “Mathematically, Dempster's rule is simply a rule for computing, from two 

or more belief functions over the same set 0 , a new belief function called their 

orthogonal sum. The burden of our theory is that this rule corresponds to the pooling of 

evidence: if the belief functions being combined are based on entirely distinct bodies of 

evidence and the set 0  discerns the relevant interaction between those bodies of evidence, 

then the orthogonal sum gives degrees of belief that are appropriate on the basis of the 

combined evidence” (Shafer, 1976).

3.5.2 Yager’s combination rule

While Dempster-Shaffer’s rule allows for the combination of two expert opinions, 

Yager’s combination rule enables the combination of more than two expert opinions. 

Ayyub states, “Expert opinions in the form of subjective probabilities of an event need to 

be combined into a single value and perhaps intervals for their use in probabilistic and 

risk analyses” (Ayyub, 2001). Suppose Bel] and Bel2 are belief functions over the same 

frame of discernment 0  = {01, 62, . . . ,  On) with basic assignments mi and m2 , and focal 

elements Ai, A2, . . ., Ak and Bi, B2, . . . ,  B/, respectively. Then Yager’s combined basic 

assignments of the two sources of information can be defined as (Yager, 1987):
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C J  C = Air\Bj

my(C)

X m\ (A,) m2 (Bj), C ± Q ,  </>

mi (0) m2 (0) + X mi (Ai) m2 (Bj), C = 0
‘J 

A , O B j = <f>

0, C=(/>

(24)

3.5.2 Selecting a Combination Rule

According to Sentz and Ferson (2002), one should determine the requirements of 

the situation as disjunctive pooling, conjunctive pooling or tradeoff in order to select the 

appropriate combination rule. For example, the Dempster-Shafer’s combination rule is 

applicable for conjunctive pooling, and Yager’s combination rule is suited for tradeoff. 

They further explain that there must be consideration for the level of development of the 

theories and their use in the particular situation.

Bayesian probabilities are traditional applications of probabilistic methods to 

epistemic and subjective uncertainty (Sentz & Ferson, 2002). The Evidence theory 

essentially “combines the Bayesian notion of probabilities with the classical idea of sets 

where a numerical value signifying confidence can be assigned to sets of simple events 

rather than to just mutually exclusive simple events” (Bogler & Wright, 1992). 

Comparing Bayesian probabilities to evidence theory, Dempster-Shafer combination rule 

applied in Evidence theory is more “efficient and effective” than the Bayesian judgment 

rule found in Bayesian probabilities because “the former does not require a priori 

probability and can process ignorance” (Sun & Farooq, 2004).
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Yager (1987) proposed a combination rule that is a modified version of Dempster- 

Shafer combination rule due to some limitations to this approach, such as the counter

intuitive results for some pieces of evidence (Zadeh, 1979,1984,1986), computational 

expenses and independent sources of information (Yager, 1987) as explained in (Sun & 

Farooq, 2004). Yager’s rule is considered to be the most prominent of the alternative 

combination rules based on the class of unbiased operators developed and addresses 

counter-intuitive results (Yager, 1987).

In reference to Dempster-Shafer’s rule, Yager’s (1987) stated, “it can be easily 

shown that the operation of orthogonal sum of belief structures (m) satisfies the following 

properties” (p. 110):

(1) Commutativity:

m i^m 2 = m2&mi (25)

(2) Associativity:

m is&(m,2'&rni) (26)

He indicated that these two properties allows us to combine multiple belief structures (m)

by repeating the application of Dempster-Shafer’s rule, thus mi, m2, mn are n pieces

of evidence combined as:

m = m]-&m2J& (27)
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Yager’s general framework was developed “by look[ing] at combination rules where 

associative operators are a proper subset”. The algebraic properties satisfied by this rule 

are commutativity and quasiassociativity (ibid.).

The basic assignment (m)

A basic assignment (m) is an assessment of the likelihood of an element “x” of 

“A”’ to each set in the family of sets identified (Ayyub, 2001).

A basic assignment can be conveniently characterized by:

m:Px -* [  0,1] (28)

A basic assignment must satisfy the following two conditions:

m (0) = 0 (29)

X m(A) =1 n  o)
a ll  A  £ P x

If m(Aj) > 0 for any i, A, is also called a focal element.

These three functions can be viewed as alternate representations of uncertainty regarding 

the same parameter x.

The bounds of uncertainty are identified by the two functions known as:
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Belief (lower) function:

Bel (At) = X m(At)
a ll  A j  £  A i

(31)

Plausibility (upper) function:

PI (Ai) = I  m(Aj) (32)
A j C \A i * ■ 0

The belief measure and plausibility measure as presented by Ayyub (2001) are as 

follows:

The belief measure (Bel)

The belief measure (Bel) should be defined on a universal set X  as a function that 

maps the power set X to the range [0 ,1] as given by:

where Px is the set of all subsets of X  and is called the power set of X. The power

The plausibility measure (PI)

The belief measure (Bel) has a dual measure called the plausibility measure (PI) 

as defined by the following equation:

(Bel): Px ^  [0,1] (33)

set has 21X1 subsets in it.

Pl(A) = 1 -  Bel(A) (34)
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where A is a subset that belongs to the power set Px.

It can be shown that the belief and plausibility functions satisfy the following 

condition for each A in the power set:

Pl(A)>Bel(A) (35)

According to Belief and Plausibility Functions, the likelihood for Event A lies in 

the interval [Bel(A), P1(A)] as shown in Figure 8 (Bae, 2003).

Bel(A) UNCERTAINTY Bel(-^A)

Pl( A)

Figure 8. Belief (Bel) and plausibility (PI) relationship (Bae, 2003)

Dempster-Shaffer methods of Evidence Theory is applied by identifying the upper 

limit of uncertainty called Cumulative Plausibility Function (CPF) and lower limit of 

uncertainty called Cumulative Belief Function (CBF). Figure 9 is the graphical 

representation of the CPF and CBF.
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Figure 9. Graphical representation of CPF and CBF

3.6 Aggregation Methodology

Uncertainty quantification using the Evidence theory in a low-risk environment 

has been previously explored (Bae, 2003). Due to the incomplete information and a lack 

of knowledge and statistical data that exists in large complex systems, Bae’s study called 

into question whether the Probability theory is suitable because the requirement to 

characterize the distribution of probability is not compatible. “Evidence theory, also 

known as Dempster-Shafer theory, is proposed to handle the epistemic uncertainty that 

stems from lack of knowledge about a structural system. Evidence theory provides us 

with a useful tool for aleatory (random) and epistemic (subjective) uncertainties” (Bae, 

2003). Given the lack of information in high-risk environments, it is more reasonable to 

present boundaries for the result of uncertainty quantification, as opposed to a single 

value of probability.
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Using a graphical method, this study provides various visual representations of 

the experts’ uncertainty values to assist in the integration and assimilation of a decision 

strategy. This is accomplished by combining the graphs of the CCDF derived by the 

Probability theory and the upper and lower limits derived by the Evidence theory, which 

provides the decision maker with a very clear comparison of multiple experts’ 

probabilistic risk assessment relative to their non-probabilistic risk assessment.

3.7 Framework

Bae explored uncertainty quantification using the Evidence Theory in a low-risk 

environment (2003). According to the study, “[B]ecause of the need to characterize the 

distribution of probability, classical probability theory may not be suitable for a large 

complex system such as an aircraft, in that our information is never complete because of 

lack of knowledge and statistical data. Evidence theory, also known as Dempster-Shafer 

theory is proposed to handle the epistemic uncertainty that stems from lack of knowledge 

about a structural system. Evidence theory provides us with a useful tool for aleatory 

(random) and epistemic (subjective) uncertainties” (Bae, 2003).

Although a similar mathematical framework is developed by this research, the 

differences between the two studies are:

• The present research problem application is a high-risk engineering

environment that uses exploratory state of the art technological innovative 

ideas.
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• The preponderance of occurrences being assessed are in the distant future; as 

much as 20 or 30 years. Feedback involving actual results or occurrences is 

impossible” (Conway, 2003).

• A formal expert judgment elicitation is performed.

• A questionnaire specifically designed to accommodate these specific fields in 

engineering during the operations phase of the project life cycle is distributed 

and data is collected.

• The uncalibrated limits of each entry are incorporated into a spreadsheet and 

values are assigned.

• A normalization is performed to prepare the values into Dempster-Shaffer’s 

Evidence Theory format.

• The Basic Belief Assignments structures is assigned in a way to obtain a 

combined pinion (mi ,2) as shown in the following equation:

X  mi (At) m2 (Aj)
all A, Pi A, = A

mw(A)=  !_ X  m, (A) m2 (Aj) A = 0  (36)
ail 4  n .4  = 0

where At and Af denote propositions from each of the sources. In the above 

equation, the denominator can be viewed as a conflict or contradiction among 

the information given by the independent sources. According to Dempster’s 

rule, even when irregularities or conflicts are noticed among the answers of 

the expert’s judgment, each conflict will be disregarded. The data will be
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normalized with the complimentary degree of contradiction because it is 

designed to use consistent opinions.

• The degrees of belief and plausibility are obtained.

• The findings are aggregated.

• A combined judgment is produced indicating the limits of uncertainty -  the 

upper bounds and lower bounds of belief and plausibility.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

4. Research Results and Analysis

4.1 Overview

Under the supervision of NASA Langley Research Center, the future aerospace 

Thermal Protection System (TPS) for the Crew Exploration Vehicle (CEV) was selected 

for the application of the aggregation methodology. The deployment of this methodology 

incorporates uncertainty assessment in high-risk environments using expert judgment 

elicitation through a combined probabilistic and non-probabilistic approach. A combined 

approach for assessment of both aleatory and epistemic uncertainties facilitates the 

assessment of subject matter expert’s expertise and confidence is utilized for calibration. 

This research further develops the high-risk expert judgment elicitation methodology in 

an attempt to assess and quantify input parameter uncertainties. The findings are applied 

to CEV design study by using Dempster-Shafer’s Evidence Theory in conjunction with 

the Probability theory. Even though the parameter of uncertainty is quantified in terms of 

probabilistic distribution, a similar approach can be used with the Evidence theory. In 

addition, the methodology presented could be proven applicable in a variety of 

disciplines and could be particularly useful for adopting new technologies for future 

concepts.

Figure 10 shows the logical step-by-step order of operations with which the 

methodological conclusions of this study were derived.
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Figure 10. Process of data collection and analysis

The future aerospace CEV, which has highly uncertain variables, was selected 

for the application of the aggregation methodology under the supervision of NASA 

Langley Research Center. The researcher adapted a previously developed questionnaire 

in order to meet the criteria and mathematical models selected. A pre-selected panel of 

experts agreed to participate in this study. This research was exempted by the 

Institutional Review Board for the protection of experimental subjects due to the careful
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design and deployment of the questionnaire instrument. The expert judgment elicitation 

methodology included background data of experts for the determination of confidence, 

risk and philosophy profile.

Once the expert judgment elicitation questionnaire assembly was complete, a 

meeting was coordinated with the pre-selected subject-matter experts and the researcher. 

The questionnaire was personally administrated to the experts. Once the data was 

collected, a normalization factor was applied to each expert’s input based on the 

summation of all options to comply with Evidence theory operations.

The results of the input of each expert are then applied in the development of the 

CDF and CCDF, relying strictly upon aleatory uncertainties. Cumulative Distribution 

Function (CDF) shows the probability of an occurrence is less than a given value, 

whereas the Complementary Cumulative Distribution Function (CCDF) shows whether 

the probability of an occurrence will exceed a given value; therefore, the CCDF enables 

the comparison of the graphical results of using both Probability theory and Evidence 

theory.

Through the questionnaire, each expert was asked the likelihood of each scenario. 

The experts provided three values of the likelihood of anomaly. These values represent 

low, moderate and high likelihood. The experts also provided their personal opinion as to 

which of the values is most likely to occur. The basic assignment of each expert is used 

in an additive manner to compute the unions of belief and plausibility measures. Then 

the aggregated results are input into Monte Carlo simulation using @RISK® program 

(Palisade, 2004). Lastly, meaningful limits of uncertainty are derived and conveyed in a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

clear and concise graphical representation that will potentially enable decision makers to 

better assess uncertainty levels presented by multiple experts in high-risk environments.

4.2 Problem Application Selection

The future aerospace Crew Exploration Vehicle (CEV) was selected for the 

application of the aggregation methodology under the supervision of NASA Langley 

Research Center. Although this research is versatile and potentially has a wide range of 

uses, the utilization of the aggregated methodology in this problem application is ideal 

due to the availability of experts in this field and the pertinence of the subject matter. In 

addition, this research was carried out as part of a multi-disciplinary endeavor to expand 

current knowledge of uncertainty assessment.

The questionnaire and the questionnaire application process were reported to 

Institutional Review Board (IRB) representatives of Old Dominion University, and 

copies of the questionnaire were furnished. It was concluded that this research would 

qualify for an exemption from full IRB procedures for human subject research based on 

the questionnaire output NOT being damaging in any way (civil or criminal liability, 

employability, or financial) to subject participants, and NOT dealing with sensitive 

aspects of any subject’s behavior. It was also determined that the utilization of as few as 

three experts was adequate for this study.

The system chosen for the present research is the Thermal Protection System 

(TPS) for the conceptual CEV, which has highly uncertain variables. The three variables 

chosen that best describe possible anomalies during the TPS lifecycle are Construction
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(production), Installation (debonding of tiles), and Operations (debris damage at lift-off 

that causes bum through), and all combinations.

Construction can be defined as the production portion of the TPS lifecycle, 

including design and manufacturing. Installation is defined as the portion of the TPS 

lifecycle that includes the original installation. Operations can be defined as the portion 

of the TPS lifecycle from initial lift-off through landing.

4.3 Questionnaire Design

The Questionnaire followed a combination of Monroe (1997), Conway (2003) 

and Chytka’s (2003) methodologies. The experts are asked to consider the input 

parameters and select an option representing the believed assessment based on the given 

selection of anomalies and the nominal values. Traditionally, the level of expertise of the 

participating experts in any field and especially in a high-risk environment has been the 

focus of many decision makers. The questionnaire is compiled from previously noted 

findings based on literature review. The expert judgment elicitation questionnaire is 

shown in Appendix A. Expertise is categorized into different segments including:

• Age can be related to the level of expertise

• Degree of expertise compared to peers in the same discipline

• Self-assessment of his/her level of expertise

• Background questions place the expert in a level with respect to the 

confidence level
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• Assessment of his attitude or philosophy manifests the confidence in 

judgment

Additional indicator selection was offered to the experts, in case the values were 

above or below the pre-selected nominal values. The experts were asked to rate each 

input parameter using the likelihood option of each critical system failure due to the 

given anomalies. The scale used to determine each input parameter in a qualitative 

format was a 5-point rating scale (Low, Low/Moderate, Moderate, Moderate/High, and 

High). If the expert believed that the given values should be modified, he was asked to 

provide a new point estimate for the nominal value. He was also allowed to provide any 

scenarios that may change his estimates and any reasoning, or assumptions used to reach 

his conclusions.

In order to evaluate the TPS of the CEV, causes of possible anomalies must be 

determined by the experts. These anomalies will be analyzed with respect to: (i) 

construction; (ii) installation; (iii) operations; (iv) the union between construction and 

installation; (v) the union between construction and operations; (vi) the union between 

Installation and Operations; and (vii) the union between Construction, Installation and 

Operations. The previous performance characteristics could assist the decision makers to 

assess future mission requirements. Each relationship may be comprised by a set of 

parameters, which defines the estimation relationship.

A list of input parameter variables with associated nominal values for subject 

matter experts compiled the TPS associated with the conceptual design team. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

classical Nominal Group Technique was used to identify the most highly uncertain input 

parameters from the list, using Pareto principle approach (Chytka, 2003).

The questionnaire was comprised of three sections -  Background, Anchoring, and 

Assessment of Uncertainty. The experts were asked several anchoring questions and 

specific questions based on their general knowledge and expertise in terms of the TPS. 

They were then asked to select one of the answers using scales provided. During the 

estimation, the experts were asked to add any other possible critical subsystem failures 

due to anomalies not already included in the questionnaire. The experts were asked to list 

the factors that influence their thinking processes and asked to provide comments and 

suggestions for future improvements of the questionnaire. The entire sample of expert 

judgment elicitation questionnaire is shown in Appendix A.

Following earlier work (Monroe, 1997, Conway, 2000, Hampton, 2001, Conway, 

2003, Chytka, 2003), the questionnaire is modified to address not only the importance of 

the previous findings but as to set-up the current research mode. The main objective of 

this research is to highlight a series of parameters that may impact overall operations and 

support requirements for a spacecraft for possible modification. For each parameter the 

expert is asked to indicate the probable cause of each failing part, whether it is isolated or 

in combination with other parts. Further the expert is asked to identify to the best of his 

or her knowledge whether this anomaly was caused by:

• Construction

• Installation

• Operation

• A union between construction and installation
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• A union between construction and operation

• A union between installation and operation, or

• A union between construction, installation and operation.

In the present study, the high-risk experts were pre-selected by NASA from a 

target population of NASA-Langley Research Center aerospace engineers and are 

recognized subject-matter experts. The pre-selection ensures objectivity and assesses 

subjective conclusions. The researcher has no specific prior knowledge of each expert’s 

background and level of expertise prior to administering the questionnaire.

4.4 Data Collection

Once the expert judgment elicitation questionnaire assembly was complete, a 

meeting was coordinated with the pre-selected subject-matter experts and the researcher. 

The experts were briefed as to the intent, the layout and design of the questionnaire. The 

experts were then given the opportunity to request clarification on the questionnaire 

instrument. No clarification was requested at that time. The experts were given printed 

copies of the questionnaire and asked to complete it to the best of their knowledge. Once 

completed, the questionnaires were returned to the researcher for analysis.

Figure 11 illustrates the questionnaire response process.
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Expert examines and selects 
input variables for anomaly 
assessment Example:

C Moderate 0.186

Expert continues answering the questionnaire with 
“Moderate” being the variable of interest

Questionnaire section is completed with “Moderate” used 
as the variable assessed

Expert continues the remaining of the questionnaire with 
option of choosing another variable within the list until all 
variables are exhausted. Expert is also given the 
opportunitv to add anv other possible causes of TPS failure

Figure 11. Questionnaire response flow schematic

4.5 Normalized Assessments

To use the Evidence Theory, the combination of expert opinions should not 

exceed the value of one. In order to achieve this, a normalization factor must be applied 

to each expert’s input based on the summation of all options (Ayyub, 2001). The basic 

assignment of each expert can be used in an additive manner to compute the unions of 

belief and plausibility measures: The solution then can be expressed in a form of 

minimum and maximum probabilities of the Evidence Theory (Dempster, 1967a and
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1967b). After this process is performed on the results for two experts, the judgments are 

united to produce the combined judgment of belief and plausibility.

After the combined judgment of the first two experts is achieved, the third 

expert’s values are introduced through Yager’s combination rule. Once these 

computations are complete, the aggregated results are input into Monte Carlo simulation 

through Palisade’s @RISK® program (2004).

4.6 Data Analysis

4.6.1 Monte Carlo Simulation

Aggregation of multiple experts is a common mathematical technique to assist 

decision makers. Monte Carlo simulation has the capacity to aggregate the empirical 

distributions. Monte Carlo is a computational tool that arbitrarily generates a large 

collection of models pursuant to the probability distribution for the purposes of 

uncertainty analysis (Palisade, 2004). Monte Carlo simulation was used as a means of 

analysis to produce results similar to the Complementary Cumulative Distribution 

Function curve showing the upper limits and lower limits of plausibility and belief 

measures for the varying values of displacement. The computerized program @RISK® 

uses the input of sampling in a simulation to generate possible values from distribution 

functions. These sets of possible values are then evaluated using the Microsoft® Excel 

worksheet. As a result, sampling is the basis for the hundreds of thousands of “what-if ’ 

scenarios the program calculates from the worksheet.
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4.6.2 Probabilistic Risk Assessment

The questionnaire was used to collect expert’s assessment of the possible 

percentage of anomalies occurring with regard to TPS. “It is thought that critical 

subsystem failures of the Thermal Protection System (TPS) maybe a function of 

Construction (production), Installation (debonding of tiles) and Operations (such as, 

debris damage at lift-off that causes bum through). If you think there may be other 

causes, you will be asked to list them later in the questionnaire” (Appendix A). The 

categories used for the selection of the critical failures of the TPS were Constmction, 

Installation, and Operations and/or possible combinations of the above. Through the 

questionnaire, each expert was asked the likelihood of each scenario. The experts 

provided three values of the likelihood of anomaly. These values represent low, 

moderate and high likelihood. The experts also provided their personal opinion as to 

which of the values is most likely to occur. (Figure 12 presents each expert’s 

assessments for constmction, installation, operations, and the unions in minimum, most 

likely, and maximum likelihood numbers.)
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PROBABILITY TO PR O D U C E  C D F

Expert 1 Expert 2 Expert 3
Construction Construction Construction

Min 0.0750 Min 0.0010 Min 0.0500
Most Likely 0.2000 Most Likely 0.0500 Most Likely 0.3250
Max 0.5000 Mix 0.1000 Max 0.5000

Install atlen Instal ation Instat ation
Min 0 J 7 50 Min 0.1000 Min 0.0500
Most Likely 0.20 00 Most Likely 0.5000 Most Likely 0.3250
Max 0.5000 Max 1.0000 Max 0.5000

Operations Operations Operations
Min 0.0010 Min 0.0010 Min 0.0500
Most Likely 0J5O0 Most Likely 0.0100 Most Likely 0.3250
Max 0.1000 Max O.05O0 Max 0.5000

C l C lJ l C U I
Min 0.0750 Min 0.1000 Min 0.0500
Most Likely 0.1375 Most Likely 0.5000 Most Likely 0.1500
Max 0.4000 Max 1.0000 Max 0.5000

€U O C l 10 CU O
Min 0.0750 Min 0.0010 Min 0.0500
Most Likely 0.1125 Most Likely 0.0500 Most Likely 0.3250
Max 0.3000 Max 0.1000 Max 0.5000

IU O IU O IU O
Min ■0.0750 Min 0.1000 Min 0.0500
Most Likely 0.2000 Most Likely 0.5000 Most Likely 0.3250
Max 0.4000 Max 1.0000 Max 0.5000

cm u o eu uo cuiuo
Min 0.1000 Min 0.2000 Min 0.0500
Most Likely 0.3000 Most Likely 1.1000 Most Likely 0.3250
Max 0.4000 Max 1.5000 Max 0.5000

Figure 12. Assessment for detection of anomalies, from questionnaire

Cumulative Distribution Function (CDF) shows the probability of an occurrence 

is less than a given value, whereas the Complementary Cumulative Distribution Function 

(CCDF) shows whether the probability of an occurrence will exceed a given value; 

therefore, the CCDF enables the comparison of the graphical results of using both 

Probability theory and Evidence theory. Triangular distributions were defined in terms of
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minimum (a), most likely (c) and maximum values (b). The location of c in reference to 

a and b determines how much probability exists on either side of c.

1. The values provided by each individual expert were imported into the 

@RISK® software in basic form -  minimum (low), most likely (moderate), maximum 

(high) values -  and triangular distributions are built for each variable assessing the 

uncertainty using the “RiskTriang” function. The aggregation algorithm is coded into a 

separate input cell as shown in Figure 13. The results of this aggregation are the values 

of the combined distributions that are “most likely.”

=RiskTriang(0.075,0.2,0.5)*0.17+RiskTriang(0.075,0.2,0.5)*0.17+ 
RiskTriang(0.001,0.05,0.1)*0.04+RiskTriang(0.075,0.1375,0.4)*0.11+ 
RiskTriang(0.075,0.1125,0.3)*0.09+RiskTriang(0.075,0.2,0.4)*0.17+ 
RiskTriang(0.1,0.3,0.4)*0.25

Figure 13. Aggregation algorithm for expert 1

2. The simulation settings module permits the specification of how much 

iteration one wants to use, and the type of sampling preferred. For this application, 

Monte Carlo simulation was selected. A sample of 5000 iterations was selected for the 

one simulation that would produce the CDF for each expert.

3. The CDF curve is drawn. For comparison reasons, the same scale is used 

for the x-axis and y-axis for all experts. Then, the CCDF curve is also drawn and both 

functions are plotted for Expert 1 in Figure 14. Steps 1 through 4 are repeated for Expert 

2 in Figure 15 and Expert 3 in Figure 16.
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EXPERT i  -  PROBABILISTIC RESULTS

£
m
a m ©wSL

S.2

m 1s S. 3

PERCENT ANOMALIES

EXPERT 1 -  PROBABILISTIC RESULTS

o.? 0,80 9,1 9,2 «,« 1

PERCENT ANOMALIES

Figure 14. CDF and CCDF of expert 1

The value of the x-axis represents the cumulative percentage of anomalies that 

occur during the entire lifecycle of the CEV. The value of the y-axis represents the 

probability that these anomalies will result in critical system failure. The CDF curve in 

Figure 14 was developed as a result of the responses of Expert 1 and indicates that it is 

this Expert’s opinion that if  approximately fifty percent of the previously defined 

anomalies occur, total system failure is most likely to take place. Although system 

failure is still possible, a ten percent occurrence of the defined anomalies overall would
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not nearly be as great a risk in the opinion of Expert 1. This expert’s assessment of 

anomalies is within the bounds of approximately 0.08 to 0.50.

EXPERT 2  -  PROBABILISTIC RESULTS

o.i

0.78 0.2 0% 0.8 0£ O.f 1

PERCENT ANOMALIES

EXPERT Z  -  PROBABILISTIC RESULTS

8 8.1 8.2 0.3 8,4 0,$ 0.6 8.7 8.8 0.9 1

PERCENT ANOMALIES

Figure 15. CDF and CCDF of expert 2

The CDF curve in Figure 15 was developed as a result of the responses of Expert 

2 and indicates that it is this expert’s opinion that if approximately ten percent of the 

anomalies occur, total system failure is most likely to take place. As a matter of fact, it is 

this expert’s opinion that just about any occurrence of anomalies will result in
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catastrophic system failure. This expert’s assessment of anomalies is within the bounds 

of approximately 0.00  to 0 .10.

EXPERT 3  -  PROBABILISTIC RESULTS

0.5

>*I- * • 0.8

m•<
§ «
&%

8.8 0 8 10 0.1 0.3 0.4

PERCENT ANOMALIES

EXPERT 3  -  PROBABILISTIC RESULTS

0.2

0 0.1 M 0 J 1

PERCENT ANOMALIES

Figure 16. CDF and CCDF of expert 3

The CDF curve in Figure 16 was developed as a result of the responses of Expert

3. This expert’s bounds are largely similar to those of Expert 1; however, the difference 

in the shape of the curve is an indicator of the variance of the options selected. The curve
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based on the opinion of Expert 3 is more linear than Expert 1 ’s curve. This expert’s 

assessment of anomalies is within the bounds of approximately 0.08 to 0.50.

In probabilistic terms, the more likely outcomes are in the range where the 

cumulative curve is the “steepest” (Palisade, 2004). Based on the probabilistic results 

presented by the three experts, one might select Expert 2 as the most certain; however, 

the results do not supply sufficient information to make that determination.

4.6.3 Non-Probabilistic Risk Assessment Using Evidence Theory

The expert assessments from the questionnaire are also incorporated into the basic 

probability assignment (m) of the Evidence theory for the computation of the Belief 

(lower) and Plausibility (upper) limits of uncertainty; however, before beginning the 

computations, the basic probability assignment must be normalized to follow the rules of 

the Evidence theory, which dictates that the summation of all inputs (Failure Causes) 

must equal to one. The normalized factor is the sum of all basic probability assignment 

values provided by each expert. The normalized factor for Expert 1 is 1.20, Expert 2 is 

2.71 and Expert 3 is 2.10 as can be seen in Figure 17. The normalized factor of 1.20 is 

multiplied by each basic probability assignment. For example, the construction error’s 

basic assignment was 0.20 * 1.20 = 0.17. A similar simple operation is performed for the 

remaining anomalies for each expert.
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EVIDENCE THEORY TO PRODUCE UPPE R AND LOWER LIMITS OF UNCERTAINTY

Failure C ause
EXPERT t EXPERT 2 EXPERT 3

Basic
Assignment Normalize

Basic
Assignment Normalize

Basic
Assignment Normalize

C = Constmction Error 0.20 0,17 0.05 0.02 0.33 0.15
i •  Installation Error b i o 0.17 0.50 0.18 0.33 0.15
0  *  Operations Error 0.05 0.04 0,01 0.00369 0.33 0.15
G U I 0.14 0.11 0.50 0.18 0.15 0.07
C U O 0.11 0.09 0 J 5 0.02 0.33 0.15
IU O 0.20 0,17 0.50 0.18 0.33 0.15
C U I U O 0.30 0.25 1.10 0.41 0.33 0.15
TOTAL 1.20 1.00 2.71 1,00 2.10 1.00

Figure 17. Normalization of basic assignment of all experts

The next step is to substitute the normalized basic assignments into mi basic 

assignment column. Figure 18 lists the possible failure causes based on Dempster- 

Shafer’s Belief and Plausibility functions as follows:

• The first three failure causes (C, I, & O) or subsets are directly mapped into the 

belief column.

• The values of CUI are the additive values of C, plus I, plus CUI.

• The values of CUO are the additive values of C, plus O, plus CUO.

• The values of IUO are the additive values of I, plus O, plus IUO.

• The assignment of CUIUO was computed based on the equation shown, to obtain

a total of one for the assignments provided by each expert.

(-in\
all A e  P x

The belief and plausibility measure was computed based on the following 

equations for any set A ,ePx :
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8 e / ( A ) = I m ( A )  g m %  Im(A)  (38)
allA jc.Ai a l l A j T i m * 0

As an example, Figure 18 shows that belief for Expert 1 is 0,17 and plausibility is 

0.63. These numbers indicate a measure of the lower and upper limits of uncertainty for 

Expert 1 as expressed by the expert. A similar operation is repeated for Expert 2.

B E L IE F  C Q i IPU TA T10N S

SUBSET* EXPERT t EXPERT 2 COMBINED JUDGMENT 1,2

Failure Cause m , B el, m j Bel? n»i.} Bel,,*
C = Construction Error 0,17 0,17 0.02 0.02 0.15 0.15
1 = Installation Error 0,17 0.17 0.18 0.18 0.35 0,35
0  = Operations Error 0.04 0.04 0.00 0.00 0.05 0.05
C U I 0.11 0.45 0.18 0.39 0.13 0.62
C U O 0.09 0.30 0.02 0.04 0.05 0.25
IU O 0.17 0.38 0.18 0.37 0.16 0.56
C U I U O d i s 1.00 0,41 1.00 0.11 1.00
TOTAL 1,00 1.00 1.00

PLAU SIBILITY C O M PU TA TIO N S

SUBSET* EXPERT 1 EXPERT 2 COMBINED JUDGMENT 1,2

Failu re  Cause m i Pi, m PI* P l«
C = Construction Error 0.17 0.63 0.02 0.63 0.15 0.44
1 *  Installation Error 0.17

„
0.18 0.96 0.35 0.75

0  *  Operations Error 0.04 0.55 0 00 0.61 0.05 0.38
C U I 0.11 0.96 0.18 1.00 0.13 0.95
C U O 0,09 0.83 0.02 0.82 0.05 0.65
IU O 0,17 0,83 0.18 0.98 0.16 0.85
C U I U O 0.25 1.00 0.41 1.00 0.11 1.00
TOTAL 1.00 1.00 1.00

Figure 18. Dempster-Shafer’s belief and plausibility for experts 1 and 2

The application of Yager’s rule allows us to further expand the number of experts. 

The combined judgment generated by Experts 1 and 2 is transferred into Figure 19 and 

the third expert’s basic assignment is computed. The results produce the combined 

judgments of all three experts.
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B E L IE F  C m PUTATON3

SUBSET* EXPERT 1,2 EXPERT 3 COMBINED JUDGMENT 1,2,3

Failure C ause Bel i tt m . B el,

C *  Construction Error 0.15 0.15 0.15 0.15 0.21 0.21
1 = installation Error 0.35 0.35 0.15 0.15 0.40 0.40
0  *  Operations Error 0.05 0.05 0.15 0.15 0.17 0,17
C U I 0.13 0.62 0.07 0.38 0.05 0.66
C U O 0.05 0.26 0.15 0.46 0.05 0.42
IU O 0.16 0,66 0.15 0.48 0.10 0.66
C U I U O 0.11 1.00 0.15 1.00 0.03 1.00
TOTAL 1.00 1.00 1.00

PL A U SIB IL ITY  COMPUTATIO N S

SUBSET* EXPERT 1,2 EXPERT 3 COMBINED JUDGMENT 1,2,3

Failure C a u se m u Pl« Wj Pb •ni.M Pb,«
C = Construction Error 0.15 0.44 0.15 0.54 0.21 0.34
1 *  Installation Error 0.35 0.76 0.15 0.54 0.40 0.68
0  = Operations Error 0.05 0.38 0.15 0.62 0.17 0.34
C U I 0.13 0.96 0.07 0.85 0.06 0.83
C U O 0.05 0.65 0.15 0,85 0,05 0.60
IU O 0.16 0.85 0.15 0.85 0.10 0.79
C U I U O 0.11 1.00 0.15 1.00 0.03 1.00
TOTAL 1.00 1.00 1.00

Figure 19. Yager’s rule belief and plausibility for experts 1,2 and 3

Lastly, the lower bounds or minimum value is called Belief and the upper bounds 

or maximum value is called Plausibility. These bounds or values are converted to a 

cumulative graphic form for each expert. In order to interpret these graphs, the following 

information needs to be recognized:

• The v-axis represents the expert’s assessment of the likelihood of NASA’s TPS 

system failure

• The x-axis represents the range of the expert’s estimated confidence interval or 

the level of uncertainty.

When an expert provides through the use of the questionnaire an interval, then the expert 

is telling the researcher that the true value could be anywhere within this interval.
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For example: One wants to determine the solution space and/or confidence 

interval for Expert 1 at which a 40 percent likelihood of a negative impact on TPS system 

failure. From the graph, the solution space/confidence interval is between (a) and (b) 

and, therefore, between 0.30 and 0.83. For comparison purposes, the same scale is used 

for the x-axis and y-axis for all experts and functions are plotted for each expert. Figures 

20  -  22 show the graphical representation of each expert’s belief and plausibility 

judgments.

EXPERT I EVIDENCE THEORY RESULTS
1.0

«
§ 0.6a

«  0 .4

O.i 0 .2 0 .4  0 .5  0 .6

UNCERTAINTY

0 .7  0.6 | 0 .9  1.0

(b)

Figure 20. Evidence theory graphical results for expert 1

Figure 20 is a graphical representation of uncertainty based upon the total 

combined evidence obtained from Expert 1 during the elicitation process and illustrates 

the boundaries of belief and plausibility of this expert’s hypothesis with regard to the 

unknown parameter. This unknown parameter is the likelihood of system failure due to 

the pre-defined anomalies and the various unions. The upper and lower limits shown in 

this graph are indicators of a conservative, minimum risk taker expert with equal levels of 

certainty and uncertainty.
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EXPERT 2 " EVIDENCE THEORY RESULTS

1.0

0 .8

0.6

0
0 .1  0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 .8  0 .9  1 .00

UNCERTAINTY

Figure 21. Evidence theory graphical results for expert 2

Much like the previous figure, Figure 21 is a graphical representation of 

uncertainty based upon the total combined evidence obtained from Expert 2 during the 

elicitation process and illustrates the boundaries of belief and plausibility of this expert’s 

hypothesis with regard to the unknown parameter; however, Figure 21 shows Expert 2 

expressing greater levels of uncertainty than Expert 1.

Evidence theory allows both researcher and decision maker to assess the values of 

the belief (minimum) and plausibility (maximum) of an extended cumulative distribution 

function. If the separating distance between minimum and maximum values is as great as 

shown in Figure 21, then the level of uncertainty is large; meaning, that there is a clear 

indicator that additional data is required before a decision is made. The results based on 

this particular expert’s responses do not provide the decision maker with a tangible model 

on which to base a decision, making the results of the Evidence theory for this expert 

inconclusive.
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EXPERT 3 -  EVIDENCE THEORY RESUETS
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Figure 22. Evidence theory graphical results for expert 3

Figure 22 is the graphical representation of uncertainty based upon the total 

combined evidence obtained from Expert 3 illustrating the boundaries of belief and 

plausibility of this expert’s hypothesis with regard to the unknown parameter. Figure 22 

indicates Expert 3 expressing less variance between upper and lower limits of uncertainty 

than Experts 1 and 2.

The separating distance between minimum and maximum values in this Figure is 

much narrower than is seen in Figure 21. This indicates that the level of uncertainty for 

this expert is much smaller by comparison. The results based on this particular expert’s 

responses provide the decision maker with a stronger model.

4.7 Aggregation o f  Probability and Evidence Analysis

The graphical combination between CCDF and Evidence theory is an unaltered or 

unmanipulated representation of the experts’ results. The intention of this study is not, by 

any means, to perform an evaluation of experts. Rather, it is intended to be an
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application and true representation of uncertainty assessments of actual experts in real 

high-risk environments and provide a visual representation of the experts’ uncertainty 

value for integration and assimilation in to a decision strategy.

The opinion of Expert 1 shows consistency in terms of the results of the 

Probability and Evidence Theory; however, it is difficult to determine the level of 

uncertainty of the decision when evaluating probabilistic results alone without the 

assistance of the evidence theory as shown in Figures 14 and 20.

EXPERT 1 -  COM BINED RESULTS

1.0

2  O.a

0.6

0 .4

g 0 .2

O .i 0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 .8  0 .9  1 .00
ANOMALIES /  UNCERTAINTY  

Figure 23. Probability & Evidence theory graphical results for expert 1

Figure 23 represents the combined graphical results using both probabilistic and 

non-probabilistic results based on the responses of Expert 1. The CDF was derived using 

Monte Carlo simulation to analyze the numerical input of Expert 1. Then the 

complement of the CDF is calculated and graphed as shown. The upper and lower
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bounds derived through the use of Evidence theory are then imposed on the graph. The 

intervals between belief and plausibility are wide, which indicates that this Expert’s level 

of uncertainty is reasonably large; however, the estimation falls under the most 

pessimistic part of the range. Although the probabilistic distributions do not have to be 

enclosed by the upper and lower limits of the Evidence theory, both probabilistic and 

non-probabilistic results are consistent.

The graphical combination between CDF and Evidence Theory of the opinion of 

Expert 2 shows confidence in his assessment that virtually any occurrence of anomalies 

would almost certainly result in total system failure; however, the non-probabilistic 

assessment of his uncertainty level is significantly greater than the other experts (See 

Figure 24).

EXPERT 8 -  COMBINED RESULTS

S 0.8

0.6

0 .4

0.8

0
o . i  0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 .8  0 .9  1 .00
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Figure 24. Probability & Evidence theory graphical results for expert 2
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The level of uncertainty of Expert 2 is much greater than both experts due to the 

extremely wide separation between belief and plausibility. The horizontal distance 

between belief and plausibility provides a clear assessment of the uncertainty level of this 

expert that adds very inconclusive results to the findings. If evaluation was based strictly 

on a probabilistic assessment, the expert’s opinion would argue that any given anomaly 

on any part of the TPS development could be proven catastrophic; however, the evidence 

supports a wide range of uncertainty of his decision.

EXPERT 3 -  COMBINED RESULTS

2  0.8 •

0 .6

0 .4

0 .1  0 .2  0 .3  0 .4  0 .5  0 .6  0 .7  0 ,8  0 .9  1 .00
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Figure 25. Probability & Evidence theory graphical results for expert 3

Figure 25 represents the combined graphical results using both probabilistic and 

non-probabilistic results based on the responses of Expert 3. The probabilistic results for 

this expert are much like the results for Expert 1; however, the probabilistic results when 

superimposed upon the non-probabilistic graph paint a different picture. Like Expert 1, 

this expert’s CCDF falls on the pessimistic part of the range, and both the probabilistic
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and non-probabilistic results for this expert are consistent. The marked differences in this 

expert’s graphical results are the narrow range between belief and plausibility and the 

small variance of the CCDF. Expert 3’s probabilistic and non-probabilistic assessments 

show that the evidence supports this expert’s assessment of the probability of system 

failure as a result of the given anomalies and are very well balanced.

In an attempt to further analyze the uncertainty for each expert, a parallel scale of 

each expert based on a specific anomaly was developed, which could be visualized as a 

birds-eye-view of the curves. Figure 26 shows possible anomalies due to construction for 

all three experts. For Expert 1, the top line indicates probabilistic uncertainty range. The 

lower line shows a difference between Belief and Plausibility values taken from Figures 

18 and 19.

Expert 1 ’s assessment of level of uncertainty for both Probability and Evidence 

theories are similar. The ranges of uncertainty as seen in Figure 26 for Expert 1 are 

roughly the same. Expert 2’s probabilistic assessment is extremely steep in comparison 

to the broad level of non-probabilistic uncertainty indicating inconsistency in the level of 

uncertainty with this particular technology. Expert 3’s probabilistic assessment is more 

reliable by comparison to the level of non-probabilistic uncertainty, and the assessments 

made were consistent for both theories. When evaluating the level of knowledge among 

the three experts, it appears as though Expert 3 is more experienced and consistent and 

the decision maker should place more weight upon this expert’s advice.
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ANOMALIES DUE TO
CONSTRUCTION

EXPERT 1 

EXPERT 2 

EXPERT 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Figure 26. Expert assessment of anomalies due to construction

Figure 27 demonstrates probable anomalies due to Installation by all three 

experts, and the results for Experts 1 and 3 are largely congruent to the results displayed 

in Figure 26. Expert 1 ’s probabilistic assessment is slightly smaller in comparison to the 

level of non-probabilistic uncertainty, and Expert 3’s probabilistic assessment is slightly 

greater in comparison to the level of non-probabilistic uncertainty. Expert 2’s 

probabilistic assessment, however, is much larger in comparison to the level of non- 

probabilistic uncertainty. This Expert’s responses indicate that the level of uncertainty is 

high because the cumulative distribution is extremely wide and the results are confirmed 

by the Evidence graph showing the variance of the levels of uncertainty.
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ANOMALIES DUE TO
INSTALLATION

EXPERT 1 

EXPERT 2 

EXPERT 3

0 0.1 0.2 0.3 0.4 0.5 0.6  0.7 0.8 0.9 1.0 

Figure 27. Expert assessment of anomalies due to installation

Figure 28 demonstrates probable anomalies due to Operations by all experts. 

Both Experts 1 and 2’s probabilistic assessments are much smaller in comparison to the 

level of non-probabilistic uncertainty. Expert 3’s probabilistic assessment is similar size 

with the level of non-probabilistic uncertainty, reflecting this Expert’s consistency and 

balance shown in his responses.
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ANOMALIES DUE TO
OPERATIONS

EXPERT 1

EXPERT 2

EXPERT 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Figure 28. Expert assessment of anomalies due to operations

The above figures indicate the information that can be gained from using the 

combined probabilistic and non-probabilistic approach. Even though probabilistic 

assessments quantify an uncertainty range, Evidence theory results provide comparable 

information that adds a dimension to probabilistic results. These results may indicate that 

an expert’s confidence in assessment maybe much lower than a probabilistic assessment 

alone indicated.

The graphical method used in this research provides various visual representations 

of the experts’ uncertainty values to assist in the integration and assimilation of a decision 

strategy. The combination of the graphs developed by the CCDF derived by the 

Probability theory and the upper and lower limits derived by the Evidence theory, could
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provide the decision maker with a very clear comparison of multiple experts’ 

probabilistic risk assessment relative to their non-probabilistic risk assessment.

One of the biggest challenges for a decision maker is to understand and translate 

the level of uncertainty of the experts. Modeling the uncertainty is an efficient approach 

for the decision maker to visualize uncertainty given. This combined approach utilizing 

Evidence Theory for assessment of both aleatory and epistemic uncertainties facilitates 

the assessment of subject matter expert’s expertise and confidence, may be utilized for 

calibration, and has developed a tool that may allow decision makers in high-risk 

environments to assess uncertainty levels presented by multiple experts. Finally, the 

methodology presented could be applicable in a variety of disciplines including the 

aerospace technology, and could be used especially for adopting new technologies for 

future concepts.

4.8 Limits o f  Uncertainty Assessment

A big challenge of the concurrent research was to maintain neutral levels of 

uncertainty when changing mathematical models of aleatory and epistemic uncertainty 

during formalization of findings. To achieve this “neutrality,” the researcher used the 

same amount of information presented by the expert’s for both Probabilistic analysis and 

Evidence theory. The mathematical formulation of each theory leads to the graphical 

results of the CDF and the upper and lower bounds of uncertainty. There was no 

information added, replaced or eliminated from the input of variables. Rather all answers 

were preserved and used as given.
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Given the nature of high-risk operations, many times decisions are made under 

critical conditions wherein decision makers are not afforded adequate time for a robust 

questionnaire follow-up. Practical means to facilitate a follow-up that can satisfy these 

stringent time constraints need to be developed.

4.9 Validation

The current research is an attempt to assess the levels of uncertainty for future 

TPS design through expert judgment elicitation, using the maximum amount of experts 

within this region and applying Probability and Evidence theories. Each time there is a 

knowledge-based situation that utilizes human experts, assistance from previous findings 

on using methods of validation is a necessity. Validation is defined as “the process of 

determining the degree to which a model or simulation is an accurate representation of 

the real world from the perspective of the intended uses of the model or simulation” 

(DoD, 2003).

According to Shepard, the four validity tests are content, predictive, concurrent 

and construct (Shepard, 1993). Content validity is based upon an individual’s 

performance on a “defined” universe of tasks. Predictive validity is used to forecast 

future performance and involves the collection of criterion data after the test. Concurrent 

validity is more appropriate when the proposal of a new test substitutes a less convenient 

measure that is already being accepted. Finally construct validity is needed when making 

inferences about invisible attributes of a person’s character, such as intelligence or 

anxiety (Shepard, 1993).
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The questionnaire in this study is based upon the instrument developed by Chytka 

(2003). Her method of instrument validation is comparable to that of Shepard; however, 

whereas Shepard’s methodology has four aspects, Chytka employs a Validation Triad.

Validation was performed in the current study based on three aspects: Content 

validity, performance validity and structural validity (Chytka, 2003). The subject-matter 

experts were interviewed in person relative to the content validity. They were asked for 

comments with regard to the questionnaire instrument about:

• Ease of use

• Appropriateness of structure and scaling method

• Clarity of context and content

The decision maker was then interviewed in person relative to the performance 

validity as well as the structural validity of the methodology. The decision maker was 

asked to comment relative to decision-making strategies on:

• The efficacy and increased value of the aggregation

• The effectiveness of the uncertainty representation

• The usefulness and applicability of this method beyond the current study

The validation results from the interviews with the subject-matter experts indicate

that the questionnaire is clear, prudent and concise. The interview with the decision 

maker verified that the results are representative, and are useful, practical and well- 

structured. Further, the decision maker indicated that this methodology will assist 

decision makers to assess the level of uncertainty in conceptual design.

The validation of the mathematical models used for this research is based on 

Sell’s model dimensions to validation: consistency, completeness, soundness, precision
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and usability (Sell, 1985). Sell defines consistency as “the same inputs resulting in the 

same outputs.” In addition, both theories have practical applications and are considered 

to be an extension of the soundness requirement due to the precision of probabilistic 

outcomes (Sell, 1985). Completeness is an attribute within the range of the model’s 

application that allows all outcomes to be derived and all sets of inputs to produce an 

output. This research was designed to preclude bypassing any of the steps involved. 

Soundness demands that everything derivable through the operations also be true. The 

Probability theory and the Evidence theory are established mathematical models that 

produce consistent, complete and pertinent results.

The mathematical models used for this research followed precisely the rules 

dictated by their perspective theories. The data and graphical analyses produced resulted 

from the computational use of all the formulas presented in Chapter 3 -  Methodology.
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5. Conclusions

5.1 Discussion

Many factors contribute to the analysis of a solution space in high-risk 

environment. While mathematical models used to assess uncertainty, such as the 

probabilistic approach, have had successful applications, the results are not as robust as is 

required for high-risk operations. This research relies heavily upon the inputs from the 

high-risk experts and involves eliciting expert judgment to derive the numerical raw data 

used in the analyses. An initial questionnaire was developed that addresses conditions 

encountered during high-risk operations and includes questions that were useful for both 

Probability and Evidence theories. The questionnaire was utilized for uncertainty 

assessment, using NASA’s Crew Exploration Vehicle (CEV) Thermal Protection System 

(TPS) as an example. This research focused on the combination and aggregation of 

variables while taking into consideration the uncertainty of each expert’s input and the 

results, which were then applied in the development of the CDF and CCDF, relying 

strictly upon aleatory uncertainties. Then the upper plausible limits and lower belief 

limits were derived based upon a combination of aleatory and epistemic uncertainties.

As with probabilistic analysis, results show that a clear-cut interpretation of 

Evidence theory graphs alone may not be possible. For example, Expert 3’s judgment 

seemed to indicate most confidence given the narrowest range between belief and 

plausibility, where Expert 2’s judgment seemed to indicate the least confidence with the 

largest range between belief and plausibility; however, such a conclusion may be 

misleading without further investigation. Expert l ’s results indicated that he had more
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confidence in his opinion than Expert 2, yet his opinion had less balance than Expert 3. 

Using a graphical method, this research provided various visual representations of the 

experts’ uncertainty values to assist in the integration and assimilation of a decision 

strategy. This could provide the decision maker with a very clear comparison of multiple 

experts’ probabilistic risk assessment relative to their non-probabilistic risk assessment.

A combined approach utilizing Evidence Theory for assessment of both aleatory 

and epistemic uncertainties demonstrated in this research could provide insights required 

to reach a more informed decision. The combined approach facilitates the assessment of 

subject matter expert’s expertise and confidence and may be utilized for calibration. This 

research and application study has developed a tool that may allow decision makers to 

assess uncertainty levels presented by the experts. In addition, the methodology 

presented could be applicable in a variety of disciplines including the aerospace 

technology, and could be used especially for adopting new technologies for future 

concepts.

This research has made the following contributions:

• Contribution to theoretical findings: Explored the boundaries among high-risk 

environments and addressed uncertainty by utilizing both a probabilistic method 

and Evidence theory using expert judgment elicitation.

• Contribution to Methodology: This research demonstrated a framework that may 

be utilized in constructing upper and lower limits of uncertainty for a more 

meaningful representation to the decision makers.

• Contribution to Practice: Provided combined method specifically designed to 

assist in addressing uncertainty in high-risk engineering environments.
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The above results are achieved by performing expert judgment elicitation with a 

specific questionnaire designed for the operations and support phase of a space 

transportation system.

The main objective of this research has been to seek alternative approaches that 

can aid the decision maker to assess the level of uncertainty of expert judgment when 

historical data is scarce. The intent of this research was not proving that Probability 

Theory is better than Evidence Theory or vice versa, rather to expand the comparative 

evidence of the findings. Further, the graphical combination between CCDF and 

Evidence theory is an unaltered or unmanipulated representation of the experts’ results. 

The intention of this study is not, by any means, to perform an evaluation of experts. 

Rather, it is intended to be an application and true representation of uncertainty 

assessments of actual experts in real high-risk environments and provide a visual 

representation of the experts’ uncertainty value for integration and assimilation into a 

decision strategy. Sometimes overconfidence in one’s opinion is a mark of inexperience, 

thus rating one’s level of expertise based on uncertainty level is not prudent.

Using probabilistic approach or Evidence theory alone could produce 

inconclusive results that can potentially cause flawed decisions; however, a combined 

approach as demonstrated in this research can provide more useful information to the 

decision maker. Probability theory is a well-researched and practiced methodology that 

provides the mathematical structure traditionally used in the representation of aleatory 

uncertainty. The probabilistic uncertainties in analysis outcomes are represented with 

probability distributions and are typically summarized with CDF. The most familiar 

technique is the Monte Carlo simulation. Probabilistic uncertainty analysis is very widely
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used, has undergone many proofs, has numerous mathematical derivations, and is 

understood by many because of its simplicity; however, Probability theory has had some 

recent critiques due to the random nature of the outcome, some recent failures, and has 

been criticized as a theory of chance. Many innovators in this field agree that a more 

comprehensive means of assessing uncertainty is needed. Consequently, the extension of 

the efforts to define the development of a more robust system has lead to the 

development of the Evidence theory. Evidence theory provides a promising alternative to 

probability theory. It allows for a fuller representation of the implications of uncertainty 

as compared to a probabilistic representation of uncertainty. Evidence theory can handle 

not only aleatory uncertainty but epistemic uncertainty as well. It provides the decision 

maker with a range of values as opposed to a single arbitrary value. It also allows for 

different types of uncertainty. Experts in this field agree that of the new methods of 

assessing uncertainty, Evidence theory is a very strong model; however, Evidence theory 

is not widely used, is yet to have any applications in the engineering field, and is 

understood by very few. Probability theory and Evidence theory are comparable 

methodologies; however, they are conceptually inverse functions in that as the probability 

of a given occurrence increases, the experts’ uncertainty logically will decrease. In this 

study, Probability theory is utilized to address the probability of the occurrence of an 

event (system failure due to an anomaly) while Evidence theory is used to addresses the 

degree of uncertainty of whether an event will occur. In order to successfully integrate 

the Evidence theory into engineering applications, a bridge must be built between current 

practices and the future. This research suggests that the assessment of uncertainty of
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experts in high-risk environments may be better conveyed to decision makers by using 

both probabilistic and non-probabilistic theories.

5.2 Study Limitations and Delimitations

Many researchers agree that Expert Judgment Elicitation can be used in areas 

where there is limited or no historical data (Monroe, 1997, Hampton, 2001, Conway, 

2003, Chytka, 2003). One of the major limitations of this study is that only three experts 

were utilized; however, the pool of experts is small in terms of level of expertise with 

regard to the TPS technology that can be used for the proposed transportation system.

Another limitation of this research is addressing the bias generated by the 

experts. Reduction of bias is extremely desirable in many public and private 

corporations. The high-risk experts were selected by NASA for this study, ensuring 

objectivity and assessing subjective conclusions; however, the researcher has no prior 

knowledge of the background and level of expertise of the experts. Additionally, 

psychological and personal issues are not used as part of this study’s parameters.

Expert’s qualification criteria such as confidence level and risk ranking have not been 

addressed. The intent of this research was only to compare probabilistic and Evidence 

theory approaches for uncertainty assessments using expert judgment elicitation. Also 

results indicate further development and applications may be needed before it can fully 

utilized in decision making.
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5.3 Extensions o f  Research

Evidence theory raises more questions than answers, which could, in turn, make 

more uncertainty assessments and could lead into valuable findings for one-of-a-kind 

systems when no operational data is available. Evidence theory is leading to a self 

assessment of the experts when evaluating a new technique that leads to critical thinking. 

Evidence theory does not provide a concrete non-probabilistic assessment; rather it 

provides an enhancement of probabilistic analysis. This theory needs to be developed 

further.

Traditional methods for uncertainty assessment may not be consistently 

functional; therefore, there is an absolute need for improvement in the analysis process to 

address and quantify appropriate alternate models. Proper and improved methods of 

expert judgment elicitation should be exercised based on qualified expert opinions, while 

mixtures of mathematical models both probabilistic and non-probabilistic should be 

utilized. An improved understanding of types of dependencies between aleatory and 

epistemic uncertainties should be developed with ease of applicability in mind.

Evidence theory needs additional development in order to become practical. 

Nevertheless, results can be used to develop a new calibration function to further the 

research of expert assessment calibration developed previously by Conway (2003).

“The behavior of a complex system is probabilistic in nature and can never be totally 

predicted or know in advance of system deployment. The more complex a system 

becomes the higher degree of uncertainty associated with the system performance 

(outputs/outcomes generated)” (Keating et al., 2004). Further study is needed for the 

application of the combined approach to Systems of Systems Engineering in assessing
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uncertainty. Further study is also needed for the relationship between complexity and 

high-risk environments and the applicability of the Evidence theory to both. Given the 

nature of high-risk operations, many times decisions are made under critical conditions 

wherein decision makers are not afforded adequate time for a robust questionnaire 

follow-up. Practical means to facilitate a follow-up that can satisfy these stringent time 

constraints need to be developed.

Finally, improved sampling methods should be introduced through accelerated 

methods using a more comprehensive sensitivity analysis based on knowledge and 

expertise in an attempt to identify consistency of the bounding methods.
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Input Parameter Uncertainty Questionnaire

1. USER ID: The last four digits of your phone number in reverse 1 
order.

2. Your Age:

3. Relative to TPS design in general, rate your own level of expertise on a scale of 1 
to 5 (Please select one option):

1 (low)
2 (low/average)
3 (average)
4 (average/high)
5 (high)

4. Place yourself among other colleagues with similar experience working in the 
same discipline. How would you compare yourself to your colleagues with 
respect to expertise on a scale of 1 to 5?

1 (much less than colleagues)
2 (less than colleagues)
3 (about the same)
4 (more than colleagues)
5 (much more than colleagues)

5. In making estimates related to TPS input parameters, you are generally:

Accurate with a high degree of confidence 
Accurate without a high degree of confidence 
Low accuracy with a high degree of confidence 
Low accuracy with a low degree of confidence

6. Thinking about predicting the likelihood associated to a particular event, do you
normally predict:

More than actually occurs?
Less than actually occurs?
About the same amount/number of times that actually occurs?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



122

7. In  estim ating associated uncertain ty  in  your subject area, w ould  you say it is 
better to be:

Close to the actual value without a lot of confidence in your estimates?
Not very close to the actual value, but with a high degree of confidence in your 
estimates?

8. Do you think it is better for project success to:

Set, in advance, the completion dates for a high-risk project?
Establish, in advance, technical milestones for a high-risk project?

9. Do you think it is better for a project success to:

Estimate, in advance, cost outlays for a high-risk project?
Identify, in advance, cost elements for a high-risk project?

10. Do you think it is better to:

Identify, at conceptual design review, scenarios for the successful projects? 
Predict, at conceptual design review, technical performance characteristics of a 
completed hardware?

11. What is your estimate of the percentage of purity of the raw 
material (amorphous silica fiber) used for the TPS on the 
orbiter?

12. How confident are you on the above estimate?

0 -  20%

21 - 40%
41 - 60%
61 - 80%
81 -  100%
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It is thought that critical subsystem failures of the Thermal Protection System 

(TPS) maybe a function of Construction (production), Installation (debonding of tiles) 

and Operations (debris damage at lift-off that causes bum through). If you think there 

may be other causes, you will be asked to list them later in the questionnaire.

Assessment due to construction (production) anomalies
13. What is the likelihood of critical system failure due to construction anomalies? 

Please select one of the following options:

Low
Low/Moderate 
Moderate 
Moderate/High 
High

14. What does low mean to you?

Less Please indicate how much less:
0.05%
0.075%
0.10%
More Please indicate how much more:

15. What does moderate mean to you?

Less Please indicate how much less:
0.15%
0.20%
0.25%
More Please indicate how much more:

16. What does high mean to you?

Less Please indicate how much less:
0.30%
0.40%
0.50%
More Please indicate how much more:

17. Provide any scenarios that may change your estimates.

18. Provide reasoning, or assumptions used to reach above conclusions.
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Assessment due to installation anomalies

19. What is the likelihood of critical system failure due to installation anomalies? 
Please select one of the following options:

Low
Low/Moderate
Moderate
Moderate/High
High

20. What does low mean to you?

Less Please indicate how much less:
0.05%
0.075%
0 .10%
More Please indicate how much more:

21. What does moderate mean to you?

Less Please indicate how much less:
0.15%
0.20%
0.25%
More Please indicate how much more:

22. What does high mean to you?

Less Please indicate how much less:
0.30%
0.40%
0.50%
More Please indicate how much more:

23. Provide any scenarios that may change your estimates.

24. Provide reasoning, or assumptions used to reach above conclusions.

□
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Assessment due to operations (debris damage at lift-off, burnout) anomalies

25. What is the likelihood of critical system failure due to operations (debris damage 
at lift-off, burnout) anomalies? Please select one of the following options:

Low
Low/Moderate 
Moderate 
Moderate/High 
High

26. What does low mean to you?

Less Please indicate how much less:
0.05%
0.075%
0 .10%
More Please indicate how much more:

27. What does moderate mean to you?

Less Please indicate how much less:
0.15%
0.20%
0.25%
More Please indicate how much more:

28. What does high mean to you?

Less Please indicate how much less:
0.30%
0.40%
0.50%
More Please indicate how much more:

29. Provide any scenarios that may change your estimates.

30. Provide reasoning, or assumptions used to reach above conclusions.

□

□
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Assessment due to construction and installation anomalies

31. What is the likelihood of critical system failure due to construction and 
installation anomalies? Please select one of the following options:

Low
Low/Moderate
Moderate
Moderate/High
High

32. What does low mean to you?

Less Please indicate how much less:
0.05%
0.075%
0 .10%
More Please indicate how much more:

33. What does moderate mean to you?

Less Please indicate how much less:
0.15%
0.20%
0.25%
More Please indicate how much more:

34. What does high mean to you?

Less
0.30%
0.40%
0.50%
More

35. Provide any scenarios that may change your estimates.

Please indicate how much less:

Please indicate how much more:

□

36. Provide reasoning, or assumptions used to reach above conclusions.
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Assessment due to construction and operations anomalies

37. What is the likelihood of critical system failure due to construction anomalies? 
Please select one of the following options:

Low
Low/Moderate
Moderate
Moderate/High
High

38. What does low mean to you?

Less Please indicate how much less:
0.05%
0.075%
0 .10%
More Please indicate how much more:

39. What does moderate mean to you?

Less Please indicate how much less:
0.15%
0.20%
0.25%
More Please indicate how much more:

40. What does high mean to you?

Less Please indicate how much less:
0.30%
0.40%
0.50%
More Please indicate how much more:

41. Provide any scenarios that may change your estimates.

42. Provide reasoning, or assumptions used to reach above conclusions.

□
□

□
□
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Assessment due to installation and operations anomalies

43. What is the likelihood of critical system failure due to construction anomalies? 
Please select one of the following options:

Low
Low/Moderate
Moderate
Moderate/High
High

44. What does low mean to you?

Less Please indicate how much less:
0.05%
0.075%
0 .10%
More Please indicate how much more:

45. What does moderate mean to you?

Less Please indicate how much less:
0.15%
0 .20%
0.25%
More Please indicate how much more:

46. What does high mean to you?

Less Please indicate how much less:
0.30%
0.40%
0.50%
More Please indicate how much more:

47. Provide any scenarios that may change your estimates.

48. Provide reasoning, or assumptions used to reach above conclusions.

□
□

□
□
□
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Assessment due to construction, installation and operations anomalies

49. What is the likelihood of critical system failure due to the combination of all three 
variables; construction, installation and operations anomalies? Please select one of 
the following options:

Low
Low/Moderate 
Moderate 
Moderate/High 
High

50. What does low mean to you?

Less
0.05%
0.075%
0.10%
More

51. What does moderate mean to you?

Less Please indicate how much less:
0.15%
0 .20%
0.25%
More Please indicate how much more:

52. What does high mean to you?

Less Please indicate how much less:
0.30%
0.40%
0.50%
More Please indicate how much more:

53. Provide any scenarios that may change your estimates.

54. Provide reasoning, or assumptions used to reach above conclusions.

Please indicate how much less:

Please indicate how much more:

□
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55. Critical sub-system failures of the TPS may be due to other than construction, 
installation and operations. Please add any other possible critical sub-system 
failures* of the TPS to the following text block:

* Loss of mission and/or loss of crew

Please allow us to modify our questionnaire and return to you with an updated version.

Please provide comments and/or suggest improvements to this questionnaire:

Your feedback is appreciated.
Your knowledge and expertise will have great impact on this research. 

Thank you very much.
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