
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Civil & Environmental Engineering Theses &
Dissertations Civil & Environmental Engineering

Winter 2008

Nonlinear Random Response of Large-Scale Sparse Finite Nonlinear Random Response of Large-Scale Sparse Finite

Element Plate Bending Problems Element Plate Bending Problems

Swati Chokshi
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/cee_etds

 Part of the Aerospace Engineering Commons, Civil Engineering Commons, and the Computer

Sciences Commons

Recommended Citation Recommended Citation
Chokshi, Swati. "Nonlinear Random Response of Large-Scale Sparse Finite Element Plate Bending
Problems" (2008). Doctor of Philosophy (PhD), Dissertation, Civil & Environmental Engineering, Old
Dominion University, DOI: 10.25777/nn8n-c574
https://digitalcommons.odu.edu/cee_etds/36

This Dissertation is brought to you for free and open access by the Civil & Environmental Engineering at ODU Digital
Commons. It has been accepted for inclusion in Civil & Environmental Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/cee_etds
https://digitalcommons.odu.edu/cee_etds
https://digitalcommons.odu.edu/cee
https://digitalcommons.odu.edu/cee_etds?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/cee_etds/36?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

NONLINEAR RANDOM RESPONSE OF

LARGE-SCALE SPARSE

FINITE ELEMENT PLATE BENDING PROBLEMS

by

Swati Chokshi
B.E., August 1996, North Gujarat University, India

M.E., May 2002, Maharaja Sayajirao University, India

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

CIVIL ENGINEERING

OLD DOMINION UNIVERSITY
December 2008

Approved by:

Due T. Nguyen (Director)

Zia Razzaq (Member)

Gene Hou (Member)

Laura Har^g]>fMember)

ABSTRACT

Nonlinear Random Response of

Large-Scale Sparse

Finite Element Plate Bending Problems

Swati Chokshi

Old Dominion University, 2008

Director: Dr. Due T. Nguyen

Acoustic fatigue is one of the major design considerations for skin panels exposed to high

levels of random pressure at subsonic/supersonic/hypersonic speeds. The nonlinear large

deflection random response of the single-bay panels aerospace structures subjected to random

excitations at various sound pressure levels (SPLs) is investigated. The nonlinear responses of

plate analyses are limited to determine the root-mean-square displacement under uniformly

distributed pressure random loads. Efficient computational technologies like sparse storage

schemes and parallel computation are proposed and incorporated to solve large-scale, nonlinear

large deflection random vibration problems for both types of loading cases: 1) synchronized in

time and 2) unsynchronized and statistically uncorrelated in time. For the first time, large scale

plate bending problems subjected to unsynchronized load are solved using parallel computing

capabilities to account for computational burden due to the simulation of the unsynchronized

random pressure fluctuations.

The main focus of the research work is placed upon computational issues involved in the

nonlinear modal methodologies. A nonlinear FEM method in time domain is incorporated with

the Monte Carlo simulation and sparse computational technologies, including the efficient sparse

Subspace Eigen-solutions are presented and applied to accurately determine the random response

with a refined, large finite element mesh for the first time. Sparse equation solver and sparse

matrix operations embedded inside the subspace Eigen-solution algorithms are also exploited.

The approach uses the von-Karman nonlinear strain-displacement relations and the classical

plate theory. In the proposed methodologies, the solution for a small number (say less than 100)

of lowest linear, sparse Eigen-pairs need to be solved for only once, in order to transform

nonlinear large displacements from the conventional structural degree-of-freedom (dof) into the

modal dof. Moreover, the linear and nonlinear matrices are stored using sparse storage schemes

in order to save computational time and memory. In case of unsynchronized load case, the time

history needs to be generated and also rescaled separately for each finite element. For problems

with large mesh size, the numbers of elements are high and the generation of time histories

makes the problem unsolvable (in terms of computational time and/or memory requirements) for

all practical purposes. By implementing parallel processing techniques, large scale structural

analysis problems are solved without resorting to the use of expensive computing equipment or

incurring an inordinately high computational cost that leads to a feasible solution. The reduced

and coupled nonlinear equations in modal dof are inexpensively solved by the familiar Runge

Kutta numerical integration scheme. Accurate responses are ensured with modal convergence,

mesh convergence, and time step studies. The obtained numerical results (for synchronized load

case) have also been compared favorably with results obtained from commercialized F.E. code

such as Abaqus. Small, medium and large-scale single bay panel models are used to validate and

evaluate the numerical performance of the present formulation and its associated computer

software.

Ill

ACKNOWLEDGMENTS

I would like to express gratitude and appreciation to my advisor Dr. Due T.

Nguyen for his invaluable guidance, encouragement and advice throughout the entire

course of this study. I also want to extend my deepest thanks to my dissertation

committee members Dr. Zia Razzaq, Dr. Gene Hou and Dr. Laura Harrell for their

helpful suggestions on the dissertation research, and their patience on reviewing the draft.

Special thanks to Dr. Zia Razzaq and Dr. Chuh Mei for many priceless

discussions, and allowing me to benefit from their in-depth knowledge in the area of

structural engineering. I really appreciate the help of Amit Kumar and Ruben Igloria from

Office of Computing and Communications Services (OCCS) department at Old

Dominion University.

I am grateful to my parents whose support and encouragement have always been a

source of inspiration for me. The best way to pay back their love is to succeed in my life.

Last but not least, I am out of words to thank my best friend and soul mate,

Milind, for his deepest love, extremely important co-operation, support and

encouragement. I feel lucky to have him in my life and without him it would have been

nearer to impossible to finish this journey, especially with the responsibilities of two kids,

Swara and Aarav. I always found him to ease me when I encountered difficulties and

losses.

Swati Chokshi

October 2008

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES VIII

LIST OF TABLES X

NOMENCLATURE XI

GREEK SYMBOLS XIII

SUBSCRIPTS XIII

SUPERSCRIPTS XIV

Chapter

I INTRODUCTION 1

1.1 PROBLEM DEFINITION 2

1.2 ACOUSTIC FATIGUE TESTING 3

1.3 ANALYSIS METHODS FOR ACOUSTIC FATIGUE 4

1.4 SINGLE-BAY AEROSPACE STRUCTURES 8

1.5 ANALYTICAL APPROACHES FOR RANDOM VIBRATION

ANALYSIS 9

1.6 OBJECTIVE AND SCOPE 10

1.7 LIMITATIONS 11

1.8 MOTIVATION AND DISSERTATION ORGANIZATION 11

II FINITE ELEMENT FORMULATION 14

2.1 INTRODUCTION 14

2.2 ELEMENT DISPLACEMENT FUNCTIONS 14

2.3 NON-LINEAR STRAIN DISPLACEMENT RELATIONS 17

2.4 RESULTANT FORCE AND MOMENT VECTOR 23

2.5 DERIVATION OF ELEMENT MATRICES USING PRINCIPAL

OF VIRTUAL WORK 27

2.5.1 Linear Stiffness Matrices 29

2.5.2 First-order Non-linear Stiffness Matrices 29

2.5.3 Second-order Non-linear Stiffness Matrix 30

2.6 EQUATION OF MOTION IN STRUCTURAL DEGREES OF

FREEDOM 31

2.7 SYSTEM EQUATION OF MOTION 33

2.8 CONDENSED SYSTEM EQUATION OF MOTION 33

SYNCHRONIZED AND UNSYNCHRONIZED RANDOM

LOAD 36

3.1 GENERATION OF RANDOM LOAD TIME HISTORY 36

3.2 BASIC CONCEPTS: SYNCHRONIZED LOAD VS.

UNSYNCHRONIZED LOAD 37

3.3 WHITE RANDOM PRESSURE SIMULATION 39

3.4 COMPUTATIONAL ASPECTS OF GENERATION OF

UNSYNCHRONIZED TIME HISTORY 41

3.5 MONTE CARLO SIMULATION (MCS) 43

3.6 TIME STEP CONSIDERATIONS 44

3.7 RESCALING OF RANDOM LOAD VECTOR 46

SOLUTION PROCEDURE USING MODAL FORMULATION. 49

4.1 INTRODUCTION 49

4.2 ADVANTAGES OF THE MODAL APPROACH 49

4.3 LINEAR VIBRATION PROBLEM 50

4.4 DYNAMIC RESPONSE USING MODAL EQUATIONS IN

NORMAL MODES 51

4.5 FOURTH ORDER RUNGE-KUTTA INTEGRATION

SCHEME 53

4.5.1 Solution for Second Order Differential Equations 54

4.5.2 Advantages 56

4.6 SOLUTION PROCEDURE FN STRUCTURAL DOF 57

4.7 MODE SELECTION 57

4.8 DATA MANIPULATION 58

4.8.1 Convergence Considerations 58

4.9 POWER SPECTRAL DENSITY (PSD) VS. FREQUENCY

vi

GRAPH 59

4.10 MODAL PARTICIPATION FACTOR 61

V SPARSE COMPUTATION METHODOLOGY 62

5.1 EIGEN SOLUTION USING SUB SPACE ALGORITHM 62

5.2 SPARSE STORAGE SCHEME FOR SYSTEM LINEAR

STIFFNESS AND MASS MATRICES 63

5.3 APPLICATION OF DIRICHLET BOUNDARY CONDITIONS 67

5.4 LDLTEQUATION SOLVER 68

5.5 STEP-BY-STEP PROCEDURE OF SPARSE COMPUTATION

METHODOLOGY FOR NONLINEAR FINITE ELEMENT

ANALYSIS 71

VI PARALLEL COMPUTATION APPLICATION 81

6.1 BASICS OF PARALLEL COMPUTATION 81

6.2 APPLICATION OF PARALLEL COMPUTING IN CASE OF

UNSYNCHRONIZED LOAD CASE 82

6.2.1 Large Scale Problem Solving 82

6.2.2 Advantages 82

6.3 BASIC CONCEPT: DIFFERENCE IN RANDOM LOAD VECTOR

GENERATION 84

6.4 STEP-BY-STEP PROCEDURE OF RANDOM LOAD VECTOR

GENERATION IN CASE OF SYNCHRONIZED LOAD CASE 85

6.5 STEP-BY-STEP PROCEDURE OF RANDOM LOAD VECTOR

GENERATION USING PARALLEL COMPUTATION IN CASE

OF UN-SYNCHRONIZED LOAD CASE 86

VII NUMERICAL EXAMPLES 90

7.1 SYNCHRONIZED LOAD CASE 92

7.1.1 Synchronized Load Case: Small Scale Problem with 16 x 16

Mesh Size 92

7.1.2 Synchronized Load Case: Medium Scale Problem with 192 x

192 Mesh Size 95

vii

7.1.3 Synchronized Load Case: Large Scale Problem with 256 x

256 Mesh Size 96

7.2 UNSYNCHRONIZED LOAD CASES 97

7.2.1 Un-synchronized Load Case: Small Scale Problem with 16 x

16 Mesh Size 98

7.2.2 Unsynchronized Load Case: Medium Scale Problem (96 X

96 Mesh Size) 100

7.2.3 Unsynchronized Load Case: Large Scale Problem (192 x 192

Mesh Size) 101

7.3 USER INPUT DATA 102

7.4 MAIN PROGRAM 104

7.5 JOB SUBMISSION 104

VIII CONCLUSION 106

8.1 FUTURE SCOPE 108

APPENDIX A-TRANSFORMATION MATRICES 110

APPENDIX B- FORTRAN CODE FOR GAUSSIAN-STATIONARY RANDOM

LOAD GENERATION 115

APPENDIX C-LINEAR RANDOM VIBRATION 120

APPENDIX D- FORTRAN CODE FOR LOAD VECTOR RE-SCALING 122

APPENDIX E-SUBROUTINE'S DESCRIPTION 127

APPENDIX F-SCRIPT FILE FOR JOB SUBSCRIPTION 144

APPENDIX G: LISTINGS OF THE ENTIRE FORTRAN SOURCE CODE OF

PROPOSED SPARSE-PARALLEL NONLINEAR FEA METHOD

REFRENCES 146

viii

LIST OF FIGURES

Figure Title Page

1.1 Various loads on surface panels of supersonic/hypersonic flight vehicles 2

1.2 A 3 x 3-bay panel5 4

1.3 Panel flutter: theory and experiment 5

1.4 Comparison of mean-square strains8'10 6

1.5 Experiment strain PSD of a square aluminum panel at three overall

SPL10 7

2.1 Nodal degrees of freedom of a BFS C1 conforming rectangular element.. 15

2.2 A fiber-reinforced lamina with global and material Coordinate Systems.. 23

3-1 Schematic representation of a random process p{t) Each p(j){t) is a

sample 38

3.2 Random White Noise at SPL=120 dB and fc =1024 Hz 40

3.3 Two pressure time histories of the same PSD from different ISEED

numbers 42

3.4 Computational basics: Synchronized Vs. Unsynchronized load case 43

3.5 Random load time history, PSD and PDF (Probability Density Function) 48

3.6 Effect of rescaling of random load vector 48

4.1 Maximum deflection time history under synchronized loads 60

4.2 PSD under synchronized load 61

5.1 A simple finite element mesh 72

6.1 Message passing in parallel computers 82

6.2 Correlation coefficients among 10 different random time histories 84

7.1 Comparison of strain PSD among experiment aluminum panel at three

overall SPL10 and three FE methods for nonlinear random vibration of a

clamped beam15 91

7.2 Graph of No. of processors Vs. Time (minutes) for small scale problem

with un-synchronized load using 16x16 mesh size 99

7.3 Graph of No. of processors Vs. Time (minutes) for medium scale

IX

problem with un-synchronized load using 96 x 96 mesh size 101

7.4 Graph of No. of processors Vs. Time (minutes) for medium scale

problem with un-synchronized load using 192 x 192 mesh size 102

X

LIST OF TABLES

Table Title Page

7.1 Comparison of nonlinear coefficients using classical PDE/Galerkin and

FEM methods for a 14 x 10 x 0.04 in. simply supported panel20 91

7.2 Data used for small-scale problem (16 x 16) mesh size 93

7.3 The lowest seven natural frequencies (in Htz) of simply supported plate. 93

7.4 Verification of results for a simply supported isotropic plate 94

7.5 Time consumed by various segments of sparse FEA code for 16 x 16

mesh size 94

7.6 Data used for medium-scale problem (192 x 192) mesh size 95

7.7 Time consumed by various segments of sparse FEA code for

synchronized loading using 192 x 192 mesh size 96

7.8 Data used for large-scale problem (256 x 256 mesh size) 96

7.9 Time consumed by various segments of sparse FEA code for

synchronized loading using 256 x 256 mesh size 97

7.10 Time consumed by various segments of sparse FEA code for

unsynchronized loading using 16 x 16 mesh size 98

7.11 Time consumed by different number of processors using sparse-parallel

FEA code to solve small scale problem with un-synchronized loading

using 16 x 16 mesh size 99

7.12 Time consumed by different number of processors using sparse-parallel

FEA code to solve medium scale problem with un-synchronized loading

using 96 x 96 mesh size 100

7.13 Time consumed by different number of processors using sparse-parallel

FEA code to solve large scale problem with un-synchronized loading

using 192 x 192 mesh size 101

7.14 Input data requirements 103

7.15 Order required for input data 104

XI

NOMENCLATURE

{a}, {6} generalized coordinates

A element area

[A] membrane stiffness matrix

a element length

b element width

[B] coupling stiffness matrix

[Bb] bending strain interpolation function matrix

[Bm] in-plane strain interpolation function matrix

\Be] large deflection interpolation function matrix

[c] interpolation function matrix

[D] bending stiffness matrix

Ei, E2 Young's modulus in material major and minor axis

fc upper cut-off frequency

fjmK maximum frequency

G12, G13, G23 shear modulus

Gp cross-spectral density function

[H] displacement function matrix

h plate thickness

[k], [K\ element and system linear stiffness matrices

[ki], [Kl] element and system first-order nonlinear stiffness matrices

[k2], [K2] element and system second-order nonlinear stiffness matrices

[K\ modal linear stiffness matrix

[Kq], [Kqq] modal nonlinear stiffness matrices

L length of the element

[m], [M] element and system mass matrices

[M\ modal mass matrix

Xll

{M} bending moment stress resultants

NPT total time history points

{N} inplane force stress resultants

[«, J, [JV,] element and system first-order nonlinear incremental stiffness matrices

[n2], [N2] element and system second-order nonlinear incremental stiffness matrices

p0 reference pressure

{p},{P} element and system force vector

Pmndom random load intensity

[P j modal force vector

[Q] lamina reduced stiffness matrix

[Q\ transformed lamina reduced stiffness matrix

{q} modal coordinate vector

*o

t

MM
fclfc]
U

u, v

W

M,W
w

x,y,z

spectral density

time

transformation matrices

strain and stress transformation matrices

strain energy

inplane displacements

work

element and system nodal degree-of-freedom vectors

transverse displacement

Cartesian coordinates

Xlll

GREEK SYMBOLS

w
M
w
M
e
«.{*}
N
W
v,v„y„.

[e]

p

ai2

w
T

ft)

£

Jff

<y

A

A

&

cr

ex?

int

m

max

total strain vector

in-plane strain vector

membrane strain vector

von-Karman strain vector

fiber orientation angle

element and system eigen vectors

system eigenvector matrix

bending curvature vector

poisson's ratios

slope matrix

mass density

stress in 1-2 direction

stress vector

shear stress

frequency

structural modal damping ratio

work done by the forces

natural frequency

increase value

eigen-value

SUBSCRIPTS

bending

critical

external

internal

membrane

maximum

xiv

0 large deflection

u, v, w in-plane and transverse displacements

s strain

<7 stress

SUPERSCRIPTS

(r) rth normal mode of linear vibration problem

T matrix and vector transpose

e element level

1

CHAPTER I

INTRODUCTION

Efficient numerical procedures including modal method for solving large-scale,

sparse, parallel, nonlinear large deflection random vibration problems are proposed. The

solution for the small number (say less than 100) of lowest linear Eigen-pairs need to be

solved for only once, in order to transform nonlinear large displacements from the

conventional, large structural degree-of-freedom (dof) into the smaller modal dof. The

reduced coupled nonlinear equations of motion in modal dof can be inexpensively solved

by the popular Runge-Kutta (RK) or any other time integrating method. The main focus

is placed upon computational issues involved in the nonlinear modal methodologies.

Major time consuming portions of the nonlinear modal method are firstly identified.

Then, efficient sparse and dense matrix technologies are proposed and incorporated into

the developed procedures. Small, medium, and large-scale single panel models are used

to validate and evaluate their numerical performance. Whenever possible, comparison in

terms of numerical accuracy and computational time between the developed codes with

existing solution including popular commercialized finite element software such as

Abaqus is included. Results obtained to this date indicate that the developed algorithms

and software are accurate and highly efficient.

A new spacecraft, Crew Exploration Vehicle, will be developed and eventually

conduct the Space Exploration Mission. Recently, the NASA X-43A scramjet airplane

made a successful flight with a new speed record of Mach 10. A new Air Force initiative,

Hypersonic and Space Access Program, demands emerging technologies on effective

hypersonic vehicle design. Acoustic fatigue is one of the major design considerations for

skin panels exposed to high levels of random pressure and elevated temperature at

subsonic/supersonic/hypersonic speeds. The severe flight environment leads to various

loads48 on the surface panel, including aerodynamic pressure, acoustic excitation, and

thermal load as shown in Fig. 1.1.

The Journal model used for this work is the AIAA Journal

2

Fig. 1.1: Various loads on surface panels of supersonic/hypersonic flight

vehicles48

Acoustic fatigue is a long-cycle fatigue failure induced by forced random

vibration from outside sources such as jet engine noise, turbulent boundary layer pressure

fluctuations, and unsteady aerodynamic forces due to flow separation. The sonic fatigue

design guide1 was based on semi-empirical data for isotropic metallic aircraft structures.

1.1 PROBLEM DEFINITION

The nonlinear large deflection random response of aerospace structures like

single-bay panels subjected to random excitations at various sound pressure levels (SPLs)

has been investigated. A nonlinear finite element modal (FEM) method incorporated with

the Monte Carlo simulation and sparse computational techniques is presented and applied

to determine the dynamic response accurately with a refined FE mesh for the first time.

The proposed method is applicable to complex and highly efficient aerospace and civil

3

structures by incorporating sparse computational techniques and parallel computation

especially in case of unsynchronized loading.

1.2 ACOUSTIC FATIGUE TESTING

Acoustic fatigue tests have been conducted to determine the response and fatigue

life of aircraft panels. One of the first tests in 19572 showed that a single aluminum panel

subjected to acoustic pressure had a fatigue life of 840 sec at 154 dB, 180 sec at 160 dB,

and 30-40 sec at 166 dB overall SPL. Both experimental and theoretical studies in 19683

indicated that the response of a single-bay panel was very much sensitive to the boundary

conditions and small variations of spacing. The effect of stiffeners and stringers must be

addressed. It was found in 19724 that the rear part of fuselage must be modeled with

multi-bays in both stream-wise and span-wise directions under turbulent boundary layers.

Fatigue tests on multi-bay composite aircraft structures were conducted by Holehouse5 in

1980. A 3 x 3 bay panel (configuration "a" in ref.5) is shown here in Fig. 1.2. It was

found that the measured RMS strains from a total of 20 panel configurations were all

much lower than those of linear Nastran analysis results, indicating a highly nonlinear

response of panels and un-synchronization of the random pressure in time. It would be

excessively conservative if acoustic fatigue design was based on linear structural and

random loads synchronized in time analysis. Other experimental work on multi-bay

panels with stringers6 in 1989 showed that the fatigue cracks often occurred in the

stiffeners or areas close to them.

Fig. 1.2: A 3 x 3-bay panel5

1.3 ANALYSIS METHODS FOR ACOUSTIC FATIGUE

It is also well known that panel flutter occurs resulting from airflow acting on

only one side of surface panel. There exists a critical non-dimensional dynamic pressure

Acras shown in Fig. 1.3.52 BelowZcr the panel undergoes linear random vibration with

small amplitudes. The dominant frequency is observed near the lowest natural frequency

of the panel. Neglecting structural nonlinearity, linear theory indicates that beyond Xcr the

panel motion becomes unstable and grows exponentially with time. Therefore, nonlinear

effect must be considered in vibration analysis beyond Xcr.

1.0

Wmax

o Experimental data
- - Conventional flutter analysis

-—• Conventional noise analysis

Noise
..*—

Flutter

r

Dynamic pressure, X

Fig. 1.3: Panel flutter: theory and experiment52

Accurate prediction of nonlinear random response of panels is critical for fatigue

life estimation and design of aerospace structures. The Fokker-Plank-Kolmogorov (FPK)

equation approaches7 give exact solutions to a single-mode and some special 2-mode

nonlinear systems subjected to white noise excitations.

6

1000

LINEAR
THEORY

©

NONLINEAR
THEORY

,.* * ::r:-:,'.„ ,± :::.:::::J; >••;::::':

A/ 8=* 1
B PANEL 1.063
© PANEL 2,040

SOOO 10000 1S00O 20000

Fig. 1.4: Comparison of mean-square strains (Mean square center deflection Vs.

Pressure spectral density for a clamped square plate)8'10

The equivalent linearization (EL) technique incorporates PDE/Galerkin or FEM

method to transform nonlinear ODE to a set of equivalent linear equations with the
Q

assumption that the response is Gaussian. Mei and Paul compared analytical solutions

with testing data10 for two single-bay aluminum square panels as shown in Fig. 1.4. The

nonlinear response of the aluminum panel is characterized by the broad peaks and

frequency shifts in the power spectral density (PSD) plot as shown in Fig. 1.5.

7

160 dB SPL

m dB SPL

130 dB SPL

m m M
FREQUENCY - HZtxio l J -

iW

Fig. 1.5: Experiment strain PSD of a square aluminum panel at three overall

SPL 10

The Monte Carlo numerical simulation based on PDE/Galerkin11 is a time domain

method suitable for simple panel geometries and boundary conditions. Another time

domain method is the Monte Carlo simulation based on the traditional finite element (FE)

method. The computational cost is the main concern because the FE model often includes

a very large number of structural dof, and the nonlinear terms have to be updated and

reassembled at each time step of integration. Mei et al.13 developed a FEM method to

reduce the large number of FE structural dof to a very small number of modal dof. In

another study,14 the modal method is implemented using a regression analysis in which a

8

series of nonlinear static test cases are used to identify the nonlinear modal model.

Hollkamp et al.15 verified recently that the two modal methods13' 14and the experiments

agree very well for clamped beams in terms of strain PSD function.

Reviews on acoustic fatigue of aircraft and spacecraft structures were conducted

by Clarkson16 in 1994, and Mei and Wolfe17 in 1986, respectively. The random response

should be considered with the nonlinear large deflection effects, the influence of in-plane

boundary conditions, and the appropriate analysis methods. The approaches to the

estimation of damage accumulation and fatigue life were reviewed. They also gave the

directions of future research and the factors to provide a reliable estimate of acoustic

fatigue life of aerospace structures.

1.4 SINGLE-BAY AEROSPACE STRUCTURES

For the past twenty years researchers have been focusing on the random vibration

and acoustic fatigue of isotropic/composite single panels under random loads

synchronized in time. Nonlinear FEM methods in time domain have been developed to

determine the time history of the random response.13 The approach uses the von-Karman

nonlinear strain-displacement relations and the laminated classical plate theory for fatigue

life estimation. The nonlinear modal equations of motion are solved by Runge-Kutta

numerical scheme to obtain maximum deflection. Monte Carlo simulation is adopted and

the ensemble would take 10 or more samples. Accurate responses are ensured with modal

convergence, mesh convergence, and time step studies.

Many of today's structures are subjected to excitations which are random in

nature. Examples range all the way from aircraft and missile structures subjected to aero-

elastic and aerodynamic loads to civil engineering structures like high rise buildings and

bridges acted upon by earthquake and wind loads. In some cases, the response statistics

of such structure will be strongly time dependent or non-stationary, but in many

applications, the response may be considered stationary. In this study, only stationary

excitations are considered. In stochastic structural dynamics, the majority of analyses

9

have dealt with linear structures under stationary, Gaussian, and band-limited white noise

excitations. Although these simplifying assumptions may be justified in many processes,

experimental data have shown the non-stationary and non-Gaussian characteristics of the

loads quite frequently.

1.5 ANALYTICAL APPROACHES FOR RANDOM VIBRATION ANALYSIS

In 1983, Crandall and Zhu39 published a review article on the progress in random

process and random fields, source of excitations, prediction of random responses, and

reliability.

There are five major analysis methods for the prediction of nonlinear random

response of the structural panel:

(1) Perturbation

(2) Fokker-Plank-Kolmogorov (FPK equation)

(3) Monte Carlo

(4) Equivalent linearization

(5) Finite element numerical Integration

The perturbation method40 has been limited to very weak geometric nonlinear

problems. So, it is not suitable for large nonlinear random vibration. The FPK method

can lead to exact solutions only for single degree of freedom systems. Heuer et al.41

extended the application of the FPK approach to multi dof by utilizing a multi-modal

projection method. They also investigated the nonlinear random vibration of thermally

buckled skew plates. The probability of first occurrence of snap-through was determined.

The implementation of the method is very tedious.

The equivalent linearization method is extensively used because of its ability to

accurately capture the response statistics over a wide range of problems while

maintaining a relatively low computational burden.42, 43 Ng44 presented a single-mode

method for the analysis of snap-through. He divided the random response with the

10

compressive load larger than the critical value into three regions: no snap-through,

intermittent snap-through, and persistent snap-through. Lee45 investigated the effects of

thermal variation and thermal moment on the panel response. Locke and Mei,46 and Mei

and Chen extended the finite element method to nonlinear random vibration analysis.

The equivalent linearization method was adapted to the nonlinear finite element modal

equations to determine RMS deflections and strains at different sound pressure levels.

The application of the equivalent linearization method depends on the assumption of

Gaussian distribution over the response. Thus it can not predict occurrence of snap-

through since snap-through is non-Gaussian in nature.

Monte Carlo simulation ' was employed by Arnold and Vaicaitis , Vaicaitis ,
AQ

Vaicaitis and Kavallieratos to study the nonlinear panel response and fatigue life

subjected to acoustic excitation. The PDE/Galerkin method was employed and numerical

integration was used to obtain time history of the panel response. Green and Killey12

studied a similar problem but narrow-band acoustic loads were used and initial

imperfections were also considered in the model. The PDE/Galerkin approach limits its

applicability to rather simple structures.27'47

The finite element numerical integration approach combines the finite element

and Monte Carlo simulation method.12' 49 The main disadvantage of the method is its

computational cost, because the finite element model often includes hundreds, if not

thousands, number of physical structural node dofs, and the nonlinear terms are updated

and reassembled at each time step. Abdel-Motagaly et al.50 used finite element numerical

integration to study nonlinear panel response under combined aerodynamic and acoustic

loads. Finite element system equations of motion were transferred to modal coordinates

to reduce the large number of structural node dof. Dhainaut et al.51 adopted the same

approach, and studied the random response to the acoustic loads at elevated temperatures

environment.

11

1.6 OBJECTIVE AND SCOPE

FEA code has been developed for nonlinear modal finite element analysis of the

structures modeled using rectangular plate elements. The code is developed in Fortran

language with the capability of linking with the Matlab environment. Developed FEA

code is capable of solving large scale, synchronized as well as unsynchronized loading

problems. By adding features like geometry transformation, various element types,

different kind of loadings and accounting for composite materials, the code can be

extended to solve generalized problems for analysis of large scale complex structures.

1.7 LIMITATIONS

Developed FEA code has the following limitations:

1. Code is applicable for nonlinear analysis of the structure modeled using

rectangular plate elements only.

2. Structural material shall be isotropic only.

3. The plate element considered in this work is assumed to be aligned with the

global coordinate axis. Thus, coordinate transformation from element to global

axis is not necessary.

4. Simulated random load is considered truncated band limited white noise for the

sound waves. Code is capable to perform nonlinear analysis for other types of

random loads for which input load needs to be supplied.

5. Thermal loading has not been accounted in the code.

6. The environment should have access to Matlab in order to run the code with

rescaling feature.

1.8 MOTIVATION AND DISSERTATION ORGANIZATION

The random excitations such as earthquake type motions, pressure waves of

explosion, jet noise, and continuous atmospheric turbulence must take into consideration

while designing structures like bridges, tall buildings that house nuclear reactors, and

12

naval and aerospace structures, for the safety and reliability purpose. The investigation of

dynamic response to random excitation started in 1905 with Einstein's pioneering study

of Brownian motion. But it has acquired a special prominence with the advent of jet

engines. In vibration analysis, the important task is simulation of random loads as close

to real life cases as possible. This is because as far as random data is concerned, it can be

obtained from various sources such as data recorded from an earthquake or acoustic load

data measured from flight testing on an aircraft. But, it is extremely important to apply

the random loads correctly to a structure in order to achieve results as close to

experimental values as possible. All these concerns go into the design of structures under

random loads. Because a structure's vibration characteristics determine how it responds

to any type of dynamic load, modal analysis should always be performed first before

trying any other dynamic analysis.

It was reported by Green and Killey12 that only running a half-second time for

nonlinear time domain Monte Carlo simulation of 5000-element for a single-bay panel

took approximately 10 hours on a Cray C94 computer. To solve such problems with a

large number of elements for longer time history, an efficient method must be used.

Application of sparse technology combined with non linear modal finite element analysis

makes it possible to solve unsolved problems because of the time and memory limitations.

Most real life cases are subjected to unsynchronized random loads, simple

examples of which are long period of rain drops steadily falling on the roof top or about

30,000 marathon runners running on a suspension bridge. And as such it is important to

study the behavior of structures to such loads. But given the complexity of the problem, it

is detrimental to understand the fundamental aspects. In light of this fact, the problem is

being studied and parallel computation has been involved along with sparse techniques to

solve such problems with very large mesh size and/or with long random load time history

within the limitation of time and/or memory.

The current commercial finite element codes, such as Nastran and ANSYS etc.,

could not study the linear random response under the unsynchronized loading case since

13

they are solved in the frequency domain. To the best knowledge of the author there is no

efficient analytical or numerical solution to the nonlinear response of plates, with large

mesh size under unsynchronized random pressure loads available in the literature.

Following a discussion on the reasons leading to the motivation to study the panel

response under synchronized and unsynchronized random loads and literature survey

related to such problems, the flow of this thesis will include all the details about the

solution procedure used. In Chapter 2, the finite element system governing equations are

derived based upon von-Karman nonlinear strain-displacement relations and virtual work

principle. In Chapter 3, the concepts and importance of un-synchronized load cases are

discussed. Also, the generation of synchronized as well as un-synchronized random load

is discussed along with the requirement of using parallel computation in case of

unsynchronized load case. In Chapter 4, the solution procedures are developed. A modal

equation of motion is derived in order to save time and memory. Runge-Kutta time

integration scheme is employed for solving equation of motion. Random responses are

characterized by Monte Carlo numerical simulation using a modal approach. Chapter 5

provides detailed description of sparse technology including storage scheme, Eigen-

solution by Sub-space method, and equation solver usage to inverse the sparse matrix.

Step-by-step sparse algorithm applied to the solution procedure is also addressed. Chapter

6 discusses basics of parallel computation and the reasons for usage of parallel

computation in case of un-synchronized load case along with step-by-step solution

procedure. In Chapter 7, numerical examples are presented with results and discussions

for synchronized and un-synchronized dynamic pressure subjected. Finally, the

concluding remarks and recommendation for future work are presented in Chapter 8.

14

CHAPTER II

FINITE ELEMENT FORMULATION

2.1 INTRODUCTION

Bogner-Fox-Schmit (BFS)55 C1 conforming rectangular element59'60 is adopted in

the study. The finite element governing equations for random vibration to a BFS plate are

derived in this chapter. The load subjected is assumed either to be a band-limited white

or non-white Gaussian random pressure and uniformly distributed over the structural

surface. The finite element formulation56' 57' 64 is based on the von-Karman large

deflection theory with the small strain assumption and the classic plate theory. The

following assumptions are made throughout the derivation:

1. The panel is thin. Which means the length to thickness ratio, L/h > 40.

2. In-plane inertia, rotary inertia, and transverse shear deformation effects are

negligible.

3. Von-Karman strain-displacement relations are valid.

4. Proportional damping %ra>r - %sa>s, is used. Where, coefficient gr is modal

damping ratio for the rth mode and a>r is the rth modal natural frequency.

5. Straight lines perpendicular to the mid surface before deformation remain straight

and perpendicular after deformation.

6. The transverse normals do not experience elongation, i.e., they are inextensible.

2.2 ELEMENT DISPLACEMENT FUNCTIONS

In the derivation, C1 conforming BFS rectangular plate elements are adopted. A

C1 conforming element provides inter-element continuity of the displacement field w(x,y)

in the z-direction, and its first derivatives w x and w but it does not provide inter-

element continuity of all second derivatives ofw(x,y).

15

As shown in Fig. 2.1, BFS rectangular plate element of length a, width b, and

thickness h consists of four nodes and each node has 6 dof. Thus, each element has total

24 dof, which includes 16 bending dof, {v^jiexi.and 8 in-plane dof, {wm}8xi.They are

expressed as:

M= (M MY (2.i)

(wj W2 W3 W4 W,X1 W,X2 W,X3 W,X4 ~w,yl w,y2 w,y3 w,^ w,xyl w,xy2 w,xy3 w,xyA\ (2 . 2)

{wm}= {«, u2 u3 u4 v, v2 v3 v4}T (2.3)

Fig. 2.1: Nodal degrees of freedom of a BFS C1 conforming rectangular element

16

The element transverse displacement w and the in-plane displacements u and v

can be approximated as a bi-cubic and bilinear polynomial function of x and y, which can

be expressed56'62,63 as:

w\x, y) = ax + a2x + azy + a4x
2 + a5xy + a6y

2 + a7x3 + a%x2y + a9xy2

+ al0y
3 +anx y + al2x y + al3xy3 + ai4x

3y2 + al5x
2y3 + al6x

3 y3

= [Hw(*>y)fa} (2-5)

where,

[/ /^ (x ,^^ [l x y x2 xy y1 x3 x2y xy2 y3 x3y x2y2 xy3 x3y2 x2y3 x3y3J (2.6)

{a}={aj a2 a3 a4 a5 a6 a7 a8 a9 al0 an Oj2 a13 al4 al5 al6) (2.7)

and

u(x, y) = bx + b2x + b3y + b4xy (2.8)

= KM1W (2-9)
where,

[#„(*, .y)] = [l x y xy 0 0 0 0] (2.10)

{b}={bx b2 b3 b4 b5 b6 bn bj (2.11)

v(x,y) = b5 +b6x + b1y + bixy (2.12)

= {Hv{x,y)]{b} (2.13)

17

where,

[Hv(x,y)]=[0 0 0 0 1 x y xy] (2.14)

Here, [a] and {b} are called generalized coordinates and they are related to the

nodal dof vectors by their transformation matrices as shown below:

M=fo]M (2-15)

{b) = [Tm]{wJ (2.16)

The detailed derivation of bending and in-plane transformation matrices [Tb] and

[Tm] is given in Appendix A. In terms of nodal displacement vectors, the element

displacement functions can be expressed as:

= [Hw{x,y)lTb]{wb} (2.17)

" = {Hu{x,y)}{b}

= k k * k } (2.18)

v = [Hv(x,y)]{b}

= [Hv(x,y)lTm]{wJ (2.19)

2.3 NON-LINEAR STRAIN DISPLACEMENT RELATIONS

Using the Von-Karman large deformation strain-displacement relations, the total

strain vector {s}, in terms of in-plane strain and curvature, can be written as follows:

18

w=- 4°)+*) (2.20)

xy

where in-plane strain vector, \£°)> consists of two components and can be written as:

M=fcM4 (2.21)

In the above equation,

\e°m j = In-plane strain vector

: Non-linear von-Karman strain vector

where in-plane strain can be expressed in terms of finite element displacement functions

as:

kh

du

dx

dy
du dv
dy dx

(2.22)

The non-linear Von-Karman strain can be expressed in terms of finite element

displacement functions as:

W

ifdw^2

ydxj

dw dw

dx dy

(2.23)

19

Substituting the in-plane strain vector from Eq. (2.22) and non-linear von-Karman strain

vector from eq. (2.23) into Eq. (2.21):

M=

du

dx
dv_

dy
du dv

dy dx

>4<

dw

ydxj

'dwV

dw dw

dx dy

(2.24)

As per Eq. (2.18),

So,

OX OX

And,

dy dy

(2.25)

(2.26)

AsperEq. (2.19),

So,

dx dx

And,

(2.27)

%=j-[Hv{x,ym
dy dy

(2.28)

AsperEq. (2.16),

{b}-[Tm]M

20

Thus,

<=[Cm][Tmiwm}

= [Bm\wm}

where,

[Bm]=[Cm\Tm]

(2.29)

(2.30)

(2.31)

In which,

[Cj =
dx

dy

l[Ha(x,y)]+l-[Hv(x,y)]
ox dy

(2.32)

0 1 0 j> 0 0 0 0'

0 0 0 0 0 0 1 x

0 0 1 x 0 1 0 ; ;
(2.33)

Now,

fcl^M

where,

tw

dx
dw
dy

(2.34)

[0} =

dw
dx

r\

0

dw

>

0
dw
—
dy
dw
dx

(2.35)

21

As per Eq. (2.17),

w = [Hw(x,y)]{a}

So,

dw _ d
dx dx'

And,

-KM1M

ay oy

Now,

[c.]= dx [Hw(*>y)]

j-\H*by)]
(2.36)

0 1 0 2x y 0 3x2 2xy y2 0 3x2y 2xy2 y' 3x2y2 2xy3 3x2yi~
0 0 1 0 x 2y 0 x2 2xy 3y2 x} 2x2y 3xy2 2x3y 3x2y2 3x2y2

(2.37)

As per Eq. (2.15),

Also,

where,

[Beh[Ce\Tb]

(2.38)

(2.39)

(2.40)

The bending curvature vector {̂ }is defined as:

22

to-
- 2

32w

dx2

d2w

dy2

d2w

dxdy

(2.41)

So, the curvature vector component

M=[QfcK}
= [Bb\wb}

= [Cb\a}

where,

foHQfc]
And,

[c,]=-

-£rK(^)]
- |rK(«)l

-2JL[ff.(r,y)]

>

(2.42)

(2.43)

(2.44)

(2.45)

0 0 0 2 0 0 6x 2y 0 0 6*y 2 /

0 0 0 0 0 2 0 0 2 x 6 ^ 0 ^-2

0 0 0 0 2 0 0 4x 4}/ 0 6x2

0 6xy2 2y3 6xj/3

2xz 6xy 2x3 6x2y 6x3y

Sxy 6y2 I2x2y 12xy2 I8x2y2

(2.46)

The matrices [Bm\[B J and [5 J expressed through Eq. (2.31), (2.40), and (2.44)

are the strain interpolation matrices corresponding to in-plane, large deflection, and

bending strain components, respectively. Similarly, the subscripts m, 6, and b denote that

the strain components are due to membrane, large deflection, and bending, respectively.

23

2.4 RESULTANT FORCE AND MOMENT VECTOR

To include composite material for future extension of current work, the equations

are derived for composite plate, from which the equations for isotropic plate material can

easily obtained. As shown in Fig. 2.2, consider the plate of overall thickness h composed

of many layers of lamina with an arbitrary orientation angle (9.

z=x%

J^m?*

Fig. 2.2: A fiber-reinforced lamina with global and material coordinate systems

The linear constitutive relations 49' 50 for the k'h layer in the principal material

coordinates (x{, x2)can be written as:

<V
a2

?n.

' =

k

Qn Qn 0

G21 Q22 0

0 0 Q66 \Tn\

(2.47)

where,

\Q\ = the reduced stiffness matrix of the composite lamina

£.
Qn

fi.2

e2,

l-MnVu

^ 1 2 ^ 2

1 - ^12/^21

fJ.lxtLx

1- /^12 /^21

Note that, Q2l =

Q22

Q66

_ ^ 2

^ — MnMn

= Gl2

Qn

For the isotropic plate,

£i\ — tL2 — h,

vn = v21 = v

r - ^
1 2 " 2 (l - v)

Considering the composite lamina shown in Fig. 2.2, the stress and strain transformation

relations from the principal directions xx,x2 to x,y directions are:

•ITM <7„ (2.48)

r 12 j

=[T.(m sy
(2.49)

where, defining c = cos 0 and s = sin 0,

25

2 2
C S

2 2
S C

Thus,

<=[CmlTjwJ

2sc

-2^c

SC SC C 2 - 5 2

re?

[B.HC

„2 „2
5 C

TT2.SC 2.SC C - 5 1

Kf
-SC

2 _2

20

(2.50)

(2.29)

(2.30)

(2.51)

(2.31)

lli%m<3\e s t r e s s - s t r a m relations for a generalized k'h lamina becomes

%,(&)]
22 i i 2 6

ft Jk

8 HAx,y)}+^[Hv(X,y)]

(2.32)

(2.52)

where, stiffness matrix, is given by

= 0 0 0 0 0 0 1 x

0 0 1 x 0 1 0 y

[Ql=[TMriQMo)]

(2.33)

(2.53)

Now,
The resultant forces and moments per unit length are:

dw\

({JV},{M})=

where,

dx

- A / 2

(2.34)

(2.54)

where z = layer thickness

And thje^Minstifaitive equations for a laminate can be written as:

W
SXA

m
dw dw

dy dx

s

K
mv

http://tt2.SC

26

where [A\ [B] and [D] are the laminate extensional, extension-bending, and bending

stiffness matrices, respectively, and are given by,

4 = lkl^
-h/2

h/2

-h/2

Z 4=1

-h/2

j *=i

i,j=l,2,6

i,j=l,2,6

i,j=l,2,6

(2.56)

(2.57)

(2.58)

While deriving the equation of motion, it is assumed that the plate is thin and it

means the ratio of length or width over thickness is greater than 40. Thus, the rotary

inertia and shear deformation effects are considered negligible.

M = [4*°}+M*:} (2.59)

{M} = [B]{S°}+[D]{K} (2.60)

The isotropic plate is adopted for present study for which [B] = 0.

27

2.5 DERIVATION OF ELEMENT MATRICES USING PRINCIPAL OF

VIRTUAL WORK

According to virtual work theory, the total work done by internal and external

forces on an infinitesimal virtual displacement is null. Here, the governing equation is

derived8'46'56'63 using the same principle:

SW = SWint-SWext=0 (2.61)

On the plate element, work done by the internal forces is:

SWint = l({Ss°f {N}+ {SK}T {M})lA (2.62)

where,

A = Area of the element

{N} = Resultant force vector

{M} = Moment vector

The virtual in-plane strain vector can be expressed as:

SlBj{wm} + ^[0lBe]{wb} (2.63)

where,

4Bm]{wJ) = [Bm]{Swm} (2.64)

4 \ [B\Be] K } 1 = \ [S9\B9]{wb} + i [0\B0){Swb}

= \[9\Bjdwb} + \[elB0\Swb} (2.65)

=[9\Be\dwb}

28

)))

Therefore Eq. (2.63) can be written as;

{Se°}=[Bm]{Swm}+[elB0]{^b}

Now,

{te} = S(lBjwb}) = [Bb]{Swb}

Substituting Eq. (2.66) and Eq. (2.67) into Eq. (2.62) gives:

M* = 1((K]{^J+[olB,ii&M4*0)h

^[(([Bj^filDlMM^A

+ l(MsWbWMBbU})}tA

= \A({^J[Bj[AlBm}{Wm}}lA

+ \^J[BjlAle\BAMy

l({^bYWlBjlAlBmhm}}}A

l[\faJ[oriBj[AMB,U}y

l({^bYlBj[DlBb]M}lA

VIA

\dA
J)

+

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.70-1)

(2.70-2)

(2.70-3)

(2.70-4)

(2.70-5)

The digit after the equation number 2.70-x indicates the term number. For

instance, term 2 is the same as equation 2.70-2. Expressions for the linear stiffness

matrices will be given first. Next, expressions for the first-order nonlinear stiffness

matrices depending linearly on {w6}or{wm} will be expressed. Finally, expressions for

the second-order nonlinear stiffness matrix, depending quadratically on{w6}, will be

addressed.

2.5.1 Linear Stiffness Matrix

29

Equations (2.70-1) and (2.70-5) can be expressed as:

\Swb

\Swm

K o

0 K
w.
w_

where, linear stiffness matrices [kb] and [km] are defined as:

[K}= lA[Bbf[DlBb]dA

[Kh[[Bj[AlBm\lA

(2.71)

(2.72)

(2.73)

2.5.2 First-order Non-linear Stiffness Matrices

Rewriting Eq. (2.34):

dw]

kh\n dx
dw

dy

1

Eq. (2.70-3) can also be written as:

[({S.JMMIAIBJWJ^A

= i\{{^T[e]T[BAT[A\BjWm})iA JA2

+ [\{{^Y[0Y[B,Y[A\Bmlw.})lA

Say, M f o K } = [«,]

Therefore,

M[AlBm]M = [eJ[Nm]=[NmlBe]{wb}

(2.74)

(2.75)

(2.76)

(2.77)

30

Substituting the terms of Eq. (2.77) into Eq. (2.76),

iM^JMlN.M^ +

Combining Eq (2.70-2) and Eq. (2.78):

\^J[Bj[A\B\B,l^})lA

jM^JWMlAKhJJiA +

+

JA2

1 I^JMINMMU

It can be expressed as

M>h

W„

(2.78)

(2.79)

where n\nm, n\bm, n\mb are first-order nonlinear incremental stiffness matrices and they

are linearly dependent on {w}and can be expressed61 as:

[»1« 1 = I ^e f K (K })\Be W (2.80)

k l = [»lj = ilBj[AMM)pe]dA (2.81)

2.5.3 Second-order Non-linear Stiffness Matrix

Eq. (2.70-4) can be written as:

3 W.
n2b 0

0 0

w.

HL
(2.82)

where n2b is second-order nonlinear incremental stiffness matrix and it is a quadratic

function of {wb} and can be expressed as:

31

[n2b]=3-lMTHM)Y[AMM)KW (2.83)

2.6 EQUATION OF MOTION IN STRUCTURAL DEGREES OF FREEDOM

Based on the discussion in the previous section, the virtual work of the internal

forces on a plate becomes:

m„t =
\5wb

\dw„

Tf

VL
0 k

0
+ •

1 nlnm nlbm

Lnlmb 0
1

+ -
3

nlb 0

0 0 ' j ;

Wu

w„

Considering inertia and random pressure excitation, the virtual work of the

forces can be expressed63 as:

SWezt = I W ~ f*™> + Prandom (0) + & (~ PhU) + H~ P ^ A

Re- writing Eq. (2.17),

The above equation leads to,

^ = [HwlTbfSwb}

Re-writing Eq. (2.18),

u = [HulTm]{wJ

The above equation leads to,

Su = [HulTm]{dwm}

u = [HjTmlwJ

u-[Hu\Tm\wm}

Re- writing Eq. (2.19),

v=kf„k}

(2.84)

external

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)

32

v = ttl*.i (2-94)
Substituting Eq. (2.86, 2.89 and 2.92) into Eq. (2.85), the finite element form of the

virtual work done by external forces on the plate can be written as:

~{^b}
TlTj[Hj(-Ph[HwlTM} + P)]

+ {^J[TjWJ(-ph[HulTm]{M,m}) ^ > = L dA (2.95)

\5wb

\8wm

mh
0

0 m„
wh

"W_
• + •

\dwb

\5wm

\Pb

[Pm
(2.96)

where [mb] and [mm] are mass matrices and they are defined55 as:

[mb]= lph[Tb]
T[Hj[HjTb}iA

{pb}=\[Tb]
T[HjPrmdom dA

(2.97)

(2.98)

(2.99)

where, Pmndom = Random load intensity

By equating internal and external work expressed by equations (2.84) and (2.96), the

element equation of motion can be expressed as:

mb

0

0 "

m„.
m _

Kl
wm I m)

v\
\

"K
0

0 "

»t«.
m _

1
+ —

2

n\„m nl bm

nl mb o
l

+ -
3

nlb

0

-|\
w.
w „

(2.100)

In other words, the above equation can be written as:

[4-}+fw4M4M]w=W (2.101)

where,

[w] - Element nodal displacement vector

[m] = Element mass matrix

[k] = Element linear stiffness matrix

[nl] = Element first-order nonlinear incremental stiffness matrix

\nl\ = Element second-order nonlinear incremental stiffness matrix

\p\ = Element force vector generated because of random excitation

33

2.7 SYSTEM EQUATION OF MOTION

The system equation of motion is achieved by assembling the element equations

of motion to system level by summing up the contributions from all elements and, then,

applying the boundary conditions. It can be written as:

M„ 0

0 M.
M l f i - r+ KJ {

"Kb

0

0 "

K*.

1
+ —

2
m
M

M bm

mb

1
+ -

3

N2„ Wb (2.102)

The above equation can also be written as follows:

[Mp} + [[K] + \[NI{{W})]^ (2.103)

Eq.(2.103) is a set of nonlinear equations that describes the motion of the structure made

of plate elements due to random loads. Generally, the problems associated with equation

of motion can be categorized as static or dynamic problems. If the inertial and damping

term is dropped from Eq. (2.103), then it becomes the equation associated with static

problems. In other words, defining static load vector as{Pstatic\, the equation of motion

can be written as:

r. 1 1 A

w4ww)]+TWww)]w=fi'-*)
1 5 J

(2.104)

2.8 CONDENSED SYSTEM EQUATION OF MOTION

Eq. (2.84) can be written in condensed form through separating {Wb} and {Wm }as

follows:

Mb 0 Wk

w. 0 M

where,

[KlJ = \[N\nm\

[KKm] = \[Nlbm]

• +

mj \L

Kb 0

0 Km
+

K^nm K^bm

Klnb 0 +
K2b 0

0 0
wb (2.105)

(2.106)

(2.107)

34

[Klmbh\[Nlmb] (2.108)

[K2b] = \[N2b] (2.109)

Separating Eq. (2.105) into two different equations,

[MM}+^KMKl„J+[K2b])){Wb}+[Khm]{Wm}={Pb} (2.110)

[Mm]{wm}+[Klmb]{Wb}+[Km]{Wm}={Pm} (2.111)

For thin plates, in-plane natural frequencies are usually 2 to 3 order higher than

bending frequencies. So, neglecting the in-plane inertia term, \Mm])fVm } of Eq. (2.111)

will not bring significant error. By neglecting the in-plane inertia term, the in-plane

displacement vector \Wm} can be easily expressed in terms of bending displacement

vector{Wb} as:

{Wm}-[KmY{{Pm}-[Klmb]{Wb}) (2.112)

= [Km]-"{Pm}-[Km]-l[Klmb]{Wb} (2.113)

-Klo-KL (2-114)

In Eq. (2.113), the first term is constant whereas the second term is quadratically

dependent on {Wb} as [̂ TlmA] is a linear function of {Wb} too. Thus, the matrix

[̂ l«m((̂ m})] *s evaluated by algebraic sum of two components

[^l«m({^m}o)]md[^l„ra({^,„}2)],
 w n i c n a r e independent of each other and quadratically

dependent on {jVb}.

According to Eq. (2.77),

[Klbm]{wm}=[Klnm]{Wb} (2.115)

Similarly,

[^Ki=k(W.)kl (2-116)

Substituting Eq. (2.116) into Eq. (2.110),

Reorganizing the above equation,

35

WtPM^b] + 2[KlJ+[K2MWb}={Pb} (2.H7)
In short, in terms of bending displacements, the equation of motion can be written

as:

KlK}+(W+fc])K} = k} (2.H8)
where

[K]=[Kb]+2[K\J{Wm}0)] (2.119)

[K2MK2^K\bjKjl[KlJ-[KlJ{Wm}2)] (2.120)

The matrices [if]and [K2] are independent and quadaratically dependent on

bending displacement vector \fVb}, respectively.

36

CHAPTER III

SYNCHRONIZED AND UNSYNCHRONIZED RANDOM LOAD

The synchronized and unsynchronized random loads will be discussed in detail.

This involves explanation about the generation of random load with computational aspect

and also the basic concepts. The essence of the ISEED number will be clearly explained.

One more important aspect that will be covered is of rescaling the generated random load

vector to give the exact value of power spectrum density (PSD). This is important for

dealing with unsynchronized loads. If rescaling is not dealt with initially, the difference

on each load vector adds up. A simple iterative procedure for such rescaling and Matlab

command for accurate reliability calculations are highlighted at last.

3.1 GENERATION OF RANDOM LOAD TIME HISTORY

Currently the random acoustic pressure for linear as well as non-linear analysis of

beam, plate,11'13'14'17,30,31'32,33 and shallow shell34 structures is often considered uniformly

distributed over the surface of the structure and synchronized in time. In addition, the

random loading is generally assumed as a truncated Gaussian white noise. Truncation

means that the white noise is selected for a bandwidth by choosing an appropriate value

of maximum frequency / ^ . This value of maximum frequency should be chosen

carefully so that all the modes that are required for modal convergence should be covered

within the truncated value. It is noted here that a truncated white noise is an ideal

situation, and most real life cases will have non-white spectral plot. But for most design

purposes, it is convenient to use an ideal broad-band white noise as far as analytical

solutions are concerned. It is customary to use the highest PSD value from a non-white

noise and use it for design purposes, which provides a safe designed structure.

The use of nonwhite PSD lies in the fact that the recorded B-1B flight acoustic

pressure fluctuations were available, and the nonwhite PSD does affect panel response

37

and fatigue life. As said earlier, the highest measured or estimated PSD level should be

used for beam or panel design in practice and it may also be reasonable to assume that the

PSD is a band-limited white noise since the contribution from the high frequency modes

is usually small.

3.2 BASIC CONCEPTS: SYNCHRONIZED LOAD VS. UNSYNCHRONIZED

LOAD

Unfortunately, until now, the random load is considered as synchronized in

pattern for most of the experimental and analytical work. It means that the load varies

with time only, which is not always true. In other words, when a structure is subjected to

random loads, it is not possible to use the load in the form p{t). A simple practical

example to prove the previous statement is a long period of rain drops steadily falling on

the structure. Even though random in nature, and more or less uniform, the rain drops are

certainly not synchronized in time. The intensity of the rain drops varies at different

locations. This loading is unsynchronized in time, and it is also space dependent.

38

Fig. 3.1: Schematic representation of a random process p(t). Each p(j) (t) is a

sample function of the ensemble.28

The concept of unsynchronized load can be explained with a reference to Fig. 3.1.

Consider a plate under the uniform load pit). However, it is possible that at time ti or t2,

the load at one point is pm(t) whereas at the next point it is p(2)(t) . Thus, at each time,

the loading intensity is different at different locations. It is also noticed that, at the same

location, the load keeps changing at different times. In other words, at any given point of

time, the load is varying not only in time but also in space. This is the essence of an

unsynchronized load. It is apparent that a true random load should always be expressed

as p(x,y,t) units and not as p(t) units. And it should be expressed in terms of its spectral

density, S0 (units)2/Hz.

39

3.3 WHITE RANDOM PRESSURE SIMULATION

Consider random pressure p(x,y,t) acting on the surface of a high-speed flight

vehicle. The pressure acting normal to the panel surface varies randomly in time and

space along the surface coordinates x and y. The pressure p(x,y,t) is characterized by a

cross-spectral density function Gp{%,rj,co) , where £ = Xi-x 2 and rj = yx-y2 are the

spatial separations and co is the frequency in rad/sec. The simplest form of the cross-

spectral density is the truncated Gaussian white noise pressure that is uniformly

distributed with spatial coordinates x and y.

G0 ,/ 0<f<fc

G,fe,7,/) = (3.1)
0 if f<0orf>fc

where, G0 is constant and / c i s the upper cut-off frequency in Hertz (Hz). The expression

for G0 can be written as27

G0=p2
0 10SPL/Wlb2/Hz (3.2)

where, p0 = reference pressure

- 2.90075X1 (T9 psi (20 juPa) (3.3)

Here, SPL is Sound Pressure Level, and it is expressed in decibels (dB).

Fig 3.2 provides enough details about a typical simulated random load at 120 dB SPL.

0,4 r

Mh

, , T—— i i— r

1 I ,1. i

i! !

a,

m
-05

10

110

f to

10

•18

1 •• I r ' 1

4)4 u u __i 1—-—J—. 1——-J—: 1- 1 _ J »
0 0.2 0.4 0,6 0.8 1 1.2 1.4 1.6 1.8 2

Tims, see

WUMM, IjriMW Hz

j _ j \ . i l . JU I „ L

0 100 200 300 400 500 600 700 800 900 1000
Frepsney, Hz

Fig. 3.2: Random white noise at SPL=120 dB and fc =1024 Hz

40

The band limited white noise is generated by a Fortran code shown through

Appendix B that stimulates a random pressure using complex numbers with independent

random phase angles uniformly distributed between 0 and 2n . The PSD value of the

random process is obtained by taking the ensemble average of the Fourier transform of

the random load. The PSD value is then compared to the exact one given by equation

41

(3.2). The analyses presented are obtained for a cut-off frequency of 1024 Hz. The

default selected frequency bandwidth in this work is Aco - 0 rad/sec with the random

load prescribed in decibels.

The random input p{x,y,t) was simulated using the FORTRAN code given in

Appendix B and generated by Vaicaitis11 with a total number of 16,384 points. The

length of the simulated process is nothing but time-step multiplying the number of points.

To compute the power spectrum of the responses, FFT is selected, which is a numerically

suitable technique when the total number of points is expressible as a power of two. The

FFT is a complicated algorithm that becomes computationally lengthy when the input

numbers of points are not expressed as a power of two. For instance, note that the

FORTRAN code for the white random pressure fluctuation simulation uses a similar FFT

base. The total number of input points is 16,384, which corresponds to 2 to the 14* power.

3.4 COMPUTATIONAL ASPECTS OF GENERATION OF UNSYNCHRONIZED

TIME HISTORY

In FORTRAN language, to generate random phase angles between 0 and In ,

inbuilt subroutines called RANDOMSEED () and RANDOM_NUMBER () are used.

These subroutines need to use the parameter known as "ISEED" number. Each ISEED

number creates its own time history of random load. By a synchronized load, it is meant

that the simulated random pressure time history is generated from one seed. The different

ISEED numbers guarantee each random pressure time history to be statistically

uncorrected in time.53 This is shown through Fig. 3.3.

The choice of different ISEED numbers for each element along the plate gives a

different sample function in the same ensemble. Using a different ISEED number, a

different time history of random load can be obtained using the random load generator

suggested by Shinozuka35'36'37. This random load can be uniform, concentrated, or non-

42

uniform, but to simulate a real random load, the ISEED number should be different along

the space for each element.

In case of unsynchronized loading, the load is also space dependent. It can not be

simulated with one seed number (ISEED number) but it needs different seed numbers for

each element. All the input time history of the random loads has the same power spectral

density (PSD). However, when considering a large surface, the load itself can be

assumed to be uniform. This is conceptually the case of application of unsynchronized

random loads on a structure.

0.601 0.i02 0.603 0.604 O.iOS
Time, sec

Fig. 3.3: Two pressure time histories of the same PSD from different ISEED numbers

43

From a computational view point, when the loading considered is unsynchronized

in pattern, analysis of large scale problems is extremely expensive in terms of time and

memory. This statement can be easily explained through a simple example. Consider a

simple structure divided in four plate elements as shown in Fig. 3.4. As shown in left

hand side of the Fig. 3.4, when the loading is synchronized, the same ISEED number is

used for all the four plate elements to generate time histories. Whereas, when the loading

pattern is unsynchronized in nature, ISEED numbers used for each of the four plate

elements are different and it means different time history is generated for each element as

expressed through the right hand side of Fig. 3.4. For a large scale problem with very

large number of elements, the problem becomes computationally complex as each

element owns individual time history. The solution leads to application of parallel

computation.

Synchronized load Unsynchronized load

©
ISEED#1

©
iSEED#1

©
ISEED#1

0
ISEED#1

©
fSEED#1

©
ISEED#3

©
iSEED#2

©
ISEED#4

Fig 3.4: Computational basics: Synchronized vs. Unsynchronized load case

3.5 MONTE CARLO SIMULATION (MCS)

For the Monte Carlo Simulation (MCS), an ensemble often or more time histories

is generated by specifying different seeds (ISEED) to the random number generator in the

FORTRAN code described in Appendix B. The response statistics are generated from an

ensemble of p=16 time histories at each load level. Estimates of the RMS displacement

44

serve as a basic comparison with response of the two flight data sets (NWs), which

essentially have the RMS as their basic unknown. Additionally, confidence intervals for

the mean value of the RMS estimate are generated to quantify the degree of uncertainty

in the results. For an input quantity x., the value is estimated from p independent

observations xik of x.. The input estimate is the sample mean and can be expressed as:

xt = *,-=-2X* (3-4)
P M

And the standard uncertainty u(xt) to be associated with x. is the estimated standard
1 0

deviation of the mean.

u(x,.)=o-(x,.) = -7 7\Z(xi,k-
xif

n[n-l)kml

1/2

(3.5)

3.6 TIME STEP CONSIDERATIONS

The time step of integration depends on the scheme selected means. Whether the

scheme is explicit or implicit, the element size and the order of nonlinearity need to be

studied. If an explicit integration scheme is selected, the system is conditionally stable

and stability is achieved as soon as a solution is obtained. Conversely, the explicit

integration schemes will diverge, showing instability in the system. For an implicit

scheme a solution is always obtained, i.e., the system is always unconditionally stable. It

is widely recognized that an implicit scheme is faster than explicit schemes because a

larger time step can be used for a converged solution. However, for an equal time step the

explicit scheme is much faster than the implicit scheme because of its simplicity and ease

in programming. In practical structural problems, engineers first try the implicit

integration scheme because lower integrating time steps can be used. However, as soon

as the time step becomes the order of l(T4for converged solutions, engineers switch to

explicit schemes as they are more suitable for the computation.

45

Depending on the nonlinearity of the system, more or less refined mesh would be

necessary to catch the response characteristics. The more nonlinear the system, the more

refined mesh and smaller integrating time step is required. A good amount of literature is

available on numerical approaches that give empirical relations to estimate the maximum

usable time steps for explicit and implicit schemes. For instance, Zienkiewics and

Taylor29 report empirical relations for the time step of integration as a function of the

element size. After this brief discussion, it becomes obvious that modal truncation

reduces the step integration time by reducing the dof. The mesh size remains the same for

accuracy purposes. Computational time is also saved because the nonlinear matrices do

not need to be assembled and updated at each time step.

One should also keep in mind the Nyquist-Shannon sampling theorem, which

basically states that it is necessary to sample a time sequence at least two times faster

than the highest frequency present in the waveform to uniquely resolve that frequency

from the lower frequency

A; < — ^ - (3.6)

where, fc is the cut-off upper frequency of the uniformly generated random load

Taking into consideration the above remarks, an appropriate time step was

selected as follows. Knowing the highest frequency of the panel, Ats is evaluated and

used as the time integration step-size for a given loading. Then, the step-size of

integration is cut into one-half until the time histories of the response are found identical.

For simplicity, in the modal FEA code the time step At, the explicit integration scheme

such as Runge-Kutta scheme is selected when the total number of points is expressible as

a power of two such that the specified loading at each At is maintained. As mentioned

previously, a radix-2 number of time history samples are chosen to facilitate use of the

FFT algorithm employed in the subsequent analysis. Note that for linear problems, the

Nyquist time-step At is generally sufficient for the explicit scheme. However, for

46

nonlinear problems, the identical verification of the responses for two decreasing

consecutive time steps is required and that yields a much smaller integration time step.

3.7 RESCALING OF RANDOM LOAD VECTOR

As mentioned before, the number of points and number of ensembles have an

important role for the PSD calculation. The evaluation of the PSD using the Matlab

command called "PWELCH" is defined as follows:

[Pxt,Fj = pwelch{x,NFFT ,Fs, Window, Noverlap) (3.7)

where,

x = Discrete-time signal

NFFT = Integer indicating the length of the FFT, which is equal to number of

time history points in most cases

Fs = Sampling frequency in Hz

Window = Length of the segments windowed with a Hanning window

Noverlap = Number of overlapping sections

Pxx = PSD in powers/Hz

F = Frequency range in Hz

As already discussed, the random load is generated using subroutine SIMLOAD

given in Appendix B where one of the input parameters is Sp . It is observed that there is a

small difference between the input Sp and the SP from the generated random load time

history. In the unsynchronized case, for each load the ISEED number is different.

Therefore, the values of the generated Spwill be different too. This leads to an error, and

convergence is delayed. Thus, it is suggested to rescale the random load generated by

SIMLOAD. The following procedure gives a fairly good readjustment in the value of Sp.

1. Generate random pressure vector, {Prandom }NPTXX using different ISEED numbers for

all time history points (NPT)

2. Compute Mean: [PSD(Prando j] =
u pOLD

47

3. Compute the ratio: ratioSp = pOLD ,where S is the input value

4. Scale the random pressure vector: [pmndom scalJNPm=^f^if
J ratioS

5. Recalculate Mean: \PSD(P„mdm_KaU)\ = S random _ scaled / J pNEW

6. o/o Error = i^!L_^L
100

7. Use the {Pranrfom_scafed} in numerical integration

Thus, once the random pressure time history is generated the average value of the

auto spectral density is calculated and compared with S0 for a given SPL for verification

purposes. The FORTRAN code shown in Appendix D follows the same procedure

exactly as per the above discussion. To verify the code, random load time history for 2

seconds is generated using cut-off frequency, fc = 4096 Hz. and ISEED=14407. Fig. 3.5

shows PSD and Probability Density Function (PDF) plotting. Fig 3.6 confirms accuracy

of the code generated and the difference between the input Sp and calculated S based

on rescaled load vector is clearly visible in the plot.

48

500

5 0

-500
0.5 1

time (sec)
1.5

1000 2000 3000
Frequency (Hz.)

4000 5000

0.5

a
"• °4 -3 - 2 - 1 0 1

Distribution Range

Fig 3.5: Random load time history, PSD and PDF (Probability Density Function);

ISEED=14407

10u

~* 10
N

x
.a
a
v>
*• 1 0

-2

10
-6

Generated SF

RescaledSp

0 1000 2000 3000 4000 5000 6000
Frequency(Hz.)

Fig. 3.6: Effect of rescaling of random load vector

49

CHAPTER IV

SOLUTION PROCEDURE USING MODAL FORMULATION

4.1 INTRODUCTION

In this chapter, detailed solution procedures are presented for solving all the

physical problems described in Chapter 2. In order to proceed with specific problems,

various preliminary tasks need to be performed. These include solving linear Eigen-

problems to obtain frequencies and mode shapes for the modal transformation, and

generation of accurate time histories of random pressure fluctuations with flat power

spectral densities as discussed in detail in Chapter 3. For the structure subjected to

random vibration, the system equations of motion are first transferred into modal

equations using normal modes followed by time domain numerical method. The

advantages of using modal approach and time integration scheme are also listed.

Numerical considerations like the integration scheme, convergence criteria, and removing

the transient response to ensure accurate response statistics are also addressed. Finally,

importance of the usage of a modal participation factor is discussed in detail.

4.2 ADVANTAGES OF THE MODAL APPROACH

Rewriting the condensed system of equation of motion defined by Eq. (2.118)

\Mbpb}+dK] + [K2Wt} = {P>} (4.D
where

[KMKb]+2[KlJ{Wm}0)] (4.2)

[K2]=[K2b]- [Klbm \Km J"1 [K\mb] - [K\nm ({Wn }2)] (4.3)

Eq. (4.1) can be solved by numerical integration in the structural node dof. This

approach turns out to be computationally expensive because of following:

50

1. At each time step, the element nonlinear stiffness matrices have to be evaluated,

and the system nonlinear stiffness matrices have to be assembled and updated.

2. The number of structural bending dof {fVb} is usually very large.

3. The time step of the integration scheme should be extremely small in order to

make the solution accurate and stable.

An alternative and effective solution procedure is to transform the equation of

motion from structural degrees of freedom into modal coordinates. The main advantage

of using the modal approach is computational saving. As nonlinear stiffness matrices are

constant, they do not need to be reassembled at each time step of integration. Moreover,

the number of equations remained in the solution is usually 2-3 orders lower compared to

structural dof approach. For most of the cases, the number of modes needed to obtain

modal convergence is less than twenty and the time step when performing numerical

integration is larger. Another advantage of the FE modal approach is that the in plane

inertia does not need to be neglected in order to obtain the solution. It is not the same

case for the Galerkin/PDE procedure. The procedure for the modal formulation, using

reduced system normal modes, is described in the next section.

4.3 LINEAR VIBRATION PROBLEM

Re-writing equation of motion in structural dof expressed through Eq. (2.105),

Mk 0

0 M. • +
Kb 0

0 K +
K^nm K^bm

K\ mb 0 +
K2b 0

0 0

HA wb

\wm

(4.4)

In order to attempt modal transformation of above equation, the linear Eigen problem

expressed by following equation needs to be solved:

co'
M, 0

0 M„

,00 K, 0 b

0 K
\A

(< •)

(4.5)

where, {</>b }
(r) and {<fim }(r) are rth normal modes of the linear vibration problem related to

bending and in-plane dof, respectively. Normal mode {<pb }
(r) and corresponding linear

51

frequency cor can be obtained by solving part of the equation of linear vibration which

can be written as:

"r2[Mb]Mr)=[Kb]far (4.6)

For isotropic plate, there is no coupling between bending {^b}
(r) and in-plane

{(j)m }(r) modes. As a result, the in-plane displacement \jVm} will be expressed as a function

of the bending displacement \Wb}.

4.4 DYNAMIC RESPONSE USING MODAL EQUATIONS IN NORMAL MODES

As discussed earlier in Chapter 2, by neglecting the inertia term, the membrane

displacement vector can be expressed in terms of the bending displacement vector as:

{K} = [KmV({Pj-[KhM}) (4.7)
Re-writing equation of motion expressed through Eq. (2.110),

[Mb]{wb}+ (f c] + [K\nm] + [K2b]j){Wb} + [Klbm }{Wm }={Pb] (4.8)

Substituting Eq. (4.5) into Eq. (4.8),

[Mb]{wb}+ (f c]+ [KlJ+ [K2b]))K}
+ ([Khm \Km V {Pm } - [Klbm \K\mb %Wb }={Pb}

In the above equation, system bending displacement \\¥b} can be expressed as a linear

combination of some known base functions called mode shapes as:

where,

q = Modal amplitude

y>b }
(r) = rlh normal mode of the linear vibration problem

[o] = Eigen vector matrix

{g} = Modal displacement vector

52

To convert the equation of motion into modal co-ordinate system, it is necessary

to transform all the matrices in Eq. (4.1) into modal coordinates. First of all, element

nonlinear stiffness matrices are evaluated with the corresponding element

components {wb} and which in turn is obtained from the known system linear mode {(f)b} .

The nonlinear stiffness matrices, which are directly related to{w6}, can be expressed as

the summation of the products of normal modes amplitudes qr (where r =1 to number of

modes, n).Thus, nonlinear modal stiffness matrices become:

{K\bmh±qr{t)[K\bMV (4-11)
r=l

[KlJ=T^)[KlmMr (4-12)

[K2b]=± ±qr(t) q,(t) ([^ (^) f >) (4-13)
r=l s=l

In Eq. (4.11), (4.12) and (4.13), the super indices of the nonlinear modal stiffness

matrices assembled from the corresponding element nonlinear stiffness matrices.

As shown through Eq. (4.7), the in-plane displacement {Wm}, is expressed as:

K}=(Kr^}-Kr[^mJk}

- w„ -[Kmy{ %MKKMV]MM (4.i4)
\r=l J

= {wj0-t Z^W^Wkl (4-15)
r=l s=l

= {WX~{WX (4-16)

where, the in-plane mode corresponding to the bending mode is:

ksi=Kr[KimbrM(s) (4.i7)
Therefore, \Klnm ({Wm }2)]can be expressed as:

r=\ s=l r=\ 5=1

53

{Wm}0 term of Eq. (4.16) has been considered in Eq. (4.2) that defines matrix [K]. It is

important to notice that above defined matrices [iTl„m], [Ari6,J, [K\mb] and [K2b] are

constant. Once these matrices are evaluated then the system dynamic equation is

transformed into the modal co-ordinates. Introducing structural modal damping term, the

modal equation of motion can be written as:

[Mjq}+2gra>r[Mjq}+([K]+[Kj){q} = {Pb} (4.19)

where

[Mb J = Modal mass matrix related to bending dof only

= [df[Mj[<D] (4.20)

[K\ = Modal linear stiffness matrix

- W W W (4-21)

[K J = Second order nonlinear modal stiffness matrix

- M ±±1,1. (K2, r - [K_ f-" - [«,. r K r [«- r) M (4.22)
r=l 5=1

\Pb) = Modal load vector related to bending dof only

=OTte} (4-23>
2 grcor \Mb J = Modal structural damping matrix

Here, the coefficient gr is the modal damping ratio for the rth mode, and it can be

determined experimentally or pre-selected from a similar structure, whereas, cor is the rth

modal natural frequency.

4.5 FOURTH ORDER RUNGE-KUTTA INTEGRATION SCHEME

The Runge-Kutta method25 is an explicit step-by-step process to obtain

approximation qk+l from qk in such a way that the power series expansion of the

54

approximation would coincide up to terms of a certain hN in the spacing, h =tk+1 -tk,

with the actual Taylor series development of q(tk + h)in powers of h.

The fourth-order accuracy Runge-Kutta scheme, 0\h4), is given by

0*+i = Ik + T&i + 2b2 + 2b3 + b4) o

where, the coefficients b\, b2, bi and b4 are defined as follows:

bx=hF{tk, qk)

f 1 l \
b2=hF\tk+-h, qk+-bx

b, =hF
f 1, k

tk+-Zh> 1k+-b2
L Z J

b4=hF\

V

tk+h, qk+b3

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

4.5.1 Solving Second Order Differential Equations Using Runge-Kutta Time

Integration Scheme

The method described in the previous section is often sufficient to approximate

first order differential equations, but it may not be obvious about how to apply it to the

approximation of differential equations of higher order. The trick here is to break down

the higher order differential equation into several first order differential equations. The

following example explains the technique in detail.

Example 4.1:

Considering second order differential equation (4.1)

(4.29)

55

Considering initial conditions given are zero. i.e. When time t=0,

displacement {Wb} =0 and velocity y¥b J =0 . In order to recast the above equation,

introducing two new variables:

<7i(0=W (4.30)

and

dq.it)

So,

dt

dq2(t) _

(4.31)

dt fc}
Eq. (4.29) can be written as:

K}=Kr^}-[M6r(M+[^])K}
Substituting Eq. (4.30) and (4.31) into Eq. (4.32),

dq2(t)

dt
=iMbr{Pb}-[Mbr([K}+[K2Mt)

(4.32)

(4.33)

Here, Eq. (4.31) and Eq. (4.33) are two coupled first order equations and they

represent Eq. (4.29). These equations can also be expressed as first order matrix

equations:

q =

q =

V
q2

=
0 f

[MbV([K]+[K2D 0
• +

jjKrfti]

(4.34)

(4.35)

Using the following steps, both first order equations expressed through Eq. (4.31)

and Eq. (4.33) can be solved simultaneously.

Step: 1. Starting at time t0, choose a value for h, and find initial conditions for all state

variables q{(t0),q2(t0)...etc.

Step: 2. From the values of#,(?0), calculate derivatives for each q^t) at t = t0

dqi(t)i

yu dt
' <lt t — In

http://dq.it

56

o da, (t)
at

Step: 3.Using the value of_y1;., find an approximate value for each^;(^0 + h) = qi{t0) + yuh

Step: 4. Substitute^ =t0 +h, and for each q{, let q^o) - q^o + h)

Step: 5. Repeat steps 2 through 4 until the solution is converged.

4.5.2 Advantages of using the Runge-Kutta Time Integration Scheme

Because of the nature of the problem to be analyzed, the explicit integration

scheme was selected over an implicit integration scheme. The advantages of using the

Runge-Kutta time integration scheme can be listed as follows:

1. The computational ease of the Runge-Kutta method makes it quite simple to

program and implement.

2. Compared with methods in structural node dof, the computational cost is reduced

dramatically.

3. No preliminary differentiation is needed.

4. No initial values are needed beyond the prescribed values. Instead of using values

of the N derivatives at y at one point, only the values of the first derivatives at N

suitably chosen points are required.

5. It is more efficient particularly for the kind of problems for which accuracy of the

response frequency contents becomes critical for the evaluation of the

displacements.

6. For a nonlinear random vibration problem, it does not need to assume that the

random response distribution is Gaussian as using the equivalent linearization

method.

57

4.6 SOLUTION IN STRUCTURAL DOF

As discussed in the previous section, using the Runge-Kutta integration scheme,

the initial values of modal coordinates^} and{^} given in Eq. (4.19) can be solved to

obtain the numerical value of modal co-ordinate vector{#}. The dof of {^depends on the

number of modes that have to be considered in order to accurately capture the desired

response. Based on which nodal displacement vector associated with bending degrees of

freedom, {Wb }can be calculated using the following equation:

M = MM (4-36)

Once {Wb} is evaluated, the nodal displacement vector related to in-plane dof, \Wm} can

be calculated using the equation:

{Wm} = [Km l
l {Pm} - [Km \

l [K\mb }{Wb} (4.37)

Finally, Root-Mean-Square (RMS) maximum deflection is calculated as,

RMS{W^)=^E[(W^)2\ (4.38)

where, E is as discussed in Appendix C.

4.7 MODE SELECTION

In case of synchronized loads, analytical solutions are available, from which we

can see that the even-modes are non-existent, and they can be removed all together in

simulation to save computation time.

However, in case of unsynchronized loads, it is expected that both even and odd

modes participate, but it is difficult to say which mode is dominant. Such a conclusion

can only be made after obtaining the plot of power spectral density vs. the frequencies. It

is expected that all the modes contribute and modes participation need to be studied in

detail. Also, the location of the maximum deflection point can be determined.

58

4.8 DATA MANIPULATION

Initially the structure is at rest; therefore, an initial transient response is induced

before the response becomes fully developed. The transient response must be eliminated

to ensure that the accurate response statistics are covered. For each input loading of time

history, the first 20% is omitted out of the total run. It is already discussed that in order to

improve the FFT algorithm it was convenient to use a total number of points that will be

a power of two. Consequently, for each displacement, the data was linearly interpolated

in order to produce 2" points, where n is an integer.

As per the technique of Monte Carlo Simulation discussed in Section 3.5, each of

these ISEED numbers needs to be changed for each sample and 16 different samples are

used for statistical averages.

4.8.1 Convergence Considerations

The accuracy of the solution discussed in previous sections is directly related to the

mesh size. Under those circumstances, a convergence test for modes and mesh sizes that

will give a set of modal equations for accurate response must be performed prior to any

further calculations.

Two types of the convergence of the solution must be addressed. Firstly, while

attempting the solution of the linear vibration problem, the natural frequency

convergence must be reached. To investigate this type of convergence the finite model

discretization is refined and the change in the fundamental frequency is calculated. It is

worth noticing that since the forcing function is assumed uniform over the plate, the

advantage of the symmetry is used and the response of a rectangular plates are calculated

based on the modeling of a quarter plate only.

Secondly, when performing modal transformation the important issue is to predict

how many modes should be retained in the analysis. In order to resolve this issue modal

convergence is sought. The nonlinear response of the panel is the linear combination of

59

certain modes and each of them has a certain contribution to the total response. Since the

mode contribution in the total response varies with the random vibration, the estimation

of the modal convergence should be performed over the entire range of the response

under investigation. Generally, more number of modes are required for larger values of

Wmm Ih or RMS\Wmm In). There are two ways to predict the mode contribution from a

particular mode:

1. Plotting the graph of power spectral density (PSD) vs. frequency

2. Calculating Modal Participation Factor

Both of these methods are discussed in detail in the next sections. Both mesh and

modal convergence criteria are a compromise between the accuracy and the

computational cost and can be adjusted by user according to one's objective and

computational possibilities.

As discussed in Section 3.6, time-step convergence is also sought. Firstly, a time

step At = 1/4096 = 2.4414 x 10~4 sec was selected, and then the time step was cut by one-

half with At = 1/(2x4096) sec, followed by At = 11(2 x 2 x 4096) . The maximum

deflection time histories for the last two integration time steps were compared and found

to be exactly identical, establishing the time-step convergence.

4.9 POWER SPECTRAL DENSITY (PSD) VS. FREQUENCY GRAPH

When loading is considered synchronized in time and uniformly distributed, the

asymmetric natural bending modes of the panel need not to be considered in the analysis.

Whereas, for unsynchronized load cases, the asymmetric as well as the symmetric modes

would be excited and should be considered in the analysis. The classical solution is

misleading in the sense of non-participation of asymmetric modes. It gives an impression

that these modes do not have an influence on the response of a random load. The above

statement can be proved easily by spectral density plots as they show peaks at those

modes, showing their participation.

60

The power spectral density vs. frequency graph helps to figure out which modes

are contributing to the dynamic response and also the most dominant mode numbers. For

example, Fig. 4.1 shows one of the sixteen time histories using seven modes in case of

synchronized load. By plotting a PSD graph as shown in Fig. 4.2 one can easily visualize

that the peaks are at modes 1, 3 and 5, showing maximum contribution from those modes.

At the same time, it makes it clear that only symmetric modes have contribution in the

response. It provides clear guidance about which modes should be omitted and which

should be retained in a particular case.

8

6

4

*? 2

c

"x 0

J -2

-4

-6

-8

0 0.5 1 1.5
time

Fig. 4.1: Maximum deflection time history under synchronized loads

61

mu

ID 2

"
I „-4
^ 10 4

.•
* i -

Q

a.

ID"8

.

', I
\ - v
\ / \ /1
\.J I

11W ^Nw
1 1 1

1 ! .

x=U2

-

-

^&$/\Hkit

fl*"^
500 1000 1500

Frequency(Hz)
2000

Fig. 4.2: PSD under synchronized load

4.10 MODAL PARTICIPATION FACTOR

While solving Eq. (4.19), it is extremely important to know which modes

contribute to the total response. And a factor called "modal participation factor" is useful

for this purpose. It can be evaluated based on the numerical values of modal co-ordinate

vector {q\. The equation to calculate modal participation factor in order to know a small

number of most contributing modes to the total response can be written as:

RMS{qr)_

* case

(4.39)

otherwise

Partcipation of r* mode :

n

y RMS(q) tf rand°m load

max#r

Xm a xkl

where, RMS stands for root-mean-square value.

Those modes with significant participation values can be identified using Eq.

(4.39) and they should be retained in the analysis.

62

CHAPTER V

SPARSE COMPUTATION METHODOLOGIES

Sparse technology is used efficiently throughout the analysis in order to save

computational time and memory. The algorithm used for Eigen-solution is discussed in

detail. The sparse storage scheme is explained in detail along with numerical examples

whenever necessary. Some other techniques, like symbolic and numerical factorization

and LDLT equation solver are also detailed in this chapter.

5.1. EIGEN SOLUTION USING SUB SPACE ALGORITHM

The Sub-space iteration method23 is adopted in the study as it is the effective

method to find few lowest Eigen pairs of a large Eigen problem. The method incorporates

inverse iteration and the generalized Jacobi iteration methods. The main steps of the

algorithm can be described as follows:

1. Assuming the first "m" Eigen-pair solution of the linear vibration problem is

sought. Rewriting the linear vibration equation (4.6),

cor
2[Mb]^r=[Kb]{^r (5.D

In the above equation, the size of [Mb] and [Kb] is n x n.

where, n is number of bending dof

One can compute,

L = Minimum(2 * m, m + 8) (5.2)

And L <n

Guess the first L Eigen-vectors matrix [X1]nxL

For k=l, 2, 3,.. .until convergence is achieved.

2. Solve for Xk+l from:

[KbPM}=[MblXk] (5.3)

63

3. Find the reduced stiffness and mass matrices from:

h w \LXL = iXk+l \LXn iKb L„ L^t+1 \nXL (5 - 4)

kLL=feiKR+J (5.5)
4. Solve the reduced Eigen problem

k»L L fe*+i k = [\+1 k K L fe+i k (5-6)
5. Find the improved Eigen-vectors

l^k+l InXL = I A k+l InXL V&k+l llXL (5 - ')

Then

[A
jt+1 J —> [A\ = eigen - values and [Xk+l J -> [O] = e/ge« - vectors

as k —> oo

In Eq. (5.3), inverse iteration method is employed. A generalized Jacobi iteration

method can be used to solve reduced Eigen equation (5.6). The initial guess Eigen-vector

\XX] should contain independent columns. Generally, when extracting a small number of

modes (< 40) in similar size models, the subspace method can be more suitable. It

requires relatively less memory but large disk space.

5.2 SPARSE STORAGE SCHEME FOR SYSTEM LINEAR STIFFNESS AND

MASS MATRICES

Generally, the stiffness and mass matrices generated for finite element analysis

contains so many zeros. In such cases, it is computationally efficient to deal with the only

non-zero terms rather than whole matrices. With the same concept, the non-zero terms of

the matrices are stored using a technique known as sparse storage scheme.

Using the sub-space algorithm discussed in Section 5.1, linear vibration problem,

expressed through Eq. (5.1) is solved for Eigen-solution. Re-writing the equation,

64

In the above equation,

[Kb J = Square, symmetrical, positive definite (non-singular) system bending stiffness

matrix

[Mb] ~ Square, symmetrical, positive definite (non-singular) system bending mass matrix

y>b} - r* normal mode of the linear vibration problem

The matrices [Kb] and [Mb] are stored using the sparse storage scheme22 which

is most efficient technology, especially for large-scale engineering applications. The

following simple example explains the storage scheme effectively.

Example 5.1:

Consider a linear stiffness matrix, [AT6 J of size 6 x 6. It is a square, symmetrical and

positive definite matrix and is defined as:

11 0 0 41 0 52"

44 0 0 63 0

66 0 74 82
(5.8)

88 85 0

SYM 110 97

112

Normally, the number of storage requirements to store matrix [Kb] is 36. The

storage space can be saved if zero terms of the matrix are omitted. The basic of sparse

technology is to store only non-zero terms in order to save space and memory occupied

by zero terms, which is accomplished by storing non-zero terms of the matrix in form of

the vectors as discussed here in detail. The four vectors that store the matrix [Kb] are

defined as:

1. Vector IA:

The integer array IA is of size N + 1 x 1. Where, N is the size of the matrix [^Jand

I A is described as:

[*.]=

65

IA

(l)
2

3

4

5

6

lh

= •

rr
3

4

6>

7

8

8

(5.9)

Here, IA indicates the starting location of the first non-zero and off-diagonal term

in each row. It should be noticed that as the matrix is symmetrical, here only upper

triangular terms are involved. The location number of the non-zero terms considered in

array IA can be shown in matrix [Kb] as:

fc] =

K, 0

K 22

0

0
© £
0

0

K 44

SYM

(5.10)

Thus, array IA involves information about the number of non- zero off-diagonal

terms each row contains, and it can be computed as follows:

The number of non-zero, off-diagonal terms in the 1st row = IA(2) - IA(1) = 3-1=2

The number of non-zero, off-diagonal terms in the 2nd row = IA(3) - IA(2) = 4-3=1

The number of non-zero, off-diagonal terms in the 3r row = IA(4) - IA(3) = 6-4=2

The number of non-zero, off-diagonal terms in the 4th row = IA(5) - IA(4) = 7-6=1

The number of non-zero, off-diagonal terms in the 5th row = IA(6) - IA(5) = 8-7=1

The number of non-zero, off-diagonal terms in the 6th row = IA(7) - IA(6) = 8-8=0

2. Vector/^ :

The integer array J A is of size NCOEF x 1, where NCOEF is the total number

of non-zero and off-diagonal terms of matrix [Kb] before factorization. Array J A is

described as:

66

JA

2

3

4

5

6

4

6

5

5

6

5

6

(5.11)

JA indicates the column number associated with non- zero off-diagonal terms for

each row. The following equation shows the associated column number for each non-zero,

off-diagonal term of matrix [Kb] clearly.

COLUMN NO: 1 2

fc] =

K,

K 22

SYM

3 4

0 ©
0 0

^33 0

K44

5

0

(7)
w ©
^ 5 5

6

©
0

©
0

©
And,

A^CO^F = Z4 (N+l) - Li (1) = 8 -1 = 7

3. Vector 4£>:

The real array AD is of size N x 1 and it is described as:

(5.12)

AD

(l)
2

3

4

5

v6,

= •

'ir
44

66

88

110

112

(5.13)

67

Vector AD involves numerical values of all the diagonal terms.

4. Vector AN:

The real array AN is of size NCOEF x 1 and it is described as:

(l)
2

3

4

5

6

Jj

= <

r4f
52

63

7 4 •

82

85

97

Vector AN contains all the numerical values of non-zero, off-diagonal terms of upper

triangular.

It is obvious in above example 5.1 that number of storage requirement for matrix

[Kb] is reduced from 36 to 13 (= 6 for storing diagonal terms +7 for storing off-diagonal

terms) by using the sparse storage scheme. Using the same methodology, all the matrices,

including linear stiffness matrix, mass matrix, and all nonlinear stiffness matrices defined

in Chapter 4, are stored. Moreover, this storage method provides computational ease

because of the vector operations instead of matrix operations.

5.3 APPLICATION OF DIRICHLET BOUNDARY CONDITIONS

System stiffness and mass matrices generated by assembling the element level

matrices are singular in nature. They become non-singular once the Dirichlet boundary

conditions are applied.22 The method of boundary condition application is explained by

the following simple example.

Example 5.2:

Assuming [K]W = f , where size of matrix [K] is N x N = 4 x 4.

And Dirichlet boundary conditions given are:

68

w2 = s2 and w3 = s5

Following equation explains the method to apply the boundary conditions.

X
K2l

K31

_K4l

Ku

K22

K32

K42

Kl3

K2i

K33

K43

Ku

Kw
K34

K44_

wl

w2 = s2

w3 =s3

- WA .

7
/a

h
M

Kn 0 0 KX4

0 1 0 0

0 0 1 0

K4l 0 0 K44

A

V
w,

w,

w.

w 4 J

/ [Kn.s2 K13.s3

*3

7 4 ~J^A2-S2 ~&43-S3^

(5.15)

(5.16)

5.4 L D LT EQUATION SOLVER

The inverse of a matrix is performed using LDLT equation solver.22 This method

is useful as the matrices are symmetrical and positive definite in nature. The following

example explains the method clearly.

Example 5.3:

Consider, the most generalized Finite element equation shown by Eq. (5.17), needs to be

solved in order to get displacement vector [w]

[K]{w} = {p] (5.17)

where,

[K] = Square, symmetrical, positive definite (non-singular) system stiffness matrix of

size N x N and is known.

{w} = System displacement vector of size N x 1 and is unknown

{p} = System load vector of size N x 1 and is known

N = Number of dof = 6 (say, for this example)

69

The solution is sought in three sequential phases as follows:

1. Factorization Phase:

As matrix [K\ is square, symmetrical and positive definite, it can be written as:

[K]=[L\D\L'\

The terms of the matrices of the above equation can be written as:

K,, K,., K,, K,, K,, K,,

M-
Kn, KT, K*,-, Kn. K "21 "22 23 "24 "25

K,, K "31 32

K., K "41 42

K 33 K„. K "34 35

K., K.

K

K
26

36

Kr, Krn K„ Kr, Krr K "52 "53 54 "55

K„ K~ K,^ K,. K„ K

0
1

I«

0

0

1

0

0

0

1

^54

0

0

0

0

1

A,
0

0

0

0

0

64

0

D.

0

0

0

0

22

"65

0

0

0

0

0

'56

"66

0

0

0

o
o

o
o
o
o

0

0

0

0

0

0 A ,

1
0

0

0

0

1

0

0

0

1

0

0

(5.18)

L.
Z,42 L5

LA? Lr

1 L6

0 1

(5.19)

By equating the upper triangular portion terms of the LHS with the corresponding

RHS terms of Eq. (5.19), one can get a sufficient number of equations (= 21) to solve

for[Z,] with 15 unknowns and [D] with 6 unknowns.

If non-zero terms are indicated by X, for the data shown in Eq. (5.19), [LT j may look

like this:

V'Y-

1 0 0 X

1 0 0

1 0

1

0

X
X

X

1

X
0

X

F

X

1

(5.20)

70

The symbol, £Jof Eq. (5.20) indicates "fill-in term." This means during the numerical

factorization phase, the zero-term of matrix [K] at a particular location became non-zero.

The number of fill-in terms should be kept as low as possible.

2. Forward Substitution:

Substituting Eq. (5.18) into Eq. (5.17),

Say,

Using Eq. (5.22), Eq. (5.21) can be written as:

ww=w

(5.21)

(5.22)

(5.23)

As the terms of [z] and {p} axe known, using Eq. (5.23), (y}can be evaluated.

Schematically, the procedure can be described by following equation (5.24). It is obvious

that first of all yx is evaluated and then terms y2 to y6 are evaluated by substituting the

value of the previous term calculated. That is why the procedure is called "forward

substitution."

1

X 1

X 0

X X

X X

X 0

1

0

X

X

1

X

0

1

X 1_

y\

y2

<
^ 4

y5

y6j

• = •

X
X

X

X

X

X

(5.24)

3. Backward Substitution:

After the forward substitution phase {y} is known, it can be substituted in Eq.

(5.22) and {w}can be easily evaluated as [l)]and [LT \is already known. The procedure

can be represented as:

71

X

X 0

X

X

0 X

X

It is clear from above equation that w6 will be evaluated first and then terms

w5,w4,w3, w2 and finally w, can be calculated by substituting previous term calculated.

5.5 STEP-BY-STEP PROCEDURE OF SPARSE COMPUTATION

METHODOLOGY FOR NONLINEAR FINITE ELEMENT ANALYSIS

Step: 1. Input general information that includes element numbers and size, material

properties, boundary conditions, nodal co-ordinates, and load applied at the joints.

Step: 2. Input node-element connectivity information.

Step: 3. To store connectivity matrix using sparse technique, generate arrays IE and JE

based on node-element connectivity information. The following example explains the

procedure clearly.

Example 5.4:

Consider a simple finite element structure divided in four plate elements as shown in

fig.5.1. To simplify the discussion, assume each node has 1 DOF.

1 X X X X X

1 0 X X 0

1 0 X X

1 X 0

1 X

1

|V
w2

w3
<

w4

W5

*v

. = <

X

X

X

X
X

X

(5.25)

72

/
/
/
/

/
/
/

10 Lbs

Fig. 5.1: a simple finite element mesh

The element-node connectivity matrix [E] can be expressed as:

1 2 3 4 5 6 7 8 9

M =

0 1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0 0

0 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0

(5.26)

It can be noticed that all the non-zero terms have a numerical value equal to 1. So,

as discussed in Section 5.1, matrix [is] can be stored using two integer arrays:

1. Array IE of size NEL+1 x 1

where,

NEL = Number of elements = 4

IE = Locations of the first non-zero term of each row

= 1st, 5th, 9th, 13th, 17th

2. Array JE of size NCOEF1 x 1

where,

NCOEF1 = NEL*NDOFPE

(5.27)

73

NDOFPE = Number ofdofper element = 4

JE = Element-node column index numbers "unordered" for each row

= Global node numbers associated with each element

JE = \2 3 4 5|;|l 2 5 6|;|5 4 9 8|;|6 5 8 7| (5.28)

Step: 4.The coordination of local dof to global dof is stored by creating an array, called

Im, the size of which is NDOFPE x 1.

For example 5.4, element number 1 is connected by nodes 2, 3, 4 and 5.

Hence,

Im (e=D _
0

0

v5y

(5.29)

Step: 5. From the input data related to the load applied on the joints, create a vector {b}

of size NDOF x 1. where, NDOF = total number of dof. Initially, b is defined as zero

vector. It stores the load intensity at corresponding global dof. For example 5.4, the array

b can be written as:

m
2

3

4

5

6

7

8

Uj

=

no ̂
0

0

0

0

0

0

0

v 0 ,

(5.30)

74

Step: 6. From the input boundary conditions, create an integer array "iboundc" of size

NDOF x 1 . The value of the array is 1 where the boundary condition is defined, zero

otherwise.

Step: 7. Using subroutine TRANSA2D, generate vectors IET and JET which are the

vectors to store transpose of matrix [E\. The size of vector IET is NDOF+1 x 1 and that

of vector JET is NEL * NDOFPE x 1. The requirement to generate the transpose of

matrix [E] arises in order to arrange the associated column number stored in vector JE ,

in order. The transpose of matrix [E] can be written as:

©©DO

\E>) =

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

0

0

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

0

1

2

3

4

5

6

7

8

9

(5.31)

= Node-element connectivity information

Hence,

IET = 1st, 2nd, 4th, 5th, 7th, 11th, 13th, 14th, 16th, 17th (5.32)

= Locations of the first nonzero of each row

JET = Node-element-node column index numbers (ORDER) for each row

= Global element numbers associated with each element

JET = (2), (1, 2), (1), (1, 3), (1, 2, 3, 4), (2, 4), (4), (3, 4), (3) (5.33)

75

It can be noticed from Eq. (5.28) that column index numbers stored by JE were

unordered. But, Eq. (5.33) shows that column-index numbers are arranged in order by

transposing the matrix [E] .

Step: 8. Perform symbolic assembly of the structural linear stiffness matrix and mass

matrix. Symbolic assembly finds locations of all nonzero, off-diagonal terms of the

assembled matrix which helps to predict the computer memory required for numerical

assembly of the same matrix. That is why symbolic assembly is always done before

numerical assembly is performed. It defines starting locations of the first non-zero off-

diagonal terms for each row of structural stiffness matrix after applying boundary

conditions, and also provides the column numbers that correspond to each non-zero, off-

diagonal term of each row of structural stiffness matrix.

For example 5.4, the size of structural stiffness and mass matrices will be 9 x 9 as

NDOF=9. With Dirichlet boundary conditions defined at dof corresponding to node

number 3, 4 and 9, the system linear stiffness or mass matrix may be written as:

COLUMN NO: 1 2 3 4 5 6 7 8 9

[K] OR [M\-

X

0

0

0

X

0

X

0

0

0

0

0

1

0

0

0

0

0

1

0

X

0

0

0

X

0

X

0

0

X

X

X

0

0

0

0

X

0

0

0

0

0

0

0

0 (5.34)

o x o o x x o x o
X X 0 0 0 0 X 0 0

0 X 0 0 0 X 0 X 0

0 0 0 0 0 0 0 0 1

The above matrix can be stored using two arrays, IA of size NDOF x 1 and JA of size

NCOEFx 1 as follows:

IA = Starting locations of the first non-zero, off-diagonal terms of each row

(5.35) =lst, 3rd, 6th, 6th, 6th, 7th, 8th, 8th, 9th, 9th

76

JA = Column numbers associated with each non-zero, off-diagonal terms for

each row that could be unordered

= (5,7),(6,7,8),(6),(8) (5.36)

A subroutine called "symbass" performs the symbolic assembly discussed above.

Step: 9. Generate element linear stiffness matrix using Eq.(2.72) and (2.73), mass matrix

using Eq. (2.97) and (2.98) and load vector using Eq.(2.99). Then apply numerical

assembly to create system linear stiffness matrix, system mass matrix and system load

vector using subroutine "numass," discussed in Appendix D. Assembling of linear

stiffness matrix, mass matrix and load vector is performed simultaneously in this

subroutine. Also, Diritchlet boundary conditions are taken care of inside this subroutine

using procedure discussed in Section 5.3. As discussed in Section 5.2, the assembled

matrices are stored using sparse storage scheme so the output of the numerical assembly

is in the form of several vectors.

Step: 10. From the assembled system stiffness and mass matrix, the terms related to

bending DOF and membrane DOF are separated using subroutine

"split_sparse_bbmm_improved." This is required as during the Eigen-solution only part

of the linear stiffness matrix and mass matrix are utilized, which are related to bending

dof as shown by Eq.(4.6).

Step: 11. Depending upon whether the mass matrix is diagonal or lumped, the linear

vibration equation, Eq.(4.6) is solved using subroutines "eigsolverOll" or

"eigsolver022," respectively. The sub-space algorithm discussed in detail in Section 5.1

is applied for Eigen-solution. The output is Eigen-vector matrix [o], the size of which is

number of bending dof x number of modes used and Eigen-value vector \X\ of size

number of modes x 1.

77

Step: 12. Perform mass normalization of the Eigen-vector matrix [o]. The mass matrix

normalization of Eigen-vector matrix saves time and memory because of following

advantages:

1. The modal mass matrix

KfMKH (5-37)
where,

[$>N] =Mass matrix normalized Eigen-vector matrix

2. The modal linear stiffness matrix

KrfoI<J\]=W (5-38)
= Eigen-value vector

The mass matrix normalization procedure, provided only 2 modes are considered, can be

described as follows:

Cl=y>1)TlMbp) (5-39)

C2={<t>2)T[Mb\t
2) (5-40)

where, Cx and C2 are constants, [Mb] is the mass matrix related to only bending dof, <t>1

and (j)2 are the Eigen-vectors corresponding to first and second Eigen- values respectively.

For the first mode, the normalized Eigen-vector is calculated as:

& = - ? = (5-41)

Similarly, for second mode, the normalized Eigen-vector is:

fN=4= (5-42)

Hence, the normalized Eigen-vector matrix can be written as:

K] = k <t>l\ (5-43)

Step: 13. Perform symbolic factorization for matrix [Km] by calling subroutine

"symfactd." The purpose of symbolic factorization is to find the locations of all nonzero

78

(including "fills-in" terms), off-diagonal terms of the factorized matrix [u]. Matrix [u]

has not been evaluated yet and will be generated during the numerical factorization

procedure as discussed in Section 5.3. The main goal at this phase is to predict the

required computer memory for subsequent numerical factorization. The output of

symbolic factorization is stored using two integer arrays in similar manner as discussed

during symbolic assembly procedure through step 8.

Step: 14. Matrix [Km] is transposed twice to put column numbers in order by calling

subroutine "transad." The purpose and procedure for this step is already discussed in step

7.

Step: 15. Evaluate matrix[K2b] that is the first term of the equation for second order

nonlinear stiffness matrix expressed through Eq. (4.3). Here, subroutine

"BFS_K2_modal" is used.

Rewriting Eq. (4.3),

[K2] = [K2 „]- [Klbm \Km }~l [KlJ- [K\nm ({Wm }2)] (5.44)

The following sub steps are used to generate matrix [K2b]:

• Get the global dof associated with each element

• Extract only components of the r-th Eigen-vector|Oe] that is related to global dof

associated with a particular element.

• Using element properties, evaluate element level matrix[K2e
b\ using Eq. (2.83) and

(2.109)

• Calculate triple product [oe f [K2e
b \o

e]

This is an extremely important and tricky procedure. Instead of computing the triple

product [o f f -Oj Jo] which is at system level, [Oe] r[i:2^|oe jis evaluated at element

level. This approach saves a lot of memory and computational time as well.

79

• Assemble the triple product p e j [#"2* |<I>eJ to generate system level matrix [K2b]

Step: 16. Evaluate \K\bm\ and compute the second term of Eq. (5.44), which is:

[*i*R,n*ij
The following sub steps are used for the calculations:

Get the global dof associated with each element

Extract only components of the r-th Eigen-vector [<Dej that is related to global dof

associated with a particular element

Generate element level matrix \K\e
bm J based on Eq. (2.81) and Eq. (2.107)

Convert element level matrix [Kle
bm j from 2-D array into 1-D array (column-wise)

To save time and memory, as discussed in step 15, evaluate [oeJ [ATl̂ m jOcJ by

calling subroutine " mvsparse"

Perform numerical assembly of the [Kle
bm J

Sparse "numerical" factorization of matrix \Km J using subroutine "numfald." The

factorization method used is as discussed in Section 5.3.

Sparse forward/backward solution phase as per Section 5.3, using subroutine "fbed"

Perform the multiplication:

Kl_modal= [Klbm\KmY[K\mb\ (5.45)

Step: 17. Generate third term of Eq. (5.44), \K\nm({Wm }2)] by calling subroutine

"BFS_K2nm_modal"

The sub steps for the computation are as follows:

• To Generate matrix [llM({^m}2)j , \fVm] is generated based on Wb using the

following equation:

[KmY[KlJ{Wb} (5.46)

• In previous step 16, I X J ' [^ l^] ' !®] is already calculated. Using the same

procedure, calculate [Km j [Kl mb f \Wb}

80

• From system level vector {Wm} ,element level vector pm
e} is evaluated

• Using {w*}, evaluate element level [K2e
nm\ using Eq. (2.80), Eq. (2.108), and Eq.

(2.120)

• To save time and memory, as discussed in step 15, evaluate [Oe J \K2e
nm |O e J by

calling the subroutine "mvsparse"

• Assemble the triple product [oe J [K2e
nm | o e J to generate system level matrix [K2nm J

Step: 18. Using the terms evaluated through steps 15, 16 and 17, compute the nonlinear

stiffness matrix equation shown through Eq. (5.44).

Step: 19 Random pressure is generated using Shinozuka's method, explained in Chapter

3. The procedure is shown in Appendix B, and load vector is rescaled as expressed in

Appendix D. Here, user defined cut-off frequency and Sound Pressure Level (SPL) is

taken into account for random load generation. In case of un-synchronized loading the

task of random load generation is distributed among various processors. Details about the

difference in the procedure for different load cases are discussed in the next chapter.

Step: 20 Using the Runge-Kutta time Integration scheme, the modal equation of motion

shown by Eq. (4.19) is solved to obtain the random responses, such as displacement,

velocity and acceleration in modal coordinates. The modal responses are transformed

back to the original structural dof through equation (4.36). Based on bending

displacements obtained, the in-plane displacement vector is calculated using equation

(4.37).

Step: 21 Calculate RMS of deflection as discussed in detail through Section 4.4, 4.5 and

4.6 of Chapter 4. Calculate the modal participation factor as per discussion in Section

4.11. When all convergence criteria discussed in Section 4.9 are satisfied, the RMS of

maximum deflection is calculated. Here, data manipulation discussed in Section 4.9 is

also accounted for.

81

CHAPTER VI

PARALLEL COMPUTATIONS

While dealing with large scale structural analysis and design problems,

considerable computational effort is required. By implementing parallel processing

techniques, such problems can be solved without resorting to the use of expensive

computing equipment or incurring an inordinately high computational cost. Here, basics

of parallel computation are discussed along with the needs and advantages to use for

specific types of problems.

6.1. BASICS OF PARALLEL COMPUTATION

Modern High performance computers have multiple processing capabilities which

become extremely useful while solving large-scale problems. The distribution of the

computational task among the multiple processors saves huge amount of time and

memory. Distributed memory computers, in general, consist of many processors or nodes.

Each one has its own local memory and is strong in terms of speed and memory

compared to the processor itself. As shown in fig 6.1, the communication among the

processors can be done by message passing.

Typically, as numbers of processors are increased, the time consumed to perform

the computation should decrease. In practice, this is true up to certain number of

processors. Up to certain extent, if the numbers of processors are increased the

computation process speeds up. After that even though the processors are increased, there

is no significant contribution in time saving. Such performance of parallel computing will

be shown in later chapters through practical implementation.

82

Message passing

Fig 6.1: Message passing in parallel computers

6.2 APPLICATION OF PARALLEL COMPUTING IN CASE OF

UNSYNCHRONIZED LOAD CASE

Computational burden due to the simulation of the unsynchronized random pressure

fluctuations makes parallel computing an extremely important application.

6.2.1 Large Scale Problem Solving

As discussed earlier, in Section 3.4, in case of unsynchronized load case, the time

history needs to be generated separately for each finite element. For problems with large

mesh size, the numbers of elements are high and the generation of time histories makes

the problem complex in terms of time and/or memory. And sometimes it is impossible to

resolve. Also, as discussed in Section 3.7, once matrices are generated using the method

83

by Shinozuka, the random load vector needs to be rescaled in order to adjust same SPP

value using MATLAB function "pwelch." The rescaling procedure is quite time

consuming as it involves using MATLAB inbuilt function called "pwelch" in the

FORTRAN environment.

As already discussed, for unsynchronized loading simulation, each finite element

is excited by a random load of the same S0 or SPL generated from a different ISEED

number. It becomes important to check that time histories are completely independent to

one another. A more detailed analysis using the correlation coefficient command in

MATLAB has indicated that the pressure time histories were statistically uncorrelated to

each other as shown in Fig. 6.2. The correlation coefficient values of 10 generated

samples of pressure time history are plotted. They are generated using 10 different

ISEED numbers and denoted by different line style or marker type. For instance, if the

first pressure time history is compared with the other 9, the lowest correlation coefficient

found was 0.0011 and the highest is 1. A coefficient of 1 gives total correlation, and the

two loads are similar in every sense, whereas a coefficient of 0 means lack of any

correlation at all. A low value of the correlation factor also indicates that all time histories

are not periodic with each other.

6.2.2 Advantages

Computational burden due to the simulation of the unsynchronized random pressure

fluctuations requires the use of parallel computing capabilities. Without parallel

computation, it is almost impossible to solve some large-scale problems, when the load

subjected is considered un-synchronized in pattern. The usage of parallel computing can

be considered the only efficient option to solve such problem. Even for medium-scale

sequential problems, usage of parallel computation becomes extremely important, as it

reduces the time dramatically.

84

0.8

o

0.6

1 0.4

o
O

0.2 h

o f Q $ v A £> 4 *

I M ' H I I I l
0 2 4 6 8 10

Sample Number

Fig. 6.2: Correlation coefficients among 10 different random time histories53

6.3 BASIC CONCEPT: DIFFERENCE IN RANDOM LOAD VECTOR

GENERATION

The finite element analysis phenomena discussed in Chapters 2 and 4 is same

whether the load subjected is synchronized or unsynchronized except the generation of

load vector. From a computational aspect, the differences in the procedure when dealing

with these two loading types are detailed here.

As shown by Eq. (4.1), the equation of motion in terms of only bending dof is

[Mb]{wb}+([K]+lK2]){Wb}={Pb} (6.1)

85

The random force vector, {Pb} of equation (6.1) can be evaluated as:

{Pb}=l[Tb]
T[Hjp{x,y,t)dA (6.2)

A

As defined in Chapter 2, [Tb] and [Hw] are transformation matrix and

displacement function matrix, respectively. And p(x,y,t) is generated random load

intensity, which is a function of space and time.

As previously discussed, in case of synchronized load, p(x,y,t) remains the same

for each element. It needs to be generated only once, using one ISEED number. In such a

case, the element load vector remains the same for all the elements, as [rfi]*[/fw]

indicates shape function, which is also the same for all the elements. Whereas, in case of

unsynchronized load case, p{x,y,t) is different for all the elements, which means

element load vector is different for each element.

6.4 STEP BY STEP PROCEDURE OF LOAD VECTOR GENERATION USING

PARALLEL COMPUTATION IN CASE OF SYNCHRONIZED LOAD CASE

In case of synchronized loading, parallel computation doesn't need to be involved,

as the random pressure is generated only once during the entire analysis procedure. The

step-by step procedure to generate random load vector {Pb}, when the load considered is

synchronized in pattern is as follows:

Step: 1. Evaluate part of the element load vector using shape functions. As per Eq. (2.99),

element load vector,

{pb}=\MT[HjPrmdom dA
A

86

Firstly, the element unit load vector is evaluated to distribute the load uniformly among

all the nodes of the element. The unit load vector can be defined as:

{Pu}=\[Tb]
T[Hw\TdA (6.3)

A

Step: 2. Assemble the element load vector at system level to generate [P j.This can be

done simultaneously during numerical assembly procedure of linear stiffness and mass

matrices.

Step: 3. Evaluate modal unit load vector,

{PU}=M{PU} (6-4)

Step: 4. Generate the random load time history {Pmndom}using ISEED number only once

by following the code in appendix B.

Step: 5. Rescale the random load vector by following the step-by-step procedure

discussed in Section 3.7. Appendix D contains the FORTRAN code used for rescaling

purposes. It involves calling MATLAB in-built function "pwelch."

Step: 6. For nth time history point, the load considered is \PU }* {Prandom («)}. As {Pmndon («)}

is a scalar quantity, the size of the random load vector will be number of modes x 1.

6.5 STEP-BY-STEP PROCEDURE OF RANDOM LOAD VECTOR

GENERATION USING PARALLEL COMPUTATION IN CASE OF UN-

SYNCHRONIZED LOAD CASE

For unsynchronized load case, as each element has its own time history, it is

obvious that the procedure discussed in Section 6.3 can not be followed. The step-by-step

process for generation of un-synchronized random load can be described as follows:

87

Step: 1. Generate the random load time history {Prmdom}by following the code in

appendix B for all the elements using different ISEED number each time.

Step: 2. Rescale the random load vectors generated for all the elements by following the

step-by-step procedure discussed in Section 3.7. Appendix D contains the FORTRAN

code used for rescaling purpose. It involves calling MATLAB in-built function "pwelch."

Step: 3. Calculate element load vector as,

{P:}n = \[Tb]
T[Hj{PrmdJ"dA (6.5)

A

In the above equation, superscript n indicates corresponding element number.

Step: 4. Assemble the element load vector at system level to generate {Pb}. Here, the

procedure involves taking care of random load intensity at a particular time history point

for each element. So, the assembling is done separately and not with the numerical

assembly of linear stiffness and mass matrices.

Step: 5. Evaluate modal load vector using Eq. (4.23),

[Pb}=M{Pb) (6-6)

The pseudo FORTRAN code to generate unsynchronized modal load vector can be

described as follows:

Do 1=1, NPT

Do J=l, NEL

Do K=l, MAXDOF

Pb
J (j) = pu (j) + Random _ load(l, j)

Enddo

Enddo

• Assemble vector \Pbj to generate system unit load vector {Pb}

88

• Evaluate {Pb}={<D]T{Pb}

Enddo

where,

NPT = Number of time history points

NEL = Total number of elements

MAXDOF = Maximum dof per element

\Pb
e} = Element load vector

{pu} = Element unit load vector

[Random_load] = Random load matrix to store random load vectors of all the

elements

[OJ =Eigen-vector matrix

Here, random load matrix [Random load] stores time histories of all the

elements. In other words, {Prmdom} stores time history which is different for each element

and [Random load] stores \Prandom} for all the elements. Thus, the size of

[Random __ load] is number of points (which are generally large, 16384 in our case) X

number of elements (which is a large number in the case of large scale problem). The

computationally expensive task of generating as well as scaling random load vector for

all the elements can be shared using different processors/nodes via parallel computing. If

noticed carefully, even though random load time history vector \Prandom }is of size NPT x

1, from matrix [Random load], only a scalar value needs for the calculation at a time. So,

all the processors/nodes generate matrix [Random _ load] first and then during

calculations required data is pulled from the pre-generated matrix [Random _load]. As

each processor works independently the communication time between the processors is

zero, which saves a significant amount of time.

Message Passing Interface (MPI) FORTRAN language is used to accomplish the

above task. MPI FORTRAN in-built subroutine mpi_wtime() is used to note wall clock

89

time consumed by each processor as well as for different segments of the whole

procedure.

90

CHAPTER VII

NUMERICAL EXAMPLES

Efficient computational technologies like sparse storage schemes and parallel

computation are proposed and incorporated to solve large-scale, nonlinear large

deflection random vibration problems for both type of loading cases: 1) synchronized in

time and 2) un-synchronized and statistically uncorrelated in time. Finite element

nonlinear modal formulation in conjunction with the time domain Monte Carlo

simulation is used. Moreover, the linear and nonlinear matrices are stored using sparse

storage schemes in order to save computational time and memory. In case of un-

synchronized load case, the time history needs to be generated and also rescaled

separately for each finite element. For problems with large mesh size, the numbers of

elements are high and the generation of time histories makes the problem unsolvable (in

terms of computational time and/or memory requirements), for all practical purposes. By

implementing parallel processing techniques, large scale structural analysis problems are

solved without resorting to the use of expensive computing equipment or incurring an

inordinately high computational cost.

The FEM approach has been verified:

1. By comparing the nonlinear modal coefficients with those obtained using the

PDE/Galerkin analytical solution20 as shown in Table 7.1

2. By Experimental data of random nonlinear vibration of clamped beams15 shown

in Fig. 7.1.

91

Table 7.1 Comparison of nonlinear coefficients using classical PDE/Galerkin and FEM

methods for a 14x10x0.04 in. simply supported panel20

IstEq

2ndEq

Mesh'

8x8

12x12

16x16

q?.

1.2966E12

-2.7569E11

1.3026E12

-2.7569E11

1.2992E12

-2.7566E11

1.2981E12

-2.7567E11

„2 „
qiiq3i q'.q,,

Classical PDE/Galerkin

-8.2707E11

5.2128E12

5.2128E12

0.0

FE Modal Method

-8.2691E11

5.3487E12

-8.2699E11

5.2740E12

-8.2702E11

5.2473E12

5.3487E12

4.9357

5.2740E12

6.6420

5.2473E12

16.4525

qa,

0.0

2.1139E13

1.6572

2.2128E11

2.2294

2.1593E13

54.8464

2.1397E13

"Mesh sizes are in quarter of a plate

Experiment
Direcs-Moda) Cond
Direci-PhysKal Cone*
Indirect Method

S^l 150 ZOO 250 300 350 40G 460 500
Frequency (HiJ

Fig. 7.1: Comparison of strain PSD among experiment aluminum panel at three overall

SPL10 and three FE methods for nonlinear random vibration of a clamped beam15

92

Based upon the nonlinear modal, sparse formulations discussed in the previous

chapters, the following examples are used to validate the numerical accuracy and

performance of the developed nonlinear time-dependent random response.

Problem Statements:

A simply supported isotropic plate with immovable in-plane

conditions (0, y) = u(a, y) = v(x,0) - v(x, b) = 0 is studied in detail. The plate size is 14 in

x 10 in x 0.04 in. Only a quarter of a plate is modeled using the extended BFS (Bogner-

Fox-Schmit) elements. The material properties are: Elastic modulus is =10.587 psi (73

Gpa); Poisson's ratio v = 0.3; Density p = 2.588 x 10"4 lbf-sec2/in4 (2763 kg/m3). A

proportional damping ratio of Blrcor =%scos, with £, =0.02 is used.

7.1 SYNCHRONIZED LOAD CASE

When load is synchronized in nature, random pressure history needs to be

generated only once, as it remains the same for all the elements. Thus, the application of

parallel computation is not competent to use for synchronized load case. For small and

medium scale problems, Time step = 9.4 x 10"8 Sec is used. This time step has been

automatically computed by Abaqus and therefore is also adopted in our proposed

nonlinear sparse modal method for comparison purpose. Based on the number of dof, the

plate is modeled in three categories: small scale, medium scale and large scale.

7.1.1. Synchronized Load Case: Small Scale Problem with 16 x 16 Mesh Size

In order to verify the results with the available data,13 the small scale problem is

solved first with the mesh size of 16 x 16. Data used to solve the small-scale problem is

shown in table 7.2.

93

Table 7.2; Data used for small-scale problem (16x16) mesh size

Mesh size

No. of elements

No. of nodes

Total no. of dof

No. of modes used

Total active dof

Time history

Time step

Sound Pressure Level

Cut off Frequency

= 16x16

= 256

= 289

= 1734

= 4

= 1534

= 2 Sees

= 9.4xlO"8Sec

= 120

= 1024 Hertz

When seven lowest modes are taken in account, the lowest natural frequencies are given

and compared with the exact values through Table 7.3.

Table 7.3: The lowest seven natural frequencies (in Htz) of simply supported plate

Mode

Exact

FEA

(1,1)

58.116

58.118

(3,1)

215.19

215.19

(1,3)

365.98

365.98

(3,3)

523.05

523.05

(5,1)

529.33

529.35

(5,3)

837.19

837.21

(1,5)

981.70

981.74

Using the Runge-Kutta time integration method, the modal coordinates {q} for

converged deflection are first calculated by solving, the modal equation of motion

expressed through Eq. (4.19). Then, for each time history point, bending displacement

vector {wb}can be easily computed using Eq. (4.36). Table 7.4 shows the Root Mean

Square (RMS) of maximum non-dimensional deflection at Sound Pressure Level, SPL=

120 and compares with data available in the literature. Here, the average RMS is

calculated after solving the same problem for 16 different samples. Each sample has a

different ISEED number to generate the random load. It has been observed that 4 modes

94

are sufficient to get the converged deflection. The time history is generated for 2 seconds.

Then, to avoid the effect of initial displacement (if any), the initial history of 0.4 seconds

is neglected. Time taken by different segments of the developed FEA code is shown in

Table 7.5.

Table 7.4: Verification of results for a simply supported isotropic plate

SPL

120

RMS of Wmax/h for time history

of 1.6 sec

1.496925555

RMS of time Wmax/h for history of

2 .0 Sec from13

1.4039

Note: The small difference in the results is because of: 1) In Ref13, the time history is

considered for a full 2 sec, whereas our RMS calculations are based on 1.6 sec. 2)

Random loading patterns are different in this work and in Ref13.

Table 7.5: Time consumed by various segments of sparse FEA code for synchronized
loading using 16x16 mesh size

Time Zone

1

2

3

4

5

6

7

8

9

Function

Read input data

Linear stiffness and mass matrix generation along

with symbolic and numerical assembly

Splitting into bending and membrane dof

Sparse Sub-space eigen solution

Modal calculations and mass normalization

Factorization

First and second order nonlinear stiffness matrices

generation

Random load generation and re-scaling

Runge Kutta integration, RMS deflection and

modal participation factor calculations

Total time :

Time(Minutes)*

0.00010

0.002595

0.000035

0.007757

0.000028

0.000020

0.340602

0.076090

0.019640

0.446867

Wall-Clock time was reported. (Wright Brothers HPC Environment, small parallel environment: Sun Fire
V20z cluster, 2.4 GHz, 4 GB RAM)

95

7.1.2 Synchronized Load Case: Medium Scale Problem with 192 x 192 Mesh Size

The mesh size of 192 x 192 is used here to compare the computational time used

by proposed nonlinear sparse modal method with the time taken by Abaqus for the same

problem. Tables 7.6 and 7.7 provide data used and timing results for this medium scale

problem, respectively.

Table 7.6: Data used for medium-scale problem (192 x 192 mesh size)

Mesh size

No. of elements

No. of nodes

Total no. of dof

No. of modes used

Total active dof

Time history

Time step

Sound Pressure Level

Cut off Frequency

= 192x192

= 36864

= 37249

= 223494

= 4

= 221182

= 2 Sees

= 9.4xlO~8Sec

= 120

= 1024 Hertz

Table 7.7: Time consumed by various segments of sparse FEA code for synchronized
_ _ _ ^ loading using 192 x 192 mesh size
Time
Zone

1
2

3

4
5

6

Function

Read input data
Linear stiffness and mass matrix
generation along with symbolic and
numerical assembly

Splitting into bending and membrane dof

Sparse Sub-space eigen solution
Modal calculations and mass
normalization
Factorization

Time
Proposed
Sparse Method
(Minutes)*

0.00287287

0.29432437

0.00493162
21.1467037

0.00262425

0.02210662

Time Abaqus
(Minutes)**

0.317

-

-
-

-

96

7

8
9

First and second order nonlinear stiffness
matrices generation
Random load generation and re-scaling
Runge Kutta integration, RMS deflection
and modal participation factor
calculations
TOTAL TIME :

41.6832000
0.021324

929.235428
993

-

-

70967
* Wall-Clock time was reported.(ODU computer's model: Sun-Fire-280R,speed=1.2 GHz ,
Operating system: Solaris OS system, spare version 8.0)
**Wall clock time was reported (Dell Precision 370 Workstation. Intel Pentium 4, 3.2 GHz, 3 GB RAM)

7.1.3 Synchronized Load Case: Large Scale Problem with 256 x 256 Mesh Size

The mesh size of 256 x 256 is used here to evaluate the numerical performance of

the code in terms of the computational time and memory requirements for solving the

largest size problem using available computational resources. Tables 7.8 and 7.9 provide

data used and timing results for this large scale problem, respectively.

Table 7.8: Data used for large-scale problem (256 x 256 mesh size)

Mesh size

No. of elements

No. of nodes

Total no. of dof

No. of modes used

Total active dof

Time history

Time step

Sound Pressure Level

Cut off Frequency

= 256 x 256

= 65536

=66049

=396294

= 4

= 393214

= 2 Sees

= 1.2207 xlO"4 Sec

= 120

= 1024 Hertz

97

Table 7.9: Time consumed by various segments of sparse FEA code for synchronized
loading using 256 x 256 mesh size

Time Zone

1

2

3

4

5

6

7

8

9

Function

Read input data

Linear stiffness and mass matrix generation along

with symbolic and numerical assembly

Splitting into bending and membrane dof

Sparse Sub-space eigen solution

Modal calculations and mass normalization

Factorization

First and second order nonlinear stiffness matrices

generation

Random load generation and re-scaling

Runge Kutta integration, RMS deflection and

modal participation factor calculations

Total time:

Time(Minutes)*

0.005248

0.636123

0.008153

33.098150

0.006952

0.047998

134.798800

0.028494

7.067228

175.697147

Wall-Clock time was reported. (Wright Brothers HPC Environment, small parallel environment: Sun Fire
V20z cluster, 2.4 GHz, 4 GB RAM)

7.2 UNSYNCHRONIZED LOAD CASES

The same problem discussed in the previous section of this chapter is solved when

the load subjected is unsynchronized in nature. Table 7.10 provides the details about time

taken by various segments of the problem when only a single processor is used. To solve

the same problem, parallel computation is adopted. Here, the load is simulated using

different ISEED numbers for each element, which makes application of parallel

computation beneficial. First of all, the major time consuming part is identified, and then

parallel computation is adopted to distribute the task for that particular segment. Here,

Time step = 1.2207 x 10"4 Sec is used as per the proposed code requirement. Comparison

in timing shown by Table 7.5 and 7.10 confirms the necessity of parallel computation for

the part of the code that generates and re-scales random load. Small, medium and large

scale problems are solved to check efficiency of parallel computation for different scale

problems.

98

Table 7.10: Time consumed by various segments of sparse FEA code for unsynchronized

loading using 16x16 mesh size

Time Zone

1

2

3

4

5

6

7

8

9

Function

Read input data

Linear stiffness and mass matrix generation along

with symbolic and numerical assembly

Splitting into bending and membrane dof

Sparse Sub-space eigen solution

Modal calculations and mass normalization

Factorization

First and second order nonlinear stiffness matrices

generation

Random load generation and re-scaling

Runge Kutta integration, RMS deflection and

modal participation factor calculations

Total time:

Time(Minutes)*

0.000107

0.002437

0.000032

0.006382

0.000027

0.000018

0.311050

5.062069

0.021730

5.403851

Wall-Clock time was reported. (Wright Brothers HPC Environment, small parallel environment: Sun Fire
V20z cluster, 2.4 GHz, 4 GB RAM)

In case of un-synchronized loading the random load generation, along with rescaling,

consumes an ample amount of time. This can be noticed by comparing time zone 8 of

Table 7.5 and 7.10. One can easily visualize the increase in the time difference for

rescaled random load generation in case of a large scale problem.

7.2.1 Un-synchronized Load Case: Small Scale Problem with 16 x 16 Mesh Size

In order to verify the results, the small scale problem is solved first with the mesh

size of 16 x 16. The program is used to run for synchronized loading, i.e., by providing a

similar time history for each element. Comparison of RMS deflection proves the

accuracy of the code. Results show that the Root Mean Square deflections are reduced for

the unsynchronized loading as compared with the traditional synchronized loading case.

Table 7.11 shows time consumed by various numbers of processors to solve the problem.

99

Fig 7.2 helps in visualizing the data shown in table 7.11 and efficiency gained using 31

processors.

Table 7.11: Time consumed by different number of processors using sparse-parallel FEA

code to solve small scale problem with un-synchronized loading using

16 x 16 mesh size

NP

1

2

3

5

7

11

15

27

31

Time to solve
whole problem
(Mins) *

7.678

4.013

3.038

2.058

1.708

1.397

1.177

1.048

0.988

Time for
parallel
segment (Mins)

7.340

3.893

2.700

1.737

1.370

1.059

0.840

0.71

0.65

Speed Up *

1.00

1.89

2.72

4.23

5.36

6.93

8.74

10.34

11.29
Wall-Clock time was reported. (Wright Brothers HPC Environment, small parallel

environment: Sun Fire V20z cluster, 2.4 GHz, 4 GB RAM)
Speed up is calculated based on timing for parallel segment of the program (generation and

re-scaling of un-synchronized load)

Mesh size:16x 16

8.000 -

7.000 -'

6.000 -

1" 5.000 -

~ 4.000 -i

I •
p 3.000 -:

2.000 -

1.000 -

0.000 -,

1
1
\

\

I
\

X

10 15 20

No. of processors

25 30 35

Fig. 7.2: Graph of No. of processors Vs. Time (minutes) for small scale problem with un-

synchronized load using 16x16 mesh size

100

7.2.2 Unsynchronized Load Case: Medium Scale Problem (96 X 96 Mesh Size)

The medium size problem has been solved to compare the efficiency of parallel

process for different size problems. Table 7.12 shows time consumed by various numbers

of processors to solve the problem. Fig 7.3 helps in visualizing the data shown in table

7.12.

Table 7.12: Time consumed by different number of processors using sparse-parallel FEA

code to solve medium scale problem with un-synchronized loading Using 96 x 96 mesh

size

NP

1

2

3

5

7

11

15

27

31

Time to solve
whole problem
(Mins)

307.685

162.470

118.940

82.450

65.170

49.589

44.196

40.130

37.630

Time for
parallel
segment (Mins)

292.495

148.300

104.750

68.198

51.000

36.743

30.186

26.150

23.650

Speed-Up"

1.00

1.97

2.79

4.29

5.74

7.96

9.69

11.19

12.37
Wall-Clock time was reported. (Wright Brothers HPC Environment, small parallel environment:

Sun Fire V20z cluster, 2.4 GHz, 4 GB RAM)
Speed up is calculated based on timing for parallel segment of the program (generation and re-

scaling of un-synchronized load).

101

Mesh size: 96 x 96

350.000 n

300.000 *

— 250.000

| 200.000

« 150.000

P 100.000

50.000

0.000 ,

0

Fig. 7.3: Graph of No. of processors Vs. Time (minutes) for medium scale problem with

un-synchronized load using 96 x 96 mesh size

7.2.3 Unsynchronized Load Case: Large Scale Problem (192 x 192 Mesh Size)

It is obvious that the bigger the problem size, the more benefit from parallel

computation in terms of time saving. Using available resources, maximum size problem

solved is of mesh size 192 x 192 with 223,494 dof. The large scale problem subjected to

un-synchronized load is solved using the modal FEA code combined with parallel

computation. Table 7.14 gives a time comparison using a different number of processors

to solve the whole problem. Fig.7.4 helps in visualizing the data shown in table 7.14. It

should be noticed that for this problem, memory restriction does not allow usage of fewer

than 12 processors.

10 15 20

No. of processors

25 30 35

102

Table 7.13: Time consumed by different number of processors using sparse-parallel FEA

code to solve large scale problem with un-synchronized loading using 192 x 192 mesh

size

NP
12
16
31

Time to solve whole problem(Mins)*
340.042
286.513
189.233

Time for parallel
segment (Minutes)*

269.042
213.813
116.333

Wall-Clock time was reported. (Wright Brothers HPC Environment, small parallel environment: Sun Fire
V20z cluster, 2.4 GHz, 4 GB RAM)

300 y

2 5 0 -

« " 2 0 0 -
c
5 - 1 5 0 -
a>
• | 100 -

5 0 -

0 -

Meshsize: 192x192

10 15 20

No. of processors

25 30 35

Fig.7.4: Graph of No. of processors Vs. Time (minutes) for medium scale problem

with un-synchronized load using 192 x 192 mesh size

7.3 USER INPUT DATA

The input file is generated separately to provide user defined input data. Table 7.14

shows details about how required input data is defined for sparse FEA code.

103

Table 7.14: Input data requirement

Required Input Data:

Total number of boundary conditions

Number of dof per node

Total number of nodes

Number of dof on which external load is

applied

Number of materials

Number of layers

Number of sectional properties

Flag to indicate whether mass matrix is

lumped or diagonal

Flag to indicate Eigen solver

Number of eigen values

Flag to indicate algorithm to be used for

reordering

Level of unrolling

Defined value to perform shift in eigen

solver

Flag to provide printing information on

output of eigen solver

Number of elements

Number of dof per element

Young's Modulus

Area of the element surface

Nodal co-ordinates

Element-node connectivity

Load intensity subjected on nodes

Defined in the code as:

Nboundc

Ndofpn

Numnodes

Loadof

Nummat

Nlayers

Nsect

Lumpmass

Ianal

Neig

Nreord

Nunroll

Ishift

Iprint

Nel

Ndofpe

E

A

joint# x-coord y-coord z-coord

element# node-1

Loaded-dof

104

The input file needs to be in sequential order as follows:

Table 7.15: Order required for input data

nboundc ndofpn numnodes loadof nummat nlayers nsect lumpmass ianal neig

nreord nunroll ishift iprint

Nel (1,2,3,4,5,6)
_ _ _ _ _ _ _ _ _ _

young-modulus +10 more material properties

area + 1 1 more cross-sectional properties

joint# x-coord y-coord z-coord

element# node-1 node-2 node-3 node-4

loaded-dof force/moment intensity

7.4 MAIN PROGRAM

The main program file is named "sparsenonlinearmodal.F." By calling

different subroutines explained in Appendix E, the main program performs nonlinear

modal finite element analysis. Parallel computation is used inside this program to

distribute the load generation task among different processors. Also, modal displacements

are converted into displacements in structural dof. Finally, Root Means Square (RMS) of

maximum deflection is calculated. Modal participation factors are also calculated to

predict contribution of different modes. The wall clock time for different segments of the

whole analysis procedure is noted. For MPI procedures timing is measured using function

mpi_wtime() whereas for sequencial procedure, function system_clock() is used for the

same.

7.5 JOB SUBMISSION

The developed MPI FORTRAN source code for nonlinear finite element analysis

is compiled and run in the UNIX environment. A script file is used to submit the job. A

similar script file can be used for both synchronized as well as un-synchronized load case.

But, parallel environment is not recommended in the case of synchronized load case. So,

105

the information regarding number of processors/nodes should be different while dealing

with such cases. Appendix E shows the script file used to submit the job containing MPI

Fortran and MATLAB functions usage when 3 MPI processes are used.

Remarks:

1. The reported timing, shown in Tables 7.5, 7.7, 7.9, 7.10, 7.11, and 7.12 is based

on one sample run.

2. All wall clock time reported in Table 7.9 has already been converted from ODU

Sun-Fire-280R computer (slow) into Intel Pentium 4 (fast) computer platform.

3. For medium scale synchronized loading problem, the single precision

Abaqus/Explicit wall clock time was estimated by running the simulation for

(several) much shorter time durations than 2 seconds. The wall clock time was

found to be almost proportional to the time duration. Hence, the timing values

were extrapolated for the full 2.0 second duration. The time step was

automatically computed by Abaqus and was estimated to be 9.4 xlO"8 seconds.

106

CHAPTER VIII

CONCLUSION

The study has been undertaken with an objective to solve large scale problems

with synchronized or unsynchronized uniform random loads for the response of a plate.

In this research work, computational issues in conjunction with the nonlinear modal

methods have been discussed and implemented. The motive of this study started with the

observation that because of the computational limitations many of the large scale non

linear analysis problems for random responses take an enormous amount of time for the

solution or remain unsolved. Also, real-life random loads are not deterministic, leading to

studying simulation of unsynchronized load and solving the same for large scale

problems.

Accuracy of the proposed sparse nonlinear modal algorithms has been validated

through Table 7.4. Computational efficiency has been established through Table 7.9 and

Table 7.14. The numerical results have indicated that the proposed sparse nonlinear

method is accurate and highly efficient. It was reported by Green and Killey12 that only

running a half-second time for nonlinear time domain Monte Carlo simulation of 5000-

element for a single-bay panel took approximately 10 hours on a Cray C94 computer.

The developed FEA code consumes only -176 mins (~ 3 hours) for running two second

time history for nonlinear time domain Monte Carlo simulation of 65,536 elements. The

comparison between the two programs itself proves the efficiency of the code. In fact, it

can be noticed that for synchronized load cases, even though using double precision and
99 9"i

without using the sparse re-ordering algorithms ' in proposed sparse method, it is about

72 (-70967 mins/993mins) times faster than Abaqus, which uses single precision. For a

synchronized load case problem, the maximum size problem solved is for about 400,000

dof. With capability of more RAM memory, the code is capable of solving even larger

scale problems.

For the first time, large scale un-synchronized load cases are solved using the

proposed code. The proposed code provides - 90 % efficiency to solve a large scale

107

problem using 31 processors. The same problem is unsolvable when fewer than 12

processors are used, which proves that parallel computation not only benefits by time

savings but also helps solving memory related problems. The code could solve many

unsolvable problems because of time and memory limitations. The code has the

capability to link MATLAB and FORTRAN environment, and data exchange between

the two.

Abaqus provides the nonlinear random response (NRR) in the structural dof (but

not in the modal dof). However, these existing capabilities in current versions of

commercialized FEA codes are highly inefficient. In Ref21' the 3x3 bay panel with

approximately 96,000 dof took 24 hours for 0.1 sec nonlinear random response (NRR of

RMS Max. deflection and RMS Max. Stress) using Abaqus/Explicit on the NASA

Langley fast computer system (Itanium2). Since we need 2 sec NRR, it will take 20x24

hours= 20 days or less for each sample. For Monte Carlo simulation, we need 10 or more

samples, that is almost 200 days for each sound pressure level. This can not be used as

design tools. The reasons are: a) the nonlinear stiffness matrices K^w) and^^w2 j in

structural dof are functions of the panel deflection w. They need to be updated at each

time integration At (or every 5x At, lOx At, etc. this leads to poor accuracy), and (b) very

small At compared to At in the modal dof.

Mex script is developed to submit the job for compilation and linking several

FORTRAN source files into a shared library called a binary MEX-file from MATLAB

software. At ODU'S Wright Brothers HPC Environment, only "small" environment is set

up for Mex jobs. It has 8 slots and each slot can run a maximum of 4 processes.

Especially for the problems which are both CPU and memory intensive, the best result is

achieved through running 1 process per slot, which is a total of 8 parallel processes. For

the un-synchronized load case, using 31 processors 36.43% efficiency is achieved for

smallest scale problem which is increased up to 89.77% for large scale problem. The

reason behind limiting efficiency up to -90% is the usage of MATLAB function. Time

consumed by each processor to call MATLAB and pass data from FORTRAN to

MATLAB and vice versa remains the same, affecting the efficiency of the program. For

un-synchronized load case, solution of a large scale problem using fewer than 12

108

processors was impossible due to memory limitations of the processors. When fewer than

12 processors are used, generation, re-scaling and storage of random load exceed the

memory allotted to each processor.

For the problems with a large number of dof, the nonlinear finite element analysis

becomes computationally challenging because large size matrices are involved. The best

option to overcome such difficulty is usage of modal formulation. The method not only

reduces the size of matrices drastically but also makes the nonlinear matrices constant

and uses larger step size resulting in large time savings. In modal formulation, eigen

solver needs to be employed initially, which restricts size of stiffness and mass matrices

due to memory limitations. Moreover, conversion of linear and nonlinear matrices from

structural dof to modal dof and vice versa makes the solution difficult while dealing with

large dof. Application of sparse technology makes it possible to solve such problems,

which are complex in terms of time and memory. For large scale problems considering

unsynchronized loading, the solution becomes extremely difficult to resolve

computationally and leads to application of parallel computation. It is extremely

important to develop a software code to work as a design tool that combines nonlinear

finite element analysis, modal formulation, sparse technology and parallel computation

along with rescaling of the random load vector, with the capability of solving large scale

problems. The research work presented in this dissertation fulfils the requirement and

provides a versatile design tool.

8.1 FUTURE SCOPE

Unrolling techniques23 and algorithms for sparse minimizing fill-in terms that

occurred during the numerical factorization22 have not yet been incorporated into the

current version of the code. The sparse re-ordering technique is not implemented, either.

Both of these techniques will further reduce the computational time of the proposed

nonlinear sparse modal method.

109

Analysis of multi-bay aerospace structures can be extended from this work, by

simply adding additional subroutines to transform an arbitrarily oriented rectangular plate

element into the global co-ordinate references. The modeling of a 3x3-bay panel21

includes a refined mesh for all individual separate panels and stiffeners. The stiffeners

with various sections such as Z-, L- or hat sections will also be modeled with plate

elements. Multi-bay structures are much more complicated than the single-bay panels,

which could result in global (stiffeners) and local (separate panels) vibration modes.

Therefore, a new challenge is to study the effects of two types of modes and to select the

proper modes to be retained in the computational procedures.

The developed research code can be further extended for analysis of composite

structures. Moreover, the software can be made generalized to perform even stress

analysis for different kind of structures using curved shell elements and other types of

elements. Also including the feature to facilitate aerodynamics loads (supersonic and

hypersonic) and its coupling with thermal loads will help the design and behavior

understanding of future high-speed flight vehicles.

110

APPENDIX A

TRANSFORMATION MATRICES [j j AND [Tm]

The displacement vector of the BFS element can be written as:

M= {M MY (A.i)
where transverse displacement vector is:

K } = jv^ w2 w3 w4 w,xl w,x2 w^ w,x4 w,yl w,y2 w,y3 w,y4 w,xyl w,xy2 w,xy3 w,JT (A . 2)

And membrane displacement vector is:

{wm}= {«! u2 u3 u4 v, v2 v3 v4} (A.3)

The element transverse displacement function w and the in-plane displacement functions

u and v are approximated as a bi-cubic and a bi-linear polynomial functions in x and _y,

which can be written as:

w[x,y) = a{ + a2x + a3y + a4x
2 +a5xy + a6y

2 +a7x3 + asx
2 y + a9xy2

+ awy3 + anx
3 y + anx

2 y2 +al3xy3 +aux^y2 +a15x
2yi +al6x

3yi

W(JC,}>) = bx + b2x + b3y + b4xy

= [#.ML{*L (A-5)

v(x, y) = bs + b6x + b7y + b%xy

I l l

=[#vML (*L (A.6)

For the BFS C -conforming element, the membrane displacement vector can be

expressed as:

Ivl
l x y x y O O O 0"

0 0 0 0 1 x y xy
(A.7)

And the transverse displacement vector can be expressed as:

w

w,

w.

w. xy

1 2 2 3 2

1 x y x xy y x x y

0 1 0 2x y 0 3 / 2xy

0 0 1 0 x 2y 0 x2

0 0 0 0 1 0 0 2x

xy2

y2

2xy

2y

/

0

3 /
0

x3y

3x2y

x3

3x2

2 2

x y
2xy2

2x2y

Axy

xy3

y3

3xy2

3y2

3 2

x y
3x2y

2x3y

6x2y

2 3

x y
2xy3

3x2y2

6xy2

3 3 "

x y
3x2/

3*y
9x2y2

A

<

ax

a15

(A.8)

The nodal coordinates of the BFS plate elements are as shown in the fig:

112

4 (0,b)

/ / • - <-

1,(0,0)
a

/ /
/ 1

I <a'b>

2 (a,0)

7
7

Substituting the nodal coordinates into Eq. (A.7), the nodal membrane displacement

{wm} can be written as:

W,„=[rXR,. (A-9)

l V 4

1 0 0 0 0 0 0

1 a 0 0 0 0 0

1 a b ab 0 0 0

1 0 b

0 0 0

0 0 0

0 0 0

0 0 0

0

0

0

0

0

0 0 0

1 0 0
1 a 0
l a b

1 0 b

0"

0

0

0

0

0

ab

0_

V
b2

b3

b4
< >

b5

b6

b7

A,

A. 10)

The in-plane transformation matrix [Tm] is obtained by inverting the above matrix[lm]

Similarly, by substituting nodal coordinates into Eq. (A. 8), the nodal bending

displacement {wb} can be written as:

113

w,
w2

W 3

w4

W>xl

W>x2

W > , 3

W > * 4

W ' , l

W>y2

W>y*

W>y4

W'xyX

W>xy2

* % 3

W ' ;c>>4 _,

0

0

aZ>2

0

0

0

62

b2

0

0

2a&

0

0

0

2b

2b

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

b3

b3

0

0

0

0

0

0

3b2

3b2

0

0

0

c

0 0

a 0

a b

0 b

1 0

1 0

1 0

1 0

0 1

0 1

0 1

0 1

0 0

0 0

0 0

0 0

0

0

a3b

0

0

0

3a2 b

0

0

a3

a3

0

0

3a2

3a2

0

0

a2

a2

0

0

2a

2a

0

0

0

0

0

0

0

0

0

0

0

a2b2

0

0

0

2ab2

0

0

0

2a2b

0

0

0

Aab

0

0 0

0 0

ab b2

0 b2

0 0

0 0

b 0

b 0

0 0

a 0

a 2b

0 2b

1 0

1 0

1 0

1 0

0

0

ab3

0

0

0

b3

b3

0

0

3a62

0

0

0

3b2

3b2

0

a3

a3

0

0

3a2

3a2

0

0

0

0

0

0

0

0

0

0

0

a b

0

0

0

3a2b2

0

0

0

2a3b

0

0

0

6a2 b

0

0

0

a2b

0

0

0

2ab

0

0

a2

a2

0

0

2a

2a

0

0

0

a2b3

0

0

0

2ab3

0

0

0

3a2b2

0

0

0

6ab2

0

0

0

a3b3

0

0

0

3aV
0

0

0

3a3b2

0

0

0

9a2b2

0

<2j

a2

a3

a4

a5

a6

an

as

a9

a10

an

an

an

al4

«15

/v (A.12)

The in-plane transformation matrix [Tb] is obtained by inverting the above matrix [lb] \

114

APPENDIX B

FORTRAN CODE FOR GAUSSIAN-STATIONARY RANDOM LOAD

GENERATION

c SIMLOAD

c N No. of intervals in the spectrum

c N should be an integer power of two

c NPT No. of points for the time series

c NPT should be an integer power of two, NPT > N

c ISEED Random number seed

c TTOTAL = N/FMAX - Total Integration Time

c DT = N/(NPT*FMAX) = Integration Time Step Size

c======——======================================

c INSTRUCTIONS FOR SELECTING INPUT DATA

c 1. Take Highest Frequency, FMAX

c 2. Minimum Time Step is STEP_MIN=1/(2.5*FMAX)

c 3. N=FMAX*2

c 4. Pick Up Total Running Time (lsec, 2 sec,...) T_total=N/FMAX

c 5. Select NPT to satisfy 2**(integer number)

c 6. Select NPT such that STEP=N/(NPT*FMAX)

subroutine simload(spl, NPT, Fmax, x, y, dt)

implicit real*8(a-h,o-z)

parameter (N=Fmax*2)

real*8y(NPT),sp(N+l),w(N+l),rand(N),spl

complex x(NPT),zimag

c===:====

c initial variables

spp=8.4144*10**(-18.+spl/10.)! for distributed acoustic pressure

pi=3.141592654

pi2=pi*2.0

npl-n+1

zimag=cmplx(0.0,l .0)

sppw=spp/pi2

wu=fmax*pi2

dw=wu/fioat(n)

dol l9 i=l ,npl

sp(i)=sppw

w(i)=(i-l)*dw

119 continue

area=spp*fmax

sq2dw=dsqrt(2.0*dw)

ttotal=pi2/dw

dt=ttotal/float(npt)

c Set x(l)=0. in order to obtain new mean zero time series

C = = = = = = = = = = = : = z = = = = = = = = : = - = = : = : = = : = : : = r = : = = r : z z : - = = = = = = = =

x(l)=cmplx(0.0,0.0)

do 50i=n+l,npt

x(i)=cmplx(0.0,0.0)

50 Continue

c Generate random phase angles uniformly distributed between

c zero and 2.0*pi

116

iseed=12357

call random_seed()

call random_number(rand)

do 60 i=2,n+l

phi=rand(i-1)*pi2

p 1 =sq2dw*dsqrt(sp(i))

x(i)=p 1 *cdexp(-zimag*phi)

60 continue

c perform forward transform

callfft(x,npt,l)

get real part

do 70i=l,npt

y(i)=real(x(i)) ! for pressure loads

70 continue

return

end

c===

c FFT

C = = = = = = = = = = = = : = = = = = = = = = = r = = - = = = = = = = = = = = = = = = : = = = = = :

subroutine fft(x,n,k)

implicit integer (a-z)

real*4 gain,pi2,ang,re,im

complex x(n),xtemp,t,u(16),v,w

logical new

data pi2,gain,n0,k0/6.283185307,1.0,0,0/

new=n0.ne.n

if(.not.new) go to 2

12n=0

nO=l

1 12n=12n+l

nO=nO+nO

if(n0.1t.n) go to 1

gain=1.0/n

ang=pi2*gain

re=cos(ang)

im=sin(ang)

2 if(.not.new .and. k*k0.ge.l) go to 4

u(1)=cmplx(re,-sign(im,float(k)))

do 3 i=2,12n

3 u(i)-u(i-l)*u(i-l)

kO=k

4 sby2=n

do 7 stage=l,12n

v=u(stage)

w=(l -0,0.0)

s=sby2

sby2=s/2

do6L=l,sby2

do 5 i=l,n,s

p=i+L-l

q=p+sby2

t=x(p)+x(q)

x(q)=(x(p)-x(q))*w

5 x(p)=t

6 w=w*v

7 continue

do9i=l,n

118

index=i-l

jndex=0

do8j=l,L2n

jndex=jndex+jndex

itemp=index/2

if (itemp+itemp.ne.index) jndex=jndex+l

index=itemp

continue

j=jndex+l

if(j.LT.i)goto9

xtemp=x(j)

x(j)=x(i)

x(i)=xtemp

9 continue

if (k .gt. 0) return

dol0i=l ,n

10 x(i)=x(i)*gain

return

end

119

APPENDIX C

LINEAR RANDOM VIBRATION

From PDE for an isotropic rectangular plate,

p h ^ + D^W = Po(t) (C.l)

For a simply supported boundary condition, the plate deflection can be expressed as:

w(x, y,t)=Y, 2 qm Wmn (*> y)
m n

And for a simply supported boundary condition, the mode shapes are:

(C.2)

0mn(X>y) = sin
'mnx^

sin
\ a J

(mny^

V o J
(C.3)

Substituting Eq. (C.3) into Eq. (C.l) and applying the modal orthogonality condition,

The modal equation becomes:

2 _ P
Hmn mtijLmn

. « where m,n =1,3,5,
m„

(C.4)

Adding a structural damping,

<L„ +2^mncomnqm„ +a>mnqmn = Pok) (C.5)
m„

®mn = n

f \ 2 f \ 2

+
W

n rad /sec (C.6)

mnn ph

16
(C.7)

where comn and mmn are the natural frequency and modal mass, respectively.

The response to Eq. (C.5) is given by Eq. (3-57) and (7-37) in reference 26

4?i]= * s0(f)
mn~ mn mn

(C.8)

Set mn=r and kl=s,

E[qmn<lki] = E[qrqs} =
m„

(Zra>,+Z,a>g)S0(f)
ms Wr ~ °>) J + 40,(0, (%rG)r + %s6)s)(%rCOs +%sCOr)

The root mean square of maximum deflection obtained from Eq. (C.2) can be expressed

as:

RMS{WW)-
(« V

(C.9)

APPENDIX D

FORTRAN CODE FOR LOAD VECTOR RE-SCALING

c RESCALE

c================—===================

c INPUT DATA

c====================================

c spl = Sound Pressure Level

c y = Random Load vector generated using SIMLOAD

c NPT = No. of points for the time series used in SIMLOAD

c Fmax = Frequency

c—

c

c

o—

temp_rdn

OUTPUT DATA

= Rescaled random load vector

subroutine rescale(spl, NPT, Fmax, y, temprdn)

implicit real*8(a-h, o-z)

#include "fmtrf.h"

mwpointer engOpen, engGetVariable

mwpointer mxCreateDoubleMatrix, mxGetPr

mwpointer ep, x_m, w_m, p, x_ml, w m l , p_m

integer engPutVariable, engEvalString, engClose

real*8 y(NPT)

real*8 dt,spp

real*8 freq(NPT), psd(NPT),temp_rdn(NPT)

integer status

122

c Initializing vectors

Wpp=spp

do 5 i=l,NPT

freq(i)=0.0

psd(i)=0.0

5 continue

ep = engOpen('matlab')

if (ep .eq. 0)then

write(6,*) 'ERROR: MATLAB engine did not start'

stop

endif

c===:=============

c Put variable V into MATLAB workspace

c Create a vector of size NPT X 1 & initialize to zero:

c = : = = = =

x_m = mxCreateDoubleMatrix(NPT, 1, 0)

c==========================:==================::==============:====

c copy Fortran array y into MATLAB array called mxGetPr

c x_m is no of elements to copy y(x_m)

c x_m=NPT

c copy array y of Fortran to MATLAB array using pointer mxGetPr

c==:==::==========:=

call mxCopyReal8ToPtr(y, mxGetPr(xm), NPT)

c============^==::=

c Put variable x r n into MATLAB

c======:==========:================:==============::=:===========:======

status = engPutVariable(ep, 'xrn', x_m)

if (status .ne. 0) then

write(6,*) 'ERROR: engPutVariable*

stop

endif

c================:====================================

c Evaluate PSD using pwelch
C = :

if(engEvalString(ep,'[Pxx,w_m]=pwelch(x_m,[],[], 16384,8192);')

ne. 0)then

write(6,*) 'ERROR: engEvalString'

stop

endif

c Get the variable w r n from MATLAB

w_m = engGetVariable(ep, 'w_m')

c=========:=====================================:=::====:==:

c Copy from MATLAB ARRAY to FORTRAN ARRAY:

call mxCopyPtrToReal8(mxGetPr(w_m), freq, 1000)

c==:====

c Get the variable Pxx from MATLAB which is PSD

p = engGetVariable(ep, 'Pxx')

call mxCopyPtrToReal8(mxGetPr(p), psd, 1000)

c====-:========:========================:======::========

c Calculate average of first 1000 PSD values which should be equal to

c input spp value

2=====-=======::==

Wpp_sim 1=0.0

do 101 j=l, 1000

Wpp_siml:=Wpp_siml +psd(j)

101 continue

avgl=Wpp_siml/1000

c=

c Check the difference by calculating ratio between calculated spp and initial spp

ratio = avgl/Wpp

c=

c Scale the load vector {y} using difference ratio

dok=l,NPT

temp_rdn(k) =y(k)/sqrt(ratio)

enddo

c Now using the same procedure check the spp values for re-scaled load vector

c=============================:=::==-=:=======================

x_ml = mxCreateDoubleMatrix(NPT, 1, 0)

call mxCopyReal8ToPtr(temp_rdn, mxGefPr(x_ml),NPT)

status = engPutVariable(ep, 'x_ml',x_ml)

if (status .ne. 0) then

write(6,*) 'ERROR: engPutVariable'

stop

endif

if(engEvalString(ep,*[Pxx,w_m]=pwelch(x_ml,[],[], 16384,8192);')

.ne. 0)then

write(6,*) 'ERROR: engEvalString'

stop

endif

w_m = engGetVariable(ep,'w_m')

call mxCopyPtrToReal8(mxGetPr(w_m),freq, 1000)

p_m = engGetVariable(ep, 'Pxx')

call mxCopyPtrToReal8(mxGetPr(p_m), psd, 1000)

Wpp_sim2=0.0

dol02j=l,1000

Wpp_sim2=Wpp_sim2 + psd(j)

102 continue

avg2=Wpp_sim2/l 000

c=

c Calculate % of error between calculated new spp & initial spp

c==

c=

ERROR= (avg2-Wpp)*100/Wpp

c Delete all the arrays created in MATLAB

C = = = = = = = = = ; = : :

c=

call mxDestroyArray(p)

call mxDestroyArray(w_m)

call mxDestroyArray(x_m)

c Close MATLAB environment

C =

status = engClose(ep)

if (status .ne. 0) then

write(6,*) 'ERROR: engClose'

stop

endif

stop

end

APPENDIX E

DESCRIPTION OF SUBROUTINES

1. Subroutine generalip

Purpose: To read input data for general information regarding the structure

Output:

nel = Number of elements; scalar

ndofpe = Number of dof per element; scalar

neltype = Element type; scalar

maxdofpe = Maximum dof per element; scalar

nboundc = Number of active boundary conditions; scalar

ndofpn = Number of dof per node; scalar

numnodes = Number of nodes; scalar

loadof = Number of nodes at which external load is applied; scalar

nummat = Number of materials; scalar

nlayers ; = Number of layers; scalar

nsect = Number of sections; scalar

lumpmass = Indicator for lump or diagonal mass matrix; scalar

ndof = Total number of dof; scalar

ieall = Total number of different type of elements; scalar

jeall = Total dof of all different type of elements; scalar

neig = Number of eigen-solutions; scalar

nreord = Indicator for reordering technique; scalar

Iflag = Flag array, vector of 10 x 1

nunroll = Level of unroll; scalar

nmode = Number of calculated modes; scalar

modepick = Number of selected modes; scalar

127

2. Subroutine materprop

Purpose: To input material properties, assuming maximum 10 materials and each material

type has 11 properties

Input:

nummat = Number of materials; scalar

Output:

propmat = Properties of the material; vector of size nummat *11 x 1

3. Subroutine sectprop

Purpose: To input information regarding material cross-sectional properties, assuming

maximum 10 cross sections and each cross sectional type has 12 properties

Input:

nsect = Number of sections; scalar

Output:

propsect = Cross-sectional properties of the material; vector of size nsect* 12 x 1

4. Subroutine nodecoor

Purpose: To provide co-ordinates at each node

Input:

numnodes = Number of nodes; scalar

Output:

x,y,z = Nodal co-ordinates; vectors of size numnodes x 1

5. Subroutine elconect

Purpose: To provide information regarding element connectivity

Input:

neltype = Element type; scalar

nel = Number of elements; scalar

ndofpe = Number of dof per element; scalar

ndofpn = Number of dof per node; scalar

128

Output:

ie = Locations of the first non-zero term of each row,vector of size

ieall +1x1

je = Global node numbers associated with each element,vector of size

jeall x 1

lm = Indicator to coordinate local dof to global dof, vector of size maxdofbe

x l

lmstore = Stores information to coordinate local dof to global dof for all

elements, matrix of size maxdofbe x nel

6. Subroutine loads

Purpose: To input applied loads at the joints

Input:

ndof = Number of dof; scalar

loadof = Number of nodes at which external load is applied; scalar

Output:

b = Load vector; vector of size ndof x 1

7. Subroutine supportdof

Purpose: To input support dof information

Input:

ndof = Number of dof; scalar

b = Load vector; vector of size ndof x 1

nboundc = Number of active boundary conditions; scalar

Output:

iboundc = Indicator to define location where boundary condition is defined; vector

of size ndof x 1

ia = boundary flag array to use in sparse symbolic assembly; vector of size

ndof + 1 x 1

129

8. Subroutine transa2d

Purpose: To transpose a sparse matrix

Input:

ndof = Number of dof; scalar

ieall = Total number of different type of elements; scalar

ie = Locations of the first non-zero term of each row, vector of size

ieall +1x1

je = Global node numbers associated with each element, vector of size

jeall x 1

Output:

iet = Transpose of vector ie; vector of size ndof + l x l

jet = Transpose of vector je; vector of size jeall x 1

9. Subroutine symbass

Purpose: To perform symbolic assembly of a sparse matrix

Input:

ndof = Number of dof; scalar

ie = Locations of the first non-zero term of each row, vector of size

ieall +1x1

je = Global node numbers associated with each element, vector of size

jeall x 1

iet = Transpose of vector ie; vector of size ndof + l x l

jet = Transpose of vector je; vector of size jeall x 1

Output:

ia = starting locations of the first non-zero off-diagonal terms for each row of

structural stiffness matrix; vector of size ndof+1 x 1

ja = column numbers (unordered) corespond to each nonzero, off-diagonal

term of each row of structural stiffness matrix; vector of size ncoefl x 1

ncoefl = Number to define size of vector j a; scalar

130

10. Subroutine assembly

Purpose: To assemble element stiffness matrices, element mass matrices and element

load vectors (by calling subroutines 11 to 15)

11. Subroutine infojbfs

Purpose: To provide information regarding each element

Input:

iel = Element number, scalar

lm = Indicator to coordinate local dof to global dof; vector of size

maxdofpe x 1

propmat = Properties of the material; vector of size nummat * 11 x 1

x,y,z = Nodal co-ordinates; vectors of size numnodes x 1

Output:

x_bfs,y_bfs = Co-ordinates of the 4 nodes associated with particular element;

vectors of size numnodes x 1

el l = Young's modulus of the element material; scalar

xnul2 = Posision's ratio for the element material; scalar

rho = Density of the element material; scalar

t = Element thickness; scalar

A, D = Matrices to define material properties for composite as well as isotropic

material; matrices of size 3 x 3

12. Subroutine bfsls

Purpose: To evaluate element stiffness matrix

Input:

maxdofpe = Maximum dof per element; scalar

x,y,z = Nodal co-ordinates; vectors of size numnodes x 1

131

A, D = Matrices to define material properties for composite as well as isotropic

material; matrices of size 3 x 3

Output:

Ke = Element stiffness matrix; matrix of size maxdofpe x maxdofpe

13. Subroutine bfs lm

Purpose: To evaluate element mass matrix

Input:

maxdofpe = Maximum dof per element; scalar

x,y,z = Nodal co-ordinates; vectors of size numnodes x 1

A, D = Matrices to define material properties for composite as well as isotropic

material; matrices of size 3 x 3

rho = Density of the element material; scalar

t = Element thickness; scalar

Output:

Me =Element mass matrix; matrix of size maxdofpe x maxdofpe

14. Subroutine bfsjbe

Purpose: To evaluate element load vector

Input:

maxdofpe = Maximum dof per element; scalar

x,y,z = Nodal co-ordinates; vectors of size numnodes x 1

A, D = Matrices to define material properties for composite as well as isotropic

material; matrices of size 3 x 3

Output:

be = Element load vector; vector of size maxdofpe x 1

15. Subroutine numass

Purpose: To perform sparse numerical assembly

Input:

132

ia = starting locations of the first non-zero off-diagonal terms for each row of

structural stiffness matrix; vector of size ndof+1 x 1

ja = Unordered column numbers correspond to each nonzero, off-diagonal

term of each row of structural stiffness matrix; vector of size ncoefl x 1

idir = Flag which stores 1 in the positions correspond to Dirichlet boundary

conditions, 0 elsewhere; vector of size ndof x 1

ae = 1-D array which stores element stiffness matrix; vector of size

(ndofpe) x 1

be = Element load vector; vector of size maxdofpe x 1

lm = Indicator to coordinate local dof to global dof; vector of size

maxdofpe x 1

maxdofpe = Maximum dof per element; scalar

b = Load vector; vector of size ndof x 1

Before using this sub-routine, values of {b} should be initialized to

values of prescribed Dirichlet be at proper locations or values of applied

nodal loads

Output:

an = Numerical values of nonzero, off-diagonal terms of structural stiffness

matrix; vector of size ncoefl x 1

ad = Numerical values of diagonal terms of structural stiffness matrix; vector

of size ndof x 1

b = Assembled load vector; vector of size ndof x 1

16. Subroutine splitsparsebbmmimproved

Purpose: To split sparse assembled matrix into 2 sets of sparse matrices, one set is related

to bending dof and other set is related to membrane dof only. This can be done when

bending and membrane portions are completely uncoupled.

Input:

ndof = Total number of dof; scalar

133

an = Numerical values of nonzero, off-diagonal terms of structural stiffness

matrix; vector of size ncoefl x 1

ad = Numerical values of diagonal terms of structural stiffness matrix; vector

of sizendofx 1

ia = Starting locations of the first non-zero off-diagonal terms for each row

of structural stiffness matrix; vector of size ndof+1 x 1

ja = Unordered column numbers correspond to each nonzero, off-diagonal

term of each row of structural stiffness matrix; vector of size ncoefl x 1

Output:

iabb, jabb, adbb, anbb = Bending dof portion of the vectors ia, ja, ad and an,

respectively

iamm, jamm, admm, anmm = Membrane dof portion of the vectors ia, ja, ad and an,

respectively

ncoefl_bb, ncoefl mm = Number which indicates the value of ncoefl

corresponding to bending and membrane dof, repectively

17. Subroutine eigsoIverOll

Purpose: To perform eigen solution using Subspace eigen solver for real symmetric

stiffness and mass matrices when lumped mass matrix is considered.

Input:

ndofb = Total number of bending dof; scalar

ncoefl _bb = Number which indicates the value of ncoefl corresponding to bending

dof only; scalar

neig = Number of eigen-solutions; scalar

lumpmass = Indicator for lump or diagonal mass matrix; scalar

mtot = Estimated total static memory; scalar

iabb, jabb, adbb, anbb = Bending dof portion of the vectors ia, ja, ad and an, respectively

dmbb = Array to store diagonal-mass matrix; vector of size ndofb x 1

Output:

evalues = Computed eigenvalues; vector of size nc x 1 where nc is the number of

eigen values required to compute

evectors = Computed eigenvectors; matrix of size ndof_b x nc

ipermb = Permutation vector from the reordering; vector of size ndofb x 1

18. Subroutine symfactd

Purpose: To perform symbolic factorization

Input:

n = Order of given matrix A; scalar

ia = Starting locations of the first non-zero off-diagonal terms for each row

of given matrix; vector of size n+1 x 1

ja = Unordered column numbers correspond to each nonzero, off-diagonal

term of each row of given matrix; vector of size ncoefl x 1

Output:

iuju = Structure of resulting matrix U; vectors of size n + l x l and ncoef2 x 1,

respectively

ncoef2 = Number to define the size of the vector ju; scalar

ip = Chained lists of rows associated with each column. Also used as the

multiple switch array; vector of size n x 1

19. copyint

Purpose: To save a copy of input array

Input:

iarray = Array to be copied;vector of size n x 1

Output:

Icopy = copy of the input array; vector of size n x 1

20. subroutine mvsparse

Purpose: To perform multiplication of sparse matrix and vector

Input:

135

n = Number to define size of vectors ia and ad; scalar

ia, ja, an, ad = Vectors to store given sparse matrix; vectors of size n + 1 x 1,

ncoefl x 1, ncoefl x 1, n x 1, respectively

b = Given vector of size n x 1

Output:

c = Array resulting after multiplication of given sparse matrix and

vector; vector of size n x 1

21. Subroutine transad

Purpose: After symbolic factorization, ja is just a merge list without ordering (i.e. the

nonzero column numbers of a particular row are 12, 27, 14, 46, 22, 133). Upon

completion, this routine will rearrange the nonzero column numbers with ordering, to be

ready for numerical factorization phase (i.e. 12, 14, 22, 27, 46, 133)

Input:

ia, ja, an = Arrays to store sparse matrix

n = Number of rows of the sparse matrix; scalar

m = Number of columns of the sparse matrix; scalar

Output:

iat, jat, ant = Arrays to store transpose of sparse matrix;

22. Subroutine EvaTb

Purpose: To evaluate matrix [Tb] for BFS plate element

Input:

a = BFS plate element length; scalar

b = BFS plate element width; scalar

Output:

\Tb] = Transformation matrix related to bending dof; matrix of size ndoftVpe x

ndofb_pe. where, ndoftVpe = number of bending dof per element

23. Subroutine EvaTm

Purpose: To evaluate matrix [Tm] for BFS plate element

Input:

a = BFS plate element length; scalar

b = BFS plate element width; scalar

Output:

[Tm J = Transformation matrix related to membrane dof; matrix of size ndofm_pe x

ndofm_pe. where, ndofm_pe = number of membrane dof per element

24. Subroutine Trans

Purpose: To evaluate transpose of given matrix

Input:

[A] = Given matrix of which transpose needs to be evaluated; matrix of size m x n

Output:

[B] = Transpose of matrix [A] ; matrix of size n x m

25. Subroutine EvaCm

Purpose: To evaluate matrix [Cm] for BFS plate element. Also provides transpose of

matrix [Cm] by using subroutine Trans.

Input:

x = x co-ordinates of the nodes; scalar

y = y co-ordinates of the nodes; scalar

Output:

[Cm] = Matrix needs for the stiffness matrices evaluation; matrix of size 3 x 8

[Cmt] = Transpose of matrix [Cm] ; matrix of size 8 x 3

26. Subroutine EvaCzi

Purpose: To evaluate matrix [Czi] for BFS plate element. Also provides transpose of

matrix [Czi] by using subroutine Trans.

Input:

x = x co-ordinates of the nodes; scalar

y = y co-ordinates of the nodes; scalar

Output:

[Czi] = Matrix needs for the stiffness matrices evaluation; matrix of size 2x16

[Czit] = Transpose of matrix [Czi]; matrix of size 16x2

27. Subroutine VECTM

Purpose: To evaluate multiplication of given matrix [B] and a vector {c}

Input:

[B\ = Given matrix of size m x n

{c} = Given vector of size n x 1

Output:

{A} = Multiplication of given matrix [B] and vector {c}; vector of size m x 1

28. Subroutine multiply

Purpose: To evaluate multiplication of a matrix [^(]and a matrix [B]

Input:

[A] = Given matrix of size m x 1

[B] = Given matrix of size 1 x n

Output:

[c] = Multiplication of given matrices [A] and [B] ; matrix of size m x n

29. Subroutine numfald

Purpose: To perform numerical factorization

Input:

ia, ja, an, ad = Vectors to store given sparse matrix; vectors of size n + 1 x 1,

ncoefl x 1, ncoefl x 1, n x 1, respectively

n = Number to define size of vectors ia and ad; scalar

iu, ju = Structure of resulting matrix, U after symbolic factorization; vectors of

size n + 1 x 1 and ncoef2 x 1,respectively

Output:

un = Numerical values of the non-zeros of matrix U

138

di = Inverse of the diagonal matrix D

Working space:

ip = Chained lists of rows associated with each column; vector of size

nx 1

iup = Auxiliary pointers to portions of rows

di = Array used as the expanded accumulator

30. Subroutine fbed

Purpose: To perform sparse forward/backward solution phase

Input:

iu, ju, un = Vectors to store given upper triangular matrix with unit diagonal

matrix,

di = Inverses of the diagonal elements of the diagonal matrix D.

b = Right-hand side vector b.

n = Order of the system, n>l.

Output:

x = Vector of unknowns x.

31. Subroutine BFS_kl_element

Purpose: To evaluate element matrix [&l6m].

Input:

xx, yy, zz = Nodal co-ordinates of the element; vectors of size numnodespe x 1.

where, numnodespe is number of nodes per element.

[A], [D] = Membrane stiffness matrix; bending stiffness matrix; matrices of size
3 x 3

{wbl} = Eigen-vector values for specific element; vector of size maxdofpe x 1
Output:

[Kle] = Element matrix [klbm]

32. Subroutine assemblybfskl

139

Purpose: To perform sparse numerical assembly of element matrices \k\bm]. It provides

the output in sparse matrix form.

Input:

Same as input data required for subroutines "info_bfs", "BFSklelement" and

"numass."

Output:

ia, ja, an, ad = Vectors to store given system sparse matrix [AT14B)]; vectors of

size n + 1 x 1, ncoefl x 1, ncoefl x 1, n x 1, respectively.

33. Subroutine BFS_Kl_modaI

Purpose: To evaluate first order nonlinear modal stiffness matrix [^Tlim] by calling

subroutines "BFSkl element" and "assembly_bfs_kl." Also, calculates \K_modal]

~ [K^bm \Km J ' l^mb] • Here, _Km]_1 is evaluated using LDLT equation solving method.

Input:

[evect] = Eigen vector matrix; matrix of size ndofb x nmode

ndofpe = Number of dof per element; scalar

Note: All other required input datas are same as required by subroutines

"BFS_kl_element" and "assembly_bfs_kl."

Output:

[ATI _ mod a/] = Matrix to define triple product[jOAm J ^ P J A T l ^ J ; matrix of

size nmode x nmode x nmode x nmode

storeia, store J a, storean, storead = Vectors to store ia,ja,an and ad vectors which

defines system sparse matrix [Klbm]

storencoefl = Number to define size of vectors store J a and store_an; scalar

34. Subroutine BFS_k2_element

Purpose: To evaluate element matrix [k2b J.

Input:

140

xx, yy, zz = Nodal co-ordinates of the element; vectors of size numnodespe x 1.

where, numnodespe is number of nodes per element.

[A\ [D] = Membrane stiffness matrix; bending stiffness matrix; matrices of size
3 x 3 .

{wbl}, \wbl\ = Eigen-vector values for specific element; vector of size maxdofpe x 1
Output:

[K2e] = Element matrix [k2b]

35. Subroutine BFS_K2_modal

Purpose: To evaluate second order nonlinear system modal stiffness matrix [K2b] by

calling subroutines "BFS_k2_element" and "info_bfs." Also, calculates

[i :2_moda/]=[of[i :2j[o] .For which, Firstly triple procduct, \f[[klb\(f\ at element

level is evaluated and then numerical assembly is done.

Input:

[evect] = Eigen vector matrix; matrix of size ndofb x nmode

ndofpe = Number of dof per element; scalar

Note: All other required input datas are same as required by subroutines

"BFS_k2_element","MULTIPLY" and "trans."

Output:

[K2 modal] = Matrix to define triple product [o] r [K2b J o] ; matrix of size

nmode x nmode x nmode x nmode

36. Subroutine BFS_k2nm_element

Purpose: To evaluate element matrix [A:2Bmj.

Input:

xx,yy,zz = Nodal co-ordinates of the element; vectors of size numnodespe x l .

where, numnodespe is number of nodes per element.

[A\ [D] = Membrane stiffness matrix; bending stiffness matrix; matrices of size

3 x 3 .

141

{wm2] = Element level vector calculated based on eigen-vector values for specific

element; vector of size ndofjn x 1.

Output:

[K2nme] = Element matrix [k2nm]; matrix of size maxdofpe x maxdofpe

37. Subroutine BFS_K2nm modal

Purpose: To evaluate second order nonlinear modal stiffness matrix [K2nm modal] by

calling subroutines "mvsparse," "numfald," "fbed," "info_bfs," "BFS_k2nm_element."

Firstly, it calculates triple product, [^]r [k2nm Jfi] at element level and then numerical

assembly is done.

Input:

[evect] = Eigen vector matrix; matrix of size ndof_b x nmode

store_ia, store J a, store_an, store_ad = Vectors to store ia, ja, an and ad vectors which

defines system sparse matrix [Klbm]

store_ncoefl = Number to define size of vectors store J a and store_an; scalar

Note: All other required input datas are same as required by subroutines

"mvsparse'7'numfald", "fbed", "info_bfs", "BFS_k2nm_element".

Output:

[K2nm modal] - Matrix to define triple product[oT|iT2nm][o]; matrix of size

nmode x nmode x nmode x nmode

38. Subroutine simload

Purpose: To generate random load time history. It also performs rescaling of the

generated random load vector by using MATLAB function pwelch. It uses subroutine

FFT to perform the function.

Input:

spl = Sound Pressure Level; scalar

NPT = Number of time history points; scalar

N = Number of intervals in the spectrum; scalar

Fmax = Highest frequency; scalar

Output:

142

y = Random load vector; vector of size NPT x 1

dt = Integration time step size; scalar

39. Subroutine FFT

Purpose: To compute the power spectrum of the responses.

Input:

NPT = Number of time history points; scalar

k = Flag which is equal to 1 to perform forward transform and -1 for inverse

transform; scalar

Output:

x = Complex number indicating spatial points; vector of size NPT x 1

40. Subroutine RK4

Purpose: To perform 4th order Runge-Kutta time integration to solve second order

differential equation. It uses subroutine DERY to evaluate differentiation.

Input:

Step s= Integration time step size; scalar

workl, work2 = Temporary working arrays; vectors of size 2 * nmode + 1 x 1

Flag = Number to indicate whether the values are initial or not

bkesi = Modal damping coefficients; vector of size nmode x 1

Omega = Modal frequency

modalk = Modal linear stiffness matrix; matrix of size nmode x nmode

Kl ,K2 = Nonlinear modal first order stiffness matrix, nonlinear modal second

order stiffness matrix; matrices of size nmode x nmode x nmode and

nmode x nmode x nmode x nmode

P = Modal load vector

N = Number of modes used

MINV = Diagonal terms of inverse of normalized mass matrix

Modevalues

Output:

143

x = Modal displacement and modal velocity vector; vector of size 2*nmode

+ 1x1

dx = Modal velocity and modal acceleration; vector of size 2*nmode +1x1

APPENDIX F

SCRIPT FILE FOR JOB SUBMISSION

#!/bin/tcsh
#$ -cwd
#$ -j y
#$ -S /bin/tcsh
#$ -pe large-impi 1
echo ""
echo "*** MPI ***"
echo " "
set intel_mpi_env=/share/opt/intel/mpi/env
echo " "
source $ {intel mpi_env}
echo ""
echo "*** MATLAB ***"
echo ""
set intel_mpi_opt=/share/opt/matlab/R2007b/opt/intel jmpi. sh
set mdir=/opt/matlab/R2007b/bin
echo " "
echo "*** PATH ***"
echo ""
setenv PATH $ {mdir} :$PATH
setenv LDLIBRARYPATH ${mdir}/glnxa64:$LDJLIBRARY_PATH
echo " "
echo "*** MEX ***"
echo ""

mex-f${intel_mpi_opt} -v -fortran -I/opt/matlab/2007a/extern/include/
sparsenonlinearmodal.F sparsesubroutines.F nosourcecode.o bfslinear.o
bfs nonlinear.o bfs_subroutines.o brick8_linear_k.o EigNormcheckl.o
EigSubspace022.o normcheckR.o reord002.o EigNormcheck2.o New AM.o numfal.o
reordAdj.o EigPrintOOl.o NewDiagM.o numfa2.o solverOOO.o EigPrint002.o ernorm.o
numfa8.o solverOOl.o EigPrint003.o fbe.o numfaR.o solver002.o EigPrint004.o gennd.o
pierrotime.o solver003.o EigPrint005.o jacobi2.o printOOl.o solver004.o EigReadOOl.o
matmat3.o print002.o solverl.o EigRead002.o print003.o supnode.o EigSolverOOl.o
metisreord.o print004.o symfact.o EigSolver002.o mmd.o print005.o transa.o
EigSolverOl l.o multspa.o print006.o transa2.o EigSolver022.o newAN.o readOOl.o
transaR.o EigSubspaceOOl.o newDiagB.o read003.o EigSubspace002.o newIAJA.o
reordOOO.o EigSubspaceOll.o normcheck3.o reordOOl.o metOl.o met02.o met03.o

echo "*** RUN ***
echo " "

145

@ NPROCS=$NSLOTS * 2 + 1
echo""

mpdtrace
echo " "

mpiexec -n $NPROCS -env IMPIDEVICE ssm sparsenonlinearmodal
echo " "
echo "*** END ***"
echo " "

APPENDIX G

LISTINGS OF THE ENTIRE FORTRAN SOURCE CODE OF

PROPOSED SPARSE-PARALLEL NONLINEAR FEA METHOD

Listing of the entire FORTRAN source code of proposed sparse-parallel nonlinear

FEA method can be obtained by contacting either of the following persons:

1. Dr. Swati Chokshi, Email: swati.str.eng@gmail.com, Ph: 757 489 4422

2. Prof. Due T. Nguyen, ODU, CEE Dept, 135 KAUF, Norfolk, VA 23529,Email:

dnguyen@odu.edu, Ph: 757 683 3761

mailto:swati.str.eng@gmail.com
mailto:dnguyen@odu.edu

146

REFERENCES

1 Rudder, F.F., and Plumblee, H.E., "Sonic Fatigue Design Guide of Military

Aircraft," AFFDL-TR-74-112, Wright-Patterson AFB, OH, May 1975, pp. 489.

2 Lassiter, L.W., Hess, R.W., and Hubbard, H.H., "An Experimental Study of the

Response of Simple Panels to Intense Acoustic Loading," Journal of Aeronautical

Sciences, Vol. 24, No. 1, 1957, pp. 19-24.

3 Clarkson, B.L., "Stresses in Skin Panels Subjected to Random Acoustic Loads,"

Journal of Royal Aero Society, Vol. 72, 1968, pp. 1000-1010.

4 Wilby, J.F., and Gloyna, F.L., "Vibration Measurement of an Airplane Fuselage

Structure. Part I: Turbulent Boundary Excitation," Journal of Sound and Vibrandn,

Vol.23, 1972, pp. 205-210.

5 Holehouse, I., "Sonic Fatigue Design Techniques for Advanced Composite Aircraft

Structures," AFWAL TR 80-3019, Wright-Patterson AFB, OH, April 1980, pp. 30-

80.

6 Choi, S.T., and Vaicaitis, R., "Nonlinear Response and Fatigue of Stiffened Panels,"

Probabilistic Engineering Mechanics, Vol. 4, 1989, pp. 150-160.

7 Bolotin, V.V., "Random Vibration of Elastic Systems" Martinus Nijhoff Publishers,

The Netherlands, 1984, pp. 290-292.

8 Mei, C , and Paul, D.B., "Nonlinear Multimode Response of Clamped Rectangular

Plates to Acoustic Loading," AIAA Journal, Vol. 24, No. 4, 1986, pp. 643-648.

9 Mei, C, and Chen, R.R., "Finite Element Nonlinear Random Response of

Composite Panels of Arbitrary Shape to Acoustic and Thermal Loads Applied

Simultaneously," WL-TR-97-3085, Wright-Patterson AFB, OH, 1997.

10 Mei, C , and Wentz, K.R., "Analytical and Experimental Nonlinear Response of

Rectangular Panels to Acoustic Excitation," AIAA/ASME/ASCE 23rd Structures,

Structural Dynamics, and Materials Conference, New Orleans, LA, May 1982, pp.

514-520.

11 Arnold, R.R., and Vaicaitis, R.R., "Nonlinear Response and Fatigue of Surface

Panels by the Time Domain Monte Carlo Approach," WRDC-TR-90-3081, Wright-

Patterson AFB, OH, May 1992.

147

12 Green, P.D., and Killey, A., "Time Domain Dynamic Finite Element Modeling in

Acoustic Fatigue Design," Proceedings 6th International Conference on Structural

Dynamics, Institute of Sound and Vibration Research, University of Southampton,

UK, 1997, pp. 1007-1026.

13 Mei, C , Dhainaut, J.M., Duan, B., Spotswood, S.M., and Wolfe, H.F., "Nonlinear

Random Response of Composite Panels in an Elevated Thermal Environment,"

AFRL-VA-WP-TR-2000-3049, Wright-Patterson AFB, OH, Oct. 2000.

14 McEvan, M.J., Wright, J.R., Copper, J.E., and Leung, A.Y.T., "A Combined

Modal/Finite Element Analysis Technique for the Dynamic Response of a Non

linear Beam to Harmonic Excitation," Journal of Sound and Vibration, Vol. 243,

No. 4, 2001, pp. 601-624.

15 Hollkamp, J.J., Gordon, R.W., and Spotswood S.M., "Nonlinear Sonic Fatigue

Prediction From Finite Element Modal Models: a Comparison with Experiments,"

44th Structures, Structural Dynamics, and Materials Conference, AIAA-2003-1709,

Norfolk, VA, April 2003.

16 Clarkson, B.L., "Review of Sonic Fatigue Technology," NASA CR 4587, April 1994,

pp. 1-75.

17 Mei, C , and Wolfe, H. F., "On Large Deflection Analysis in Acoustic Design,"

Random Vibrations - Status and Recent Developments. The Stephen H. Crandall

Festschrift, Editors: I. Elishakoff and R. H. Lyon, Elsevier Applied Science

Publishers, Amsterdam 1986, pp. 279-302.

18 Rychlik, I., "Rain-Flow Cycle Distribution for Ergodic Load Processes," SIAM

Journal of Applied Mathematics, Vol. 48, 1988, pp. 662-679.

19 Dowling, N.E., "Fatigue Failure Predictions for Complicated Stress-Strain

Histories," Journal of Materials, Vol. 7, 1972, pp. 71-87.

20 Dhainaut, J.M., and Mei, C, "Nonlinear Response and Fatigue Life of Isotropic

Panels Subjected to Nonwhite Noise," Journal of Aircraft, Vol. 43, July-August

2006, pp. 975-979.

21 Przekop A., Rizzi S.A., and Groen D.S., "Nonlinear Acoustic Response of an

Aircraft Fuselage Sidewall Structure by a Reduced-Order Analysis," 9th

International Conference on Recent Advances in Structural Dynamics, Institute of

148

Sound and Vibration Research, University of Southhampton, U.K., July 17-19,

2006.

22 Nguyen D. T., Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions,

Springer, New York, 2006.

23 Nguyen D. T., Parallel-Vector Equation Solvers for Finite Element Engineering

Applications, Plenum/Kluwer, New York, 2001.

24 Przekop Adam (private communication on the timing obtained from ABUQUS and

MSC/NASTRAN), National Institute of Aerospace, NASA Larc, Mail stop 463,

Hampton, VA, May 2005.

25 Hildebrand, F. B., "Advanced Calculus for Applications," Prentice-Hall, 2nd Edition,

Englewood-Cliffs, New Jersey, 1976.

26 Lutes, D.L., and Sarkani, S., Stochastic Analysis of Structural and Mechanical

Vibrations, Prentice-Hall, New Jersey, 1997.

27 Vaicaitis, R., "Recent Advances of Time Domain Approach for Nonlinear Response

and Sonic Fatigue," Proceedings 4' International Conference on Structural

Dynamics, ISVR, University of Southhampton, UK, July 1991, pp.84-103.

28 Crandall, S. H., and Mark, W. D., Random Vibration in Mechanical Systems,

Academic Press, New York, 1963.

29 Zienkiewics O.C., and Taylor R.L., The Finite Element Method, Mc-Graw Hill, 4th

Edition, Vol. 2, Barcelona, 1991.

30 Woinowsky-Kreiger, S., "The Effect of an Axial Force on the Vibration of Hinged

Bars," Journal of Applied Mechanics, Vol. 17, 1950, pp. 35-37.

31 Rizzi, S. A., and Muravyov, A. A. "Improved Equivalent Linearization

Implementations Using Nonlinear Stiffness Evaluation," NASA TM-2001-210838,

March 2001.

32 Muravyov, A. A., and Rizzi, S. A., "Determination of Nonlinear Stiffness with

Application to Random Vibration of Geometrically Nonlinear Structures,"

Computers and Structures, Vol. 81, No. 15, 2003, pp. 1513-1523.

33 Dhainaut, J. M., and Mei, C, "Nonlinear Response and Fatigue Life of Isotropic

Panels Subjected to Nonwhite Pressure Fluctuations," AIAA 2002-1635, 43th

Structures, Structural Dynamics and Materials Conference, Denver, CO, April 2002

149

(CD-ROM). To appear in Journal of Aircraft.

34 Przekop, A., Guo, X., Azzouz, S., and Mei, C , "Reinvestigation of Nonlinear

Random Response of Shallow Shells Using Finite Element Modal Formulation,"

AIAA 2004-1553, 45 Structures, Structural Dynamics and Materials Conference,

Palm Spring, CA, April 2004 (CD-ROM).

35 Shinozuka, M., "Monte Carlo Solution of Structural Dynamics," International

Journal of Computers and Structures, Vol.2, 1972, pp. 855-874.

36 Shinozuka, M., and Wen, Y. K., "Monte Carlo Solution of Nonlinear Vibrations,"

AIAA Journal, Vol.10, No. 1, 1972, pp. 37-40.

37 Shinozuka, M., and Jan, D. M., "Digital Simulation of Random Processes and Its

Applications," Journal of Sound and Vibration, Vol. 25, 1972, pp. 111-128.

38 Taylor, B. N., and Kuyatt, C. E., "Guidelines for Evaluating and Expressing the

Uncertainity of NIST Measurement Results," NIST,TN 1297, 1994, p. 8.

39 Crandall, S., and Zhu, W., "Random Vibration: A survey of Recent Development,"

Journal of 'AppliedMechanics, Vol. 50, No. 5, 1983, pp.953-962.

40 Iwan, W. D., and Yang, M. I., "Application of Statistical Linearization Techniques

to Nonlinear Multi-Degree of Freedom Systems," Journal of Applied Mechanics,

Vol. 39, 1972, pp. 545-550.

41 Heuer, R., Irschik, H., and Ziegler, F., "Nonlinear Random Vibrations of Thermally

Buckled Skew Plates," Probabilistic Engineering Mechanics, Vol.8, No. 3-4, 1993,

pp. 265-271.

42 Elishakoff, I., and Zhang, X., "An Appraisal of Different Stochastic Linearization

Techniques," Journal of Sound and Vibration, Vol. 153, No. 2, 1992, pp. 370-375.

43 Roberts, J. B., and Spanos, P. D.,"Random Vibration of Statistical Linearization,"

John Wiley & Sons, New York 1990.

44 Ng, C. F.," Nonlinear and Snap-Through Response of Curved Panels to Intense

Acoustic Excitation," Journal of Aircraft, Vol.26, No.3, 1989, pp.281-288.

45 Lee, J., "Large Amplitude Plate Vibration in an Elevated Thermal Environment,"

Applied Mechanics Reviews, Vol. 46, part 2, No. 11, 1993, pp. 242-254.

46 Locke, J., and Mei, C, "Finite Element, Large Deflection Random Response of

Thermally Buckled Beams," AIAA Journal, Vol. 28, No. 12, 1990, pp. 2125-2131.

150

47 Arnold, R. R., and Vaicaitis, R., "Nonlinear Response and Fatigue of Surface Panels

by the Time Domain Monte Carlo Approach," WRDC-TR-90-3081, Wright-

Patterson AFB, OH, 1990.

48 Vaicaitis, R., "Generalized Random Forces for Rectangular Panels," AIAA Journal,

Vol. 11, No. 7, 1973, pp. 984-988.

49 Abdel-Motagaly, K., Chen, R., and Mei, C, "Nonlinear Flutter of Composite Panels

Under Yawed Supersonic Flow Using Finite Elements," AIAA Journal, Vol. 37, No.

9, 1999,pp.l025-1032.

50 Abdel-Motagaly, K., Duan B., and Mei, C , "Nonlinear Response of Composite

Panels under Combined Acoustic Excitation and Aerodynamic Pressure," 4(fh

Structures, Structural Dynamics and Materials Conference, St Louis, MO, 1999,

pp.1963-1972. Klso AIAA Journal, Vol. 38, No. 9, 2000, pp.1534-1542.

51 Dhainaut, J. M., Duan, B., Mei, C , Spotttswood, S. M., and Wolfe, H.

F., "Nonlinear Response of Composites Panels to Random Excitations at Elevated

Temperatures," 7l International Conference on Recent Advances in Structural

Dynamics, Southhampton, England, July 2000, pp. 769-784.

52 Dowell, E. H., "Aeroelasticity of Plates and Shells," Noordhoff International

Publishing, The Netherlands, 1975.

53 Dhainaut, J. M., Cheng, G., and Mei, C , "Nonlinear Response of Plates under

Uniform Random Loads Unsynchronized in Time," AIAA 2007-2111, 48th

Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, April

2007.

54 Bathe K. J., Finite Element Procedures, Prentice Hall, Englewood Cliffs, New

Jersey, 1996.

55 Bogner, F. K., Fox, R. L., and Schmit, L.A," The Generation of Inter-Element

Compatible Stiffness and Mass Matrices by the Use of Interpolation Formulas,"

AFAFFDL-TR-66-80, Wright-Patterson AFB, OH, 1996, pp. 396-443.

56 Locke, J. E., "A Finite Element Formulation for the Large Deflection Random

Response of Thermally Buckled Structures," Ph.D. Dissertation, Old Dominion

University, Norfolk, VA, 1988.

57 Shi, Y., and Mei, C , "Coexisting Thermal Post Buckling of Composite Plates with

151

Initial Imperfections Using Finite Element Modal Methods," Proceedings 37

Structures, Structural Dynamics, and Materials Conference, Salt Lake City, UT,

April 1996, pp. 1355-1362.

58 Shi, Y., Lee, R., and Mei, C , "A Finite Element Multimode Method to Nonlinear

Free Vibrations of Composite Plates," AIAA Journal, 1997, Vol. 35, pp. 159-166.

59 Pian, T.H.H., "Derivation of element stiffness matrices by assumed stress

distribution," AIAA Journal, 1964, Vol. 2, pp. 1332-1336.

60 Pian, T.H.H., and Tong, P., "Basis of finite element methods for solid continua,"

International Journal for Numerical Methods in Engineering, 1969, Vol. 1, pp. 3-28.

61 Wood, R. D., and Schrefler, B., "Geometrically Non-Linear Analysis -A Correlation

of Finite Element Notations," International Journal for Numerical Methods in

Engineering, Vol. 12, 1978, pp. 635-642.

62 Barlow, J., "Optimal Stress Locations in Finite Element Models," International

Journal for Numerical Methods in Engineering, Vol. 10, 1976, pp. 243-251.

63 Barlow, J., "Optimal Stress Locations in Finite Element Models," International

Journal for Numerical Methods in Engineering, Vol. 10, 1976, pp. 243-251.

64 Cook, R. D., Malkus, D. S. and Plesha, M. E., "Concepts and Applications of Finite

Element Analysis," 3rd Edition, John Wiley, New York, 1989.

65 Robinson, J. H., "Finite Element Formulation and Numerical Simulation of the

Large Deflection Random Vibration of Laminated Composite Plates," MS Thesis,

Old Dominion University, 1990.

CURRICULUM VITA
for

Swati Chokshi

DEGREES:

Doctor of Philosophy (Civil Engineering), Old Dominion University, Norfolk, Virginia,

December 2008.

Master of Engineering (Civil Engineering), Maharaja Sayajirao University, Baroda,

Gujarat, August 2002.

Bachelor of Engineering (Civil Engineering), North Gujarat University, Modasa, Gujarat,

March 1998.

AWARDS AND HONORS:

1. Gold medal, for ranking first in the North Gujarat University, Bachelor of Engineering,

INDIA, 1996.

2. Silver medal, for scoring highest marks in final year of engineering, Institute of

Engineers, INDIA, 1996.

3. Certification of Graduate Aptitude Test in Engineering (GATE), 2000.

4. Best Teacher Award, Government Engineering College, INDIA, 2000.

PROFESSIONAL CHRONOLOGY:

NASA Langley Center, Hampton, Virginia

Research Assistant, September 2002 - August 2006.

Department of Civil and Environmental Engineering, Old Dominion University, Norfolk,

Virginia

Teaching Assistant, September 2006 - April 2008.

EMPLOYMENT:

Halcrow, Inc., Virginia Beach, Virginia

Structural Engineer, August 2008 - Present

Department of Applied Mechanics and Civil Engineering, Government Engineering

College, Modasa, India

Assistant Professor, July 1998 - April 2000.

SCHOLARLY ACTIVITIES COMPLETED:

1. Chokshi, S.M.; Mei, C ; Nguyen, D.T.; and Rajan. S.; "Nonlinear Random

Response of Large-Scale Sparse Finite Element Structural Problems." Journal of

Computational and Applied Mechanics, Vol. 9, No. 1, (2008), pp. 1-12.

2. Chokshi, S.M.; Mei, C; Nguyen, D.T., "Nonlinear Random Response of Large-

Scale Finite Element Structural Problems under Un-synchronized Loading with

Parallel-Sparse Methodology." Submitted to Journal of Finite Element Analysis

and Design, December 2008.

3. Wilson, J. W.; Korte, J. J.; Sobieszczanski-Sobieski, J.; Badavi, F. F., Chokshi, S.

M.; Martinovic, Z. N.; Cerro, J. A.; and Quails, G. D. "Radiation Shielding, MDO

Processes, and RLV Design." Journal of American Institute of Aeronautics and

Astronautics (AIAA) SPACE 2003 Conference and Exhibit, September 23-25,

2003, Long Beach, California In Proceedings, AIAA Paper No. 2003-6259.

4. Chokshi, S.M.; Mei, C; Nguyen, D.T.; and Rajan. S., "Nonlinear Random

Response of Large-Scale Sparse Finite Element Structural Problems."

Proceedings, American Institute of Aeronautics and Astronautics Structures,

Structural Dynamics, and Materials (SDM) Conference, April, 2007.

	Nonlinear Random Response of Large-Scale Sparse Finite Element Plate Bending Problems
	Recommended Citation

	ProQuest Dissertations

