
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Civil & Environmental Engineering Theses &
Dissertations Civil & Environmental Engineering

Spring 1998

Sparse Equation-Eigen Solvers for Symmetric/Unsymmetric Sparse Equation-Eigen Solvers for Symmetric/Unsymmetric

Positive-Negative-Indefinite Matrices with Finite Element and Positive-Negative-Indefinite Matrices with Finite Element and

Linear Programming Applications Linear Programming Applications

Kakizumwami Birali Runesha
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/cee_etds

 Part of the Civil Engineering Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
Runesha, Kakizumwami B.. "Sparse Equation-Eigen Solvers for Symmetric/Unsymmetric Positive-
Negative-Indefinite Matrices with Finite Element and Linear Programming Applications" (1998). Doctor of
Philosophy (PhD), Dissertation, Civil & Environmental Engineering, Old Dominion University, DOI:
10.25777/ypat-1a61
https://digitalcommons.odu.edu/cee_etds/46

This Dissertation is brought to you for free and open access by the Civil & Environmental Engineering at ODU Digital
Commons. It has been accepted for inclusion in Civil & Environmental Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/cee_etds
https://digitalcommons.odu.edu/cee_etds
https://digitalcommons.odu.edu/cee
https://digitalcommons.odu.edu/cee_etds?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/cee_etds/46?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

SPARSE EQUATION - EIGEN SOLVERS FOR SYMMETRIC/UNSYMMETRIC

POSITIVE-NEGATIVE-INDEFINITE MATRICES WITH FINITE ELEMENT

AND LINEAR PROGRAMMING APPLICATIONS

by

Hakizumwami Birali Runesha
B.S., October 1989, University of Kinshasa
M.S., May 1993, Old Dominion University

A Dissertation submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

CIVIL ENGINEERING

OLD DOMINION UNIVERSITY
(May 1998)

Approved by:

Due T. Nguyen (Director)

Zia Razzaq (Member)

Jae Yoon (Member)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

SPARSE EQUATION-EIGEN SOLVERS FOR SYMMETRIC/UNSYMMETRIC
POSITrVE-NEGATTVE-INDEFINITE MATRICES WITH FINITE ELEMENT

AND LINEAR PROGRAMMING APPLICATIONS.

Hakizumwami B. Runesha
Old Dominion University, 1998

Director: Dr. Due T. Nguyen

Vectorized sparse solvers for direct solutions of positive-negative-indefinite

symmetric systems of linear equations and eigen-equations are developed. Sparse storage

schemes, re-ordering, symbolic factorization and numerical factorization algorithms are

discussed. Loop unrolling techniques are also incorporated in the coding to enhance the

vector speed. In the indefinite solver, which employs various pivoting strategies, a simple

rotation matrix is introduced to simplify the computer implementation. Efficient usage of

the incore memory is accomplished by the proposed “ restart memory management “

schemes. A sparse version of the Interior Point Method, IPM, has also been implemented

that incorporates the developed indefinite sparse solver for linear programming applications.

Numerical performance of the developed software is conducted by performing the

static analysis and eigen-analysis of several practical finite elements models, such as the

EXXON Offshore Structure, the High Speed Civil Transport (HSCT) Aircraft, and the Space

Shuttle Solid Rocket Booster (SRB). The results have been compared to benchmark results

provided by the Computational Structural Branch at NASA Langley Research Center. Small

to medium-scale linear programming examples have also been used to demonstrate the

robustness o f the proposed sparse IPM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ma Mere,
a mon Pere,
a Didina, Veda, Rita, Manunu,
et a vous tous mes freres et soeurs,
pour votre amour et sollicitude, je vous dedie ce travail.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

iv

I wish to express my sincere gratitude to my advisor, Prof. Due T. Nguyen, for his

valuable advice and his encouragement through the course o f the research. I would also like

to thank the other members of my dissertation committee, Prof. Zia Razzaq, Prof. Chuh Mei

and Dr. Jae Yoon for their suggestions, comments and beneficial discussions.

The computer facility and financial support provided by the Computational Structural

Branch at NASA Langley Research Center (several numerical data are provided by Dr. Olaf

O. Storaasli) and ODU/CEE department are also acknowledged. The author also would like

to acknowledge the source codes provided by Dr. Esmond G. Ng at Oak Ridge National

Laboratory and by Dr. Ian Duff at Harwell Laboratory, which have been used in this study.

Very helpful discussions with my colleagues, Dr. Chen Pu (former research associate at the

Hong Kong University of Science and Technology) and Dr. J. Qin (former research associate

at ODU) are also appreciated.

Finally, I would like to thank my family, miles away, for their support, love and

encouragement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

v

Page

LIST OF TA BLES...xi

LIST OF FIG U RES.. xvi

NOTATION... xix

CHAPTER I INTRODUCTION..1

1.1 Overview...1

1.2 Review of previous work ... 2

1.3 Objectives and scope..8

CHAPTER II VECTOR SPARSE SOLVER FOR SYMMETRIC POSITIVE DEFINITE

MATRICES..12

2.1 Introduction..12

2.2 Sparse storage for the coefficient stiffness m atrix .. 14

2.2.1 Introduction... 14

2.2.2 The sparse row-wise format ..15

2.2.3 NASA Form at... 17

2.2.4 Fundamentals of sparse matrix technology.. 19

2.3 Vector-sparse Gauss elimination without p iv o tin g ..22

2.3.1 Review of LDLT factorization algorithm ..22

2.3.2 Flowchart of the vector-sparse LDLT solver......................................24

2.3.3 Ordering for Gauss elimination: Symmetric matrices-MMD 26

2.3.4 Sparse symbolic factorization-SYMFA .. 26

2.3.5 Ordered and unordered representation-TRANSA..............................34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi

Page

2.3.6 Vectorization and finding Master(or Super) Degree o f freedom . . 34

2.3.7 Sparse numerical factorization with loop unrolling strategies 38

2.3.8 Forward and backward so lu tion ... 46

2.3.9 Sparse matrix-vector multiplication with unrolling strategies 47

2.4 The Modified OakRidge sparse equation so lv er...49

2.4.1 Introduction... 49

2.4.2 The OakRidge data fo rm a t..50

2.4.3 Modification of the OakRidge solver... 50

2.4.3 Reuse of data in fast memory: C A C H E...52

CHAPTER in VECTOR SPARSE SOLVER FOR INDEFINITE M ATRICES.......... 54

3.1 Introduction...54

3.2 Symmetric Indefinite Systems-Pivoting Strategies..56

3.2.1 Introduction... 56

3.2.2 Pivoting strategies...57

3.2.3 Weighted pattern matching strategy... 60

3.2.4 Rotation m atrix ...63

3.2.5 Consecutive search strategy ... 64

3.3 Symmetric Indefinite Systems-Restarting..65

3.3.1 Simultaneous symbolic and numerical factorization67

3.3.2 Partial reduction ...68

3.3.3 Pivoting searching and ending partial reduction criteria68

3.3.4 Data M anagement...70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii

Page

3.3.5 Permutation... 74

3.4 Forward reduction and back substitution..75

3.5 Reordering of indefinite system s.. 76

3.6 The modified MA27 sparse indefinite solver ...77

3.6.1 Introduction..77

3.6.2 MA27 data format and control param eters.. 78

3.6.3 Modified MA27 solver: ODU-MA27...79

CHAPTER IV SPARSE SUBSPACE AND LANCZOS ITERATION FOR THE

SOLUTION OF POSITIVE DEFINITE AND INDEFINITE SYSTEMS80

4.1 Introduction...80

4.2 Subspace Iteration ..81

4.2.1 Basic Subspace iteration algorithm... 81

4.2.2 Subspace iteration step by step a lgorithm .. 83

4.2.3 Subspace iteration for positive definite systems: LDLT................... 83

4.2.4 Subspace iteration for indefinite systems:ODU-HKUST/ODU-MA27 85

4.3 Lanczos Ite ra tion .. 86

4.3.1 The Lanczos iteration algorithm..86

4.3.2 The Lanczos iteration step by step procedure.................................... 88

4.3.3 Lanczos iteration for positive definite systems: LDLT 89

4.3.4 Lanczos iteration for indefinite systems: ODU-HKUST-ODU-MA27 . 90

4.4 Major computational tasks and enhancements in Subspace iteration and

Lanczos algorithm ..90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Page

CHAPTER V INTERIOR POINT METHOD WITH POSITIVE AND INDEFINITE

SPARSE SOLVERS FOR LINEAR PROGRAMMING PROBLEMS 92

5.1 Introduction..92

5.2 Review of the simplex method ..93

5.3 Interior Point M ethod...96

5.3.1 Introduction...96

5.3.2 Variable transformation: Affine scaling method 98

5.3.3 Direction of move C ..99
p

5.3.4 Step size a ... 102

5.3.5 Feasible starting iteration vector x ° ... 103

5.4 Step by step algorithm for the I P M ..105

5.5 Computational enhancements and the sparse implementation of IPM 106

CHAPTER VI VECTOR SPARSE SOLVER FOR UNSYMMETRICAL MATRICES 108

6.1 Introduction.. 108

6.2 Sparse storage of the unsymmetrical matrix ... 108

6.3 Basic unsymmetric equation so lver..110

6.4 Vector-sparse LDU unsymmetrical solver..115

6.4.1 Introduction ...115

6.4.2 Ordering for unsymmetrical solver... 116

6.4.3 Sparse numerical factorization with loop un ro lling119

6.4.4 Forward and backward solution ..120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ix

Page

6.4.5 Sparse unsymmetric matrix-vector m ultiplication...................... 121

CHAPTER VII APPLICATIONS.. 123

7.1 Introduction...123

7.2 Description of various finite element m odels.. 125

7.2.1 Application No 1: High Speed Civil Transport (HSCT) Aircraft . 126

7.2.2 Application No 2: The EXXON Off shore Model126

7.2.3 Application No 3: Thermal Structural M o d el................................. 126

7.2.4 Application No 4: Solid Rocket Booster (S R B).............................126

7.2.5 Indefinite m atrices..127

7.2.6 Example descriptions for Interior Point M eth o d128

7.3 Numerical resu lts.. 129

7.3.1 Sparse equation solvers... 129

a)-LDLT numfa 1/2/8 ... 129

b)-Cholesky OakRidgeODU solver...133

c)-ODU-HKUST indefinite solver...134

d)-ODU-Ma27 indefinite solver...136

7.3.2 Sparse eigen-solvers..136

a)-Subspace and Lanczos sparse eigensolvers for positive definite

matrices.. 136

b)-Subspace and Lanczos sparse eigensolvers for indefinite

matrices .. 139

7.3.3 Interior Point M eth o d ..141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

Page

7.3.4 Sparse unsymmetrical solver .. 142

CHAPTER V m CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 235

8.1 C onclusions..235

8.2 Suggestions for future research .. 236

REFERENCES ...238

APPENDICES ...244

A. Multi-platform Makefile ...244

B Subroutine cputime.f ... 247

C Parallel-Vector sparse so lv e r...248

VITA ..252

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

TABLE Page

2.1 Solution time and storage requirement comparison for different storage schemes for
a 263,574 degree of freedom FE Car model..16

2.2 Skeleton Fortran Code for LDLT ... 23

2.3 Skeleton Fortran coding for loop unrolling.. 35

2.4 Algorithm for finding Master D O F ...38

2.5 Pseudo Fortran Skeleton Code for sparse LDLT factorization................................ 40

2.6 Numerical Factorization: ICHAINL update ..43

2.7 Pseudo Fortran Skeleton Code for Sparse LDLT factorization with unrolling
strategies..44

2.8 Fortran Skeleton code for the Vector portion of NUMFA2/846

3.1 Pivoting strategy for sparse symmetric indefinite systems....................................... 58

3.2 Pivoting strategy for sparse symmetric indefinite systems with Pattern
matching...63

3.3 Indefinite solver: Restarting procedure.. 66

3.4 Simultaneous symbolic and Numerical Factorization...67

3.5 Restart algorithm for symmetric indefinite solver..71

3.6 Forward reduction and back substitution.. 76

4.1 Step by step algorithm for starting iteration vecto r... 82

4.2 Step by step basic Subspace Algorithm .. 84

4.3 Step by step basic Lanczos Algorithm .. 89

5.1 Step by step solution process for optimization ..93

5.2 Simplex Tableau .. 94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X ll

TABLE Page

5.3 A step of the simplex method .. 96

5.4 Step by step algorithm for the IPM optimizer..105

5.5 IPM algorithm .. 106

6.1 Portion of Skeleton Fortran code of reordering of an unsymmetrical matrix ..1 1 8

6.2 Pseudo FORTRAN Skeleton Code For Sparse LDU Factorization 119

6.3 Pseudo FORTRAN Skeleton Code For Sparse LDU Factorization With Unrolling
S tra teg ies.. 121

6.4 Unsymmetrical matrix-vector multiplication... 122

7.1 Characteristics of the NASA High Speed Civil Transport Aircraft FEM 145

7.2 Characteristics o f the TLP Flexjoint EXXON FEM .. 151

7.3 Characteristics of the Thermal-Structural FEM ...153

7.4 Characteristics of the Solid Rocket Booster FEM ...155

7.5 Characteristics of Indefinite matrices applications .. 162

7.6 HSCT FEM: Memory requirement for different reordering algorithm s 164

7.7 HSCT FEM: Comparison of results using MMD and different level of loop unrolling
on the IBM R6000/590 Stretch m achine... 166

7.8 HSCT FEM: Comparison of results using MMD and different level of loop unrolling
on the Sun SPARC 20 rhino machine ... 167

7.9 HSCT FEM: Summary of results on the IBM RS6000/590 stretch machine . . 172

7.10 HSCT FEM: Summary of results on the Sun SPARC 20 rhino m achine 173

7.11 EXXON Off-shore FEM: Comparison of results using MMD and different level of
loop unrolling on the IBM RS6000/590 Stretch m ach ine....................................174

7.12 Thermal-Structural FEM: Comparison of results using MMD and different level of
loop unrolling on the IBM RS6000/590 Stretch machine...................................... 175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE Page

7.13

7.14

7.15

7.16

7.17

7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25

7.26

7.27

SRB FEM: Comparison of results using MMD and different level o f loop unrolling
on the IBM RS6000/590 Stretch m achine..176

HSCT FEM: K.INFO for Numfa8 .. 177

HSCT FEM: Output file ofNumfa8 on the stretch machine................................ 178

HSCT FEM: OakRigdeODU solver. Impact of cache size on the IBM RS6000/590
stretch machine using M M D ...179

HSCT FEM: OakRigdeODU solver. Impact o f loop unrolling level on the IBM
RS6000/590 stretch machine using MMD and cache size 6 4 180

HSCT FEM: OakRigdeODU solver. Impact of cache size on the IBM RS6000/590
rhino machine using MMD and loop 8 ..181

HSCT FEM: OakRigdeODU solver. Impact o f loop unrolling level on the Sun
SPARC 20 rhino machine using MMD and cache size 6 4 182

EXXON Off-shore FEM: OakRigdeODU solver. Impact of cache size on the IBM
RS6000/590 stretch machine using MMD and loop 8 .. 183

EXXON Off shore FEM: OakRigdeODU solver. Impact of loop unrolling level on
the IBM RS6000/590 stretch machine using MMD and cache size 6 4184

Thermal-Structural FEM: OakRigdeODU solver. Impact of cache size on the IBM
RS6000/590 stretch machine using MMD and loop 8 .. 185

Thermal-Structural FEM: OakRigdeODU solver. Impact of loop unrolling level on
the IBM RS6000/590 stretch machine using MMD and cache size 6 4186

SRB FEM: OakRigdeODU solver. Impact of cache size on the IBM RS6000/590
stretch machine using MMD and loop 8 ..187

SRB FEM: OakRigdeODU solver. Impact o f loop unrolling level on the IBM
RS6000/590 stretch machine using MMD and cache size 6 4 188

SRB FEM: K.INFO input file for OakRidgeODU solver.................................... 189

SRB FEM: OakRidgeODU solver. Output file on the stretch m achine 190

with permission of the copyright owner. Further reproduction prohibited without permission.

XIV

TABLE Page

7.28 Percentage of Zero diagonal values o f the Indefinite matrices 191

7.29 ODU-HKUST indefinite solver: Summary of results on Rhino 192

7.30 ODU-HKUST indefinite solver: Comparison o f results on the Cray Y-MP ..193

7.31 ODU-HKUST indefinite solver: Impact of using MMD and Zero-End on the Stretch
machine ... 194

7.32 ODU-HKUST indefinite solver: Impact of the control paramater alpha on application
No 9 (neq =15367)... 195

7.33 ODU-Ma27: Summary of results on Rhino m achine..196

7.34 ODU-Ma27: Summary of results on stretch m achine..197

7.35 HSCT FEM: K.INFO for SPARSEPACK eigensolver202

7.36 EXXON Off-shore FEM: “ Sparse” Lanczos Algorithm from SPARSEPACK on
stretch ... 203

7.37 EXXON Off-shore FEM: “ Sparse” Subspace Iteration from SPARSEPACK on
stretch ..204

7.38 EXXON Off-shore FEM: Using Basic K.J. bathe’s Subspace Iteration
(KJBATHE96) on stretch ... 205

7.39 Application No 6: Subspace iteration for indefinite systems................................ 206

7.40 Application No 6: Lanczos iteration for indefinite systems 207

7.41 K.INFO input file for the Lanczos and Subspace eigensolver for indefinite systems.
 208

7.42 Application No 5: Lanczos for Indefinite systems on Cedar machine209

7.43 Jonathan’s ill-conditionned problem: NASA Langley test bed results.................210

7.44 Jonathan’s ill-conditionned problem: Lanczos on rhino machine........................211

7.45 Johnathan’s ill-conditionned problem: Subspace on rhino 212

7.46 NGST Satellite model (5156 DOF eigenproblem): Lanczos on stretch214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XV

TABLE Page

7.47 IPM: Small scale examples (for validating purposes) 216

7.48 IPM: Medium-scale examples (for timing purposes) on Cedar Sun workstation217

7.52 HSCT FEM: Summary of results for UNSYNUMFA1/2/8 using UnsyMMD and
different level o f loop unrolling on the IBM RS6000/590 Stretch machine . . . 227

7.53 HSCT FEM: Comparison of results for UNSYNUMFA with no UnsyMMD and
different level o f loop unrolling on the IBM RS6000/590 Stretch machine . . . 228

7.54 PierrotHSCT: Summary of results for UNSYNUMFA with UnsyMMD and different
level o f loop unrolling on the IBM RS6000/590 Stretch m achine.................... 231

7.55 SRB FEM: Summary of results for UNSYNUMFA using UnsyMMD and different
level o f loop unrolling on the IBM RS6000/590 Stretch machine 233

7.49 K..INFO input file for the IPM 223

7.50 Application 16: Output file of IPM on cedar 224

7.51 HSCT FEM: Memory requirement for UNSYNUMFA 225

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xvi

LIST OF FIGURES

FIGURE Page

2.1 263,51A degree of freedom FE Car model... 16

2.2 Flowchart o f the Vector-sparse LDLT solver...25

2.3 Master Degree of freedom ..38

2.4 Numerical Factorization: Reduction of Row I by row L ... 41

2.5 Numerical Factorization: Update location of IUC of row j 42

2.6 Numerical Factorization: Loop unrolling .. 45

2.7 Sparse Matrix-Vector multiplication with unrolling strategies...............................48

2.8 Flowchart of the OakRidgeODU solver...51

3.1 Indefinite solver: Pivoting strategy ...58

3.2 Indefinite solver: Pattern matching ...62

3.3 Indefinite solver: Restarting procedure.. 67

3.4 Indefinite solver: Ending Partial reduction z o n e ..69

3.5 Indefinite solver: Memory allocation of IW O R K ..70

3.6 Indefinite solver: Memory reallocation.. 72

3.7 Indefinite solver: Fill-in minimization.. 77

5.1 Effect of the initial point on the step length.. 97

5.2 Projective steepest ascent d irection ...100

6.1 Storage scheme for unsymmetrical matrix...109

6.2 Unsymmetrical solver: Factorization of û and lj, ..113

7.1 High Speed Civil Transport aircraft, HSCT .. 144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xvii

FIGURE Page

7.2 Non-zero pattern of the NASA High Speed Civil Transport Aircraft FEM . . . 146

7.3 TLP Flexjoint Geometry Parameters of the EXXON F E M147

7.4 A 3-D model o f the TLP Flexjoint EXXON FEM ..148

7.5 Schematic diagram of the TLP Flexjoint EXXON F E M149

7.6 Non-zero pattern of the TLP Flexjoint EXXON FEM ...150

7.7 Non-zero pattern of the Thermal-Structural F E M ... 152

7.8 FEM of the Solid Rocket Booster, SRB .. 154

7.9 Nonzero pattern of the FEM Solid Rocket Booster, S R B 156

7.10 Nonzero pattern of Application No 5-Cantilever beam problem157

7.11 Nonzero pattern of Application No 6-Carlos Davilla P rob lem158

7.12 Nonzero pattern of Application No 7-Jonathan’s plate problem159

7.13 Nonzero pattern of Application No 8-Knight’s Panel problem160

7.14 Nonzero pattern of Application No 9-15,367 DOF indefinite problem 161

7.15 Mcdonell Douglas Stitched/RFI All composite wing finite element model . . . 163

7.16 HSCT FEM: Non-zeros elements after factorization for different reordering schemes
.. 165

7.17 HSCT FEM: Performance o f Numfal/2/8 on the stretch m ach ine.......................168

7.18 HSCT FEM: Performance o f Numfal/2/8 on the rhino machine169

7.19 HSCT FEM: Performance o f Numfa8 for different compiler optimization level on
the stretch machine ..170

7.20 SRB FEM: Performance o f Numfa8 for different compiler optimization level on the
stretch machine .. 171

7.21 ODU-HKUST indefinite solver: Impact of the control parameter alpha on application
No 9 (neq =15367).. 195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XVUl

FIGURE Page

7.22 HSCT FEM: Comparison of results for SPARSEPACK eigensolvers on stretchL98

7.23 HSCT FEM: Comparison of results for SPARSEPACK eigensolvers on Rhino 199

7.24 EXXON Off-shore FEM: Comparison of results for SPARSEPACK eigensolvers on
stretch ... 200

7.25 EXXON Off-shore FEM: Comparison of results of SPARSEPACK eigensolvers on
U STSU 31 ...201

7.26 IPM: Graphical solution application No 11 ...218

7.27 IPM: Graphical solution application No 1 2 .. 219

7.28 IPM: Graphical solution application No 1 3 .. 220

7.29 IPM: Graphical solution application No 1 4 .. 221

7.30 IPM: Graphical solution application No 1 5 .. 222

7.31 HSCT: UNSYNUMFA. Non zero after factorization (xlO6)226

7.32 HSCT FEM: Performance of UNSYNUMFA 1/2/8 with UnsyMMD on the stretch
machine ...229

7.33 HSCT FEM: Performance of UNSYNUMFA 1/2/8 with no UnsyMMD on the
stretch machine ..230

7.34 PierrotHSCT: Summary of results of UNSYNUMFA 1/2/8 with UnsyMMD on the
stretch machine ..232

7.35 SRB FEM: Performance of UNSYNUMFAl/2/8 with UnsyMMD on the stretch
machine ...234

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xix

NOTATION

Ay- : ij element o f matrix [A]

AD : diagonal values stored row by row before factorization

AN : non-zero off diagonal values stored row by row before factorization

c : objective function

C : direction of move
p

D : Diagonal matrix

DI : diagonal values stored row by row after factorization

e. : unit vector
I

f : Load vector

I : Identity matrix

IA : location in AN and JA of the first off diagonal value of each row before
factorization

ICHAINL: Chained list

IU : location in UN and JU of the first off diagonal value of each row after
factorization

JA : column indices of the non-zero off diagonal values stored row by row before
factorization.

JU : column indices of the non-zero off diagonal values stored row by row after
factorization.

K. : Stiffness matrix

KT : Transpose matrix of K

K"1 : Inverse matrix of K.

L : Lower triangular matrix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XX

M : Mass matrix

neq : Size (dof) of matrix K

ncoef : number of non-zero off diagonal values before factorization

ncoe£2 : number of non-zero off diagonal values after factorization

P : permutation matrix

(PAP1),, = a^,: matrix P permute row 1 with row r and row 2 with row p

R : rotation matrix

s : order of pivoting

T : Triadiagonal matrix

U : upper triangular matrix

UN : non-zero off diagonal values stored row by row after factorization

{x} : displacement vector

XB : Basic variables

: Non basic variables

X° : Starting iteration vector

X ' : optimum design

X, p : eigenvalues

(J>, i|r : eigenvectors

p : shift value

o : step size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

CHAPTER I

INTRODUCTION'

1.1 Overview

The finite element method has been used successfully for the solution of many

practical engineering problems in various disciplines, such as structural analysis, fluid

mechanics, structural optimization, heat transfer etc. [1-5]. Essential to the finite element

solution of these problems is an effective numerical procedure for solving large-scale, sparse

systems of linear equations and generalized eigen-equations. These solution phases typically

represent the most costly step of the analysis in terms of computational resources.

The solution of linear systems of equations on advanced parallel and/or vector

computers is an important area of ongoing research [6-20]. The development of efficient

equation solvers is particularly important for static and dynamic (linear and nonlinear)

structural analysis, sensitivity analysis and structural optimization, control-structure

interactions, ground water flows, panel flutters, eigenvalue analysis, heat transfer etc. [20-

21]. Modem high-performance computers such as Cray-YMP, Cray-C90, Intel Paragon and

IBM-SP2 have both parallel and vector capabilities; thus, algorithms that exploit these

features are highly desirable.

On a single node computer processor with vector capability, it is generally safe to

say that equation solvers based on sparse technologies are more efficient than ones based

on the skyline and/or variable bandwidth technologies. Basic sparse equation solution

'The journal model used is: The International Journal of Numerical Methods in
engineering, IJNM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithms have been well documented in the literature [10-11]. This is especially true for

the cases where the coefficient matrix is symmetric and positive definite. However, for

certain engineering applications, such as coupled analysis for structures with independently

modeled finite element subdomains [21-23], optimization problems, nuclear reactor core

modeling, circuit physics modeling, British gas pipe network distribution problem [8], the

coefficient matrix is symmetric and indefinite. For these engineering applications, pivoting

strategies are often required in order to avoid numerical difficulties during the LDLT

factorization process. Several pivoting strategies have been proposed in the literature [6-

8,10]. These strategies, however, have been mostly developed and implemented for dense

matrix. Only few promising sparse solvers with pivoting strategies, which can handle

medium to large-scale indefinite system of equations, are available in the literature [8].

1.2 Review of Previous Work

For the past 20 years, while the performance of personal computers and workstations

has increased tremendously, there has been an increasing interest in the use o f computers

with vector and parallel architecture for the solution of very large scientific computing

problems. As a result of the impending implementation of such computers, there was

considerable activity in the mid and late 1960's in the development of numerical methods.

Some of these works were summarized in 1971 in the classical review article o f Miranker

[24]. It has only been in the period since then, however, that such machines have become

available. The first supercomputer was put into operation at NASA's Ames Research Center

in 1972, the same year that the first Texas Instruments Inc. Advanced Scientific

Computer(TI-ASC) became operational in Europe, and the first Cray Research Inc. Cray-1

was put into service at Los Alamos National Laboratory in 1976. Since then, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

supercomputers have evolved considerably. As computers grow in power and speed, matrices

grow in size. In 1968, practical production calculations with linear algebraic systems of

order 5000 were commonplace, while a “large” system was one of order 10 000 or more,

[24]. Today, solving a quarter million system of equations on workstation is a common

trend, [20]. A similar trend toward increasing size is observed in eigenvalue calculations.

The challenge for the numerical analyst is to devise the algorithms and arrange the

computations so that the architectural features of a particular machine are fully utilized.

Some of the best sequential algorithms that were unsatisfactory for large scale systems and

needed to be modified or even discarded on sequential machines have had a rejuvenation

because of new technologies such as sparse technology.

Traditionally, one of the most important tools for the numerical analyst to evaluate

algorithms has been computational complexity analysis, i.e, operation counts. This

arithmetic complexity remains an important tool for vector and parallel computers, but

several other factors become equally significant. As we will see , vector computers achieve

their speed by using an arithmetic unit that breaks a simple operation, such as a

multiplication, into several subtasks, which are executed in an assembly line fashion on

different operands. Two techniques for improving the performance of vector computers

involve the restructuring of DO loops in Fortran in order to force a compiler to generate an

instruction sequence that will improve performance. It is important to note that the

underlying numerical algorithm remains the same. The technique of rearranging nested DO

loops is done to help the compiler to generate vector instructions. The other technique,

characterized as unrolling DO loops by Dongarra and Hinds in 1979 [24, 29], was initially

used as a way to force the compiler to make optimal use of the vector registers on the Cray

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

computers. In its simplest form, loop unrolling involves writing consecutive instances o f a

DO loop explicitly with appropriate changes in the loop counter to avoid duplicate

computation. Several examples were given by Dongarra in 1983 and Dongarra and

Eisenstat in 1984, [24, 29], for basic linear algebra algorithms.

In many engineering applications, the most intensive numerical computation is the

solution of systems of equations. These may arise, for example, in finite element procedure

after the assembly. There have been numerous research works in the past two decades in the

direct methods for solving linear systems o f equations, mainly redesigning the Cholesky and

Gaussian elimination algorithms with or without pivoting. Some of the issues considered

were the storage scheme of the matrix, the ordering of the matrix, the vectorization

technique, the ability to reuse data in cache, the amount o f data movement, the memory

access pattern and the pivoting strategies, just to cite a few.

The bulk of the work in Cholesky factorization of a symmetric positive definite

matrix A occurs in a triply nested loop around the single statement

= A ,j ~ (A « A J I A kk (1.1)

By varying the order in which the loop indices i, j and k are nested, we obtain different

formulations for the Cholesky factorization. The various versions of Cholesky factorization

can be used to take better advantage of particular architectural features of a given machine

(cache, virtual memory, vectorization, etc.) [25]. For more details concerning these versions

of Cholesky factorization, consult George and Liu [30].

In some of todays finite element programs for large-scale applications profile matrix

methods dominate. This category includes the skyline, variable band and frontal methods

[10]. The characteristic feature of all these methods is that they only attempt to exploit zeros

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

in the finite element factor matrix outside a certain border. Inside the border, no attempts are

made to exploit the zeros. Some attempts have been made to reduce the number of arithmetic

operations, especially in connection with the variable band method. The main drawback of

the envelope methods is their large storage requirements. This implies that out-of-core

techniques are often necessary for large-scale systems.

The methods used for banded systems do not explicitly deal with the sparsity

structure of the system. For banded matrices, this is not normally necessary because the

matrix fills out to the band during the factorization. However, there are certain applications

which produce very sparse matrices with little exploitable structure, and sparse arithmetic

instructions play an important role. The idea is to store as vectors only the nonzero values,

together with some arrays which indicate the locations of nonzero elements.

As noted by Duff in 1984 [10, 24, 27], for example, the difficulty with vectorizing

a general sparse routine is the indirect addressing. In order to avoid the problem of indirect

addressing in sparse systems, Duff proposed using a frontal technique based on the variable

band or profile scheme suggested by Jennings in 1976 [29]. The multifrontal method,

introduced by Duff and Reid in [25,27], is well documented in the literature. With much of

its work performed within dense frontal matrices, this method has proven to be extremely

effective on supercomputers [25]. Moreover, the multifrontal method is naturally expressed

and implemented as a block method, and several o f the advantages it derives from block

matrix operations have already been explored in the literature: e.g., its ability to reuse data

in fast memory and its ability to perform well on machines with virtual memory and paging

[25].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

While the form of Gaussian elimination for dense matrix is an appropriate starting

point for a new implementation, the architectural details of a particular machine may

necessitate changes to achieve a truly efficient algorithm. Several early papers considered

in great detail the implementation of Gaussian elimination and the Cholesky decomposition

A=LLt on the first supercomputers. The variations of basic algorithms due to machine

differences were summarized by Voigt in 1977 [24].

For banded systems, such as might arise from the discretizations of elliptic equations,

the node points are ordered so as to achieve relatively small bandwidth. We now consider

other orderings that are known to reduce both the number o f arithmetic operations and the

storage requirements for factoring the matrix of the resulting system. This is a very important

issue in sparse matrix technology and constitutes a topic of research on its own. Most of the

algorithms that minimize the fill-in are based on the graph theory. The most popular of these

algorithms are the nested dissection and the minimum degree [30].

The most popular methods used in engineering practice for the solution of a few p

eigenvalues and the associated eigenvectors of large finite element systems are the Subspace

and Lanczos iteration methods. The Subspace iteration method developed and so named by

K.J. Bathe, [1], consists of establishing q starting iteration vectors, (q>p), using simultaneous

inverse iteration on the q vectors and Ritz analysis to extract the “best” eigenvalue and

eigenvector approximations from the q iteration vectors. Altogether, the Subspace iteration

method is largely based on various techniques that have been used earlier, namely,

simultaneous vector iteration (F.L. Bauer and A. Jennings), Sturm sequence information,

Rayleigh-Ritz analysis, and the work of H. Rutishauser [1]. Some advantages of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

Subspace iteration are that the theory is relatively easy to understand and that the method is

robust and can be programmed with little effort.

Lanczos algorithm for solving linear systems of equations and eigenproblems

represent a very important computational innovation of the early 1950's. It became widely

used only in the mid-1970's, [31]. Shortly thereafter, vector computers and massive

computer memories made it possible to use this method to solve problems which could not

be solved in any other ways. Since that time, the algorithms have been further refined and

have become a basic tool for solving a wide variety o f problems on a wide variety of

computer architectures. Golub and O’Leary gave in their 1989 paper an extensive history

of this method, [31]. In his work, C. Lanczos proposed a transformation for the

tridiagonalization of matrices. However, as already recognized by Lanczos, the

tridiagonalization procedure has a major shortcoming in the constructed vectors, which in

theory should be orthogonal, but as a result of round-off errors, are not orthogonal in

practice. A remedy is to use Gram-Schmidt orthogonalization, but such an approach is also

sensitive to round-off errors and renders the process inefficient when a complete matrix is

to be tridiagonalized. If the objective is to calculate only few eigenvalues and corresponding

eigenvectors , the Lanczos iteration can be very efficient.

Karmarkar’s publication in 1984 [32] of the new polynomial-time algorithm for

linear programming drew enormous attention from the mathematical programming

community and generated a lot of research activities during the past 13 years [33-35]. Soon

after Karmarkar’s publication, Gill and co-workers [33], have discovered that there is a close

connection between this new (Karmarkar’s) interior point method (or IPM) and the projected

Newton Barrier methods. The IPM, in the earlier years could not be shown competitive to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

the popular, unbeatable Simplex method [36], due to at least two reasons. First, due to the

computer storage limitations, the size of the problems solved in the late sixties has been

restricted to only a few hundred rows and columns, and for such small sizes, the simplex

method is practically unbeatable. Secondly, it was only at the beginning of the seventies that

a number of highly efficient sparse solvers have become available.

1.3 Objectives and scope

As with many other linear algebra algorithms, devising a portable implementation

o f a sparse solver that performs well both on the broad range o f computer architectures

currently available and for different type of problems is a formidable challenge. Even after

limiting our attention to machines with only one processor, as we have done herein, there are

still several interesting issues to consider. In this work we investigate sparse LDLT Cholesky

algorithms designed to run efficiently on vector supercomputers (e.g., the Cray Y-MP) and

on powerful scientific workstations (e.g., the IBM RS/6000). To achieve high performance

on such machines, the algorithms must be able to exploit vector processors. Moreover, with

the dramatic increases in processor speed during the past few years, rapid memory access has

become a very important factor in determining performance levels on several o f these

machines. To be efficient, algorithms must reuse data in fast memory (e.g., cache) as much

as possible. Consequently, a highly localized and regular memory-access pattern is ideal for

many of today’s fastest machines. The cache size and the level of loop unrolling are

machine-dependent parameters and are input values for the codes that we have developed.

The objective of this dissertation research can be summarized as follows:

- Review major existing profile and banded solvers and their out-of core implementation.

- Develop a robust vector sparse solver for positive definite matrix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

- Develop new pivoting strategy, memory management and sparse solver for highly

indefinite systems.

- Develop and implement a vector sparse Subspace and Lanczos procedure for positive,

negative and indefinite systems.

- Review a version of Karmarkar Interior point Method.

- Develop a sparse version of interior point method by making use of the sparse technology

and developed solvers.

- Develop a vector sparse unsymmetrical solver (unsymmetric in values but symmetric in

locations).

- Solve practical structural analysis and optimization problems in order to evaluate the

accuracy and speed of the developed procedures on different computer platforms.

This dissertation is organized into two parts. The first part consists of developing

robust, efficient and fast solvers and the second part consists of making use of those solvers

in developing efficient eigensolvers and IPM codes. After the introduction in Chapter I,

Chapter II is devoted to developing a vector sparse solver for positive definite systems.

Sparse storage schemes, symbolic factorization, re-ordering algorithms, numerical

factorization, forward and backward solution strategies are discussed. Loop unrolling

techniques are also incorporated into the sparse solver to enhance the vector speed.

Modifications to the Cholesky Oak Ridge solver are also explained.

In Chapter III, a general purpose, robust and efficient (in terms of solution accuracy,

memory requirements, and computational speed) sparse algorithm and the corresponding

computer coding implementations for direct solution of indefinite system of linear equations

are developed. The basic LDLT algorithm for general symmetric coefficient matrix is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

reviewed. Extensions to the case where the symmetric coefficient matrix is sparse are

discussed. An emphasis is put on the coding organization of the algorithm. Pivoting

strategies for the proposed LDLT algorithm for solution of sparse, symmetric and indefinite

matrix are discussed. A restarting management scheme of the proposed algorithm is

explained.

In Chapter IV, we re-examine the two popular eigen-solution algorithms: the

Subspace and Lanczos iterations, incorporating recent developments in vectorized sparse

technologies in conjunctions with Subspace and Lanczos iterative algorithms for

computational enhancements. Basic Subspace iteration algorithm is reviewed. Key steps

in Lanczos eigen-solution algorithm are summarized. Major computational tasks in

Subspace and Lanczos iterative algorithms are identified and computational enhancements

using vectorized, sparse strategies are discussed.

In Chapter V, a version of the interior point method is reviewed, and practical

implementation of IPM is explained. Both the developed solvers for positive definite

systems and indefinite systems are incorporated. The computational enhancements and the

sparse implementation are explained.

In Chapter VI, a vector sparse solver for positive definite unsymmetric systems is

developed. A special sparse storage scheme, modification to the reordering algorithm

(MMD), numerical factorization for unsymmetric matrices and matrix-vector multiplication

strategies are discussed. Vector unrolling in conjunction with the special sparse storage

scheme is incorporated to enhance the vector speed.

In Chapter VII, several test problems have been conducted on different computer

platforms in order to evaluate the numerical performance in terms o f solution accuracy,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

memory requirements and computational speed o f the proposed algorithms and their

associated coding. Finally, conclusions and suggestions for future research are given in

Chapter VIII.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

CHAPTER H

VECTOR-SPARSE SOLVER FOR SYMMETRIC POSITIVE DEFINITE

MATRICES

2.1 Introduction

Let's consider the following system of linear equations

Kx = / (2.1)

For many engineering applications, the coefficient matrix K often has nice properties, such

as symmetry, positive definiteness and sparsity. Matrix K is symmetric when KT = K, where

T means transpose, i.e. when K^Kj,- for all i and j. Otherwise K. is unsymmetric. A

symmetric matrix K is said to be positive definite when y TKy > 0 for any vector y having

at least one nonvanishing component. If two vectors y and z can be found for which

y TKy > 0 and z TKz < 0, then A is said to be indefinite or nondefinite.

A square matrix L is lower triangidar when it has nonzero elements only on or below

the diagonal: Ljj = 0 if i < j and some L,j * 0 for i j, with at least one L,j * 0 for i > j. A

lower triangular matrix is said to be unit diagonal if its diagonal elements are all equal to 1:

L;i = 1 for all i.

A square matrix U is upper triangidar when it has nonzero elements only on or above

the diagonal: U;j = 0 if i > j and some Ufj * 0 for i s j, with at least one U;j * 0 for i < j. An

upper triangular matrix is said to be unit diagonal if its diagonal elements are all equal to 1:

U;i = I for all i.

A necessary and sufficient condition for a symmetric matrix K to be positive definite

is that the determinants o f the n leading principal minors o f K be positive. Also if K is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

symmetric positive definite, a unique Cholesky factorization K=UTU exists or K = U,TD U \

where U is upper triangular with positive diagonal elements, D is diagonal with positive

diagonal elements.

In equation (2.1), the vectors x and f represent the unknown nodal displacement and

the known nodal load vectors, respectively. In general, matrix K can be factorized into

either LDLT or CCT. In the LDLT form, L is a lower triangular matrix with unit diagonal, and

D is a diagonal matrix. In the CCT form, CCT is a non-negative matrix and C is a lower

triangular matrix. The LDLT form requires slightly more computational effort than the CCT

form. In several engineering applications, K is indefinite. In these cases, only the LDLT

form is applicable. Therefore, in our study, an emphasis is put on the LDLT form for

factorization. To solve a system of simultaneous equations, Eq. (2.1), three major steps are

identified:

Step I: Factorization

K = L U = LDL T (2.2)

Step2: Forward reduction:

LDy = f (2.3)

Step3: Back substitution:

L Tx = y (2.4)

In the above three steps, for a single right-hand vector, f, the factorization phase takes much

of (more than 90%) the total computational time compared with the other two steps. Thus,

improvements in solution efficiency should be focused on this part of the calculation. In

some cases, such as the modified Newton-Raphson method for non-linear equation [1] and

inverse subspace iteration for eigenvalue problems, [1], where the stiffness matrix K remains

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

constant for a number of load (or time) increments, computation steps (2) and (3), are

employed repeatedly for different right-hand side vectors f. Therefore, for efficiency,

improvements need to be considered on forward as well as back substitution.

2.2. Sparse storage for the coefficient stiffness matrix

2.2.1 Introduction

Direct methods for the solution of linear equations are equivalent to the factorization

o f the coefficient matrix. For large matrices, the optimization of the memory required to

store the matrix as well as the arrays needed for the solution is as important as the efficiency

of the algorithm. If only small number of equations is involved, then the factorized matrix

can be stored as a full triangular matrix. However, when larger problems are encountered

which do not fit into the machine storage or which involve redundant operations with a

significant number o f zero values, then other storage schemes become advantageous.

Furthermore, to take advantage of the symmetry of the matrix, either the upper or lower part,

is stored in the memory.

Many matrices have a banded structure, in that for every non-zero element â - o f a

matrix K we can calculate the difference |i-j|, and we call the largest of these the half

bandwidth. This can be much smaller than the order of the matrix. It is only necessary to

store the elements o f the matrix within the band.

If the pattern of non-zero matrix elements is observed further, it is seen that the

bandwidth of each row of the matrix is not affected by the Cholesky factorization process,

although many elements within the band which are zero in matrix fC become non-zero in L.

This feature is exploited in the variable bandwidth storage scheme.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

The storage saving achieved by adopting such schemes may still not be sufficient to

store larger matrices in the memory of the machine used. Skyline storage scheme still

contains a large proportion of zero elements. Thus, for better computational efficiency, one

prefers to process and store only the non-zero elements under the skyline profile. There exist

many types of storage format for sparse matrices. The next paragraph describes the format

that has been used in all our computer coding implementation. To illustrate the benefits of

using sparse technology, Table 2.1 compare the solution time and storage requirement for

different type of storage schemes for a 263,574 degrees of freedom finite element car model

[20],

2.2.2 The sparse row-wise format

The sparse row-wise format to be described is the most commonly used storage

scheme for sparse matrices. The scheme has minimal storage requirements, and, at the same

time, it has proved to be very convenient for several important operations such as addition,

multiplication, permutation and transposition of sparse matrices, the solution of linear

equations with sparse matrix of coefficients by either direct or iterative methods, etc. In this

scheme, the values of the non zero elements of the matrix are stored by rows, along with their

corresponding, column indices, in two arrays, say AN and JA, respectively. An array of

pointers IA(l:neq+l), is also provided to indicate the starting locations in AN and JA where

the description of each row begins. An additional array, AD(l:neq) is used to store the

diagonal entries. Here, neq is the order of matrix K and ncoef is the total number of non-zero

off-diagonal elements in the upper triangular matrix K. The dimension of arrays AN, JA is

ncoef. Similarly, the factorized matrix is stored in four arrays UN(l:ncoef2), IU(l:neq+l),

JU(l:ncoef2) and DI(1 :neq) where ncoef2 is the number of non-zeros after factorization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Solver
Type

Full,
Unsymmetrical

Banded,
Symmetrical

Sparse

Storage
Scheme

Full Variable Band Sparse

Memory
Required

neq2=6.97 1010
words

894,427,805 words 88,500,000 words
(ncoef=6,267,099)

Total
Solution

Time
3407 Hours

Out-of-core:2,789sec
Using 8 processors:

298 sec

lOOsec
(-Reordering=44sec
-Numerical Factori-

zation= 43 sec)

Table 2.1 Comparison of solution time and storage requirements for
different storage schemes on a 263,574 dof car model

Fig. 2.1 263,574 degree of freedom Car Model
(source: NASA Langley, Hampton Va)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

To facilitate the discussions in this section, as an example, let's assume the coefficient

matrix K takes the following form

0. 0. 1. 0. 2.

44. 0. 0. 3. 0.

66. 0. 4. 0.

00 00 5. 0.

SYM 110. 7.

112.

In the sparse row-wise storage representation, the data in Eq. (2.5) can be represented as

follows:

lA{\:l=neq+\) = {1, 3, 4, 5, 6, 7, 7 }

JA(1:6=ncoef) = {4, 6, 5, 5, 5, 6}

AD(1:6=neq) = {11., 44., 66., 88., 110., 112.}

AN(1:6=ncoef) = {1., 2., 3., 4., 5., 7. }

where neq: the size of the original stiffness matrix and

ncoef. the number of non-zero, off diagonal terms of the original stiffness matrix.

2.2.3. NASA Form at

The data format of NASA benchmark sparse matrices is a set of six files (or seven

files for eigen-problems) in ASCII format given as follows:

K.INFO : Contains number of equations and coefficients.

(n l, n2, n3, NEQ, NEQ, NCOEF, n7, n8, n9, nlO }

K.DIAG : Contains diagonal terms.

K.PTRS : Contains number of non-zero off-diagonal terms in each row.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

K.RHS : Contains right hand side (load vector).

K l1 .INDXS : Contains column number for each non-zero off-diagonal term.

K11 .COEFS : Contains the real, numerical value of each non-zero off-diagonal term

(in row-wise format).

K.DMASS : Contains the diagonal terms of the mass matrix

For eigenanalysis problems with consistent mass, an additional file, K.CMASS, is also

provided that contains the off-diagonal terms of the mass matrix, with an assumption that

the mass matrix has the same column indices structure as the stiffness matrix.

Let’s consider the system of equations given in Eq.(2.1), with the stiffness matrix

K given in Eq.(2.5) and a load vector {f}=[201, 202, 203, 204,205, 206]. The input data

in NASA format will be given as follows:

K.INFO = { 0, 0,0, 6,6, 6, 0, 0, 0,0 }

K.PTRS = { 2, 1, 1, 1, 1, 0}

Kll.INDXS = {4, 6,5, 5, 5, 6}

K.DIAG = {11., 44., 66., 88., 110., 112.}

Kl 1.COEFS = { l.,2 .,3 .,4 .,5 ., 7. }

K.RHS = {201,202,203,204,205,206}

In the coding implementation of the sparse solver, the input data is read either as

ASCII or binary files in NASA format and the arrays K.PTRS is directly converted into an

array of pointers IA that indicate the starting nonzero location in Kll.COEFS and

Kll.INDXS of each row.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

2.2.4 Fundamentals of sparse matrix technology

In this section we introduce some terms and techniques used in sparse matrix

technology related to the symbolic and numerical processing of sparse matrix, that we will

frequently use in this research work,

a) Merging sparse lists of integers

Merging is equivalent o f using “ OR “ in Fortran symbols. By merging two or more

sparse lists, a new list is obtained. An integer belongs to the resulting list if and only if it

belongs to any of the given lists, and no repeated integers are allowed. This operation of

merging lists of integers is very important in sparse matrix technology because it is

commonly used to form the list of the column indices associated with each of the rows of a

new matrix, obtained by performing algebraic operations on another matrix or matrices

particularly when sparse formats are used. Examples are addition, multiplication and

triangular factorization of sparse matrices. The following example illustrates the concept of

merging. Given these three lists:

list A : 2, 5, 3, 9

list B : 3, 11,9

list C : 5, 2

the resulting merged list, say M, is:

merged list M : 2, 5, 3, 9, 11

The merged list is obtained by inscribing each integer from each of the given lists, provided

the integer was not previously inscribed. In order to determine efficiently whether an integer

was previously inscribed or not, we use an array, often called expanded array or switch array,

say ISWUCH, where a conventional number, the switch, is stored at position i immediately

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

after the integer i has been added to the merged list M under construction. Conversly, before

adding an integer k to the list M, we check whether the value stored in ISWITCH(k) is equal

to the switch or not, and we add k only if it is not.

b) The multiple switch technique

Each time a merging operation starts, the switch array ISWITCH just discussed

should not contain the switch value in any o f its positions. This can be achieved by

initializing the array ISWITCH to zero at the beginning and by using a positive integer as the

switch.

However in sparse matrix technology, merging operations are used to construct the

lists of column indices for say, the neq rows of a neq x neq matrix. In this case neq different

merging operations are required for this purpose, all o f them to be performed using the same

array ISWITCH of length neq as the switch array. Gustavson, [20], suggested we set to 0 the

neq positions of ISWITCH only once, and then we perform the neq merging operations using

each time a different value for the switch parameter. The rule of thumb is to use 1 as the

switch for the first merging operation, 2 for the second , and so on. In this way, when the

first merging operation is started, all positions of ISWITCH contain 0. When the second one

is started, all positions of ISWITCH contain either 0 or 1, which does not conflict with the

use o f 2 as the switch, and so on. Now, neq executions o f the sentence ISWITCH(i)=0 are

required for neq merging operations. There is an average of only one execution of

ISWITCH(i)=0 for each merging operation. The multiple switch technique is also known as

the phase counter technique, [20].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

C) Expanded real accumulator

One considers a row or a column of sparse matrix, only the numerical values of

nonzeros are stored in the computer memory in a real array, say RN, and their corresponding

column numbers in an integer array , say JR. Both arrays are of the same length, which is

much smaller than neq. This storage of a vector by considering only nonzero values is said

to be compact or packed. The numerical value of the nonzeros of the sparse vector can also

be stored in an expanded form in a real array of length neq , say X, as if it were full vector.

The column numbers, however, are stored in the array JR as before for the nonzeros values

only. This type of storage is used only temporarily, usually during the execution of a

program and when certain algebraic operations are to be performed on the vector. The

existence of the array JR allows the algorithm to operate directly on the nonzeros and to keep

the operation count much smaller than neq. In merging lists in the addition of two matrices

A (IA, JA, AN) and B (IB, JB, BN) for example, a symbolic phase is first performed to

determine the positions of the nonzeros or structure of the resulting matrix C (IC, JC, CN).

Knowing the positions of the nonzeros in C (JC), the numerical section of the algorithm is

used to determine their numerical values. This process is not straightforward. If for example

column 2 is the first column number of JC, we will not try to find that index in JA and JB

before the summation, instead we use an expanded storage of the vectors in an expanded

array of dimension neq, say X, often called expanded real accumulator. Finally we retrieve

the nonzeros numbers from X to form CN by using the array of column number, JC, to find

where the nonzeros values are stored in X.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

2.3 Vector-Sparse Gauss Elimination (LDL1) without pivoting

In this section, major building blocks for the development of the basic sparse

algorithms without pivoting are summarized. The “unrolling” strategies for better

performance on vector computers is also explained.

2.3.1 Review of LDLT Factorization algorithm

The Cholesky (or LHJ) factorization is efficient, however its application is limited

to the case where the coefficient stiffness matrix [K] is symmetrical and positive definite.

With negligible additional computational efforts, the LDLT algorithm can be used for

broader applications (where the coefficient matrix can be either positive, or negative

definite). In this algorithm, the given matrix [K] in Eq.(2.1) can be factorized as

[K] = [L] [D] [L f (2.6)

where [L] and [D] are lower triangular matrix (with unit values on the diagonal) and

diagonal matrix, respectively. For a simple 3x3 symmetrical stiffness matrix, Eq.(2.6) can

be explicitly expressed as

* u * 1 2 * . 3 1 0 0

* 2 1 * 2 2 * 2 3 = * 2 .
I 0

* 3 1 * 3 2 * 3 3 . . * 3 1 * 3 2 1

D l
0 0

0 D 2 0

0 0 *>3

1 * 2 , * 3 , '

0 1 * 3 2

0 0 1

(2.7)

The unknown Ly and D; can be easily obtained by expressing the equalities between the

upper matrix (on the left-hand-side) and its corresponding terms on the right-hand-side of

Eq. (2.7). Since the LDLT algorithm will be used later on to develop efficient, vectorized

sparse algorithm, a pseudo-FORTRAN skeleton code is given in Table 2.2 (assuming the

original given matrix [K] is symmetrical and full).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

l.C . Assuming row 1 has been factorized earlier

2 . Do 11 I =2 , NEQ

3. Do 22 K= 1,1-1

4.C Compute the multiplier (Note : U represents LT)

5. XMULT = U(K,I) / U(K,K)

6. Do 33 J = I, NEQ

7. U(I,J) = U(I,J) - XMULT * U(K,J)

8. 33 CONTINUE

9. U(K,I) = XMULT

10.22 CONTINUE

11. It CONTINUE

Table 2.2: Skeleton FORTRAN Code For LDL T
(Assuming the matrix U is completely fidl)

As an example, the implementation of the LDLT algorithm, shown in Table 2.2, for

a given, simple 3*3 stiffness matrix

[.K] =

2 - 1 0

-1 2 -1

0 -1 1

will lead to the following factorized matrix

(2.8)

[U] =

2 - 1/2 0

3/2 -2 /3

1/3

(2.9)

From Eq. (2.9), one can readily identify,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[D] = 3/2

1/3

24

(2.10)

and

[L f =

1 - 1/2 0

1 -2 /3

1

(2.11)

2.3.2 Flowchart of the Vector-Sparse LDLT solver.

The Vector-Sparse solver developed is a collection of subroutines that implement the

LDLT Gauss elimination for matrices stored in a row-wise sparse format. In contrast to

matrix that are stored in a dense, skyline or variable bandwidth fashion, sparse matrix

requires special treatment before factorization. A concept offill-in, the zero term that

becomes non-zero after the factorization process, is introduced. Thus, minimization of fill-in

terms is crucial since the amount of computation is proportional to the total number of non

zeros. The Multiple Minimum Degree, MMD, is used to minimize the fill-ins.

The implementation o f a sparse Gauss elimination procedure can be broken down

into several steps: the symbolic factorization (SYMFA), the numerical factorization

(NUMFA1, NUMFA2, NUMFA8, for loop unrolling level 1, 2 and 8, respectively), and the

forward and backward solution (FBE). An error norm check subroutine is also added to

compute the absolute and relative error norm. The advantage of splitting up the computation

can be seen when several linear systems have identical coefficient matrices but different

right-hand sides, then only one symbolic factorization and one numerical factorization are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

needed. The different right-hand sides only require additional forward/backward operations.

These strategies have also been implemented in the sparse eigensolvers in Chapter IV. Fig.

2.2 gives the flowchart o f the developed vector sparse LDLT Fortran code.

Input Data

No
nreord
\=1 y

Yes

Fill-in Minimization \

Symbolic Factorization

K.* or Fort.*

M M D

Symfa

JU Ordering T ran sa /T ran sa

Master(super) Dof Supnode

Numerical Factorization Num fa 1/2/8

Forward/Backward Fbe

Error Norm Check
Ernorn
Multspa

Stop

Fig. 2.2 Flowchart of the vector-sparse LDLT solver

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

2.3.3 Ordering for Gauss elimination: Symmetric matrices-MMD.

Successful implementation o f a sparse equation solution algorithm depends rather

heavily on the reordering method used. While the Reversed Cuthill-Mckee (RCM), or

Gipspoole-Stockmyer (GS), or Gibbs-King (GK) [30,39], reordering algorithms can be used

effectively in conjunction with skyline or variable bandwidth equation solution algorithms

[30], these reordering algorithms are not suitable for sparse equation solution algorithm.

Ordering algorithms such as minimum-degree and nested dissection have been developed

for reducing fill in factorizing sparse, symmetric matrices. Designing efficient sparse-

reordering algorithms is a big task in itself, and high quality mathematical software

providing efficient implementations o f these algorithms is available [30]. For all the sparse

codes that we have developed, the Multiple Minimum Degree (MMD) is used to reduce

the fill-in.

In the case of indefinite systems, rows and columns switching are performed and the

symbolic factorization cannot be completed before the numerical factorization, thus the fill-

in minimization cannot be guaranteed by using MMD on the coefficient matrix. A different

strategy will be suggested in Chapter III that still takes advantage of MMD.

2.3.4 Sparse symbolic factorization: SYMFA

A sparse matrix algorithm may produce new non-zeros and modify the values of the

existing non-zeros of the coefficient matrix; or it may just use a given matrix without ever

modifying it. The set of new non-zeros elements added to an already existing sparse matrix

is refered to as fill-in terms. Memory allocations for the new fill-in terms must be available.

Storage management rules, which define the internal representation of data structure, must

also be enforced, identifying where and how to store each new number.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

The purpose of symbolic factorization is to find the locations of all nonzero

(including "fills-in" terms), off-diagonal terms of the factorized matrix [U]. Thus, one of

the major goals in this phase is to predict the required computer memory for subsequent

numerical factorization.

To better understand the algorithmic difficulties encountered when a sparse

symmetric matrix (given in an upper triangular form) is factorized, one considers the

example given in Eq.(2.5). ft can be easily shown that the factorized matrix [U] will have

the following form:

x 0 0 x 0 x

x 0 0 x 0

x 0 x 0

x x F

x x

x

[U] = (2.12)

In Eq. (2.12), the symbols "x" and " F " represent the nonzero values after factorization.

However, the sym bol" F " also refers to "Fills-in" effect, since the original value of [K]

at that location has zero entry.

For the same data shown in Eq. (2.5), if the "skyline" equation solution is adopted,

[54], then the "fills-in" effect will take the following form:

x 0 0 x 0 x

x 0 F x F

x F x F

x x F

x x

x

[*,] = (2.13)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

On the other hand, if the "variable-bandwidth" equation solution is adopted [55], then the

"fills-in" effect (on the data shown in Eq. 2.5) will have the following form:

[* J =

x F F x F x

x F F x F

x F x F

x x F

x x

x

(2.14)

Thus, for the data shown in Eq. (2.5), the "sparse" algorithm is the best (in the

sense of minimizing the number of arithmetic operations, and the required storage spaces

in a sequential computer environment) and the "variable-bandwidth" equation solution is

the worst one. On outputs from this symbolic factorization phase, two integer arrays IU

and JU will be used to store the factorized matrix.

IU

1 1

2 3

3 4

4 • _ ■ 5

5 7

6 8

7 =neq+ 1 8

(2.15)

JU

1 4

2 6

3 5

4 ► — 5

5 5

6 6

7 =NCOEF2 6

(2.16)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

The following "new" definitions are used in Eqs. (2.15) and (2.16):

•NCOEF2 : The number of nonzero, off-diagonal terms of the factorized matrix [U]

•IU : Starting location of the first nonzero, off-diagonal term of the factorized

matrix [U]. The dimension for this integer array is neq+1.

•JU : Column number of each nonzero, off-diagonal terms of the factorized

matrix [U] (in a row-by-row fashion). The dimension for this integer

array is NCOEF2. Due to "fills-in" effects, NCOEF2 > > NCOEF.

The "key" steps involved during the symbolic phase can be summarized as follows:

For each i* row of the original stiffness matrix [K]:

Step 1 :Record the locations (such as column numbers) of the original non-zero,

off-diagonal terms

Step 2 :Record the locations of the "fills-in" terms due to the contributions of some

(not all) appropriated, previous rows (where l^j^i-1) Also consider if the

current im row will have any immediate contribution to "future" rows.

In the symbolic factorization, the i* row of the factorized matrix is a merged list (see

Section 2.2.4) of column indices of the i* row of the original matrix (stepl) and column

indices of fills-in due to rows 1 to i-1, that are already factorized (step2). The merge is

done using a multiple switch technique (see Section 2.2.4), that results in an unordered

representation structure. Eq. (2.17) summarizes the above two steps that performs the

symbolic factorization of the i* row.

Colit o f i ,h row o f U = Colit o f i ‘h row o f A + Co lit F il ls- in (2*17)

where Col#: means column index.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

A simple, but highly inefficient way to accomplish step 2 of the symbolic phase will

be to identify the nonzero terms associated with the im column. For example, there will

be no "fills-in" terms on row 3 (using the data shown in Eq. 2.5), due to "no

contributions" of the previous rows 1 and 2. This fact can be easily realized by observing

that the associated 3rd column of [K] has no nonzero terms.

On the other hand, if one considers row 4 in the symbolic phase, then the

associated 4th column will have 1 nonzero term (on row 1). Thus, only row 1 (but not

rows 2 and 3) may have "fills-in" contribution to row 4. Furthermore, since K, 6 is

nonzero (=2), it immediately implies that there will be a "fills-in" terms at location U4 6

of row 4.

A much more efficient way to accomplish step 2 o f the symbolic phase is by

creating two additional integer arrays ICHAINL and LOCUPDATE. ICHAINL(I= l,neq)

is a circular chained list of dimension neq for the i* row. This array efficiently identifies

which previous rows will have contributions to current iIh row. LOCUPDATE(I= l,neq)

updates the starting location of the i* row during the symbolic factorization process.

Besides the two additional arrays ICHAINL and LOCUPDATE, the array IU plays

double roles in the actual computer implementation. At the time the Ith row is being

processed, the row pointers to JU corresponding to the preceding rows are stored in

locations 1 to I-I of IU. The remaining locations of IU are free. Since only column

indices equal to or larger than I will be inscribed in the list JU, the locations I to neq of

IU are used as the multiple switch expanded array (see Section 2.2.4) needed to perform

step 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Considering the data shown in Eq.(2.5), the use of the above two arrays in the

symbolic phase can be described by the following step-by-step procedure:

Initialize arrays : ICHAINL = {0} and LOCUPDATE = {0}

a) Consider Row i = 1

Step 1 :Realizing that the original nonzero terms occur in columns 4 & 6

Step 2 :Since the chained list ICHAINL(i=l) = 0, no other previous rows will

have any contributions to row 1

ICHAINL(4) = 1 (2.18)

ICHAINL(l) = 1 (2.19)

LOCUPDATE(i= 1) = 1 (2.20)

Equations (2.18-2.19) indicate that "future" row i= 4 will have to refer to row 1, and row

1 will refer to itself. Eq. (2.20) states that the updated starting location for row 1 is 1.

bl Consider row i =2

Step 1 : Realizing the original nonzero term(s) only occurs in column 5

Step 2 : Since ICHAINL (i=2) = 0, no other previous rows will have any

contributions to row 2.

ICHAINL(5) = 2 (2.21)

ICHAINL(2) = 2 (2.22)

LOCUPD ATE(i=2) = 3 (2.23)

Equations (2.21-2.22) indicate that "future" row i=5 will have to refer to row 2, and row

2 will refer to itself. Eq. (2.23) states that the updated starting location for row 2 is 3.

C) Consider row i= 3

Step 1: The original nonzero term(s) occurs in column 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

Step 2: Since ICHAINL(i=3) = 0, no previous rows will have any contributions

to row 3.

The chained list for "future" row i= 5 will have to be updated in order to include row 3

into its list:

ICHAINL(3) = 2 (2.24)

ICHAINL(2) = 3 (2.25)

LOCUPDATE(i=3) = 4 (2.26)

Thus, Eqs. (2.21, 2.24, 2.25) state that "future" row 1=5 will have to refer to rows 2,

row 2 will refer to row 3, and row 3 will refer to row 2. Eq. (2.26) indicates that the

updated starting location for row 3 is 4.

a) Consider row i= 4

Step 1 : The original nonzero term(s) occurs in column 5

Step 2 : Since ICHAINL(i=4) = 1 , and ICHAINL(l) = 1 (please refer to Eqs.

2.18-2.19), it implies that row #4 will have contributions from row 1 only. The

updated starting location of row 1 now will be increased by one, thus

LO CU PD A TE (1) = LOCUPDATE (1) + 1 (2.27)

Hence,

LO CUPDATE (1) = 1 + 1 =2 (please refer to E q.2.20) (2.28)

Since the updated location of nonzero term in row 1 is at location 2 (see Eq. 2.28),

the column number associated with this nonzero term is column #6 (please refer to Eq.

2.5). Thus, it is obvious to see that there must be a "fills-in" term in column #6 of

(current) row #4. Also, since K1>6 = 2. (or nonzero), it implies "future" row i= 6 will

have to refer to row 1. Furthermore, since the first nonzero term of row 4 occurs in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

column 5, it implies that "future" row 5 will also have to refer to row 4 (in additions to

refer to rows 2 & 3). The chained list for "future" row 5, therefore, has to be slightly

updated (so that row 4 will be included on the list) as following

ICHAINL(4) = 3 (2.29)

ICHAINL(2) = 4 (2.30)

LOCUPD ATE(i=4) = 5 (2.31)

Notice that Eq. (2.30) will override Eq. (2.25). Thus, Eqs. (2.21, 2.30, 2.29) clearly

show that symbolically factorizing "future" row i= 5 will have to refer to rows 2, then 4

and then 3, respectively.

e) Consider row i= 5

Step 1 :The original nonzero term(s) occurs in column 6

Step 2 : Since

ICHAINL (i =5) = 2 (2.21, repeated)

ICHAINL (2) = 4 (2 .30 , repeated)

ICHAINL (4) = 3 (2 .29 , repeated)

It implies rows #2, then 4, and then 3 "may" have contributions (or "fills-in" effects) on

row 5. However, since Ks 6 is originally a nonzero term, therefore, row 2,4 and 3 will

NOT have any "fills-in" effects on row 5.

f) Consider row i= 6

There is no need to consider the last row i=N =6, since there will be no "fills- in" effects

on the last row.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

It is extremely important to emphasize that upon completion o f the symbolic phase,

the output array JU has to be re-arranged to make sure that the column number in each row

should be in increasing order. This requirement is needed for the numerical factorization.

2.3.5 Ordered and unordered representation-TRANSA.

Sparse matrix representation do not necessarily have to be ordered, in the sense that

the elements of each row can be stored in any order while still preserving the order of the

rows. The symbolic factorization requires the structure IA, JA o f the matrix in an unordered

representation, and generates the structure IU, JU of the factorized matrix in an unordered

representation. However, the numerical factorization requires IU, JU to be ordered, while

IA, JA, AN can be given in an unordered representation. The algorithm that transforms a

row wise representation of a matrix into a column-wise representation of the same matrix,

or vice versa, has a further property that the resulting representation is ordered in the sense

that the column indices of the elements in each row are obtained in the natural increasing

order. Since a column-wise representation of the matrix is a row-wise representation of the

transpose, the algorithm effectively transposes the matrix. Therefore, if the algorithm is used

twice to transpose a matrix originally given in an unordered representation, an ordered

representation of the same matrix is obtained. A symbolic transposition routine, TRANSA,

that does not construct the array of non zero of the transpose structure, has been used twice

to order IU, JU, after the symbolic factorization, since we are only interested in ordering JU.

2.3.6 Vectorization and finding Master (or Super) Degree-of-Freedom(dof)

There exists two approaches in performing vector computations. To illustrate these

approaches, one considers the multiplication of a matrix K by a vector x.

y =[K\x (2.32)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

a) Approach 1: loop unrolling

y i

y2

y„

> — K , K , ... Kc l c2 cn A / Xl + ^ c 2 Xl ' r — + ^ c n X n
(2.33)

b) Approach 2: vector unrolling

V i X , K r l x

y * ► — Z r 2
{ * 1 = '

K r 2 X

A K xrrt

where and Kri (1=1,neq) are column vectors and row vectors respectively.

Loop unrolling strategy was the vectorization technique of our choice. The

following pseudo Fortran coding shows the actual expansion of Eq. (2.33) for loop

unrolling level 2.

The choice of the loop unrolling level depends on the machine used. For example, the

optimal level for the Cray-YMP is 8 and for the IBM 3090 is 16. SUN workstations do

not have vector capability. The basic requirements to apply loop unrolling is the same

vector length. The nonzeros coefficients of consecutive rows must have the same column

indices

We call a block of rows that satisfies the above requirements Master (or super) degree

o f freedom , or simply supernode. To simplify the discussion, assume that upon

completion of the symbolic factorization phase, the stiffness matrix [K] has the following

form:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

DO J = l,N 0 , LOOP (say 2)

DO 1= l.NEQ

Y(Q=Y(R+X(J)*K,(D + X(J+l)*KI+l(I)

ENDDO

ENDDO

c leftover

DO J=N 0+l.N E Q

DO 1 = l.NEQ

Y(I)=Y(I)+X(J)* K; (I)

ENDDO

ENDDO

Table 2.3 Skeleton Fortran coding for loop unrolling

XXX
X X

X

X X X
X X X
X X X

[X] =

XX XX
X X X

x x x F F F
x x x x F

x x x F
x x F

x F

X X

X X

X X

X

X

x F
X X

X X

X X

X X

(2.35)

X X X X

XXX
X X

X

In Eq. (2.35), the stiffness matrix [K] has 14 dof. The symbols "x" and "F" refer to the

original nonzero terms, and the nonzero terms due to "fills-in", respectively. It can be

seen that rows 1-3 have same nonzero patterns (by referring to the enclosed "rectangular"

region, and ignoring the fully populated "triangular" region of rows 1-3). Similarly, rows

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

4-5 have same nonzero patterns. Rows 7-10 have same nonzero patterns. Finally, rows

11-14 also have same nonzero patterns. Thus, for the data shown in Eq. (2.35), the

"Master" (or "Super") degree of freedom can be generated as

1 3

2 0

3 0

4 2

5 0

6 I

7 4=
8 0

9 0

10 0

11 4

12 0

13 0

£ II 0 it /

According to Eq. (2.36), then the "master" (or "super"") dof are dof ft 1 (which is

followed by 2 "slave" dof), dof # 4 (which is followed by 1 slave dof), dof if 6 (which has

no slave dof.), dof # 7 (which is followed by 3 slave dof), and dof # 11 (which is followed

by 3 slave dof).

In the actual Fortran code implementation, the supemode array, MASTER, is

constructed by a series of If checks on consecutive rows. Different strategies can be

adopted for that purpose, and the more rigid the criteria are, the less number of slaves will

be obtained and vice versa. Table 2.4 gives the algorithm used to construct the array

MASTER (in subroutine supnode.f).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

Step 1. Initializaton: MASTER®=1 for 1=1, NEQ

Step 2. To find MASTER®

DO K=2,NEQ

-Check 1: if number of nonzero o f row I from column K. to neq

is equal to number of nonzero of row K

-Check 2: elseif column indices o f row K matches those of row I

= > same master DOF

else

= > stan a new master DOF = K

endif

ENDDO

Table 2.4 Algorithm for finding master DOF

In the algorithm shown in Table 2.4, for finding Master degree of freedom, the enclosed

region ABD shown in Fig. 2.3 is assumed to be fully populated.

a b c
\^C X X Xj O O X X O O O X X O X -row i

\ x X X j O O X X O O O X X O X

\ x X i O O X X O O O X X O X -row k
\ x; o o x x o o o x x o x

f r E

Fig. 2.3 Master Degree of freedom

2.3.7 Sparse numerical factorization with loop unrolling strategies

It is generally safe to say that sparse numerical factorization is more complicated for

computer coding implementation than its skyline, or variable bandwidth cases. Main

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

difficulties are due to complex "book-keeping" (or index referring) process. In this section

we assume that the symbolic factorization and ordering of the structure have been

accomplished and that we have IU, JU in an ordered row-wise upper triangular format. We

are now interested in the numerical part o f Gauss elimination.

Let’s consider the example given in Eq. (2.5). We will assume that the factorization

is completed up to and including row 3, and we will examine how row 4 is processed. Row

4 has non-zeros at column numbers 4, 5 and 6. In order to find their values, we have to

examine column 4, and find that the only nonzero is in the first row o f this column. The

nonzero elements of this first row which have column indices equal to or greater than 4 are

identified. Finally,the partial factorization of the current row 4, due to the contribution from

row 1 is processed.

The "key" ideas in the numerical factorization phase are still basically involved with

the creation and usage of the 2 integer arrays ICHAINL and LOCUPDATE, similar to the

one that has been discussed in great detail in Section 2.3.4. There are two important

modifications that need to be done on the symbolic factorization, in order to do the sparse

numerical factorization (to facilitate the discussion, please refer to the data shown in Eq. 2.5):

a) For symbolic factorization purpose, there is no need to have any floating points arithmetic

calculations. Thus, upon completion of the symbolic process for row 4, there is practically

no need to consider row 2 and/or row 3 for possible contributions to row 5. Only row 4

needs to be considered for possible contributions (or "fills-in" effects) to row 5 (since row

4, with its "fills-in", is already full). For numerical factorization purpose, however, all rows

2, then 4, and then 3 will have to be included in the numerical factorization of row 5. One

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40
can see that the ICHAINL list will be more involved than the one constructed in the symbolic

factorization.

b) For sparse numerical factorization, the basic skeleton FORTRAN code for LDLT, shown

in Table 2.2, can be used in conjunction with the chained list strategies (using arrays

ICHAINL and LOCUPDATE). The skeleton FORTRAN code for sparse LDLT

factorization is shown in Table 2.5. Comparing Table 2.2 and Table 2.5, one immediately

sees the "major differences" only occur in the second do-Ioop indexes, on lines 3 and 6,

respectively.

1. c Assuming row I has been factorized earlier

2. Do 11 I = 2, NEQ

3. Do 22 K= Only those previous rows which have contributions to

current row 1

4. c.......Compute the multiplier (Note : U represents L7)

5. XMULT = U(K,I) / U(K,fC)

6. Do 33 J = appropriated column numbers of row # EC

7. U(1,J) = U(I,J) - XMULT * U(K,J)

8. 33 CONTINUE

9. U(K,I) = XMULT

10.22 CONTINUE

II. II CONTINUE

Table 2.5: Pseudo FORTRAN Skeleton Code For Sparse LDLT Factorization

At the begining of the numerical factorization, ICHAINL array is initialized to zero,

which means that all chained lists are initially empty. To explain the numerical factorization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

phase, let’s consider Fig. 2.4 where row i is being factorized by row L. We assume that rows

1 to i-1 have already been factorized, and ICHAINL array has been consequently updated.

Row 1

- Row L

R ow i-1

R ow i

\

\ Row neq

Fig. 2.4 Numerical factorization: Factorization of row i by row L

The non-zero terms o f row i as well as the diagonal element of the original structure (non

factorized matrix) are loaded into the multiple switch array DI (array that will contain the

diagonal element of the factorized matrix on output) from location i to neq. To factorize row

i, the information on the pointers to rows which have contribution to row i will be retrieved

from ICHAINL array.

Let rUC = locupdate(L), IUC points to the first nonzero element of row L which has

contribution to the reduction (or factorization) o f row i, while IUD points to the last non zero

element of row L. After the above information is collected, the multiplier is computed and

the reduction of row i due to row L can be completed. It is important to note that each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

reduced element of row i is generated and stored in an unnormalized form. It is then

normilized by dividing the value by the corresponding diagonal element. Finally once the

reduction for row i has been completed, the numerical values o f the factorized i* row are

retrieved from the expanded real accumulator (see section 2.2.4) array DI and stored in the

factorized matrix UN. There are two details that are very important: first of all, once the

information IUC is used, the value is directly updated to point to the next non zero on row

L that reduces row i, if any, as shown in Fig. 2.5. Secondly, ICHAINL is updated to include

information o f the “future” row that row i will update . Note also that in the symbolic

factorization, row L was used once and then discarded in constructing the chain list

ICHAINL, it is not the case for the numerical factorization

iucx x

X x X
\

X:— x--------- x

N ext IUC
* Row

Row i

Fig. 2.5 Numerical factorization: Update location of IUC of rowj

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

The portion o f Fortran code in Table 2.6 and Fig. 2.4 show how, in the actual Fortran

implementation, the chain list ICFIAINL is constructed during the numerical factorization.

Two cases are considered, the first time a row is inserted in the chain list and the case of a

row inserted in an existing chain list.

J=JU(IUC+1) '.Column index of the next non-zero term in row L

JJ=ECHAINL(J) .Get information

IF (JJ.EQ.O) GO TO 70 JJ=0 means L is the first row involved in updating J

ICHAINL(L) = ICHAINL(JJ) -JJ*Q Insert L in the existing chain list

ICHAINL(JJ)=L

GO TO 80

70 ICHAINL(J)=L JJ=0 first time

ICHAINL (L)=L

80 IF(L.EQ.LAST) End L =last means no more rows that update row i

Table 2.6 Numerical Factorization: ICHAINL update

The vector unrolling, and loop unrolling strategies that have been successfully

introduced for skyline [54] and variable bandwidth [55] equation solver, can also be

effectively incorporated into the developed sparse solver in conjunction with the “master”

degree of freedom strategy. Referring to the stiffness matrix data shown in Eq. (2.35), for

example, and assuming the first 10 rows of [U] have already been completely factorized, our

objective now is to factorize the current i* row (say i= 11). By simply observing Eq.(2.35),

one will immediately see that factorizing row # 11 will require the information from the

previously factorized row numbers 1,2,3,6,7,8,9, and 10 (not necessarily to be in the stated

increasing row numbers!) in the "conventional" sparse algorithm. Using "loop-unrolling"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

sparse algorithm, however, the chained list array ICHAINL will point only to the "master"

dof# 6, # 7 and# 1.

The skeleton FORTRAN code for LDLT (with sparse matrix) should be modified as

shown by the pseudo, skeleton FORTRAN code in Table 2.7. Comparing Table 2.5 (sparse

LDLT factorization) and Table 2.7 (sparse LDH factorization, with unrolling strategies), one

can recognize the many similarities between the 2 sparse algorithms.

1. c Assuming row I has been factorized earlier

2. Do II 1=2,NEQ

3. Do 22 K.=Only those previous "master" rows which have contributions to

current row i

4 .1c Compute the multiplier(s) (Note: U represents L7)

4.2 NSLAVE DOF= MASTER (I) - I

5.1 XMULT = U(K,I) / U(K,K)

5.2 XMULm = U(K+m,I)/U(K+m,K+m)

5.3c........m =I,2... NSLAVE DOF

6 Do 33 J = appropriated column numbers of" master " row # FC

7.1 U(I,J) = U (I,J) - XMULT * U(K,J)

7.2 - XMULm *U(K+m,J)

8 33 CONTINUE

9.1 U(K,I) = XMULT

9.2 U(K+m,I) = XMULm

10. 22 CONTINUE

11 11 CONTINUE

Table 2.7 : Pseudo FORTRAN Skeleton Code For Sparse LDLT Factorization With

Unrolling Strategies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

The chained list strategies discussed earlier in Section 2.3.4 need to be modified

in order not only to consider all rows that contribute to the factorization of row i, but also

to include the additional information provided by the MASTER dof (refer to, for example,

Eq. 2.36). The major modification that needs to be done can be accomplished by simply

making sure that the chained list array ICHAINL will be pointing only toward the

MASTER dof (and not toward the slave dof !). On the other hand, LOCUPDATE array

is updated for the whole supemode (or master node, or master dof); thus, all rows that belong

to the same supemodes will have the same IUC value.

Different levels o f loop unrolling have been implemented, such as level 1

(NUMFA1), level 2 (NUMFA2) and level 8 (NUMFA8). Let’s consider an example o f a

matrix for which the 27 rows, from row 20 to row 46, have same column numbers, or in

other words, MASTER(20)=27 as shown in Fig. 2.6. Assuming that we are using loop

; R ow 20

, R ow 21

R ow 36

R ow 44

Row 46

\

v
D N

Fig. 2.6 Numerical Factorization: loop unrolling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

unrolling level 8, the nonzeros in rectangular BCDE of Fig. 2.6 of the 27 rows will be

factorized 8 rows at a time, leaving a leftover o f 3 rows (rows 44 to 46), which will be

factorized separately using a loop unrolling level 3. Finally the non zero terms in the

triangular ABD will be factorized separately. Table 2.8 gives the order in which the

vectorization has been implemented in NUMFA2 and NUMFA8.

2.3.8 Forward and backward solution

For a single right hand side vector f, the time for forward reduction and back

substitution is very small as compared to the time for numerical factorization. However, for

1=1
1000 continue

11= isupnode(I)

K=(II/LOOP)*LOOP

Do J=l, K, LOOP (say 8)

Factorization with loop unrolling level 8

ENDDO

c leftover

GO TO (10,20,30,40,50,60,70) II-K

10 unrolling level l(doj=l,k)

20 unrolling level 2 (do j= I,k,2)

70 unrolling level 7 (do j= l,k ,7)

I = I + II (for next master dof)

IF (I.GE.NEQ) STOP

GOTO 1000

Table 2.8 Fortran Skeleton code for the vector portion of Numfa2/8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

multiple right-hand-side vectors f, or for cases where the vector f needs to be modified

repeatedly, the time for forward reduction and back substitution has to be considered more

seriously.

2.3.7 Sparse matrix-vector multiplication (with unrolling strategies)

In the sparse equation solver that has been developed, after obtaining the solutions,

the user has the option o f computing the relative error norm. For the error norm

computation, one needs to have efficient sparse matrix (with unrolling strategies) vector

multiplication. Furthermore, efficient sparse matrix-vector multiplication is also required

in different steps of the Subspace and Lanczos algorithms (see Chapter IV). To facilitate the

discussions, let's consider the coefficient (stiffness) matrix as shown in Fig.2.7. This 14 dof

matrix is symmetrical, and it has the same nonzero patterns as the one considered earlier in

Eq. (2.35). The master/slave dof for this matrix has been discussed and given in Eq. (2.36).

Refering to Fig 2.7, the sparse matrix-vector [A]*{x}, multiplication (with unrolling

strategies) can be described by the following step by step procedure:

Step 0.1 : Perform multiplication between the given diagonal terms of [A] and vector

{x}.

Step 0.2 : Consider the first "master" dof. According to Fig. 2.7, the first master dof

is at row # 1, and this master dof has 2 associated slave dof. In other words, the first

3 rows of Fig. 2.7 have the same off-diagonal, nonzero patterns.

Step 1 : The first 3 rows (within a rectangular box of Fig. 2.7) of given matrix [A]

operate on the given vector {x}.

Step 2 :The first 3 columns (within a rectangular box) of the given matrix [A]

(shown in Fig. 2.7) operate on the given vector {x}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

Step 3 :The upper and lower triangular portions (right next to the first 3 diagonal

terms o f the first 3 rows of the given matrix [A] operate on the given vector {x})

Step 4 :The row number corresponding to the next "master" dof can be easily

computed (using the master/slave dof information, provided by Eq. 2.36).

If the next "master" dof number exceeds N (where N = total number of dof of the given

matrix [A], then stop, or else return to Step 0.2 (where the "first" master dof will be replaced

by the "second" master dof etc.)

Th ird Step:

The upper an d lo w e r tra in g u la r reg ion

w ill f in a lly be p r o c e s se d

1 2 3 4 5 6 7 8 9 10 11 12 13 14 First Step

1 101. ' I. 2. 3. 4. 5. " 6. 7. 8".~ ~ These 3 rows

2 r 102. 10. 11. 12. 13. 14. 15. — w ill be processed

3 2. 103. 16. 17. 18. 19. 20. 21 - 1 D ot Product Operations)

4 104. 22. 23. 24. 25.

5 22. 105. 26. 27. 28.

6 3. 10. 16. 106. 29. 30. 31.

7 23. 26. 29. 107. 32. 33. 34. 35. 36.

8 24. 27. 30. 32. 108. 37. 38. 39. 40.

9 4. 11. 17. 33. 37. 109. 41. 42. 43.

10 5. 12. 18. 34. 38. 41. 110. 44. 45.

u 6. 13. 19. 111. 46. 47. 48.

12 46. 112. 49. 50.

13 7. 14. 20. 25. 28. 31. 35. 39. 42. 44. 47. 49. 113. SI.

14 8. 15. 21. 36. 40. 43. 45. 48. 50. SI. 114.

i I I

Secon d S tep :

These J co lu m n s

w ill be p r o c e s s e d

(SAXPY o p era tio n s)

Fig. 2.7 : Sparse Matrix-Vector Multiplication With Unrolling Strategies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

2.4 The Modified Oak-Ridge sparse equation solver, [25]

2.4.1 Introduction

The modified Oak-Ridge solver, which we will refer to as OakRidgeODU solver, is

a collection o f routines that solves a user’s sparse, symmetric, positive definite linear

systems via sparse Cholesky factorization (given in NASA sparse format). The user has the

option o f solving the matrix in its original format or to use the multiple minimun degree

routine for the fill-in minimization. The original code, [25], was a set of drivers and routines

that creates and solves only an artificial graph of a coefficient matrix and does not allocate

and deallocate memory in an efficient manner. The modification consists of developing

drivers that will read in and solve a user given matrix (in NASA format). Thus three

subroutines have been developed. The first subroutine reads in the structure of the matrix

in NASA format and constructs the adjacency structure. The second routine inserts the

diagonal elements into the structure and creates the numerical values in the order required

by the Oak-Ridge format. Memory is assigned from a single working array in the main

program. No additional memory was added and all the above added routines will recycle the

memory allocated during the factorization phase. The third routine is a normcheck

subroutine that computes the absolute and relative error norm, making use of the sparse

matrix by vector (multspa.f) multiplication.

The OakridgeODU solver has also built in the capability of making use of different

sizes of the cache (in Kilobytes) on the target machine. For most machines (such as SUN

Sparcstations), the optimum cache size is probably 32 or 64. For Cray type computers, the

optimum cache size is 0. A study of the optimal cache size has been done using the

developed solver.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

2.4.2 The OakRidge data format

The original data is read in NASA format on input either as ASCII or binary. The

adjancy structure (or matrix connectivity information) is constructed in subroutine

Oakmain.f, and the structure o f the matrix is copied and kept in another location, since the

minimun degree ordering routine will destroy the original structure on exit. The structure

o f the non-zero coefficient in the solver, ANZ, is sparse row wise, complete and includes the

diagonal values. Considering the example in Eq.(2.5), The values of ANZ are constructed

row by row in the following order: The first value (in boldface) is the diagonal value

followed by the lower diagonal values (underlined values) and then the upper diagonal values

o f each row, as shown in Eq. (2.37).

ANZ =[11. 1. 2.
44. 3.
66. 4.
88. L 5.

110. J . A

112. _ 2 i _ L

2.4.3 Modification of the OakRidge solver

Fig. 2.8 gives the flowchart of the modified OakRidge solver. The solution process

consists of a sequence of six distinct steps after inputting the data in NASA format: Adjancy

structure, ordering, symbolic factorization, numerical factorization, Forward/Backward

solution and the error norm check. The minimum degree algorithm is used to reduce the fill

and work required by the factorization. An option of using the so-called "natural ordering",

which is the initial ordering of the coefficient matrix, is also introduced. The symbolic

factorization generated the compact data structure in which the Cholesky factor will be

computed. The routine uses the efficient algorithm based on elimination trees in sparse

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

^ /In p u t Data

Construct Adj. ANZ Oakmain.f

AIcase= l \

Fill-in Minimization

Symbolic Factorization

Insert Numerical Values in
Data Structure

Numerical Factorization

y
Forward/Backward Solution

y
Error Norm Check

~ z y ~

Ordmmd.f

Sfm it.f
Sym fct.f

Pierrot.f

B finit.f
B lkfct.f

B lkslv.f

Enorm.f
M ultspa.f

Stop

Fig. 2.8 Flowchart of the OakridgeODU Solver

factorization. The symbolic factorization is performed in two steps. The first step calls

routines that implement the initialization, and the second step computes the primary

symbolic factorization data structure. The numerical factorization computes the sparse

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

Cholesky factor within the data structures created in the symbolic factorization phase. The

left-looking block sparse Cholesky factorization algorithm has been implemented. The

routine, blkfct.f, that performs the sparse block Cholesky factorization is preceded by a

routine, bfinit.f, that initializes for the block factorization. The performance o f this routine

has been enhanced by exploiting the memory hierarchy: it operates on blocks o f columns

known as supemodes; it splits supemodes into sub-blocks that fit into available cache; and

it unrolls the outer loop o f matrix-vector products in order to make better use o f available

registers. The Forward/Backward phase performs the triangular solutions needed to solve

the linear system.

2.4.4 Reuse of data in fast memory: CACHE

For machines with one processor, several other issues can be considered to improve

the performance besides vector processing. With the continuous increase in processor speed,

rapid memory access has become a very important factor in determining performance levels

on several machines. To be efficient, algorithms must reuse data in fast memory (e.g., cache)

as much as possible.

Let’s consider a supemode that contains K columns/rows and which affect the

reduction (or factorization) of J rows of the matrix. Let’s define task(j,k), the modification

o f column/row j by a multiple of column/row k, k<j. One would like to consider the

computation of the update (or factorize) of columns/rows J by columns/rows K. during the

Cholesky factorization. Suppose the operation updates q columns/rows o f J with the

columns/rows of K. The number o f columns/rows updated may be as few as 1 or as many

as |J|. We can compute task(J,K) as a sequence of updates task(j,K) for the q columns/rows

jeJ. If the columns/rows of K, which happened to be stored contiguously in main memory,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

fit into cache memory, then the first task(j,K) loads the columns of K into cache, while the

following q-1 tasks will have extremely fast access to this data because it is already in cache.

Quite often, however, the columns/rows of a supemode do not fit into the 32K or 64 K

caches used on current workstations. This can dramatically increase the number o f cache

misses used associated with the final q-1 tasks, as the columns/rows of K. overwrite one

another as they are repeatedly read into cache. To avoid this problem, the algorithm divides

large supemodes into “ panel” of contiguous columns/rows that fit into the cache. This

simple strategy has proven effective for certain classes of problems, machines, and

factorization methods used. Extremely large problems, however, may require more

complicated techniques that involve both horizontal and vertical partitioning and perhaps

even changes in the data structure used to store that factorized matrix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER m

54

VECTOR SPARSE SOLVER FOR INDEFINITE MATRICES

3.1 Introduction

For certain classes of engineering and science applications, the symmetric coefficient

matrix is not positive definite; instead, it is indefinite. Cholesky and LDLT methods are fast

and stable, and they preserve symmetry when the matrix is positive definite. However, when

the matrix is indefinite, these methods can produce very inaccurate results and fail to give

warning of what has occurred. It is therefore usual to recommend Gaussian elimination with

partial or complete pivoting for indefinite systems, and in most cases the symmetry o f the

matrix is of no advantage.

Gaussian elimination with pivoting consists of switching rows and columns,

operations that can be associated to a permutation matrix. There are two well known

strategies for choosing permutation matrices such that Gaussian elimination will provide

numerical stable solution. The first strategy, called complete pivoting, requires that we bring

the largest element in the reduced matrix into the leading diagonal position. This strategy

is called complete pivoting since we search the entire reduced matrix. The second strategy,

called partial pivoting requires that we bring the largest element in the first column o f the

reduced matrix into the leading diagonal position. This strategy is called partial pivoting

since we search only a part of the reduced matrix.

For positive definite systems, there is a choice of data structure. Either it may be

prepared before numerical factorization starts, or it may be developed during the numerical

factorization keeping pace with the stream of computed numbers. A data structure which is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

ready before initiation o f numerical factorization is termed a static structure. Preparing it

requires knowledge of the number of non-zero elements and of their positions in the matrix

before they are actually factorized. The vector sparse solver for positive definite systems

developed and presented in Chapter 2 uses a static structure. Static schemes present more

advantages such as modularity, the symbolic and numerical steps are executed separately and

consequently they can be independently optimized. Another advantage arises in the case of

applications which require the repeated use o f the same algorithm with different numerical

values (same nozeros locations but different numerical values). Unfortunately, static data

structures cannot be employed for indefinite systems. Since Gauss elimination with pivoting

is used, selecting pivots using techniques such as complete pivoting, partial pivoting, or

threshold pivoting amounts to permuting rows and columns, which in turn affects the

location and total amount of the resulting fill-in. The consequence is that the structure of the

final matrix cannot be foreseen, and decisions as to where and how to store each new fill-in

non-zeros element must be made when that element has already been computed and is ready

for storage. This procedure is called dynamic storage allocation and a dynamic structure

results.

We have developed a sparse indefinite solver, the ODU-HKUST indefinite solver,

with a dynamic structure,[63]. The solver uses a mixed algorithm that combines the look

backward (or left looking, if lower matrix is used) and look forward (or right looking, if

lower matrix is used) factorization strategies. Until the first “sick” row (a row which has

nearly zero diagonal value during factorization) is encountered, the elimination is performed

by looking backward and then looking forward strategies. The symbolic and numerical

factorization are done simultaneously in a row after row fashion. Different pivoting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

strategies have been developed that include those suggested by Golub, [6], and Ian Duff et

al., [8]. Pivoting is performed using lx l or 2x2 pivoting. The use of a rotation matrix,

developed by Chen Pu [63], is introduced to diagonalize the 2x2 diagonal submatrix,

avoiding the difficulties of performing Gauss elimination with coupled rows. The use of lx l

and 2x2 pivoting can be computational expensive. It involves permutations of rows/columns

and may increase the fill-in of the remaining matrix. Concepts of weighted pattern matching

o f rows to be permuted and consecutive search strategy are introduced. In the following

sections, we will explain first the pivoting strategies used and then we will describe the

factorization procedure of the indefinite system adopted every time a sick row is encountered

(the restarted procedure).

3.2 Symmetric indefinite systems - Pivoting strategies

3.2.1 Introduction

Although an indefinite matrix A may have LDLT factorization, the entries in the

factor could have any arbitrary magnitude:

6 1 1 0 6 0 1 0

1 0 1/6 1 0 - 1/6 1/6 1

In the above equations, some terms of [L] and [D] can be extremely (and therefore

arbitrarily) large, and/or extremely small. Of course, any pivoting strategy could be invoked.

However, they destroy symmetry. Symmetric pivoting, i.e., data reshuffling of the form

Ap «= P A P T (3.2)

must be used, with P as permutation matrix for this system. Unfortunately, symmetric

pivoting does not always stabilize the LDLT factorization computation. If e, and e2 are

small, then regardless of P, the matrix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has small and large diagonal entries, and large numbers surface in the factorization. With

symmetric pivoting, the pivots are always selected from the diagonal and trouble results if

these numbers are small relative to what must be zeroed off the diagonal. Thus, LDLT with

symmetric pivoting can not be recommended as a reliable approach to solve symmetric

indefinite systems [6]. One of the challenges is to involve the off-diagonal entries in the

process while at the same time maintaining symmetry. A second challenge lies in how to

take into consideration the sparsity structure o f the matrix during the factorization with

pivoting and in how to design an efficient Fortran code. The first challenge was solved by

mathematicians in the 1970's [6,7] using either 2x2 pivoting strategies or LTLT factorization,

where T is a symmetric tri-diagonal matrix.

3.2.2 Pivoting strategies

There have been a number of pivoting strategies suggested in the literature, but most

of them either destroy the symmetry structure of the matrix or fail to solve a wide range of

large scale indefinite systems. New strategies are suggested and combined with the ones

suggested by Golub, [6], and Duff et al, [8], for symmetric indefinite system. Let’s assume

that the numerical difficulties happen at the first step of the reduction (first row to be

factorized). The pivoting strategies are summarized in Table 3.1. In Table 3.1, s is the order

o f pivoting, i.e., s = 1 implies diagonal pivoting and s = 2 implies 2x2 pivoting.

The formula to compute the parameter a (alpha) given in Table 3.1 was suggested

by Golub, [6]. In our implementation we found that the value guarantees an accurate result

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

a = (1 +v/l7)/8 and A.= I a,r I = max off-diagonal o f row 1......(A)
if A> 0

if la,, I ôcA.. (B)
s = I; P = I
else

0 = 8,,, = max off-diagonal o f row r(C)
ifo | a,,| z aA.2.. (D)

s = 1; P = I ... (E)
else if | arT | z a a .. (F)

s = 1 and choose P so (PAP7) ,, = a„............. (G)
else if |app| z a a ... (H)

s = 1 and choose P so (PAP7) u = (1)
else

s = 2 and choose P so (PAP7) , ; = a^............ (J)
end if

end if
end if

Table 3.1 Pivoting strategy for symmetric indefinite system

a ,r = m ax o ff-d ia g

pp

R ow I

R ow r

pp R ow p

Fig 3.1 Indefinite Solver: Pivoting strategy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

but was not the optimum in terms of performance. The value of a affects the number of lx l

and 2x2 pivoting needed during factorization. Different values were suggested and a

relaxation control parameter, stiff, was also added.

Before taking sparsity into consideration, let us define what is a good diagonal

pivoting and what is a good 2*2 pivoting. According to Table 3.1, if | a,,| ^ aA. or

l^aA ./|au |, then au is a good diagonal pivot, otherwise a,, is what we will call a sick pivot,

and row 1 will be referred to as a sick row. The condition shown in (D) Table 3.1 can be

derived as following :

From the definition o f a (see Eq. C), one has |a j < o. Thus |a,,| |a j s |an| a. From

the definition of A, (see Eq.A), and from Fig. 3.1, one would like to have [a, ,| |a j ^ A.2 .

Thus A.2 s |a,,| |a j £ |a,,[a or A,2 £ |a,,| a. Hence a A.2 s |a,,| o or |a,,| a A.2 (since a

<1, according to Eq. A). Eq.(I) of Table 3.1 indicates that row/column 1 will be exchanged

with row/column p, while Eq.(J) indicates that rows/columns I and 2 will be exchanged with

rows/columns r and p, respectively.

Similarly for a 2x2 pivoting, let us split matrix A as follows:

A =
\AU A2\

A2, A21
(3.4)

Following the criteria by Duff and Reid, [8], submatrix A,, 6 R 2*2 is a good pivot, if

u u i r 'A * '
a ' 1 . I y I

, with A = | |a s the maximum absolute row values of AT2I, or in other

words, this condition is equivalent to:

Idetf u | * a (|a22|Y + |a12||x)

|deU„| * a |a12|Y+|an |n) (’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

where y = max|a..| and \i = max \a .. | are the row maximum absolute value of
. . . 'j . . ./yj-l /»/j-1

submatrix AT21 shown in Eq.(3.4) and the submatrix A n =

found to be a good 2*2 pivot, matrix A can be factorized as:

a n °12

a2l °22
. Once A , , e R -x- is

A = An A T 21 I Dn TI L?x

A2l A22 l 2X I A22 i
(3.6)

with

D u = A n

-i
^21 A21D U

A 22 A22 L21D u L2X

(3.7)

(3.8)

(3.9)

and where the partial reduced matrix A22 needs further factorization.

3.2.3 Weighted pattern matching strategy

The use of pivoting strategies usually degrades the performance. We use pivoting

for the stability it induces, but despise it for the structure that it can destroy. The use o f lx l

or 2x2 pivoting in Table 3.1, once a sick row is detected, implies switching rows and

columns, and consequently modifying the sparsity structure of the matrix and in most cases

resulting in an increase of the number of fill-in. Therefore, pivoting should be used as a last

weapon.

One of the ideas that we came up with before switching rows and columns was to

compare column indices o f rows to be permuted, if they match to a certain percentage (say

90 % matching): we call this weighted pattern matching (this idea is based upon the

supemode or master node, which has already been introduced in Chapter 2). Two rows that

have to be permuted, even though they are numerically stable, may introduce new fill-in after

permutation. A second idea was to check the numerical stability of row sick+1 and make

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

use of it: we call this consecutive search strategy. Pattern matching plays an important role

in minimizing fills-in. If we take into consideration the desire to keep the sparsity structure

of the matrix, our criteria for a good sparse diagonal pivoting and/or 2>«2 pivoting should

consider the following observations:

• The non-zero off-diagonals of two rows to be interchanged, in symmetric permutation,

should have similar non-zeros pattern, so that the sparsity will not change much. The

similarity can be determined by the ratio between the number of column indices that match

between the rows to be interchanged.

• The factorization of L21 = A2ID‘‘ given in Eq. (3.8), introduces additional fill-ins due to

the coupling of the two rows in AT21. In other words, the non-zero locations of any row in

submatrix AT21 are non-zero locations of rows in LT2, So, in addition to the numerical

requirement of a 2*2 pivoting, the two rows in submatrix AT2, should have similar pattern,

so that less fills-in will be generated.

• The distance interval between interchanged rows plays an important role. It should be as

near as possible, so that less search in the matrix will be needed. But this is not always

desired. In some cases, the sick row is desired to be permuted to a row at far end, because

near permutation causes sickness at neighborhood.

Suppose Isick is the row that is sick and will be permuted with row Irowll. We call

the distance interval between Isick and Irow ll: jpivot as shown in Fig.3.2. A parameter

jpivot (distance between Isick and Irowll) was introduced to control and limit how far we

should search for a good row to switch with the sick row Isick. Row Irowll should be

numerically stable and should have almost the same pattern as Isick. The idea of pattern

matching is important because if rows Isick and Irowll do not have the same pattern, by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

permuting them they may introduce more fill-in. If jpivot is small, meaning that row Irowll

is near Isick, the search will be small, but we will have to restart the procedure many times.

On the other hand, if jpivot is big, the sickness appears later but we have to do a lot o f

search-row comparisons. Thus one can see that there is a decision to be made. In our code,

jpivot is an input parameter.

Lsiclc

Lsiclc+1

jpivot

Irowll

IrowI2

Fig. 3.2 Indefinite Solver: pattern matching

Taking into consideration the above discussions and the impact on the fill-in o f the

sparse matrix, Table 3.2 gives a summary of the pivoting strategies that was implemented

in our indefinite solver. The row index jb takes into consideration the distance jpivot, in

determing from which row to start searching for the row that will switch with the sick row.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

if a, i is a good diagonal pivot
s = 1; P = I; exit

else
do j = jb , neq

If ajj is a good diagonal pivot and
non-zero pattern o f row j similar to row 1
s = 1; choose P so (PAPT)U = â -; exit

else i f submatrix is good 2*2 pivot and

non-zero pattern o f row j similar to row 1
s = 2; choose P so (PAPT),2 = a(j-; exit

end if
end do
use Table 3.1 determine the pivot
end if

Table 3.2 Pivoting Strategy for sparse symmetric indefinite system
with Pattern matching

3.2.4 Rotation matrix, [63]

In the look backward (or left looking) Fortran coding implementation, it is not

convenient to insert a 2x2 diagonal block matrix D, although it is possible. Since the

submatrix Du e R2‘2, shown in Eq. (3.7), is a non-diagonal matrix, factorizing tire subsequent

rows, after the 2x2 pivoting, requires special manipulations. The previous rows that

contribute to the factorization of row j can be processed one row at a time, with the exception

o f the 2x2 block Dn. Thus, it is desirable to diagonalize the 2x2 block through a rotation

matrix R so that the factorization can resume one row at the time, avoiding then the

inconveniences of using D ,,. Matrix D,, can be diagonalized as follows:

D u = R D ^ R 1- (3.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

with

R =
co s0 -s in 0

sin 0 co s0
(3.11)

Thus, Eq (3.6) can be rewritten as

^11 A T 21 R D u r t r tl 21

^21 A 22
L1XR I

A k I
A =

Denote L2l = L2lR , we can now factorize

• t • • «r
^ 2 2 = A 22 ~ ^ 2 l ^ 11-^21 =J^ 2 2 ~ ^ 2 \ ^ \ \ ^ 2 \

in the conventional way. In fact, by previously transforming

■̂21 A2l^

(3.12)

(3.13)

(3.14)

^ s ic k -1 j i c k * I .n e t * I

the factorization for A22 can be processed in row-by-row fashion

3.2.5 Consecutive search strategy

The consecutive search strategy consists o f checking the numerical stability of

, if the submatrix is a suitable pivot and applies the rotation matrix. There

is no interchange of rows involved. If the 2x2 pivot is not good, then one checks the stability

o f the diagonal value, aSI-ck+ljsI-cl.+„ and exchanges it with the sick row. In this case sick+1

row is a suitable pivot, and then the sickness pointer is reset to sick+l. If (is not

a suitable pivot, then we have to resort to the criteria in Table 3.1.

When we switch the sick row with the following sick+1 row, the value of asictsick+1

does not change its location. On the other hand, after applying the rotation matrix, the

pointer IUP (see definition in Chap. 2) to the first nonzero off diagonal value that reduce

subsequent rows and the associate chain list will not change

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

When a sick row is detected and the consecutive search strategy can be applied, we

say that we have a recoverable sickness and the look backward factorization can resume

otherwise it is an unrecoverable sickness and the look forward factorization will procede.

3.3 Symmetric indefinite systems - Restarting

In Section 3.2, we have discussed pivoting strategies of symmetric indefinite

systems, how to determine that a row is sick and suggested different strategies taking into

consideration the sparsity structure of the matrix. So far, the first row is considered to be

sick. In most real applications, the sickness may not occur at the beginning of the system.

The code that we have developed uses a mixed look backward and look forward factorization

procedure. Assume that row m+1 becomes sick in the factorization process, the first m rows

will be factorized (looking backward strategy), and the procedure will restart from m+1

(looking forward strategy). Let us split matrix A accordingly as follows:

A =
B u * 2 1 m

B2X B22 . n (3.15)

m n

with Bu e Rm*m and B22 e Rn*n- The submatrix B,, can be factorized into LDLT form

A =
B u *21 L n \l t l t ^11 21

B22 2? 22 /

where

(3.16)

-1
21

(3.17)

(3.18)

(3.19)

Here Du is a block diagonal matrix. Its diagonal consists o f lx l and/or 2x2 pivots.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Sickness at sick row = m+1 implies that the first row of the partially reduced submatrix i?22

is sick. The pivoting strategies discussed in section 3.2 can be applied to that matrix. In fact

the whole process will restart at sick row= m+1. The matrix 5 22 is called partial reduced

matrix or simply partial reduction. The restarting procedure can be outlined as in Table 3.3.

A(0) = A
sick = I
do while (not the end o f system)

factorize or partially factorize A(k)
if (sickness detected) then

Anc/> = B *n o f A(k)
find pivots and permutations
permute Ap(k+I) = P<k)An<:w(k,P (k)T

end if
end do

Table. 3.3: Indefinite Solver: Restarting Procedure

Until the first sick row is detected, the look backward row by row factorization (or left

looking column by column factorization) is used. This corresponds to portion ABCD in Fig.

3.3, for which the elimination has been completed. The process is then restarted for portion

CDE. For this portion a look forward row by row factorization (or right looking column by

column factorization) is performed and the following tasks are executed.

• Simultaneous symbolic and numerical factorization

• Partial reduction

• Pivots searching

• Data management

• Permutation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

A B

Restart - C

Fig. 3.3 Indefinite Solver: Restarting Procedure

3.3.1 Simultaneous symbolic and numerical factorization

When the procedure is restarted, the symbolic and numerical factorization will be

carried out simultaneously. Table 3.4 gives the step-by-step procedure. Contrary to positive

definite systems where static data structure can be used and the symbolic factorization can

be completed on the entire matrix before the numerical factorization, in this case the

symbolic factorization is executed one row at the time. Two different chain lists are used,

ICHAINL and ILINK, for symbolic and numerical factorization, respectively.

D oj = 1, neq
symbolic factorization
numerical factorization
check sickness

End do

Table 3.4: Simultaneous symbolic and numerical factorization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

3.3.2 Partial reduction

Once sickness at row sick = m+1 is detected, the subsequent rows are no longer

factorized looking backward. The rows lower than m (rows m+l to neq) will not be added

in the chain lists. After the factorization of the m111 row, the memory content of the matrix

is as follows:

L D l I_ Umm mm mm m,n ~m

SYM A n ~m,n -m

(3.20)

The factorized submatrices Lmm Dmm and Um n.m are held in the array IU,JU,UN and DU,

and the part An.m n.m will be partially reduced as shown in Eq. (3.19). The result of partial

reduction will be stored in the array group for U.

3.3.3 Pivot searching and Ending partial reduction criteria

We have presented different pivoting strategies and introduced the notion of weighted

pattern matching and consecutive search strategy. In the actual Fortran code implementation,

the search for a best pivot was done in the following order:

• If the consecutive diagonal a ^ . m ^ 2 value is a suitable pivot, exchange row m+1

and row m+2 immediately and move the sickness pointer to m+2; resume procedure.

• If the sick row and its consecutive row build a good 2*2 pivoting, i.e, submatrix

is a suitable pivot, apply the rotation matrix to uncouple rows m+1

and m+2; resume procedure.

• If â j is a good diagonal pivot (numerically stable) and non-zero pattern of row j

similar to row 1 then s =1, choose P so (PAP1) , ^ â -; restart procedure. Note that

when the procedure is restarted, m=l.

m̂*2jn*2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69
a11 a

Xj is good 2*2 pivot and the non-zero pattern o f row j is similar• I f submatrix

to row 1, then s = 2 ,choose the permutation matrix P so (PAP1)^ = atJ-; restart

procedure.

• If r and p then use Table 3.1 to determine the pivot, where r and p are column

indices of max off diagonal value of row 1 (the sick row) and r respectively (see Fig.

3.1); restart procedure.

• I f matrix B22* has been formed then use Table 3.1 to determine the pivot; restart

procedure.

In the partial reduction of B22’, usually not all rows are affected by the reduction. Let’s call

jend the last row to be affected by the partial reduction. This means rows from jend+1 to

neq will not be affected by the reduction. The row jend, can be located before the

completion of B2 2’ = B22 “ Lji DuL2iT calculation, i.e, the partial reduction can be ended in

advance, if the permutations in all those cases affect the rows between m+1 and jend. Fig.

3.4 shows the partial reduced zone and the location of jend.

Completed R o w s

\

jpivoK^

Lsick

N

Fig. 3.4 Indefinite Solver: Ending Partial reduction zone

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

3.3.4 Data management

We use a large integer array IWORK(l: mtot) as a working space where mtot is the

maximum computer memory available. The value of mtot is machine dependent and is an

input control parameter. All array are allocated from this array. The known, fixed

dimensions for arrays IA(l:neq+l), AD(l:neq), IU(1 :neq+l), UD(l:neq), ILINK(l:neq),

ICHAINL(l:neq) etc. are placed at the beginning o f IWORK(l:mtot). The remaining

memory will be divided into 2 segments, where the first segment holds UN and AN, and is

twice as big as the second segment which holds JU and JA (because real*8 and integer*4

declarations are used in the coding). Arrays AN(1 :ncoef) and JA(1 :ncoef) are placed at the

bottom of the first and second segment, respectively. It should be noted that the dimension

of AN and JA changes every time the procedure restarts. Fig. 3.5 shows the suggested

1
Fixed arrays
____________________ nlO=jcnl

J C N = J U

__ J ta l

JT A =JA
------------------------------- Kent

C N = U N
__ K ta l

T A = A N

Fig. 3.5 Indefinite Solver: Memory allocation

memory allocations.

A

1/3

y
A

2/3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

In order to keep the consistency of the program and to take into consideration the memory

allocations and data movement during the restarting procedure, the restarting procedure

algorithm can be rewritten as in Table 3.5.

Last sick = sick row

do while (not the end o f system)

• restart LDLT at the last sick row,

• perform partial factorization

• if sickness is detected, then

-find suitable pivot and permutations

-permute JU,UN to JA, AN

-rearrange IA, JA,AN and AD

endif

end do

Table 3.5 Restart algorithm of symmetric indefinite solver

The partially reduced submatrix 5 22 is the matrix that is only considered when the

procedure is restarted. Thus during the factorization, 5 22 is placed in the array JU and UN

while permuting rows, PB22’PT. The pointer to rows of JU and UN, from row sick to row

jend, will constitute the beginning row o f the new restarted array JA and AN, respectively.

Because of the similarity o f structure betwen JU and UN and between JA and AN, to

simplify the discussion, we will only consider the memory management o f JU and JA and

explain the data movement between the two arrays once the procedure is restarted. Let’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

consider the genaral case where the process restarts at row m. We will distinguish three

cases for the memory allocation before restarting in Fig. 3.6.

JU = LDLt . L JU - L D L t . L J U - L D L r . L

J U - B „ = J U - B „

C a se 1 C a s e 2 C a se 3

J A =■ A , . J A = A „

J A = A,t J A = A „ J A = A „

Fig. 3.6: Indefinite Solver: Memory Reallocation

C asel:

L D i j L rrm 0mm mm mm rm

* r r B n

SYM

(3.21)

In Fig.3.6 we assume that the first m rows have been completely factorized, the partial

reduction of the subsequent rows has been completed, and the symmetric permutations

determined by Table 3.1 affect only the rows in the middle part o f Eq. (3.21), which

corresponds to submatrices and B*n . In this case the submatrix Att remains unchanged.

While doing permutations, the part JU = Bn- moves to the top of JA = Att.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

Case 2:

T T\L D L ‘ L mmm mm nxm rm

SYM

0 0

K K

A A ,ss It

A u

(3.22)

In this second case, the symmetric permutations determined by Table 3.1 affects only the

rows in the two middle parts of Eq. (3.22), which correspond to submatrices Bn-*, B^", Bn\

Ass and Ast. The elements of Atl remain unchanged after the permutations. The memory

reallocation is divided into two steps. In the first step, the part JA = A^ moves to the bottom

of JU = B,,, and then in the second step, two parts JU=Brr and JA = A^ are reallocated to the

top of JA = Att.

Case 3:

L D l L l L

SYM

Ums 0
#

B B ,rs rt

A SS St

A u

(3.23)

In this third case, the symmetric permutations determined by the searching in the do-loop for

j o f Table 3.2 affects only the rows in the second part of Eq.(3.23), which corresponds to

submatrices B’̂ B’R and B’rt. The elements of A^, Ast and Att remain unchanged, and the

permutations of rows are completed. The portion of JU = B^ moves to the top of array JA

= Ass. It should be noted that the factorization after restarting still needs Ums; therefore, in

both the symbolic and numerical factorization of the submatrix Ass, the chain lists

ICHAINL and ILINK should point to rows in submatrix Ums.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

In each of the above cases, the submatrices from B* ̂to Att constitute the new matrix

A to be considered when the procedure restarts. The matrix is stored in sparse format as a

group of arrays LA, JA, AN, AD. The new group o f arrays holds the data from the last sick

= m+1 row to the end of the matrix. In all cases, symmetric permutations affect only the

parts of new matrix A. It must be pointed out that the permutations do not affect the portion

of the matrix already factorized, Lmm, Dmm, LmmT, L j and Ums.

3.3.5 Permutation

The stabilization of Gaussian elimination that is developed involve data movements

associated with switching rows and columns. If a square matrix P o f order n is a

permutation matrix , and p(l:n) is the desired permutation of n rows of a matrix; one can

definite P as:

P = 1 and P.. =0 otherw ise 'j>, u

Every row and every column of P contains just one element equal to 1, the remaining

elements o f the row (or column) are equal to 0 and P is orthogonal (PT=P_I). If a matrix A

is premultiplied by P, the original row p; o f A will become row i of the resulting matrix PA.

P can be stored in the computer memory as a vector o f integers: the integer at position i is

the column index of the unit element o f row i of P. Indeed, by knowing the permutation, a

vector X £ Rn can be overwritten as follows:

for i=l:n

X(i) - X(p(i))

end

Here, the " " notation means "swap contents".

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

It should be noted that no floating point arithmetic computation is involved in a

permutation operation. However, permutation matrix operations often involve the irregular

movement of data and therefore can represent a significant computational overhead.

Traditionally, column indices in JA, are considered in the ascending order at a

particular row. In our case, we found that it was not necessary to arrange elements of JA in

ascending order; in other words , JA can be unordered. With minor changes to the

subroutine to perform the transposition of a matrix, one can write a subroutine to perform the

permutation of rows and column of a matrix A. However, one will have to apply the

subroutine on the structure of the entire matrix. A different subroutine was specialy designed

from scratch to consider only a portion of a matrix and to perform only the permutation of

a few rows, cutting down the overhead cost associated in considering the entire matrix.

3.4 Forward reduction and Back substitution

Due to the restarting scheme, the permutations affect the only matrix part B*22,

so we can not claim the final results after factorization as:

p(P)p(r-1) _ — (PCP' lY CP(P))r = LDL T (3.24)

Eventhough the permutations vectors are known, they are applied on the reduced submatrix

B \2 when the procedure is restarted and not on the original matrix. The step by step

procedure in Table 3.6 shows the implication of the permutation and rotation matrices on

the load (or right-hand-side) vector and how one can recover the solution during the forward

and backward substitution. In practice, forward and back substitution only require very little

time as compared to factorization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

do j = I, neq ! Forward reduction
if j is an index of sick row: f 4= P(k)f
if j is an index of rotation row: f 4= R(I)f
do i = indices in JA for row j

y .-= f , - L ij *Y j

end do
y r Y \1 D ii

enddo
doj=neq, 1,-1 ! Back substitution

if j is an index of rotation row: y 4= (R (l)) Ty

if j is an index of sick row: y 4= (P(k))Ty
do i = indices in JA for row j

= y,- - L;j * X;
end do

end do

Table 3.6 : Forward Reduction and back substitution

3.5 Reordering of indefinite systems

As mentioned in the introduction of Section 3.1, a static structure cannot be

implemented for an indefinite solver that uses pivoting strategies. Since rows and columns

are permuted during the factorization process, a fill-in minimization cannot be performed a

priori as it was the case for positive definite systems and the structure of the final matrix after

factorization cannot be forseen.

The idea that we came up with was to try to maximize the portion on which the look

backward factorization is performed and to deal with unstable rows at the end of the matrix.

The Multiple Minimum Degree (MMD) was performed on the entire matrix and the

rows/columns corresponding to the zero diagonal have been pushed to the end of the matrix

as shown in Fig. 3.7. By using this strategy, there has been improvement in the

performance, but one cannot guarantee that the fill-in minimization during the pivoting was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

optimum. A better strategy would have been to first push all the zeros at the end o f the

matrix (B-F) and then perform MMD only on a portion o f the matrix, say ADBC, at the

same time minimize the fill-in of the coupling block CEFB. If possible, we prefer to reorder

the matrix such that all the non-zero coefficients of CEFB reside in the lower portion o f the

coupling block (HBIG).

\

D
G

Zeros

F

Fig. 3.7 Indefinite Solver : Fill-in Minimization

3.6 The modified MA27 sparse indefinite solver.[8,66]

3.6.1 Introduction

The MA27 is a software package from the Harwell subroutine library developed by

Duff et al., [8], that uses a sparse variant of Gaussian elimination to solve a sparse indefinite

system of linear equation. The MA27 uses the multifrontal approach and contains three

majors subroutines. The MA27A/AD accepts the pattern of the matrix and chooses pivots

for Gaussian elimination using a selection criterion to preserve sparsity. The subsidiary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

information for actual factorization are constructed by the subroutine MA27/BD. The pivots

are chosen from the diagonal using the minimun degree criterion and employing a

generalized element model o f the elimination. The elimination is represented as an assembly

and elimination tree with the order of elimination determined by the depth-first search of the

three.

The MA27B/BD factorizes the matrix by using the assembly and elimination

ordering generated by MA27/AD. At each stage in the multifrontal approach pivoting and

elimination are performed on full submatrices and, when diagonal lx l pivots would be

numerically unstable, 2x2 pivots diagonal blocks are used. The actual pivot sequence used

may differ slightly from that of MA27A/AD if the matrix is not definite.

The MA27C/CD uses the factors generated by MA27B/BD to solve a system of

equation Ax=b. Since the information passed from one subroutine to the next is not

corrupted by the second, several calls to MA27B/BD for matrices with the same sparsity

pattern but different values may follow a single call to MA27A/AD, and similarily

MA27C/CD can be used repeatedly to solve for different right-hand-side vectors b.

3.6.2 MA27 data format and control parameters

The data format used in the MA27 differs from the NASA format. The matix is

represented by 3 arrays, IRN , ICN and A. The one dimensional real array A contains the

diagonal values as well as the off diagonal values and will be of dimension ncoef+neq. The

integers arrays IRN and ICN contain the row and column indice of each value in A

respectively and has same dimension as A.

The following control parameters are used:

N : integer variable set by the user to the order neq of the matrix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

NZ : number of non zeros entries in the matrix (nz=ncoef+neq)

LA : integer variable which must be set by the user to the length of A. It is advisable to

allow a slightly greater value because the use of numerical pivoting might increase

the storage requirements marginally.

NRLNEC and NIRNEC are integer variables. On exit from MA27AD/AD they give the

amount of REAL and integer words required respectively for successful completion

of the factorization, provided no numerical pivoting is performed. Numerical

pivoting may cause a higher value to be required.

IKEEP: integer array of length equal to 3*neq. It is used if the user wishes to input the pivot

sequence.

IFLAG: is an integer variable which must be set to zero if a suitable pivot order is to be

chosen automatically, or to 1 if the pivot order set in IKEEP is to be used. On exit

from MA27/AD, a value of zero indicates that the subroutine has performed

successfully. A nonzero values means that an error has been detected.

3.6.3 Modified MA27 solver: ODUMA27

MA27 failed to solve our benchmark indefinite test problems. We acknowledge here

the constructive discussions with J. Qin, [20, 66], to implement a new pivoting criteria to

the existing sequence in order to solver these problems. The modified MA27 sparse solver

appears to be fast and reliable. The modification consisted not only of stiffening the pivoting

strategies (by reducing the number of required 2x2 pivoting during factorization, whenever

possible, for saving computational time, see Section 3.3), but also of adding the capability

of reading data in NASA row-wise sparse format.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

CHAPTER IV

SPARSE SUSP ACE AND LANCZOS ITERATION FOR THE SOLUTION OF

POSITIVE DEFINITE AND INDEFINITE SYSTEMS.

4.1 Introduction

The generalized eigen-equations, in matrix notation, can be expressed as

[K] [<t>] = A. [M] [cj>] (4.1)

In Eq. (4.1), matrices [K] and [M] represent the structural stiffness and mass, respectively.

Matrices [A] and [ct>] represent the eigenvalues and eigenvectors, respectively. The

dimension (or degree-of-freedom) of matrices in Eq. (4.1) is N.

Much attention has been directed toward effective algorithms for the calculation of

the required eigensystem in the problem of Eq. (4.1). Because the “exact” solution of the

required eigenvalues and corresponding eigenvectors can be expensive when the order of

the system is large, approximate solution techniques have been developed. The approximate

solution techniques have primarily been developed to calculate the lowest few eigenvalues

and corresponding eigenvectors in the problem o f Eq. (4.1), when the order of the system

is large. However, the problem of calculating the few lowest eigenpairs of relatively large-

order systems is very important and is encountered in all branches o f engineering.

Vector sparse Subspace and Lanczos iteration eigensolvers have been developed for

positive definite and indefinite systems. Besides the use of sparse technology in all the

algebraic manipulation and data structure involved, the developed solvers in Chapter II and

III have been incorporated in the Fortran code implementation for efficient eigen-solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

4.2 Subspace Iteration, [1,40-43]

4.2.1 Basic Subspace Iteration Algorithm

The Subspace iteration method developed by K J. Bathe, [1], consists o f establishing

q starting iteration vectors, q>p, where p is the number of eigenvalues and eigenvectors to

be calculated. It extracts the "best" eigenvalue and eigenvector approximations from the q

iteration vectors, by using inverse iteration on the q vectors and Ritz analysis.

The basic objective of the Subspace iteration method is to solve for the smallest p

eigenvalues and corresponding eigenvectors satisfying Eq. (4.1). In addition to the relation

in Eq. (4.1), the eigenvectors also satisfy the orthogonality conditions

= A ; = I (4.2)

Where I is a unit matrix of order p because 4> stores only p eigenvectors. The essential idea

of the Subspace iteration method uses the fact that the eigenvectors in Eq. (4.1) form an M-

orthonormal basis o f the p-dimensional least dominant subspace of the matrices K and M,

which we will call E„. The starting iteration vector span E„ and iteration continues until,

to sufficient accuracy, E„ is spanned. Thus, the total number of iterations depend on how

"close" E, is to E_ and not on how close each iteration vector is to an eigenvector. Hence,

the effectiveness o f the algorithm lies in that it is much easier to establish a p-dimensional

starting subspace that is close to E„ than to find p vectors that are each close to a required

eigenvector. The selection of starting iteration vectors is a very important part o f the

iteration procedure.

The first step in the Subspace iteration method is the selection of the starting iteration

vectors X,. The choice o f the starting iteration vectors is important in the sense that it can

reduce the number o f iteration needed for convergence; for example, if the starting vectors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 2

span the least dominant Subspace, the iteration converges in one step. In this section we

describe the starting vectors that have been used in our code.

Let [X]nx? be the matrix that contains the starting iteration vector

[-̂ 1 “ “̂2* “̂3* ^q-1* ^q ̂ (4.3)

where£. are q vectors o f dimension n* 1. The step by step algorithm to construct the

starting iteration vectors can be summarized as follows:

Step 1: x f i) = dmass(i) i=\ ,n

Step2:. x. - e* f o r i=2 ,q ~\

Where e are unit vectors with entries +1 at the degree

o f freedom with smallest ratios

k(.
w. = — - w ith m = dmass(i) (4 .4)

m
I t

Step3: = random vector

Table 4.1 Step by step algorithm for starting iteration vector

An important procedure that is used extensively in the solution of eigenvalues and

eigenvectors is shifting. The purpose of shifting is to accelerate the calculations of the

required eigensystem. In the solution of Eq. (4.1), we perform a shift p on K by calculating

K = K - p M (4.5)

and we then consider the eigenproblem

= \ iM \ j; (4.6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

To identify how the eigenvalues and eigenvectors o f Eq.(4.1) are related to those of Eq. (4.6),

using Eq.(4.5), we rewrite (4.6) as follows

ATijr = yM ty (4.7)

where y = p +- p.. However, Eq.(4.7) is in fact, the eigenproblem K<& = A. and

since the solution o f this problem is unique, we have

X. = p + jif and (J)(. = i|r, (4.8)

In other words the eigenvectors of £i|r = \iM \|r are the same as the eigenvectors of

ATcj) = XM(j), but the eigenvalues have been decreased by p .

4.2.2 Subspace Iteration step by step Algorithm

Subspace iteration algorithm can be used effectively to obtain the lowest p eigen-pair

solutions. The algorithm can be conveniently described by the following step-by-step

procedures shown in Table 4.2.

4.2.3 Subspace Iteration for positive definite systems: LDLT

The step by step algorithm in Table 4.2 has been coded for the solution of positive

definite systems. The starting iteration vector in step 1 has been constructed following the

algorithm in Table 4.1. The system of equation that results in Eq. (4.9) has been solved using

the developed vector sparse solver for positive definite system in Chapter II. Matrix K is

factorized only once and the forward and backward solution is called q times for the multiple

right hand side [Y JNxq Once the reduced stiffness matrix and mass matrix have been

constructed, following Eq.(4.11) and Eq.(4.13) respectively, the reduced eigen-problem is

solved using Jacobi for all q eigenvalues and eigenvectors and ordered in ascending order.

The process is then repeated until the convergence is achieved. All the matrix manipulations

involved are performed using sparse technology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

Step 1: Select the starting iteration vectors [Y,] Nxq where q « N

Step 2: Factorize the structural stiffness matrix

I K] = [L] { D] [L] t (4.9)
In Eq. (2), [L] is the lower triangular matrix, and [D] is the diagonal matrix

Step 3: For k = 1,2, Maxiter, where Maxiter represents the input maximum number
o f iterations, the following tasks need to be done

Step 4 : Solve [4>kM] N.,q from the following matrix equations

[«] [« , . , u , = m i* . , (4.i«)
Step 5: Compute the reduced stiffness matrix

(4.11)
Step 6: Compute the reduced mass matrix

(4*12)

[" V it , = W ,., [f*.,W (4-13)
Step 7: Solve the reduced eigen-equations

(4.14)

The eigenvalues [ClViJ and the associated eigenvectors [Q k+I] need to be
arranged in the ascending orders (for example Q2, < Q2; < Q23 < ...)

Step 8: Find an improved approximation to the eigenvectors

- r i . - .W e * . ,] , , , (4.15)

Step 9: Check for convergence. The iterative process will be stopped if either convergence
is achieved, or the maximum number of iteration (= Maxiter) is reached (or else,
return back to step3).

Table 4.2: Step-by step Basic Subspace Algorithm

The error bounds and check for convergence of eigenvalues are performed at the end

o f each iteration. Assuming that in iteration (k-1) the eigenvalue approximation

i=l,..,p, have been calculated. Then the convergence tolerance is computed, [1], in the form

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1/2

<,tol: (4.16)

85

where4)^ is the eigenvector corresponding to the e ig e n v a lu e^ and tol =10‘2s when the

eigenvalue shall be accurate to about 2s digits. For example, if we iterate until all p bounds

in Eq. (4.16) are smaller than 10-6, we find that Ap has been approximated to at least six digit

accuracy, and the smaller eigenvalues have usually been evaluated more accurately.

Once the error bounds and the convergence on the eigenvalues have been checked,

the “true”error norm check is computed as follows:

|| AT(j> - j)||2
£ Tolerl (4.17)

Our efficient sparse matrix times vector multiplication is used in evaluating Eq. (4.17)

4.2.4 Subspace Iteration for Indefinite systems: ODU-HKUST, ODU-MA27

The step by step algorithm of Table 4.2 has been implemented for the solution of

indefinite systems. The starting iteration vector (see Table 4.1) has been modified from

Eq.(4.4). The value of w(i) is set to zero when the ratio mj/K,,- is infinity (or undetermined).

Two solvers for the solution of indefinite systems, the ODU-HKUST solver and the ODU-

MA27 solver, have been developed in Chapter III. These solvers have been incorporated in

the Subspace iteration algorithm in factorizing the matrix K of Eq.(4.9). An input control

parameter is provided to choose the type of solver. The error bound and convergence check

are performed as shown in Eq. (4.16). The “true” error norm is also computed according to

Eq.(4.17).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

4.3 Lanczos Iteration [1,3,44]

4.3.1 The Lanczos Iteration Algorithm

The Lanczos algorithm for the solution of generalized eigenvalue problems has been

receiving a lot of attention due to its computational efficiency . The Lanczos method was

originally developed to evaluate eigensolution of matrices through a Rayleigh-Ritz reduction

o f the eigensystem to a tridiagonal form. The eigenvectors are constructed by forming a

linear combination of a set of vectors, known as Lanczos vectors, computed during the

course of the Lanczos algorithm. Intensive research in past years has resolved a number of

difficulties concerning the stability of the Lanczos process. It is now widely accepted as the

method of choice for determining a few eigenpairs o f large sparse problems.

Let’s consider the following generalized eigenvalue problem:

where K and M are structural stiffness matrix and mass matrix, respectively, K„= EC-aM, a

is the shift value and co„2 =or - a. Instead of solving Eq. (4.18), or Eq. (4.19) directly, the

Lanczos algorithm generates a tri-diagonal matrix Tm

(4.18)
or

£ a<f> = j> (4.19)

P;

r (4.20)

P,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

through the following three-term recurrence formula:

(4.21)

or in matrix form:

(4.22)

T z = 6zm (4.23)

where eTm = (0,0,... 1), Qm is a N*m orthogonal matrix with columns qj = 1,2,3 ...m, and m

is usually much smaller than N. By solving the following reduced eigensystem, the

eigensolution of Eq. (4.19) can be obtained as

For most structural engineering problems, only a few lowest frequencies and the

corresponding mode shapes are required, so we have m « N, which leads to a significant

savings in the number of operations.

A partial restoring orthogonality scheme and a convergence criterion are developed

and incorporated into the basic Lanczos algorithm, which is described in a step-by-step

procedure, shown in Table 4.3.

Various reorthogonalization schemes have been developed to increase the efficiency

of Lanczos algorithms [44-48]. However, for very large problems where factorization,

forward/backward substitution and matrix-vector multiplication are the major operations, the

co 2 (4.24)O 0

(4.25)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

cost o f reorthogonalization becomes less important than for small problems, since only a few

lowest eigenpairs are desired. In this work, a simple way of reorthogonalization is adopted.

First, for any new Lanczos vector qj5 one calculates

E ^ q ' M q j <7 = 1 , 2 , - 1) (4.26)

If E; > E, then qj should be orthogonal to q,- with respect to M, where E is a parameter related

to the machine parameter E0 such that 1+E0 > 1. Usually, E is taken as:

E = ^ (4.27)

Eq. (4.27) is called semi-orthogonality [46] condition.

One major advantage of the Lanczos algorithms lies in their ability to terminate the

iteration process as soon as the required eigenpairs have converged. In this work, the

following error bound for eigenvalues is used (after solving Eq. 4.23 in step 12)

U - 0. Z w .
ERROR (/) = | ~ ' I = i where i=l,2,....j (4.28)

o t) .
I t

In Eq. (4.28), XK is the k* exact eigenvalue and 0; is the 1th computed eigenvalue. Z /0 is the

j th element of vector Z(I). If ERROR© < RTOL, for I = 1,2 ..p (where RTOL is a user's

specified tolerance, and p is the number of eigenpairs to be extracted) then the Lanczos

iteration is considered to be converged and the program begins to perform the eigenvector

transformation accordingly (see step 13 of Table 4.3).

4.3.2 The Lanczos Iteration Step by Step procedure

The Lanczos method can be summarized in a step by step algorithm as shown in

Table 4.3 to obtain the lowest p eigen-pair solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

Step I. Factorization : K„ = L D L T
Form starting vector: y0* 0; q0 = 0

Step 2. Compute: M y0
Step 3. Compute :

Step 4. Compute : P, = Mq,
Lanczos iteration
For j = 1 ,2 ,3 , . . . , do

Step 5. £j = K0'' Pj
Step 6. Sj = % - pj qj.,
Step 7. c£j = qjT M 6j = PjT6j

Step 8. Yj = 5j * <*flj
Step 9 . Aj = M yj
Step 10. _t_

Step 12. IF necessary solve: TjZ = 0z
Converged? (If "No", then return to step 5)

Step 13. Eigenvector transformation: 4> = Qjz

Table 4.3: Step-by-Step Basic Lanczos Algorithm

4.3.3 Lanczos Iteration for positive definite systems: LDLT

The step by step procedure in Table 4.3 for the basic Lanczos Algorithm has been

coded for the solution of positive definite systems. All the matrix manipulations involved

are performed using sparse technology. The system of equations in Step 1 of Table 4.3 is

solved using the developed sparse solver for positive definite systems. Forward reduction

and backward substitution are performed in Step 5 o f Table 4.3. The efficient sparse matrix-

vector multiplication is used throughout the algorithm.

Reorthogonalization o f qiT,
Stepl I. A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

A “predicted “ eigen-value accuracy has been built inside the iterative Lanczos

algorithm, and the ’’true” eigen-solution error norm is also calculated upon existing from the

Lanczos iterative procedure, as shown in Eq.(4.19).

4.3.4 Lanczos Iteration for Indefinite systems: ODU-HKUST, ODU-MA27

In this section we extend the Lanczos algorithm to formulations that result in

indefinite systems. The Lanczos eigensolver for indefinite systems that has been developed

has the option o f using either of the two sparse indefinite solvers presented in Chapter III,

the ODU-HKUST and the ODU-MA27. For indefinite systems, the cause of failure happens

in the solution o f the system in (Eq. 4.21) or the first step of the Lanczos procedure. Of

course for a system which is not indefinite, the tridiagonal system can be solved in double

precision to reduce round-off errors. However, for very poorly-conditioned cases, the entire

Lanczos process will fail if the solver is not robust.

To improve convergence of the eigenvalues, a spectral transformation of the original

eigen problem is used. The implementation is simple if we substitute for the

eigenvalueY(= p + nr with p areal number referred to as the shift.

4.4 Major computational tasks and Enhancements in Subspace iteration and

Lanczos algorithm

Careful observations on the Subspace iteration, and Lanczos algorithms indicate that

the following major computational tasks are required:

Major task 1: Matrix factorization (see step 2 of Subspace iteration, and step 1 o f Lanczos

algorithm).

Major task 2: Forward and backward equation solutions (see step 4 o f Subspace iteration,

and step 5 of Lanczos algorithm).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

Major task 3: Matrix-Vector (or Matrix-Matrix) multiplications (see Steps 5, 6 & 8 of

Subspace iteration, and Steps 2,4,7,9,10 & 13 o f Lanczos algorithm).

Matrix factorization, forward & backward equation solution, and matrix-vector (or

matrix-matrix) multiplications represent the major computational tasks for Subspace

iteration, and Lanczos algorithms. Recent developments in sparse technologies [49] are fully

utilized to improve the computational efficiency of both Subspace iteration, and Lanczos

algorithms. In calculating the “true” eigen-solution error norm, efficient vectorized sparse

matrix-vector multiplication scheme is used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

CHAPTER V

INTERIOR POINT METHOD WITH POSITIVE AND INDEFINITE SPARSE

SOLVERS FOR LINEAR PROGRAMMING PROBLEMS

5.1 Introduction

Optimization is concerned with achieving the best outcome of a given objective while

satisfying certain restrictions. Mathematical programming problems may be classified into

several different categories depending on the nature and form of the design variables,

constraint functions, and the objective function. The linear programming describes a

particular class o f extremization problems in which the objective function and the constraint

relations are linear functions of the design variables. Interest in linear programming has been

intensified since Karmakar’s publication in 1984 o f an algorithm that is claimed to be much

faster than the simplex method for practical and large-scale problems.

The standard mathematical formulation for linear programming problems consists

o f an objective function and a constraint set.

Min c Tx
subject to [A } x = b (5.1)

where c and x are n x 1 vectors, [A] is an m x n matrix and b is an m x 1 vector, c Tx is

referred as the objective function. The constraint set [A]x = b describes a feasible region

in which the optimal solution x ' must lie. The general iterative solution process for

optimization problems can be summarized as in Table 5.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

Step I: Initial guess o f the design variable: say x = x °

Step 2: Find direction to travel: say Cp

Step 3: Find step size, O, along the direction Cp

Step 4: New design : £ M + CTC ̂ l)

Step 5: Check for convergence | |x w - £ e

- yes : stop

- no : Return to step 2.

Table 5.1 Step by Step solution process for optimization

5.2 Review of the simplex method

The main idea of the simplex method is to move from a vertex to a neighboring one

where the cost is lower. After a finite number of steps, since there is only a finite number

of comers of the feasible set, the cost is reduced as far as possible and the current vertex is

optimal. A simplex step is really an exchange step, in which a zero component of x enters

the basic group and a positive component leaves (it becomes zero) the basic group. There

remains an important decision: which edge to choose? Starting with a given vertex that

satisfies Ax=b with only m nonzero components, there are n-m zero components that might

be allowed to increase, and therefore n-m edges to select from. We choose an edge along

which the cost drops as rapidly as possible.

It was noticed early in the history of linear programing that the cost coefficients could

form a new row at the bottom of the matrix A and elimination could be applied to this row

too. The bigger matrix is called a tab leau , and it contains all information about the linear

programming problems as shown in Table 5.2. While the “simplex tableau” approach is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

A ; B

C 0

Table 5.2 Simplex Tableau

useful for educational purposes, most (if not all) serious software has been coded based upon

the “revised simplex” formulation.

The constraints in Eq.(5.1) can be also expressed in matrix notation as follows:

Ax = b or [B , N]
% = 0

= b =► xB = B ' lb (5.2)

where B is a square matrix containing the columns of A that correspond to nonzero

components of x (o r xB), and iV is a rectangular matrix that contains the remaining

columns of A that correspond tox^ . Similarly the objective function can also be partitioned

as follows:

and using Eq.(5.2)

cx = CbB ~l b

(5.3)

(5.4)

Premultiplying by B'1 on both sides of Eq.(5.2), we have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

[I,B - lK] ' = B~xb (5.5)

Since matrix B in Eq.(5.2) becomes identity matrix I, we do achieve the "canonical form"

of the simplex tableau. If the zero components of x increase to some value xN, then the

nonzero components x B must be reduced by B ~xN x n in order to maintain equality in

Eq.(5.5). Hence, the cost will be changed to

cx =cB(xg -B ~lNxy) + cNxN (5.6)

Eq.(5.6) can be re-arranged to

cx=(Cn ~CbB ~x N)xk + < V S- (5.7)

Thus

r = C u ~CbB (5.8)

For minimization problems, if r^O then current vertex is optimal, since r(xN ^ 0; thus,

best decision is to keep xN =0 and stop. If some components ofr are negative, then select

the variable x (associated with the most negative component o f r) to enter the basic variable

group.

After r is computed and entering (into basic) variable x; is chosen , which

component Xj should leave basic group? It will be the first to reach zero as x; increases, (ratio

b/a of simplex tableau). From Eq (5.5)

XB + B ~1NXn = B ~lb (5.9)

By taking a closer look at the product B ~lNxu of Eq.(5.9)

[B ~lN]Z„ = v'x, (5.10)

where v ' is the i* column of B’'N. Therefore, Eq.(5.9) becomes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

xB + v ‘x, = B ~lb (5.11)

the klh component o f x g will drop to zero when the k* components of v *x. and B ~ l b are

equal. This happens when x; grows to:

k ‘hcomponent o f B ~ lb rs 1<vv

k thcomponent o f v '

Table 5.3 gives a classical step of the a simplex procedure.

Step I Compute r = CH~CgB ~XN

Step 2: If r k 0 stop; the current .r is optimal. Otherwise find the most negative

component r;, and let the corresponding x-, increase from zero, (it is the

entering variable). Let v be the corresponding column of Br'N.

Step 3: Compute the ratios in Eq.(5.12) , admitting only positive components o f v.

If the jIh ratio is the smallest, then x, is the leaving variable.

Step 4: The new comer satisfies Ax=b with x(now positive and Xj now zero.

Compute this comer and by row operations in the tableau (or in the

revised simplex) prepare for the next simplex step.

Table 5.3 A step of the simplex Method

5.3 Interior point methods

5.3.1 Introduction

Since the introduction of Karmarkar’s method, there have been many variants of the

method introduced. All these methods are based on the same basic concept and are referred

to as interior point methods, IPM. The simplex method finds the solution to linear

programming problems by moving along the boundary of the feasible region from one vertex

to the next. This can create a large number of iterations. However, if we go through the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

interior of the feasible region, we can get to the optimal solution more efficiently. The idea

is then to choose a starting point and move in the direction that improves the objective

function as much as possible. Therefore the questions o f concern are, at what point do we

start and how far do we go? The choice of the starting or initial point is crucial. It is possible

to implement Karmarkar’s original idea of moving a near boundary point back to the center

of a new simplex in several ways.

The key difference between the simplex method and the IPM is that the former will

travel along the boundary of the feasible region (in order to find the optimal solution), while

the latter will travel through the interiors o f the feasible region. As we can see in Fig. 5.1,

if we start at £ .(the center of the feasible region) and move in the direction of the gradient

of the objective function, we can take a large step towards the optimum. However, if we

apt

Fig. 5.1 Effect of the initial point on the step length

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

start at a point closer to the boundary, such as point xb, we can only take a very short step

towards the optimum. The major drawback when applying gradient direction methods

directly to the LP problem is that the objective fiinctionC Tx always gives the same gradient

direction no matter what the chosen point is. Therefore there will be only one step through

the interior, and it will generally lead to nonoptimum point on the boundary (of the feasible

region). Once on the boundary we are equivalently back to the simplex method.

To avoid the problem with the step size, Karmarkar had an ingenious idea, to take a

step “almost” to the boundary. Thus, the point at which he stopped was still interior to the

feasible region. Furthermore, from this new point he performs a variable (or a projective)

transformation which will bring a point near the boundary (such as point xb) o f the original

simplex to near the center of the new simplex.

5.3.2 Variable transformation: Affine scaling method [62]

Assume, for the time being, that a starting point x = x 0, which is inside the feasible

region, has already been found. A procedure, that will make sure that a feasible starting

point x “can be found, will be explained later. In order to overcome the difficulties of

having the initial point close to the boundary, an affine scaling method is used. If

= [*;, x2°, ..., xn°] (5.13)

is the initial starting point, we define a diagonal scaling matrix D, and the following variable

transformation is made:

x = [D] ' lx (5.14)

where

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[£>] =

99

(5.15)

From equation 5.14,

x = [D] x (5.16)

Thus, from the transformation in Eq. (5.14), the transformed coordinates of the starting

iteration vector x areO

x ° = [1, 1, ..., 1] (5.17)

Substituting Eq. (5.16) into Eq. (5.1), the transformed problem can be reformulated as

Min c Tx
subject to A x = b (5.18)

xzO

where

c T = c t D or c =Dc (5-19)

and

A = A D (5.20)

5.3.3 Direction of move Cp

Since the new point x is already at (or close to) the center of the new simplex

problem, one would like to take the steepest ascent (for maximization problem) direction

and, at the same time, to remain inside the new (or transformed) feasible region (determined

by Eq. 5.18). This projective direction will be referred to as Cp (see Fig. 5.2). To simplify

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

the discussion assume that n=2 (or there are only 2 design variables), thus, the new (or

transformed) feasible region can be shown in Fig. 5.2.

A

x(l . l)
/

/

/

Fig. 5.2: Projective Steepest Ascent Direction

Let xnew = x+Ax be the new design variable. The new design variable still has to satisfy the

constraints (such as Eq. 5.18)

[i] (x+Ax) = 6 (5.21)

Using Eq. (5.18), then Eq. (5.21) becomes

[A] Ax = 0 (5.22)

Thus, Ax must be in the null space of [A] . To find the projective direction C , one needs

to solve the following least square problem:

Minimize — (c -v)r(c~v)
2 (5.23)

Subject to [A] v = 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

Eq.(5.23) has a physical interpretation, since the vector(c - v) represents the difference (or

“error”) between c and v (= same direction with Cp), and naturally one would like to

minimize the square of the “error”. The constraint Eq.(5.23) is due to Eq. (5.22), since v

plays the same role as Ax.

The Lagrangian of Eqs. (5.23) can be computed as

L = \ c - v) T(c - v) + XTAv (5.24)

Hence

^ T 1 m. T
= o = —(-2c +2v) +A X (5.25)

dv 2

or

(v -c) +A X = 0 (5.26)

or

A rX = (c-v) (5.27)

Pre-multiply both sides of Eq (5.27), by A , and utilizing Eq.(5.23), one obtains

AA 7X = Ac (5.28)

Equation (5.28) can be expressed as

[A '] X = C ‘ (5.29)

The dimension for [A ’] ,X and C ' in Eq. (5.29) are m x m, m x 1, and m x 1, respectively.

Thus having found Xfrom Eq. (5.29), one can compute the projective directionCp (or v)

from Eq. (5.27) with the optimum solution o f the least square problem, v ’ , equal to Cp .

Cp = c - A TX (5.30)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

5.3.4 Step size a

Having found the appropriate search direction Cp (Cp = projected steepest ascend

direction onto the null-space of A) the question now is how far, a , should we travel along

the direction Cp . The new design in the “ scaled “ design variable space x is :

or

x = x , + ctc z 0 (5.31)new current p v 7

1 + ocp £ 0 (5.32)

or

1 + Gcp. £ 0 for i = 1 ,2 n (5 .33)

Each of Eqs.(5.32-5.33) must be satisfied to guarantee that f . zO. For those positive

components of c , Eq.(5.33) is automatically satisfied (sinceo is a positive step size).

However, for those negative components o f c , Eq.(5.33) can be re-written as

1 ~ o\cpt\ * 0 (5.34)

Hence

o < —
C .1 p v

(5.35)

Thus, to make sure that “ All” components of x ^0, we require:

amax = Minimun o f {cpl* 0 : J - } (5.36)
• Cpi'

It should be noted there that if “all” c . z. 0, then we may select a as large as we wishpi J m ax 0

(in order to maximize the objective function) and still satisfy xnew ^0. This is the case

where the solution is unbounded. In order to avoid hitting the boundary of the feasible

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

region, a control parameter a = [0,1], saya = 0.98 is introduced , so that Eq. (5.31) can

be expressed as

a feasible starting point x = x ° .

5.3.5 Feasible starting iteration x °

Having introduced the slack, surplus and/or artificial variables, the design vector x

can be partitioned into basic and non-basic variables. Thus, the constrained Eq. (5.1) can be

expressed as

Now, let all the basic variables have the same positive scalar value x B, and let all the non-

basic variables have the same positive scalar valuex NB .

Then Eq. (5.41) can be expressed as

current (5.37)

Pre-multiplying both sides of Eq.(5.37) by [D], one has

current (5.38)

or

current

The last issue which needs to be addressed in the section is how can we be sure to pick up

= 6(. f o r i = l , 2 , . . . , m (5.40)
j J

The coefficient matrix associated with the basic variable xyB is an identity matrix. Hence,

Eq .(5.40) can be re-written as

(5.41)

(5.42)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

In Eq. (5.42), we have assumed b . £ 0 and S. is the summation of all numerical values for the

i* row o f O,™]. Thus

b ^ S tx m (5.43)

In Eq.(5.43), if S(< 0, then this equation is guaranteed to be satisfied (since both b; and xNB

are ^0). However, if S; > 0, then one obtains

*»» ^ (5.44)
i

Thus, to make sure Eq. (5.44) is satisfied for any value of i, we will select xNB as

x NB = M inimum o f jiS(. > 0: — j (5.45)

b.
If Eq.(5.45) is enforced, then at least 1 of Eqs (5.44) will be “ strictly” equal (i.e.* m = —).

S.t
Thus, to be safer, a factor of — is introduced, so that Eq. (5.45) becomes

2

x NB = — Minimum o f I S. >0: —
2 I ' S .

(5.46)

Q
Finally x (, can be chosen according to Eq. (5.41)

x,B = b t - SjX m (5.47)

The procedure explained in Eq.(5.13) through Eq.(5.39) constitutes the major steps

of the optimizer to find the optimum solution given a feasible starting point. We call this

Phase II. The IPM does not allow artificial variables in Phase II. In defining the starting

iteration vector, a Phase I needs to be performed. In Phase I , iterations will be performed

until all artificial variables are equal to zero. Thus Eqs. (5.46) and (5.47) will give the

starting point for Phase I. Phase I will consist of minimizing the following problem:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

MG ’ME

Mi n ^ 2 A rtif ic ia l-V a ria b les
'=' _ ' (5.48)

subject to \A]x=b
x^O

The procedure explained in Eqs (5.13-39) for phase II is also used to find the optimum

solution of Phase I, which will be used as starting point for phase II of IPM. One may

wonder why the artificial variables are not set equal to the right hand side (A—b;) and other

variables are set to zero, as the starting point for Phase I of the IPM. The reason is that the

IPM will not accept it, since the IPM avoids to be on the boundary of feasible region (some

variables = 0); that is why a factor a=0.98 has been introduced earlier in Eq.(5.37).

5.4 Step by Step Algorithm for the IPM

Following is the step by step algorithm for the IPM:

Step 1. Variable transformation

x = [D]"lr (5-49)

A = [A] D (5.50)

Step 2. D irection o f search

C = D C (5.51)

AA TX = Ac (5.52)

p
Step 3. Step size

C = c - A TX (5.53)

°max = Minimun o f {c SO : - J - } (5 .54)
K b

Step 4 . N ew design variable

x nt

Step 5. C heck for convergence

X - X + C C O C
new current max p (5.55)

Table 5.4 Step by step algorithm for the IPM optimizer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

5.5 Computational Enhancements and the Sparse Implementation of IPM

The implementation of IPM is performed in two phases that use the same phase II

formulation. The first phase consists of finding the starting point iteration point that is in the

feasible region and the second phase consists of finding the optimum solution. The optimum

point o f the first phase constitutes the starting point of the second phase. The constraint set

given in Eq. (5.1) is input as a sparse matrix in a row wise unordered, and in NASA format

(sparse unsymmetrical matrix). The input control parameter MREAD, allows the user to

read the data in ASCII or binary form. Table 5.5 summarizes the algorithm implemented in

the sparse IPM.

Step 1: INPUT DATA in NASA format

Step 2: Construct Slack, Artificial and Surplus Variable

Define the Basic set and the non-basic variables

Step 3: Construct the starting vector of phase I

Step 4: Phase 1 => call optimizer Table 5.4

Step 5: Phase II => call optimizer Table 5.4

Table 5.5 IPM algorithm

All the algebraic manipulation involved, in the step by step procedure given in Table 5.4 and

5.5 uses the sparse technology. The system of equation in Step 2 that arises from the IPM

formulation can be solved using either the developed sparse solver for positive definite

matrix or the indefinite solver. Both options tire implemented and the choice depends on the

properties of A A T. The matrix A A T involves the multiplication of two sparse matrices

given in row-wise format; one is the transpose of the other. A symbolic multiplication is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

performed before the numerical multiplication is completed. A counter o f non-zero was

A » j*

inserted in the code to check the sparsity of the product A A .

Since matrix A is an augmented matrix made of the constraints set and a set of

slack, artificial and surplus variables, it can be general by nature and one cannot guarantee

A A J*
that it will be positive definite. The matrix A A of Eq. (5.52) often result in an indefinite

system during the iterative process. For the example in Eq. (5.56), during the iterations, the

Min Z ~2x{ ~3x2
subject to x , + 2x, <4 _________________________________1 2 (3.36)

x, +3x 2 £ 6
x i O

eigenvalues and eigenvectors o f A A Satisfies: § TX[AA]T§ X = and (j)[|’AA]r 4>2 = X2

and since there exist vectors (J)1 and (J)2 such that §>\[AA T] (j), <0 and §l[AA r] (f>2 > 0;

by definition [A A T] is indefinite. Therefore, in finding the solution for the direction of

search in Eq. (5.52) . an indefinite solver may be required. An input control parameter.

ISOLVER, specifies the type of solver to use, either the vector sparse solver for positive

definite systems or the sparse solver for indefinite systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

CHAPTER VI

VECTOR-SPARSE SOLVER FOR UNSYMMETRICAL MATRICES

6.1 Introduction

Let’s consider the following system of unsymmetrical linear equations

Ax = b (6.1)

where the coefficient matrix A is unsymmetrical and the vectors x and b represent the

unknown vector (nodal displacement) and the right-hand-side (known nodal load) vector,

respectively. In Chapter II, we have developed a solver for symmetric positive definite

systems. In this chapter, a solver for unsymmetrical matrices where the upper and lower

triangular portions of the matrix are symmetric in location but unsymmetrical in value will

be developed. Pivoting strategies for unsymmetrical matrices are not considered.

In order to take advantage of the algorithms discussed in Chapter II for the solution

o f symmetric matrices and exploit the vector capability provided by supercomputers, it is

necessary to arrange the data appropriately. A mixed row-wise and column-wise storage

scheme is used. This storage scheme offers the advantage of applying the symbolic

factorization and the supemode evaluation only on one portion of the matrix instead of the

entire matrix. Compared to the symmetrical case, the reordering (fill-in minimization), the

numerical factorization, the forward/backward substitution and the matrix-vector

multiplication subroutines are different since the matrix is unsymmetrical in values.

6.2 Sparse storage of the unsymmetrical matrix [67]

The unsymmetric matrix A is stored in a mixed row-oriented and column oriented

fashion. The upper portion of the matrix is stored in a sparse, row-wise NASA format as it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

has been explained in Section 2.2. The lower portion of the matrix is stored in a sparse

column-wise format. Since a column-wise representation of a matrix is a row-wise

representation of its transpose, and the matrix is symmetrical in locations, the array

IA(neq+l), JA(ncoef), will be the same for both the upper and lower portion. AN(ncoef)

will contain the coefficients o f the upper portion of the matrix and a new array, AN2(ncoef),

is introduced to store the coefficient values of the lower portion of the matrix. The diagonal

values will be stored in the real array AD(neq). This storage scheme allows the use of the

loop unrolling technique described in Chapter II during the factorization for both the upper

and lower triangular portions of the matrix. Fig. 6.1 shows how the coefficient matrix A is

stored.

w \ f

Fig. 6.1 Storage scheme for unsymmetrical matrix

To illustrate the usage o f the adopted storage scheme, let’s consider the matrix given in

Eq.(6.2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

11. 0. 0. 1. 0. 2.

0 44. 0. 0. 3. 0.

0 0 66. 0. 4. 0.

8 0 0 88. 5. 0.

0 10 11 12 110. 7.

9 0 0 0 14 112.

The data in Eq. (6.1) will be represented as follows

IA(l:7=ne?+l) = {1, 3, 4, 5, 6, 7, 7 }

JA(1:6=ncoef) = {4, 6, 5, 5, 5, 6}

AD(l:6=«e<7) = {11., 44., 66., 88., 110., 112.}

AN(1:6=ncoef) = (1., 2., 3., 4., 5., 7. }

AN2(1:6=ncoef) = {8., 9., 10., 11., 12., 14. }

where neq is the size of the original stiffness matrix and ncoef is the number o f non-zero,

off diagonal terms of the upper triangular stiffness matrix (equal to the non-zero, off diagonal

terms of the lower triangular stiffness matrix). Thus the total number o f nonzeros off

diagonal terms for the entire matrix is 2 * ncoef.

6.3 Basic unsymmetric equation solver

One way to solve Eq. (6.1) is first to decompose A into the product o f triangular

matrices, either LU or LDU. Since the graph of the upper and lower triangular matrices are

the same, we chose the LDU factorization. Thus,

A = LDU (6.3)

where U is an upper triangular matrix with unit diagonal, D a diagonal matrix and L a lower

triangular matrix with unit diagonal. After factorization, the numerical values o f matrix L

are different from those of matrix U.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

In order to better understand the general formula that we will derive for factorization

of an unsymmetrical matrix, let’s try to compute the factorized matrix [L], [D] and [U] from

the following given 3x3 unsymmetrical matrix [A], assumed to be a full matrix in order to

simplify the discussion.

A =

*11 *12 * 1 3

*21 *22 * 2 3

* 31 *3 2 *3 3

(6.4)

The unsymmetrical matrix A given in Eq. (6.4) can be factorized as indicated in Eq.(6.3),

or in the long form as follows

* 1 1 * 1 2 *13 1 0 0 Dn 0 0 1 *12 *13

* 2 1 * 2 2 *23 = ' 2 1 1 0 0 D22 0 0 1 * 22

* 3 1 * 3 2 *33 '3 2 1 0 0 D 33 . 0 0 1

(6.5)

The multiplication of matrices on the right-hand-side of the equality gives:

*11 * 1 2 *13 d l i ^ 1 1 * 1 2 ^ 1 1 * 1 3

*21 * 2 2 *2 3 = ' 2 1 ^ 1 1 ' 21^ 1 1 *12 + ^ 2 2 '2 1 ^ 1 1 * 1 3 + ̂ 22*23

*31 * 3 2 *3 3 '3 1 ^ 1 1 ' 3 1 ^ 1 1 * 1 2 + '3 2 ^ 2 2 '3 1 ^ 1 1 * 1 3 + ^3 2 ^ 2 2 U22 +<^33

(6.6)

where the 9 unknowns (du, u I2, u13,1,„ 131, d22, u^,132 and d33) from Eq. (6.5) and Eq.(6.6)

can be found by simultaneously solving the following system of equations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus from Eq. (6.7), one obtains

a n

ai2
“ 12 ,

^ii
_

“ 13 j
^ 1 1

/
21 dn

a_3± (6.8)

31 ' d.‘n
^ 2 1 ~ a 22 ~ ^ 2 X ^ l \ U \ l)

a 23 ~ ^21*^1 1U b)«23
d21

_ f l32 ^ 3 1 ^ 1 1W12^

32 ~ A
22

^ 3 3 “ Q 33 ~ ^ 3 1 ^ 1 \ U 13 ^3 2 ^2 2 W23^

In solving for the unknowns in Eq. (6.8), the factorized matrices [L], [D] and [U] can be

found in the following systematic pattern:

Step 1 :The Ist diagonal value of [D] can be solved for du.

Step 2:The 1st row of the upper triangular matrix [U] can be solved for the solution of uI2 and

u,3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

Step 3:The 1st column of the lower triangular matrix [L] can be solved for 121 and 131

Step 4: The 2st diagonal value of [D] can be solved for d^.

Step 5: The 2st row of the upper triangular matrix [U] can be solved for the solution of Utj.

Step 6: The 2s1 column of the lower triangular matrix [L] can be solved for l32.

Step 7. The 3st diagonal value of [D] can be solved for d33.

By observing the above procedure, one can see that to factorize the term u;j o f the

upper triangular matrix [U], one needs to know only the factorized row i of [L] and column

j o f [U]. Similarly, to factorize the term ljf o f the lower triangular matrix [L], one needs to

know only the factorized row j of [L] and column i of [U] as shown in Fig. 6.2.

col i c o l j

u„-

Fig. 6.2 Unsymmetrical solver: Factorization of Uy and ljf

By generalizing to a matrix of dimension neq, the ith row elements of [U] and the ith

column elements of [L] can be obtained by the formulas in Eq.(6.9) and Eq.(6.10), assuming

that the rows from 1 to i-1 and column from 1 to i-1 have already been factorized:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1-1
a ~ “ j.tj " ik u kj

u =------------------------- (j=i+\,neq)' i d

114

(6.9)

a ,< ~ £ l ikd n U k,j> j - f jk j j
l j = -----------^ ------------ (ii= j+l,neq)

j j

(6.10)

and the diagonal values will be given by Eq.(6.11)

d „ = a u ~ E l ikd uu ki (6*U)

Once the matrix is factorized, the unknown vector x is determined by the forward/backward

substitution. Using Eq.(6.3) one can write Eq.(6.1) as follows:

L D y = b (6.12)

with y= Ux. The solution o f Eq. (6.12) can be obtained follows:

<•-1

-'=6. - Y . Litfk 0'=1.— with y ’ = D y (6.13)
k = 1

and to solve

U x = y (6.14)

for x,

neq

x j = y i ~ U i k x k (i=neq,...,l) (6.15)
Jf c=r - ^1

The factorization is computationaly much more involved than the forward/backward

substitution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

6.4 Vector-sparse LDU unsymmetrical solver

6.4.1 Introduction

The vector-sparse unsymmetrical solver developed is a collection of subroutines that

follow the same flowchart as the one given in Fig. 2.2, with the subroutines performing

different tasks. Since the matrix is unsymmetrical in values, the reordering algorithm for

symmetric matrix is not suitable. On the other hand, by observing Fig. 6.2 and the

derivations in Eq. (6.3), the multipliers in the factorization of the upper portion of the matrix

will be computed from the coefficients o f the lower portion of the matrix and vice versa;

thus, the numerical factorization will be different from the symmetrical case.

The purpose of symbolic factorization is to find the locations of all nonzero

(including "fills-in" terms), off-diagonal terms of the factorized matrix [U]. Since both

upper and lower portion of the matrix have the same graph, the symbolic factorization is

performed only on either the upper or lower portion of the matrix. The symbolic

factorization requires the structure IA, JA of the matrix in an unordered representation and

generates the structure IU, JU of the factorized matrix in an unordered representation.

However, the numerical factorization requires IU, JU to be ordered, while IA, JA can be

given in an unordered representation. A symbolic transposition routine, TRANSA, which

does not construct the array of non zero o f the transpose structure, will be used twice to

order IU, JU, after the symbolic factorization, since we are only interested in ordering JU.

One of the major goals in this phase is to predict the required computer memory for

subsequent numerical factorization for either the upper or lower portion of the matrix. For

unsymmetrical case, the total memory required is twice the amount predicted by the

symbolic factorization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

6.4.2 Ordering for unsymmetrical solver

Ordering algorithms such as minimum-degree and nested dissection have been

developed for reducing fill in factorizing sparse symmetric matrices. One cannot apply fill-in

minimization, MMD (see Chapter II), on the upper and lower matrices separately. Shifting

rows and columns of the upper portion of the matrix will require values from the lower

portion of the matrix and vice versa. Let's consider the following example:

A =

too 1 2 3 4

5 100 6 7 8

9 10 100 11 12

13 14 15 100 16

17 18 19 20 100

(6.16)

Let's assume that the application of the Modified Minimum Degree (MMD) algorithm on the

graph of the matrix results in the following permutation:

PERM-

r i
1 ’ 1

2 4

3 • = • 2

4 3

5 5

(6.17)

By switching rows and columns of the matrix given in Eq. (6.16) according to the

permutation vector PERM, given in Eq. (6.17), the reordered matrix Ar becomes

A =

100 3 1 2 4

13 100 14 15 16

5 7 100 6 8

9 11 10 100 12

17 20 18 19 100

(6.18)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

One the other hand, if one considers only the upper portion of the matrix (as for a

symmetrical case), switching rows and columns of the matrix according to the permutation

vector, PERM, will result in the following reordered matrix A, given in Eq. (6.19). One can

see that the elements A(2,3) and A(2,4) came from the lower portion. Therefore, rearranging

the values of AN (or AN2) after

3 1 2 4

100 7 11 16

t o o 6 8

100 12

t o o

the permutation vector PERM has been determined by the MMD routine will require certain

elements of AN2 (or AN). The reordering subroutine for symmetric system has been

modified to account for these changes and implemented without adding any additional

working array. The portion of skeleton Fortran code in Table 6.1 shows how to retrieve

efficiently the appropriate elements from the lower (upper) portion of the matrix, while

constructing the reordered upper (lower) portion of the matrix. The permutation vector

PERM and the structure IU and JU of the reordered matrix are assumed to be available

already.

The algorithm in Table 6.1 is different for a case of a symmetrical matrix because,

if only the upper portion of a symmetrical matrix is stored in memory, the numerical values

in row i at the left side o f the diagonal value are identical to the values in column i above the

diagonal value (see Fig. 6.2). Consequently, the second DO loop 231 in Table 6.1 will not

be needed because, all data can be retrieved from the upper portion of the matrix and one can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

DO 200 i= l, N - l

[0=perm(i)

DO 220 j=IU (i), IU (i+l)-l

JO = perm(JUQ)

IF(IO.LTJO) THEN

IJO=IO

[JOO =J0

DO 230 jJ=IA(IJ0), IA(IJ0+l)-l

IF(JA(jj).NE.IJOO) GO TO 230

UN(j)=AN(jj)

UN2(j)=AN2Qj)

GO TO 220

230 CONTINUE

ELSE

[J0=J0

IJOO =10

DO 23 I ju=IA(IJ0), IA([J0+l)-l

IF(JA(jj).NE.IJ00) GO TO 23 1

UN(j)=AN2(ij)

UN2G)=AN(jj)

GO TO 220

231 CONTINUE

END IF

220 CONTINUE

200 CONTINUE

Table 6.1 Portion of Skeleton Fortran code of reordering
of an unsymmetrical matrix

select the appropriate pointers IJ0 and LT00 before the inner most DO loop. On the other

hand, for an unsymmetrical matrix, one should scan separately the upper and lower portion

of the matrix (AN* AN2) as shown in Table 6.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

6.4.3 Sparse Numerical Factorization with loop unrolling

By observing Fig. 6.2 and the derivations in Section 6.3, in order to factorize an

element Ujj o f the upper triangular matrix, one needs to know the factorize row i of [L] and

the column j of [U]. Thus, the multiplier of the upper portion of the matrix will be computed

from the coefficient of the lower portion of the matrix. Table 6.2 give the pseudo Fortran

skeleton code on how the multipliers are computed and how the factorization is carried out.

1. c Assuming row 1 has been factorized earlier

2. Do 11 I = 2, NEQ

3. Do 22 K= Only those previous " master" rows which have contributions to

current row I

4. c Compute the multipliers

5. XMULT = U(K,I) / U(K,K)

XMULT2 = L(I,K) / U(K,K)

6. Do 33 J = appropriated column numbers of" master" row # K

7. U(I,J) = U(I,J) - XMULT2 * U(K,J)

L(J,1) = L(J,I) - XMULT * L(J,K)

8. 33 CONTINUE

9. U(K,[) = XMULT

L(I,K) =XMULT2

10.22 CONTINUE

11.11 CONTINUE

Table 6.2: Pseudo FORTRAN Skeleton Code For Sparse LDU Factorization

In the sparse implementation, after the symbolic factorization is completed on one

portion of the matrix, the numerical factorization requires IU, JU (structure of [L] or

[U]) to be ordered and the required computer memory for the factorization is known.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

Similar to the symmetrical case, the numerical factorization also requires to construct

chain lists to keep track of the rows that will have contributions to the currently

factorized row. Another advantage of the storage scheme that we have adopted is that

the chain lists for the factorization of [L] (or [U]), will be the same as for the

factorization of [U] (or [L]).

The loop unrolling strategies that have been successfully introduced earlier can

also be effectively incorporated into the developed unsymmetrical sparse solver in

conjunction with the master degree of freedom strategy. In the actual code

implementation, "DO loops" in Eqs. (6.9 -6.11) will be rearranged to make use of loop

unrolling technique. The loop unrolling is applied separately for the factorization of the

upper portion and for the lower portion. Assuming the supemodes have already been

computed (the supemodes of the upper portion is the same as the ones for the lower

portion). The skeleton FORTRAN code in Table 6.2 should be modified as shown by

the pseudo, skeleton FORTRAN code in Table 6.3 for a loop unrolling level 2.

6.4.4 Forward and Backward solution

The forward and backward solutions were implemented following the formula

in Eqs.(6.12-6.15), once the factorized matrices [L], [D] and [U] are computed. In the

forward solution, (Eqs. 6.12 and 6.13), the factorized matrices [L] and [D] are used, and

in the backward substitution, the upper portion of the factorized matrix [U] is used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

C Assuming row 1 has been factorized earlier

Do 11 1=2, NEQ

Do 22 K.=Only those previous "master" rows which have contributions to

current row I

C Compute the multiplier(s)

NSLAVE DOF= MASTER (I) - 1

XMULT = U(K,I) / U(K,K)

XMULm = U(K+m,I)/U(K.+m,K.+m)

XMULT2 = L(I,K:) / U(K,K)

XMUL2m = L(I,fC+m)/U(K.+m.K+m)

C m =l,2 ... SLAVE DOF

Do 33 J = appropriated column numbers of" master" row # K.

U (U) = U (I.J) - XMULT2 * U(K.J) - XMUL2m *U(fC+m.J)

L(J,I) = L(J,I) - XMULT* L(J.K) - XMULm *L(J,K+m)

33 CONTINUE

U(K,I) = XMULT

U(K+m,I) = XMULm

L(I,K) = XMULT2

L(I.K+m) = XMUL2m

22 CONTINUE

11 CONTINUE

Table 6.3 : Pseudo FORTRAN Skeleton Code For Sparse LDU Factorization With
Unrolling Strategies

6.4.5 Sparse unsymmetric matrix-vector multiplication

A matrix-vector multiplication subroutine has been efficiently designed for which

the unsymmetrical matrix is stored in a mixed row-wise and column-wise storage

scheme. The non zeros from the upper and lower triangular matrix are stored in two

distinctive arrays AN and AN2 with the same structure IA and JA. Let's consider a

vector temp(\:neq) that will contain the result of the matrix-vector multiplication. After

multiplying the diagonal values by the right-hand-side, the multiplication of the upper

and lower portion of the matrix are efficiently implemented as shown in Table 6.4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

DO 10 i=l,n
iaa=ia(i)
iab=ia(i+l)-l
DO k=iaa, iab
kk=ja(k)
sum=sum+AN(k)*rhs(kk)
temp(kk)=temp(kk)+ AN2(k)*rhs(i)
END DO
temp(i)=sum

10 CONTINUE

Table 6.4 Unsymmetrical matrix-vector multiplication

The algorithm in Table 6.4 offers the advantage of avoiding to convert a row-wise

complete unordered storage that is normally used for general unsymmetric matrix into

our special storage scheme (mixed row and column-wise format).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

CHAPTER VH

APPLICATIONS

7.1 Introduction

The success o f algorithms for sparse matrix computations depends crucially on

careful computer implementations. All algorithms described in the previous chapters have

been coded in standard Fortran 77, and therefore should port to other computer platforms

with no or minor changes. The floating-point operations have been performed in double

precision, except on the Cray Y-MP where single precision is used. On the machines with

vector capability, all codes have been compiled with the vector optimization turned on to the

optimum level (-03 on most computers). The optimal level o f loop unrolling varies from

computer to computer. In our experiments, we have tried loop unrolling level-p (with

p=l,2,4,and 8). All the test problems have been obtained from NASA Langley Research

Center, except the Off-shore EXXON model [37-38,56]. All timing presented are in

seconds.

The different computer platforms used in our experiments include (but not limit to)

the following:

- Cray Y-MP from NASA Langley Research Center.

- IBM RS6000 model 590: A high performance computing workstation from the

Office of Computing and Communication Service, OCCS, at Old Dominion

University that we will refer to as Stretch.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

- SUN workstations (Sparc 20 that will refer to as Rhino, a Sparc 10 and series o f

Sparc 5. We will refer to one SUN Sparc 5 as Cedar) from the civil engineering Unix

laboratory at Old Dominion University.

- SUN workstation SPARC 20 that we will refer to as USTSU31 from Hong Kong

University o f Science and Technology (HKUST).

- Silicon Graphics Indigo 2 from HKUST.

Unlike the SUN workstations, the Cray Y-MP has no cache memory. Its floating

point hardware is extremely fast due to vector pipelining. The use of loop unrolling, vector

directives increase the gain in performance. It is also worth noting that Cray Y-MP machine

performs floating-point arithmetic far more efficiently than integer arithmetic, in contrast to

the workstations where the integer and floating-point performance is better balanced.

The IBM RS6000/590, stretch, from Old Dominion University is extensively used

in the evaluation of the performance of the developed Fortran codes. It is a vector machine

running the AIX XL Fortran compiler. The performance achieved on the stretch machine

was not due to only the quality of the sparse algorithms, but also due to the selection o f

compiler options and flags. The following flag options were selected:

-bmaxdata:<bytes> : which specifies the maximum amount of space to reserve for

the program data segment (if one needs more than 256 MB).

-bmaxstack:<bytes> : specifies the maximum amount of space to reserve for the

program stack segment (if one needs more than 256 MB).

-O, -02 : Optimizes code generated by the compiler.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

-03: Performs the -0 level optimizations and perform additional optimizations that

are memory or compiler time intensive. The optimization level -03 changes

sometimes the semantic of the program.

-qstrict: Ensure that optimizations done by the -03 option do not alter the semantics

of the program.

-qalias—noaryovrlp : program does not contain array assignments of overlapping or

storage associated arrays; can produce significant performance improvements for

array language.

-qarch=pwr2 : produces an object that contains instructions that run on the P0WER2

hardware platforms.

Each code is provided with a “makefile” that can port on different computer

platforms. To compile most of the program, one just simply types "make". Porting from one

computer to another typically requires minor changes to the makefile. To use a different

computer platform, simply modify the makefile by commenting and uncommenting the

appropriate script lines corresponding to the platform as it is described in the Appendix A.

There are no calls to routines from external libraries. Only the timing subroutine, cputime.f

given in the Appendix B is machine dependent and must be modified when moving from one

machine to another. The user may have to add timing calls for machines other than those

currently studied. Currently covered are CRAY, SUN, IBM RS6000, and some other Unix

boxes.

7.2 Description of various finite element models

In order to evaluate the performance (in terms o f computational time, solution

accuracy and memory requirements) o f all the developed computer programs, we consider

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

applications that arise from practical finite element models. The following benchmark

applications have been used to check the accuracy and robustness of all the developed

computer programs.

7.2.1 Application No 1: High Speed Civil Transport (HSCT) Aircraft

The finite element model of the High Speed Civil Transport Aircraft, HSCT, shown

in Fig. 7.1 and Table 7.1, resulted in a system of linear equations with 16,152 degrees of

freedom and 373,980 nonzero off diagonal terms. Fig. 7.2 shows the sparsity pattern of

the non zero elements of the upper part of the stiffness matrix.

7.2.2 Application No 2: The EXXON off shore model

The finite element model for the EXXON model (shown in Figs. 7.3-7.5 and Table

7.2) has been used extensively in earlier research works [37,38,56]. The resulted stiffness

matrix has 23,155 degrees of freedom. The number of non-zero off diagonal terms of the

original stiffness matrix is 809,427. Fig. 7.6 shows the sparsity patterns of the non zero

elements o f the upper part of the stiffness matrix.

7.2.3 Application No 3: Thermal-Structural model

The finite element model of the thermal-structural model resulted in a system of

43,806 linear equations with 1,037,705 non zeros coefficients of the stiffness matrix. Table

7.3 gives the characteristics o f the finite element model, and Fig. 7.7 shows the sparsity

patterns of the non zero elements of the upper part of the stiffness matrix.

7.2.4 Application No 4: Solid Rocket Booster (SRB)

The finite element model of the Solid Rocket Booster, SRB, shown in Fig. 7.8,

resulted in a system of 54,870 linear equations with 1,308,185 nonzero off diagonal terms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

Table 7.4 gives the characteristics o f the finite element model and Fig. 7.9 shows the

sparsity patterns of the non zero elements of the upper part of the stiffness matrix.

7.2.5 Indefinite matrices

In order to evaluate the performance (in terms o f computational time, solution

accuracy and memory requirements) of the proposed sparse solvers with pivoting strategies

for symmetric indefinite systems, five NASA benchmarks problems (ranging from 51 to

15,357 unknown degree-of-freedoms) were considered in this study. The following

applications are considered:

- Application No 5 : Cantilever Beam problem, 51 DOF.

- Application No 6 : Carlos Davilla problem, 247 DOF.

- Application No 7 : Jonathan’s plate problem, 1,440 DOF.

- Application No 8 : Knight’s panel problem, 2,430 DOF.

- Application No 9 : 15,367 DOF problem.

A summary of the characteristics of these five indefinite matrices are presented in Table

7.5. Fig. 7.10 to Fig. 7.14 give the sparsity patterns o f the non zero elements of upper

portion and the diagonal terms o f the stiffness matrix.

- Application No 10: An additional application, the McDonell Douglas Stitched/RFI all

composite wing finite element model with 53,948 degrees of freedom, is considered. The

details of this model can be found in NASA TM 110267 by John Wang (or NASA TM

110267, by Wang, on NASA Langley Technical Report server). The finite element model

contains 7,448 Quad elements, 2,562 Beam elements, 98 triangular elements and 24 NASA

interface elements causing 4,326 zeros on the diagonal o f the stiffness matrix. Fig. 7.15

shows the finite element model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 x t + x 2 $4

128

7.2.6 Examples description for Interior Point Method (IPM)

To validate the accuracy and robustness o f the developed interior point method, the

following five small examples were considered that cover the different kinds o f linear

programming problems. Problems with a feasible region, no feasible solution, a feasible

region as a point, unbounded and multiple solution are considered. Graphical solutions of

these examples are also provided to check the accuracy of the IPM.

Application No 11 (optimum solution exist)

Min Z = -2*j - 2x2
su b ject to 2 x x + 3x2 ^6

Application No 12 (Feasible solution is a point)

M in Z =2Xj - 3x2
su b ject to x t +2x2 <4

Application No 13 (No feasible solution)

M in i
su b ject to 2 x { + x2 <4

Application No 14 (Multiple solutions)

Min

su b ject to 2x, +x2 £4

Application No 15

x t + 3x2 ^ 6

M in Z =3Xj ~ 2 x 2

3Xj + 3 x2 <3

M in Z =2x, +2x2

Xj + x2 1 1

M in Z =2Xj +x2
su b ject to 5 x , + 1 0 x 2 ^ 8

x i + X2 ^

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

Several other moderately large scale examples have also been formulated to check

the performance of the developed IPM, as it will be described in the following paragraphs:

Min c Tx
subject to [A]x-b

f^O

where [A] is an unsymmetric matrix containing the constraints set. Matrix [A] is read in

NASA row-wise format as a complete unsymmetrical matrix. The set of indefinite matrices

provided in Section 7.2.5 are used as constraints (matrix [A]). An input parameter mread is

added into the code. When mread is equal to -1 , only the upper triangular part of matrix [A]

is read and when mread is 1, the lower portion is also considered. The objective function is

defined as the summation of all the design variables, c r= [1,1,..., 1], The design variables

are assumed to be positive.

Number of constraints mread

Application 16 51 -1

Application 17 51 1

Application 18 247 -1

Application 19 247 1

Application 20 1440 -1

7.3 Numerical Results

All numerical results for the above 20 applications will be reported in this section.

7.3.1 Sparse equation solvers

a) LDLT numfal/2/8

The High Speed Civil Transport aircraft, the Exxon model, the thermal-structural

problem and the Solid Rocket Booster finite element models are used to check the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

performance and robustness of the developed vector sparse LDLT solver. Except the

thermal-structural problem, which is non-positive definite, the stiffness matrix of all the other

finite element models are positive definite. To check the accuracy o f the results, an absolute

error norm and relative error norm have been computed as follows:

A bsolute Error Norm A E N = | |K x - f | | (7-1)

R elative Error Norm R E N = K̂ x (7.2)
I lf II

where [K], {x}, and {f}, shown in Equations (7.1) and (7.2), correspond to the coefficient

matrix, unknown vector and the right-hand-side vector, respectively. Table 7.6 and Fig. 7.16

give the numbers of non zeros after factorization and memory requirements for the HSCT

application with different reordering schemes. The Nested Dissection (ND) algorithm results

in 13.2% fill-in reduction and 18.5% for the Multiple Minimum Degree (MMD) algorithm

on the HSCT finite element model (application No 1). The MMD seems to minimize the

fill-in quite efficiently and requires less memory. Table 7.7 -7.8 shows the performance of

Numfal/2/8 for different level of loop unrolling using MMD on the HSCT finite element

model. Table 7.9-7.10 shows the summary of all results for different reordering schemes and

different level of loop unrolling on Rhino and Stretch machines. Figures 7.17 and 7.18

compare the factorization and total time of NUMFA1, NUMFA2 and NUMFA8 for the

HSCT finite element model respectively on Stretch and Rhino machine. The following

notations are used:

- Reord : reordering

- Loop unrol : Loop unrolling

- Symfa : symbolic factorization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

- Numfa : numerical factorization

- FBE : Forward/backward solution

The total time given in Tables 7.9 and 7.10 does not include the time for the

reordering. It is the overall time to read data from the disk (after reordering of the matrix is

done), plus the time to perform the symbolic factorization, the transposition of the structure,

the numerical factorization and the error norm-check. One can notice that the MMD with

loop unrolling level 8 gives the best timing for the numerical factorization. Table 7.11 to

7.13 gives the comparison of results for the EXXON, Thermal-Structural and SRB finite

element models, respectively, using MMD and different level o f loop unrolling on the IBM

R6000/590 {stretch) machine.

The IBM RS6000/590 (Stretch) has flag options for the vector compiler to enhance

the performance. Figures 7.19 and 7.20 shows the impact of the compiler optimization level

on the numerical factorization and total time for the HSCT and SRB finite element models

respectively. Compiler optimization level -02 and -03 can give up to 76.4% gain in

performance for the numerical factorization and up to 75.4% gain in performance for the

total time for the applications that we have tested. To achieve a good performance, one

should not only fine tune his algorithm implementation but also have a good knowledge of

a particular computer platform.

Since most of the computer platforms that we have been using are not in dedicated

environment (multi-users environment), most of the results have been recorded late at night

(after 2:00 am) to try to have nearly dedicated time. Further testing have been done on the

Rhino and stretch machine to see how reliable the time function is. The HSCT finite model

has been used for studying various time functions, and NUMFA8 solver for positive definite

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

systems has been executed twenty times on each machine. The numerical factorization and

the total time have been recorded. The statistical software, SAS was used to analyze the

data, and the results can be summarized as follows:

Rhino Rhino Stretch Stretch
HSCT-Numfa HSCT-Total HSCT-Numfa HSCT-Total

Mean 252.9595 287.6132 16.9630 20.2235
Variance 1.3008 1.7947 0.0266 0.0336
Standard Deviation 1.1405 1.3397 0.1631 0.1834
Standard mean 0.2550 0.2996 0.0365 0.0410
Maximum 255.7281 290.6975 17.4500 20.8400
Minimum 251.8622 286.3397 16.8400 20.0700
Range 3.8659 4.3578 0.6100 0.7700
Skewness 1.2634 1.2585 2.4945 2.7082

The time function on the IBM RS6000/590, Stretch, is more reliable than the one on the

SUN SPARC 20, Rhino.

Table 7.14 shows an example of input data file, K.INFO, for the developed solver,

NUMFA1/2/8 and Table 7.15 gives an example of an output file from the sparse solver

NUMFA8. The following control parameters are considered in the input data file K.INFO:

- nreord : Reordering algorithm

= 0 : No reordering scheme

= 1 : Reverse Cuthill-McKee (RCM)

= 2 : Nested dissection (ND)

= 3 : Modified Minimum Degree (MMD)

-loop : Loop unrolling level

= 1 : numfal : level 1

= 2 : numfa2 : level 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

= 8 : numfa8 : level 8

-neq : number of equations

-ncoef : number of non zeros

-mread : input data

= -1 : read K.* NASA input files

= else : Read fort.* files

b)Cholesky OakRidgeODU

The first four applications have also been used to check the performance o f the

OakRidgeODU solver. Since this solver uses Cholesky algorithm, the non-positive definite

thermal-structure problem has been modified, by imposing a large diagonal value to make

it become positive definite. Tables 7.16 and 7.18 show the impact o f the cache size on the

HSCT Finite element model on the stretch and Rhino machines. A cache size of 64 and 32

gives the best performance on stretch and Rhino machines, respectively. Table 7.17 and 7.19

show the impact of the loop unrolling level on the performance of the solver on the stretch

and Rhino machines. For different level of loop enrolling, the best performance has been

achieved at level 4 and 8. Similarly, Tables 7.20-7.25 summarize the impact of cache size

and loop unrolling level on the EXXON, Thermal-Structural and SRB finite element models.

Table 7.26 gives an example of an input data file, K.INFO, to run the OakRidgeODU

solver and Table 7.27 gives an example o f an output file from this solver. The following

control parameters are considered in the input data file K.INFO:

- icase : ordering choice

= 1 natural

= 2 multiple minimum degree

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

- cachsz: machine cache size (in Kbytes), usually 0,32 or 64

- level : level of loop unrolling (1,2,4,and 8)

- neq : number of equations

- ncoef: number of non zeros

- mread: input data

= -1 : read K.* NASA files

= else : Read fort.* files

c)ODU-HKUST indefinite solver

The benchmark indefinite matrices of applications No 5 to No 10 provided by NASA

Langley Research Center, are considered to evaluate the performance of the developed

indefinite solvers. All these applications have a similar characteristic, they all use NASA

interfaced elements, which cause zero terms on the diagonal of the stiffness matrix (refer

to Figs. 7.10-7.14). Table 7.28 also gives the number and percentage of diagonal zero

values. The total number of equations (or the number of degree of freedom) and the total

number o f nonzero coefficients before (ncoef) and after (ncoef2) factorization are also

shown in Table 7.29. The relative Error Norm (REN) is computed according to the formula

given in Eq.(7.2).

Further improved performance was achieved on the ODU-HKUST, by applying the

MMD re-ordering algorithm (to minimize the fills-in terms) and by moving all zero diagonal

terms of the original stiffness matrix toward the bottom right of the original stiffness matrix.

Table 7.31 shows the gain achieved by using MMD and pushing the rows/columns

corresponding to zero diagonal terms to the end, compared to the case where MMD is

applied alone. Approximately 58% gain in performance has been achieved on the numerical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

factorization of application No 9. Both Cray-YMP (single processor) computer and the

EBM-RS6000/590 workstation are used in this study. For structural examples considered in

this section, the resulting linear system of indefinite equations, shown in Eq. (2.1) can be

expressed in the following form

A B H-l ' b
>

B T 0 uj ic

In equation (7.3), the vector {X} can be referred to as the “displacement” vector, where as

the vector {A,} (which corresponds to the zero diagonal terms o f the coefficient stiffness

matrix) can be referred to as the “Lagrange multiplier” vector. The bottom right submatrix

of the coefficient stiffness matrix, shown in Eq.(7.3), is a “zero” submatrix. Table 7.28 gives

the percentage of zero diagonal values for all the indefinite matrices. The relative

displacement & Lagrange multiplier” error norm (or R.E.N) has been calculated, according

to Eq. (7.2).

Golub [6] has suggested to use the value for the control parameter alpha,

a = (l+ /r7) /8 . In our code, this value has been used as an input parameter. Figure 7.21

shows the impact o f the choice o f the control parameter alpha on the performance o f the

solver on the application No 9. Table 7.32 also gives the impact on the number of two-by-

two (2x2) and diagonal interchange (one-by-one pivoting), as well as the non-zeros after fill-

in (due to the choice of the control parameter alpha). Up to 79.4% gain can be achieved in

the numerical factorization of application No 9.

Comparisons given in Table 7.30 have been made based upon structural data and

compared to the results from the Boeing indefinite solvers for applications No5 to No9. The

comparison has been made based on several different criteria

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

(a) The maximum displacement

(b) The absolute summation of the entire DISPLACEMENT vector. As an example:

assuming the DISPLACEMENT vector is { 1.2, -2.6, 0.7, 2.9}, then the maximum

displacement is 2.9, and the summation (absolute) o f all displacements is 1.2 + 2.6

+0.7 + 2.9

(c) The Relative Error Norm (REN) considered in solving the system [A]* {x} = {b}

is defined in Eq.(7.2)

The ODU-HKUST solver performs well on matrix of size less than 15,367 but it is slow on

large size matrix such as application No 10.

d)ODU-Ma27 indefinite solver [66]

The benchmark indefinite matrices given in application No 5 to No 10 are used again

to evaluate the performance of ODU-Ma27 indefinite solver. Table 7.33 and 7.34 give a

summary of results on Rhino and stretch machines. The relative error norm has been

computed according to Eq.(7.2). The maximum and summation of the absolute value of the

displacement, plus the lagrange multiplier, as well as the one for the displacement alone are

shown in Table 7.33 and 7.43.

7.3.2 Sparse eigen-solvers

a)Lanczos and Subspace sparse eigensolvers for positive definite m atrix

Based upon the discussions in previous sections, practical finite element models

(such as Exxon-off-shore structure, and High Speed Civil Transport Aircraft) are used to

evaluate the performance of the developed sparse eigen-solvers for positive definite

systems that we called SPARSEPACK. Since the codes have been written in standard

FORTRAN language (and without using any external library subroutines), it can be ported

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

to different computer platforms (such as SUN SPARC 20, IBM-R6000/590, Intel Paragon,

Cray C90 etc...) with no (or minimum) changes to the codes. The accuracy of the

developed codes for solving generalized eigen equations can be measured by the Relative

Error-Norm (=R.E.N .) which can be computed as :

R.E.N. - | g f - (7.4)
M il

The basic Subspace iteration code, that we will refer to as KJBATHE96, given in Ref. [1],

will be used as a based-line reference. This basic Subspace iteration code [1] will be

compared to the developed basic, "sparse" Subspace iteration (option also referred to as

SVSub), and "sparse" Lanczos (option also referred to as SVLan) codes. For a fair

comparison, the KJBATHE96 code is also compiled using the vector compiler on the IBM

Stretch machine. Lumped masses are used in all examples in this section, but the Fortran

code developed also has the capability to solve consistent mass matrix. In order to

accelerate the calculations of the required eigensystem and avoid the singularity associated

to systems with rigid body modes, the option of using a shift factor (see Eq.(4.5)) is

implemented. The SPARSEPACK package contains not only the Subspace iteration and

the regular Lanczos iteration, but also the block Lanczos (block less than 4).

The finite element model for the HSCT aircraft (see Fig. 7.1 and Fig. 7.2) has

been used extensively in earlier research works. The numerical performances of 3

generalized eigen-solvers (KJBATHE96, Subspace iteration and Lanczos iteration) are

presented in Figs. 7.22-7.23.

The finite element model for the EXXON model (see Fig. 7.3-7.6) used extensively

in earlier research works [37,38,56]. The resulted system of generalized eigen-equations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

from the EXXON model has 23,155 dof. The numerical performances are summarized

in Figs. 7.24-7.25. It should be noted here that on the IBM-RS6000/590 workstation,

vector processing capability is available, where as the vector processing capability is "not"

available on the Sun SPARC 20 workstation (USTSU31).

Table 7.35 shows an example of input data file, K.INFO, for the developed eigen-

solver package SPARSEPACK. The following control parameters are considered in

K.INFO:

-nord : Reordering algorithm

= 0 : No reordering scheme

= 3 : Modified Minimum Degree (MMD)

-neig : number of required eigenvalues

-lump : Lump or consistent mass

= 1 : lump mass

= else : consistent mass

-neq : number of equations

-ncoef : number of non zeros

-ishift : shift

= 0 : no shift is considered

= else : shift is considered

-iblock:

= -1 : Subspace Iteration

= 0 : Regular Lanczos

= I , ... ,3 : Block Lanzos (block 1,.., 3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

(The value of iblock has to be less than 4)

-m read: input data

= -1 : read K.* NASA input files

= else : Read fort.* files

Table 7.36 gives an example of output files from the eigensolver using Lanczos. Table 7.37

gives an example of output files using Subspace, and Table 7.38 gives an output o f the

KJBATHE96.

b) Lanczos and Subspace sparse eigensolver for Indefinite systems

Lanczos and Subspace iteration for indefinite systems have been implemented that

uses the two indefinite solvers discussed in Chapter III (the ODU-HKUST indefinite solver

and the ODU-Ma27 indefinite solver). Therefore, two codes have been developed for

Lanczos and Subspace iteration, using both the indefinite solvers. A flag imethod is

considered that takes the value 1 when the ODU-Ma27 indefinite solver is used, and the

value 2 when the ODU-HKUST indefinite solver is used. Additionally, both lump and

consistent mass can be treated. Finally, to shift the spectrum of eigenvalues and accelerate

the convergence of the required eigensystem and avoid the singularity associated to systems

with rigid body modes, the option o f using a shift factor according to Eq. (4.5) has also been

implemented. These different options have been implemented in different modules for a

better memory management.

The accuracy has been measured by computing the Relative Error-Norm

(=R.E.N) defined in Eq.(7.4). The indefinite systems in applications 5 to 9 have negative

and positive eigenvalues. Table 7.39 gives an example o f 15 eigenvalues o f application No

6. (247 dof indefinite matrix). The following observations can be made:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

- The Subspace iteration was able to capture both negative and positive eigenvalues, but the

Lanczos gave the lowest positive eigenvalues (if no shift factor is considered). Table 7.39

and 7.40 shows an example of 15 eigenvalues computed from Subspace and Lanczos

algorithms for the 247 DOF application

- The use of a shift factor will help to accelerate the convergence, and to handle systems with

rigid body modes (but shift the spectrum o f eigenvalues around the shift value).

Table 7.41 shows an example of an input data file, K.INFO, and Table 7.42 gives an

example of a typical output file. The following control parameters are considered in

K.INFO:

-neig : number o f required eigenvalues

-lump : Lump or consistent mass

= 1 : lump mass

= else : consistent mass

-neq : number o f equations

-ncoef : number o f non zeros

-ishift : shift

= 0 : no shift is considered

= else : shift is considered

-mread : input data

= -1 : read K..* NASA input files

= else : Read fort.* files

We have developed robust sparse package for the eigensolution of positive-negative

and indefinite symmetric matrices. Two challenging problems have been given to us by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

NASA Langley Research Center to validate our code. Descriptions of these 2 problems are

given in the following paragraphs:

1.- The Jonathan’s ill-conditioned problem: An ill-conditioned stiffness matrix collected

from a finite element procedure with 900 degrees of freedom and 11989 non-zeros off

diagonal coefficients has been obtained. Table 7.43 shows the results provided by NASA test

bed for the first 25 eigenvalues, and Table 7.44 and 7.45 give the results from our Lanczos

and Subspace eigensolver, respectively.

2.- NGST Satellite Model: 5156 dof problem: This problem has 5156 dof and 88966 non

zeros off diagonal coefficients. The stiffness matrix contains some rigid body modes. It took

51 sec (time also includes reading data and error norm check) on the stretch machine to

solve for the first 100 eigenvalues. The output is given in Table 7.46. A shift value was

needed to deal with the singularity of the stiffness matrix. The first six eigenvalues are zeros

(rigid body modes) and some repeated eigenvalues have been observed in the output (26th

and 27th eigenvalues, 56th and 57lh eigenvalues, etc).

7.3.3 Interior Point Method

Based upon the IPM and the indefinite sparse solver algorithms described in Chapters

III and V, a Fortran computer code has been written to validate the entire numerical

procedure. All results in this section have been obtained using the cedar computer (Sun

SPARC 5) at Old Dominion University, and presented in Table 7.47 and 7.48, where, NEQ,

NCOEF and NCOEF2 are Number of Equations, number of non-zero off diagonal

coefficients of matrix [AAT] and number of non-zero off diagonal coefficients o f matrix

[AAt] including the diagonal values, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

The first five small-scale examples (see Table 7.47) are used to validate the IPM

code for different type of problems, such as feasible region is defined, feasible region is a

point, no feasible region, multiple solutions. Fig. 7.26 to 7.30 give their graphical solutions.

The last five medium-scale examples (see Table 7.48) are used to evaluate the numerical (by

measuring the time) performance of the IPM, in conjunction with the developed indefinite

sparse solvers.

Table 7.49 shows an example of input data file, K.INFO, for the developed IPM and

Table 7.50 gives an example of output files from the solver. The following control

parameters are considered in the input data file K.INFO:

-nv : number of design variables

-nl : number of inequality constraints (less than zero)

-ng : number of inequality constraints (greater than zero)

-ncoef : number of non-zeros in the constraint set

-isolver: type of solver used

= 1 : sparse solver for positive definite systems

= else: sparse solver for indefinite systems

-mread: input data

7.3.4 Sparse unsymmetrical solver

Three examples are considered to evaluate the performance o f the developed

unsymmetrical vector sparse LDU solver (that we will refer to as UNSYNUMFA). Two

applications, the HSCT (16,152 degree o f freedoms) and the SRB (54,870 degrees of

freedoms) finite element models for which the static solution is known are considered.

Another application , PierrotHSCT (16,152 degree of freedoms) is constructed by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

considering the structure o f the HSCT FEM with the same coefficient values for the upper

portion of the matrix and different values for the lower portion of the matrix to make the

matrix completely unsymmetrical in values.

To check the accuracy of the results, a relative error norm is computed as shown in

Eq. (7.2), where matrix [K] is unsymmetrical. The sparse unsymmetrical matrix-vector

multiplication subroutine developed in Section 6.4.5 is used to compute the product [K].{x}

(where {x} is the displacement vector), which is required for error norm computation.

Table 7.51 gives the number of non-zeros and memory requirement for the HSCT

FEM application with and without calling the subroutine for ordering unsymmetric matrix

(UnsyMMD), explained in Section 6.4.2. By comparing the results in Table 7.51 to the

symmetrical case in Table 7.6 for the HSCT application, the number of fill-in doubles but

the total memory needed increases by 49.2 %. The use of reordering, UnsyMMD, decrease

the non-zeros off diagonal by 18.5 % after factorization (as shown in Fig. 7.31) and 16 % in

saving for the total memory needed by the solver.

Table 7.52-7.53 and Fig. 7.32-7.33 give a summary of results for different level of

loop unrolling on the IBM RS6000/590 stretch with and without using the reordering

(UnsyMMD). Table 7.54 and Fig. 7.34 give the summary of results for PierrotHSCT

application and Table 7.55 and Fig. 7.35 give the summary of results for the SRB example.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

APPLICATION No 1

Equations Coefficients Maximum
Semi-bandwidth

Average
Semi-bandwidth

16,146 499,505 593 318

Table 7.1 Characteristics of the NASA High Speed Civil Transport Aircraft FEM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLICATION N° I

Fig. 7.2 Non-zero pattern of the NASA High Speed Civil
Transport Aircraft FEM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

147

APPLICATION N° 2

Fig. 7.3 TLP Flexjoint Geometry Parameters of the EXXON FEM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

APPLICATION N° 2

Fig. 7.4 A 3-D model of the TLP Flexjoint EXXON FEM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

APPLICATION N° 2
TLP Flexjoint EXXON FEM

oolsc zzerais

Co)

Fig. 7.5 Schematic diagram of the TLP Flexjoint EXXON FEM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

APPLICATION N° 2

Fig. 7.6 Non-zero pattern of the TLP Flexjoint EXXON FEM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

APPLICATION N° 2

Equations Coefficients Max Semi-
bandwidth

Average Semi
bandwidth

23 ,155 809,427 689 665

Table 7.2 Characteristics of the TLP Flexjoint EXXON FEM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLICATION N° 3

I

Fig. 7.7 Non-zero pattern o f the Thermal-Structural FEM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

153

APPLICATION N° 3

Equations Coefficients Max Semi-
bandwidth

Average Semi
bandwidth

43,806 1,037,705 31,956 1107

Table 7.3 Characteristics of the Thermal-Structural FEM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig. 7.8 FEM of the solid Rocket booster, SRB

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLICATION N° 4

Equations Coefficients Max Semi-
bandwidth

Average Semi
bandwidth

54,870 1,308,185 30,726 2,239

Table 7.4 Characteristics of the FEM Solid Rocket Booster, SRB

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLICATION N° 4

Fig. 7.9 Nonzero pattern of the FEM Solid rocket Booster, SRB

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLICATION N° 5
Indefinite matrix: Cantiliver Beam Problem

51 DOF

Fig. 7.10 Nonzero pattern of Application No 5
Cantilever Beam problem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

APPLICATION N° 6
Indefinite matrix: Carlos Davilla Problem

247 DOF

•'v%
^5*'VSi

%■*! *ii >spa“ t,
i i i

^ . 7. n \

■« :?Y l

> %

Fig. 7.11 Nonzero pattern of Application No 6
Carlos Davilla Problem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPLICATION N° 7
Indefinite matrix: Jonathan’s plate problem

1440 DOF

■N

Fig. 7.12 Nonzero pattern of Application No 7
Jonathan’s plate problem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

APPLICATION N° 8 ~
Indefinite matrix: Knight’s Panel problem

2430 DOF

L

Fig. 7.13 Nonzero pattern of Application No 8
Knight’s Panel problem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

APPLICATION N° 9 _
Indefinite matrix: 15,367 problem

Fig. 7.14 Nonzero pattern of Application No 9
15,367 DOF indefinite problem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

Application NEQ NCOEF
Maximum

semi
bandwidth

Average
semi

bandwidth

No 5 51 218 11 7

No 6 247 2,009 44 17

No 7 1,440 22,137 1,246 143

No 8 2,430 75,206 1,100 280

No 9 15,367 286,044 1,035 514

Table 7.5 Characteristics of Indefinite matrices applications

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

 7
.15

M

cd
on

el
l

Do
ug

las

Sl
itc

he
d/

RF
l

Al
l

co
m

po
sit

e
wi

ng

Fin
ite

el

em
en

t
m

od
el

164

REORD NCOEF NCOEF2 Integer
Memory

Real
Memory

Total
Memory

No Reord 499,505 3,700,242 4,296,626 4,264,331 8,560,957

RCM 499,505 3,698,196 4,294,580 4,262,285 8,556,865

ND 499,505 3,210,738 3,807,122 3,774,827 7,581,949

MMD 499,505 3,017,283 3,613,667 3,581,372 7,195,039

Table 7.6 HSCT FEM: Memory requirement for different
reordering algorithms

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

HSCT
4 -

3.5 -
3 -

2.5 -
2 -

1.5 -
1 -

0.5 -I
0 —

1E+06

n No Reord B RCM

| ND ■ MMD

Fig. 7.16 HSCT FEM: Non-zeros elements after factorization for
different reordering schemes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

LOOP Symfa Numfa FBE Total Max Sum Relative
unrol. time time time time abs abs Error
Level (sec) (sec) (sec) (sec) displ displ Norm

1 0.480 31.630 0.300 34.910 0.447 301.291 1.34E-08

2 0.489 20.340 0.310 23.640 0.447 301.291 1.41E-08

8 0.480 16.880 0.310 20.160 0.447 301.291 1.36E-08

Table 7.7 HSCT FEM: Comparison of results using MMD and different level of loop
unrolling on the IBM RS6000/590 Stretch machine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

LOOP
unrol
level

Symfa
time
(sec)

Numfa
time
(sec)

FBE
time
(sec)

Total
time
(sec)

Max
abs
displ

Sum
abs
displ

Relative
Error
Norm

1 3.921 505.437 5.315 539.501 0.447 301.291 1.41E-09

2 3.880 360.779 5.330 394.693 0.447 301.291 1.43E-09

8 3.881 247.448 5.311 281.274 0.447 301.291 1.43E-09

Table 7.8 HSCT FEM: Comparison of results using MMD and different level of loop
unrolling on the Sun SPARC 20 rhino machine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

HSCT
Factorization Time (sec)

35 -

30 -

25 -

20 -

15 -

10 -

5 -

Q NUMFA1 H | NUMFA2

■ NUMFA8

HSCT
Total time (sec)

35 -

30 -

25 -

20 -

15 -

10 -

5 -

0 -

NUMFA1 H NUMFA2
| NUMFA8

Fig. 7.17 HSCT FEM: Performance ofNum fal/2/8 on the
stretch machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

600 -

100

0

HSCT
Factorization Time (sec)

-*

—
..... .:^.*

! _ j NUMFA1

■ NUMFA8

NUMFA2

HSCT
Total time (sec)

600 -

500 -

400 -

300 -

200 -

100 -

0 -

□ NUMFA1 H NUMFA2

■ NUMFA8

Fig. 7.18 HSCT FEM: Performance ofNumfal/2/8 on the
rhino machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

HSCT
Factorization and total time (sec)

100 -

80 -

60 -

40 -

20 -

0 -

Numfa8 Total

□ -o ■ - 0 1 ■ 1 o to ■ - 0 3

-0 ■i 70.01 ■ 81.27
-01 70.25 I 81.37 ;
-02 16.54 ! 19.97
-03 :: 16.58 ! 19.84;

Fig. 7.19 HSCT FEM: Performance ofNumfa8 for different compiler optimization
level on the stretch machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

SRB
Factorization and total time (sec)

400 -
350 -
300 -
250 -
200 -

150 -i
100 -

50 -
0 -

Numfa8 Total

f---
- O ■ - 0 1 ■ - 0 2 ■ C

O
01

-o 314.32! 359.96 >
-01 •i 314.3 | 359.66 ;
-0 2 ,j 76.06; 91.7
-03 -i 76.23 I 91.43

Fig. 7.20 SRB FEM: Performance of Numfa8 for different compiler optimization
level on the stretch machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Reord
Loop
unrol
level

Reord
time
(sec)

Symfa
time
(sec)

Numfa
time
(sec)

FBE
time
(sec)

Total
time
(sec)

Max
abs

displ

Sum
abs

displ

Relative
Error
Norm

No-Reord 1 - 0.700 32.040 0.380 35.120 0.447 301.291 0.22E-08

No-Reord 2 - 0.710 20.090 0.380 23.120 0.447 301.291 0.20E-08

No-Reord 8 - 0.690 16.040 0.380 19.110 0.447 301.291 0.21E-08

RCM 1 0.360 0.600 31.610 0.360 34.520 0.447 301.291 0.21E-08

RCM 2 0.350 0.600 20.190 0.380 23.060 0.447 301.291 0.21E-08

RCM 8 0.340 0.590 16.280 0.390 19.120 0.447 301.291 0.20E-08

ND 1 1.290 0.520 31.410 0.340 34.810 0.447 301.291 0.19E-08

ND 2 1.280 0.520 20.190 0.310 23.589 0.447 301.291 0.19E-08

ND 8 1.280 0.510 16.550 0.330 19.920 0.447 301.291 0.21E-08

MMD 1 0.254E-01 0.480 31.630 0.300 34.910 0.447 301.291 0.13E-08

MMD 2 0.261E-01 0.489 20.340 0.310 23.640 0.447 301.291 0.14E-08

MMD 8 0.261E-01 0.480 16.880 0.310 20.160 0.447 301.291 0.14E-08

Table 7.9 HSCT FEM: Summary of results on the IBM RS6000/590
stretch machine

-4to

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Reord
Loop
unrol
level

Reord
time
(sec)

Symfa.
time
(sec)

Numfa
time
(sec)

FBE
time
(sec)

Total
time
(sec)

Max
abs

displ

Sum
abs

displ

Relative
Error
Norm

No-Reord 1 - 5.67 517.15 6.46 556.51 0.447 301.291 2.0E-09

No-Reord 2 - 5.66 368.00 6.45 407.34 0.447 301.291 2.1E-09

No-Reord 8 - 5.66 264.64 6.45 304.05 0.447 301.291 2.0E-09

RCM 1 2.94 4.87 517.10 6.49 555.63 0.447 301.291 1.9E-09

RCM 2 2.94 4.91 366.31 6.45 404.97 0.447 301.291 2.1E-09

RCM 8 2.94 4.87 267.78 6.47 306.36 0.447 301.291 2.0E-09

ND 1 11.15 4.15 496.88 5.633 532.51 0.447 301.291 2.0E-09

ND 2 11.12 4.14 348.02 5.63 383.61 0.447 301.291 1.9E-09

ND 8 11.12 4.15 242.55 5.66 278.17 0.447 301.291 1.9E-09

MMD 1 0.15 3.92 505.43 5.31 539.51 0.447 301.291 1.4E-09

MMD 2 0.15 3.88 360.78 5.32 394.69 0.447 301.291 1.4E-09

MMD 8 0.15 3.88 247.44 5.31 281.27 0.447 301.291 1.4E-09

Table 7.10 HSCT FEM: Summary of results on the Sun SPARC 20
rhino machine

-ju>

174

Loop Symfa Numfa FBE Total Max Sum Relative
unrol. time time time time abs abs Error
Level (sec) (sec) (sec) (sec) displ displ. Norm

1 2.334 392.540 1.330 416.870 0.113E-04 0.561E-01 0.58E-10

2 2.239 241.010 1.300 265.620 0.113E-04 0.561E-01 0.59E-10

8 2.330 199.440 1.280 223.770 0.113E-04 0.561E-01 0.58E-10

Table 7.11 EXXON Off-shore FEM: Comparison o f results using MMD and different
level of loop unrolling on the IBM RS6000/590 Stretch machine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Reord
Loop
unrol
Level

Reord
time
(sec)

Symfa
time
(sec)

Numfa
time
(sec)

FBE
time
(sec)

Total
time
(sec)

Max
abs

displ

Sum
abs

displ

Relative
Error
Norm

MMD 1 0.41E-01 0.790 31.570 0.590 36.180 0.81E-12 0.81-12 0.18E-15

MMD 2 0.43 E-01 0.780 20.380 0.590 24.860 0.81E-12 0.81-12 0.18E-15

MMD 8 0.42E-01 0.790 17.510 0.600 22.090 0.18E-12 0.18-12 0.18E-15

Table 7.12 Thermal-Structural FEM: Comparison of results using MMD and different level of loop
unrolling on the IBM RS6000/590 Stretch machine.

- ' jU\

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Loop Reord Symfa Numfa FBE Total Max Sum Relative
Reord unrol time time time time time abs abs Error

level (sec) (sec) (sec) (sec) (sec) displ displ Norm

MMD 1 0.14E-01 2.080 146.90 1.290 161.670 2.061 13569.652 0.78E-12

MMD 2 0.14-E01 2.020 93.54 1.350 108.330 2.061 13569.652 0.8 IE-12

MMD 8 0.14E-01 2.240 76.85 1.350 92.450 2.061 13569.652 0.81E-12

Table 7.13 SRB FEM: Comparison of results using MMD and different level of loop unrolling on the
IBM RS6000/590 Stretch machine.

»j
O n

177

HSCT AIRCRAFT MODEL
3, 8, I , 16146, 16146, 499505, 1, 0, 0, -1

nreord, loop, n3, neq, neq, ncoef, n7, n8, n9, mread

Table 7.14 HSCT FEM: K.INFO for Numfa8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

HSCT AIRCRAFT MODEL

-TIME MMD = 0.260939598IE-01

OUTPUT SPARSE SOLVER

Number o f Equations
Non-Zero before fill in
Non-Zero after fill in
Loop Unrolling Level

=> NEQ =16146
=> NCOEF =499505
=> NCOEF2 =3017283
=> LOOP = 8

MEMORY

Total Integer memory =3613667
Total real memory = 3581372
Total memory = 719503 9

NORM CHECK

MAX ABS DISPL AT DOF 522 = 0.447440400042149411
SUMMATION OF ABS DISPLACEMENTS =301.291343623234013
THE ABSOLUTE ERROR IS || Ax-b || = 0.192431628765362175E-06
THE RELATIVE ERROR IS || AX-b || / ||b|| = 0.136069709614759900E-08

TIMING

-TIME READ Fort.* files = O.OOOOOOOOOOOOOOOOOOE+OO
-TIMESYMFACT = 0.479999989271163940
-TIMETRANSA = 2.06999995373189449
-TIME SUPNODE Before N= 0.169999996200203896
-TIME NUMFA = 16.8799996227025986
-TIME FBE = 0.309999993070960045
-TIME SUPNODE After N = 0.169999996200203896
-TIMEMULTSPA = 0.399999991059303284E-01
-TIME ERROR NORM = O.OOOOOOOOOOOOOOOOOOE+OO

Table 7.15 HSCT FEM: Output file of Numfa8 on the sketch machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Cache
size

(Kbytes)

Read
K.*

(sec)

Ordering
(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ

Summation
Absolute

Displ

Relative
Error
Norm

0.00 29.260 1.550 0.110 11.950 0.360 0.447 301.291 0.12E-08

32 29.960 1.650 0.120 10.920 0.350 0.447 301.291 0.12E-08

64 29.290 1.540 0.100 10.000 0.350 0.447 301.291 0.12E-08

Table 7.16 HSCT FEM: OakRigdeODU solver. Impact of cache size on the IBM RS6000/590
stretch machine using MMD

'O

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Loop
Unrolling

Level

Read
K*

(sec)

Orderin
8

(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ.

Summation
Absolute

Displ.

Relative
Error
norm

1 29.370 1.630 0.110 15.430 0.370 0.447 301.291 0.12E-08

2 28.760 1.590 0.110 10.680 0.370 0.447 301.291 0.12E-08

4 28.820 1.610 0.110 9.690 0.350 0.447 301.291 0.12E-08

8 29.290 1.540 0.100 10.000 0.350 0.447 301.291 0.12E-08

Table 7.17 HSCT FEM: OakRigdeODU solver. Impact of loop unrolling level on the IBM RS6000/590
stretch machine using MMD and cache size 64

180

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Cache
size

(Kbytes)

Read
K*

(sec)

Orderin
8

(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ

Summation
Absolute

Displ

Relative
Error
Norm

0.00 42.384 2.735 0.145 64.048 1.297 0.447 301.291 0.12E-08

32 41.043 2.674 0.144 55.691 1.294 0.447 301.291 0.12E-08

64 41.039 2.692 0.147 58.082 1.295 0.447 301.291 0.12E-08

Table 7.18 HSCT FEM: OakRigdeODU solver. Impact of cache size on the IBM RS6000/590
rhino machine using MMD and loop 8

00

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Loop
Unrolling

Level

Read
K.*
(sec)

Orderin
g

(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ

Summation
Absolute

Displ

Relative
Error
norm

1 40.753 2.687 0.144 102.289 1.296 0.447 301.291 0.12E-08

2 41.246 2.680 0.144 62.963 1.294 0.447 301.291 0.12E-08

4 40.816 2.678 0.144 58.586 1.295 0.447 301.291 0.12E-08

8 41.039 2.692 0.147 58.082 0.350 0.447 301.291 0.12E-08

Table 7.19 HSCT FEM: OakRigdeODU solver. Impact of loop unrolling level on the Sun SPARC 20
rhino machine using MMD and cache size 64

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Cache
size

(Kbytes)

Read
K.*

(sec)

Orderin
8

(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ

Summation
Absolute

Displ

Relative
Error
Norm

0.00 50.890 1.170 0.170 143.040 1.510 0.113-04 0.561-01 0.25E-10

32 51.000 1.180 0.170 153.400 1.460 0.113-04 0.561-01 0.25E-10

64 49.820 1.140 0.180 130.500 1.450 0.113-04 0.561-01 0.25E-10

Table 7.20 EXXON Off-shore FEM: OakRigdeODU solver. Impact of cache size on the IBM RS6000/590
stretch machine using MMD and loop 8

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Loop
Unrolling

Level

Read
K.*

(sec)

Orderin
g

(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ

Summation
Absolute

Displ

Relative
Error
Norm

1 49.070 1.200 0.170 195.960 1.520 0.113E-04 0.561E-01 0.26E-10

2 50.040 1.160 0.170 144.470 1.760 0.113E-04 0.561E-01 0.25E-10

4 50.010 1.150 0.160 130.600 1.470 0.113E-04 0.561E-01 0.25E-10

8 49.820 1.140 0.180 130.500 1.450 0.113E-04 0.561E-01 0.25E-10

Table 7.21 EXXON Off shore FEM: OakRigdeODU solver. Impact of loop unrolling level on the IBM RS6000/590
stretch machine using MMD and cache size 64

004̂

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Cache
Size

(Kbytes)

Read
K.*
(sec)

Orderin
g

(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ

Summation
Abs

Displ

Relative
Error
Norm

0.00 59.81 6.900 0.240 12.240 0.610 0.81E-12 0.81E-12 0.17E-20

32 59.76 6.860 0.260 11.070 0.620 0.81E-12 0.81E-12 0.17E-20

64 60.31 6.890 0.240 10.930 0.600 0.81E-12 0.81E-12 0.17E-20

Table 7.22 Thermal-Structural FEM: OakRigdeODU solver. Impact of cache size on the IBM RS6000/590
stretch machine using MMD and loop 8

ooLT\

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Loop
Unrolling

Level

Read
K..*

(sec)

Ordering
(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ

Summation
Absolute

Displ

Relative
Error
Norm

1 59.91 6.860 0.240 16.210 0.600 0.81E-12 0.8 IE-12 0.17E-20

2 60.11 6.900 0.240 11.310 0.620 0.81E-12 0.81E-12 0.17E-20

4 60.14 6.900 0.230 10.550 0.610 0.81E-12 0.81E-12 0.17E-20

8 60.31 6.890 0.240 10.930 0.600 0.81E-12 0.81E-12 0.17E-20

Table 7.23 Thermal-Structural FEM: OakRigdeODU solver. Impact of loop unrolling level on the IBM RS6000/590
stretch machine using MMD and cache size 64

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Cache
Size

(Kbytes)

Read
K.*
(sec)

Ordering
(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat

(sec)

Fbe
(sec)

Maximum
Absolute

Displ.

Summation
Absolute

Displ.

Relative
Error
Norm

0.00 128.11 3.630 0.260 51.10 1.34 2.061 13569.65 0.41E-12

32 126.40 3.640 0.270 46.05 1.34 2.061 13569.65 0.41E-12

64 128.93 3.700 0.260 42.95 1.33 2.061 13569.65 0.41E-12

Table 7.24 SRB FEM: OakRigdeODU solver. Impact of cache size on the IBM RS6000/590
stretch machine using MMD and loop 8

oo"4

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Loop
Unrolling

Level

Read
K.*

(sec)

Orderin
g

(sec)

Symbolic
Factorizat.

(sec)

Numerical
Factorizat.

(sec)

Fbe
(sec)

Maximum
Absolute

Displ

Summation
Absolute

Displ

Relative
Error
Norm

1 127.84 3.670 0.270 65.92 1.31 2.061 13569.65 0.41E-12

2 127.50 3.650 0.280 43.27 1.32 2.061 13569.65 0.41 E-12

4 128.65 3.690 0.270 41.09 1.34 2.061 13569.65 0.41E-12

8 128.93 3.700 0.260 42.95 1.33 2.061 13569.65 0.41E-12

Table 7.25 SRB FEM; OakRigdeODU solver. Impact of loop unrolling level on the IBM RS6000/590
stretch machine using MMD and cache size 64

00
00

189

SRB PROBLEM
2 64 4 54870 54870 1308185 0 0 - 1 -1
icase, cachsz, level, neq, neq, NCOEF, n7, n8, n9, mread

Table 7.26 SRB FEM: BC.INFO input file for OakRidgeODU solver.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

TITLE: SRB PROBLEM
TIME FOR READING Original NASA K.* Files = 128.9299927
TIME FOR READING DATA = 6.040
TIME FOR CONSTRUCT ADJANCY MATRIX = .450
TIME FOR OAK FORMAT ANZF = .900

ORDERING OPTION: 2 - MULTIPLE MINIMUM DEGREE

CACHE SIZE (IN KBYTES): 64

LOOP UNROLLING LEVEL: 8

NUMBER OF EQUATIONS = 54870
NUMBER OF NONZEROS NCOFF = 1308185
NUMBER OF NONZEROS (INCLUDING DIAG.) = 2671240
NUMBER OF NONZEROS (EXCLUDING DIAG.) = 2616370

TIME FOR CREATING FULL REPRESENTATION = 270

TIME FOR COPYING ADJACENCY STRUCT. = 3 10
TIME FOR ORDERING = 3.700

TIME FOR SYMBOLIC FACT. SETUP = 1300
TIME FOR SYMBOLIC FACTORIZATION = 260

TIME FOR NUMERICAL INPUT = 1.790

TIME FOR FACTORIZATION INIT. = .020
TIME FOR NUMERICAL FACTORIZATION = 42.950

TIME FOR TRIANGULAR SOLUTIONS = 1330

MAX ABS DISPL AT DOF 47041
SUMMATION OF ABS DISPLACEMENTS
THE ABSOLUTE ERROR IS || Ax-b ||
THE RELATIVE ERROR IS || AX-b || / ||b||

= 2.06186388479510052
= 13569.6516772657978
= 0310314607028814793E-05
= 0.409059792384211927E-I2

TIME FOR COMPUTING ERROR = 6.100

STATISTICS

NUMBER OF SUPERNODES
NUMBER OF NONZEROS IN L
NUMBER OF SUBSCRIPTS IN L
LARGEST SUPERNODE BY COLUMNS
LARGEST SUPERNODE BY NONZEROS
SIZE OF TEMPORARY WORK STORAGE
FACTORIZATION OPERATION COUNT
TRIANGULAR SOLN OPERATION COUNT

8033
12240705
218982
738
1377
202566
4.88I5177570D+09
4.8853080000D+07

NORMAL TERMINATION

Table 7.27 SRB FEM: OakRidgeODU solver. Output file on the
stretch machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

Application NEQ Number of Zeros on
the Diagonal

Percentage of Zeros
on the Diagonal

No 5 51 14 27.45

No 6 247 37 14.98

No 7 1440 240 16.67

No 8 2430 480 19.75

No 9 15367 1995 12.98

Table 7.28 Percentage o f Zero diagonal values of the Indefinite matrices

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192

pm nj ONo
2 o o o o o
tii , 1

x X X X X
esi CN CN CN NO

no' CN

o cx Cs C\ CNs--■. o o On OO o
C/3"O o o CN c n oo
<—■ o ' o ' O 00* NO
o e'
oo
C/3

Dx
O

ro c n oo en
cn 00 CN

CN m CN co
IX c n o
OJ un On 00
O CN 00̂
U CN

z

oo CN sO N-
«—> o c n o •'3'

X CN co co
w
o

CN CN in no"
CN o* 00

CN
u
z

, c-~ O o C-iiO ■'3- c n NO
O'

CN CO
CN crT

IX
z

z
o
x
< in NO OO CN
y

3

o o o o o
Z Z Z z

X
r*

<

o
C/3

3
C/34>u-ChO
c -
C3
£
£3

C/5

<U
j>
o
C/3
<y

!XO"O
.£

C/5

3
Q
O
O'
cn

t~~
_CJ
X>
C3
H

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

APPLICATION NEQ NCOEF Sum
displ

Max
displ.

CPU
(secs)

Relative
Error Norm

No 5 51 218 Boeing 2.265E-02 1.999E-03 0.041 7.00E-14

ODU 2.265E-02 1.999E-03 0.003 1.45E-13

No 6 247 2009 Boeing 3.160 0.152 0.245 4.03E-10

ODU 3.160 0.152 0.021 9.27E-10

No 7 1440 22137 Boeing 29.685 0.203 2.352 3.26E-10

ODU 29.685 0.203 0.571 6.16E-10

No 8 2430 75206 Boeing 34.703 9.312E-02 7.736 9.97E-11

ODU 34.680 9.31 IE-02 6.136 1.01E-11

No 9 15367 286044 Boeing 512.35 0.206 35.77 4.38E-11

ODU 512.35 0.206 36.625 2.73E-09

Table 7.30 ODU-HKUST indefinite solver; Comparison of results on the Cray Y-MP

■*ou>

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

APPLICATION NEQ
NCOEF

Sum
displ

Max
displ.

CPU
(secs)

Relative
Error

Norm

No 5 51
218

MMD 2.265E-02 1.999E-03 0.000 1.66E-15

MMD-ZE 2.265E-02 1.999E-03 0.000 1.49E-15

No 6 247
2009

MMD 3.160 0.152 1.00E-02 9.76E-12

MMD-ZE 3.160 0.152 1.00E-02 6.28E-12

No 7 1440
22137

MMD 29.685 0.203 0.510 6.81E-12

MMD-ZE 29.685 0.203 0.300 1.25E-09

No 8 2430
75206

MMD 34.661 9.312E-02 7.000 2.82E-09

MMD-ZE 34.702 9.311E-02 8.389 1.21E-09

No 9 15367
286044

MMD 512.35 0.206 181.029 9.37E-11

MMD-ZE 512.35 0.206 76.809 9.59E-11

Table 7.31 ODU-HKUST indefinite solver: Impact of using MMD and Zero-End
on the Stretch machine

194

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

400

□ 0.1

H 0,01

■ 0.001

■ 0.0001

E g 0.00001
250

200

150

Fig. 7.21 ODU-HKUST indefinite solver: Impact of the control parameter alpha
on application No 9 (neq =15367)

alpha SUM Max Displ CPU(sec) REN #2x2 pivot # diag inter NCOEF2

0.1 512.355 0.206 358.499 1.69E-12 52 164 3632010

0.01 512.355 0.206 109.620 5.71 E-10 10 45 2887346

0.001 512.355 0.206 76.810 2.59E-11 8 35 2884093

0.0001 512.350 0.206 73.399 8.64E-08 8 31 2883707

0.00001 517.757 0.206 73.509 6.10E-02 8 25 2883637

Table 7.32 ODU-HKUST indefinite solver; Impact of the control paramater alpha on
application No 9 (neq =15367)

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

NEQ Max.
abs.

Sum.
abs.

Max. abs.
displ. only

Sum. abs.
displ. only

Numerical
Fact, (sec)

Fbe
(sec)

Total time
(sec)

R.E.N

51 1.999 2.995 1.999 2.265 1.22E-02 1.28E-03 4.18E-02 1.7E-15

247 0.152 3.225 0.152 3.160 9.16E-02 8.35E-03 0.306 7.5E-12

1440 0.627 52.468 0.203 29.685 2.175 0.112 4.462 5.0E-12

2430 343849.445 6019377.075 9.31 E-02 34.70 20.163 0.469 27.828 1.0E-13

15367 719.472 8472.301 0.206 512.354 307.008 3.918 339.102 9.3E-13

Table 7.33 ODU-Ma27: Summary of results on Rhino machine

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

NEQ Max
abs.

Sum.
abs.

Max.
abs.

displ.
only

Sum. abs.
displ. only

Numerical
Fact. (Sec)

Fbe
(sec)

Total time
(sec)

R.E.N.

51 1.999 2.995 1.999 2.265 0 0 0.199 E-01 0.260E-14

247 0.152 3.225 0.152 3.160 0.999E-02 0 0.150 0.68 IE-11

1440 0.627 52.468 0.203 29.685 0.140 0.999E-02 1.710 0.586E-11

2430 343849.445 6019377.075 9.31 E-02 34.700 0.970 0.200E-01 6.170 0.11 IE-12

15367 719.472 8472.301 0.206 512.354 14.070 0.170 34.750 0.107E-11

Table 7.34 ODU-Ma27: Summary of results on stretch machine

198

HSCT Aircraft model
(Stretch, 1BM-R600/590 Worksation)

250

200 -

10
No. Eigen-values

SVLan fU B SVSub H KJBathe96

Fig. 7.22 HSCT FEM: Comparison o f results for SPARSEPACK eigensolvers
on stretch

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

199

H S C T Aircraft model
(Rhino, O D U Sun Sparc-20 W orksation)

5000

4000 -

f3000O0)<n
£2000 -

1000 -

0
10

No. Eigen-values

SVLAn SVSub KJBathe96

Fig. 7.23 HSCT FEM: Comparison of results for SPARSEPACK eigensolvers
on Rhino

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tim
e

(s
ec

on
de

s)

200

Exxon model
(Stretch, IBM -RS600/590 Workstation)

1000 -

800 -

600 -

400 -

200 -

10
No. Eigen-values

SVLan H SVSub H KJBathe96

Fig. 7.24 EXXON Off-shore FEM: Comparison of results for SPARSEPACK
eigensolvers on stretch

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

201

25000

20000 . .

1 15000

<D
£

10000 . .

5000 -

0

Exxon Model
(USTSU31, Sun-Sparc20 Workstation)

10
No. eigen-values

SVIan SVSub KJBathe96

Fig. 7.25 EXXON Off-shore FEM: Comparison of results of SP ARSEPACK
eigensolvers on USTSU3I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

202

HSCT Aircraft
3 10 1 16,146 16,146 499,505 2 0 -1 -1

nord, neig, lump, n, n, ncoeff, x, ishift, iblock, mread

Table 7.35 HSCT FEM: K.INFO for SPARSEPACK eigensolver

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

203

* OUTPUT VECTOR SPARSE LANCZOS *

CPU to get MD reordering = 0.6195330620E-01
neq = 23155
before fill in, ncoff = 809427
after fill in, ncof2 = 12842889
Total integer memory used = 13791249
Total real memory used = 13744936
** £****** EIG********HERTZ ****** ERROR

1
2
j
4
5
6
7
8
9

10

.8816553 E+03

.I987976E+04

.3806255E+04

.5864529E+04

.7608574E+04

.7881169E+04

.1090668E+05

.1135674E+05

. 1406071E+05

.1425347E+05

.4725737E+01

.7096197E+01

.9819040E+01

.1218812E+02

.1388263E+02

.1412913E+02

.1662135E+02

.1696082E+02

.1887225E+02

.1900117E+02

.2289714E

.8410216E-

.7461907E-

.9789936E-

.4796375E-

.9447560E-

.I299679E-

.7143559E-

.2549869E-

.6088567E

***** NORM ***
-20 .2790040E-08
■20 .1071936E-07
■19 .5147621E-08
■19 .1909064E-08
■19 .5057227E-09
■19 .8386751E-09
■20 .1635004E-08
■19 .3659260E-09
■13 .2099432E-06

-13 .5553453 E-06

***TOTAL CPU FOR EIGENSOLUTION = 299.879993297159672
(This time including norm check & I/O)

MTOTI = 14439610 MTOTA = 21655415

Table 7.36: EXXON Off-shore FEM: “ Sparse” Lanczos Algorithm
from SPARSEPACK on stretch

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204

CPU to get MD reordering = 0.8984327316E-02
neq = 23155
before fill in, ncoff = 809427
after fill in, nco£2 = 12842889
Total integer memory used = 13791249
Total real memory used = 13744936
IBLOCK = -l

* OUTPUT VECTOR-SPARSE SUBSPACE ITERATION *
NEQ = 23155
NCOEF= 809427
IQ = 18
RESULTS FOR EIGENSOLUTION

Number o f iterations = 13

TOLERANCE CHECK ON EIGENVALUES

******* EIGV***************** TOLJ***********
1 881.655277374476100
2 1987.97576276251743
3 3806.25467918120876
4 5864.52881890857770
5 7608.57373151541742
6 7881.16872545743081
7 10906.6791124137235
8 i 1356.7377577019506
9 14060.7106850863383

10 14253.4661497386078

O.OOOOOOOOOOOOOOOOOOE+OO
0.766308953059224021E-14
0 .140978972579276982E-13
0.341184842923635138E-14
0.882650167412288680E-I2
0.746644428695344813 E-13
0.723639523184758736E-10
0.402404711557253559E-08
0.294112550324989127E-08
0.450678313092431284E-06

Timing
Time normcheck = 0.6346702576E-03
***** f, ** *** E[GV *** ̂*** HER.TZ ***, ** ERROR NORM **

1 .8816553E+03 .4725737E+01 .2687843E-08
2 .1987976E+04 .7096I97E+O1 .1456036E-08
3 .3806255E+04 .9819040E+01 .9797936E-09
4 .5864529E+04 .12I8812E+02 .109477IE-08
5 .7608574E+04 .I388263E+02 .125067IE-06
6 .7881169E+04 .I412913E+02 .3743034E-07
7 .1090668E+05 .1662I35E+02 .1658382E-05
8 .1135674E+05 .1696082E+O2 .I463919E-04
9 .1406071E+05 .1887225E+02 .I459706E-04

10 .I425347E+05 .1900117E+02 .2106256E-03
***TOTAL C PU FOR EIGENSOLUTION = 570.619987245649099
(This time including norm check & I/O)
MTOTI = 14439610 MTOTA = 21655415

Table 7.37: EXXON Off-shore FEM: “ Sparse” Subspace Iteration
from SPARSEPACK on stretch

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

205

NEQ =23155
NROOT = 10

DEGREES OF FREEDOM EXITED BY UNIT STARTING ITERATION VECTORS
23155. 22516. 17. 159. 2. 158. 22840. 22542. 22867.
23136.
22813. 1491. 2130. 22894. 22569. 23109. 22786.

CONVERGENCE REACHED FORRTOL .1000E-05
RELATIVE TOLERANCE REACHED ON EIGENVALUES

.1000E-11 .7828E-07 .1000E-11 .4654E-07 .7860E-07 .1000E-I1 .9161E-07 .1000E-11
812E-06 .301 IE-06 .9069E-06 .3340E-05

.5847E-05 .4316E-02 .I748E-02 .1171E-02 .I918E-01 .1903E-01

THE CALCULATED EIGENVALUES ARE
.88165527740348E+03 .19879757627894E+04 .38062546792150E+04 .58645288189713E+04
76085737315525E+04 .7881I687254790E+04
.10906679112447E+05 .11356737755975E+05 .I4060710682344E+05 .14253465441538E+05

Number of Iteration = 19

PRINT ERROR NORMS ON THE EIGENVALUES
.21571596855195E-08 .12976291259135E-08 .8787782719192IE-09 .91294172010989E-09
3 8721941458344E-09 .74276789108943 E-09

.37247039503038E-08 .38673782841283E-07 .36920504218012E-06 .2940960169968IE-06
time for 1996 K.J. Bathe subspace iteration= 640.909985674545169

Table 7.38: EXXON Off-shore FEM: Using Basic K.J. bathe’s Subspace Iteration
(KJBATHE96) on stretch

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206

METHOD = 1
NEQ = 247
NCOEF = 2009
NEIG = 15
ISHIFT = 0
MREAD = -I
LUMP = 1

* OUTPUT VECTOR-SPARSE SUBSPACE ITERATION *
NEQ = 247
NCOEF = 2009
IQ = 23
RESULTS FOR EIGENSOLUTION
Number o f iterations = 2 7
TOLERANCE CHECK. ON EIGENVALUES

* # * , * EIGV * , * TOLJ*
1 -26.9037089291829368 O.OOOOOOOOOOOOOOOOOOE+OO
2 -20.3774168334131396 -0.697382540258992640E-15
3 -4.35999233084511317 -0.122226603026336059E-14
4 -1.59417268262606648 -0.167142197839641113E-I4
5 -0.467720895678490900 -0.830790461168345158E-15
6 -0.343197785608355954 -0.I61746822267102397E-15
7 0.654668644375400954 0.169585489417228152E-15
8 4.95786919427879447 0.537435570542110461E-I5
9 6.39006568111283180 0.I38993629177446775E-I5

10 6.53935222653818382 0.271641101115702013E-15
11 14.7750567574227798 0.360680206221441547E-15
12 22.6547608473375170 0.940918432838286630E-I5
13 28.9647498775422356 0.233047273608763022E-14
14 31.9792099249090249 0.499591873941804227E-12
15 33.3768755613979806 0.553500314784671545E-14

***** # * * * * * EIGV *** , *** HERTZ ***, ** ERROR NORM **
1 -.2690371E+02 .8255173E+00 .3401786E-08
2 -.2037742E+02 .7184469E+00 .4888496E-12
3 -.4359992E+01 .3323250E+00 .1907106E-12
4 - .1594173E+01 .2009499E+00 .6217446E-I2
5 -.4677209E+00 .1088463E+00 .5255656E-12
6 -.3431978E+00 .9323787E-01 .3046399E-12
7 .6546686E+00 .1287748E+00 .1987108E-10
8 .4957869E+01 .3543787E+00 .1473136E-II
9 .6390066E+01 .402321IE+00 .2354323E-I1
10 .6539352E+01 .4069935E+00 . 1042401E-11
11 .1477506E+02 .6117651E+00 .3792497E-12
12 .2265476E+02 .7575300E+00 .46832I2E-10
13 .2896475E+02 .8565545E+00 .1034847E-09
14 .3197921 E+02 .9000238E+00 .2193338E-06
15 .3337688E+02 .9194814E+00 .2379166E-07

Time Subspace Iter. = 0.769999982789158821
Time Normcheck = 0.999999977648258209E-02

TIMING
Reordering Time = O.OOOOOOOOOOOOOOOOOOE+OO
Factorization Time = 0.999999977648258209E-02
Subspace+Normchecking T im e= 0.779999982565641403
Total Time + Junk = 0.789999982342123985

Table 7.39 Application No 6: Subspace iteration for indefinite systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

207

SPARSE VECTOR LANCZOS

METHOD = I
NEQ = 247
NCOEF = 2009
NEIG = 15
ISHIFT = 0
MREAD =-1
LUMP = 1

*** K, * E1G*,*HERTZ V ERROR *,* NORM *** iam
1 .6546686E+00 .I287748E+00 .2894972E-21 .3339575E-10
2 .4957869E+01 .3543787E+00 .I921880E-20 .3009163 E-11
3 .6390066E+0I .4023211E+00 .3245256E-20 .3457124E-11
4 .6539352E+01 .4069935E+00 .4768359E-19 .1220441E-10
5 .1477506E+02 .6117651E+00 .3812197E-19 .8208553 E-11
6 .2265476E+02 .75753 00E+00 .3731293E-18 .4815349E-11
7 .2896475E+02 .8565545E+00 .1960320E-18 .9372604E-12
8 .3197921 E+02 .9000238E+00 .3002066E-I8 .8568683E-12
9 .3337688E+02 .9194814E+00 .8950083E-19 .3103452E-II
10 .3705413E+02 .9688096E+00 .1 I76460E-17 . 1987879E-II
11 .46473 82E+02 .I084986E+01 .1045959E-10 .2221759E-06
12 .4838121E+02 .1107028E+01 .8310640E-08 .2179520E-03
13 .4874698E+02 .111I204E+01 .5380266E-08 .9080362E-04
14 .4963882E+02 .1121323E+01 .4536706E-08 .830730 IE-04
15 .5509166E+02 .1181308E+01 .6224062E-05 .8717437E-01

JACOBIR: Steps in IAM = 59 0
Time Normcheck = 0.999999977648258209E-02

TIMING

Reordering Time =
Factorization Time =
Lanczos+Normchecking Time =
Total Time + Junk =

0.999999977648258209E-02
0.999999977648258209E-02
0.129999997094273567
0.149999996647238731

Table 7.40 Application No 6: Lanczos iteration for indefinite systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208

Jonathan’s new 900 DOF ill-conditionned problem
1 25 1 900 900 11989 1 0 0 -1

n l, neig, lump, neq, n5, NCOEF, 12, ishift, n9, mread

Table 7.41: K.INFO input file for the Lanczos and Subspace eigensolver
for indefinite systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

209

SPARSE VECTOR LANCZOS

METHOD= I
NEQ = 51
NCOEF =2 1 8
NEIG = 15
[SHIFT = 0
MREAD = -1

*** K, * EIGVHERTZ V ERROR *,* NORM *** iam
1 0.4059576E+0I 0.32067L6E+00 0.2058520E-36 0.1065941E-L2
2 0.2760599E+02 0.8362224E+00 0.L082130E-34 0.5080295E-13
3 0.5082506E+02 0 .1 134643E+01 0.2979595E-80 0.2356342E-13
4 0.I060554E+O3 0.1639029E+01 0.1615789E-63 0.45I8568E-14
5 0.1754717E+03 0.2108258E+01 0.3683013E-34 0.1186698E-13
6 0.1907798E+03 0.2198297E+01 0.4004801E-34 0.9578321E-14
7 0.2322176E+03 0.2425312E+01 0.1518127E-33 0.1132765E-13
8 0.2453 832E+03 0.2493116E+01 0.7733515E-34 0 .1131854E-13
9 0.2841360E+03 0.2682769E+01 0.1870519E-39 0.1113027E-13
10 0.3267951E+03 0.2877120E+0 1 0.5060790E-35 0.1068744E-13
11 0.3480848E+03 0.2969359E+01 0.1697806E-34 0.1272876E-13
12 0.3934068E+03 0 .3 156756E+01 0.4653216E-31 0.8213718E-14
13 0.3998996E+03 0.3182699E+01 0.1051193E-30 0.1038064E-13
14 0.4860665E+03 0.3508876E+01 0.2564164E-27 0.5742984E-14
15 0.5313186E+03 0.3668577E+01 0.4014661E-24 0.7493163E-14

JACOBIR: Steps in 1AM = 5 1 0
Time Normcheck = 2.4401903152466D-02

Table 7.42 Application No 5: Lanczos for Indefinite systems on
Cedar machine

TIMING

Reordering Time
Factorization Time

6.6945105791092D-03
1.3052493333817D-02

0.80419653654099
0.82394354045391

Lanczos+Normchecking Time
Total Time + Junk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25 Eigenvalues written to testbed library

Eigenvalue Hertz
1 .11123254E+04 .53080626E+01
2 .38659522E+04 .98957424E+01
3 .96398255E+04 .15626247E+02
4 .10806540E+05 .16544874E+02
5 .11636218E+05 .17168251E+02
6 .13203150E+05 .18287693E+02
7 .26499652E+05 .259083 77E+02
8 .31733289E+05 .28351606E+02
9 .39754143 E+05 .31733013E+02
10 .44644193 E+05 .33628120E+02
11 .59908797E+05 .38955196E+02
12 .64964877E+05 .40565742E+02
13 .70187484E+05 .42164791E+02
14 .79874717E+05 .44980553E+02
15 .80586904E+05 .45180637E+02
16 .10528766E+06 .51642693 E+02
17 .10578620E+06 .51764809E+02
18 .12I93633E+06 .55575920E+02
19 .13110733E+06 .57628006E+02
20 .14051857E+06 .59660511E+02
21 .17301432E+06 .66200485E+02
22 . 17776141E+06 .67102524E+02
23 .17859391E+06 .67259468E+02
24 .19050763E+06 .69466644E+02
25 .21357271E+06 .73551750E+02

Table 7.43 Jonathan’s ill-conditionned problem: NASA Langley test bed results

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 1 1

SPARSE V EC T O R LAN CZO S

METHOD = 1
NEQ = 900
NCOEF = 11989
NEIG = 25
[SHIFT = 0
MREAD = -1

*** K, * EIGVHERTZ ** ERROR V NORM *** iam
1 0.1258413E+04 0.5645881E+01 0.1820169E-21 0.1543513E-09
2 0.5300908E+04 0.1158765E+02 0.1557695E-2I 0.9905331E-10
3 0.1059806E+05 0.1638450E+02 0.8965632E-2I 0.1273354E-10
4 0.1808826E+05 0.2140516E+02 0.8588379E-21 0.1714142E-09
5 0.1856144E+05 0.2168333E+02 0.5579659E-20 0.2157528E-I0
6 0.3698570E+05 0.3060815E+02 0.2340790E-20 0.4961125E-11
7 0.4599465E+05 0.3413295E+02 0.4491059E-20 0.1862382E-10
8 0.4816943E+05 0.3493059E+02 0.1091066E-20 0.7530044E-11
9 0.5766985E+05 0.3822034E+02 0.3000156E-19 0.9210959E-11
10 0.7238344E+05 0.4281932E+02 0.1037248E-19 0.9590764E-11
11 0.8301885E+05 0.4585730E+02 0.I682737E-18 0.5598636E-11
12 0.1064558E+06 0.5192838E+02 0.4732456E-19 0.9332571E-11
13 0.1227433E+06 0.5575952E+02 0.1889136E-18 0.3416530E-11
14 0.1330266E+06 0.5804827E+02 0.1193742E-18 0.7375778E-11
15 0.1343789E+06 0.5834257E+02 0.2014252E-19 0.4623631E-11
16 0.1467268E+06 0.6096419E+02 0.124251 IE-18 0.9715841E-11
17 0.1752531E+06 0.6662741E+02 0.3740897E-19 0.7568847E-I I
18 0.1878109E+06 0.6897323E+02 0.2482942E-18 0.2193613E-11
19 0.2044265E+06 0.7195959E+02 0.3582778E-19 0.3183317E-11
20 0.2141506E+06 0.7365120E+02 0.3772230E-18 0.1160874E-10
21 0.2312231E+06 0.7653071 E+02 0.1894919E-18 0.228401 IE-11
22 0.2748608E+06 0.8344043E+02 0.3243874E-18 0.7184275E-11
23 0.2788627E+06 0.8404566E+02 0.1390866E-18 0.2516133E-11
24 0.2860432E+06 0.8512085E+02 0.1316509E-17 0.3089432E-11
25 0.3145049E+06 0.8925527E+02 0.I997630E-17 0.1093807E-11

JACOB1R: Steps in 1AM = 99 0
Time Normcheck = 0.68920135498047

Table 7.44 Jonathan’s ill-conditionned problem: Lanczos on rhino machine

TIMING

Reordering Time
Factorization Time

0.41382575035095
3.1836757659912
33.785816669464
37.383318185806

Lanczos+Normchecking Time
Total Time + Junk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

212

METHOD = 1
NEQ = 900
NCOEF = 11989
NEIG = 25
[SHIFT = 0
MREAD = -1

* OUTPUT VECTOR-SPARSE SUBSPACE ITERATION *
NEQ = 900
NCOEF = 11989
IQ = 33
RESULTS FOR EIGENSOLUTION

Number o f iterations = 54

TOLERANCE CHECK ON EIGENVALUES
* § * , * EIGV * , * TOLJ*

1 1258.4129273924 5.4204864832655D-16
2 5300.9084183279 1.0294401977914D-15
*■*J 10598.055539777 1.2014398091264D-15
4 18088.257669334 2.4134853938483 D -15
5 18561.444650889 2.9399480015023D-15
6 36985.703682245 9.8361757244006D-16
7 45994.646978548 1.2655312028075D-15
8 48169.434756755 1.2083941031777D-15
9 57669.850081532 1.2616571057315D-15

10 72383.442611459 2.0103928057800D-16
11 83018.851054889 1.7528446905084D-15
12 106455.79691275 1.3669443703750D-15
13 122743.29947674 4.7422271652798D-16
14 133026.56452339 2.1878209484706D-16
15 134378.85484023 2.1658043217690D-16
16 146726.79635165 3.9670777499950D-16
17 175253.06379278 1.6606745597980D-16
18 187810.91960340 6.I985385127109D-16
19 204426.49436150 4.2710457684512D-16
20 214150.64005341 2.853974377284 ID-15
21 231223.08793308 0.
22 274860.81542046 4.2354280892622D-16
23 278862.67577493 4.1746469477649D-16
24 286043.21889382 2.0349253912946D-16
25 314504.94603029 6.190828736179 ID-13

** # **,**♦ EIGV *** , *** HERTZ ***, ** ERROR NORM **
1 0.1258413E+04 0.5645881E+01 0.8811063E-10
2 0.5300908E+04 0.1158765E+02 0.7378048E-11
3 0.I059806E+05 0.1638450E+02 0.1548159E-10
4 0.I808826E+05 0.2140516E+02 0 .4316036E-10
5 0.1856144E+05 0.2168333E+02 0.2304214E-11

Table 7.45 Johnathan’s ill-conditionned problem : Subspace on rhino

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

213

6 03698570E+05 03060815E+02 0.63549I5E-11
7 0.4599465E+05 0.3413295E+02 0.1569814E-1 I
8 0.48I6943E+05 03493059E+02 03042919E-11
9 0.5766985E+05 03822034E+02 0.4533898E-I0
10 0.7238344E-K)5 0.428I932E+02 0 3916547E-I0
11 0.8301885E+05 0.4585730E+02 0.4076776E-11
12 0.I064558E+06 0.519283 8E+02 0.2159606E-10
13 0.1227433 E-KJ6 0.5575952E+02 0.4064932E-11
14 0.I330266E+O6 0.5804827E-K)2 0 3232312E-10
15 0.I343789E+O6 0.5834257E+02 0.1057564E-09
16 0.1467268E+06 0.6096419E+02 03409693E-I0
17 0.175253 IE+06 0.666274IE+02 0.4370750E-I0
18 0.1878109E-K)6 0.6897323E+02 0.128I822E-I0
19 0.2044265E+06 0.7I95959E+02 0.2583 808E-10
20 0.2141506E+06 0.7365120E+02 0.8124793E-10
21 0.231223IE+06 0.7653071E+02 0.3010349E-10
22 0.2748608E+06 0.8344043E+02 0.993488IE-10
23 0.2788627E+06 0.8404566E+02 0.7918807E-10
24 0.2860432E+06 0.8512085E+02 0.3098537E-08
25 0 .3 145049E+06 0.8925527E+02 0.2833434E-06

Time Subspace Iter. = 335.21290111542
Time Normcheck = 0.69137573242188

TIMING

Reordering Time =
Factorization Time =
Subspace+Normchecking Time =
Total Time + Junk =

0.41172361373901
3.2129995822906
335.95602989197
339.58075308800

Table 7.45 Johnathan’s ill-conditionned problem : Subspace on rhino (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214

NGST Satellite model Eigenproblem

NEQ =5156
NCOEF =88966
NEIG = 100
[SHIFT = 100
MREAD = - l
LUMP = 1
IB LOCK. = 0
NREORD = 3
ITIME = I

CPU to get MD reordering = 0 .11S74914I7E-01
neq = 5156
before fill in, ncoff = 88966
after fill in, nco£2 = 208337
Total integer memory used = 328242
Total real memory used = 317927

.*« K..««.*• e ig **** *«**•« NORM
I -.1009969E-06 .5057946E-04 .OOOOOOOE+OO .237981 IE-08
2 -.5065785E-07 J582I48E-04 -OOOOOOOE+OO .2671863E-08
3 -.2848805E-07 268628 IE-04 .OOOOOOOE+OO -1395660E-08
4 -.1200462E-08 .5514350E-05 .OOOOOOOE+OO .911084 IE-09
5 .9863612E-09 .4998482E-05 .OOOOOOOE+OO .2335762E-08
6 .1716943E-07 2085442E-04 .OOOOOOOE+OO .12I0234E-08
7 J578351E+01 J010659E+00 .OOOOOOOE+OO .2417579E-08
8 .4049292E+OI J202651E+00 .0000000E+00 ■I585694E-08
9 .1006407E+02 .50490I9E+00 .0000000E+00 ■ I778258E-08
10 .1090430E+02 .5255561E+00 .OOOOOOOE+OO ■ 1383876E-08
II 2388019E+02 .7777482E+00 .OOOOOOOE+OO J742I80E-08
12 .103I162E+03 .16I6157E+01 .OOOOOOOE+OO .I225205E-07
13 .I036423E+03 .1620274E+01 .OOOOOOOE+OO 2699103 E-08
14 .I589046E+03 2006265E+01 .OOOOOOOE+OO .5160873E-08
15 .160I737E+03 .2014261E+01 .OOOOOOOE+OO ■2099I35E-08
16 .1608443E+03 20I8473E+01 .OOOOOOOE+OO -1737954E-08
17 .1643077E+03 2040089E+01 .OOOOOOOE+OO .4803450E-08
18 J109959E+03 .2806710E+01 .OOOOOOOE+OO ■ I254371E-08
19 312I301E+03 _281 IS23E+0I .OOOOOOOE+OO .4160239E-08
20 .6639871E+03 .4101096E+0I .OOOOOOOE+OO -4213715E-09
21 .7839603E+03 .4456226E+01 .OOOOOOOE+OO 24 2 0 1 10E-08
22 .8250824E+03 .457I606E+01 .OOOOOOOE+OO 2623791E-08
23 .8255635E+03 .4572939E+0I .0000000E+00 .1203455E-08
24 .9518780E+03 .4910331E+01 .OOOOOOOE+OO ■8483968E-09
25 .9518782E+03 .4910331E+01 .OOOOOOOE+OO .I372I58E-08
26 .9524710E+03 .4911860E+01 .OOOOOOOE+OO ■76I3478E-09
27 .95247I0E+03 .4911860E+0I .OOOOOOOE+OO ■759I269E-08
28 .9525859E+03 .4912I56E+01 .OOOOOOOE+OO 2589516E-08
29 .1195543E+04 .5503042E+01 .OOOOOOOE+OO 29 7 3 8 14E-09
30 .I220745E+04 .5560739E+01 .OOOOOOOE+OO -4522305E-08
31 .1228218E+04 .5577734E+01 .OOOOOOOE+OO 2477209E-08
32 .1980327E+04 .7082533E+0! .OOOOOOOE+OO .I454931E-08
33 .2027125E+04 .7I65728E+01 .OOOOOOOE+OO 2 2 8 1 194E-08
34 .2364884E+04 .7739717E+01 .OOOOOOOE+OO .6115332E-09
35 .244I923E+04 .7864771E+01 .OOOOOOOE+OO .I791366E-08
36 J2523301 E+04 .7994746E+01 .OOOOOOOE+OO ■ I606471E-08
37 .2628826E+04 .8160205E+01 .OOOOOOOE+OO .1244I05E-08
38 3025730E+04 .8754578E+01 .OOOOOOOE+OO .I845398E-08
39 J029738E+O4 .8760374E+01 .OOOOOOOE+OO .948602 IE-09
40 JI77517E+04 .8971480E+OI .OOOOOOOE+OO .I663053E-08
41 J405606E+04 .9287896E+0I .OOOOOOOE+OO 2506008E-08
42 3447575E+04 .9344950E+0I .OOOOOOOE+OO 2568277E-09
43 .3636287E+04 .9597302E+0I .OOOOOOOE+OO 2377967E-09

Table 7.46 NGST Satellite model (5156 DOF eigenproblem): Lanczos on stretch

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

215

44 .4063720E+04 .1014570E+02 .OOOOOOOE+OO .9083975E-09
45 .5099385E+04 .U36525E+02 .OOOOOOOE+OO .I624943E-08
46 .6070541 E+04 .I240035E+02 .OOOOOOOE+OO .4374237E-08
47 .7390347E+04 .1368209E+02 .OOOOOOOE+OO 2569484E-09
48 .7394760E+04 .1368618E+02 .OOOOOOOE+OO .I091757E-08
49 .7429089E+04 .I37179IE+02 .OOOOOOOE+OO 2927519E-09
50 .7747490E+04 .I400879E+02 .OOOOOOOE+OO .2772750E-08
51 .78I0990E+04 .I406608E+02 .OOOOOOOE+OO .U78507E-08
52 .7986601 E+04 .I422332E+02 .OOOOOOOE+OO .I283644E-08
53 .7988468E+04 .1422499E+02 .OOOOOOOE+OO .I624890E-09
54 .8039051 E+04 .1426995E+02 .OOOOOOOE+OO .1470223E-08
55 .8039054E+04 .1426995E+02 .OOOOOOOE+OO .1864628E-08
56 .8045958E+04 .1427608E+O2 .OOOOOOOE+OO .5250802E-08
57 .8045958E+04 .I427608E+02 .OOOOOOOE+OO .4650046E-08
58 .8047091 E+04 .1427709E+02 .OOOOOOOE+OO .6579347E-08
59 .8439815E+04 .1462I32E+02 .OOOOOOOE+OO .2916738E-08
60 .8493737E+04 .1466795E+02 .OOOOOOOE+OO .1858620E-08
61 .8733642E+04 .1487366E+02 .OOOOOOOE+OO .6337748E-08
62 .8962721 E+04 .1506746E+02 .OOOOOOOE+OO .3534875E-08
63 .9848984E+04 .I579486E+02 .OOOOOOOE+OO .14I4466E-08
64 .9905333 E+04 .1583998E+02 .OOOOOOOE+OO .1520590E-08
65 .1106567E+05 .I674207E+02 .OOOOOOOE+OO .4710718E-08
66 .1111635E+05 .I678035E+02 .OOOOOOOE+OO .290I364E-08
67 .1115026E+05 .1680593E+02 .OOOOOOOE+OO .3805108E-08
68 .1162314E+05 .1715860E+02 .OOOOOOOE+OO 2658956E-08
69 .1I66786E+05 .1719158E+02 .OOOOOOOE+OO .2026304E-09
70 .16810I7E+05 2063508E+02 .OOOOOOOE+OO .4I84248E-08
71 2 2 3 1741 E+05 .2377618E+02 .OOOOOOOE+OO .5376996E-09
72 .2238761 E+05 2381354E+02 .OOOOOOOE+OO .1701393E-08
73 .2404625E+05 .2467992E+02 .OOOOOOOE+OO .8327529E-08
74 .2460007E+05 .2496251 E+02 .OOOOOOOE+OO .203549IE-08
75 .2489330E+05 2 5 1 1085E+02 .OOOOOOOE+OO .68020I7E-09
76 .2498622E+05 .2515767E+02 .OOOOOOOE+OO .7689179E-08
77 2539394E+05 25362I0E+02 .OOOOOOOE+OO .5231510E-08
78 2542395E+05 2537708E+02 .OOOOOOOE+OO J469535E-08
79 2 136447E+05 .2818637E+02 .OOOOOOOE+OO .1545523E-08
80 2156790E+05 2827763E+02 .OOOOOOOE+OO .4I38619E-09
81 2165950E+05 283I862E+02 .OOOOOOOE+OO .3554204E-09
82 2168183E+05 283286IE+02 .OOOOOOOE+OO .7477802E-08
83 2203707E+05 2848699E+02 .OOOOOOOE+OO .1363612E-07
84 2203707E+05 .2848699E+02 .OOOOOOOE+OO .9968770E-08
85 2204669E+05 2849127E+02 .OOOOOOOE+OO .1637359E-08
86 2226505E+05 28 5 8 8 17E+02 .OOOOOOOE+OO .5232148E-10
87 2259738E+05 2873502E+02 .OOOOOOOE+OO .1067081E-08
88 2393257E+05 .2931761 E+02 .OOOOOOOE+OO 2433675E-08
89 2395826E+05 2932870E+02 .OOOOOOOE+OO .7391951E-10
90 2589878E+05 2015504E+02 .OOOOOOOE+OO 2478503E-08
91 2 7 1 1287E+05 2066072E+02 .OOOOOOOE+OO 2985016E-08
92 28045I9E+05 .3I04345E+02 .OOOOOOOE+OO .6213089E-09
93 2919935E+05 2I5108IE +02 .OOOOOOOE+OO 2662602E-08
94 2935903E+05 2157492E+02 .OOOOOOOE+OO 2352208E-08
95 .4177678E+05 2253026E+02 .OOOOOOOE+OO .1760624E-08
96 .4190986E+05 2258204E+02 .OOOOOOOE+OO .8170915E-08
97 .4270187E+05 2288846E+02 .OOOOOOOE+OO .1843430E-09
98 .4548740E+05 .3394421E+02 .4329127-317 2360722E-08
99 .4591367E+05 2410289E+02 .1149076-313 2640223E-08
100 .5020741 E+05 2566186E+02 2167838-305 2240370E-08

JACOBIR: Steps in IAM = 399 0
• ‘ •TOTAL CPU FOR EIGENSOLUTION = 50.7799988649785519
•••(T his time including norm check & I/O)•*•
MTOTI = 14439610 MTOTA = 2 1655415

Table 7.46 NGST Satellite model (5156 DOF eigenproblem): Lanczos
on stretch (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

216

APPLICATION NEQ NCOEF COMMENTS

No 11 2 1 Feasible region exist

No 12 2 1 One point feasible region

No 13 2 1 No Feasible region

No 14 2 1 Multiple solution

No 15 2 1 Feasible region exist

Table 7.47: IPM: Small scale Examples (for validating purposes)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

217

Application
NEQ
(=N)

NCOEF
input-
data

NCOEF
data plus
surplus &

lack
variables

NCOEF

AA T

NCOEF2
After

Tactoriza-
ion
AA r

NCOEF2/
N(N-*-iy2 comments

optimization
time (seconds)

No 16 51 218 269 229 242 0.18 Indefinite 0.195

No 17 51 487 538 300 355 0.26 Definite 0.209

No 18 247 2009 2256 2806 3015 0.09 Indefinite 0.762

No 19 247 4265 4512 3165 3488 0.11 Indefinite 0.618

No 20 1440 22137 23577 31638 88798 0.08 Indefinite 19.67

Table 7.48 IPM: Medium-Scale Examples (for timing purposes) on
Cedar Sun workstation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

218

A X 2

O ptim um solution

Fig. 7.26 IPM: Graphical solution application No 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

219

5 —

4 —

3 -

O ptim u m so lu tio n
V = o
x / = 2
z* = - 5

Z = -6

z=0

l -

Fig. 7.27 IPM: Graphical solution application No 12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

220

3 — z = 0

; O ptim um so lu tio n :

4 \ C
A

No fe a s ib le
S olu tion

2 -

Fig. 7.28 IPM: Graphical solution application No 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 2 1

O ptim un so lu tion
M u ltip le so lu tion

Fig. 7.29 IPM: Graphical solution application No 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

222

2 k xi

O ptim um so lu tion
x , ' = 0
Xj = 4/5
z ' = 4/5

Fig. 7.30 IPM: Graphical solution application No 15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

223

51 equations:
51 51 0 0 51 218 0 0 1 1
nv, nl, ng, ne, n, NCOEF,n7,n8,isolver,mread

Table 7.49 K.INFO input file for the IPM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

224

OUTPUT INTERIOR METHOD

51 DOF Problem

NV = 5 1
NL = 51
NG = 0
NE = 0
NC = 102
NR = 51
NCOEF = 218
NCOEF2 = 269
MREAD = -I
ISOLVER= 1

Time Read ORIGINAL DATA = 4.646050184965ID-02
Time Define Basic set = 8.5049867630005D-04
Time Construct Starting Vector = 3.5050511360I68D-04

NUMBER OF ITERATION = 6

sparsity o f [A] = 269 5202 5.I710880430604D-02
sparsity o f [AA]*[AA]"= 509 2601 0.19569396386005

Time Optimizer Phase II = 0.19156400859356

OPTIMUM DESIGN POINT
3.724264450863 ID-06 3
1.2049950134656D-06 9
4.95473 87683292D-06 I
7.0698231129301D-07 4.
5.237478195834 ID-06 3.
1.7816556372331D-06 4.
2.0125691617394D-06 I,
4.9716918361115D-06 5,
5.I3978702I9I77D-06 5.
4.5538744344257D-06 4.
4.5538744344257D-06 4.
8 .11988I0278697D-07 1.
I .1 183697066714D-06 2.
5.0426986042319D-07 2.
3.3938570905376D-06 4.
IJ368444I06200D-06 4.
5.2249758859960D-06 4.

.7695123215782D-06

.2653967507183D-07

.2110670847008D-06

.6902771696144D-07

.8133009495046D-06

.1136587781992D-07

.9741306345507D-06

.1397870219177D-06

.1397870219177D-06

.5538744344257D-06
5538744344257D-06
4886381290124D-06
.6790899636017D-06
5712236127425D-06
8176122314913D-06
7799158714321 D-06
8610721469495D-06

4.528122I399649D-06
5 .1596183718342D-06
2.8317110676706D-06
1.91686733 84084D-06
5 .1779540534707D-06
2.6473167128877D-06
3.6080360085376D-06
5.1397870219177D-06
4.5538744344257D-06
4.5538744344257D-06
4.4361795026054D-06
4.4119I59005598D-06
2.2398983449720D-06
4.2I33702926385D-06
3.1369046314674D-06
1.1289688481885D-06
2.9432086331771 D-06

OPTIMUN OBJECTIF FUNCTION
1.6701964318793D-04

Table 7.50 Application 16: Output file of IPM on cedar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

225

REORD NCOEF NCOEF2 Integer
Memory

Real
Memory

Total
Memory

No Reord. 999,010 7,400,484 4,296,626 8,480,224 12,776,850

UnsyMMD 999,010 6,034,566 3,613,667 7,114,306 10,727,973

Table 7.51 HSCT FEM: Memory requirement for UNSYNUMFA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

226

HSCT
Factorization Total

□ No Reord 9 UnsyMMD

Fig. 7.31 HSCT: UNSYNUMFA. Non zero after factorization (*106)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

227

Loop
Unrolling

Level

Symf
a

time
(sec)

Numfa
time
(sec)

FBE
time
(sec)

Total
time
(sec)

Max.
abs.

displ.

Summat0
abs.
displ.

Relative
Error
Norm

1 0.480 50.010 0.310 53.350 0.447 301.291 1.34E-08

2 0.470 35.420 0.320 38.760 0.447 301.291 1.99E-08

8 0.480 28.730 0.320 32.700 0.447 301.291 1.36E-08

Table 7.52 HSCT FEM: Summary of results for UNSYNUMFA1/2/8 using UnsyMMD
and different level of loop unrolling on the IBM RS6000/590 Stretch machine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

228

Loop
Unrollin

g
Level

Symfa
time
(sec)

Numfa
time
(sec)

FBE
time
(sec)

Total
time
(sec)

Max
abs.
displ.

Summat0
abs.
displ.

Relative
Error
Norm

1 0.710 52.079 0.370 55.200 0.447 301.291 2.2E-09

2 0.680 35.650 0.380 38.730 0.447 301.291 2.0E-09

8 0.700 28.390 0.390 31.520 0.447 301.291 2.0E-09

Table 7.53 HSCT FEM: Comparison of results for UNS YNUMFA with no UnsyMMD
and different level o f loop unrolling on the IBM RS6000/590 Stretch machine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

229

HSCT
Factorization Time (sec)

60 -

□ UNSYNUMFA1 H UNSYNUMFA2

■ UNSYNUMFA8

HSCT
Total time (sec)

60 -

□ UNSYNUMFA1 ■ UNSYNUMFA2

| UNSYNUMFA8

Fig. 7.32 HSCT FEM: Performance of UNSYNUMFA1/2/8 with
UnsyMMD on the stretch machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

230

HSCT
Factorization Time (sec)

60 —’

50 _i
i
j

40
v;;“V

30 "I
- . . ^

20
1

- -• -

10

0

j j UNSYNUMFA1

■ UNSYNUMFA8

UNSYNUMFA2

HSCT
Tota l time (sec)

60 -

50 -

40 -

30 -i

20 -

10 -

0 —

□ UNSYNUMFA1 B UNSYNUMFA2

B UNSYNUMFA8

Fig. 7.33 HSCT FEM: Performance of UNSYNUMFA1/2/8 with
no UnsyMMD on the stretch machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

231

Loop
Unrollin

g
Level

Symfa
time
(sec)

Numfa
time
(sec)

FBE
time
(sec)

Total
time
(sec)

Max
abs.

displ.

Summat0
abs.
displ.

Relative
Error
Norm

1 0.480 49.970 0.330 53.320 8.791 45.134 2.3E-07

2 0.470 35.340 0.320 38.650 8.791 45.134 1.8E-07

8 0.460 28.650 0.320 31.970 8.791 45.134 1.3E-07

Table 7.54 PierrotHSCT: Summary of results for UNSYNUMFA with UnsyMMD and
different level of loop unrolling on the IBM RS6000/590 Stretch machine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

232

PIERROTHSCT
Factorization Tim e (sec)

50 - ,-|

40

30

20

10

0

Q UNSYNUMFA1 Q j UNSYNUMFA2

■ UNSYNUMFA8

PIERROTHSCT
Total time (sec)

60 -

50 -

40 -

30 -

20 -

10 -

□ UNSYNUMFA1 ■ UNSYNUMFA2

■ UNSYNUMFA8

Fig. 7.34 PierrotHSCT: Summary o f results of UNSYNUMFA1/2/8 with
UnsyMMD on the stretch machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

233

LOOP
Unrollin

g
Level

Symfa
time
(sec)

Numfa
time
(sec)

FBE
time
(sec)

Total
time
(sec)

Max
abs.
displ.

Summat0
abs.
displ.

Relative
Error
Norm

1 1.93 210.500 2.820 229.560 2.061 13569.65 8.1E-13

2 1.93 155.630 2.270 173.280 2.061 13569.65 8.1E-13

8 1.93 133.150 1.300 150.230 2.061 13569.65 8.1E-13

Table 7.55 SRB FEM: Summary of results for UNSYNUMFA using UnsyMMD and
different level of loop unrolling on the IBM RS6000/590 Stretch machine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

234

SRB
Factorization Tim e (sec)

250 -

200 -

150 -

100 -

50 -

□ UNSYNUMFA1 9 UNSYNUMFA2

9 UNSYNUMFA8

SRB
Total time (s e c)

250 -

200 -

150 -

100 -

50 -

□ UNSYNUMFA1 9 UNSYNUMFA2

9 UNSYNUMFA8

Fig. 7.35 SRB FEM: Performance of UNSYNUMFA1/2/8 with
UnsyMMD on the stretch machine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER VTII

235

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

8.1 Conclusions

Vector sparse solvers for positive, negative and indefinite systems have been

developed. Efficient sparse technologies, such as: sparse symbolic factorization, sparse

numerical factorization with unrolling strategies, sparse forward & backward solutions,

sparse matrix-vector multiplication, have been developed, and fully utilized to improve the

performance. The developed computer software has been fully optimized at the algorithm

level, as well as during the compilation on vector computer platforms. The use of loop

unrolling shows better results on high-performance uniprocessor computers. Efficient

algorithms further reduce the amount of memory traffic on machines with high speed local

memory, such as a cache. Large scale sparse matrices have been used to prove the

robustness of the developed sparse equation solver for symmetric positive definite systems.

Good performance has been achieved on the developed unsymmetrical solver for large scale

applications.

Much of the research works in direct methods for the solution of sparse linear

indefinite systems lies in determining the order in which pivots are chosen in the Gaussian

elimination process, and how to minimize the fill-in during the factorization process. This

choice can be made with a view to preserving sparsity, optimizing data structures, or

maintaining stability. An alternative formulation and new computational strategies have

been developed that satisfy all three requirements for solving general system of symmetrical

and indefinite equations. Rotational matrix has been used to uncouple the 2x2 block

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

236

diagonal matrix, and therefore, greatly enhance the FORTRAN computer coding

implementation. Mixed “backward factorization” and “ Forward factorization” strategies

have also been employed. The computational efficiency, and the solution accuracy have

been validated by solving 5 indefinite system of equations (ranging from 51 to 15 367

unknown degree of freedom). Further numerical performance improvements have been

realized by using MMD reordering algorithm (to minimize the number of fill-in) and by

pushing all zero diagonal terms o f the original matrix toward the bottom right of the matrix.

Major computational tasks in Subspace iterations, and Lanczos algorithms have been

identified. Sparse Subspace and Lanczos eigensolvers for the solution of the generalized

eigen-equations have been developed. Numerical results from practical finite element

models have clearly indicated that the proposed sparse Subspace iterations, and Lanczos

algorithms have offered substantial computational advantages over the traditional "skyline",

or "variable bandwidth" strategies.

In this work, detailed discussions of a variation of the Karmarkar’s Interior Point

Method (IPM) have been presented. A Fortran implementation of the proposed method,

using sparse technology, has been developed. Numerical examples to validate the entire

procedure, and to show the promising potentials of using the IPM, in conjunction with

efficient sparse indefinite solver, for solving linear programming problems have also been

documented.

8.2 Suggestions for future research

Based upon the works that have been developed in this dissertation, the following

future studies are suggested:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

237

(1) Develop a parallel-vector sparse solver for positive definite systems. Appendix C gives

some preliminary results o f the implementation of a parallel sparse solver based on the

substructuring formulation on Intel Paragon machines.

(2) Develop a vector sparse unsymmetrical solver, (unsymmetrical in locations and values)

with pivoting and a reordering algorithm for a general unsymmetric matrix.

(3) Develop a callable sparse numerical library o f subroutines for sequential and parallel-

vector computers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

238

REFERENCES

1. Bathe, J ., Finite Element Procedures, Prentice-Hall, Englewood Cliffs, New Jersey
(1996).

2. Tong, P., and Rossettos, J.N ., Finite Element Method: Basic Technique and
implementation, the MIT Press, Cambridge, Massachusetts, and London, England.

3. Hughes, T.J.R., The Finite Element Method, Prentice-Hall, Englewood Cliffs, N.J (1987)

4. Zinkiewicz, O.C., and Taylor, R.L., The Finite Element Method In Structural and
Continuum Mechanics, McGraw-Hill, Vol. 1 and 2 (1989/1990).

5. Arora, J.S., Introduction to optimum design, McGraw-Hill, Inc. USA (1989).

6. Golub, G.H., and VanLoan, C.F., “Matrix Computations,” 3rd Edition, The Johns Hopkins
University Press (1996).

7. Bunch, J.R., and Kaufman, K., “Some Stable Methods For Calculating The Inertia and
Solving Symmetric Linear Systems”, Math. Comp., 31, pp. 162-179 (1977).

8. Duff, I.S., and Reid, J.K., “MA47: A Fortran Code For Direct Solution of Indefinite Sparse
Symmetric Linear Systems”, RAL Report #95-001 (Jan. 1995).

9. Nguyen, D.T., Storaasli, O.O., Carmana, E.A., Al-Nasra, M., Zhang, Y., Baddourah, M.A.,
and Agarwal, T.K., “ Parallel-Vector Computation For Linear Structural Analysis and
Nonlinear Unconstrained Optimization Problems”, Computing Systems in Engineering, An
International Journal, Vol. 2, No. 2/3, pp. 175-182 (Sept. 1991).

10. Duff, I.S., Erisman, A.M., and J.K.Reid, “Direct Methods For Sparse Matrices”, Monographs
On Numerical Analysis, Oxford Science Publications (1989).

11. George, J.A., and Liu, W.H., “Computer Solution of Large Sparse Positive Definite
Systems”, Preventive-Hall, Englewood Cliffs, N.J. (1981).

12. Belytscho, T., Plaskacz, E.J., Kennedy, J.M., and Greenwell, D.M, “Finite Element Analysis
on the Connection Machine”, Computer Methods Appl. Mech. Eng. 81, pp. 27-55 (1990).

13. John, Z., Hughes, T.J.R., Mathur, K.K., and Johnson, S.L., “A Data Parallel Finite Element
Method For Computational Fluid Dynamics On The Connection Machine System”, Comput.
Methods Appl. Mech. Eng.. 99, pp. 113-134 (1992).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

239

14. Simon, H., Wu, P., and Yang, C., “Performance of a Supermodal General Sparse Solver on
The Cray-YMP: 1.68 GFLOPS With Autotasking”, Applied Mathematics Technical Report,
Boeing Computer Services, SCA-TR-117 (March 1989).

15. Law, K.H., and Mackay, D.R., “A Parallel Row-Oriented Sparse Solution Method For Finite
Element Structural Analysis”, IJNM in Eng., Vol. 36, pp. 2895-2919 (1993).

16. Noor, A.K., “Parallel Processing In Finite Element Structural Analysis”, in Parallel
Computations and Their Impact On Mechanics, ASME, pp. 253-277, A.K. Noor (Ed.)
(1987).

17. Khan, A.I., and Topping, B.H.V., “A Transputer Routing Algorithm For Nonlinear or
Dynamic Finite Element Analysis”, Engineering Computations, Vol. 11, pp. 549-564 (1994).

18. Zheng, D., and Chang, T.Y.P., “Parallel Cholesky Method On MIMD With Shared
Memory”, Computers & Structures, Vol. 56, No.l, pp. 25-38 (1995).

19. Chiang, K.N., and Fulton, R.E., “Structural Dynamic Methods For Concurrent Processing
Computer,” Computers & Structures, 36(6), pp. 1031-1037 (1990).

20. Qin, J., CE 795/895 CoursePack: “Sparse matrix technology”, Civil and Environmental
enginieering, Old Dominion University, Fall 1994.

21. Aminpour, M.A., Ransom, J.B., and McCleary, S.L., “A Coupled Analysis Method For
Structures With Independently Modeled Finite Element Subdomains”, IJNM in Eng.., Vol.
38, pp. 3695-3718 (1995).

22. Ransom, J.B., McCleary, S.L., and Aminpour, M.A.,“A New Interface Element For
Connecting Independently Modeled Substructures”, AIAA/ASME/ASCE/AHS SDM
Conference Proceedings, AIAA-93-1503-cp (1993).

23. Housner, J.M., Aminpour, M.A., and McCleary, S.L., “Some Recent Developments In
Computational Structural Mechanics”, Proc. Int. Conf. Computational Engineering Science,
ICES Publications, Atlanta, GA, pp. 376-381 (1991).

24. Ortega, J.M., Voigt, R.G., Solution o f Partial Differential Equations on Vector and Parallel
Computers, Society for Industrial and Applied Mathematics, 1985.

25. Ng., E.G., Peyton, B., “Block Sparse Cholesky algorithms on advanced uniprocessor
computers”, SIAM Journal Sci. Comput. Vol 14, No 5, pp. 1034-1056, September 1993.

26. Parlet, B.N., The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, N.J.
(1980).

27. Duff, I.S., Stewart, G.W., Sparse Matrix Proceedings, Siam , Philadelphia (1979).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

240

28. Gourlay, A.R., Watson, G.A., Computational Methods for Matrix Eigenproblems, John
Wiley & Sons (1973).

29. Dongarra, J. and Hinds, A., Unrolling loops in FORTRAN, Software Pract. Exper., 9, pp.
219-229 (1979).

30. George, J.A ., and Liu, W.H.,"Computer Solution of Large Sparse Positive Definite
Systems" Prentice-hall, Englewood Cliffs, N J . (1981).

31 Runesha, B.H., Nguyen, D.T., Belegundu, A.D. and Chandrupatla, T.R., “Interior Method
with positive and indefinite sparse solvers for the linear programming optimal design
problems”, 4th NASA National Symposium on large-scale Analysis and Design on high-
performance Computers and Workstations. Oct 15-17, 1997, Williamsburg, VA.

32. Karmarkar, N., “ A new polynomial-time Algorithm for linear programming”,
Combinatorica, 4, pp. 373-395 (1984).

33. Gill, P.E., Murray, W., Saunders, M.A., Tomlin, J.A., and Wright, M.H., “On projected
Newton Barrier methods for linear programming and an Equivalence ot Karmarkar’s
projective Method”, Mathematical programming, 36, 183-209 (1986).

34. Kranich, E., ‘ Interior Point Methods for Mathematical Programming: A bibliography”,
Discussion paper 171, Institute of economy and operations research, Fer Universitat Hagen,
P.O.Box 940, D-5800 Hagen I, Germany (1991).

35. Roos, C., and Vial, J. Ph., “Interior Point methods”, in Advances in linear and Integer
Programming, J.E. Beasley(ed-), Chapter 3, Oxford University Press, Oxford, England
(1994).

36. Dantzig, G.B., “ Linear Programming and Extensions”, Princeton University press,
Princeton, New-Jersey.

37. Chang, Saleeb, A.F., and Li, G., "Large Strain Analysis of Rubber-like Materials Based
On a Perturbed Lagrangian Variational Principle," J. Comput. Mech., Vol. 8, pp.221-233
(1991).

38. Gunderson, "Fatigue Life of TLP Flex-elements," 24th Annual OTC Conference,
Houston, Texas, May 4-7, 1992.

39. Gibbs, N. E., “ A hybrid profile reduction algorithm”, ACM Trans. On Math. Software,
2, pp. 378-387 (1976).

40. Bathe,K.J., "Solution Methods of Large Generalized Eigenvalue Problems in Structural
Engineering, "Report UC SESM 71-20, Civil Engineering Department, University of
California, Berkeley, 1971.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

241

41. Bathe, K .J., "Convergence of Subspace Iteration," in Formulations and Numerical
Algorithms in Finite Element Analysis, MIT Press, Cambridge, MA, pp.575-598, 1977.

42. Bathe, and Ramaswamy, S, "An Accelerated Subspace Iteration Method", Computer
Methods in Applied Mechanics and Engineering, Vol. 23, pp.313-331, 1980.

43. Bathe, and Wilson, E.L., "Eigensolution of Large Structural Systems with Small
Bandwidth," ASCE Journal of Engineering Mechanics Division, Vol. 99, pp. 467- 479,
1973.

44. Lanczos, "An Iteration Method for the Solution of the Eigenvalue Problem of Linear
Differential and Integral Operator," Journal of Research of the National Bureau of
Standards, 45, pp. 255-281 (1950).

45. Golub, Underwood, R., and Wilkinson, J.H ., "The Lanczos Algorithm for the Symmetric
Ac = IBc Problem," Tech. Rept.. STAN-CS-72-720, Computer Science Department,
Stanford University, 1972.

46. Parlett and Scott, D., "The Lanczos Algorithm with Selective Orthogonalization,
"Mathematics of Computations, 33 No. 145, pp. 217-238 (1979).

47. Nour-Omid, Parlett, B.N., and Taylor, R .L., "Lanczos versus Subspace Iteration for
solution of Eigenvalue Problems," International Journal for Numerical Methods in
Engineering, 19, pp. 859-871 (1983).

48. Qin, J., Nguyen, D.T., and Zhang, Y., "A Parallel-Vector Lanczos eigensolver for
Structural Vibration problems," in: Proceedings of the Fourth International Conference
on Recent Advances in Structural Dynamics, July 15-18, 1991, London, UK.

49. Nguyen,D.T. Qin, J., Chang, T.P.Y. and Tong, P., "Efficient Sparse Equation Solver
With Unrolling Strategies For Computational Mechanics," Proceedings of the ICES’97
conference, San Jose, Costa Rica (May 4-10, 1997).

50. Cuthill, E., and McKee, J., "Reducing The Bandwidth of Sparse Symmetric Matrices,"
Proceedings of 24th National Conference, Association for Computing Machinery, pp. 157-
172 (1969).

51. Gibbs, N.E., Poole, W.G., Stockmeyer, P.K. and Jr., "An Algorithm For Reducing the
Bandwidth and Profile of a Sparse Matrix," SIAM Journal on Numerical Analysis, Vol.
13, pp. 236-250 (1976).

52. Lewis, Pfyton, B.W. and Pothen, A.,"A Fast Algorithm For Recording Sparse Matrices
For Parallel Factorization," SIAM J. Sci. Statist. Comput., 6, pp. 1146-1173 (1989).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

242

53. Liu, "Reordering Sparse Matrices For Parallel Elimination," Tech. Report 87-01,
Computer Science, York University, North York, Ontario, Canada (1987).

54. Storaasli, O.O., Nguyen, D.T., and Agarwal, T.K., "The Parallel Solution of Large-Scale
Structural Analysis Problems on Supercomputers," AIAA Journal, Vol. 28, No.7, pp.
1211-1216 (July 1990).

55. Maker, B.N., Qin, J. and Nguyen, D.T., "Performance of NIKE3D with PVSOLVE On
Vector and Parallel Computers," to appear in Computing Systems in Engineering Journal.

56. Wang, Chang, T.Y.P., and Tong, P., "Nonlinear Deformation Responses of Rubber
Components by Finite Element Analysis," Computational Mechanics '95: Theory and
Applications Proceedings of the International Conference on Computational Engineering
Science. July 30-Aug. 3 ’95, Hawaii, USA, Vol. 2, pp. 3135-3140.

57. Duff, I.S., Sparse Matrices and their Uses, Academic Press, New York (1981).

58. Zlatev, Z., Wasniewski, J., Schaumburg, K., Y12M Solution of Large and Sparse Systems
of Linear Algebraic Equations, Springer-Verlag, Berlin (1981).

59. Bunch, J.R., Rose, D.J., Sparse Matrix Computations, Academic Press Inc. New York
(1976).

60. Reid, J.K., Large Sparse Sets of Linear Equations, Academic Press, New York (1971).

61. Smith, B.T., Boyle, J.M., Garbow, Y. I., Kelma, V.C., Moler, C.B., Matrix Eigensystem
Routines-EISPACK Guide, Springer-Verlag Berlin (1974).

62. Barnes, E.R., “A Variation o f Karmarkar’s Algorithm For Solving Linear Programming
Problems”, Mathematical programming, 36, pp. 174-182 (1986).

63. Chen, P., Runesha, H., Nguyen, D.T., Tong, P., Chang, T.Y.P., Chang, “ Sparse Algorithms
for Indefinite systems of linear Equations”, proceedings of the ICES’97 conference, San
Jose, Costa Rica (may 4-10, 1997).

64 Pissanetzky, S., “Sparse Matrix Technology”, Academic Press Inc. (London) LTD (1984).

65 Golub, G.H., O’Leary, D.P., “Some history of the conjugate Gradient and Lanczos
algorithms”, SIAM Review, Vol 31, No 1, pp. 50-102 (1989).

66 Qin, J., Runesha, B.H. and Nguyen, D.T., “Enhancements of MA27 Code For Indefinite
Sparse System of Equations”, unpublished work (in preparation).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

243

67 Qin, J., Gray, Jr., C.E., Mei,C. and Nguyen, D.T., “A Parallel-Vector Equation Solver For
Unsymmetric Matrices on Supercomputers”, Computing Systems in Engineering, An
International Journal, Vol.2, No. 2/3, September 1991 (Pergamon Press), pp.197-202.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

244

APPENDIX A

MULTI-PLATFORMS MAKEFILE

MAKEFILE
#
H. Runesha June 30, 1997
#
This Makefile was inspired from the one written by
Michael Puso at Lawrence Livermore National Laboratory
#
Look through makefile to comment and uncomment specific lines
based on platform to compiled for SGI/DEC/SUN/HP/UNIX/CRAY
CONVEX should be treated same as HP.
For example: you are compiling for a sun uncomment the Solaris
specific flags and make sure the other platform specific flags are
commented.
#
The name of the executable is: aaOO
^***
FORTRAN = ${FC}
FORTRAN = f77
CPP = /lib/cpp
CPP = /usr/ccs/lib/cpp
XLIB2 = -1X11
XLIB2 =

FFLAGS = -03 -static
FFLAGS = -g -static
CPPFLAGS = -Dsgi
SGI R4400 and down
FFLAGS = -02 -static -mips2
FFLAGS = -02 -static
SGI debug
FFLAGS = -g -static

FFLAGS = -Bstatic -03 -xcg92
FFLAGS = -Bstatic -fast -xcg92 -04 -Bstatic -xtarget=ultra
FFLAGS = -Bstatic -03 -xcg92
CPPFLAGS = -Dsun

#FFLAGS = -05 -static -cpp

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

245

#FFLAGS2 = -04 -static -cpp
#CPPFLAGS = -Ddec
#_-------------------------- CRAY #
FORTRAN = ${CF}
FFLAGS = -dp -ZP
CPPFLAGS =-Dcray
 # HP -#
FFLAGS = +03 -K +T +E1
CPPFLAGS =-Dhpux
LINK = +U77
§--------------------------- IBM #
FFLAGS = -03 Q -qhssngl
CPPFLAGS = -Dibm
BIG_MEMORY = -bmaxdata:0x70000000
XLIB2 = -IXII
 #----------------------------ODU STRETCH - IBM -------------------------- #
FFLAGS = -LSP -03 -qstrict -qalias=noaryovrlp -qarch=pwr2
CPPFLAGS = -Dibm
BIG_MEMORY = -bmaxdata:960000000
XLIB2 =
 # #
#Libraries ?
LIBS =
Comment out line below for single precision version
DPFLAG = -DDP
#_--- #
#
OBJS = \

PierSpaSolver.o main.o\
reord.o

#---#
aaOO: ${OBJS}

$ {FORTRAN} $ {LINK} -o aaOO $(OBJS) $(LffiS)\
$(XLIB2) $(BIG_MEMORY)

#--#
genb: ${LIBG}

$ {FORTRAN} $ {FFLAGS} ${LINK} -o genb genb_m.o $(LIBG)
HP needs U77 library for timing routines (won't work if used on all routines)
cputim.o: cputim.f
/lib/cpp -P $ {CPPFLAGS} $ {DPFLAG} cputim.f > cputim.F
$ {FORTRAN} $ {FFLAGS} +U77 -c cputim.F
rm cputim.F
DEC needs lower optimization compile flag for expand.f
#expand.o: # $ {FORTRAN} -c ${FFLAGS2} $ {DPFLAG} expand.f
.c.o:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

246

cc -c S?
Comment and Uncomment the appropriate .f.o rules
#
For SGI or DEC use the following .f.o rules (2 lines)
#
.f.o:
$ {FORTRAN} $ {FFLAGS} $ {CPPFLAGS} $ {DPFLAG} -c $?
#
For SUN or HP or IBM use the following .f.o rules (4 lines)
#
$(CPP) -P $ {CPPFLAGS} $ {DPFLAG} $<> $(*.F).F
.f.o:

$(CPP) -P $ {CPPFLAGS} $ {DPFLAG} $<> $*.F
$ {FORTRAN} $ {FFLAGS} -c $*.F
rm $*.F

For CRAY use the following .f.o rules (4 lines)
#.f.o:
cp $< $(*.F).F
$ {FORTRAN} $ {FFLAGS} ${CPPFLAGS} $ {DPFLAG} -c $(*.F).F
rm $(*.F).F
#${LIB}: ${OBJS}
ar rv $@ $?
#${LIBG}: ${OBJSG}
ar rv genblib.a readk.o rmalloc.o rfree.o writeb.o
mv readk.o ./GENB; mv rfree.o ./GENB;
mv rmalloc.o ./GENB; mv writeb.o ./GENB
a r rv $ @ $?
ranlib $@
clean:

\rm -f ${OBJS} ${LIB}
rm -f genb aaOO *.a
rm ./GENB/*.o

 # #

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

247

APPENDIX B

SUBROUTINE CPUTIME.F

Subroutine cputime (time)
Real tar(2)
Real* 8 time

c For EBM type machine---------------------------
time = 0.01*mclock()

c For SUN Workstations and other Unix boxes
c time = etime (tar)
c For CRAY type machines-----------------------
c time = tsecndO

Return
end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

248

APPENDIX C

PARALLEL VECTOR SPARSE SOLVER

Given a matrix [K] and the right hand side vector {F} in NASA row wise format,

let's consider the following system o f linear equations

Kz= F (C -l)

An algorithm for a parallel sparse solver has been suggested, based on the substructuring

finite element formulation [1]. Each processor can either construct its assigned portion of the

matrix associated to a substructure, or a given stiffness matrix [K] have to be rearranged into

a V-shape form as shown in Fig.(C-l).

SYM

Fig. (C.l) Parallel sparse solver: V-shape form

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

249

Klb(1> . Z<‘> \ F<‘>

K ™i v i r K m z™ ; F,m

FZU<3> Z,(3> FI(3)

ir (‘) jr O) ir Vk (rJt'-bi A-bi bi : Z-i bb Zb Z F b(r‘

Fig (C.2) Parallel sparse solver: Interior and Boundary displacements

The subscripts i and b correspond to the interior and boundary nodes, respectively. The

submatrices [Kib (r)] correspond to the coupling (boundary) submatrices. To solve for

Equation (C-l) in parallel, two parallel sparse algorithms are required:

a) A parallel algorithm to rearrange the matrix into a V-shape that minimize the length of

the coupling submatrices, and to perform the fill-in minimization. (When K is given).

b)The second algorithm is a parallel vector sparse solver for a V-shape matrix.

Let’s consider the stiffness matrix in a V-shape form. The boundary displacement

can be computed as follows:

£ < ; J N - { £ < :) (C-2)

where

Cr) (C-3)

{ £ < } - (C-4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

250

and the interior displacement can be computed from Eq.(C-5).

{z/r)} = [< V l {F,(r) - K $ Z b} (C-5)

The parallel vector sparse solver for V-shape matrices has been implemented on the Intel

Paragon at NASA Langley, and completed on the Intel Paragon at the Hong Kong University

of Science and Technology. The step by step algorithm of the parallel sparse solver is given

in Table (C-l) and preliminary results that have been obtained are shown in Tables (C-2) and

(C-3).

Step 1. Given FCj£ (r), F; (r) and K;b(r) information o f substructure r to
processor r, in sparse format. r=l, number of processors

Step 2. Generate £K bb(r) and £F b (r)
For each processor do:
Step 3. Symbolic factorization and find supemodes for K;i(r)

= > 100% parallel
Step 4. (a) Numerical factorization. = > 100% parallel

(b) Solve for [K ^ 1]'1 *[Kjb(r>] one column at the time
Call Forward/Backward and save result in a vector {x}.

(c) Perform [Kbi(r)]*{x}
(d) Assemble [^K bcfr(r)]
(e) Perform similar operations as in steps (b,c,d) to get

[l F bdf«]
Step 5. Solve for boundary displacement Eq.(C-2)
Step 6. Solve for interior displacements. Eq. (C-5)

Table (C-l) Parallel sparse solver: Step by step algorithm

The symbolic and numerical factorization in steps 3 and 4 uses the vector sparse solver

developed in Chapter II.

Results in Tables (C-2) and (C-3) shows that parallel speed-up can be achieved for

a matrix already in V-shape(from substructure formulation) with a small coupling bandwidth.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N E Q = 7 9 2 8

251

parallel

□ 1 2
16

spaodu

4
32

. 1 5 .8 7 ' 3 .8 :
2 ' 2 . 9 1 3 .8 !

14 ■i 1.831 3 .81
8 :! 1.011 3 .81

. 16 i 1 .14 1 3 .81
3 2 1 .7 7 1 3 .8 ;

Table (C-2) PVS-solver: summary of results of NEQ= 7928

N E Q = 3 1 6 4 0

6 -

5 -
4 -

! ! 4 proc 8 proc
| 16 proc B 32 proc

4 proc 6.88 i
'8 proc '! 3.56 '
' 16 proc 2.51
32 proc 2.82

Table (C-3) PVS-solver: summary of results of NEQ= 31640

Future tasks include, the migration of the developed code to a new parallel platform (such

as IBM SP2) and the development of a parallel matrix partition algorithm (for the V-shape

form) that minimize the fill-in.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

252

VITA

Hakizumwami Birali Runesha was bom in Bujumbura, Burundi on June 27, 1965.
In October 1989, he graduated with honor from the college of engineering at the University
of Kinshasa, Zaire, with a Bachelor of Engineering Science. He worked as a faculty member
in the Civil Engineering Department of the University o f Kinshasa before winning a
scholarship for graduate school in the United States in 1990. He joined Old Dominion
University (ODU) in 1991 and earned is Master o f Science Degree in 1993. The same year,
he joined the Ph.D. program at ODU and became a Ph.D. candidate in 1995. During his
study at ODU, he worked on projects granted by the National Aeronautics and Space
Administration (NASA) at Langley Research Center, lectured engineering courses and was
appointed as a Visiting scholar at the Hong Kong University of Science and Technology
(HKUST). He is a member of ASCE and IEEE. He is a member o f Phi Kappa Phi and Chi
Epsilon honor societies. He was in the Who’s Who among students in American universities
and colleges in 1996. He has published the following articles:

“Interior method with positive and indefinite sparse solvers for linear programming optimal
design problems,” by B.H. Runesha, D.T. Nguyen, A.D. Belegundu and T.R. Chandrupatla.
Proceedings o f the 4th NASA national symposium on large-scale analysis and design on
high-performance computers and workstations. Oct 15-17, 1997, Williamsburg, VA.

“Automatic differentiation for design sensitivity analysis of structural systems using Parallel-
vector processor,” by D.T. Nguyen, R. Qamar and B.H. Runesha. Proceedings of the 4th
NASA national symposium on large-scale analysis and design on high-performance
computers and workstations. Oct 15-17, 1997, Williamsburg, VA.

“Subspace iteration and vector-sparse technology for generalized eigen-value problems,” by
B.H. Runesha, D.T. Nguyen, P.Tong, T.Y.P Chang. Proceedings o f the International
Conference on Computational Engineering Science, ICES 97. May 4-9, 1997, San Jose,
Costa Rica.

“Sparse algorithms for indefinite system o f linear equations,” by P. Chen, B.H. Runesha,
D.T. Nguyen, P.Tong, T.Y.P Chang. Proceedings of the International Conference on
Computational Engineering Science, ICES 97. May 4-9, 1997, San Jose, Costa Rica.

“Parallel finite element matrix assembly and equation solver using PVM on cluster of
workstations,” by B.H. Runesha. Submitted to the Robert J. Melosh medal competition at
the school o f engineering, Duke University, Durham, North Carolina, December 30, 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IMAGE EVALUATION
TEST TARGET (QA-3)

✓

/

✓

e 4 > °

/ r

1.0

l.l

h i

BH

liS

H IM
II 2 . 2

12.0

1.8

1.25 1.4 1.6

150m

<P/

^ 7

A P P L IE D ^ INA4GE . Inc
— - 1653 East Main Street

Rochester. NY 14609 USA
■ = = = L = Phone: 716/482-0300

- = ~- = Fax: 716/288-5989

O 1993. Applied Im age. Inc.. All R ights R eserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Sparse Equation-Eigen Solvers for Symmetric/Unsymmetric Positive-Negative-Indefinite Matrices with Finite Element and Linear Programming Applications
	Recommended Citation

	tmp.1552328061.pdf.PTTkY

