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ABSTRACT

A ONE - DIMENSIONAL MODEL FOR STORM BREACHING 
OF BARRIER ISLANDS

Cheol Shik Shin 
Old Dominion University, 1996 
Advisor : Dr. David R. Basco

A set of numerical models is developed for simulating the four stages o f barrier 

breaching characterized by one horizontal spatial dimension.

The SBEACH model is employed for the first stage of dune/beach erosion. The Lax- 

Wendroff two-step explicit scheme for Stage II is developed to simulate initiation of ocean 

flood propagation on initially dry barrier islands and the method of characteristics (MOC) 

is employed to compute additional boundary data. The development o f the Preissmann 

implicit scheme for water motion and a forward time centered space explicit scheme for 

sediment motion in Stages ID and IV provide a tool to study the volume change and centroid 

movements o f barrier dime during various levels of storm activity.

The accuracy and correctness of numerical codes have been verified by conducting 

a series o f standard tests and numerous volume conservation tests.

The sensitivity studies show that the most sediments are transported landward by 

larger peak storm surge difference between ocean and bay with shorter time lag and longer 

duration, and seaward by smaller peak storm surge difference with longer time lag and 

shorter storm duration

Finally, the integrated numerical model is found to produce reasonable results from 

the various sensitivity tests which reveal that the numerical model has properly responded 

to the changes of each model parameter.
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NOMENCLATURE

a Reference level, L.

Wave amplitude, L.

A Amplification factor.

Empirical coefficient found from large scale laboratory tests (Kajima et al., 1983), 

(=1.14).

Grain size (or fall velocity) parameter.

B Empirical coefficient found from large scale laboratory tests (Kajima et al, 1983),

(=0.21).

B Coefficient matrix.

C Wave celerity, L/T.

Empirical constant.

C„ Reference concentration, M/L3.

Cb Bed-load concentration, M/L3.

Cc Chezy coefficient.

Cg Wave group celerity, L/T.

C„ Maximum bed concentration, M/L3.

Cr Courant number.

Cs Sediment concentration, M/L3

Cfc Characteristic speeds, L/T.

C ' Overall Chezy coefficient.

CF Control function,

d Local water depth to SWL, L.

db Initial bay boundary water depth, L.

d0 Initial ocean boundary water depth, L.

D Wave energy dissipation per unit volume, F/L2-T.

Empirical coefficient.
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Dso Mean particles diameter, L.

D90 Diameter of bed material with 90 percent finer, L.

Dc Dune crest elevation above MLLW, L.

DC() Equilibrium wave energy dissipation per unit water volume, F-L/L3-T. 

Ds Representative particle diameter of suspended sediment, L.

D‘ Wave energy dissipation, F/L-T.

D. Particle parameter.

E Total wave energy per wave, F-L/L.

E Wave energy density, F-L/L2.

Es Stable wave energy density, F-L/L2.

f  General function.

f  Vector of flow variables.

f." Arbitrary function at grid point j  and time level n.

F Wave energy flux, L-F/L-T.

Correction factor for suspended load.

Auxiliary variable.

FtV) Vector of flow variables.

Fr Froude number.

Fs Stable wave energy flux, L-F/L-T.

g Gravity constant, L/T2.

g1(2 Eigenvalues of matrix G.

G Auxiliary variable.

G Amplification matrix.

G(V) Vector of flow variables.

h Total water depth (= d+rj), L.

h* Local quasi-constant flow depth in stage HI and IV, L.

Average flow depth from nearest four comers, L. 

hb Bay boundary water depth, L.

Breaking water depth, L.
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fab Water level rise at bay boundary, L.

hbm Peak storm surge height in the bay, L.

h0 Ocean boundary water depth, L.

Total storm surge plus tidal elevation above datum, L. 

Still water depth, L. 

h0' Water surface elevation above MSL at ocean boundary, L.

hom Peak (maximum) storm surge height in the ocean, L.

H Wave height, L.

Hb Wave height at the breaker point, L.

Hm0 Significant wave height, L.

H0 Deep water wave height, L.

Hp Wave height at the plunge point, L.

Hs Stable wave height, L.

Hz Wave height at the end of the surf zone, L.

J* Riemann invariant, L/T.

ks Effective bed roughness (=3D90), L.

K Empirical transport rate coefficient, L4/F.

Profile diffusion coefficient for stage II.

L Wave length, L.

Length of the channel, L.

L0 Deep water wave length, L.

mmm Alternate time step.

M Empirically determined coefficient,

n Coefficient.

=l/2{l+(27td/L)/(sinh 2ttd/L)}. 

p Porosity of the bed.

P Auxiliary variable.

P Coefficient matrix,

q Cross-shore sand transport rate, L3/L-T.
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Volumetric flowrate per unit width, L3/L-T. 

q* Average flow rate from the nearest four comers, L3/L-T.

qb Bed-load transport per unit width, L2/T.

Transport rate at the breaker point, L3/L-T. 

qL Lateral sediment inflow, L3/L-T.

qp Transport rate at the plunge point, L3/L-T.

qs Suspended load transport per unit width, L2/T.

q, Total sediment transport rate, L2/T.

qz Transport rate at the end of the broken wave region, L3/L-T.

Q Auxiliary variable.

R  Reynolds’ number.

Auxiliary variable.

Rb Hydraulic radius of the bed, L.

S Total volume of bottom profile, L3/L.

Sf Friction slope.

S0 Representative, averaged, bottom slope across the barrier.

Ss Specific gravity of the sediment.

Sxx Radiation stress component directed onshore, F/L.

t, SBEACH simulation time, T.

t2 Simulation time in Stage I and II, T.

T Storm duration, T.

Transport stage parameter.

Wave period, T.

Tp Spectral peak period, T.

tanP Beach slope seaward of break point.

u Water velocity, L/T.

u‘ Local quasi-constant flow velocity, L/T.

u* Overall bed-shear velocity, L/T.

u .f cr Critical bed-shear velocity, L/T.
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u,' Effective bed-shear velocity, L/T.

ub Particle velocity, L/T.

V Cross-section volume, L3.

V Vector of flow variables.

Vini Total cross-section volume of initial profile, L3/L.

Vfin Total cross-section volume of final profile, L3/L.

w Dune base width, L.

The representative fall velocity for the characteristic grain size in the profile, L/T. 

ws Fall velocity of suspended sediment in Stage Dl and IV, L/T.

W Barrier width, L.

x Cross-shore coordinate, L.

xb Location o f wave breaker point, L.

xp Location of plunge point, L.

xr Runup distance, L.

xz Location of the end of the broken wave region, L3/L-T.

y Water surface elevation above a datum, L.

z Bed elevation above an arbitrary datum, L.

z.* Smoothed or filtered bed elevation at a time level, L.

Z Suspension parameter.

Z' Adjusted suspension parameter.

a Dimensionless wave number.

P A factor.

y Dissipative interface weighting factor (KAt/Ax2), L.

Ratio between wave height and water depth at the breaker point, 

r  Stable wave height coefficient.

6b Thickness of bed-load layer, L.

A Bed-form height, L.

Ah Stage difference between ocean and bay, L.

At Time step, T.
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AV Total cumulative volume change, L3/L.

AV, Total cumulative volume change, %.

AV2 Cumulative volume outgoing through both boundaries, %.

AV3 Cumulative volume loss due to numerical error, %.

Ax Space step, L.

Az = zn+1 - zn, L.

e Empirical transport rate coefficient for the slope-dependent term, L2/T.

rj Time -averaged, mean water level change (set up or set down), L.

0 Characteristic distance, L.

Particle mobility parameter.

Wave angle (crest) relative to bottom contour.

Weighting coefficient.

0cr Critical mobility parameter.

k Breaker, decay model coefficient.

Von Karman constant (=0.40).

Empirical spatial decay coefficient, L'1.

A,2 Empirical spatial decay coefficient, L'1.

v Kinematic viscosity coefficient, L2/T.

E, Fourier coefficient.

£0 Deep water surf-similarity parameter, tanp/(Ho/L0)'/\

p Water density, M/L3.

os Geometric standard deviation of bed material.

t Time lag, T.

(p Overall correction factor.

Y Bed-form steepness.

Weighting coefficient.
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1.0 INTRODUCTION

1.1 Background

Barrier islands protect the bays, lagoons and estuaries that lie behind them. 

The reduced wave energy environment permits the retention of cohesive sediments and 

grasses to survive in the tidal marsh areas. About 35 percent of the U.S. coastline is 

composed of barrier island - bay systems. At many locations, landward migration 

(transgression) of barrier islands toward the mainland is occurring and is attributed to sea 

level rise.

Two mechanisms for landward migration have been put forward: namely (1) rollover 

due to washover events during storms; and (2) the creation of new tidal inlets and sand 

trapping in the tidal deltas (Leatherman, 1988). Thus new tidal inlets interrupt the longshore 

sediment transport processes and play a major role in sediment budgets and shoreline 

erosion.

Dune/beach erosion, wave overwash and hydraulic (flood/ebb) flows that create a low 

profile section across a barrier island but not necessarily a new tidal inlet are herein defined 

as a "breach" event. New tidal inlet formation is therefore defined as a breach event such that 

the entire low profile section lies below the mean lower low water (MLLW) elevation at the 

conclusion of the storm event. Each successive, normal, flood-ebb tidal cycle will cause 

water to flow through the new inlet.

In general, four modeling stages are involved, namely: (1) storm surge, wave attack 

and the dune/beach physics; (2) overwash and overland island flow; (3) storm tidal flooding
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from ocean to bay; and (4) storm tidal ebbing from bay to ocean.

This study emphasizes the development of a set of numerical models to simulate the 

four stages of barrier breaching for the unit width o f inundated breaching mode characterized 

by one horizontal spatial dimension. The sensitivity tests will be carried out to understand 

which conditions or parameters are critical for the breaching of barrier islands. The problem 

is fully nonlinear, unsteady in time and involves both short wave and long wave motions 

over a variable-positioned bottom boundary.

1.2 Objectives

The focal point of this study is the development of integrated numerical models of 

the conservation equations for wave motions, water flows and sediment transports that take 

place during four process stages of dune/beach erosion, dune breach and the cutting of a new 

tidal inlet through a barrier island. Recent successes in the development, calibration and 

verification of dune/beach erosion models give confidence that computer simulations of the 

remaining stages in the process can be achieved. These computer models will provide insight 

regarding the storm energy levels, barrier and back bay geometry and sediment dynamics 

necessary to produce a break-through event. Knowledge will be gained to understand why 

new inlets are created at certain locations along barrier-bay systems during major storms.

The ultimate goal is to provide a simulation and prediction tool to study how global 

climate change will alter the number and frequency of barrier island breaches on littoral drift 

coasts. Mitigation and modification techniques such as dune strengthening, beach 

nourishment and underwater, shore-parallel sand berm construction may then be

2
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economically focused at vulnerable locations to minimize impacts on the coastal zone.

1.3 Scope

The following work tasks are carried out in this study.

Task No.l - Develop, Link and Test Codes. The dune/beach erosion model, 

SBEACH, for Stage I is run on the PC workstation. After each time step, a check is made to 

determine if the water levels exceed the eroded dune crest elevation. If true, the output of 

Stage I is linked to Stage II developed for overland flow computation. The Lax-Wendroff 

two-step explicit scheme has been considered as an approximation to the differential 

equations and the method of characteristics is elaborated to compute additional boundary 

data.

The major task is to develop the Preissmann implicit codes for water motion and a 

forward time centered space (FTCS) explicit scheme for sediment motion (Stage El and IV). 

Standard tests for a fixed boundary aid in the calibration and verification of the numerical 

models.

All the stages are then linked and run together as one model to study the sensitivity 

o f the important variables on the breaching of barrier islands.

Task No.2 - Develop Sensitivity Tests. The barrier island cross-section volume above 

the Mean Lower Low Water (MLLW) level can be considered as the fundamental indicator 

o f the state of the barrier to withstand attack by various storm intensities. A typical geometric 

section at Sandbridge, Virginia is employed to study the influence of key variables. The most 

important variables are the maximum elevation of the storm surge height, phase lag between

3
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ocean and bay, duration of coastal storm, and sediment diameter. A volume conservation 

check will be made for the whole spatial computational domain from ocean boundary to bay 

to verify existing numerical errors. Various synthetic storms will be devised to test the 

sensitivity of the model. In Task No.2, the volume losses, barrier islands retreat speeds and 

the locations o f centroid of dune above MLLW will be produced for each test.

Task No.3 - Analyze and Critique Results. The results from Tasks No. 1 and 2 will 

be analyzed and critiqued to learn if the model can produce reasonable results. The sensitivity 

tests will help to reveal which boundary conditions or variables are critical in the transport 

of the most sediment landward (Stage III) and seaward (Stage I and IV) in the model.

1.4 Limitations

The fundamental limitation of overall studies comes from the one-dimensional 

formulation representing only longitudinal bed profiles (across barrier islands), free surface 

profiles and sediment transports as a function of time and hydraulic flow conditions. Major 

limitations and assumptions for each stage have been verified as:

Stage I - Dune / Beach Erosion Model.

• Sediment transport is not affected by the fluid velocity (i.e., storm induced 

cross-shore current) because the breaking of short period waves is assumed 

to be the major cause of profile change, and thus the major part of cross-shore 

sand transport takes place only in the surf zone.

• Constant wave height and period are assumed for this study in terms of input 

conditions at the ocean boundary.
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• The gradient of the longshore sediment transport is assumed to be negligibly 

small at the site so that profile change is solely affected by cross-shore 

sediment transport.

• Waves on the bay are assumed negligible.

Stage II - Overland Flow Model.

• Zero flow depth is not allowed by introducing small base flows on the initial 

flood plains.

• Water wave motion is considered secondary in importance to translation 

processes advecting both water and sediment in the overland direction. 

Breach width is constant (/. e., unit) in time and space.

• No sediment transport is assumed in either direction dining the extremely

short time period for Stage II.

Stage III and IV - Storm Tide Model.

• Water wave motion is considered secondary.

• A lateral distribution of deposits or erosions related to the tractive force is not 

introduced.

• It is assumed for the water motion calculation that the bottom elevations do

not change during a time step (i.e., uncoupled model).

• Within a short period of time, the change in bed slope is assumed very small.

• Suppression of the convective acceleration term in equation of motion is 

assumed to gives little effect on the results.

• Dissipative interface is introduced for all stages to stabilize the originally

5
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unstable numerical scheme when and where flows change rapidly.

Proposed sediment transport formulas are assumed to give a reliable estimate 

of the whole computational and physical ranges in this study.
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2.0 LITERATURE REVIEW

2.1 Inlet / Barrier Islands Process

Early studies of tidal inlets focused on their hydraulics and sedimentation 

characteristics regarding ship pathways to protected harbors within the estuary (O’Brien, 

1931; Escoffier, 1940 and 1972; Keulegan, 1967). Pierce (1970) discussed the conditions 

under which washover fans or tidal inlets form and which conditions permit inlet formation 

from the seaward side or from the lagoon side. Braun (1978) has written an entire book 

devoted to their stability. Oertel (1988) presented qualitative analyses and reviews for the 

processes of sediment exchange between tidal inlets, ebb deltas and barrier islands.

The barrier island spit called Nauset Beach separating Pleasant Bay from the Atlantic 

Ocean at the town of Chatham, Maryland was breached dining a severe northeaster on 2 

January 1987. A new inlet formed just south of the location predicted by Giese (1978). 

Analysis of historical map data for the spit shows a cyclic phenomenon on the order of 140 - 

150 years for (1) tidal inlet formation (2) southerly drift of the inlet (3) eventual 

disintegration of the southern segment, (4) continued longshore drift and spit growth, and (5) 

eventual re-establishment of a continuous Nauset Beach Spit as existed prior to the new 

breach in 1987 (Goldsmith, 1972; McClennen, 1979). This cyclic pattern was used by Giese 

(1978) for his new inlet location prediction. However, there is no way to generalize these 

results for application at other locations. In addition, accelerated sea level rise could 

considerably alter the period of the cycle even at this location.

Stauble et al. (1990) described some of the morphological changes that occurred
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along the South Carolina coast to the beaches, dunes, inlets and barrier island areas during 

Hurricane Hugo, 22 September 1989. Several beaches were breached across narrow sections 

of barrier islands. Overwash processes in many locations transported sand into the back 

beach areas and in some instances completely across narrow barrier islands. A chronological 

overview of aspects of the meteorology, climatology, sea-state, storm-surge and coastal 

morphologic impact associated with Hurricane Andrew, 26 August 1992 was provided 

(Stone et a l, 1993). Storm surge inundation, breaching and overwash were most notable 

along the barrier island arc.

When a new inlet forms, significant environmental hazards may be created. Increased 

currents, wave energy, salinity levels, etc., transform the protected embayment ecology into 

an open coast, ocean ecology. Pros and cons exist regarding the environmental impact and 

ecological value or destruction caused by a new tidal inlet through a barrier-bay system 

(Stauble, 1989; Giese, Liu and Aubrey, 1989; Fessenden and Scott, 1989; Basco, 1990).

The temporal and spatial distribution of over three hundred historic and active tidal 

inlets along the entire North Atlantic seaboard (Long Island to Florida) were analyzed from 

published information in McBride (1986). This reference source will be extremely valuable 

for field verification of the developed models.

The most recent international symposium on tidal inlets was held at the Woods Hole 

Oceanographical Institute (1986) with a compendium of the scientific papers edited by 

Aubrey and Weishar (1988). The editors state in their Preface that this volume provides a 

broad overview of present day tidal inlet research but it fails to answer some major questions 

such as : “ Why are new inlets formed....?” and “ How is climate change going to alter the

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



hydrodynamic balances within tidal inlets and their distribution?” To these questions a third 

may be added, namely, “ Will global climate and sea level change increase the number and 

frequency of barrier islands breaches and the cutting of new tidal inlets during major storm 

events ? ”

The initial step toward attempting to answer these questions is the main focus of the 

research herein. Presently, no generally applicable, empirical and/or semi-theoretical models 

exist for the prediction of a new tidal inlet along a barrier island coast. Site specific 

predictions of a new tidal inlet have been made upon historical records (Giese, 1978) or 

using a crude, width-of-island approach (Dolan, 1985). However, none incorporated the 

physics of coastal storm energy, barrier island geometry, and sediment transport physics 

within the general conservation laws of mass, momentum and energy to study the potential 

for island breaching and/or new inlet formation as a break-through event.

Recent major advances in the physical problem formulation and numerical modeling 

of (1) dune/beach response to coastal storm events and (2) riverine, mobile-bed and sediment 

dynamics have made it now possible to solve the barrier island, break-through problem.

2.2 Dune /  Beach Erosion

The theory of erosion by rise of sea level was first advanced in 1962 (Braun, 1962) 

and briefly concerns a long-term budget of onshore/offshore movement o f material. The rale 

is based on the assumption of a closed material balance system between the (1) beach and 

nearshore, and (2) the offshore bottom profile. Braun (1983) discussed boundary conditions 

and made adjustments which make the rule more practical or realistic.

9
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Edelmann (1968, 1972) observed that during severe storms: (1) beach change is 

mainly the result of sand transport perpendicular to the shoreline; and (2) transfer of sand 

occurs from the berm and dune to the seaward edge of the surf zone where it is limited by 

incoming breaking waves. Swart (1976) developed predictive equations for both longshore 

and onshore-offshore sediment transport, which are being used in practical applications.

Dean (1976, 1977) proposed that short-term, storm-induced erosion may also be 

determined graphically from a knowledge of pre- and post-storm equilibrium beach profiles, 

the maximum storm surge level, and breaking wave height.

Vellinga (1982, 1983) has proposed a procedure that has been shown to agree 

reasonably well with measured post-storm profiles associated with the 1953 storm event in 

the Netherlands.

Moore (1982) developed a numerical model to predict beach profile change produced 

by breaking waves. He assumed the transport rate to be proportional to the energy dissipation 

from breaking waves per unit water volume above an equilibrium value of Dean (1977).

Kriebel (1982, 1986) and Kriebel and Dean (1984, 1985) developed a numerical 

model to predict beach and dune erosion using the same transport relationship as Moore 

(1982). The amount of erosion was primarily determined by water-level variation and 

breaking wave height. They also applied their model to estimate the probability distribution 

of dune recession due to hurricanes using a Monte Carlo simulation method. Kobayashi 

(1987) supplemented their work and showed that the problem of beach and dune erosion by 

a storm could be formulated as a one-dimensional diffusion problem with moving boundaries 

at the breaker line and shoreline.

10
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Kriebel, Dally and Dean (1986a and b) studied beach recovery after storm events both 

during laboratory and field conditions, noting the rapid process of berm formation. They 

found marked differences in profile response depending on the initial shape’s being planar 

or equilibrium profile type. An initially plane beach produced a more pronounced bar and 

steeper offshore slopes. The fall speed parameter and the deepwater wave steepness were 

used to distinguish erosional and accretionary profiles using large wave tank data.

The numerical model originally developed by Kriebel (1982,1986), and Kriebel and Dean 

(1985) has been revised by Kriebel and named EDUNE. The model predicts the time- 

dependent evolution of existing or design beach and dune profiles for specified storm surges 

and storm wave conditions. The sediment transport rate is based on the equilibrium beach 

profile theory of Dean (1977,1984) and the surf zone energy dissipation mechanism. The 

wave height is assumed to be related to water depth in a fixed ratio, and the wave period does 

not directly enter in the model. The time dependent profile response is obtained by solving 

the equation for conservation of sediment in finite-difference form, along with a simplified 

expression for cross shore sediment transport rates. The model also allows a wide range of 

pre-storm profiles to be simulated, including (1) input of either schematic pre-storm profiles 

or arbitrary survey profiles, (2) simulation of design beach fill cross-sections, (3) simulation 

of low dunes that may be overtopped, (4) simulation of narrow dunes that may erode 

completely, and (5) simulation of dunes backed by vertical or sloping seawalls. The model 

has been widely accepted in the United States for predicting the erosion impact of severe 

storms on the open-coast.

Larson (1988), and Larson and Kraus (1989) developed and revised (1994, SBEACH

11
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3.0) the model that simulates the macro-scale profile change, such as growth and movement 

of bars and berms by storm waves and water levels. The model is empirically based and was 

first developed from a large data set of net cross-shore sand transport rates and geomorphic 

change observed in large wave tanks, then verified using high quality field data. A new 

criterion was developed for predicting erosion and accretion, and the model uses this 

criterion to calculate net sand transport rates in four regions o f the nearshore extending from 

deep water to the limit of wave runup. The wave height distribution is calculated across the 

shore by applying small-amplitude wave theory up to the point of breaking, and then the 

breaker decay model of Dally, Dean, and Dalrymple (1985a, 1985b) is used to provide the 

wave height in regions of breaking waves. Also, SBEACH 3.0 contains an upgraded wave 

model for more realistic simulation of beach change under random waves. Changes in beach 

profile are calculated from the distribution of the cross shore sand transport rate and the 

equation of mass conservation of sand.

Recent research in the Netherlands has developed a new time dependent computation 

model, DUROSTA (Steetzel, 1993), for dune and beach erosion during severe storm surges. 

The basic equation for the net local sediment transport is a depth-integrated, time-averaged 

suspended sediment transport equation with time-averaged flow profiles. Starting with the 

conditions at the seaward boundary, the momentary wave height decay is computed using the 

procedure as described in Battjes and Janssen (1978). The basic equations describing this 

wave height decay while taking account of the wave induced cross-shore water level set-up 

are the wave action equation and the cross-shore momentum equation. The model is able to 

simulate a bar formation, but the swash-induced onshore direction sand transport mechanism

12
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is not working well. Bottom changes are computed using the conservation equation of 

sediment mass incorporated with the porosity of the settled bed material. Both the effect of 

structures and longshore transports on the cross-shore profile development are incorporated 

in the model.

A study was undertaken to evaluate ten of the most well-known mathematical cross

shore transport models with regard to different model requirements (Schoonees et al., 1995). 

They evaluated each model with regard to their theoretical basis (mainly sediment transport) 

and the associated verification data (mainly morphodynamics). In their evaluation the 

SBEACH (Larson et al., 1989) model was classified into best group with respect to the 

reproduction of the observed profile behavior.

In the present work, an empirically-based model of beach profile change, SBEACH 

(Storm Induced BEAch Change! developed by Larson and Kraus (1989) is employed for the 

first stage of dune/beach erosion.

2.3 Overwash / Overland Flow

The simulation of flood wave propagation on a dry bed has many engineering 

applications, including the investigation of overland flow, irrigation and initiation of coastal 

flooding on barrier islands.

A two-dimensional model based on the method of characteristics was constructed and 

tested for its capability for simulating dambreak flood waves on a dry channel (Katopodes 

etal., 1978).

Cunge, Holly and Verwey (1980) presented the numerical treatment of particular

13-
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situations related to the fact that one tries to simulate continuous nature with a discontinuous, 

or discrete model. They discussed some aspects of computational problems (i.e. small depth, 

weir oscillation) in river modeling.

Akan and Yen (1981) developed a physically based mathematical model to simulate 

a conjunctive surface - subsurface flow system. In the model a four-point implicit finite 

difference scheme was employed for the solution of surface runoff equations, and an implicit 

finite difference scheme based on the successive line over-relaxation method (SLOR) was 

employed to solve the subsurface flow equation. In the case of overland flow developing on 

an initially dry surface, a very thin water film was assumed to be ponded before the flow is 

initiated. The results are not affected by the assumed thickness of this very thin film (Akan, 

1976).

A model was presented for the simulation of shallow water flow and, specifically, 

flood waves propagating on a dry bed (Akanbi and Katopodes, 1988). The governing 

equations are transformed to an equivalent system valid on a deforming coordinate system 

and are solved by dissipative finite element techniques. A difficult problem encountered in 

the simulation of flood waves on a dry bed pertains to the expanding flow domain. It is 

difficult to properly account for an expanding domain in some of the available numerical 

schemes, so a very small depth of water everywhere was assumed as the initial condition. 

However, overland flow occurs in only a portion of the plain until the flow reaches the 

downstream end of the maximum possible extent of the flood.

The conditions of observability and field-parameter identifiability for surface 

irrigation advance are examined by analytical techniques and the linearized zero-inertia
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model (Katopodes, 1990). Also, the controllability of surface irrigation advance is examined 

by analytical means and numerical tests based on the linearized zero-inertia model 

(Katopodes et al., 1990).

The physics-based modeling of overland flow was accomplished through the 

numerical solution of the St. Venant equations (Tayfur et al., 1993). In their study, the full 

St.Venant equations, the kinematic wave and diffusion wave approximations were used to 

route flow over experimental plots, and numerical results were compared with the observed 

hydrographs. This study brought out the limitations of the surface flow equations when 

applied to irregular topography. The implicit centered finite difference scheme for the full 

St. Venant equations also broke down when the flow surface changed rapidly. To avoid 

singularity problems when flow started with an initially dry bed, an artificial small uniform 

flow depth was imposed.

In this study, the conservation form of St. Venant equations using the Lax-Wendroff, 

two-step scheme is employed to simulate initiation of ocean flooding propagation on initially 

dry barrier islands starting with an initial uniform base flow as justified above.

2.4 Non-cohesive Sediment Transport

Presented in this section is a summarized literature review of the water, sediment 

transport model and sediment transport formulas under nonsteady conditions.

The numerical solution of water motion can proceed in the following two directions. 

Either an attempt can be made to convert the original system of partial differential equations 

into an equivalent system of ordinary differential equations by using the method of
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characteristics (Chang et al., 1971), or one can replace the partial derivatives in the original 

system with quotients of finite-differences by using the explicit or implicit scheme 

(Mahmood et al., 1975). Many computational river models are based upon the Preissmann 

(1961) scheme which is a four-point implicit finite difference method.

A generalization of the implicit method which is identical with Preissmann (1961) 

was presented for application to irregular channels in which the cross-sectional geometry and 

bottom elevation can vary from section to section (Amein, 1968; Amein et al., 1970). Further 

efforts to summarize implicit methods were made by Basco (1977). The reference books 

(Mahmood etal., 1975;Abbott, 1979; Cunge etal., 1980; Abbott etal., 1989) give extensive 

coverage to the implicit method.

Aggradation in a stream due to increase in sediment load was studied analytically 

using a simplified diffusion equation under the assumption of quasi-steady water motion and 

uniform flow (de Vries, 1973; Soni et al., 1980). A nonlinear parabolic model for 

nonequilibrium processes in alluvial rivers was presented for more appropriate boundary 

conditions (Jain, 1981), and analytical expressions for the characteristic parameters of 

relevant aggradation and degradation processes were derived (Jaramillo et al., 1984). 

However, simplified analytical models are seldom used in practical applications for complex 

geometry of the channel.

Most of the existing practical applications of mobile bed modeling are based on the 

finite difference approach. In practice, this may be done in two different ways : either by 

solving for the water surface profile and then adjusting the bed elevation using the sediment 

continuity equation (uncoupled mode), or by simultaneously solving the sediment continuity
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equation and water motion equations (coupled mode).

Chen (1973) modified the method of Amein and Fang (1970) and derived linear 

implicit equations which give a stable scheme for large time increments. In his model, 

changes in bed elevation are assumed to be negligible within each iteration of each time step 

so that hydraulic equations are solved first and then the sediment continuity equation is 

applied to produce a new bed elevation for use as the fixed boundary in the next time step 

in computation of the hydraulics. Simplified uncoupled modeling technique was developed 

using the implicit scheme to solve the ordinary differential equation of water momentum and 

the forward time centered space explicit scheme to solve the unsteady sediment continuity 

equation (de Vries, 1973). He introduced a dissipative interface in the sediment continuity 

equation, stabilizing an otherwise numerically unstable scheme.

The rate and extent of bed aggradation resulting from sediment overloading were 

determined using the uncoupled Preissmann implicit scheme for water motion and an explicit 

scheme for bed elevation (Park et a l,  1986 and 1987).

It has long been recognized that the water motion celerities are much larger in 

absolute magnitude and of more disproportionate scales than the celerity for a disturbance 

at the bed (de Vries, 1965). This has led to decoupling of the hydraulic and sediment 

equations.

However, within a time step, when changes in bed elevations are important, the 

water-surface transients disappear and a quasi-steady flow was assumed and solved 

simultaneously (de Vries, 1975; Mahmood et a l, 1976; Ponce et a l, 1979).

Lyn (1987) has formally shown that above approaches are not capable of satisfying
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either a general boundary condition or an arbitrary initial condition. He investigated more 

closely this coupling, where relatively rapid changes in both fluid and sediment discharge are 

imposed at the upstream boundary. The stability and convergence characteristics of 

Preissmann scheme were examined and the analysis was made for a general linear hyperbolic 

system, but it was restricted to the homogeneous or frictionless case (Lyn et al., 1987).

Holly and Rahuel (1990) were among the first to lay out a new physical frame-work 

that distinctly separated the bed-load transport at a relatively slow propagation speed from 

the suspended-load sediment transport at essentially the orders-of-magnitude-larger water 

velocities. Sediment sorting and armoring can then be accommodated along with the 

simulation of important interactions among suspended-loads, bed-loads and the bed material 

making up the bed elevation variation in space and time. The modeling approach is also 

discussed in Rahuel et al. (1989) and its verification for sediment mixtures by flume 

experiments is reviewed in Hsu and Holly (1992). These researchers also recognized the need 

to incorporate higher order accuracy numerical methods for advection of suspended-loads 

with steep gradients as found in flushing operations for reservoirs. Another recent approach 

for a fully coupled model by Correia et al. (1992) incorporated a term for the rate of change 

of bed level in the water flow continuity equation along with inclusion of the alluvial 

roughness effects on the friction slope. However, total sediment load was used for ease in 

model development.

The above coupling models use the implicit Preissmann scheme for numerical 

integration of the equations. Lai (1989,1991) suggested that the method of characteristics 

approach, labeled the multimode characteristics method, is more appropriate because of its
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inherent ability to automatically apply the most appropriate computational mode to the 

disparate celerities involved.

All of the above mentioned researchers have employed classical, empirically based 

formulations for the sediment transport rates, which in turn control the accuracy and 

reliability of the model. Several studies have shown (White e ta l, 1973; Bathurst etal., 1987; 

Voogt et al., 1991) that there is no one transport formula valid for all ranges of natural 

conditions. Correia et al. (1992) provided seven options in their model which can be selected 

by the user for a particular set of conditions. For high shear stresses {i.e. high velocities) 

Wilson (1987) and Wilson et al. (1990) have proposed modifications of the classical 

coefficients for transport rate and friction slope. Similar investigations in the Netherlands for 

velocities up to 2.7 m/s and fine sand (0.1-0 .4  mm) found that the formulas of Engelund and 

Hansen (1967) and Ackers and White (1973) overpredicted the sediment transport rates by 

a considerable amount (Voogt, van Rijn and van den Berg, 1991). Application of the 

formulas by van Rijn (1984a, b and c) gave the best agreement and have been employed in 

models for hyper concentrated sand-water mixtures {10- 50% sand concentration by volume) 

to simulate mixed subcritical and supercritical flows over on erodible bed during the closure 

of the Eastern Scheldt (Philipsdam) in the Netherlands.

In this study, the implicit four-point Preissmann scheme will be employed for Stages 

HI and IV to solve the continuity and momentum equations. The water depths and velocities 

found from the first step are then used to solve the first order partial differential equation 

describing propagation of the bottom sand wave being approximated with the forward time 

centered space explicit finite difference scheme.
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3.0 ONE-DIMENSIONAL MODEL DEVELOPMENT (THEORY)

Dune/beach erosion, wave overwash and hydraulic (flood/ebb) flows create a low 

profile section across a barrier island. Figure 3.1(a) schematically depicts a barrier-bay 

system with one existing tidal inlet. A potential new inlet location is also indicated. Many 

factors determine its location. The coastal orientation, offshore bathymetry and exposure to 

storm energy are factors; mainland topography, the planform geometry of the bay and barrier 

width and elevation are factors and; the location of the existing inlet is a factor in that the 

distance will cause lags in storm tide amplitude and phase between the ocean and the bay. 

For example, the narrow restriction in the bay will create phase lags in the ocean and bay 

storm tides for both storm flooding and storm ebbing cycles. Storm ebb flows in the northern 

bay may take a path of least resistance to turn a breach into a new inlet at the potential 

location shown.

Two simplified modes for break-through events are considered.

Localized Breach. The barrier generally remains above the maximum storm surge flood 

elevation except at localized spots where breaching occurs. The situation is depicted in 

Figure 3.1(b) for the same barrier-beach schema. Storm flood flows create a mainland 

flooded region and storm ebb flows return only through the existing inlet and the breaching 

location(s). One (or more) new inlets may form at the end of a storm event. Clearly, flow is 

concentrated through the localized breach for the entire storm event.

Inundated barrier. A second possibility exists if the barrier becomes generally submerged 

below the maximum storm surge flood elevation as depicted in Figure 3.1(c).
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The storm flooded area may be similar but now the early storm ebb flows return across the 

entire barrier. Eventually, the storm ebbs only through the existing inlet and the lowest 

breaching locations. The return ebb flow also covers the barrier until the topography 

constricts it to the breach location(s). Again one (or more) new inlets may form.

These two modes for potential, new inlet formation are helpful in formulating a 

general plan for the overall, long range investigation o f the breaching and new inlet 

formation problem.

In this study, the development of an integrated set o f numerical models to simulate 

the four stages of barrier breaching for the unit width o f  inundated breaching mode 

characterized by one horizontal spatial dimension is emphasized.

The integrated set of numerical models will permit the study of transport mechanics, 

coefficients, time scales, and the key independent variables responsible for dune breaching 

and new inlet formation. These key variables are basically: (1) barrier volume above MLLW 

(island width, dune crest elevation, barrier profile); (2) ocean storm level (storm surge 

hydrograph, storm duration, storm wave characteristics); (3) bay storm surge head and phase 

differential relative to ocean conditions; and (4) sediment grain size as schematically 

represented in Figure 3.2. At distorted scales, Figure 3.2(a) taken from actual field 

measurements at Sandbridge, Virginia depicts the barrier section volume above MLLW that 

must be spread laterally in both directions for a breaching event. At undistorted scales, 

Figure 3.2(b) presents a true perspective of the relatively thin barrier volume involved.
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3.1 Stage I - Dune/Beach Erosion

Morphologic changes exhibited by beaches are on a spatial scale of meters and on a 

time scale of hours for storm events. Therefore, a macro scale approach based upon a sound, 

empirical foundation was followed to develop the beach profile change, numerical 

simulation model SBEACH (Larson and Kraus, 1989). In this study, the SBEACH model 

is employed to simulate dune/beach erosion processes. However, water wave motion is 

based upon classical wave theory.

3.1.1 W ater Wave Model

The wave model provides input to calculate cross-shore sediment transport rates from 

which profile change is obtained. To begin, for steady state single frequency, wave 

conditions (H, T, 6) along straight and parallel bottom contours, the conservation laws of 

time-averaged, depth-integrated wave motion can be written as follows.

Wave Action (Number) Equation

(3.1)

Linear Momentum Equation

(3.2)
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Energy Equation

d  , „  „ . JO , outside surf zone \
—  (F  cos0 ) = j  ^   ̂ inside su rf zone j <3‘3>

where:

H  -  wave height, L

T  = wave period, T

6 = wave angle (crest) relative to bottom contour

L = wave length, L

d  = total water depth = h+Jj, L

h = local water depth to SWL, L

r) = time-averaged, mean water level change (set up or set down), L

p  = water density, M  /  L3

g  = gravity constant, L / T 2

and with

= radiation stress component directed onshore, F  /  L 

F  = wave energy flux, L F / L ' T

D* = wave energy dissipation, F / L ‘T.

At this level of approximation and boundary conditions, waves can shoal, refract 

(bend) and lose energy (breaking and bottom friction) over variable mean-water depths but 

cannot either laterally spread energy (diffract) or interact with currents. To proceed further

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



requires specification of the wave "theory" that relates L, F  and Sa  to the wave characteristics 

(■H ,T ).

Classical, small-amplitude, linear wave theory (Airy, 1845) provides the simplest, yet 

physically correct description of water motion beneath waves. The dispersion relation defines 

the wave length, L as

'  2nd)z T 2 L = ——  tank 
2 n [ L

(3.4)

and all the remaining relationships (see, e.g. Wiegel, 1964) such as

F = E • C

E = wave energy density,
L 2

= -  = Ipg H 2 
L 8

Cg -  wave group celerity, I  

= n • C

„ .  !  ( i ♦ ■ )
2 I sinh 2%d/L)

(3.5)

C = — , the wave celerity

with E the wave energy over one wave length, L and depth integrated. And finally, the 

radiation stress is obtained as

S = EX X n (cos20 + 1) 1
(3.6)
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All the above equations hold outside the surf zone where bottom friction is very small and 

neglect giving zero energy dissipation. An extensive literature exists to describe and develop 

empirical models of incipient wave breaking and breaker height decay for realistic, 

bar/trough beach profiles inside the surf zone (see, e.g. Dally, 1990). For incipient breaking, 

Larson and Kraus (1989) for SBEACH use the relationship:

where Hb and hb are the breaking wave height and water depth, respectively, and A and B are 

empirical coefficients found from large scale laboratory tests (Kajima et al., 1983). The £0 

is the deep water surf-similarity parameter which is defined as

where H0 and L„ are the deep water wave height and wave length, respectively, and tan(5 is 

the beach slope seaward of break point.

After the waves break, the model of Dally, Dean and Dalrymple (1985a and b) is 

employed to estimate the wave energy dissipation per unit volume, D where:

H
-j*  = A $  , (A, B) = (1.14, 0.21)
h. (3.7)

tan P
'0 (3.8)

n  * ic
D = —  = —  (F -  F ) 

d d 2
(3.9)

with K the breaker, decay model coefficient, and

the "stable" wave energy flux,
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E,-Cg

and Es = the "stable" wave energy density,

1/8 pg H2

such that

Hx = r d ,  the "stable" wave height,

r  = the "stable" wave height coefficient.

Stable means a state in which energy dissipation during breaking stops allowing waves to 

reform, i.e., when F  = Fs , D = 0. Thus this model permits waves to break over bars with 

energy dissipation and then the energy dissipation to cease as the wave reforms in the trough. 

The two empirical coefficients (k , T1) have been field verified (Ebersole, 1987) and typically 

taken as (0.15, 0.40) respectively.

Equations (3.1) through (3.9) above describe a model which gives the wave height 

distribution H(x) inside and outside the surf zone as depicted in Figure 3.3, which in turn is 

used to calculate the spatial variation in wave energy dissipation per unit volume, D(x). The 

D(x) is needed to predict the cross-shore sand transport rate as described below. This macro 

scale approach recognizes that turbulence is introduced in the surf zone after breaking and 

stirs up the sand bottom but does not resolve the internal structure of the water motion. 

Turbulence is thus assumed to be in local equilibrium (production balances dissipation) 

which is a first-order approximation for the breaker transition zone.

In summary, the water wave model requires four empirical coefficients (A, B for 

incipient breaking and k , T for wave height decay) to describe D(x) for a specified wave (H,

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Plunge Break

SWL

Broken Wave ZoneSwash i 
Zone 1

Prebreaking Zone

Breaker Transition
Zone

Figure 3.3 Principal Zones of Cross-shore Transport.

T, 0) entering the nearshore zone.

3.1.2 Transport Rate Model

The fundamental assumption is that inside the surf zone (Figure 3.3, Zone IE, Broken 

Waves) the rate of cross-shore sediment transport is proportional to the excess energy 

dissipation per unit volume, D relative to an equilibrium energy dissipation, Dcq associated 

with an equilibrium profile shape undergoing little or no cross-shore adjustment. This 

formulation follows the pioneering efforts of Moore (1982) and Kriebel (1982). It is built 

upon the equilibrium beach profile concept of Dean (1977) expressed as
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h -  A x m  , L (3.10)

and its related equilibrium wave energy dissipation per unit volume formulation of Dean 

(1977),

Deq -  j-A p g 3l2y2A 312 F - L  
L 3 • T (3.11)

where: A grain size (or fall velocity) parameter

0.067 w0-44

Y = (H  /  h)b, at the breaker point

as further evaluated from hundreds of fields measurements o f beach profiles (Dean, 1977, 

1987) with

w - the representative fall velocity for the characteristic grain size in the

profile, L /T .

For the region of fully broken waves (Figure 3.3, Zone III), the transport rate model 

of Moore (1982) and Kriebel (1982) was slightly modified to include (add) an extra term to 

account for the effect of local slope. The modified relationship for the transport rate, q 

(Larson and Kraus, 1989) is

. D  > n -eg
e_ d h  
K  d x

D -  —e dh_ 
K  d x

(3.12)

where K  is an empirical transport rate coefficient, and e is an empirical transport rate
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coefficient for the slope-dependent term.

A steeper slope was expected to increase the transport rate down the slope as justification for 

the edh/cbc term (Larson and Kraus, 1989). No transport occurs when D becomes less than 

Deq, corrected for the slope term.

The transport direction is also determined by an empirical criterion that relates the 

offshore wave steepness (H0/ L 0) with the dimensionless, Dean number (H0/wT)  such that

Hn A
w T

(3.13)

with M  = 0.00070 as the empirically determined coefficient. From studies of laboratory and 

field data it was found (Larson, 1988, Larson and Kraus, 1989) that for erosion (bar building)

3H0
—  > 0.00070

and for accretion (berm building)

3 l
w T

for erosion (3.14a)

Hn
< 0.00070 S l

w T
for accretion (3.14b)

Further details for setting q = 0 when D < Deq and cases for mixed transport 

directions along the same profile can be found in Larson and Kraus (1989).

For the prebreaking transport region (Figure 3.3, ZONE I), a simple exponential rate 

decay was found to adequately model the measured results from the full scale experiments. 

Hence in
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where qb is the transport rate at the breaker point, and k  is, an empirical spatial decay

coefficient such that from the prototype-scale tests (C, D) equals (0.4, 0.47), respectively.

Because so little information was available about transport beneath breaking waves in the 

transition region (Figure 3.3, ZONE II), the data suggested using for

q = q p e M x ~Xp) , xp < x  < x b (3.16)

where: A2 = 0.2 A,

qp = the transport rate at the plunge point, 

taken such that the plunge distance, xb - xp was about 3Hb.

Finally, transport in the swash region on the beach face (Figure 3.3, ZONE IV) was 

simply taken as a linear decay from that found at the end of the broken wave region (x.) or 

surf zone (ZONE III) such that

q = qz
x - x r
X 2 - X r

(3.17)

where xr is the runup distance.

In summary, the transport rate models for the four zones are spatially related to the 

location of the wave heights at the break point, Hb, plunge point, Hp, end of the surf zone, 

Hz and run up limit Hr = 0, respectively. Four empirical coefficients are needed (K, £ for

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Zones HI and IV and C, D or (A,, AJ for Zones I and II to describe the q(x) distribution for 

a given D(x) and specified wave (H, T, 6) entering the nearshore zone. It should also be noted 

that a fifth empirical parameter to limit the maximum dune slope during avalanching is also 

required in the model.

3.1.3 Profile Change Model

Changes in the beach profile are determined from the equation of mass conservation 

for the bottom (sand) material written simply for one-dimensional motion as

d z  dq  n
+ X = 0 (3-18)d t ox

where z(x, t) is the bed elevation above an arbitrary datum. Here, the porosity is included in 

the transport rate, q.

The standard boundary conditions are no sand transport shoreward of the runup limit 

and seaward of the depth where significant sand movement occurs. An implicit, finite- 

difference algorithm with simple, first-order time marching is employed to numerically 

integrate Equation (3.18). Complete details can be found in Larson et al. (1990).

The model has performed exceedingly well during the erosional stages o f storm 

events (Larson, Kraus and Byrnes, 1990, p. 104) which is of utmost concern for this study. 

Onshore transport during slower beach recovery stages following storm events is less 

accurately predicted by the present formulation of the SBEACH model.

Development of the SBEACH model has taken many man-years of effort and 

although still under development, its availability and quantitive success in modeling dune
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and beach profile change during storm events will give added confidence to the overall 

chances of success for this effort to model barrier islands breaching.

3.2 Stage II - Overwash / Overland Flow

Continued rising water level accompanied by irregular wave runup will eventually 

create landward directed flows and sediment movements across the barrier when the water 

levels exceed the eroded dime crest elevation.

A simple model without sediment transport will be followed for Stage II to basically 

develop the initial conditions (water motions and topographic profile) for the subsequent 

stages (III and IV) of the flow and sediment simulation model.

3.2.1 Water Motion in Overland Flow

The fundamental notions and hypotheses used in the mathematical modeling of rivers 

are formalized in the equations of unsteady open channel flow. These equations are simple 

models of extremely complex phenomena: they incorporate only the most important real-life 

flow influences, discarding those which are thought to be of secondary importance in view 

of the purpose of modeling.

The fundamental equations for spatially-varied, unsteady flow over a plane bed are 

derived from the de St Venant (1871) hypotheses which we consider to be valid throughout 

this study except when some corrective factors which depart from the hypotheses are 

introduced. The differential equations of gradually varied unsteady flow can be obtained 

from integral equations if one assumes that the dependent variables are continuous,
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differentiable functions. The de St Venant equations for unsteady flow in non-conservation 

form are as follows:

Water Continuity Equation

dh dh , du n—  + u —  + h —  = 0
dt dx dx (3.19)

Equation o f Motion

Friction Slope

du du dh dz 0 —  + u —  + g  —  = £  —  ~ gSr
dt dx dx dx * (3.20)

S  =
‘  c l *

(3.21)

Chezy-coejficient

Cc = 18 log
/  \  

12i?
(3.22)

where: u(t, x) 

h(t, x)

Rb

K

D,

local water velocity, U T

local water depth, L

hydraulic radius o f  the bed, L

hydraulic roughness o f  a movable bed surface, L

3D,90

90 diameter o f bed material with 90 percent finer, L
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g  = acceleration o f  gravity, L/T2

z(x, t) - local elevation o f  the bedfrom the arbitrary datum, L

The above equations are based upon the following series of assumptions (Cunge et al., 

1980):

1. The flow is one-dimensional i.e. the velocity is uniform over the cross- 

section and the water level across the section is horizontal.

2. The streamline curvature is small and vertical accelerations are negligible, 

hence the pressure is hydrostatic.

3. The effects of boundary friction and turbulence can be accounted for through 

resistance laws analogous to those used for steady state flow.

4. The average channel bed slope is small so that the cosine of the angle it 

makes with the horizontal may be replaced by unity.

In Stage II, the flow variables, u(t, x) and h(t, x), are not continuous (i.e., hydraulic 

jump, bore) at certain locations due to shallow water depth and steep bottom slope. It is 

possible to obtain valid discontinuous (weak) solutions of the differential equations only if 

the differential flow equations are written under the divergent momentum conservation forms 

and conserved relevant physical quantities (i.e., momentum). Then the primitive forms 

(Eulerian forms) of Equations (3.19) and (3.20) can also be derived in conservation forms 

(divergent forms) as follows:
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Water Continuity Equation

Equation o f  Motion

Ml + Mi = o
dt dx

q = uh (3.23)

Ml + JL
dt dx

g h  ~ g h S f  
dx J

(3.24)

Friction Slope

o = g | g |
~  h 3 (3>25)

The dependent variables are now water depth, h(t, x) and volumetric flowrate per unit width, 

q(t, x). Consequently, Equations (3.23) and (3.24) may be rewritten in vector notation.

K  + E m ,  G(V)
dt dx (3.26)

(3.27)

F(V) =
g

—  + —g h 2 
h 2

(3.28)
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Equation (3.26) is employed for the discretization of an explicit finite difference scheme, 

namely the Lax-Wendroff two-step scheme.

In the beginning of Stage II, computational difficulties may develop when physical 

flow depths are zero across the barrier islands (i.e., dry bed condition). At the early stage of 

study, this was a prime concern which should be handled by the program to as great an extent 

as possible. Never allowing zero flow situations to occur can be accomplished by introducing 

small base flows on the flood plain.

Oscillatory water wave motion, while still present to produce irregular overwash 

events, is assumed secondary in importance to translation processes advecting both water and 

sediment in the overland direction.

Equations (3.26) through (3.29) will provide a rough estimate for both the short, 

initial time required for flow to advect across the barrier width and the initial conditions ; 

u(x), h(x) for use in the Stage III and IV model.

3.2.2 Sediment Movement and Profile Change

During the extremely short time period for Stage II (generally less than 10 minutes), 

wave overtopping, overwash and overland flows will generally smooth out the pre-breach
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profile landward of the dune crest. Consequently, profile change will be modeled as a 

diffusion process with no advection or transport in either direction.

For the profile elevation, z  which is relative to the datum, a diffusion equation is 

employed as

dz „ d2z
¥  _ *  p  <3-30>

where K  is a profile diffusion coefficient for Stage II. For the numerical methods, use of 

Equation (3.30) is equivalent to using a numerical filter to smooth the bottom profile and 

simulate the movement of sediment from peaks to adjacent low regions. Mass over the 

computational domain is conserved by artificial means during this process.

At the end of Stage II, the initial conditions, u(x), h(x) and z(x) will be known across 

the entire length of the simulation from the ocean to the bay for use in the final stages of the 

model.

The coefficients required are a uniform flow, open channel friction coefficient, Cc and 

a profile diffusion coefficient, K  to smooth the bottom contours during the first few minutes 

o f overland flow.

3.3 Stage III and IV - Storm Tides

The long wave, shallow-water equations of free-surface, open channel flow (de St 

Venant, 1871) are employed to simulate time varying water motions from the ocean to the 

bay (flooding, Stage III). The water elevation (head) difference between the bay and the
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ocean reverses so that the velocity and the resulting sediment movement also reverse 

direction to become ebbing flows and transports (Stage IV). At these stages, it is initially 

assumed that waves are of only minor influence for the sediment transport process.

3.3.1 Water Motion

The one-dimensional non-conservation forms of differential equations o f gradually 

varied unsteady flow in unit width rectangular channel are governed for Stage III and IV. 

Introducing a control function and a linearization of local variables in Equations (3.19) and 

(3.20) then provides 

Water Continuity Equation

dh » dh i ,  du n —  + u —  + h —  = 0 
dt dx dx

Equation o f Motion

dt dx dx dx

Control Function

Froude Number

c  u Fr =
{gh*

40

(3.31)

» du dh dz 0 . C F - »  —  + g —  = g -  * g S ,  (3.32)

^  1 " Ft2 , Fr < 1 |
c H o  , (3-33>

(3.34)
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Friction Slope

(3.35)

where: u local quasi-constant flow velocity, L/T

local quasi-constant flow depth, L

Fr = local Froude Number.

Figure 3.4 shows a definition sketch for one-dimensional flow in the alluvial channel. 

The set of differential equations (3.31 and 3.32) links the three unknown functions h(t, x), 

u(t, x) and z(t, x) with the independent variables t and x. They incorporate a series of 

hypotheses concerning both water flow and solid transport. The de St Venant hypotheses, 

i.e., the hydrostatic distribution of pressure and the uniformity of velocity within a section, 

are accepted for the liquid phase.

There is normally no risk of the flow becoming super-critical, unless the natural slope 

of the channel is greater than the critical slope. The super-critical flow condition is 

exceedingly rare in river modeling and requires a special algorithm. However, in this study, 

bed slopes at certain locations in ocean-side and the barrier islands are generally steeper than 

the critical slope, and bay-side slopes are normally sub-critical ranges so that mixed-type 

flows, sub-critical (ocean), super-critical (barrier islands) and sub-critical (bay) again, occur. 

It is not easy to solve the partial differential equations system ((3.31) and (3.32)) in this 

situation due to insufficient boundary data at the control sections (i. e., the locations of critical
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Figure 3.4 Definition Sketch of Flow in Alluvial Channel, 

depth).

The problem of combining different algorithmic structures can be avoided altogether 

through a technique described by Havno and Brorsen (1986), whereby the influence of a 

convective acceleration term in the water momentum equation is reduced (or suppressed) by 

a Control Function. By this means it is certainly possible to maintain a sub-critical flow 

characteristic structure and data structure over the whole domain of the solution, including
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subdomains of super-critical flow. The dominance of the resistance term for small depths 

means that the suppression of the convective acceleration term will have little effect on the

four grid points and will be further discussed in Chapter 4.3.1.

The water depth and velocity found from the water motion equations are first used 

in the sediment transport formula, and then the first-order sediment continuity equation 

describing propagation of the bottom sand wave is numerically solved.

3.3.2 Sediment Motion

In natural channels, the phenomena of sediment motion are of a three-dimensional 

nature. If it is assumed that the net deposition or erosion of sediment between two 

neighboring sections is uniformly distributed over the channel bed in both the longitudinal 

(i.e., across the barrier islands) and the transverse (i.e., along the barrier islands) directions, 

the three-dimensional nature could be simulated by a one-dimensional approach (Mahmood, 

etal., 1975). The one-dimensional sediment continuity equation, expressed per unit ofwidth, 

is

results. The quasi-constant values, u and h' are obtained from the averaging at the nearest

(3.36)

where: Cs sediment concentration, M/L3

total sediment transport rate for both bed- and suspended-load 

transport, L3/L"T

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



q,(u, h)

lateral sediment inflow, V/T-L

P porosity o f  bed materials.

According to Mahmood and Ponce (1976), Ponce et al. (1979) and Lyn (1987), in 

river flow the temporal concentration variation term, the second term in Equation (3.36) is 

very small when compared with the remaining terms; therefore, it is neglected. Also, qL can 

be neglected due to the one-dimensional assumption. Equation (3.36) is reduced to

which is subjected to discretization.

The sediment transport rate, q, can be estimated from the field surveys or from the 

available theories. In this study, an available empirical theory (van Rijn, 1984a and b) based 

on field measurements is used to compute the sediment transport rate for both bed- and 

suspended-load transport.

3.3.3 Sediment Transport Formula

The transport of sediment particles by a flow of water can be in the form of bed- and 

suspended-load, depending on the size of the bed material particles and the flow conditions. 

Although in natural conditions there will be no sharp division between the bed-load transport 

and suspended-load transport, it is necessary to define a layer with bed-load transport for

(3.37)
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mathematical representation. Usually, three modes of particle motion are distinguished: (1) 

rolling and sliding motion, or both; (2) saltation motion; and (3) suspended particle motion, 

in continuous contact with the bed. For increasing values of the bed-shear velocity, the 

particles will be moving along the bed by more or less regular jumps, which are called 

saltations. When the value of the bed-shear velocity exceeds the fall velocity of the particles, 

the sediment particles can be lifted to a level at which the upward turbulent forces will be 

comparable with or of higher order than the submerged weight of the particles, and as a result 

the particles may go in suspension (van Rijn, 1984a).

A method was developed which enables the computation of the bed-load transport 

as the product of the saltation height, the particle velocity and the bed-load concentration 

(van Rijn, 1984a) and which enables the computation of the suspended-load as the depth- 

integration of the product of the local concentration and flow velocity (van Rijn, 1984b).

The predictive capability of the sediment transport formulas of Engelund and Hansen 

(1967), Ackers and White (1973) ,and van Rijn (1984b) at high velocities was investigated 

(Voogt et. ah, 1991). The method of van Rijn yields the best results from comparisons with 

the field measurements within the high velocity range of 1 - 3 m/sec and bed material in the 

range of 0.1 - 0.4 mm. In addition, predicted transport rates according to his formulas are less 

sensitive to the Nikuradse bed roughness, which is difficult to estimate under tidal flows. The 

van Rijn formulas are employed for the computation of the sediment transport rate.
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3.3.3.1 Bed Load Transport

The steady uniform flow of water and sediment particles is defined by the following 

input parameters: mean flow velocity, mean flow depth, particle diameters, density of water 

and sediment, viscosity coefficient, etc...

In this analysis, it is assumed that the bed-load transport rate can be described 

sufficiently accurately by two dimensionless parameters only, a dimensionless particle 

parameter, D, and a transport stage parameter, T. The computation procedure of the bed-load 

transport is as follows (van Rijn, 1984a).

1. Particle Parameter, D.

The D.-parameter can be derived by eliminating the shear velocity from the particle 

mobility parameter, 6=u.2 /  (Ss-l)gDS0 and the particle Reynolds' number, R=uJ)50 /v.

(3.38)

where: Ss specific density o f sediment

2.58

v kinematic viscosity

1.0 x IP 6 m2'/sec

bed shear velocity, L/T

2. Critical Bed-Shear Velocity, u. cr according to Shields (1936)
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£>, < 4 

4 < D, < 10 

10 < Z), £ 20 

20 < Dt < 150 

£> > 150

ecr = 0.24 (£>,)"'

= 0.14 ( D J - 0-64 

ecr = 0.04 ( D J - ° 10 

ecr = o.oi3 (Z),)0-29

0cr = 0.055

(3.39)

3. Chezy-coefficient Related to Grains, Cc

Cc = 18 log
/ \ 

12 je

3 D,90
(3.40)

where: Rh hydraulic radius o f channel bed (= water depth, h), L

4. Effective Bed-Shear Velocity, ui

The M.'-parameter is described in terms of the mean flow velocity and a Chezy- 

coefficient related to the grains of the bed.

(3.41)

5. Transport Stage Parameter, T

The T-parameter expresses the mobility of the particles in terms of the stage of
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movement relative to the critical stage for initiation o f motion.

T _ ( O 2 -  K „ ) 2
(3.42)

6. Bed-Load Concentration, Cb

Extensive analysis of the data showed that the bed-load concentration can be 

represented by:

c a = 0-18J - c o (3.43)

where: C0 = maximum bed concentration

0.65

7. Particle Velocity, ub

The particle velocity is defined as a function of the flow conditions and sediment size 

from the experiments.

ub = 1.5 r 06[ ( ^  -  1 ) g D 50r  (3.44)

8. Thickness o f  Bed-Load Layer, 6b

For each set of hydraulic conditions, the T- and D.-parameters are computed and 

related to the computed saltation height resulting thickness of the bed-load layer with an 

inaccuracy of about 10% by the following simple expression.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8j = 0.3 Z)°7 r 0-5 £>50 (3.45)

9. Finally, Bed-Load Transport, qb

The bed-load transport for particles in the range 200 - 2,000 pm  can be computed as:

van Rijn (1984a) reported that the proposed equations predict a reliable estimate of 

the bed-load transport in the particle range 200 - 2,000 pm, which is based on a verification 

study using 580 flume and field data.

3.3.3.2 Suspended Load Transport

The method is based on the computation of the reference concentration from the bed- 

load transport. The procedures in bed-load transport computation, No.l through No.5 are 

employed to compute particle parameter, D. and transport stage parameter, T. The 

computation procedure of the suspended-sediment transport is as follows (van Rijn, 1984b).

1. Reference Level, a

The concentration profile is relatively sensitive to small variations (about 20%) in the 

suspension parameter, particularly for a reference level, a which is very close to the bed, 

a=0.001 h where h is water depth. It is evident that a reference level smaller than 0.01 h leads

Qb ~ CbUb^b

(3.46)
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to large errors in the concentration profile. The reference level is assumed to be equal to half 

the bed-form height, A or the equivalent roughness height, ks if the bed-form dimensions are 

not known, while a minimum value a=0.01h is used for reasons of accuracy.

2. Reference Concentration, Ca

which is obtained from the field and experiment data.

3. Representative Particle Diameter o f  Suspended Sediment, Ds

Observations in flume and field conditions have shown that the sediments transported 

as bed load and as suspended load have different particle size distributions. Usually, the 

suspended sediment particles are considerably smaller than the bed-load particles. The 

parameter is related to the Dso of the bed material and the geometric standard deviation of 

bed material, as,

a = 0.5 A or a = ks , ( with amjn = 0.01 h ) (3.47)

50
(3.49)

where: cr geometric standard deviation o f  bed material

1.5 ~ 2.5
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2.5 fo r best result.

4. Fall Velocity o f  Suspended Sediment, w,

The main controlling hydraulic parameters for the suspended-load are the particle fall 

velocity and the sediment diffusion coefficient.

In a clear, still fluid the particle fall velocity, w, of a solitary sand particle smaller 

than about 100pm can be described by:

i ( s t - 1 )g p ;
18 v

(3.50)

For suspended sand particles in the range of 100 - 1,000pm, the following type of 

equation, as proposed by Zanke (1977) is used:

w =  10 —  ‘

D,
1 +

0.01 OS -  l ) g D -
0.5

(3.51)

For particles larger than about 1,000pm the following simple equation is used:

w = 1.1 U S ,  -  l ) g l X ) 0.5 (3.52)

5. Overall Bed-Shear Velocity, u.

If bed-form steepness, Y is negligible ( ~ 0), then overall Chezy coefficient, C' can 

be replaced to Chezy coefficient related to grains, Cc
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C' = C = 18 log
/ \ 

12R,
k\ S }

(3.53)

where: k.

and

effective roughness height 

3D90 + 1.1 A (1 - e 25*)

3Do'90

u

1 C ? h
(3.54)

6. P~ Factor

(3-factor describes the difference in the diffusion of a discrete sediment particle and 

the diffusion of a fluid particle (or small coherent fluid structure) and is assumed to be 

constant over the flow depth. This factor is obtained from the results of Coleman (1970).

p = 1 + 2

= 1

w .
for  —  > 2

(3.55)

for  —  <.2
vv

7. (p-Factor

(p-Factor is an overall correction factor representing all additional effects (volume 

occupied by particles, reduction of particle fall velocity and damping of turbulence). The (p 

value has been determined by means of a trial and error method which implies the numerical
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computation of concentration profiles for various sets of hydraulic conditions and the 

determination of the <p-value that yields a concentration profile similar to the concentration 

profile based on the numerical method. Therefore, for each set of hydraulic conditions (w, 

, u . , ca) a q>-value is obtained. Analysis of the (p-values showed a simple relationship with 

the main hydraulic parameter, as follows (inaccuracy of about 25%):

<p = 2.5
Vi'

0.8 cs a

u .

0.4

for  0.01 < —  £ 1 (3.56)

where Cn is the maximum bed sediment concentration (~ 0.65).

8. Suspension Parameters, Z  and Z '

To describe the suspended-load transport, a suspension parameter which expresses 

the influence of the upward turbulent fluid forces and the downward gravitational forces, is 

defined as:

P kw,
Z' = Z  + cp (3.57)

where /c is the constant of Von Karman (« 0.40) and Z' is an adjusted suspension parameter. 

P. F-Factor

This is a correction factor for suspended-load and is defined as:
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F  =

a Z' a 1.2

h h

1 a
h

Z'
(1.2 - Z ' )

(3.58)

10. Suspended-Load Transport, qs

Full integration of suspended transport equation can be represented with an 

inaccuracy of about 25% by:

q_ = F u h C n? s  a

(0.3 ^ Z' < 3 and  0.01 s a l h  < 0.1)
(3.59)

Finally, the total sediment transport rate, q, is obtained from:

9, = Os + 9b (3.60)

From the results of the verification analysis it was concluded that the proposed 

formulas for both bed- and suspended-load transport have a good predictive ability for a 

range of flow conditions (u=0.5-2.5m/s, h=0.1-3.5m, Dso=100-500pm) using 783 flume and 

field data.
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4.0 NUMERICAL INTEGRATION PROCEDURES

4.1 Stage I - Dune / Beach Erosion

The model SBEACH consists of three calculation modules that are executed 

consecutively at each time step in a simulation. The modules calculate wave height across- 

shore, net cross-shore sand transport rate and profile change, respectively.

4.1.1 Water Wave Model

An explicit finite-difference scheme is used to solve the equations for determining 

cross-shore wave height. In the model, a quasi-stationary approach is applied, implying that 

a steady-state solution of the wave height distribution is determined at eveiy time step.

Numerical calculations start at the seaward end of the grid and proceed onshore 

through an explicit solution scheme in which quantities known at a specific grid point are 

used to determine corresponding quantities at the next grid point. The wave height, period, 

and incident angle must be known at the most seaward grid point prior to starting the 

calculation.

Wave refraction is first determined if the incident wave approaches with an angle to 

the bottom contours. From the wave action Equation (3.1), the angle, 6, between the wave 

crests and the bottom contours is given by

0. = arcsin

/

~P~ sin0;+1
(  L t* l

(4.1)
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where L, and Li+, are the wavelengths at grid point i and i+1, respectively. Note that grid 

point numbering increases in the seaward direction since the x-axis points offshore, but the 

calculation proceeds from offshore in the shore-ward direction. Wave lengths are computed 

using Equation (3.4).

The next step in the calculation is to determine the energy flux and thus the wave 

height. Equation (3.3) with Equation (3.9) is written in difference form as:

F /+i cos0/+i "  F , cos0, _ k

A *  h i + *1,-1

'  F. . + F. N'+1 ' -  f
2 M

where Ax is length step and

k  Ax

The stable energy flux at grid point I, is determined from

1 .  r - r . , ,  . -  x t 2 C g , i  + C g , i +1

(4.2)

F- -  cose ! o . 5 A  . [F'* '(cos9«  - °-5 ^ ' ) + A^ - ' ] ( « )/ C, I

A c , i  -   -----= — (4.4)
h i + Tl/.l ;

Fs,, = A P g [ r ( + Hm) ] 2 (4.5)

After the energy flux has been calculated at a specific point, the corresponding wave 

height is determined from Equation (3.5) as

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Using the wave height, radiation stress is calculated from Equation (3.6) and setdown 

(or setup) given from Equation (3.2) expressed in difference form as

r r . (5«)/+i - ( S x x \
^  ^  i + ------   (4.7)

P g(h ,  + t] ■ ,)

At eveiy calculation step, a check is made to determine if wave breaking has occurred 

according to Equations (3.7) and (3.8). Once breaking is initiated, the wave decay coefficient 

is set for k = 0.15, and energy dissipation takes place.

Wave height is used to calculate the transport rate from which profile change is 

calculated.

4.1.2 Profile Change Model

Profile change is calculated from the mass conservation equation using the net 

transport rate distribution determined from Equation (3.12) through (3.17).

The location of the break point is given directly from the wave height calculations, 

and the plunge point is computed as 3Hb based on findings by Galvin (1969) and Svendsen 

(1987).

To determine the transport rate distribution, sand transport is first calculated in zones 

of fully broken waves (Figure 3.3, Zone III) according to Equation (3.12) , written in
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difference form,

q j = K
( D .  + £ > . . )  6
— '-L L - n + —-— (h.  -  h. ,)

2 eq K  A x '
(4.8)

Calculation of the transport rate in zones of fully broken waves defines the 

boundaries of Zone III, from which the transport rate may be calculated in the other zones. 

After these values are determined at the plunge point and at the end of the surf zone, 

Equations (3.15), (3.16) and (3.17) are applied to completely define the transport rate 

distribution. In discretizing the mass conservation equation, transport rate distributions from 

two time levels are used and the difference equation is expressed as

1 £+1 ; k
hj ~ = I

A t 2

k +1 
Q i+1

Jt+1

Ax

k  k
Qi+1 9i

Ax
(4.9)

Since the transport rate distribution is determined from different relationships 

depending on the zone of transport, its spatial derivative will generally be discontinuous at 

the boundaries between the zones. To obtain a smoother, more realistic transport distribution, 

a three-point filter is applied to the calculated transport rates on grid cells away from 

boundaries by

q * = 0.25 qt_x + 0.5 qt + 0.25 qi+l (4.10)

where star denotes the smoothed transport rate.

The concept of avalanching, as discussed by Allen (1970), is incorporated in the
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numerical model, and a routine was included to account for transport induced by slope 

failure.

The time interval and length step are not independent because they both govern the 

stability of the numerical solution scheme. Generally, a shorter length step requires a smaller 

time interval. An explicit criterion for the relation between time and length step for 

numerical stability could not be determined due to the non-linearity of the equations and the 

smoothing of the transport rate.

4.2 Stage II - Overwash / Overland Flow

Conservation form of water continuity and momentum equations are numerically 

solved using the Lax-Wendroff two-step method in this stage. Also, the Method of 

Characteristics is employed to compute additional boundary data at both boundaries.

4.2.1 The Lax-W endroff Two-Step Scheme

Lax and Wendroff (1960) introduced a second-order scheme, 0(At2, Ax2), with two 

time levels, n to n+1/2 and n+1/2 to n+1. The original derivation of Lax and Wendroff was 

based on a Taylor series expansion in time up to the third order to achieve second-order 

accuracy. This is called a leapfrog operator because some intermediate grid values are not 

employed in the computation. (Figure 4.1)

Governing equations in conservation form are rewritten in vector notation.

dV dF(V) -* tTr._  * _ l j  = G ( ( 0  (4 1 1 )
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LHB

n+2

n+3/2

n+1
Step 2

n+1/2

At/2

> K
4

> T <
2

> ( <
3

->!<-
5

> ~ <
6

Ax/2
1 7

h, q M h, q

Figure 4.1 Schematic Operator of Lax-Wendroff, Two-step Scheme.

V =

F{V)

G(V) =

1 u2+ - g h 2

0

(4.12)

We shall now use the scalar notation.
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3 -  + - s * 2
h 2

G - g k S ,

Step 1, n to  n+1/2

The Lax operator is used for the first stage

p-n+1/2 
Vj *  1/2

At/2

F n -  p n
+ f ± l  J -

Ax
GU  + Gjn

which translates to the following equation pair for computational purposes:

» n+1/2 
j +112

A t/2

n  n
#/+i #y

Ax
= 0

and

n+1/2
tfy+1/2

n n
#7+1 + %

q , : . + g;
A t/2 Ax

Rearranging Equations (4.15) and (4.16) here as

7 n+1/2
"y+1/2

7 n 7 n 
7+1 + h j A t 

2 A x
/  n  ft \
(#7+1 -  # 7 )
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where:

f " -  (J 4 - + ^ v > ji n 
hj

V. - i n 
hj +1

and

G " ’  s h<"Zĵ r -  -  ■ c < = 18108
h x t2  ( Cchj")

( 12 h f

 ̂-̂ 90 ,

% = g * A z ,\ : r ■ g q‘" l?r ' l  • c « = i8 i°g
12 V .
3D,90

The values of awrf ^"i*^ calculated from Step 1 used as input in Step 2.

Step 2, n+1/2 to  n+1

The leapfrog operator is employed for the second stage.
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(4.19)

(4.20)

(4.21)

(4.22)



v n+l
- v:

A t

r»n+l/2 77W+I/2 /-»n+l/2 . /-»n+l/2
O+1/2 ~ bj-\a  = <-7+1/2 Gy-i/2 

Ax 2

Then Equation (4.23) becomes

7 n+l 7 n n+1/2 n+1/2
hj  ~ hj + <lj+m ~ <lj-in = 

A/ Ax

n+l

At

j-,n+l/2 _  r+n+1/2 
t j+1/2 0 -1/2

^n+1/2
9 / +1/2

f~,n+\t2
Gj-m

Ax

Rearranging Equations (4.24) and (4.25) here as

7 n+l 7 n A/ /  n+1/2 n+l/2\

n+l
= 9j

At ✓r+n+1/2

Ax (^ ”+;1/2
r+n+l/2s , At /y^n+l/2
O - 1 / 2 ) + y O G/ +1+1/2

/ - .h+IWn 
0-1/2 )

where:

7-.n+l/2
j -112

( n+ l/2o
(gy-itz )

7 n+1/2
Vl/2

n+1/20 
1/2 /
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(4.25)

(4.26)

(4.27)

(4.28)
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i ay->n +
j+ in

_ (qjZn+1/2 ̂ 2
1/2

} n+1/2 
>+1/2

1 / 1 n+
T T ^ + l,

l/2o
1/2 J (4.29)

and

G.n+l/2 
' , - 1 / 7

, n+1/2 zj
L7/- l/2  “  & h j- \n

n+1/2 I n+1/2,

, C = 18 log
Ax/2 ( c ^ ) 2 3 £>90

1/2 \
(4.30)

^ n + l/2
Y /+1/2 = s  K+

n + m  z - 
7 + 1/2

7 +1/2 " *7*1
Ax/2

n+1/2 | «+l/21
9 /+1/2 I Qj+1/2 I

n+1/2-. 2 
1/2 /

18 log
12 An+1/2

7 + 1/2

3 A (4.31)
90

Note that both the volume and momentum equations are used in each step but the 

steps are alternating in space so that, in effect, one of them leaps over one time level of 

intermediate grid points, in the manner of the children’s game that is commonly called 

leapfrog (Abbott and Basco, 1989).

The Lax-Wendroff, two-step scheme is also amplitude dissipative despite being of 

second order, and it is often used to model flows with moving shocks and discontinuities. In 

this study, the Lax-Wendroff scheme employs a numerical filtering device that has been 

called a dissipative interface so as to add a small amount of additional dissipation for each 

dependent variable. By this means, the scheme which initially has small base flow (h~ 

0.03m) can certainly control nonlinear instabilities mainly coming from extremely small local 

water depth and complex flow situations (i.e., stationary jump at certain location) over the 

computational domain. The stability and dissipative interface will be further discussed in Ch.
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4.2.3 and 4.5, respectively.

4.2.2 Method of Characteristics (MOC)

The Lax-Wendroff, two-step scheme presents problems at both boundaries for a 

solution.

The characteristic directions together with the Riemann relations, J± along these 

characteristics provide the solution technique. There is a physical significance of the process 

in which we trace the propagation of flow information in the x-t plane. The Riemann 

invariants are constant along each characteristic trace in the ffictionless, horizontal channels. 

However, when boundary slope and shear are taken into account then, the Riemann invariant 

will no longer be constant along characteristics, C±. In such a case the bottom slope is acting 

as a momentum source while the boundary shear is behaving as a momentum drain or sink.

Subcritical flows require the specification of one-point boundary data {q or h) at each 

boundary if a unique solution is to be obtained. In this study, water depths, h are specified 

at both boundaries, but both q and h are required to find F  and G at these points. A special 

boundary method is then needed to provide flow rates, q at the boundary points so that the 

solution procedure can continue. The method of characteristics (MOC) provides a 

particularly transparent procedure for this purpose, and it is commonly used within the Lax- 

Wendroff, two step scheme as follows (Abbott and Basco, 1989).

LH B, a t n+1/2  The h"+l12 is specified as the left-hand boundary data as indicated 

in Figure 4.2. The starting location, don  the C_ characteristic striking the boundary exactly
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q(n+l, 2) 
h(n+l, 2)h(n+l, 1)

n+l

At/2
h(n+1/2,1)

n+1/2

At/2
q(n, 2) 
h(n, 2)

q(0)
h(0)

q(n, 1) 
h(n, 1)

n

Ax/2-i
Ax/2 j=2j= l

Figure 4.2 Left Hand Boundary Data Obtained by Method of Characteristics.

at {n+1/2, 1) is unknown; therefore, the Newton-Raphson iteration method is employed to 

find q{ 6) and h(6) at the location, 6.

The characteristic speed, C_ is given as

dx -0
C- - - T , - W i  <4 J 2 >

and consequently, along C_ characteristic, celerity (value) of the C_ is unchanged as

C_ = u -  s j g h  = 2 - - j g h  ( 4 .3 3 )

Water depth and flow rate at point 0are computed from
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<7(0) =

h(Q) =

[Qg2n + (Ax/2 -  0 ) gl"] 

Ax/2

[0 h2 + (Ax/2 -  0)/j,"] 

Ax/2

(4.34)

Equations (4.32), (4.33) and (4.34) are then used to compute the characteristic 

distance, 0,

0 = - At e</2" + ' Ax 
, 2 - e)

ft
<1\

0 h2 + ' Ax 
, 2 - e) K

Qh2n +

8-

f Ax _ 0 
2

r n 
h\

Ax
2

1/2

(4.35)

Newton-Raphson iteration continues according to some convergence criterion. A subroutine 

makes this relatively straightforward on the computer. Finally, the value of the Riemann 

Invariant, J_(6) can be found and, together with, h"*m  the other boundary value 

q"*m  can be determined as follows:

Riemann Invariant at 6

3' (6) = f (§ )  ” 2v^ (6) <4‘36)

Riemann Invariant at (n+1/2, 1)

n+1/2

J-("+1/2’ 1} = " 2 M ”+1/2 (4-37)
h\

When boundary slope and boundary shear are taken into account, the quasi-invariant along
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the C characteristic is derived as

(  n * \n

- 2
n * m

h
M  - 2 4 g m  j = f ‘2 g ( s 0 ~ Sf )dt (4.38)

Rearranging and taking small enough time steps, t2 -t,=At/2, Equation (4.38) gives additional 

boundary data as

n+1/2 , n+1/2
9l = h\ \fi^ l

n+1/2 A  -  2
, A(6) VS

+g h  i
n+1/2 zi _ <7(6) [<7(6)1

A*/2 Cc2/z3(0)

At
2

(4.39)

where Cc is the Chezy coefficient at point 0  defined as

Cc = 18 log ‘ 12/2(0)N
3D,90

(4.40)

LHB, at n+l The step is the identical one as in the above procedures and is indicated in

ti +1Figure 4.2. The hx is specified as the left-hand boundary data at n+l time level. After 

the second step, water depths and flow rates at n+l time level are obtained over the 

computational domain except at the both boundaries. The starred values q and h* are 

evaluated from the latest information available at the four comers as
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, n+1/2 , n , , n + 1 , ,  n+1/2
rti +  rU  +  h -j + «■,

A* = J  1-------1---------I----

(4.41)

Water depth and flow rate at point 6  are computed from

9*(0) =

**(©) =

[0 9 * + (Ax/2 -  Q ) q r m ]
Ax/2

[0/2* + (Ax/2 -  0 ) ^ ”+1/2] 
Ax/2

(4.42)

The characteristic distance, 0 is then derived from the Equations (4.32), (4.33) and 

(4.42) as

0 =  - -
At

e ? - +
( f

\
-  0 n+1/2

01 0/z* + f —  -  e ]
I 2  J

7 n+I/2 
h\

1/2'

2
0 h * + ' Ax

, 2
- a ) , n+1/2 Ax

2

> (4.43)

Riemann Invariant at 6

j  (0) = _ 2 Jgh '(Q )
**(0)

(4.44)

Riemann Invariant at (n+l, 1)
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J_(n+1, 1) = ~ 2 ^ T (4.45)

The quasi-invariant along the C_ characteristic is derived as

(  n+i _______
0  1 n  I » n+l
7 7 T -  2 M  
h i

\

- 2 yjghXB) = f ‘3 g (S Q -  Sf )dt (4.46)
**(0)

Rearranging Equation (4.46) gives additional boundary data as

n+l ; n+l-  /i 2j^hTl +  -  iJghXQ)
V , *'(©)

n+l Z, -  Z

Ax/2
2 _ g * ( 6 ) l g * ( 9 ) |

C * h '3(Q) J

A/
2

(4.47)

where:

Cc = 18 log 12 /7 *(6) '
3D,90

(4.48)

RHB, at n+1/2 The h ^ m  is specified as the right-hand boundary data as indicated 

in Figure 4.3.

The characteristic speed, C+ is given as

At/2 (4.49)
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t
RHB

n+1

At/2q*(0)
h*(0) h(n+l/2, jj)

n+1/2

At/2q<9)
h(0)

x
Ax/2-i

Ax/2 j=jj

Figure 4.3 Right Hand Boundary Data Obtained by Method of Characetristics.

and

C+ = u + Jg h  = -f + \fgh 
h

Water depth and flow rate at point dare computed from

_ [ B t f ,  + (A s/2 - 6 ) t f ]  
Ax/2

[6 / j," + (Ajc/ 2 -  0 )/i" ]  
ft(0) = - — £-! i------------- L i i i

Ax/2

(4.50)

(4.51)

The characteristic distance, 0 is  derived as
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Riemann Invariant at 0

j (0 ) = + 2 s [ g M & )
h(&) (4.53)

Riemann Invariant at (n+1/2, jj)

n*m

J +(w+l/2, jj)  =
, n+l/2 
hJJ

+ 2 (4.54)

Finally, additional right-hand boundary value, q"+m at h+7/2 time level is'jj

computed from

n+1/2 . n+1/2
%  = hJf

n+l/2

n + l/2 z/- i  z/  _ g(6) k (8 ) | 
A*72 Cc2/?3(0)

At
2

(4.55)

+1at n+1 The hy is specified as the right-hand boundary data at n+1 time level. 

The starred values q and t i  are evaluated from the latest information available at the 

four comers as
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n+l/2 n n+1 n+l/2
%  + fy-1 + fy-I + fy-2

t n+l/2 , i n , n+1 ; n+l/2
ft* = h*  + V »  + V i  + V 2

(4.56)

Water depth and flow rate at point 0are computed from

[ 6 ? '  * (A*/2 -
?  («) ■= — ------^ - 7 ;— 1Ax/2

[ 6 ft’ + (Ajc/ 2 -  6 )/z”+1/2]
ft*(0) = 2/

(4.57)

Ax/2

The characteristic distance, 6 is then derived from the Equations (4.49), (4.50) and 

(4.57) as

At
2

d g ' Ax
I 2

n+l/2

0 f t ’ Ajc n+l/2

0 f t *  +

8- Ax
2

1/2

(4.58)

Riemann Invariant at 6

j +(0) = i M  + 2 yg ft*(0)
ft*(0)

(4.59)

Riemann Invariant at (n+1, jj)
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= 7 ^ 7  + 2 ^ fg h ^ ^
ha

(4.60)

From the Equations (4.59) and (4.60), additional boundary data, q"+l is obtained as

Therefore, four boundary modules are employed to compute all required boundary 

data within each time level (i.e. n to n+1) and then, the numerical computation moves to the 

next time level.

4.2.3 Stability

For the homogeneous linearized vector equations for the Lax-Wendroff scheme,

n (4.61)
g*(6)lg*(6)| At

r 2h ,z (Pi\ 20 ^ ( 6 )

(4.62a)At/2 Ax

(4.62b)

with
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/  =
h

B =
0 1

uh (g h  -  u 2) 2 u
(4.63)

From Equation (4.62a),

>«+1/2 _ A t B I ~rn ~fn\ +  ̂ ( f n + 7"n\ 
I j M  ~ J j  I  T W *1 I2 Ax

r t t h
Jj*\a

-rti* 1/2 . A t B ( - f n _ - f n \  1 l 7 n 7 n \

7-1/2 2 A x ' J j ~1' 2 ' J J~1'

(4.64)

Putting Equation (4.64) into (4.62b) gives

<-1 1 . = ^ 2 A tB
\ A x  /

( # ,  - 27;  * <7 :, -  J ’-x) * f "  (‘*-«5)

The amplification matrix of Equation (4.65) is determined by the linear stability 

analysis method which determines how each Fourier coefficient, f  ,behaves ( grows, 

decays, or stays constant) in time for any wave number, k.

Let,

kk

f j  = E  ^  expO'a/)
*=1

(4.66)

be a finite, Fourier series representation of J(j, n) for all dimensionless wave numbers, a(k), 

k=l,2, . . .  ,kk, at time level, n. It is simply shown at any wave number (say k=l) giving
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f ;  = V e iaj (4.67)

where £* is the Fourier coefficient for wave number 1 at time-level n, and substitute into 

Equation (4.65) then, amplification matrix is obtained as,

  1 _
G = -2—  = /  -  (1 -  cosa)

V

t = \2  
A tB
Ax

-  i
'  =  \ A tB
I Ax )

sma (4.68)

and eigenvalues of matrix G , gI 2 now become

g l2 = 1 -  (1 -  co sa )C r -  zCr sina (4.69)

with Courant number,

A t
Ax (4.70)

The von Neumann and Courant-Friedrichs-Lewy (CFL) conditions for stability of 

equation systems give

l * u l  5 1 and Cr * 1 (4.71)

, respectively.

Further details of the amplitude and phase portraits for the finite difference scheme 

are found in Richtmyer and Morton (1967), and Abbott and Basco (1989).

The main restriction on the use of explicit schemes for the solution of unsteady, one

dimensional, real fluid flows is a time step limitation. In this study, time step, At is defined
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from Equation (4.71) as,

Ajc
A/ * (4„72)

J s K\u + „ __I maxi V° max

Maximum values of u and h are unknown before a solution is obtained so that some safety 

margin is needed to prevent the computation from going unstable.

4.3 Stage III and IV - Storm Tides

In the first step (i.e. water motion calculation), bottom elevation is considered to be 

constant during the time interval At, and u(t+At, x) and h(t+At, x) are computed using the 

Preissmann scheme (1961). In the second step, a forward time and centered space explicit 

scheme is employed for the sediment continuity equation using known water depths and 

velocities.

4.3.1 Water Motion - The Preissmann Scheme

Non-conservation (Eulerian) form of governing equations are rewritten here.

Water Continuity Equation

dh , , du , dh n
¥  * * i f  * "  ¥  = 0 (4'73)

Equation o f  Motion
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Friction Slope and Chezy-coefficient

u \u\

C )h
Cc = 18 log

/  \  
12 R

(4.75)

A schematic representation of the Preissmann operator is shown in Figure 4.4. Let 

f(t, x) be any one fluid-flow dependent variable, its time derivative and space derivative by 

the difference formulas represented by

f 1 - f n -  f"
SL * ( i  -  i|j) — J- L  + ju Jl  ± L
dt A t A t

j - n  _  r l i  J fl+ l _  r n +1
d f  _ / 1 _ 0 \ Jj* i Jj + 0 Jj*i Jj 
dx Ax A x

(4.76)

with

/  n + 1 n n+1 n  \
u  » _  ( “ / + UJ + UJ + 1 + M7 + l)

4

/ 7 n+1 ; n 7 n+1 7 n  s
A* * (ft, + ^  + fy+1 + V l>

(4.77)

where ^and 0are the weighting factors for space and time, respectively. The starred values 

u and h* are local, quasi-constants, evaluated from the latest information available at the 

four comers of the scheme in an iterative process. Using Equation (4.76) as general 

operation, the following two finite difference equations are obtained.
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Ax

n + l - T —  O

At

m m m

1-0

A

* l-il;■<   >

j j+1

Known Unknown

Figure 4.4 The Box or Preissmann Scheme Drawn for 0 = t|r =1/2.

Motion

n+1 n n+1 n«, “ Uj MI+1 -  M,+ 1
(1 -   L. + t|r-y 1 J 1

At At

+ (1 -  Fr2)u*

g

w,+l -  u,
(1 -  0) —Al!----- J- +  0

Ax

n+1 n+1
«/+! -  « j

Ax
n+1 , n+1» n , n 7 n+1 7 i-  «, «... ~ h ,

(1 -  0 ) -2lL =L + 0 ■/+1
Ax Ax

Z j  Z j * l  D  /  n  + 1 w + l \
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Volume

where:

t n+1 j n j  n+1 7 nhi -  hf «/+1 -  h,+l

+ u

+ h

A r At
n+1 , n+1,  n i n 7 n+1 , t-  rt, rtI + I -  h,-(1 - 0)_£l L. + 0 J + l J

Ax Ax
n+1 n+1

(1 -  0 ) UA  -  ujn + e > i  ~ “/
Ax Ax

(4.79)

g
1 * c ] h '

n n
«, + «y+i (4.80)

Rearranging and collecting all higher time level terms on the left side of the equations give

Motion : AJ « /+1 + B1 h"+x + C l u ”\ l + D1 hjl\x = E l (4.81)

Mass : A 2 u "+1 + B 2 h - 'X + C2uJ[\X + D2h-*X = E2 (4.82)

where:

A1 = -  (1 -  Fr2) —  + Bs
At Ax

B1 = -D1 - -
Ax

C l -  ± . ( i  - F r > ) i £ i  +Bs (4.83)

A2 = -C 2  =

. D 2 -  J t - i l i
At Ax At Ax
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and on the right side, at the lower (known) time level,

E l  = u"

+ hj

At Ax
n

+ Uj+l .<L -  ( l - F r 2) » >(1~6) 
At Ax

g (  1 -  0)1 -  h n, * 0  " 9 ) ‘
Ax "j*\ Ax g

n n 
Z ■ ~ Z-  i

J  J * 1

Ax
(4.84)

and

E2 = u"

+ h;

h \  1 -  9) 
Ax

**(1 -  6)

1 ~ ilr , «*(! -  6) 
At Ax

Ax

+ V ,
jji_ _ «*(!  -  9) 
At Ax

(4.85)

Equations (4.81) and (4.82) constitute a system of two nonlinear algebraic equations which 

provide a pentadiagonal matrix structure. Formally

(4.86)

where:

~rt\*  1
Jj

UJ
n+1

e ;
e 1j 

E2j .
(4.87)

and P  is the coefficient matrix. Equations (4.81) and (4.82) represent a system of 2(N-1) 

nonlinear equations involving 2N  unknowns, where N  is the number of grid points along the 

x-axis. Two additional equations for determining all the unknowns are supplied by the 

boundary conditions.
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To solve a nonlinear equation system by iterations, the system is usually first 

linearized. The linearized system is then solved, giving initial estimates o f the new flow 

variables at time level (n+1)At. The new linear system can then be solved using the same 

piece of code, so as to obtain improved estimates of all coefficients, and indeed this iteration 

process can be continued until some established criterion is satisfied, such as one 

corresponding to the accuracy that is desired.

The double sweep solution method is proposed herein for the solution of this system. 

This is now widely accepted as the most efficient way to solve systems of nonlinear as well 

as linear equations.

Water depths are specified at both ocean and bay boundaries in this study.

The F irst Sweep ( j  = j j  to 1 )

First, introduce auxiliary variables Fj and G, so as to linearly relate 

h"*1 a n d  u"*1 at right hand boundary:

To ensure the independence of the necessary coefficients, we can take F^O  giving

(4.88a)

at RHB (4.88b)

(4.89)

Substituting Equation (4.88a) into Equations (4.81) and (4.82) gives
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A l u j +1 + B lh ”*1 + (C l + D1 FJ+l) ujl]1 = E l -  D lG j+l 

A2Ujn+] + B2hj*X + (C2 + D2FJ+i)uJ1*l1 = E2 -  D2 Gj+l
(4.90)

n+j
Now eliminate uJ+l in equation (4.90), then

A,"*1 =Fj u + Gj  (4.91)

where:

F  = ~[A1(C2  + D2FJ+l) -  A2(C1  + D1 FJ+l)]
J [B1(C2 + D2Fj+l) -  B 2 (C l + D1 FJ+l)] (4,92)

and

G,
[(C2 + D2FM )(E1 -  D1GJ+1) -  (Cl + D1FJ+1)(E2 -  D2Gj+l)] 

[B1(C2 + D2Fj+l) -  B2 (C l + £>iFy+,)] (4.93)

Equations (4.92) and (4.93) define a set of recurrence relations to calculate the initial sweep 

coefficients, (F^,, GMJ , (F ^  GMJ,..., (F2, GJ, (F„ GJ, since each successive pair, (FJt G), 

only depends upon the previous pair, (FJ+I, GJ+l) and other known information.

The Second Sweep ( j  =  1 to j j )

To begin the second, reverse, return sweep in the double sweep procedure, we pick

/1 + 1up the boundary data, hx from the other end (i.e. ocean boundary) and Equation (4.91) 

is used to solve directly for the missing values as,
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To find the remaining values, Equation (4.90) is utilized to establish an auxiliary 

relation, and we introduce three additional non-recursive relations that must also be 

calculated during the initial sweep. Rearranging the first equation in (4.90) gives

n+1 n  n+1 ^  . n+1 n ✓a
uj+\ = Pj+1 uj + Qj+1 hj  + Rj+\ (4-95)

where:

=
-A1

Cl + D1 Fc i

-B1
Cl + D1

El -  D1 GJ♦.

^y+1 Cl + D1F. . (4-96>

jj
y+1 C7 + D1 FJ+l

The three new auxiliary coefficients are computed initially for all j ,  from j= jj- l  to j= l,  since 

they depend only on the known coefficients. Equation (4.95) is then used, starting at j= l  ( 

which in this example is the left-hand ocean boundary) to calculate water velocities, and 

Equation (4.88a) is used to calculate water depths.

This completes the second sweep of the double sweep procedure. Velocities and 

water depths are now known at time level n+1 for all grid points including both boundaries. 

Since these new values update the u and h* values used in the coefficients, a first and
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possibly a second iteration may then be required to satisfy the accuracy that is desired.

4.3.2 Sediment Motion - FTCS Explicit Scheme

Once the water depths and velocities at the new time level are known, the sediment 

transport rates for bed- and suspended-loads are computed based on the available theory (van 

Rijn, 1984a and b). These computed loads are then used to compute channel bed elevation 

by solving sediment continuity equation.

The Sediment Continuity Equation

dz dq.
(1 + JL£ = 0  (4.97)

at ox

is solved using a forward time and centered space (FTCS) explicit scheme usually on the 

same computational grid as the water motion calculation.

The above partial differential equation is approximated as

71 + 1 77 71+ 1 77+1

(1 - p ) ZJ. i_  + q,^ x = o (4.98)
At 2 Ax

which can be expanded to yield

77+1 77 1 A t ,  77 + 1 77 + 1 s ___

~ 'z‘ T T x iq '>" (4-">

where:
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z "  - bottom elevation above a datum at time level n, L

Zj = bottom elevation above a datum at time level n+l, L

p  -  porosity o f  bed materials

q " j\  = total sediment transport rate at ( t ,x)  = ( n + l , j + l ), L 3 / L-T

q " j\  = total sediment transport rate at ( t ,x)  = ( n + l , j - \ ), L 3! L-T

Equation (4.99) generally produces unstable results {i.e. wiggles) when and where 

water flow is rapidly changed. The wiggles are growing with time marching and eventually 

give an uncontrollable situation. To avoid this situation a dissipative interface is introduced 

at alternate time steps so as to add a small amount of local dissipation such as:

2 " ' = yzy”, + (1 -  2 y ) z "  + y zjlx , 0<y^l/2 (4.100)

where z " ' is updated value and y  is a weighting factor. The dissipative interface will be 

further discussed in Ch.4.5.

Equation (4.99) requires both upstream (ocean) and downstream (bay) boundary 

conditions and the boundary conditions are treated in Ch.5.3 in detail.

After bed level computations are finished at the time level n+1, the following 

adjustments of the flow characteristics in the reach are performed as,
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q n+1 = w"+1 • h n+l 

A2 = z ”+1 -  z"  

A"+1 = /zn+1 -  A z  

Mn+1 = q n+' / h n+1

(4.101)

The above adjusted variables give the final values o f u and h at the n+1 time level and are 

used for the next time step water flow computations.

4.3.3 Stability

The standard technique for the analysis of the stability and convergence of a 

difference scheme is the Fourier series method attributed to von Neumann.

Fread (1974) conducted an early von Neumann analysis of the linearized mass 

equation and the momentum equation including a linearized boundary shear stress term. As 

expected, the friction produces more damping, some of it physically justified, some of it 

arising numerically from the form of the resistance term.

Evans (1977) considered the full nonlinear equations of de St. Venant with bed slope 

and boundary shear.

Ponce and Simons (1977) also included bed slope and boundary shear in the full 

equations and made extensive comparisons between the amplification factor and the 

continuum response function in the dissipative range, 0.5 <6^1.0. They concluded that 

numerical amplification or attenuation can occur depending upon the Froud number, Courant 

number, and the wave number in a very complicated way.
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Lyn and Goodwin (1987) examined the stability and convergence characteristics of 

the Preissmann’s four-point implicit finite difference scheme. The analysis was made for a 

general linear hyperbolic system of n first-order equations, but is restricted to the 

homogeneous or ffictionless case. In particular, the effect of a weighting factor in space, as 

well as in time, is considered.

A linear stability analysis for the homogeneous de St. Venant equations is fully 

discussed in Abbott and Basco (1989).

The detailed stability analysis for the non-homogeneous equations are beyond the 

intended scope of this investigation. However, from the various numerical experiments, 

actual computations in water motion have shown that the theoretically better value of the 

time weighting factor, 6=0.5 is impractical from the stability viewpoint, and that in practice 

following criteria are recommended.

ijr = 0.5 and  0 £ 0.65 (4.102)

The weighting factors of rjr=0.5 and 6=0.75 are used in this study.

An explicit criterion for the relation between time and length step for numerical 

stability could not be determined due to the nonlinearity of the sediment transport continuity 

equation and the smoothing of the bed elevations. However, it was empirically found that the 

use of the dissipative interface greatly improves stability o f the solution; otherwise, 

numerical oscillations may originate from the top of the barrier dune where flows change 

rapidly.
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4.4 Standard Tests for Computer Codes

The numerical tests provide a tool to check program correctness. Very many different 

testing tools can be employed and each of these is run over a wide range of flow conditions 

and discretization conditions during the development process.

The static and cosine swing tests for the Lax-Wendroff and Preissmann schemes, and 

a shock test for the Preissmann scheme are employed to check the conservation law and the 

growth of round off errors for each numerical code.

4.4.1 Static Test

It is the simplest tool to confirm the accuracy of the scheme and the computer code 

using the concept of conservation of mass. For ease of use the frictionless horizontal bed is 

considered and test conditions are as follows.

Initial Conditions

w(l, x) = 0 , h ( l ,  x) = 10m (4.103)

Boundary Conditions

u{t, 1) = 0 , u ( t , j j )  = 0 (4.104)

with Ax=100m, At=10sec and channel length, L=2,000m, and t/r=0.5 and 0=0.5 for the 

Preissmann scheme.

Figure 4.5 shows test results for the Lax-Wendroff and Preissmann schemes at
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various time levels. No depth change is shown at all time levels and the mass {i.e. volume 

of water) is well conserved over the computational domain. From these tests, both numerical 

codes should be regarded as correct and applicable for further numerical integration.

4.4.2 Cosine Swing Test

An example of one-dimensional testing for amplitude and phase error is a cosine 

swing test using the concept of periodic standing wave phenomenon.

Water Profile Equation and Wave Period

T = 2 L
(4.105)

Initial Conditions

(4.106)

Boundary Conditions

q{t, 1) = 0 j j )  = o (4.107)

where: a amplitude o f standing wave (= 0.1m)

L length o f  the channel (=2,000m)

still water depth (=10m)
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So bottom slope (=0)

energy slope (-0)

T wave period (=404sec)

(Ax, At) -  (100m, 10.1 sec)

(6, ip) = (0.5, 0.5)

For the Lax-Wendroff scheme, the method of characteristics that is discussed in Ch.4.2.2 is 

employed to compute additional boundary data at each boundary.

No amplitude and phase errors in both schemes are shown in Figure 4.6.

4.4.3 Shock Test

The shock test is more realistic than those previously employed because a bed slope 

and boundary shear are embodied. Introducing a sudden shock at downstream boundary may 

give an unstable situation at the early stage; however, after a certain time level a new steady 

state will be obtained over the whole computational domain.

Test conditions are as follows.

Chezy Coefficient and Steady Uniform Velocity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4.108)
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Initial Conditions

m(1, x) = V = 6.72m/sec , h{ 1, x )  = 10m (4.109)

Boundary Conditions

u(t, 1) = V = 6.72m/sec , h(t, j j )  = h( 1, x) + Ah = 11.0m (4.110)

where: S0 = 5*106

D90 = 4* 106m

(At, Ax) = (50sec, 100m)

(6, t(f) = (1.0, 0.5)

Shock test results are graphically presented in Figure 4.7 for the Preissmann scheme 

at various time steps. Initially unstable water depths in the domain go to a new steady state 

as we expected.

The above three tests are instrumental in determining the usefulness of the given 

finite difference scheme and computer codes. The utilities of the 6  parameter in the 

Preissmann scheme and the method of characteristics in the Lax-Wendroff scheme became 

apparent. In the cases of static and swing tests for the Preissmann scheme, the most accurate 

solution in both amplitude and phase was produced with 9=0.5. However, after adding 

boundary shear and bed slope in shock test 6 =1.0  increased the convergence rate for the final 

steady state without affecting the accuracy but using 6=1.0  gives the largest numerical 

dampening for unsteady flow problems.
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4.5 Dissipative Interface

The non-dissipative scheme accounts for the saw-tooth solutions obtained with this 

method when the shock waves are computed. In this study, large velocity, shallow water 

depth, and bottom elevation gradient when the flow approaches the top of dime result in 

growing oscillations (i.e., wiggles). The oscillations are steadily growing with time 

increment. In order to avoid these oscillations, supplementary dissipative terms should be 

added to the finite difference equations.

As shown by Abbott (1979, p.155), the Richtmyer (1963) version of the Lax- 

Wendroff, two-step scheme employs a numerical filtering device that has been called a 

dissipative interface, applied at alternate time steps so as to add a small amount of additional 

dissipation. What is done, in effect, is to average out the values o f each dependent variable 

obtained after alternate time steps. For each dependent variable, f(t, x), separately, this 

simplest of such filters is given by

= Y # 1  + (1 -  2y) f ” + Y fj"\ , Osysl  (4.111)

where y is a weighting factor. The dissipative interface can be useful to provide some 

dissipation to the non-dissipative scheme and to suppress nonlinear instabilities (Abbott and 

Basco, 1989).

The amplification factor of Equation (4.111) is determined by the linear stability 

analysis method which determines how each Fourier coefficient, £, behaves ( grows, decays, 

or stays constant) in time for any wave number, k.
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Let,

kk
fj = E  5* exp(zay) (4.112)

be a finite, Fourier series representation off(j, n) for all dimensionless wave numbers, a(k), 

k=l,2, . . .  ,kk, at time level, n. It is simply shown at any wave number (say k=l)  giving

f j 1 = l n e 'v  (4.113)

where £n is the Fourier coefficient for wave number 1 at time-level n, and substitute into the 

dissipative interface discretized equation then,

C  e ,aj = yEr e ,a(j' l) + (1 -  2y) Zn e iaj + yEf e ,a{i+X) (4.114)

and introducing also Euler's equation, e>e=cos6+i sind, we obtain

—  = A = 1 -  2y(l -  cosa)

= 1 -  2 y(l -  cos— ) 
N

(4.115)

where A is amplification factor, a=2n/N  and N  is the number of grid points.

For stable finite-difference schemes, the Fourier coefficients, E,, caxmot grow without 

bound, so that

Ml * 1 for stability. (4.116)
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Figure (4.8) shows amplitude portrait for dissipative interface for five values o f y. 

Taking y-1 /4  and y=0 gives a fully centered and an exact solution, respectively. Since 

amplitude portrait has no imaginary part, it cannot give any phase distortion. Also, from the 

discretized equation the following sum may then be constructed.

fo = (1 -  Y) / 0 + Y /,

f \  = Y f 0 + (1 -  2y) / ,  + Y f 2

f i  = Y f x + (1 " 2y) f 2 + Y / 3

(4.H7)

Thus, at least for a uniform grid spacing Ax, the total quantity o f f  over the computational 

domain is not changed by the dissipative interface but only its distribution is altered.

Figures (4.9) and (4.10) show instabilities of a scheme which is forward time and 

centered space without a dissipative interface using Dirichlet type and Neumann type 

boundary conditions, respectively. All data points beyond grid boundaries were excluded on 

the figures. Clearly, the numerical solution needs some mechanism to dissipate the short 

wave energy produced that is comparable to a natural, internal turbulence dissipator. After 

a dissipative interface (y=1/20) is added in unstable scheme, the instabilities are apparently 

suppressed in a controlled manner. This is shown in Figures (4.11) and (4.12) using Dirichlet 

type and Neumann type boundary conditions, respectively. In Figure (4.11), some unstable
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results are still shown at both boundaries due to ill posed boundary conditions {i.e., Dirichlet 

type boundary conditions).

The selection of y is the negotiation between an accuracy {i.e., dissipation) and a 

stability limit. The minimum y which makes the scheme stable is the most generous stability 

condition of the sediment continuity finite difference equation. It will be further discussed 

in Ch.6.1.
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5.0 INITIAL AND BOUNDARY CONDITIONS

5.1 Stage I - SBEACH Model

Numerical calculations start at the seaward end of the grid and proceed onshore 

through an explicit solution scheme for determining cross-shore wave height and a two time 

level explicit scheme for the sediment continuity equation.

Initial water depths over the computational domain are determined within the routine 

from the initial beach profile data which is surveyed above an arbitrary datum (MSL, NGVD, 

MLW, etc...).

The wave height, Hmo period, Tp and incident angle must be known at the most 

seaward grid point (given or calculated from some reference depth offshore) prior to starting 

the calculation. In this study, constant wave heights and periods with incident angles normal 

to the shoreline are used for wave boundary conditions.

The key ocean boundary condition is the storm surge hydrograph which for synthetic 

hurricane storms can be analytically described as an inverse hyperbolic squared,

(5.1)

where: h/(t) water surface elevation above MSL at ocean boundary, L

h,vom peak ocean storm surge height, L

T storm duration, T
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Figure 5.1 shows an example of surge hydrographs for the synthetic hurricanes for 

24 hours duration with three different peak ocean storm surge levels.

The total simulation time for SBEACH and storm surge elevation at the end of 

simulation are obtained from the many runs by trial and error until the water level at the 

ocean boundary exceeds the eroded dune crest elevation.

The astronomical tidal variation is not considered in this study because surge 

hydrograph itself includes the effects of mean tidal variation.

The ocean boundary water depth, h j t j  at the end of Stage I is defined as,

h o ( ( i) = d o + h o i h )  (5.2)

where: t, = SBEACH simulation time fo r Stage I, T

da = initial ocean boundary water depth defined below MSL, L

K  '((i) = water level rise at ocean boundary at the end o f  Stage I, L

Standard boundary conditions in the profile change model are no sand transport 

shoreward of the runup limit and seaward of the depth where significant sand movement 

occurs. The runup height is determined from an empirical expression derived from the large 

wave tank experiment data relating the height of the active profile to the surf similarity 

parameter and the deep water wave height. The depth of significant sand movement is 

determined through the exponential decay of the transport rate with distance seaward from 

the break point. If the transport rate decreases to a small predetermined value, the calculation 

stops, and the transport rate is set to zero at the next cell, making that cell the seaward
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boundary.

5.2 Stage II - Lax-W endroff Scheme

At the end of Stage I, ocean boundary water depth from Equation (5.2) and eroded 

dune/beach profile data are obtained. Boundary water depth in the bay is also determined 

from the bay storm surge hydrographs during SBEACH simulation period as,

V(',) =  nr ~-------- irrn— (5J)
2 « (t, -  t -  r a )

T

V ' i )  =  d b + W i )  (5.4)

where: hb '(tj = water level rise at bay boundary at the end o f  Stage I, L

hh(t[) = bay boundary water depth at time t, L

hbm = peak bay storm surge height, L

t  = time lag between ocean and bay, T

db = initial bay boundary water depth, L

with an assumption of no wave actions in the bay.

Figures 5.2 and 5.3 show storm surge hydrographs for both ocean and bay for a three- 

hour time lag with same and different energy levels, respectively.

Water level rises at the end of Stage I in ocean side are assumed to be constant for the initial 

water depth calculations in Stage II so that the water depth at the eroded dune crest becomes 

zero. Water level rises in bay side also assumed to be constant.
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A small uniform water depth (0.03 - 0.05m) is imposed on the dry bed between 

eroded dune crest and end of barrier islands. Water velocity over computational domain is 

initially set to zero.

For the water motion calculations, the ocean boundary condition is computed as,

ho ^ > ho ^ 0 +ho
1 1

cosh'
j  2 it: [ ( f, +t)-T/2]

I T

^ { 2 ^ 7 7 2 , 1 (5.5)

A similar formulation can be developed for the bay side of the barrier with now time, 

t = t-rfo r the boundary condition as,

hb(t)=hb(tx)+hbm 1 1

2%[t.-(x+T/2)] (5.6)

where t = tj+1,..., t2 and t2 is total simulation time in Stage I and n.

Additional boundary value, q (flow rate) at both boundaries can be computed using 

the method of characteristics in Ch.4.2.2.

There is no sediment transport in either direction in this extremely short time period 

for Stage II (generally less than 10 minutes) so that bottom boundary conditions are not 

necessary herein.

5.3 Stage III and IV - Preissmann / FTCS Schemes

At the end of Stage D, the initial conditions, u(x), h(x) and z(x) will be known across
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the entire length of the simulation from the ocean to the bay for use in Stages III and IV of 

the model. Note that in Lax-Wendroff scheme grid points which contain water flow 

information are not evenly spaced at both boundaries. Linear interpolation is employed to 

generate alternate grid points for Stages ID and IV.

For the water motion, water depths from the storm surge hydrograph are provided for 

the boundary conditions at ocean, h0(t) and bay, hb(t) as,

1 1
J27t[(f2+0-772] 

cosh i ---------------------
I T

, ,  2ir(/,-r/2)
cosh

Az,
i=i,

and

W = h b(t2) +hbm

cosh

(5.7)

2}2 K[{t2+t) - (T+Ti2)]\  c o J 27i[r2-(T+r /2 ) ] |

(5.8)

where: U

Az, =

Azjj

total simulation time for Stages I  and II, T

bed elevation difference between n and n+1 time level at ocean

boundary, L

n n+1 
Z, -  Zj

bed elevation difference between n and n+1 time level at bay
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boundary, L

n n+1 
Z-  ~ Z-  

JJ JJ

Water depths are adjusted from the cumulative bed level differences for both boundaries.

There are no specific boundary conditions required for the sediment transport 

formulas because sediment transport rates for both bed- and suspended-load can be computed 

from the known two variables (water depth and velocity). However, for the sediment 

continuity equation which is discretized in forward time and centered space (FTCS) explicit 

scheme, Neumann type boundary conditions are introduced at both boundaries as,

d z I _ d z , _ d z ,  d z  i
~dt 'J=l T t  'J=2 ~ T t ly=2 " d t '■/=3

(5.9)
d z  | _ dz | _ dz | _ dzi
Y t  w  d t  w -1" 8 t ^ _1 d t  lj=M~2

In difference form, Equation (5.9) can be written as,

z r 1 = z "  * 2 (z"+I -  z " )  -  (z3n+1 -  z3”)

(5.10)

From the numerous experiments, Equation (5.10) is found to give excellent boundary data 

without any disturbances which can appear from ill-posed boundary conditions.
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6.0 MODEL TESTS AND RESULTS

6.1 Volume Conservation Tests

In this section, particular attention is paid to the considerations of numerical accuracy. 

Although numerical errors are only partially responsible for model uncertainty, it is 

considered important to prevent them from becoming dominant. As a general rule, it can be 

required that numerical errors be an order of magnitude smaller than errors from physical 

sources, so that the model performances can be entirely attributed to the latter (Abbott and 

Cunge, 1982).

It is a desirable property that the solution of the finite difference equations satisfies 

the (discrete form of) overall mass-balance equation. This can be used as a check on program 

correctness.

The accumulation of volume of the element is computed from the difference between 

the leaving and entering amounts of sediment volume through both boundaries. If the change 

of the total volume during one time step is considered, the following equation may then be 

established.

= ■1- ' \  W , i f )  ~ 1)] (6.1)dt (1 -  p)

where S(t) is the total volume of bottom profile above a datum over the computational 

domain at time level t,p  is a porosity, and q,(t, 1) and q,(t, jj) are the sediment transport rates 

at the left hand and right hand boundaries, respectively. Equation (6.1) can be written in the 

form of discretization as follows.
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S(t+At)-S(t) _ 1 q,(t, jj) + q{t+&t, jj) qft, \)+qjt+At, 1)

At (1-p)
(6.2)

a t a.(t. ii) + a.(t+At. ii) a.(t. \)+a.(t+At. D
AS=S(t+At)-S(t) = At qft, j j )+q f t +At, jj)

(1 ~P) 2

The total volume change, AS in Equation (6.2) gives an exact result over the entire 

computational domain at time level t+At without any numerical error. This is an excellent 

tool to check the volume conservation of a numerical scheme.

In this study, a trapezoidal rule is used for volume calculation of bottom profiles 

produced in discrete form of the sediment continuity equation. The volume change from the 

numerical computation should contain a numerical inaccuracy due to numerical dissipations 

and instabilities, mainly coming from the truncation errors and ill-posed boundary conditions 

or the physics of the problem itself (i.e., hydraulic bores, breaking waves and flow 

separation, etc.).

Let V(t) be the total volume of a bottom profile calculated from the numerical 

integration at time level t, then the volume change, AV(t) between an initial profile (i.e., t=0), 

Vmt and an intermediate profile, AV(t) is computed as

W O  = Vini -  V(t) (6.3)

The total cumulative volume change over the computational domain, AV„ the cumulative 

volume outgoing through both boundaries, AV2, and the cumulative volume change from the 

numerical errors, AV\ in percent are defined as follows.
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For all simulations in volume conservation tests, an ocean side maximum storm surge 

level (-h om) of 5 m and a bay side maximum storm surge level (=hbJ  o f 4 m with 3 hours 

time lag are used for Stage III and IV periods (t=15.7 hrs).

Tables 6.1 through 6.15 show the results of volume losses at intermediate time steps 

using Dirichlet type boundary conditions (i.e., z$=constant at both boundaries). Grid sizes 

of Ax=20 m, At=8 sec (Tables 6.1 - 6.7), Ax=10 m, At=4 sec (Tables 6.8 - 6.14), and A x -5 

m, At=2 sec (Table 6.15) are employed. A dissipative interface has been applied with seven 

different weighting factors, y at every 20 time steps (mmm-20) except Table 6.15 that has 

y=l/4  and mmm=2. In these tables, AV1 is total volume losses in percent. Since there are no 

incoming and outgoing sediment transports, total volume losses come entirely from 

numerical errors due to the instabilities by an ill-posed boundary condition. Table 6.16 shows 

volume losses at the end of simulation with various y, mmm and grid sizes. The weighting 

factor of y =1/20 gives minimum volume losses except the case of Table 6.15 which is only 

stable at y =1/4, mmm=2. Figure 4.11 (p. 102) shows bottom profile changes at six different 

time levels with Ax=10 m, A t-4  sec, and y=l/20 but some instabilities are shown at both
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Table 6.1 Volume Losses at Intermediate Time Steps Using Dirichlet Type Boundary
Conditions. ( Ax=20 m, At=8 sec, y=1/200, and m m m -  2 0 )

Time Step VV HIP

m3/m
V(t),
m3/m

AV,
m3/m

<1

500 18,756 63 0.33

1,500 17,819 999 5.31

3,000 18,819 17,311 1,507 8.01

4,500 16,755 2,064 10.97

6,893* 14,915 3,903 20.74

* Scheme is unstable after 6,894 time step.

Table 6.2 Volume Losses at Intermediate Time Steps Using Dirichlet Type Boundary 
Conditions. ( Ax=20 m, At=8 sec, y=l/100, and mmm= 20)

Time Step V- ■v mp
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

500 18,759 60 0.32

1,500 17,979 840 4.46

3,000 18,819 17,719 1,100 5.85

4,500 17,736 1,083 5.75

7,062 17,590 1,229 6.53
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Table 6.3 Volume Losses at Intermediate Time Steps Using Dirichlet Type Boundary
Conditions. ( Ax=20 m, At=8 sec, y=l/50, and m m m -  20 )

Time Step V- •v inP
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

500 18,763 56 0.30

1,500 18,159 660 3.51

3,000 18,819 17,999 820 4.36

4,500 18,029 790 4.20

7,062 18,015 804 4.27

Table 6.4 Volume Losses at Intermediate Time Steps Using Dirichlet Type Boundary 
Conditions. ( Ax=20 m, At=8 sec, y=l/40, and mmm- 20 )

Time Step Vv ini?
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

500 18,765 54 0.29

1,500 18,203 616 3.27

3,000 18,819 18,060 759 4.04

4,500 18,090 729 3.87

7,062 18,080 739 3.93
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Table 6.5 Volume Losses at Intermediate Time Steps Using Dirichlet Type Boundary
Conditions. ( Ax=20 m, At=8 sec, y = 1/30, and m m m =  2 0 )

Time Step V- •v ini’
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

500 18,767 52 0.28

1,500 18,249 570 3.03

3,000 18,819 18,118 701 3.73

4,500 18,149 670 3.56

7,062 18,140 679 3.61

Table 6.6 Volume Losses at Intermediate Time Steps Using Dirichlet Type Boundary 
Conditions. ( Ax=20 m, At=8 sec, y = 1/20, and mmm= 20)

Time Step V
m3/m

V(t),
m3/m

AV,
m3/m

<1

500 18,769 50 0.27

1,500 18,292 527 2.80

3,000 18,819 18,166 653 3.47

4,500 18,198 621 3.30

7,062 18,188 631 3.35
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Table 6.7 Volume Losses at Intermediate Time Steps Using Dirichlet Type Boundary
Conditions. ( Ax=20 m, At=8 sec, y=l/10, and m m m =  20)

Time Step V- •v mi?
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

500 18,770 49 0.26

1,500 18,304 515 2.74

3,000 18,819 18,151 668 3.55

4,500 18,193 626 3.33

7,062 18,173 646 3.43
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Table 6.8 Volume Losses at Intermediate Time Steps Using Dirichlet Type Boundary
Conditions. ( Ax=10 m, At=4 sec, y=l/200, and m m m -  20)

Time Step V- ■ 
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

1,000 18,751 68 0.36

3,000 18,002 817 4.34

6,000 18,819 17,774 1,045 5.55

9,000 17,774 1,045 5.55

14,125 17,572 1,247 6.63

Table 6.9 Volume Losses at Intermediate Time Steps Using Dirichlet Type Boundary 
Conditions. ( Ax=10 m, At=4 sec, y = 1/ 100, and mmm= 20)

Time Step V- ■v ini’
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

1,000 18,759 61 0.32

3,000 18,197 623 3.31

6,000 18,819 18,058 762 4.05

9,000 18,070 749 3.98

14,125 18,051 768 4.08
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Table 6.10 Volume Losses at Intermediate Time Steps Using Dirichlet Type Boundary
Conditions. ( Ax=10 m, At=4 sec, y=l/50, and m m m -  2 0 )

Time Step V- ■y ini’
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

1,000 18,767 52 0.28

3,000 18,327 492 2.62

6,000 18,819 18,223 596 3.17

9,000 18,235 584 3.11

14,125 18,233 586 3.12

Table 6.11 Volume Losses at Intermediate Time Steps Using Dirichlet Type Boundary 
Conditions. ( Ax=10 m, At=4 sec, y=l/40, and mmm= 20 )

Time Step V- ■v mp
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

1,000 18,770 49 0.26

3,000 18,356 463 2.46

6,000 18,819 18,256 563 3.00

9,000 18,268 551 2.93

14,125 18,266 553 2.94
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Table 6.12 Volume Losses at Intermediate Time Steps Using Dirichlet Type Boundary
Conditions. ( Ax=10 m, At=4 sec, y = 1/30, and m m m =  2 0 )

Time Step V- ■v inp
m3/m

V(t),
m3/m

AV,
m3/m

<1

1,000 18,773 46 0.25

3,000 18,384 435 2.31

6,000 18,819 18,286 533 2.84

9,000 18,299 520 2.76

14,125 18,297 522 2.77

Table 6.13 Volume Losses at Intermediate Time Steps Using Dirichlet Type Boundary 
Conditions. ( Ax=10 m, At=4 sec, y=\!20, and mmm= 20)

Time Step V- • 
m3/m

V(t),
m3/m

AV,
m3/m

<1

1,000 18,777 42 0.23

3,000 18,407 412 2.19

6,000 18,819 18,305 514 2.73

9,000 18,321 498 2.65

14,125 18,318 501 2.66
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Table 6.14 Volume Losses at Intermediate Time Steps Using Dirichlet Type Boundary
Conditions. ( Ax=10 m, At=4 sec, y= l/10, and m m m =  2 0 )

Time Step V- ■v ini’
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

1,000 18,779 40 0.21

3,000 18,407 412 2.19

6,000 18,819 18,283 536 2.85

9,000 18,306 513 2.73

14,125 18,302 517 2.75
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Table 6.15 Volume Losses at Intermediate Time Steps Using Dirichlet Type Boundary
Conditions. ( Ax=5 m, At=2 sec, y= l/4 , and m m m =  2 )

Time Step V- ■ 
m3/m

V(t),
m3/m

AV,
m3/m

<1

2,000 18,743 76 0.41

6,000 17,979 840 4.47

12,000 18,819 17,405 1,414 7.51

18,000 17,431 1,388 7.38

28,250 17,039 1,780 9.46
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Table 6.16 Volume Losses at End of Simulation Using Various y, mmm and Grid Sizes 
Using Dirichlet Type Boundary Conditions.

a , mmm Ax,
m

At,
sec

V- ■v ini’
m3/m

V e„d’
m3/m

AV,
m3/m

<1

20 8 18,819 14,916 3,903 20.74

1 /2 0 0 ,2 0 10 4 18,819 17,572 1,247 6.63

5 2 Unstable

20 8 18,819 17,590 1,229 6.53

1 /1 0 0 ,2 0 10 4 18,819 18,051 768 4.08

5 2 Unstable

20 8 18,819 18,015 804 4.27

1/50, 20 10 4 18,819 18,233 586 3.11

5 2 Unstable

20 8 18,819 18,080 739 3.93

1 /4 0 ,2 0 10 4 18,819 18,266 553 2.94

5 2 Unstable

20 8 18,819 18,140 679 3.61

1/30, 20 10 4 18,819 18,297 522 2.77

5 2 Unstable

20 8 18,819 18,188 631 3.35

1 /2 0 ,2 0 10 4 18,819 18,319 500 2.66

5 2 Unstable

20 8 18,819 18,173 646 3.43

1 /1 0 ,2 0 10 4 18,819 18,302 517 2.75

5 2 Unstable

1 /4 ,2 5 2 18,819 17,039 1,780 9.46
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boundaries due to an ill-posed boundary condition. From the above results the Dirichlet type 

boundary condition for volume conservation checks is not suitable in this physical system.

Tables 6.17 through 6.32 show the results of volume losses at intermediate time steps 

using Neumann type boundary conditions. The results for AV, AV,, AV2, and AV3 are 

obtained from the Equations (6.3) and (6.4). In this case, a volume loss from the numerical 

error, AV3 is greatly reduced to the order of 10r3 in percent. The negative and positive number 

in AV3 mean a volume increase and loss due to numerical dissipation, respectively. 

Therefore, total volume losses over the computational domain are mainly based on the losses 

through both boundaries. Table 6.33 shows volume losses at the end of simulation with 

various y, mmm and grid sizes using Neumann type boundary conditions. A grid size of 

Ax=10 m, At=4 sec and a weighting factor of y=l/50 give most satisfactory results among 

overall simulations. Figure 4.12 (p. 103) shows bottom profile changes at six different time 

levels with Ax=10 m, A t-4  sec and y=l/20.

From the above volume conservation checks using both Dirichlet and Neumann type 

boundary conditions with different grid sizes and weighting factors, it can be concluded that 

the Dirichlet type boundary condition is not suitable for this study. Larger grid sizes in time 

and space give greater volume changes and numerical dissipation. A fine grid size of Ax=5 

m, At=2 sec gives unsatisfactory results because this results in severe instabilities and 

requires more artificial dissipation for stability.

For the model tests, a grid size of Ax=10 m, A t-4  sec and y=l/50-l/20  with 

mmm=20 are employed with various combinations of model parameters.
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Table 6.17 Volume Losses at Intermediate Time Steps Using Neumann Type Boundary
Conditions. ( Ax=20 m, At=8 sec, y=1/200, and m m m - 2 0 )

Time Step V- ■v hip

m3/m
V(t),
m3/m

AV,
m3/m

AV„
%

a v 2,
%

a v 3,
%

500 18,752 67 0.36 0.36 0.00

1,500 17,728 1,091 5.80 5.80 0.00

3,000 18,819 16,944 1,875 9.96 9.97 -0.01

4,500 17,314 1,505 7.80 8.01 -0.01

7,062 17,324 1,495 7.94 7.95 -0.01

Table 6.18 Volume Losses at Intermediate Time Steps Using Neumann Type Boundary 
Conditions. ( Ax=20 m, At=8 sec, y—1/100, and mmm=20)

Time Step V- •v inP

m3/m
V(t),
m3/m

AV,
m3/m

AV„
%

a v 2,
%

a v 3,
%

500 18,752 67 0.36 0.36 0.00

1,500 17,724 1,095 5.82 5.82 0.00

3,000 18,819 16,938 1,881 10.00 10.01 -0.01

4,500 17,327 1,492 7.93 7.94 -0.01

7,062 17,339 1,480 7.87 7.88 -0.01
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Table 6.19 Volume Losses at Intermediate Time Steps Using Neumann Type Boundary
Conditions. ( Ax=20 m, At=8 sec, y= l/50, and m m m =20  )

Time Step V- •v inp
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

a v 2,
%

a v 3,
%

500 18,751 68 0.36 0.36 0.00

1,500 17,708 1,111 5.90 5.90 0.00

3,000 18,819 16,893 1,926 10.23 10.24 -0.01

4,500 17,300 1,519 8.07 8.08 -0.01

7,062 17,324 1,495 8.02 8.02 0.00

Table 6.20 Volume Losses at Intermediate Time Steps Using Neumann Type Boundary 
Conditions. ( Ax=20 m, At=8 sec, y=l/40, and mmm=20 )

Time Step V- ■v ini?
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

a v 2,
%

a v 3,
%

500 18,751 68 0.36 0.36 0.00

1,500 17,697 1,121 5.96 5.96 0.00

3,000 18,819 16,862 1,957 10.40 10.41 -0.01

4,500 17,273 1,546 8.21 8.22 -0.01

7,062 17,282 1,537 8.17 8.17 0.00
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Table 6.21 Volume Losses at Intermediate Time Steps Using Neumann Type Boundary
Conditions. ( Ax=20 m, At=8 sec, y=T/30, and m m m = 2 0 )

Time Step V- ■v ini’
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

a v 2,
%

a v 3,
%

500 18,750 69 0.36 0.36 0.00

1,500 17,676 1,143 6.07 6.07 0.00

3,000 18,819 16,803 2,016 10.71 10.72 -0.01

4,500 17,219 1,600 8.50 8.50 0.00

7,062 17,224 1,595 8.48 8.48 0.00

Table 6.22 Volume Losses at Intermediate Time Steps Using Neumann Type Boundary 
Conditions. ( Ax=20 m, At=8 sec, y=T/20, and mmm=20)

Time Step V- • 
m3/m

V(t),
m3/m

AV,
m3/m

AV,,
%

a v 2,
%

a v 3,
%

500 18,749 70 0.37 0.37 0.00

1,500 17,627 1,192 6.33 6.33 0.00

3,000 18,819 16,667 2,152 11.44 11.44 0.00

4,500 17,086 1,733 9.21 9.21 0.00

7,062 17,079 1,740 9.25 9.23 0.02
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Table 6.23 Volume Losses at Intermediate Time Steps Using Neumann Type Boundary
Conditions. ( Ax=20 m, At=8 sec, y = 1/ 10, and m m m =20  )

Time Step V- •v im>
m3/m

V(t),
m3/m

AV,
m3/m

AVj,
%

a v 2,
%

a v 3,
%

500 18,742 77 0.41 0.40 0.01

1,500 17,455 1,364 7.25 7.24 0.01

3,000 18,819 16,184 2,635 14.00 13.99 0.01

4,500 16,587 2,232 11.86 11.84 0.02

7,062 16,517 2,302 12.23 12.20 0.03
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Table 6.24 Volume Losses at Intermediate Time Steps Using Neumann Type Boundary
Conditions. ( Ax=10 m, At=4 sec, y = 1/200, and m m m = 2 0 )

Time Step V- ■v ini?
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

a v 2,
%

a v 3,
%

1,000 18,753 66 0.36 0.36 0.00

3,000 17,732 1,087 5.78 5.78 0.00

6,000 18,819 16,945 1,874 9.96 9.97 -0.01

9,000 17,333 1,486 7.90 7.91 -0.01

14,125 17,350 1,469 7.81 7.82 -0.01

Table 6.25 Volume Losses at Intermediate Time Steps Using Neumann Type Boundary 
Conditions. ( Ax=10 m, At=4 sec, y = 1/ 100, and mmm=20)

Time Step V- •v mi?
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

a v 2,
%

a v 3,
%

1,000 18,752 67 0.36 0.36 0.00

3,000 17,730 1,089 5.79 5.79 0.00

6,000 18,819 16,942 1,877 9.98 9.99 -0.01

9,000 17,358 1,461 7.76 7.77 -0.01

14,125 17,379 1,440 7.65 7.66 -0.01
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Table 6.26 Volume Losses at Intermediate Time Steps Using Neumann Type Boundary
Conditions. ( Ax=10 m, At=4 sec, y=l/50, and m m m =2 0 )

Time Step V- •y im>
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

a v 2,
%

AV3,
%

1,000 18,753 66 0.36 0.36 0.00

3,000 17,726 1,093 5.81 5.81 0.00

6,000 18,819 16,930 1,889 10.04 10.05 -0.01

9,000 17,371 1,448 7.69 7.70 -0.01

14,125 17,394 1,425 7.57 7.58 -0.01

Table 6.27 Volume Losses at Intermediate Time Steps Using Neumann Type Boundary 
Conditions. ( Ax=10 m, At=4 sec, y=l/40, and mmm=20)

Time Step V- •v im>
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

a v 2,
%

a v 3,
%

1,000 18,752 67 0.36 0.36 0.00

3,000 17,722 1,097 5.83 5.83 0.00

6,000 18,819 16,919 1,900 10.10 10.11 -0.01

9,000 17,366 1,453 7.72 7.73 -0.01

14,125 17,389 1,430 7.60 7.60 0.00
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Table 6.28 Volume Losses at Intermediate Time Steps Using Neumann Type Boundary
Conditions. ( Ax=10 m, At=4 sec, y=l/30, and m m m =20 )

Time Step V- ■v im>
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

a v 2,
%

a v 3,
%

1,000 18,752 67 0.36 0.36 0.00

3,000 17,714 1,105 5.87 5.87 0.00

6,000 18,819 16,895 1,924 10.22 10.23 -0.01

9,000 17,347 1,472 7.82 7.82 0.00

14,125 17,368 1,451 7.71 7.71 0.00

Table 6.29 Volume Losses at Intermediate Time Steps Using Neumann Type Boundary 
Conditions. ( Ax=10 m, At=4 sec, y-1/20, and mmm=20 )

Time Step V- •v inp

m3/m
V(t),
m3/m

AV,
m3/m

AV„
%

a v 2,
%

a v 3,
%

1,000 18,752 67 0.36 0.36 0.00

3,000 17,692 1,127 5.99 5.99 0.00

6,000 18,819 16,831 1,988 10.57 10.57 0.00

9,000 17,286 1,533 8.15 8.15 0.00

14,125 17,302 1,518 8.06 8.06 0.00
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Table 6.30 Volume Losses at Intermediate Time Steps Using Neumann Type Boundary
Conditions. ( Ax=10 m, At=4 sec, y=l/10, and m m m = 2 0 )

Time Step
y . .v ini?

m3/m
V(t),
m3/m

AV,
m3/m

AV„
%

a v 2,
%

a v 3,
%

1,000 18,749 70 0.37 0.37 0.00

3,000 17,602 1,217 6.47 6.46 0.01

6,000 18,819 16,586 2,233 11.87 11.87 0.00

9,000 17,030 1,789 9.51 9.50 0.01

14,125 17,021 1,798 9.55 9.54 0.01
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Table 6.31 Volume Losses at Intermediate Time Steps Using Neumann Type Boundary
Conditions. ( Ax=5 m, At=2 sec, y= l/16, and m m m =5  )

Time Step V- ■v mi J

m3/m
V(t),
m3/m

AV,
m3/m

AV„
%

a v 2,
%

a v 3,
%

2,000 18,747 72 0.38 0.38 0.00

6,000 17,548 1,271 6.76 6.75 0.01

12,000 18,819 16,434 2,385 12.68 12.67 0.01

18,000 16,878 1,941 10.32 10.31 0.01

28,250 16,855 1,964 10.44 10.43 0.01

Table 6.32 Volume Losses at Intermediate Time Steps Using Neumann Type Boundary 
Conditions. ( Ax=5 m, At=2 sec, 7=1/8, and mmm=5 )

Time Step V- •v inP
m3/m

V(t),
m3/m

AV,
m3/m

AV„
%

a v 2,
%

a v 3,
%

2,000 18,737 82 0.44 0.44 0.00

6,000 17,280 1,539 8.18 8.17 0.01

12,000 18,819 15,629 3,190 16.95 16.94 0.01

18,000 16,080 2,739 14.55 14.53 0.02

28,250 15,936 2,883 15.32 15.30 0.02
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Table 6.33 Volume Losses at End of Simulation Using Various y, mmm and Grid Sizes 
Using Neumann Type Boundary Conditions.

a,
mmm

Ax,
m

At,
sec

V- ■y im>
m3/m

^end»
m3/m

AV,
m3/m

AV„
%

a v 2,
%

a v 3,
%

1/200,
20

20 8 18,819 17,324 1,495 7.94 7.95 -0.01

10 4 18,819 17,350 1,469 7.81 7.82 -0.01

5 2 Unstable

1/100, 
' 20

20 8 18,819 17,339 1,480 7.87 7.88 -0.01

10 4 18,819 17,379 1,440 7.65 7.66 -0.01

5 2 Unstable

1/50,
20

20 8 18,819 17,310 1,509 8.02 8.02 0.00

10 4 18,819 17,394 1,425 7.57 7.57 0.00

5 2 Unstable

1/40,
20

20 8 18,819 17,282 1,537 8.17 8.17 0.00

10 4 18,819 17,389 1,430 7.60 7.60 0.00

5 2 Unstable

1/30,
20

20 8 18,819 17,224 1,595 8.48 8.48 0.00

10 4 18,819 17,368 1,451 7.71 7.71 0.00

5 2 Unstable

1/20,
20

20 8 18,819 17,079 1,740 9.24 9.23 0.01

10 4 18,819 17,301 1,518 8.06 8.06 0.00

5 2 Unstable

1/10,
20

20 8 18,819 16,517 2,302 12.24 12.20 0.04

10 4 18,819 17,021 1,798 9.55 9.54 0.01

5 2 Unstable

1/16,
5

5 2 18,819 16,855 1,964 10.44 10.43 0.01

1/8,
5

5 2 18,819 15,936 2,883 15.32 15.30 0.02
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6.2 Model Results

A typical barrier island’s profile at Sandbridge, Virginia which is about 300m wide 

is used for the bathymetry input. The elevation of the top of the dune is 2.07m above mean 

sea level (MSL).

Five different storm surge levels are selected from the probabilities of exceedance 

curves (U.S. Army, 1989), and equivalent wave heights are taken from the annual cumulative 

wave height distributions curve (Leffler et ah, 1993). Wave periods can be computed using 

the assumption that the local wave steepness, Hmo /L where L is the local wave period, is 

constant for all waves. The number of values derived for each energy level is shown in Table 

6.34.

Table 6.34 Summary of Employed Storm Surge Levels, Wave Heights and Periods.

Return period 

in year
100 350 500 800 1,000

h0m>m 3.0 3.5 4.0 4.5 5.0

Hmo,m 5.08 5.20 5.32 5.45 5.54

Tp, sec 14.31 14.54 14.78 15.01 15.25

6.2.1 Stage I - Dune / Beach Erosion

In Stage I, the following parametric coefficients (from Basco and Shin, 1992 and 

1993) are used for SBEACH simulation with Ax=5.0m and At=5.0min.

• Transport rate coefficient, K=1.5*10~6 m4/N.
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• Coefficient fo r slope-dependent term, e=0.002 m2/sec.

• Transport rate decay coefficient multiplier, A=0.40.

• Maximum profile slope prior to avalanching in degrees, Bmax=15 °.

• Effective grain size diameter, D5O=0.3mm.

• Constant wave heights and periods.

• Variable water levels.

SBEACH simulation results are summarized in Table 6.35 for various storm surge 

levels and wave conditions. The volume changes between initial profile, Vini and final profile, 

Vfm are investigated in volume, AV  and percent volume, AV, losses with the changes of dune 

crest elevations, Az. In Stage I, it is assumed that wave actions in the bay are negligible so 

that no sediment transport takes place. Simulation results are shown in Figures 6.1 through 

6.5 for the initial and final profiles with five different storm surge and wave energy levels. 

Also, Figures 6.6 through 6.10 show zoomed barrier island cross-sectional profiles.

6.2.2 Stage II - Overwash / Overland Flow

In this stage, the Lax-Wendroff two-step explicit scheme is used for the water motion 

calculation and the profile change is modeled as a diffusion process (diffusion coefficient, 

K=l/16) with no sediment transport in either direction. From the stability analyses, the space 

step, Ax=10m and time step, At=0.5sec are used for all simulations.

The simulation time is about ten minutes; however, it can be extended, depending on 

the stability condition of the numerical scheme under given storm surge levels. Required
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Table 6.35 SBEACH Simulation Results for Various Storm Surge Levels and Wave 
Conditions.

Storm No. V- ■v ini*
m3/m

Vfm,
m3/m

AV,
m3/m

AV„
%

Az,
m

1

hom = 5.0 m 
Hmo = 5.54 m 
Tp= 15.25 sec 
t = 8 hr

349 347.8 1.20 0.34 0.14

2

h0m = 4.5 m 
Hmo = 5.45 m 
Tp= 15.01 sec 
t = 8.25 hr

349 347.6 1.40 0.40 0.14

3

hom = 4.0 m 
Hmo = 5.32 m 
Tp= 14.78 sec 
t = 8.53 hr

349 347.3 1.70 0.49 0.15

4

hom = 3.5 m 
Hmo = 5.20 m 
Tp =14.54 sec 
t = 8.87 hr

349 347.5 1.50 0.43 0.16

5

hom = 3.0 m 
Hmo = 5.08 m 
Tp= 14.31 sec 
t = 9.3 hr

349 346.6 2.40 0.69 0.16
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Figure 6.1 SBEACH Results for hom=5m,Hmo=5.54m,Tp= 15.25s and tl= 28,800s.
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Figure 6.2 SBEACH Results for hom=4.5m,Hmo=5.45m,Tp=15.01s and tl=29,700s.
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input data for the simulations are as follows.

• Dune crest elevation above MSL to compute water depth at both ocean and bay 

sides.

• Elevation o f MSL above an arbitrary datum.

• Distance between ocean boundary and eroded dune crest.

• Distance between ocean boundary and the most landward point o f  barrier island 

after SBEACH simulation to define dry bed distances from eroded dune crest.

• Initial water depth on dry bed is about 0.03-0.05m which is changed depending on 

the stability in each simulation.

• Weighting factor in dissipative interface, y -0 .25.

Figure 6.11 illustrates an example of the water surface profile changes between eroded 

(i.e. by the SBEACH simulations) dune crest and end of barrier islands cross-section for ten 

minutes duration. Water velocity changes are also shown in Figure 6.12.

6.2.3 Stage III and IV - Storm Tides

The Preissmann scheme for the water motion, and the forward time and centered space 

explicit scheme for the sediment transport are used to compute profile changes. The space 

step of ten meters and time step of four seconds are chosen for the entire simulations. 

Required input data in these stages are as follows.

• Weighting factor for space in Preissmann scheme, t/r=0.5.

• Weighting factor for time in Preissmann scheme, 0=0.75.
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• Porosity o f bed materials, p -0 .35.

• Maximum volumetric bed concentration, C0=0.65.

• Weighting factor in dissipative interface, y=l/50 -1/20.

The simulation stops when the flow depth is smaller than initial base flow depth 

( ~0.03m) at the eroded dune crest in order to overcome numerical instability which comes 

from zero depth situation.

Table 6.36 shows various simulation cases depending on the ocean and bay peak storm 

surge levels, time lags between ocean and bay storm surge rising, sediment diameters, and 

storm durations. The relationship between Dso and D90 ( D90~1.3D50) was obtained from the 

grain size analysis at Dam Neck Naval Facility, Virginia (Basco, 1996).

Figures 6.13 through 6.91 show bed profile changes in Stages HI and IV for the various 

combinations of parameters which are indicated in Table 6.36.

The volume changes, retreat speeds and centroid positions of barrier islands above 

MLLW with various storm surge elevations are summarized in Table 6.37 and graphically 

presented in Figures 6.92 through 6.101. The large black dots indicate the centroid positions. 

The results of model sensitivity tests for the various time lags are shown in Table 6.38 and 

Figures 6.102 through 6.108. The results of model tests for the various sand diameters and 

storm durations are summarized in Tables 6.39 and 6.40, and graphically presented in 

Figures 6.109 through 6.114 and 6.115 through 6.117, respectively.

All the above graphical results are plotted at a large distorted scale (elevation to distance) 

about 1:125, so some confusion may arise when the profile changes are read. Therefore, less
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distorted scaled (1:25) plots are provided in Figures 6.118 and 6.119.

Water depth and velocity variations at the initial top of dune in Figure 6.120 (p.272) 

show directional changes of water flows from ocean to bay (positive velocity) and bay to 

ocean (negative velocity).

The suspended sediment transport ratio, qs/q, is shown in Figure 6.121 (p.273) and total 

sediment transport rates, q, at the initial top of dune are presented in Figure 6.122 (p.274) for 

various time lags.
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Table 6.36 Running Table for Various Combinations o f Important Parameters.

Fig. No. hom>
m

b̂m’
m

l̂ag’
hr

5̂05
mm mm

Duration,
hr

6.1 5 5 0 0.3 0.4 24

6.2 5 5 1 0.3 0.4 24

6.3 5 5 2 0.3 0.4 24

6.4 5 5 3 0.3 0.4 24

6.5 5 5 4 0.3 0.4 24

6.6 5 5 5 0.3 0.4 24

6.7 5 5 6 0.3 0.4 24

6.8 4.5 4.5 0 0.3 0.4 24

6.9 4.5 4.5 1 0.3 0.4 24

6.10 4.5 4.5 2 0.3 0.4 24

6.11 4.5 4.5 3 0.3 0.4 24

6.12 4.5 4.5 4 0.3 0.4 24

6.13 4.5 4.5 5 0.3 0.4 24

6.14 4.5 4.5 6 0.3 0.4 24

6.15 4 4 0 0.3 0.4 24

6.16 4 4 1 0.3 0.4 24

6.17 4 4 2 0.3 0.4 24

6.18 4 4 3 0.3 0.4 24

6.19 4 4 4 0.3 0.4 24

6.20 4 4 5 0.3 0.4 24

6.21 4 4 6 0.3 0.4 24

6.22 3.5 3.5 0 0.3 0.4 24

6.23 3.5 3.5 1 0.3 0.4 24

6.24 3.5 3.5 2 0.3 0.4 24
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6.25 3.5 3.5 3 0.3 0.4 24

6.26 3.5 3.5 4 0.3 0.4 24

6.27 3.5 3.5 5 0.3 0.4 24

6.28 3.5 3.5 6 0.3 0.4 24

6.29 3 3 0 0.3 0.4 24

6.30 3 3 1 0.3 0.4 24

6.31 3 3 2 0.3 0.4 24

6.32 3 3 3 0.3 0.4 24

6.33 3 3 4 0.3 0.4 24

6.34 3 3 5 0.3 0.4 24

6.35 3 3 6 0.3 0.4 24

6.36 5 4 0 0.3 0.4 24

6.37 5 4 1 0.3 0.4 24

6.38 5 4 2 0.3 0.4 24

6.39 5 4 3 0.3 0.4 24

6.40 5 4 4 0.3 0.4 24

6.41 5 4 5 0.3 0.4 24

6.42 5 4 6 0.3 0.4 24

6.43 5 3 0 0.3 0.4 24

6.44 5 3 1 0.3 0.4 24

6.45 5 3 2 0.3 0.4 24

6.46 5 3 3 0.3 0.4 24

6.47 5 3 4 0.3 0.4 24

6.48 5 3 5 0.3 0.4 24

6.49 5 3 6 0.3 0.4 24

6.50 4 3 0 0.3 0.4 24
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6.51 4 3 1 0.3 0.4 24

6.52 4 3 2 0.3 0.4 24

6.53 4 3 3 0.3 0.4 24

6.54 4 3 4 0.3 0.4 24

6.55 4 3 5 0.3 0.4 24

6.56 4 3 6 0.3 0.4 24

6.57 4.5 4 0 0.3 0.4 24

6.58 4.5 4 1 0.3 0.4 24

6.59 4.5 4 2 0.3 0.4 24

6.60 4.5 4 3 0.3 0.4 24

6.61 4.5 4 4 0.3 0.4 24

6.62 4.5 4 5 0.3 0.4 24

6.63 4.5 4 6 0.3 0.4 24

6.64 4.5 3 0 0.3 0.4 24

6.65 4.5 3 1 0.3 0.4 24

6.66 4.5 3 2 0.3 0.4 24

6.67 4.5 3 3 0.3 0.4 24

6.68 4.5 3 4 0.3 0.4 24

6.69 4.5 3 5 0.3 0.4 24

6.70 4.5 3 6 0.3 0.4 24

6.71 4 3 3 0.1 0.13 24

6.72 4 3 3 0.2 0.26 24

6.73 4 3 3 0.3 0.4 24

6.74 4 3 3 0.4 0.52 24

6.75 4 3 3 0.6 0.78 24

6.76 4 3 3 1.0 1.3 24
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Table 6.36 : continued

6.77 4 3 3 0.3 0.4 12

6.78 4 3 3 0.3 0.4 24

6.79 4 3 3 0.3 0.4 48
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Table 6.37 Volume Changes, Retreat Speeds and Centroid Positions o f Barrier Islands
above MLLW in Stages III and IV with Various Storm Surge Elevations.
(t,ag=3 hr, D50=0.3 mm and T=24 hr)

horn*
m

hbm>
m

Time level 
(At=4sec)

Volume,
m3/m

xc,
m

Zo
m

Speed,
m/sec

5.0 5.0

0 348.88 682.64 10.37 0

1,000 296.24 805.06 10.07 0.031

3,000 84.75 1,234.03 9.74 0.054

4.5 4.5

0 348.58 682.66 10.37 0

1,000 298.36 801.21 10.07 0.030

3,000 . 103.12 1,200.65 9.77 0.050

4.0 4.0

0 348.33 682.86 10.37 0

1,000 301.94 794.71 10.07 0.028

3,000 129.94 1,152.86 9.79 0.045

3.5 3.5

0 348.68 683.03 10.37 0

1,000 306.87 787.79 10.07 0.026

3,000 165.83 1,089.43 9.81 0.038

6,000 6.45 949.75 9.59 -0.012

3.0 3.0

0 347.43 682.85 10.37 0

1,000 311.87 777.58 10.08 0.024

3,000 216.24 1,002.64 9.85 0.028

6,000 19.23 813.75 9.62 -0.016

5.0 4.0

0 348.88 682.64 10.37 0

1,000 292.07 808.91 10.06 0.032

3,000 55.54 1,251.88 9.68 0.055

5.0 3.0
0 348.88 682.64 10.37 0

1,000 287.42 812.31 10.05 0.032
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Table 6.37: continued

5.0 3.0 3,000 8.28 1,531.94 9.60 0.090

4.0 3.0

0 348.33 682.86 10.37 0

1,000 296.49 799.75 10.06 0.029

3,000 93.79 1,180.12 9.75 0.048

6,000 10.18 1,377.62 9.60 0.016

4.5 4.0

0 348.58 682.66 10.37 0

1,000 295.81 803.39 10.06 0.030

3,000 88.82 1,210.32 9.75 0.051

4.5 3.0

0 348.58 682.66 10.37 0

1,000 291.26 807.23 10.05 0.031

3,000 58.93 1,227.16 9.68 0.052
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Table 6.38 Volume Changes, Retreat Speeds and Centroid Positions o f Barrier Islands
above MLLW in Stages III and IV with Various Time Lags. (hom=4.0 m,
hbm=3.0 m, D5O=0.3 mm and T=24hr)

Time lag, 
hr

Time level 
(At=4sec)

Volume,
m3/m

xc,
m

Zc>
m

Speed,
m/sec

0 348.33 682.86 10.37 0

0.0

1,000 336.66 733.51 10.22 0.013

3,000 285.16 941.37 9.97 0.026

6,000 183.29 1,159.06 9.75 0.018

9,000 155.39 1,178.55 9.72 0.002

13,628 142.60 1,169.88 9.71 0.000

1.0

1,000 322.27 772.31 10.13 0.022

3,000 217.95 1,055.60 9.88 0.035

6,000 166.07 1,184.63 9.78 0.011

9,000 156.29 1,177.50 9.76 -0.001

13,628 145.33 1,171.49 9.75 0.000

2.0

1,000 306.47 790.82 10.08 0.027

3,000 144.38 1,139.09 9.80 0.044

6,000 80.59 1,281.66 9.71 0.012

9,000 32.75 1,140.41 9.63 -0.012

13,628 27.74 1,130.44 9.62 -0.001

3.0

1,000 296.49 799.75 10.06 0.029

3,000 93.79 1,180.12 9.75 0.048

6,000 10.18 1,377.62 9.60 0.016

4.0
1,000 290.18 804.61 10.04 0.030

3,000 60.77 1,197.76 9.69 0.049
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Table 6.38 : continued

5.0
1,000 286.62 807.05 10.03 0.031

3,000 27.14 1,180.00 9.63 0.047

6.0
1,000 284.44 808.41 10.03 0.031

3,000 6.52 1,183.44 9.59 0.047
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Table 6.39 Volume Changes, Retreat Speeds and Centroid Positions o f Barrier Islands
above MLLW in Stages IE and IV with Various Sand Diameters. (bui =4 fi m,
hbm=3.0 m, tlag=3.0hr and T=24hr)

D50)
mm

Time level 
(At=4sec)

Volume,
m3/m

x*
m m

Speed,
m/sec

0 348.33 682.86 10.37 0

0.1

1,000 305.06 719.97 10.23 0.009

3,000 229.92 823.50 10.09 0.013

6 ,000 167.90 903.16 9.96 0.007

9,000 86.36 837.19 9.76 -0.005

13,628 25.79 695.73 9.65 -0.008

0.2

1,000 309.15 772.43 10 .10 0.022

3,000 155.71 1,057.14 9.84 0.036

6,000 • 73.79 1,202.18 9.71 0.012

0.3

1,000 296.49 799.75 10.06 0.029

3,000 93.79 1,180.12 9.75 0.048

6 ,000 10.18 1,377.62 9.60 0.016

0.4
1,000 288.26 819.69 10 .02 0.034

3,000 43.70 1,288.13 9.67 0.059

0 .6
1,000 298.41 798.98 10.04 0.029

3,000 73.37 1,207.84 9.70 0.051

1.0

1,000 317.69 754.47 10.11 0.018

3,000 180.36 996.42 9.83 0.030

6 ,0 0 0 101.74 1,114.09 9.72 0.010

9,000 2.35 987.74 9.58 -0.011
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Table 6.40 Volume Changes, Retreat Speeds and Centroid Positions o f Barrier Islands
above MLLW in Stages ID and IV with Various Storm Durations. (hom=4.0
m, hbm=3.0 m, t, =3.0hr and Dso=0.3 mm)

Duration,
hr

Time level 
(At=4sec)

Volume,
m3/m

xc,
m

Zo
m

Speed,
m/sec

0 349.83 682.04 10.38 0

12
500 315.25 760.54 10.15 0.039

1,500 175.71 988.00 9.85 0.057

3,000 59.79 1,185.68 9.68 0.033

0 348.33 682.86 10.37 0

24
1,000 296.49 799.75 10.06 0.029

3,000 93.79 1,180.12 9.75 0.048

6,000 10.18 1,377.62 9.60 0.016

0 349.92 682.53 10.35 0

1,000 324.91 752.63 10.11 0.018

48 2,000 274.28 863.38 9.95 0.028

3,000 204.55 998.70 9.83 0.034

6,000 0.511 1,556.93 9.57 0.043
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Figure 6.13 Bed Elevation Changes in  Stage III/IV at t=0, 1000, 3000, 6000,
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Figure 6.14 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
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Figure 6.15 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
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Figure 6.16 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
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Figure 6 .IQ Bed Elevation Changes in  Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 14125. (hom=5m , htm=5m, t!,,g=5hr, DBO=0.3mm )
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Figure 6.19 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 14125. (hom=5m , hbm=5m, tlaj=6hr, D6O=0.3mm)
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Figure 6.20 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 11111. (hom=4.5m, hbm=4.5m , tu^Ohr, D50=0.3m m )
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Figure 6.23 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13890. (h„m=4.5m , hbm=4.5m, t|aj=3hr, DSo-0.3m m )
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Figure 6.24 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13890. (hom=4.5m, hbm=4.5m, tlax=4hr, D80=0.3m m )
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Figure 6.25 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13890. (hom=4.5m, nbm=4.5m, ttas=5hr, Dg0=0.3mm )
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Figure 6.26 Bed Elevation Changes in Stage III/IV at 1=0, 1000, 3000, 6000,
9000 and 13890. (hom=4.5zn, Hbm=4.5m , tUf=6hr, DM=0,3m m )



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

14

1 2 -
Ocean Bay

1 0 - MLLW

Legend
4 -

  t=0
  t= l,0 0 0
 t=3,000
 t=6,000
 t=7,131

2 -

750 1000 22500 250 500 1250 1500 1750 2000
Distance, m

Figure 6.27 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
and 7131. (hom=4.0m , hbm=4.0m, tlag=0hr, D60=0.3mm)
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Figure 6.28 Bed Elevation Changes in Stage III/IV at 1=0, 1000, 3000, 6000,
9000 and 13628. (hom=4.0m, nbm=4.0m, tu*=lhr, Dto=0.3m m )
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Figure 6.29 Bed Elevation Changes in  Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13628. (hom=4.0m, nta=4.0m , tiaf=2hr, DBO=0.3mm )
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Figure 6.30 Bed Elevation Changes in  Stage III/IV a t t=0, 1000, 3000, 6000,
9000 and 13628. (hom=4.0m , hbm=4.0m I tief=3hr, DM=0.3m m )
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Figure 6.32 Bed Elevation Changes in  Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13626. (hom=4.0m , nbm=4.0m, tlM=5hr, D60=0.3mm )
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Figure 6.33 Bed Elevation Changes in  Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13628. (hom=4.0m, nbm=4.0m , tiaf=6hr, DBO=0.3m m )
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Figure 6.34 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
and 7167. (hom=3.5m , hbm=3.5m, tlgI=0hr, DSo=0.3mm)
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Figure 6.35 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13312. (hom=3.5m, hi,m=3.5m , t1(!a= lh r , DBO=0.3mm )
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Figure 6.36 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13312. (hom=3.5m, hbm=3.5m, tu^^hr, Dso=0.3m m )
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Figure 6.37 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13312. (hom=3.5m, nbm=3.5m, tias=3hr, DSo=0.3mm)
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Figure 6.38 Bed Elevation Changes in Stage l l l / T V  a t t=0, 1000, 3000, 6000,
9000 and 13312. (hom=3.5m, hbm"3.5m, tiai=4hr, D80= 0.3mm)
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Figure 6.39 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13312. (hom=3.5m, hbm=3.5m, tUf=5hr, DBO=0.3m m )
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Figure 6.40 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13312. (hom=3.5m, hbm= 3*5ni( 6hr« Dqo~
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Figure 6.41 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
and 6348. (hom=3.0m , hbm=3.0m, tls<=0hr, DBO=0.3mm)
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Figure 6.42 Bed Elevalion Changes in Slage III/IV a l 1=0, 1000, 3000, 6000,
9000 and 11286. (hom=3.0m, hbm=3 ■0zxi| tiij" 1 hri Deo-0 .3m m )
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Figure 6.44 Bed Elevation Changes in Stage l l l / T V  a t t=0, 1000, 3000, 6000,
9000 and 12897. (hom=3.0m, nbm=3.0m , tlai=3hr, DBO=0.3m m )
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Figure 6.45 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 12897. (hom=3.0m, hbm=3.0m ) tlsf=4hr, Dso=0.3m m )
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Figure 6.46 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 12897. (hom=3.0m, hbm=3.0m , tlaa=5hr, DM=0.3m m )
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Figure 6.47 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 12897. (hom=3.0m, hbm=3.0m, tug=6hr, DM=0.3mm )
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Figure 6.4B Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 14125. (hom=5.0m, hbm=4.0m, t laa=0hr, DBO=0.3mm)
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Figure 6.49 Bed Elevalion Changes in  Slage III/IV a l 1=0, 1000, 3000, 6000,
9000 and 14125. (hom=5.0m, hbm=4.0m, lu ^ lh r , DB0=0.3 mm)
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Figure 6.50 Bed Elevalion Changes in Slage III/IY a l 1=0, 1000, 3000, 6000,
9000 and 14125. (hom=5.0m, hbm=4.0m, ti^=2hr, Dgo=0.3mm)
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Figure 6.51 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 14125. (hom=5.0m, hbm=4.0m, tug=3hr, DM=0.3m m )
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Figure 6.52 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 14125. (hom=5.0m, htm=4.0m, tUf=4hr, Dso=0.3m m )
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Figure 6.54 Bed Elevalion Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 14125. (hom=5.0m , hbm=4.0m, ti»1=6hr, Dso=0.3mm )



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

14

1 2 -
BayOcean

1 0 -  MLLW

Legend
 t=o
  t= l ,0 0 0
 t=3,00C
 1= 6,000
 t=9,000

 t=14,125

4 -

500 750 1250 
Distance, m

1500 2000250 1000 1750

Figure 6.55 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 14125. (hom=5-0m, hbm=3.0m , tu^Ohr, Dj0=0.3m m )
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Figure 6.56 Bed Elevalion Changes in Slage I I I / V i  a l  1=0, 1000, 3000, 6000,
9000 and 14125. (hom=5.0m, nbm=3.0m, tlai= lh r, Bso=0.3ram)
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Figure 6.57 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 14125. (hom=5.0m, hbm=3.0m, tlai=2hr, DM=0.3m m )
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Figure 6.58 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 14125. (hom=5.0m, nbm=3.0m, t1,1=3hr, DBO=0.3mm )
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Figure 6.59 Bed Elevation Changes in  Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 14125. (hom=5.0m , htm=3.0m, tla<=4hr, Dfi0=0.3m m )
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Figure 6.60 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 14125. (hom=5.0m, nbm=3.0m, tu^Shr, DBO=0.3m m )
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Figure 6.61 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 14125. (hom=5.0m, hbm=3.0m , tlaa=6hr, Dso^O.Smm)
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Figure 6.63 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13628. (hom=4.0m, hbm=3.0m, tla#= lh r , D60=0.3m m )
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Figure 6.64 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13628. (hom=4.0m, hbm=3.0m, tiai=2hr, DBO=0.3mm )
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Figure 6.65 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13628. (hom=4.0m, hi,m=3.0m, t[al=3hr, D80=0.3mm )
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Figure 6.66 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13626. (hom=4.0m , hbm=3.0m, tu*=4hr, D60=0.3mm )
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Figure 6.67 Bed Elevation Changes in Stage I l l / T V  at t=0, 1000, 3000, 6000,
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Figure 6.6B Bed Elevation Changes in  Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13628. (hom=4.0m , hbm=3.0m , till4=6hr, Du =0.3m m )
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Figure 6.70 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13890. (hom=4.5m, htbm—4.0m, lh r, Dfi0=0.3mm )
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Figure 6.71 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13890. (hom=4.5m , hbm=4.0m, tU4=2hr, D60=0.3m m )
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Figure 6.73 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13890. (hom=4.5m, hbm=4.0m, tla<=4hr, DBO=0.3m m )
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Figure 6.74 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13890. (hom=4.5m, hbin=4.0m, tiK3=5hr, D60=0.3mm )
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Figure 6.75 Bed Elevation Changes in Stage III/IV a t 1=0, 1000, 3000, 6000,
9000 and 13890. (hom=4.5m, nbm=4.0m, tlB1=6hr, DBO=0.3m m )
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Figure 6.77 Bed Elevation Changes in  Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13890. (hom=4.5m , hbm=3.0m, tia4= lh r , DBO=0.3m m )
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Figure 6.78 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13890. (hom=4.5m, h|,m=3.0m , tlafi=2hr, Dso=0.3m m )
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Figure 6.79 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13890. (hom=4.5m, hkm=3.0m, t!s4=3hr, DBO=0.3mm)
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Figure 6.80 Bed Elevation Changes in Slage III/IV at t=0, 1000, 3000, 6000,
9000 and 13890. (hom=4.5m , hbm=3.0m, tUa=4hr, D80=0.3m m )
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Figure 6.81 Bed Elevation Changes in  Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13890. (hom=4.5m , hbm=3.0m, tl&a=5hr, D80=0.3m m )
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Figure 6.B2 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13890. (hom=4.5m, nbm=3 .0m, tia|~6hri Dgg—**0»3imii.̂
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Figure 6.84 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13628. (hom=4.0m, hbm=3.0rn, t i^ ^ h r , DB0=0.2mm )
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Figure 6.85 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13628. (hom=4.0m, hbm=3.0m, tiae=3hr, D60=0.3m m )
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Figure 6.66 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13628. (hom=4.0m, nbm=3.0m, tu*=3hr, DBO=0.4mm )
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Figure 6.87 Bed Elevation Changes in Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13626. (hom=4.0m, hi,m=3.0m, tU{!=3hr, D80=0.6ram)
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Figure 6.BB Bed Elevation Changes in  Stage III/IV at t=0, 1000, 3000, 6000,
9000 and 13628. (hom=4.0m , hta=3.0m , tu,=3hr, D5O=1.0m m )
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Figure 6.90 Bed Elevation Changes in Stage III/IV at t= 0 ,1000,3000,6000,9000
and 13628. (hom=4.0m, hbm=3.0m , t}af=3hr, Dm=0.3m m , T=24hr)
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Figure 6.91 Bed Elevation Changes in  Stage III/IV at t=0,2000,6000,12000,18000
and 27681. (hom=4.0m , hbm=3.0m, t lls=3hr, DB0=0.3 mm, T=48hr)
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Figure 6.92 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 14125.

( h o m = 5 m ,  h bm= 5 m ,  t la f= 3 h r ,  D M = 0 . 3 m m )
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Figure 6.93 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13890.

(hom=4.5m , hbm=4.5m, tiag=3hr, Dso=0.3m m )
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Figure 6.94 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13628.

(hom=4.0m , hbm=4.0m, tlss=3hr, DM=0.3m m )
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Figure 6.95 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13312.

(hom=3.5m , hbm=3.5m, t ^ S h r ,  DM=0.3mm )
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Figure 6.96 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage I l l / V i  at t=0, 1000, 3000, 6000, 9000 and 12897.

(hom=3.0m , hbm=3.0m, t lns=3hr, DM=0.3mm )
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Figure 6.97 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13890.

(hom=4.5m , hbm=4.0m, tug=3hr, Dso=0.3m m )
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Figure 6.98 Bed Elevalion Changes with Cenlroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 14125.

(hom=5.0m , hbm=4.0m, t!ag=3hr, D50=0.3mm )
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Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13628.

(hom=4.0m , hbm=3.0m, tIetg=3hr, DM=0.3mm )
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Figure 6.100 Bed Elevation Changes "with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13890.

(hom=4.5m , hbm=3.0m, t!aa=3hr, D6o=0.3mm)
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Figure 6.101 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 14125.

(hom=5.0m, hbm=3.0m , ti^=3hr, D60=0.3 mm)
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Figure 6.102 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13628.

(hom=4.0m , hbm=3.0m, tiaa=0hr, D50-0.3ram )
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Figure 6.103 Bed Elevation Changes frith Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13628.(hom=4.0m, hbm=3-0m, ti^=lhr, D60=0.3mm)
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Figure 6.104 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13628.

(hom=4.0m , hbm=3.0m , t]ls=2hr, DBO=0.3mm )



R
eproduced 

with 
perm

ission 
of 

the 
copyright 

ow
ner. 

Further 
reproduction 

prohibited 
w

ithout 
p

erm
ission

.

toOloo

14

1 2 -
BayOcean

1 0 -  MLLW

3 8 — 
o
2 ">0) ai-< o —pa

Legend
 t=o
  t=  1,000
 t=3,000
 t=6,000
 t=9,000

 t=13,628

4 -

2 -  S

1500 1750500 750 1000 1250 20002500
Distance, m

Figure 6.105 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 1362B.

(hom=4.0m , hbm=3.0m, tlag=3hr, D!0=0.3m m )
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Figure 6.106 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13628.

(hom-4 .0 m , hbm=3.0m , tiBg=4hr, Dso=0.3m m )
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Figure 6.107 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13628.

(hom=4.0m, hbm=3.0m , t]a£=5hr, DBO=0.3m m )
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Figure 6.108 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0 , 1000, 3000, 6000, 9000 and 13628.

(hOm=4.0m, hbm=3.0m, tlai=6hr, DBO=0.3m m )
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Figure 6.109 Bed Elevation Changes -with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13628.

(hom=4.0m , hbm=3.0m, tIlg=3hr, Dso=0.1mm )
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Figure 6.110 Bed Elevation Changes with Cenlroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13628.

(hom=4.0m, hbm=3.0m , tiag=3hr, D6o=0.2mm)
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Figure 6.111 Bed Elevation Changes -with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13628.

(hom=4.0m , hbm=3.0m , t ils=3hr, D8o=0.3min)
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Figure 6.112 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13628.

(hom=4.0m , hbm=3.0m, tug=3hr, Dso=0.4mm)
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Figure 6.113 Bed Elevation Changes frith Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13628.

(hom=4.Qm, hbm=3.0m, t Iag=3hr, D80=0.6mm )
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Figure 6.114 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13628.

(hom=4.0m , hbm=3.0m , t iaa=3hr, DB0= 1.0mm)
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Figure 6.115 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 500, 1500, 3000, 4500 and 6633.

(hom=4.0m , hbm=3.0m , tiBe=3hr, DM=0.3m m , T=12hr)
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Figure 6.116 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 1000, 3000, 6000, 9000 and 13628.

(hom=4.0m , hbm=3.0m, tltl=3hr, DBo=0.3mm, T=24hr)
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Figure 6.117 Bed Elevation Changes with Centroids of the Dune above MLLW in
Stage III/IV at t=0, 2000, 6000, 12000, 18000 and 27681.

(hom=4.0m , hbm=3.0m , t lae=3hr, D60=0.3mm , T=48hr)
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Figure 0.118 Bed Elevation Changes in  Stage III/IV at t=0  and 14125. 
(hom=4.5m, hbm=4.0m , tlaa= lh r , D50=0.3m m )
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Figure 6.119 Bed Elevation Changes in  Stage III/IV at 1=0 and 14125.
(hom=4.5m , hbm=4.0m, tu*=2hr, DB0=0.3m m )
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Figure 6.120 Water Depth and Velocity Variation at the Initial Top of Dune.
(hom=4.0m , hbm=3.0m, tltg=3hr, Dso=0.3m m  and At=4sec)
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7.0 DISCUSSIONS AND ANALYSES OF RESULTS

7.1 Stage I - Dune /  Beach Erosion

Profile change is sensitive to storm duration, surge shape, and wave height and 

period, in addition to peak stage. In the SBEACH model, the higher storm surge level with 

shorter duration produces less erosion than a storm of lower surge but longer duration. This 

fact is well presented in Table 6.35 (p.140). The volume loss, A V above MLLW in Storm 

No.l (duration, t=8.0hr) is 1.20 m3/m but 2.40 m3/m in Storm No.5 with longer duration, 

t=9.3hr. Also, dune crest elevation change, Az in Storm No.l gives a little lower value than 

that in Storm No.5.

No significant volume losses are shown in overall simulations because eroded 

volume from the dune crest area is redistributed closer to foreshore and overwashed to 

behind the dime crest. The maximum volume loss in percentage, AV, among all simulation 

is 0.69% of initial barrier volume above MLLW.

7.2 Stage II - Overwash / Overland Flow

The Lax-Wendroff scheme is developed for the overland flow computation which is 

used for an initial condition of Stages IE and IV. Also, the method of characteristics (MOC) 

is used to compute additional boundary data at both boundaries.

During overland flow computation with an initial base flow, some computational 

difficulties may develop due to steep and irregular bottom profiles. In this situation, it is 

recommended to change the base flow depth and use bigger weighting factor for both water
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depth and velocity in the dissipative interface.

The calculated water surface profiles between the top of the dune and the end of the 

barrier islands are plotted in Figure 6.11 (p. 152). There is no instability shown over the 

computational domain. Minimum water depth ( -O.lrn) is obtained along the steep slope in 

the upper reach and the maximum water depth of 0.3 m is shown in the lower reach where bay 

water meets with ocean flood water. The calculated water velocity variations are also plotted 

in Figure 6.12 (p. 153). Water flow velocities are varied from 0.6 to 2.3m/sec.

Although super-critical flow is developed along the steep slope, the Lax-Wendroff 

scheme certainly maintains the stable flow computation.

The range of 0.03 ~0.05m in base flow gave satisfactory results and a weighting factor 

of 0.25 in dissipative interface was useful to provide some dissipation and to suppress 

nonlinear instabilities in a controlled manner.

7.3 Stage III and IV - Storm Tides

In this section, the following parameters are analyzed from the model test results in 

terms of volume changes, centroid positions and retreat speeds of the dune above MLLW.

• Storm surge levels at ocean and bay, hom and hbm

Time lag, tlag

• Sediment grain size, Dso and D90

• Storm duration, T
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7.3.1 Storm Surge Level

Storm surge level is one of the most significant factors in determining profile changes 

and barrier dune retreat rates. Also, the peak surge level difference between ocean and bay 

boundaries determines flow conditions and directions over the whole computational domain.

The relative volume changes above MLLW for five different storm surge levels 

(hom=hbm) are shown in Figure 7.1 with the remaining parameters fixed (t,ag-3.0hr, 

D5O=0.3mm and T=24hr). It is clearly indicated that the higher storm surge level (i.e. 

hom=hbm=5. Om) has more rapidly increased the volume erosion rate than the lower levels. At 

3,000 time step, the relative volume change in the lowest storm surge level (hom=hbm=3.0m) 

is about 0.62 but 0.24 in highest levels. This is further clarified in Figure 7.2 using dune 

retreat speed which is computed from the distances and time intervals between two adjacent 

centroids. The fastest retreat speed ( ~0.05m/sec) comes from the biggest storm surge level.

Most of the barrier volume above MLLW disappears after 4,000 time steps for higher 

surge levels and 6,000 time steps for lower surge levels.

Different storm surge levels between ocean and bay are analyzed and plotted in 

Figure 7.3 for relative volume changes and Figure 7.4 for dune retreat speeds. The biggest 

hydraulic stage difference (Ah=hom - hbm=2.0m) results in the largest volume change 0.02 and 

the fastest dune retreat speed about 0.09m/sec at 3,000 time steps.

Therefore, it can be generally concluded that the storms with larger hydraulic stage 

differences and higher ocean surge levels produce more erosion and faster dune retreat 

speeds than storms with lower stage differences. Detailed individual profile evolutions are 

shown in Figures 6.92 through 6.101 (p.245-254).
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7.3.2 Time Lag

In determining the flow directions in this study (i.e. ocean to bay and/or bay to ocean 

across barrier dunes), the time lag in storm surge levels between ocean and bay is apparently 

one of the major factors. From zero to six hour time lags are incorporated with fixed 

remaining parameters in the model tests because in general, a six-hour time lag is equivalent 

to the time difference between high tide and low tide.

The relative volume changes for various time lags between ocean and bay water 

levels are presented in Figure 7.5. The barrier dimes move to bay side about 400-500m for 

shorter time lags (0.0~2.0hr) with significant erosion but still maintain barrier volumes 

above MLLW at the end of simulations. However, for the longer time lags (3.0~6.0hr) the 

barrier dunes are completely eroded through either direction at the middle of the simulations. 

Eroded materials are transported along the water flows, and deposited in the bay for shorter 

time lags and in the ocean for longer time lags (see, Figures 6.102-6.108 and Figure 6.122).

It is difficult to clearly separate Stage IV from Stage III because many parameters are 

involved in determining a flow direction. However, the water velocity variation, total 

sediment transport rate and negative dune retreat speed in Figures 6.120, 6.122 and 7.6, 

respectively, provide excellent information for understanding ebbing flows of eroded 

sediment materials above MLLW.

The larger time lag gives the faster retreat speeds and volume changes, and vice 

versa. It becomes readily apparent through Figure 7.7, which indicates the relationships 

among relative volume changes, dune retreat speeds and time lags at t=3,000 time level.
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7.3.3 Sediment Grain Size

The transport of sediment particles by a flow of water depends on the size of the bed 

material particles and the flow conditions. In this study, six different grain sizes are 

investigated for the sensitivity analyses. Grain size is one of the model parameters that 

significantly affects the movement of the centroids of barrier dunes.

Figure 7.8 shows the relative volume changes for various sand diameters. Median 

grain size, Dso=0.1mm results in the least volume change but D5O=0.4mm gives the fastest 

volume losses. In van Rijn’s (1984a and b) sediment transport formulas, it is assumed that 

the sediment transport rate can be described sufficiently accurately by two dimensionless 

parameters only, a dimensionless particle parameter, D. and a transport stage parameter, 

T. The T-parameter expresses the mobility of the particles in terms of the stage o f movement 

relative to the critical stage for initiation of motion according to the Shields curve. In the 

Shields curve (van Rijn, 1984a), it is seen that the minimum critical bed-shear velocity, 

which generally gives maximum sediment transport, occurs at Dso~0.4~0.5mm and Figure 

2.46 in Vanoni (1975, pl02) shows minimum critical velocity occurs at D5O~0.2~0.5mm.

Dune retreat speeds for various sand diameters are presented in Figure 7.9. Median 

grain size, Dso=0.4mm results in maximum retreat speed and Dso=0.1mm gives minimum 

values for the entire computational domain. The above results are graphically summarized 

in Figure 7.10 for both relative volume changes and dune retreat speeds with various grain 

sizes at t=3,000 time level.

The curve for the volume changes indicated as the solid line in Figure 7.10 follows 

the Shields curve in a similar manner, so sensitivity tests of the numerical model for sand
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diameters can be concluded to give successful results.

7.3.4 Storm Duration

The water flow characteristics are strongly affected by the shape of the surge 

hydrograph which is determined from the storm duration and the peak surge level. In the case 

of a fixed peak surge level, shorter storm duration produces more rapid changes in flow 

depth and velocity than in longer duration. This is well defined in Figures 7.11 and 7.12 for 

relative volume change and dune retreat speed, respectively.

Barrier volumes above MLLW are completely eroded during simulations in all cases. 

A shorter duration storm moves eroded sediment to the ocean side and longer duration 

distributes eroded sediment over the bay area. In longer duration, there are no distinct 

sediment flows from bay to ocean due to mild water flow characteristics. Because the 

hydraulic stage difference between ocean and bay in shorter duration is much greater than 

that o f longer duration, the faster dime retreat speed and strong ebbing flood flow are 

produced from shorter duration storm. Detailed results for volume changes, retreat speeds 

and centroid positions of barrier dune are summarized in Table 6.40 (p. 165).

7.4 General Discussion

In this study, the major task was to develop the numerical model for water motion 

and sediment transport.

The Lax-Wendroff two-step explicit scheme was successfully developed and run to 

provide initial conditions for subsequent stages. Also, the method of characteristics was well
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incorporated within the Lax-Wendroff scheme to provide additional boundary data.

The Preissmann implicit four-point box scheme was also developed for the storm tide 

simulations and an explicit scheme was incorporated for a numerical integration of the 

sediment continuity equation.

Standard tests (static, cosine swing and shock tests) for a fixed boundary gave good 

verification of each numerical codes. Also, the volume conservation tests on numerical 

computations brought a confirmation about the accuracy of linked numerical models.

The model tests (sensitivity tests) revealed which boundary conditions or parameters 

are critical to transport the most sediment landward (Stage IE) and seaward (Stages I and IV) 

in the model.

Finally, the volume changes in each stage for 24 hour storm duration (hom=4.0m, 

hbm=3. Om, t,ag=3. Ohr and Dso=0.3mm) are plotted in Figure 7.13. Most of the eroded volumes 

above MLLW are mainly derived not by the wave actions (Stage I, dune / beach erosion) but 

by the water motions (Stages III and IV, storm tidal flows).
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8.0 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The summarized conclusions are classified into two categories as: (1) the 

performances and properties of the numerical models and (2 ) the results of the numerical 

model tests.

Three different numerical codes are incorporated in this study: (1) the SBEACH for 

dune/beach erosion, (2) the Lax-Wendroff scheme with MOC for overwash/overland flow 

and (3) the Preissmann scheme with the FTCS scheme for storm tidal floods and resulting 

profile evolutions. The following concluding summaries are derived from the various 

numerical experiments.

• Overall applicabilities and performances of the SBEACH model for simulating 

dune/beach erosion were successful and satisfactory.

• The Lax-Wendroff two-step scheme, which is written in momentum conservation 

form, could handle mixed sub- and super-critical flows directly, with no regard for 

the directional nature of the computation.

• The method of characteristics (MOC) provides a particularly transparent procedure 

to obtain additional boundary data at both boundaries.

• The Lax-Wendroff scheme is capable of furnishing proper initial conditions within 

ten to twenty minutes of simulation for the next stages.

• A small depth of initial base flow about 0.03-0.05m provides a good technique to
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overcome a dry bed situation.

The double sweep solution method provides an efficient way to solve linearized 

equation systems in the Preissmann scheme.

The spatial weighting factor, ft=0.5 and time weighting factor, 0^0.65 lead to an 

unconditionally stable scheme.

The Preissmann scheme as written is not directly capable of handling super-critical 

flows but introduction of a control function to suppress the convective acceleration 

term makes it possible to maintain a subcritical flow characteristic structure.

The forward time centered space explicit scheme for the sediment continuity equation 

produces growing oscillations {i.e. wiggles) which result in numerical instability, but 

the dissipative interface with y=l/50~l/20  was successfully introduced to control 

growing wiggles.

In situations with more rapid changes in flow direction and/or magnitude, it is 

necessary to adjust the weighting factor, y in the dissipative interface to give more 

local dissipation for the stability of the numerical scheme.

The program correctness for both the Lax-Wendroff and Preissmann schemes was 

verified and confirmed as excellent through the standard tests.

The accuracy of the integrated numerical models was examined through volume 

conservation tests, and it is concluded that the integrated models provide accurate 

solutions without any notable numerical errors.

Within the range o f the physical parameters considered, the following conclusions
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are drawn from the results of the numerical model tests.

The relative volume change, centroid position and dune retreat speed provide a 

fundamental indicator of the state of the barrier islands.

The peak surge level difference between ocean and bay boundaries regulates flow 

conditions and directions, and larger hydraulic stage difference produces greater 

volume loss and faster dune retreat speed.

The eroded sediments are mainly transported to the bay when smaller time lags are 

employed and to the ocean when larger time lags are employed.

Time lags for most open barrier-bay systems (i.e. many segmented barrier islands 

with many existing tidal inlets) are relatively short so that eroded sediments are 

mainly transported to the bay sides.

In inundated barrier breaching mode represented with unit width for the relatively 

closed barrier-bay systems (e.g. Sandbridge Back bay-barrier), bay side water levels 

are influenced by both storm tidal flows through existing tidal inlets and ocean flood 

flows over the eroded barrier dimes. In that case, both hydraulic stage difference and 

time lag between ocean and bay will be relatively small, so sediment transports 

toward the bay side are apparently predicted.

However, in localized breaching mode for the closed barrier-bay systems, the barriers 

generally remain above the maximum storm surge level except at localized spots 

where breaching occurs, so bay side water levels are mainly influenced by storm tidal 

flows through existing tidal inlets. An assumption is that the tidal prism in the bay
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is large enough that it must be followed to justify the above outcome. In this mode, 

hydraulic stage difference and time lag can be relatively greater than those of 

inundated breaching mode, so sediment transports toward ocean side will occur.

• Median grain size, Dso-0.4mm  gave maximum volume losses and retreat speeds.

• Grain size turned out to be one of the model parameters that significantly affects the 

movements of the centroid o f barrier dune.

• In the SBEACH model, profile changes are most sensitive to storm durations.

• The fast dime retreat speeds and strong ebbing flows result from the shorter duration 

storms because stage difference in shorter duration is much greater than that in longer 

duration.

• It can be summarized from the above facts that the most sediments are transported 

landward by larger peak storm surge difference with shorter time lag and longer 

duration, and seaward by smaller peak storm surge difference with longer time lag 

and shorter storm duration.

• The numerical model has properly responded to the changes of each model 

parameter; therefore, it is concluded that the model can produce reasonable results.

8.2 Recommendations

Future research for refining and extending the capabilities of the numerical models

will be directed toward improved understanding and modeling of sediment transport

associated with dune overtopping, dune breach growth and complex tidal and sediment flows

through breached barrier islands.
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Considering the scope of the present research, the following recommendations are

discussed for further investigations.

• The Lax-Wendroff scheme could also be used in Stages III and IV for the sediment 

transport computation under the conditions with the computational time because its 

time step is limited by the stability condition.

• The bed-form (ripples, bed dunes, etc.) influence on the boundary resistance term in 

the momentum equation for water flows in Stages HI/TV should be investigated to 

determine the relative magnitude of influence on these plane bed results.

• Various geometric sections characterized by barrier width, dune crest elevation, dime 

base width and average barrier elevation can be considered as further calibration 

parameters.

• Bathymetric, topographic map data with oceanographic data for both the ocean and 

bay during the historic storm events will be extremely valuable for the field 

calibrations and verifications of the numerical models.

• Breaking (or non-breaking) wave propagation over the eroded barrier islands should 

be incorporated within the future models.

• Laboratory and field experiments for breach growth (width) are necessary for the next 

two-dimensional model development (i.e. localized breaching mode).

• The development of a depth-averaged, two-dimensional (horizontal) model for the 

water motion and sediment transport in coupled or uncoupled modes will be the next 

effort for a better understanding of breaching and tidal dynamics through the barrier- 

bay and inlets systems.
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APPENDIX A

The appendix presents a flow chart of overall simulation and a user interface Configuration 

File which allows entry and manipulation of the start file containing basic information 

necessary for executing SBEACH. The configuration file is separated into five sections: A - 

Model Setup; B - Waves/Water Elevation/Wind; C - Beach; D - Beach Fill; E - 

Seawall/Revetment.

To run SBEACH, five types of input data are required :

• Initial beach profile data.

• Median grain size representative o f  the surfzone and beach.

• Time series o f water level.

• Time series (or constant) o f  wave height and period.

• Values o f  model parameters.

Output data are reported in four files :

 .PRC : Calculated profile data at intermediate and final time steps.

 .XVR : Calculated maximum wave height, water elevation plus setup,

water depth and volume change.

 .LOG : A record o f  various coastal processes (i.e. accretion, erosion,

overwash, boundary limited rump and inundation).

 .RPT : A record o f  input data, as well as output parameters.

( .PRC, .XVR, .LOG, and .RPT are file extensions)

If the water level at the ocean boundary exceeds the eroded dune crest elevation, then 

simulation is stopped (need trial and error). The data format of final calculated profile in

 .PRC is then modified and used as initial bottom boundary conditions for the subsequent

Stages II, HI and IV.
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F L O W C H A R T

[ BEGIN J L ™ a j

/  IN PU T : STAGE I : INPUT: \

hom> Hmo aDd TP i DUNE/BEACH EROSION 
(SBEACH)

< Initial Profile Data 
and Coefficient

Dissipative Interface 
Initial Base Flow

above

Initial Condition
for Stage II: 

SBEACH Outputs

LHB :
MOC

STAGE I I :
Overwash/Overland Flows 
(Lax-Wendroff Scheme)

RHB :
MOC

< ----------------- Initial Condition
for Stage III/IV  : 
Stage II Outputs

Dissipative
Interface

STAGE III/IV

STORM TIDES <■  -  -
Control
Function

Bed-load
Transport

Suspended-load
Transport

i/ 1
Sediment M otion: 

FTCS Scheme
Water M otion: 

Preissmann Scheme

OUTPUT:
u(t,x), h(t,x), q,(t,x) 
qb(t,x), q,(t,x), z(t,x) 

V(t), O(t), Sd(t)

END
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* SBEACH model configuration file: 1000.CFG *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

A -----------------------------  MODEL SETUP -------------------------------A
A.l RUN TITLE: TITLE

1000 year return period
A.2 INPUT UNITS (SI=1, AMERICAN CUST.=2): UNITS 

1
A.3 TOTAL NUMBER OF CALCULATION CELLS AND POSITION OF LANDWARD BOUNDARY 

RELATIVE TO INITIAL PROFILE: NDX, XSTART 
473 0.00

A.4 GRID TYPE (CONSTANTS, VARIABLE=1) : IDX 
0

A. 5 COMMENT: IF GRID TYPE IS VARIABLE, CONTINUE TO A. 8
A. 6 CONSTANT GRID CELL WIDTH: DXC 

5
A. 7 COMMENT: IF GRID TYPE IS CONSTANT CONTINUE TO A. 10
A. 8 NUMBER OF DIFFERENT GRID CELL REGIONS: NGRID 

0
A. 9 GRID CELL WIDTHS AND NUMBER OF CELLS IN EACH REGION FROM LANDWARD 

TO SEAWARD BOUNDARY: (DXV(I), NDXV(I), 1=1,NGRID)

A. 10 NUMBER OF TIME STEPS AND VALUE OF TIME STEP IN MINUTES: NDT,DT 
96 5.00

A. 11 NUMBER OF TIME STEP(S) INTERMEDIATE OUTPUT IS WANTED: NWR 
0

A.12 TIME STEPS OF INTERMEDIATE OUTPUT: (WRI(I), 1=1,NWR)

A.13 IS A  MEASURED PROFILE AVAILABLE FOR COMPARISON? (NO=0, YES=1):
ICOMP
0

A.14 THREE PROFILE ELEVATION CONTOURS (MAXIMUM HORIZONTAL RECESSION OF 
EACH WILL BE DETERMINED) : ELV1, ELV2, ELV3 

1 . 0 0  0 . 0 0  - 1 . 0 0
A. 15 THREE PROFILE EROSION DEPTHS AND REFERENCE ELEVATION (DISTANCE FROM 

POSITION OF REFERENCE ELEVATION ON INITIAL PROFILE TO POSITION OF 
LANDWARD MOST OCCURRENCE OF EACH EROSION DEPTH WILL BE DETERMINED 
EDP1, EDP2, EDP3, REFELV

0.50 1.00 1.50 0.00
A. 16 TRANSPORT RATE COEFFICIENT (mA4/N) : K 

1.5e-6
A. 17 COEFFICIENT FOR SLOPE-DEPENDENT TERM (mA2/s) : EPS 

0 . 0 0 2 0 0 0
A.18 TRANSPORT RATE DECAY COEFFICIENT MULTIPLIER: LAMM 

0.400000
A. 19 WATER TEMPERATURE IN DEGREES C: TEMPC

2 0 . 0 0
B --------   WAVES/WATER ELEVATION/WIND --------------------B
B.l WAVE TYPE (MONOCHROMATIC=l, IRREGULAR=2) : WVTYPE 

2
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B . 2 WAVE HEIGHT AND PERIOD INPUT (CONSTANT=0, VARIABLE=1) : IWAVE 
0

B . 3 COMMENT: IF WAVE HEIGHT AND PERIOD ARE VARIABLE, CONTINUE TO B.6 
B.4 CONSTANT WAVE HEIGHT AND PERIOD: HIN, T 

5.54 15.25
B . 5 COMMENT: IF WAVE HEIGHT AND PERIOD ARE CONSTANT, CONTINUE TO B.7 
B.6 TIME STEP OF VARIABLE WAVE HEIGHT AND PERIOD INPUT IN MINUTES:

DTWAV
0.00

B.7 WAVE ANGLE INPUT (CONSTANT=0, VARIABLE=1) : IANG 
0

B . 8 COMMENT: IF WAVE ANGLE IS VARIABLE, CONTINUE TO B . 11
B .9 CONSTANT WAVE ANGLE: ZIN 

0.00
B.10 COMMENT: IF WAVE ANGLE IS CONSTANT, CONTINUE TO B.12
B.ll TIME STEP OF VARIABLE WAVE ANGLE INPUT IN MINUTES: DTANG 

0.00
B.12 WATER DEPTH OF INPUT WAVES (DEEPWATER= 0) : DMEAS 

0.00
B . 13 IS RANDOMIZATION OF WAVE HEIGHT DESIRED? (NO=0, YES=1) : IRAND 

1
B . 14 COMMENT: IF RANDOMIZATION OF WAVE HEIGHT IS NOT DESIRED, CONTINUE 

TO B.16
B . 15 SEED VALUE FOR RANDOMIZER AND PERCENT OF VARIABILITY: ISEED, RPERC 

4567 20.00
B.16 TOTAL WATER ELEVATION INPUT (CONSTANT=0, VARIABLE=1): IELEV 

1
B .17 COMMENT: IF WATER ELEVATION IS VARIABLE CONTINUE TO B.20
B .18 CONSTANT TOTAL WATER ELEVATION: TELEV 

1.60
B . 19 COMMENT: IF WATER ELEVATION IS CONSTANT, CONTINUE TO B.21
B.20 TIME STEP OF VARIABLE TOTAL WATER ELEVATION INPUT IN MINUTES: DTELV 

60.00
B.21 WIND SPEED AND ANGLE INPUT (CONSTANT=0, VARIABLE=1): IWIND 

0
B . 22 COMMENT: IF WIND SPEED AND ANGLE ARE VARIABLE, CONTINUE TO B.25
B.23 CONSTANT WIND SPEED AND ANGLE: W,ZWIND 

0.00 0.00
B . 24 COMMENT: IF WIND SPEED AND ANGLE ARE CONSTANT, CONTINUE TO C.
B.25 TIME STEP OF VARIABLE WIND SPEED AND ANGLE INPUT IN MINUTES: DTWND

0.00
C---------------------------------- BEACH ......----------  C
C.l TYPE OF INPUT PROFILE (ARBITRARY=1, SCHEMATIZED=2) : TPIN 

1
C . 2 COMMENT: IF PROFILE TYPE IS ARBITRARY CONTINUE TO C.4
C . 3 LOCATION AND ELEVATION OF LANDWARD BOUNDARY, LANDWARD BASE OF DUNE, 

LANDWARD CREST OF DUNE, SEAWARD CREST OF DUNE, START OF BERM,
END OF BERM, AND FORESHORE:XLAND,DLAND,XLBDUNE,DLBDUNE, XLCDUNE, 
DLCDUNE, XSCDUNE, DSCDUNE, XBERMS, DBERMS, XBERME, DBERME, XFORS, DFORS 

0.00 9.00 20.00 9.00 50.00 11.50
70.00 12.00 100.00 5.00 170.00 4.00 200.00 -2.00
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Q 
Q

C .4 DEPTH CORRESPONDING TO LANDWARD END OF SURF ZONE: DFS 
0.30

C .5 EFFECTIVE GRAIN SIZE DIAMETER IN MILLIMETERS: D50 
0.30

C.6 MAXIMUM PROFILE SLOPE PRIOR TO AVALANCHING IN DEGREES: BMAX
15.00

------------------- BEACH FILL -....... -------- D
.1 IS A BEACH FILL PRESENT? (NO=0, YES=1) : IBCHFILL 

0
D.2 COMMENT: IF NO BEACH FILL, CONTINUE TO E.
D . 3 POSITION OF START AND END OF BEACH FILL RELATIVE 

TO INITIAL PROFILE: XBFS, XBFE 
0 . 0 0  0 . 0 0

D . 4 NUMBER OF REPRESENTATIVE POINTS BETWEEN START 
AND END OF BEACH FILL: NFILL 
0

D . 5 LOCATION AND ELEVATION OF REPRESENTATIVE POINTS RELATIVE TO THE
INITIAL PROFILE: (XF(I), EFILL(I), 1=1,NFILL)

E....................  SEAWALL/REVETMENT . -...... E
E.l IS A  SEAWALL PRESENT? (NO=0, YES=1): ISWALL 

0
E.2 COMMENT: IF NO SEAWALL, CONTINUE TO F.
E .3 LOCATION OF SEAWALL RELATIVE TO INITIAL PROFILE: XSWALL 

0 . 0 0
E . 4 IS SEAWALL ALLOWED TO FAIL? (NO=0, YES =1) : ISWFAIL 

0
E. 5 COMMENT: IF NO SEAWALL FAILURE, CONTINUE TO F.
E.6 PROFILE ELEVATION AT SEAWALL WHICH CAUSES FAILURE, TOTAL WATER 

ELEVATION AT SEAWALL WHICH CAUSES FAILURE, AND WAVE HEIGHT AT 
SEAWALL WHICH CAUSES FAILURE: PEFAIL, WEFAIL,HFAIL 

0 . 0 0  0 . 0 0  0 . 0 0
F ------------------    COMMENTS .......- .  F
-----------------------   E N D ...................
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APPENDIX B

The appendix presents the complete listing of the following computer programs based 

on the theory presented in the dissertation. The programs consist of a main and eight 

subroutines with a function routine for Stages II, HI and IV.

Program MAIN : Defines arguments o f variables, and inputs overall constants

and parameters.

Subroutine STAGE2 : Computes Stage II, overwash/overlandflows using the Lax-

Wendroff scheme.

Subroutine LHB : Computes left hand boundary data using the method o f

characteristics.

Subroutine RHB : Computes right hand boundary data using the method o f

characteristics.

Subroutine NRITER : Computes characteristic distances in boundary modules using

the Newton-Raphson iteration method.

Subroutine STAGE34 : Computes Stages III/IV, storm tidal flows using the

Preissmann scheme by double sweep solution procedure. 

Subroutine SUPER : Computes super-critical flows during Stages III/IV, however,

this routine is not used in actual calculation.

Subroutine SEDIM1 : Computes profile evolutions using the FTCS scheme with

sediment transport formulas o f  van Rijn(1984a&b). 

Subroutine VOLUME : Computes barrier volumes, centroid positions, dune speeds

and numerical errors.

• Function Y : Defines each iterative function fo r  four different type o f

boundaries in Stage II.
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c Old Dominion University
c Dept. Civil & Environmental Engineering
c The Coastal Engineering Program
c
c programmed by Cheol Shik Shin
c 1994-1995
c
k

* "A one-dimensional model for storm breaching of barrier islands."
*

program main
***•*■ + *****■*■ + + ********* + ****★**** + + ****** + *★* + ** + **** + * + + ** + *** + *■*•★*■*•*•*•
* This program is for the Stage II, III and IV of movable bed model.* (Thw Lax-Wendroff scheme for Stage II ,and the Preissmann scheme★
* and the FTCS explicit scheme for Stages III and IV.)
k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k

k 

■k
Arguments of variables

k crno Courant number★ deltax distance step, m* deltat time step, sec
k d90 sand diameter, m
k emsl elevation of MSL above a datum, m
k etod elevation of eroded dune crest above MSL from SBEACH
k simulation output, m
k ff q**2/h+gr*h**2/2, conservation form★ fhalf n+1/2 time level of ff
k gg gr*h*slope-gr*h*Sf, conservation form
k ghalf n+1/2 time level of gg
k gr acceleration of gravity, m/sec**2
k ho, uo, qo water depth, velocity, flow rate at time level n
k hn,un,qn water depth, velocity, flow rate at time level n+1
k hhalf n+1/2 time level water depth, m
k hini artificial initial water depth, m
k hpeakb peak water elevation at the bay side boundary, m
■k hpeako peak water elevation at the ocean side boundary, m★ phi 3.141592654
k g flow rate, m**3/sec/m
k qhalf n+1/2 time level of flow rate, m**3/sec/m
k slope bottom slope
k t i=l,mm
k time total simulation time
k timelag timelag between ocean and bay
k xdist distance from ocean bound to bay bound, j=l,nn
k wl,w2,w3 each distance of different regions
k pfdist profile distance from ocean to bay, m
k yo still water level above datum at time level n, m
k yn still water level above datum at time level n+1, m
k zo bottom elevation above datum at time level n, m
k

k

k

zn bottom elevation above datum at time level n+1, m

★ ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★■it**
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c
c

common ho (500),hn(500),qo(500) ,qn(500) ,uo(500),un(500) , zo(500) ,
& zn(500),yo(500),yn(500), qto(500) , qtn(500),pfdist,time,
& hpeako,hpeakb,tlend,t2time,t2end,t3time,t3end,hini,gr,
& timelag,d50,d90,phi,xdist(500)
common /first/ hhalf(500), qhalf(500), deltax, deltat, mm, nn,

& kk, 11, i
common /fourth/etod, emsl, etodz

c
c Input parameters and constants
c

hpeako=4. 
hpeakb=3. 
timelag=10800. 
pfdist=2360. 
time=86400. 
phi=3.14159265 
gr=9.81 
d50=0.0003 
d90=0.0004 
hini=0.05

c
c calculation of "tlend".
c
c "tlend" is the SBEACH running time until water level reaches up
c to the top of eroded dune ,and this time is also employed for the
c bay side water level rise with timelag.
c

print *, ******** programmed by Cheol Shik Shin *********
&

& ’
c

print *, 'input elevation of top of eroded dune above MSL,etod' 
read *, etod
print *, 'input elevation of MSL above datum, emsl' 
read *, emsl

c
c elevation of top of eroded dune above datum, etodz 

etodz=etod+emsl
c

tlend=time/(2.*phi)*log(sqrt(hpeako/etod)-sqrt(hpeako/etod-1.))
& +time/2.
print *, tlend 
t2time=1200. 
t2end=tlend+t2time 
t3time=time-t2end 
t3end=t2end+t3time

c
c
c Calculation of stage II.( Lax-Wendroff scheme )
c

call stage2
print *, 'end of stage 2'

c
c Calculation of stage III/IV.( Preissmann scheme )
c

call stage34

316

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



stop
end

c

★ *
* Stage II is for the initial condition of water flow in stage III *
* and IV. *
*  *

* The Lax-Wendroff two-step scheme is adopted, and the method of *
* characteristic is elaborated to compute additional boundary data *
* (i.e. flow rate) at both boundaries. *
* *
* Simulation time is defined as t2time. (about 10-20 min.) *
* *
* +
* etod : the top elevation of the eroded dune above datum *
* emsl : the elevation of MSL'above datum *
* etodz : the elevation of the top of eroded dune above datum *
* bwlr : the bay side water level rise during SBEACH with timelag*
* webz : the elevation of the water surface above datum at bay *
*  *

* * * * * * * + + * * * * * * + * * * * * + * * * * * * + + * * * * * * * + + * * * * * * * * + + * * * * * * * * * * * + * * * * * + + + * * *  

subroutine stage2
dimension ff(500), gg(500), fhalf(500), ghalf(500)
common ho(500),hn(500),qo(500),qn(500),uo(500),un(500),zo(500),

& zn(500),y o (500),yn(500), qto(500),qtn(500),pfdist,time,
& hpeako,hpeakb,tlend,t2time, t2end,t3time,t3end, hini,gr,
& timelag,d50,d90,phi,xdist(500)
common /first/ hhalf(500), qhalf(500), deltax, deltat, mm, nn,

& kk, 11, i
common /fourth/etod, emsl, etodz 
integer kk, 11, mm, nn, nend 
real cp, cn, crnol, crno2

c
deltax=10. 
deltat=.5
mm=t2time/deltat+l
nn=2*pfdist/deltax+l

c
c data input(x,z) from the modification of the SBEACH outputs
c

open(unit=9, file='4 8hom4.dat', status='unknown')
c
c initial condition
c

elevl=etodz+hini
bwlr=hpeakb*l./(cosh(2.*phi*(tlend-timelag-time/2.)/time))**2
webz=bwlr+emsl
elev2=webz+hini

c
print *, 'you will need to confer initial bottom elevation data in 
& x, z format'

p j - j _ n £  ±  '  1 T U T * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  I

print *,'elevation at top of dune above datum, etodz=', etodz 
print *,'water surface elevation above datum at bay, webz=', webz 
print *,'input distance from ocean boundary to top of dune after 
& SBEACH, xtod=' 
read *, xtod
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print input distance from ocean boundary to end of barrier 
& island after SBEACH, xebi=' 
read *, xebi

c
c compute initial water depth at ocean and bay. 
c

do 10 j=l,nn
read(9,*) xdist(j), zo(j)

if(xdist(j ).It.xtod) then 
h o (j )=(elevl-zo(j ))*1.02 
else if(xdist(j).gt.xebi) then 
h o (j)=(elev2-zo(j ))*1.02 
else

h o (j )=hini
end if 
u o (j)=0. 
q o (j)=0.

10 continue
c
c introduce numerical filter for smoothing of initial bottom
c bathymetry,
c

gamma=l./16.
90 if (sum .It. 10) then

sum=sum+l
zo(1)=gamma* z o (2) + (1.-gamma)* zo(1) 
zo(nn) = (1.-gamma)*zo(nn)+gamma*zo(nn-1) 

c h o (1)=elevl-zo(1)
c ho(nn)=elev2-zo(nn)

do 111 j=2,nn-l
zo (j )=gamma*zo(j + 1) + (1.-2.*gamma)*zo(j ) +gamma*zo{j — 1) 

c h o (j )=yo(j)-zo(j )
111 continue

go to 90 
end if

c
c input initial right and left hand boundary data
c

hinio=ho(1) 
hinib=ho(nn)

c
c

do 30 i=l,mm-l
c
c
c start Lax-Wendroff two-step scheme
c
c n+1/2 step (first step)
c

nend=(nn-1)/2-1 
do 40 j=l,nend
ff(2*j) = (qo(2*j))**2/ho(2*j )+gr*ho(2 * j ) **2/2. 
ff(2*j+2)=(qo(2*j+2))**2/ho(2*j+2)+gr*ho(2*j+2)**2/2.

c
if(ho(2*j).It.0.) then 
print *, i, 2*j, ho(2*j) 
stop
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e n d  i f
c z l = 1 8 . * l o g l 0 ( 1 2 . * h o ( 2 * j ) / ( 3 . * d 9 0 ) ) 
c z 2 = 1 8 . * l o g l 0 ( 1 2 . * h o ( 2 * j  + 2 ) / ( 3 . * d 9 0 ) )

c
g g  ( 2 * j ) = g r * h o ( 2 * j ) * 2 . * ( z o ( 2 * j ) - z o ( 2 * j + l ) ) / d e l t a x - g r * q o ( 2 * j ) *

&  a b s ( q o ( 2 * j ) ) / ( c z l * h o ( 2 * j ) ) * * 2
g g ( 2 * j + 2 ) = g r * h o ( 2 * j + 2 ) * 2 . * ( z o ( 2 * j  + 2 )  - z o ( 2 * j  +  3 ) ) / d e l t a x - g r *

&  q o ( 2 * j + 2 ) * a b s ( q o ( 2 * j + 2 )  )  / ( c z 2 * h o ( 2 * j + 2 ) ) * * 2
c

h h a l f ( 2 * j + l ) = ( h o ( 2 * j + 2 ) + h o ( 2 * j ) )  1 2 .  - d e l t a t / ( 2 . * d e l t a x )
&  * ( q o ( 2 * j + 2 ) - q o ( 2 * j )  )

q h a l f ( 2 * j + l ) = ( q o ( 2 * j + 2 ) + q o ( 2 * j ) ) 1 2 .  - d e l t a t / ( 2 . * d e l t a x )
&  * ( f f ( 2 * j + 2 ) - f f ( 2 * j ) ) + d e l t a t / 4 . * ( g g ( 2 * j + 2 ) + g g ( 2 * j ) )

4  0  c o n t i n u e
c
c  f i n d  q h a l f ( 1 )  a n d  q h a l f ( n n )  b y  M e t h o d  o f  C h a r a c t e r i s t i c
c
c  O c e a n  s i d e  h a l f  s t e p  b o u n d a r y  c o n d i t i o n
c

h h a l f ( 1 ) = h i n i o + h p e a k o * ( 1 . / ( c o s h ( 2 . * p h i * ( ( t l e n d + d e l t a t *
&  f l o a t ( i — 0 . 5 ) ) - t i m e / 2 . ) / t i m e ) ) * * 2 - 1 . / ( c o s h ( 2 . * p h i * ( t l e n d -
&  t i m e / 2 . ) / t i m e ) ) * * 2 )

c
c  B a y  s i d e  h a l f  s t e p  b o u n d a r y  c o n d i t i o n
c

h h a l f ( n n ) = h i n i b + h p e a k b * ( 1 . / ( c o s h ( 2 . * p h i * ( ( t l e n d + d e l t a t *
&  f l o a t ( i — 0 . 5 ) ) - ( t i m e l a g + t i m e / 2 . ) ) / t i m e ) ) * * 2 - 1 . / ( c o s h ( 2 . *
&  p h i * ( t l e n d - ( t i m e l a g + t i m e / 2 . ) ) / t i m e ) ) * * 2 )

c  p r i n t  * ,  i + 1 ,  h h a l f ( 1 ) ,  h h a l f ( n n )
c
c  c a l l  n + 1 / 2  s t e p  b o u n d a r y  c o n d i t i o n s  t o  g e t  q h a l f ( 1 ) ,  q h a l f ( n n )
c

k k = l
c

c a l l  l h b
c

c a l l  r h b
c
c  n + 1  s t e p  ( s e c o n d - s t e p )
c

d o  5 0  j  = 1 , ( n n - 1 ) 12
c

f h a l f ( 2 * j - l ) = ( q h a l f ( 2 * j - 1 ) ) * * 2 / h h a l f ( 2 * j - 1 ) + g r * ( h h a l f ( 2 * j - 1 ) ) * * 2  
&  1 2 .

f h a l f ( 2 * j + 1 )  =  ( q h a l f ( 2 * j  +  1 ) ) * * 2 / h h a l f ( 2 * j  +  l ) + g r * ( h h a l f ( 2 * j  + 1 ) ) * * 2  
&  1 2 .

c
c z 3 = 1 8 . * l o g l 0 ( 1 2 . * h h a l f ( 2 * j - 1 ) / ( 3 . * d 9 0 ) )  
c z 4 = 1 8 . * l o g l 0 ( 1 2 . * h h a l f ( 2 * j + 1 ) / ( 3 . * d 9 0 ) )

c
g h a l f ( 2 * j - 1 ) = g r * h h a l f ( 2 * j - l ) * 2 . * ( z o ( 2 * j - l ) - z o ( 2 * j ) ) / d e l t a x - g r *

&  q h a l f ( 2 * j - 1 ) * a b s ( q h a l f ( 2 * j - 1 ) ) / ( c z 3 * h h a l f ( 2 * j - 1 ) ) * * 2
c

i f ( j . e q . ( n n - 1 ) 1 2 ) t h e n
t e m p = 2 . * ( z o ( n n - 1 ) - z o ( n n ) ) / d e l t a x

e l s e
t e m p = 2 . * ( z o ( 2 * j  +  l ) - z o ( 2 * j + 2 )  )  / d e l t a x

e n d  i f

319

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



g h a l f ( 2 * j + l )  = g r * h h a l f ( 2 * j  +  1 ) * t e m p - g r * q h a l f ( 2 * j  +  1 ) *
&  a b s ( q h a l f ( 2 * j + 1 ) ) / ( c z 4 * h h a l f ( 2 * j + 1 ) ) * * 2

c
h n ( 2 * j ) = h o ( 2  * j ) - d e l t a t / d e l t a x * ( q h a l f ( 2  * j  +  1 ) - q h a l f { 2  * j  — 1 ) )  
q n ( 2 * j ) = q o ( 2 * j ) - d e l t a t / d e l t a x * ( f h a l f ( 2  *  j  + 1 ) - f h a l f ( 2  * j  — 1 ) )

&  + d e l t a t / 2 . * ( g h a l f ( 2 * j  +  l ) + g h a l f ( 2 * j - 1 ) )
5 0  c o n t i n u e
c
c  f i n d  q ( i + l , l )  a n d  q ( i + l , n n )  b y  M e t h o d  o f  C h a r a c t e r i s t i c
c
c  O c e a n  s i d e  f u l l  s t e p  b o u n d a r y  c o n d i t i o n
c

h n ( l ) = h i n i o + h p e a k o * ( 1 . / ( c o s h ( 2 . * p h i * ( ( t l e n d + d e l t a t * f l o a t ( i )
&  ) - t i m e / 2 . ) / t i m e ) ) * * 2 - 1 . / ( c o s h ( 2 . * p h i * ( t l e n d - t i m e / 2 . ) /
&  t i m e ) ) * * 2 )

c
c
c

B a y  s i d e  f u l l  s t e p  b o u n d a r y  c o n d i t i o n

h n ( n n ) = h i n i b + h p e a k b * ( 1 . / ( c o s h ( 2 . * p h i * ( ( t l e n d + d e l t a t *
&  f l o a t ( i ) ) - ( t i m e l a g + t i m e / 2 . ) ) / t i m e ) ) * * 2 - 1 . / ( c o s h ( 2 . * p h i *
&  ( t l e n d - ( t i m e l a g + t i m e / 2 . ) ) / t i m e ) ) * * 2 )

c
k k = 2

c
c a l l  l h b

c
c a l l  r h b

c
c  i n t r o d u c e  d i s s i p a t i v e  i n t e r f a c e  o n  n + 1  s t e p  f o r  s t a b i l i t y  
c

g a m m a = l . / 2 0 .
h n ( 1 ) = g a m m a * h n ( 2 ) + ( 1 . - g a m m a ) * h n ( 1 )  
h n ( n n ) = ( 1 . - g a m m a ) * h n ( n n ) + g a m m a * h n ( n n - 1 ) 
q n ( 1 ) = g a m m a * q n ( 2 ) + ( 1 . - g a m m a ) * q n ( 1 )  
q n ( n n ) = ( 1 . - g a m m a ) * q n ( n n ) + g a m m a * q n ( n n - 1 )

c
d o  4 2  j = 2 , ( n n - 3 ) / 2
h n ( 2 * j ) = g a m m a * h n ( 2 * j - 2 ) + ( 1 . - 2 . * g a m m a ) * h n ( 2 * j ) + g a m m a * h n ( 2 * j + 2 ) 
q n  ( 2 * j ) = g a m m a * q n ( 2 * j - 2 )  +  ( 1 . - 2 . * g a m m a ) * q n ( 2 * j ) + g a m m a * q n ( 2 * j + 2 )  

4 2  c o n t i n u e
c

u n  ( 1 ) = q n ( 1 ) / h n ( 1 )  
u n ( n n ) = q n ( n n ) / h n ( n n )  
d o  4 3  j  = 1 ,  ( n n - 1 ) 12 
u n ( 2  * j ) = q n ( 2 * j ) / h n ( 2 * j )

c
4  3  c o n t i n u e
c
c  s t a b i l i t y  c h e c k
c

c p = u n ( 2 * j ) + s q r t ( g r * h n ( 2 * j ) )  
c n = u n ( 2 * j ) - s q r t ( g r * h n ( 2  * j ) )  
c r n o l = a b s ( c p ) * d e l t a t / d e l t a x  
c r n o 2 = a b s ( c n ) * d e l t a t / d e l t a x

c
i f ( ( c r n o l  . g t .  1 . )  . o r .  ( c r n o 2  . g t .  1 . ) )  t h e n
p r i n t  * , ' i + l = ' ,  i + 1 ,  ' 2 j  =  ' ,  2 * j  ,  ' w a r n i n g  ! C o u r a n t  N o  i s  g t  1 . '
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p r i n t  * ,  u n ( 2 * j ) ,  h n ( 2 * j ) ,  c r n o l ,  c r n o 2
s t o p
e n d  i f

c
i f ( i . e q . m m - 1 )  g o  t o  3 3  
d o  5 1  j = l , ( n n - 1 ) / 2  

h o ( 2 * j ) = h n ( 2 * j ) 
u o ( 2 * j ) = u n ( 2 * j ) 
q o ( 2 * j ) = q n ( 2 * j ) 

c  p r i n t  * , ' i = ' ,  i ,  h o ( 2 * j ) ,  u o ( 2 * j ) ,  q o ( 2 * j )
5 1  c o n t i n u e  
c
c  i n i t i a l i z e  v a r i a b l e s
c

h o ( l ) = h n ( l )  
h o ( n n ) = h n ( n n )  
u o ( 1 ) = u n ( 1 )  
u o ( n n ) = u n ( n n )  
q o ( 1 ) = q n ( 1 )  
q o ( n n ) = q n ( n n )

c
c  w r i t e  ( 6 , 5 2 )  X
c
3 0  c o n t i n u e
c
3 3  o p e n ( u n i t = 1 0 ,  f i l e = ' h s t g e 2 . d a t ' ,  s t a t u s = ' u n k n o w n ' )

o p e n ( u n i t = l l ,  f i l e = ' u s t g e 2 . d a t ' ,  s t a t u s = ' u n k n o w n ' )
c

w r i t e ( 1 0 , 6 0 )  h n ( l )  
w r i t e ( l l , 6 0 )  u n ( l )  
d o  7 0  j = l , ( n n - 1 ) / 2  
w r i t e ( 1 0 , 6 0 )  h n ( 2 * j )  
w r i t e ( l l , 6 0 )  u n ( 2 * j )

7 0  c o n t i n u e
w r i t e  ( 1 0 , 6 0 )  h n ( n n )  
w r i t e ( l l , 6 0 )  u n ( n n )

6 0  f o r m a t ( f 1 0 . 3 )
c

c l o s e ( u n i t = 1 0 )  
c l o s e ( u n i t = l l )

c
r e t u r n
e n d

c

* T h i s s u b r o u t i n e  i s  f o r  t h e  c a l c ,  o f  q ( i + l / 2 , l )  a n d  q ( i + l
★
★

l e f t h a n d  b o u n d a r y  u s i n g  t h e  M e t h o d  o f  C h a r a c t e r i s t i c s .

it

ic

•k

Arguments of Variables
•k 1 1 = 1 :  l e f t  h a n d  b o u n d a r y
•k 1 1 = 2 :  r i g h t  h a n d  b o u n d a r y
•k k k = l :  h a l f  s t e p  b o u n d a r y ,  ( n + 1 / 2 )
it

if

k k = 2 :  f u l l  s t e p  b o u n d a r y ,  ( n + 1 )

if r n i :  n e g a t i v e  R i e m a n n  i n v a r i a n t ,  m / s
if r p i :  p o s i t i v e  R i e m a n n  i n v a r i a n t ,  m / s
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*  x  :  c h a r a c t e r i s t i c  d i s t a n c e ,  m
★

subroutine lhb
c o m m o n  h o ( 5 0 0 ) , h n ( 5 0 0 ) , q o ( 5 0 0 ) , q n ( 5 0 0 ) , u o ( 5 0 0 ) , u n ( 5 0 0 ) , 2 0 ( 5 0 0 ) ,

&  z n ( 5 0 0 ) , y o ( 5 0 0 ) , y n ( 5 0 0 ) , q t o ( 5 0 0 ) , q t n ( 5 0 0 ) , p f d i s t , t i m e ,
&  h p e a k o , h p e a k b , t l e n d , t 2 t i m e , t 2 e n d , t 3 t i m e ,  t 3 e n d ,  h i n i , g r ,
&  t i m e l a g , d 5 0 , d 9 0 , p h i , x d i s t ( 5 0 0 )

c o m m o n  / f i r s t /  h h a l f ( 5 0 0 ) ,  q h a l f ( 5 0 0 ) ,  d e l t a x ,  d e l t a t ,  m m ,  n n ,
&  k k ,  1 1 ,  i

r e a l  x ,  q q ,  h h ,  r n i
c

1 1 = 1
i f ( k k  . e q .  1 )  t h e n

c
c a l l  n r i t e r ( x )

c
q q = ( x * q o ( 2 )  +  ( d e l t a x / 2 . - x ) * q o ( 1 ) ) / ( d e l t a x / 2 . ) 
h h = ( x * h o ( 2 )  +  ( d e l t a x / 2 . - x ) * h o ( 1 ) ) / ( d e l t a x / 2 . )  
r n i = q q / h h - 2 . * s q r t ( g r * h h )  
c z = 1 8 . * l o g l 0 ( 1 2 . * h h / ( 3 . * d 9 0 ) )

c
q h a l f ( 1 ) = h h a l f ( 1 ) * ( r n i + 2 . * s q r t ( g r * h h a l f ( 1 )  )  + g r * ( ( z o ( 1 ) - z o ( 2 ) ) *

&  2 . / d e l t a x - q q * a b s ( q q ) / c z * * 2 / h h * * 3 ) * ( d e l t a t / 2 . ) )
c

e l s e
q h a l f ( 2 )  =  ( q h a l f ( 1 ) + q h a l f ( 3 ) + q o ( 2 ) + q n ( 2 )  )  / 4 . 
h h a l f ( 2 ) = ( h h a l f ( 1 ) + h h a l f ( 3 ) + h o ( 2 ) + h n ( 2 ) ) / 4 .

c
c a l l  n r i t e r ( x )

c
q q = ( x * q h a l f ( 2 ) + ( d e l t a x / 2 . - x ) * q h a l f ( 1 ) ) / ( d e l t a x / 2 . )  
h h = ( x * h h a l f ( 2 ) + ( d e l t a x / 2 . - x ) * h h a l f ( 1 ) ) / ( d e l t a x / 2 . )  
r n i = q q / h h - 2 . * s q r t ( g r * h h )  
c z = 1 8 . * l o g l 0 ( 1 2 . * h h / ( 3 . * d 9 0 ) )

c
q n ( 1 ) = h n ( 1 ) * ( r n i + 2 . * s q r t ( g r * h n ( 1 ) ) + g r * ( ( z o ( 1 )  - z o ( 2 ) ) * 2 . / d e l t a x -  

&  q q * a b s ( q q ) / c z * * 2 / h h * * 3 ) * 0 . 5 * d e l t a t )
c

e n d  i f  
r e t u r n  
e n d

c
* * + * * * * + * * * * + * * * + ■ * * * * * * * + * * * * * * * * * * * * + * + * * + * * * * * * * + * * * * * + * * * * * * * * * * * * *

*  T h i s  s u b r o u t i n e  i s  f o r  t h e  c a l c ,  o f  q ( i + l / 2 , n n )  a n d  q ( i + l , n n )  a t
*  r i g h t  h a n d  b o u n d a r y  u s i n g  t h e  M e t h o d  o f  C h a r a c t e r i s t i c s .
*

subroutine rhb
c o m m o n  h o  ( 5 0 0 )  , h n ( 5 0 0 )  , q o - ( 5 0 0 )  , q n ( 5 0 0 )  , u o ( 5 0 0 )  , u n ( 5 0 0 )  ,  z o ( 5 0 0 )  ,

&  z n  ( 5 0 0 )  ,  y o ( 5 0 0 )  ,  y n ( 5 0 0 ) , q t o ( 5 0 0 ) , q t n ( 5 0 0 ) , p f d i s t , t i m e ,
&  h p e a k o , h p e a k b , t l e n d , t 2 t i m e , t 2 e n d , t 3 t i m e ,  t 3 e n d ,  h i n i , g r ,
&  t i m e l a g , d 5 0 , d 9 0 , p h i , x d i s t ( 5 0 0 )

c o m m o n / f i r s t /  h h a l f ( 5 0 0 ) ,  q h a l f ( 5 0 0 ) ,  d e l t a x ,  d e l t a t ,  m m ,  n n ,
&  k k ,  1 1 ,  i

i n t e g e r  k k ,  1 1 ,  m m ,  n n  
r e a l  x ,  q q ,  h h ,  r p i

c
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1 1 = 2
i f ( k k  . e q .  1 )  t h e n

c
c a l l  n r i t e r ( x )

c
q q = ( x * q o ( n n - 1 ) + ( d e l t a x / 2 . - x ) * q o ( n n ) ) / ( d e l t a x / 2 . )  
h h = ( x * h o ( n n - 1 ) + ( d e l t a x / 2 . - x ) * h o ( n n ) ) / ( d e l t a x / 2 . )  
r p i = q q / h h + 2 . * s q r t ( g r * h h )  
c z = 1 8 . * l o g l O ( 1 2 . * h h / ( 3 . * d 9 0 ) )

c
q h a l f ( n n ) = h h a l f ( n n ) * ( r p i - 2 . * s q r t ( g r * h h a l f ( n n ) ) + g r * ( ( z o ( n n - 1 ) -  

&  z o ( n n ) ) * 2 . / d e l t a x - q q * a b s ( q q ) / c z * * 2 / h h * * 3 ) * 0 . 5 * d e l t a t )
c

e l s e
q h a l f ( n n - 1 ) = ( q h a l f ( n n ) + q h a l f ( n n - 2 ) + q o ( n n - 1 ) + q n ( n n - 1 ) ) / 4 .  
h h a l f ( n n - 1 ) = ( h h a l f ( n n ) + h h a l f ( n n - 2 ) + h o ( n n - 1 ) + h n ( n n - 1 ) ) / 4 .

c
c a l l  n r i t e r ( x )

c
q q = ( x * q h a l f ( n n - l )  +  ( d e l t a x / 2 . - x ) * q h a l f ( n n ) ) / ( d e l t a x / 2 . ) 
h h = ( x * h h a l f ( n n - 1 )  +  ( d e l t a x / 2 . - x ) * h h a l f ( n n ) ) / ( d e l t a x / 2 . )  
r p i = q q / h h + 2 . * s q r t ( g r * h h )  
c z = 1 8 . * l o g l 0 ( 1 2 . * h h / ( 3 . * d 9 0 ) )

c
q n ( n n ) = h n ( n n ) * ( r p i - 2 . * s q r t ( g r * h n ( n n ) ) + g r * ( ( z o ( n n - 1 ) - z o ( n n ) ) *

&  2 . / d e l t a x - q q * a b s ( q q ) / c z * * 2 / h h * * 3 ) * 0 . 5 * d e l t a t )
e n d  i f  
r e t u r n  
e n d

c
' k ' k ' k ' k ' k ' i e i r ' k ' k ' k ' k i e ' k - i r ' i r ' k ' i e i r i t ' i c ' k ' k ' k ' i f ' i e ' k ' i f i e ' t e ' k i e ' k ' k ' k ' k ' i r ' i c ' k i f ' k ' k ' k ' i e ' k i e i e ' k ' k ' i e i f ' i e ' i e ' k ' k ' k i r - k ' k ' k - k ' i e ' i e ' i e - i e ' i e ' k i r ' k ' k ' k ' i e ' i r

*  T h i s  s u b r o u t i n e  i s  f o r  t h e  c a l c u l a t i o n  o f  a  c h a r a c t e r i s t i c  *
*  d i s t a n c e ,  x  u s i n g  N e w t o n - R a p h s o n  i t e r a t i o n  m e t h o d  a t  t h e  b o t h  *
*  b o u n d a r i e s .  *
*  *

* * * * * * * * * * * * • * * * * * * * * * * * * + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

s u b r o u t i n e  n r i t e r ( x )
c o m m o n  h o ( 5 0 0 ) , h n ( 5 0 0 ) , q o ( 5 0 0 ) , q n ( 5 0 0 ) , u o ( 5 0 0 ) , u n ( 5 0 0 ) , z o ( 5 0 0 ) ,

&  z n ( 5 0 0 )  ,  y o ( 5 0 0 ) , y n ( 5 0 0 ) , q t o ( 5 0 0 ) , q t n ( 5 0 0 ) , p f d i s t , t i m e ,
&  h p e a k o , h p e a k b , t l e n d , t 2 t i m e , t 2 e n d ,  t 3 t i m e ,  t 3 e n d , h i n i , g r ,
&  t i m e l a g , d 5 0 , d 9 0 , p h i , x d i s t ( 5 0 0 )

c o m m o n / f i r s t /  h h a l f ( 5 0 0 ) ,  q h a l f ( 5 0 0 ) ,  d e l t a x ,  d e l t a t ,  m m ,  n n ,
&  k k ,  1 1 ,  i

r e a l  x ,  y ,  e p s ,  x m a x ,  y l ,  y 2 ,  d x ,  y d ,  x n
c

e p s = 0 . 0 0 0 0 1 * d e l t a x / 2 .  
x = 0 . 2 5 * d e l t a x  
x m a x = d e l t a x / 2 .

1 0  y l = y ( x )
c
c  c h e c k  f o r  c o n v e r g e n c e
c

i f ( a b s ( y l )  . g t .  e p s )  t h e n  
x n = x + 0 . 0 0 0 0 1 * d e l t a x / 2 .  
y 2 = y ( x n )
y d = ( y 2 - y l ) / ( 0 . 0 0 0 0 1 * d e l t a x / 2 . )

c
c  c h e c k  i f  r e s u l t s  d i v e r g e
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* 
o 

o 
o 

o 
O 

O 
O 

*
*

*
*

*
*

 
f)

i f ( y d  . g e .  ( 1 . 0 / e p s ) )  p r i n t  * , ' w a r n i n g ! ,  r e s u l t s  d i v e r g e '

d x = - y l / y d
x = x + d x
i f ( x  . g t .  x m a x )  p r i n t  * , k k ,  1 1 ,  ' w a r n i n g ! ,  x  e x c e e d s  d e l t a x / 2 '
g o  t o  1 0
e n d  i f
r e t u r n
e n d

T h i s  f u n c t i o n  r o u t i n e  d e f i n e s  e a c h  i t e r a t i v e  f u n c t i o n  f o r  t h e  
f o u r  d i f f e r e n t  t y p e s  o f  b o u n d a r y ,  ( i + 1 / 2 , 1 ) ,  ( i + 1 , 1 ) ,
( i + l / 2 , n n )  a n d  ( I + l , n n ) .

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

function y(x)
c o m m o n  h o ( 5 0 0 ) , h n ( 5 0 0 ) , g o ( 5 0 0 ) , q n ( 5 0 0 )  ,  u o ( 5 0 0 )  ,  u n ( 5 0 0 ) , z o ( 5 0 0 ) ,  

&  z n ( 5 0 0 ) , y o ( 5 0 0 ) , y n ( 5 0 0 ) , q t o ( 5 0 0 )  ,  q t n ( 5 0 0 ) , p f d i s t , t i m e ,
&  h p e a k o , h p e a k b , t l e n d , t 2 t i m e , t 2 e n d , t 3 t i m e , t 3 e n d , h i n i , g r ,
&  t i m e l a g , d 5 0 , d 9 0 , p h i , x d i s t ( 5 0 0 )

c o m m o n / f i r s t /  h h a l f ( 5 0 0 ) ,  q h a l f ( 5 0 0 ) ,  d e l t a x ,  d e l t a t ,  m m ,  n n ,
&  k k ,  1 1 ,  i

r e a l  y ,  x

i f ( ( k k  . e q .  1 )  . a n d .  ( 1 1  . e q .  1 ) )  t h e n
y = - d e l t a t / 2 .  * ( ( x * q o ( 2 ) +  ( d e l t a x / 2 . - x ) * q o ( 1 )  ) / ( x * h o ( 2 )  +

&  ( d e l t a x / 2 . - x ) * h o ( 1 ) ) - s q r t ( g r * ( x * h o ( 2 )  +  ( d e l t a x / 2 . - x ) *
& h o ( 1 ) ) / ( d e l t a x / 2 . ) ) ) - x

e l s e  i f ( ( k k  . e q .  1 )  . a n d .  ( 1 1  . e q .  2 ) )  t h e n
y = d e l t a t / 2 . * ( ( x * q o ( n n - 1 ) + ( d e l t a x / 2 . - x ) * q o ( n n ) ) / ( x * h o ( n n - 1 ) +

&  ( d e l t a x / 2 . - x ) * h o ( n n ) ) + s q r t ( g r * ( x * h o ( n n - 1 ) + ( d e l t a x / 2 . - x ) *
&  h o ( n n ) ) / ( d e l t a x / 2 . ) ) ) - x

e l s e  i f ( ( k k  . e q .  2 )  . a n d .  ( 1 1  . e q .  1 ) )  t h e n
y = - d e l t a t / 2 . * ( ( x * q h a l f ( 2 )  +  ( d e l t a x / 2 . - x )  * q h a l f ( 1 ) ) / ( x * h h a l f ( 2 )  +

&  ( d e l t a x / 2 . - x ) * h h a l f ( 1 ) ) - s q r t ( g r * ( x * h h a l f ( 2 )  +  ( d e l t a x / 2 . - x )  *
&  h h a l f ( 1 ) ) / ( d e l t a x / 2 . ) ) ) - x

e l s e
y = d e l t a t / 2 . * ( ( x * q h a l f ( n n - 1 ) + ( d e l t a x / 2 . - x ) * q h a l f ( n n ) ) /

&  ( x * h h a l f ( n n - 1 ) + ( d e l t a x / 2 . - x ) * h h a l f ( n n ) ) + s q r t ( g r * ( x * h h a l f ( n n - 1  
&  ( d e l t a x / 2 . - x ) * h h a l f ( n n ) ) / ( d e l t a x / 2 . ) ) ) - x

e n d  i f  
e n d

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

T h e  i m p l i c i t  f i n i t e - d i f f e r e n c e  P r e i s s m a n n  s c h e m e  ( 4  p o i n t  b o x  
s c h e m e )  u s i n g  d o u b l e  s w e e p  m e t h o d  ( T h o m a s  a l g o r i t h m )  t o  
c a l c u l a t e  w a t e r  f l o w s  i n  S t a g e s  I I I  a n d  I V .

*
*

*
* Arguments of Variables
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*  p s i  :  w e i g h t i n g  f a c t o r  f o r  s p a c e
*  t h e t a  :  w e i g h t i n g  f a c t o r  f o r  t i m e

subroutine stage34
d i m e n s i o n  d e l z ( 5 0 0 )
c o m m o n  h o ( 5 0 0 ) , h n ( 5 0 0 ) , q o ( 5 0 0 )  , q n ( 5 0 0 )  , u o ( 5 0 0 ) , u n ( 5 0 0 ) , z o ( 5 0 0 )  

&  z n  ( 5 0 0 ) , y o ( 5 0 0 ) , y n ( 5 0 0 ) , q t o ( 5 0 0 )  ,  q t n ( 5 0 0 ) , p f d i s t , t i m e ,
&  h p e a k o , h p e a k b , t l e n d , t 2 t i m e , t 2 e n d ,  t 3 t i m e , t 3 e n d , h i n i , g r ,
& t i m e l a g , d 5 0 , d 9 0 ,  p h i ,  x d i s t ( 5 0 0 )

c o m m o n / s e c o n d / f r o u d ( 5 0 0 ) , u s t a r ( 5 0 0 ) , h s t a r ( 5 0 0 ) ,
&  p p ( 5 0 0 ) , q q ( 5 0 0 ) , r r ( 5 0 0 ) , f ( 5 0 0 ) , g ( 5 0 0 )

c o m m o n / t h i r d / d e l t a x , d e l t a t , p s i , t h e t a , m m , n n , i , j  
c o m m o n / f i f t h / t m p v l , t q t n ( 5 0 0 )

c
c  I n p u t  a l l  c o n s t a n t s  a n d  p a r a m e t e r s .
c

d e l t a x = 1 0 .
d e l t a t = 4 .
p s i = 0 . 5
t h e t a = 0 . 7 5
m m = t 3 t i m e / d e l t a t + l
n n = p f d i s t / d e l t a x + l

c
c  i n p u t  i n i t i a l  c o n d i t i o n  f o r  s e d i m e n t  t r a n s f o r t  r a t e ,  q t  a n d  z
c  r e w r i t e  z o ( j )  f r o m  L a x - W e n d r o f f  s c h e m e  t o  P r e i s s m a n n  s c h e m e
c

o p e n ( u n i t = 1 4 ,  f i l e = ' h o m 4 d . d a t 1 ,  s t a t u s = ' u n k n o w n ' ) 
d o  1 0  j = l , n n

z o ( j ) = z o ( 2 * j - 1 )  
q t o ( j ) = 0 .
w r i t e ( 1 4 , * )  x d i s t ( 2 * j - l ) ,  z o ( j )

1 0  c o n t i n u e
c

c l o s e ( u n i t = 1 4 )
c
c  i n p u t  i n i t i a l  c o n d i t i o n  f r o m  t h e  r e s u l t s  o f  s t a g e  I I ,  a n d
c  i n t e r p o l a t e  i n i t i a l  c o n d i t i o n s  t o  f i t  s t a g e  I I I  a n d  I V ' s  g r i d s
c

o p e n ( u n i t = 1 0 ,  f i l e = ' h s t g e 2 . d a t ' )  
o p e n ( u n i t = l l ,  f i l e = ' u s t g e 2 . d a t ' )  
r e a d ( 1 0 , * )  ( h o ( j ) ,  j = l , n n + l )  
r e a d ( l l , * )  ( u o  ( j ) ,  j = l , n n + l )

c
c

d o  8 0  j = 2 , n n - l  
h o ( j ) = ( h o ( j ) + h o ( j + 1 ) ) 1 2 . 

u o ( j ) = ( u o ( j ) + u o ( j + l ) ) / 2 .  
y o ( j ) = h o ( j ) + z o ( j )

8 0  c o n t i n u e
h o ( n n ) = h o ( n n + 1 )  
u o ( n n ) = u o ( n n + 1 )  
y o ( n n ) = h o ( n n ) + z o ( n n )  
y o  ( 1 ) = h o ( 1 ) + z o  ( 1 )  
h i n i b = h o ( n n )  
h i n i o = h o ( 1 )

c
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o p e n ( u n i t = 1 8 ,  f i l e = ' 1 0 0 0 . d a t 1 ,  s t a t u s = ' u n k n o w n ' )  
o p e n ( u n i t = 1 9 ,  f i l e = ' 3 0 0 0 . d a t ' ,  s t a t u s = 1 u n k n o w n ' ) 
o p e n ( u n i t = 2 0 ,  f i l e = ' 6 0 0 0 . d a t 1 ,  s t a t u s = 1 u n k n o w n ' )  
o p e n ( u n i t = 2 1 ,  f i l e = ' 9 0 0 0 . d a t ' ,  s t a t u s = ' u n k n o w n ' ) 
o p e n ( u n i t = 2 2 ,  f i l e = ' f i n a l . d a t ' ,  s t a t u s = ' u n k n o w n ' )

c
c  i n i t i a l i z e  v a r i a b l e s  f o r  v o l u m e  c o n s e r v a t i o n  c h e c k s ,  a n d
c  f o r  b o u n d a r y  c o n d i t i o n s
c

t q t n ( 1 ) = 0 . 0  
t q t n ( n n ) = 0 . 0  
d e l z ( 1 ) = 0 .  
d e l z ( n n ) = 0 .  
d e l z l = 0 .  
d e l z n n = 0 .

c
o p e n ( u n i t = 4 0 ,  f i l e = ' d u m m y . o u t ' ,  s t a t u s = ' u n k n o w n ' )

c
d o  3 0  I = l , m m - 1

c
d e l z l = d e l z l + d e l z ( 1 )  
d e l z n n = d e l z n n + d e l z ( n n )

c
c  I n p u t  r i g h t  h a n d  b o u n d a r y  c o n d i t i o n  
c

h n ( n n ) = h i n i b + h p e a k b * ( 1 . / ( c o s h ( 2 . * p h i * ( ( t 2 e n d + d e l t a t *
&  f l o a t ( i ) ) - ( t i m e l a g + t i m e / 2 . ) ) / t i m e ) ) * * 2 - 1 . / ( c o s h ( 2 . *
&  p h i * ( t 2 e n d - ( t i m e l a g + t i m e / 2 . ) ) / t i m e ) ) * * 2 ) t d e l z n n

c
m = 0
f ( n n ) = 0 .  
g ( n n ) = h n ( n n )

c
c  F i r s t  s w e e p  t o  g e t  a l l  f  a n d  g  ( f r o m  j = n n - l  t o  1 ) .
c

d o  4 0  j = l , n n - l
u s t a r ( j ) = ( u o ( j + 1 ) + u o ( j ) ) / 2 .
h s t a r ( j ) = ( h o ( j + 1 ) + h o ( j ) ) / 2 .

4  0  c o n t i n u e
c
4 1  d o  5 0  j = 2 , n n

j j = n n - j + l
c
c  I n t r o d u c e  c o n t r o l  f u n c t i o n  t o  s u p p r e s s  t h e  c o n v e c t i v e  a c c e l .  t e r m ,
c  f r  :  F r o u d  n u m b e r
c  c f  :  c o n t r o l  f u n c t i o n
c

f r = a b s ( u s t a r  ( j j ) / s q r t ( g r * h s t a r ( j j ) ) )  
i f  ( f r  . g t .  1 . )  t h e n  
c f = 0 .  
e l s e
c f = l . - f r * * 2  
e n d  i f

c
c h e z y = 1 8 . * l o g l 0 ( 1 2 . * h o ( j j ) / ( 3 . * d 9 0 )  )
b s = g r / ( 4 . * c h e z y * * 2 * h s t a r ( j j ) ) * a b s ( u o { j j ) + u o ( j j + 1 ) )
a l = ( 1 . - p s i ) / d e l t a t - c f * u s t a r ( j j ) * t h e t a / d e l t a x + b s
b 2 = a l - b s
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b l = - g r * t h e t a / d e l t a x  
d l = - b l
c l = p s i / d e l t a t + c f * u s t a r ( j j ) * t h e t a / d e l t a x + b s  
d 2 = c l - b s
a 2 = - h s t a r ( j j ) * t h e t a / d e l t a x  
c 2 = - a 2

c
e l l = ( ( 1 . - p s i ) / d e l t a t + c f * u s t a r ( j j ) * ( 1 . - t h e t a ) / d e l t a x ) * u o ( j j )  
e l 2 = ( g r * ( 1 . - t h e t a ) / d e l t a x ) * h o ( j j )
e l 3 = ( p s i / d e l t a t - c f * u s t a r ( j j ) * ( 1 . - t h e t a ) / d e l t a x ) * u o ( j j + 1 )
e l 4 = - ( g r * ( 1 . - t h e t a ) / d e l t a x ) * h o ( j j + 1 ) + g r * ( z o ( j j ) - z o ( j j + l ) ) / d e l t a x
e l = e l l + e l 2 + e l 3 + e l 4

c
c

e 2 1 = ( h s t a r ( j j ) * ( 1 . - t h e t a ) / d e l t a x ) * u o ( j j )
e 2 2 = { ( 1 . - p s i ) / d e l t a t + u s t a r ( j j ) * ( 1 . - t h e t a ) / d e l t a x ) * h o ( j j )
e 2 3 = - ( h s t a r ( j j ) * ( 1 . - t h e t a ) / d e l t a x ) * u o ( j j + 1 )
e 2 4 = ( p s i / d e l t a t - u s t a r ( j j ) * ( 1 . - t h e t a ) / d e l t a x ) * h o ( j j + 1 )
e 2 = e 2 1 + e 2 2 + e 2 3 + e 2 4

c
c
c  R e c u r r e n c e  r e l a t i o n s  t o  c a l c u l a t e  t h e  i n i t i a l  s w e e p  c o e f f i c i e n t s
c

f ( j j ) = - ( ( c 2 + d 2 * f ( j j + 1 ) ) * a l - ( c l + d l * f ( j j + 1 ) ) * a 2 ) /
&  ( ( c 2 + d 2 * f ( j j + 1 ) ) * b l - ( c l + d l * f ( j j + 1 ) ) * b 2 )

g ( j j ) = ( ( c 2 + d 2 * f ( j j + 1 ) ) * ( e l - d l * g ( j j + 1 ) ) - ( c l + d l * f ( j j + 1 ) ) *
&  ( e 2 - d 2 * g ( j j + 1 ) ) ) / ( ( c 2 + d 2 * f ( j j + 1 ) ) * b l - ( c l + d l * f ( j j + 1 ) ) * b 2 )

c
c  C a l c u l a t e  n e w  c o e f f i c i e n t s  p p ,  q q  a n d  r r
c

p p ( j j + l ) = - a l / ( c l + d l * f ( j j + 1 ) ) 
q q ( j j + l ) = - b l / ( c l + d l * f { j j + 1 ) )  
r r ( j j + 1 ) = ( e l - d l * g ( j j + 1 ) ) / ( c l + d l * f ( j j + 1 ) )

5 0  c o n t i n u e
c
c  S e c o n d  s w e e p  t o  g e t  u  a n d  h  a t  t h e  n + 1  t i m e  l e v e l ,
c
c  I n p u t  l e f t  h a n d  b o u n d a r y  d a t a  a n d  g e t  u .
c

h n ( 1 ) = h i n i o + h p e a k o * ( 1 . / ( c o s h ( 2 . * p h i * ( ( t 2 e n d + d e l t a t * f l o a t ( i )
&  ) - t i m e / 2 . ) / t i m e ) ) * * 2 - 1 . / ( c o s h ( 2 . * p h i * ( t 2 e n d - t i m e / 2 . ) /
&  t i m e ) ) * * 2 ) + d e l z l

c
u n  ( 1 )  =  ( h n  ( 1 )  - g  ( 1 ) )  / f  ( 1 )

c
c  C a l c u l a t i o n  o f  u  a n d  h  a t  c e r t a i n  t i m e  l e v e l  a n d  c h e c k
c  F r o u d  n o .  , a n d  f i n d  f l o w  s t a t u s ( s u p e r -  o r  s u b -  f l o w ) ,
c

d o  4 2  j = l , n n - l  
c  f r o u d ( j ) = a b s ( u n ( j ) / s q r t ( g r * h n ( j ) ) )
c  i f ( f r o u d ( j )  . g e .  1 . )  t h e n
c  p r i n t  * ,  ' s u p e r  c r i t i c a l  f l o w ,  i = ' ,  i ,  j ,  u n ( j ) , h n ( j )
c
c  c a l l  s u p e r
c
c  e l s e
c

u n ( j  + 1 ) = p p ( j  +  1 ) * u n ( j ) + q q ( j + 1 ) * h n ( j ) + r r ( j  + 1 )
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h n (j + 1 ) = f (j + 1 ) * u n (j + 1 ) + g (j+1)
c
c
4 2
c
c
c

4 3
c

c
3 2
c

3 5  
c

c
c
3 6

3 7  
c

c
c
3 8  
3 3  
c  
c  
c

3 1
c
c
c
3 0
c

e n d  i f  
c o n t i n u e

U p d a t e  u s t a r  a n d  h s t a r .  

i f ( m . e q . 4 )  g o t o  3 2  

d o  4 3  j = l , n n - l
u s t a r ( j ) = ( u n ( j + 1 ) + u o ( j + 1 ) + u n ( j ) + u o ( j ) ) / 4 . 
h s t a r ( j ) = ( h n ( j + 1 ) + h o ( j + 1 ) + h n ( j ) + h o ( j ) ) / 4 .  
c o n t i n u e

m = m + l  
g o  t o  4 1

c a l l  s e d i m l

d o  3 5  j = l , n n
i f ( i  . e q  
i f ( i  . e q  
i f ( i  . e q  
i f ( i  . e q  
i f ( h n ( j )  
c o n t i n u e

g o  t o  3 8

d o  3 7  j = l , n n  
w r i t e ( 2 2 , * )  i ,  
c o n t i n u e

1 0 0 0 )  w r i t e ( 1 8 , * )  
3 0 0 0 )  w r i t e ( 1 9 , * )  
6 0 0 0 )  w r i t e ( 2 0 , * )  
9 0 0 0 )  w r i t e ( 2 1 , * )  

I t . 0 . 0 1  . o r .  i . e q .

i , x d i s t ( 2  *  j - 1 ) , h n ( j ) , u n ( j ) , z n ( j )  
i , x d i s t ( 2*j - 1 ) , h n (j ) , u n ( j ) , z n (j ) 
i ,  x d i s t ( 2 * j  — 1 ) , h n ( j ) , u n ( j ) , z n ( j ) 
i ,  x d i s t ( 2 * j - 1 ) , h n ( j ) , u n ( j ) , z n ( j ) 

i t i m - 1 )  g o  t o  3 6

x d i s t ( 2 * j - 1 ) ,  h n ( j ) ,  u n ( j ) ,  z n ( j )

s t o p

w r i t e ( 6 , 3 3 )  i ,  z n ( 6 4 )
f o r m a t ( ' + ' , i l 0 , 2 x , ' z n ( 6 4 ) = I ,  f l 0 . 5 )

i n i t i a l i z e  k n o w n  v a l u e s  f o r  t h e  n e x t  t i m e  l e v e l

d e l z ( 1 ) = z o ( 1 ) - z n ( 1 )  
d e l z ( n n ) = z o ( n n ) - z n ( n n )

d o  3 1  j = l , n n  
h o ( j ) = h n ( j )  
u o ( j ) = u n ( j ) 
z o ( j ) = z n ( j ) 
y o ( j ) = y n ( j ) 
q t o ( j ) = q t n ( j )  

c o n t i n u e

g o  t o  n e x t  t i m e  l e v e l  

c o n t i n u e
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c l o s e ( u n i t = 1 8 )  
c l o s e ( u n i t = 1 9 )  
c l o s e ( u n i t = 2 0 )  
c l o s e ( u n i t = 2 1 )  
c l o s e ( u n i t = 2 2 )

c
r e t u r n
e n d

c
' k ' ie i ri e ' i ir -k 'k 'k 'k ir 'k 'k 'k 'k 'k -k-kie 'k ie 'k 'k ' ir -k 'k 'k 'k - ir 'k ' ie 'k 'k 'k 'k ie 'k 'k ' ie 'k ' ie 'k 'k 'k ie 'k 'k ' ie 'k ' ie-k 'k 'k 'k ' i f 'k 'k 'k 'k 'k 'k 'k ' ie 'k 'k ' ie- ie 'k 'k

*  T h i s  s u b r o u t i n e  i s  f o r  t h e  c a l c u l a t i o n  o f  s u p e r - c r i t i c a l  f l o w s
*  f r o m  l e f t  t o  r i g h t ( j = l  t o  j j )  d i r e c t i o n ,  h o w e v e r ,  t h i s  r o u t i n e
*  i s  n o t  u s e d  i n  a c t u a l  c o m p u t a t i o n .
*

s u b r o u t i n e  s u p e r
c o m m o n  h o ( 5 0 0 ) , h n ( 5 0 0 ) , q o ( 5 0 0 ) , q n ( 5 0 0 ) , u o ( 5 0 0 )  , u n ( 5 0 0 )  ,  z o ( 5 0 0 )  

&  z n ( 5 0 0 ) , y o ( 5 0 0 ) , y n ( 5 0 0 ) , q t o ( 5 0 0 ) , q t n ( 5 0 0 )  , p f d i s t ,  t i m e ,
&  h p e a k o , h p e a k b , t l e n d , t 2 t i m e , t 2 e n d , t 3 t i m e ,  t 3 e n d ,  h i n i ,  g r ,
&  t i m e l a g , d 5 0 , d 9 0 , p h i , x d i s t ( 5 0 0 )

c o m m o n / s e c o n d / f r o u d ( 5 0 0 ) , u s t a r ( 5 0 0 ) , h s t a r ( 5 0 0 ) ,
&  p p ( 5 0 0 ) ,  q q ( 5 0 0 ) ,  r r ( 5 0 0 ) ,  f ( 5 0 0 ) ,  g ( 5 0 0 )

c o m m o n / t h i r d / d e l t a x , d e l t a t , p s i , t h e t a , m m , n n , i , j
c
c  S i n g l e  s w e e p  t o  g e t  u  &  h  f r o m  l e f t  t o  r i g h t
c

c h e z y = 1 8 . * l o g l 0 ( 1 2 . * h o ( j ) / ( 3 . * d 9 0 ) )
b s = g r / ( 4 . * c h e z y * * 2 * h s t a r ( j ) ) * a b s ( u o ( j ) + u o ( j + 1 ) )
a l = ( 1 . - p s i ) / d e l t a t - u s t a r ( j ) * t h e t a / d e l t a x + b s
b 2 = a l - b s
b l = - g r * t h e t a / d e l t a x
d l = - b l
c l = p s i / d e l t a t + u s t a r ( j ) * t h e t a / d e l t a x + b s  
d 2 = c l - b s
a 2 = - h s t a r ( j ) * t h e t a / d e l t a x  
c 2 = - a 2

c
e l l = ( ( 1 . - p s i ) / d e l t a t + u s t a r ( j ) * ( 1 . - t h e t a ) / d e l t a x ) * u o ( j ) 
e l 2 = ( g r * ( 1 . - t h e t a ) / d e l t a x ) * h o ( j )
e l 3 = ( p s i / d e l t a t - u s t a r ( j ) * ( 1 . - t h e t a ) / d e l t a x ) * u o ( j + 1 )
e l 4 = - ( g r * ( 1 . - t h e t a ) / d e l t a x ) * h o ( j + 1 ) + g r * ( z o ( j ) - z o ( z + 1 ) ) / d e l t a x
e l = e l l + e l 2 + e l 3 + e l 4

c
e 2 1 = ( h s t a r ( j ) * ( 1 . - t h e t a ) / d e l t a x ) * u o ( j )
e 2 2 = ( ( 1 . - p s i ) / d e l t a t + u s t a r ( j ) * ( 1 . - t h e t a ) / d e l t a x ) * h o ( j )
e 2 3 = - ( h s t a r ( j ) * ( 1 . - t h e t a ) / d e l t a x ) * u o ( j + 1 )
e 2 4 = ( p s i / d e l t a t - u s t a r ( j ) * ( 1 . - t h e t a ) / d e l t a x ) * h o ( j + 1 )
e 2 = e 2 1 + e 2 2 + e 2 3 + e 2 4

c
c  C a l c u l a t i o n  o f  u  a n d  h  a t  t i m e  l e v e l  n + 1
c

u n ( j + l ) = ( ( a 2 * d l - a l * d 2 ) / ( c l * d 2 - c 2 * d l ) ) * u n ( j ) + ( ( b 2 * d l - b l * d 2 )
&  / ( c l * d 2 - c 2 * d l ) ) * h n ( j ) + ( d 2 * e l - d l * e 2 ) / ( c l * d 2 - c 2 * d l )

h n ( j + 1 ) = - ( c l / d l ) * u n ( j + 1 ) - ( a l / d l ) * u n ( j ) - ( b l / d l ) * h n ( j ) + e l / d l
c

r e t u r n
e n d

329

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



c
•k-k'k 'k 'k 'k 'k 'k 'kie 'k-k 'ie 'kJe-irie' ie-k 'k 'k-ir ' ir 'k'k'k'kieJe'ic'k'k' ie'k'k'k'k'k-irlc 'k'k'k'k' ie'k'k'k' ie 'k'k'k'k' feie'ie'k-k'k'k' ir-ir ' ie' if 'k-k'k'k 'ie'k'k'ie

*  S e d i m e n t  t r a n s p o r t  f o r m u l a s  o f  v a n  R i j n  ( 1 9 8 4  a & b )  a r e  u s e d .  *
*  T h e  f o r w a r d  t i m e  c e n t e r e d  s p a c e  e x p l i c i t  s c h e m e  i s  a d o p t e d  f o r  *
*  t h e  d i s c r e t i z a t i o n  o f  s e d i m e n t  c o n t i n u i t y  e q u a t i o n .  *

* Arguments of Variables *
★ *
*  c o  :  m a x i m u m  v o l u m e t r i c  b e d  c o n c e n t r a t i o n  *
*  p o  :  p o r o s i t y  o f  b e d  m a t e r i a l  *
*  s d e n  :  s p e c i f i c  d e n s i t y  o f  b e d  m a t e r i a l  *
*  v o n k n  :  v o n  K a r m a n  c o n s t a n t  *
*  S h i e l d s  :  S h i e l d s  p a r a m e t e r  *
*  t h e t a c r  :  c r i t i c a l  m o b i l i t y  p a r a m e t e r  *
* +

c
subroutine sediml
c o m m o n  h o ( 5 0 0 ) , h n ( 5 0 0 ) ,  q o ( 5 0 0 ) ,  q n ( 5 0 0 ) ,  u o ( 5 0 0 ) , u n  ( 5 0 0 ) , z o  ( 5 0 0 ) ,

&  z n  ( 5 0 0 ) ,  y o  ( 5 0 0 ) ,  y n  ( 5 0 0 )  ,  q t o  ( 5 0 0 )  ,  q t n  ( 5 0 0 )  ,  p f d i s t ,  t i m e ,
&  h p e a k o , h p e a k b , t l e n d ,  t 2 t i m e ,  t 2 e n d ,  t 3 t i m e , t 3 e n d , h i n i , g r ,
&  t i m e l a g , d 5 0 , d 9 0 , p h i , x d i s t ( 5 0 0 )

c o m m o n / t h i r d / d e l t a x , d e l t a t , p s i , t h e t a , m m , n n , i , j  
c o m m o n / f i f t h / t m p v l , t q t n ( 5 0 0 )

c
c d o u b l e  p r e c i s i o n  v k i n ,  s h i e l d s ,  t e m p ,  q b ,  q s ,  q t ,  c a

r e a l  k sr e a l  k s  
c
c  d e f i n e  c o n s t a n t s  a n d  p a r a m e t e r s  
c

c o = 0 . 6 5  
p o = 0 . 3 5  
s d e n = 2 . 5 8  
v o n k n = 0 . 4 0  
v k i n = l . O d - 6  
t e m p = v k i n * * 2
s h i e l d s = d 5 0 * ( ( s d e n - 1 . ) * g r / t e m p ) * * ( 1 . / 3 )

c
c  u n  a n d  h n  a t  n + 1  t i m e  l e v e l  a r e  f i r s t  u s e d  i n  t h e  s e d i m e n t
c  t r a n s p o r t  f o r m u l a s  t o  g e t  q b ,  q s ,  a n d  q t n  a t  n + 1  t i m e  l e v e l
c

o p e n ( u n i t = 1 6 ,  f i l e = ' d e l t a z . d a t ' ,  s t a t u s = ' u n k n o w n ' ) 
o p e n ( u n i t = 2 3 ,  f i l e = ' r s u h . d a t ' ,  s t a t u s = 1 u n k n o w n ' )  
o p e n ( u n i t = 2 4 ,  f i l e = ' r u w s . d a t ' ,  s t a t u s = ' u n k n o w n ' )

c
c  c o m p u t e  c r i t i c a l  b e d - s h e a r  v e l o c i t y ,  c b s v ,  a c c o r d i n g  t o  S h i e l d s
c

i f ( s h i e l d s  . l e .  4 . )  t h e n
t h e t a c r = 0 . 2 4 * s h i e l d s * * ( - 1 )  

e l s e  i f ( 4 .  . I t .  s h i e l d s  . a n d .  s h i e l d s  . l e .  1 0 . )  t h e n  
t h e t a c r = 0 . 1 4 * s h i e l d s * * ( - 0 . 6 4 )  

e l s e  i f ( 1 0 .  . I t .  s h i e l d s  . a n d .  s h i e l d s  . l e .  2 0 . )  t h e n  
t h e t a c r = 0 . 0 4 * s h i e l d s * * ( - 0 . 1 0 )  

e l s e  i f ( 2 0 .  . I t .  s h i e l d s  . a n d .  s h i e l d s  . l e .  1 5 0 . )  t h e n  
t h e t a c r = 0 . 0 1 3 * s h i e l d s * * 0 . 2 9

e l s e
t h e t a c r = 0 . 0 5 5

e n d  i f
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c b s v = s q r t ( t h e t a c r * ( s d e n - 1 . ) * g r * d 5 0 )
c

d o  1 0  j = l , n n
c
c  c o m p u t e  C h e z y - c o e f f i c i e n t  r e l a t e d  t o  g r a i n s ,  c p r i m e ,  e f f e c t i v e
c  b e d - s h e a r  v e l o c i t y ,  e b s v  a n d  t r a n s p o r t  s t a g e  p a r a m e t e r ,  t s p .
c

c p r i m e = 1 8 . * l o g l 0 ( 1 2 . * h n ( j ) / ( 3 . * d 9 0 )  ) 
e b s v = ( g r * * 0 . 5 * a b s ( u n ( j ) ) ) / c p r i m e  
i f ( e b s v  . l e .  c b s v )  t h e n  

t s p = 0 . 0  
q t n ( j ) = 0 .  
g o  t o  1 0

e l s e
t s p = ( ( e b s v ) * * 2 - ( c b s v ) * * 2 ) / ( c b s v ) * * 2

e n d  i f
c
* * * * * * * * *  b e d - l o a d  t r a n s p o r t  r a t e ,  q b  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

c
c  c o m p u t e  b e d - l o a d  c o n c e n t r a t i o n ,  c b ,  t h i c k n e s s  o f  b e d - l o a d  l a y e r ,
c  d e l t a b  a n d  p a r t i c l e  v e l o c i t y ,  u b
c

c b = 0 . 1 8 * t s p / s h i e l d s * c o
d e l t a b = 0 . 3 * s h i e l d s * * 0 . 7 * t s p * * 0 . 5 * d 5 0
u b = l . 5 * t s p * * 0 . 6 *  (  ( s d e n - 1 . ) * g r * d 5 0 ) * * 0 . 5

c
c  c o m p u t e  b e d - l o a d  t r a n s p o r t
c

q b = c b * u b * d e l t a b
c
* * * * * * * * *  s u s p e n d e d - l o a d  t r a n s p o r t ,  q s  * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

c
c  c o m p u t e  r e f e r e n c e  l e v e l ,  a
c

k s = 3 . * d 9 0
a m i n = 0 . 0 1 * h n ( j )
i f ( k s  . I t .  a m i n )  t h e n
r l a = a m i n
e l s e
r l a = k s
e n d  i f

c
c  c o m p u t e  r e f e r e n c e  c o n c e n t r a t i o n ,  c a
c

c a = 0 . 0 1 5 * ( d 5 0 * t s p * * l . 5 ) / ( r l a * s h i e l d s * * 0 . 3 )
c
c  c o m p u t e  r e p r e s e n t a t i v e  p a r t i c l e  d i a m e t e r  o f  s u s p e n d e d  s e d i m e n t ,
c  d s .
c  s i g m a s = g e o m e t r i c  s t a n d a r d  d e v i a t i o n  o f  b e d  m a t e r i a l
c

s i g m a s = 2 . 5
d s = d 5 0 * ( 1 . + 0 . 0 1 1 * ( s i g m a s - 1 . ) * ( t s p - 2 5 . ) )

c
c  c o m p u t e  f a l l  v e l o c i t y  o f  s u s p e n d e d  s e d i m e n t ,  w s
c

i f ( d 5 0  . I t .  0 . 0 0 0 1 )  t h e n
w s = l . / 1 8 . * ( s d e n - 1 . ) * g r * d s * * 2 / v k i n
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e l s e  i f ( d 5 0  . g t .  0 . 0 0 1 )  t h e n
w s = l . 1 * ( ( s d e n - 1 . ) * g r * d s ) * * 0 . 5

e l s e
w s = 1 0 . * v k i n / d s * ( ( 1 . + 0 . 0 1 * ( s d e n - 1 . ) * g r * d s * * 3 / t e m p )

& * * 0 . 5 - 1 . )
e n d  i f

c
c  c o m p u t e  o v e r a l l  b e d - s h e a r  v e l o c i t y ,  o b s v
c

o b s v = g r * * 0 . 5 * a b s ( u n ( j ) ) / c p r i m e
c
c  c o m p u t e  b e t a - f a c t o r
c

i f ( o b s v  . g t .  2 . * w s )  t h e n
f b e t a = l . + 2 . * ( w s / o b s v ) * * 2

e l s e
f b e t a = l . 0

e n d  i f
c
c  c o m p u t e  p h i - f a c t o r  f o r  s i m p l i f i e d  m e t h o d
c

f p h i = 2 . 5 * ( w s / o b s v ) * * 0 . 8 * ( c a / c o ) * * 0 . 4
c
c  c o m p u t e  s u s p e n s i o n  p a r a m e t e r ,  Z  a n d  Z '
c

s p z = w s / ( f b e t a * v o n k n * o b s v )  
s p z p = s p z + f p h i

c
c  c o m p u t e  F - f a c t o r
c

t e m p l = ( r l a / h n ( j ) ) * * s p z p - ( r l a / h n ( j  )  )  *  *  1 . 2  
t e m p 2 = ( 1 . - r l a / h n ( j ) ) * * s p z p * ( 1 . 2 - s p z p )  
f a c t o r = t e m p l / t e m p 2  

c  i f ( i . e q . 2 0 0 )  t h e n
c  p r i n t  * ,  j ,  t e m p i ,  t e m p 2 ,  f a c t o r ,  r l a , h n ( j ) , u n ( j ) ,  s p z , s p z p
c  e n d  i f
c
c  c o m p u t e  s u s p e n d e d  l o a d  t r a n s p o r t ,  q s
c

q s = f a c t o r * a b s ( u n ( j ) ) * h n ( j ) * c a
c
* * * * * * * *  c o m p u t e  t o t a l  l o a d  t r a n s p o r t  r a t e  * * * * * * * * * * * * * * * * * * * * * *  
c

i f ( u n ( j ) . I t . 0 . )  t h e n  
q t n ( j ) = - ( q s + q b )  

e l s e
q t n ( j ) = q s + q b  

e n d  i f
c
c  c h e c k  s u s p e n d e d  s e d i m e n t  r a t i o  a n d  u n ,  h n  a t  t h e  i n i t i a l  t o p
c  d u n e  ( j = 6 4 )  a t  e v e r y  1 0 0  t i m e  s t e p
c

n n n = 1 0 0 * i n t ( i / 1 0 0 )  
i f f i . e q . n n n  . a n d .  j . e q . 6 4 )  t h e n  

r s = q s / ( q s + q b )  
r u w s = o b s v / w s
w r i t e ( 2 3 , * )  i ,  r s ,  u n ( j ) ,  h n ( j ) ,  q t n ( j )  
w r i t e ( 2 4 , * )  r u w s ,  r s
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e n d  i f
c
1 0  c o n t i n u e
c
c  c h e c k  n u m e r i c a l  d i s s i p a t i o n ,  t m p v l  i s  a c t u a l  v o l u m e  c h a n g e
c

t q t n ( 1 ) = t q t n ( 1 ) + d e l t a t * ( q t n ( 1 ) + q t o ( 1 ) ) / 2 .  
t q t n ( n n ) = t q t n ( n n ) + d e l t a t * ( q t n ( n n ) + q t o ( n n ) ) / 2 .  
t m p v l = ( t q t n ( n n ) - t q t n ( 1 ) ) / ( l . - p o )

c
c
* * * * * * * *  e n d  o f  s e d i m e n t  t r a n s p o r t  f o r m u l a s  * * * * * * * * * * * * * * * * * * * * * * * * * *  
c
* * * * * * * *  s t a r t  s e d i m e n t  c o n t i n u i t y  e q u a t i o n  * * * * * * * * * * * * * * * * * * * * * * * * * *
c
c  d i s c r e t i z a t i o n  o f  1 - D  s e d i m e n t  t r a n s p o r t  e q u a t i o n  u s i n g
c  c e n t e r e d  s p a c e  a n d  f o r w a r d  t i m e  e x p l i c i t  s c h e m e ,
c
c  c a l c u l a t e  n e w  b o t t o m  e l e v a t i o n ,  z n  a t  t i m e  l e v e l ,  n + 1
c

d o  2 0  j = 2 , n n - l
c

z n ( j ) — z o  ( j ) - d e l t a t / ( 2 . * d e l t a x * ( 1 . - p o ) ) * ( q t n ( j + 1 ) - q t n ( j - 1 ) )
c
2 0  c o n t i n u e
c
* * * * * * * * *  b o u n d a r y  c o n d i t i o n s  * * * * * * * * * * * * * * * * * * * * * * * *
c
c  i n t r o d u c e  N e w m a n n  t y p e  b o u n d a r y  c o n d i t i o n s ,
c

z n  ( 1 )  = z o  ( 1 )  + 2  .  *  ( z n  ( 2 )  -  z o  ( 2 )  )  -  ( z n  ( 3 )  -  z o  ( 3 )  )
c

z n ( n n ) = z o ( n n ) + 2 . * ( z n ( n n - 1 ) - z o ( n n - 1 ) ) - ( z n ( n n - 2 ) - z o ( n n - 2 ) )
c
c  i n t r o d u c e  D i r i c h l e t  t y p e  b o u n d a r y  c o n d i t i o n s
c
c  z n ( l ) = z o ( l )
c  z n ( n n ) = z o ( n n )
c
* * * * * * * * *  e n d  o f  b o u n d a r y  c o n d i t i o n  * * * * * * * * * * * * * * * * * * * * * *
c
c
* * * * * * * * *  i n t r o d u c e  d i s s i p a t i v e  i n t e r f a c e  * * * * * * * * * * * * * * * *
c
c  z n ( j )  i s  t h e  o n l y  v a r i a b l e  t o  e m p l o y  d i s s i p a t i v e  i n t e r f a c e ,
c  h o w e v e r ,  u n d e r  c e r t a i n  f l o w  c o n d i t i o n  h n ( j )  a n d  u n ( j )  w i l l
c  n e e d  t h i s  ( v e r y  r a r e ) .
c

a l p h a = l . / 2 0 .  
m m m = 2 0 * i n t ( i / 2 0 )

c
i f ( i . e q . m m m )  t h e n  
d o  3 0  j = 2 , n n - l

z n ( j ) = a l p h a * z n ( j - 1 ) + ( 1 . - 2 . * a l p h a ) * z n ( j ) + a l p h a * z n ( j + 1 )  
c  h n ( j ) = a l p h a * h n ( j - 1 ) + ( 1 . - 2 . * a l p h a ) * h n ( j ) + a l p h a * h n ( j + 1 )
c  u n ( j ) = a l p h a * u n ( j - 1 )  +  ( 1 . — 2 . * a l p h a ) * u n ( j ) + a l p h a * u n ( j  +  1 )
3 0  c o n t i n u e
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* 
o

z n ( 1 ) = ( 1 . - a l p h a ) * z n ( 1 ) + a l p h a * z n ( 2 )  
z n ( n n ) = a l p h a * z n ( n n - 1 )  +  ( 1 . - a l p h a )  * z n ( n n )  

c  h n ( 1 ) = ( 1 . - a l p h a ) * h n ( 1 ) + a l p h a * h n ( 2 )
c  h n ( n n ) = a l p h a * h n ( n n - l ) + ( 1 . - a l p h a ) * h n ( n n )
c  u n ( 1 ) = ( 1 . - a l p h a ) * u n ( 1 ) + a l p h a * u n ( 2 )
c  u n ( n n ) = a l p h a * u n ( n n - l ) + ( l . - a l p h a ) * u n ( n n )
c

e n d  i f
c
c  a d j u s t m e n t s  o f  f l o w  c h a r a c t e r i s t i c s  d u e  t o  s e d i m e n t  m o t i o n
c

d o  4 0  j = l , n n  
g n ( j ) = u n ( j ) * h n ( j )  
y n ( j ) = h n ( j ) + z o ( j ) 
h n ( j ) = y n ( j ) - z n ( j ) 
u n ( j ) = q n ( j ) / h n ( j )

4 0  c o n t i n u e
c
c  c a l l  s u b r o u t i n e  " v o l u m e "  f o r  c e n t r o i d  a n d  v o l u m e  c o m p u t a t i o n
c

i f ( i . e q . 1 0 0 0 )  c a l l  v o l u m e
c

i f ( i . e q . 3 0 0 0 )  c a l l  v o l u m e
c

i f ( i . e q . 6 0 0 0 )  c a l l  v o l u m e
c

i f ( i . e q . 9 0 0 0 )  c a l l  v o l u m e
c

d o  4 3  j = l , n n
i f ( i . e q . m m - l  . o r .  h n ( j ) . I t . 0 . 0 1 )  t h e n  

c a l l  v o l u m e  
g o  t o  4 4  
e n d  i f  

4  3  c o n t i n u e
c
c  a d j u s t e d  v a r i a b l e s  a r e  u s e d  f o r  t h e  n e x t  t i m e  s t e p  w a t e r
c  f l o w  c o m p u t a t i o n ,
c
4  4  r e t u r n

e n d

k'k-k-kk'k'kk'k'kk'k'ki'-k-k'k'kk'kk'k'kkk-k'kk'k-kk'kk'k'k-k-k'k'k'kk-k-k-k'k'k'k-k-kk-kk'k'kk'kk'kkk'kk'kk'kk'k-k'k

T h i s  r o u t i n e  i s  f o r  t h e  v o l u m e  c a l c u l a t i o n  a b o v e  M L L W ( o r  a b o v e  
a  d a t u m )  a n d  f o r  t h e  f i n d i n g  o f  c e n t r o i d  o f  t h e  v o l u m e .

z i n i ( j )  :  i n i t i a l  p r o f i l e
z n ( j )  :  i n t e r m e d i a t e  p r o f i l e
s u m i  :  t o t a l  v o l u m e  o f  i n i t i a l  p r o f i l e  a b o v e  d a t u m
s u m f  :  t o t a l  v o l u m e  o f  i n t e r m e d i a t e  p r o f i l e
d m l l w  :  h e i g h t  a d j u s t m e n t  f o r  M L L W  t o  a  d a t u m

★ x b a r i :  x - l o c a t i o n o f c e n t r o i d , x b a r i = a i x i / s u m i , o f i n i t i a l
* p r o f i l e
k y b a r i :  y - l o c a t i o n o f c e n t r o i d , y b a r i = a i y i / s u m i , o f i n i t i a l
k p r o f i l e
k x b a r f :  x - l o c a t i o n o f c e n t r o i d , x b a r f = a f x f / s u m f , o f i n t e r m e d
k p r o f i l e
k y b a r f :  y - l o c a t i o n o f c e n t r o i d , y b a r f = a f y f / s u m f , o f i n t e r m e d
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*  p r o f i l e
*  x i n i  :  b e g i n n i n g  p o i n t  o f  v o l u m e  c a l c u l a t i o n
*

subroutine volume
d i m e n s i o n  v o l i ( 5 0 0 ) ,  v o l f ( 5 0 0 ) ,  z i n i ( 5 0 0 ) ,  d i s t ( 5 0 0 )  
c o m m o n  h o ( 5 0 0 ) , h n ( 5 0 0 ) , q o ( 5 0 0 ) , q n ( 5 0 0 ) , u o ( 5 0 0 ) , u n ( 5 0 0 ) , z o { 5 0 0 ) ,  

&  z n ( 5 0 0 ) , y o ( 5 0 0 ) , y n ( 5 0 0 ) ,  q t o ( 5 0 0 ) ,  q t n ( 5 0 0 ) , p f d i s t , t i m e ,
&  h p e a k o , h p e a k b , t l e n d ,  t 2 t i m e ,  t 2 e n d ,  t 3 t i m e , t 3 e n d , h i n i , g r ,
&  t i m e l a g , d 5 0 , d 9 0 , p h i , x d i s t ( 5 0 0 )

c o m m o n / t h i r d / d e l t a x , d e l t a t , p s i ,  t h e t a , m m , n n , i , j  
c o m m o n / f i f t h / t m p v l , t q t n ( 5 0 0 )

c
c  c a l l  i n i t i a l  p r o f i l e  d a t a ( u n i t = 1 4 ) 
c

o p e n ( u n i t = 1 4 ,  f i l e = ' h o m 4 d . d a t ' )
o p e n ( u n i t = 2 5 ,  f i l e = ' c v c . d a t ' ,  s t a t u s = ' u n k n o w n 1 )

c

c

c

r e a d ( 1 4 , * )  ( d i s t ( j ) ,  z i n i ( j ) ,  j = l , n n )  

c l o s e ( u n i t = 1 4 )
c
c  a d j u s t m e n t  o f  d a t u m ,  e l e v a t i o n  o f  M L L W  a b o v e  a  p r o f i l e  d a t u m

d m l l w = 9 . 5 7

d o  9  j = l , n n
z i n i ( j ) = z i n i ( j ) - d m l l w  
z n ( j ) = z n ( j ) - d m l l w  

9  c o n t i n u e
c
c  i n i t i a l i z a t i o n  o f  v o l u m e
c

s u m i = 0 .  
s u m f = 0 .  
a i x i = 0 .  
a i y i = 0 .  
a f x f = 0 .  
a f y f = 0 .

c
c  c a l c u l a t i o n  o f  v o l u m e  a n d  c e n t r o i d
c

d o  1 0  j = l , n n - l
c
c  c a l c u l a t i o n  f o r  i n i t i a l  p r o f i l e
c

i f ( z i n i ( j ) . I t . 0 .  . a n d .  z i n i ( j + 1 ) . g e . 0 . )  x i n i = d i s t ( j + 1 )  
i f ( z i n i ( j + 1 ) . g e . O .  . a n d .  z i n i ( j + 2 ) . g e . 0 . )  t h e n  

v o l i  ( j )  =  ( z i n i ( j + 2 ) + z i n i ( j  +  1 ) ) * d e l t a x / 2 .  
a i x i = a i x i + v o l i ( j ) * ( d i s t ( j + 2 ) - x i n i - d e l t a x / 2 . )  
a i y i = a i y i + v o l i ( j ) * ( z i n i ( j + 2 ) + z i n i ( j + 1 ) ) / 4 .  
s u m i = s u m i + v o l i ( j )

e l s e
v o l i ( j ) = 0 .

e n d  i f
c
c  c a l c u l a t i o n  f o r  f i n a l  p r o f i l e  
c
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i f ( z n ( j ) . I t . 0 .  . a n d .  z n ( j + l ) . g e . O . ) x f i n = d i s t ( j + 1 )  
i f ( z n ( j + 1 ) . g e . 0 .  . a n d .  z n ( j + 2 ) . g e . O . )  t h e n

v o l f ( j ) = ( z n ( j + 2 ) + z n ( j + 1 ) ) * d e l t a x / 2 .  
a f x f = a f x f + v o l f ( j ) * ( d i s t ( j + 2 )  - x f i n - d e l t a x / 2 )  
a f y f = a f y f + v o l f ( j ) * ( z n ( j + 2 ) + z n ( j + l ) ) / 4 .  
s u m f = s u m f + v o l f ( j )

e l s e
v o l f ( j ) = 0 .

e n d  i f  
1 0  c o n t i n u e
c
c  c o m p u t e  c e n t r o i d ,  c u m u l a t i v e  a n d  p e r c e n t  v o l u m e  c h a n g e
c

i f ( s u m f . l e . 0 . )  t h e n
g o  t o  2 2
e l s e

x b a r i = a i x i / s u m i + x i n i  
y b a r i = a i y i / s u m i + d m l l w  
x b a r f = a f x f / s u m f + x f i n  
y b a r f = a f y f / s u m f + d m l l w  
c u m v o l c = s u m i - s u m f  

e n d  i f
c
c  e r r o r l  i s  p e r c e n t  v o l u m e  l o s s  d u e  t o  n u m e r i c a l  e r r o r s
c  e r r o r 2  i s  p e r c e n t  v o l u m e  l o s s  t h r o u g h  b o t h  b o u n d a r i e s
c

e r r o r 1 = ( c u m v o l c - t m p v l ) / s u m i * 1 0 0 .  
e r r o r 2 = t m p v l / s u m i * 1 0 0 .

c
c  p v o l c  i s  p e r c e n t  v o l u m e  c h a n g e  ,  e r r o r l + e r r o r 2
c

p v o l c = c u m v o l c / s u m i * 1 0 0 .
c
c  c o m p u t e  s p e e d  o f  s a n d  d u n e  m i g r a t i o n
c

i f ( i . e q . 1 0 0 0 )  t h e n
d x = x b a r f - x b a r i
d y = y b a r f - y b a r i
i o = 0
e l s e

d x = x b a r f - x b a r f o  
d y = y b a r f - y b a r f o  

e n d  i f
c

s p d u n e = d x / a b s ( d x ) * s q r t ( d x * * 2 + d y * * 2 )  / ( ( i - i o ) * d e l t a t )
c
c  w r i t e  r e s u l t  i n  c v c — . o u t
c

w r i t e ( 2 5 , 2 0 )  i ,  s u m i ,  s u m f ,  c u m v o l c ,  p v o l c ,  x b a r i ,  y b a r i ,  x b a r f ,  
&  y b a r f ,  s p d u n e , e r r o r l , e r r o r 2

2 0  f o r m a t ( ' i = ' , i 6 , 2 x , 1 s u m i = ' , f 1 0 . 3 ,  '  s u m f = ' , f 1 0 . 3 ,  '  c u m v o l c = ' ,
&  f l 0 . 3 , 2 x ,  ' p v o l c = ' , f 8 . 3 , / , 8 x , ' x b a r i = ' ,  f 9 . 3 , 2 x , ' y b a r i = ' ,
& f 8 . 3 ,  2 x , ' x b a r f = ' , f 9 . 3 , 2 x , ' y b a r f = ' ,  f 8 . 3 ,
& / ,  l O x , ' s p d u n e = ' , f 8 . 3 , '  e r r o r l = ' , f 8 . 3 , '  e r r o r 2 = ' , f 8 . 3 , / / )

c
c  r e l o c a t e  p r o f i l e s  f o r  t h e  f l o w  c o m p u t a t i o n
c
2 2  d o  2 1  j = l , n n

336

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



z i n i ( j ) = z i n i ( j ) + d m l l w  
z n ( j ) = z n ( j ) + d m l l w  

2 1  c o n t i n u e
c
c  s e t  v a r i a b l e s  t o  c o m p u t e  d u n e  s p e e d
c

x b a r f o = x b a r f
y b a r f o = y b a r f
i o = i

c
r e t u r n
e n d
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