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ABSTRACT

COMPREHENSIVE CONJUNCTIVE-USE MANAGEMENT OF 

CONNECTED SURFACE WATER GROUNDWATER SYSTEMS 

USING STOCHASTIC INPUTS AND UNCERTAINTIES

Seshadri Suryanarayana 

Old Dominion University 

Advisor: Dr. A. Osman Akan

A comprehensive conjunctive-use management model is developed. The 

dynamics of flow and solute transport processes in connected surface water groundwater 

systems are integrated by a dual programming management model. The governing aquifer 

flow  parameters and streamflows are treated as stochastic random processes. Multiple 

realizations of the random field are generated and are explicitly incorporated in a non

linear optimization model along with other system, environmental, and management 

constraints. To facilitate management of large aquifer systems, a linked simulation- 

optimization approach is used. The simulation program generates the response matrices 

for flow and transport processes. The management model then determines optimal well 

discharges and optimal surface water diversion rates. Further, the model determines 

optimal concentration injection rates for recharge wells and optimal concentration disposal 

into surface water bodies.
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Implicit finite difference method is used in modeling the two-dimensional,

unsteady groundwater flow and transport process. Iterative alternating direction implicit

method is used in its solution. Leaky aquifer, evapotranspiration, aerial recharge, and

induced infiltration can be accounted for. Advection, diffusion, and dispersion of
✓

conservative and non-conservative substances are considered in the transport model. In 

modeling advective component four schemes were investigated. It was found that the 

quadratic upstream interpolation method is the best.

Implicit finite difference method is used in modeling the one-dimensional, 

unsteady surface water flow and solute transport processes. The surface water 

groundwater interaction, stream mass balance, initial and boundary conditions are input 

to the management model as system constraints.

The individual components of the model developed are tested by comparing 

the numerical results obtained with analytical solutions and other generic numerical 

models where available. The model developed is demonstrated for a large aquifer. The 

considered hypothetical aquifer in model application is based on Yorktown-Eastover 

aquifer characteristics o f Southeastern Virginia Aquifer system.

The comprehensive model developed in this study can be used for field 

applications o f large aquifer systems over a longer management horizon.

i i
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NOMENCLATURE

A cross sectional flow area
As surface area of the stream (lake) in the cell
b confined aquifer thickness
C concentration in the aquifer
C1 solute concentration o f the external sources
C'w concentration injected through recharge wells
Cwm“  maximum concentration injection capacity
C0 aquifer initial concentration
Cj/,. concentration at the downstream node
Cd% concentration at the upstream node
Cfu/S concentration at the far upstream node
CR reach concentration
C'R effluent concentration disposed into the river
CRmax maximum concentration disposal capacity in to the river reach
Cw* maximum permissible concentration allowed at the pumping wells
CR* maximum permissible concentration in the stream reach
Dx dispersion coefficient in the X direction
Dxx intermediate dispersive flux term in X direction
Dyy intermediate dispersive flux term in Y direction
Dy dispersion coefficient in the Y direction
D water demand requirement
Dw* portion of the water demand to be met only by groundwater
dk reaction coefficient or the decay rate
dks first order reaction coefficient for streams
ETmax maximum groundwater evapotranspiration
E [] expected value
h piezometric head
h0 aquifer initial piezometric surface
ha aquifer piezometric head in the river reach
hr surface water elevation
hrb river bottom elevation
it time step index
jw  pumping well index
js stream diversion location index
jrw  recharge well index
Kx hydraulic conductivity in the X direction
Ky hydraulic conductivity in the Y direction
k any known point or cell in the aquifer
k lag (in Eq 3.5.21)

x v
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KR realization index
KT temporal time step index
m aquitard thickness
m' stream bed thickness
N number of measurements
n time step index
n Manning roughness coefficient (in Eq 3.5.6)
NOBS number of observation wells for initial conditions
NW number of pumping wells
NWR number of wells plus river reaches
NRW number of recharge wells
NRWR number o f potential wells plus river reaches
NSWD number of surface water diversion points
NDWS number of waste disposal locations in the stream
NT total number o f simulation or management time steps
NRIVER number of stream reaches
NDV total number o f decision variables
NTCE total number o f constraints
NLEQ number o f non-linear equality constraints
NLIEQ number of non-linear inequality constraints
LEQ number of linear equality constraints
LffiQ number of linear inequality constraints
P eigen vectors
Pzz aquitard permeability
P ’zz stream (lake) bed permeability
pde partial differential equation
Q W ell discharge rate
Q stream discharge
Q stationary anisotropic exponential covariance function (in Eq 3.3.2 through 

Eq 3.3.9, and Eq. A1.2 through A1.26)
Q ' waste discharge rate into the aquifer
Qd/s downstream outflow rate
Qu/s upstream inflow rate
Q s w d surface water diversion rate from the reach

max
VSW D surface water diversion capacity
Q w pumping well discharge rate

max
x w pumping well capacity
Q w d waste disposal rate into the stream reach
Qw d effluent waste discharge into the stream per unit length
Qyiz cross covariance between log parameter at any point i and the measured 

log parameter
Qar areal recharge rate into the aquifer
Qet groundwater evapotranspiration rate
Q in f induced infiltration rate
Ql leakage rate
Qinit pumping/recharge rate due to initial conditions

x v i
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rk lag k serial correlation coefficient
Tl lag-one serial correlation coefficient
RD' depth below which the evapotranspiration ceases
RH source bed elevation
RH’ ground surface elevation
RR areal recharge rate
S storage o f the reach
Sc storage coefficient of the porous material
So stream bed slope
s aquifer drawdown due to hydraulic stresses#s maximum permissible drawdown
ôbs known drawdown due to initia l conditions

s(i unit-response coefficient for in itia l conditions
t time
ti independent normal sampling deviates with mean 0 and variance 1
T1.T3 intermediate flow terms in X direction defined in the advective transport
T2,T4 intermediate flow terms in Y direction defined in the advective transport
T* X transmissivity in the X direction
Ty transmissivity in the Y direction
Tx w top width of the stream reach
U resultant groundwater velocity
Uxx groundwater velocity in the X direction
Uxy interpolated groundwater velocity in the X direction
Uyy groundwater velocity in the Y direction
Uyx interpolated groundwater velocity in the Y direction
W volumetric flux per unit area (in Eq 3.2.1)
W volumetric flux per unit volume (in Eq 3.6.1)
W weight factor in the weighted difference schemes
Wa,wc upstream weight factor on the left and right faces
Wb,wd upstream weight factor on the top and bottom faces
Wd/, weight associated with the downstream node
Wu/S weight associated with the upstream node
Wfu/S weight associated with the far upstream node
WL wastewater load of the solute injected
WL* waste load demand requirement
W LIN; portion of the waste load to be met only by injection
X X axis
Y Y axis
y stream depth
YR stream depth
y r * minimum stream flow depth requirement
Y i natural logarithm of a hydrogeologic parameter at point Xj
Ycc Gaussian conditional mean estimate
Yu vector of unconditional log parameters
YuGC vector o f unconditional log parameters based on Gaussian conditional

mean estimates

x v i i
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z vector o f measured log parameters (in section 3.3 and Appendix A l)
z distance from far upstream node to the cell wall under consideration
z objective function (in Eq 3.10.1, and Eq 3.10.11)
At length o f the time step
Af distance between far upstream and upstream node
Au distance between upstream and downstream node
AXj grid size o f the cell in the X direction
Ay, grid size o f the cell in the Y direction
a „ P , constant parameters in discharge-area relationship
cc2?p2 constant parameters in area-depth relationship
P unit-response function
Y unit-response concentration function
4> aquifer porosity
K correlation length scale along dimension i (either X or Y)
My mean of the random log field
° 2y variance o f the random log field
0 vector of unknown spatial statistical structural parameter o f log parameter

field

x v i i i
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1. INTRODUCTION

A ll over the world, water resources and its availability is becoming a 

lim iting factor for the growth and development of a region. This is principally due to 

increase in municipal water consumption, industrial growth, and increase in agricultural 

activities. More often, it has become a common practice to meet the growing water 

demands with diverted surface water and pumped groundwater.

The consequence of this increased water demand has resulted in an increase 

in municipal sewage, industrial wastewater and agricultural wastes. These liquid wastes 

are disposed either into surface water bodies or through deep injection wells usually after 

secondary treatment. This process has lead to the pollution o f both surface water and 

groundwater and has sharply increased over the last decade. The maintenance of their 

water quality within the standard is carried out by regulating the waste load discharged 

into these receiving bodies. This may be achieved by (i) wastewater treatment and 

improvement in treatment process, (ii) reuse of wastewater, and (iii) increasing the river 

self purification capacity, i.e. by increasing water quantity in low flow periods, reservoirs, 

artificial aeration etc.

In a hydraulically connected surface water and groundwater system, 

exploitation of any one source may have a direct - even i f  not an immediate effect, on 

the other one. For instance, in a connected system, intensive exploitation of groundwater
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can result in decreased stream discharge due to induced infiltration, and the quality of 

water may be affected by its movements from aquifers into surface water and vice-versa. 

Therefore, the problem of chronic overdraft o f an aquifer, diminishing surface water 

availability and deterioration in quality o f both surface water and groundwater in any 

region are interdependent and are inseparable and have to be treated simultaneously. It 

is generally recognized that both aspects o f water resources - quantity and quality, and 

both types o f water resources - surface water and groundwater - are important and 

interdependent. Because of this, optimum economic water management requires an 

integrated approach to the management of both surface water and groundwater. 

Management procedures should be adequate to avoid any present and future detrimental 

effects, such as excessive water depletion, deterioration o f water quality and land 

subsidence due to excessive pumping.

Although management plans, goals and interdependency are clearly defined, 

the single most d ifficu lt problem in conjunctive-use management modeling is that of 

dealing adequately with the effects o f model uncertainty in optimal decision making. One 

important form o f model uncertainty stems from the fact that model parameters are 

uncertain. Therefore, it is necessary to quantify these parameter uncertainties and 

explicitly incorporate them in the management model, thereby reducing deterministic 

assumptions. While traditional mathematical description of flow process is deterministic, 

it is being recognized that because of the nature of streamflows, and natural variability 

o f subsurface flow characteristics, the combined system is inherently stochastic. A ll these 

factors affect the water balance in the system and play an essential role in a real system.

2
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Water management plans are only an afterthought, considered when water 

shortages or other detrimental effects have occurred. In the past years, water resources 

planning authorities placed development of supplies to meet quantitative demands in their 

forefront, while increasing attention is now being devoted to quality o f water and its 

management as well. Often water resources planners, development authorities, and 

agencies face the problem of conjunctive-use operation of the system. The tools made 

available to them, to manage the entire system are very lim ited in their scope and 

applications. To this effect there is a need for a model which addresses all the factors 

affecting the system as a whole.

The main thrust of this study is in development of a comprehensive 

conjunctive-use management model for water quality and quantity in connected surface 

water groundwater systems using stochastic inputs and uncertainties. This is an 

appreciable step ahead in the state-of-the-art of analyzing regional water resources.

3
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2. LITERATURE REVIEW AND 

OBJECTIVES OF RESEARCH

Over the last three decades a number o f articles have been reported in the 

literature pertaining to groundwater management models and conjunctive-use management 

models. O f these, most models are concerned with the development of supplies to meet 

quantitative demands. Of late, increasing attention is devoted to quality of water and its 

management. Gorelick (1983) presents extensive literature reviews on the topic, and Yeh 

(1992) confines literature reviews to groundwater supply management models.

It is only in the last decade the research advances have revolutionized the 

field of groundwater hydrology to treat heterogeneity and variability of aquifer parameters 

in a stochastic framework. In this work, stochastic inputs and uncertainties are exclusively 

included in dealing with aquifer management of water quality and quantity, and has been 

extended for comprehensive conjunctive-use management o f connected surface water and 

groundwater systems.

In the literature, a numerical method such as finite difference, finite 

element or method of characteristics is used to frame the management problem, and the 

solution is attempted by linear programming, mixed integer programming, stochastic 

linear programming, quadratic programming, nonlinear programming or nonlinear
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stochastic programming. In this section, literature reviewed and of primary interest to this 

research work are grouped into following categories:

a. Stochastic generation of aquifer parameters,

b. Simulation models for flow and transport,

c. Deterministic management models, and

d. Stochastic management models.

2.1 STOCHASTIC GENERATION OF AQUIFER PARAMETERS

The aquifer parameters and heads measured in field, are usually scarce and 

prone to error. The uncertainty associated with field-measured parameters is an inherent 

element o f subsurface hydrologic simulation. This uncertainty stems from the fact that 

many aquifer parameters are evaluated indirectly after making few simplifying 

assumptions. Researchers in early 1970's studied the effects of hydraulic conductivity 

variations on groundwater flow. Still, the difficulty o f obtaining spatial distributions of 

system parameters was recognized to be a major impediment to wider use of flow and 

transport models. In later 1970's a new subdivision o f hydrogeology, called "Stochastic 

Hydrogeology" evolved.

Delhomme (1979) pioneered the research in this new area. In his work, he 

used a geostatistical approach called kriging, which is a linear optimal estimation 

procedure in characterizing the uncertainty about the transmissivity field of an aquifer. 

He used conditional simulation for generating different two dimensional realizations that 

all have the same spatial variability as the true field and are consistent with measured 

transmissivity values at well locations.

5
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Tang and Pinder (1979) deviated from a geostatistical approach and 

incorporated the uncertain physical parameters in their engineering analysis o f mass 

transport. In their analysis, they solved the one-dimensional mass transport equation for 

mean and variance o f concentration, given the mean and variance o f velocity and 

dispersion coefficient.

Smith and Freeze (1979) developed a first-order nearest-neighbor stochastic 

process model to generate a multilateral spatial dependence between hydraulic 

conductivity values in a block system of one- and two-dimensions. They described the 

spatial dependence between neighboring values of the random variable by a set o f jo in t 

probability density functions (pdf).

Notwithstanding recent advances, researchers continued their work on 

parameter estimation from data and prior information. In all their work, they inferred the 

stochastic structural parameters (mean, variance, and correlation length scale) 

characterizing the pdf by some procedure. Kitanidis and Vomvoris (1983) were the first 

to develop in the field o f hydrogeology the widely accepted geostatistically based 

maximum likelihood estimation (MLE) procedure, using measurements of hydraulic head 

and permeability. They then used kriging to provide minimum variance and unbiased 

point estimates o f hydrogeologic parameters. In their work, they tested their procedure for 

a one-dimensional case. Kitanidis and Lane (1985) presented the computational aspects 

o f maximum likelihood parameter estimation using Gauss-Newton method.

Dagan (1985) used the general procedure outlined by Kitanidis and 

Vomvoris (1983) in seeking the structural parameters characterizing the stochastic field. 

He used conditional simulation in generating different realizations. Following this, he
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solved the inverse problem o f groundwater flow using an analytical technique to relate 

the head and transmissivity variability. In developing his analytical technique few 

simplifying assumptions were made with respect to the geometry, boundary conditions 

and inputs.

The evidence in support of assuming log normal distribution and 

exponential covariance for transmissivity, hydraulic conductivity, and storage coefficient 

is given in Hoeksema and Kitanidis (1985a). In their work, they analyzed data from 31 

regional aquifers to identify the horizontal spatial correlation structure o f the aquifer 

parameters. Their analyses concluded that the logarithms of aquifer parameters pass 

normality tests. Hoeksema and Kitanidis (1985b) compared Gaussian conditional mean 

and extended co-kriging methods for their predictive capabilities. They concluded that 

both applications does provide a good estimate.

Rubin and Dagan (1987a and 1987b) paper is continuation of Dagan (1985) 

work describing an application of geostatistical approach which used an analytical 

solution to relate head and transmissivity variability. In their current work they relax few 

assumptions they had made in their earlier work. Further, they have accounted for the 

uncertainty associated with the estimation of structural parameters, and incorporated it in 

predicting conditional mean and covariance of logarithmic parameters. They present an 

application of their method for Avra Valley aquifer.

2.2 SIMULATION MODELS FOR FLOW AND TRANSPORT

Prickett and Lonnquist (1971) present a finite difference model to simulate 

groundwater flow. In their work, they use modified iterative alternating direction implicit

7
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(IADI) method to solve the set of resulting finite difference equations. In their report, they 

include digital computer program listings which can simulate one-, two-, and three- 

dimensional non-steady flow of groundwater in heterogeneous aquifers under water table, 

non leaky, leaky artesian conditions. Their program can also handle variable pumpage 

from wells, natural or artificial recharge rates, surface water groundwater interaction, and 

groundwater evapotranspiration.

Maddock (1972) derives analytical expressions for the unit response 

function for the aquifer flow process governed by the linear second order partial 

differential equation. He refers to these response functions as algebraic technological 

functions. These unit response functions show aquifer drawdown changes at a set of 

observation wells induced by a set of pumping wells. Further, in his work, he 

demonstrates using Green's function that these unit response functions exist even for 

systems with irregularly shaped boundaries and non homogeneous parameters. He has also 

demonstrated the use o f these functions to explicitly couple groundwater model with a 

quadratic programming management model to solve the non linear problem of minimizing 

pumping costs. The constraint set consisted of unit response matrix. Maddock (1974) 

extended this concept to a combined stream-aquifer system and showed the applicability 

of the method to conjunctive-use problems.

Morel-Seytoux (1975) derives an integral equation which completely 

characterizes the interaction between a stream and the alluvial aquifer. To solve pure 

conjunctive-use o f surface water and groundwater problems, the equations are expressed 

in finite difference form. He gives detailed expressions and numerical procedure to 

calculate response function coefficients in terms of physical characteristic o f the system.

8
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He also gives detailed procedures to handle the aquifer subjected to in itia l condition in 

generating unit response functions. He applies his method to a simple conjunctive-use 

management problem. Linear programming is used in its solution. The model is 

particularly useful when decisions on pumping rates are to be reviewed on a frequent and 

regular basis.

Konikow and Bredehoeft (1978) present a model that simulates solute 

transport in flowing groundwater. Their model couples groundwater flow equations with 

solute transport equations. They use the method of characteristics to solve the solute 

transport equation. In their scheme, they use the particle tracking procedure to represent 

convective transport and a two-step explicit procedure to solve the finite difference 

equation that describes the dispersion, sources and sinks. In their report, they include 

computer program listings which can simulate one- or two-dimensional, steady or non 

steady solute transport. Their model computes changes in concentration over time caused 

by advection, dispersion, and fluid sources in homogeneous/anisotropic aquifer medium.

Leonard (1979) present a convective modeling procedure using a third 

order upstream difference scheme which avoids the stability problems of central 

differencing while remaining free of the inaccuracies of numerical dispersion associated 

with upstream differencing. His algorithm is based on a conservative control volume 

formulation. The concentration on the interface is obtained by using a three-point 

(concentration of the two adjacent nodes to the cell wall together with the concentration 

o f the next upstream node) upstream weighted quadratic interpolation scheme. He gives 

detailed procedures for solving steady and unsteady one-dimensional advection diffusion 

equation, and calls it as QUICK and QUICKEST, respectively.

9
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Prickett, Naymik, and Lonnquist (1981) present a "Random-Walk" solute 

transport model. Their solution is based on the method of characteristics which is also 

called as particle-in-a-cell technique for convective mechanisms, and a random-walk 

technique for dispersion effects. The random-walk technique is based on the concept that 

dispersion in porous medium is a random process. Their report includes detailed 

procedures and a computer program listing. Their program can handle convection, 

dispersion, and various types of chemical reactions in one- or two-dimensional, steady/non 

steady, homogeneous and/or anisotropic groundwater solute transport problems. In short 

their program can handle a variety o f groundwater transport situations.

Leonard (1993) clarifies the misunderstanding about the order of accuracy 

of his original control volume formulation for a steady one-dimensional QUICK scheme 

(Leonard, 1979). He concludes that his original scheme is indeed third-order accurate, and 

his convective-diffusion scheme in a finite-volume formulation is asymptotically twice as 

accurate as using single point upwind difference scheme (SPUDS) with (l/6 )lh factor for 

convection and central difference scheme for diffusion. Further, he concludes both 

QUICK and SPUDS are formally only second-order accurate because of the dominance 

of the diffusion terms in the fine grid lim it.

2.3 DETERMINISTIC MANAGEMENT MODELS

In this class o f models the basic assumption is that all parameters are well 

defined and known with certainty. To this effect over the last three decades a number of 

models have been presented in the literature. Here, only those models of primary interest 

to the proposed research are discussed.

10
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Young and Bredehoeft (1972) presented a linked simulation-optimization 

approach for conjunctive-use management of groundwater and surface water systems. The 

system they selected for representation was a 50-mile reach of the South Platte River in 

northeastern Colorado. Their objective of management was to minimize the impact upon 

riverflow due to groundwater pumping for irrigation. This would occur if  groundwater 

was used late in the irrigation season and/or wells distant from the river were utilized.

An exhaustive simulation model for flow and chemical quality changes in 

an irrigated stream-aquifer system was presented by Konikow and Bredehoeft (1974). A 

finite difference method is used to solve the transient flow of groundwater, while method 

o f characteristic is employed in solving the solute transport portion. The model simulated 

flow as well as changes in water quality for both, the stream and the aquifer. The model 

has been applied to the Arkansas river valley of southeastern Colorado.

Morel-Seytoux and Daly (1975) developed a discrete kernel generator for 

stream-aquifer studies. In their work a finite difference model for aquifer without stream 

interaction was developed as a first-stage component o f a management model of a stream- 

aquifer system. The finite difference based simulation model generates discrete impulse 

response coefficients. Each stream reach in the aquifer is viewed as a special well 

(pumping or injecting). In their paper, a complete description of the discrete kernel 

generator is provided including basic equations, truncation error propagation, accuracy, 

and run costs, in solving actual groundwater management problems.

Haimes (1976) presents a joint consideration of the supply and quality of 

ground and surface water sources in his report on hierarchial modeling for the planning 

and management o f a total regional water resource system. The model is restricted to

11
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linear aquifer systems, where the stream acts as a constant head boundary. However, 

water quality objectives represent only the conservative and nonconservative pollutant 

parameters in the stream reaches, and no solute transport in the aquifer is considered.

Optimal conjunctive utilization of groundwater quality and quantity 

resources o f unconfined aquifers under steady state was presented by W illis (1976). The 

assimilative waste capacity o f the aquifer is considered an integral component o f the 

waste treatment system. The objective of the planning model is to optimize the use of 

the assimilative waste capacity o f the aquifer and at the same time preserve the quality 

of the water supply resources o f the groundwater system. The constraints of the mixed 

integer programming are generated by first spatially discretizing the aquifer and replacing 

the partial derivatives by finite difference approximations.

Management problem of conjunctive-use of surface water and groundwater 

via decomposition and multilevel approach was presented by Haimes and Dreizin (1977). 

This is a comprehensive model dealing with the water quantity aspects. The optimal 

solution includes a well pumping plan, a recharge plan and surface water use plan.

Marino (1981) presents a two-dimensional, finite element method for 

simulating the transient movement of water and solute in stream-aquifer systems, the 

results of which were tested by comparisons with finite difference results for flow portion 

of the model and with an analytical solution for the solute transport portion. However, the 

model confines only to the analysis and does not explicitly account for stream diversions 

to meet quantitative demands.

Illangasekare and Morel-Seytoux (1982) combines the discrete kernel 

approach for an isolated aquifer with the discrete kernel approach for an isolated stream
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to derive a set of influence coefficient tools for a combined stream-aquifer system. They 

couple the isolated aquifer and stream using a linear relationship for the stream-aquifer 

interaction. They demonstrate the explicit nature o f the relationships between the 

controllable decision variables and known in itia l conditions and resulting states of 

combined stream-aquifer systems in the formulation o f management problems.

Optimal dynamic management o f groundwater pollutant sources is 

presented by Gorelick and Remson (1982). In their paper, a linear programming- 

superposition method is discussed for managing multiple sources of groundwater pollution 

over time. The method uses any linear solute transport simulation model to generate the 

unit source-concentration response matrix that is incorporated into the management model. 

This series of constraints indicate local solute concentration histories that w ill result from 

any series of waste injection schedules. Also, flow field variations associated with waste 

injection are ignored as an approximation. The method is aimed at maximizing 

groundwater waste disposal while maintaining water quality of local water supplies within 

desired limits.

On the same lines, the issue o f simultaneous utilization of an aquifer for 

waste disposal and for water supply is presented by Gorelick (1982). In their work, a 

numerical simulation model of transient solute transport is used to develop a concentration 

response matrix, which shows concentration histories at points of interest throughout an 

aquifer resulting from pollutant sources distributed over space and time. When 

incorporated into a linear programming management model as a constraint, the 

concentration response matrix enabled maximizing waste disposal activities while 

protecting groundwater quality.

13
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Peralta et al. (1991) presents a rigorous computational comparison of the 

two widely accepted techniques o f solving groundwater flow problems - the embedding 

approach and the response matrix approach. They conclude for small systems embedding 

approach requires less processing time than the response matrix approach. For larger 

systems response matrix is well suited. However, the embedding approach is preferred 

even for larger systems i f  the percentage of pumping cells, and/or i f  many heads must be 

constrained or computed within the optimization model.

Dougherty and Marryott (1991) present a simulated annealing approach for 

optimal groundwater management. Finite difference method is used for the simulation 

models o f flow and solute transport. Simulated annealing is an effective new approach to 

solve large-scale management problems and its development at this stage is immature, but 

essentially it is a heuristic and probabilistic optimization method which seeks minima in 

analogy w ith the annealing o f solids.

Matsukawa et al. (1992) present a conjunctive use planning model for the 

Mad river basin, California. Nonlinear programming is used to solve the multiobjective 

planning problem. Their emphasis is on quantity aspects, though water quality is 

introduced via management constraints.

2.4 STOCHASTIC MANAGEMENT MODELS

Management models that account for spatial variability, uncertainty, 

reliability and stochasticity are discussed here. In this class of models the basic 

assumption that all parameters are well defined and known with certainty is relaxed. 

Only in the last decade, researchers have tried to give a fuller treatment to this class of
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models as a result of which rapid development is seen in theoretical research treating flow 

processes in a probabilistic framework. However, the actual field applications of these 

methods have been very limited.

Maddock (1974) developed an optimization model for the management of 

the conjunctive-use of surface water and groundwater, which included uncertainty by way 

o f statistical analysis. The aquifer was modeled with a distributed parameter model. The 

demands imposed on the sources were modeled as being stochastic. The objective was 

to minimize the discounted expected energy cost of pumping. This expected cost was 

derived by including the statistics of the water demand so that the operating decisions are 

based on the variance and correlation of these demands, as well as on their expected 

values. The constraints included meeting expected water demand and, on an average, 

meeting downstream water rights.

Flores et al. (1978) presented a stochastic model for the operation of 

stream-aquifer systems. The nonlinear optimization problem is solved iteratively using a 

standard linear programming package. The physical system is represented by a linear 

reservoir model and a conditional probability approach is used to estimate the effect of 

parameter variability. It is concluded that stochastic effects are not very important in 

arriving at an operating policy but are important in determining the expected cost.

A  method that has been used to incorporate uncertainty in the optimization 

model itself is to use chance-constraints, so that certain constraints are not met exactly 

under all conditions, but instead are only met with a specified level of reliability. Tung 

(1986) used a response matrix method, with response coefficients generated using the 

Cooper-Jacob equation in a model to maximize the yield from a confined, homogeneous
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and non uniform aquifer without violating head lim its specified at various points in the 

aquifer. The methodology accounted for uncertainty in the aquifer with a single 

transmissivity and a single storativity by treating them as random variables and 

formulated the head restrictions as chance-constraints and used first-order analysis and 

quasilinearization to develop the linear deterministic equivalents of the chance-constraints. 

Chance-constrained stochastic optimization is used to account for the uncertain nature of 

these parameters. Spatial variability in model parameters was not considered. The 

sensitivity analysis at many parameter uncertainty levels indicated that optimal pumping 

rates were sensitive to aquifer transmissivity and virtually independent of the storativity.

A simulation-regression-management model that explicitly accounts for 

parameter uncertainty is described by Wagner and Gorelick (1987). The methodology 

couples three components, (1) groundwater flow and contaminant transport simulation 

combined with nonlinear least squares regression for simultaneous flow and transport 

parameter estimation; (2) parameter estimation coupled with response matrix methods to 

first-order first and second-moment analysis to transfer the information about the effects 

o f parameter uncertainty to the management model and (3) nonlinear chance-constrained 

stochastic optimization combined with flow and transport simulation for optimal decision 

making. The methodology was demonstrated for steady state and transient aquifer 

reclamation design and it was shown that remediation requirements can increase 

significantly due to parameter uncertainty.

Hantush and Marino (1989) developed a model to maximize the pumping 

from an aquifer linked to a stream, while maintaining limits on heads in the aquifer and 

depletion from the stream over time with a specified level o f reliability. This model
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considered variation in hydraulic conductivity and specified yield due to measurement 

error, spatial averaging and the "inherent stochastic description" of porous media. It used 

an analytical approximation to link drawdowns and stream depletion rates due to 

pumping, and formulated the chance-constraints analytically (using log normal 

distribution). Sensitivity analysis was also performed to assess the effect of the reliability 

levels used for the chance-constraints.

Wagner and Gorelick (1989) presented a management approach which 

accounts for spatial parameter variability and combines Monte Carlo simulation with 

optimization. This is a nonlinear model based on a response matrix for remediation of 

a contaminated aquifer. In their model the aquifer piezometric heads are solved for steady 

state conditions resulting in steady flow velocities as a function o f space only. The 

uncertainty in this problem is due to spatial variability in the hydraulic conductivities. 

The hydraulic conductivities are assumed to be log normally distributed with the 

covariance matrix taking an exponential form. Their idea was to generate many possible 

conductivity realizations and (1) determine minimal pumping sequences which satisfy 

pollutant concentration constraints under all generated fields or (2) determine minimal 

pumping sequences for each conductivity realization and characterize optimal pumping 

by a probability density. Their results indicated that, although this approach is 

computationally demanding, it leads to reliable management strategies.

A stochastic control method is presented by Georgakakos and Vlatsa 

(1991). In their work, uncertainty arising from imprecise parameters and boundary 

conditions are incorporated into the management model. The system equations for a 

confined aquifer are discretized in space using finite elements and in time using finite
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difference, to yield a dynamical system model in state-space form. The stochastic 

characterization of this system is derived by the small perturbation approach. 

Management objectives are expressed as a composite performance index which may be 

used to minimize pumping costs, maintain hydraulic heads and pumping rates or optimally 

compromise among various system goals. This problem is solved using an open loop 

feed back control method which exhibits good computational properties.

Wagner et al. (1992) present groundwater quality management under 

uncertainty. A nonlinear stochastic optimization model for containment o f a plume of 

groundwater contamination through installation and operation o f pumping wells is 

developed. Uncertainty about hydraulic conductivity is explicitly considered. The 

objective is to minimize the expected total cost of operating the pumping wells plus the 

recourse cost incurred when containment of the contaminant plume is not achieved. Non 

symmetric linear quadratic penalty functions are used in the recourse model which affect 

the frequency and the extent of constraint violations. A finite generation algorithm is 

used to solve the nonlinear and possibly nonconvex stochastic optimization problem.

2.5 OBJECTIVES OF THE STUDY

Often water resources planners, development authorities and agencies face 

the problem of conjunctive-use operation of the system. The tools made available to 

them, to manage the entire system are very limited in their scope and applications. A 

wealth of the available literature and models deal only with development o f surface water 

or groundwater to meet quantitative demands, of which few o f them deal with 

conjunctive-use management of connected surface water groundwater systems. It is only
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in the last decade research emphasis is placed on quality of groundwater. None of the 

models reported handles management o f water quality in connected surface water 

groundwater systems. Recent research advances in the field of groundwater hydrology to 

treat heterogeneity and variability of aquifer parameters in a stochastic framework has not 

paved its way into management models. Also, linked simulation-optimization procedures, 

and stochastic management models are still in the development stage and field 

applications o f these models are very limited.

The main thrust of this research work lies in the development of a 

comprehensive conjunctive-use management model in connected surface water 

groundwater systems using stochastic inputs and uncertainties. The main objectives of this 

study are:

a. Development of a linked simulation-optimization management model for 

water quality and quantity in a hydraulically connected surface water 

groundwater system,

b. The flow and contaminant transport process is considered to be transient 

process and the combined system is used for water supply and waste 

disposal o f conservative and non-conservative substances,

c. Spatial variability of the aquifer parameters are considered explicitly by 

generating spatial random stochastic fields,

d. The uncertainties associated with spatial random stochastic fields is 

minimized by simultaneously introducing multiple realizations o f the 

random field into management model, and

e. Streamflow is considered as stochastic flow process.
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3. METHODOLOGY

The overall methodology used in this research work on Comprehensive 

Conjunctive-Use Management is discussed in this section. Various components of the 

system are integrated to achieve the stated objective. The mathematical framework for 

these components are detailed individually.

3.1 CONTROL-VOLUME APPROACH

Throughout this research work the control-volume approach is utilized for 

the solution of groundwater flow component, surface water flow component, groundwater 

solute transport component, and surface water solute transport component. In the control- 

volume method used here, the physical law o f mass conservation is applied to a control 

volume in the neighborhood of a block centered finite difference grid point. This method 

is considered to be the most practical approach. The single most advantage of this method 

is that it quickly leads to expressions that can be easily modeled and it has proved to be 

more accurate near boundaries, as the method keeps the discrete nature of the solution 

method in view at all times.

20
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3.2 GROUNDWATER FLOW COMPONENT

The groundwater flow component is based on the hydraulic equation 

describing two-dimensional aquifer type flow. However, the aquifer characteristics are 

treated in a stochastic manner.

3.2.1 Hydraulic Equations

The two-dimensional, horizontal flow equation under non-equilibrium 

conditions in a heterogeneous and anisotropic aquifer is described by the pde

M  K  b  t o
0 x 1  x dx

d
dy

'  v, dh K  b  -^r—
y dy

± W = S  4 ^  ( 3 . 2 . 1 )
c d t

where, Kx and Ky = hydraulic conductivities in X and Y directions, respectively, h = 

piezometric head, b= thickness o f the aquifer, W = volumetric flux per unit area and 

represent sources and/or sinks o f water, Sc = storage coefficient of the aquifer, and t = 

time.

In order to solve the above equation (Eq. 3.2.1), appropriate initial 

condition and boundary conditions in X and Y directions are needed. The initial 

piezometric surface serves as the initial condition. The boundary conditions could be 

either Dirichlet (of prescribed head) type or Neumann (of prescribed flux) type.

The block centered finite difference formulation o f this equation follows 

from the application of the continuity equation: sum of all flows into and out of a cell 

(i,j) that has sides Axj and Ayj must equal rate of change o f volume of water per unit 

horizontal area of the aquifer element. Using a fu lly im plicit approach, the finite 

difference equation is obtained as
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Tx. + Tx.

Tx. + Tx.
' i . j+i

A x.Ty .  . , + Ty.
J  1 - 1 , 3  J 1 in^  - h n+1 

1 - 1 , 3  1 , 3 ,

ln+l _ h n + 1  

' i + 1 , 3  i , 3  ;

n+1

A t

A x. +Ax.
j - i  j

( 3 . 2 . 2 )

where, Txj j = Kxy , TySj = bu Ky; j , Qjj = flow rate of sources and/or sinks, and n is 

the time step. Fig. 3.1 shows the cell numbering notation used in the block centered finite 

difference grid formulation.

As can be seen from the above equation, the flow model has only one state 

variable: the hydraulic head, h(x,y,t). Solution to this flow model provides predictions of 

head as a function o f space and time. The solution method used here is based on the 

Iterative Alternating Direction Implicit (IADI) method. This technique is well documented 

in the generic finite difference model (PLASM) developed by Prickett and Lonnquist 

(1971).

Iterative Alternating Direction Im plicit (IADI) method used here can be 

summarized as follows. In the first iterative cycle, a set of im plicit linear equations in a 

tridiagonal form is generated for each individual column of nodes. Column by column, 

the equations are generated and solved. Once all the columns are solved, a set o f im plicit
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FIG. 3,1: CELL NUMBERING NDTATIDN IN AQUIFER FLOW
USING BLOCK CENTERED FINITE DIFFERENCE GRID
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linear equations in tridiagonal form is generated for each individual row o f nodes. Row 

by row, the equations are sequentially generated and solved. This marks the completion 

o f one iterative cycle. This two step process of a iterative cycle is repeated until 

convergence is achieved.

The convergence criterion defined in the model takes the total system into 

account by controlling the sum of changes in heads during iterations over the entire 

model. The sum of changes in heads during iterations should converge to a predefined 

user specified value. Further to help check the numerical accuracy of the solution obtained 

mass balance calculations are performed after each time step. The mass balance computed 

as net inflow (sum of all inflows - sum of all outflows) should equal the change in 

storage and net recharge from boundaries i f  any.

The boundary of the aquifer is represented by defining each cell as active 

(variable head cell), inactive (no flow cell) and constant head or constant flow cell. Leaky 

conditions, groundwater evapotranspiration, varying areal recharge and induced infiltration 

from the streams and lakes are taken into account as previously described by Prickett and 

Lonnquist (1971) and modified where necessary.

3.2.1.1 Unconfined Groundwater Flow Conditions

In unconfined aquifers under non-equilibrium conditions, when subjected 

to pumping, water is released from storage by the gravity drainage of the interstices 

resulting in decline of the water table. The unsaturated zone above the water table 

continues to supply water to the declining water table. Under this condition the coefficient 

o f storage appears to vary and increases at a diminishing rate with the duration of
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pumping (Bear, 1972). I f  pumping continues for sufficiently long time, an asymptotic 

stage is reached in which a practically constant value of storativity is obtained. Further, 

i f  changes in water table elevations or drawdowns are sufficiently small compared with 

the average depth o f flow, Eq. 3.2.1 is applicable to unconfined aquifer flow situations. 

Thickness o f the aquifer, b (in Eq. 3.2.1), is then defined as the average depth o f flow, 

a constant. W ith these two assumptions linearity of Eq. 3.2.1 is still maintained and the 

methods discussed under generation of unit-response matrix, and principle of 

superposition is applicable to unconfined groundwater flow conditions.

3.2.1.2 Leaky Aquifer Conditions

For leaky aquifer conditions, the source term QL is evaluated

P Ax. Ay.
Q = _ £ f ----- £------ i  (RH. . -  h n+1) ( 3 . 2 . 3 )

L  l , J  1 , 3
i , 3

where, Pzz = aquitard permeability, m = aquitard thickness, and RH = source bed or water 

table elevation, h; j = piezometric head

3.2.1.3 Groundwater Evapotranspiration

The loss of water due to groundwater evapotranspiration is calculated using

^fy -iin ax

= - E T max + -------------- — ------ (RH;. . -  h n+1) ( 3 . 2 . 4 )
^  (RH' . -  R D l j

where, ETmax = maximum groundwater evapotranspiration, RH' = ground surface elevation

and RD' = the depth below which the evapotranspiration ceases.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.2.1.4 Areal Recharge

Areal recharge, artificial or natural, is expressed as

0*8 = RRi,i Axj  Ay; ( 3 . 2 . 5 )

where, RR = areal recharge rate for the cell.

3.2.1.5 Induced Infiltration

The rate of seepage from lakes or streams induced by lowered piezometric 

surface in the connected aquifer is expressed

where, P'zz = stream (lake) bed permeability, m' = bed thickness, A s = surface area o f the 

stream (lake) in the cell, hr = surface water elevation and hrb = river bottom elevation. 

Depending on the surface water elevation and aquifer head h, the induced infiltration QINF 

can be either positive or negative, the definitive sketch o f QINF from a stream cell as a 

function o f aquifer piezometric head, h, is shown in Fig. 3.2.

In a heterogeneous and anisotropic medium of the aquifers, the parameters 

governing the flow process, such as hydraulic conductivity in the X and Y  directions, and 

confined and unconfined storage coefficients are continuously varying in space. Field

( 3 . 2 . 6 )

3.3 GENERATION OF SPATIAL RANDOM STOCHASTIC FIELDS
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measurements such as pumping tests are performed to determine the best localized values 

o f these parameters. The values of these different variables at various points are 

subjected to uncertainty, either because they are generally measured at a limited number 

o f points or because measurements are error prone themselves. Therefore in practice, we 

typically have sparse data which are inadequate to fully characterize the spatial variability 

o f aquifer parameters. It is in this context, it is recognized that the hydrogeologic 

parameters be estimated using statistical framework of "theory o f estimation".

Although the theory of estimation using statistical methods have long been 

established, it is only recently that these theories have started penetrating the field of 

hydrogeology relatively slowly. Further, very little  progress is seen in the use of 

simulation models o f stochastic processes for studying the flow and transport process, 

which ensures a greater degree of reliability while using estimated parameters.

In this work, the following two assumptions are made with respect to 

hydraulic conductivity in the X  and Y directions, and confined and unconfined storage 

coefficients:

a. The hydrogeologic parameters follow lognormal distribution. The use of 

logarithms of hydrogeologic parameters as unknown has led to improved 

parameter estimates due to its following advantages:

i. It avoids the computation of negative parameter values, and

ii. It enhances the computational efficiency by improving the rate of 

convergence.

b. The hydrogeologic parameters are characterized by a stationary exponential 

covariance function. The hydrogeologic parameters do not have a definite
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trend in space. They neither increase nor decrease in any direction

systematically. They are unique in space. Hence, the parameters governing

the flow and transport processes are defined to be stationary.

These two assumptions are consistent with the findings o f Hoeksema and 

Kitanidis (1985), who analyzed the spatial correlation structure o f transmissivity, 

hydraulic conductivity and storage coefficient using data from 31 aquifers throughout the 

United States.

Denoting the natural logarithm of a hydrogeologic parameter at any point 

Xj as Yj; then under the assumption of stationarity, lognormality and exponential 

covariance, the mean and covariance for the random log field are:

where, E [ ] denotes expected value, py = mean of the random field, Q = Cov ( £ ) = 

stationary anisotropic exponential covariance for two points separated by vector £, o2y 

= variance o f the random field, E>i = separation along dimensions i ( i = 1,2), /L  

= correlation length scale along dimension i. The correlation length is a measure of spatial 

persistence of zones o f similar properties. For example, hydraulic conductivity often is 

correlated such that values immediately adjacent to one another are similar and those 

much farther away are dissimilar. This is mainly because o f the way in which sediments 

are deposited.

e  [ y j  = \xy ( 3 . 3 . 1 )

Q = Cov (g) ( 3 . 3 . 2 )
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Based on the measured data, the statistical structural parameters 

|iy> o2y, Ax, and Xy are determined using maximum likelihood procedure. The spatial

structure of these parameters is the manner in which these variables are correlated and 

distributed in space.

3.3.1 Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation is widely accepted as one o f the most 

powerful parameter estimation method. In theory and in practice, MLE is primarily 

applied owing to the following advantages:

a. The method makes use of efficient estimators, and normally distributed 

(estimators producing minimum variance).

b. The method's estimators are consistent (i.e. with lengths of the samples 

increasing, the expected values of the parameters estimated from the set of 

samples converge towards the parameters of the universe).

c. Tests of hypotheses about model structure based upon MLE are optimal 

for large samples.

d. Distribution of estimation error and test statistics are readily computed.

e. Computation of MLE parameters is a non-linear optimization problem with 

different methods available to take advantage of sparse matrix structures. 

Here, the unknown spatial statistical structural parameters are determined

by assuming that the joint probability density function of all measured data is Gaussian. 

As stated previously, field data suggests this assumption is valid for the logarithm of 

hydrogeologic parameters.
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Under Gaussian assumption, the joint pdf of the measured log parameters

is given by:

p ( z | 0 )  = (271) 1  \Q\ 2 ex p {--| ( Z - \ l ) T Q ' 1 (Z-Jl)} ( 3 . 3 . 3 )

where, p(Z |0 ) is called the likelihood function, Z is a vector o f measured log 

parameters, N is the number o f measurements; 0 is the vector o f unknown spatial 

statistical structural parameters o f the log parameter field to be estimated, | | denotes 

determinant, T denotes transpose, |i and Q are the mean and covariance o f the 

measured log parameters given 0 . More specifically,

[i = E [ Z  |0] ( 3 . 3 . 4 )

Q = E[ ( Z~ \ l )  (Z-|i) T 10] ( 3 . 3 . 5 )

The unknown structural parameters are obtained by minimization o f the 

negative log likelihood

L (z| 0) = - l n p ( Z | 0 ) = - | l n ( 2 i t ) + - | l n | £ ? | + - | ( Z - ^ TC»_1(Z-^) ( 3 . 3 . 6 )

In the above equation, |i and Q are the unknown components, and can 

be expressed as functions o f the unknown structural parameters \iy, a2, Xx, and ky .

The optimum value o f these unknown structural parameters lie at the extreme o f the 

function, which is obtained by setting the derivative of negative log likelihood function 

with respect to each o f the structural parameters to zero, i.e.,

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Equation 3.3.7 is called the "likelihood equation". \iy , ay, Ax , and Xy 

are obtained by solving the four likelihood equations. A gradient based iterative method 

called "method o f scoring" is employed for minimizing the negative log likelihood 

function. Details of the computational procedure is given in Appendix A l.

3.3.2 Gaussian Conditional Mean Estimates

In this step, the optimum structural parameters thus obtained is used in 

estimating the hydrogeologic parameters throughout the aquifer based on the measurement 

data. Here, the Gaussian conditional mean is used to estimate the average log parameter 

field, and conditional variance is estimated to quantify the reliability o f these estimates.

The Gaussian conditional mean estimate of log parameter at any point i, 

YCCi , is given by

t aCi = E [Y. \Z]  = )Xy + Qy .z O ' 1 {Z -  p) ( 3 . 3 . 8 )

where Z = vector o f measured log parameters, p = mean o f measured values, Q = 

covariance of the measured log conductivities and is defined by Eq. 3.3.5, 0 = vector 

o f unknown spatial statistical structural parameter of log parameter field to be estimated, 

and QYiz = cross covariance between log parameter at any point i and the measured log 

parameter.

The conditional variance is estimated to quantify the reliability o f these 

estimates. The conditional variance, Var[Yj], is given by:
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( 3 . 3 . 9 )

Once the Gaussian conditional mean estimates, Ycc , of the log

parameters are obtained at all points in the aquifer, conditional simulation is performed 

to generate multiple realizations o f log parameters. The objective of stochastic generation 

o f hydrogeologic parameters is to generate many plausible realizations of these parameters 

to be used in the simulation-optimization. This w ill minimize the effects of the 

uncertainty associated with the governing aquifer flow parameters on model results.

3.3.3 Gaussian Conditional Simulation

Gaussian conditional simulation approach is a classical linear estimation 

procedure. The advantages are:

a. Conditional simulation is applicable to any type o f pdf o f the variables of 

interest.

b. The same concepts as used in Gaussian conditional mean estimates can be

where, Yu = vector of unconditional log parameters which has the same statistical 

properties (i.e. mean and covariance) as Y, YuGC = vector o f unconditional log

33

applied in conditional simulation and modeling, since we arrive at the

entire statistical structure o f the variables of interest and not only at the

expected value and the covariance.

I f  Y is the vector of "true" log parameters, then

( 3 . 3 . 1 0 )
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parameters, based on the same procedure to obtain Gaussian conditional mean estimates, 

Ygc. The vector, YuGC , is obtained by simply substituting, Z vector of measured log

parameters by a vector o f unconditional log parameters Y u (steps involved in obtaining 

Yu is discussed below) at the measurement nodes in Eq. 3.3.8.

The steps involved in generating Yu are

a. Auto-Covariance matrix, X  , is generated using Eq 3.3.2. I f  there are

N cells then the matrix is of order ( N x N ). This is a positive definite 

symmetric matrix.

b. Square root of the matrix X  is obtained such that

i  i

27 27 - E . This is easily obtained by first determining all the

eigen vectors, P, and eigen values, A , o f the covariance matrix. Then 

the square root of the covariance matrix is obtained by

_1 _1
:2 =  P  A 2 P  r (3.3.11)

c. Normal random numbers are generated with mean 0 and variance 1;

U± = N (0,1)

d. Then Yu is determined by

Yu = H + £ 2 U. (3.3.12)

e. Step c is repeated as many times as required to obtain a set o f Yu. For

multiple realizations these different sets o f Y u's are used in Eq 3.3.10.
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3.3.4 Managing the Size of the Problem

The auto-covariance matrix, , is a positive definite symmetric matrix

o f size (N x N), where N is the number o f cells in the aquifer. It was found in the model 

component developed that the generation o f eigen values and eigen vectors o f the 

covariance matrix as the single most process which is computationally intensive and 

memory intensive. In order to increase the efficiency of the model as applied to, real size 

problems, an option of dividing the entire domain into regions o f smaller autocovariance 

matrices is developed. When regions are defined, aquifer parameters are generated region 

by region making use o f the measurement nodes in that region and the stochastically 

generated aquifer parameters assembled in a single vector. One vector for each 

hydrogeologic parameter for the complete domain for each realization is assembled and 

stored for further use in flow and transport simulation models.

3.4 UNIT-RESPONSE MATRIX

The two methods which are widely used to accomplish simultaneous 

management and simulation of groundwater are:

a. Embedding method, and

b. Response matrix method.

Here, the latter method is used, but a brief description of embedding 

method is also discussed. In general both approaches require that the governing flow 

equation be discretized using finite differences or finite elements.

In the embedding method the discretized flow  equation is "embedded" in 

the optimization problem along with other constraints that restrict local hydraulic heads,
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gradients, and pumping and/or recharge rates. The solution o f it results in optimum 

pumping and injection rates and the response o f the entire aquifer in terms o f simulated 

piezometric heads at all the nodes in the system. This approach necessitates that every 

hydraulic head in the system to be a decision variable in framing the management model. 

This aspect makes the management model huge, hence in practice this approach is 

restricted to steady state problems.

In the response matrix approach, the response o f the system in terms of 

change in head at certain key locations (which are of critical interest in managing the 

system) due to unit excitation at each potential well locations considered separately are 

recorded as unit-response coefficients. These responses are assembled into a response 

matrix that is then included in the management model as a set of constraints together with 

the management and environmental constraints.

3.4.1 Potential Well Locations

In the management of stream-aquifer system for water quantity, it is 

necessary to identify all the potential well locations. These potential well locations may 

include all existing well locations together with a set of newly identified well locations. 

Optimal pumping pattern w ill then be determined by the management model. By a study 

of the pumping pattern, one may refine the potential pumping well locations for further 

study and investigation.

Stream reaches in an aquifer cell is treated in the model as potential well 

locations. The optimal pumping pattern obtained for stream cells could be either positive
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or negative, indicating whether the aquifer is losing water to the stream or gaining water 

from the stream.

A ll potential waste disposal injection well sites are treated in the model as 

potential well locations.

3.4.2 Unit-Response Function. P

In the governing partial differential equation (Eq. 3.2.1), the dependent 

variable h(x,y,t) does not have any variable coefficients, hence the equation is linear. The 

advantage o f a linear pde is that superposition is allowed.

The change in the aquifer head (drawdowns) over time for a pulse pumping 

o f unit discharge in one time step from each potential well excited separately is recorded 

as unit-response coefficient, P .

Exact analytical expressions for unit-response function and their proof for 

a homogeneous, isotropic case is given in Maddock (1972), and separately by Morel- 

Seytoux (1975). Here, P 's are calculated numerically because no closed form solution 

exist for their computations. The procedure is as follows:

a. The domain is discretized.

b. To each discrete node, values of hydraulic parameters (conductivity and 

storativity) are assigned (i.e. taking the values from one realization of 

aquifer parameters estimated previously or that defined by the user)

c. The initial and boundary conditions are identified and quantified for input 

into the model.

d. The location o f potential wells are designated.
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e. Starting from the first well to the last a pumpage o f one unit is assigned 

to that well for the first time step and zero units thereafter.

f. Drawdowns obtained in this manner are the response coefficients - P .

g. For each realization of hydraulic parameters (conductivity and storativity) 

the above steps are performed and the response coefficients thus obtained 

are stored separately.

3.4.3 Superposition Using Unit-Response Function

The governing groundwater flow equation (Eq 3.2.1) is linear, the solution, 

h(x,y,t), can be assembled from the following solution components:

a. Hydraulic heads resulting from initia l conditions.

b. Changes in heads due to boundary influences.

c. Changes in heads resulting from the imposed hydraulic stresses, each 

considered separately.

We can write the above solution components in an equation form as shown below:

Total Head = (Head from Boundary Influences) - (Change in Head Resulting from 

In itia l Conditions) - (Drawdown due to Hydraulic Stresses) (3.4.1)

3.4.3.1 Drawdown due to Hydraulic Stresses

Drawdown due to hydraulic stresses can be computed easily by generating 

unit-response coefficients as discussed above. In general, drawdown at any point k, within 

the aquifer for a multiwell system consisting of NW wells and KT time periods for any 

realization ICR is given by
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S ( k ,  KT)  = Y i  X) V ( k , j w , K T - i t + l , K R )  Q A j w . i t )  ( 3 . 4 . 2 )
jw=i it=i

where, s(k,KT) = drawdown at any point k at time step KT, Qw(jw,it) = pumpage of well 

jw  during period it and P (k,jw,KT-it+l,KR) = system unit response function at point 

k as a result of unit pumpage at well jw  for the (K T -it+ l)* time period, for the realization 

KR.

It is important to note that this method of stair-stepping the responses due 

to pumping requires that all pumping periods be of equal length. Since the selection of 

length o f time step is arbitrary, this requirement provides no real drawbacks.

3.4.3.2 Heads due to Boundary Influences

A steady state simulation of the aquifer w ith no in itia l conditions and no 

pumping subjected only to boundary conditions yields heads due to boundary influences.

3.4.3.3 Change in Head Resulting from Initial Conditions

In the generation of unit-response function, it is assumed that the system 

in itia lly is at rest and the initial piezometric surface is a plane. However, this assumption 

poses difficulties in dealing with practical problems, where non uniform initial conditions 

do exist because of prior pumping and/or recharge. Here, in order to overcome this 

practical difficulty, it is assumed that the system is steady and at rest one time step prior 

to in itia l time step. Then stresses which are unknown apriori are applied to the aquifer 

for one time step that would cause the known initial drawdowns.
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The unknown pumping and/or recharge that causes initia l drawdowns is 

computed for each realization by generating unit-response coefficients for one time step.

where sobs(k) is the known drawdown due to initia l conditions at klh observation well, 

Sp( l c , j )  is the unit-response coefficient at the kth observation well due to well

pumping at jth observation well, and Qinit(j) are the unknown pumping/recharge at the j th 

pumping well.

l,2,...,NOBS. These are then used in the aquifer simulation in one time step prior to the 

in itia l time step either for generating the unit-response coefficient matrix or for just 

performing simulation.

groundwater flow component described in Section 3.2 is incomplete, if  the state variables 

defining the surface water component namely river stages are not known (ref Eq. 3.2.6). 

These river stages themselves are an im plicit function of the state variables defining the 

groundwater flow  component namely aquifer heads. In the simulation-optimization 

procedure developed here for the conjunctive-use management of connected surface water 

groundwater systems, the analysis and management of surface water flow component are 

embedded in the management model together with the unit-response function obtained for 

groundwater flow component.

( 3 . 4 . 3 )

The system of equations are solved to obtain the unknown Qinil(j), j  =

3.5 SURFACE WATER FLOW COMPONENT

In a connected surface water groundwater system, the analysis o f the
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Here the hydraulic and hydrologic equations used in the analysis of the 

surface water flow component are discussed.

3.5.1 Hydraulic Equations

The discharge-area relationship for streams is often expressed by

Q = a x A Pl ( 3 . 5 . 1 )

where, Q = discharge, A  = cross-sectional flow area, a± and Px are constant 

parameters.

The depth-area relationship for the cross-section of a stream reach can be 

expressed in a similar form to Eq. 3.5.1 and is given by

A = a2 y Pz ( 3 . 5 . 2 )

where, y is the stream depth in the reach, a2 and p2 are constant parameters.

Combining Eq. 3.5.1 and Eq. 3.5.2, the stage-discharge relationship can be 

expressed in the form as

Q = 0LX ( 0C2) Pl y PlPz ( 3 . 5 . 3 )

These relationships can be obtained from the rating curve of a channel. If  

these relationships are not available readily and only discharge-area and area-depth 

measurements are made available, then the model computes the constant parameters

a , p , a 2 , and P2 using least square analysis, and expressed as
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£  lo g  0  -  P i £  lo g  A

a x = 10 ( 3 . 5 . 4 )

Pi =

[ E d o g f f l  ( l o g  A ) ] - [ £ i ° g o i : i ° g

E dog A>2- I £ l p ! !
( 3 . 5 . 5 )

where, N is the number of measurements of Q and A. On similar lines constant 

parameters o f Eq. 3.5.2 is determined, i f  measurements are made available.

I f  the rating curve or the actual measurements are unavailable, assumption 

of wide rectangular channel is made. The constant parameters are then obtained by using 

the Manning formula as

_i
86400  S 2a = _____________________________________________________( 3 . 5 . 6 )

1 n ijtO .667
w

P x = 1-67 ( 3 . 5 . 7 )

a2 = Tw ( 3 . 5 . 8 )

P 2 = 1 .0  ( 3 . 5 . 9 )

where, S0 is the bed slope (an approximation for the unknown friction slope, Sf), n is the 

roughness coefficient, Tw -is the top width of the reach. When constant parameters or 

measurement values are input to the model, top width Tw is calculated by
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rr, d A  O P; . ’ 1

r .  = s p  = “ 2 y ( 3 . 5 . 1 0 )

3.5.2 Hvdrologic Storage Equation

The hydrologic storage equation for a stream/channel reach is given by

dS
~ ®u/s ~ ®d/s ~ ®SWD ~ ®INF + @WD ( 3 . 5 . 1 1 )

where, S = volume o f water in storage in the channel reach, = upstream inflow rate, 

Qd/S -  downstream outflow rate, QSVVD = surface water diversion from the reach, Q1NF = 

gain or loss into the stream reach due to induced infiltration, t = time, QWD is the waste 

disposal rate into the stream reach.

3.5.3 Finite Difference Equation

Fig 3.3 shows the cell numbering notation used in the block centered finite

difference grid of the one-dimensional stream flow. For any time increment, A t  , the

finite difference form of the Eq 3.5.11 is expressed as

A t  2 2 ( 3 . 5 . 1 2 )

^  + o £  + Q™  + c ;1 1 I 1 1 1 1

Expressing storage S o f a reach in terms of y, yields 

Si  = Li Ai  = L i ( “ 2 y * j  ( 3 . 5 . 1 3 )
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Using Eq 3.5.3, upstream inflow (Qi_1/2) and downstream outflow (Qi+I/2) 

o f a reach is expressed in terms o f flow depth, y as

Q.  i 
2 2

«X ( 3 . 5 . 1 4 )

a i  ( « 2 ) P l y PlP2 ( 3 . 5 . 1 5 )

For the first reach the upstream inflow rate can be either a user specified 

hydrograph or a synthetic hydrograph generated (discussed in Section 3.5.4).

The induced infiltration, Q[NF, is an implicit function of river head, hr, and 

aquifer head in the river cell. The im plicit expression used is

l n =I N F
—  A s . h r  n -  h a  n
m 1 \ 1 1

( 3 . 5 . 1 6 )

where, river head hr = y + hrb, hrb is the river bed elevation in the reach, y is the stream 

flow  depth, n is the time step, and the aquifer head in the river reach i, ha, for the 

realization KR is given by

h a n = h  -O £  2J  P ( i ,  j w , n - i t + l ,  KR) Q ( j w ,  i t )
i t=l jw=l

t  £  P ( i , i r , n - i t + l , KR) Q ( i r , i t )
it=l ir=l

( 3 . 5 . 1 7 )

Substituting Eq 3.5.17 in Eq 3.5.16 gives the implicit equation in QINF. The 

solution is obtained in the management model by setting the implicit equation as a strict 

equality constraint as discussed in Section 3.10. Further, Eq. 3.5.13 through Eq. 3.5.16 

are substituted in the finite difference equation Eq. 3.5.12, yielding only stream depth, y,

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



surface water diversion, QSWD, aquifer head, h, as unknown. Eq. 3.5.12 is a strict non

linear equation. In the management model (to be discussed later) this Eq 3.5.12 is set as 

a non-linear equality constraint.

3.5.4 Stochastic Streamflows

In the surface water flow component the upstream inflow o f the stream 

could be either a user specified hydrograph or a synthetic hydrograph. Synthetic 

streamflows help evaluate the sensitivity of the proposed conjunctive-use management 

designs of a regional system more thoroughly and in a statistically sophisticated manner. 

I f  the historical streamflow record is available, the model developed can generate a 

synthetic hydrograph.

3.5.4.1 Statistics of Observed Flows

The historical streamflow record provides some valuable insight to the 

future behavior o f that stream. To generate a sequence of values of synthetic flows for 

a given stream, flows are considered to be the results of a random process. The generated 

sequence, however, must possess the same characteristics o f mean, variance, skewness, 

and serial correlation as the observed flows.

I f  N is the size of the sample of the historical record, then the mean, Q , 

is computed as
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The spread o f the historical record as measured by its variance and is

computed as

symmetry (or really the lack o f it) o f the distribution about its mean. The coefficient of 

skewness for a symmetric distribution is, y =0. Here in this research work, a normal 

or log-normal type of distribution is used for generation of synthetic streamflows. 

Coefficient o f skewness (is calculated for both types o f distribution) is used as a decisive 

factor in selecting the type o f distribution. The coefficient of skewness is computed as

observed streamflows have a high degree of persistence (Fiering and Jackson, 1971). That 

is, typically a low flow is more likely to be followed by another low flow rather than a 

high flow. Similarly a high flow is more likely to be followed by another high flow.

streamflows it is found sufficient to expect flow in one time step to be dependent on the 

flow in the previous time step. However, i f  the length of the sample (observed flows) is 

large enough one may consider the flows to lag differently. For this the lag-k serial 

correlation coefficient is computed as

CT,2 ( 3 . 5 . 1 9 )

The dimensionless coefficient of skewness measures the degree of

i= i i= ii= i
if* + 2 N Q3

? ( 3 . 5 . 2 0 )

In general it is found from analysis of historical flow records that the

In order to incorporate this flow persistence in the stochasitically generated
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where, Q; = vector of historical streamflows, Q = mean or average of the vector Qi5 

N = size of the sample, o2 = variance, k = lag, rk = lag k serial correlation coefficient.

3.5.4.2 Generation o f Synthetic Streamflows

The selection o f the type o f distribution, whether normal or log-normal, 

facilitates the synthetic generation of streamflows by a Markov model. The generating 

equation is

Q[ = Q + ( Q ^  -  Q) + t i a ^1 - r 2 ( 3 . 5 . 2 2 )

where, Q( = synthetic streamflows, a = standard deviation (= \[o* ), q =

independent normal sampling deviates with mean 0 and variance 1, and r, is the lag-one 

serial correlation coefficient.

The above equations (Eq 3.5.18 through Eq 3.5.21) are applicable to flows 

that are normally distributed, and Eq 3.5.22 generates synthetic flows that are normally 

distributed. Likewise, for log-normal distribution, logarithms o f observed flows are used 

in Eq 3.5.18 through Eq 3.5.21 and Eq 3.5.22 generates a sequence o f logarithms of flows 

that are log-normally distributed.
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3.6 GROUNDWATER SOLUTE TRANSPORT COMPONENT

So far, only the development of groundwater and surface water flow 

component are discussed. The main thrust o f this research lies in the overall development 

and management o f a water resources system, including that of water quality.

From the perspective o f groundwater pollution, the most important 

characteristic is the concentration o f the solute. The dissolved concentration is defined as 

mass o f solute (or pollutant) that w ill dissolve in unit volume o f water. In the solute 

transport model developed here, only a single chemical component is considered. Further, 

the model is limited to transport o f solute only in the saturated zone. The reason for this 

lim itation is that the transport of pollutants in unsaturated zone is essentially lim ited to 

vertical transport between ground level and top of saturated zone. Also, the long range 

spreading o f pollutants is only possible in the saturated zone, where the dissolved 

pollutants are carried by the prevailing flow mainly in the horizontal direction.

In this section, the methodology used in modeling the transport process is 

discussed. The groundwater solute transport component is based on the advection- 

dispersion equation describing movement o f pollutants in a porous medium.

3.6.1 Transport Equation

The main mechanisms affecting the transport of a solute in a porous 

medium are: advection, mechanical dispersion, molecular diffusion, solid-solute 

interaction, and various chemical reactions, and decay phenomena together with external 

sources and/or sinks. Here, all the mechanisms except for solid-solute interaction and

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



complex chemical reactions are considered. Further, it is assumed that the constituent 

dissolves fu lly  in water but the flow o f groundwater is not affected by density changes.

the transport of solutes in aquifers with first-order decay and external sources and/or sinks 

is given by:

where, Kx and Ky = hydraulic conductivities, Dx and Dy = dispersion coefficients in the 

X  and Y directions, respectively, C and C = concentration in the aquifer and that of 

solute in the source or sink fluid respectively, h = piezometric head obtained from the 

flow equation, W = volumetric flux per unit volume, dk = reaction coefficient, (j) = 

porosity, and t = time.

the X and Y directions are needed to obtain a unique set of solution. The initia l 

distribution o f concentration within the porous medium constitutes the in itia l condition. 

The boundary conditions are usually specified in terms o f prescribed concentration 

(Dirichlet type) or prescribed boundary flux (Neumann type).

considered the above pde linear as their velocity distribution is a constant. Strictly 

speaking the above pde is non-linear. The non-linearity arises form the fact that the 

velocity distribution throughout the aquifer is a function of space and time. However, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The unsteady, two-dimensional, advection-dispersion equation describing

( 3 . 6 . 1 )

In order to solve Eq. 3.6.1 appropriate initia l and boundary conditions in

In all the literature reviewed so far, researchers in their work have
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above pde can be considered linear within each time step individually provided the 

piezometric head distribution is known throughout the aquifer. In order to provide a 

known piezometric head distribution for each time step, at first the flow processes 

described under groundwater flow component and surface water flow component are 

integrated, and a management problem is formulated and solved to maximize system 

output. The actual piezometric head distributions are computed for each time step 

throughout the aquifer by executing the simulation program with known optimal well 

pumpages from optimal well locations, and optimal surface water diversions. The details 

of the optimization procedure are described later.

The first two terms on the left hand side o f the equation describes the 

dispersive component o f solute transport. Dispersion is the result o f two processes, 

molecular diffusion and mechanical mixing. Diffusion is the process whereby molecular 

constituents move under the influence o f their kinetic activity in the direction of their 

concentration gradients. While, the mechanical mixing component of the dispersion 

process is the result o f velocity variations within the porous medium. Mechanical mixing 

and molecular diffusion are referred to collectively as hydrodynamic dispersion or just 

dispersion. The dispersion serves to spread the contaminant plume over a greater area 

(both parallel and orthogonal to the hydraulic gradient) than would be occupied i f  only 

advection was occurring. In heterogeneous aquifers the irregularities of the flow  paths 

increases, thereby a subsequent increase in spread of the contaminant. It is this 

heterogenous nature of the aquifer that makes the dispersion process as important as 

advection in the transport mechanism. The dispersion as described above is a complex 

process by itself, but yields to better modeling procedures without complications.
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The next two terms on the left hand side o f the equation describes the 

advective component of solute transport process. Advection describes mass transport due 

simply to the flow o f water in which the mass is dissolved. The direction and rate of 

transport coincides with that o f groundwater flow. Advective component in general is a 

more important transport process and is better understood but poses difficulty in accurate 

modeling.

The methodology developed here in the numerical simulation of transport, 

for clarity, is discussed separately for the two basic mechanisms - dispersion and 

advection governing the solute transport in aquifers.

3.6.2 Dispersion Component

Dispersive fluxes entering a finite difference cell from all the four sides is 

considered in writing expression for mass conserving over the element (ref Fig 3.4). 

Defining

D x x l  = D xx , . . Ay.1 I J ~ -L -i

D xx3  = D x x . ij+1 Ay.

D y y 2  = Oy y . _ l t . Axj

D y y 4  = D y y . + l j  Ax.

b i , j + b i , j - l

Ax.  +Ax.
D - l  J

A x. +1+Ax.

K i + b i - i,J
A y ^ + A y .

bi , j +hi ^ i
[  Ay.+1+Ay.

( 3 . 6 . 2 )

( 3 . 6 . 3 )

( 3 . 6 . 4 )

( 3 . 6 . 5 )
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Dispersive input in X direction entering the Cell (i,j) from left face

= D xx l ( Cm - Cid ) (3.6.6)

Dispersive input in X direction entering the Cell (i,j) from right face

= Dxx3 ( Cij+1 - Cy ) (3.6.7)

Dispersive input in Y direction entering the Cell (i,j) from top face

= Dyy2 ( - Cy ) (3.6.8)

Dispersive input in Y direction entering the Cell (i,j) from bottom face

= Dyy4 ( Ci+1J - Cy ) (3.6.9)

In the computation of groundwater solute transport component, the

piezometric heads obtained from the flow simulation is used to define velocities Uxxy and 

Uyyjj throughout the grid for each time step (ref Fig. 3.5). In the figure Uxx is the 

groundwater velocity in the X direction calculated between nodes (i,j) and (ij+1 ). 

Sim ilarly, Uyy is the groundwater velocity in the Y direction calculated between nodes 

(i,j) and (i- l,j). The velocities Uxxy and flyy^  are defined at the right face and top face 

o f each finite difference cell, and expressed by:

2 ( 3 . 6 . 1 0 )

2

Similarly,

/

( 3 . 6 . 1 1 )
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In the case of uniform flow field a well established linear relationship

exists between coefficient of hydrodynamic dispersion and linear groundwater velocity. 

For the non-uniform flow field considered here, the linear relationship is extended to 

account for velocity components in the X and Y directions. In the calculations of 

dispersion coefficient on the grid, velocities between nodes or averages thereof are used. 

Interpolation o f velocities used in the calculation of dispersion coefficient is shown in the 

Fig. 3.6. In the figure Uxy is the interpolated velocity in the Y direction on the right face 

of the cell, and Uyx is the intepolated velocity in the X direction on the top face of the 

cell.

Dispersion coefficient in x direction is defined as

<xL U xx2 + a T U x y 2 ( 3 . 6 . 1 2 )
U

With Uxx = Uxxy, and

Uxy =
U yy. , . + U yy. . + Uyy. . , + U yy .  , . ,j+ i 1+1, j+ i ( 3 . 6 . 1 3 )

4

U = s ju x x 2 + U x y 2 ( 3 . 6 . 1 4 )

Dispersion coefficient in y direction is defined analogously as

a T U yx 2 + a L U y y 2 ( 3 . 6 . 1 5 )
U

With Uyy = Uyy^, and

Uyx = ( 3 . 6 . 1 6 )
4
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FIG. 3.6: INTERPOLATION OF VELOCITIES USED IN 
CALCULATION OF DISPERSION COEFFICIENTS
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U = \ j u y x 2 + U y y 2 ( 3 . 6 . 1 7 )

In general it is found where advection dominates dispersion the 

concentrations in four direct neighbors are sufficient to calculate dispersive fluxes into 

cell (i,j). There is no need to compute o ff diagonal elements of the dispersion tensor 

namely dispersive input in the X  direction due to concentration gradient in the Y direction 

and dispersive input in the Y direction due to concentration gradient in the X direction, 

as they are insignificant in a advective dominated flow process.

3.6.3 Advective Component

There are numerous schemes available to model advective transport. 

Several schemes were investigated for use in this research work. In the computation of 

mass balance o f advective fluxes into and out of a cell (i,j) on all four sides o f a finite 

difference cell, the concentration is combined with velocity. The difficulty arises in 

accurately representing the cell wall concentrations. To this effect four different schemes 

are included here, and the user has the option of selecting any one of the four schemes.

a. Central Difference Scheme.

b. Upwind Difference Scheme.

c. Weighted Upwind Difference Scheme.

d. Quadratic Upstream Interpolation Scheme.

Each of these schemes has its merits and drawbacks as w ill be discussed

later.
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3.6.3.1 Weighted Upwind Difference Schemes

Here the first three schemes are integrated to act as one weighted upwind 

difference scheme, as upwind difference (with upstream weight of 1.0) and central 

difference (with upstream weight of 0.5) are special cases of weighted upwind difference 

scheme. The general expression for determining the cell wall concentration has the form

( 3 . 6 . 1 8 )

with weight W being 0.5 ^ W ^ 1.0, i f  the fluid flows from node (i,j+ l)  to node

(i,j). Where Csj+1/2 = cell wall concentration, Cij+1= concentration at node (i,j+ l), and Cy 

= concentration at the node (i,j).

In the central difference scheme weight W = 0.5. Therefore, the interface 

concentration is set equal to average of the concentration of the two adjacent nodes to the 

cell wall: that is C\ J±_i = 0 . 5  (C. j±1 + Ci  ^  . The space truncation approximation

of this advective term by the central differencing scheme is correct to second-order. It is 

observed, that central differencing leads to unphysical oscillations in an im plicit solution 

scheme where advection dominates dispersion. Physically speaking, the advective flux 

carries solute downstream aided by the flow velocity. Because of this nature, the cell wall 

concentration w ill have a concentration closer to upstream value, this effect is not 

reflected when using central difference scheme.

In the upwind difference scheme weight W = 1.0. Therefore the interface 

concentration is set equal to the upstream value: that is Cs j+1/2 = Ci j+i i f  the flu id flows 

from node (i,j+ l) to node (i,j). In other words, a backward difference, Ci j+1 - Cij; is used 

for the advective term at node (i,j). The upwind difference eliminates the oscillations

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



present in the central difference scheme. They introduce, in turn, a space discretization 

error, called artificial or numerical dispersion, which produces the same effect as physical 

dispersion. The magnitude o f this numerical dispersion is graphically shown in Section

4.4 under model verification.

Although, in principle, grid refinement can alleviate all these problems 

(error of numerical dispersion in upwind difference scheme and the error o f numerical 

oscillations in central difference scheme), the necessary degree o f refinement is often 

totally impracticable for engineering purposes, especially i f  one is attempting to model 

a regional aquifer which extends to several ten's of kilometers. The general upstream 

weighted difference method included here, minimizes these problems without going into 

a costly, impracticable grid refinement.

The mass o f solute transported by way of advection is a product of flow 

and concentration entering the Cell (i,j) through each of the four faces (ref Fig 3.4). The 

flow term in the advective component can be written as follows 

Flow entering the aquifer from the left face

T1 = + Uxx. . , Ay.i, j - i

( \
b.  . + b .  . , 

1 , 3  1 , 3 - 1

v 2
( 3 . 6 . 1 9 )

Flow entering the aquifer from the right face

T3 = -  Uxx. . Ay.1,3 J 1

/  \  
b . . + b . .

i , j  +1 ( 3 . 6 . 2 0 )

Flow entering the aquifer from the top face

T2 = -  U yy. j  k x .
\

(3 . 6 . 21)
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Flow entering the aquifer from the bottom face

T4 = + U y y .+l j  A x j
1 b . . + b .i + i , j ( 3 . 6 . 2 2 )

2

Advective component in X direction, for mass entering the Cell (i,j) from 

left face = T1 ( Wa Ci(H + (1 - Wa) Cy ) (3.6.23)

Advective component in X direction, for mass entering the Cell (i,j) from 

right face = T3 ( Wc Cij+1 + (1 - Wc) CSj) (3.6.24)

Advective component in Y direction, for mass entering the Cell (i,j) from 

top face = T2 ( Wb CMJ + (1 - Wb) Cbj ) (3.6.25)

Advective component in Y direction, for mass entering the Cell (i,j) from 

bottom face = T4 ( Wd Ci+1J + (1 - Wd) Cy ) (3.6.26)

where Wa, Wb, Wc, and Wd are the weights associated on the left, top, right, and bottom 

faces, respectively.

As in the case of groundwater flow component, the block centered finite 

difference formulation for dispersive component and weighted upwind difference 

formulation for advective component for the governing advection-dispersion equation 

given in Eq. 3.6.1, follows from the application of continuity o f mass: sum of all mass 

flow rates into and out of a Cell (i,j) that has sides A xj and A yj must equal rate of 

change of mass in the aquifer element (ref Fig 3.4).
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T2

/ \ 
cn+1 - c n .

where (j) is the aquifer porosity, dk is the decay rate [1/T], Qw is the groundwater 

pumping associated with the node (i,j), C' and Q' are the concentration and waste 

discharge rate o f the external sources, n is the time step, and A t = length o f the time step.

variables: the hydraulic head, h(x,y,t), and the solute concentration, C(x,y,t). In all the 

literature reviewed so far for management o f water quality, the flow model is restricted 

to steady-state flow  so that h is a function only of space, enabling them to treat the 

transport equation as a linear pde. In the model developed here, the flow model is not 

restricted to steady-state flow, and the practical approach for treating the transport 

equation as a linear pde is discussed later in this report.

The solution o f the advection-dispersion finite difference equation is 

obtained by IA D I method.

3.6.3.2 Quadratic Upstream Interpolation Scheme

The methods described above to model the advective component usually 

results in qualitatively acceptable solutions. As discussed later in this report under Model

As can be seen from the above equation, the transport model has two state
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Verification, these methods have produced global correspondence with measured results. 

It can be said, for a preliminary engineering analysis these methods are useful. However, 

in the situations where groundwater pumping creates high gradients, the advective 

transport is often the most critical process. Under these circumstances, it would be 

disconcerting to let numerical inaccuracies to dominate the transport process.

The only problem seen in accurate modeling of advective component of 

the transport process is the method o f estimating the interface values o f the concentration 

in the control-volume approach used here. In order to avoid numerical oscillations of 

central differencing and still remaining free o f numerical dispersion associated with 

upwind differencing, here a stable and accurate method is developed based on quadratic 

upstream interpolation. In this method, the interface concentration is written in terms of 

quadratic interpolation using the concentration values of two adjacent nodes to the 

interface together with the value at the next upstream node. For one-dimensional, steady 

and unsteady situations Leonard (1979) gives a fu ll description of quadratic upstream 

interpolation method and demonstrates its numerical stability. Abbott and Basco (1990) 

gives a brief description o f the quadratic upstream interpolation method used by Leonard.

The development o f quadratic upstream interpolation scheme for a non- 

uniform two-dimensional grid and the general computational procedure involved are given 

in Appendix A2. The comprehensive computer programming flow chart developed for 

aquifer flow and transport simulation is given in Appendix A3. Here, only a brief 

description of modeling the advective component using quadratic upstream interpolation 

scheme and the finite difference formulation for the advection-dispersion equation are 

given.
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With reference to Fig. 3.7, Cfu/S, C^, and stand for concentration at far 

upstream node, upstream node, and downstream node, respectively. For breivity hereafter 

they are referred to as Cf, Cu, and Cd, respectively. Also, A f  is the distance between 

the far upstream node and upstream node, and A u is the distance between the upstream

node and downstream node. Further, Z can either take X dimension or Y dimension.

The most general quadratic interpolation function with two adjacent nodal 

concentration to the cell wall under consideration together with one upstream node 

concentration is given by

f  = W,. C. + W . C + W ^ . C -  (3 6 28)d / s  d u / s  u f  u / s  f  V J - u . z . o /

where f  is the quadratic interpolation function, and the weights associated to the 

downstream, W ^, upstream, Wu/S, and far upstream, W fu/S, nodes are expressed by

A .  Z 2 -  A 2 Z
= ----- -— =--------   ( 3 . 6 . 2 9 )

d/s A ,  ( A 2 + A . A  )£ '  u f  u'

- A . z 2 -  A z 2 + A2 z  + 2 A A  z  + A l  z
W , =   i ------------ “----------_H-------------LJi -----------! _  ( 3 . 6 . 3 0 )u/s A J A 2 + A.A )f '  u £ u'

A z 2 -  2 A A  z  -  A2 z  + A .(A  +A.A )
we , = —Z-------------------------------2-----------f— a-----( 3 . 6 . 3 1 )

fu/s  A.  (A2 + A .A )f ' u f  u'

Where Z as the distance from the far upstream node to the cell wall under consideration.
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f = a Z + b Z + c

FIG, 3.7: DEFINITION SKETCH FDR DETERMINING CELL WALL 
CONCENTRATION USING QUADRATIC UPSTREAM INTERPOLATION
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Depending on the flow direction, one can construct two distinct cases for

each face o f the cell. In all there would be eight cases. These cases are explained in detail 

in Appendix A2.

same as explained in Section 3.6.2. The finite difference equations for dispersive 

component is given in Eq. 3.6.6 through Eq. 3.6.9. The mass o f the solute transported by 

way o f advection is a product o f groundwater flow and concentration entering the Cell 

(i,j) through each of the four faces. The flow terms are same as expressed in Eq. 3.6.19 

through Eq. 3.6.22. The advection component using the quadratic upstream interpolation 

is expressed individually for each face of the aquifer cell.

Advective component in X direction, for mass entering the Cell (i,j) from

left face

Advective component in X direction, for mass entering the Cell (i,j) from

right face

Advective component in Y direction, for mass entering the Cell (i,j) from

bottom face

The dispersion component of the transport process in this scheme is the

(3.6.32)

(3.6.33)

Advective component in Y direction, for mass entering the Cell (i,j) from

top face

(3.6.34)

(3.6.35)
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where weights Wmn, m = 1, 2, 3 or 4, refers to left, top, right, or bottom face, 

respectively, and n = 0, 1, 2, 3, and 4, for terms in X direction these are refered to the 

nodes (i,j), ( i,j- l) , (i,j-2), (i,j+ l), and (i,j+2), and for the terms in Y direction these are 

refered to nodes (i,j), ( i- l,j) , (i-2 j), (i+ l,j), and (i+2,j). For example, weight W l0 is 

defined as the weight associated with cell (i,j) for the mass entering the cell (i,j) from left 

face, similarly weight W23 is defined as weight associated with cell ( i+ l,j) for the mass 

entering the cell (i,j) from the top face.

Depending on the flow direction at the cell wall, only three weights 

associated with downstream, upstream, and far upstream are defined in the Eq. 3.6.32 

through Eq. 3.6.35 (the weights are defined in Eq. 3.6.29 through Eq. 3.6.31). The 

remaining two weights are assigned a value zero as the case may be.

As in the case of groundwater flow component, the block centered finite 

difference formulation for dispersive component and quadratic upstream interpolation 

formulation for advective component for the governing advection-dispersion equation 

given in Eq. 3.6.1, follows from the application of continuity of mass: sum o f all mass 

flow rates into and out o f a Cell (i,j) that has sides A Xj and A yj must equal rate of 

change o f mass in the aquifer element.
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where (j) is the aquifer porosity, W's are the weights associated as the case may be on 

the downstream, upstream and far upstream, dk is the decay rate [1/T], Qw is the 

groundwater pumping associated with the node (i,j), C  and Q1 are the concentration and 

waste discharge rate of the external sources, n is the time step.

3.7 STOCHASTIC SPATIAL DISPERSIVITY FIELD

Like hydraulic conductivity, dispersivities are also functions o f space and 

vary throughout the aquifer. The best localized values o f these are determined in the field 

by conducting tracer tests, in which a dye is injected into the aquifer and its spread is 

measured in space. The procedure outlined under stochastic generation of hydrogeologic 

parameters (see Section 3.3) can be used to calculate multiple realizations of 

dispersivities. Provision is made in the computer program to compute this. However, it 

is felt there is no need to generate this stochastic field, because the stochastic conductivity 

field generated provides an indirect random field in computation of dispersion coefficient.
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3.8 UNIT-CONCENTRATION RESPONSE MATRIX

The response of the system in terms of change in concentration at certain 

key locations (which are of critical interest in managing the system) due to unit- 

concentration injection rate at each potential injection well locations considered separately 

are recorded as unit-concentration response coefficients. Unit-concentration injection rate 

as defined by Gorelick and Remson (1982b) "can be any arbitrary but convenient 

groundwater solute source flux at a single location and which allows solutes to enter the 

aquifer for a specified period". These responses are assembled into a response matrix that 

is then included in the management model as a set o f constraints together with the 

management and environmental constraints.

3.8.1 Potential Injection Well Location

As in unit-response matrix o f groundwater flow component (discussed in 

Section 3.4.1), for generation o f unit-concentration response matrix, it is necessary to 

identify all potential injection well locations. These potential injection wells may include 

all existing injection well locations together with a set o f newly identified injection well 

locations. Along with identification and location o f all injection wells, it is necessary to 

have injection rates defined at all these locations. This would allow the velocity field to 

be well defined, and therefore only the optimal concentration injection pattern is to be 

determined using the management model.

Stream reaches in an aquifer cell is treated in the model as a potential 

injection well location. The injection rate at stream cells (induced infiltration rates) either 

positive or negative is known or well defined from the management for water quantity.
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3.8.2 Unit-Concentration Response Function, y

In the governing advection-dispersion equation (Eq. 3.6.1), the dependent 

variable C(x,y,t), has a variable coefficient in velocity, U(x,y,t). Strictly speaking Eq.

3.6.1 is non-linear. In this research work a unique approach is used. When written in 

finite difference form the Eq. 3.6.1 is linear for each time step provided that the velocities 

are known. The groundwater velocity, U(x,y,t), is well defined within each time step. This 

allows the pde (Eq. 3.6.1) to be linear within that time step. Unit-concentration response 

function, y , obtained by applying a unit-injection rate only in the first time-step and 

recording the changes in concentration over the entire simulation period is repeated for 

applying unit-injection rate in each of the subsequent time steps and recording the 

changes in concentrations over the entire simulation period. Compared to one simulation 

run in generating unit-response function in aquifer flow for each potential pumping well, 

here we have NT simulation runs (where NT is the number of time steps) for each 

potential injection well. Although, this is computationally intensive, it gives us the 

advantage to apply superposition, as i f  treating the governing pde as linear.

3.8.3 Superposition Using Unit-Concentration Response Function

The concentration at any point k (for example pumping well), within the 

aquifer resulting from NRW injection wells, for KT time periods, and for any realization 

KR, is given by

KT

2 2  y ( k , j r w , K T , i t , K R )  W ( j r w ,  i t )  (3 . 8 .1 )
jiw=l it=l

where, C(k,KT) = concentration at any point k at time step KT, WL(jrw ,it) = wastewater
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load of solute injected at well jrw  during itth period, y (k,jrw,KT,it,KR) = system unit- 

source concentration response coefficients in the KT time-step at any point k as a result 

o f unit injection rate at injection well jrw  for unit injection in the it lh time step in 

realization KR.

3.9 SOLUTE TRANSPORT COMPONENT OF STREAMS

In order to consider solute transport in streams, two basic assumptions are 

made. Firstly, in streams, advection is a dominant way o f solute transport, owing largely 

to the magnitude of the velocities associated in the flow. Secondly, a river or stream is 

assumed to be homogeneous with respect to water quality variables across the river 

(laterally) and depth (vertically). W ith these two assumptions, the one-dimensional basic 

partial differential equation for an advective nondispersive stream with a source term and 

first order reaction is given by:

d ( C RA) d ( C Q)

- 8 T -  '  '  — i r ~ + “  d*-c ‘ A <3- 9 ' 1)

where, CR = concentration in the stream, Q = stream flow, dks = first order reaction 

coefficient, qWD = effluent waste discharge into the stream per unit length, c'R =

effluent concentration, and A  = flow area. The sketch for the control volume approach 

is shown in Fig. 3.8.

As in the groundwater solute transport component, the pde described in Eq.

3.9.1 has two state variables: the stream concentration, CR(x,t), and stream flow, Q(x,t). 

The actual streamflows as obtained from the optimization of flow quantities is substituted 

in here. The pde described in Eq. 3.9.1 is solved for the unknown stream concentration.
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3.9.1 Finite Difference Equation

Fig. 3.8 shows the cell numbering notation used in the block centered finite 

difference grid o f the one-dimensional mass transport in streams for any time increment, 

At, the finite difference form of Eq. 3.9.1 is expressed as

< C * 0 > 1 ±  +  ( C x & T - ±  ( C « 0 ) U  +  < c * p C ±
 2 2_ _   2 2_

< < O m )  1  *  (c f c j  r 1 (<st ,css) ” + (d ^ s )  "*‘

<ca»>; + <cA»>r + + ^omFi r  (3'9’2)
(c„s)-t'1 - (cBs>;

A t

where, n refers to the time step, C-iAa refers to concentration on the upstream or left face, 

similarly Ci+1/2 refers to concentration on the downstream face of the reach, S is the 

storage of the reach defined by Eq. 3.5.13, QWD = Ax: qWD = the effluent waste discharge 

into the stream reach, Qj_1/2 is the upstream inflow to the reach defined by Eq. 3.5.14, and 

Qi+1/2 is the downstream outflow given by Eq. 3.5.15.

In modeling stream transport upstream differencing scheme is used, by 

defining Q_1/2 = CM, and Ci+I/2 = Cr For the first reach the upstream inflow concentration 

rate is user specified.

310 COMPREHENSIVE CON.TUNCTIVE-USE MANAGEMENT MODEL

The various components detailed above have been integrated here to seek 

the optimal solution for the management problem. A typical management model consists 

o f an objective function subjected to a set of constraints. In this research work we are
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concerned with maximizing the surface water withdrawal together with pumpage of 

groundwater. At the same time we are interested in maximizing the waste input 

concentration into surface water and groundwater. The simultaneous optimization o f flow 

and quality aspects lead to a highly nonlinear, possibly nonconvex optimization problem. 

In order to facilitate the solution of this complex problem, at first the stochastic 

management of water quantity aspects described by the groundwater flow component (see 

Section 3.2), and surface water flow component (see Section 3.5) is formulated and 

solved. In the next step, the system response thus obtained, is used in framing the 

stochastic management model o f water quality aspects described by the solute transport 

component o f groundwater (see Section 3.6), and surface water (see Section 3.9). The 

optimal solution for the water quality aspects are then obtained by solving the 

management problem formulated.

3.10.1 Management Model for the Water Quantity Aspects

In the simulation-optimization procedure developed here, the aquifer 

response due to unit-excitation is known by simulation at all points o f interest. As 

mentioned in Section 3.4, the actual drawdowns at all points o f interest can be easily 

obtained by the principle o f superposition (Eq. 3.4.2), i f  the actual excitation pattern is 

known. In the developed management model we seek an optimal excitation pattern at all 

potential wells, and optimal withdrawal from surface water, subjected to a set o f system, 

management, and environmental constraints.
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3.10.1.1 Objective Function - Water Quantity

The objective function to find optimal pumping from all the potential 

pumping wells, and optimal surface water diversions is expressed as

m NT
Max z  = E Qw

j w = l  i  t  = l  JS = 1 2C = I

where, Qw(jw ,it) = well pumpage from jw th well during the itth period, and QSWD(js,it) = 

surface water diversion from js th reach during the itth period, NT is the total number o f 

time steps, NW is the number o f pumping wells, and NSWD is the number o f surface 

water diversion locations along the stream. In the model Qw's (total o f NW *NT) and 

Q s w d 's  (total o f NSWD*NT) form a set o f decision variables. This is subject to the 

system, management, and environmental constraints, these are discussed below:

jk j i p

{ j w . i t j  + E E QswnU s ' i t )  ( 3 . 1 0 . 1 )

3.10.1.2 System Constraints - Groundwater Surface Water Interaction

The induced infiltration, QINF, is an implicit function of river head, hr, and 

aquifer head in the river cell, h (ref Section 3.5.3). In the management model these form 

as a set o f system constraints which are non-linear equality constraints. The im plicit 

equation for the reach i, time step KT, and realization KR is expressed as

— A s .{ h r  I™ -  (h -
m  1  1  o

FT WffE E $ ( i , j w , K T - i t + l , K R )  Q j j w . i t )
( 3 . 1 0 . 2 )

i t = l  j w =  1

NT rmE E P ( i , i r , K T - i t + l , K R ) Q mF( i r , i t )
i t = l  i r = l

)} -  QXT = 0
'  I N F

where, river head hr = y + hrb, and hrb is the river bed elevation in the reach, and y is the
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stream flow depth, P' is the stream bed permeability, m is the stream bed thickness, A s 

is the surface area o f the stream in the cell, and h0 is the initia l piezometric surface.

As can be seen in Eq. 3.10.2, QINF is a system variable and can be fu lly 

expressed by aquifer head and river head. Here, CW’s (total of NRIVER*NT) are treated 

as decision variables for convenience in setting up the stream mass balance equations. Eq.

3.10.2 is repeated for all the river reaches (NRIVER reaches), and for all the time steps.

3.10.1.3 System Constraints - Stream Mass Balance Equations

Unsteady flow equations of the streams are modeled as system constraints. 

These are non-linear equality constraints, described by the Eq. 3.5.12, and the same is 

expressed below for clarity.:

^n+1 _ n  _n+1
s n+1 -  s n Qi-±  + ° i-±  Qi+± ° i ^1 1  2 2 2  2

A t  2 2 ( 3 . 1 0 . 3 )

Q™. + 0 £ t + + Q% £______ £ +  £______ i +____1_____ £_

In Eq. 3.10.3 the waste discharge input to the stream QWD is a known 

quantity, and as mentioned earlier QSWD and QINF are a set of decision variables. The 

stream depth in the reach centroid is also grouped into the set of decision variables (total 

o f NRIVER*NT). In Eq. 3.10.3 storage of a reach is expressed in terms o f flow depth 

(Eq. 3.5.13), and inflow and outflow o f a reach in terms o f flow depth (Eq. 3.5.14 and 

Eq. 3.5.15). The upstream boundary condition in terms of either a user specified or 

synthetic hydrograph generated is incorporated while writing the mass balance equation 

for the most upstream reach.
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Eq. 3.10.3 is repeated for all reaches (NRIVER), and for (NT - 1) time

steps.

3.10.1.4 System Constraints - Stream Initial Condition

Uniform flow is assumed with no surface water diversions in the first time 

step. These are linear equality constraints, and in the model the stream initia l condition 

is expressed as

0- = Q-+1 ( 3 . 1 0 . 4 )

where, Q} is the discharge in the reach section i, in time step 1. Eq. 3.10.4 is repeated

for all the river sections (2,3,... to NRIVER+1). In the model the discharges are expressed 

in terms o f flow depth described by the Eq. 3.5.15.

3.10.1.5 Management Constraints - Aquifer Drawdowns

The maximum permissible drawdown at location k in any time period KT, 

s*(k,KT), to prevent the rate o f depletion, or to prevent undesirable effects such as salt 

water intrusion, land subsidence, or acceleration of contaminant movement, serves as one 

of the management constraints for the aquifer flow system. This is a linear inequality 

constraint, and in the model it is expressed as

X, p { k ,  j w ,  K T - i t + l , K R )  Q ( j w . i t )  Z S* {k,  KT) ( 3 .1 0 .5 )
l  i t - 1

This constraint is repeated for all points of interest, k = l,2 ,..jj, NWR = number of 

potential pumping wells plus river reaches, and P represents the response function
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obtained for realization KR o f hydraulic conductivity and storativity and the constraint 

is repeated for all realizations and for all time steps. On the left hand side of the Eq. 

3.10.5, response of injection wells are also added expressing in a similar fashion.

3.10.1.6 Management Constraints - Stream Depth

The maintenance of minimum stream flow depth in any time step KT, 

yr*(KT), to meet downstream water rights, or to help preserve the aquatic life, serves as 

the management constraint for surface water. The constraints are set up for the last reach, 

as this is the most critical one. This is a non-linear inequality constraint and expressed 

as

Y (NR, KT) Z Y* (KT) ( 3 . 1 0 . 6 )K K

This constraint is written only for the last reach, NR, and for all time periods KT = 

1,2,...,NT.

3.10.1.7 Management Constraints - Water Demand

In the development of water resources, one of the primary objectives is to 

satisfy the water demands (for meeting domestic and industrial needs) o f a region. The

water demands may be met by supplies from pumping wells which tap an aquifer and/or

by diversion from a stream. The total quantity pumped from the aquifer is restricted by 

well capacities and allowable/or permissible drawdowns in the aquifer. The total amount 

o f water that can be removed from the stream by direct diversion or by induced 

infiltration is limited by the necessity of maintaining a minimum streamflow or minimum
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stream depth downstream o f the diversion point. This is classed as a management 

constraint which is a linear inequality constraint, and is expressed in the model as

£  Q ( j w , i t )  + Q { j s . i t )  > D* ( i t )  ( 3 .1 0 .7 )
j w =  1 j s = l

This constraint is repeated for all time periods it = 1,2,...,NT and D*(it) = water demand 

during it111 period. The constraint expressed in Eq. 3.10.7, satisfies water demand by 

pumping water from wells, and by surface water diversions. I f  the management involves 

so as to meet a portion o f the water demand, D* ( i t )  , by only groundwater wells, this 

type o f constraint is expressed in the model as

This constraint is repeated for all the time steps it = 1,2,...NT, where NT is the total 

number of time steps.

3.10.1.8 Pumping Well Capacity Constraints

Depending on the type and number of pumps installed at a pumping well 

location, the combined maximum pumping capacity of each individual well varies. This 

cap on the pumping capacity is a linear inequality constraint, and is expressed in the 

model as

Qw(jw,  i t )  l  Q™x ( j w , i t )  ( 3 .1 0 .9 )

For all wells jw  = 1,2,...,NW and during all time periods it = 1,2,...,NT, this constraint 

is repeated.
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3.10.1.9 Surface Water Diversion Capacity Constraints

On similar lines to pumping well capacity constraints, a cap for surface 

water diversion in the form of a linear inequality constraint is expressed in the model as

Qswn( j s , i t )  l  0™“ ( j s , i t )  ( 3 .1 0 .1 0 )

For all diversion points js = 1,2,...,NSWD and during all time periods it = 1,2,...,NT, this 

constraint is repeated.

3.10.1.10 Optimization Routine for Water Quantity

The control parameters for the management model so framed is given in

Table 3.10.1.

Table 3.10.1

Control Parameters for Optimization of Water Quantity

Description Name Value

Total number of decision variables NDV (NW + 2*NR + NSWD)*NT

Total number of constraints ( if NR > 
0)

NTCE NR*2*NT + 3*NT + 
(NW+NP)*NOR*NT + 
NSWD*NT + NSWD

Total number o f constraints ( if NR = 
0)

NTCE (NW+NP)*NOR*NT + 
NW*NT + NT

Number o f non-linear equality 
constraints

NLEQ 2*NR*(NT-1)

Number o f non-linear inequality 
constraints

NLIEQ 0

Number o f linear equality constraints LEQ 2*NR + NSWD

Number o f linear inequality 
constraints

LIEQ (NW+NP) *NOR*NT + 
(NW*NT) + NSWD*NT + 
3*NT
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The optimization routine used in this research is NEWSUMT-A (stands for 

new algorithm for a sequence of unconstrained minimization technique) which can handle 

non-linear optimization with equality and inequality constraints, developed by Thareja and 

Haftka (1985). The details of the optimization routine can be found in their report.

In brief NEWSUMT-A is a general purpose optimizer written in 

FORTRAN subroutine form that can be used for solving a wide variety of numerical 

optimization problems. NEWSUMT-A uses an extended interior penalty for inequality 

constraints and an exterior penalty for equality constraints and the direction of the move 

is found by Newton's method with approximate second derivatives. The computational 

procedure adopted in the optimizer is briefly discussed in Appendix A4.

After seeking the optimal solution for the above management problem, the 

simulation model determines the system response o f the combined system defined by the 

piezometric heads in the aquifer for the optimal well pumpages with induced infiltration 

from surface water by executing the simulation program for each realization.

3.10.2 Management Model for Water Quality Aspects

Once the piezometric heads are obtained throughout the aquifer, we 

proceed with the simulation-optimization procedure for water quality. From the numerical 

simulation model for the solute transport unit-source concentration response matrix is 

obtained. This response matrix is then used in the optimization model as constraints for 

the management of water quality aspects.

As mentioned in Section 3.8, the actual concentrations at all points of 

interest (such as pumping wells) can be determined by principle o f superposition (Eq.
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3.8.1), i f  the actual concentration injection pattern at each of the potential injection well 

is known. In the management model we seek optimal injection concentration pattern at 

all potential injection wells, and optimal disposal concentration pattern into surface water, 

subjected to a set o f system and management constraints.

potential injection wells, and optimal concentration disposal into surface water is 

expressed in the model as

where, c'w (jrw ,it) = concentration injected into the jrw th well during the it1'1 period,

C!R (jrs,it) = concentration disposed into the river at jrs lh reach during the it lh period. 

NRW is the number of recharge or injection wells, NDSW is the number o f reaches 

where waste disposal of concentration is expected. In the model c'w (total of NRW*NT)

and c'R (total of NDSW*NT) form a set of decision variables. This is subject to a set 

of system, management and environmental constraints, and these are discussed 

individually below.

3.10.2.2 System Constraints - Stream Mass Balance Equation

constraints. These are linear equality constraints, described by the Eq. 3.9.2, and the same 

is expressed below:

3.10.2.1 Objective Function - Water Quality

The objective function to find optimal concentration injection in all

The unsteady transport equation for streams are modeled as system
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where, n refers to the time step, CM/2 refers to concentration on the upstream or left face, 

sim ilarly Ci+1/2 refers to concentration on the downstream face o f the reach. Storage S, 

upstream inflow, Qj_1/2, and downstream outflow, Qi+I/2, o f a reach together with surface 

water diversion rate, QSWD, and waste discharge disposal rate, QWD, are known quantity 

from the optimization of water quantity. The only variable stream concentration defined 

at the centroid o f a reach is unknown, which is grouped into the set o f decision variables.

In modeling the surface water groundwater interaction for water quality, 

any loss o f surface water by way of induced infiltration carries the concentration 

associated in that reach into the aquifer. Here, it is assumed that pollutant input from the 

aquifer to the stream has negligible effect on streamflow quality compared to direct waste 

disposal into the stream. This assumption is done mainly due to order o f magnitude 

difference between streamflow and induced infiltration rate recharging the stream, any 

groundwater concentration associated with the induced infiltrtion rate would make 

significantly less impact to the streamflow concentrtion.
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3.10.2.3 System Constraints - Stream Initia l Condition

As in surface water flow component, uniform flow is assumed with no 

waste disposal discharge in the first time step. These are linear equality constraints and 

in the model initia l condition of the stream is expressed as

CR( i , l )  = CR( i + 1 ,1 ) (3 .1 0 .1 3 )

where, CR(i,l)  refers to concentration in the reach i in time step 1. Eq. 3.10.13 is repeated 

for all reaches.

3.10.2.4 Management Constraints - Aquifer Concentrations

The maximum permissible concentration at any location k during any time 

period KT, C* (k,KT), is not to be exceeded to protect /  prevent pollution o f aquifer

in the vicinity o f pumping wells. This is modeled as a linear inequality management 

constraint and expressed in the model as

C (k)  -  2> Y ( k , j r w ,  KT,  i  t ,  KR) W { j r w ,  i  t )  <>C* (k ,  KT) (3 .10  .14)
° jrw= 1 i t = l

This constraint is repeated for all points o f interest, k = l,2 ,..jj, NRWR = number of 

potential injection wells plus river reaches, and y represents the unit-source 

concentration response function obtained for realization KR of hydraulic conductivity and 

storativity and the constraint is repeated for all realizations.
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3.10.2.5 Management Constraint - River Water Quality

The waste disposal of concentration into surface water needs to be 

contained so as not to pollute the stream than a maximum permissible concentration, 

C* (it), to help protect aquatic life, or to maintain downstream water quality. The 

constraints are set up for the last reach, as this is the most critical one. This is a linear 

inequality constraint and expressed in the model as

CR( N R , i t )  <, C* ( i t )  ( 3 . 1 0 . 1 5 )

where, CR(NR,it) = concentration of river water in the last reach, NR, during the time 

period it and C*  (it) = maximum permissible concentration in the river during the time 

period it. This constraint is repeated for all the time steps.

3.10.2.6 Management Constraint - Waste Load Disposal Demand

The determination of optimal concentration injection or disposal pattern 

needs to meet the waste load generated in the region. This is set up as a management 

constraint which is linear and expressed as

_  j z w . i t )  c'w( j zw,  i t )  +
jrw=l

( 3 . 1 0 . 1 6 )
wsp
z2 QUj zs ,  i t )  c U j z s . i t )  £ IV* ( i t ), d  J Z S = 1

This constraint is repeated for all time steps it = 1,2,...,NT and W L*(it) = waste load 

demand during the itth period. The constraint expressed by Eq. 3.10.16 satisfies waste 

load demand by injection at recharge wells, and disposal at surface water. I f  the
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management involves so as to meet portion of waste load, WL* , to be met only by 

injection into aquifer, such constraints are expressed in the model as

injection pumps installed at a injection well site the maximum concentration injection 

capacity of each injection well varies. This cap on the injection capacity is set up as a 

linear inequality constraint in the model and is expressed as

£>'(j x w . i t )  C l i j x w . i t )  q'w{ j x w . i t )  C™ax ( j x w . i t )  ( 3 . 1 0 . 1 8 )

This constraint is repeated for all injection wells, NRW, and for all time steps, NT. As 

can be seen in the Eq. 3.10.18 the waste load discharge rate, q ’ w (jrw ,it), is a known

quantity and appears on both sides of the equation. In effect the constraint (Eq. 3.10.18) 

is set on the maximum permissible concentration injection.

3.10.2.8 Surface Water Disposal Capacity Constraints

On similar lines to injection well capacity, a cap for surface water disposal 

capacity is set up as linear inequality constraints and is expressed in the model as

QR( j x s ,  i t )  CR ( j x s ,  i t )  <. Qr { j x s ,  i t )  CRax( j xs ,  i t )  ( 3 . 1 0 . 1 9 )

where, CRax (jrs,it) = maximum concentration disposal in a river reach. This constraint
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( 3 . 1 0 . 1 7 )

3.2.10.7 Injection Well Capacity Constraints

Depending on the design of a recharge well and type and number of
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is repeated for all surface water disposal sites, NDSW, and for all time steps, NT.

3.10.2.9 Optimization Routine for Water Quality

The control parameters for the management model for water quality so 

framed is given in Table 3.10.2.

Table 3.10.2

Control Parameters for Optimization of Water Quality

Description Name Value

Total number o f decision variables NDV (NRW + NR + NDSW)*NT

Total number o f constraints ( if NR > 
0)

NTCE NR*NT + 3*NT + 
(NW+NP)*NOR*NT + 
(NRW+NDSW)*NT + 
NDSW

Total number of constraints ( if NR = 
0)

NTCE (NW+NP) *N OR*NT + 
NRW*NT + NT

Number of non-linear equality 
constraints

NLEQ 0

Number of non-linear inequality 
constraints

NLIEQ 0

Number o f linear equality constraints LEQ N R W  + NDSW

Number o f linear inequality 
constraints

LIEQ (NW+NP)*NOR*NT + 
(NRW + NDSW)*NT + 
3*NT

The optimal concentration injection pattern with optimal concentration 

disposal into surface water is determined by calling NEWSUMT-A optimization routine. 

After seeking the optimal concentration injection pattern, the transport simulation model 

developed determines the system response o f the combined system defined by aquifer 

concentrations.
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3.10.3 Optimization Using Linear Programming

The non-linear optimization routine NEWSUMT-A used in this research 

work handles both linear and non-linear equality and inequality constraints efficiently. The 

non-linearity in the conjunctive-use management model discussed in Section 3.10.1, arises 

soley due to the governing system equations for stream mass balance and groundwater 

surface water interaction, which are non-linear equality constraints.

For aquifer management of flow and transport without streams the 

management model is described by a linear objective function subjected to a set of linear 

inequality constraints. Only for this case, wherein all the constraints are linear functions 

o f decision variables, in the developed management model, the user has an option to use 

either non-linear optimization routine, NEWSUMT-A, or linear programming optimization 

routine, SIMPLEX. The SIMPLEX routine is a standard FORTRAN subroutine from the 

book titled "Numerical Recipes: The Art o f Scientific Computing", by Press et al. (1992). 

As shown later in Section 4.6 under management model verification the solution obtained 

by NEWSUMT-A and SIMPLEX are in close agreement for an aquifer management 

problem.
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4. MODEL VERIFICATION

An important step in the model development process is to verify how 

accurately the numerical results obtained represent the behaviour o f the actual physical 

system. The methods available to verify the accuracy of the model are:

1. By applying the model developed to simulate the real physical system for 

which exhaustive field measurements, field observations, and in general all 

input data and output information are available. By performing such a 

simulation it can be easily verified how closely the model represents the 

actual behaviour of the system.

During this research work no field research experiments were undertaken 

to collect all the information required for the model verification. Further, 

every attempt was made to collect the case studies published of the real 

physical systems. For the comprehensive conjunctive-use model developed 

here, the input data required to simulate a real system is exhaustive. None 

o f the case studies reported gave adequate information with respect to 

input and output, as the case studies reviewed in essence dealt with much 

simpler physical systems than for the one developed here.

2. By comparing the model results to analytical solutions. In general 

analytical solutions are available only for a few simplified cases such as

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



homogeneous, isotropic, infinite areal extent with well defined initial and 

boundary conditions, although in reality such a physical system does not 

exist. However, these analytical solutions serves as a testing ground for the 

model developed. As discussed later in this section, the numerical solutions 

o f the model are compared with available analytical solutions.

3. By comparing the results of the flow and transport component with the 

solutions of the available generic programs independently. Although, the 

available generic programs do not account for all the complexities and 

features built in this research work, as discussed later the comparison is 

made in a limited way as to what the generic programs can simulate.

4. By comparing the model solutions with published results (those published 

in either standard reference books or in technical journals are used). For 

instance, the results of the two-dimensional transport simulation block is 

compared with the method of characteristics solution reported in the USGS 

technical publication (Konikow and Bredehoeft, 1978). In general it was 

found that the models reported in the peer technical literature did not 

include all the needed input and output information necessary for model 

verification. Attempts to obtain all the missing information directly from 

the lead author failed, either due to published results were old and no 

back-up information available with them or the author was not available. 

Therefore, only a limited number o f comparisons were made.

5. By introducing internal diagnostic checks in the model. Model components 

included in this research work has a built in internal diagnostic checks to
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remove the possibility o f any programming bugs. In the flow and transport 

model these internal diagnostic checks can be identified as:

a. Water balance and mass balance in the system. This is an 

internal running check for all the time steps.

b. Sum of changes in piezometric heads / concentration during 

each iteration over the entire model simulated should 

converge to an acceptable user specified tolerance. This is 

also an internal running check for all the time steps. This 

type of check works well with aquifer problems concerning 

regional analysis.

Also several external diagnostic checks were performed, such as the 

capability o f the model to produce axially symmetric results under axially 

symmetric input data.

These internal and external diagnostic checks ensure to a great extent the 

accuracy o f the model developed. Where verifications of the model using 

the standard methods discussed above are not possible, only these internal 

and external diagnostic checks serve to verify the model. These are also 

discussed later.

A ll the verification methods discussed above have their own limitations. 

A best effort is made in verifying the model results with at least one o f the available 

methods. Due to scarcity and accuracy o f all the input data required for the model, 

verification of all the model components developed together was not possible. Verification 

of the individual components developed are discussed below.
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4.1 VERIFICATION OF THE GROUNDWATER FLOW COMPONENT

In verifying the groundwater flow component several tests were conducted. 

These tests are discussed individually below.

4.1.1 Check for Mass Balance

This is an internal running check for all the time steps. Mass balance is 

defined in the computer model as cumulative net sum o f all external inflows and outflows 

should equal change in volume of water in storage. The check for mass balance is printed 

in the model output for every time step, and the sample of the same obtained in the 24th 

time step for the model application problem considered in Section 5.1 is reflected in 

Table 4.1.1. The mass balance error of 0.04% is acceptable because of large pumping 

encountered.

4.1.2 Check for Symmetric Distribution of Flows

A homogeneous, isotropic aquifer with symmetrical constant head boundary 

conditions (constant head = 0 m on all four sides) is considered. The system is initia lly 

at rest (initial piezometric surface = 0 m throughout) and is subjected to a constant 

pumping o f 20000 m3/d from a symmetrically placed well in the center of the aquifer. 

The size of the aquifer is 9300 m x 9300 m, thickness = 40 m, constant permeability in 

the X and Y direction equal to 100 m/d, and the confined aquifer storage coefficient = 

0.001. For a hypothetical problem the isopiestic lines of equal drawdown is shown in Fig. 

4.1, which verifies the model behaviour for symmetric flow distribution.
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Table 4.1.1

Check for Mass Balance - Flow Component

Storage Increase 81.93 m3

Storage Decrease -2074.70 m3

TOTAL STORAGE CHANGE (Increase - 
Decrease)

-1992.77 m3

Amount o f Recharge from Boundary 10354829.00 m3

Amount Discharged to Boundary -292757.81 m3

TOTAL (Recharge - Discharge) FROM 
BOUNDARY

10062071.00 m3

Cumulative Leakage 1804582.38 m3

Permanent Pumping Through Wells 0.0 m3

Total Pumpage from Start -37270280.00 m3

Permanent Recharge Through Wells 0.0 m3

Total Injection from Start 25400628.00 m3

CUMULATIVE NET (Pumpage - Injection) 
OUTFLOW

-11869652.00 m3

NET INFLOW (from Boundary + Storage Release 
+ Leakage)

11868646.00 m3

MASS BALANCE ERROR -0.04206%

4.1.3 Comparison of the Model Results with Analytical Solution

The analytical solution for aquifer drawdowns for an unsteady, radial flow 

situation in a infinite, homogeneous, isotropic, non-leaky, confined aquifer w ith a single 

pumping well fu lly penetrated, and for constant discharge conditions is given by

s ( r ' t )  = 4 S r  m u ) ' u = ( 4 - 1 - 1)
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where r is the distance from the pumping well at any time t after the pumping has started, 

T = transmissivity, S = storage coefficient, and Q = constant well discharge.

An infinite aquifer was computer simulated by making the number of 

model rows and columns sufficiently large such that the piezometric heads at points of 

interest were not affected by the presence of the boundary edges o f the model. Further, 

the assumption made here that the aquifer is of infinite areal extent, introduces no 

significant error in practical applications, although such an aquifer does not exist. This 

statement is valid as long as the cone o f depression has not reached any aquifer boundary 

(ref: Bear (1979), pp 324).

The input to the computer model is tabulated below:

Aquifer Transmissivity, T = 1000 m2/d,

Storage Coefficient, S = 1.003 x 10'2,

Grid Spacing A x  = A y  = 300 m constant,

Density o f Grid NROW = NCOL = 31,

Time Step, A t : 0.5 d

: 1.0 d

: 5.0 d

: 10. d

Constant well discharge, Q = 3500 m3/d

Pumping Well Location (i,j) = (16,16)

Distance to observation point = 300 m

Initial Piezometric Head, H0 = 0.0 m throughout,

Barrier boundary condition on all four sides.
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A time-drawdown graph in Fig. 4.2 illustrates the sensitivity o f the 

computer simulated drawdowns for analytical solution as a result o f varying the size of 

the discrete time increment A t  . The comparison in Fig. 4.2 reveals that at earlier time

steps the discrepancy between the analytical solution and the model results decreased as A t  

is reduced. However, for later time steps irrespective o f discrete time increment, the 

difference between analytical and computer results are insignificant.

4.1.4 Comparison of the Model Results with PLASM

PLASM is a generic aquifer simulation model developed by Prickett and 

Lonnquist (1971). Fig. 4.3 shows the finite difference grid configuration used in 

comparing the numerical model (flow component) with PLASM. The considered aquifer 

is an example of the actual use o f various features built into the model. The computer 

input data is summarized below:

Aquifer Transmissivity, T = 600 m2/d,

Storage Coefficient, S = 0.0005,

Permeability o f the Leaky bed = 3.1253e-8 m/d

Thickness o f the Leaky bed = 1.0 m

Grid Spacing (ref: Fig 4.3) = Variable,

Density o f Grid NROW = NCOL = 20,

Time Step, A t  = 182.625 d

Number o f Pumping Wells = 7,

In itia l Piezometric Head, H0 = 0.0 m throughout,
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Boundary condition as defined in the Fig 4.3. Location o f the wells are also shown in the 

figure. Discharge, Q from 7 Wells (in m3/d) is given in Table 4.1.2.

Table 4.1.2

Pumping Well Discharges

YEAR PW1 PW2 PW3 PW4 PW5 PW6 PW7

1 12100 14600 7000 7900 5000 5300 2300
2 13200 18200 9600 12100 5800 7300 3400

3 14300 21800 12200 16300 6600 9200 4000
4 15400 25400 14800 20500 7400 11200 4800

5 16500 29000 17400 24700 8200 13100 5700
6 17600 32600 20000 28900 9000 15100 6500

7 18700 36200 22600 33100 9800 17000 7400

8 19800 39800 25200 37300 10600 19000 8200
9 20900 43400 27800 41500 11400 21000 9000

10 22000 47000 30400 46700 12200 22400 10400

The model developed and PLASM were executed with the same set of 

data. The results obtained from the model (CCMODEL) and those obtained by executing 

PLASM are compared along a line parallel to X  axis (Row 15) and along a line parallel 

to Y axis (Column 8). The aquifer heads obtained in time step 5 and time step 10 along 

Row 15 are graphically shown in Fig. 4.4 and those along Col 8 are shown in Fig. 4.5. 

As can be seen in Fig 4.4 and Fig 4.5 there is a very good agreement between the two 

numerical models. The piezometric head difference in the two models is within 1-2%, and 

this discrepancy is due to the convergence achieved in the two models.
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4.1.5 Comparison of Model Generated Unit-Response Function with

Analytical Solution

The analytical solution for the unit-response function for an unsteady, radial 

flow  situation in an infinite, homogeneous, isotropic, non-leaky, confined aquifer, with 

a single well pumping Qw‘ during the first time step t, and is then shut o ff permanently 

is given by (ref: Bear (1979), pp 323) 

for t £ tj

s ( r , t )  = W(u) , u = ^  ( 4 . 1 . 2 )
4TtT 4 T t

for t > t,

O,1,
s ( r , t )  = W{u) -  W(u*) r 2S ( 4 . 1 . 3 )

47tT

where r is the distance from the pumping well at any time t after the pumping has started, 

T = transmissivity, S = storage coefficient.

The input to the computer model to generate the unit-response function is 

tabulated below:

Aquifer Transmissivity, T = 1000 m2/d,

Storage Coefficient, S = 0.001,

Grid Spacing A x  = A y = 300 m constant,

Density o f Grid NROW = NCOL = 49,

Time Step, A t = 30. d

Q (in first time period only) = 1000 m3/d

Pumping W ell Location (i,j) = (25,25)
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In itia l Piezometric Head, H0 = 0.0 m throughout,

Barrier boundary condition on all four sides.

The comparison of analytical solution and unit-response function obtained 

by the model at the pumping well node (25,25) is shown in Fig. 4.6. The comparison of 

the model unit-response function shows very good agreement with theoretical solution.

4.1.6 Check for Principle of Superposition

The sample problem discussed in Section 4.1.5 is used to generate response 

function for three wells pumping at nodes (25,25), (20,20), and (34,28). Also, the 

response function was obtained at three observation nodes (25,26), (25,27), and (25,28). 

In the aquifer simulation constant discharges of 12000 m3/d, 20000 m3/d, and 8000 m3/d 

was assigned for the three wells, respectively. The aquifer heads at the three pumping 

and three observation nodes are superposed as discussed in Section 3.4.3 (Eq. 3.4.2) and

are compared with the simulated results in the computer program for every time step.

Table 4.1.3 displays a comparison for the 13lh time step. In the Table 4.1.3, KP is point 

of interest, I and J refers to row and column numbers, respectively. The superposition 

achieved by using the unit-response function is quite satisfactory. The small discrepancy 

is principally due to convergence achieved in generating unit-response function for 

individual wells and in simulation the convergence achieved is for the combined pumping 

from all the wells.
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Table 4.1.3

Comparison of Superimposed Heads and Simulated Heads

KP I J Total*s
(m)

H (m) 
at 

KP

Head
r
(m)

Error Remarks

1 25 25 3.0176 -3.0176 -3.0140 0.120% Pump Well

2 20 20 4.0301 -4.0301 -4.0261 0.100% Pump Well

3 34 28 1.9468 -1.9468 -1.9459 0.044% Pump Well

4 25 26 2.2070 -2.2070 -2.2036 0.155% Obs. Well

5 25 27 1.8091 -1.8091 -1.8059 0.175% Obs. Well

6 25 28 1.5538 -1.5538 -1.5510 0.185% Obs. Well
'Jote : * Indicates the total drawdown (m) computed using the Eq. 3.4.2

: **  Indicates the simulated head using the aquifer simulation program developed.

4.2 VERIFICATION OF STOCHASTIC GENERATION OF AQUIFER

PARAMETERS

Several intermediate steps were printed in the course of model development 

which were all checked by hand calculations for small size problems. In the stochastic 

component of the model developed many useful routines for matrix decomposition, back 

substitution, eigen value and eigen vector generation, reduction of symmetric matrix into 

tridiagonal form, and generation of random numbers which are normally distributed with 

mean 0 and variance 1 are all standard FORTRAN subroutines from the book titled 

"Numerical Recipes: The A rt of Scientific Computing" by Press et al. (1992).
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4.2.1 Check for Optimum Values of MLE Parameters

An internal check is accomplished by back substituting the optimum MLE 

parameters in the likelihood equation. It is found that the optimum MLE parameters have 

consistently satisfied the likelihood equation (Eq. 3.3.7), i.e. the derivative of the negative 

log likelihood function with respect to each structural parameter, 0j, is equal to zero.

where 0j can be any of the structural parameters, mean p, variance a2, correlation length 

scale Xx or Xy.

This internal running check is printed for each hydrogeologic parameter 

after optimum values of the vector of unknown spatial statistical structural parameters of 

the log parameter field is determined using the MLE procedure discussed in Section 3.3.1. 

The sample o f the same is reproduced in Table 4.2.1. The results shown in Table 4.2.1 

correspond to the data used in estimating random log field for permeability in the Y 

direction of Region 2 discussed in Section 5.1.1.2. As seen in Table 4.2.1, the value of 

the gradient vector is very close to zero that means the likelihood equations given in Eq.

3.3.7 and mentioned above are satisfied. The small discrepancy in the gradient vector is 

acceptable because o f the convergence criterion specified in the MLE procedure. Mean 

and variance given in Table 4.2.1 are the logarithmic values of the random field.
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Table 4.2.1

Optimum MLE Parameters

Structural Optimum Gradient Value
Parameter Value Vector

1.52103 dL
d\i

0.017

a2
0.04174

S
' 

CL
) 

Q
M 

t-

0.012

X 2389.1 dL 0 . 0 0 0

dX
X

X 2487.9 dL 0 . 0 0 0

dXy

The non-linear optimization method developed here for estimating the 

optimum MLE parameters, is an iterative process. During each iteration the corrections 

for all the four structural parameters are employed simultaneously using matrix methods 

as discussed in Appendix A l. The optimum MLE parameters obtained was in agreement 

with optimum MLE parameters obtained using another approach known as "Profile 

Method" which was developed in the initial stages of this study. Essentially, the profile 

method is also an iterative process. In the profile method the corrections for each 

structural parameters are employed individually, and the updated or corrected parameters 

are used in employing correction for the other structural parameters, and the iterations are 

continued until convergence criteria is met. The non-linear optimization method was later 

developed because o f its inherent computational efficiency.
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4.3 VERIFICATION OF SURFACE WATER FLOW COMPONENT

The non-linear hydrologic storage equation described in Eq. 3.5.12 is 

embedded in the non-linear optimization model developed as discussed previously. In the 

optimization procedure these are strict equality constraints. The optimum solution is 

obtained only after satisfying the equality constraints.

4.3.1 Check for Mass Balance

As a check for mass balance for each reach in each time step is printed in 

the output, and the same for a sample problem is reproduced here in Table 4.3.1. The data 

input to the sample problem is same used in model application discussed in Section 

5.1.2.1. In Table 4.3.1 2Q in is the sum of upstream (U/S) inflow plus any waste flow 

input to the reach and 2Q0Ut is the sum of downstream (D/S) outflow plus diversion from 

the reach plus induced infiltration. Only for presentation purpose here the percent error 

is calculated as (2Q in - 2Q 0ut) divided by SQin times 100. In the model the stream mass 

balance equations (Eq. 3.5.12) are modeled as strict non-linear equality constraints. The 

optimum solution obtained satisfies these equality constraints.
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Table 4.3.1 

Check for Streamflow Mass Balance

Re
ach
#

Stream
Depth
(m)

U/S
Qin
(1000
m3/d)

D/S
Qout
(1000
m3/d)

Diver
sion
(1000
m3/d)

Infiltra
tion
(m3/d)

Waste
flow
Input(
1000
m3/d)

E
Qin -

E
Qout
(m3/d)

Error
%

1 21.0915 35622.0 35621.7 0.0 -275. 0.0 12. 0.00

2 21.0915 35621.7 35621.6 0.0 -139. 0.0 8. 0.00

3 21.0914 35621.6 35621.4 0.0 -199. 0.0 4. 0.00

4 21.0914 35621.4 35621.2 0.0 -160. 0.0 16. 0.00

5 21.0913 35621.2 35621.1 0.0 -119. 0.0 8. 0.00

6 21.0913 35621.1 35620.9 0.0 -87. 0.0 24. 0.00

7 21.0206 35620.9 35421.9 198.8 -41. 0.0 170.06 0.00

8 21.0206 35421.9 35421.9 0.0 +24. 0.0 40.00 0.00

9 21.0206 35421.9 35421.9 0.0 +12. 0.0 20.00 0.00

10 21.0206 35421.9 35421.9 0.0 +4. 0.0 24.00 0.00

11 21.0206 35421.8 35421.9 0.0 +4. 0.0 20.00 0.00

12 21.0384 35421.8 35471.8 0.0 +1. 50.0 20.00 0.00

13 21.0384 35471.8 35471.8 0.0 +4. 0.0 8.00 0.00

14 21.0384 35471.8 35471.8 0.0 +23. 0.0 20.00 0.00

15 21.0384 35471.8 35471.9 0.0 +23. 0.0 8.00 0.00

16 21.0384 35471.9 35471.9 0.0 +37. 0.0 16.00 0.00

17 21.0384 35471.9 35472.0 0.0 +143. 0.0 12.00 0.00
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4.4 VERIFICATION OF THE GROUNDWATER SOLUTE TRANSPORT

COMPONENT

In verifying the groundwater solute transport component several tests were 

conducted. These tests are discussed individually below:

4.4.1 Check for Mass Balance

This is an internal running check for all time steps. Mass balance in solute 

transport component is defined as mass present in the system should equal the difference 

o f all mass input/inflow and mass pumped/outflow o f the system. The check for mass 

balance is printed in the computer output for every time step, and the sample o f the same 

(for the problem discussed in Section 4.4.6, Time Step 16) is shown in Table 4.4.1.

Table 4.4.1

Check for Mass Balance - Solute Transport Component

Mass Injected from Start 630.0 Tons

Mass Recharged from Boundary -11.19 Tons

Total Mass In .... 618.81 Tons

Mass Present in the System 605.43 Tons

Mass Removed from Pumping Wells 13.38 Tons

Total Mass O u t.... 618.81 Tons

MASS BALANCE ERROR .... 0.00001%

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4.2 Check for Symmetric Distribution of Concentration

A hypothetical homogeneous, and isotropic aquifer is considered with 

symmetric boundary conditions. Four pumping wells and one injection well are placed 

symmetrically in the aquifer. The size o f the aquifer, boundary and in itia l conditions, 

governing parameters for flow is the same as given in Section 4.1.2. The aquifer is 

discretized into 31 rows x 31 columns o f equal grid spacing of 300 m. Constant discharge 

o f 10000 m3/d at the four pumping wells located at nodes (16,13), (16,19), (13,16), and 

(19,16) is used. The injection well is located at the center of the aquifer at node (16,16) 

with a constant injection rate o f 20000 m3/d. The porosity o f the porous medium = 0.1, 

and a constant dispersivity o f 10 m is assumed in both X and Y direction. The 

distribution o f concentration in the aquifer is found to be symmetric using all the methods 

(centered, upwind, weighted, and quadratic interpolation finite difference methods) 

developed in this study. In the upwind weighted difference method, weight w = 0.75 is 

used here and in all other comparisons. The symmetric distribution of concentrations 

obtained using quadratic interpolation method along a line parallel to X  axis is shown in 

Fig. 4.7, and along a line parallel to Y axis is shown in Fig. 4.8.

4.4.3 Comparison of Model Results with Analytical Solution for Axially

Symmetric Steady Flow Field

The analytical solution for concentrations in an infinite aquifer for radially 

symmetric diverging flow from a well continuously injecting a tracer at constant rate Q0 

and constant concentration C0 is given by (ref: Bear 1972, pp 635)
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c
C( r ,  t )  = e z fc

where

0,

'  r 2
T  ' G t

M
4  - 3

3

(4.4.1)

O = V r  (4.4.2)
2TCB(|)

r  is the average radius o f the body of injected mass and defined as r  = /2 G t  , and

r is the radial distance from the center of the well.

This analytical solution is used to test the mathematical model developed. 

The input to the model consisted of constant injection rate Q0 = 1 m3/s and constant 

concentration C0 = 1000 g/m3, Ax = Ay = 40 m constant, NROW = NCOL = 101, 

Source location (i,j) = (51,51) and barrier boundary condition on all sides, time step A t

= 34646.4 s, thickness o f the aquifer = 10 m, constant permeability in X and Y direction 

of 0.0005 m/s, porosity = 0.35, and a constant dispersivity in X and Y direction o f 10 m.

Numerical results obtained using all the schemes (centered, upwind, 

weighted, and quadratic interpolation finite difference methods) are compared with 

analytical solution. The comparison of relative concentration (C/CJ versus radial distance 

after 4.01 days and after 36.10 days using quadratic interpolation method is shown in Fig. 

4.9. In the Fig. 4.9, QUI stand for quadratic upstream interpolation scheme. The 

numerical results obtained using centered, upwind, and weighted difference methods are 

compared in Fig. 4.10. In the Fig. 4.10, CDM, UDM, and WDM stand for centered, 

upwind, and weighted upwind difference schemes, respectively. Same notations are used 

in all other comparisons.
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The application of the model which is written essentially for two- 

dimensional Cartesian coordinates, to a problem involving radially symmetric divergent 

flow field represents a severe test o f the model. Nevertheless, it can be seen in Fig. 4.9 

that there is good agreement between analytical and numerical solutions after both 

relatively short and long times. Further, it can be seen in both cases (after 4.01 days and 

after 36.1 days) that quadratic interpolation method closely follows analytical solution. 

However, the presence o f some numerical dispersion is evident (ref to Fig. 4.10), 

particularly for the longer time when upwind or weighted difference methods are used.

4.4.4 Comparison of Model Results With Analytical Solution for Steady

Uniform Flow Field

The analytical solution for a homogeneous, isotropic, infinite aquifer with 

a uniform flow in one direction parallel to the axis and of constant velocity, U, for the 

case o f instantaneous injection (momentary injection) of concentration AM at the origin 

(x=0, y=0) at time t = 0, is given by Kinzelbach, 1986

A mC( x , y ,  t) = -----   — exp
4-nq>BUJa a t

Ut 2x~- 
R y 2
Ut A u t  

Ul R Ut R

exp ( - A t )  

(4.4.3)

where A is the decay constant, a L and aT are longitudinal and transverse

dispersivities, R is the retardation factor.

To test the model with this analytical solution a 290 m x 290 m aquifer is 

considered. The aquifer is discretized by a constant grid spacing o f A x  = A y  = 10m. 

A momentary injection o f 200 kg of an ideal tracer (R = 1, A = 0) is applied at
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location (50 m, 150 m). A  time step of A t  = 1.0 day is used. The aquifer is assumed 

to be homogeneous with K* = Ky = 28 m/d; constant thickness B = 10 m; aquifer porosity 

<j> =0.1, dispersivities aL = 4.5 m and a T = 1.125 m. The uniform flow field

with pore velocity of U = 1.0 m/d is defined by setting a constant head boundary on left 

and right edges of the aquifer with hL = 100.0 m and hR = 99.0 m, respectively, and 

barrier boundary on other two edges. The dimension parameter statement in the computer 

program was modified to account for 125 time steps.

The comparison o f the numerical results obtained using quadratic upstream 

interpolation with analytical solution after 120 days is shown in Fig. 4.11, and the same 

comparison using centered, upwind, and weighted difference methods is shown in Fig. 

4.12. As can be seen in the Fig. 4.11, and Fig. 4.12 there is a very good agreement o f the 

results obtained using quadratic interpolation and centered finite difference methods with 

analytical solution. However, a significant numerical dispersion is evident (see Fig. 4.12) 

when upwind or weighted difference methods are used. In Fig. 4.11, and Fig. 4.12 the 

concentration of the injected mass has moved with the velocity (U/R = 1.0 m/d) and the 

peak concentration in all the methods is obtained at a distance (Ut/R = 120 m) from the 

source location. Further, it should be noted that the constant velocities (Ux = 1.0 m/d and 

Uy = 0.0 m/d) as defined in the analytical solution can not be obtained everywhere in the 

mathematical model because o f the radial velocities caused by the source injection. 

However, the discrepancy between velocities used in the analytical and mathematical 

model were negligible. Additionally, model boundaries though placed far from the source 

may still have some influence on the results. However, a much larger grid w ith NROW 

= NCOL = 49 was tested to eliminate this effect, i f  any, but the accuracy o f the results
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were not affected. Therefore it can be said in the demonstrated model there was no 

boundary effects to distort the results.

4.4.5 Comparison o f Model Results W ith Method of Characteristics (MOC)

Solution

Konikow and Bredehoeft (1978) evaluated their solute transport model 

developed using Method of Characteristics (MOC) technique by applying it to a problem 

in which the flow field is strongly influenced by pumping wells. Fig. 4.13 shows the 

finite difference grid configuration o f the aquifer model used in this application.

The input to the computer model is tabulated below:

Aquifer Transmissivity, T = 802.66 m2/d,

Storage Coefficient, S = 0.00,

Grid Spacing A x  = A y  = 274.3 m constant,

Density o f Grid NROW = 8,

NCOL = 7,

Time Step, A t  = 48.06 d

Constant well discharge, Q = 2446.58 m3/d

Pumping Well Location (i,j) = (6,3)

Constant head boundary, hT = 30.48 m

hB = 22.86 m

Barrier boundary condition on other two sides 

Aquifer porosity, (j) = 0.30

Longitudinal Dispersivity, aL = 30.48 m
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Transverse Dispersivity, a = 9.144 m

Constant Concentration o f 100 mg/1 at top central 3 nodes 

The mathematical model developed in this study is applied to the same situation and the 

results are compared to those o f Konikow and Bredehoeft (1978). The comparison of 

concentration distribution obtained using quadratic interpolation method along a line 

parallel to X-axis (Row 6) and along a line parallel to Y-axis (Column 3) is graphically 

presented in Fig. 4.14 and Fig. 4.15, respectively. A similar comparison is made o f the 

numerical results obtained using centered, upwind, and weighted difference methods and 

these are shown in Fig. 4.16, and Fig. 4.17. Although the agreement of numerical results 

is very good, it should be noted that close to model boundaries there is some significant 

difference. This may be attributed to the different ways, in which the boundaries are 

represented in the two models. As can be seen in Fig. 4.15 (along Column 3) the MOC 

numerical results do not strictly maintain the constant boundary conditions specified. 

However, the concentration at the pumping well is in strict agreement with MOC solution 

irrespective of the difference method used i.e. quadratic, centered, upwind, and weighted 

difference methods. As mentioned in Section 3.6.3.4, for preliminary engineering analysis 

the centered, upwind, and weighted difference methods developed in this research work 

to model advective component are useful and produces global correspondence with 

measured results. However, the quadratic upstream interpolation scheme is the most 

accurate.
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4.5 VERIFICATION OF SOLUTE TRANSPORT COMPONENT OF

STREAMS

The finite difference equations of the linear one-dimensional partial 

differential equation for an advective nondispersive stream with source term and first 

order reaction given in Eq. 3.9.2 is embedded in the optimization model as a strict 

equality constraints. The optimum solution is obtained only after satisfying these 

constraints.

4.5.1 Check fo r Mass Balance

As an internal running check the stream mass balance is printed for each 

time step, and the same obtained for the model application problem discussed in Section

5.1.4.1 is reproduced here as Table 4.5.1. In the table 2 (Mass In) is the sum o f upstream 

(U/S) inflow times U/S concentration (expressed in Tons/day) and waste flow input times 

waste disposal concentration (in Tons/d), similarly 2 (Mass Out) is the sum of 

downstream (D/S) outflow times reach concentration and diversion rate times reach 

concentration. Only for presentation purposes the percent error is calculated here as 

(2  Mass In - 2 Mass Out) divided by 2  Mass In times 100. As in the flow model the 

stream mass balance equations (Eq. 3.9.2) are modeled as strict equality constraints. The 

optimum solution obtained satsfy these equality constraints.
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Table 4.5.1

Streamflow Solute Transport Mass Balance (24th time step)

Re
ac
h
#

U/S
conc.

D/S
conc.

U/S
M in

D/S
M out

Mass
Diverted

Waste
load
Input Sy^our

Error
%

mg/1 mg/1 Tons/d Tons/d Tons/d Tons/d Tons/d

1 1.000 1.0045 35.62 35.78 0.00 0.00 -0.16 -0.45

2 1.004 1.0079 35.78 35.90 0.00 0.00 -0.12 -0.34

3 1.007 1.0102 35.90 35.99 0.00 0.00 -0.09 -0.25

4 1.010 1.0119 35.99 36.05 0.00 0.00 -0.06 -0.17

5 1.011 1.0131 36.05 36.09 0.00 0.00 -0.04 -0.11

6 1.013 1.0140 36.09 36.12 0.00 0.00 -0.03 -0.08

7 1.014 1.0151 36.12 35.96 0.20 0.00 0.16 0.44

8 1.015 1.0159 35.96 35.99 0.00 0.00 -0.03 -0.08

9 1.015 1.0174 35.99 36.04 0.00 0.00 -0.05 -0.14

10 1.017 1.0184 36.04 36.07 0.00 0.00 -0.03 -0.08

11 1.018 1.0170 36.07 36.02 0.00 0.00 0.05 0.14

12 1.017 5.6836 36.02 201.61 0.00 166.3 0.71 0.35

13 5.683 5.6817 201.61 201.54 0.00 0.00 0.07 0.03

14 5.681 5.6814 201.54 201.53 0.00 0.00 0.01 0.00

15 5.681 5.6808 201.53 201.51 0.00 0.00 0.02 0.01

16 5.680 5.6798 201.51 201.47 0.00 0.00 0.04 0.02

17 5.679 5.6750 201.47 201.30 0.00 0.00 0.17 0.08
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4.6 VERIFICATION OF THE MANAGEMENT MODEL COMPONENT

The non-linear optimization program (NEWSUMT-A) used in this research 

work is well tested and is currently used in several ODU research projects by the 

Mechanical Engineering Department with NASA. As a verification o f this model 

component, the optimum solution obtained using NEWSUMT-A is compared with the 

optimum solution obtained using SIMPLEX for the case of aquifer management problem, 

wherein the linear objective function is subjected to a set o f linear constraints.

To test the model a 6000 m x 6000 m aquifer is considered. The aquifer 

is discretized by a constant grid spacing o f 600 m. Two potential pumping wells at (3,6) 

and (6,7) are identified. The no flow boundaries are defined on three sides. On the top 

boundary a constant head equal to 50 m is specified. Initial piezometric surface o f 50 m 

is defined throughout the aquifer. The aquifer has a constant thickness o f 20 m. The 

hydraulic conductivity is a constant in both directions and equal to 50 m/d. The storage 

coefficient of the confined aquifer is 0.0005 and the length of the time step is set at 30 

d. The management constraints imposed are maximum drawdown of 10 m at any well 

location in any time step. Maximum pumping capacity of 20000 m3/d for each well in 

each time step, and minimum water demand of 10000 m3/d for each time step are 

specified.

The management model was solved using NEWSUMT-A routine and by 

SIMPLEX. The optimum solution obtained for 5 time steps using NEWSUMT-A and 

SIMPLEX is shown in Table 4.6.1. As can be seen in the table, there is a very close 

agreement between the two solutions.
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Table 4.6.1

Comparison of Optimum Solution Obtained Using NEWSUMT-A and SIMPLEX

Description Time Steps

1 2 3 4 5

OPTIMUM SOLUTION OBTAINED USING NEWSUMT-A

Objective Function 119886.67

W ell #1 Discharges m3/d 16993.2 16379.6 16341.8 16339.4 16340.3

W ell #2 Discharges m3/d 8651.3 7289.1 7187.0 7181.2 7183.3

Total m3/d 25644.6 23668.7 23528.8 23520.9 23523.6

OPTIMUM SOLUTION OBTAINED USING SIMPLEX

Objective Function 119931.67

W ell #1 Discharges m3/d 16998.1 16384.2 16346.4 16344.4 16344.9

W ell #2 Discharges m3/d 8656.2 7293.4 7191.3 7185.4 7187.0

Total m3/d 25654.3 23677.6 23537.7 23529.8 23531.9

Discrepancy (%) 0.038% 0.038% 0.038% 0.038% 0.035%
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5. MODEL APPLICATION

The model application presented in this section is aimed at illustrating the 

prospects o f utilizing the comprehensive conjunctive-use management model for water 

quality and quantity in connected surface water groundwater systems using stochastic 

inputs and uncertainties.

5.1 MODEL DESCRIPTION

To demonstrate the various features built into the model and its application 

to a real physical system requires exhaustive data collection efforts from the field, and 

among users affected by aquifer drawdowns, surface water diversions, quality of 

groundwater and surface water together with all major consumers which may include 

municipalities, private and public industries in the region. During this research work no 

field experiments were conducted to collect all the needed information.

Here, a hypothetical model is constructed based on a real physical system 

presented in the USGS Water-Resources Investigations Report (87-4240) on the 

Southeastern Virginia groundwater flow system. Most o f the data used in this section 

regarding hydrogeologic parameters, streamflow characteristics, boundaries o f the aquifer, 

and location of major pumping centers pertains to Yorktown-Eastover aquifer, extracted 

from the above mentioned USGS Report (87-4240).
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Fig 5.1 shows the two dimensional variable finite difference grid 

configuration (minimum of 300 m to maximum o f 600 m on any one side) is 

superimposed over the model area. The spatial discretization shown incorporates the 

physical lim its o f the aquifer. The grid is composed o f 34 rows by 41 columns, totalling 

1394 cells. O f these cells, 143 are inactive. The left and right boundaries are considered 

as no-flow boundaries. A constant head o f 14.8 m and 13.8 m is specified at the top and 

bottom boundaries, respectively. Surface water and groundwater are assumed to be in 

equilibrium to begin with. Based on the boundary conditions the model determined the 

steady state initial piezometric surface which is used as the initial condition of the aquifer. 

The model input data file is given in Appendix A5.

To demonstrate various features of the model developed two different 

scenarios are considered. Both applications demonstrate management of groundwater flow 

and transport. In the first application a single realization of hydrogeologic parameter field 

is generated for conjunctive-use management o f groundwater flow and transport along 

with streamflows and solute transport in streams. In the second application multiple 

realizations of hydrogeologic parameter fields are generated for management of 

groundwater flow and transport. In particular, the model applications presented here 

demonstrate many useful features developed such as stochastic inputs and uncertainties 

with respect to governing flow parameters, variable finite difference grid representation, 

leaky aquifer, induced infiltration, unit-response matrix generation for aquifer flow and 

transport, streamflow, solute transport in streams, and conjunctive-use management for 

water quality and quantity.
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5.1.1 Stochastic Generation of Aquifer Parameters for the Model

Groundwater flow is controlled by hydraulic conductivity and storage 

coefficient o f the confined aquifer overlain by a leaky aquitard. The confined aquifer has 

a constant thickness of 16.58 m. The confining unit has a constant thickness o f 6.1 m and 

a vertical conductivity o f 8.64 x 10'6 m/d.

Four hydrogeologic parameters viz permeabilities in X and Y direction (K x 

and Ky (m/d)), and confined and unconfined storage coefficients (Sc and Su) are assumed 

to be measured at each o f the measurement well. The mean of measured data is the same 

as given in the USGS report (87-4240). The aquifer is divided into four regions. Fig 5.2 

shows the regionalization, and location o f all measurement wells in the aquifer. The total 

number o f measurement wells in each region varies. The location of the measurement 

wells in a region and its analysis are discussed separately for each region. The upper and 

lower bound for the correlation length scale is set as 2100 m <. kx z 7200 m, and

1800 m <, Xy <, 4500 m. The upper and lower bound was selected based on the

minimum and maximum distance between the measurement wells in any region.
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5.1.1.1 Region 1

A total of nine measurement wells are located in Region 1. The location 

and measurement data are tabulated in Table 5.1.1. Using the measurement data optimum 

structural parameters are found and is tabulated in Table 5.1.2. Mean and variance given 

in Table 5.1.2 are the logarithmic values of the random field.

Table 5.1.1

Region 1, Assumed Measurement Data of Hydrogeologic Parameters

Sr No Row Col Kx Ky Sc s„

1 4 3 4.3 4.3 6.4E-06 1.1E-01

2 4 9 5.1 4.9 8.0E-06 1.3E-01

3 4 15 5.3 5.3 7.0E-06 1.9E-01

4 9 3 4.1 4.1 7.2E-06 1.6E-01

5 9 9 4.5 4.5 8.0E-06 1.0E-01

6 9 15 4.5 4.5 6.5E-06 1.3E-01

7 14 3 4.1 4.1 7.2E-06 2.5E-01

8 14 9 4.4 4.4 7.3E-06 1.8E-01

9 14 15 5.2 5.0 7.0E-06 1.5E-01

Table 5.1.2

Region 1, Optimum Values of MLE Parameters

Ky Sc s„

V 1.53098 1.52423 -11.86155 -1.83902

a2 0.00961 0.00837 0.00509 0.07660

A
X 2437.4 3417.0 2100.0 2626.5

k
V 1859.9 2539.5 2706.4 1800.0
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5.1.1.2 Region 2

A total o f twelve measurement wells are located in Region 2. The location 

and measurement data are tabulated in Table 5.1.3. Using the measurement data optimum 

structural parameters are found and is tabulated in Table 5.1.4.

Table 5.1.3

Region 2, Assumed Measurement Data of Hydrogeologic Parameters

Sr No Row Col Kx Ky Sc su

1 4 74 4.7. 4.4 8.4E-06 1.8E-01
2 4 29 5.4 5.4 7.9E-06 1.9E-01

3 4 33 4.8 4.8 7.3E-06 1.8E-01
4 4 37 66 6.8 6.7E-06 1.5E-01
5 9 24 4.5 4.5 7.5E-06 2.0E-01
6 9 29 4.9 4.9 7.1F.-06 1.7E-01
7 9 33 4.4 4.3 7.0E-06 1.3E-01
8 9 37 5.8 6.0 6.9E-06 1.2E-01
9 14 74 3.9 3.9 7.3E-06 1.5E-01
in 14 29 4.5 4.5 5.3F.-06 1. IE-01

11 14 33 3.4 3.4 5.7E-06 1.6E-01

12 14 37 3.6 3.6 7.5E-06 1.3E-01

Table 5.1.4

Region 2, Optimum Values of MLE Parameters

K. Ky Sc Su

1.51085 1.52103 -11.85553 -1.87619

o2 0.03747 0.04174 0.01607 0.03451

X
X 2382.9 2389.1 2631.9 2507.2

X_____ y 2176.6 2487.9 1842.4 1800.0
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5.1.1.3 Region 3

A total of eight measurement wells are located in Region 3. The location 

and measurement data are tabulated in Table 5.1.5. Using the measurement data optimum 

structural parameters found and is tabulated in Table 5.1.6.

Table 5.1.5

Region 3, Assumed Measurement Data of Hydrogeologic Parameters

Sr No Row Col K* K, Sc s„

1 21 3 4.1 3.9 6.2E-06 1.3E-01

2 21 9 4.4 4.4 6.4E-06 1.5E-01

3 21 15 4.9 4.9 6.8E-06 1.8E-01

4 27 3 4.4 4.4 6.6E-06 1.0E-01

5 27 9 4.7 4.6 8.2E-06 1.5E-01

6 27 15 5.1 4.9 7.4E-06 2.1E-01

7 31 9 4.3 4.3 8.5E-06 1.8E-01

8 31 15 4.4 4.4 7.6E-06 1.5E-01

Table 5.1.6

Region 3, Optimum Values of MLE Parameters

K Ky Sc su

1.50283 1.48769 -11.86762 -1.89953

a2 0.00510 0.00517 0.01283 0.04540

X
X

3167.9 2293.8 3058.7 2100.0

Xy 1932.7 2503.5 3433.2 3127.7
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5.1.1.4 Region 4

A total of eleven measurement wells are located in Region 4. The location 

and measurement data are tabulated in Table 5.1.7. Using the measurement data optimum 

structural parameters are found and is tabulated in Table 5.1.8.

Table 5.1.7

Region 4, Assumed Measurement Data of Hydrogeologic Parameters

Sr No Row Col Kx K, Sc su

1 21 24 4.9 4.9 8.0E-06 1 7F.-01

2 21 29 5.0 5.0 6.7E-06 1 9F.-01

3 21 22 4.7 4.7 7.3E-06 1.6E-01
4 21 27 4.5 4.5 7.4E-06 1 4F.-01

5 27 24 4.8 4.8 7.5F.-06 1.8F.-01

6 27 29 4.4 4.4 7.0E-06 1 3F.-01

7 27 33 3 8 4.5 7 0F.-06 1 7F.-01

8 27 37 4.1 4.4 7.2E-06 1.2E-01
9 21 24 5.3 5.3 7.0E-06 1.8E-01

10 21 29 4.4 4.4 6.3E-06 1.4E-01

11 31 33 4.2 4.2 6.1E-06 1.3E-01

Table 5.1.8

Region 4, Optimum Values of MLE Parameters

K* Ky sc su

H 1.53881 1.54328 -11.85947 -1.87394

a2 0.00958 0.00482 0.00604 0.02439

A,
X

4374.1 2374.3 2361.0 2100.0

Ay 3230.2 3482.7 2715.4 2577.1
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5.1.1.5 Gaussian Conditional Simulation

The optim um  structural parameters obtained for each region is used in

generating maps of random hydrogeologic parameter fields by the Gaussian conditional 

simulation approach. Fig 5.3 to Fig 5.6 show these maps for a single realization of the 

aquifer parameters.

5.1.2 Coninnctive-Use Management of Water Quantity in the Connected

Surface Water Groundwater System

The aquifer simulation program developed is used in obtaining the unit- 

response matrix for the six potential pumping wells, three injection wells, and seventeen 

stream reaches. A constant waste injection discharge rate o f 1000 m3/d is specified at the 

injection wells. A unit-discharge rate of 1000 m3/d is used in developing the unit-response 

matrix. The objective is to maximize the pumping from groundwater wells and to 

maximize diversions from the surface water. This is described by the Eq. 3.10.1.

5.1.2.1 Modeling Stream

The mean annual stream flow rates were used in describing the stream 

inflow hydrograph. This is constant and equal to 3.5622 x 107 m3/d. The stream is 

modeled as a wide rectangular channel o f constant top width equal to 100 m, the stream 

bed has a uniform slope o f 1.0 x 10'6 m/m, the Manning's roughness coefficient equal to 

0.04, thickness of the stream bed equal to 0.3048 m, with a vertical conductivity of 

0.0001905 m/d, and the stream bed penetrates the confined aquifer. Reach 7 is identified 

as a potential diversion site, while reach 12 is identified as a potential waste disposal site,
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the locations o f these are shown in Fig 5.1. A constant waste disposal discharge rate of 

50000 m3/d is specified.

5.1.2.2 Modeling System and Management Constraints

Eq. 3.10.2 to Eq. 3.10.4 were used in describing the system constraints. 

The management and system capacity constraints described in Eq. 3.10.5 to Eq. 3.10.10 

were used with the imposed constraint values as tabulated in Table 5.1.9.

Table 5.1.9

Constraints Used in Describing the Quantity Management Model

Description Eq. No Name Type Value

Limit on Aquifer Drawdowns 3.10.5 s*(k,NT)
£

Variable. 
Ranges from 4.0 
m to 10.0 m

Maintenance of minimum stream 
depth

3.10.6
r ; ( i ) 2:

20.0 m

Minimum water demands to be 
satisfied

3.10.7 D*(i)
2:

200000 m3/d

Minimum groundwater pumping 
required

3.10.8
D* ( i )

w  '  '
;> Variable. 

Ranges from 
3000 to 6000 
m3/d

Cap on the pumping capacity 3.10.9
o r u ' i

3000 m3/d

Cap on surface water diversion 3.10.10
Qinax / * - 
^ S W D  '

200000 m3/d

The control parameters for the conjunctive-use optimization o f water 

quantities are described in Table 5.1.10.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5.1.10

Control Parameters fo r the Conjunctive-Use Management Model - Quantity

Description Name Value

Total number of decision variables NDV 984

Total number o f constraints NTCE 1273

Number o f non-linear equality constraints NLEQ 782

Number o f linear equality constraints LEQ 35

Number o f linear ineaualitv constraints LIEO 456

5.1.2.3 Optimization o f Water Quantity

The conjunctive-use management model framed above was solved using 

the available NEWSUMT-A non-linear optimization program. The output o f optimum 

groundwater pumping quantities and surface water diversion rates is reproduced here as 

Table 5.1.11.

5.1.3 Discussion o f Results fo r Coniunctive-Use Management o f W ater

Quantity

The plot of aquifer heads for the optimum solution at the end of 24lh time 

step (after 7200 days) is shown in Fig 5.7. The plot of river heads for optimum solution 

of surface water diversions at the end o f 24th time step is shown in Fig 5.8. Note that the 

sudden drop in river head at around 2000 m is due to surface water diversions in reach 

7, and the gain in river head at around 4100 m is due to wastewater disposal in reach 12.
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Table 5.1.11
Optimum Well Discharges and Surface Water Diversions

WELL DISCHARGES AND SURFACE WATER DIVERSIONS IN CUBIC METERS PER DAY
Well LOCATION TIME STEPS

# IW JW 1 2 3 4 5 6 7 8 9 10 11 12
1 3 6 569.4 582.5 620.2 635.7 804.4 822.0 848.3 865.9 1043.5 1062.3 1088.0 1108.1
2 7 12 465.8 476.1 491.8 509.0 627.8 637.7 650.9 664.9 795.4 805.6 819.5 834.0
3 9 17 440.4 465.0 456.6 506.4 610.4 633.5 643.3 676.1 795.4 817.7 830.8 862.5
4 14 19 619.0 624.3 592.9 633.7 742.0 750.5 741.8 758.1 878.9 883.4 873.1 878.5
5 19 24 568.5 564.4 576.4 580.5 694.7 695.5 701.6 703.1 825.7 826.1 832.3 832.2
6 24 18 517.9 516.7 535.0 535.0 653.4 653.0 659.0 655.8 787.7 780.0 774.7 757.7

Total GW Pumping 3181 3229 3273 3400 4133 4192 4245 4324 5127 5175 5218 5273
Min Pumping Required 3000 3000 3000 3000 4000 4000 4000 4000 5000 5000 5000 5000

Reach 7 38 199900 199956 199910 199789 199895 199787 199868 199602 199677 199614 199672
Total of GW + SW 3219 203129 203229 203310 203921 204088 204032 204192 204729 204852 204833 204945
Total Demand to be met 3000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000

WELL DISCHARGES AND SURFACE WATER DIVERSIONS IN CUBIC METERS PER DAY
Well LOCATION TIME STEPS

# IW JW 13 14 15 16 17 18 19 20 21 22 23 24
1 3 6 1296.0 1295.3 1296.1 1295.4 1295.9 1295.6 1295.9 1295.5 1296.0 1295.4 1295.2 1298.9
2 7 12 975.0 974.5 974.8 974.6 974.8 974.7 974.7 974.6 974.6 974.6 974.5 975.9
3 9 17 992.7 994.9 992.9 994.1 993.4 993.9 993.3 994.1 993.0 994.0 994.3 985.4
4 14 19 1012.0 1013.7 1011.7 1013.2 1012.0 1012.8 1012.2 1012.9 1011.8 1012.8 1013.3 1005.1
5 19 24 967.4 966.5 967.4 967.1 967.0 966.9 967.3 966.9 967.4 967.0 967.0 970.6
6 24 18 867.8 866.6 867.9 867.1 867.8 867.4 867.8 867.4 868.0 867.7 867.6 872.4

Total GW Pumping 6111 6112 6111 6112 6111 6111 6111 6111 6111 6112 6112 6108
Min Pumping Required 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000

Reach 7 199420 199494 199430 199500 199429 199512 199412 199524 199391 199546 199363 199694
Total of GW + SW 205531 205606 205541 205611 205540 205623 205523 205635 205502 205658 205475 205802
Total Demand to be met 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000
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The optimum solution obtained did satisfy all the system and management 

constraints. The output o f streamflow mass balance at the end o f 24th time step is 

reproduced here as Table 5.1.12. As seen in the table the induced infiltration rates from 

or to the surface water is less significant, because the nearest groundwater pumping well 

to the stream is more than 750 m.

Table 5.1.12

Streamflow Mass Balance (24th time step)

Re
ach
#

Stream
Depth
(m)

U/S
Qin
(1000
m3/d)

D/S
Qout
(1000
m3/d)

Diversi
on
(1000
m3/d)

Infiltrati
on
(m3/d)

Waste
flow
Input(
1000
m3/d)

E
Qin -

E
Qout
(m3/d)

Error
%

1 21.0916 35622.0 35621.8 0.0 -150. 0.0 4. 0.00

2 21.0916 35621.8 35621.8 0.0 -76. 0.0 -16. 0.00

3 21.0916 35621.8 35621.7 0.0 -77. 0.0 -12. 0.00

4 21.0915 35621.7 35621.7 0.0 -72. 0.0 -4. 0.00

5 21.0915 35621.7 35621.6 0.0 -65. 0.0 -4. 0.00

6 21.0915 35621.6 35621.5 0.0 -56. 0.0 -4. 0.00

7 21.0206 35621.5 35421.8 199.7 -77. 0.0 -45. 0.00

8 21.0206 35421.8 35421.8 0.0 -36. 0.0 -8. 0.00

9 21.0206 35421.8 35421.8 0.0 -12. 0.0 -16. 0.00

10 21.0206 35421.8 35421.8 0.0 -13. 0.0 0. 0.00

11 21.0206 35421.8 35421.8 0.0 -13. 0.0 -4. 0.00

12 21.0383 35421.8 35471.8 0.0 -13. 50.0 -4. 0.00

13 21.0383 35471.8 35471.8 0.0 -12. 0.0 0. 0.00

14 21.0383 35471.8 35471.7 0.0 -20. 0.0 0. 0.00

15 21.0383 35471.7 35471.7 0.0 -6. 0.0 4. 0.00

16 21.0383 35471.7 35471.7 0.0 -4. 0.0 -4. 0.00

17 ,21.0383 35471 7 35471 7 0.0 -3. n o -4.. . non
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The output of check for principle of superposition at the end of 24th time 

step is reproduced here as Table 5.1.13.

Table 5.1.13

Check for Principle of Superposition (24th time step)

KP I J Total
*s

(m)

H (m) 
at 

KP

Head
11“
(m)

Error
( % )

Remarks

1 3 6 9.0574 5.6994 5.6965 -0.0500 Pump Well #1

2 7 12 8.8864 5.7885 5.7799 -0.1500 Pump Well #2

3 9 17 8.9514 5.6891 5.6776 -0.2000 Pump Well #3

4 14 19 8.5287 6.0012 5.9838 -0.2900 Pump Well #4

5 19 24 8.5831 5.8275 5.8085 -0.3300 Pump Well #5

6 24 18. 8.0520 6.2410 6.2222 -0.3000 Pump Well #6

7 10 15 3.6530 10.9717 10.9597 -0.1100 Reach #1

8 11 16 3.5838 11.0165 11.0028 -0.1200 Reach #2

9 11 17 3.6303 10.9698 10.9561 -0.1300 Reach #3

10 11 18 3.4105 11.1896 11.1758 -0.1200 Reach #4

11 11 19 3.0565 11.5439 11.5302 -0.1200 Reach #5

12 11 20 2.6336 11.9673 11.9538 -0.1100 Reach #6

13 11 21 1.8096 12.7924 12.7792 -0.1000 Reach #7

14 11 22 0.7095 13.8934 13.8804 -0.0900 Reach #8

15 10 23 0.3847 14.2432 14.2319 -0.0800 Reach #9

16 9 23 0.4642 14.1798 14.1694 -0.0700 Reach #10

17 8 23 0.4956 14.1653 14.1560 -0.0700 Reach #11

18 7 23 0.5045 14.1735 14.1654 -0.0600 Reach #12

19 6 23 0.4816 14.2131 14.2061 -0.0500 Reach #13

20 5 23 _ 0.4102 14.3092 14.3038 -0.0400 Reach #14

21 4 24 0.2112 14.5319 14.5282 -0.0300 Reach #15

22 3 24 0.1454 14.6153 14.6126 -0.0200 Reach #16

23 2 24 0.0855 14.6919 14.6903 -0.0100 Reach #17

24 5 6 1.8899 12.8250 12.8192 -0.0500 Ohs Well #1

25 14 21 3.0226 11.5051 11.4882 -0.1500 Ohs Well #2

26 ...._22_. 18 3.3485 10.9897 10.9702 -0.1800 Ohs Well #3
Note : * Indicates the total drawdown computed using the Eq. 3.4.2

: **  Indicates the simulated head using the aquifer simulation program developed.
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The water demand specified within each time step is fu lly satisfied with 

pumping from groundwater wells and surface water diversions. Also, the minimum 

groundwater pumping specified is satisfied. The groundwater pumping capacity constraints 

were found to be redundant due to limitations o f aquifer drawdowns set by the 

management constraints (maximum of 10.0 m). The optimal surface water diversions has 

reached the upper bound o f diversion capacity. The minimum stream depth criterion 

specified was found to be redundant due to limitations on the diversion capacity imposed.

5.1.4 Coniunctive-Use Management of Water Quality in the Connected

Surface Water Groundwater System

The aquifer piezometric heads obtained for optimum solution serves to 

describe the associated groundwater velocities in the aquifer system. The location of 

potential injection wells and stream reaches are shown in Fig 5.1. The groundwater solute 

transport is modeled for a conservative substance (such as NaCl) with decay rate = 0/day. 

The longitudinal and transverse dispersivities are constant throughout the aquifer and 

equal to 100 m and 40 m, respectively. The porosity of the aquifer is constant and equal 

to 0.30. The quadratic upstream interpolation method is used to model the advective 

transport. A barrier boundary condition is specified on the left and right sides, and a 

constant concentration of 0 mg/1 is specified at the top and bottom boundaries o f the 

aquifer model consistent with the flow model.

The aquifer transport simulation program is used in generating the unit- 

concentration response matrix for the three potential injection wells, and seventeen stream
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reaches. A unit-concentration of 3000 kg/d is used in developing the unit-concentration 

response matrix. In generating unit-concentration response function 24 simulation runs are 

required for each potential injection well for the single realization considered here; one 

simulation for each o f 24 time steps specified. To assemble the complete response matrix 

a total o f 480 simulations were required. The objective o f the water quality management 

model is to maximize the waste input concentration through the potential injection wells 

and the waste disposal concentration into the surface water. The objective function is 

described in Eq. 3.10.11.

5.1.4.1 Modeling Solute Transport in Streams

The concentration associated with the stream inflow hydrograph is user 

specified and equal to 1.0 mg/1 constant. The solute transport in the stream is modeled 

for a conservative substance (with decay rate equal to 0/day). The quantity management 

model simulated transient stream depths, reach inflow, outflow, and storage are used in 

describing the flow under optimum conditions.

5.1.4.2 Modeling System and Management Constraints for Water Quality

Eq. 3.10.12 and Eq. 3.10.13 are used in describing the system mass balance 

constraints. The management and system capacity constraints described in Eq. 3.10.14 

through 3.10.19 are used with the imposed constraint values as tabulated in Table 5.1.14. 

The control parameters for optimization are described in Table 5.1.15.
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Table 5.1.14

Constraints Used in Describing the Quality Management Model

Description Eq. No Name Type Value

Limit on groundwater 
pumping concentration

3.10.14
C* (k,NT) < 2.0 mg/1

Limit on aquifer 
concentration at 
observation wells (750 m 
radius from the pumping 
well)

3.10.14
C* (k,NT)

100 mg/1

Maintenance of minimum 
stream water quality

3.10.15
c ; (i )

6.0 mg/1

Minimum waste load 
demand to be satisfied

3.10.16 WL*(i) 1.75E8 g/d

Minimum groundwater 
injection required

3.10.17 £ Variable. 
Ranges from 
4.0E6 to 1.5E7 
g/d

Cap on the injection 
capacity

3.10.18
C ™ * ( j , i )

6000 mg/1

Cap on waste disposal into 
surface water

3.10.19
C™x ( j , i )

10000 mg/1
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Table 5.1.15

Control Parameters for the Conjunctive-Use Quality Management Model

Description Name Value

Total number o f decision variables NDV 504

Total number of constraints NTCE 793

Number o f linear equality constraints LEQ 409

Number o f linear inequality constraints LffiQ 384

5.1.4.3 Optimization o f Water Quality

Here also, the conjunctive-use management model for water quality framed 

above was solved using the NEWSUMT-A computer program. The output of groundwater 

injection rates with optimum concentration and surface water disposal rates with 

associated optimum surface water disposal concentration is reproduced here as Table 

5.1.16.

5.1.5 Discussion of Results for Coniunctive-Use Management of Water

Quality

The plot o f aquifer concentrations for the optimum solution at the end of 

24th time step (after 7200 days) is shown in Fig 5.9. The plot of river concentrations for 

the optimum solution of surface water disposal at the end of 24th time step (after 7200 

days) is shown in Fig 5.10. The waste disposal of concentration into the stream at around 

4100 m (in the 12th reach) results in a sudden increase in stream concentration, and this 

is seen in Fig 5.10.
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Table 5.1.16
Optimum Concentration Injection and Waste Disposal Concentration

INJECTION CONCENTRATION AND SURFACE WATER WASTE DISPOSAL CONCENTRATION (mg/1)
Ini Well LOCATION TIME STEPS

ft IRW JRW 1 2 3 4 5 6 7 8 9 10 11 12
1 9 6 1320.8 1554.4 2036.4 2301.0 3059.7 3908.9 4873.2 4936.5 4981.3 5020.2 5064.3 5111.5
2 14 24 1677.3 1536.3 1444.6 1252.5 1124.6 1101.4 1545.9 1744.5 2161.0 2824.7 3873.5 4662.2
3 19 17 5214.9 5230.7 5256.2 5241.5 5227.3 5215.1 5273.1 5254.7 5234.4 5215.9 5203.6 5200.5

Total Injection (Tons/day) 8.2 8.3 8.7 8.8 9.4 10.2 11.7 11.9 12.4 13.1 14.1 15.0
Min Inj Requirement (Tons/d 4.0 4.0 4.0 6.0 6.0 6.0 10.0 10.0 10.0 10.0 10.0 10.0

Reach 12 49.6 3390.5 3365.6 3391.2 3389.4 3395.2 3364.8 3370.3 3365.6 3369.6 3363.8 3371.2

Tot Wasteload (INJ+SW) 8.2 177.8 177.0 178.4 178.9 180.0 179.9 180.5 180.7 181.5 182.3 183.5
Wasteload demand to be met 4.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0

cn

INJECTION CONCENTRATION AND SURFACE WATER WASTE DISPOSAL CONCENTRATION (mg/1)
Ini Well LOCATION TIME STEPS

# IRW JRW 13 14 15 16 17 18 19 20 21 22 23 24
1 9 6 5350.5 5356.3 5361.3 5364.5 5366.4 5366.3 5365.2 5362.4 5359.6 5356.2 5354.4 5354.4
2 14 24 5270.1 5298.5 5323.6 5345.0 5363.6 5378.3 5389.6 5395.9 5397.7 5393.5 5383.9 5369.6
3 19 17 5373.1 5366.0 5360.5 5355.6 5352.2 5349.3 5347.8 5346.7 5347.2 5348.0 5350.3 5353.2

Total Injection (Tons/day) 16.0 16.0 16.0 16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1
Min Ini Requirement (Tons/d 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0

Reach 12 3350.0 3365.3 3349.2 3365.9 3347.7 3367.2 3345.7 3369.3 3343.6 3370.8 3343.7 3327.0

Tot Wasteload (INJ+SW) 183.5 184.3 183.5 184.4 183.5 184.5 183.4 184.6 183.3 184.6 183.3 182.4
Wasteload demand to be met 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0 175.0

Note: Waste injection recharge rate at each injection well is specified as a constant and equal to 1000 m3/d. 
Waste disposal discharge rate into surface water is a constant and equal to 50000 m3/d.
Total Waste Disposal and Wasteload demand are expressed in grams/day.
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The optimum solution obtained did satisfy all the system and management 

constraints. The output of stream solute transport mass balance at the end of 24th time step 

is reproduced here as Table 5.1.17. The check for superposition is shown in Table 5.1.18.

Table 5.1.17

Streamflow Solute Transport Mass Balance (24th time step)

Re
ach
#

U/S
conc.

D/S
conc.

U/S
M in

D/S
M out

Mass
Diverted

Waste
load
Input

B * . n -

jSdUT

Error
%

mg/1 mg/1 Tons/d Tons/d Tons/d Tons/d Tons/d

1 1.0000 1.0045 35.62 35.78 0.00 0.00 -0.16 -0.45

2 1.0045 1.0079 35.78 35.90 0.00 0.00 -0.12 -0.34

3 1.0079 1.0102 35.90 35.99 0.00 0.00 -0.09 -0.25

4 1.0102 1.0119 35.99 36.05 0.00 0.00 -0.06 -0.17

5 1.0119 1.0131 36.05 36.09 0.00 0.00 -0.04 -0.11

6 1.0131 1.0140 36.09 36.12 0.00 0.00 -0.03 -0.08

7 1.0140 1.0151 36.12 35.96 0.20 0.00 0.16 0.44

8 1.0151 1.0159 35.96 35.99 0.00 0.00 -0.03 -0.08

9 1.0159 1.0174 35.99 36.04 0.00 0.00 -0.05 -0.14

10 1.0174 1.0184 36.04 36.07 0.00 0.00 -0.03 -0.08

11 1.0184 1.0170 36.07 36.02 0.00 0.00 0.05 0.14

12 1.0170 5.6836 36.02 201.61 0.00 166.3 0.71 0.35

13 5.6836 5.6817 201.61 201.54 0.00 0.00 0.07 0.03

14 5.6817 5.6814 201.54 201.53 0.00 0.00 0.01 0.00

15 5.6814 5.6808 201.53 201.51 0.00 0.00 0.02 0.01

16 5.6808 5.6798 201.51 201.47 0.00 0.00 0.04 0.02

17 5.6798 5.6750 201.47 201.30 0.00 0.00 0.17 0.08
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Table 5.1.18

Check for Principle of Superposition (24th time step)

KP I J Total
*c

(mg/1)

C (mg/I) 
at 

KP

Conc
c**

(mg/1)

Error
( % )

Remarks

J 3 6 -0.0000 0.0000 0.0000 0,0000 Pump Well #1

2 7 12 -0.0009 0.0009 0.0009 0.0000 Pump Well #2

3 9 -17 -0.0122 0.0122 0.0122 0.0000 Pump Well #3

4 14 19 -0.0000 0.0000 0.0000 0.0000 Pump Well #4

5 19 24 -0.0000 0.0000 0.0000 0.0000 Pump Well #5

6 24 18 -0.1036 0.1036 0.1036 0.0000 Pump Well #6

7 10 15 -0.7399 0.7399 0.7399 0.0000 Reach #1

8 11 16 -0.4016 0.4016 0.4016 0.0000 Reach #2

9 11 17 -0.4666 0.4666 0.4666 0.0000 Reach #3

10 11 .18 -0.3906 0.3906 0.3906 0.0000 Reach #4

11 11 19 -0.3754 0.3754 0.3754 0.0000 Reach #5

12 11 20 -0.3218 0.3218 0.3218 0.0000 Reach #6

13 11 21 -0.2263 0.2263 0.2263 0.0000 Reach #7

14 11 22 -0.0000 0.0000 0,0000 0.0000 Reach #8

15 10 23 -0.0639 0.0639 0.0639 0.0000 Reach #9

16 9 23 -0.1188 0.1188 0.1188 0.0000 Reach #10

17 8 23 -0.1322 0.1322 0.1322 0.0000 Reach #11

18 7 23 -0.7256 0.7256 0.7256 0.0000 Reach #12

19 6 23 -0.7105 0.7105 0.7105 0.0000 Reach #13

20 5 .23 -0.6214 0.6214 0.6214 0.0000 Reach #14

21 4 24 -0.3652 0.3652 0.3652 0.0000 Reach #15

22 3 24 -0.2737 0.2737 0.2737 0.0000 Reach #16

23 2 24 -0.1763 0.1763 0.1763 0.0000 Reach #17

24 5 6 -99.1196 99.1196 99.1196 0.0000 Ohs Well #1

25 14 21 -99.0845 99.0845 99.0845 0.0000 Ohs Well #2

26 22 .18 -92.0838 92.0838 92.0838 0.0000 Obs Well #3

27 9 6 -5319.97 5.319.97 5.319.97 0.0000 Ini Well #1

28 14 24 -5312.39 5.312.39 5.312.39 0.0000 Ini Well #2

29 19 17 -5328.21.... 5.328.91 5.328.91 0.0000 Ini Well #3
Note : * Indicates the total concentration computed using the Eq. 3.8.1

: **  Indicates the simulated concentration using the aquifer transport simulation 
program developed.
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The waste load demand specified within each time step is fu lly  satisfied 

w ith the injection at the groundwater recharge wells, and at the surface water disposal 

locations, this is reflected in Table 5.1.16. Also, the minimum injection into the aquifer 

is satisfied. The injection concentration into the aquifer reached the upper bounds o f the 

injection capacity only in the later time steps. The optimum concentration injection pattern 

was dictated by the maximum aquifer concentration allowed (o f 100 mg/1) at the 

observation wells. These observation wells were placed in a radius o f 750 m from the 

pumping wells as shown in Fig 5.1. The concentration at the pumping wells is well below 

the maximum specified. The maximum allowable concentration at the observation wells 

restricted the concentration reaching the pumping wells.

5.2 MANAGEMENT OF ONLY GROUNDWATER FLOW AND

TRANSPORT WITH MULTIPLE REALIZATION OF 

HYDROGEOLOGIC PARAMETERS

The application discussed in the previous section (Section 5.1) consisted 

o f using only a single realization o f the hydrogeologic parameters, because of the 

limitation o f the available computer memory. However, the model developed has no such 

limitations. As a demonstration to this another application of the management model 

developed is presented for the same aquifer described in Section 5.1 neglecting surface 

water flow  and transport. A ll other data pertaining to boundary and initia l conditions, 

locations o f pumping wells, recharge wells, and observation wells are retained as 

previously. In this application five realizations of the hydrogeologic parameters are 

generated. The management model framed using multiple realizations minimizes the
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uncertainty associated with the stochastically generated random fields. Maps o f random 

stochastic fields o f hydrogeologic parameters for realization 1, are the same as shown in 

Fig 5.3 through Fig 5.6. Samples o f few other realizations generated are given in 

Appendix 6.

5.2.1 Groundwater Management for Water Quantity

The system and management constraint set for groundwater flow 

optimization are shown in Table 5.2.1. The control parameters describing the quantity 

optimization model for the 5 realizations used in here is given in Table 5.2.2.

Table 5.2.1

Constraints Used in Describing the Quantity Management Model

Description Eq.No Name Type Value

Limit on Aquifer 
Drawdowns

3.10.5 s*(k,NT) < 10.0 m

Minimum water demands 
to be satisfied

3.10.7 D*(i)
£

5000 m3/d

Cap on the pumping 
capacity

3.10.9
3000 m3/d
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Table 5.2.2

Control Parameters for the Groundwater Management Model - Quantity

Description Name Value

Total number of decision variables NDV 144

Total number of constraints NTCE 1248

Number o f non-linear equality constraints NLEQ 0

Number o f linear equality constraints LEQ 0

Number o f linear inequality constraints LDEQ 1248

5.2.1.1 Discussion of Results for Groundwater Management

The management problem was solved using NEWSUMT-A non-linear 

optimization program. The optimized results for flow quantity is given in Table 5.2.3. 

The plot o f aquifer piezometric heads obtained for realization #5 in the 24th time step is 

shown in Fig 5.11. The optimum solution obtained here satisfied all the imposed 

management constraints, in all the realizations generated. The maximum permissible 

drawdown o f 10.0 m is specified at each well locations. The drawdowns at each pumping 

well obtained using different realizations for the optimum solution in the 24th time step 

are shown in Table 5.2.4. In the table, the drawdowns which are highlighted and 

underlined are the ones constraining any further improvement in the objective function.
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Table 5.2.3
Optimized Results of Groundwater Pumping

WELL LOCATION
WELL DISCHARGES IN CUBIC METERS PER DAY

TIME STEPS
ROW COL 1 2 3 4 5 6 7 8 9 10 11 12

GW-1 3 6 1408 1408 1408 1408 1408 1408 1408 1408 1408 1408 1408 1408
GW-2 7 12 1013 1012 1012 1012 1012 1012 1012 1012 1012 1012 1012 1012
GW-3 9 17 833 833 833 833 833 833 833 833 833 833 833 833
GW-4 14 19 934 933 933 933 933 933 933 933 933 933 933 933
GW-5 19 24 1000 999 999 999 999 999 999 999 999 1000 1000 1000
GW-6 24 18 1019 1018 1018 1018 1018 1018 1018 1018 1018 1018 1018 1018
Total Well Discharges 6207 6203 6202 6202 6202 6202 6202 6202 6203 6203 6204 6205
Water Demand to be met 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000

cnU1

WELL LOCATION
WELL DISCHARGES IN CUBIC METERS PER DAY

TIME STEPS
ROW COL 13 14 15 16 17 18 19 20 21 22 23 24

GW-1 3 6 1408 1408 1408 1408 1408 1408 1408 1408 1408 1408 1408 1408
GW-2 7 12 1012 1013 1013 1013 1013 1013 1013 1013 1013 1013 1013 1013
GW-3 9 17 833 833 833 833 833 833 833 833 833 833 833 834
GW-4 14 19 933 934 934 934 934 934 934 934 934 934 934 934
GW-5 19 24 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1001 1001
GW-6 24 18 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1019 1020
Total Well Discharges 6205 6206 6207 6207 6207 6207 6207 6207 6207 6207 6208 6209
Water Demand to be met 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000
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Table 5.2.4

Drawdowns at Groundwater Pumping Wells (24th time step)

Well
No

Pumping Rate 
in 24 time 
step

Drawdowns in meters

RLZ-1 RLZ-2 RLZ-3 RLZ-4 RLZ-5

1 1408.1 m3/d 9.997 9.081 9.108 8.856 8.524

2 1012.8 m3/d 9.996 9.658 9.678 9.601 9.979

3 833.5 m3/d 9.854 9.996 9.478 9.742 9.513

4 934.1 m3/d 9.677 9.956 9.639 9.995 9.731

5 1007.7 m3/d 9.699 9.756 9.821 9.712 9.995

6 1019.5 m3/d 9.913 9.996 9.930 9.873 9.536

5.2.2 Groundwater Management o f Water Quality

The unit-concentration response matrix is obtained by simulating for three 

potential injection wells over five realizations. The total number o f simulation required 

were 360. The management constraints values pertaining to groundwater quality 

management is given in Table 5.2.5.
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Table 5.2.5

Constraints Used in Describing Quality Management Model

Description Eq. No Name Type Value

Limit on groundwater 
pumping concentration

3.10.14
C* (k,NT)

2.0 mg/1

Limit on aquifer 
concentration at 
observation wells (750 m 
radius from the pumping 
well)

3.10.14
C* (k,NT) £ 100 mg/1

Minimum waste load 
demand to be satisfied

3.10.16 WL*(i)
£

Variable. Ranges 
from 3.0E6 to 
1.0E7 g/d

Cap on the injection 
capacity

3.10.18 6000 mg/1

The control parameters describing optimization model for water quality are the 

number of decision variables equal to 72 and total number of constraints (all are linear inequality 

constraints) equal to 1176.

5.2.2.1 Discussion of Results for Groundwater Quality Management

The optimum concentration injection rates is given in Table 5.2.6. The plot of 

aquifer concentrations obtained for realization #5 in the 24th time step is shown in Fig 5.12. The 

optimum solution did satisfy all the imposed management constraints, in all the realizations used. 

As seen in Table 5.2.6 the concentration at injection wells reached its upper bound only in later 

time steps. The total waste load injected in 24 time periods in each recharge well was constrained 

by the maximum allowable concentration of 100 mg/1 at observation wells. The concentrations at 

observation wells in the 24th time step for all the five realizations used is shown in Table 5.2.7.
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Table 5.2.6
Optimized Results of Groundwater Concentration Injection Rates

Injection Well Location
CONCENTRATIO N INJECTION RATES (mg/1)

T IM E  STEPS
ROW COL 1 2 3 4 5 6 7 8 9 10 11 12

INJ-1 9 6 148 258 260 974 2883 5748 5983 5998 5997 5997 5997 5997
INJ-2 14 24 24 33 44 93 115 213 567 1488 3010 5842 5997 5996
INJ-3 19 17 2628 2822 3725 5098 5929 5997 5997 5996 5997 5998 5997 5997
Total Wasteload Injected 2.8E +06 3.1E+06 4 .0E + 06 6.2E +06 8.9E +06 1.2E+07 1.3E+07 1.3E+07 1.5E+07 1.8E+07 1.8E+07 1.8E+07
M in  Injection Required 2.0E +06 3.0E+06 3.0E +06 3 .0E + 06 3.0E +06 3.0E +06 5.0E +06 5.0E +06 5 .0E + 06 5.0E +06 5.0E +06 5 .0E +06

Injection Well Location
CONCENTRATION INJECTION RATES (mg/1)

T IM E  STEPS
ROW COL 13 14 15 16 17 18 19 20 21 22 23 24

INJ-1 9 6 5997 5997 5997 5997 5997 5997 5997 5997 5997 5997 5997 5997
INJ-2 14 24 5996 5997 5997 5997 5997 5997 5997 5997 5998 5997 5997 5998
INJ-3 19 17 5998 5997 5997 5998 5998 5998 5998 5997 5997 5998 5997 5997
Total Wasteload Injected 1.8E+07 1.8E+07 1.8E+07 1.8E+07 1.8E+07 1.8E+07 1.8E+07 1.8E+07 1.8E+07 1.8E+07 1.8E+07 1.8E+07
M in  Injection Required 1.0E+07 1.0E+07 1.0E+07 1.0E+07 1.0E+07 1.0E+07 1.0E+07 1.0E+07 1.0E+07 1.0E+07 1.0E+07 1.0E+07

Note: Waste injection recharge rate at each injection well is specified as a constant and equal to 1000 m3/d. 
Total Wasteload Injected and M in Injection Required are in grams/day.
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In the table, the concentrations at observation wells which are highlighted and underlined are the 

ones constraining any further improvement in the objective function. As can be seen in the Table 

5.2.7, Realization #1, #2, and #4 is not restricting or binding the optimum solution.

Table 5.2.7

Concentrations at Observation Wells (24th time step)

INJ
Well
No.

Total Waste 
Load Injected 

(Tons)

Concentration (mg/1) at Observation Wells

RLZ-1 RLZ-2 RLZ-3 RLZ-4 RLZ-5

1 35460 83.13 99.69 83.18 84.27 99.99

2 28620 74.70 87.28 99.99 85.38 96.23

3 40260 78.80 72.30 93.65 89.92 99.99
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6. SUMMARY AND CONCLUSIONS

A mathematical model is developed based on a linked simulation- 

optimization procedure for comprehensive analysis and management of regional water 

resources. The control volume approach is utilized in the model development for the 

solution o f groundwater flow and transport components, and surface water flow and 

transport components. The model exclusively incorporates hydraulic interaction of 

connected surface water groundwater systems. In the model streamflows and governing 

aquifer parameters are treated as stochastic random processes, and multiple realizations 

o f the random field are generated and are incorporated in the management o f the 

combined system.

The spatial variablility of hydrogeologic parameters, such as hydraulic 

conductivities in the X  and Y directions and confined and unconfined storage coefficients 

are treated as stochastic random fields. It is assumed that the hydrogeologic parameters 

follow a log normal distribution, and the random field is characterized by a stationary 

exponential covariance function. The vector of the unknown spatial statistical structural 

parameters viz mean, variance, and the correlation length scales in the X and Y directions 

o f the random field are determined by the maximum likelihood estimation (MLE) 

procedure. The Gaussian conditional mean estimates and conditional simulation are then 

employed to obtain multiple realizations of the random field. To generate the stochastic
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random fields for real size problems, the model allows an option o f dividing the entire 

domain into regions, whereby the computational efficiency is increased.

Im plicit finite difference method is used in modeling the two-dimensional, 

horizontal flow equation under non-equilibrium conditions in a heterogeneous and 

anisotropic medium with known in itia l and boundary conditions. Iterative alternating 

direction im plicit (IAD I) method is used in its solution. The groundwater flow can be 

either confined or unconfmed. Leaky aquifer conditions, groundwater evapotranspiration, 

and induced infiltration from surface water sources are incorporated into the aquifer flow 

simulation routine. The unit-response matrix approach (wherein the system responses for 

unit excitation at known potential well locations are recorded as unit-response functions) 

is used to accomplish the management goals. The simulation routine in generating unit- 

responses for imposed hydraulic stresses also accounts for boundary influences, and non- 

uniform initial conditions. The results of the flow simulation routine are in close 

agreement with analytical solutions, and numerical results of PLASM (Prickett and 

Lonnquist, 1971).

The piezometric heads obtained by flow simulation is used in defining 

groundwater velocities throughout the aquifer. These are then used in modeling the two- 

dimensional, unsteady groundwater solute transport process with known initia l and 

boundary conditions. The solute transport process accounts for advection, diffusion, and 

dispersion o f conservative and non-conservative substances with sources and/or sinks. The 

im plicit centered finite difference is used in modeling the dispersive component. In 

accurately modeling the advective component four methods were tested viz (i) central, (ii) 

upwind, (iii) weighted difference, and (iv) quadratic upstream interpolation method. The
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solution of the advection and dispersion components is obtained by IA D I method. The 

unit-concentration response matrix approach (wherein the system responses for unit 

injection at known potential injection well locations are recorded as unit-concentration 

response functions) is used to accomplish the management goals. A unique approach is 

used in obtaining the unit-concentration response matrix for the non-equilibrium velocity 

field. The groundwater velocity field is well defined within each time step. This allows 

the governing pde (Eq. 3.6.1) to be linear within that time step. Therefore, in generating 

unit-concentration response matrix the process of generating response function by 

applying unit-injection in the first time step and recording the changes in concentration 

over the time period is repeated by applying unit-injection in each of the subsequent time 

steps and recording the changes in concentrations over the entire simulation period. The 

model solution o f the solute transport process is verified and found to be in good 

agreement with known analytical solutions, and numerical results of method of 

characteristics (Konikow and Bredehoeft, 1978). Among the schemes tested for modeling 

advective component it was found quadratic upstream interpolation method as the best.

In modeling streams an option is available for specifying the inflow 

hydrograph to be either user defined or synthetically generated. The model generates a 

synthetic hydrograph based on the Markov process. Implicit finite difference method is 

used in modeling the one-dimensional surface water flow and transport processes. The 

surface water groundwater interaction, stream mass balance equations, and in itia l and 

boundary conditions are input to the management model as system constraints. The mass 

balance for each reach for each time step serves as a verification for surface water flow 

and transport processes.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A non-linear optimization program, NEWSUMT-A, developed by Thareja 

and Haftka (1985), is used in obtaining the solution of the management problem. For the 

case o f aquifer management for flow and transport without streams the model gives an 

option to use either NEWSUMT-A or a linear programming optimization routine 

SIMPLEX. The optimum solution of NEWSUMT-A routine is verified by comparing it 

with optimum solution obtained by linear programming method (SIMPLEX). A  dual 

programming management approach is utilized in optimizing flow quantities (well 

discharges and surface water diversions), and in determining optimal concentration 

injection pattern (injection rates through a set of recharge wells and surface water disposal 

rates). The constraint set for the management problem consists of system, environmental, 

and management constraints.

To demonstrate the application of the model, a hypothetical model is 

constructed based on a real physical system presented in the USGS Water-Resources 

Investigations Report (87-4240) on the Southeastern Virginia groundwater flow system. 

Most o f the data used in the model application regarding hydrogeologic parameters, 

streamflow characteristics, boundaries of the aquifer, and location of major pumping 

centers pertains to Yorktown-Eastover aquifer, extracted from the above mentioned report. 

To demonstrate the various features built into the model two different scenarios are 

considered of the hypothetical model. In the first application a single realization o f the 

hydrogeologic parameter field is generated for conjunctive-use management of 

groundwater flow and transport along with streamflows and solute transport in streams. 

The optimum solution obtained for this scenario did satisfy all the system and 

management constraints. The limitation on the available computer memory restricted the
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application for a single realization o f aquifer parameters. For this reason, a different 

scenario was considered for the same hypothetical model without the surface water 

component. In this second application five realizations o f the hydrogeologic parameters 

were generated and the management was sought for flow and transport. The optimum 

solution obtained did satisfy all the system and management constraints imposed, in all 

the realizations generated.

6.1 FUTURE RESEARCH

The linked simulation-optimization procedure and the stochastic 

management model developed in this research work provides many useful tools for the 

efficient management and operation of a hydraulically connected surface water 

groundwater system. The modular approach is utilized in the development o f the software 

program. This helps in expanding any module to incorporate additional features. One of 

the areas identified as a possible future research work is in parallel processing the 

generation o f unit-response matrices. The generation o f unit-response function for each 

potential pumping well or injection well is independent of other response functions being 

generated. Also, in the optimization routine as the number o f decision variables and 

constraints increases, it would be advantageous to have parallel processing in generating 

derivatives o f the constraints with respect to each decision variable by finite difference 

method, which is independent of all other operations. The same thing is true in 

generating the stochastic random fields, as each hydrogeologic parameter field is 

independent o f the other, and for larger systems each region is independent o f the other. 

This would certainly speed up the processing of larger systems with multiple realizations.
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Al. COMPUTATIONAL PROCEDURE FOR 

STOCHASTIC GENERATION OF AQUIFER 

PARAMETERS

In this appendix details o f the maximum likelihood method and Gaussian 

conditional simulation are discussed. Reader is directed to Kitanidis and Lane (1985), and 

Wagner and Gorelick (1989) for a more detailed explanation on the procedure outlined 

here.

Defining the natural logarithm of a hydrogeologic parameter (hgp) at any 

point Xj as Y,; the basic assumptions are

a. Y is normally distributed

b. Random log parameter Y is characterized by a stationary, exponential 

covariance function.

Then under these assumptions the mean and covariance for the random log

field are:

E [Y. ]  = u ( A l . l )
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Q = C o v  (£) = o 2 exp (A1.2)

where, E [ ] denotes expected value, Cov ( \  ) = stationary anisotropic exponential 

covariance for two points separated by vector £ , o2y = variance of the random field, E,i  

= separation along dimensions i ( i = 1,2), Xi  = correlation scale along dimension i.

The statistical structural parameters a2, Xx, and Xy are denoted 

by a vector 0 .

parameters. Q is a symmetric matrix of size (NOM x NOM), where NOM is the number 

o f measurements. Defining

l . J

2

+ f A y • -1J  1 , 3
2

j X
\  x

X
\  y

With the above definition, the (i,j) element of the covariance matrix Q can 

be expressed as

With this we can define the covariance matrix, Q, of the measured log

(A1.3)
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It is intiutive to note the derivatives o f the covariance matrix Q with 

respect to scalar structural parameters. We have

d£> = 0 (A1.4)

> s " / i j
= e -T.-j

= 1 .0  , i = j
(A1.5)

30 1 
3A

= Ax2« l
V

/
1 .  0 

T . . e ~Tij '
\ X) i, J \ x (A1.6)

= 0 . 0  , 1=J

dO
dx

\ { A y 2. . ]  J i j ' i . o '

'  i , 3
X 2

\  y I y e
- T .

1 * J
(A1.7)

= 0 . 0 ,  i = j

The optimum structural parameters, 0 , is obtained by the minimization 

o f the negative log likelihood function

Mi n L ( z \Q) = - In  p (z |0 ) = ^ l n ( 2 n )  + iln |c > |+- |  (Z -|i)  TQ~1 (Z-p,)(Al. 8)

The optimum value o f these unknown structural parameters lies at the 

extreme o f the function, which is obtained by setting the derivative of negative log 

likelihood function with respect to each o f the structural parameters to zero, i.e.,
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dL dL

a ji ; = ;
dL dL

0 ; = 0
3A dX ( A 1 .9 )

The general expression for the derivative o f the negative log likelihood

function is

dL 1 = — TrdQ.  2
, - i do 

30,
—|  - ( z - n ) T0 -1^  (A1.10)30. 30.j

where Tr = trace o f a matrix in statistical terms, is a scalar quantity equal to sum of 

diagonal elements o f a matrix. In writing the above expression, the following standard 

relations are used:

d l n | Q |  = 

30.
r i  dQ 

S03
( A l . l l )

30. 3 0 /
(A1.12)

Using the above general expression (Eq. A1.10), we can write

dL
3p.

(A1.13)

dL 1   = — Tr
do2 2

3l  _ 1
s rx ’  2

dL
~dX~

Tr

Tr

, - i dO
d a 2

- i  dQ
d x

- 1  d o

dX

(z -n ) tq -x^ - q -1 ( z - ji)  
2 3cr

(A1.14)

(A l .15 )

(A1.16)

The first-order necessary condition for the minimum (T , is that the
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vector o f derivatives is zero. That is for

‘  0 L N
( A 1 .1 7 )

2 =  0 (A1.18)

A gradient based iterative method is used here to obtain the solution. The 

basic iteration is

0 = 0  -  p . R. g.
—i+1 — i  J- (A1.19)

where 0 . = vector o f parameters in the i th iteration level; pi  = a scalar step-size

parameter (here it is fixed, pi = 1), and g, is the gradient vector at i.

In the Gauss-Newton method employed here, R: is the inverse of the Fisher 

Information Matrix (FIM). The elements o f the FIM is defined as

M ( j  , k )  =— Tr Q-idQ_Q- idQ  
U 50. 50.

J  *

\ / - \ rp /  ^  \
T d[L5p

\  3
Q- i

50,.
(A1.20)

For four scalar parameters p, ct2, Ax, a n d  k y , M  is a (4 x 4) matrix. 

The sixteen elements o f the matrix can be derived using the above general expression as:

M([i, p) = 1 T Q'1 1 (Al .21)

M(p, O2) = 0 (A1.22)
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M ([ l ,kx) = 0 ; M (p ,A y) = 0 (A1.23)

M(o2, |l) = 0 (A1.24)

M (o2, a2) = - | r r  Q- i  dQ x 6 0

do2 do2
(A1.25)

M(o2, k ) = — Tr  0 '1—5-0 
x 2 do2

-1 30 ! 00 (A1.26)2 0A

Likewise all the other elements are created, and the FIM is formed. The 

inverse of this matrix is, Rj = M '1.

I f  the parameter estimates are highly correlated, the FIM is near singular 

and its inversion is impossible. In the computational procedure developed here, the FIM 

is first checked for singularity, in cases where it is near-singular the FIM is modified by 

first decomposing it into

where subscript i refers to the iteration level, Sj is a diagonal matrix with the j j  element 

equal to

(A1.27)

i
(A1.28)

and Vj is the "correlation matrix", with the jk  element equal to
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( A 1 .2 9 )

in which m denotes the elements o f the FIM.

The eigenvalues (ev) of V; are calculated. The condition number (CN), is 

then calculated as

I f  this condition number is greater than a user specified tolerance parameter 

(tpc), say 1000, then the CN is set equal to the tolerance parameter

ev  +Z
— = t p c  (A1.31)
e v . + Z

mm

and Z is easily obtained. A ll the eigen values are increased by a positive constant Z and 

the correlation matrix Vj is modified accordingly. Using Eq. A1.30 a rescaled FIM is 

obtained.

Likelihood Estimation Procedure, and Fig. A 1.2 shows the flow chart for generation of 

the multiple realizations using Gaussian conditional simulation.

ev
maxCN = ( A l .30)

Fig. A 1.1 shows the flow chart used in the development o f the Maximum
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c INPUT

A1

D

ADVANCE REGION

ADVANCE HGP A2

INITIALIZE STRUCTURAL PARAMETERS

SETUP COVARIANCE MATRIX (EQ. A1.2) OF 

MEASUREMENT VECTOR & FIND ITS DERIVATIVES 

WITH RESPECT TO STRUCTURAL PARAMETERS 

(EQ. A1.3 TO EQ. A1.6).ALSO, FIND ITS INVERSE

COMPUTE OBJECTIVE FUNCTION 

(EQ. A1.7) Sc STORE IT AS OBJOLD

ADVANCE ITERATION COUNTER 

S£T ERR = 0.0

COMPUTE GRADIENT OF THE LIKELIHOOC 

FUNCTION W.R.T. STRUCTURAL 

PARAMETERS (EQ. A1.12 -  EQ. A1.15)

COMPUTE FISHER INFORMATION MATRIX 

(EQ. A1.19) AND FIND ITS INVERSE

ERROR

APPLY CORRECTION TO STRUCTURAL 

PARAMETERS (EQ. A1.18)

REVISE COVARIANCE MATRIX (EQ. A1.2) OF 

MEASUREMENT VECTOR & FIND ITS DERIVATIVES} 

W.R.T. STRUCTURAL PARAMETERS 

(EQ. A1.3-EQ. A1.6). ALSO, FIND ITS INVERSE

COMPUTE OBJE 
(EQ. A1.7) AND ST

CTIVE FUNCTION 

ORE IT AS OBJNEW

COMPUTE ERROR 

ERR = ABS(OBJOLD -  OBJNEW) 
SET OBJOLD = OBJNEW

FIG A1.1: FLOW CHART FOR COMPUTATION OF MAXIMUM 
LIKELIHOOD ESTIMATION PROCEDURE

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



NO
A2ALL HGP FINISHED ?

UJ

NO
ALL REGIONS PROCESSED ?

RETURN TO MAIN PROGRAM

PERFORM CONDITIO NAL SIMULATION  

(EQ . 3 . .3 .1 0 )

FIND COVARIANCE AND CROSS  
C O -V A R  MATRIX USING M EAN ,VAR IAN CE  

UNCONDITIONAL LOG PARAM ETERS
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M EASUREM ENT VECTOR WITH RESPECT TO 
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GAUSSIAN CONDITIONAL REALIZATION (E Q .3 .3 .8 )

FIG A1.2: FLOW CHART FOR GAUSSIAN CONDITIONAL SIMULATION
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A2. COMPUTATIONAL PROCEDURES FOR 

GROUNDWATER SOLUTE TRANSPORT 

USING UPSTREAM QUADRATIC INTERPOLATION FOR 

ADVECTIVE TERMS

In this appendix the development of upstream quadratic interpolation for 

a non-uniform grid is discussed. For a more detailed explanation of the steps involved, 

the reader is directed to B.P. Leonard (1979).

Refer to Fig. A2.1. In the figure Cfu/S, C^, and Cd/S stands for concentration 

at far upstream node, upstream node, and downstream node, respectively. For breivity 

hereafter referred to as Cf, Cu, and Cd. Also, A f  is the distance between the far

upstream node and upstream node, and A is the distance between the upstream node

and downstream node. Further, Z can either take X dimension or Y dimension. 

Consider the general quadratic form

f  = a Z 2 + b Z  + c  (A 2 .1 )

We have at Z = 0, f  = Cf

at Z = A f  , f  = Cu

at Z = (A f  + A u) , f = C d
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f = a Z + b Z + c

f  U / S u / s d / s

A

0 z

FIG A2.li DEFINITION SKETCH FDR DETERMINING CELL WALL 
CONCENTRATION USING QUADRATIC UPSTREAM INTERPOLATION
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Substituting these in the general expression given in Eq. A2.1, and solving 

for a, b, and c, we have

c = C.

a =

b =

C,  A . -  C A. -  C A + c f  Ad f  u f  u u  f u

A - (A2 + A .  A )f  ' u f  u'

C -  C £ -  a A2£u f  f

( A 2 . 2 )

Substituting for a, b, and c in the Eq. A2.1, we can write the most general 

expression o f the quadratic function in one-dimension as

f  = 

(

1 A, -  c A . -  c A + cf A 'd f  u f  u u f  u

A, (A2 + A ,  A )f  '  u f  u '

z 2 +

( A2 . 3 )
C A2 + 2 C  A. A -  2 C.  A. A -  C_ A2 -  C,  A^ + C A^u u  u f u  f f u  f u  d f  u f

A. (A2 + A. A )f  '  u f  u

To obtain the wall concentration of the Cell (i,j), concentrations of the two 

adjacent nodes to the wall under consideration together with one upstream node 

concentration w ill be used in the general quadratic expression Eq. A2.3.

For a uniform grid spacing Af = Au = A , Eq. A2.3 reduces to

f  = " c« -  2 c » + A z 2 + ' 4CU -  3 C f  -  c d '

2A2 J l  2A J
z  + c t ( A 2 . 4 )

To determine cell wall concentration, substitute Z as the distance from the 

far upstream node to the cell wall under consideration.

Grouping the terms in Eq. A2.3 we get

1 9 3
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Af z 2 - A2 z 
A. (A2 + A.A )f  u f  u '

Ca +

-A.  z 2 - A z 2 + A2 z + 2 A„A z  + A2 zf  u u f  u f

Af (A  ̂ + AfAu)

Au z 2 - 2AfAu z - A2 z + Af (A2+AfAy)

c.. +
( A 2 . 5 )

A .(A2f  ' U AA>
-  f

On the left hand side of Eq. A2.5, the terms in the brackets can be viewed 

as the weights associated with the concentrations C ^, Cu/s, and Cfu/S, respectively.

The weight, W ^, associated with downstream concentration is

A. Z 2 -  A2 Z
W,. = ------ - --------------- -------- ( A 2 . 6 )

d/s Af (A2 + AfAu)

The weight, Wu/S, associated with upstream concentration is

-A,  z 2 -  A z 2 + A2 z + 2 A A  z + A2 z
W .  = ------       — -------------—  ( A 2 . 7 )

u/s A A A 2 + A„A )f ' u f  u

The weight, Wfu/s, associated with far upstream node concentration is

A z 2 -  2 A.A z - A2 z + A,(A2+A,A )
a a  , = — 2----------------- ^ ^ ------------ f— ^ — ( A2 . 8 )

fu/s A f (A2 + A A  )f ' u f  u

For the case of uniform grid spacing Af = Au = A ,a n d Z = 1 .5  A , 

evaluating the funtion, f, at the cell wall under consideration, Eq. A2.5 reduces to

1 9 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



f  = 0.375 Cd/S + 0.75 - 0.125 Cf ̂  (A2.9)

Eq. A2.9 is formally equivalent to

Ci.M -| “  '  | (CU + C<1> “  l (Cf  -  2Cu + Cd> {A 2 .1 0 )

On the right hand side of Eq. A2.10, the first term corresponds to the linear 

interpolation of upstream and downstream concentrations, and the second term 

corresponds to the correction applied to account for curvature effects.

Depending on the flow direction, one can construct two distinct cases for 

each face o f the cell. In all there would be eight cases. The two cases for each o f the left 

and right faces are shown in Fig. A2.2, and the two cases for each o f the top and bottom 

faces are shown in Fig. A2.3. Description o f the eight cases are given below:

Case 1: Left Face

Flow Direction: Left to Right 

In the general expression (Eq. A2.5) substitute,

Cf = Cjj_2, Cu = Cjj.f, and Cd = Q j

Ax, , + Ax, . Ax. + Ax. Ax, ,
A „ = ----------------------- , A„ =  2IL--------3-  , Z = — Z *  + Ax.j - i

Case 2: Left Face

Flow Direction: Right to Left 

In the general expression (Eq. A2.5) substitute, 

Cf = CiJ+1, Cu = Cy, and Cd = C ^

Ax. . + Ax, Ax, . + Ax, Ax
A f = ----------  3. , A =   1 , Z = — £*  + Ax.f  2 u 2 2 J
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Case 1' L e ft  face, flow le f t  to  right

Case 2i L e ft face, flow right to le f t

lj+ 1

Case 3' Right face, flow right to le f t

Case 4i Right face, flow le f t  to right

FIG, A2.2: SCHEMATIC OF QUADRATIC UPSTREAM INTERPOLATION 
FDR ADVECTIVE TERMS IN X-DIRECTION
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Case 5 Case 6 Case 7
Top face Top face Bottom face

flow top to  bottom flow bottom to  top flow bottom to  top

T
a

Case 8 
Bottom face 

flow top to  bottom

FIG. A2.3: SCHEMATIC DF QUADRATIC UPSTREAM INTERPOLATION 
FDR ADVEC TIVE TERMS IN Y-DIRECTION



Case 3: Right Face

Flow Direction: Right to Left 

In the general expression (Eq. A2.5) substitute,

Q  = Cj,j+2> Cu = Cjj+1, and Cd =

Ax. - + Ax. , Ax. . + Ax. A x . ,A =  j v ---------- t v  A =  j+i 1 =--211 + Ax.
f  9 U 9 ' 9 J+l

Case 4: Right Face

Flow Direction: Left to Right 

In the general expression (Eq. A2.5) substitute,

Cf = Cjj.], Cu = Cj j, and Cd = Cy+1

Ax. . + Ax. Ax. + Ax. , Ax. .
A . = ----------  1 , A„ = — J — -----------, z = _ 2 i i  + Ax.

Case 5: Top Face

Flow Direction: Top to Bottom 

In the general expression (Eq. A2.5) substitute,

Cf = Cj_2j, Cu = Cj_j j, and Cd = C^

Ay + Ay Ay + Ay Ay
A . = ------ — —  , A = -----—    , Z  =------—  + Ay. .f  o  u O 9
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Case 6: Top Face

Flow Direction: Bottom to Top 

In the general expression (Eq. A2.5) substitute,

Q  = Q+i,j> Q  = Cjj, and Cd = Q.,j

.  * Ay, _ A y ^  .  Ay, A y ^
f  2  u 2  2  2

Case 7: Bottom Face

Flow Direction: Bottom to Top 

In the general expression (Eq. A2.5) substitute,

Cf = Ci+2j, Cu = Ci+1j, and Cd = Cjj

.  A y ^  *  Ayia  _ A y ^  * Ay, _ A y ^
f  2 u 2 2 2+1

Case 8: Bottom Face

Flow Direction: Top to Bottom 

In the general expression (Eq. A2.5) substitute,

Cf = Cj., j, Cu = Cjj, and Cd = Ci+1 j

Ay + Ay Ay + Ay Ay
A ,  = -----— ----------   , A =  — ---------± , z =------—  + Ay.

f  2 u 2 2 2

The dispersion component of the transport process is the same as explained 

in Section 3.6.2. For clarity the finite difference equations for dispersion component is 

repeated here.
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Dispersive fluxes entering a finite difference cell from all the four sides is 

considered in writing expression for mass conserving over the element.

Dispersive input in X direction entering the Cell (i,j) from left face 

= D xxl ( Cy., - Cy ) (A 2 .ll)

Dispersive input in X direction entering the Cell (i,j) from right face 

= Dxx3 ( Cjj+1 - Cjj ) (A2.12)

Dispersive input in Y direction entering the Cell (i,j) from top face 

= Dyy2 ( CMj - Cy ) (A2.13)

Dispersive input in Y direction entering the Cell (i,j) from bottom face

=  W  ( C m j  - c « ) <A 2-14>

In the computation of groundwater solute transport component, the 

piezometric heads obtained from the flow simulation is used to define velocities UxXjj and 

Uyyjj throughout the grid for each time step (ref Fig. 3.6). The velocities Cxx^ and Uyyy 

are defined at the right face and top face o f each finite difference cell, and are expressed 

by:

Uxx.' . = t bi . r K i «  i 
' A ^ +A x3<1' (A2.15)

Similarly,

u y y ^  = xyi.j + &1-1., hi , r hi - u
A y .+ A y ,^ (A2.16)
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The mass of solute transported by way of advection is a product of flow 

and concentration entering the Cell (i,j) through each o f the four faces. The flow term in 

the advective component can be written as 

Flow entering the aquifer from the left face

T1 = + Uxx.  . . Ay.1! jf —I 2.

/  \  
b  +jb,o 1 (A2.17)

Flow entering the aquifer from the right face

T3 = -  Uxx.  . Ay.11 j  1 (A2.18)

Flow entering the aquifer from the top face

T2 = -  Uyy .  Ax.
1 1 J  J

b o + b 2 (A2.19)

Flow entering the aquifer from the bottom face

T4 = + U y y . +l j  Ax.

/ \ 
b  +i3 'o 4 (A2.20)

Advective component in X direction, for mass entering the Cell (i,j) from

left face

A D I = T l(W 10CiJ+W11CiJ.1+W12Ci,j.2+W13Ci,j+I+W14Ci,j+2) (A2.21)

Advective component in X direction, for mass entering the Cell (i,j) from

right face

AD3 = T3(W30CiJ+W31Ci,,1+W32Ci,,2+W33Ci,j+1+W34Ci,j+2) (A2.22)

Advective component in Y direction, for mass entering the Cell (i,j) from

top face
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AD2 = T2(W20Ci,j+W21C ,1,j+W22C,2ij+W23Ci+1,j+W24Ci+2J) (A2.23)

Advective component in Y direction, for mass entering the Cell (i,j) from

bottom face

(A2.24)

Depending on the flow direction at the cell wall, only three weights

associated with downstream, upstream, and far upstream are defined in the Eq. A2.21 

through A2.24 (the weights are defined in Eq. A2.6 through A2.8). The remaining two 

weights are assigned a value zero as the case may be.

difference formulation for dispersive component and quadratic upstream interpolation 

formulation for advective component for the governing advection-dispersion equation 

given in Eq. 3.6.1, follows from the application of continuity o f mass: sum o f all mass 

flow  rates into and out o f a Cell (i,j) that has sides A Xj and A yi must equal rate of 

change o f mass in the aquifer element.

where (j) is the aquifer porosity, W's are the weights associated as the case may be on

As in the case of groundwater flow component, the block centered finite

D x x l (C  

D yy2  (C;

( A 2 . 2 5 )

\
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the downstream, upstream and far upstream, dk is the decay rate [1/T], Qw is the 

groundwater pumping associated with the node (i,j), C' and Q' are the concentration and 

waste discharge rate o f the external sources, n is the time step.

2 0 3
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APPENDIX A3 

FLOW CHART FOR AQUIFER FLOW AND TRANSPORT 
SIMULATION
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IN P U T

YESNO

YESNO ,LL OBS. WELLS 
PROCESSED ?

STEA D Y INITIAL 
PIEZOM ETRIC SURFACE ?

ADVANCE REALIZATION

AQUIFER SIMULATION

ADVANCE OBS. WELL LOCATIONS

CREATE A  RHS VECTOR OF 
UNDISTURBED H EAD —OBS.HEAD

GENERATE STEA D Y INITIAL  
PIEZOMETRIC SURFACE

STORE DRAWDOWNS A T ALL OBS. 
WELLS AND CREATE A MATRIX

ASSIGN U N IT  DISCHARGE O NLY A T OBS. 
WELL UNDER CONSIDERATION

DETERMINE ARTIFIC IAL PUM PING ONE 
TIME STEP PRIOR TO IN ITIAL TIME STEP

SOLVE THE SET OF LINEAR EQUATIONS  
TO DETERMINE ARTIFICIAL PU M PING  

ONE TIME STEP  
PRIOR TO IN ITIAL TIME STEP

FIG A3.1: FLOW CHART FOR GROUNDWATER FLOW SIMULATION MODEL
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I A D I

B2 ADVANCE POT. WELL LOCATION ADVANCE TIME STEP 
ASSIGN ARTIFICIAL PUMPING 
AT OBS. WELLS ONLY IN 

ONE TIME STEP PRIOR TO 
INITIAL TIME STEP

ASSIGN DISCHARGES AT ALL 

WELL LOCATIONS. USE USER 
INPUT VALUES OR AS DETERMINED 
FROM THE MANAGEMENT MODEL

ASSIGN UNIT DISCHARGE ONLY IN 
THE FIRST TIME STEP AND ZERO 

DISCHARGE THEREAFTER

ADVANCE TIME STEP 
ASSIGN ARTIFICIAL PUMPING 
AT OBS. WELLS ONLY IN 
ONE TIME STEP PRIOR TO 
INITIAL TIME STEP_______________

FIG A3.1: FLOW CHART FOR GROUNDWATER FLOW SIMULATION MODEL 

(CONTINUED)
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STORE HEADS H (l.J .IT)

BETA GENERATE BETA /  
SIMULATION ?

SIMULATION

NO ALL TIME STEPS 
PROCESSED ?

BETA GENERATE BETA /  
SIMULATION ?

NO YES■ALL POTENTIAL 
WELL PROCESSEDB2

NO
ALL REALIZATION 

PROCESSED ?

Ld

COMPUTE MASS BALANCE

STORE BETA

RETURN CONTROL 

TO MAIN PROGRAM

PRINT COMPUTED HEADS, 
MASS BALANCE, CHECK FOR 
PRINCIPLE OF SUPERPOSITION

FIG A3.1: FLOW CHART FOR GROUNDWATER FLOW SIMULATION MODEL 

(CONTINUED)
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AQUIFER

TRANSPORT

INPUT

GAMMA GENERATE GAMMA /  

SIMULATION ?
SIMULATION

IADI

A3

A2

A5

A4

ADVANCE INNER TIME STEP

AQUIFER FLOW SIMULATION

ADVANCE REALIZATION

ADVANCE TIME STEP

ADVANCE OUTER TIME STEP

ADVANCE POTENTIAL INJECTION 

WELL LOCATIONS

USE AQUIFER HEADS TO DETERMINE 

INTERNODAL VELOCITIES AND 

INTERPOLATED WALL VELOCITIES

ASSIGN WASTE LOAD INJECTION RATE 

AT ALL INJECTION WELL LOCATIONS.

USE USER INPUT VALUES OR AS 

DETERMINED FROM THE MANAGEMENT MODEL

ASSIGN UNIT WASTE LOAD 

INJECTION RATE ONLY IN 

THE FIRST TIME STEP AND ZERO 

INJECTION RATE THEREAFTER 

(ONLY IF OUTER TIME STEP = 

INNER TIME STEP)

FIG A3.2: FLOW CHART FOR SOLUTE TRANSPORT SIMULATION MODEL
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STORE CONCENTRATION C(l,J,IT)

GENERATE GAMMA /  

SIMULATION ?

GAMMA SIMULATION

NO
ALL INNER TIME STEP 

PROCESSED ? ^A 3

NOUJ
ALL TIME STEPS 

PROCESSED ? A 4

NO
ALL OUTER TIME STEP 

PROCESSED ?A 2

NO
ALL POT. INJECTION 

.WELLS PROCESSED ?

YES

NO
ALL REALIZATION 

PROCESSED ?A 5

COMPUTE MASS BALANCE

STORE GAMMA

RETURN CONTROL 

TO MAIN PROGRAM

PRINT COMPUTED CONCENTRATIONS, 

MASS BALANCE, CHECK FOR 

PRINCIPLE OF SUPERPOSITION

FIG A3.2: FLOW CHART FOR SOLUTE TRANSPORT SIMULATION MODEL 
(CONTINUED)
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IADI PROCEDURE

PREDICT NEW H/C, UPDATE OLD H/C

ADVANCE ITER COUNTER, SET ERR=0.0

SET FLAG FOR COL. CALC.

ADVANCE ROW

ADVANCE COLUMN

SET UP AN IMPLICIT MATRIX 

OF ALGEBRAIC EQUATIONS 

IN TRIDIAGONAL FORM 

Hi,j—1, Hi,j. Hi,j+1 OR 

Ci, j— 1, Ci, j, Ci,j+1

N0 /''ALL COLUMNS^\. 
SED ?■* \PROCES

(J)

£

SOLVE FOR H OR C IN A ROW

COMPUTE 

ERR = ERR+AB

ERROR

S(H OR C DIFF)

SET FLAG FOR ROW CALC.

ADVANCE COLUMN

ADVANCE ROW

SET UP AN IMPLICIT MATRIX 

OF ALGEBRAIC EQUATIONS 

IN TRIDIAGONAL FORM 

Hi-1,j, Hi,j, Hi+1,j OR 

Ci—1,j, Ci, j, Ci+1,j

ALL ROWS 

PROCESSED ?

NO

SOLVE FOR H OR C IN A COL

COMPUTE ERROR

ERR = ERR+ABS(H OR C DIFF)

N0 -''ALL ROWS

PROCESSED ?
ALL COLUMNS ^  N0 
PROCESSED ?

CONVERGENCE 
ACHIEVED 

ERR < ERROR ?

FIG A 3.3 : FLOW CHART FOR IADI PROCEDURE

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A4. COMPUTATIONAL PROCEDURE OF NEWSUMT - A

The optimization program used in this research work is NEWSUMT-A 

developed by Rajiv Thareja and Raphael T. Haftka (1985). In this appendix computational 

procedure o f NEWSUMT-A adopted in their work is briefly discussed. For a more 

detailed explanation o f the algorithm, steps and features incorporated in their model, the 

reader is directed to the software user manual for NEWSUMT-A.

NEWSUMT-A is a non-linear optimization computer program written in 

standard FORTRAN subroutine form for the solution o f linear and non-linear equality 

and/or inequality constrained or unconstrained function minimization problems. The 

minimization algorithm used in NEWSUMT-A is a sequence o f unconstrained 

minimizations technique (SUMT).

Optimization problems must be formulated in the following canonical form 

when NEWSUMT-A program is used:

Minimize the objective function

Min Z = f(x „x 2,x3, xn) (A4.1)

Subject to a set o f inequality and/or equality constraints

gq(x„x2,x3, xn) ;> 0, and/or (A4.2)

hq(x „x2,x3,.....x„) = 0 (A4.3)
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and the side bound on the design variables

x L <, X .  <, x u 
3  3 3

(A4.4)

where the functions f(X), gq(X), and hq(X) are continuous and differentiable real functions 

with respect to the design variables xj5 j  = 1,2,3,—,NDV.

In using NEWSUMT-A program, user has to model Eq. A4.1 through Eq. 

A4.4, and, if  available, the derivatives o f Eq. A4.1 through Eq. A4.3 (if derivatives are 

not available NEWSUMT-A determines it using standard finite difference approximations) 

in a subroutine form. NEWSUMT-A program calls the user defined subroutine to evaluate 

the functions iteratively. Also, initial design variables needs to be specified. NEWSUMT- 

A then systematically modifies these while generating a sequence o f vectors X ' so that 

f(X ) decreases or the degree o f constraint satisfaction is improved. This sequence of 

vectors X  converge to a solution X* where the constraint violation is very small and f(X*) 

is at least a local minimum.
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APPENDIX A5 

INPUT DATA FILE FOR CONTUNCTIVE-USE 
MANAGEMENT MODEL APPLICATION
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Yorktown-Eastover A qu ife r C haracte ris tics  - S tochastic Generation 
17 R iver Reaches fo r James R iver - MANAGEMENT FOR QUANTITY, & QUALITY 
Six Pumping Wells & three in je c tio n  W ells, Fine Tuning, V ariab le  
V e lo c ity  F ie ld
Revised Run #5, Created on 04/16/96 24 TIME STEPS, Time Period 300 days
0 0 0 1 1 1 0 1 0  0 1
34 41 1
600. 600 . 600. 600 . 300. 300.  300. 600 . 600 . 600
300. 300 . 300. 600 . 600. 300.  300. 300. 300 . 300
600. 600 . 300. 300 . 300. 600.  600. 600 . 600 . 600
600. 600 . 600. 600 . 600. 600.  600. 600. 600 . 600
600.
600. 300 . 300. 300 . 600. 300.  300. 300. 300. 300
600. 600 . 300. 300 . 300. 600.  600. 300 . 300 . 300
600. 600 . 300. 300 . 300. 600.  600. 600. 600 . 600
600. 600 . 600. 600 .
4 4 4

9 1 1 17 20
12 1 21 17 41

8 :18 1 34 20
11 :18 21 34 41

4 3 4.3 4.3 6.4E-06 1 . 1E-01
4 9 5 . 1 4 . 9 8 .0E-06 1 . 3E-01
4 15 5.3 5.3 7 . 0E-06 1 . 9E-01
9 3 4 . 1 4 . 1 7 . 2E-06 1 . 6E-01
9 9 4 . 5 4 . 5 8 .0E-06 1 . 0E-01
9 15 4 .5 4 . 5 6.5E-06 1 .3E-01

14 3 4 . 1 4 . 1 7 . 2E-06 2 . 5E-01
14 9 4 .4 4 . 4 7 . 3E-06 1 .8E-01
14 15 5.2 5 . 0 7 . OE-06 1 .5E-01

4 24 4 . 2 4 . 4 8 .4E-06 1 .8E-01
4 29 5 . 4 5 . 4 7 .9E-06 1 .9E-01
4 33 4 . 8 4 . 8 7 .3E-06 1 . 8E-01
4 37 6.6 6.8 6 .7E-06 1 .5E-01
9 24 4 . 5 4 .5 7 . 5E-06 2 . 0E-01
9 29 4 . 9 4 . 9 7 . IE-06 1 .7E-01
9 33 4 . 4 4 .3 7 . 0E-06 1 .3E-01
9 37 5 . 8 6.0 6.9E-06 1 .2E-01

14 24 3 . 9 3 .9 7 . 3E-06 1 .5E-01
14 29 4 .5 4 .5 5 . 3E-06 1 .1E-01
14 33 3 . 4 3 . 4 5 . 7E-06 1 .6E-01
14 37 3 . 6 3 .6 7 . 5E-06 1 .3E-01
21 3 4 . 1 3 . 9 6 .2E-06 1 .3E-01
21 9 4 . 4 4 . 4 6 .4E-06 1 .5E-01
21 15 4 . 9 4 .9 6.8E-06 1 .8E-01
27 3 4 .4 4 . 4 6 .6E-06 1 .0E-01
27 9 4 . 7 4 . 6 8 . 2E-06 1 .5E-01
27 15 5 . 1 4 . 9 7 .4E-06 2 . IE-01
31 9 4.3 4 . 3 8 .5E-06 1 .8E-01
31 15 4 . 4 4 . 4 7 .6E-06 1 .5E-01
21 24 4.9 4 . 9 8 . 0E-06 1 .7E-01
21 29 5 . 0 5 . 0 6 .7E-06 1 . 9E-01
21 33 4.7 4 . 7 7 .3E-06 1.6E-01
21 37 4 . 5 4 . 5 7 .4E-06 1.4E-01
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27 24 4 . 8 4 . 8 7 . 5E-06 1 . 8E-01
27 29 4 . 4 4 . 4 7 . 0E-06 1 . 3E-01
27 33 3 . 8 4 . 5 7 . 0E-06 1 . 7E-01
27 37 4 . 1 4 . 4 7 . 2E-06 1 . 2E-01
31 24 5. 3 5 . 3 7 . 0E-06 1.8E-01
31 29 4 . 4 4 . 4 6 . 3E-06 1.4E-01
31 33 4 . 2 4 . 2 6 . 1E-06 1. 3E-01

1000.  1000.  1000.  1000.
1000. 1000.  1000.  1000.

1. 1000.
-0 .10E+21 0 . 10E- 19 2100. 1800

0 . 10E+21 0.30E+01 7200. 4500
-0.10E+21 0. 10 E- 19 2100. 1800

0.10E+21 0 .30E+01 7200. 4500
-0.10E+21 0 . 10 E- 19 2100. 1800

0 .10E+21 0.30E+01 7200. 4500
-0.10E+21 0. 10E- 19 2100. 1800

0.10E+21 0.30E+01 7200. 4500
24 3 00 . 0  17
O i l
3 . 5 6 2 2 e + 0 7  
3 . 5 6 2 2 e + 0 7

3 . 5 6 2 2 e + 0 7 3 . 5 6 2 2 e + 0 7 3 . 5 6 2 2 e + 0 7 3 . 5 6 2 2 e + 0 7

3 . 5 6 2 2 e + 0 7  
3 . 5 6 2 2 e + 0 7

3 . 5 6 2 2 e + 0 7 3 . 5 6 2 2 e + 0 7 3 . 5 6 2 2 e + 0 7 3 . 5 6 2 2 e + 0 7

3 . 5 6 2 2 e + 0 7  
3 . 5 6 2 2 e + 0 7

3 . 5 6 2 2 e + 0 7 3 . 5 6 2 2 e + 0 7 3 . 5 6 2 2 e + 0 7 3 . 5 6 2 2 e + 0 7

3 . 5 6 2 2 e + 0 7 3 . 5 6 2 2 e + 0 7 3 . 5 6 2 2 e + 0 7 3 . 5 6 2 2 e + 0 7 3 . 5 6 2 2 e + 0 7
3 . 5622e+07 
3
1 . 0 e - 6 0 .04 100 .
1 . 0 e - 6 0 .04 100 .
1 . 0 e - 6 0 .04 100 .
1 . 0 e - 6 0 .04 100 .
1 . 0 e - 6 0 .04 100.
1 . Oe-6 0.04 100 .
1 . 0 e - 6 0 .04 100 .
1 . Oe-6 0.04 100 .
1.  Oe-6 0.04 100 .
1.  Oe-6 0.04 100 .
1.  Oe-6 0.04 100 .
1.  Oe-6 0.04 100 .
1.  Oe-6 0.04 100 .
1.  Oe-6 0.04 100 .
1.  Oe-6 0.04 100 .
1.  Oe-6 0.04 100 .
1.  Oe-6 0.04 100 .
10 15 0.0001905 0.3048 -6 .2000 600 . 0
11 16 0.0001905 0.3048 - 6 .2006 300.0
11 17 0.0001905 0.3048 -6 .2009 300 . 0
11 18 0.0001905 0.3048 - 6 .2012 300 . 0
11 19 0.0001905 0.3048 -6 .2015 300 . 0
11 20 0.0001905 0.3048 -6 .2018 300 . 0
11 21 0.0001905 0.3048 - 6 .2021 600 . 0
11 22 0.0001905 0.3048 - 6.2027 600.0
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10 23 0. 0001905 0. 3048 -6 . 20 33 300 . 0
9 23 0. 0001905 0 . 3048 - 6 .2 03 6 300 . 0
8 23 0. 0001905 0. 3048 - 6 .203 9 300.0
7 23 0. 0001905 0. 3048 - 6 .20 42 300.0
6 23 0. 0001905 0. 3048 - 6 . 20 45 300.0
5 23 0. 0001905 0 . 3048 - 6 . 20 48 600.0
4 24 0. 0001905 0. 3048 - 6 . 20 54 300 . 0
3 24 0. 0001905 0. 3048 - 6 .20 57 300 . 0
2 24 0. 0001905 0. 3048 - 6 .20 60 300.0

1 1 1 1
600 1. 0 0 .005 14 .5000 0 .0 - 0 . 0 - 1 6 . 5 8
8 . 64e-6 6 .1 14.5000 0 . 0 14.5000 0 . 0
1000 . 14. 5000 0. 0
0
6

3 6
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14 19
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1
7
3
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0 0 0. 0.  0. 0. 0. 0. 0.
0. 0. 0. 0.  0.

1 1 -1 14.80 0. 0 . 0.
1 2 -1 14.80 0. 0 . 0.
1 3 -1 14.80 0. 0 . 0.
1 4 -1 14 . 80 0. 0. 0.
1 5 -1 14 . 80 0. 0. 0 .
1 6 -1 14 . 80 0. 0. 0 .
1 7 -1 14 . 80 0 . 0. 0.
1 8 -1 14.80 0 . 0. 0 .
1 9 -1 14.80 0. 0. 0.
1 10 -1 14.80 0. 0 . 0 .
1 11 -1 14.80 0. 0. 0.
1 12 -1 14.80 0. 0 . 0.
1 13 -1 14.80 0. 0. 0.
1 14 -1 14.80 0. 0 . 0 .
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1 26 -1
1 27 -1
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29 1 0 0
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31 1 0 0
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27 2 0 0
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31 2 0 0
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30 3 0 0.
31 3 0 0.
32 3 0 0.
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33 34 0 0 .
34 34 0 0.
30 35 0 0.
31 35 0 0 .
32 35 0 0 .
33 35 0 0 .
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31 38 0 0.
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4 38 0 0. 0.
5 38 0 0. 0.
1 39 0 0. 0.
2 39 0 0 . 0.
3 39 0 0. 0.
4 39 0 0. 0.
5 39 0 0. 0.
1 40 0 0. 0 .
2 40 0 0 . 0 .
3 40 0 0. 0.
4 40 0 0. 0.
5 40 0 0. 0.
1 41 0 0. 0.
2 41 0 0. 0 .
3 41 0 0. 0.
4 41 0 0. 0 .
5 41 0 0. 0.
0 0 0 0.

0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
1
12

0 0 0 0 . 
5 0 0 0 0 .  
5 0 0 0 0 .  
5 0 0 0 0 .  
3

9 6
14 24
19 17
1000 . 
1000.

0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0 .
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.
0. 0.

0. 0.  0.

50000.  50000. 50000.
50000.  50000. 50000.
50000.  50000. 50000.
50000.  50000. 50000.

50000.
50000.
50000.
50000.

1 0 0 0 . 1 0 0 0 .
1 0 0 0 . 1 0 0 0 .
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1000. 1000. 1000.
1000. 1000. 1000.
1000. 1000 . 1000.
1000. 1000. 1000.
1000. 1000. 1000.
1000. 1000. 1000.
1000. 1000. 1000.
1000. 1000. 1000.
1000. 1000 . 1000.
1000. 1000 . 1000.
1000. 1000 . 1000.
1000. 1000. 1000.
1000 . 1000. 1000 .
1000. 1000. 1000.
1000. 1000. 1000.
1000. 1000. 1000.
1000. 1000. 1000.
1000. 1000. 1000.
1000. 1000 . 1000.
1000 . 1000 . 1000.
1000. 1000 . 1000.
1000 . 1000. 1000.
1.  1. 1.  1. 1. 1.
1.  1. 1.  1. 1. 1.
1.  1. 1.  1. 1. 1.
1.  1. 1.  1. 1. 1.
0 2 .00  0 1 0.30 0 . 0 0 .
1000. 3000 . 0 .0 0.0
0 0 0.0  0.01 0 .0 0 . 0 0 .
2
0.005 0.001 0.001 0 . 1
1.  00 1.00 1. 00 1 .00 1 .00
0 . 0  0 .0 0 .0 0.0 0 . 0 0.0
0 . 0  0 .0 0 . 0 0.0 0 .0 0.0
00 .0
21 . 09  21 .09  21.09 21 . 09  21.09
21 . 09  21 .09  21.09 21 . 09  21.09
1 . 0 0  1 . 0 0  1 . 0 0  1 . 0 0  1 . 0 0  
- 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1
- 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1
2 0 0 . 0
21 . 09  21 . 09  21 .09  2 1 . 09  21.09
21 . 09  21 .09  21.09 21 . 09  21.09
1 . 0 0  1 . 0 0  1 . 0 0  1 . 0 0  1 . 0 0  
- 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1
- 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1
2 0 0 . 0
21 . 09  21 .09  21.09 21 . 09  21.09
21 . 09  21 .09  21.09 21 . 09  21.09
1 . 0 0  1 . 0 0  1 . 0 0  1 . 0 0  1 . 0 0  
- 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1
- 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1  - 0 . 1
2 0 0 . 0
21 . 09  21 .09  21.09 21 . 09  21.09
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0 . 0  100.0 40 . 0  0 .0  0 .0

1 . 0 0  
0.0 0.0 0.0 
0.0 0.0

21.09  21.09 21 . 09  21 .09
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1 . 0 0
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1 . 0 0
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21 . 09  21.09 21 . 09  21 .09
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APPENDIX A6 

MAPS OF REALIZATIONS GENERATED FOR 
MODEL APPLICATION
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FIG A6.3: MAP OF HYDRAULIC CODUCTIV ITY  (m/d) IN Y DIRECTION (Realization #3)
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