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ABSTRACT

SPARSE EQUATION-EIGEN SOLVERS FOR SYMMETRIC/UNSYMMETRIC 
POSITrVE-NEGATTVE-INDEFINITE MATRICES WITH FINITE ELEMENT 

AND LINEAR PROGRAMMING APPLICATIONS.

Hakizumwami B. Runesha 
Old Dominion University, 1998 

Director: Dr. Due T. Nguyen

Vectorized sparse solvers for direct solutions of positive-negative-indefinite 

symmetric systems of linear equations and eigen-equations are developed. Sparse storage 

schemes, re-ordering, symbolic factorization and numerical factorization algorithms are 

discussed. Loop unrolling techniques are also incorporated in the coding to enhance the 

vector speed. In the indefinite solver, which employs various pivoting strategies, a simple 

rotation matrix is introduced to simplify the computer implementation. Efficient usage of 

the incore memory is accomplished by the proposed “ restart memory management “ 

schemes. A sparse version of the Interior Point Method, IPM, has also been implemented 

that incorporates the developed indefinite sparse solver for linear programming applications.

Numerical performance of the developed software is conducted by performing the 

static analysis and eigen-analysis of several practical finite elements models, such as the 

EXXON Offshore Structure, the High Speed Civil Transport (HSCT) Aircraft, and the Space 

Shuttle Solid Rocket Booster (SRB). The results have been compared to benchmark results 

provided by the Computational Structural Branch at NASA Langley Research Center. Small 

to medium-scale linear programming examples have also been used to demonstrate the 

robustness o f the proposed sparse IPM.
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NOTATION

Ay- : ij element o f matrix [A]

AD : diagonal values stored row by row before factorization

AN : non-zero off diagonal values stored row by row before factorization

c : objective function

C : direction of move
p

D : Diagonal matrix

DI : diagonal values stored row by row after factorization

e. : unit vector
I

f  : Load vector

I : Identity matrix

IA : location in AN and JA of the first off diagonal value of each row before
factorization

ICHAINL: Chained list

IU : location in UN and JU of the first off diagonal value of each row after
factorization

JA : column indices of the non-zero off diagonal values stored row by row before
factorization.

JU : column indices of the non-zero off diagonal values stored row by row after
factorization.

K. : Stiffness matrix

KT : Transpose matrix of K

K"1 : Inverse matrix of K.

L : Lower triangular matrix
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XX

M : Mass matrix

neq : Size (dof) of matrix K

ncoef : number of non-zero off diagonal values before factorization

ncoe£2 : number of non-zero off diagonal values after factorization 

P : permutation matrix

(PAP1),, = a^,: matrix P permute row 1 with row r and row 2 with row p 

R : rotation matrix

s : order of pivoting

T : Triadiagonal matrix

U : upper triangular matrix

UN : non-zero off diagonal values stored row by row after factorization

{x} : displacement vector

XB : Basic variables

: Non basic variables

X° : Starting iteration vector

X ' : optimum design

X, p : eigenvalues

(J>, i|r : eigenvectors

p : shift value

o : step size
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CHAPTER I 

INTRODUCTION'

1.1 Overview

The finite element method has been used successfully for the solution of many 

practical engineering problems in various disciplines, such as structural analysis, fluid 

mechanics, structural optimization, heat transfer etc. [1-5]. Essential to the finite element 

solution of these problems is an effective numerical procedure for solving large-scale, sparse 

systems of linear equations and generalized eigen-equations. These solution phases typically 

represent the most costly step of the analysis in terms of computational resources.

The solution of linear systems of equations on advanced parallel and/or vector 

computers is an important area of ongoing research [6-20]. The development of efficient 

equation solvers is particularly important for static and dynamic (linear and nonlinear) 

structural analysis, sensitivity analysis and structural optimization, control-structure 

interactions, ground water flows, panel flutters, eigenvalue analysis, heat transfer etc. [20- 

21]. Modem high-performance computers such as Cray-YMP, Cray-C90, Intel Paragon and 

IBM-SP2 have both parallel and vector capabilities; thus, algorithms that exploit these 

features are highly desirable.

On a single node computer processor with vector capability, it is generally safe to 

say that equation solvers based on sparse technologies are more efficient than ones based 

on the skyline and/or variable bandwidth technologies. Basic sparse equation solution

'The journal model used is: The International Journal of Numerical Methods in 
engineering, IJNM.
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algorithms have been well documented in the literature [10-11]. This is especially true for 

the cases where the coefficient matrix is symmetric and positive definite. However, for 

certain engineering applications, such as coupled analysis for structures with independently 

modeled finite element subdomains [21-23], optimization problems, nuclear reactor core 

modeling, circuit physics modeling, British gas pipe network distribution problem [8], the 

coefficient matrix is symmetric and indefinite. For these engineering applications, pivoting 

strategies are often required in order to avoid numerical difficulties during the LDLT 

factorization process. Several pivoting strategies have been proposed in the literature [6- 

8,10]. These strategies, however, have been mostly developed and implemented for dense 

matrix. Only few promising sparse solvers with pivoting strategies, which can handle 

medium to large-scale indefinite system of equations, are available in the literature [8].

1.2 Review of Previous Work

For the past 20 years, while the performance of personal computers and workstations 

has increased tremendously, there has been an increasing interest in the use o f computers 

with vector and parallel architecture for the solution of very large scientific computing 

problems. As a result of the impending implementation of such computers, there was 

considerable activity in the mid and late 1960's in the development of numerical methods. 

Some of these works were summarized in 1971 in the classical review article o f Miranker 

[24]. It has only been in the period since then, however, that such machines have become 

available. The first supercomputer was put into operation at NASA's Ames Research Center 

in 1972, the same year that the first Texas Instruments Inc. Advanced Scientific 

Computer(TI-ASC) became operational in Europe, and the first Cray Research Inc. Cray-1 

was put into service at Los Alamos National Laboratory in 1976. Since then, the
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supercomputers have evolved considerably. As computers grow in power and speed, matrices 

grow in size. In 1968, practical production calculations with linear algebraic systems of 

order 5000 were commonplace, while a “large” system was one of order 10 000 or more,

[24]. Today, solving a quarter million system of equations on workstation is a common 

trend, [20]. A similar trend toward increasing size is observed in eigenvalue calculations.

The challenge for the numerical analyst is to devise the algorithms and arrange the 

computations so that the architectural features of a particular machine are fully utilized. 

Some of the best sequential algorithms that were unsatisfactory for large scale systems and 

needed to be modified or even discarded on sequential machines have had a rejuvenation 

because of new technologies such as sparse technology.

Traditionally, one of the most important tools for the numerical analyst to evaluate 

algorithms has been computational complexity analysis, i.e, operation counts. This 

arithmetic complexity remains an important tool for vector and parallel computers, but 

several other factors become equally significant. As we will see , vector computers achieve 

their speed by using an arithmetic unit that breaks a simple operation, such as a 

multiplication, into several subtasks, which are executed in an assembly line fashion on 

different operands. Two techniques for improving the performance of vector computers 

involve the restructuring of DO loops in Fortran in order to force a compiler to generate an 

instruction sequence that will improve performance. It is important to note that the 

underlying numerical algorithm remains the same. The technique of rearranging nested DO 

loops is done to help the compiler to generate vector instructions. The other technique, 

characterized as unrolling DO loops by Dongarra and Hinds in 1979 [24, 29], was initially 

used as a way to force the compiler to make optimal use of the vector registers on the Cray
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computers. In its simplest form, loop unrolling involves writing consecutive instances o f a 

DO loop explicitly with appropriate changes in the loop counter to avoid duplicate 

computation. Several examples were given by Dongarra in 1983 and Dongarra and 

Eisenstat in 1984, [24, 29], for basic linear algebra algorithms.

In many engineering applications, the most intensive numerical computation is the 

solution of systems of equations. These may arise, for example, in finite element procedure 

after the assembly. There have been numerous research works in the past two decades in the 

direct methods for solving linear systems o f equations, mainly redesigning the Cholesky and 

Gaussian elimination algorithms with or without pivoting. Some of the issues considered 

were the storage scheme of the matrix, the ordering of the matrix, the vectorization 

technique, the ability to reuse data in cache, the amount o f data movement, the memory 

access pattern and the pivoting strategies, just to cite a few.

The bulk of the work in Cholesky factorization of a symmetric positive definite 

matrix A occurs in a triply nested loop around the single statement

= A ,j ~  ( A « A J I A kk (1.1)

By varying the order in which the loop indices i, j and k are nested, we obtain different

formulations for the Cholesky factorization. The various versions of Cholesky factorization

can be used to take better advantage of particular architectural features of a given machine

(cache, virtual memory, vectorization, etc.) [ 25]. For more details concerning these versions

of Cholesky factorization, consult George and Liu [30].

In some of todays finite element programs for large-scale applications profile matrix 

methods dominate. This category includes the skyline, variable band and frontal methods 

[10]. The characteristic feature of all these methods is that they only attempt to exploit zeros
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in the finite element factor matrix outside a certain border. Inside the border, no attempts are 

made to exploit the zeros. Some attempts have been made to reduce the number of arithmetic 

operations, especially in connection with the variable band method. The main drawback of 

the envelope methods is their large storage requirements. This implies that out-of-core 

techniques are often necessary for large-scale systems.

The methods used for banded systems do not explicitly deal with the sparsity 

structure of the system. For banded matrices, this is not normally necessary because the 

matrix fills out to the band during the factorization. However, there are certain applications 

which produce very sparse matrices with little exploitable structure, and sparse arithmetic 

instructions play an important role. The idea is to store as vectors only the nonzero values, 

together with some arrays which indicate the locations of nonzero elements.

As noted by Duff in 1984 [10, 24, 27], for example, the difficulty with vectorizing 

a general sparse routine is the indirect addressing. In order to avoid the problem of indirect 

addressing in sparse systems, Duff proposed using a frontal technique based on the variable 

band or profile scheme suggested by Jennings in 1976 [29]. The multifrontal method, 

introduced by Duff and Reid in [25,27], is well documented in the literature. With much of 

its work performed within dense frontal matrices, this method has proven to be extremely 

effective on supercomputers [ 25]. Moreover, the multifrontal method is naturally expressed 

and implemented as a block method, and several o f the advantages it derives from block 

matrix operations have already been explored in the literature: e.g., its ability to reuse data 

in fast memory and its ability to perform well on machines with virtual memory and paging

[25].
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While the form of Gaussian elimination for dense matrix is an appropriate starting 

point for a new implementation, the architectural details of a particular machine may 

necessitate changes to achieve a truly efficient algorithm. Several early papers considered 

in great detail the implementation of Gaussian elimination and the Cholesky decomposition 

A=LLt on the first supercomputers. The variations of basic algorithms due to machine 

differences were summarized by Voigt in 1977 [24].

For banded systems, such as might arise from the discretizations of elliptic equations, 

the node points are ordered so as to achieve relatively small bandwidth. We now consider 

other orderings that are known to reduce both the number o f arithmetic operations and the 

storage requirements for factoring the matrix of the resulting system. This is a very important 

issue in sparse matrix technology and constitutes a topic of research on its own. Most of the 

algorithms that minimize the fill-in are based on the graph theory. The most popular of these 

algorithms are the nested dissection and the minimum degree [30].

The most popular methods used in engineering practice for the solution of a few p 

eigenvalues and the associated eigenvectors of large finite element systems are the Subspace 

and Lanczos iteration methods. The Subspace iteration method developed and so named by 

K.J. Bathe, [1], consists of establishing q starting iteration vectors, (q>p), using simultaneous 

inverse iteration on the q vectors and Ritz analysis to extract the “best” eigenvalue and 

eigenvector approximations from the q iteration vectors. Altogether, the Subspace iteration 

method is largely based on various techniques that have been used earlier, namely, 

simultaneous vector iteration (F.L. Bauer and A. Jennings), Sturm sequence information, 

Rayleigh-Ritz analysis, and the work of H. Rutishauser [1]. Some advantages of the
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Subspace iteration are that the theory is relatively easy to understand and that the method is 

robust and can be programmed with little effort.

Lanczos algorithm for solving linear systems of equations and eigenproblems 

represent a very important computational innovation of the early 1950's. It became widely 

used only in the mid-1970's, [31]. Shortly thereafter, vector computers and massive 

computer memories made it possible to use this method to solve problems which could not 

be solved in any other ways. Since that time, the algorithms have been further refined and 

have become a basic tool for solving a wide variety o f  problems on a wide variety of 

computer architectures. Golub and O’Leary gave in their 1989 paper an extensive history 

of this method, [31]. In his work, C. Lanczos proposed a transformation for the 

tridiagonalization of matrices. However, as already recognized by Lanczos, the 

tridiagonalization procedure has a major shortcoming in the constructed vectors, which in 

theory should be orthogonal, but as a result of round-off errors, are not orthogonal in 

practice. A remedy is to use Gram-Schmidt orthogonalization, but such an approach is also 

sensitive to round-off errors and renders the process inefficient when a complete matrix is 

to be tridiagonalized. If the objective is to calculate only few eigenvalues and corresponding 

eigenvectors , the Lanczos iteration can be very efficient.

Karmarkar’s publication in 1984 [32] of the new polynomial-time algorithm for 

linear programming drew enormous attention from the mathematical programming 

community and generated a lot of research activities during the past 13 years [33-35]. Soon 

after Karmarkar’s publication, Gill and co-workers [33], have discovered that there is a close 

connection between this new (Karmarkar’s) interior point method (or IPM) and the projected 

Newton Barrier methods. The IPM, in the earlier years could not be shown competitive to
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the popular, unbeatable Simplex method [36], due to at least two reasons. First, due to the 

computer storage limitations, the size of the problems solved in the late sixties has been 

restricted to only a few hundred rows and columns, and for such small sizes, the simplex 

method is practically unbeatable. Secondly, it was only at the beginning of the seventies that 

a number of highly efficient sparse solvers have become available.

1.3 Objectives and scope

As with many other linear algebra algorithms, devising a portable implementation 

o f a sparse solver that performs well both on the broad range o f computer architectures 

currently available and for different type of problems is a formidable challenge. Even after 

limiting our attention to machines with only one processor, as we have done herein, there are 

still several interesting issues to consider. In this work we investigate sparse LDLT Cholesky 

algorithms designed to run efficiently on vector supercomputers (e.g., the Cray Y-MP) and 

on powerful scientific workstations (e.g., the IBM RS/6000). To achieve high performance 

on such machines, the algorithms must be able to exploit vector processors. Moreover, with 

the dramatic increases in processor speed during the past few years, rapid memory access has 

become a very important factor in determining performance levels on several o f these 

machines. To be efficient, algorithms must reuse data in fast memory (e.g., cache) as much 

as possible. Consequently, a highly localized and regular memory-access pattern is ideal for 

many of today’s fastest machines. The cache size and the level of loop unrolling are 

machine-dependent parameters and are input values for the codes that we have developed.

The objective of this dissertation research can be summarized as follows:

- Review major existing profile and banded solvers and their out-of core implementation.

- Develop a robust vector sparse solver for positive definite matrix.
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- Develop new pivoting strategy, memory management and sparse solver for highly 

indefinite systems.

- Develop and implement a vector sparse Subspace and Lanczos procedure for positive, 

negative and indefinite systems.

- Review a version of Karmarkar Interior point Method.

- Develop a sparse version of interior point method by making use of the sparse technology 

and developed solvers.

- Develop a vector sparse unsymmetrical solver (unsymmetric in values but symmetric in 

locations).

- Solve practical structural analysis and optimization problems in order to evaluate the 

accuracy and speed of the developed procedures on different computer platforms.

This dissertation is organized into two parts. The first part consists of developing 

robust, efficient and fast solvers and the second part consists of making use of those solvers 

in developing efficient eigensolvers and IPM codes. After the introduction in Chapter I, 

Chapter II is devoted to developing a vector sparse solver for positive definite systems. 

Sparse storage schemes, symbolic factorization, re-ordering algorithms, numerical 

factorization, forward and backward solution strategies are discussed. Loop unrolling 

techniques are also incorporated into the sparse solver to enhance the vector speed. 

Modifications to the Cholesky Oak Ridge solver are also explained.

In Chapter III, a general purpose, robust and efficient (in terms of solution accuracy, 

memory requirements, and computational speed) sparse algorithm and the corresponding 

computer coding implementations for direct solution of indefinite system of linear equations 

are developed. The basic LDLT algorithm for general symmetric coefficient matrix is
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reviewed. Extensions to the case where the symmetric coefficient matrix is sparse are 

discussed. An emphasis is put on the coding organization of the algorithm. Pivoting 

strategies for the proposed LDLT algorithm for solution of sparse, symmetric and indefinite 

matrix are discussed. A restarting management scheme of the proposed algorithm is 

explained.

In Chapter IV, we re-examine the two popular eigen-solution algorithms: the 

Subspace and Lanczos iterations, incorporating recent developments in vectorized sparse 

technologies in conjunctions with Subspace and Lanczos iterative algorithms for 

computational enhancements. Basic Subspace iteration algorithm is reviewed. Key steps 

in Lanczos eigen-solution algorithm are summarized. Major computational tasks in 

Subspace and Lanczos iterative algorithms are identified and computational enhancements 

using vectorized, sparse strategies are discussed.

In Chapter V, a version of the interior point method is reviewed, and practical 

implementation of IPM is explained. Both the developed solvers for positive definite 

systems and indefinite systems are incorporated. The computational enhancements and the 

sparse implementation are explained.

In Chapter VI, a vector sparse solver for positive definite unsymmetric systems is 

developed. A special sparse storage scheme, modification to the reordering algorithm 

(MMD), numerical factorization for unsymmetric matrices and matrix-vector multiplication 

strategies are discussed. Vector unrolling in conjunction with the special sparse storage 

scheme is incorporated to enhance the vector speed.

In Chapter VII, several test problems have been conducted on different computer 

platforms in order to evaluate the numerical performance in terms o f solution accuracy,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

memory requirements and computational speed o f the proposed algorithms and their 

associated coding. Finally, conclusions and suggestions for future research are given in 

Chapter VIII.
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CHAPTER H

VECTOR-SPARSE SOLVER FOR SYMMETRIC POSITIVE DEFINITE

MATRICES

2.1 Introduction

Let's consider the following system of linear equations

Kx  = /  (2.1)

For many engineering applications, the coefficient matrix K often has nice properties, such 

as symmetry, positive definiteness and sparsity. Matrix K is symmetric when KT = K, where 

T means transpose, i.e. when K^Kj,- for all i and j. Otherwise K. is unsymmetric. A 

symmetric matrix K is said to be positive definite when y TKy  > 0 for any vector y having 

at least one nonvanishing component. If two vectors y and z can be found for which 

y  TKy > 0 and z TKz < 0, then A is said to be indefinite or nondefinite.

A square matrix L is lower triangidar when it has nonzero elements only on or below 

the diagonal: Ljj = 0 if i < j and some L,j * 0 for i j, with at least one L,j * 0 for i > j. A 

lower triangular matrix is said to be unit diagonal if its diagonal elements are all equal to 1: 

L;i = 1 for all i.

A square matrix U is upper triangidar when it has nonzero elements only on or above 

the diagonal: U;j = 0 if i > j and some Ufj * 0 for i s j, with at least one U;j * 0 for i < j. An 

upper triangular matrix is said to be unit diagonal if its diagonal elements are all equal to 1: 

U;i = I for all i.

A necessary and sufficient condition for a symmetric matrix K to be positive definite 

is that the determinants o f the n leading principal minors o f K be positive. Also if  K is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

symmetric positive definite, a unique Cholesky factorization K=UTU exists or K = U,TD U \ 

where U is upper triangular with positive diagonal elements, D is diagonal with positive 

diagonal elements.

In equation (2.1), the vectors x and f  represent the unknown nodal displacement and 

the known nodal load vectors, respectively. In general, matrix K can be factorized into 

either LDLT or CCT. In the LDLT form, L is a lower triangular matrix with unit diagonal, and 

D is a diagonal matrix. In the CCT form, CCT is a non-negative matrix and C is a lower 

triangular matrix. The LDLT form requires slightly more computational effort than the CCT 

form. In several engineering applications, K is indefinite. In these cases, only the LDLT 

form is applicable. Therefore, in our study, an emphasis is put on the LDLT form for 

factorization. To solve a system of simultaneous equations, Eq. (2.1), three major steps are 

identified:

Step I: Factorization

K  = L U  = LDL T (2.2)

Step2: Forward reduction:

LDy = f  (2.3)

Step3: Back substitution:

L Tx = y  (2.4)

In the above three steps, for a single right-hand vector, f, the factorization phase takes much 

of (more than 90%) the total computational time compared with the other two steps. Thus,

improvements in solution efficiency should be focused on this part of the calculation. In

some cases, such as the modified Newton-Raphson method for non-linear equation [1] and 

inverse subspace iteration for eigenvalue problems, [1], where the stiffness matrix K remains
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constant for a number of load (or time) increments, computation steps (2) and (3), are 

employed repeatedly for different right-hand side vectors f. Therefore, for efficiency, 

improvements need to be considered on forward as well as back substitution.

2.2. Sparse storage for the coefficient stiffness matrix

2.2.1 Introduction

Direct methods for the solution of linear equations are equivalent to the factorization 

o f the coefficient matrix. For large matrices, the optimization of the memory required to 

store the matrix as well as the arrays needed for the solution is as important as the efficiency 

of the algorithm. If only small number of equations is involved, then the factorized matrix 

can be stored as a full triangular matrix. However, when larger problems are encountered 

which do not fit into the machine storage or which involve redundant operations with a 

significant number o f zero values, then other storage schemes become advantageous. 

Furthermore, to take advantage of the symmetry of the matrix, either the upper or lower part, 

is stored in the memory.

Many matrices have a banded structure, in that for every non-zero element â - o f a 

matrix K we can calculate the difference |i-j|, and we call the largest of these the half 

bandwidth. This can be much smaller than the order of the matrix. It is only necessary to 

store the elements o f the matrix within the band.

If the pattern of non-zero matrix elements is observed further, it is seen that the 

bandwidth of each row of the matrix is not affected by the Cholesky factorization process, 

although many elements within the band which are zero in matrix fC become non-zero in L. 

This feature is exploited in the variable bandwidth storage scheme.
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The storage saving achieved by adopting such schemes may still not be sufficient to 

store larger matrices in the memory of the machine used. Skyline storage scheme still 

contains a large proportion of zero elements. Thus, for better computational efficiency, one 

prefers to process and store only the non-zero elements under the skyline profile. There exist 

many types of storage format for sparse matrices. The next paragraph describes the format 

that has been used in all our computer coding implementation. To illustrate the benefits of 

using sparse technology, Table 2.1 compare the solution time and storage requirement for 

different type of storage schemes for a 263,574 degrees of freedom finite element car model 

[ 20],

2.2.2 The sparse row-wise format

The sparse row-wise format to be described is the most commonly used storage 

scheme for sparse matrices. The scheme has minimal storage requirements, and, at the same 

time, it has proved to be very convenient for several important operations such as addition, 

multiplication, permutation and transposition of sparse matrices, the solution of linear 

equations with sparse matrix of coefficients by either direct or iterative methods, etc. In this 

scheme, the values of the non zero elements of the matrix are stored by rows, along with their 

corresponding, column indices, in two arrays, say AN and JA, respectively. An array of 

pointers IA(l:neq+l), is also provided to indicate the starting locations in AN and JA where 

the description of each row begins. An additional array, AD(l:neq) is used to store the 

diagonal entries. Here, neq is the order of matrix K and ncoef is the total number of non-zero 

off-diagonal elements in the upper triangular matrix K. The dimension of arrays AN, JA is 

ncoef. Similarly, the factorized matrix is stored in four arrays UN(l:ncoef2), IU(l:neq+l), 

JU(l:ncoef2) and DI(1 :neq) where ncoef2 is the number of non-zeros after factorization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

Solver
Type

Full,
Unsymmetrical

Banded,
Symmetrical

Sparse

Storage
Scheme

Full Variable Band Sparse

Memory
Required

neq2=6.97 1010 
words

894,427,805 words 88,500,000 words 
(ncoef=6,267,099)

Total
Solution

Time
3407 Hours

Out-of-core:2,789sec 
Using 8 processors: 

298 sec

lOOsec 
(-Reordering=44sec 
-Numerical Factori- 

zation= 43 sec)

Table 2.1 Comparison of solution time and storage requirements for 
different storage schemes on a 263,574 dof car model

Fig. 2.1 263,574 degree of freedom Car Model 
(source: NASA Langley, Hampton Va)
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To facilitate the discussions in this section, as an example, let's assume the coefficient 

matrix K takes the following form

0. 0. 1. 0. 2.

44. 0. 0. 3. 0.

66. 0. 4. 0.

00 00 5. 0.

SYM 110. 7.

112.

In the sparse row-wise storage representation, the data in Eq. (2.5) can be represented as 

follows:

lA{\:l=neq+\) = {1, 3, 4, 5, 6, 7, 7 }

JA(1:6=ncoef) = {4, 6, 5, 5, 5, 6}

AD(1:6=neq) = {11., 44., 66., 88., 110., 112.}

AN(1:6=ncoef) = {1., 2., 3., 4., 5., 7. } 

where neq: the size of the original stiffness matrix and

ncoef. the number of non-zero, off diagonal terms of the original stiffness matrix. 

2.2.3. NASA Form at

The data format of NASA benchmark sparse matrices is a set of six files (or seven 

files for eigen-problems) in ASCII format given as follows:

K.INFO : Contains number of equations and coefficients.

(n l, n2, n3, NEQ, NEQ, NCOEF, n7, n8, n9, nlO }

K.DIAG : Contains diagonal terms.

K.PTRS : Contains number of non-zero off-diagonal terms in each row.
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K.RHS : Contains right hand side (load vector).

K l1 .INDXS : Contains column number for each non-zero off-diagonal term.

K11 .COEFS : Contains the real, numerical value of each non-zero off-diagonal term 

(in row-wise format).

K.DMASS : Contains the diagonal terms of the mass matrix

For eigenanalysis problems with consistent mass, an additional file, K.CMASS, is also 

provided that contains the off-diagonal terms of the mass matrix, with an assumption that 

the mass matrix has the same column indices structure as the stiffness matrix.

Let’s consider the system of equations given in Eq.(2.1), with the stiffness matrix 

K given in Eq.(2.5) and a load vector {f}=[ 201, 202, 203, 204,205, 206 ]. The input data 

in NASA format will be given as follows:

K.INFO = { 0, 0,0, 6,6, 6, 0, 0, 0,0 }

K.PTRS = { 2, 1, 1, 1, 1, 0}

Kll.INDXS = {4, 6,5, 5, 5, 6}

K.DIAG = {11., 44., 66., 88., 110., 112.}

Kl 1.COEFS = { l.,2 .,3 .,4 .,5 ., 7. }

K.RHS = {201,202,203,204,205,206}

In the coding implementation of the sparse solver, the input data is read either as 

ASCII or binary files in NASA format and the arrays K.PTRS is directly converted into an 

array of pointers IA that indicate the starting nonzero location in Kll.COEFS and 

Kll.INDXS of each row.
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2.2.4 Fundamentals of sparse matrix technology

In this section we introduce some terms and techniques used in sparse matrix 

technology related to the symbolic and numerical processing of sparse matrix, that we will 

frequently use in this research work,

a) Merging sparse lists of integers

Merging is equivalent o f using “ OR “ in Fortran symbols. By merging two or more 

sparse lists, a new list is obtained. An integer belongs to the resulting list if and only if it 

belongs to any of the given lists, and no repeated integers are allowed. This operation of 

merging lists of integers is very important in sparse matrix technology because it is 

commonly used to form the list of the column indices associated with each of the rows of a 

new matrix, obtained by performing algebraic operations on another matrix or matrices 

particularly when sparse formats are used. Examples are addition, multiplication and 

triangular factorization of sparse matrices. The following example illustrates the concept of 

merging. Given these three lists: 

list A : 2, 5, 3, 9 

list B : 3, 11,9 

list C : 5, 2 

the resulting merged list, say M, is: 

merged list M : 2, 5, 3, 9, 11 

The merged list is obtained by inscribing each integer from each of the given lists, provided 

the integer was not previously inscribed. In order to determine efficiently whether an integer 

was previously inscribed or not, we use an array, often called expanded array or switch array, 

say ISWUCH, where a conventional number, the switch, is stored at position i immediately
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after the integer i has been added to the merged list M under construction. Conversly, before 

adding an integer k to the list M, we check whether the value stored in ISWITCH(k) is equal 

to the switch or not, and we add k only if  it is not.

b) The multiple switch technique

Each time a merging operation starts, the switch array ISWITCH just discussed 

should not contain the switch value in any o f its positions. This can be achieved by 

initializing the array ISWITCH to zero at the beginning and by using a positive integer as the 

switch.

However in sparse matrix technology, merging operations are used to construct the 

lists of column indices for say, the neq rows of a neq x neq matrix. In this case neq different 

merging operations are required for this purpose, all o f them to be performed using the same 

array ISWITCH of length neq as the switch array. Gustavson, [20], suggested we set to 0 the 

neq positions of ISWITCH only once, and then we perform the neq merging operations using 

each time a different value for the switch parameter. The rule of thumb is to use 1 as the 

switch for the first merging operation, 2 for the second , and so on. In this way, when the 

first merging operation is started, all positions of ISWITCH contain 0. When the second one 

is started, all positions of ISWITCH contain either 0 or 1, which does not conflict with the 

use o f 2 as the switch, and so on. Now, neq executions o f the sentence ISWITCH(i)=0 are 

required for neq merging operations. There is an average of only one execution of 

ISWITCH(i)=0 for each merging operation. The multiple switch technique is also known as 

the phase counter technique, [20].
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C) Expanded real accumulator

One considers a row or a column of sparse matrix, only the numerical values of 

nonzeros are stored in the computer memory in a real array, say RN, and their corresponding 

column numbers in an integer array , say JR. Both arrays are of the same length, which is 

much smaller than neq. This storage of a vector by considering only nonzero values is said 

to be compact or packed. The numerical value of the nonzeros of the sparse vector can also 

be stored in an expanded form in a real array of length neq , say X, as if it were full vector. 

The column numbers, however, are stored in the array JR  as before for the nonzeros values 

only. This type of storage is used only temporarily, usually during the execution of a 

program and when certain algebraic operations are to be performed on the vector. The 

existence of the array JR allows the algorithm to operate directly on the nonzeros and to keep 

the operation count much smaller than neq. In merging lists in the addition of two matrices 

A (IA, JA, AN) and B (IB, JB, BN) for example, a symbolic phase is first performed to 

determine the positions of the nonzeros or structure of the resulting matrix C (IC, JC, CN). 

Knowing the positions of the nonzeros in C (JC), the numerical section of the algorithm is 

used to determine their numerical values. This process is not straightforward. If for example 

column 2 is the first column number of JC, we will not try to find that index in JA and JB 

before the summation, instead we use an expanded storage of the vectors in an expanded 

array of dimension neq, say X, often called expanded real accumulator. Finally we retrieve 

the nonzeros numbers from X to form CN by using the array of column number, JC, to find 

where the nonzeros values are stored in X.
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2.3 Vector-Sparse Gauss Elimination (LDL1)  without pivoting

In this section, major building blocks for the development of the basic sparse 

algorithms without pivoting are summarized. The “unrolling” strategies for better 

performance on vector computers is also explained.

2.3.1 Review of LDLT Factorization algorithm

The Cholesky (or LHJ) factorization is efficient, however its application is limited 

to the case where the coefficient stiffness matrix [K] is symmetrical and positive definite. 

With negligible additional computational efforts, the LDLT algorithm can be used for 

broader applications (where the coefficient matrix can be either positive, or negative 

definite). In this algorithm, the given matrix [K] in Eq.(2.1) can be factorized as

[ K]  = [L]  [D] [ L f  (2.6)

where [L] and [D] are lower triangular matrix (with unit values on the diagonal) and

diagonal matrix, respectively. For a simple 3x3 symmetrical stiffness matrix, Eq.(2.6) can

be explicitly expressed as

* u * 1 2 * . 3 1 0 0

* 2 1 * 2 2 * 2 3 = * 2 .
I 0

* 3 1 * 3 2 * 3 3  . . * 3 1 * 3 2 1

D l
0 0

0 D 2 0

0 0 *>3

1 * 2 , * 3 ,  '

0 1 * 3 2

0 0 1

(2.7)

The unknown Ly and D; can be easily obtained by expressing the equalities between the

upper matrix (on the left-hand-side) and its corresponding terms on the right-hand-side of

Eq. (2.7). Since the LDLT algorithm will be used later on to develop efficient, vectorized

sparse algorithm, a pseudo-FORTRAN skeleton code is given in Table 2.2 (assuming the 

original given matrix [K] is symmetrical and full).
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l.C . Assuming row 1 has been factorized earlier

2 . Do 11 I =2 , NEQ

3. Do 22 K= 1,1-1

4.C Compute the multiplier ( Note : U represents LT)

5. XMULT = U(K,I) / U(K,K)

6. Do 33 J = I, NEQ

7. U(I,J) = U(I,J) - XMULT * U(K,J)

8. 33 CONTINUE

9. U(K,I) = XMULT

10.22 CONTINUE

11. It CONTINUE

Table 2.2: Skeleton FORTRAN Code For LDL T 
(Assuming the matrix U is completely fidl)

As an example, the implementation of the LDLT algorithm, shown in Table 2.2, for 

a given, simple 3*3 stiffness matrix

[.K ]  =

2 - 1 0  

-1  2 -1

0 -1 1

will lead to the following factorized matrix

(2.8)

[U] =

2  - 1/2  0 

3/2 -2 /3

1/3

(2.9)

From Eq. (2.9), one can readily identify,
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1/3
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(2.10)

and

[ L f  =

1 - 1/2  0 

1 -2 /3

1

(2.11)

2.3.2 Flowchart of the Vector-Sparse LDLT solver.

The Vector-Sparse solver developed is a collection of subroutines that implement the 

LDLT Gauss elimination for matrices stored in a row-wise sparse format. In contrast to 

matrix that are stored in a dense, skyline or variable bandwidth fashion, sparse matrix 

requires special treatment before factorization. A concept offill-in, the zero term that 

becomes non-zero after the factorization process, is introduced. Thus, minimization of fill-in 

terms is crucial since the amount of computation is proportional to the total number of non

zeros. The Multiple Minimum Degree, MMD, is used to minimize the fill-ins.

The implementation o f a sparse Gauss elimination procedure can be broken down 

into several steps: the symbolic factorization (SYMFA), the numerical factorization 

(NUMFA1, NUMFA2, NUMFA8, for loop unrolling level 1, 2 and 8, respectively), and the 

forward and backward solution (FBE). An error norm check subroutine is also added to 

compute the absolute and relative error norm. The advantage of splitting up the computation 

can be seen when several linear systems have identical coefficient matrices but different 

right-hand sides, then only one symbolic factorization and one numerical factorization are
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needed. The different right-hand sides only require additional forward/backward operations. 

These strategies have also been implemented in the sparse eigensolvers in Chapter IV. Fig.

2.2 gives the flowchart o f  the developed vector sparse LDLT Fortran code.

Input Data

No
nreord
\=1 y

Yes

Fill-in Minimization \

Symbolic Factorization

K.* or Fort.*

M M D

Symfa

JU Ordering T ran sa /T ran sa

Master(super) Dof Supnode

Numerical Factorization Num fa 1/2/8

Forward/Backward Fbe

Error Norm Check
Ernorn
Multspa

Stop

Fig. 2.2 Flowchart of the vector-sparse LDLT solver
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2.3.3 Ordering for Gauss elimination: Symmetric matrices-MMD.

Successful implementation o f a sparse equation solution algorithm depends rather 

heavily on the reordering method used. While the Reversed Cuthill-Mckee (RCM), or 

Gipspoole-Stockmyer (GS), or Gibbs-King (GK) [30,39], reordering algorithms can be used 

effectively in conjunction with skyline or variable bandwidth equation solution algorithms 

[30], these reordering algorithms are not suitable for sparse equation solution algorithm. 

Ordering algorithms such as minimum-degree and nested dissection have been developed 

for reducing fill in factorizing sparse, symmetric matrices. Designing efficient sparse- 

reordering algorithms is a big task in itself, and high quality mathematical software 

providing efficient implementations o f these algorithms is available [30]. For all the sparse 

codes that we have developed, the Multiple Minimum Degree (MMD) is used to reduce 

the fill-in.

In the case of indefinite systems, rows and columns switching are performed and the 

symbolic factorization cannot be completed before the numerical factorization, thus the fill- 

in minimization cannot be guaranteed by using MMD on the coefficient matrix. A different 

strategy will be suggested in Chapter III that still takes advantage of MMD.

2.3.4 Sparse symbolic factorization: SYMFA

A sparse matrix algorithm may produce new non-zeros and modify the values of the 

existing non-zeros of the coefficient matrix; or it may just use a given matrix without ever 

modifying it. The set of new non-zeros elements added to an already existing sparse matrix 

is refered to as fill-in terms. Memory allocations for the new fill-in terms must be available. 

Storage management rules, which define the internal representation of data structure, must 

also be enforced, identifying where and how to store each new number.
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The purpose of symbolic factorization is to find the locations of all nonzero 

(including "fills-in" terms), off-diagonal terms of the factorized matrix [U]. Thus, one of 

the major goals in this phase is to predict the required computer memory for subsequent 

numerical factorization.

To better understand the algorithmic difficulties encountered when a sparse 

symmetric matrix (given in an upper triangular form) is factorized, one considers the 

example given in Eq.(2.5). ft can be easily shown that the factorized matrix [U] will have 

the following form:

x  0 0 x 0 x

x 0 0 x 0

x 0 x 0

x x F

x x  

x

[U] = (2.12)

In Eq. (2.12), the symbols "x" and " F " represent the nonzero values after factorization. 

However, the sym bol" F " also refers to "Fills-in" effect, since the original value of [K] 

at that location has zero entry.

For the same data shown in Eq. (2.5), if the "skyline" equation solution is adopted, 

[54], then the "fills-in" effect will take the following form:

x  0 0 x 0 x

x 0 F x F

x  F x F

x x F

x x  

x

[*,] = (2.13)
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On the other hand, if the "variable-bandwidth" equation solution is adopted [55], then the 

"fills-in" effect (on the data shown in Eq. 2.5) will have the following form:

[ * J  =

x F F x F x

x F F x F

x F x F

x x F 

x x

x

(2.14)

Thus, for the data shown in Eq. (2.5), the "sparse" algorithm is the best (in the 

sense of minimizing the number of arithmetic operations, and the required storage spaces 

in a sequential computer environment) and the "variable-bandwidth" equation solution is 

the worst one. On outputs from this symbolic factorization phase, two integer arrays IU 

and JU will be used to store the factorized matrix.

IU

1 1

2 3

3 4

4 • _ ■ 5

5 7

6 8

7 =neq+ 1 8

(2.15)

JU

1 4

2 6

3 5

4 ► — 5

5 5

6 6

7 =NCOEF2 6

(2.16)
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The following "new" definitions are used in Eqs. (2.15) and (2.16):

•NCOEF2 : The number of nonzero, off-diagonal terms of the factorized matrix [U]

•IU : Starting location of the first nonzero, off-diagonal term of the factorized

matrix [U]. The dimension for this integer array is neq+1.

•JU : Column number of each nonzero, off-diagonal terms of the factorized

matrix [U] (in a row-by-row fashion). The dimension for this integer 

array is NCOEF2. Due to "fills-in" effects, NCOEF2 >  > NCOEF. 

The "key" steps involved during the symbolic phase can be summarized as follows: 

For each i* row of the original stiffness matrix [K]:

Step 1 :Record the locations (such as column numbers) of the original non-zero, 

off-diagonal terms

Step 2 :Record the locations of the "fills-in" terms due to the contributions of some

(not all) appropriated, previous rows (where l^j^i-1) Also consider if the

current im row will have any immediate contribution to "future" rows.

In the symbolic factorization, the i* row of the factorized matrix is a merged list (see 

Section 2.2.4) of column indices of the i* row of the original matrix (stepl) and column 

indices of fills-in due to rows 1 to i-1, that are already factorized (step2). The merge is 

done using a multiple switch technique (see Section 2.2.4), that results in an unordered 

representation structure. Eq. (2.17) summarizes the above two steps that performs the 

symbolic factorization of the i* row.

Colit o f  i ,h row o f  U  = Colit o f  i ‘h row o f  A + Co lit F il ls- in  (2*17)

where Col#: means column index.
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A simple, but highly inefficient way to accomplish step 2 of the symbolic phase will 

be to identify the nonzero terms associated with the im column. For example, there will 

be no "fills-in" terms on row 3 (using the data shown in Eq. 2.5), due to "no 

contributions" of the previous rows 1 and 2. This fact can be easily realized by observing 

that the associated 3rd column of [K] has no nonzero terms.

On the other hand, if one considers row 4 in the symbolic phase, then the 

associated 4th column will have 1 nonzero term (on row 1). Thus, only row 1 (but not 

rows 2 and 3) may have "fills-in" contribution to row 4. Furthermore, since K, 6 is 

nonzero (=2), it immediately implies that there will be a "fills-in" terms at location U4 6 

of row 4.

A much more efficient way to accomplish step 2 o f the symbolic phase is by 

creating two additional integer arrays ICHAINL and LOCUPDATE. ICHAINL(I= l,neq) 

is a circular chained list of dimension neq for the i* row. This array efficiently identifies 

which previous rows will have contributions to current iIh row. LOCUPDATE(I= l,neq) 

updates the starting location of the i* row during the symbolic factorization process. 

Besides the two additional arrays ICHAINL and LOCUPDATE, the array IU plays 

double roles in the actual computer implementation. At the time the Ith row is being 

processed, the row pointers to JU corresponding to the preceding rows are stored in 

locations 1 to I-I of IU. The remaining locations of IU are free. Since only column 

indices equal to or larger than I will be inscribed in the list JU, the locations I to neq of 

IU are used as the multiple switch expanded array (see Section 2.2.4) needed to perform 

step 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

Considering the data shown in Eq.(2.5), the use of the above two arrays in the 

symbolic phase can be described by the following step-by-step procedure:

Initialize arrays : ICHAINL =  {0} and LOCUPDATE =  {0} 

a) Consider Row i =  1

Step 1 :Realizing that the original nonzero terms occur in columns 4 & 6 

Step 2 :Since the chained list ICHAINL(i=l) =  0, no other previous rows will 

have any contributions to row 1

ICHAINL(4) =  1 (2.18)

ICHAINL(l) =  1 (2.19)

LOCUPDATE(i= 1) =  1 (2.20)

Equations (2.18-2.19) indicate that "future" row i= 4  will have to refer to row 1, and row

1 will refer to itself. Eq. (2.20) states that the updated starting location for row 1 is 1. 

bl Consider row i =2

Step 1 : Realizing the original nonzero term(s) only occurs in column 5

Step 2 : Since ICHAINL (i=2) =  0, no other previous rows will have any 

contributions to row 2.

ICHAINL(5) =  2 (2.21)

ICHAINL(2) =  2 (2.22)

LOCUPD ATE(i=2) =  3 (2.23)

Equations (2.21-2.22) indicate that "future" row i=5 will have to refer to row 2, and row

2 will refer to itself. Eq. (2.23) states that the updated starting location for row 2 is 3. 

C) Consider row i= 3

Step 1: The original nonzero term(s) occurs in column 5
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Step 2: Since ICHAINL( i=3) =  0, no previous rows will have any contributions 

to row 3.

The chained list for "future" row i= 5  will have to be updated in order to include row 3 

into its list:

ICHAINL(3) =  2 (2.24)

ICHAINL(2) =  3 (2.25)

LOCUPDATE(i=3) =  4 (2.26)

Thus, Eqs. (2.21, 2.24, 2.25) state that "future" row 1=5 will have to refer to rows 2, 

row 2 will refer to row 3, and row 3 will refer to row 2. Eq. (2.26) indicates that the 

updated starting location for row 3 is 4. 

a) Consider row i= 4

Step 1 : The original nonzero term(s) occurs in column 5 

Step 2 : Since ICHAINL(i=4) = 1 , and ICHAINL(l) =  1 (please refer to Eqs. 

2.18-2.19), it implies that row #4 will have contributions from row 1 only. The 

updated starting location of row 1 now will be increased by one, thus

LO CU PD A TE (1) = LOCUPDATE ( 1) + 1 (2.27)

Hence,

LO CUPDATE (1 ) = 1 + 1 =2 ( please refer to E q.2.20 ) (2.28)

Since the updated location of nonzero term in row 1 is at location 2 (see Eq. 2.28), 

the column number associated with this nonzero term is column #6 (please refer to Eq. 

2.5). Thus, it is obvious to see that there must be a "fills-in" term in column #6 of 

(current) row #4. Also, since K1>6 =  2. (or nonzero), it implies "future" row i= 6  will 

have to refer to row 1. Furthermore, since the first nonzero term of row 4 occurs in
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column 5, it implies that "future" row 5 will also have to refer to row 4 (in additions to 

refer to rows 2 & 3). The chained list for "future" row 5, therefore, has to be slightly 

updated (so that row 4 will be included on the list) as following

ICHAINL(4) =  3 (2.29)

ICHAINL(2) =  4 (2.30)

LOCUPD ATE(i=4) =  5 (2.31)

Notice that Eq. (2.30) will override Eq. (2.25). Thus, Eqs. (2.21, 2.30, 2.29) clearly 

show that symbolically factorizing "future" row i= 5  will have to refer to rows 2, then 4 

and then 3, respectively.

e) Consider row i= 5

Step 1 :The original nonzero term(s) occurs in column 6 

Step 2 : Since

ICHAINL ( i =5 ) =  2 ( 2.21, repeated)

ICHAINL (2 ) =  4 (2 .30 , repeated)

ICHAINL (4) = 3  (2 .29 , repeated)

It implies rows #2, then 4, and then 3 "may" have contributions (or "fills-in" effects) on

row 5. However, since Ks 6 is originally a nonzero term, therefore, row 2,4 and 3 will

NOT have any "fills-in" effects on row 5.

f) Consider row i= 6

There is no need to consider the last row i=N =6, since there will be no "fills- in" effects 

on the last row.
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It is extremely important to emphasize that upon completion o f the symbolic phase, 

the output array JU has to be re-arranged to make sure that the column number in each row 

should be in increasing order. This requirement is needed for the numerical factorization.

2.3.5 Ordered and unordered representation-TRANSA.

Sparse matrix representation do not necessarily have to be ordered, in the sense that 

the elements of each row can be stored in any order while still preserving the order of the 

rows. The symbolic factorization requires the structure IA, JA o f the matrix in an unordered 

representation, and generates the structure IU, JU of the factorized matrix in an unordered 

representation. However, the numerical factorization requires IU, JU to be ordered, while 

IA, JA, AN can be given in an unordered representation. The algorithm that transforms a 

row wise representation of a matrix into a column-wise representation of the same matrix, 

or vice versa, has a further property that the resulting representation is ordered in the sense 

that the column indices of the elements in each row are obtained in the natural increasing 

order. Since a column-wise representation of the matrix is a row-wise representation of the 

transpose, the algorithm effectively transposes the matrix. Therefore, if the algorithm is used 

twice to transpose a matrix originally given in an unordered representation, an ordered 

representation of the same matrix is obtained. A symbolic transposition routine, TRANSA, 

that does not construct the array of non zero of the transpose structure, has been used twice 

to order IU, JU, after the symbolic factorization, since we are only interested in ordering JU.

2.3.6 Vectorization and finding Master (or Super) Degree-of-Freedom(dof)

There exists two approaches in performing vector computations. To illustrate these 

approaches, one considers the multiplication of a matrix K by a vector x.

y  =[K\x (2.32)
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a) Approach 1: loop unrolling

y  i 

y2

y„

> — K  , K  , ... Kc l  c2 cn A / Xl + ^ c 2 Xl ' r — + ^ c n X n
(2.33)

b) Approach 2: vector unrolling

V i X , K r l x

y * ► — Z r 2
{ * 1  = '

K r 2 X

A K  xrrt

where and Kri (1=1,neq) are column vectors and row vectors respectively.

Loop unrolling strategy was the vectorization technique of our choice. The 

following pseudo Fortran coding shows the actual expansion of Eq. (2.33) for loop 

unrolling level 2.

The choice of the loop unrolling level depends on the machine used. For example, the 

optimal level for the Cray-YMP is 8 and for the IBM 3090 is 16. SUN workstations do 

not have vector capability. The basic requirements to apply loop unrolling is the same 

vector length. The nonzeros coefficients of consecutive rows must have the same column 

indices

We call a block of rows that satisfies the above requirements Master ( or super) degree 

o f  freedom , or simply supernode. To simplify the discussion, assume that upon 

completion of the symbolic factorization phase, the stiffness matrix [K] has the following 

form:
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DO J = l,N 0 , LOOP (say 2)

DO 1= l.NEQ

Y(Q=Y(R+X(J)*K,(D +  X(J+l)*KI+l(I) 

ENDDO 

ENDDO

c leftover

DO J=N 0+l.N E Q  

DO 1 = l.NEQ

Y(I)=Y(I)+X(J)* K; (I)

ENDDO

ENDDO

Table 2.3 Skeleton Fortran coding for loop unrolling

XXX 
X X 

X

X X X
X X X
X X X

[X] =

XX XX
X X X

x x x F F F
x x x x F

x x x F
x x F

x F

X  X  

X  X  

X  X  

X  

X

x F
X  X  

X  X  

X  X  

X  X

(2.35)

X X X X 

XXX 
X X 

X

In Eq. (2.35), the stiffness matrix [K] has 14 dof. The symbols "x" and "F" refer to the 

original nonzero terms, and the nonzero terms due to "fills-in", respectively. It can be 

seen that rows 1-3 have same nonzero patterns (by referring to the enclosed "rectangular" 

region, and ignoring the fully populated "triangular" region of rows 1-3). Similarly, rows
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4-5 have same nonzero patterns. Rows 7-10 have same nonzero patterns. Finally, rows 

11-14 also have same nonzero patterns. Thus, for the data shown in Eq. (2.35), the 

"Master" (or "Super") degree of freedom can be generated as

1 3

2 0

3 0

4 2

5 0

6 I

7 4=
8 0

9 0

10 0

11 4

12 0

13 0

£ II 0 it /

According to Eq. (2.36), then the "master" (or "super"") dof are dof ft 1 (which is 

followed by 2 "slave" dof), dof # 4 (which is followed by 1 slave dof), dof if 6 (which has 

no slave dof.), dof # 7 (which is followed by 3 slave dof), and dof # 11 (which is followed 

by 3 slave dof).

In the actual Fortran code implementation, the supemode array, MASTER, is 

constructed by a series of If checks on consecutive rows. Different strategies can be 

adopted for that purpose, and the more rigid the criteria are, the less number of slaves will 

be obtained and vice versa. Table 2.4 gives the algorithm used to construct the array 

MASTER (in subroutine supnode.f).
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Step 1. Initializaton: MASTER®=1 for 1=1, NEQ 

Step 2. To find MASTER®

DO K=2,NEQ

-Check 1: if number of nonzero o f row I from column K. to neq 

is equal to number of nonzero of row K 

-Check 2: elseif column indices o f row K matches those of row I 

=  >  same master DOF 

else

=  >  stan a new master DOF =  K 

endif

ENDDO

Table 2.4 Algorithm for finding master DOF

In the algorithm shown in Table 2.4, for finding Master degree of freedom, the enclosed 

region ABD shown in Fig. 2.3 is assumed to be fully populated.

a  b  c
\^C X X Xj O O X X O O O X X O X  -row  i

\ x  X X j O O X X O O O X X O X

\ x  X i O O X X O O O X X O X  -row  k
\ x; o o x x o o o x x o x

f r  E

Fig. 2.3 Master Degree of freedom

2.3.7 Sparse numerical factorization with loop unrolling strategies

It is generally safe to say that sparse numerical factorization is more complicated for 

computer coding implementation than its skyline, or variable bandwidth cases. Main
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difficulties are due to complex "book-keeping" (or index referring) process. In this section 

we assume that the symbolic factorization and ordering of the structure have been 

accomplished and that we have IU, JU in an ordered row-wise upper triangular format. We 

are now interested in the numerical part o f Gauss elimination.

Let’s consider the example given in Eq. (2.5). We will assume that the factorization 

is completed up to and including row 3, and we will examine how row 4 is processed. Row 

4 has non-zeros at column numbers 4, 5 and 6. In order to find their values, we have to 

examine column 4, and find that the only nonzero is in the first row o f this column. The 

nonzero elements of this first row which have column indices equal to or greater than 4 are 

identified. Finally,the partial factorization of the current row 4, due to the contribution from 

row 1 is processed.

The "key" ideas in the numerical factorization phase are still basically involved with 

the creation and usage of the 2 integer arrays ICHAINL and LOCUPDATE, similar to the 

one that has been discussed in great detail in Section 2.3.4. There are two important 

modifications that need to be done on the symbolic factorization, in order to do the sparse 

numerical factorization (to facilitate the discussion, please refer to the data shown in Eq. 2.5):

a) For symbolic factorization purpose, there is no need to have any floating points arithmetic 

calculations. Thus, upon completion of the symbolic process for row 4, there is practically 

no need to consider row 2 and/or row 3 for possible contributions to row 5. Only row 4 

needs to be considered for possible contributions (or "fills-in" effects) to row 5 (since row 

4, with its "fills-in", is already full). For numerical factorization purpose, however, all rows 

2, then 4, and then 3 will have to be included in the numerical factorization of row 5. One
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can see that the ICHAINL list will be more involved than the one constructed in the symbolic 

factorization.

b) For sparse numerical factorization, the basic skeleton FORTRAN code for LDLT, shown 

in Table 2.2, can be used in conjunction with the chained list strategies (using arrays 

ICHAINL and LOCUPDATE). The skeleton FORTRAN code for sparse LDLT 

factorization is shown in Table 2.5. Comparing Table 2.2 and Table 2.5, one immediately 

sees the "major differences" only occur in the second do-Ioop indexes, on lines 3 and 6, 

respectively.

1. c Assuming row I has been factorized earlier

2. Do 11 I = 2, NEQ

3. Do 22 K= Only those previous rows which have contributions to 

current row 1

4. c.......Compute the multiplier ( Note : U represents L7)

5. XMULT = U(K,I) /  U(K,fC)

6. Do 33 J = appropriated column numbers of row # EC

7. U(1,J) = U(I,J) - XMULT * U(K,J)

8. 33 CONTINUE

9. U(K,I) = XMULT 

10.22 CONTINUE

II. II CONTINUE

Table 2.5: Pseudo FORTRAN Skeleton Code For Sparse LDLT Factorization

At the begining of the numerical factorization, ICHAINL array is initialized to zero, 

which means that all chained lists are initially empty. To explain the numerical factorization
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phase, let’s consider Fig. 2.4 where row i is being factorized by row L. We assume that rows 

1 to i-1 have already been factorized, and ICHAINL array has been consequently updated.

Row  1

- Row  L

R ow  i-1

R ow  i

\

\  Row  neq

Fig. 2.4 Numerical factorization: Factorization of row i by row L

The non-zero terms o f row i as well as the diagonal element of the original structure (non 

factorized matrix) are loaded into the multiple switch array DI (array that will contain the 

diagonal element of the factorized matrix on output) from location i to neq. To factorize row 

i, the information on the pointers to rows which have contribution to row i will be retrieved 

from ICHAINL array.

Let rUC = locupdate(L), IUC points to the first nonzero element of row L which has 

contribution to the reduction (or factorization) o f row i, while IUD points to the last non zero 

element of row L. After the above information is collected, the multiplier is computed and 

the reduction of row i due to row L can be completed. It is important to note that each
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reduced element of row i is generated and stored in an unnormalized form. It is then 

normilized by dividing the value by the corresponding diagonal element. Finally once the 

reduction for row i has been completed, the numerical values o f the factorized i* row are 

retrieved from the expanded real accumulator (see section 2.2.4) array DI and stored in the 

factorized matrix UN. There are two details that are very important: first of all, once the 

information IUC is used, the value is directly updated to point to the next non zero on row 

L that reduces row i, if any, as shown in Fig. 2.5. Secondly, ICHAINL is updated to include 

information o f the “future” row that row i will update . Note also that in the symbolic 

factorization, row L was used once and then discarded in constructing the chain list 

ICHAINL, it is not the case for the numerical factorization

iucx x

X x  X
\

X:— x--------- x

N ext IUC
* Row

Row i

Fig. 2.5 Numerical factorization: Update location of IUC of rowj
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The portion o f Fortran code in Table 2.6 and Fig. 2.4 show how, in the actual Fortran 

implementation, the chain list ICFIAINL is constructed during the numerical factorization. 

Two cases are considered, the first time a row is inserted in the chain list and the case of a 

row inserted in an existing chain list.

J=JU(IUC+1) '.Column index of the next non-zero term in row L

JJ=ECHAINL(J) .Get information

IF (JJ.EQ.O) GO TO 70 JJ=0 means L is the first row involved in updating J

ICHAINL(L) = ICHAINL(JJ) -JJ*Q Insert L in the existing chain list 

ICHAINL(JJ)=L 

GO TO 80

70 ICHAINL(J)=L JJ=0 first time

ICHAINL (L)=L

80 IF(L.EQ.LAST) End L =last means no more rows that update row i

Table 2.6 Numerical Factorization: ICHAINL update

The vector unrolling, and loop unrolling strategies that have been successfully 

introduced for skyline [54] and variable bandwidth [55] equation solver, can also be 

effectively incorporated into the developed sparse solver in conjunction with the “master” 

degree of freedom strategy. Referring to the stiffness matrix data shown in Eq. (2.35), for 

example, and assuming the first 10 rows of [U] have already been completely factorized, our 

objective now is to factorize the current i* row (say i= 11). By simply observing Eq.(2.35), 

one will immediately see that factorizing row # 11 will require the information from the 

previously factorized row numbers 1,2,3,6,7,8,9, and 10 (not necessarily to be in the stated 

increasing row numbers!) in the "conventional" sparse algorithm. Using "loop-unrolling"
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sparse algorithm, however, the chained list array ICHAINL will point only to the "master" 

dof# 6, # 7  and# 1.

The skeleton FORTRAN code for LDLT (with sparse matrix) should be modified as 

shown by the pseudo, skeleton FORTRAN code in Table 2.7. Comparing Table 2.5 (sparse 

LDLT factorization) and Table 2.7 (sparse LDH factorization, with unrolling strategies), one 

can recognize the many similarities between the 2 sparse algorithms.

1. c   Assuming row I has been factorized earlier

2. Do II 1=2,NEQ

3. Do 22 K.=Only those previous "master" rows which have contributions to

current row i

4 .1c  Compute the multiplier(s) (Note: U represents L7)

4.2 NSLAVE DOF= MASTER (I) - I

5.1 XMULT = U(K,I) / U(K,K)

5.2 XMULm = U(K+m,I)/U(K+m,K+m)

5.3c........m =I,2... NSLAVE DOF

6 Do 33 J = appropriated column numbers of" master " row # FC

7.1 U(I,J) = U (I,J) - XMULT * U(K,J)

7.2 - XMULm *U(K+m,J)

8 33 CONTINUE

9.1 U(K,I) = XMULT

9.2 U(K+m,I) = XMULm

10. 22 CONTINUE

11 11 CONTINUE

Table 2.7 : Pseudo FORTRAN Skeleton Code For Sparse LDLT Factorization With

Unrolling Strategies
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The chained list strategies discussed earlier in Section 2.3.4 need to be modified 

in order not only to consider all rows that contribute to the factorization of row i, but also 

to include the additional information provided by the MASTER dof (refer to, for example, 

Eq. 2.36). The major modification that needs to be done can be accomplished by simply 

making sure that the chained list array ICHAINL will be pointing only toward the 

MASTER dof (and not toward the slave dof !). On the other hand, LOCUPDATE array 

is updated for the whole supemode (or master node, or master dof); thus, all rows that belong 

to the same supemodes will have the same IUC value.

Different levels o f loop unrolling have been implemented, such as level 1 

(NUMFA1), level 2 (NUMFA2) and level 8 (NUMFA8). Let’s consider an example o f a 

matrix for which the 27 rows, from row 20 to row 46, have same column numbers, or in 

other words, MASTER(20)=27 as shown in Fig. 2.6. Assuming that we are using loop

; R ow  20 

, R ow  21 

R ow  36 

R ow  44 

Row  46

\

v
D N

Fig. 2.6 Numerical Factorization: loop unrolling
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unrolling level 8, the nonzeros in rectangular BCDE of Fig. 2.6 of the 27 rows will be 

factorized 8 rows at a time, leaving a leftover o f 3 rows (rows 44 to 46), which will be 

factorized separately using a loop unrolling level 3. Finally the non zero terms in the 

triangular ABD will be factorized separately. Table 2.8 gives the order in which the 

vectorization has been implemented in NUMFA2 and NUMFA8.

2.3.8 Forward and backward solution

For a single right hand side vector f, the time for forward reduction and back 

substitution is very small as compared to the time for numerical factorization. However, for

1=1
1000 continue

11= isupnode(I)

K=(II/LOOP)*LOOP 

Do J=l, K, LOOP (say 8)

Factorization with loop unrolling level 8 

ENDDO

c  leftover

GO TO (10,20,30,40,50,60,70) II-K 

10 unrolling level l(doj=l,k)

20 unrolling level 2 (do j= I,k,2)

70 unrolling level 7 (do j= l,k ,7)

I = I + II (for next master dof)

IF ( I.GE.NEQ ) STOP 

GOTO 1000

Table 2.8 Fortran Skeleton code for the vector portion of Numfa2/8
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multiple right-hand-side vectors f, or for cases where the vector f  needs to be modified 

repeatedly, the time for forward reduction and back substitution has to be considered more 

seriously.

2.3.7 Sparse matrix-vector multiplication (with unrolling strategies)

In the sparse equation solver that has been developed, after obtaining the solutions, 

the user has the option o f computing the relative error norm. For the error norm 

computation, one needs to have efficient sparse matrix (with unrolling strategies) vector 

multiplication. Furthermore, efficient sparse matrix-vector multiplication is also required 

in different steps of the Subspace and Lanczos algorithms (see Chapter IV). To facilitate the 

discussions, let's consider the coefficient (stiffness) matrix as shown in Fig.2.7. This 14 dof 

matrix is symmetrical, and it has the same nonzero patterns as the one considered earlier in 

Eq. (2.35). The master/slave dof for this matrix has been discussed and given in Eq. (2.36). 

Refering to Fig 2.7, the sparse matrix-vector [A]*{x}, multiplication (with unrolling 

strategies) can be described by the following step by step procedure:

Step 0.1 : Perform multiplication between the given diagonal terms of [A] and vector 

{x}.

Step 0.2 : Consider the first "master" dof. According to Fig. 2.7, the first master dof 

is at row # 1, and this master dof has 2 associated slave dof. In other words, the first 

3 rows of Fig. 2.7 have the same off-diagonal, nonzero patterns.

Step 1 : The first 3 rows (within a rectangular box of Fig. 2.7) of given matrix [A] 

operate on the given vector {x}.

Step 2 :The first 3 columns (within a rectangular box) of the given matrix [A] 

(shown in Fig. 2.7) operate on the given vector {x}.
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Step 3 :The upper and lower triangular portions (right next to the first 3 diagonal 

terms o f the first 3 rows of the given matrix [A] operate on the given vector {x}) 

Step 4 :The row number corresponding to the next "master" dof can be easily 

computed (using the master/slave dof information, provided by Eq. 2.36).

If the next "master" dof number exceeds N (where N = total number of dof of the given 

matrix [A], then stop, or else return to Step 0.2 (where the "first" master dof will be replaced 

by the "second" master dof etc.)

Th ird  Step:

The upper an d  lo w e r  tra in g u la r  reg ion  

w ill f in a lly  be p r o c e s se d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 First Step

1 101. ' I. 2. 3. 4. 5. " 6. 7. 8".~ ~ These 3 rows

2 r 102. 10. 11. 12. 13. 14. 15. — w ill be processed

3 2. 103. 16. 17. 18. 19. 20. 21 -  1 D ot Product Operations )

4 104. 22. 23. 24. 25.

5 22. 105. 26. 27. 28.

6 3. 10. 16. 106. 29. 30. 31.

7 23. 26. 29. 107. 32. 33. 34. 35. 36.

8 24. 27. 30. 32. 108. 37. 38. 39. 40.

9 4. 11. 17. 33. 37. 109. 41. 42. 43.

10 5. 12. 18. 34. 38. 41. 110. 44. 45.

u 6. 13. 19. 111. 46. 47. 48.

12 46. 112. 49. 50.

13 7. 14. 20. 25. 28. 31. 35. 39. 42. 44. 47. 49. 113. SI.

14 8. 15. 21. 36. 40. 43. 45. 48. 50. SI. 114.

i I I

Secon d  S tep :

These J  co lu m n s  

w ill be p r o c e s s e d  

(SAXPY o p era tio n s)

Fig. 2.7 : Sparse Matrix-Vector Multiplication With Unrolling Strategies
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2.4 The Modified Oak-Ridge sparse equation solver, [25]

2.4.1 Introduction

The modified Oak-Ridge solver, which we will refer to as OakRidgeODU solver, is 

a collection o f routines that solves a user’s sparse, symmetric, positive definite linear 

systems via sparse Cholesky factorization (given in NASA sparse format). The user has the 

option o f solving the matrix in its original format or to use the multiple minimun degree 

routine for the fill-in minimization. The original code, [25], was a set of drivers and routines 

that creates and solves only an artificial graph of a coefficient matrix and does not allocate 

and deallocate memory in an efficient manner. The modification consists of developing 

drivers that will read in and solve a user given matrix (in NASA format). Thus three 

subroutines have been developed. The first subroutine reads in the structure of the matrix 

in NASA format and constructs the adjacency structure. The second routine inserts the 

diagonal elements into the structure and creates the numerical values in the order required 

by the Oak-Ridge format. Memory is assigned from a single working array in the main 

program. No additional memory was added and all the above added routines will recycle the 

memory allocated during the factorization phase. The third routine is a normcheck 

subroutine that computes the absolute and relative error norm, making use of the sparse 

matrix by vector ( multspa.f) multiplication.

The OakridgeODU solver has also built in the capability of making use of different 

sizes of the cache (in Kilobytes) on the target machine. For most machines (such as SUN 

Sparcstations), the optimum cache size is probably 32 or 64. For Cray type computers, the 

optimum cache size is 0. A study of the optimal cache size has been done using the 

developed solver.
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2.4.2 The OakRidge data format

The original data is read in NASA format on input either as ASCII or binary. The 

adjancy structure (or matrix connectivity information) is constructed in subroutine 

Oakmain.f, and the structure o f the matrix is copied and kept in another location, since the 

minimun degree ordering routine will destroy the original structure on exit. The structure 

o f the non-zero coefficient in the solver, ANZ, is sparse row wise, complete and includes the 

diagonal values. Considering the example in Eq.(2.5), The values of ANZ are constructed 

row by row in the following order: The first value (in boldface) is the diagonal value 

followed by the lower diagonal values (underlined values) and then the upper diagonal values 

o f each row, as shown in Eq. (2.37).

ANZ =[ 11. 1. 2.
44. 3.
66. 4.
88. L 5.

110. J . A

112. _ 2 i _ L

2.4.3 Modification of the OakRidge solver

Fig. 2.8 gives the flowchart of the modified OakRidge solver. The solution process 

consists of a sequence of six distinct steps after inputting the data in NASA format: Adjancy 

structure, ordering, symbolic factorization, numerical factorization, Forward/Backward 

solution and the error norm check. The minimum degree algorithm is used to reduce the fill 

and work required by the factorization. An option of using the so-called "natural ordering", 

which is the initial ordering of the coefficient matrix, is also introduced. The symbolic 

factorization generated the compact data structure in which the Cholesky factor will be 

computed. The routine uses the efficient algorithm based on elimination trees in sparse
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^ /In p u t Data

Construct Adj. ANZ Oakmain.f

AIcase= l \

Fill-in Minimization

Symbolic Factorization

Insert Numerical Values in 
Data Structure

Numerical Factorization

y
Forward/Backward Solution

y
Error Norm Check

~ z y ~

Ordmmd.f

Sfm it.f
Sym fct.f

Pierrot.f

B finit.f
B lkfct.f

B lkslv.f

Enorm.f
M ultspa.f

Stop

Fig. 2.8 Flowchart of the OakridgeODU Solver

factorization. The symbolic factorization is performed in two steps. The first step calls 

routines that implement the initialization, and the second step computes the primary 

symbolic factorization data structure. The numerical factorization computes the sparse
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Cholesky factor within the data structures created in the symbolic factorization phase. The 

left-looking block sparse Cholesky factorization algorithm has been implemented. The 

routine, blkfct.f, that performs the sparse block Cholesky factorization is preceded by a 

routine, bfinit.f, that initializes for the block factorization. The performance o f this routine 

has been enhanced by exploiting the memory hierarchy: it operates on blocks o f columns 

known as supemodes; it splits supemodes into sub-blocks that fit into available cache; and 

it unrolls the outer loop o f matrix-vector products in order to make better use o f available 

registers. The Forward/Backward phase performs the triangular solutions needed to solve 

the linear system.

2.4.4 Reuse of data in fast memory: CACHE

For machines with one processor, several other issues can be considered to improve 

the performance besides vector processing. With the continuous increase in processor speed, 

rapid memory access has become a very important factor in determining performance levels 

on several machines. To be efficient, algorithms must reuse data in fast memory (e.g., cache) 

as much as possible.

Let’s consider a supemode that contains K columns/rows and which affect the 

reduction (or factorization) of J rows of the matrix. Let’s define task(j,k), the modification 

o f  column/row j by a multiple of column/row k, k<j. One would like to consider the 

computation of the update (or factorize) of columns/rows J by columns/rows K. during the 

Cholesky factorization. Suppose the operation updates q columns/rows o f J with the 

columns/rows of K. The number o f columns/rows updated may be as few as 1 or as many 

as |J|. We can compute task(J,K) as a sequence of updates task(j,K) for the q columns/rows 

jeJ. If the columns/rows of K, which happened to be stored contiguously in main memory,
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fit into cache memory, then the first task(j,K) loads the columns of K into cache, while the 

following q-1 tasks will have extremely fast access to this data because it is already in cache. 

Quite often, however, the columns/rows of a supemode do not fit into the 32K or 64 K 

caches used on current workstations. This can dramatically increase the number o f cache 

misses used associated with the final q-1 tasks, as the columns/rows of K. overwrite one 

another as they are repeatedly read into cache. To avoid this problem, the algorithm divides 

large supemodes into “ panel” of contiguous columns/rows that fit into the cache. This 

simple strategy has proven effective for certain classes of problems, machines, and 

factorization methods used. Extremely large problems, however, may require more 

complicated techniques that involve both horizontal and vertical partitioning and perhaps 

even changes in the data structure used to store that factorized matrix.
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VECTOR SPARSE SOLVER FOR INDEFINITE MATRICES

3.1 Introduction

For certain classes of engineering and science applications, the symmetric coefficient 

matrix is not positive definite; instead, it is indefinite. Cholesky and LDLT methods are fast 

and stable, and they preserve symmetry when the matrix is positive definite. However, when 

the matrix is indefinite, these methods can produce very inaccurate results and fail to give 

warning of what has occurred. It is therefore usual to recommend Gaussian elimination with 

partial or complete pivoting for indefinite systems, and in most cases the symmetry o f the 

matrix is of no advantage.

Gaussian elimination with pivoting consists of switching rows and columns, 

operations that can be associated to a permutation matrix. There are two well known 

strategies for choosing permutation matrices such that Gaussian elimination will provide 

numerical stable solution. The first strategy, called complete pivoting, requires that we bring 

the largest element in the reduced matrix into the leading diagonal position. This strategy 

is called complete pivoting since we search the entire reduced matrix. The second strategy, 

called partial pivoting requires that we bring the largest element in the first column o f the 

reduced matrix into the leading diagonal position. This strategy is called partial pivoting 

since we search only a part of the reduced matrix.

For positive definite systems, there is a choice of data structure. Either it may be 

prepared before numerical factorization starts, or it may be developed during the numerical 

factorization keeping pace with the stream of computed numbers. A data structure which is
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ready before initiation o f numerical factorization is termed a static structure. Preparing it 

requires knowledge of the number of non-zero elements and of their positions in the matrix 

before they are actually factorized. The vector sparse solver for positive definite systems 

developed and presented in Chapter 2 uses a  static structure. Static schemes present more 

advantages such as modularity, the symbolic and numerical steps are executed separately and 

consequently they can be independently optimized. Another advantage arises in the case of 

applications which require the repeated use o f  the same algorithm with different numerical 

values (same nozeros locations but different numerical values). Unfortunately, static data 

structures cannot be employed for indefinite systems. Since Gauss elimination with pivoting 

is used, selecting pivots using techniques such as complete pivoting, partial pivoting, or 

threshold pivoting amounts to permuting rows and columns, which in turn affects the 

location and total amount of the resulting fill-in. The consequence is that the structure of the 

final matrix cannot be foreseen, and decisions as to where and how to store each new fill-in 

non-zeros element must be made when that element has already been computed and is ready 

for storage. This procedure is called dynamic storage allocation and a dynamic structure 

results.

We have developed a sparse indefinite solver, the ODU-HKUST indefinite solver, 

with a dynamic structure,[63]. The solver uses a mixed algorithm that combines the look 

backward (or left looking, if lower matrix is used) and look forward (or right looking, if 

lower matrix is used) factorization strategies. Until the first “sick” row (a row which has 

nearly zero diagonal value during factorization) is encountered, the elimination is performed 

by looking backward and then looking forward strategies. The symbolic and numerical 

factorization are done simultaneously in a row after row fashion. Different pivoting
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strategies have been developed that include those suggested by Golub, [6], and Ian Duff et 

al., [8]. Pivoting is performed using lx l or 2x2 pivoting. The use of a rotation matrix, 

developed by Chen Pu [63], is introduced to diagonalize the 2x2 diagonal submatrix, 

avoiding the difficulties of performing Gauss elimination with coupled rows. The use of lx l 

and 2x2 pivoting can be computational expensive. It involves permutations of rows/columns 

and may increase the fill-in of the remaining matrix. Concepts of weighted pattern matching 

o f rows to be permuted and consecutive search strategy are introduced. In the following 

sections, we will explain first the pivoting strategies used and then we will describe the 

factorization procedure of the indefinite system adopted every time a sick row is encountered 

(the restarted procedure).

3.2 Symmetric indefinite systems - Pivoting strategies

3.2.1 Introduction

Although an indefinite matrix A may have LDLT factorization, the entries in the 

factor could have any arbitrary magnitude:

6  1 1 0 6  0 1 0

1 0 1/6  1 0 - 1/6 1/6  1

In the above equations, some terms of [L] and [D] can be extremely (and therefore 

arbitrarily) large, and/or extremely small. Of course, any pivoting strategy could be invoked. 

However, they destroy symmetry. Symmetric pivoting, i.e., data reshuffling of the form

Ap «= P A P  T (3.2)

must be used, with P as permutation matrix for this system. Unfortunately, symmetric

pivoting does not always stabilize the LDLT factorization computation. If e, and e2 are

small, then regardless of P, the matrix
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has small and large diagonal entries, and large numbers surface in the factorization. With 

symmetric pivoting, the pivots are always selected from the diagonal and trouble results if  

these numbers are small relative to what must be zeroed off the diagonal. Thus, LDLT with 

symmetric pivoting can not be recommended as a reliable approach to solve symmetric 

indefinite systems [6]. One of the challenges is to involve the off-diagonal entries in the 

process while at the same time maintaining symmetry. A second challenge lies in how to 

take into consideration the sparsity structure o f the matrix during the factorization with 

pivoting and in how to design an efficient Fortran code. The first challenge was solved by 

mathematicians in the 1970's [6,7] using either 2x2 pivoting strategies or LTLT factorization, 

where T is a symmetric tri-diagonal matrix.

3.2.2 Pivoting strategies

There have been a number of pivoting strategies suggested in the literature, but most 

of them either destroy the symmetry structure of the matrix or fail to solve a wide range of 

large scale indefinite systems. New strategies are suggested and combined with the ones 

suggested by Golub, [6], and Duff et al, [8], for symmetric indefinite system. Let’s assume 

that the numerical difficulties happen at the first step of the reduction (first row to be 

factorized). The pivoting strategies are summarized in Table 3.1. In Table 3.1, s is the order 

o f pivoting, i.e., s = 1 implies diagonal pivoting and s = 2 implies 2x2 pivoting.

The formula to compute the parameter a (alpha) given in Table 3.1 was suggested 

by Golub, [6]. In our implementation we found that the value guarantees an accurate result
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a  = (1 +v/l7)/8 and A.= I a,r I = max off-diagonal o f row 1......(A)
if A> 0

if la,, I ôcA............................................................................ (B)
s = I; P = I 
else

0 = 8,,, = max off-diagonal o f row r .....................(C)
ifo | a,,| z  aA.2...................................................... (D)

s =  1; P = I ....................................................... (E)
else if | arT | z a a .................................................... (F)

s = 1 and choose P so (PAP7) ,, = a„............. (G)
else if |app| z a a ..................................................... (H)

s = 1 and choose P so (PAP7) u =  (1)
else

s = 2 and choose P so (PAP7) , ; = a^............ (J)
end if

end if
end if

Table 3.1 Pivoting strategy for symmetric indefinite system

a ,r =  m ax o ff-d ia g

pp

R ow  I

R ow  r

pp R ow  p

Fig 3.1 Indefinite Solver: Pivoting strategy
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but was not the optimum in terms of performance. The value of a  affects the number of lx l 

and 2x2 pivoting needed during factorization. Different values were suggested and a 

relaxation control parameter, stiff, was also added.

Before taking sparsity into consideration, let us define what is a good diagonal 

pivoting and what is a good 2*2 pivoting. According to Table 3.1, if | a,,| ^ aA. or 

l^aA ./|au |, then au is a good diagonal pivot, otherwise a,, is what we will call a sick pivot, 

and row 1 will be referred to as a sick row. The condition shown in (D) Table 3.1 can be 

derived as following :

From the definition o f a ( see Eq. C), one has |a j  < o. Thus |a,,| |a j  s |an| a. From 

the definition of A, ( see Eq.A), and from Fig. 3.1, one would like to have [a, ,| |a j  ^ A.2 . 

Thus A.2 s |a,,| |a j  £ |a,,[ a  or A,2 £ |a,,| a. Hence a  A.2 s |a,,| o or |a,,| a A.2 ( since a  

<1, according to Eq. A). Eq.(I) of Table 3.1 indicates that row/column 1 will be exchanged 

with row/column p, while Eq.(J) indicates that rows/columns I and 2 will be exchanged with 

rows/columns r and p, respectively.

Similarly for a 2x2 pivoting, let us split matrix A as follows:

A =
\AU A2\

A2, A21
(3.4)

Following the criteria by Duff and Reid, [8], submatrix A,, 6 R  2*2 is a good pivot, if

u u i r 'A * '
a ' 1 . I y I

, with A = |  |a s  the maximum absolute row values of AT2I, or in other 

words, this condition is equivalent to:

Idetf u | * a (|a22|Y + |a12||x)

|deU„| * a  |a12|Y+|an |n) ( ’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

where y = max|a..| and \i = max \a ..  | are the row maximum absolute value of
. . .  'j . . ./yj-l /»/j-1

submatrix AT21 shown in Eq.(3.4) and the submatrix A n = 

found to be a good 2*2 pivot, matrix A can be factorized as:

a n °12

a2l °22
. Once A , , e  R -x- is

A = An A T 21 I Dn TI  L?x

A2l A22 l 2X I A22 i
(3.6)

with

D u = A n

-i
^21 A21D U

A 22 A22 L21D u L2X

(3.7)

(3.8)

(3.9)

and where the partial reduced matrix A22 needs further factorization.

3.2.3 Weighted pattern matching strategy

The use of pivoting strategies usually degrades the performance. We use pivoting 

for the stability it induces, but despise it for the structure that it can destroy. The use o f lx l 

or 2x2 pivoting in Table 3.1, once a sick row is detected, implies switching rows and 

columns, and consequently modifying the sparsity structure of the matrix and in most cases 

resulting in an increase of the number of fill-in. Therefore, pivoting should be used as a last 

weapon.

One of the ideas that we came up with before switching rows and columns was to 

compare column indices o f rows to be permuted, if they match to a certain percentage (say 

90 % matching): we call this weighted pattern matching (this idea is based upon the 

supemode or master node, which has already been introduced in Chapter 2). Two rows that 

have to be permuted, even though they are numerically stable, may introduce new fill-in after 

permutation. A second idea was to check the numerical stability of row sick+1 and make
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use of it: we call this consecutive search strategy. Pattern matching plays an important role 

in minimizing fills-in. If we take into consideration the desire to keep the sparsity structure 

of the matrix, our criteria for a good sparse diagonal pivoting and/or 2>«2 pivoting should 

consider the following observations:

• The non-zero off-diagonals of two rows to be interchanged, in symmetric permutation, 

should have similar non-zeros pattern, so that the sparsity will not change much. The 

similarity can be determined by the ratio between the number of column indices that match 

between the rows to be interchanged.

• The factorization of L21 = A2ID‘‘ given in Eq. (3.8), introduces additional fill-ins due to 

the coupling of the two rows in AT21. In other words, the non-zero locations of any row in 

submatrix AT21 are non-zero locations of rows in LT2, So, in addition to the numerical 

requirement of a 2*2 pivoting, the two rows in submatrix AT2, should have similar pattern, 

so that less fills-in will be generated.

• The distance interval between interchanged rows plays an important role. It should be as 

near as possible, so that less search in the matrix will be needed. But this is not always 

desired. In some cases, the sick row is desired to be permuted to a row at far end, because 

near permutation causes sickness at neighborhood.

Suppose Isick is the row that is sick and will be permuted with row Irowll. We call 

the distance interval between Isick and Irow ll: jpivot as shown in Fig.3.2. A parameter 

jpivot ( distance between Isick and Irowll) was introduced to control and limit how far we 

should search for a good row to switch with the sick row Isick. Row Irowll should be 

numerically stable and should have almost the same pattern as Isick. The idea of pattern 

matching is important because if rows Isick and Irowll do not have the same pattern, by
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permuting them they may introduce more fill-in. If jpivot is small, meaning that row Irowll 

is near Isick, the search will be small, but we will have to restart the procedure many times. 

On the other hand, if jpivot is big, the sickness appears later but we have to do a lot o f 

search-row comparisons. Thus one can see that there is a decision to be made. In our code, 

jpivot is an input parameter.

Lsiclc

Lsiclc+1

jpivot

Irowll

IrowI2

Fig. 3.2 Indefinite Solver: pattern matching

Taking into consideration the above discussions and the impact on the fill-in o f the 

sparse matrix, Table 3.2 gives a summary of the pivoting strategies that was implemented 

in our indefinite solver. The row index jb  takes into consideration the distance jpivot, in 

determing from which row to start searching for the row that will switch with the sick row.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

if  a, i is a good diagonal pivot 
s =  1; P =  I; exit

else
do j  = jb , neq

If ajj is a good diagonal pivot and 
non-zero pattern o f  row j  similar to row 1 
s =  1; choose P so (PAPT)U =  â -; exit

else i f  submatrix is good 2*2 pivot and

non-zero pattern o f  row j  similar to row 1 
s =  2; choose P so (PAPT),2 =  a(j-; exit

end if  
end do
use Table 3.1 determine the pivot 
end if

Table 3.2 Pivoting Strategy for sparse symmetric indefinite system
with Pattern matching

3.2.4 Rotation matrix, [63]

In the look backward (or left looking) Fortran coding implementation, it is not 

convenient to insert a 2x2 diagonal block matrix D, although it is possible. Since the 

submatrix Du e R2‘2, shown in Eq. (3.7), is a non-diagonal matrix, factorizing tire subsequent 

rows, after the 2x2 pivoting, requires special manipulations. The previous rows that 

contribute to the factorization of row j can be processed one row at a time, with the exception 

o f the 2x2 block Dn. Thus, it is desirable to diagonalize the 2x2 block through a rotation 

matrix R so that the factorization can resume one row at the time, avoiding then the 

inconveniences of using D ,,. Matrix D,, can be diagonalized as follows:

D u = R D ^ R 1- (3.10)
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with

R  =
co s0  -s in 0  

sin 0  co s0
(3.11)

Thus, Eq (3.6) can be rewritten as

^11 A T 21 R D u r t r tl 21

^21 A 22
L1XR I

A k I
A =

Denote L2l = L2lR , we can now factorize

• t  • • «r
^ 2 2 = A 22 ~ ^ 2 l ^  11-^21 =J^ 2 2  ~ ^ 2 \ ^ \ \ ^ 2 \

in the conventional way. In fact, by previously transforming

■̂21 A2l^

(3.12)

(3.13)

(3.14)

^ s ic k  -1  j i c k  * I .n e t  * I

the factorization for A22 can be processed in row-by-row fashion

3.2.5 Consecutive search strategy

The consecutive search strategy consists o f checking the numerical stability of 

, if the submatrix is a suitable pivot and applies the rotation matrix. There 

is no interchange of rows involved. If the 2x2 pivot is not good, then one checks the stability 

o f the diagonal value, aSI-ck+ljsI-cl.+„ and exchanges it with the sick row. In this case sick+1 

row is a suitable pivot, and then the sickness pointer is reset to sick+l. If ( is not

a suitable pivot, then we have to resort to the criteria in Table 3.1.

When we switch the sick row with the following sick+1 row, the value of asictsick+1 

does not change its location. On the other hand, after applying the rotation matrix, the 

pointer IUP (see definition in Chap. 2) to the first nonzero off diagonal value that reduce 

subsequent rows and the associate chain list will not change
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When a sick row is detected and the consecutive search strategy can be applied, we 

say that we have a recoverable sickness and the look backward factorization can resume 

otherwise it is an unrecoverable sickness and the look forward factorization will procede.

3.3 Symmetric indefinite systems - Restarting

In Section 3.2, we have discussed pivoting strategies of symmetric indefinite 

systems, how to determine that a row is sick and suggested different strategies taking into 

consideration the sparsity structure of the matrix. So far, the first row is considered to be 

sick. In most real applications, the sickness may not occur at the beginning of the system. 

The code that we have developed uses a mixed look backward and look forward factorization 

procedure. Assume that row m+1 becomes sick in the factorization process, the first m rows 

will be factorized (looking backward strategy), and the procedure will restart from m+1 

(looking forward strategy). Let us split matrix A accordingly as follows:

A =
B u * 2 1 m

B2X B22 . n (3.15)

m n

with Bu e Rm*m and B22 e Rn*n- The submatrix B,, can be factorized into LDLT form

A  =
B u *21 L n \l t l t ^11 21

B22 2? 22 /

where

(3.16)

-1
21

(3.17)

(3.18)

(3.19)

Here Du is a block diagonal matrix. Its diagonal consists o f lx l and/or 2x2 pivots.
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Sickness at sick row = m+1 implies that the first row of the partially reduced submatrix i?22 

is sick. The pivoting strategies discussed in section 3.2 can be applied to that matrix. In fact 

the whole process will restart at sick row= m+1. The matrix 5 22 is called partial reduced 

matrix or simply partial reduction. The restarting procedure can be outlined as in Table 3.3.

A(0) =  A 
sick =  I
do while (not the end o f  system)

factorize or partially factorize A(k) 
if  (sickness detected) then 

Anc/>  =  B *n  o f  A(k) 
find pivots and permutations 
permute Ap(k+I) =  P<k)An<:w(k,P (k)T

end if
end do

Table. 3.3: Indefinite Solver: Restarting Procedure

Until the first sick row is detected, the look backward row by row factorization (or left 

looking column by column factorization) is used. This corresponds to portion ABCD in Fig. 

3.3, for which the elimination has been completed. The process is then restarted for portion 

CDE. For this portion a look forward row by row factorization (or right looking column by 

column factorization) is performed and the following tasks are executed.

•  Simultaneous symbolic and numerical factorization

•  Partial reduction

•  Pivots searching

•  Data management

•  Permutation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

A B

Restart -  C

Fig. 3.3 Indefinite Solver: Restarting Procedure

3.3.1 Simultaneous symbolic and numerical factorization

When the procedure is restarted, the symbolic and numerical factorization will be 

carried out simultaneously. Table 3.4 gives the step-by-step procedure. Contrary to positive 

definite systems where static data structure can be used and the symbolic factorization can 

be completed on the entire matrix before the numerical factorization, in this case the 

symbolic factorization is executed one row at the time. Two different chain lists are used, 

ICHAINL and ILINK, for symbolic and numerical factorization, respectively.

D oj = 1, neq
symbolic factorization 
numerical factorization 
check sickness

End do

Table 3.4: Simultaneous symbolic and numerical factorization
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3.3.2 Partial reduction

Once sickness at row sick = m+1 is detected, the subsequent rows are no longer 

factorized looking backward. The rows lower than m (rows m+l to neq) will not be added 

in the chain lists. After the factorization of the m111 row, the memory content of the matrix 

is as follows:

L D l I_ Umm mm mm m,n ~m

SYM A n ~m,n -m

(3.20)

The factorized submatrices Lmm Dmm and Um n.m are held in the array IU,JU,UN and DU, 

and the part An.m n.m will be partially reduced as shown in Eq. (3.19). The result of partial 

reduction will be stored in the array group for U.

3.3.3 Pivot searching and Ending partial reduction criteria

We have presented different pivoting strategies and introduced the notion of weighted 

pattern matching and consecutive search strategy. In the actual Fortran code implementation, 

the search for a best pivot was done in the following order:

•  If the consecutive diagonal a ^ .  m ^ 2  value is a suitable pivot, exchange row m+1 

and row m+2 immediately and move the sickness pointer to m+2; resume procedure.

•  If the sick row and its consecutive row build a good 2*2 pivoting, i.e, submatrix 

is a suitable pivot, apply the rotation matrix to uncouple rows m+1

and m+2; resume procedure.

•  If â j is a good diagonal pivot (numerically stable) and non-zero pattern of row j 

similar to row 1 then s =1, choose P so (PAP1) , ^  â -; restart procedure. Note that 

when the procedure is restarted, m=l.

m̂*2jn*2
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a11 a

Xj is good 2*2 pivot and the non-zero pattern o f row j is similar•  I f  submatrix

to row 1, then s = 2 ,choose the permutation matrix P so (PAP1)^  = atJ-; restart 

procedure.

•  If  r and p then use Table 3.1 to determine the pivot, where r and p are column 

indices of max off diagonal value of row 1 (the sick row) and r respectively (see Fig. 

3.1); restart procedure.

•  I f  matrix B22* has been formed then use Table 3.1 to determine the pivot; restart 

procedure.

In the partial reduction of B22’, usually not all rows are affected by the reduction. Let’s call 

jend  the last row to be affected by the partial reduction. This means rows from jend+1 to 

neq will not be affected by the reduction. The row jend, can be located before the 

completion of B2 2’ = B22 “ Lji DuL2iT calculation, i.e, the partial reduction can be ended in 

advance, if the permutations in all those cases affect the rows between m+1 and jend. Fig.

3.4 shows the partial reduced zone and the location of jend.

Completed R o w s

\

jpivoK^

Lsick

N

Fig. 3.4 Indefinite Solver: Ending Partial reduction zone
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3.3.4 Data management

We use a large integer array IWORK(l: mtot) as a working space where mtot is the 

maximum computer memory available. The value of mtot is machine dependent and is an 

input control parameter. All array are allocated from this array. The known, fixed 

dimensions for arrays IA(l:neq+l), AD(l:neq), IU(1 :neq+l), UD(l:neq), ILINK(l:neq), 

ICHAINL(l:neq) etc. are placed at the beginning o f IWORK(l:mtot). The remaining 

memory will be divided into 2 segments, where the first segment holds UN and AN, and is 

twice as big as the second segment which holds JU and JA (because real*8 and integer*4 

declarations are used in the coding). Arrays AN(1 :ncoef) and JA(1 :ncoef) are placed at the 

bottom of the first and second segment, respectively. It should be noted that the dimension 

of AN and JA changes every time the procedure restarts. Fig. 3.5 shows the suggested

1
Fixed arrays
____________________  nlO=jcnl

J C N = J U

________________________________________  J ta l

JT A  =JA
-------------------------------  Kent

C N = U N
________________________________________  K ta l

T A = A N

Fig. 3.5 Indefinite Solver: Memory allocation

memory allocations.

A

1/3

y
A

2/3
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In order to keep the consistency of the program and to take into consideration the memory 

allocations and data movement during the restarting procedure, the restarting procedure 

algorithm can be rewritten as in Table 3.5.

Last sick = sick row

do while ( not the end o f system)

• restart LDLT at the last sick row,

• perform partial factorization

• if  sickness is detected, then

-find suitable pivot and permutations 

-permute JU,UN to JA, AN 

-rearrange IA, JA,AN and AD 

endif 

end do

Table 3.5 Restart algorithm of symmetric indefinite solver

The partially reduced submatrix 5 22 is the matrix that is only considered when the 

procedure is restarted. Thus during the factorization, 5 22 is placed in the array JU and UN 

while permuting rows, PB22’PT. The pointer to rows of JU and UN, from row sick to row 

jend, will constitute the beginning row o f the new restarted array JA and AN, respectively. 

Because of the similarity o f structure betwen JU and UN and between JA and AN, to 

simplify the discussion, we will only consider the memory management o f JU and JA and 

explain the data movement between the two arrays once the procedure is restarted. Let’s
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consider the genaral case where the process restarts at row m. We will distinguish three 

cases for the memory allocation before restarting in Fig. 3.6.

JU  =  LDLt . L JU  -  L D L t . L J U - L D L r . L

J U - B „  =  J U - B „

C a se  1 C a s e  2  C a se  3

J A  =■ A , .  J A  =  A „

J A  =  A,t J A  =  A „  J A  =  A „

Fig. 3.6: Indefinite Solver: Memory Reallocation

C asel:

L D i j  L rrm 0mm mm mm rm

* r r  B n

SYM

(3.21)

In Fig.3.6 we assume that the first m rows have been completely factorized, the partial 

reduction of the subsequent rows has been completed, and the symmetric permutations 

determined by Table 3.1 affect only the rows in the middle part o f  Eq. (3.21), which 

corresponds to submatrices and B*n . In this case the submatrix Att remains unchanged. 

While doing permutations, the part JU = Bn- moves to the top of JA = Att.
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Case 2:

T  T\L D L ‘ L mmm mm nxm rm

SYM

0 0

K K

A A ,ss It

A u

(3.22)

In this second case, the symmetric permutations determined by Table 3.1 affects only the 

rows in the two middle parts of Eq. (3.22), which correspond to submatrices Bn-*, B^", Bn\  

Ass and Ast. The elements of Atl remain unchanged after the permutations. The memory 

reallocation is divided into two steps. In the first step, the part JA = A^ moves to the bottom 

of JU = B,,, and then in the second step, two parts JU=Brr and JA = A^ are reallocated to the 

top of JA = Att.

Case 3:

L D l L  l L

SYM

Ums 0
#

B B ,rs rt

A SS St

A u

(3.23)

In this third case, the symmetric permutations determined by the searching in the do-loop for 

j o f Table 3.2 affects only the rows in the second part of Eq.(3.23), which corresponds to 

submatrices B’̂  B’R and B’rt. The elements of A^, Ast and Att remain unchanged, and the 

permutations of rows are completed. The portion of JU = B^ moves to the top of array JA 

= Ass. It should be noted that the factorization after restarting still needs Ums; therefore, in 

both the symbolic and numerical factorization of the submatrix Ass, the chain lists 

ICHAINL and ILINK should point to rows in submatrix Ums.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

In each of the above cases, the submatrices from B*  ̂to Att constitute the new matrix 

A to be considered when the procedure restarts. The matrix is stored in sparse format as a 

group of arrays LA, JA, AN, AD. The new group o f arrays holds the data from the last sick 

= m+1 row to the end of the matrix. In all cases, symmetric permutations affect only the 

parts of new matrix A. It must be pointed out that the permutations do not affect the portion 

of the matrix already factorized, Lmm, Dmm, LmmT, L j  and Ums.

3.3.5 Permutation

The stabilization of Gaussian elimination that is developed involve data movements 

associated with switching rows and columns. If  a square matrix P o f order n is a 

permutation matrix , and p(l:n) is the desired permutation of n rows of a matrix; one can 

definite P as:

P = 1  and P.. =0 otherw ise  'j>, u

Every row and every column of P contains just one element equal to 1, the remaining

elements o f the row (or column) are equal to 0 and P is orthogonal (PT=P_I). If  a matrix A

is premultiplied by P, the original row p; o f A will become row i of the resulting matrix PA.

P can be stored in the computer memory as a vector o f integers: the integer at position i is

the column index of the unit element o f row i of P. Indeed, by knowing the permutation, a

vector X £ Rn can be overwritten as follows:

for i=l:n

X(i) -  X(p(i))

end

Here, the " " notation means "swap contents".
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It should be noted that no floating point arithmetic computation is involved in a 

permutation operation. However, permutation matrix operations often involve the irregular 

movement of data and therefore can represent a significant computational overhead.

Traditionally, column indices in JA, are considered in the ascending order at a 

particular row. In our case, we found that it was not necessary to arrange elements of JA in 

ascending order; in other words , JA can be unordered. With minor changes to the 

subroutine to perform the transposition of a matrix, one can write a subroutine to perform the 

permutation of rows and column of a matrix A. However, one will have to apply the 

subroutine on the structure of the entire matrix. A different subroutine was specialy designed 

from scratch to consider only a portion of a matrix and to perform only the permutation of 

a few rows, cutting down the overhead cost associated in considering the entire matrix.

3.4 Forward reduction and Back substitution

Due to the restarting scheme, the permutations affect the only matrix part B*22, 

so we can not claim the final results after factorization as:

p(P)p(r-1) _  — (PCP' lY CP(P))r = LDL T (3.24)

Eventhough the permutations vectors are known, they are applied on the reduced submatrix 

B \2 when the procedure is restarted and not on the original matrix. The step by step 

procedure in Table 3.6 shows the implication of the permutation and rotation matrices on 

the load (or right-hand-side) vector and how one can recover the solution during the forward 

and backward substitution. In practice, forward and back substitution only require very little 

time as compared to factorization.
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do j = I, neq ! Forward reduction
if j is an index of sick row: f  4= P(k)f
if j is an index of rotation row: f  4= R(I)f  
do i = indices in JA for row j

y .-=  f ,  -  L ij  *Y j

end do
y r  Y \1 D ii

enddo
doj=neq, 1,-1 ! Back substitution

if j is an index of rotation row: y 4= ( R (l)) Ty  

if j is an index of sick row: y 4= (P(k))Ty
do i = indices in JA for row j 

=  y,- -  L;j * X;
end do

end do

Table 3.6 : Forward Reduction and back substitution

3.5 Reordering of indefinite systems

As mentioned in the introduction of Section 3.1, a static structure cannot be 

implemented for an indefinite solver that uses pivoting strategies. Since rows and columns 

are permuted during the factorization process, a fill-in minimization cannot be performed a 

priori as it was the case for positive definite systems and the structure of the final matrix after 

factorization cannot be forseen.

The idea that we came up with was to try to maximize the portion on which the look 

backward factorization is performed and to deal with unstable rows at the end of the matrix. 

The Multiple Minimum Degree (MMD) was performed on the entire matrix and the 

rows/columns corresponding to the zero diagonal have been pushed to the end of the matrix 

as shown in Fig. 3.7. By using this strategy, there has been improvement in the 

performance, but one cannot guarantee that the fill-in minimization during the pivoting was
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optimum. A better strategy would have been to first push all the zeros at the end o f the 

matrix ( B-F) and then perform MMD only on a portion o f the matrix, say ADBC, at the 

same time minimize the fill-in of the coupling block CEFB. If possible, we prefer to reorder 

the matrix such that all the non-zero coefficients of CEFB reside in the lower portion o f  the 

coupling block (HBIG).

\

D
G

Zeros

F

Fig. 3.7 Indefinite Solver : Fill-in Minimization

3.6 The modified MA27 sparse indefinite solver.[8,66]

3.6.1 Introduction

The MA27 is a software package from the Harwell subroutine library developed by 

Duff et al., [8], that uses a sparse variant of Gaussian elimination to solve a sparse indefinite 

system of linear equation. The MA27 uses the multifrontal approach and contains three 

majors subroutines. The MA27A/AD accepts the pattern of the matrix and chooses pivots 

for Gaussian elimination using a selection criterion to preserve sparsity. The subsidiary
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information for actual factorization are constructed by the subroutine MA27/BD. The pivots 

are chosen from the diagonal using the minimun degree criterion and employing a 

generalized element model o f the elimination. The elimination is represented as an assembly 

and elimination tree with the order of elimination determined by the depth-first search of the 

three.

The MA27B/BD factorizes the matrix by using the assembly and elimination 

ordering generated by MA27/AD. At each stage in the multifrontal approach pivoting and 

elimination are performed on full submatrices and, when diagonal lx l pivots would be 

numerically unstable, 2x2 pivots diagonal blocks are used. The actual pivot sequence used 

may differ slightly from that of MA27A/AD if the matrix is not definite.

The MA27C/CD uses the factors generated by MA27B/BD to solve a system of 

equation Ax=b. Since the information passed from one subroutine to the next is not 

corrupted by the second, several calls to MA27B/BD for matrices with the same sparsity 

pattern but different values may follow a single call to MA27A/AD, and similarily 

MA27C/CD can be used repeatedly to solve for different right-hand-side vectors b.

3.6.2 MA27 data format and control parameters

The data format used in the MA27 differs from the NASA format. The matix is 

represented by 3 arrays, IRN , ICN and A. The one dimensional real array A contains the 

diagonal values as well as the off diagonal values and will be of dimension ncoef+neq. The 

integers arrays IRN and ICN contain the row and column indice of each value in A 

respectively and has same dimension as A.

The following control parameters are used:

N : integer variable set by the user to the order neq of the matrix
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NZ : number of non zeros entries in the matrix (nz=ncoef+neq)

LA : integer variable which must be set by the user to the length of A. It is advisable to

allow a slightly greater value because the use of numerical pivoting might increase 

the storage requirements marginally.

NRLNEC and NIRNEC are integer variables. On exit from MA27AD/AD they give the 

amount of REAL and integer words required respectively for successful completion 

of the factorization, provided no numerical pivoting is performed. Numerical 

pivoting may cause a higher value to be required.

IKEEP: integer array of length equal to 3*neq. It is used if the user wishes to input the pivot 

sequence.

IFLAG: is an integer variable which must be set to zero if a suitable pivot order is to be

chosen automatically, or to 1 if the pivot order set in IKEEP is to be used. On exit

from MA27/AD, a value of zero indicates that the subroutine has performed 

successfully. A nonzero values means that an error has been detected.

3.6.3 Modified MA27 solver: ODUMA27

MA27 failed to solve our benchmark indefinite test problems. We acknowledge here 

the constructive discussions with J. Qin, [20, 66], to implement a new pivoting criteria to 

the existing sequence in order to solver these problems. The modified MA27 sparse solver 

appears to be fast and reliable. The modification consisted not only of stiffening the pivoting 

strategies (by reducing the number of required 2x2 pivoting during factorization, whenever 

possible, for saving computational time, see Section 3.3), but also of adding the capability 

of reading data in NASA row-wise sparse format.
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CHAPTER IV

SPARSE SUSP ACE AND LANCZOS ITERATION FOR THE SOLUTION OF 

POSITIVE DEFINITE AND INDEFINITE SYSTEMS.

4.1 Introduction

The generalized eigen-equations, in matrix notation, can be expressed as

[ K]  [<t>] = A. [M] [cj>] (4.1)

In Eq. (4.1), matrices [K] and [M] represent the structural stiffness and mass, respectively. 

Matrices [A] and [ct>] represent the eigenvalues and eigenvectors, respectively. The 

dimension (or degree-of-freedom) of matrices in Eq. (4.1) is N.

Much attention has been directed toward effective algorithms for the calculation of 

the required eigensystem in the problem of Eq. (4.1). Because the “exact” solution of the 

required eigenvalues and corresponding eigenvectors can be expensive when the order of 

the system is large, approximate solution techniques have been developed. The approximate 

solution techniques have primarily been developed to calculate the lowest few eigenvalues 

and corresponding eigenvectors in the problem o f Eq. (4.1), when the order of the system 

is large. However, the problem of calculating the few lowest eigenpairs of relatively large- 

order systems is very important and is encountered in all branches o f engineering.

Vector sparse Subspace and Lanczos iteration eigensolvers have been developed for 

positive definite and indefinite systems. Besides the use of sparse technology in all the 

algebraic manipulation and data structure involved, the developed solvers in Chapter II and 

III have been incorporated in the Fortran code implementation for efficient eigen-solution.
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4.2 Subspace Iteration, [1,40-43]

4.2.1 Basic Subspace Iteration Algorithm

The Subspace iteration method developed by K J. Bathe, [1], consists o f establishing 

q starting iteration vectors, q>p, where p is the number of eigenvalues and eigenvectors to 

be calculated. It extracts the "best" eigenvalue and eigenvector approximations from the q 

iteration vectors, by using inverse iteration on the q vectors and Ritz analysis.

The basic objective of the Subspace iteration method is to solve for the smallest p 

eigenvalues and corresponding eigenvectors satisfying Eq. (4.1). In addition to the relation 

in Eq. (4.1), the eigenvectors also satisfy the orthogonality conditions

= A ; = I  (4.2)

Where I is a unit matrix of order p because 4> stores only p eigenvectors. The essential idea 

of the Subspace iteration method uses the fact that the eigenvectors in Eq. (4.1) form an M- 

orthonormal basis o f  the p-dimensional least dominant subspace of the matrices K and M, 

which we will call E„. The starting iteration vector span E„ and iteration continues until, 

to sufficient accuracy, E„ is spanned. Thus, the total number of iterations depend on how 

"close" E, is to E_ and not on how close each iteration vector is to an eigenvector. Hence, 

the effectiveness o f  the algorithm lies in that it is much easier to establish a p-dimensional 

starting subspace that is close to E„ than to find p vectors that are each close to a required 

eigenvector. The selection of starting iteration vectors is a very important part o f the 

iteration procedure.

The first step in the Subspace iteration method is the selection of the starting iteration 

vectors X,. The choice o f the starting iteration vectors is important in the sense that it can 

reduce the number o f iteration needed for convergence; for example, if the starting vectors
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span the least dominant Subspace, the iteration converges in one step. In this section we 

describe the starting vectors that have been used in our code.

Let [X]nx? be the matrix that contains the starting iteration vector

[-̂ 1 “ “̂2* “̂3* ^q-1* ^q  ̂ (4.3)

where£. are q vectors o f dimension n* 1. The step by step algorithm to construct the

starting iteration vectors can be summarized as follows:

Step 1: x f i )  = dmass(i) i=\ ,n

Step2:. x. -  e* f o r  i=2 ,q ~\

Where e are unit vectors with entries +1 at the degree 

o f freedom with smallest ratios 

k(.
w. = — -  w ith m = dmass(i) (4 .4)

m
I t

Step3: = random vector

Table 4.1 Step by step algorithm for starting iteration vector

An important procedure that is used extensively in the solution of eigenvalues and 

eigenvectors is shifting. The purpose of shifting is to accelerate the calculations of the 

required eigensystem. In the solution of Eq. (4.1), we perform a shift p on K by calculating

K  = K  -  p M  (4.5)

and we then consider the eigenproblem

= \ iM \ j; (4.6)
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To identify how the eigenvalues and eigenvectors o f Eq.(4.1) are related to those of Eq. (4.6), 

using Eq.(4.5), we rewrite (4.6) as follows

ATijr = yM ty  (4.7)

where y  = p +- p.. However, Eq.(4.7) is in fact, the eigenproblem K<& = A. and

since the solution o f this problem is unique, we have

X. = p + jif and (J)(. = i|r, (4.8)

In other words the eigenvectors of £i|r = \iM \|r are the same as the eigenvectors of

ATcj) = XM(j), but the eigenvalues have been decreased by p .

4.2.2 Subspace Iteration step by step Algorithm

Subspace iteration algorithm can be used effectively to obtain the lowest p eigen-pair 

solutions. The algorithm can be conveniently described by the following step-by-step 

procedures shown in Table 4.2.

4.2.3 Subspace Iteration for positive definite systems: LDLT

The step by step algorithm in Table 4.2 has been coded for the solution of positive 

definite systems. The starting iteration vector in step 1 has been constructed following the 

algorithm in Table 4.1. The system of equation that results in Eq. (4.9) has been solved using 

the developed vector sparse solver for positive definite system in Chapter II. Matrix K is 

factorized only once and the forward and backward solution is called q times for the multiple 

right hand side [Y JNxq Once the reduced stiffness matrix and mass matrix have been 

constructed, following Eq.(4.11) and Eq.(4.13) respectively, the reduced eigen-problem is 

solved using Jacobi for all q eigenvalues and eigenvectors and ordered in ascending order. 

The process is then repeated until the convergence is achieved. All the matrix manipulations 

involved are performed using sparse technology.
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Step 1: Select the starting iteration vectors [Y,] Nxq where q «  N

Step 2: Factorize the structural stiffness matrix

I K ]  = [ L ] { D ] [ L ] t (4.9)
In Eq. (2), [ L ] is the lower triangular matrix, and [ D ] is the diagonal matrix

Step 3: For k = 1,2, Maxiter, where Maxiter represents the input maximum number
o f iterations, the following tasks need to be done

Step 4 : Solve [4>kM ] N.,q from the following matrix equations

[ « ] [ « , . ,  u ,  = m i* . ,  (4.i«)
Step 5: Compute the reduced stiffness matrix

(4.11)
Step 6: Compute the reduced mass matrix

(4*12)

[" V it ,  = W ,., [f*.,W (4-13)
Step 7: Solve the reduced eigen-equations

(4.14)

The eigenvalues [ClViJ and the associated eigenvectors [ Q k+I ] need to be 
arranged in the ascending orders (for example Q2, < Q2; < Q23 < ... )

Step 8: Find an improved approximation to the eigenvectors

-  r i . - .W e * . , ] , , ,  (4.15)

Step 9: Check for convergence. The iterative process will be stopped if either convergence 
is achieved, or the maximum number of iteration ( =  Maxiter) is reached (or else, 
return back to step3).

Table 4.2: Step-by step Basic Subspace Algorithm

The error bounds and check for convergence of eigenvalues are performed at the end 

o f each iteration. Assuming that in iteration (k-1) the eigenvalue approximation 

i=l,..,p, have been calculated. Then the convergence tolerance is computed, [1], in the form
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<,tol: (4.16)
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where4)^ is the eigenvector corresponding to the e ig e n v a lu e^  and tol =10‘2s when the 

eigenvalue shall be accurate to about 2s digits. For example, if we iterate until all p bounds 

in Eq. (4.16) are smaller than 10-6, we find that Ap has been approximated to at least six digit 

accuracy, and the smaller eigenvalues have usually been evaluated more accurately.

Once the error bounds and the convergence on the eigenvalues have been checked, 

the “true”error norm check is computed as follows:

|| AT(j> -  j)||2
£ Tolerl  (4.17)

Our efficient sparse matrix times vector multiplication is used in evaluating Eq. (4.17)

4.2.4 Subspace Iteration for Indefinite systems: ODU-HKUST, ODU-MA27

The step by step algorithm of Table 4.2 has been implemented for the solution of 

indefinite systems. The starting iteration vector (see Table 4.1) has been modified from 

Eq.(4.4). The value of w(i) is set to zero when the ratio mj/K,,- is infinity (or undetermined). 

Two solvers for the solution of indefinite systems, the ODU-HKUST solver and the ODU- 

MA27 solver, have been developed in Chapter III. These solvers have been incorporated in 

the Subspace iteration algorithm in factorizing the matrix K of Eq.(4.9). An input control 

parameter is provided to choose the type of solver. The error bound and convergence check 

are performed as shown in Eq. (4.16). The “true” error norm is also computed according to 

Eq.(4.17).
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4.3 Lanczos Iteration [1,3,44]

4.3.1 The Lanczos Iteration Algorithm

The Lanczos algorithm for the solution of generalized eigenvalue problems has been 

receiving a lot of attention due to its computational efficiency . The Lanczos method was 

originally developed to evaluate eigensolution of matrices through a Rayleigh-Ritz reduction 

o f the eigensystem to a tridiagonal form. The eigenvectors are constructed by forming a 

linear combination of a set of vectors, known as Lanczos vectors, computed during the 

course of the Lanczos algorithm. Intensive research in past years has resolved a number of 

difficulties concerning the stability of the Lanczos process. It is now widely accepted as the 

method of choice for determining a few eigenpairs o f large sparse problems.

Let’s consider the following generalized eigenvalue problem:

where K and M are structural stiffness matrix and mass matrix, respectively, K„= EC-aM, a 

is the shift value and co„2 =or - a. Instead of solving Eq. (4.18), or Eq. (4.19) directly, the 

Lanczos algorithm generates a tri-diagonal matrix Tm

(4.18)
or

£ a<f> = j> (4.19)

P;

r (4.20)

P,
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through the following three-term recurrence formula:

(4.21)

or in matrix form:

(4.22)

T z  = 6zm (4.23)

where eTm = (0,0,... 1), Qm is a N*m orthogonal matrix with columns qj = 1,2,3 ...m, and m 

is usually much smaller than N. By solving the following reduced eigensystem, the 

eigensolution of Eq. (4.19) can be obtained as

For most structural engineering problems, only a few lowest frequencies and the 

corresponding mode shapes are required, so we have m «  N, which leads to a significant 

savings in the number of operations.

A partial restoring orthogonality scheme and a convergence criterion are developed 

and incorporated into the basic Lanczos algorithm, which is described in a step-by-step 

procedure, shown in Table 4.3.

Various reorthogonalization schemes have been developed to increase the efficiency 

of Lanczos algorithms [44-48]. However, for very large problems where factorization, 

forward/backward substitution and matrix-vector multiplication are the major operations, the

co 2 (4.24)O 0

(4.25)
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cost o f reorthogonalization becomes less important than for small problems, since only a few 

lowest eigenpairs are desired. In this work, a simple way of reorthogonalization is adopted. 

First, for any new Lanczos vector qj5 one calculates

E ^ q ' M q j  <7 = 1 , 2 , - 1 )  (4.26)

If E; > E, then qj should be orthogonal to q,- with respect to M, where E is a parameter related 

to the machine parameter E0 such that 1+E0 > 1. Usually, E is taken as:

E  = ^  (4.27)

Eq. (4.27) is called semi-orthogonality [46] condition.

One major advantage of the Lanczos algorithms lies in their ability to terminate the 

iteration process as soon as the required eigenpairs have converged. In this work, the

following error bound for eigenvalues is used (after solving Eq. 4.23 in step 12)

U -  0. Z w .
ERROR (/) = | ~ ' I = i where i=l,2,....j (4.28)

o t) .
I  t

In Eq. (4.28), XK is the k* exact eigenvalue and 0; is the 1th computed eigenvalue. Z /0 is the 

j th element of vector Z(I). If ERROR© < RTOL, for I = 1,2 ..p (where RTOL is a user's 

specified tolerance, and p is the number of eigenpairs to be extracted) then the Lanczos 

iteration is considered to be converged and the program begins to perform the eigenvector 

transformation accordingly (see step 13 of Table 4.3).

4.3.2 The Lanczos Iteration Step by Step procedure

The Lanczos method can be summarized in a step by step algorithm as shown in 

Table 4.3 to obtain the lowest p eigen-pair solutions.
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Step I. Factorization : K„ = L D L T
Form starting vector: y0* 0; q0 = 0

Step 2. Compute: M y0
Step 3. Compute :

Step 4. Compute : P, = Mq, 
Lanczos iteration
For j = 1 ,2 ,3 , . . . ,  do 

Step 5. £j =  K0'' Pj
Step 6. Sj =  % -  pj qj.,
Step 7. c£j =  qjT M  6j =  PjT6j

Step 8. Yj =  5j * <*flj
Step 9 . Aj =  M  yj
Step 10. _t_

Step 12. IF necessary solve: TjZ = 0z
Converged? ( If "No", then return to step 5)

Step 13. Eigenvector transformation: 4> = Qjz

Table 4.3: Step-by-Step Basic Lanczos Algorithm

4.3.3 Lanczos Iteration for positive definite systems: LDLT

The step by step procedure in Table 4.3 for the basic Lanczos Algorithm has been 

coded for the solution of positive definite systems. All the matrix manipulations involved 

are performed using sparse technology. The system of equations in Step 1 of Table 4.3 is 

solved using the developed sparse solver for positive definite systems. Forward reduction 

and backward substitution are performed in Step 5 o f Table 4.3. The efficient sparse matrix- 

vector multiplication is used throughout the algorithm.

Reorthogonalization o f qiT,
Stepl I. A.
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A “predicted “ eigen-value accuracy has been built inside the iterative Lanczos 

algorithm, and the ’’true” eigen-solution error norm is also calculated upon existing from the 

Lanczos iterative procedure, as shown in Eq.(4.19).

4.3.4 Lanczos Iteration for Indefinite systems: ODU-HKUST, ODU-MA27

In this section we extend the Lanczos algorithm to formulations that result in 

indefinite systems. The Lanczos eigensolver for indefinite systems that has been developed 

has the option o f using either of the two sparse indefinite solvers presented in Chapter III, 

the ODU-HKUST and the ODU-MA27. For indefinite systems, the cause of failure happens 

in the solution o f the system in (Eq. 4.21) or the first step of the Lanczos procedure. Of 

course for a system which is not indefinite, the tridiagonal system can be solved in double 

precision to reduce round-off errors. However, for very poorly-conditioned cases, the entire 

Lanczos process will fail if the solver is not robust.

To improve convergence of the eigenvalues, a spectral transformation of the original 

eigen problem is used. The implementation is simple if we substitute for the 

eigenvalueY( = p + nr  with p areal number referred to as the shift.

4.4 Major computational tasks and Enhancements in Subspace iteration and 

Lanczos algorithm

Careful observations on the Subspace iteration, and Lanczos algorithms indicate that 

the following major computational tasks are required:

Major task 1: Matrix factorization (see step 2 of Subspace iteration, and step 1 o f Lanczos 

algorithm).

Major task 2: Forward and backward equation solutions (see step 4 o f Subspace iteration, 

and step 5 of Lanczos algorithm).
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Major task 3: Matrix-Vector (or Matrix-Matrix) multiplications (see Steps 5, 6 & 8 of 

Subspace iteration, and Steps 2,4,7,9,10 & 13 o f Lanczos algorithm).

Matrix factorization, forward & backward equation solution, and matrix-vector (or 

matrix-matrix) multiplications represent the major computational tasks for Subspace 

iteration, and Lanczos algorithms. Recent developments in sparse technologies [49] are fully 

utilized to improve the computational efficiency of both Subspace iteration, and Lanczos 

algorithms. In calculating the “true” eigen-solution error norm, efficient vectorized sparse 

matrix-vector multiplication scheme is used.
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CHAPTER V  

INTERIOR POINT METHOD WITH POSITIVE AND INDEFINITE SPARSE 

SOLVERS FOR LINEAR PROGRAMMING PROBLEMS

5.1 Introduction

Optimization is concerned with achieving the best outcome of a given objective while 

satisfying certain restrictions. Mathematical programming problems may be classified into 

several different categories depending on the nature and form of the design variables, 

constraint functions, and the objective function. The linear programming describes a 

particular class o f extremization problems in which the objective function and the constraint 

relations are linear functions of the design variables. Interest in linear programming has been 

intensified since Karmakar’s publication in 1984 o f an algorithm that is claimed to be much 

faster than the simplex method for practical and large-scale problems.

The standard mathematical formulation for linear programming problems consists 

o f an objective function and a constraint set.

Min c Tx
subject  to [ A } x = b  (5.1)

where c and x  are n x 1 vectors, [A] is an m x n matrix and b is an m x 1 vector, c Tx  is 

referred as the objective function. The constraint set [A]x  = b describes a feasible region 

in which the optimal solution x ' must lie. The general iterative solution process for 

optimization problems can be summarized as in Table 5.1.
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Step I: Initial guess o f the design variable: say x = x °

Step 2: Find direction to travel: say Cp

Step 3: Find step size, O, along the direction Cp

Step 4: New design : £ M + CTC  ̂ l)

Step 5: Check for convergence | |x w -  £ e

- yes : stop

- no : Return to step 2.

Table 5.1 Step by Step solution process for optimization

5.2 Review of the simplex method

The main idea of the simplex method is to move from a vertex to a neighboring one 

where the cost is lower. After a finite number of steps, since there is only a finite number 

of comers of the feasible set, the cost is reduced as far as possible and the current vertex is 

optimal. A simplex step is really an exchange step, in which a zero component of x enters 

the basic group and a positive component leaves (it becomes zero) the basic group. There 

remains an important decision: which edge to choose? Starting with a given vertex that 

satisfies Ax=b with only m nonzero components, there are n-m zero components that might 

be allowed to increase, and therefore n-m edges to select from. We choose an edge along 

which the cost drops as rapidly as possible.

It was noticed early in the history of linear programing that the cost coefficients could 

form a new row at the bottom of the matrix A and elimination could be applied to this row 

too. The bigger matrix is called a tab leau , and it contains all information about the linear 

programming problems as shown in Table 5.2. While the “simplex tableau” approach is
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A ; B

C  0

Table 5.2 Simplex Tableau

useful for educational purposes, most (if not all) serious software has been coded based upon 

the “revised simplex” formulation.

The constraints in Eq.(5.1) can be also expressed in matrix notation as follows:

Ax = b or [ B , N  ]
% = 0

= b =► xB = B ' lb (5.2)

where B is a square matrix containing the columns of A that correspond to nonzero 

components of  x ( o r  xB), and iV is a rectangular matrix that contains the remaining 

columns of A that correspond tox^ . Similarly the objective function can also be partitioned 

as follows:

and using Eq.(5.2)

cx  = CbB ~l b

(5.3)

(5.4)

Premultiplying by B'1 on both sides of Eq.(5.2), we have
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[I,B - lK]  ' = B~xb (5.5)

Since matrix B in Eq.(5.2) becomes identity matrix I, we do achieve the "canonical form" 

of the simplex tableau. If the zero components of x  increase to some value xN, then the 

nonzero components x B must be reduced by B ~xN x n  in order to maintain equality in 

Eq.(5.5). Hence, the cost will be changed to

cx =cB(xg -B  ~lNxy) + cNxN (5.6)

Eq.(5.6) can be re-arranged to

cx=(Cn ~CbB ~x N)xk + < V S- (5.7)

Thus

r = C u ~CbB (5.8)

For minimization problems, if  r^O then current vertex is optimal, since r(xN ^ 0; thus,

best decision is to keep xN =0 and stop. If some components ofr are negative, then select

the variable x  ( associated with the most negative component o f r)  to enter the basic variable

group.

After r is computed and entering ( into basic) variable x; is chosen , which 

component Xj should leave basic group? It will be the first to reach zero as x; increases, (ratio 

b/a of simplex tableau). From Eq (5.5)

XB + B ~1NXn = B ~lb (5.9)

By taking a closer look at the product B ~lNxu of Eq.(5.9)

[B ~lN]Z„ = v'x, (5.10)

where v ' is the i* column of B’'N. Therefore, Eq.(5.9) becomes
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xB + v ‘x, = B ~lb (5.11)

the klh component o f x g will drop to zero when the k* components of v *x. and B ~ l b are

equal. This happens when x; grows to:

k ‘hcomponent o f  B ~ lb rs  1<vv

k thcomponent o f  v '

Table 5.3 gives a classical step of the a simplex procedure.

Step I Compute r = CH~CgB ~XN

Step 2: If r k 0 stop; the current .r is optimal. Otherwise find the most negative

component r;, and let the corresponding x-, increase from zero, (it is the 

entering variable). Let v be the corresponding column of Br'N.

Step 3: Compute the ratios in Eq.(5.12) , admitting only positive components o f v.

If the jIh ratio is the smallest, then x, is the leaving variable.

Step 4: The new comer satisfies Ax=b with x( now positive and Xj now zero. 

Compute this comer and by row operations in the tableau ( or in the

revised simplex) prepare for the next simplex step.

Table 5.3 A step of the simplex Method

5.3 Interior point methods

5.3.1 Introduction

Since the introduction of Karmarkar’s method, there have been many variants of the 

method introduced. All these methods are based on the same basic concept and are referred 

to as interior point methods, IPM. The simplex method finds the solution to linear 

programming problems by moving along the boundary of the feasible region from one vertex 

to the next. This can create a large number of iterations. However, if we go through the
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interior of the feasible region, we can get to the optimal solution more efficiently. The idea 

is then to choose a starting point and move in the direction that improves the objective 

function as much as possible. Therefore the questions o f concern are, at what point do we 

start and how far do we go? The choice of the starting or initial point is crucial. It is possible 

to implement Karmarkar’s original idea of moving a near boundary point back to the center 

of a new simplex in several ways.

The key difference between the simplex method and the IPM is that the former will 

travel along the boundary of the feasible region (in order to find the optimal solution), while 

the latter will travel through the interiors o f the feasible region. As we can see in Fig. 5.1, 

if we start at £ .( the center of the feasible region) and move in the direction of the gradient 

of the objective function, we can take a large step towards the optimum. However, if  we

apt

Fig. 5.1 Effect of the initial point on the step length
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start at a point closer to the boundary, such as point xb, we can only take a very short step 

towards the optimum. The major drawback when applying gradient direction methods 

directly to the LP problem is that the objective fiinctionC Tx always gives the same gradient 

direction no matter what the chosen point is. Therefore there will be only one step through 

the interior, and it will generally lead to nonoptimum point on the boundary (of the feasible 

region). Once on the boundary we are equivalently back to the simplex method.

To avoid the problem with the step size, Karmarkar had an ingenious idea, to take a 

step “almost” to the boundary. Thus, the point at which he stopped was still interior to the 

feasible region. Furthermore, from this new point he performs a variable (or a projective) 

transformation which will bring a point near the boundary (such as point xb) o f the original 

simplex to near the center of the new simplex.

5.3.2 Variable transformation: Affine scaling method [62]

Assume, for the time being, that a starting point x = x 0, which is inside the feasible 

region, has already been found. A procedure, that will make sure that a feasible starting 

point x “can be found, will be explained later. In order to overcome the difficulties of 

having the initial point close to the boundary, an affine scaling method is used. If

= [*;, x2°, ..., xn°] (5.13)

is the initial starting point, we define a diagonal scaling matrix D, and the following variable

transformation is made:

x = [D ] ' lx  (5.14)

where
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(5.15)

From equation 5.14,

x = [ D] x  (5.16)

Thus, from the transformation in Eq. (5.14), the transformed coordinates of the starting 

iteration vector x areO

x °  = [1, 1, ..., 1] (5.17)

Substituting Eq. (5.16 ) into Eq. (5.1), the transformed problem can be reformulated as

Min c Tx
subject to A x = b  (5.18)

xzO

where

c T = c t D  or c =Dc  (5-19)

and

A = A D  (5.20)

5.3.3 Direction of move Cp

Since the new point x  is already at ( or close to ) the center of the new simplex 

problem, one would like to take the steepest ascent (for maximization problem) direction

and, at the same time, to remain inside the new ( or transformed) feasible region ( determined

by Eq. 5.18). This projective direction will be referred to as Cp ( see Fig. 5.2). To simplify
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the discussion assume that n=2 ( or there are only 2 design variables), thus, the new ( or 

transformed) feasible region can be shown in Fig. 5.2.

A

x(l . l )
/

/

/

Fig. 5.2: Projective Steepest Ascent Direction

Let xnew = x+Ax be the new design variable. The new design variable still has to satisfy the 

constraints ( such as Eq. 5.18 )

[ i]  (x+Ax) = 6  (5.21)

Using Eq. (5.18), then Eq. (5.21) becomes

[A] Ax = 0 (5.22)

Thus, Ax must be in the null space of [A] . To find the projective direction C , one needs 

to solve the following least square problem:

Minimize  — (c -v )r(c~v)
2 (5.23)

Subject  to [A] v = 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



101

Eq.(5.23) has a physical interpretation, since the vector(c -  v) represents the difference ( or 

“error”) between c and v (= same direction with Cp), and naturally one would like to 

minimize the square of the “error”. The constraint Eq.(5.23) is due to Eq. (5.22), since v 

plays the same role as Ax.

The Lagrangian of Eqs. (5.23) can be computed as

L = \ c - v ) T(c  - v )  + XTAv (5.24)

Hence

^ T 1 m. T
= o = —(-2c  +2v) +A X (5.25)

dv 2

or

(v -c) +A X = 0 (5.26)

or

A rX = (c-v) (5.27)

Pre-multiply both sides of Eq (5.27), by A , and utilizing Eq.(5.23), one obtains

AA 7X = Ac  (5.28)

Equation (5.28) can be expressed as

[A '] X = C  ‘ (5.29)

The dimension for [A ’] ,X and C ' in Eq. (5.29) are m x m, m x 1, and m x 1, respectively.

Thus having found Xfrom Eq. (5.29), one can compute the projective directionCp (or v)

from Eq. (5.27) with the optimum solution o f the least square problem, v ’ , equal to Cp .

Cp = c -  A TX (5.30)
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5.3.4 Step size a

Having found the appropriate search direction Cp ( Cp = projected steepest ascend 

direction onto the null-space of A ) the question now is how far, a , should we travel along 

the direction Cp . The new design in the “ scaled “ design variable space x is :

or

x = x  , + ctc z 0 (5.31)new current p  v 7

1 + ocp £ 0 (5.32)

or

1 + Gcp. £ 0 for i = 1 ,2  n (5 .33 )

Each of Eqs.(5.32-5.33) must be satisfied to guarantee that f . zO. For those positive

components of c , Eq.(5.33) is automatically satisfied ( sinceo is a positive step size).

However, for those negative components o f c , Eq.(5.33) can be re-written as

1 ~ o\cpt\ * 0 (5.34)

Hence

o  <  —
C .1 p v

(5.35)

Thus, to make sure that “ All” components of x ^0, we require:

amax = Minimun o f  {cpl* 0 : J - }  (5.36)
• Cpi'

It should be noted there that if “all” c . z. 0, then we may select a  as large as we wishpi J m ax 0

(in order to maximize the objective function) and still satisfy xnew ^0. This is the case 

where the solution is unbounded. In order to avoid hitting the boundary of the feasible
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region, a control parameter a = [0,1], saya = 0.98 is introduced , so that Eq. (5.31) can 

be expressed as

a feasible starting point x = x ° .

5.3.5 Feasible starting iteration x  °

Having introduced the slack, surplus and/or artificial variables, the design vector x 

can be partitioned into basic and non-basic variables. Thus, the constrained Eq. (5.1) can be 

expressed as

Now, let all the basic variables have the same positive scalar value x B, and let all the non- 

basic variables have the same positive scalar valuex NB .

Then Eq. (5.41) can be expressed as

current (5.37)

Pre-multiplying both sides of Eq.(5.37) by [D], one has

current (5.38)

or

current

The last issue which needs to be addressed in the section is how can we be sure to pick up

= 6(. f o r  i = l , 2 , . . . , m (5.40)
j  J

The coefficient matrix associated with the basic variable xyB is an identity matrix. Hence, 

Eq .(5.40) can be re-written as

(5.41)

(5.42)
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In Eq. (5.42), we have assumed b . £ 0 and S. is the summation of all numerical values for the 

i* row o f O,™]. Thus

b ^ S tx m  (5.43)

In Eq.(5.43), if S( < 0, then this equation is guaranteed to be satisfied (since both b; and xNB 

are ^0). However, if S; > 0, then one obtains

*»» ^  (5.44)
i

Thus, to make sure Eq. (5.44) is satisfied for any value of i, we will select xNB as

x NB = M inimum o f  jiS(. > 0: — j (5.45)

b.
If Eq.(5.45) is enforced, then at least 1 of Eqs (5.44) will be “ strictly” equal ( i.e.* m  = —).

S.t
Thus, to be safer, a factor of — is introduced, so that Eq. (5.45) becomes

2

x  NB = — Minimum o f  I S. >0: — 
2 I ' S .

(5.46)

Q
Finally x ( , can be chosen according to Eq. (5.41)

x,B = b t -  SjX m  (5.47)

The procedure explained in Eq.(5.13) through Eq.(5.39) constitutes the major steps

of the optimizer to find the optimum solution given a feasible starting point. We call this

Phase II. The IPM does not allow artificial variables in Phase II. In defining the starting

iteration vector, a Phase I needs to be performed. In Phase I , iterations will be performed

until all artificial variables are equal to zero. Thus Eqs. (5.46) and (5.47) will give the

starting point for Phase I. Phase I will consist of minimizing the following problem:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105

MG ’ME

Mi n ^ 2  A rtif ic ia l-V a ria b les
'=' _ ' (5.48)

subject to \A]x=b  
x^O

The procedure explained in Eqs (5.13-39) for phase II is also used to find the optimum 

solution of Phase I, which will be used as starting point for phase II of IPM. One may 

wonder why the artificial variables are not set equal to the right hand side (A—b;) and other 

variables are set to zero, as the starting point for Phase I of the IPM. The reason is that the 

IPM will not accept it, since the IPM avoids to be on the boundary of feasible region ( some 

variables = 0); that is why a factor a=0.98 has been introduced earlier in Eq.(5.37).

5.4 Step by Step Algorithm for the IPM

Following is the step by step algorithm for the IPM:

Step 1. Variable transformation

x = [D]"lr (5-49)

A = [A] D (5.50)

Step 2. D irection o f  search

C = D C  (5.51)

AA TX = Ac (5.52)

p
Step 3. Step size

C = c -  A TX (5.53)

°max = Minimun o f  {c  SO : - J - }  (5 .54)
K b

Step 4 . N ew  design variable 

x nt

Step 5. C heck for convergence

X  -  X  +  C C O  C
new current max p (5.55)

Table 5.4 Step by step algorithm for the IPM optimizer
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5.5 Computational Enhancements and the Sparse Implementation of IPM

The implementation of IPM is performed in two phases that use the same phase II 

formulation. The first phase consists of finding the starting point iteration point that is in the 

feasible region and the second phase consists of finding the optimum solution. The optimum 

point o f the first phase constitutes the starting point of the second phase. The constraint set 

given in Eq. (5.1) is input as a sparse matrix in a row wise unordered, and in NASA format 

(sparse unsymmetrical matrix). The input control parameter MREAD, allows the user to 

read the data in ASCII or binary form. Table 5.5 summarizes the algorithm implemented in 

the sparse IPM.

Step 1: INPUT DATA in NASA format 

Step 2: Construct Slack, Artificial and Surplus Variable 

Define the Basic set and the non-basic variables 

Step 3: Construct the starting vector of phase I 

Step 4: Phase 1 => call optimizer Table 5.4 

Step 5: Phase II => call optimizer Table 5.4

Table 5.5 IPM algorithm

All the algebraic manipulation involved, in the step by step procedure given in Table 5.4 and

5.5 uses the sparse technology. The system of equation in Step 2 that arises from the IPM 

formulation can be solved using either the developed sparse solver for positive definite 

matrix or the indefinite solver. Both options tire implemented and the choice depends on the 

properties of A A T. The matrix A A T involves the multiplication of two sparse matrices 

given in row-wise format; one is the transpose of the other. A symbolic multiplication is
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performed before the numerical multiplication is completed. A counter o f non-zero was

A »  j*

inserted in the code to check the sparsity of the product A A .

Since matrix A is an augmented matrix made of the constraints set and a set of 

slack, artificial and surplus variables, it can be general by nature and one cannot guarantee

A A J*
that it will be positive definite. The matrix A A of Eq. (5.52) often result in an indefinite 

system during the iterative process. For the example in Eq. (5.56), during the iterations, the

Min Z ~2x{ ~3x2
subject to x , + 2x,  <4 _________________________________1 2 (3.36)

x, +3x 2 £ 6
x i O

eigenvalues and eigenvectors o f A A Satisfies: § TX[AA]T§ X = and (j)[|’AA ]r 4>2 = X2 

and since there exist vectors (J)1 and (J)2 such that §>\[AA T] (j), <0 and §l[AA r ] (f>2 > 0; 

by definition [A A T] is indefinite. Therefore, in finding the solution for the direction of 

search in Eq. (5.52) . an indefinite solver may be required. An input control parameter. 

ISOLVER, specifies the type of solver to use, either the vector sparse solver for positive 

definite systems or the sparse solver for indefinite systems.
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CHAPTER VI

VECTOR-SPARSE SOLVER FOR UNSYMMETRICAL MATRICES 

6.1 Introduction

Let’s consider the following system of unsymmetrical linear equations

Ax = b (6.1)

where the coefficient matrix A is unsymmetrical and the vectors x and b represent the 

unknown vector (nodal displacement) and the right-hand-side (known nodal load) vector, 

respectively. In Chapter II, we have developed a solver for symmetric positive definite 

systems. In this chapter, a  solver for unsymmetrical matrices where the upper and lower 

triangular portions of the matrix are symmetric in location but unsymmetrical in value will 

be developed. Pivoting strategies for unsymmetrical matrices are not considered.

In order to take advantage of the algorithms discussed in Chapter II for the solution 

o f symmetric matrices and exploit the vector capability provided by supercomputers, it is 

necessary to arrange the data appropriately. A mixed row-wise and column-wise storage 

scheme is used. This storage scheme offers the advantage of applying the symbolic 

factorization and the supemode evaluation only on one portion of the matrix instead of the 

entire matrix. Compared to the symmetrical case, the reordering (fill-in minimization), the 

numerical factorization, the forward/backward substitution and the matrix-vector 

multiplication subroutines are different since the matrix is unsymmetrical in values.

6.2 Sparse storage of the unsymmetrical matrix [67]

The unsymmetric matrix A is stored in a mixed row-oriented and column oriented 

fashion. The upper portion of the matrix is stored in a sparse, row-wise NASA format as it
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has been explained in Section 2.2. The lower portion of the matrix is stored in a sparse 

column-wise format. Since a column-wise representation of a matrix is a row-wise 

representation of its transpose, and the matrix is symmetrical in locations, the array 

IA(neq+l), JA(ncoef), will be the same for both the upper and lower portion. AN(ncoef) 

will contain the coefficients o f the upper portion of the matrix and a new array, AN2(ncoef), 

is introduced to store the coefficient values of the lower portion of the matrix. The diagonal 

values will be stored in the real array AD(neq). This storage scheme allows the use of the 

loop unrolling technique described in Chapter II during the factorization for both the upper 

and lower triangular portions of the matrix. Fig. 6.1 shows how the coefficient matrix A is 

stored.

w  \ f

Fig. 6.1 Storage scheme for unsymmetrical matrix

To illustrate the usage o f the adopted storage scheme, let’s consider the matrix given in 

Eq.(6.2).
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11. 0. 0. 1. 0. 2.

0 44. 0. 0. 3. 0.

0 0 66. 0. 4. 0.

8 0 0 88. 5. 0.

0 10 11 12 110. 7.

9 0 0 0 14 112.

The data in Eq. (6.1) will be represented as follows 

IA(l:7=ne?+l) = {1, 3, 4, 5, 6, 7, 7 }

JA(1:6=ncoef) = {4, 6, 5, 5, 5, 6}

AD(l:6=«e<7) = {11., 44., 66., 88., 110., 112.}

AN(1:6=ncoef) = (1., 2., 3., 4., 5., 7. }

AN2(1:6=ncoef) = {8., 9., 10., 11., 12., 14. } 

where neq is the size of the original stiffness matrix and ncoef  is the number o f non-zero, 

off diagonal terms of the upper triangular stiffness matrix (equal to the non-zero, off diagonal 

terms of the lower triangular stiffness matrix). Thus the total number o f nonzeros off 

diagonal terms for the entire matrix is 2 * ncoef.

6.3 Basic unsymmetric equation solver

One way to solve Eq. (6.1) is first to decompose A into the product o f triangular 

matrices, either LU or LDU. Since the graph of the upper and lower triangular matrices are 

the same, we chose the LDU factorization. Thus,

A = LDU  (6.3)

where U is an upper triangular matrix with unit diagonal, D a diagonal matrix and L a lower 

triangular matrix with unit diagonal. After factorization, the numerical values o f matrix L 

are different from those of matrix U.
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In order to better understand the general formula that we will derive for factorization 

of an unsymmetrical matrix, let’s try to compute the factorized matrix [L], [D] and [U] from 

the following given 3x3 unsymmetrical matrix [A], assumed to be a full matrix in order to 

simplify the discussion.

A =

*11 *12 * 1 3

*21 *22 * 2 3

* 31 *3 2 *3 3

(6.4)

The unsymmetrical matrix A given in Eq. (6.4) can be factorized as indicated in Eq.(6.3), 

or in the long form as follows

* 1 1 * 1 2 *13 1 0 0 Dn 0 0 1 *12 *13

* 2 1 * 2 2 *23 = ' 2 1 1 0 0 D22 0 0 1 * 22

* 3 1 * 3 2 *33 '3 2 1 0 0 D 33 . 0 0 1

(6.5)

The multiplication of matrices on the right-hand-side of the equality gives:

*11 * 1 2 *13 d l i ^ 1 1 * 1 2 ^ 1 1 * 1 3

*21 * 2 2 *2 3 = ' 2 1 ^ 1 1 ' 21^ 1 1 *12  +  ^ 2 2 '2 1 ^ 1 1 * 1 3  +  ̂ 22*23

*31 * 3 2 *3 3 '3 1 ^ 1 1  ' 3 1 ^ 1 1 * 1 2  + '3 2 ^ 2 2 '3 1 ^ 1 1 * 1 3  + ^3 2 ^ 2 2 U22 +<^33

(6.6)

where the 9 unknowns ( du, u I2, u13,1,„ 131, d22, u^,132 and d33) from Eq. (6.5) and Eq.(6.6) 

can be found by simultaneously solving the following system of equations.
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Thus from Eq. (6.7), one obtains

a n

ai2
“ 12 ,

^ii
_

“ 13 j
^ 1 1

/
21 dn

a_3± (6.8)

31 '  d.‘n
^ 2 1  ~  a 22 ~  ^ 2 X ^ l \ U \ l )  

a 23 ~  ^21*^1  1U b )«23
d21

_  f l32 ^ 3 1 ^ 1 1W12^

32 ~  A
22

^ 3 3  “  Q 33 ~  ^ 3 1 ^ 1  \ U 13 ^3 2 ^2 2 W23^

In solving for the unknowns in Eq. (6.8), the factorized matrices [L], [D] and [U] can be 

found in the following systematic pattern:

Step 1 :The Ist diagonal value of [D] can be solved for du.

Step 2:The 1st row of the upper triangular matrix [U] can be solved for the solution of uI2 and 

u,3.
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Step 3:The 1st column of the lower triangular matrix [ L] can be solved for 121 and 131 

Step 4: The 2st diagonal value of [D] can be solved for d^.

Step 5: The 2st row of the upper triangular matrix [U] can be solved for the solution of Utj. 

Step 6: The 2s1 column of the lower triangular matrix [ L] can be solved for l32.

Step 7. The 3st diagonal value of [D] can be solved for d33.

By observing the above procedure, one can see that to factorize the term u;j o f the 

upper triangular matrix [U], one needs to know only the factorized row i of [L] and column 

j o f [U]. Similarly, to factorize the term ljf o f the lower triangular matrix [L], one needs to 

know only the factorized row j  of [L] and column i of [U] as shown in Fig. 6.2.

col  i c o l j

u„-

Fig. 6.2 Unsymmetrical solver: Factorization of Uy and ljf

By generalizing to a matrix of dimension neq, the ith row elements of [U] and the ith 

column elements of [L] can be obtained by the formulas in Eq.(6.9) and Eq.(6.10), assuming 

that the rows from 1 to i-1 and column from 1 to i-1 have already been factorized:
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a ~ “ j.tj "  ik u kj

u =-------------------------  (j=i+\,neq)' i d

114

(6.9)

a ,< ~  £  l ikd n U k,j> j - f  jk  j j
l j = -----------^ ------------ (ii= j+l,neq )

j j

(6.10)

and the diagonal values will be given by Eq.(6.11)

d „ = a u ~  E  l ikd uu ki (6*U )

Once the matrix is factorized, the unknown vector x is determined by the forward/backward 

substitution. Using Eq.(6.3) one can write Eq.(6.1) as follows:

L D y = b  (6.12)

with y= Ux. The solution o f Eq. (6.12) can be obtained follows:

<•-1

-'=6. -  Y . Litfk 0'=1.— with y ’ = D y  (6.13)
k = 1

and to solve

U x  = y  (6.14)

for x,

neq

x j = y i ~  U i k x k (i=neq,...,l)  (6.15)
Jf c=r  - ^1

The factorization is computationaly much more involved than the forward/backward 

substitution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

6.4 Vector-sparse LDU unsymmetrical solver

6.4.1 Introduction

The vector-sparse unsymmetrical solver developed is a collection of subroutines that 

follow the same flowchart as the one given in Fig. 2.2, with the subroutines performing 

different tasks. Since the matrix is unsymmetrical in values, the reordering algorithm for 

symmetric matrix is not suitable. On the other hand, by observing Fig. 6.2 and the 

derivations in Eq. (6.3), the multipliers in the factorization of the upper portion of the matrix 

will be computed from the coefficients o f  the lower portion of the matrix and vice versa; 

thus, the numerical factorization will be different from the symmetrical case.

The purpose of symbolic factorization is to find the locations of all nonzero 

(including "fills-in" terms), off-diagonal terms of the factorized matrix [U]. Since both 

upper and lower portion of the matrix have the same graph, the symbolic factorization is 

performed only on either the upper or lower portion of the matrix. The symbolic 

factorization requires the structure IA, JA of the matrix in an unordered representation and 

generates the structure IU, JU of the factorized matrix in an unordered representation. 

However, the numerical factorization requires IU, JU to be ordered, while IA, JA can be 

given in an unordered representation. A symbolic transposition routine, TRANSA, which 

does not construct the array of non zero o f the transpose structure, will be used twice to 

order IU, JU, after the symbolic factorization, since we are only interested in ordering JU. 

One of the major goals in this phase is to predict the required computer memory for 

subsequent numerical factorization for either the upper or lower portion of the matrix. For 

unsymmetrical case, the total memory required is twice the amount predicted by the 

symbolic factorization.
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6.4.2 Ordering for unsymmetrical solver

Ordering algorithms such as minimum-degree and nested dissection have been 

developed for reducing fill in factorizing sparse symmetric matrices. One cannot apply fill-in 

minimization, MMD (see Chapter II), on the upper and lower matrices separately. Shifting 

rows and columns of the upper portion of the matrix will require values from the lower 

portion of the matrix and vice versa. Let's consider the following example:

A =

too 1 2 3 4

5 100 6 7 8

9 10 100 11 12

13 14 15 100 16

17 18 19 20 100

(6.16)

Let's assume that the application of the Modified Minimum Degree (MMD) algorithm on the 

graph of the matrix results in the following permutation:

PERM-

r i 
1 ’  1

2 4

3 • = • 2

4 3

5 5

(6.17)

By switching rows and columns of the matrix given in Eq. (6.16) according to the 

permutation vector PERM, given in Eq. (6.17), the reordered matrix Ar becomes

A =

100 3 1 2 4

13 100 14 15 16

5 7 100 6 8

9 11 10 100 12

17 20 18 19 100

(6.18)
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One the other hand, if  one considers only the upper portion of the matrix (as for a 

symmetrical case), switching rows and columns of the matrix according to the permutation 

vector, PERM, will result in the following reordered matrix A, given in Eq. (6.19). One can 

see that the elements A(2,3) and A(2,4) came from the lower portion. Therefore, rearranging 

the values of AN (or AN2) after

3 1 2 4

100 7 11 16

t o o 6 8

100 12

t o o

the permutation vector PERM has been determined by the MMD routine will require certain 

elements of AN2 (or AN). The reordering subroutine for symmetric system has been 

modified to account for these changes and implemented without adding any additional 

working array. The portion of skeleton Fortran code in Table 6.1 shows how to retrieve 

efficiently the appropriate elements from the lower (upper) portion of the matrix, while 

constructing the reordered upper (lower) portion of the matrix. The permutation vector 

PERM and the structure IU and JU of the reordered matrix are assumed to be available 

already.

The algorithm in Table 6.1 is different for a case of a symmetrical matrix because, 

if only the upper portion of a symmetrical matrix is stored in memory, the numerical values 

in row i at the left side o f the diagonal value are identical to the values in column i above the 

diagonal value (see Fig. 6.2). Consequently, the second DO loop 231 in Table 6.1 will not 

be needed because, all data can be retrieved from the upper portion of the matrix and one can
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DO 200 i= l, N - l  

[0=perm(i)

DO 220 j=IU (i), IU (i+l)-l 

JO =  perm(JUQ)

IF(IO.LTJO) THEN 

IJO=IO 

[JOO =J0

DO 230 jJ=IA(IJ0), IA(IJ0+l)-l 

IF(JA(jj).NE.IJOO) GO TO 230 

UN(j)=AN(jj)

UN2(j)=AN2Qj)

GO TO 220

230 CONTINUE 

ELSE

[J0=J0 

IJOO =10

DO 23 I ju=IA(IJ0), IA([J0+l)-l 

IF(JA(jj).NE.IJ00) GO TO 23 1 

UN(j)=AN2(ij)

UN2G)=AN(jj)

GO TO 220

231 CONTINUE 

END IF

220 CONTINUE 

200 CONTINUE

Table 6.1 Portion of Skeleton Fortran code of reordering 
of an unsymmetrical matrix

select the appropriate pointers IJ0 and LT00 before the inner most DO loop. On the other 

hand, for an unsymmetrical matrix, one should scan separately the upper and lower portion 

of the matrix (AN* AN2) as shown in Table 6.1.
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6.4.3 Sparse Numerical Factorization with loop unrolling

By observing Fig. 6.2 and the derivations in Section 6.3, in order to factorize an 

element Ujj o f the upper triangular matrix, one needs to know the factorize row i of [L] and 

the column j of [U]. Thus, the multiplier of the upper portion of the matrix will be computed 

from the coefficient of the lower portion of the matrix. Table 6.2 give the pseudo Fortran 

skeleton code on how the multipliers are computed and how the factorization is carried out.

1. c Assuming row 1 has been factorized earlier

2. Do 11 I = 2, NEQ

3. Do 22 K= Only those previous " master" rows which have contributions to 

current row I

4. c Compute the multipliers

5. XMULT = U(K,I) / U(K,K)

XMULT2 = L(I,K) / U(K,K)

6. Do 33 J = appropriated column numbers of" master" row # K

7. U(I,J) = U(I,J) - XMULT2 * U(K,J)

L(J,1) = L(J,I) - XMULT * L(J,K)

8. 33 CONTINUE

9. U(K,[) = XMULT 

L(I,K) =XMULT2

10.22 CONTINUE 

11.11 CONTINUE

Table 6.2: Pseudo FORTRAN Skeleton Code For Sparse LDU Factorization

In the sparse implementation, after the symbolic factorization is completed on one 

portion of the matrix, the numerical factorization requires IU, JU ( structure of [L] or 

[U]) to be ordered and the required computer memory for the factorization is known.
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Similar to the symmetrical case, the numerical factorization also requires to construct 

chain lists to keep track of the rows that will have contributions to the currently 

factorized row. Another advantage of the storage scheme that we have adopted is that 

the chain lists for the factorization of [L] (or [U]), will be the same as for the 

factorization of [U] (or [L]).

The loop unrolling strategies that have been successfully introduced earlier can 

also be effectively incorporated into the developed unsymmetrical sparse solver in 

conjunction with the master degree of freedom strategy. In the actual code 

implementation, "DO loops" in Eqs. (6.9 -6.11) will be rearranged to make use of loop 

unrolling technique. The loop unrolling is applied separately for the factorization of the 

upper portion and for the lower portion. Assuming the supemodes have already been 

computed ( the supemodes of the upper portion is the same as the ones for the lower 

portion). The skeleton FORTRAN code in Table 6.2 should be modified as shown by 

the pseudo, skeleton FORTRAN code in Table 6.3 for a loop unrolling level 2.

6.4.4 Forward and Backward solution

The forward and backward solutions were implemented following the formula 

in Eqs.(6.12-6.15), once the factorized matrices [L], [D] and [U] are computed. In the 

forward solution, (Eqs. 6.12 and 6.13), the factorized matrices [L] and [D] are used, and 

in the backward substitution, the upper portion of the factorized matrix [U] is used.
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C  Assuming row  1 has been factorized earlier

Do 11 1=2, NEQ

Do 22 K.=Only those previous "master" rows which have contributions to 

current row I

C  Compute the multiplier(s)

NSLAVE DOF= MASTER (I) - 1 

XMULT = U(K,I) /  U(K,K)

XMULm =  U(K+m,I)/U(K.+m,K.+m)

XMULT2 =  L(I,K:) /  U(K,K)

XMUL2m =  L(I,fC+m)/U(K.+m.K+m)

C  m =l,2 ... SLAVE DOF

Do 33 J =  appropriated column numbers of" master" row # K.

U (U ) =  U (I.J) - XMULT2 * U(K.J) - XMUL2m *U(fC+m.J)

L(J,I) =  L(J,I) -  XMULT* L(J.K) - XMULm *L(J,K+m)

33 CONTINUE 

U(K,I) =  XMULT  

U(K+m,I) =  XMULm  

L(I,K) =  XMULT2 

L(I.K+m) =  XMUL2m  

22 CONTINUE 

11 CONTINUE

Table 6.3 : Pseudo FORTRAN Skeleton Code For Sparse LDU Factorization With
Unrolling Strategies

6.4.5 Sparse unsymmetric matrix-vector multiplication

A matrix-vector multiplication subroutine has been efficiently designed for which 

the unsymmetrical matrix is stored in a mixed row-wise and column-wise storage 

scheme. The non zeros from the upper and lower triangular matrix are stored in two 

distinctive arrays AN and AN2 with the same structure IA and JA. Let's consider a 

vector temp(\:neq) that will contain the result of the matrix-vector multiplication. After 

multiplying the diagonal values by the right-hand-side, the multiplication of the upper 

and lower portion of the matrix are efficiently implemented as shown in Table 6.4.
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DO 10 i=l,n 
iaa=ia(i) 
iab=ia(i+l)-l 
DO k=iaa, iab 
kk=ja(k)
sum=sum+AN(k)*rhs(kk) 
temp(kk)=temp(kk)+ AN2(k)*rhs(i) 
END DO 
temp(i)=sum 

10 CONTINUE

Table 6.4 Unsymmetrical matrix-vector multiplication

The algorithm in Table 6.4 offers the advantage of avoiding to convert a row-wise 

complete unordered storage that is normally used for general unsymmetric matrix into 

our special storage scheme (mixed row and column-wise format).
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CHAPTER VH 

APPLICATIONS

7.1 Introduction

The success o f algorithms for sparse matrix computations depends crucially on 

careful computer implementations. All algorithms described in the previous chapters have 

been coded in standard Fortran 77, and therefore should port to other computer platforms 

with no or minor changes. The floating-point operations have been performed in double 

precision, except on the Cray Y-MP where single precision is used. On the machines with 

vector capability, all codes have been compiled with the vector optimization turned on to the 

optimum level (-03 on most computers). The optimal level o f loop unrolling varies from 

computer to computer. In our experiments, we have tried loop unrolling level-p (with 

p=l,2,4,and 8). All the test problems have been obtained from NASA Langley Research 

Center, except the Off-shore EXXON model [37-38,56]. All timing presented are in 

seconds.

The different computer platforms used in our experiments include (but not limit to) 

the following:

- Cray Y-MP from NASA Langley Research Center.

- IBM RS6000 model 590: A high performance computing workstation from the

Office of Computing and Communication Service, OCCS, at Old Dominion

University that we will refer to as Stretch.
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- SUN workstations ( Sparc 20 that will refer to as Rhino, a Sparc 10 and series o f 

Sparc 5. We will refer to one SUN Sparc 5 as Cedar) from the civil engineering Unix 

laboratory at Old Dominion University.

- SUN workstation SPARC 20 that we will refer to as USTSU31 from Hong Kong 

University o f Science and Technology (HKUST).

- Silicon Graphics Indigo 2 from HKUST.

Unlike the SUN workstations, the Cray Y-MP has no cache memory. Its floating

point hardware is extremely fast due to vector pipelining. The use of loop unrolling, vector 

directives increase the gain in performance. It is also worth noting that Cray Y-MP machine 

performs floating-point arithmetic far more efficiently than integer arithmetic, in contrast to 

the workstations where the integer and floating-point performance is better balanced.

The IBM RS6000/590, stretch, from Old Dominion University is extensively used 

in the evaluation of the performance of the developed Fortran codes. It is a vector machine 

running  the AIX XL Fortran compiler. The performance achieved on the stretch machine 

was not due to only the quality of the sparse algorithms, but also due to the selection o f 

compiler options and flags. The following flag options were selected:

-bmaxdata:<bytes> : which specifies the maximum amount of space to reserve for 

the program data segment (if one needs more than 256 MB).

-bmaxstack:<bytes> : specifies the maximum amount of space to reserve for the 

program stack segment (if one needs more than 256 MB).

-O, -02 : Optimizes code generated by the compiler.
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-03: Performs the -0  level optimizations and perform additional optimizations that 

are memory or compiler time intensive. The optimization level -03 changes 

sometimes the semantic of the program.

-qstrict: Ensure that optimizations done by the -03 option do not alter the semantics 

of the program.

-qalias—noaryovrlp : program does not contain array assignments of overlapping or 

storage associated arrays; can produce significant performance improvements for 

array language.

-qarch=pwr2 : produces an object that contains instructions that run on the P0WER2 

hardware platforms.

Each code is provided with a “makefile” that can port on different computer 

platforms. To compile most of the program, one just simply types "make". Porting from one 

computer to another typically requires minor changes to the makefile. To use a different 

computer platform, simply modify the makefile by commenting and uncommenting the 

appropriate script lines corresponding to the platform as it is described in the Appendix A. 

There are no calls to routines from external libraries. Only the timing subroutine, cputime.f 

given in the Appendix B is machine dependent and must be modified when moving from one 

machine to another. The user may have to add timing calls for machines other than those 

currently studied. Currently covered are CRAY, SUN, IBM RS6000, and some other Unix 

boxes.

7.2 Description of various finite element models

In order to evaluate the performance (in terms o f computational time, solution 

accuracy and memory requirements) o f all the developed computer programs, we consider
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applications that arise from practical finite element models. The following benchmark 

applications have been used to check the accuracy and robustness of all the developed 

computer programs.

7.2.1 Application No 1: High Speed Civil Transport (HSCT) Aircraft

The finite element model of the High Speed Civil Transport Aircraft, HSCT, shown 

in Fig. 7.1 and Table 7.1, resulted in a system of linear equations with 16,152 degrees of 

freedom and 373,980 nonzero off diagonal terms. Fig. 7.2 shows the sparsity pattern of 

the non zero elements of the upper part of the stiffness matrix.

7.2.2 Application No 2: The EXXON off shore model

The finite element model for the EXXON model (shown in Figs. 7.3-7.5 and Table 

7.2) has been used extensively in earlier research works [37,38,56]. The resulted stiffness 

matrix has 23,155 degrees of freedom. The number of non-zero off diagonal terms of the 

original stiffness matrix is 809,427. Fig. 7.6 shows the sparsity patterns of the non zero 

elements o f the upper part of the stiffness matrix.

7.2.3 Application No 3: Thermal-Structural model

The finite element model of the thermal-structural model resulted in a system of 

43,806 linear equations with 1,037,705 non zeros coefficients of the stiffness matrix. Table

7.3 gives the characteristics o f the finite element model, and Fig. 7.7 shows the sparsity 

patterns of the non zero elements of the upper part of the stiffness matrix.

7.2.4 Application No 4: Solid Rocket Booster (SRB)

The finite element model of the Solid Rocket Booster, SRB, shown in Fig. 7.8, 

resulted in a system of 54,870 linear equations with 1,308,185 nonzero off diagonal terms.
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Table 7.4 gives the characteristics o f the finite element model and Fig. 7.9 shows the 

sparsity patterns of the non zero elements of the upper part of the stiffness matrix.

7.2.5 Indefinite matrices

In order to evaluate the performance (in terms o f computational time, solution 

accuracy and memory requirements) of the proposed sparse solvers with pivoting strategies 

for symmetric indefinite systems, five NASA benchmarks problems (ranging from 51 to 

15,357 unknown degree-of-freedoms) were considered in this study. The following 

applications are considered:

- Application No 5 : Cantilever Beam problem, 51 DOF.

- Application No 6 : Carlos Davilla problem, 247 DOF.

- Application No 7 : Jonathan’s plate problem, 1,440 DOF.

- Application No 8 : Knight’s panel problem, 2,430 DOF.

- Application No 9 : 15,367 DOF problem.

A summary of the characteristics of these five indefinite matrices are presented in Table 

7.5. Fig. 7.10 to Fig. 7.14 give the sparsity patterns o f the non zero elements of upper 

portion and the diagonal terms o f the stiffness matrix.

- Application No 10: An additional application, the McDonell Douglas Stitched/RFI all 

composite wing finite element model with 53,948 degrees of freedom, is considered. The 

details of this model can be found in NASA TM 110267 by John Wang (or NASA TM 

110267, by Wang, on NASA Langley Technical Report server). The finite element model 

contains 7,448 Quad elements, 2,562 Beam elements, 98 triangular elements and 24 NASA 

interface elements causing 4,326 zeros on the diagonal o f the stiffness matrix. Fig. 7.15 

shows the finite element model.
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7.2.6 Examples description for Interior Point Method (IPM)

To validate the accuracy and robustness o f the developed interior point method, the

following five small examples were considered that cover the different kinds o f linear

programming problems. Problems with a feasible region, no feasible solution, a feasible

region as a point, unbounded and multiple solution are considered. Graphical solutions of

these examples are also provided to check the accuracy of the IPM.

Application No 11 ( optimum solution exist)

Min Z  = -2*j - 2x2 
su b ject to 2 x x + 3x2 ^6

Application No 12 ( Feasible solution is a point)

M in Z  =2Xj - 3x2 
su b ject to  x t +2x2 <4

Application No 13 (No feasible solution)

M in i
su b ject to  2 x { + x2 <4

Application No 14 ( Multiple solutions)

Min

su b ject to  2x, +x2 £4

Application No 15

x t + 3x2 ^ 6

M in Z  =3Xj ~ 2 x 2

3Xj + 3 x2 <3

M in Z  =2x, +2x2

Xj + x2 1 1

M in Z  =2Xj +x2 
su b ject to 5 x , + 1 0 x 2 ^ 8

x i + X2 ^
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Several other moderately large scale examples have also been formulated to check 

the performance of the developed IPM, as it will be described in the following paragraphs:

Min c Tx
subject to [A]x-b  

f^O

where [A] is an unsymmetric matrix containing the constraints set. Matrix [A] is read in 

NASA row-wise format as a complete unsymmetrical matrix. The set of indefinite matrices 

provided in Section 7.2.5 are used as constraints (matrix [A]). An input parameter mread is 

added into the code. When mread is equal to -1 , only the upper triangular part of matrix [A] 

is read and when mread is 1, the lower portion is also considered. The objective function is 

defined as the summation of all the design variables, c r= [ 1,1,..., 1], The design variables

are assumed to be positive.

Number of constraints mread

Application 16 51 -1

Application 17 51 1

Application 18 247 -1

Application 19 247 1

Application 20 1440 -1

7.3 Numerical Results

All numerical results for the above 20 applications will be reported in this section.

7.3.1 Sparse equation solvers

a) LDLT numfal/2/8

The High Speed Civil Transport aircraft, the Exxon model, the thermal-structural 

problem and the Solid Rocket Booster finite element models are used to check the
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performance and robustness of the developed vector sparse LDLT solver. Except the 

thermal-structural problem, which is non-positive definite, the stiffness matrix of all the other 

finite element models are positive definite. To check the accuracy o f the results, an absolute 

error norm and relative error norm have been computed as follows:

A bsolute Error Norm A E N  = | |K x - f | |  (7-1)

R elative Error Norm R E N  = K̂ x (7.2)
I lf II

where [K], {x}, and {f}, shown in Equations (7.1) and (7.2), correspond to the coefficient 

matrix, unknown vector and the right-hand-side vector, respectively. Table 7.6 and Fig. 7.16 

give the numbers of non zeros after factorization and memory requirements for the HSCT 

application with different reordering schemes. The Nested Dissection (ND) algorithm results 

in 13.2% fill-in reduction and 18.5% for the Multiple Minimum Degree (MMD) algorithm 

on the HSCT finite element model (application No 1). The MMD seems to minimize the 

fill-in quite efficiently and requires less memory. Table 7.7 -7.8 shows the performance of 

Numfal/2/8 for different level of loop unrolling using MMD on the HSCT finite element 

model. Table 7.9-7.10 shows the summary of all results for different reordering schemes and 

different level of loop unrolling on Rhino and Stretch machines. Figures 7.17 and 7.18 

compare the factorization and total time of NUMFA1, NUMFA2 and NUMFA8 for the 

HSCT finite element model respectively on Stretch and Rhino machine. The following 

notations are used:

- Reord : reordering

- Loop unrol : Loop unrolling

- Symfa : symbolic factorization
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- Numfa : numerical factorization

- FBE : Forward/backward solution

The total time given in Tables 7.9 and 7.10 does not include the time for the 

reordering. It is the overall time to read data from the disk (after reordering of the matrix is 

done), plus the time to perform the symbolic factorization, the transposition of the structure, 

the numerical factorization and the error norm-check. One can notice that the MMD with 

loop unrolling level 8 gives the best timing for the numerical factorization. Table 7.11 to 

7.13 gives the comparison of results for the EXXON, Thermal-Structural and SRB finite 

element models, respectively, using MMD and different level o f loop unrolling on the IBM 

R6000/590 {stretch) machine.

The IBM RS6000/590 ( Stretch) has flag options for the vector compiler to enhance 

the performance. Figures 7.19 and 7.20 shows the impact of the compiler optimization level 

on the numerical factorization and total time for the HSCT and SRB finite element models 

respectively. Compiler optimization level -02 and -03 can give up to 76.4% gain in 

performance for the numerical factorization and up to 75.4% gain in performance for the 

total time for the applications that we have tested. To achieve a good performance, one 

should not only fine tune his algorithm implementation but also have a good knowledge of 

a particular computer platform.

Since most of the computer platforms that we have been using are not in dedicated 

environment (multi-users environment), most of the results have been recorded late at night 

( after 2:00 am ) to try to have nearly dedicated time. Further testing have been done on the 

Rhino and stretch machine to see how reliable the time function is. The HSCT finite model 

has been used for studying various time functions, and NUMFA8 solver for positive definite
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systems has been executed twenty times on each machine. The numerical factorization and 

the total time have been recorded. The statistical software, SAS was used to analyze the 

data, and the results can be summarized as follows:

Rhino Rhino Stretch Stretch
HSCT-Numfa HSCT-Total HSCT-Numfa HSCT-Total

Mean 252.9595 287.6132 16.9630 20.2235
Variance 1.3008 1.7947 0.0266 0.0336
Standard Deviation 1.1405 1.3397 0.1631 0.1834
Standard mean 0.2550 0.2996 0.0365 0.0410
Maximum 255.7281 290.6975 17.4500 20.8400
Minimum 251.8622 286.3397 16.8400 20.0700
Range 3.8659 4.3578 0.6100 0.7700
Skewness 1.2634 1.2585 2.4945 2.7082

The time function on the IBM RS6000/590, Stretch, is more reliable than the one on the 

SUN SPARC 20, Rhino.

Table 7.14 shows an example of input data file, K.INFO, for the developed solver, 

NUMFA1/2/8 and Table 7.15 gives an example of an output file from the sparse solver 

NUMFA8. The following control parameters are considered in the input data file K.INFO: 

- nreord : Reordering algorithm

= 0 : No reordering scheme 

= 1 : Reverse Cuthill-McKee (RCM)

= 2 : Nested dissection (ND)

= 3 : Modified Minimum Degree (MMD)

-loop : Loop unrolling level 

= 1 : numfal : level 1 

= 2 : numfa2 : level 2
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= 8 : numfa8 : level 8 

-neq : number of equations 

-ncoef : number of non zeros 

-mread : input data

= -1 : read K.* NASA input files 

= else : Read fort.* files

b)Cholesky OakRidgeODU

The first four applications have also been used to check the performance o f the 

OakRidgeODU solver. Since this solver uses Cholesky algorithm, the non-positive definite 

thermal-structure problem has been modified, by imposing a large diagonal value to make 

it become positive definite. Tables 7.16 and 7.18 show the impact o f the cache size on the 

HSCT Finite element model on the stretch and Rhino machines. A cache size of 64 and 32 

gives the best performance on stretch and Rhino machines, respectively. Table 7.17 and 7.19 

show the impact of the loop unrolling level on the performance of the solver on the stretch 

and Rhino machines. For different level of loop enrolling, the best performance has been 

achieved at level 4 and 8. Similarly, Tables 7.20-7.25 summarize the impact of cache size 

and loop unrolling level on the EXXON, Thermal-Structural and SRB finite element models.

Table 7.26 gives an example of an input data file, K.INFO, to run the OakRidgeODU 

solver and Table 7.27 gives an example o f an output file from this solver. The following 

control parameters are considered in the input data file K.INFO:

- icase : ordering choice 

= 1 natural

= 2 multiple minimum degree
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- cachsz: machine cache size ( in Kbytes), usually 0,32 or 64

- level : level of loop unrolling ( 1,2,4,and 8)

- neq : number of equations

- ncoef: number of non zeros

- mread: input data

= -1 : read K.* NASA files 

= else : Read fort.* files

c)ODU-HKUST indefinite solver

The benchmark indefinite matrices of applications No 5 to No 10 provided by NASA 

Langley Research Center, are considered to evaluate the performance of the developed 

indefinite solvers. All these applications have a similar characteristic, they all use NASA 

interfaced elements, which cause zero terms on the diagonal of the stiffness matrix (refer 

to Figs. 7.10-7.14). Table 7.28 also gives the number and percentage of diagonal zero 

values. The total number of equations (or the number of degree of freedom) and the total 

number o f nonzero coefficients before (ncoef) and after ( ncoef2) factorization are also 

shown in Table 7.29. The relative Error Norm (REN) is computed according to the formula 

given in Eq.(7.2).

Further improved performance was achieved on the ODU-HKUST, by applying the 

MMD re-ordering algorithm (to minimize the fills-in terms) and by moving all zero diagonal 

terms of the original stiffness matrix toward the bottom right of the original stiffness matrix. 

Table 7.31 shows the gain achieved by using MMD and pushing the rows/columns 

corresponding to zero diagonal terms to the end, compared to the case where MMD is 

applied alone. Approximately 58% gain in performance has been achieved on the numerical
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factorization of application No 9. Both Cray-YMP (single processor) computer and the 

EBM-RS6000/590 workstation are used in this study. For structural examples considered in 

this section, the resulting linear system of indefinite equations, shown in Eq. (2.1) can be 

expressed in the following form

A  B H-l '  b
>

B T 0 uj ic

In equation (7.3), the vector {X} can be referred to as the “displacement” vector, where as 

the vector {A,} (which corresponds to the zero diagonal terms o f the coefficient stiffness 

matrix) can be referred to as the “Lagrange multiplier” vector. The bottom right submatrix 

of the coefficient stiffness matrix, shown in Eq.(7.3 ), is a “zero” submatrix. Table 7.28 gives 

the percentage of zero diagonal values for all the indefinite matrices. The relative 

displacement & Lagrange multiplier” error norm ( or R.E.N) has been calculated, according 

to Eq. (7.2).

Golub [6] has suggested to use the value for the control parameter alpha,

a = ( l+ /r7 ) /8 . In our code, this value has been used as an input parameter. Figure 7.21

shows the impact o f the choice o f the control parameter alpha on the performance o f the 

solver on the application No 9. Table 7.32 also gives the impact on the number of two-by- 

two (2x2) and diagonal interchange (one-by-one pivoting), as well as the non-zeros after fill- 

in (due to the choice of the control parameter alpha). Up to 79.4% gain can be achieved in 

the numerical factorization of application No 9.

Comparisons given in Table 7.30 have been made based upon structural data and 

compared to the results from the Boeing indefinite solvers for applications No5 to No9. The 

comparison has been made based on several different criteria
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(a) The maximum displacement

(b) The absolute summation of the entire DISPLACEMENT vector. As an example: 

assuming the DISPLACEMENT vector is { 1.2, -2.6, 0.7, 2.9}, then the maximum 

displacement is 2.9, and the summation (absolute) o f all displacements is 1.2 + 2.6 

+0.7 + 2.9

(c ) The Relative Error Norm (REN) considered in solving the system [A]* {x} = {b} 

is defined in Eq.(7.2)

The ODU-HKUST solver performs well on matrix of size less than 15,367 but it is slow on 

large size matrix such as application No 10.

d)ODU-Ma27 indefinite solver [66]

The benchmark indefinite matrices given in application No 5 to No 10 are used again 

to evaluate the performance of ODU-Ma27 indefinite solver. Table 7.33 and 7.34 give a 

summary of results on Rhino and stretch machines. The relative error norm has been 

computed according to Eq.(7.2). The maximum and summation of the absolute value of the 

displacement, plus the lagrange multiplier, as well as the one for the displacement alone are 

shown in Table 7.33 and 7.43.

7.3.2 Sparse eigen-solvers

a)Lanczos and Subspace sparse eigensolvers for positive definite m atrix

Based upon the discussions in previous sections, practical finite element models 

(such as Exxon-off-shore structure, and High Speed Civil Transport Aircraft) are used to 

evaluate the performance of the developed sparse eigen-solvers for positive definite 

systems that we called SPARSEPACK. Since the codes have been written in standard 

FORTRAN language (and without using any external library subroutines), it can be ported
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to different computer platforms (such as SUN SPARC 20, IBM-R6000/590, Intel Paragon, 

Cray C90 etc...) with no (or minimum) changes to the codes. The accuracy of the 

developed codes for solving generalized eigen equations can be measured by the Relative 

Error-Norm (=R.E.N .) which can be computed as :

R.E.N. -  | g f  -  (7.4)
M il

The basic Subspace iteration code, that we will refer to as KJBATHE96, given in Ref. [1], 

will be used as a based-line reference. This basic Subspace iteration code [1] will be 

compared to the developed basic, "sparse" Subspace iteration (option also referred to as 

SVSub), and "sparse" Lanczos (option also referred to as SVLan) codes. For a fair 

comparison, the KJBATHE96 code is also compiled using the vector compiler on the IBM 

Stretch machine. Lumped masses are used in all examples in this section, but the Fortran 

code developed also has the capability to solve consistent mass matrix. In order to 

accelerate the calculations of the required eigensystem and avoid the singularity associated 

to systems with rigid body modes, the option of using a shift factor (see Eq.(4.5)) is 

implemented. The SPARSEPACK package contains not only the Subspace iteration and 

the regular Lanczos iteration, but also the block Lanczos ( block less than 4).

The finite element model for the HSCT aircraft (see Fig. 7.1 and Fig. 7.2 ) has 

been used extensively in earlier research works. The numerical performances of 3 

generalized eigen-solvers (KJBATHE96, Subspace iteration and Lanczos iteration) are 

presented in Figs. 7.22-7.23.

The finite element model for the EXXON model (see Fig. 7.3-7.6) used extensively 

in earlier research works [37,38,56]. The resulted system of generalized eigen-equations
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from the EXXON model has 23,155 dof. The numerical performances are summarized 

in Figs. 7.24-7.25. It should be noted here that on the IBM-RS6000/590 workstation, 

vector processing capability is available, where as the vector processing capability is "not" 

available on the Sun SPARC 20 workstation (USTSU31).

Table 7.35 shows an example of input data file, K.INFO, for the developed eigen- 

solver package SPARSEPACK. The following control parameters are considered in 

K.INFO:

-nord : Reordering algorithm

= 0 : No reordering scheme 

= 3 : Modified Minimum Degree (MMD)

-neig : number of required eigenvalues 

-lump : Lump or consistent mass 

= 1 : lump mass

= else : consistent mass 

-neq : number of equations

-ncoef : number of non zeros 

-ishift : shift

= 0 : no shift is considered 

= else : shift is considered 

-iblock:

= -1 : Subspace Iteration

= 0 : Regular Lanczos

= I , ... ,3 : Block Lanzos (block 1,.., 3)
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( The value of iblock has to be less than 4)

-m read: input data

= -1 : read K.* NASA input files 

= else : Read fort.* files 

Table 7.36 gives an example of output files from the eigensolver using Lanczos. Table 7.37 

gives an example of output files using Subspace, and Table 7.38 gives an output o f the 

KJBATHE96.

b) Lanczos and Subspace sparse eigensolver for Indefinite systems

Lanczos and Subspace iteration for indefinite systems have been implemented that 

uses the two indefinite solvers discussed in Chapter III (the ODU-HKUST indefinite solver 

and the ODU-Ma27 indefinite solver). Therefore, two codes have been developed for 

Lanczos and Subspace iteration, using both the indefinite solvers. A flag imethod is 

considered that takes the value 1 when the ODU-Ma27 indefinite solver is used, and the 

value 2 when the ODU-HKUST indefinite solver is used. Additionally, both lump and 

consistent mass can be treated. Finally, to shift the spectrum of eigenvalues and accelerate 

the convergence of the required eigensystem and avoid the singularity associated to systems 

with rigid body modes, the option o f using a shift factor according to Eq. (4.5) has also been 

implemented. These different options have been implemented in different modules for a 

better memory management.

The accuracy has been measured by computing the Relative Error-Norm 

(=R.E.N) defined in Eq.(7.4). The indefinite systems in applications 5 to 9 have negative 

and positive eigenvalues. Table 7.39 gives an example o f 15 eigenvalues o f application No 

6. (247 dof indefinite matrix). The following observations can be made:
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- The Subspace iteration was able to capture both negative and positive eigenvalues, but the 

Lanczos gave the lowest positive eigenvalues (if no shift factor is considered). Table 7.39 

and 7.40 shows an example of 15 eigenvalues computed from Subspace and Lanczos 

algorithms for the 247 DOF application

- The use of a shift factor will help to accelerate the convergence, and to handle systems with 

rigid body modes (but shift the spectrum o f eigenvalues around the shift value).

Table 7.41 shows an example of an input data file, K.INFO, and Table 7.42 gives an 

example of a typical output file. The following control parameters are considered in 

K.INFO:

-neig : number o f  required eigenvalues 

-lump : Lump or consistent mass 

= 1 : lump mass

= else : consistent mass 

-neq : number o f equations 

-ncoef : number o f non zeros 

-ishift : shift

= 0 : no shift is considered 

= else : shift is considered 

-mread : input data

= -1 : read K..* NASA input files 

= else : Read fort.* files 

We have developed robust sparse package for the eigensolution of positive-negative 

and indefinite symmetric matrices. Two challenging problems have been given to us by
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NASA Langley Research Center to validate our code. Descriptions of these 2 problems are 

given in the following paragraphs:

1.- The Jonathan’s ill-conditioned problem: An ill-conditioned stiffness matrix collected 

from a finite element procedure with 900 degrees of freedom and 11989 non-zeros off 

diagonal coefficients has been obtained. Table 7.43 shows the results provided by NASA test 

bed for the first 25 eigenvalues, and Table 7.44 and 7.45 give the results from our Lanczos 

and Subspace eigensolver, respectively.

2.- NGST Satellite Model: 5156 dof problem: This problem has 5156 dof and 88966 non

zeros off diagonal coefficients. The stiffness matrix contains some rigid body modes. It took 

51 sec (time also includes reading data and error norm check) on the stretch machine to 

solve for the first 100 eigenvalues. The output is given in Table 7.46. A shift value was 

needed to deal with the singularity of the stiffness matrix. The first six eigenvalues are zeros 

(rigid body modes) and some repeated eigenvalues have been observed in the output ( 26th 

and 27th eigenvalues, 56th and 57lh eigenvalues, etc).

7.3.3 Interior Point Method

Based upon the IPM and the indefinite sparse solver algorithms described in Chapters 

III and V, a Fortran computer code has been written to validate the entire numerical 

procedure. All results in this section have been obtained using the cedar computer (Sun 

SPARC 5) at Old Dominion University, and presented in Table 7.47 and 7.48, where, NEQ, 

NCOEF and NCOEF2 are Number of Equations, number of non-zero off diagonal 

coefficients of matrix [AAT] and number of non-zero off diagonal coefficients o f  matrix 

[AAt] including the diagonal values, respectively.
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The first five small-scale examples ( see Table 7.47) are used to validate the IPM 

code for different type of problems, such as feasible region is defined, feasible region is a 

point, no feasible region, multiple solutions. Fig. 7.26 to 7.30 give their graphical solutions. 

The last five medium-scale examples (see Table 7.48) are used to evaluate the numerical (by 

measuring the time) performance of the IPM, in conjunction with the developed indefinite 

sparse solvers.

Table 7.49 shows an example of input data file, K.INFO, for the developed IPM and 

Table 7.50 gives an example of output files from the solver. The following control 

parameters are considered in the input data file K.INFO:

-nv : number of design variables

-nl : number of inequality constraints (less than zero)

-ng : number of inequality constraints (greater than zero)

-ncoef : number of non-zeros in the constraint set

-isolver: type of solver used

= 1 : sparse solver for positive definite systems

= else: sparse solver for indefinite systems 

-mread: input data

7.3.4 Sparse unsymmetrical solver

Three examples are considered to evaluate the performance o f the developed 

unsymmetrical vector sparse LDU solver ( that we will refer to as UNSYNUMFA). Two 

applications, the HSCT ( 16,152 degree o f freedoms) and the SRB ( 54,870 degrees of 

freedoms) finite element models for which the static solution is known are considered. 

Another application , PierrotHSCT ( 16,152 degree of freedoms) is constructed by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



143

considering the structure o f the HSCT FEM with the same coefficient values for the upper 

portion of the matrix and different values for the lower portion of the matrix to make the 

matrix completely unsymmetrical in values.

To check the accuracy of the results, a relative error norm is computed as shown in 

Eq. (7.2), where matrix [K] is unsymmetrical. The sparse unsymmetrical matrix-vector 

multiplication subroutine developed in Section 6.4.5 is used to compute the product [K].{x} 

( where {x} is the displacement vector), which is required for error norm computation.

Table 7.51 gives the number of non-zeros and memory requirement for the HSCT 

FEM application with and without calling the subroutine for ordering unsymmetric matrix 

(UnsyMMD), explained in Section 6.4.2. By comparing the results in Table 7.51 to the 

symmetrical case in Table 7.6 for the HSCT application, the number of fill-in doubles but 

the total memory needed increases by 49.2 %. The use of reordering, UnsyMMD, decrease 

the non-zeros off diagonal by 18.5 % after factorization (as shown in Fig. 7.31) and 16 % in 

saving for the total memory needed by the solver.

Table 7.52-7.53 and Fig. 7.32-7.33 give a summary of results for different level of 

loop unrolling on the IBM RS6000/590 stretch with and without using the reordering 

(UnsyMMD). Table 7.54 and Fig. 7.34 give the summary of results for PierrotHSCT 

application and Table 7.55 and Fig. 7.35 give the summary of results for the SRB example.
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APPLICATION No 1

Equations Coefficients Maximum
Semi-bandwidth

Average
Semi-bandwidth

16,146 499,505 593 318

Table 7.1 Characteristics of the NASA High Speed Civil Transport Aircraft FEM
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APPLICATION N° I

Fig. 7.2 Non-zero pattern of the NASA High Speed Civil 
Transport Aircraft FEM
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APPLICATION N° 2

Fig. 7.3 TLP Flexjoint Geometry Parameters of the EXXON FEM
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APPLICATION N° 2

Fig. 7.4 A 3-D model of the TLP Flexjoint EXXON FEM
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APPLICATION N° 2 
TLP Flexjoint EXXON FEM

oolsc zzerais

Co)

Fig. 7.5 Schematic diagram of the TLP Flexjoint EXXON FEM
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APPLICATION N° 2

Fig. 7.6 Non-zero pattern of the TLP Flexjoint EXXON FEM
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APPLICATION N° 2

Equations Coefficients Max Semi- 
bandwidth

Average Semi
bandwidth

23 ,155 809,427 689 665

Table 7.2 Characteristics of the TLP Flexjoint EXXON FEM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPLICATION N° 3

I

Fig. 7.7 Non-zero pattern o f the Thermal-Structural FEM
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APPLICATION N° 3

Equations Coefficients Max Semi- 
bandwidth

Average Semi
bandwidth

43,806 1,037,705 31,956 1107

Table 7.3 Characteristics of the Thermal-Structural FEM
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Fig. 7.8 FEM of the solid Rocket booster, SRB
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APPLICATION N° 4

Equations Coefficients Max Semi- 
bandwidth

Average Semi
bandwidth

54,870 1,308,185 30,726 2,239

Table 7.4 Characteristics of the FEM Solid Rocket Booster, SRB
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APPLICATION N° 4

Fig. 7.9 Nonzero pattern of the FEM Solid rocket Booster, SRB
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APPLICATION N° 5
Indefinite matrix: Cantiliver Beam Problem

51 DOF

Fig. 7.10 Nonzero pattern of Application No 5 
Cantilever Beam problem
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APPLICATION N° 6
Indefinite matrix: Carlos Davilla Problem

247 DOF

•'v%
^5*'VSi
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Fig. 7.11 Nonzero pattern of Application No 6 
Carlos Davilla Problem
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APPLICATION N° 7
Indefinite matrix: Jonathan’s plate problem

1440 DOF

■N

Fig. 7.12 Nonzero pattern of Application No 7 
Jonathan’s plate problem
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APPLICATION N° 8 ~
Indefinite matrix: Knight’s Panel problem

2430 DOF

L

Fig. 7.13 Nonzero pattern of Application No 8 
Knight’s Panel problem
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APPLICATION N° 9 _ 
Indefinite matrix: 15,367 problem

Fig. 7.14 Nonzero pattern of Application No 9 
15,367 DOF indefinite problem
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Application NEQ NCOEF
Maximum

semi
bandwidth

Average
semi

bandwidth

No 5 51 218 11 7

No 6 247 2,009 44 17

No 7 1,440 22,137 1,246 143

No 8 2,430 75,206 1,100 280

No 9 15,367 286,044 1,035 514

Table 7.5 Characteristics of Indefinite matrices applications
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REORD NCOEF NCOEF2 Integer
Memory

Real
Memory

Total
Memory

No Reord 499,505 3,700,242 4,296,626 4,264,331 8,560,957

RCM 499,505 3,698,196 4,294,580 4,262,285 8,556,865

ND 499,505 3,210,738 3,807,122 3,774,827 7,581,949

MMD 499,505 3,017,283 3,613,667 3,581,372 7,195,039

Table 7.6 HSCT FEM: Memory requirement for different 
reordering algorithms
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HSCT
4 -

3.5 -  
3 -

2.5 -  
2 -

1.5 -  
1 -

0.5 -I 
0 —

1E+06

n  No Reord  B  RCM

|  ND ■  MMD

Fig. 7.16 HSCT FEM: Non-zeros elements after factorization for 
different reordering schemes
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LOOP Symfa Numfa FBE Total Max Sum Relative
unrol. time time time time abs abs Error
Level (sec) (sec) (sec) (sec) displ displ Norm

1 0.480 31.630 0.300 34.910 0.447 301.291 1.34E-08

2 0.489 20.340 0.310 23.640 0.447 301.291 1.41E-08

8 0.480 16.880 0.310 20.160 0.447 301.291 1.36E-08

Table 7.7 HSCT FEM: Comparison of results using MMD and different level of loop 
unrolling on the IBM RS6000/590 Stretch machine.
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LOOP
unrol
level

Symfa
time
(sec)

Numfa
time
(sec)

FBE
time
(sec)

Total
time
(sec)

Max
abs
displ

Sum
abs
displ

Relative
Error
Norm

1 3.921 505.437 5.315 539.501 0.447 301.291 1.41E-09

2 3.880 360.779 5.330 394.693 0.447 301.291 1.43E-09

8 3.881 247.448 5.311 281.274 0.447 301.291 1.43E-09

Table 7.8 HSCT FEM: Comparison of results using MMD and different level of loop 
unrolling on the Sun SPARC 20 rhino machine.
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HSCT
Factorization Time (sec)

35 -  

30 -  

25  -  

20  -  

15 -  

10  -  

5  -

Q  NUMFA1 H |  NUMFA2 

■  NUMFA8

HSCT
Total time (sec)

35 -  

30 -  

25  -  

20  -  

15 -  

10  -  

5 -  

0 -

NUMFA1 H  NUMFA2 
|  NUMFA8

Fig. 7.17 HSCT FEM: Performance ofNum fal/2/8 on the 
stretch machine
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NUMFA2

HSCT
Total time (sec)

600 -  
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400 -  

300 -  
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100  -  
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□  NUMFA1 H  NUMFA2 

■  NUMFA8

Fig. 7.18 HSCT FEM: Performance ofNumfal/2/8 on the 
rhino machine
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HSCT
Factorization and total time (sec)

100  -  

80 -  

60 -  

40 -  

20  -  

0 -

Numfa8 Total

□  -o ■ - 0 1 ■ 1 o to ■ - 0 3

-0 ■i 70.01 ■ 81.27
-01 70.25 I 81.37 ;
-02 16.54 ! 19.97
-03 :: 16.58 ! 19.84;

Fig. 7.19 HSCT FEM: Performance ofNumfa8 for different compiler optimization
level on the stretch machine
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SRB
Factorization and total time (sec)

400 -  
350 -  
300 -  
250 -  
200  -  
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O
01

-o 314.32! 359.96 >
-01 •i 314.3 | 359.66 ;
-0 2 ,j 76.06; 91.7
-03 -i 76.23 I 91.43

Fig. 7.20 SRB FEM: Performance of Numfa8 for different compiler optimization
level on the stretch machine
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Reord
Loop
unrol
level

Reord
time
(sec)

Symfa
time
(sec)

Numfa
time
(sec)

FBE
time
(sec)

Total
time
(sec)

Max
abs

displ

Sum
abs

displ

Relative
Error
Norm

No-Reord 1 - 0.700 32.040 0.380 35.120 0.447 301.291 0.22E-08

No-Reord 2 - 0.710 20.090 0.380 23.120 0.447 301.291 0.20E-08

No-Reord 8 - 0.690 16.040 0.380 19.110 0.447 301.291 0.21E-08

RCM 1 0.360 0.600 31.610 0.360 34.520 0.447 301.291 0.21E-08

RCM 2 0.350 0.600 20.190 0.380 23.060 0.447 301.291 0.21E-08

RCM 8 0.340 0.590 16.280 0.390 19.120 0.447 301.291 0.20E-08

ND 1 1.290 0.520 31.410 0.340 34.810 0.447 301.291 0.19E-08

ND 2 1.280 0.520 20.190 0.310 23.589 0.447 301.291 0.19E-08

ND 8 1.280 0.510 16.550 0.330 19.920 0.447 301.291 0.21E-08

MMD 1 0.254E-01 0.480 31.630 0.300 34.910 0.447 301.291 0.13E-08

MMD 2 0.261E-01 0.489 20.340 0.310 23.640 0.447 301.291 0.14E-08

MMD 8 0.261E-01 0.480 16.880 0.310 20.160 0.447 301.291 0.14E-08

Table 7.9 HSCT FEM: Summary of results on the IBM RS6000/590
stretch machine
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Reord
Loop
unrol
level

Reord
time
(sec)

Symfa.
time
(sec)

Numfa
time
(sec)

FBE
time
(sec)

Total
time
(sec)

Max
abs

displ

Sum
abs

displ

Relative
Error
Norm

No-Reord 1 - 5.67 517.15 6.46 556.51 0.447 301.291 2.0E-09

No-Reord 2 - 5.66 368.00 6.45 407.34 0.447 301.291 2.1E-09

No-Reord 8 - 5.66 264.64 6.45 304.05 0.447 301.291 2.0E-09

RCM 1 2.94 4.87 517.10 6.49 555.63 0.447 301.291 1.9E-09

RCM 2 2.94 4.91 366.31 6.45 404.97 0.447 301.291 2.1E-09

RCM 8 2.94 4.87 267.78 6.47 306.36 0.447 301.291 2.0E-09

ND 1 11.15 4.15 496.88 5.633 532.51 0.447 301.291 2.0E-09

ND 2 11.12 4.14 348.02 5.63 383.61 0.447 301.291 1.9E-09

ND 8 11.12 4.15 242.55 5.66 278.17 0.447 301.291 1.9E-09

MMD 1 0.15 3.92 505.43 5.31 539.51 0.447 301.291 1.4E-09

MMD 2 0.15 3.88 360.78 5.32 394.69 0.447 301.291 1.4E-09

MMD 8 0.15 3.88 247.44 5.31 281.27 0.447 301.291 1.4E-09

Table 7.10 HSCT FEM: Summary of results on the Sun SPARC 20
rhino machine
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Loop Symfa Numfa FBE Total Max Sum Relative
unrol. time time time time abs abs Error
Level (sec) (sec) (sec) (sec) displ displ. Norm

1 2.334 392.540 1.330 416.870 0.113E-04 0.561E-01 0.58E-10

2 2.239 241.010 1.300 265.620 0.113E-04 0.561E-01 0.59E-10

8 2.330 199.440 1.280 223.770 0.113E-04 0.561E-01 0.58E-10

Table 7.11 EXXON Off-shore FEM: Comparison o f results using MMD and different 
level of loop unrolling on the IBM RS6000/590 Stretch machine.
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Reord
Loop
unrol
Level

Reord
time
(sec)

Symfa
time
(sec)

Numfa
time
(sec)

FBE
time
(sec)

Total
time
(sec)

Max
abs

displ

Sum
abs

displ

Relative
Error
Norm

MMD 1 0.41E-01 0.790 31.570 0.590 36.180 0.81E-12 0.81-12 0.18E-15

MMD 2 0.43 E-01 0.780 20.380 0.590 24.860 0.81E-12 0.81-12 0.18E-15

MMD 8 0.42E-01 0.790 17.510 0.600 22.090 0.18E-12 0.18-12 0.18E-15

Table 7.12 Thermal-Structural FEM: Comparison of results using MMD and different level of loop
unrolling on the IBM RS6000/590 Stretch machine.
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Loop Reord Symfa Numfa FBE Total Max Sum Relative
Reord unrol time time time time time abs abs Error

level (sec) (sec) (sec) (sec) (sec) displ displ Norm

MMD 1 0.14E-01 2.080 146.90 1.290 161.670 2.061 13569.652 0.78E-12

MMD 2 0.14-E01 2.020 93.54 1.350 108.330 2.061 13569.652 0.8 IE-12

MMD 8 0.14E-01 2.240 76.85 1.350 92.450 2.061 13569.652 0.81E-12

Table 7.13 SRB FEM: Comparison of results using MMD and different level of loop unrolling on the
IBM RS6000/590 Stretch machine.
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HSCT AIRCRAFT MODEL
3, 8, I , 16146, 16146, 499505, 1, 0, 0, -1

nreord, loop, n3, neq, neq, ncoef, n7, n8, n9, mread 

Table 7.14 HSCT FEM: K.INFO for Numfa8
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HSCT AIRCRAFT MODEL 

-TIME MMD = 0.260939598IE-01

OUTPUT SPARSE SOLVER

Number o f Equations 
Non-Zero before fill in 
Non-Zero after fill in 
Loop Unrolling Level

=> NEQ =16146
=> NCOEF =499505
=> NCOEF2 =3017283
=> LOOP = 8

MEMORY

Total Integer memory =3613667
Total real memory = 3581372
Total memory = 719503 9

NORM CHECK

MAX ABS DISPL AT DOF 522 = 0.447440400042149411
SUMMATION OF ABS DISPLACEMENTS =301.291343623234013 
THE ABSOLUTE ERROR IS || Ax-b || = 0.192431628765362175E-06
THE RELATIVE ERROR IS || AX-b || / ||b|| = 0.136069709614759900E-08

TIMING

-TIME READ Fort.* files = O.OOOOOOOOOOOOOOOOOOE+OO 
-TIMESYMFACT = 0.479999989271163940
-TIMETRANSA = 2.06999995373189449
-TIME SUPNODE Before N= 0.169999996200203896 
-TIME NUMFA = 16.8799996227025986
-TIME FBE = 0.309999993070960045
-TIME SUPNODE After N =  0.169999996200203896 
-TIMEMULTSPA = 0.399999991059303284E-01
-TIME ERROR NORM = O.OOOOOOOOOOOOOOOOOOE+OO

Table 7.15 HSCT FEM: Output file of Numfa8 on the sketch machine
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Cache
size

(Kbytes)

Read
K.*

(sec)

Ordering
(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ

Summation
Absolute

Displ

Relative
Error
Norm

0.00 29.260 1.550 0.110 11.950 0.360 0.447 301.291 0.12E-08

32 29.960 1.650 0.120 10.920 0.350 0.447 301.291 0.12E-08

64 29.290 1.540 0.100 10.000 0.350 0.447 301.291 0.12E-08

Table 7.16 HSCT FEM: OakRigdeODU solver. Impact of cache size on the IBM RS6000/590
stretch machine using MMD
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Loop
Unrolling

Level

Read
K*

(sec)

Orderin
8

(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ.

Summation
Absolute

Displ.

Relative
Error
norm

1 29.370 1.630 0.110 15.430 0.370 0.447 301.291 0.12E-08

2 28.760 1.590 0.110 10.680 0.370 0.447 301.291 0.12E-08

4 28.820 1.610 0.110 9.690 0.350 0.447 301.291 0.12E-08

8 29.290 1.540 0.100 10.000 0.350 0.447 301.291 0.12E-08

Table 7.17 HSCT FEM: OakRigdeODU solver. Impact of loop unrolling level on the IBM RS6000/590
stretch machine using MMD and cache size 64
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Cache
size

(Kbytes)

Read
K*

(sec)

Orderin
8

(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ

Summation
Absolute

Displ

Relative
Error
Norm

0.00 42.384 2.735 0.145 64.048 1.297 0.447 301.291 0.12E-08

32 41.043 2.674 0.144 55.691 1.294 0.447 301.291 0.12E-08

64 41.039 2.692 0.147 58.082 1.295 0.447 301.291 0.12E-08

Table 7.18 HSCT FEM: OakRigdeODU solver. Impact of cache size on the IBM RS6000/590
rhino machine using MMD and loop 8
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Loop
Unrolling

Level

Read
K.*
(sec)

Orderin
g

(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ

Summation
Absolute

Displ

Relative
Error
norm

1 40.753 2.687 0.144 102.289 1.296 0.447 301.291 0.12E-08

2 41.246 2.680 0.144 62.963 1.294 0.447 301.291 0.12E-08

4 40.816 2.678 0.144 58.586 1.295 0.447 301.291 0.12E-08

8 41.039 2.692 0.147 58.082 0.350 0.447 301.291 0.12E-08

Table 7.19 HSCT FEM: OakRigdeODU solver. Impact of loop unrolling level on the Sun SPARC 20
rhino machine using MMD and cache size 64
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Cache
size

(Kbytes)

Read
K.*

(sec)

Orderin
8

(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ

Summation
Absolute

Displ

Relative
Error
Norm

0.00 50.890 1.170 0.170 143.040 1.510 0.113-04 0.561-01 0.25E-10

32 51.000 1.180 0.170 153.400 1.460 0.113-04 0.561-01 0.25E-10

64 49.820 1.140 0.180 130.500 1.450 0.113-04 0.561-01 0.25E-10

Table 7.20 EXXON Off-shore FEM: OakRigdeODU solver. Impact of cache size on the IBM RS6000/590
stretch  machine using MMD and loop 8



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Loop
Unrolling

Level

Read
K.*

(sec)

Orderin
g

(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ

Summation
Absolute

Displ

Relative
Error
Norm

1 49.070 1.200 0.170 195.960 1.520 0.113E-04 0.561E-01 0.26E-10

2 50.040 1.160 0.170 144.470 1.760 0.113E-04 0.561E-01 0.25E-10

4 50.010 1.150 0.160 130.600 1.470 0.113E-04 0.561E-01 0.25E-10

8 49.820 1.140 0.180 130.500 1.450 0.113E-04 0.561E-01 0.25E-10

Table 7.21 EXXON Off shore FEM: OakRigdeODU solver. Impact of loop unrolling level on the IBM RS6000/590
stretch machine using MMD and cache size 64
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Cache
Size

(Kbytes)

Read
K.*
(sec)

Orderin
g

(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ

Summation
Abs

Displ

Relative
Error
Norm

0.00 59.81 6.900 0.240 12.240 0.610 0.81E-12 0.81E-12 0.17E-20

32 59.76 6.860 0.260 11.070 0.620 0.81E-12 0.81E-12 0.17E-20

64 60.31 6.890 0.240 10.930 0.600 0.81E-12 0.81E-12 0.17E-20

Table 7.22 Thermal-Structural FEM: OakRigdeODU solver. Impact of cache size on the IBM RS6000/590
stretch machine using MMD and loop 8
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Loop
Unrolling

Level

Read
K..*

(sec)

Ordering
(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ

Summation
Absolute

Displ

Relative
Error
Norm

1 59.91 6.860 0.240 16.210 0.600 0.81E-12 0.8 IE-12 0.17E-20

2 60.11 6.900 0.240 11.310 0.620 0.81E-12 0.81E-12 0.17E-20

4 60.14 6.900 0.230 10.550 0.610 0.81E-12 0.81E-12 0.17E-20

8 60.31 6.890 0.240 10.930 0.600 0.81E-12 0.81E-12 0.17E-20

Table 7.23 Thermal-Structural FEM: OakRigdeODU solver. Impact of loop unrolling level on the IBM RS6000/590
stretch  machine using MMD and cache size 64
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Cache
Size

(Kbytes)

Read
K.*
(sec)

Ordering
(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat

(sec)

Fbe
(sec)

Maximum
Absolute

Displ.

Summation
Absolute

Displ.

Relative
Error
Norm

0.00 128.11 3.630 0.260 51.10 1.34 2.061 13569.65 0.41E-12

32 126.40 3.640 0.270 46.05 1.34 2.061 13569.65 0.41E-12

64 128.93 3.700 0.260 42.95 1.33 2.061 13569.65 0.41E-12

Table 7.24 SRB FEM: OakRigdeODU solver. Impact of cache size on the IBM RS6000/590
stretch machine using MMD and loop 8
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Loop
Unrolling

Level

Read
K.*

(sec)

Orderin
g

(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ

Summation
Absolute

Displ

Relative
Error
Norm

1 127.84 3.670 0.270 65.92 1.31 2.061 13569.65 0.41E-12

2 127.50 3.650 0.280 43.27 1.32 2.061 13569.65 0.41 E-12

4 128.65 3.690 0.270 41.09 1.34 2.061 13569.65 0.41E-12

8 128.93 3.700 0.260 42.95 1.33 2.061 13569.65 0.41E-12

Table 7.25 SRB FEM; OakRigdeODU solver. Impact of loop unrolling level on the IBM RS6000/590
stretch machine using MMD and cache size 64
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SRB PROBLEM
2 64 4 54870 54870 1308185 0 0 - 1  -1
icase, cachsz, level, neq, neq, NCOEF, n7, n8, n9, mread

Table 7.26 SRB FEM: BC.INFO input file for OakRidgeODU solver.
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TITLE: SRB PROBLEM
TIME FOR READING Original NASA K.* Files =  128.9299927 
TIME FOR READING DATA =  6.040
TIME FOR CONSTRUCT ADJANCY MATRIX = .450
TIME FOR OAK FORMAT ANZF = .900

ORDERING OPTION: 2 - MULTIPLE MINIMUM DEGREE

CACHE SIZE (IN KBYTES): 64

LOOP UNROLLING LEVEL: 8

NUMBER OF EQUATIONS = 54870
NUMBER OF NONZEROS NCOFF = 1308185
NUMBER OF NONZEROS (INCLUDING DIAG.) =  2671240
NUMBER OF NONZEROS (EXCLUDING DIAG.) =  2616370

TIME FOR CREATING FULL REPRESENTATION = 270

TIME FOR COPYING ADJACENCY STRUCT. =  3 10
TIME FOR ORDERING = 3.700

TIME FOR SYMBOLIC FACT. SETUP = 1300
TIME FOR SYMBOLIC FACTORIZATION = 260

TIME FOR NUMERICAL INPUT = 1.790

TIME FOR FACTORIZATION INIT. =  .020
TIME FOR NUMERICAL FACTORIZATION = 42.950

TIME FOR TRIANGULAR SOLUTIONS = 1330

MAX ABS DISPL AT DOF 47041 
SUMMATION OF ABS DISPLACEMENTS 
THE ABSOLUTE ERROR IS || Ax-b ||
THE RELATIVE ERROR IS || AX-b || /  ||b||

=  2.06186388479510052 
=  13569.6516772657978 
=  0310314607028814793E-05 
= 0.409059792384211927E-I2

TIME FOR COMPUTING ERROR =  6.100

STATISTICS

NUMBER OF SUPERNODES 
NUMBER OF NONZEROS IN L 
NUMBER OF SUBSCRIPTS IN L 
LARGEST SUPERNODE BY COLUMNS 
LARGEST SUPERNODE BY NONZEROS 
SIZE OF TEMPORARY WORK STORAGE 
FACTORIZATION OPERATION COUNT 
TRIANGULAR SOLN OPERATION COUNT

8033
12240705
218982
738
1377
202566
4.88I5177570D+09
4.8853080000D+07

NORMAL TERMINATION

Table 7.27 SRB FEM: OakRidgeODU solver. Output file on the 
stretch machine
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Application NEQ Number of Zeros on 
the Diagonal

Percentage of Zeros 
on the Diagonal

No 5 51 14 27.45

No 6 247 37 14.98

No 7 1440 240 16.67

No 8 2430 480 19.75

No 9 15367 1995 12.98

Table 7.28 Percentage o f Zero diagonal values of the Indefinite matrices
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APPLICATION NEQ NCOEF Sum
displ

Max
displ.

CPU
(secs)

Relative 
Error Norm

No 5 51 218 Boeing 2.265E-02 1.999E-03 0.041 7.00E-14

ODU 2.265E-02 1.999E-03 0.003 1.45E-13

No 6 247 2009 Boeing 3.160 0.152 0.245 4.03E-10

ODU 3.160 0.152 0.021 9.27E-10

No 7 1440 22137 Boeing 29.685 0.203 2.352 3.26E-10

ODU 29.685 0.203 0.571 6.16E-10

No 8 2430 75206 Boeing 34.703 9.312E-02 7.736 9.97E-11

ODU 34.680 9.31 IE-02 6.136 1.01E-11

No 9 15367 286044 Boeing 512.35 0.206 35.77 4.38E-11

ODU 512.35 0.206 36.625 2.73E-09

Table 7.30 ODU-HKUST indefinite solver; Comparison of results on the Cray Y-MP
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APPLICATION NEQ
NCOEF

Sum
displ

Max
displ.

CPU
(secs)

Relative
Error

Norm

No 5 51
218

MMD 2.265E-02 1.999E-03 0.000 1.66E-15

MMD-ZE 2.265E-02 1.999E-03 0.000 1.49E-15

No 6 247
2009

MMD 3.160 0.152 1.00E-02 9.76E-12

MMD-ZE 3.160 0.152 1.00E-02 6.28E-12

No 7 1440
22137

MMD 29.685 0.203 0.510 6.81E-12

MMD-ZE 29.685 0.203 0.300 1.25E-09

No 8 2430
75206

MMD 34.661 9.312E-02 7.000 2.82E-09

MMD-ZE 34.702 9.311E-02 8.389 1.21E-09

No 9 15367
286044

MMD 512.35 0.206 181.029 9.37E-11

MMD-ZE 512.35 0.206 76.809 9.59E-11

Table 7.31 ODU-HKUST indefinite solver: Impact of using MMD and Zero-End
on the Stretch machine
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400

□ 0.1

H 0,01

■ 0.001

■ 0.0001

E g 0.00001
250

200

150

Fig. 7.21 ODU-HKUST indefinite solver: Impact of the control parameter alpha
on application No 9 (neq =15367)

alpha SUM Max Displ CPU(sec) REN #2x2 pivot # diag inter NCOEF2

0.1 512.355 0.206 358.499 1.69E-12 52 164 3632010

0.01 512.355 0.206 109.620 5.71 E-10 10 45 2887346

0.001 512.355 0.206 76.810 2.59E-11 8 35 2884093

0.0001 512.350 0.206 73.399 8.64E-08 8 31 2883707

0.00001 517.757 0.206 73.509 6.10E-02 8 25 2883637

Table 7.32 ODU-HKUST indefinite solver; Impact of the control paramater alpha on
application No 9 (neq =15367)
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NEQ Max.
abs.

Sum.
abs.

Max. abs. 
displ. only

Sum. abs. 
displ. only

Numerical 
Fact, (sec)

Fbe
(sec)

Total time 
(sec)

R.E.N

51 1.999 2.995 1.999 2.265 1.22E-02 1.28E-03 4.18E-02 1.7E-15

247 0.152 3.225 0.152 3.160 9.16E-02 8.35E-03 0.306 7.5E-12

1440 0.627 52.468 0.203 29.685 2.175 0.112 4.462 5.0E-12

2430 343849.445 6019377.075 9.31 E-02 34.70 20.163 0.469 27.828 1.0E-13

15367 719.472 8472.301 0.206 512.354 307.008 3.918 339.102 9.3E-13

Table 7.33 ODU-Ma27: Summary of results on Rhino machine
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NEQ Max
abs.

Sum.
abs.

Max.
abs.

displ.
only

Sum. abs. 
displ. only

Numerical 
Fact. (Sec)

Fbe
(sec)

Total time 
(sec)

R.E.N.

51 1.999 2.995 1.999 2.265 0 0 0.199 E-01 0.260E-14

247 0.152 3.225 0.152 3.160 0.999E-02 0 0.150 0.68 IE-11

1440 0.627 52.468 0.203 29.685 0.140 0.999E-02 1.710 0.586E-11

2430 343849.445 6019377.075 9.31 E-02 34.700 0.970 0.200E-01 6.170 0.11 IE-12

15367 719.472 8472.301 0.206 512.354 14.070 0.170 34.750 0.107E-11

Table 7.34 ODU-Ma27: Summary of results on stretch machine
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HSCT Aircraft model 
(Stretch, 1BM-R600/590 Worksation)

250

200  -

10
No. Eigen-values

SVLan fU B  SVSub H  KJBathe96

Fig. 7.22 HSCT FEM: Comparison o f results for SPARSEPACK eigensolvers
on stretch
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H S C T  Aircraft model 
(Rhino, O D U  Sun Sparc-20 W orksation )
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Fig. 7.23 HSCT FEM: Comparison of results for SPARSEPACK eigensolvers
on Rhino
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Fig. 7.24 EXXON Off-shore FEM: Comparison of results for SPARSEPACK
eigensolvers on stretch
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Fig. 7.25 EXXON Off-shore FEM: Comparison of results of SP ARSEPACK 
eigensolvers on USTSU3I
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HSCT Aircraft
3 10 1 16,146 16,146 499,505 2 0 -1 -1

nord, neig, lump, n, n, ncoeff, x, ishift, iblock, mread

Table 7.35 HSCT FEM: K.INFO for SPARSEPACK eigensolver
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* OUTPUT VECTOR SPARSE LANCZOS *

CPU to get MD reordering = 0.6195330620E-01
neq = 23155
before fill in, ncoff = 809427
after fill in, ncof2 = 12842889
Total integer memory used =  13791249
Total real memory used = 13744936
** £****** EIG********HERTZ ****** ERROR

1
2
j
4
5
6
7
8 
9

10

.8816553 E+03 

.I987976E+04 

.3806255E+04 

.5864529E+04 

.7608574E+04 

.7881169E+04 

.1090668E+05 

.1135674E+05 

. 1406071E+05 

.1425347E+05

.4725737E+01 

.7096197E+01 

.9819040E+01 

.1218812E+02 

.1388263E+02 

.1412913E+02 

.1662135E+02 

.1696082E+02 

.1887225E+02 

.1900117E+02

.2289714E 

.8410216E- 

.7461907E- 

.9789936E- 

.4796375E- 

.9447560E- 

.I299679E- 

.7143559E- 

.2549869E- 

.6088567E

***** NORM *** 
-20 .2790040E-08 
■20 .1071936E-07 
■19 .5147621E-08 
■19 .1909064E-08 
■19 .5057227E-09 
■19 .8386751E-09 
■20 .1635004E-08 
■19 .3659260E-09 
■13 .2099432E-06 

-13 .5553453 E-06

***TOTAL CPU FOR EIGENSOLUTION = 299.879993297159672 
***(This time including norm check & I/O )***

MTOTI = 14439610 MTOTA = 21655415

Table 7.36: EXXON Off-shore FEM: “ Sparse” Lanczos Algorithm 
from SPARSEPACK on stretch

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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CPU to get MD reordering = 0.8984327316E-02
neq = 23155
before fill in, ncoff = 809427
after fill in, nco£2 = 12842889
Total integer memory used = 13791249
Total real memory used = 13744936
IBLOCK = -l

* OUTPUT VECTOR-SPARSE SUBSPACE ITERATION * 
NEQ = 23155 
NCOEF= 809427 
IQ = 18
RESULTS FOR EIGENSOLUTION 

Number o f iterations = 13

TOLERANCE CHECK ON EIGENVALUES

******* EIGV***************** TOLJ***********
1 881.655277374476100
2 1987.97576276251743
3 3806.25467918120876
4 5864.52881890857770
5 7608.57373151541742
6 7881.16872545743081
7 10906.6791124137235
8 i 1356.7377577019506
9 14060.7106850863383

10 14253.4661497386078

O.OOOOOOOOOOOOOOOOOOE+OO 
0.766308953059224021E-14 
0 .140978972579276982E-13 
0.341184842923635138E-14 
0.882650167412288680E-I2 
0.746644428695344813 E-13 
0.723639523184758736E-10 
0.402404711557253559E-08 
0.294112550324989127E-08 
0.450678313092431284E-06

Timing
Time normcheck = 0.6346702576E-03
***** f, ** *** E[GV ***  ̂*** HER.TZ ***, ** ERROR NORM **

1 .8816553E+03 .4725737E+01 .2687843E-08
2 .1987976E+04 .7096I97E+O1 .1456036E-08
3 .3806255E+04 .9819040E+01 .9797936E-09
4 .5864529E+04 .12I8812E+02 .109477IE-08
5 .7608574E+04 .I388263E+02 .125067IE-06
6 .7881169E+04 .I412913E+02 .3743034E-07
7 .1090668E+05 .1662I35E+02 .1658382E-05
8 .1135674E+05 .1696082E+O2 .I463919E-04
9 .1406071E+05 .1887225E+02 .I459706E-04

10 .I425347E+05 .1900117E+02 .2106256E-03
***TOTAL C PU  FOR EIGENSOLUTION = 570.619987245649099 
***(This time including norm check & I/O )***
MTOTI = 14439610 MTOTA = 21655415

Table 7.37: EXXON Off-shore FEM: “ Sparse” Subspace Iteration 
from SPARSEPACK on stretch
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NEQ =23155  
NROOT = 10

DEGREES OF FREEDOM EXITED BY UNIT STARTING ITERATION VECTORS 
23155. 22516. 17. 159. 2. 158. 22840. 22542. 22867.
23136.
22813. 1491. 2130. 22894. 22569. 23109. 22786.

CONVERGENCE REACHED FORRTOL .1000E-05 
RELATIVE TOLERANCE REACHED ON EIGENVALUES

.1000E-11 .7828E-07 .1000E-11 .4654E-07 .7860E-07 .1000E-I1 .9161E-07 .1000E-11 
812E-06 .301 IE-06 .9069E-06 .3340E-05 

.5847E-05 .4316E-02 .I748E-02 .1171E-02 .I918E-01 .1903E-01

THE CALCULATED EIGENVALUES ARE 
.88165527740348E+03 .19879757627894E+04 .38062546792150E+04 .58645288189713E+04 
76085737315525E+04 .7881I687254790E+04
.10906679112447E+05 .11356737755975E+05 .I4060710682344E+05 .14253465441538E+05 

Number of Iteration = 19

PRINT ERROR NORMS ON THE EIGENVALUES 
.21571596855195E-08 .12976291259135E-08 .8787782719192IE-09 .91294172010989E-09 
3 8721941458344E-09 .74276789108943 E-09

.37247039503038E-08 .38673782841283E-07 .36920504218012E-06 .2940960169968IE-06 
time for 1996 K.J. Bathe subspace iteration= 640.909985674545169

Table 7.38: EXXON Off-shore FEM: Using Basic K.J. bathe’s Subspace Iteration 
(KJBATHE96) on stretch
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METHOD =  1
NEQ =  247
NCOEF =  2009
NEIG =  15
ISHIFT =  0
MREAD = -I  
LUMP =  1

* OUTPUT VECTOR-SPARSE SUBSPACE ITERATION * 
NEQ = 247 
NCOEF = 2009 
IQ = 23
RESULTS FOR EIGENSOLUTION 
Number o f  iterations = 2 7  
TOLERANCE CHECK. ON EIGENVALUES 

* # * , * EIGV * , * TOLJ*
1 -26.9037089291829368 O.OOOOOOOOOOOOOOOOOOE+OO
2 -20.3774168334131396 -0.697382540258992640E-15
3 -4.35999233084511317 -0.122226603026336059E-14
4 -1.59417268262606648 -0.167142197839641113E-I4
5 -0.467720895678490900 -0.830790461168345158E-15
6 -0.343197785608355954 -0.I61746822267102397E-15
7 0.654668644375400954 0.169585489417228152E-15
8 4.95786919427879447 0.537435570542110461E-I5
9 6.39006568111283180 0.I38993629177446775E-I5

10 6.53935222653818382 0.271641101115702013E-15
11 14.7750567574227798 0.360680206221441547E-15
12 22.6547608473375170 0.940918432838286630E-I5
13 28.9647498775422356 0.233047273608763022E-14
14 31.9792099249090249 0.499591873941804227E-12
15 33.3768755613979806 0.553500314784671545E-14

***** # * * * * *  EIGV *** , *** HERTZ ***, ** ERROR NORM **
1 -.2690371E+02 .8255173E+00 .3401786E-08
2 -.2037742E+02 .7184469E+00 .4888496E-12
3 -.4359992E+01 .3323250E+00 .1907106E-12
4 - .1594173E+01 .2009499E+00 .6217446E-I2
5 -.4677209E+00 .1088463E+00 .5255656E-12
6 -.3431978E+00 .9323787E-01 .3046399E-12
7 .6546686E+00 .1287748E+00 .1987108E-10
8 .4957869E+01 .3543787E+00 .1473136E-II
9 .6390066E+01 .402321IE+00 .2354323E-I1
10 .6539352E+01 .4069935E+00 . 1042401E-11
11 .1477506E+02 .6117651E+00 .3792497E-12
12 .2265476E+02 .7575300E+00 .46832I2E-10
13 .2896475E+02 .8565545E+00 .1034847E-09
14 .3197921 E+02 .9000238E+00 .2193338E-06
15 .3337688E+02 .9194814E+00 .2379166E-07

Time Subspace Iter. = 0.769999982789158821
Time Normcheck = 0.999999977648258209E-02  

TIMING
Reordering Time =  O.OOOOOOOOOOOOOOOOOOE+OO
Factorization Time =  0.999999977648258209E-02
Subspace+Normchecking T im e=  0.779999982565641403
Total Time +  Junk = 0.789999982342123985

Table 7.39 Application No 6: Subspace iteration for indefinite systems
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SPARSE VECTOR LANCZOS

METHOD = I
NEQ = 247
NCOEF = 2009
NEIG = 15
ISHIFT = 0
MREAD =-1
LUMP = 1

*** K, * E1G*,*HERTZ V  ERROR *,* NORM *** iam
1 .6546686E+00 .I287748E+00 .2894972E-21 .3339575E-10
2 .4957869E+01 .3543787E+00 .I921880E-20 .3009163 E-11
3 .6390066E+0I .4023211E+00 .3245256E-20 .3457124E-11
4 .6539352E+01 .4069935E+00 .4768359E-19 .1220441E-10
5 .1477506E+02 .6117651E+00 .3812197E-19 .8208553 E-11
6 .2265476E+02 .75753 00E+00 .3731293E-18 .4815349E-11
7 .2896475E+02 .8565545E+00 .1960320E-18 .9372604E-12
8 .3197921 E+02 .9000238E+00 .3002066E-I8 .8568683E-12
9 .3337688E+02 .9194814E+00 .8950083E-19 .3103452E-II
10 .3705413E+02 .9688096E+00 .1 I76460E-17 . 1987879E-II
11 .46473 82E+02 .I084986E+01 .1045959E-10 .2221759E-06
12 .4838121E+02 .1107028E+01 .8310640E-08 .2179520E-03
13 .4874698E+02 .111I204E+01 .5380266E-08 .9080362E-04
14 .4963882E+02 .1121323E+01 .4536706E-08 .830730 IE-04
15 .5509166E+02 .1181308E+01 .6224062E-05 .8717437E-01

JACOBIR: Steps in IAM = 59 0
Time Normcheck = 0.999999977648258209E-02

TIMING

Reordering Time =
Factorization Time =
Lanczos+Normchecking Time = 
Total Time + Junk =

0.999999977648258209E-02
0.999999977648258209E-02
0.129999997094273567
0.149999996647238731

Table 7.40 Application No 6: Lanczos iteration for indefinite systems
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Jonathan’s new 900 DOF ill-conditionned problem 
1 25 1 900 900 11989 1 0 0 -1

n l, neig, lump, neq, n5, NCOEF, 12, ishift, n9, mread

Table 7.41: K.INFO input file for the Lanczos and Subspace eigensolver
for indefinite systems
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SPARSE VECTOR LANCZOS

METHOD= I 
NEQ = 51
NCOEF =2 1 8  
NEIG = 15
[SHIFT = 0
MREAD = -1

*** K, * EIGVHERTZ V  ERROR *,* NORM *** iam
1 0.4059576E+0I 0.32067L6E+00 0.2058520E-36 0.1065941E-L2
2 0.2760599E+02 0.8362224E+00 0.L082130E-34 0.5080295E-13
3 0.5082506E+02 0 .1 134643E+01 0.2979595E-80 0.2356342E-13
4 0.I060554E+O3 0.1639029E+01 0.1615789E-63 0.45I8568E-14
5 0.1754717E+03 0.2108258E+01 0.3683013E-34 0.1186698E-13
6 0.1907798E+03 0.2198297E+01 0.4004801E-34 0.9578321E-14
7 0.2322176E+03 0.2425312E+01 0.1518127E-33 0.1132765E-13
8 0.2453 832E+03 0.2493116E+01 0.7733515E-34 0 .1131854E-13
9 0.2841360E+03 0.2682769E+01 0.1870519E-39 0.1113027E-13
10 0.3267951E+03 0.2877120E+0 1 0.5060790E-35 0.1068744E-13
11 0.3480848E+03 0.2969359E+01 0.1697806E-34 0.1272876E-13
12 0.3934068E+03 0 .3 156756E+01 0.4653216E-31 0.8213718E-14
13 0.3998996E+03 0.3182699E+01 0.1051193E-30 0.1038064E-13
14 0.4860665E+03 0.3508876E+01 0.2564164E-27 0.5742984E-14
15 0.5313186E+03 0.3668577E+01 0.4014661E-24 0.7493163E-14

JACOBIR: Steps in 1AM = 5 1 0
Time Normcheck =  2.4401903152466D-02

Table 7.42 Application No 5: Lanczos for Indefinite systems on 
Cedar machine

TIMING

Reordering Time 
Factorization Time

6.6945105791092D-03 
1.3052493333817D-02 

0.80419653654099 
0.82394354045391

Lanczos+Normchecking Time 
Total Time + Junk
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25 Eigenvalues written to testbed library

Eigenvalue Hertz
1 .11123254E+04 .53080626E+01
2 .38659522E+04 .98957424E+01
3 .96398255E+04 .15626247E+02
4 .10806540E+05 .16544874E+02
5 .11636218E+05 .17168251E+02
6 .13203150E+05 .18287693E+02
7 .26499652E+05 .259083 77E+02
8 .31733289E+05 .28351606E+02
9 .39754143 E+05 .31733013E+02
10 .44644193 E+05 .33628120E+02
11 .59908797E+05 .38955196E+02
12 .64964877E+05 .40565742E+02
13 .70187484E+05 .42164791E+02
14 .79874717E+05 .44980553E+02
15 .80586904E+05 .45180637E+02
16 .10528766E+06 .51642693 E+02
17 .10578620E+06 .51764809E+02
18 .12I93633E+06 .55575920E+02
19 .13110733E+06 .57628006E+02
20 .14051857E+06 .59660511E+02
21 .17301432E+06 .66200485E+02
22 . 17776141E+06 .67102524E+02
23 .17859391E+06 .67259468E+02
24 .19050763E+06 .69466644E+02
25 .21357271E+06 .73551750E+02

Table 7.43 Jonathan’s ill-conditionned problem: NASA Langley test bed results
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SPARSE V EC T O R  LAN CZO S

METHOD = 1
NEQ = 900
NCOEF = 11989
NEIG = 25
[SHIFT = 0
MREAD = -1

*** K, * EIGVHERTZ **  ERROR V  NORM *** iam
1 0.1258413E+04 0.5645881E+01 0.1820169E-21 0.1543513E-09
2 0.5300908E+04 0.1158765E+02 0.1557695E-2I 0.9905331E-10
3 0.1059806E+05 0.1638450E+02 0.8965632E-2I 0.1273354E-10
4 0.1808826E+05 0.2140516E+02 0.8588379E-21 0.1714142E-09
5 0.1856144E+05 0.2168333E+02 0.5579659E-20 0.2157528E-I0
6 0.3698570E+05 0.3060815E+02 0.2340790E-20 0.4961125E-11
7 0.4599465E+05 0.3413295E+02 0.4491059E-20 0.1862382E-10
8 0.4816943E+05 0.3493059E+02 0.1091066E-20 0.7530044E-11
9 0.5766985E+05 0.3822034E+02 0.3000156E-19 0.9210959E-11
10 0.7238344E+05 0.4281932E+02 0.1037248E-19 0.9590764E-11
11 0.8301885E+05 0.4585730E+02 0.I682737E-18 0.5598636E-11
12 0.1064558E+06 0.5192838E+02 0.4732456E-19 0.9332571E-11
13 0.1227433E+06 0.5575952E+02 0.1889136E-18 0.3416530E-11
14 0.1330266E+06 0.5804827E+02 0.1193742E-18 0.7375778E-11
15 0.1343789E+06 0.5834257E+02 0.2014252E-19 0.4623631E-11
16 0.1467268E+06 0.6096419E+02 0.124251 IE-18 0.9715841E-11
17 0.1752531E+06 0.6662741E+02 0.3740897E-19 0.7568847E-I I
18 0.1878109E+06 0.6897323E+02 0.2482942E-18 0.2193613E-11
19 0.2044265E+06 0.7195959E+02 0.3582778E-19 0.3183317E-11
20 0.2141506E+06 0.7365120E+02 0.3772230E-18 0.1160874E-10
21 0.2312231E+06 0.7653071 E+02 0.1894919E-18 0.228401 IE-11
22 0.2748608E+06 0.8344043E+02 0.3243874E-18 0.7184275E-11
23 0.2788627E+06 0.8404566E+02 0.1390866E-18 0.2516133E-11
24 0.2860432E+06 0.8512085E+02 0.1316509E-17 0.3089432E-11
25 0.3145049E+06 0.8925527E+02 0.I997630E-17 0.1093807E-11

JACOB1R: Steps in 1AM = 99 0
Time Normcheck = 0.68920135498047

Table 7.44 Jonathan’s ill-conditionned problem: Lanczos on rhino machine

TIMING

Reordering Time 
Factorization Time

0.41382575035095
3.1836757659912
33.785816669464
37.383318185806

Lanczos+Normchecking Time 
Total Time + Junk
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METHOD = 1
NEQ = 900
NCOEF = 11989
NEIG = 25
[SHIFT = 0
MREAD = -1

* OUTPUT VECTOR-SPARSE SUBSPACE ITERATION * 
NEQ = 900
NCOEF = 11989
IQ = 33
RESULTS FOR EIGENSOLUTION

Number o f iterations = 54

TOLERANCE CHECK ON EIGENVALUES
* § * , * EIGV * , * TOLJ*

1 1258.4129273924 5.4204864832655D-16
2 5300.9084183279 1.0294401977914D-15
*■*J 10598.055539777 1.2014398091264D-15
4 18088.257669334 2.4134853938483 D -15
5 18561.444650889 2.9399480015023D-15
6 36985.703682245 9.8361757244006D-16
7 45994.646978548 1.2655312028075D-15
8 48169.434756755 1.2083941031777D-15
9 57669.850081532 1.2616571057315D-15

10 72383.442611459 2.0103928057800D-16
11 83018.851054889 1.7528446905084D-15
12 106455.79691275 1.3669443703750D-15
13 122743.29947674 4.7422271652798D-16
14 133026.56452339 2.1878209484706D-16
15 134378.85484023 2.1658043217690D-16
16 146726.79635165 3.9670777499950D-16
17 175253.06379278 1.6606745597980D-16
18 187810.91960340 6.I985385127109D-16
19 204426.49436150 4.2710457684512D-16
20 214150.64005341 2.853974377284 ID-15
21 231223.08793308 0.
22 274860.81542046 4.2354280892622D-16
23 278862.67577493 4.1746469477649D-16
24 286043.21889382 2.0349253912946D-16
25 314504.94603029 6.190828736179 ID-13

** # **,**♦ EIGV *** , *** HERTZ ***, ** ERROR NORM **
1 0.1258413E+04 0.5645881E+01 0.8811063E-10
2 0.5300908E+04 0.1158765E+02 0.7378048E-11
3 0.I059806E+05 0.1638450E+02 0.1548159E-10
4 0.I808826E+05 0.2140516E+02 0 .4316036E-10
5 0.1856144E+05 0.2168333E+02 0.2304214E-11

Table 7.45 Johnathan’s ill-conditionned problem : Subspace on rhino
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6 03698570E+05 03060815E+02 0.63549I5E-11
7 0.4599465E+05 0.3413295E+02 0.1569814E-1 I
8 0.48I6943E+05 03493059E+02 03042919E-11
9 0.5766985E+05 03822034E+02 0.4533898E-I0
10 0.7238344E-K)5 0.428I932E+02 0 3916547E-I0
11 0.8301885E+05 0.4585730E+02 0.4076776E-11
12 0.I064558E+06 0.519283 8E+02 0.2159606E-10
13 0.1227433 E-KJ6 0.5575952E+02 0.4064932E-11
14 0.I330266E+O6 0.5804827E-K)2 0 3232312E-10
15 0.I343789E+O6 0.5834257E+02 0.1057564E-09
16 0.1467268E+06 0.6096419E+02 03409693E-I0
17 0.175253 IE+06 0.666274IE+02 0.4370750E-I0
18 0.1878109E-K)6 0.6897323E+02 0.128I822E-I0
19 0.2044265E+06 0.7I95959E+02 0.2583 808E-10
20 0.2141506E+06 0.7365120E+02 0.8124793E-10
21 0.231223IE+06 0.7653071E+02 0.3010349E-10
22 0.2748608E+06 0.8344043E+02 0.993488IE-10
23 0.2788627E+06 0.8404566E+02 0.7918807E-10
24 0.2860432E+06 0.8512085E+02 0.3098537E-08
25 0 .3 145049E+06 0.8925527E+02 0.2833434E-06

Time Subspace Iter. = 335.21290111542 
Time Normcheck = 0.69137573242188

TIMING

Reordering Time =
Factorization Time =
Subspace+Normchecking Time = 
Total Time + Junk =

0.41172361373901
3.2129995822906
335.95602989197
339.58075308800

Table 7.45 Johnathan’s ill-conditionned problem : Subspace on rhino (Continued)
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NGST Satellite model Eigenproblem

NEQ =5156 
NCOEF =88966 
NEIG = 100 
[SHIFT = 100 
MREAD = - l  
LUMP = 1 
IB LOCK. = 0  
NREORD =  3 
ITIME =  I

CPU to get MD reordering = 0 .11S74914I7E-01
neq = 5156
before fill in, ncoff = 88966
after fill in, nco£2 = 208337
Total integer memory used = 328242
Total real memory used = 317927

.*« K..««.*• e ig **** *«**•« NORM
I -.1009969E-06 .5057946E-04 .OOOOOOOE+OO .237981 IE-08
2 -.5065785E-07 J582I48E-04 -OOOOOOOE+OO .2671863E-08
3 -.2848805E-07 268628 IE-04 .OOOOOOOE+OO -1395660E-08
4 -.1200462E-08 .5514350E-05 .OOOOOOOE+OO .911084 IE-09
5 .9863612E-09 .4998482E-05 .OOOOOOOE+OO .2335762E-08
6 .1716943E-07 2085442E-04 .OOOOOOOE+OO .12I0234E-08
7 J578351E+01 J010659E+00 .OOOOOOOE+OO .2417579E-08
8 .4049292E+OI J202651E+00 .0000000E+00 ■I585694E-08
9 .1006407E+02 .50490I9E+00 .0000000E+00 ■ I778258E-08
10 .1090430E+02 .5255561E+00 .OOOOOOOE+OO ■ 1383876E-08
II 2388019E+02 .7777482E+00 .OOOOOOOE+OO J742I80E-08
12 .103I162E+03 .16I6157E+01 .OOOOOOOE+OO .I225205E-07
13 .I036423E+03 .1620274E+01 .OOOOOOOE+OO 2699103 E-08
14 .I589046E+03 2006265E+01 .OOOOOOOE+OO .5160873E-08
15 .160I737E+03 .2014261E+01 .OOOOOOOE+OO ■2099I35E-08
16 .1608443E+03 20I8473E+01 .OOOOOOOE+OO -1737954E-08
17 .1643077E+03 2040089E+01 .OOOOOOOE+OO .4803450E-08
18 J109959E+03 .2806710E+01 .OOOOOOOE+OO ■ I254371E-08
19 312I301E+03 _281 IS23E+0I .OOOOOOOE+OO .4160239E-08
20 .6639871E+03 .4101096E+0I .OOOOOOOE+OO -4213715E-09
21 .7839603E+03 .4456226E+01 .OOOOOOOE+OO 24 2 0 1 10E-08
22 .8250824E+03 .457I606E+01 .OOOOOOOE+OO 2623791E-08
23 .8255635E+03 .4572939E+0I .0000000E+00 .1203455E-08
24 .9518780E+03 .4910331E+01 .OOOOOOOE+OO ■8483968E-09
25 .9518782E+03 .4910331E+01 .OOOOOOOE+OO .I372I58E-08
26 .9524710E+03 .4911860E+01 .OOOOOOOE+OO ■76I3478E-09
27 .95247I0E+03 .4911860E+0I .OOOOOOOE+OO ■759I269E-08
28 .9525859E+03 .4912I56E+01 .OOOOOOOE+OO 2589516E-08
29 .1195543E+04 .5503042E+01 .OOOOOOOE+OO 29 7 3 8 14E-09
30 .I220745E+04 .5560739E+01 .OOOOOOOE+OO -4522305E-08
31 .1228218E+04 .5577734E+01 .OOOOOOOE+OO 2477209E-08
32 .1980327E+04 .7082533E+0! .OOOOOOOE+OO .I454931E-08
33 .2027125E+04 .7I65728E+01 .OOOOOOOE+OO 2 2 8 1 194E-08
34 .2364884E+04 .7739717E+01 .OOOOOOOE+OO .6115332E-09
35 .244I923E+04 .7864771E+01 .OOOOOOOE+OO .I791366E-08
36 J2523301 E+04 .7994746E+01 .OOOOOOOE+OO ■ I606471E-08
37 .2628826E+04 .8160205E+01 .OOOOOOOE+OO .1244I05E-08
38 3025730E+04 .8754578E+01 .OOOOOOOE+OO .I845398E-08
39 J029738E+O4 .8760374E+01 .OOOOOOOE+OO .948602 IE-09
40 JI77517E+04 .8971480E+OI .OOOOOOOE+OO .I663053E-08
41 J405606E+04 .9287896E+0I .OOOOOOOE+OO 2506008E-08
42 3447575E+04 .9344950E+0I .OOOOOOOE+OO 2568277E-09
43 .3636287E+04 .9597302E+0I .OOOOOOOE+OO 2377967E-09

Table 7.46 NGST Satellite model (5156 DOF eigenproblem): Lanczos on stretch
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44 .4063720E+04 .1014570E+02 .OOOOOOOE+OO .9083975E-09
45 .5099385E+04 .U36525E+02 .OOOOOOOE+OO .I624943E-08
46 .6070541 E+04 .I240035E+02 .OOOOOOOE+OO .4374237E-08
47 .7390347E+04 .1368209E+02 .OOOOOOOE+OO 2569484E-09
48 .7394760E+04 .1368618E+02 .OOOOOOOE+OO .I091757E-08
49 .7429089E+04 .I37179IE+02 .OOOOOOOE+OO 2927519E-09
50 .7747490E+04 .I400879E+02 .OOOOOOOE+OO .2772750E-08
51 .78I0990E+04 .I406608E+02 .OOOOOOOE+OO .U78507E-08
52 .7986601 E+04 .I422332E+02 .OOOOOOOE+OO .I283644E-08
53 .7988468E+04 .1422499E+02 .OOOOOOOE+OO .I624890E-09
54 .8039051 E+04 .1426995E+02 .OOOOOOOE+OO .1470223E-08
55 .8039054E+04 .1426995E+02 .OOOOOOOE+OO .1864628E-08
56 .8045958E+04 .1427608E+O2 .OOOOOOOE+OO .5250802E-08
57 .8045958E+04 .I427608E+02 .OOOOOOOE+OO .4650046E-08
58 .8047091 E+04 .1427709E+02 .OOOOOOOE+OO .6579347E-08
59 .8439815E+04 .1462I32E+02 .OOOOOOOE+OO .2916738E-08
60 .8493737E+04 .1466795E+02 .OOOOOOOE+OO .1858620E-08
61 .8733642E+04 .1487366E+02 .OOOOOOOE+OO .6337748E-08
62 .8962721 E+04 .1506746E+02 .OOOOOOOE+OO .3534875E-08
63 .9848984E+04 .I579486E+02 .OOOOOOOE+OO .14I4466E-08
64 .9905333 E+04 .1583998E+02 .OOOOOOOE+OO .1520590E-08
65 .1106567E+05 .I674207E+02 .OOOOOOOE+OO .4710718E-08
66 .1111635E+05 .I678035E+02 .OOOOOOOE+OO .290I364E-08
67 .1115026E+05 .1680593E+02 .OOOOOOOE+OO .3805108E-08
68 .1162314E+05 .1715860E+02 .OOOOOOOE+OO 2658956E-08
69 .1I66786E+05 .1719158E+02 .OOOOOOOE+OO .2026304E-09
70 .16810I7E+05 2063508E+02 .OOOOOOOE+OO .4I84248E-08
71 2 2 3 1741 E+05 .2377618E+02 .OOOOOOOE+OO .5376996E-09
72 .2238761 E+05 2381354E+02 .OOOOOOOE+OO .1701393E-08
73 .2404625E+05 .2467992E+02 .OOOOOOOE+OO .8327529E-08
74 .2460007E+05 .2496251 E+02 .OOOOOOOE+OO .203549IE-08
75 .2489330E+05 2 5 1 1085E+02 .OOOOOOOE+OO .68020I7E-09
76 .2498622E+05 .2515767E+02 .OOOOOOOE+OO .7689179E-08
77 2539394E+05 25362I0E+02 .OOOOOOOE+OO .5231510E-08
78 2542395E+05 2537708E+02 .OOOOOOOE+OO J469535E-08
79 2 136447E+05 .2818637E+02 .OOOOOOOE+OO .1545523E-08
80 2156790E+05 2827763E+02 .OOOOOOOE+OO .4I38619E-09
81 2165950E+05 283I862E+02 .OOOOOOOE+OO .3554204E-09
82 2168183E+05 283286IE+02 .OOOOOOOE+OO .7477802E-08
83 2203707E+05 2848699E+02 .OOOOOOOE+OO .1363612E-07
84 2203707E+05 .2848699E+02 .OOOOOOOE+OO .9968770E-08
85 2204669E+05 2849127E+02 .OOOOOOOE+OO .1637359E-08
86 2226505E+05 28 5 8 8 17E+02 .OOOOOOOE+OO .5232148E-10
87 2259738E+05 2873502E+02 .OOOOOOOE+OO .1067081E-08
88 2393257E+05 .2931761 E+02 .OOOOOOOE+OO 2433675E-08
89 2395826E+05 2932870E+02 .OOOOOOOE+OO .7391951E-10
90 2589878E+05 2015504E+02 .OOOOOOOE+OO 2478503E-08
91 2 7 1 1287E+05 2066072E+02 .OOOOOOOE+OO 2985016E-08
92 28045I9E+05 .3I04345E+02 .OOOOOOOE+OO .6213089E-09
93 2919935E+05 2I5108IE +02 .OOOOOOOE+OO 2662602E-08
94 2935903E+05 2157492E+02 .OOOOOOOE+OO 2352208E-08
95 .4177678E+05 2253026E+02 .OOOOOOOE+OO .1760624E-08
96 .4190986E+05 2258204E+02 .OOOOOOOE+OO .8170915E-08
97 .4270187E+05 2288846E+02 .OOOOOOOE+OO .1843430E-09
98 .4548740E+05 .3394421E+02 .4329127-317 2360722E-08
99 .4591367E+05 2410289E+02 .1149076-313 2640223E-08
100 .5020741 E+05 2566186E+02 2167838-305 2240370E-08

JACOBIR: Steps in IAM = 399 0
• ‘ •TOTAL CPU FOR EIGENSOLUTION = 50.7799988649785519 
•••(T his time including norm check & I/O )•*•
MTOTI = 14439610 MTOTA = 2 1655415

Table 7.46 NGST Satellite model (5156 DOF eigenproblem): Lanczos 
on stretch (Continued)
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APPLICATION NEQ NCOEF COMMENTS

No 11 2 1 Feasible region exist

No 12 2 1 One point feasible region

No 13 2 1 No Feasible region

No 14 2 1 Multiple solution

No 15 2 1 Feasible region exist

Table 7.47: IPM: Small scale Examples (for validating purposes)
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Application
NEQ
(=N)

NCOEF
input-
data

NCOEF 
data plus 
surplus & 

lack 
variables

NCOEF 

AA T

NCOEF2 
After 

Tactoriza- 
ion 
AA r

NCOEF2/
N(N-*-iy2 comments

optimization 
time (seconds)

No 16 51 218 269 229 242 0.18 Indefinite 0.195

No 17 51 487 538 300 355 0.26 Definite 0.209

No 18 247 2009 2256 2806 3015 0.09 Indefinite 0.762

No 19 247 4265 4512 3165 3488 0.11 Indefinite 0.618

No 20 1440 22137 23577 31638 88798 0.08 Indefinite 19.67

Table 7.48 IPM: Medium-Scale Examples (for timing purposes) on
Cedar Sun workstation
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A X 2

O ptim um  solution

Fig. 7.26 IPM: Graphical solution application No 11
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5 — 

4 — 

3 -

O ptim u m  so lu tio n
V  = o
x /  = 2 
z* = - 5

Z = -6

z=0

l -

Fig. 7.27 IPM: Graphical solution application No 12
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3 — z = 0

; O ptim um  so lu tio n :

4 \ C
A

No fe a s ib le  
S olu tion

2 -

Fig. 7.28 IPM: Graphical solution application No 13
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O ptim un  so lu tion  
M u ltip le  so lu tion

Fig. 7.29 IPM: Graphical solution application No 14
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2 k xi

O ptim um  so lu tion  
x , '  =  0 
Xj =  4/5 
z '  = 4/5

Fig. 7.30 IPM: Graphical solution application No 15
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51 equations:
51 51 0 0 51 218 0 0 1 1
nv, nl, ng, ne, n, NCOEF,n7,n8,isolver,mread

Table 7.49 K.INFO input file for the IPM
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OUTPUT INTERIOR METHOD

51 DOF Problem

NV = 5 1  
NL = 51 
NG = 0  
NE = 0  
NC = 102 
NR = 51 
NCOEF =  218 
NCOEF2 =  269 
MREAD = -I 
ISOLVER= 1

Time Read ORIGINAL DATA = 4.646050184965ID-02 
Time Define Basic set = 8.5049867630005D-04 
Time Construct Starting Vector = 3.5050511360I68D-04

NUMBER OF ITERATION = 6

sparsity o f  [A] = 269 5202 5.I710880430604D-02
sparsity o f  [AA]*[AA]"= 509 2601 0.19569396386005

Time Optimizer Phase II = 0.19156400859356

OPTIMUM DESIGN POINT 
3.724264450863 ID-06 3 
1.2049950134656D-06 9 
4.95473 87683292D-06 I 
7.0698231129301D-07 4. 
5.237478195834 ID-06 3. 
1.7816556372331D-06 4. 
2.0125691617394D-06 I, 
4.9716918361115D-06 5, 
5.I3978702I9I77D-06 5. 
4.5538744344257D-06 4. 
4.5538744344257D-06 4. 
8 .11988I0278697D-07 1.
I .1 183697066714D-06 2. 
5.0426986042319D-07 2. 
3.3938570905376D-06 4. 
IJ368444I06200D-06 4. 
5.2249758859960D-06 4.

.7695123215782D-06 

.2653967507183D-07 

.2110670847008D-06 

.6902771696144D-07 

.8133009495046D-06 

.1136587781992D-07 

.9741306345507D-06 

.1397870219177D-06 

.1397870219177D-06 

.5538744344257D-06 
5538744344257D-06 
4886381290124D-06 
.6790899636017D-06 
5712236127425D-06 
8176122314913D-06 
7799158714321 D-06 
8610721469495D-06

4.528122I399649D-06 
5 .1596183718342D-06 
2.8317110676706D-06 
1.91686733 84084D-06 
5 .1779540534707D-06 
2.6473167128877D-06 
3.6080360085376D-06 
5.1397870219177D-06 
4.5538744344257D-06 
4.5538744344257D-06 
4.4361795026054D-06 
4.4119I59005598D-06 
2.2398983449720D-06 
4.2I33702926385D-06 
3.1369046314674D-06 
1.1289688481885D-06 
2.9432086331771 D-06

OPTIMUN OBJECTIF FUNCTION 
1.6701964318793D-04

Table 7.50 Application 16: Output file of IPM on cedar
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REORD NCOEF NCOEF2 Integer
Memory

Real
Memory

Total
Memory

No Reord. 999,010 7,400,484 4,296,626 8,480,224 12,776,850

UnsyMMD 999,010 6,034,566 3,613,667 7,114,306 10,727,973

Table 7.51 HSCT FEM: Memory requirement for UNSYNUMFA
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HSCT
Factorization Total

□  No Reord 9  UnsyMMD

Fig. 7.31 HSCT: UNSYNUMFA. Non zero after factorization (*106)
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Loop
Unrolling

Level

Symf
a

time
(sec)

Numfa
time
(sec)

FBE
time
(sec)

Total
time
(sec)

Max.
abs.

displ.

Summat0
abs.
displ.

Relative
Error
Norm

1 0.480 50.010 0.310 53.350 0.447 301.291 1.34E-08

2 0.470 35.420 0.320 38.760 0.447 301.291 1.99E-08

8 0.480 28.730 0.320 32.700 0.447 301.291 1.36E-08

Table 7.52 HSCT FEM: Summary of results for UNSYNUMFA1/2/8 using UnsyMMD 
and different level of loop unrolling on the IBM RS6000/590 Stretch machine.
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Loop
Unrollin

g
Level

Symfa
time
(sec)

Numfa
time
(sec)

FBE
time
(sec)

Total
time
(sec)

Max
abs.
displ.

Summat0
abs.
displ.

Relative
Error
Norm

1 0.710 52.079 0.370 55.200 0.447 301.291 2.2E-09

2 0.680 35.650 0.380 38.730 0.447 301.291 2.0E-09

8 0.700 28.390 0.390 31.520 0.447 301.291 2.0E-09

Table 7.53 HSCT FEM: Comparison of results for UNS YNUMFA with no UnsyMMD 
and different level o f loop unrolling on the IBM RS6000/590 Stretch machine.
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HSCT
Factorization Time (sec)

60 -

□  UNSYNUMFA1 H  UNSYNUMFA2 

■  UNSYNUMFA8

HSCT
Total time (sec)

60 -

□  UNSYNUMFA1 ■  UNSYNUMFA2 

|  UNSYNUMFA8

Fig. 7.32 HSCT FEM: Performance of UNSYNUMFA1/2/8 with 
UnsyMMD on the stretch machine
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HSCT
Factorization Time (sec)

60 —’

50 _i
i
j

40
v;;“V

30 "I
- . . ^

20
1

- -• -

10

0

j j  UNSYNUMFA1 

■  UNSYNUMFA8

UNSYNUMFA2

HSCT
Tota l time (sec)

60 -  

50 -  

40  -  

30 -i 

20  -  

10  -  

0 —

□  UNSYNUMFA1 B  UNSYNUMFA2 

B  UNSYNUMFA8

Fig. 7.33 HSCT FEM: Performance of UNSYNUMFA1/2/8 with 
no UnsyMMD on the stretch machine
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Loop
Unrollin

g
Level

Symfa
time
(sec)

Numfa
time
(sec)

FBE
time
(sec)

Total
time
(sec)

Max
abs.

displ.

Summat0
abs.
displ.

Relative
Error
Norm

1 0.480 49.970 0.330 53.320 8.791 45.134 2.3E-07

2 0.470 35.340 0.320 38.650 8.791 45.134 1.8E-07

8 0.460 28.650 0.320 31.970 8.791 45.134 1.3E-07

Table 7.54 PierrotHSCT: Summary of results for UNSYNUMFA with UnsyMMD and 
different level of loop unrolling on the IBM RS6000/590 Stretch machine.
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PIERROTHSCT
Factorization Tim e (sec)

50 -  ,-|

40 

30 

20 

10 

0

Q  UNSYNUMFA1 Q j  UNSYNUMFA2 

■  UNSYNUMFA8

PIERROTHSCT
Total time (sec )

60 -  

50 -  

40 -  

30 -  

20  -  

10  -

□  UNSYNUMFA1 ■  UNSYNUMFA2 

■  UNSYNUMFA8

Fig. 7.34 PierrotHSCT: Summary o f  results of UNSYNUMFA1/2/8 with 
UnsyMMD on the stretch machine
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LOOP
Unrollin

g
Level

Symfa
time
(sec)

Numfa
time
(sec)

FBE
time
(sec)

Total
time
(sec)

Max
abs.
displ.

Summat0
abs.
displ.

Relative
Error
Norm

1 1.93 210.500 2.820 229.560 2.061 13569.65 8.1E-13

2 1.93 155.630 2.270 173.280 2.061 13569.65 8.1E-13

8 1.93 133.150 1.300 150.230 2.061 13569.65 8.1E-13

Table 7.55 SRB FEM: Summary of results for UNSYNUMFA using UnsyMMD and 
different level of loop unrolling on the IBM RS6000/590 Stretch machine.
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SRB
Factorization Tim e (sec )

250 -  

200  -  

150 -  

100  -  

50 -

□  UNSYNUMFA1 9  UNSYNUMFA2 

9  UNSYNUMFA8

SRB
Total time ( s e c )

250 -  

200  -  

150 -  

100  -  

50 -

□  UNSYNUMFA1 9  UNSYNUMFA2 

9 UNSYNUMFA8

Fig. 7.35 SRB FEM: Performance of UNSYNUMFA1/2/8 with 
UnsyMMD on the stretch machine
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CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

8.1 Conclusions

Vector sparse solvers for positive, negative and indefinite systems have been 

developed. Efficient sparse technologies, such as: sparse symbolic factorization, sparse 

numerical factorization with unrolling strategies, sparse forward & backward solutions, 

sparse matrix-vector multiplication, have been developed, and fully utilized to improve the 

performance. The developed computer software has been fully optimized at the algorithm 

level, as well as during the compilation on vector computer platforms. The use of loop 

unrolling shows better results on high-performance uniprocessor computers. Efficient 

algorithms further reduce the amount of memory traffic on machines with high speed local 

memory, such as a cache. Large scale sparse matrices have been used to prove the 

robustness of the developed sparse equation solver for symmetric positive definite systems. 

Good performance has been achieved on the developed unsymmetrical solver for large scale 

applications.

Much of the research works in direct methods for the solution of sparse linear 

indefinite systems lies in determining the order in which pivots are chosen in the Gaussian 

elimination process, and how to minimize the fill-in during the factorization process. This 

choice can be made with a view to preserving sparsity, optimizing data structures, or 

maintaining stability. An alternative formulation and new computational strategies have 

been developed that satisfy all three requirements for solving general system of symmetrical 

and indefinite equations. Rotational matrix has been used to uncouple the 2x2 block
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diagonal matrix, and therefore, greatly enhance the FORTRAN computer coding 

implementation. Mixed “backward factorization” and “ Forward factorization” strategies 

have also been employed. The computational efficiency, and the solution accuracy have 

been validated by solving 5 indefinite system of equations (ranging from 51 to 15 367 

unknown degree of freedom). Further numerical performance improvements have been 

realized by using MMD reordering algorithm ( to minimize the number of fill-in) and by 

pushing all zero diagonal terms o f the original matrix toward the bottom right of the matrix.

Major computational tasks in Subspace iterations, and Lanczos algorithms have been 

identified. Sparse Subspace and Lanczos eigensolvers for the solution of the generalized 

eigen-equations have been developed. Numerical results from practical finite element 

models have clearly indicated that the proposed sparse Subspace iterations, and Lanczos 

algorithms have offered substantial computational advantages over the traditional "skyline", 

or "variable bandwidth" strategies.

In this work, detailed discussions of a variation of the Karmarkar’s Interior Point 

Method (IPM) have been presented. A Fortran implementation of the proposed method, 

using sparse technology, has been developed. Numerical examples to validate the entire 

procedure, and to show the promising potentials of using the IPM, in conjunction with 

efficient sparse indefinite solver, for solving linear programming problems have also been 

documented.

8.2 Suggestions for future research

Based upon the works that have been developed in this dissertation, the following 

future studies are suggested:
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(1) Develop a parallel-vector sparse solver for positive definite systems. Appendix C gives 

some preliminary results o f the implementation of a parallel sparse solver based on the 

substructuring formulation on Intel Paragon machines.

(2) Develop a vector sparse unsymmetrical solver, (unsymmetrical in locations and values) 

with pivoting and a reordering algorithm for a general unsymmetric matrix.

(3) Develop a callable sparse numerical library o f subroutines for sequential and parallel- 

vector computers.
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APPENDIX A 

MULTI-PLATFORMS MAKEFILE

# MAKEFILE #
# #
# H. Runesha June 30, 1997 #
# #
# This Makefile was inspired from the one written by #
# Michael Puso at Lawrence Livermore National Laboratory #
# #
# Look through makefile to comment and uncomment specific lines #
# based on platform to compiled for SGI/DEC/SUN/HP/UNIX/CRAY #
# CONVEX should be treated same as HP. #
# For example: you are compiling for a sun uncomment the Solaris #
# specific flags and make sure the other platform specific flags are #
# commented. #
# #
# The name of the executable is: aaOO #
^*********************************************************************** 
FORTRAN = ${FC}
FORTRAN = f77 
CPP = /lib/cpp 
CPP = /usr/ccs/lib/cpp 
XLIB2 = -1X11 
XLIB2 =

# FFLAGS = -03 -static
# FFLAGS = -g -static
# CPPFLAGS = -Dsgi
# SGI R4400 and down
# FFLAGS = -02 -static -mips2
# FFLAGS = -02 -static
# SGI debug
# FFLAGS = -g -static

FFLAGS = -Bstatic -03 -xcg92
FFLAGS = -Bstatic -fast -xcg92 -04  -Bstatic -xtarget=ultra 
FFLAGS = -Bstatic -03 -xcg92 
CPPFLAGS = -Dsun

#FFLAGS = -05 -static -cpp
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#FFLAGS2 = -04  -static -cpp 
#CPPFLAGS = -Ddec
#_-------------------------- CRAY  #
# FORTRAN = ${CF}
# FFLAGS = -dp -ZP
# CPPFLAGS =-Dcray
 #  HP  -#
# FFLAGS = +03 -K +T +E1
# CPPFLAGS =-Dhpux
# LINK = +U77
§---------------------------  IBM  #
# FFLAGS = -03 Q -qhssngl
# CPPFLAGS = -Dibm
# BIG_MEMORY = -bmaxdata:0x70000000
# XLIB2 = -IXII
 #----------------------------ODU STRETCH - IBM -------------------------- #
# FFLAGS = -LSP -03 -qstrict -qalias=noaryovrlp -qarch=pwr2
# CPPFLAGS = -Dibm
# BIG_MEMORY = -bmaxdata:960000000
# XLIB2 =
 # #
#Libraries ?
LIBS =
# Comment out line below for single precision version 
DPFLAG = -DDP
#_------------------------------------------------------------------------- #
#
OBJS = \

PierSpaSolver.o main.o\ 
reord.o

#---------------------------------------------------------------------------#
aaOO: ${OBJS}

$ {FORTRAN} $ {LINK} -o aaOO $(OBJS) $(LffiS)\
$(XLIB2) $(BIG_MEMORY)

#------------------------------------------------------------------------#
genb: ${LIBG}

$ {FORTRAN} $ {FFLAGS} ${LINK} -o genb genb_m.o $(LIBG)
# HP needs U77 library for timing routines (won't work if used on all routines)
# cputim.o: cputim.f
# /lib/cpp -P $ {CPPFLAGS} $ {DPFLAG} cputim.f > cputim.F
# $ {FORTRAN} $ {FFLAGS} +U77 -c cputim.F
# rm cputim.F
# DEC needs lower optimization compile flag for expand.f 
#expand.o: # $ {FORTRAN} -c ${FFLAGS2} $ {DPFLAG} expand.f 
.c.o:
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cc -c S?
# Comment and Uncomment the appropriate .f.o rules
#
# For SGI or DEC use the following .f.o rules (2 lines)
#
# .f.o:
# $ {FORTRAN} $ {FFLAGS} $ {CPPFLAGS} $ {DPFLAG} -c $?
#
# For SUN or HP or IBM use the following .f.o rules (4 lines)
#
# $(CPP) -P $ {CPPFLAGS} $ {DPFLAG} $<> $(*.F).F 
.f.o:

$(CPP) -P $ {CPPFLAGS} $ {DPFLAG} $<> $*.F 
$ {FORTRAN} $ {FFLAGS} -c $*.F 
rm $*.F

# For CRAY use the following .f.o rules (4 lines)
#.f.o:
# cp $< $(*.F).F
# $ {FORTRAN} $ {FFLAGS} ${CPPFLAGS} $ {DPFLAG} -c $(*.F).F
# rm $(*.F).F 
#${LIB}: ${OBJS}
# ar rv $@ $?
#${LIBG}: ${OBJSG}
# ar rv genblib.a readk.o rmalloc.o rfree.o writeb.o
# mv readk.o ./GENB; mv rfree.o ./GENB;
# mv rmalloc.o ./GENB; mv writeb.o ./GENB
# a r rv $ @ $ ?
# ranlib $@ 
clean:

\rm -f ${OBJS} ${LIB} 
rm -f genb aaOO *.a 
rm ./GENB/*.o

 # #
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APPENDIX B 

SUBROUTINE CPUTIME.F

Subroutine cputime (time)
Real tar(2)
Real* 8 time

c  For EBM type machine---------------------------
time = 0.01*mclock()

c  For SUN Workstations and other Unix boxes
c time = etime (tar)
c  For CRAY type machines-----------------------
c time = tsecndO

Return 
end
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APPENDIX C 

PARALLEL VECTOR SPARSE SOLVER

Given a matrix [K] and the right hand side vector {F} in NASA row wise format, 

let's consider the following system o f linear equations

Kz= F  (C -l)

An algorithm for a parallel sparse solver has been suggested, based on the substructuring 

finite element formulation [1]. Each processor can either construct its assigned portion of the 

matrix associated to a substructure, or a given stiffness matrix [K] have to be rearranged into 

a V-shape form as shown in Fig.(C-l).

SYM

Fig. (C.l) Parallel sparse solver: V-shape form
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Fig (C.2) Parallel sparse solver: Interior and Boundary displacements

The subscripts i and b correspond to the interior and boundary nodes, respectively. The 

submatrices [Kib (r)] correspond to the coupling (boundary) submatrices. To solve for 

Equation (C-l) in parallel, two parallel sparse algorithms are required:

a) A parallel algorithm to rearrange the matrix into a V-shape that minimize the length of 

the coupling submatrices, and to perform the fill-in minimization. (When K is given).

b)The second algorithm is a parallel vector sparse solver for a V-shape matrix.

Let’s consider the stiffness matrix in a V-shape form. The boundary displacement 

can be computed as follows:

£ < ; J N  - { £ < : ) (C-2)

where

Cr) (C-3)

{ £ < }  - (C-4)
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and the interior displacement can be computed from Eq.(C-5).

{z/r)} = [ < V l {F,(r) -  K $ Z b} (C-5)

The parallel vector sparse solver for V-shape matrices has been implemented on the Intel

Paragon at NASA Langley, and completed on the Intel Paragon at the Hong Kong University

of Science and Technology. The step by step algorithm of the parallel sparse solver is given

in Table (C-l) and preliminary results that have been obtained are shown in Tables (C-2) and

(C-3).

Step 1. Given FCj£ (r), F; (r) and K;b(r) information o f  substructure r to 
processor r, in sparse format. r=l, number of processors 

Step 2. Generate £K bb(r) and £F b (r)
For each processor do:
Step 3. Symbolic factorization and find supemodes for K;i(r)

= >  100% parallel 
Step 4. ( a) Numerical factorization. = >  100% parallel

( b) Solve for [K ^ 1]'1 *[Kjb(r>] one column at the time
Call Forward/Backward and save result in a vector {x}. 

( c) Perform [Kbi(r)]*{x}
(d ) Assemble [ ^K bcfr(r)]
( e) Perform similar operations as in steps (b,c,d) to get 

[ l F bdf«]
Step 5. Solve for boundary displacement Eq.(C-2)
Step 6. Solve for interior displacements. Eq. (C-5)

Table (C-l) Parallel sparse solver: Step by step algorithm

The symbolic and numerical factorization in steps 3 and 4 uses the vector sparse solver 

developed in Chapter II.

Results in Tables (C-2) and (C-3) shows that parallel speed-up can be achieved for 

a matrix already in V-shape(from substructure formulation) with a small coupling bandwidth.
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parallel 

□  1 2
16

spaodu

4
32

. 1 5 .8 7 ' 3 .8 :
2  ' 2 . 9 1 3 .8 !

14 ■i 1.831 3 .81
8  :! 1.011 3 .81

. 16 i 1 .14 1 3 .81
3 2  1 .7 7 1 3 .8 ;

Table (C-2) PVS-solver: summary of results of NEQ= 7928

N E Q = 3 1 6 4 0

6 -  

5 -  
4 -

! ! 4 proc 8 proc
|  16 proc B  32 proc

4  proc 6.88 i
'8  proc '! 3.56 '
' 16 proc 2.51
32 proc 2.82

Table (C-3) PVS-solver: summary of results of NEQ= 31640 

Future tasks include, the migration of the developed code to a new parallel platform (such 

as IBM SP2) and the development of a parallel matrix partition algorithm (for the V-shape 

form) that minimize the fill-in.
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