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ABSTRACT 

Nonlinear Random Response of 

Large-Scale Sparse 

Finite Element Plate Bending Problems 

Swati Chokshi 

Old Dominion University, 2008 

Director: Dr. Due T. Nguyen 

Acoustic fatigue is one of the major design considerations for skin panels exposed to high 

levels of random pressure at subsonic/supersonic/hypersonic speeds. The nonlinear large 

deflection random response of the single-bay panels aerospace structures subjected to random 

excitations at various sound pressure levels (SPLs) is investigated. The nonlinear responses of 

plate analyses are limited to determine the root-mean-square displacement under uniformly 

distributed pressure random loads. Efficient computational technologies like sparse storage 

schemes and parallel computation are proposed and incorporated to solve large-scale, nonlinear 

large deflection random vibration problems for both types of loading cases: 1) synchronized in 

time and 2) unsynchronized and statistically uncorrelated in time. For the first time, large scale 

plate bending problems subjected to unsynchronized load are solved using parallel computing 

capabilities to account for computational burden due to the simulation of the unsynchronized 

random pressure fluctuations. 

The main focus of the research work is placed upon computational issues involved in the 

nonlinear modal methodologies. A nonlinear FEM method in time domain is incorporated with 

the Monte Carlo simulation and sparse computational technologies, including the efficient sparse 

Subspace Eigen-solutions are presented and applied to accurately determine the random response 

with a refined, large finite element mesh for the first time. Sparse equation solver and sparse 

matrix operations embedded inside the subspace Eigen-solution algorithms are also exploited. 

The approach uses the von-Karman nonlinear strain-displacement relations and the classical 

plate theory. In the proposed methodologies, the solution for a small number (say less than 100) 



of lowest linear, sparse Eigen-pairs need to be solved for only once, in order to transform 

nonlinear large displacements from the conventional structural degree-of-freedom (dof) into the 

modal dof. Moreover, the linear and nonlinear matrices are stored using sparse storage schemes 

in order to save computational time and memory. In case of unsynchronized load case, the time 

history needs to be generated and also rescaled separately for each finite element. For problems 

with large mesh size, the numbers of elements are high and the generation of time histories 

makes the problem unsolvable (in terms of computational time and/or memory requirements) for 

all practical purposes. By implementing parallel processing techniques, large scale structural 

analysis problems are solved without resorting to the use of expensive computing equipment or 

incurring an inordinately high computational cost that leads to a feasible solution. The reduced 

and coupled nonlinear equations in modal dof are inexpensively solved by the familiar Runge 

Kutta numerical integration scheme. Accurate responses are ensured with modal convergence, 

mesh convergence, and time step studies. The obtained numerical results (for synchronized load 

case) have also been compared favorably with results obtained from commercialized F.E. code 

such as Abaqus. Small, medium and large-scale single bay panel models are used to validate and 

evaluate the numerical performance of the present formulation and its associated computer 

software. 
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CHAPTER I 

INTRODUCTION 

Efficient numerical procedures including modal method for solving large-scale, 

sparse, parallel, nonlinear large deflection random vibration problems are proposed. The 

solution for the small number (say less than 100) of lowest linear Eigen-pairs need to be 

solved for only once, in order to transform nonlinear large displacements from the 

conventional, large structural degree-of-freedom (dof) into the smaller modal dof. The 

reduced coupled nonlinear equations of motion in modal dof can be inexpensively solved 

by the popular Runge-Kutta (RK) or any other time integrating method. The main focus 

is placed upon computational issues involved in the nonlinear modal methodologies. 

Major time consuming portions of the nonlinear modal method are firstly identified. 

Then, efficient sparse and dense matrix technologies are proposed and incorporated into 

the developed procedures. Small, medium, and large-scale single panel models are used 

to validate and evaluate their numerical performance. Whenever possible, comparison in 

terms of numerical accuracy and computational time between the developed codes with 

existing solution including popular commercialized finite element software such as 

Abaqus is included. Results obtained to this date indicate that the developed algorithms 

and software are accurate and highly efficient. 

A new spacecraft, Crew Exploration Vehicle, will be developed and eventually 

conduct the Space Exploration Mission. Recently, the NASA X-43A scramjet airplane 

made a successful flight with a new speed record of Mach 10. A new Air Force initiative, 

Hypersonic and Space Access Program, demands emerging technologies on effective 

hypersonic vehicle design. Acoustic fatigue is one of the major design considerations for 

skin panels exposed to high levels of random pressure and elevated temperature at 

subsonic/supersonic/hypersonic speeds. The severe flight environment leads to various 

loads48 on the surface panel, including aerodynamic pressure, acoustic excitation, and 

thermal load as shown in Fig. 1.1. 

The Journal model used for this work is the AIAA Journal 
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Fig. 1.1: Various loads on surface panels of supersonic/hypersonic flight 

vehicles48 

Acoustic fatigue is a long-cycle fatigue failure induced by forced random 

vibration from outside sources such as jet engine noise, turbulent boundary layer pressure 

fluctuations, and unsteady aerodynamic forces due to flow separation. The sonic fatigue 

design guide1 was based on semi-empirical data for isotropic metallic aircraft structures. 

1.1 PROBLEM DEFINITION 

The nonlinear large deflection random response of aerospace structures like 

single-bay panels subjected to random excitations at various sound pressure levels (SPLs) 

has been investigated. A nonlinear finite element modal (FEM) method incorporated with 

the Monte Carlo simulation and sparse computational techniques is presented and applied 

to determine the dynamic response accurately with a refined FE mesh for the first time. 

The proposed method is applicable to complex and highly efficient aerospace and civil 
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structures by incorporating sparse computational techniques and parallel computation 

especially in case of unsynchronized loading. 

1.2 ACOUSTIC FATIGUE TESTING 

Acoustic fatigue tests have been conducted to determine the response and fatigue 

life of aircraft panels. One of the first tests in 19572 showed that a single aluminum panel 

subjected to acoustic pressure had a fatigue life of 840 sec at 154 dB, 180 sec at 160 dB, 

and 30-40 sec at 166 dB overall SPL. Both experimental and theoretical studies in 19683 

indicated that the response of a single-bay panel was very much sensitive to the boundary 

conditions and small variations of spacing. The effect of stiffeners and stringers must be 

addressed. It was found in 19724 that the rear part of fuselage must be modeled with 

multi-bays in both stream-wise and span-wise directions under turbulent boundary layers. 

Fatigue tests on multi-bay composite aircraft structures were conducted by Holehouse5 in 

1980. A 3 x 3 bay panel (configuration "a" in ref.5) is shown here in Fig. 1.2. It was 

found that the measured RMS strains from a total of 20 panel configurations were all 

much lower than those of linear Nastran analysis results, indicating a highly nonlinear 

response of panels and un-synchronization of the random pressure in time. It would be 

excessively conservative if acoustic fatigue design was based on linear structural and 

random loads synchronized in time analysis. Other experimental work on multi-bay 

panels with stringers6 in 1989 showed that the fatigue cracks often occurred in the 

stiffeners or areas close to them. 



Fig. 1.2: A 3 x 3-bay panel5 

1.3 ANALYSIS METHODS FOR ACOUSTIC FATIGUE 

It is also well known that panel flutter occurs resulting from airflow acting on 

only one side of surface panel. There exists a critical non-dimensional dynamic pressure 

Acras shown in Fig. 1.3.52 BelowZcr the panel undergoes linear random vibration with 

small amplitudes. The dominant frequency is observed near the lowest natural frequency 

of the panel. Neglecting structural nonlinearity, linear theory indicates that beyond Xcr the 

panel motion becomes unstable and grows exponentially with time. Therefore, nonlinear 

effect must be considered in vibration analysis beyond Xcr. 



1.0 

Wmax 
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-—• Conventional noise analysis 

Noise 
..*— 

Flutter 

r 

Dynamic pressure, X 

Fig. 1.3: Panel flutter: theory and experiment52 

Accurate prediction of nonlinear random response of panels is critical for fatigue 

life estimation and design of aerospace structures. The Fokker-Plank-Kolmogorov (FPK) 

equation approaches7 give exact solutions to a single-mode and some special 2-mode 

nonlinear systems subjected to white noise excitations. 
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Fig. 1.4: Comparison of mean-square strains (Mean square center deflection Vs. 

Pressure spectral density for a clamped square plate)8'10 

The equivalent linearization (EL) technique incorporates PDE/Galerkin or FEM 

method to transform nonlinear ODE to a set of equivalent linear equations with the 
Q 

assumption that the response is Gaussian. Mei and Paul compared analytical solutions 

with testing data10 for two single-bay aluminum square panels as shown in Fig. 1.4. The 

nonlinear response of the aluminum panel is characterized by the broad peaks and 

frequency shifts in the power spectral density (PSD) plot as shown in Fig. 1.5. 
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Fig. 1.5: Experiment strain PSD of a square aluminum panel at three overall 

SPL 10 

The Monte Carlo numerical simulation based on PDE/Galerkin11 is a time domain 

method suitable for simple panel geometries and boundary conditions. Another time 

domain method is the Monte Carlo simulation based on the traditional finite element (FE) 

method. The computational cost is the main concern because the FE model often includes 

a very large number of structural dof, and the nonlinear terms have to be updated and 

reassembled at each time step of integration. Mei et al.13 developed a FEM method to 

reduce the large number of FE structural dof to a very small number of modal dof. In 

another study,14 the modal method is implemented using a regression analysis in which a 
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series of nonlinear static test cases are used to identify the nonlinear modal model. 

Hollkamp et al.15 verified recently that the two modal methods13' 14and the experiments 

agree very well for clamped beams in terms of strain PSD function. 

Reviews on acoustic fatigue of aircraft and spacecraft structures were conducted 

by Clarkson16 in 1994, and Mei and Wolfe17 in 1986, respectively. The random response 

should be considered with the nonlinear large deflection effects, the influence of in-plane 

boundary conditions, and the appropriate analysis methods. The approaches to the 

estimation of damage accumulation and fatigue life were reviewed. They also gave the 

directions of future research and the factors to provide a reliable estimate of acoustic 

fatigue life of aerospace structures. 

1.4 SINGLE-BAY AEROSPACE STRUCTURES 

For the past twenty years researchers have been focusing on the random vibration 

and acoustic fatigue of isotropic/composite single panels under random loads 

synchronized in time. Nonlinear FEM methods in time domain have been developed to 

determine the time history of the random response.13 The approach uses the von-Karman 

nonlinear strain-displacement relations and the laminated classical plate theory for fatigue 

life estimation. The nonlinear modal equations of motion are solved by Runge-Kutta 

numerical scheme to obtain maximum deflection. Monte Carlo simulation is adopted and 

the ensemble would take 10 or more samples. Accurate responses are ensured with modal 

convergence, mesh convergence, and time step studies. 

Many of today's structures are subjected to excitations which are random in 

nature. Examples range all the way from aircraft and missile structures subjected to aero-

elastic and aerodynamic loads to civil engineering structures like high rise buildings and 

bridges acted upon by earthquake and wind loads. In some cases, the response statistics 

of such structure will be strongly time dependent or non-stationary, but in many 

applications, the response may be considered stationary. In this study, only stationary 

excitations are considered. In stochastic structural dynamics, the majority of analyses 
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have dealt with linear structures under stationary, Gaussian, and band-limited white noise 

excitations. Although these simplifying assumptions may be justified in many processes, 

experimental data have shown the non-stationary and non-Gaussian characteristics of the 

loads quite frequently. 

1.5 ANALYTICAL APPROACHES FOR RANDOM VIBRATION ANALYSIS 

In 1983, Crandall and Zhu39 published a review article on the progress in random 

process and random fields, source of excitations, prediction of random responses, and 

reliability. 

There are five major analysis methods for the prediction of nonlinear random 

response of the structural panel: 

(1) Perturbation 

(2) Fokker-Plank-Kolmogorov (FPK equation) 

(3) Monte Carlo 

(4) Equivalent linearization 

(5) Finite element numerical Integration 

The perturbation method40 has been limited to very weak geometric nonlinear 

problems. So, it is not suitable for large nonlinear random vibration. The FPK method 

can lead to exact solutions only for single degree of freedom systems. Heuer et al.41 

extended the application of the FPK approach to multi dof by utilizing a multi-modal 

projection method. They also investigated the nonlinear random vibration of thermally 

buckled skew plates. The probability of first occurrence of snap-through was determined. 

The implementation of the method is very tedious. 

The equivalent linearization method is extensively used because of its ability to 

accurately capture the response statistics over a wide range of problems while 

maintaining a relatively low computational burden.42, 43 Ng44 presented a single-mode 

method for the analysis of snap-through. He divided the random response with the 
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compressive load larger than the critical value into three regions: no snap-through, 

intermittent snap-through, and persistent snap-through. Lee45 investigated the effects of 

thermal variation and thermal moment on the panel response. Locke and Mei,46 and Mei 

and Chen extended the finite element method to nonlinear random vibration analysis. 

The equivalent linearization method was adapted to the nonlinear finite element modal 

equations to determine RMS deflections and strains at different sound pressure levels. 

The application of the equivalent linearization method depends on the assumption of 

Gaussian distribution over the response. Thus it can not predict occurrence of snap-

through since snap-through is non-Gaussian in nature. 

Monte Carlo simulation ' was employed by Arnold and Vaicaitis , Vaicaitis , 
AQ 

Vaicaitis and Kavallieratos to study the nonlinear panel response and fatigue life 

subjected to acoustic excitation. The PDE/Galerkin method was employed and numerical 

integration was used to obtain time history of the panel response. Green and Killey12 

studied a similar problem but narrow-band acoustic loads were used and initial 

imperfections were also considered in the model. The PDE/Galerkin approach limits its 

applicability to rather simple structures.27'47 

The finite element numerical integration approach combines the finite element 

and Monte Carlo simulation method.12' 49 The main disadvantage of the method is its 

computational cost, because the finite element model often includes hundreds, if not 

thousands, number of physical structural node dofs, and the nonlinear terms are updated 

and reassembled at each time step. Abdel-Motagaly et al.50 used finite element numerical 

integration to study nonlinear panel response under combined aerodynamic and acoustic 

loads. Finite element system equations of motion were transferred to modal coordinates 

to reduce the large number of structural node dof. Dhainaut et al.51 adopted the same 

approach, and studied the random response to the acoustic loads at elevated temperatures 

environment. 
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1.6 OBJECTIVE AND SCOPE 

FEA code has been developed for nonlinear modal finite element analysis of the 

structures modeled using rectangular plate elements. The code is developed in Fortran 

language with the capability of linking with the Matlab environment. Developed FEA 

code is capable of solving large scale, synchronized as well as unsynchronized loading 

problems. By adding features like geometry transformation, various element types, 

different kind of loadings and accounting for composite materials, the code can be 

extended to solve generalized problems for analysis of large scale complex structures. 

1.7 LIMITATIONS 

Developed FEA code has the following limitations: 

1. Code is applicable for nonlinear analysis of the structure modeled using 

rectangular plate elements only. 

2. Structural material shall be isotropic only. 

3. The plate element considered in this work is assumed to be aligned with the 

global coordinate axis. Thus, coordinate transformation from element to global 

axis is not necessary. 

4. Simulated random load is considered truncated band limited white noise for the 

sound waves. Code is capable to perform nonlinear analysis for other types of 

random loads for which input load needs to be supplied. 

5. Thermal loading has not been accounted in the code. 

6. The environment should have access to Matlab in order to run the code with 

rescaling feature. 

1.8 MOTIVATION AND DISSERTATION ORGANIZATION 

The random excitations such as earthquake type motions, pressure waves of 

explosion, jet noise, and continuous atmospheric turbulence must take into consideration 

while designing structures like bridges, tall buildings that house nuclear reactors, and 



12 

naval and aerospace structures, for the safety and reliability purpose. The investigation of 

dynamic response to random excitation started in 1905 with Einstein's pioneering study 

of Brownian motion. But it has acquired a special prominence with the advent of jet 

engines. In vibration analysis, the important task is simulation of random loads as close 

to real life cases as possible. This is because as far as random data is concerned, it can be 

obtained from various sources such as data recorded from an earthquake or acoustic load 

data measured from flight testing on an aircraft. But, it is extremely important to apply 

the random loads correctly to a structure in order to achieve results as close to 

experimental values as possible. All these concerns go into the design of structures under 

random loads. Because a structure's vibration characteristics determine how it responds 

to any type of dynamic load, modal analysis should always be performed first before 

trying any other dynamic analysis. 

It was reported by Green and Killey12 that only running a half-second time for 

nonlinear time domain Monte Carlo simulation of 5000-element for a single-bay panel 

took approximately 10 hours on a Cray C94 computer. To solve such problems with a 

large number of elements for longer time history, an efficient method must be used. 

Application of sparse technology combined with non linear modal finite element analysis 

makes it possible to solve unsolved problems because of the time and memory limitations. 

Most real life cases are subjected to unsynchronized random loads, simple 

examples of which are long period of rain drops steadily falling on the roof top or about 

30,000 marathon runners running on a suspension bridge. And as such it is important to 

study the behavior of structures to such loads. But given the complexity of the problem, it 

is detrimental to understand the fundamental aspects. In light of this fact, the problem is 

being studied and parallel computation has been involved along with sparse techniques to 

solve such problems with very large mesh size and/or with long random load time history 

within the limitation of time and/or memory. 

The current commercial finite element codes, such as Nastran and ANSYS etc., 

could not study the linear random response under the unsynchronized loading case since 
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they are solved in the frequency domain. To the best knowledge of the author there is no 

efficient analytical or numerical solution to the nonlinear response of plates, with large 

mesh size under unsynchronized random pressure loads available in the literature. 

Following a discussion on the reasons leading to the motivation to study the panel 

response under synchronized and unsynchronized random loads and literature survey 

related to such problems, the flow of this thesis will include all the details about the 

solution procedure used. In Chapter 2, the finite element system governing equations are 

derived based upon von-Karman nonlinear strain-displacement relations and virtual work 

principle. In Chapter 3, the concepts and importance of un-synchronized load cases are 

discussed. Also, the generation of synchronized as well as un-synchronized random load 

is discussed along with the requirement of using parallel computation in case of 

unsynchronized load case. In Chapter 4, the solution procedures are developed. A modal 

equation of motion is derived in order to save time and memory. Runge-Kutta time 

integration scheme is employed for solving equation of motion. Random responses are 

characterized by Monte Carlo numerical simulation using a modal approach. Chapter 5 

provides detailed description of sparse technology including storage scheme, Eigen-

solution by Sub-space method, and equation solver usage to inverse the sparse matrix. 

Step-by-step sparse algorithm applied to the solution procedure is also addressed. Chapter 

6 discusses basics of parallel computation and the reasons for usage of parallel 

computation in case of un-synchronized load case along with step-by-step solution 

procedure. In Chapter 7, numerical examples are presented with results and discussions 

for synchronized and un-synchronized dynamic pressure subjected. Finally, the 

concluding remarks and recommendation for future work are presented in Chapter 8. 
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CHAPTER II 

FINITE ELEMENT FORMULATION 

2.1 INTRODUCTION 

Bogner-Fox-Schmit (BFS)55 C1 conforming rectangular element59'60 is adopted in 

the study. The finite element governing equations for random vibration to a BFS plate are 

derived in this chapter. The load subjected is assumed either to be a band-limited white 

or non-white Gaussian random pressure and uniformly distributed over the structural 

surface. The finite element formulation56' 57' 64 is based on the von-Karman large 

deflection theory with the small strain assumption and the classic plate theory. The 

following assumptions are made throughout the derivation: 

1. The panel is thin. Which means the length to thickness ratio, L/h > 40. 

2. In-plane inertia, rotary inertia, and transverse shear deformation effects are 

negligible. 

3. Von-Karman strain-displacement relations are valid. 

4. Proportional damping %ra>r - %sa>s, is used. Where, coefficient gr is modal 

damping ratio for the rth mode and a>r is the rth modal natural frequency. 

5. Straight lines perpendicular to the mid surface before deformation remain straight 

and perpendicular after deformation. 

6. The transverse normals do not experience elongation, i.e., they are inextensible. 

2.2 ELEMENT DISPLACEMENT FUNCTIONS 

In the derivation, C1 conforming BFS rectangular plate elements are adopted. A 

C1 conforming element provides inter-element continuity of the displacement field w(x,y) 

in the z-direction, and its first derivatives w x and w but it does not provide inter-

element continuity of all second derivatives ofw(x,y). 
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As shown in Fig. 2.1, BFS rectangular plate element of length a, width b, and 

thickness h consists of four nodes and each node has 6 dof. Thus, each element has total 

24 dof, which includes 16 bending dof, {v^jiexi.and 8 in-plane dof, {wm}8xi.They are 

expressed as: 

M= ( M MY (2.i) 

(wj W2 W3 W4 W,X1 W,X2 W,X3 W,X4 ~w,yl w,y2 w,y3 w,^ w,xyl w,xy2 w,xy3 w,xyA\ ( 2 . 2 ) 

{wm}= {«, u2 u3 u4 v, v2 v3 v4}T (2.3) 

Fig. 2.1: Nodal degrees of freedom of a BFS C1 conforming rectangular element 
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The element transverse displacement w and the in-plane displacements u and v 

can be approximated as a bi-cubic and bilinear polynomial function of x and y, which can 

be expressed56'62,63 as: 

w\x, y) = ax + a2x + azy + a4x
2 + a5xy + a6y

2 + a7x3 + a%x2y + a9xy2 

+ al0y
3 +anx y + al2x y + al3xy3 + ai4x

3y2 + al5x
2y3 + al6x

3 y3 

= [Hw(*>y)fa} (2-5) 

where, 

[ / /^ (x ,^^ [l x y x2 xy y1 x3 x2y xy2 y3 x3y x2y2 xy3 x3y2 x2y3 x3y3J (2.6) 

{a}={aj a2 a3 a4 a5 a6 a7 a8 a9 al0 an Oj2 a13 al4 al5 al6) (2.7) 

and 

u(x, y) = bx + b2x + b3y + b4xy (2.8) 

= KM1W (2-9) 
where, 

[#„(*, .y)] = [l x y xy 0 0 0 0] (2.10) 

{b}={bx b2 b3 b4 b5 b6 bn bj (2.11) 

v(x,y) = b5 +b6x + b1y + bixy (2.12) 

= {Hv{x,y)]{b} (2.13) 
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where, 

[Hv(x,y)]=[0 0 0 0 1 x y xy] (2.14) 

Here, [a] and {b} are called generalized coordinates and they are related to the 

nodal dof vectors by their transformation matrices as shown below: 

M=fo]M (2-15) 

{b) = [Tm]{wJ (2.16) 

The detailed derivation of bending and in-plane transformation matrices [Tb ] and 

[Tm] is given in Appendix A. In terms of nodal displacement vectors, the element 

displacement functions can be expressed as: 

= [Hw{x,y)lTb]{wb} (2.17) 

" = {Hu{x,y)}{b} 

= k k * k } (2.18) 

v = [Hv(x,y)]{b} 

= [Hv(x,y)lTm]{wJ (2.19) 

2.3 NON-LINEAR STRAIN DISPLACEMENT RELATIONS 

Using the Von-Karman large deformation strain-displacement relations, the total 

strain vector {s}, in terms of in-plane strain and curvature, can be written as follows: 
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w=- 4°)+*) (2.20) 

xy 

where in-plane strain vector, \£°)> consists of two components and can be written as: 

M=fcM4 (2.21) 

In the above equation, 

\e°m j = In-plane strain vector 

: Non-linear von-Karman strain vector 

where in-plane strain can be expressed in terms of finite element displacement functions 

as: 

kh 

du 

dx 

dy 
du dv 
dy dx 

(2.22) 

The non-linear Von-Karman strain can be expressed in terms of finite element 

displacement functions as: 

W 

ifdw^2 

ydxj 

dw dw 

dx dy 

(2.23) 
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Substituting the in-plane strain vector from Eq. (2.22) and non-linear von-Karman strain 

vector from eq. (2.23) into Eq. (2.21): 

M= 

du 

dx 
dv_ 

dy 
du dv 

dy dx 

>4< 

dw 

ydxj 

'dwV 

dw dw 

dx dy 

(2.24) 

As per Eq. (2.18), 

So, 

OX OX 

And, 

dy dy 

(2.25) 

(2.26) 

AsperEq. (2.19), 

So, 

dx dx 

And, 

(2.27) 

%=j-[Hv{x,ym 
dy dy 

(2.28) 

AsperEq. (2.16), 

{b}-[Tm]M 
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Thus, 

<=[Cm][Tmiwm} 

= [Bm\wm} 

where, 

[Bm]=[Cm\Tm] 

(2.29) 

(2.30) 

(2.31) 

In which, 

[Cj = 
dx 

dy 

l[Ha(x,y)]+l-[Hv(x,y)] 
ox dy 

(2.32) 

0 1 0 j> 0 0 0 0' 

0 0 0 0 0 0 1 x 

0 0 1 x 0 1 0 ; ; 
(2.33) 

Now, 

fcl^M 

where, 

tw 

dx 
dw 
dy 

(2.34) 

[0} = 

dw 
dx 

r\ 

0 

dw 

> 

0 
dw 
— 
dy 
dw 
dx 

(2.35) 
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As per Eq. (2.17), 

w = [Hw(x,y)]{a} 

So, 

dw _ d 
dx dx' 

And, 

-KM1M 

ay oy 

Now, 

[c.]= dx [Hw(*>y)] 

j-\H*by)] 
(2.36) 

0 1 0 2x y 0 3x2 2xy y2 0 3x2y 2xy2 y' 3x2y2 2xy3 3x2yi~ 
0 0 1 0 x 2y 0 x2 2xy 3y2 x} 2x2y 3xy2 2x3y 3x2y2 3x2y2 

(2.37) 

As per Eq. (2.15), 

Also, 

where, 

[Beh[Ce\Tb] 

(2.38) 

(2.39) 

(2.40) 

The bending curvature vector {̂ }is defined as: 
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to-
- 2 

32w 

dx2 

d2w 

dy2 

d2w 

dxdy 

(2.41) 

So, the curvature vector component 

M=[QfcK} 
= [Bb\wb} 

= [Cb\a} 

where, 

foHQfc] 
And, 

[c,]=-

-£rK(^)] 
- |rK(«)l 

-2JL[ff.(r,y)] 

> 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

0 0 0 2 0 0 6x 2y 0 0 6*y 2 / 

0 0 0 0 0 2 0 0 2 x 6 ^ 0 ^-2 

0 0 0 0 2 0 0 4x 4}/ 0 6x2 

0 6xy2 2y3 6xj/3 

2xz 6xy 2x3 6x2y 6x3y 

Sxy 6y2 I2x2y 12xy2 I8x2y2 

(2.46) 

The matrices [Bm\[B J and [5 J expressed through Eq. (2.31), (2.40), and (2.44) 

are the strain interpolation matrices corresponding to in-plane, large deflection, and 

bending strain components, respectively. Similarly, the subscripts m, 6, and b denote that 

the strain components are due to membrane, large deflection, and bending, respectively. 
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2.4 RESULTANT FORCE AND MOMENT VECTOR 

To include composite material for future extension of current work, the equations 

are derived for composite plate, from which the equations for isotropic plate material can 

easily obtained. As shown in Fig. 2.2, consider the plate of overall thickness h composed 

of many layers of lamina with an arbitrary orientation angle (9. 

z=x% 

J^m?* 

Fig. 2.2: A fiber-reinforced lamina with global and material coordinate systems 

The linear constitutive relations 49' 50 for the k'h layer in the principal material 

coordinates (x{, x2)can be written as: 

<V 
a2 

?n. 

' = 

k 

Qn Qn 0 

G21 Q22 0 

0 0 Q66 \Tn\ 

(2.47) 

where, 

\Q\ = the reduced stiffness matrix of the composite lamina 



£. 
Qn 

fi.2 

e2, 

l-MnVu 

^ 1 2 ^ 2 

1 - ^12/^21 

fJ.lxtLx 

1- /^12 /^21 

Note that, Q2l = 

Q22 

Q66 

_ ^ 2 

^ — MnMn 

= Gl2 

Qn 

For the isotropic plate, 

£i\ — tL2 — h, 

vn = v21 = v 

r - ^ 
1 2 " 2 ( l - v ) 

Considering the composite lamina shown in Fig. 2.2, the stress and strain transformation 

relations from the principal directions xx,x2 to x,y directions are: 

•ITM <7„ (2.48) 

r 12 j 

=[T.(m sy 
(2.49) 

where, defining c = cos 0 and s = sin 0, 
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2 2 
C S 

2 2 
S C 

Thus, 

<=[CmlTjwJ 

2sc 

-2^c 

SC SC C 2 - 5 2 

re? 

[B.HC 

„2 „2 
5 C 

TT2.SC 2.SC C - 5 1 

Kf 
-SC 

2 _2 
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(2.50) 

(2.29) 

(2.30) 

(2.51) 

(2.31) 

lli%m<3\e s t r e s s - s t r a m relations for a generalized k'h lamina becomes 

%,(&)] 
22 i i 2 6 

ft Jk 

8 HAx,y)}+^[Hv(X,y)] 

(2.32) 

(2.52) 

where, stiffness matrix, is given by 

= 0 0 0 0 0 0 1 x 

0 0 1 x 0 1 0 y 

[Ql=[TMriQMo)] 

(2.33) 

(2.53) 

Now, 
The resultant forces and moments per unit length are: 

dw\ 

({JV},{M})= 

where, 

dx 

- A / 2 

(2.34) 

(2.54) 

where z = layer thickness 

And thje^Minstifaitive equations for a laminate can be written as: 

W 
SXA 

m 
dw dw 

dy dx 

s 

K 
mv 

http://tt2.SC
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where [A\ [B] and [D] are the laminate extensional, extension-bending, and bending 

stiffness matrices, respectively, and are given by, 

4 = lkl^ 
-h/2 

h/2 

-h/2 

Z 4=1 

-h/2 

j *=i 

i,j=l,2,6 

i,j=l,2,6 

i,j=l,2,6 

(2.56) 

(2.57) 

(2.58) 

While deriving the equation of motion, it is assumed that the plate is thin and it 

means the ratio of length or width over thickness is greater than 40. Thus, the rotary 

inertia and shear deformation effects are considered negligible. 

M = [4*°}+M*:} (2.59) 

{M} = [B]{S°}+[D]{K} (2.60) 

The isotropic plate is adopted for present study for which [B] = 0. 
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2.5 DERIVATION OF ELEMENT MATRICES USING PRINCIPAL OF 

VIRTUAL WORK 

According to virtual work theory, the total work done by internal and external 

forces on an infinitesimal virtual displacement is null. Here, the governing equation is 

derived8'46'56'63 using the same principle: 

SW = SWint-SWext=0 (2.61) 

On the plate element, work done by the internal forces is: 

SWint = l({Ss°f {N}+ {SK}T {M})lA (2.62) 

where, 

A = Area of the element 

{N} = Resultant force vector 

{M} = Moment vector 

The virtual in-plane strain vector can be expressed as: 

SlBj{wm} + ^[0lBe]{wb} (2.63) 

where, 

4Bm]{wJ) = [Bm]{Swm} (2.64) 

4 \ [B\Be ] K } 1 = \ [S9\B9 ]{wb} + i [0\B0 ){Swb} 

= \[9\Bjdwb} + \[elB0\Swb} (2.65) 

=[9\Be\dwb} 
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))) 

Therefore Eq. (2.63) can be written as; 

{Se°}=[Bm]{Swm}+[elB0]{^b} 

Now, 

{te} = S(lBjwb}) = [Bb]{Swb} 

Substituting Eq. (2.66) and Eq. (2.67) into Eq. (2.62) gives: 

M* = 1((K]{^J+[olB,ii&M4*0)h 

^[(([Bj^filDlMM^A 

+ l(MsWbWMBbU})}tA 

= \A({^J[Bj[AlBm}{Wm}}lA 

+ \^J[BjlAle\BAMy 

l({^bYWlBjlAlBmhm}}}A 

l[\faJ[oriBj[AMB,U}y 

l({^bYlBj[DlBb]M}lA 

VIA 

\dA 
J) 

+ 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.70-1) 

(2.70-2) 

(2.70-3) 

(2.70-4) 

(2.70-5) 

The digit after the equation number 2.70-x indicates the term number. For 

instance, term 2 is the same as equation 2.70-2. Expressions for the linear stiffness 

matrices will be given first. Next, expressions for the first-order nonlinear stiffness 

matrices depending linearly on {w6}or{wm} will be expressed. Finally, expressions for 

the second-order nonlinear stiffness matrix, depending quadratically on{w6}, will be 

addressed. 
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Equations (2.70-1) and (2.70-5) can be expressed as: 

\Swb 

\Swm 

K o 

0 K 
w. 
w_ 

where, linear stiffness matrices [kb] and [km] are defined as: 

[K}= lA[Bbf[DlBb]dA 

[Kh[[Bj[AlBm\lA 

(2.71) 

(2.72) 

(2.73) 

2.5.2 First-order Non-linear Stiffness Matrices 

Rewriting Eq. (2.34): 

dw] 

kh\n dx 
dw 

dy 

1 

Eq. (2.70-3) can also be written as: 

[({S.JMMIAIBJWJ^A 

= i\{{^T[e]T[BAT[A\BjWm})iA JA2 

+ [\{{^Y[0Y[B,Y[A\Bmlw.})lA 

Say, M f o K } = [«,] 

Therefore, 

M[AlBm]M = [eJ[Nm]=[NmlBe]{wb} 

(2.74) 

(2.75) 

(2.76) 

(2.77) 
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Substituting the terms of Eq. (2.77) into Eq. (2.76), 

iM^JMlN.M^ + 

Combining Eq (2.70-2) and Eq. (2.78): 

\^J[Bj[A\B\B,l^})lA 

jM^JWMlAKhJJiA + 

+ 

JA2 

1 I^JMINMMU 

It can be expressed as 

M>h 

W„ 

(2.78) 

(2.79) 

where n\nm, n\bm, n\mb are first-order nonlinear incremental stiffness matrices and they 

are linearly dependent on {w}and can be expressed61 as: 

[»1« 1 = I ^e f K ( K })\Be W (2.80) 

k l = [»lj = ilBj[AMM)pe]dA (2.81) 

2.5.3 Second-order Non-linear Stiffness Matrix 

Eq. (2.70-4) can be written as: 

3 W. 
n2b 0 

0 0 

w. 

HL 
(2.82) 

where n2b is second-order nonlinear incremental stiffness matrix and it is a quadratic 

function of {wb} and can be expressed as: 
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[n2b]=3-lMTHM)Y[AMM)KW (2.83) 

2.6 EQUATION OF MOTION IN STRUCTURAL DEGREES OF FREEDOM 

Based on the discussion in the previous section, the virtual work of the internal 

forces on a plate becomes: 

m„t = 
\5wb 

\dw„ 

Tf 

VL 
0 k 

0 
+ • 

1 nlnm nlbm 

Lnlmb 0 
1 

+ -
3 

nlb 0 

0 0 ' j ; 

Wu 

w„ 

Considering inertia and random pressure excitation, the virtual work of the 

forces can be expressed63 as: 

SWezt = I W ~ f*™> + Prandom ( 0 ) + & ( ~ PhU) + H~ P ^ A 

Re- writing Eq. (2.17), 

The above equation leads to, 

^ = [HwlTbfSwb} 

Re-writing Eq. (2.18), 

u = [HulTm]{wJ 

The above equation leads to, 

Su = [HulTm]{dwm} 

u = [HjTmlwJ 

u-[Hu\Tm\wm} 

Re- writing Eq. (2.19), 

v=kf„k} 

(2.84) 

external 

(2.85) 

(2.86) 

(2.87) 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

(2.92) 

(2.93) 
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v = ttl*.i (2-94) 
Substituting Eq. (2.86, 2.89 and 2.92) into Eq. (2.85), the finite element form of the 

virtual work done by external forces on the plate can be written as: 

~{^b}
TlTj[Hj(-Ph[HwlTM} + P)] 

+ {^J[TjWJ(-ph[HulTm]{M,m}) ^ > = L dA (2.95) 

\5wb 

\8wm 

mh 
0 

0 m„ 
wh 

"W_ 
• + • 

\dwb 

\5wm 

\Pb 

[Pm 
(2.96) 

where [mb ] and [mm ] are mass matrices and they are defined55 as: 

[mb]= lph[Tb]
T[Hj[HjTb}iA 

{pb}=\[Tb]
T[HjPrmdom dA 

(2.97) 

(2.98) 

(2.99) 

where, Pmndom = Random load intensity 

By equating internal and external work expressed by equations (2.84) and (2.96), the 

element equation of motion can be expressed as: 

mb 

0 

0 " 

m„. 
m _ 

Kl 
wm I m) 

v\ 
\ 

"K 
0 

0 " 

»t«. 
m _ 

1 
+ — 

2 

n\„m nl bm 

nl mb o 
l 

+ -
3 

nlb 

0 

-|\ 
w. 
w „ 

(2.100) 

In other words, the above equation can be written as: 

[4-}+fw4M4M]w=W (2.101) 

where, 

[w] - Element nodal displacement vector 

[m] = Element mass matrix 

[k] = Element linear stiffness matrix 

[nl] = Element first-order nonlinear incremental stiffness matrix 

\nl\ = Element second-order nonlinear incremental stiffness matrix 

\p\ = Element force vector generated because of random excitation 
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2.7 SYSTEM EQUATION OF MOTION 

The system equation of motion is achieved by assembling the element equations 

of motion to system level by summing up the contributions from all elements and, then, 

applying the boundary conditions. It can be written as: 

M„ 0 

0 M. 
M l f i - r+ KJ { 

"Kb 

0 

0 " 

K*. 

1 
+ — 

2 
m 
M 

M bm 

mb 

1 
+ -

3 

N2„ Wb (2.102) 

The above equation can also be written as follows: 

[Mp} + [[K] + \[NI{{W})]^ (2.103) 

Eq.(2.103) is a set of nonlinear equations that describes the motion of the structure made 

of plate elements due to random loads. Generally, the problems associated with equation 

of motion can be categorized as static or dynamic problems. If the inertial and damping 

term is dropped from Eq. (2.103), then it becomes the equation associated with static 

problems. In other words, defining static load vector as{Pstatic\, the equation of motion 

can be written as: 

r. 1 1 A 

w4ww)]+TWww)]w=fi'-*) 
1 5 J 

(2.104) 

2.8 CONDENSED SYSTEM EQUATION OF MOTION 

Eq. (2.84) can be written in condensed form through separating {Wb} and {Wm }as 

follows: 

Mb 0 Wk 

w. 0 M 

where, 

[KlJ = \[N\nm\ 

[KKm] = \[Nlbm] 

• + 

mj \L 

Kb 0 

0 Km 
+ 

K^nm K^bm 

Klnb 0 + 
K2b 0 

0 0 
wb (2.105) 

(2.106) 

(2.107) 
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[Klmbh\[Nlmb] (2.108) 

[K2b] = \[N2b] (2.109) 

Separating Eq. (2.105) into two different equations, 

[MM}+^KMKl„J+[K2b])){Wb}+[Khm]{Wm}={Pb} (2.110) 

[Mm]{wm}+[Klmb]{Wb}+[Km]{Wm}={Pm} (2.111) 

For thin plates, in-plane natural frequencies are usually 2 to 3 order higher than 

bending frequencies. So, neglecting the in-plane inertia term, \Mm ])fVm } of Eq. (2.111) 

will not bring significant error. By neglecting the in-plane inertia term, the in-plane 

displacement vector \Wm} can be easily expressed in terms of bending displacement 

vector{Wb} as: 

{Wm}-[KmY{{Pm}-[Klmb]{Wb}) (2.112) 

= [Km]-"{Pm}-[Km]-l[Klmb]{Wb} (2.113) 

-Klo-KL (2-114) 

In Eq. (2.113), the first term is constant whereas the second term is quadratically 

dependent on {Wb} as [̂ TlmA] is a linear function of {Wb} too. Thus, the matrix 

[̂ l«m((̂ m})] *s evaluated by algebraic sum of two components 

[^l«m({^m}o)]md[^l„ra({^,„}2)],
 w n i c n a r e independent of each other and quadratically 

dependent on {jVb}. 

According to Eq. (2.77), 

[Klbm]{wm}=[Klnm]{Wb} (2.115) 

Similarly, 

[^Ki=k(W.)kl (2-116) 

Substituting Eq. (2.116) into Eq. (2.110), 

Reorganizing the above equation, 
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WtPM^b] + 2[KlJ+[K2MWb}={Pb} (2.H7) 
In short, in terms of bending displacements, the equation of motion can be written 

as: 

KlK}+(W+fc])K} = k} (2.H8) 
where 

[K]=[Kb]+2[K\J{Wm}0)] (2.119) 

[K2MK2^K\bjKjl[KlJ-[KlJ{Wm}2)] (2.120) 

The matrices [if]and [K2] are independent and quadaratically dependent on 

bending displacement vector \fVb}, respectively. 
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CHAPTER III 

SYNCHRONIZED AND UNSYNCHRONIZED RANDOM LOAD 

The synchronized and unsynchronized random loads will be discussed in detail. 

This involves explanation about the generation of random load with computational aspect 

and also the basic concepts. The essence of the ISEED number will be clearly explained. 

One more important aspect that will be covered is of rescaling the generated random load 

vector to give the exact value of power spectrum density (PSD). This is important for 

dealing with unsynchronized loads. If rescaling is not dealt with initially, the difference 

on each load vector adds up. A simple iterative procedure for such rescaling and Matlab 

command for accurate reliability calculations are highlighted at last. 

3.1 GENERATION OF RANDOM LOAD TIME HISTORY 

Currently the random acoustic pressure for linear as well as non-linear analysis of 

beam, plate,11'13'14'17,30,31'32,33 and shallow shell34 structures is often considered uniformly 

distributed over the surface of the structure and synchronized in time. In addition, the 

random loading is generally assumed as a truncated Gaussian white noise. Truncation 

means that the white noise is selected for a bandwidth by choosing an appropriate value 

of maximum frequency / ^ . This value of maximum frequency should be chosen 

carefully so that all the modes that are required for modal convergence should be covered 

within the truncated value. It is noted here that a truncated white noise is an ideal 

situation, and most real life cases will have non-white spectral plot. But for most design 

purposes, it is convenient to use an ideal broad-band white noise as far as analytical 

solutions are concerned. It is customary to use the highest PSD value from a non-white 

noise and use it for design purposes, which provides a safe designed structure. 

The use of nonwhite PSD lies in the fact that the recorded B-1B flight acoustic 

pressure fluctuations were available, and the nonwhite PSD does affect panel response 
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and fatigue life. As said earlier, the highest measured or estimated PSD level should be 

used for beam or panel design in practice and it may also be reasonable to assume that the 

PSD is a band-limited white noise since the contribution from the high frequency modes 

is usually small. 

3.2 BASIC CONCEPTS: SYNCHRONIZED LOAD VS. UNSYNCHRONIZED 

LOAD 

Unfortunately, until now, the random load is considered as synchronized in 

pattern for most of the experimental and analytical work. It means that the load varies 

with time only, which is not always true. In other words, when a structure is subjected to 

random loads, it is not possible to use the load in the form p{t). A simple practical 

example to prove the previous statement is a long period of rain drops steadily falling on 

the structure. Even though random in nature, and more or less uniform, the rain drops are 

certainly not synchronized in time. The intensity of the rain drops varies at different 

locations. This loading is unsynchronized in time, and it is also space dependent. 
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Fig. 3.1: Schematic representation of a random process p(t). Each p(j) (t) is a 

sample function of the ensemble.28 

The concept of unsynchronized load can be explained with a reference to Fig. 3.1. 

Consider a plate under the uniform load pit). However, it is possible that at time ti or t2, 

the load at one point is pm(t) whereas at the next point it is p(2)(t) . Thus, at each time, 

the loading intensity is different at different locations. It is also noticed that, at the same 

location, the load keeps changing at different times. In other words, at any given point of 

time, the load is varying not only in time but also in space. This is the essence of an 

unsynchronized load. It is apparent that a true random load should always be expressed 

as p(x,y,t) units and not as p(t) units. And it should be expressed in terms of its spectral 

density, S0 (units)2/Hz. 
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3.3 WHITE RANDOM PRESSURE SIMULATION 

Consider random pressure p(x,y,t) acting on the surface of a high-speed flight 

vehicle. The pressure acting normal to the panel surface varies randomly in time and 

space along the surface coordinates x and y. The pressure p(x,y,t) is characterized by a 

cross-spectral density function Gp{%,rj,co) , where £ = Xi-x 2 and rj = yx-y2 are the 

spatial separations and co is the frequency in rad/sec. The simplest form of the cross-

spectral density is the truncated Gaussian white noise pressure that is uniformly 

distributed with spatial coordinates x and y. 

G0 ,/ 0<f<fc 

G,fe,7,/) = (3.1) 
0 if f<0orf>fc 

where, G0 is constant and / c i s the upper cut-off frequency in Hertz (Hz). The expression 

for G0 can be written as27 

G0=p2
0 10SPL/Wlb2/Hz (3.2) 

where, p0 = reference pressure 

- 2.90075X1 (T9 psi (20 juPa) (3.3) 

Here, SPL is Sound Pressure Level, and it is expressed in decibels (dB). 

Fig 3.2 provides enough details about a typical simulated random load at 120 dB SPL. 
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Fig. 3.2: Random white noise at SPL=120 dB and fc =1024 Hz 
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The band limited white noise is generated by a Fortran code shown through 

Appendix B that stimulates a random pressure using complex numbers with independent 

random phase angles uniformly distributed between 0 and 2n . The PSD value of the 

random process is obtained by taking the ensemble average of the Fourier transform of 

the random load. The PSD value is then compared to the exact one given by equation 
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(3.2). The analyses presented are obtained for a cut-off frequency of 1024 Hz. The 

default selected frequency bandwidth in this work is Aco - 0 rad/sec with the random 

load prescribed in decibels. 

The random input p{x,y,t) was simulated using the FORTRAN code given in 

Appendix B and generated by Vaicaitis11 with a total number of 16,384 points. The 

length of the simulated process is nothing but time-step multiplying the number of points. 

To compute the power spectrum of the responses, FFT is selected, which is a numerically 

suitable technique when the total number of points is expressible as a power of two. The 

FFT is a complicated algorithm that becomes computationally lengthy when the input 

numbers of points are not expressed as a power of two. For instance, note that the 

FORTRAN code for the white random pressure fluctuation simulation uses a similar FFT 

base. The total number of input points is 16,384, which corresponds to 2 to the 14* power. 

3.4 COMPUTATIONAL ASPECTS OF GENERATION OF UNSYNCHRONIZED 

TIME HISTORY 

In FORTRAN language, to generate random phase angles between 0 and In , 

inbuilt subroutines called RANDOMSEED ( ) and RANDOM_NUMBER ( ) are used. 

These subroutines need to use the parameter known as "ISEED" number. Each ISEED 

number creates its own time history of random load. By a synchronized load, it is meant 

that the simulated random pressure time history is generated from one seed. The different 

ISEED numbers guarantee each random pressure time history to be statistically 

uncorrected in time.53 This is shown through Fig. 3.3. 

The choice of different ISEED numbers for each element along the plate gives a 

different sample function in the same ensemble. Using a different ISEED number, a 

different time history of random load can be obtained using the random load generator 

suggested by Shinozuka35'36'37. This random load can be uniform, concentrated, or non-
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uniform, but to simulate a real random load, the ISEED number should be different along 

the space for each element. 

In case of unsynchronized loading, the load is also space dependent. It can not be 

simulated with one seed number (ISEED number) but it needs different seed numbers for 

each element. All the input time history of the random loads has the same power spectral 

density (PSD). However, when considering a large surface, the load itself can be 

assumed to be uniform. This is conceptually the case of application of unsynchronized 

random loads on a structure. 

0.601 0.i02 0.603 0.604 O.iOS 
Time, sec 

Fig. 3.3: Two pressure time histories of the same PSD from different ISEED numbers 
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From a computational view point, when the loading considered is unsynchronized 

in pattern, analysis of large scale problems is extremely expensive in terms of time and 

memory. This statement can be easily explained through a simple example. Consider a 

simple structure divided in four plate elements as shown in Fig. 3.4. As shown in left 

hand side of the Fig. 3.4, when the loading is synchronized, the same ISEED number is 

used for all the four plate elements to generate time histories. Whereas, when the loading 

pattern is unsynchronized in nature, ISEED numbers used for each of the four plate 

elements are different and it means different time history is generated for each element as 

expressed through the right hand side of Fig. 3.4. For a large scale problem with very 

large number of elements, the problem becomes computationally complex as each 

element owns individual time history. The solution leads to application of parallel 

computation. 

Synchronized load Unsynchronized load 

© 
ISEED#1 

© 
iSEED#1 

© 
ISEED#1 

0 
ISEED#1 

© 
fSEED#1 

© 
ISEED#3 

© 
iSEED#2 

© 
ISEED#4 

Fig 3.4: Computational basics: Synchronized vs. Unsynchronized load case 

3.5 MONTE CARLO SIMULATION (MCS) 

For the Monte Carlo Simulation (MCS), an ensemble often or more time histories 

is generated by specifying different seeds (ISEED) to the random number generator in the 

FORTRAN code described in Appendix B. The response statistics are generated from an 

ensemble of p=16 time histories at each load level. Estimates of the RMS displacement 
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serve as a basic comparison with response of the two flight data sets (NWs), which 

essentially have the RMS as their basic unknown. Additionally, confidence intervals for 

the mean value of the RMS estimate are generated to quantify the degree of uncertainty 

in the results. For an input quantity x., the value is estimated from p independent 

observations xik of x.. The input estimate is the sample mean and can be expressed as: 

xt = *,-=-2X* (3-4) 
P M 

And the standard uncertainty u(xt) to be associated with x. is the estimated standard 
1 0 

deviation of the mean. 

u(x,.)=o-(x,.) = -7 7\Z(xi,k-
xif 

n[n-l)kml 

1/2 

(3.5) 

3.6 TIME STEP CONSIDERATIONS 

The time step of integration depends on the scheme selected means. Whether the 

scheme is explicit or implicit, the element size and the order of nonlinearity need to be 

studied. If an explicit integration scheme is selected, the system is conditionally stable 

and stability is achieved as soon as a solution is obtained. Conversely, the explicit 

integration schemes will diverge, showing instability in the system. For an implicit 

scheme a solution is always obtained, i.e., the system is always unconditionally stable. It 

is widely recognized that an implicit scheme is faster than explicit schemes because a 

larger time step can be used for a converged solution. However, for an equal time step the 

explicit scheme is much faster than the implicit scheme because of its simplicity and ease 

in programming. In practical structural problems, engineers first try the implicit 

integration scheme because lower integrating time steps can be used. However, as soon 

as the time step becomes the order of l(T4for converged solutions, engineers switch to 

explicit schemes as they are more suitable for the computation. 
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Depending on the nonlinearity of the system, more or less refined mesh would be 

necessary to catch the response characteristics. The more nonlinear the system, the more 

refined mesh and smaller integrating time step is required. A good amount of literature is 

available on numerical approaches that give empirical relations to estimate the maximum 

usable time steps for explicit and implicit schemes. For instance, Zienkiewics and 

Taylor29 report empirical relations for the time step of integration as a function of the 

element size. After this brief discussion, it becomes obvious that modal truncation 

reduces the step integration time by reducing the dof. The mesh size remains the same for 

accuracy purposes. Computational time is also saved because the nonlinear matrices do 

not need to be assembled and updated at each time step. 

One should also keep in mind the Nyquist-Shannon sampling theorem, which 

basically states that it is necessary to sample a time sequence at least two times faster 

than the highest frequency present in the waveform to uniquely resolve that frequency 

from the lower frequency 

A; < — ^ - (3.6) 

where, fc is the cut-off upper frequency of the uniformly generated random load 

Taking into consideration the above remarks, an appropriate time step was 

selected as follows. Knowing the highest frequency of the panel, Ats is evaluated and 

used as the time integration step-size for a given loading. Then, the step-size of 

integration is cut into one-half until the time histories of the response are found identical. 

For simplicity, in the modal FEA code the time step At, the explicit integration scheme 

such as Runge-Kutta scheme is selected when the total number of points is expressible as 

a power of two such that the specified loading at each At is maintained. As mentioned 

previously, a radix-2 number of time history samples are chosen to facilitate use of the 

FFT algorithm employed in the subsequent analysis. Note that for linear problems, the 

Nyquist time-step At is generally sufficient for the explicit scheme. However, for 
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nonlinear problems, the identical verification of the responses for two decreasing 

consecutive time steps is required and that yields a much smaller integration time step. 

3.7 RESCALING OF RANDOM LOAD VECTOR 

As mentioned before, the number of points and number of ensembles have an 

important role for the PSD calculation. The evaluation of the PSD using the Matlab 

command called "PWELCH" is defined as follows: 

[Pxt,Fj = pwelch{x,NFFT ,Fs, Window, Noverlap) (3.7) 

where, 

x = Discrete-time signal 

NFFT = Integer indicating the length of the FFT, which is equal to number of 

time history points in most cases 

Fs = Sampling frequency in Hz 

Window = Length of the segments windowed with a Hanning window 

Noverlap = Number of overlapping sections 

Pxx = PSD in powers/Hz 

F = Frequency range in Hz 

As already discussed, the random load is generated using subroutine SIMLOAD 

given in Appendix B where one of the input parameters is Sp . It is observed that there is a 

small difference between the input Sp and the SP from the generated random load time 

history. In the unsynchronized case, for each load the ISEED number is different. 

Therefore, the values of the generated Spwill be different too. This leads to an error, and 

convergence is delayed. Thus, it is suggested to rescale the random load generated by 

SIMLOAD. The following procedure gives a fairly good readjustment in the value of Sp. 

1. Generate random pressure vector, {Prandom }NPTXX using different ISEED numbers for 

all time history points (NPT) 

2. Compute Mean: [PSD(Prando j] = 
u pOLD 
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3. Compute the ratio: ratioSp = pOLD ,where S is the input value 

4. Scale the random pressure vector: [pmndom scalJNPm=^f^if 
J ratioS 

5. Recalculate Mean: \PSD(P„mdm_KaU)\ = S random _ scaled / J pNEW 

6. o/o Error = i^!L_^L 
100 

7. Use the {Pranrfom_scafed} in numerical integration 

Thus, once the random pressure time history is generated the average value of the 

auto spectral density is calculated and compared with S0 for a given SPL for verification 

purposes. The FORTRAN code shown in Appendix D follows the same procedure 

exactly as per the above discussion. To verify the code, random load time history for 2 

seconds is generated using cut-off frequency, fc = 4096 Hz. and ISEED=14407. Fig. 3.5 

shows PSD and Probability Density Function (PDF) plotting. Fig 3.6 confirms accuracy 

of the code generated and the difference between the input Sp and calculated S based 

on rescaled load vector is clearly visible in the plot. 
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CHAPTER IV 

SOLUTION PROCEDURE USING MODAL FORMULATION 

4.1 INTRODUCTION 

In this chapter, detailed solution procedures are presented for solving all the 

physical problems described in Chapter 2. In order to proceed with specific problems, 

various preliminary tasks need to be performed. These include solving linear Eigen-

problems to obtain frequencies and mode shapes for the modal transformation, and 

generation of accurate time histories of random pressure fluctuations with flat power 

spectral densities as discussed in detail in Chapter 3. For the structure subjected to 

random vibration, the system equations of motion are first transferred into modal 

equations using normal modes followed by time domain numerical method. The 

advantages of using modal approach and time integration scheme are also listed. 

Numerical considerations like the integration scheme, convergence criteria, and removing 

the transient response to ensure accurate response statistics are also addressed. Finally, 

importance of the usage of a modal participation factor is discussed in detail. 

4.2 ADVANTAGES OF THE MODAL APPROACH 

Rewriting the condensed system of equation of motion defined by Eq. (2.118) 

\Mbpb}+dK] + [K2Wt} = {P>} (4.D 
where 

[KMKb]+2[KlJ{Wm}0)] (4.2) 

[K2 ]=[K2b]- [Klbm \Km J"1 [K\mb ] - [K\nm ({Wn }2)] (4.3) 

Eq. (4.1) can be solved by numerical integration in the structural node dof. This 

approach turns out to be computationally expensive because of following: 
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1. At each time step, the element nonlinear stiffness matrices have to be evaluated, 

and the system nonlinear stiffness matrices have to be assembled and updated. 

2. The number of structural bending dof {fVb} is usually very large. 

3. The time step of the integration scheme should be extremely small in order to 

make the solution accurate and stable. 

An alternative and effective solution procedure is to transform the equation of 

motion from structural degrees of freedom into modal coordinates. The main advantage 

of using the modal approach is computational saving. As nonlinear stiffness matrices are 

constant, they do not need to be reassembled at each time step of integration. Moreover, 

the number of equations remained in the solution is usually 2-3 orders lower compared to 

structural dof approach. For most of the cases, the number of modes needed to obtain 

modal convergence is less than twenty and the time step when performing numerical 

integration is larger. Another advantage of the FE modal approach is that the in plane 

inertia does not need to be neglected in order to obtain the solution. It is not the same 

case for the Galerkin/PDE procedure. The procedure for the modal formulation, using 

reduced system normal modes, is described in the next section. 

4.3 LINEAR VIBRATION PROBLEM 

Re-writing equation of motion in structural dof expressed through Eq. (2.105), 

Mk 0 

0 M. • + 
Kb 0 

0 K + 
K^nm K^bm 

K\ mb 0 + 
K2b 0 

0 0 

HA wb 

\wm 

(4.4) 

In order to attempt modal transformation of above equation, the linear Eigen problem 

expressed by following equation needs to be solved: 

co' 
M, 0 

0 M„ 

,00 K, 0 b 

0 K 
\A 

( < • ) 

(4.5) 

where, {</>b }
(r) and {<fim }(r) are rth normal modes of the linear vibration problem related to 

bending and in-plane dof, respectively. Normal mode {<pb }
(r) and corresponding linear 
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frequency cor can be obtained by solving part of the equation of linear vibration which 

can be written as: 

"r2[Mb]Mr)=[Kb]far (4.6) 

For isotropic plate, there is no coupling between bending {^b}
(r) and in-plane 

{(j)m }(r) modes. As a result, the in-plane displacement \jVm} will be expressed as a function 

of the bending displacement \Wb}. 

4.4 DYNAMIC RESPONSE USING MODAL EQUATIONS IN NORMAL MODES 

As discussed earlier in Chapter 2, by neglecting the inertia term, the membrane 

displacement vector can be expressed in terms of the bending displacement vector as: 

{K} = [KmV({Pj-[KhM}) (4.7) 
Re-writing equation of motion expressed through Eq. (2.110), 

[Mb ]{wb}+ ( f c ] + [K\nm ] + [K2b ]j){Wb} + [Klbm }{Wm }={Pb] (4.8) 

Substituting Eq. (4.5) into Eq. (4.8), 

[Mb ]{wb}+ ( f c ]+ [KlJ+ [K2b ]))K} 
+ ([Khm \Km V {Pm } - [Klbm \K\mb %Wb }={Pb} 

In the above equation, system bending displacement \\¥b} can be expressed as a linear 

combination of some known base functions called mode shapes as: 

where, 

q = Modal amplitude 

y>b }
(r) = rlh normal mode of the linear vibration problem 

[o] = Eigen vector matrix 

{g} = Modal displacement vector 
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To convert the equation of motion into modal co-ordinate system, it is necessary 

to transform all the matrices in Eq. (4.1) into modal coordinates. First of all, element 

nonlinear stiffness matrices are evaluated with the corresponding element 

components {wb} and which in turn is obtained from the known system linear mode {(f)b} . 

The nonlinear stiffness matrices, which are directly related to{w6}, can be expressed as 

the summation of the products of normal modes amplitudes qr (where r =1 to number of 

modes, n).Thus, nonlinear modal stiffness matrices become: 

{K\bmh±qr{t)[K\bMV (4-11) 
r=l 

[KlJ=T^)[KlmMr (4-12) 

[K2b]=± ±qr(t) q,(t) ( [ ^ ( ^ ) f >) (4-13) 
r=l s=l 

In Eq. (4.11), (4.12) and (4.13), the super indices of the nonlinear modal stiffness 

matrices assembled from the corresponding element nonlinear stiffness matrices. 

As shown through Eq. (4.7), the in-plane displacement {Wm}, is expressed as: 

K}=(Kr^}-Kr[^mJk} 

- w„ -[Kmy{ %MKKMV ]MM (4.i4) 
\r=l J 

= {wj0-t Z^W^Wkl (4-15) 
r=l s=l 

= {WX~{WX (4-16) 

where, the in-plane mode corresponding to the bending mode is: 

ksi=Kr[KimbrM(s) (4.i7) 
Therefore, \Klnm ({Wm }2 )]can be expressed as: 

r=\ s=l r=\ 5=1 
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{Wm}0 term of Eq. (4.16) has been considered in Eq. (4.2) that defines matrix [K]. It is 

important to notice that above defined matrices [iTl„m], [Ari6,J, [K\mb] and [K2b] are 

constant. Once these matrices are evaluated then the system dynamic equation is 

transformed into the modal co-ordinates. Introducing structural modal damping term, the 

modal equation of motion can be written as: 

[Mjq}+2gra>r[Mjq}+([K]+[Kj){q} = {Pb} (4.19) 

where 

[Mb J = Modal mass matrix related to bending dof only 

= [df[Mj[<D] (4.20) 

[K\ = Modal linear stiffness matrix 

- W W W (4-21) 

[K J = Second order nonlinear modal stiffness matrix 

- M ±±1,1. (K2, r - [K_ f-" - [«,. r K r [«- r) M (4.22) 
r=l 5=1 

\Pb) = Modal load vector related to bending dof only 

=OTte} (4-23> 
2 grcor \Mb J = Modal structural damping matrix 

Here, the coefficient gr is the modal damping ratio for the rth mode, and it can be 

determined experimentally or pre-selected from a similar structure, whereas, cor is the rth 

modal natural frequency. 

4.5 FOURTH ORDER RUNGE-KUTTA INTEGRATION SCHEME 

The Runge-Kutta method25 is an explicit step-by-step process to obtain 

approximation qk+l from qk in such a way that the power series expansion of the 
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approximation would coincide up to terms of a certain hN in the spacing, h =tk+1 -tk, 

with the actual Taylor series development of q(tk + h)in powers of h. 

The fourth-order accuracy Runge-Kutta scheme, 0\h4 ), is given by 

0*+i = Ik + T&i + 2b2 + 2b3 + b4) o 

where, the coefficients b\, b2, bi and b4 are defined as follows: 

bx=hF{tk, qk) 

f 1 l \ 
b2=hF\tk+-h, qk+-bx 

b, =hF 
f 1, k 

tk+-Zh> 1k+-b2 
L Z J 

b4=hF\ 

V 

tk+h, qk+b3 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

4.5.1 Solving Second Order Differential Equations Using Runge-Kutta Time 

Integration Scheme 

The method described in the previous section is often sufficient to approximate 

first order differential equations, but it may not be obvious about how to apply it to the 

approximation of differential equations of higher order. The trick here is to break down 

the higher order differential equation into several first order differential equations. The 

following example explains the technique in detail. 

Example 4.1: 

Considering second order differential equation (4.1) 

(4.29) 
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Considering initial conditions given are zero. i.e. When time t=0, 

displacement {Wb} =0 and velocity y¥b J =0 . In order to recast the above equation, 

introducing two new variables: 

<7i(0=W (4.30) 

and 

dq.it) 

So, 

dt 

dq2(t) _ 

(4.31) 

dt fc} 
Eq. (4.29) can be written as: 

K}=Kr^}-[M6r(M+[^])K} 
Substituting Eq. (4.30) and (4.31) into Eq. (4.32), 

dq2(t) 

dt 
=iMbr{Pb}-[Mbr([K}+[K2Mt) 

(4.32) 

(4.33) 

Here, Eq. (4.31) and Eq. (4.33) are two coupled first order equations and they 

represent Eq. (4.29). These equations can also be expressed as first order matrix 

equations: 

q = 

q = 

V 
_q2_ 

= 
0 f 

[MbV([K]+[K2D 0 
• + 

jjKrfti] 

(4.34) 

(4.35) 

Using the following steps, both first order equations expressed through Eq. (4.31) 

and Eq. (4.33) can be solved simultaneously. 

Step: 1. Starting at time t0, choose a value for h, and find initial conditions for all state 

variables q{(t0),q2(t0)...etc. 

Step: 2. From the values of#,(?0), calculate derivatives for each q^t) at t = t0 

dqi(t)i 

yu dt 
' <lt t — In 

http://dq.it
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o da, (t) 
at 

Step: 3.Using the value of_y1;., find an approximate value for each^;(^0 + h) = qi{t0) + yuh 

Step: 4. Substitute^ =t0 +h, and for each q{, let q^o) - q^o + h) 

Step: 5. Repeat steps 2 through 4 until the solution is converged. 

4.5.2 Advantages of using the Runge-Kutta Time Integration Scheme 

Because of the nature of the problem to be analyzed, the explicit integration 

scheme was selected over an implicit integration scheme. The advantages of using the 

Runge-Kutta time integration scheme can be listed as follows: 

1. The computational ease of the Runge-Kutta method makes it quite simple to 

program and implement. 

2. Compared with methods in structural node dof, the computational cost is reduced 

dramatically. 

3. No preliminary differentiation is needed. 

4. No initial values are needed beyond the prescribed values. Instead of using values 

of the N derivatives at y at one point, only the values of the first derivatives at N 

suitably chosen points are required. 

5. It is more efficient particularly for the kind of problems for which accuracy of the 

response frequency contents becomes critical for the evaluation of the 

displacements. 

6. For a nonlinear random vibration problem, it does not need to assume that the 

random response distribution is Gaussian as using the equivalent linearization 

method. 
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4.6 SOLUTION IN STRUCTURAL DOF 

As discussed in the previous section, using the Runge-Kutta integration scheme, 

the initial values of modal coordinates^} and{^} given in Eq. (4.19) can be solved to 

obtain the numerical value of modal co-ordinate vector{#}. The dof of {^depends on the 

number of modes that have to be considered in order to accurately capture the desired 

response. Based on which nodal displacement vector associated with bending degrees of 

freedom, {Wb }can be calculated using the following equation: 

M = MM (4-36) 

Once {Wb} is evaluated, the nodal displacement vector related to in-plane dof, \Wm} can 

be calculated using the equation: 

{Wm} = [Km l
l {Pm} - [Km \

l [K\mb }{Wb} (4.37) 

Finally, Root-Mean-Square (RMS) maximum deflection is calculated as, 

RMS{W^)=^E[(W^)2\ (4.38) 

where, E is as discussed in Appendix C. 

4.7 MODE SELECTION 

In case of synchronized loads, analytical solutions are available, from which we 

can see that the even-modes are non-existent, and they can be removed all together in 

simulation to save computation time. 

However, in case of unsynchronized loads, it is expected that both even and odd 

modes participate, but it is difficult to say which mode is dominant. Such a conclusion 

can only be made after obtaining the plot of power spectral density vs. the frequencies. It 

is expected that all the modes contribute and modes participation need to be studied in 

detail. Also, the location of the maximum deflection point can be determined. 
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4.8 DATA MANIPULATION 

Initially the structure is at rest; therefore, an initial transient response is induced 

before the response becomes fully developed. The transient response must be eliminated 

to ensure that the accurate response statistics are covered. For each input loading of time 

history, the first 20% is omitted out of the total run. It is already discussed that in order to 

improve the FFT algorithm it was convenient to use a total number of points that will be 

a power of two. Consequently, for each displacement, the data was linearly interpolated 

in order to produce 2" points, where n is an integer. 

As per the technique of Monte Carlo Simulation discussed in Section 3.5, each of 

these ISEED numbers needs to be changed for each sample and 16 different samples are 

used for statistical averages. 

4.8.1 Convergence Considerations 

The accuracy of the solution discussed in previous sections is directly related to the 

mesh size. Under those circumstances, a convergence test for modes and mesh sizes that 

will give a set of modal equations for accurate response must be performed prior to any 

further calculations. 

Two types of the convergence of the solution must be addressed. Firstly, while 

attempting the solution of the linear vibration problem, the natural frequency 

convergence must be reached. To investigate this type of convergence the finite model 

discretization is refined and the change in the fundamental frequency is calculated. It is 

worth noticing that since the forcing function is assumed uniform over the plate, the 

advantage of the symmetry is used and the response of a rectangular plates are calculated 

based on the modeling of a quarter plate only. 

Secondly, when performing modal transformation the important issue is to predict 

how many modes should be retained in the analysis. In order to resolve this issue modal 

convergence is sought. The nonlinear response of the panel is the linear combination of 
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certain modes and each of them has a certain contribution to the total response. Since the 

mode contribution in the total response varies with the random vibration, the estimation 

of the modal convergence should be performed over the entire range of the response 

under investigation. Generally, more number of modes are required for larger values of 

Wmm Ih or RMS\Wmm In). There are two ways to predict the mode contribution from a 

particular mode: 

1. Plotting the graph of power spectral density (PSD) vs. frequency 

2. Calculating Modal Participation Factor 

Both of these methods are discussed in detail in the next sections. Both mesh and 

modal convergence criteria are a compromise between the accuracy and the 

computational cost and can be adjusted by user according to one's objective and 

computational possibilities. 

As discussed in Section 3.6, time-step convergence is also sought. Firstly, a time 

step At = 1/4096 = 2.4414 x 10~4 sec was selected, and then the time step was cut by one-

half with At = 1/(2x4096) sec, followed by At = 11(2 x 2 x 4096) . The maximum 

deflection time histories for the last two integration time steps were compared and found 

to be exactly identical, establishing the time-step convergence. 

4.9 POWER SPECTRAL DENSITY (PSD) VS. FREQUENCY GRAPH 

When loading is considered synchronized in time and uniformly distributed, the 

asymmetric natural bending modes of the panel need not to be considered in the analysis. 

Whereas, for unsynchronized load cases, the asymmetric as well as the symmetric modes 

would be excited and should be considered in the analysis. The classical solution is 

misleading in the sense of non-participation of asymmetric modes. It gives an impression 

that these modes do not have an influence on the response of a random load. The above 

statement can be proved easily by spectral density plots as they show peaks at those 

modes, showing their participation. 
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The power spectral density vs. frequency graph helps to figure out which modes 

are contributing to the dynamic response and also the most dominant mode numbers. For 

example, Fig. 4.1 shows one of the sixteen time histories using seven modes in case of 

synchronized load. By plotting a PSD graph as shown in Fig. 4.2 one can easily visualize 

that the peaks are at modes 1, 3 and 5, showing maximum contribution from those modes. 

At the same time, it makes it clear that only symmetric modes have contribution in the 

response. It provides clear guidance about which modes should be omitted and which 

should be retained in a particular case. 
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Fig. 4.1: Maximum deflection time history under synchronized loads 
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Fig. 4.2: PSD under synchronized load 

4.10 MODAL PARTICIPATION FACTOR 

While solving Eq. (4.19), it is extremely important to know which modes 

contribute to the total response. And a factor called "modal participation factor" is useful 

for this purpose. It can be evaluated based on the numerical values of modal co-ordinate 

vector {q\. The equation to calculate modal participation factor in order to know a small 

number of most contributing modes to the total response can be written as: 

RMS{qr)_ 

* case 

(4.39) 

otherwise 

Partcipation of r* mode : 

n 

y RMS(q ) tf rand°m load 

max#r 

Xm a xkl 

where, RMS stands for root-mean-square value. 

Those modes with significant participation values can be identified using Eq. 

(4.39) and they should be retained in the analysis. 
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CHAPTER V 

SPARSE COMPUTATION METHODOLOGIES 

Sparse technology is used efficiently throughout the analysis in order to save 

computational time and memory. The algorithm used for Eigen-solution is discussed in 

detail. The sparse storage scheme is explained in detail along with numerical examples 

whenever necessary. Some other techniques, like symbolic and numerical factorization 

and LDLT equation solver are also detailed in this chapter. 

5.1. EIGEN SOLUTION USING SUB SPACE ALGORITHM 

The Sub-space iteration method23 is adopted in the study as it is the effective 

method to find few lowest Eigen pairs of a large Eigen problem. The method incorporates 

inverse iteration and the generalized Jacobi iteration methods. The main steps of the 

algorithm can be described as follows: 

1. Assuming the first "m" Eigen-pair solution of the linear vibration problem is 

sought. Rewriting the linear vibration equation (4.6), 

cor
2[Mb]^r=[Kb]{^r (5.D 

In the above equation, the size of [Mb ] and [Kb ] is n x n. 

where, n is number of bending dof 

One can compute, 

L = Minimum(2 * m, m + 8) (5.2) 

And L <n 

Guess the first L Eigen-vectors matrix [X1 ]nxL 

For k=l, 2, 3,.. .until convergence is achieved. 

2. Solve for Xk+l from: 

[KbPM}=[MblXk] (5.3) 
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3. Find the reduced stiffness and mass matrices from: 

h w \LXL = iXk+l \LXn iKb L„ L^t+1 \nXL ( 5 - 4 ) 

kLL=feiKR+J (5.5) 
4. Solve the reduced Eigen problem 

k»L L fe*+i k = [\+1 k K L fe+i k (5-6) 
5. Find the improved Eigen-vectors 

l^k+l InXL = I A k+l InXL V&k+l llXL ( 5 - ' ) 

Then 

[A
jt+1 J —> [A\ = eigen - values and [Xk+l J -> [O] = e/ge« - vectors 

as k —> oo 

In Eq. (5.3), inverse iteration method is employed. A generalized Jacobi iteration 

method can be used to solve reduced Eigen equation (5.6). The initial guess Eigen-vector 

\XX ] should contain independent columns. Generally, when extracting a small number of 

modes (< 40) in similar size models, the subspace method can be more suitable. It 

requires relatively less memory but large disk space. 

5.2 SPARSE STORAGE SCHEME FOR SYSTEM LINEAR STIFFNESS AND 

MASS MATRICES 

Generally, the stiffness and mass matrices generated for finite element analysis 

contains so many zeros. In such cases, it is computationally efficient to deal with the only 

non-zero terms rather than whole matrices. With the same concept, the non-zero terms of 

the matrices are stored using a technique known as sparse storage scheme. 

Using the sub-space algorithm discussed in Section 5.1, linear vibration problem, 

expressed through Eq. (5.1) is solved for Eigen-solution. Re-writing the equation, 
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In the above equation, 

[Kb J = Square, symmetrical, positive definite (non-singular) system bending stiffness 

matrix 

[Mb ] ~ Square, symmetrical, positive definite (non-singular) system bending mass matrix 

y>b} - r* normal mode of the linear vibration problem 

The matrices [Kb ] and [Mb ] are stored using the sparse storage scheme22 which 

is most efficient technology, especially for large-scale engineering applications. The 

following simple example explains the storage scheme effectively. 

Example 5.1: 

Consider a linear stiffness matrix, [AT6 J of size 6 x 6. It is a square, symmetrical and 

positive definite matrix and is defined as: 

11 0 0 41 0 52" 

44 0 0 63 0 

66 0 74 82 
(5.8) 

88 85 0 

SYM 110 97 

112 

Normally, the number of storage requirements to store matrix [Kb] is 36. The 

storage space can be saved if zero terms of the matrix are omitted. The basic of sparse 

technology is to store only non-zero terms in order to save space and memory occupied 

by zero terms, which is accomplished by storing non-zero terms of the matrix in form of 

the vectors as discussed here in detail. The four vectors that store the matrix [Kb] are 

defined as: 

1. Vector IA: 

The integer array IA is of size N + 1 x 1. Where, N is the size of the matrix [^Jand 

I A is described as: 

[*.]= 
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IA 

(l) 
2 

3 

4 

5 

6 

lh 

= • 

rr 
3 

4 

6> 

7 

8 

8 

(5.9) 

Here, IA indicates the starting location of the first non-zero and off-diagonal term 

in each row. It should be noticed that as the matrix is symmetrical, here only upper 

triangular terms are involved. The location number of the non-zero terms considered in 

array IA can be shown in matrix [Kb] as: 

fc] = 

K, 0 

K 22 

0 

0 
© £ 
0 

0 

K 44 

SYM 

(5.10) 

Thus, array IA involves information about the number of non- zero off-diagonal 

terms each row contains, and it can be computed as follows: 

The number of non-zero, off-diagonal terms in the 1st row = IA(2) - IA(1) = 3-1=2 

The number of non-zero, off-diagonal terms in the 2nd row = IA(3) - IA(2) = 4-3=1 

The number of non-zero, off-diagonal terms in the 3r row = IA(4) - IA(3) = 6-4=2 

The number of non-zero, off-diagonal terms in the 4th row = IA(5) - IA(4) = 7-6=1 

The number of non-zero, off-diagonal terms in the 5th row = IA(6) - IA(5) = 8-7=1 

The number of non-zero, off-diagonal terms in the 6th row = IA(7) - IA(6) = 8-8=0 

2. Vector/^ : 

The integer array J A is of size NCOEF x 1, where NCOEF is the total number 

of non-zero and off-diagonal terms of matrix [Kb] before factorization. Array J A is 

described as: 
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JA 

2 

3 

4 

5 

6 

4 

6 

5 

5 

6 

5 

6 

(5.11) 

JA indicates the column number associated with non- zero off-diagonal terms for 

each row. The following equation shows the associated column number for each non-zero, 

off-diagonal term of matrix [Kb] clearly. 

COLUMN NO: 1 2 

fc] = 

K, 

K 22 

SYM 

3 4 

0 © 
0 0 

^33 0 

K44 

5 

0 

(7) 
w © 
^ 5 5 

6 

© 
0 

© 
0 

© 
And, 

A^CO^F = Z4 (N+l) - Li (1) = 8 -1 = 7 

3. Vector 4£>: 

The real array AD is of size N x 1 and it is described as: 

(5.12) 

AD 

(l) 
2 

3 

4 

5 

v6, 

= • 

'ir 
44 

66 

88 

110 

112 

(5.13) 
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Vector AD involves numerical values of all the diagonal terms. 

4. Vector AN: 

The real array AN is of size NCOEF x 1 and it is described as: 

(l) 
2 

3 

4 

5 

6 

Jj 

= < 

r4f 
52 

63 

7 4 • 

82 

85 

97 

Vector AN contains all the numerical values of non-zero, off-diagonal terms of upper 

triangular. 

It is obvious in above example 5.1 that number of storage requirement for matrix 

[Kb] is reduced from 36 to 13 (= 6 for storing diagonal terms +7 for storing off-diagonal 

terms) by using the sparse storage scheme. Using the same methodology, all the matrices, 

including linear stiffness matrix, mass matrix, and all nonlinear stiffness matrices defined 

in Chapter 4, are stored. Moreover, this storage method provides computational ease 

because of the vector operations instead of matrix operations. 

5.3 APPLICATION OF DIRICHLET BOUNDARY CONDITIONS 

System stiffness and mass matrices generated by assembling the element level 

matrices are singular in nature. They become non-singular once the Dirichlet boundary 

conditions are applied.22 The method of boundary condition application is explained by 

the following simple example. 

Example 5.2: 

Assuming [K]W = f , where size of matrix [K] is N x N = 4 x 4. 

And Dirichlet boundary conditions given are: 
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w2 = s2 and w3 = s5 

Following equation explains the method to apply the boundary conditions. 

X 
K2l 

K31 

_K4l 

Ku 

K22 

K32 

K42 

Kl3 

K2i 

K33 

K43 

Ku 

Kw 
K34 

K44_ 

wl 

w2 = s2 

w3 =s3 

- WA . 

7 
/a 

h 
M 

Kn 0 0 KX4 

0 1 0 0 

0 0 1 0 

K4l 0 0 K44 

A 

V 
w, 

w, 

w. 

w 4 J 

/ [ Kn.s2 K13.s3 

*3 

7 4 ~J^A2-S2 ~&43-S3^ 

(5.15) 

(5.16) 

5.4 L D LT EQUATION SOLVER 

The inverse of a matrix is performed using LDLT equation solver.22 This method 

is useful as the matrices are symmetrical and positive definite in nature. The following 

example explains the method clearly. 

Example 5.3: 

Consider, the most generalized Finite element equation shown by Eq. (5.17), needs to be 

solved in order to get displacement vector [w] 

[K]{w} = {p] (5.17) 

where, 

[K] = Square, symmetrical, positive definite (non-singular) system stiffness matrix of 

size N x N and is known. 

{w} = System displacement vector of size N x 1 and is unknown 

{p} = System load vector of size N x 1 and is known 

N = Number of dof = 6 (say, for this example) 
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The solution is sought in three sequential phases as follows: 

1. Factorization Phase: 

As matrix [K\ is square, symmetrical and positive definite, it can be written as: 

[K]=[L\D\L'\ 

The terms of the matrices of the above equation can be written as: 

K,, K,., K,, K,, K,, K,, 

M-
Kn, KT, K*,-, Kn. K "21 "22 23 "24 "25 

K,, K "31 32 

K., K "41 42 

K 33 K„. K "34 35 

K., K. 

K 

K 
26 

36 

Kr, Krn K„ Kr, Krr K "52 "53 54 "55 

K„ K~ K,^ K,. K„ K 

0 
1 

I« 

0 

0 

1 

0 

0 

0 

1 

^54 

0 

0 

0 

0 

1 

A, 
0 

0 

0 

0 

0 

64 

0 

D. 

0 

0 

0 

0 

22 

"65 

0 

0 

0 

0 

0 

'56 

"66 

0 

0 

0 

o 
o 

o 
o 
o 
o 

0 

0 

0 

0 

0 

0 A , 

1 
0 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

(5.18) 

L. 
Z,42 L5 

LA? Lr 

1 L6 

0 1 

(5.19) 

By equating the upper triangular portion terms of the LHS with the corresponding 

RHS terms of Eq. (5.19), one can get a sufficient number of equations (= 21) to solve 

for[Z,] with 15 unknowns and [D] with 6 unknowns. 

If non-zero terms are indicated by X, for the data shown in Eq. (5.19), [LT j may look 

like this: 

V'Y-

1 0 0 X 

1 0 0 

1 0 

1 

0 

X 
X 

X 

1 

X 
0 

X 

F 

X 

1 

(5.20) 
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The symbol, £Jof Eq. (5.20) indicates "fill-in term." This means during the numerical 

factorization phase, the zero-term of matrix [K] at a particular location became non-zero. 

The number of fill-in terms should be kept as low as possible. 

2. Forward Substitution: 

Substituting Eq. (5.18) into Eq. (5.17), 

Say, 

Using Eq. (5.22), Eq. (5.21) can be written as: 

ww=w 

(5.21) 

(5.22) 

(5.23) 

As the terms of [z] and {p} axe known, using Eq. (5.23), (y}can be evaluated. 

Schematically, the procedure can be described by following equation (5.24). It is obvious 

that first of all yx is evaluated and then terms y2 to y6 are evaluated by substituting the 

value of the previous term calculated. That is why the procedure is called "forward 

substitution." 

1 

X 1 

X 0 

X X 

X X 

X 0 

1 

0 

X 

X 

1 

X 

0 

1 

X 1_ 

y\ 

y2 

< 
^ 4 

y5 

y6j 

• = • 

X 
X 

X 

X 

X 

X 

(5.24) 

3. Backward Substitution: 

After the forward substitution phase {y} is known, it can be substituted in Eq. 

(5.22) and {w}can be easily evaluated as [l)]and [LT \is already known. The procedure 

can be represented as: 
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X 

X 0 

X 

X 

0 X 

X 

It is clear from above equation that w6 will be evaluated first and then terms 

w5,w4,w3, w2 and finally w, can be calculated by substituting previous term calculated. 

5.5 STEP-BY-STEP PROCEDURE OF SPARSE COMPUTATION 

METHODOLOGY FOR NONLINEAR FINITE ELEMENT ANALYSIS 

Step: 1. Input general information that includes element numbers and size, material 

properties, boundary conditions, nodal co-ordinates, and load applied at the joints. 

Step: 2. Input node-element connectivity information. 

Step: 3. To store connectivity matrix using sparse technique, generate arrays IE and JE 

based on node-element connectivity information. The following example explains the 

procedure clearly. 

Example 5.4: 

Consider a simple finite element structure divided in four plate elements as shown in 

fig.5.1. To simplify the discussion, assume each node has 1 DOF. 

1 X X X X X 

1 0 X X 0 

1 0 X X 

1 X 0 

1 X 

1 

|V 
w2 

w3 
< 

w4 

W5 

*v 

. = < 

X 

X 

X 

X 
X 

X 

(5.25) 
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Fig. 5.1: a simple finite element mesh 

The element-node connectivity matrix [E] can be expressed as: 

1 2 3 4 5 6 7 8 9 

M = 

0 1 1 1 1 0 0 0 0 

1 1 0 0 1 1 0 0 0 

0 0 0 1 1 0 0 1 1 

0 0 0 0 1 1 1 1 0 

(5.26) 

It can be noticed that all the non-zero terms have a numerical value equal to 1. So, 

as discussed in Section 5.1, matrix [is] can be stored using two integer arrays: 

1. Array IE of size NEL+1 x 1 

where, 

NEL = Number of elements = 4 

IE = Locations of the first non-zero term of each row 

= 1st, 5th, 9th, 13th, 17th 

2. Array JE of size NCOEF1 x 1 

where, 

NCOEF1 = NEL*NDOFPE 

(5.27) 
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NDOFPE = Number ofdofper element = 4 

JE = Element-node column index numbers "unordered" for each row 

= Global node numbers associated with each element 

JE = \2 3 4 5|;|l 2 5 6|;|5 4 9 8|;|6 5 8 7| (5.28) 

Step: 4.The coordination of local dof to global dof is stored by creating an array, called 

Im, the size of which is NDOFPE x 1. 

For example 5.4, element number 1 is connected by nodes 2, 3, 4 and 5. 

Hence, 

Im (e=D _ 
0 

0 

v5y 

(5.29) 

Step: 5. From the input data related to the load applied on the joints, create a vector {b} 

of size NDOF x 1. where, NDOF = total number of dof. Initially, b is defined as zero 

vector. It stores the load intensity at corresponding global dof. For example 5.4, the array 

b can be written as: 

m 
2 

3 

4 

5 

6 

7 

8 

Uj 

= 

no ̂  
0 

0 

0 

0 

0 

0 

0 

v 0 , 

(5.30) 
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Step: 6. From the input boundary conditions, create an integer array "iboundc" of size 

NDOF x 1 . The value of the array is 1 where the boundary condition is defined, zero 

otherwise. 

Step: 7. Using subroutine TRANSA2D, generate vectors IET and JET which are the 

vectors to store transpose of matrix [E\. The size of vector IET is NDOF+1 x 1 and that 

of vector JET is NEL * NDOFPE x 1. The requirement to generate the transpose of 

matrix [E] arises in order to arrange the associated column number stored in vector JE , 

in order. The transpose of matrix [E] can be written as: 

©©DO 

\E>) = 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

(5.31) 

= Node-element connectivity information 

Hence, 

IET = 1st, 2nd, 4th, 5th, 7th, 11th, 13th, 14th, 16th, 17th (5.32) 

= Locations of the first nonzero of each row 

JET = Node-element-node column index numbers (ORDER) for each row 

= Global element numbers associated with each element 

JET = (2), (1, 2), (1), (1, 3), (1, 2, 3, 4), (2, 4), (4), (3, 4), (3) (5.33) 
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It can be noticed from Eq. (5.28) that column index numbers stored by JE were 

unordered. But, Eq. (5.33) shows that column-index numbers are arranged in order by 

transposing the matrix [E] . 

Step: 8. Perform symbolic assembly of the structural linear stiffness matrix and mass 

matrix. Symbolic assembly finds locations of all nonzero, off-diagonal terms of the 

assembled matrix which helps to predict the computer memory required for numerical 

assembly of the same matrix. That is why symbolic assembly is always done before 

numerical assembly is performed. It defines starting locations of the first non-zero off-

diagonal terms for each row of structural stiffness matrix after applying boundary 

conditions, and also provides the column numbers that correspond to each non-zero, off-

diagonal term of each row of structural stiffness matrix. 

For example 5.4, the size of structural stiffness and mass matrices will be 9 x 9 as 

NDOF=9. With Dirichlet boundary conditions defined at dof corresponding to node 

number 3, 4 and 9, the system linear stiffness or mass matrix may be written as: 

COLUMN NO: 1 2 3 4 5 6 7 8 9 

[K] OR [M\-

X 

0 

0 

0 

X 

0 

X 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

X 

0 

0 

0 

X 

0 

X 

0 

0 

X 

X 

X 

0 

0 

0 

0 

X 

0 

0 

0 

0 

0 

0 

0 

0 (5.34) 

o x o o x x o x o 
X X 0 0 0 0 X 0 0 

0 X 0 0 0 X 0 X 0 

0 0 0 0 0 0 0 0 1 

The above matrix can be stored using two arrays, IA of size NDOF x 1 and JA of size 

NCOEFx 1 as follows: 

IA = Starting locations of the first non-zero, off-diagonal terms of each row 

(5.35) =lst, 3rd, 6th, 6th, 6th, 7th, 8th, 8th, 9th, 9th 
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JA = Column numbers associated with each non-zero, off-diagonal terms for 

each row that could be unordered 

= (5,7),(6,7,8),(6),(8) (5.36) 

A subroutine called "symbass" performs the symbolic assembly discussed above. 

Step: 9. Generate element linear stiffness matrix using Eq.(2.72) and (2.73), mass matrix 

using Eq. (2.97) and (2.98) and load vector using Eq.(2.99). Then apply numerical 

assembly to create system linear stiffness matrix, system mass matrix and system load 

vector using subroutine "numass," discussed in Appendix D. Assembling of linear 

stiffness matrix, mass matrix and load vector is performed simultaneously in this 

subroutine. Also, Diritchlet boundary conditions are taken care of inside this subroutine 

using procedure discussed in Section 5.3. As discussed in Section 5.2, the assembled 

matrices are stored using sparse storage scheme so the output of the numerical assembly 

is in the form of several vectors. 

Step: 10. From the assembled system stiffness and mass matrix, the terms related to 

bending DOF and membrane DOF are separated using subroutine 

"split_sparse_bbmm_improved." This is required as during the Eigen-solution only part 

of the linear stiffness matrix and mass matrix are utilized, which are related to bending 

dof as shown by Eq.(4.6). 

Step: 11. Depending upon whether the mass matrix is diagonal or lumped, the linear 

vibration equation, Eq.(4.6) is solved using subroutines "eigsolverOll" or 

"eigsolver022," respectively. The sub-space algorithm discussed in detail in Section 5.1 

is applied for Eigen-solution. The output is Eigen-vector matrix [o], the size of which is 

number of bending dof x number of modes used and Eigen-value vector \X\ of size 

number of modes x 1. 
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Step: 12. Perform mass normalization of the Eigen-vector matrix [o]. The mass matrix 

normalization of Eigen-vector matrix saves time and memory because of following 

advantages: 

1. The modal mass matrix 

KfMKH (5-37) 
where, 

[$>N ] =Mass matrix normalized Eigen-vector matrix 

2. The modal linear stiffness matrix 

KrfoI<J\]=W (5-38) 
= Eigen-value vector 

The mass matrix normalization procedure, provided only 2 modes are considered, can be 

described as follows: 

Cl=y>1)TlMbp) (5-39) 

C2={<t>2)T[Mb\t
2) (5-40) 

where, Cx and C2 are constants, [Mb ] is the mass matrix related to only bending dof, <t>1 

and (j)2 are the Eigen-vectors corresponding to first and second Eigen- values respectively. 

For the first mode, the normalized Eigen-vector is calculated as: 

& = - ? = (5-41) 

Similarly, for second mode, the normalized Eigen-vector is: 

fN=4= (5-42) 

Hence, the normalized Eigen-vector matrix can be written as: 

K ] = k <t>l\ (5-43) 

Step: 13. Perform symbolic factorization for matrix [Km] by calling subroutine 

"symfactd." The purpose of symbolic factorization is to find the locations of all nonzero 
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(including "fills-in" terms), off-diagonal terms of the factorized matrix [u]. Matrix [u] 

has not been evaluated yet and will be generated during the numerical factorization 

procedure as discussed in Section 5.3. The main goal at this phase is to predict the 

required computer memory for subsequent numerical factorization. The output of 

symbolic factorization is stored using two integer arrays in similar manner as discussed 

during symbolic assembly procedure through step 8. 

Step: 14. Matrix [Km ] is transposed twice to put column numbers in order by calling 

subroutine "transad." The purpose and procedure for this step is already discussed in step 

7. 

Step: 15. Evaluate matrix[K2b] that is the first term of the equation for second order 

nonlinear stiffness matrix expressed through Eq. (4.3). Here, subroutine 

"BFS_K2_modal" is used. 

Rewriting Eq. (4.3), 

[K2 ] = [K2 „]- [Klbm \Km }~l [KlJ- [K\nm ({Wm }2)] (5.44) 

The following sub steps are used to generate matrix [K2b ]: 

• Get the global dof associated with each element 

• Extract only components of the r-th Eigen-vector|Oe] that is related to global dof 

associated with a particular element. 

• Using element properties, evaluate element level matrix[K2e
b\ using Eq. (2.83) and 

(2.109) 

• Calculate triple product [oe f [K2e
b \o

e ] 

This is an extremely important and tricky procedure. Instead of computing the triple 

product [o f f -Oj Jo ] which is at system level, [Oe] r[i:2^|oe jis evaluated at element 

level. This approach saves a lot of memory and computational time as well. 
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• Assemble the triple product p e j [#"2* |<I>eJ to generate system level matrix [K2b] 

Step: 16. Evaluate \K\bm\ and compute the second term of Eq. (5.44), which is: 

[*i*R,n*ij 
The following sub steps are used for the calculations: 

Get the global dof associated with each element 

Extract only components of the r-th Eigen-vector [<Dej that is related to global dof 

associated with a particular element 

Generate element level matrix \K\e
bm J based on Eq. (2.81) and Eq. (2.107) 

Convert element level matrix [Kle
bm j from 2-D array into 1-D array (column-wise) 

To save time and memory, as discussed in step 15, evaluate [oeJ [ATl̂ m jOcJ by 

calling subroutine " mvsparse" 

Perform numerical assembly of the [Kle
bm J 

Sparse "numerical" factorization of matrix \Km J using subroutine "numfald." The 

factorization method used is as discussed in Section 5.3. 

Sparse forward/backward solution phase as per Section 5.3, using subroutine "fbed" 

Perform the multiplication: 

Kl_modal= [Klbm\KmY[K\mb\ (5.45) 

Step: 17. Generate third term of Eq. (5.44), \K\nm({Wm }2)] by calling subroutine 

"BFS_K2nm_modal" 

The sub steps for the computation are as follows: 

• To Generate matrix [llM({^m}2)j , \fVm] is generated based on Wb using the 

following equation: 

[KmY[KlJ{Wb} (5.46) 

• In previous step 16, I X J ' [^ l^] ' !®] is already calculated. Using the same 

procedure, calculate [Km j [Kl mb f \Wb} 
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• From system level vector {Wm} ,element level vector pm
e} is evaluated 

• Using {w*}, evaluate element level [K2e
nm\ using Eq. (2.80), Eq. (2.108), and Eq. 

(2.120) 

• To save time and memory, as discussed in step 15, evaluate [Oe J \K2e
nm |O e J by 

calling the subroutine "mvsparse" 

• Assemble the triple product [oe J [K2e
nm | o e J to generate system level matrix [K2nm J 

Step: 18. Using the terms evaluated through steps 15, 16 and 17, compute the nonlinear 

stiffness matrix equation shown through Eq. (5.44). 

Step: 19 Random pressure is generated using Shinozuka's method, explained in Chapter 

3. The procedure is shown in Appendix B, and load vector is rescaled as expressed in 

Appendix D. Here, user defined cut-off frequency and Sound Pressure Level (SPL) is 

taken into account for random load generation. In case of un-synchronized loading the 

task of random load generation is distributed among various processors. Details about the 

difference in the procedure for different load cases are discussed in the next chapter. 

Step: 20 Using the Runge-Kutta time Integration scheme, the modal equation of motion 

shown by Eq. (4.19) is solved to obtain the random responses, such as displacement, 

velocity and acceleration in modal coordinates. The modal responses are transformed 

back to the original structural dof through equation (4.36). Based on bending 

displacements obtained, the in-plane displacement vector is calculated using equation 

(4.37). 

Step: 21 Calculate RMS of deflection as discussed in detail through Section 4.4, 4.5 and 

4.6 of Chapter 4. Calculate the modal participation factor as per discussion in Section 

4.11. When all convergence criteria discussed in Section 4.9 are satisfied, the RMS of 

maximum deflection is calculated. Here, data manipulation discussed in Section 4.9 is 

also accounted for. 
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CHAPTER VI 

PARALLEL COMPUTATIONS 

While dealing with large scale structural analysis and design problems, 

considerable computational effort is required. By implementing parallel processing 

techniques, such problems can be solved without resorting to the use of expensive 

computing equipment or incurring an inordinately high computational cost. Here, basics 

of parallel computation are discussed along with the needs and advantages to use for 

specific types of problems. 

6.1. BASICS OF PARALLEL COMPUTATION 

Modern High performance computers have multiple processing capabilities which 

become extremely useful while solving large-scale problems. The distribution of the 

computational task among the multiple processors saves huge amount of time and 

memory. Distributed memory computers, in general, consist of many processors or nodes. 

Each one has its own local memory and is strong in terms of speed and memory 

compared to the processor itself. As shown in fig 6.1, the communication among the 

processors can be done by message passing. 

Typically, as numbers of processors are increased, the time consumed to perform 

the computation should decrease. In practice, this is true up to certain number of 

processors. Up to certain extent, if the numbers of processors are increased the 

computation process speeds up. After that even though the processors are increased, there 

is no significant contribution in time saving. Such performance of parallel computing will 

be shown in later chapters through practical implementation. 
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Message passing 

Fig 6.1: Message passing in parallel computers 

6.2 APPLICATION OF PARALLEL COMPUTING IN CASE OF 

UNSYNCHRONIZED LOAD CASE 

Computational burden due to the simulation of the unsynchronized random pressure 

fluctuations makes parallel computing an extremely important application. 

6.2.1 Large Scale Problem Solving 

As discussed earlier, in Section 3.4, in case of unsynchronized load case, the time 

history needs to be generated separately for each finite element. For problems with large 

mesh size, the numbers of elements are high and the generation of time histories makes 

the problem complex in terms of time and/or memory. And sometimes it is impossible to 

resolve. Also, as discussed in Section 3.7, once matrices are generated using the method 
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by Shinozuka, the random load vector needs to be rescaled in order to adjust same SPP 

value using MATLAB function "pwelch." The rescaling procedure is quite time 

consuming as it involves using MATLAB inbuilt function called "pwelch" in the 

FORTRAN environment. 

As already discussed, for unsynchronized loading simulation, each finite element 

is excited by a random load of the same S0 or SPL generated from a different ISEED 

number. It becomes important to check that time histories are completely independent to 

one another. A more detailed analysis using the correlation coefficient command in 

MATLAB has indicated that the pressure time histories were statistically uncorrelated to 

each other as shown in Fig. 6.2. The correlation coefficient values of 10 generated 

samples of pressure time history are plotted. They are generated using 10 different 

ISEED numbers and denoted by different line style or marker type. For instance, if the 

first pressure time history is compared with the other 9, the lowest correlation coefficient 

found was 0.0011 and the highest is 1. A coefficient of 1 gives total correlation, and the 

two loads are similar in every sense, whereas a coefficient of 0 means lack of any 

correlation at all. A low value of the correlation factor also indicates that all time histories 

are not periodic with each other. 

6.2.2 Advantages 

Computational burden due to the simulation of the unsynchronized random pressure 

fluctuations requires the use of parallel computing capabilities. Without parallel 

computation, it is almost impossible to solve some large-scale problems, when the load 

subjected is considered un-synchronized in pattern. The usage of parallel computing can 

be considered the only efficient option to solve such problem. Even for medium-scale 

sequential problems, usage of parallel computation becomes extremely important, as it 

reduces the time dramatically. 
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Fig. 6.2: Correlation coefficients among 10 different random time histories53 

6.3 BASIC CONCEPT: DIFFERENCE IN RANDOM LOAD VECTOR 

GENERATION 

The finite element analysis phenomena discussed in Chapters 2 and 4 is same 

whether the load subjected is synchronized or unsynchronized except the generation of 

load vector. From a computational aspect, the differences in the procedure when dealing 

with these two loading types are detailed here. 

As shown by Eq. (4.1), the equation of motion in terms of only bending dof is 

[Mb]{wb}+([K]+lK2]){Wb}={Pb} (6.1) 
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The random force vector, {Pb} of equation (6.1) can be evaluated as: 

{Pb}=l[Tb]
T[Hjp{x,y,t)dA (6.2) 

A 

As defined in Chapter 2, [Tb] and [Hw] are transformation matrix and 

displacement function matrix, respectively. And p(x,y,t) is generated random load 

intensity, which is a function of space and time. 

As previously discussed, in case of synchronized load, p(x,y,t) remains the same 

for each element. It needs to be generated only once, using one ISEED number. In such a 

case, the element load vector remains the same for all the elements, as [rfi]*[/fw] 

indicates shape function, which is also the same for all the elements. Whereas, in case of 

unsynchronized load case, p{x,y,t) is different for all the elements, which means 

element load vector is different for each element. 

6.4 STEP BY STEP PROCEDURE OF LOAD VECTOR GENERATION USING 

PARALLEL COMPUTATION IN CASE OF SYNCHRONIZED LOAD CASE 

In case of synchronized loading, parallel computation doesn't need to be involved, 

as the random pressure is generated only once during the entire analysis procedure. The 

step-by step procedure to generate random load vector {Pb}, when the load considered is 

synchronized in pattern is as follows: 

Step: 1. Evaluate part of the element load vector using shape functions. As per Eq. (2.99), 

element load vector, 

{pb}=\MT[HjPrmdom dA 
A 
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Firstly, the element unit load vector is evaluated to distribute the load uniformly among 

all the nodes of the element. The unit load vector can be defined as: 

{Pu}=\[Tb]
T[Hw\TdA (6.3) 

A 

Step: 2. Assemble the element load vector at system level to generate [P j.This can be 

done simultaneously during numerical assembly procedure of linear stiffness and mass 

matrices. 

Step: 3. Evaluate modal unit load vector, 

{PU}=M{PU} (6-4) 

Step: 4. Generate the random load time history {Pmndom}using ISEED number only once 

by following the code in appendix B. 

Step: 5. Rescale the random load vector by following the step-by-step procedure 

discussed in Section 3.7. Appendix D contains the FORTRAN code used for rescaling 

purposes. It involves calling MATLAB in-built function "pwelch." 

Step: 6. For nth time history point, the load considered is \PU }* {Prandom («)}. As {Pmndon («)} 

is a scalar quantity, the size of the random load vector will be number of modes x 1. 

6.5 STEP-BY-STEP PROCEDURE OF RANDOM LOAD VECTOR 

GENERATION USING PARALLEL COMPUTATION IN CASE OF UN-

SYNCHRONIZED LOAD CASE 

For unsynchronized load case, as each element has its own time history, it is 

obvious that the procedure discussed in Section 6.3 can not be followed. The step-by-step 

process for generation of un-synchronized random load can be described as follows: 
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Step: 1. Generate the random load time history {Prmdom}by following the code in 

appendix B for all the elements using different ISEED number each time. 

Step: 2. Rescale the random load vectors generated for all the elements by following the 

step-by-step procedure discussed in Section 3.7. Appendix D contains the FORTRAN 

code used for rescaling purpose. It involves calling MATLAB in-built function "pwelch." 

Step: 3. Calculate element load vector as, 

{P:}n = \[Tb]
T[Hj{PrmdJ"dA (6.5) 

A 

In the above equation, superscript n indicates corresponding element number. 

Step: 4. Assemble the element load vector at system level to generate {Pb}. Here, the 

procedure involves taking care of random load intensity at a particular time history point 

for each element. So, the assembling is done separately and not with the numerical 

assembly of linear stiffness and mass matrices. 

Step: 5. Evaluate modal load vector using Eq. (4.23), 

[Pb}=M{Pb) (6-6) 

The pseudo FORTRAN code to generate unsynchronized modal load vector can be 

described as follows: 

Do 1=1, NPT 

Do J=l, NEL 

Do K=l, MAXDOF 

Pb
J (j) = pu (j) + Random _ load(l, j) 

Enddo 

Enddo 

• Assemble vector \Pbj to generate system unit load vector {Pb} 
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• Evaluate {Pb}={<D]T{Pb} 

Enddo 

where, 

NPT = Number of time history points 

NEL = Total number of elements 

MAXDOF = Maximum dof per element 

\Pb
e} = Element load vector 

{pu} = Element unit load vector 

[Random_load] = Random load matrix to store random load vectors of all the 

elements 

[OJ =Eigen-vector matrix 

Here, random load matrix [Random load] stores time histories of all the 

elements. In other words, {Prmdom} stores time history which is different for each element 

and [Random load] stores \Prandom} for all the elements. Thus, the size of 

[Random __ load] is number of points (which are generally large, 16384 in our case) X 

number of elements (which is a large number in the case of large scale problem). The 

computationally expensive task of generating as well as scaling random load vector for 

all the elements can be shared using different processors/nodes via parallel computing. If 

noticed carefully, even though random load time history vector \Prandom }is of size NPT x 

1, from matrix [Random load], only a scalar value needs for the calculation at a time. So, 

all the processors/nodes generate matrix [Random _ load] first and then during 

calculations required data is pulled from the pre-generated matrix [Random _load]. As 

each processor works independently the communication time between the processors is 

zero, which saves a significant amount of time. 

Message Passing Interface (MPI) FORTRAN language is used to accomplish the 

above task. MPI FORTRAN in-built subroutine mpi_wtime( ) is used to note wall clock 
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time consumed by each processor as well as for different segments of the whole 

procedure. 
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CHAPTER VII 

NUMERICAL EXAMPLES 

Efficient computational technologies like sparse storage schemes and parallel 

computation are proposed and incorporated to solve large-scale, nonlinear large 

deflection random vibration problems for both type of loading cases: 1) synchronized in 

time and 2) un-synchronized and statistically uncorrelated in time. Finite element 

nonlinear modal formulation in conjunction with the time domain Monte Carlo 

simulation is used. Moreover, the linear and nonlinear matrices are stored using sparse 

storage schemes in order to save computational time and memory. In case of un-

synchronized load case, the time history needs to be generated and also rescaled 

separately for each finite element. For problems with large mesh size, the numbers of 

elements are high and the generation of time histories makes the problem unsolvable (in 

terms of computational time and/or memory requirements), for all practical purposes. By 

implementing parallel processing techniques, large scale structural analysis problems are 

solved without resorting to the use of expensive computing equipment or incurring an 

inordinately high computational cost. 

The FEM approach has been verified: 

1. By comparing the nonlinear modal coefficients with those obtained using the 

PDE/Galerkin analytical solution20 as shown in Table 7.1 

2. By Experimental data of random nonlinear vibration of clamped beams15 shown 

in Fig. 7.1. 
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Table 7.1 Comparison of nonlinear coefficients using classical PDE/Galerkin and FEM 

methods for a 14x10x0.04 in. simply supported panel20 

IstEq 

2ndEq 

Mesh' 

8x8 

12x12 

16x16 

q?. 

1.2966E12 

-2.7569E11 

1.3026E12 

-2.7569E11 

1.2992E12 

-2.7566E11 

1.2981E12 

-2.7567E11 

„2 „ 
qiiq3i q'.q,, 

Classical PDE/Galerkin 

-8.2707E11 

5.2128E12 

5.2128E12 

0.0 

FE Modal Method 

-8.2691E11 

5.3487E12 

-8.2699E11 

5.2740E12 

-8.2702E11 

5.2473E12 

5.3487E12 

4.9357 

5.2740E12 

6.6420 

5.2473E12 

16.4525 

qa, 

0.0 

2.1139E13 

1.6572 

2.2128E11 

2.2294 

2.1593E13 

54.8464 

2.1397E13 

"Mesh sizes are in quarter of a plate 

Experiment 
Direcs-Moda) Cond 
Direci-PhysKal Cone* 
Indirect Method 

S^l 150 ZOO 250 300 350 40G 460 500 
Frequency (HiJ 

Fig. 7.1: Comparison of strain PSD among experiment aluminum panel at three overall 

SPL10 and three FE methods for nonlinear random vibration of a clamped beam15 
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Based upon the nonlinear modal, sparse formulations discussed in the previous 

chapters, the following examples are used to validate the numerical accuracy and 

performance of the developed nonlinear time-dependent random response. 

Problem Statements: 

A simply supported isotropic plate with immovable in-plane 

conditions (0, y) = u(a, y) = v(x,0) - v(x, b) = 0 is studied in detail. The plate size is 14 in 

x 10 in x 0.04 in. Only a quarter of a plate is modeled using the extended BFS (Bogner-

Fox-Schmit) elements. The material properties are: Elastic modulus is =10.587 psi (73 

Gpa); Poisson's ratio v = 0.3; Density p = 2.588 x 10"4 lbf-sec2/in4 (2763 kg/m3). A 

proportional damping ratio of Blrcor =%scos, with £, =0.02 is used. 

7.1 SYNCHRONIZED LOAD CASE 

When load is synchronized in nature, random pressure history needs to be 

generated only once, as it remains the same for all the elements. Thus, the application of 

parallel computation is not competent to use for synchronized load case. For small and 

medium scale problems, Time step = 9.4 x 10"8 Sec is used. This time step has been 

automatically computed by Abaqus and therefore is also adopted in our proposed 

nonlinear sparse modal method for comparison purpose. Based on the number of dof, the 

plate is modeled in three categories: small scale, medium scale and large scale. 

7.1.1. Synchronized Load Case: Small Scale Problem with 16 x 16 Mesh Size 

In order to verify the results with the available data,13 the small scale problem is 

solved first with the mesh size of 16 x 16. Data used to solve the small-scale problem is 

shown in table 7.2. 
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Table 7.2; Data used for small-scale problem (16x16) mesh size 

Mesh size 

No. of elements 

No. of nodes 

Total no. of dof 

No. of modes used 

Total active dof 

Time history 

Time step 

Sound Pressure Level 

Cut off Frequency 

= 16x16 

= 256 

= 289 

= 1734 

= 4 

= 1534 

= 2 Sees 

= 9.4xlO"8Sec 

= 120 

= 1024 Hertz 

When seven lowest modes are taken in account, the lowest natural frequencies are given 

and compared with the exact values through Table 7.3. 

Table 7.3: The lowest seven natural frequencies (in Htz) of simply supported plate 

Mode 

Exact 

FEA 

(1,1) 

58.116 

58.118 

(3,1) 

215.19 

215.19 

(1,3) 

365.98 

365.98 

(3,3) 

523.05 

523.05 

(5,1) 

529.33 

529.35 

(5,3) 

837.19 

837.21 

(1,5) 

981.70 

981.74 

Using the Runge-Kutta time integration method, the modal coordinates {q} for 

converged deflection are first calculated by solving, the modal equation of motion 

expressed through Eq. (4.19). Then, for each time history point, bending displacement 

vector {wb}can be easily computed using Eq. (4.36). Table 7.4 shows the Root Mean 

Square (RMS) of maximum non-dimensional deflection at Sound Pressure Level, SPL= 

120 and compares with data available in the literature. Here, the average RMS is 

calculated after solving the same problem for 16 different samples. Each sample has a 

different ISEED number to generate the random load. It has been observed that 4 modes 
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are sufficient to get the converged deflection. The time history is generated for 2 seconds. 

Then, to avoid the effect of initial displacement (if any), the initial history of 0.4 seconds 

is neglected. Time taken by different segments of the developed FEA code is shown in 

Table 7.5. 

Table 7.4: Verification of results for a simply supported isotropic plate 

SPL 

120 

RMS of Wmax/h for time history 

of 1.6 sec 

1.496925555 

RMS of time Wmax/h for history of 

2 .0 Sec from13 

1.4039 

Note: The small difference in the results is because of: 1) In Ref13, the time history is 

considered for a full 2 sec, whereas our RMS calculations are based on 1.6 sec. 2) 

Random loading patterns are different in this work and in Ref13. 

Table 7.5: Time consumed by various segments of sparse FEA code for synchronized 
loading using 16x16 mesh size 

Time Zone 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Function 

Read input data 

Linear stiffness and mass matrix generation along 

with symbolic and numerical assembly 

Splitting into bending and membrane dof 

Sparse Sub-space eigen solution 

Modal calculations and mass normalization 

Factorization 

First and second order nonlinear stiffness matrices 

generation 

Random load generation and re-scaling 

Runge Kutta integration, RMS deflection and 

modal participation factor calculations 

Total time : 

Time(Minutes)* 

0.00010 

0.002595 

0.000035 

0.007757 

0.000028 

0.000020 

0.340602 

0.076090 

0.019640 

0.446867 

Wall-Clock time was reported. (Wright Brothers HPC Environment, small parallel environment: Sun Fire 
V20z cluster, 2.4 GHz, 4 GB RAM) 
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7.1.2 Synchronized Load Case: Medium Scale Problem with 192 x 192 Mesh Size 

The mesh size of 192 x 192 is used here to compare the computational time used 

by proposed nonlinear sparse modal method with the time taken by Abaqus for the same 

problem. Tables 7.6 and 7.7 provide data used and timing results for this medium scale 

problem, respectively. 

Table 7.6: Data used for medium-scale problem (192 x 192 mesh size) 

Mesh size 

No. of elements 

No. of nodes 

Total no. of dof 

No. of modes used 

Total active dof 

Time history 

Time step 

Sound Pressure Level 

Cut off Frequency 

= 192x192 

= 36864 

= 37249 

= 223494 

= 4 

= 221182 

= 2 Sees 

= 9.4xlO~8Sec 

= 120 

= 1024 Hertz 

Table 7.7: Time consumed by various segments of sparse FEA code for synchronized 
_ _ _ ^ loading using 192 x 192 mesh size 
Time 
Zone 
# 

1 
2 

3 

4 
5 

6 

Function 

Read input data 
Linear stiffness and mass matrix 
generation along with symbolic and 
numerical assembly 

Splitting into bending and membrane dof 

Sparse Sub-space eigen solution 
Modal calculations and mass 
normalization 
Factorization 

Time 
Proposed 
Sparse Method 
(Minutes)* 

0.00287287 

0.29432437 

0.00493162 
21.1467037 

0.00262425 

0.02210662 

Time Abaqus 
(Minutes)** 

0.317 

-

-
-

-
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7 

8 
9 

First and second order nonlinear stiffness 
matrices generation 
Random load generation and re-scaling 
Runge Kutta integration, RMS deflection 
and modal participation factor 
calculations 
TOTAL TIME : 

41.6832000 
0.021324 

929.235428 
993 

-

-

70967 
* Wall-Clock time was reported.(ODU computer's model: Sun-Fire-280R,speed=1.2 GHz , 
Operating system: Solaris OS system, spare version 8.0) 
**Wall clock time was reported (Dell Precision 370 Workstation. Intel Pentium 4, 3.2 GHz, 3 GB RAM) 

7.1.3 Synchronized Load Case: Large Scale Problem with 256 x 256 Mesh Size 

The mesh size of 256 x 256 is used here to evaluate the numerical performance of 

the code in terms of the computational time and memory requirements for solving the 

largest size problem using available computational resources. Tables 7.8 and 7.9 provide 

data used and timing results for this large scale problem, respectively. 

Table 7.8: Data used for large-scale problem (256 x 256 mesh size) 

Mesh size 

No. of elements 

No. of nodes 

Total no. of dof 

No. of modes used 

Total active dof 

Time history 

Time step 

Sound Pressure Level 

Cut off Frequency 

= 256 x 256 

= 65536 

=66049 

=396294 

= 4 

= 393214 

= 2 Sees 

= 1.2207 xlO"4 Sec 

= 120 

= 1024 Hertz 
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Table 7.9: Time consumed by various segments of sparse FEA code for synchronized 
loading using 256 x 256 mesh size 

Time Zone 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Function 

Read input data 

Linear stiffness and mass matrix generation along 

with symbolic and numerical assembly 

Splitting into bending and membrane dof 

Sparse Sub-space eigen solution 

Modal calculations and mass normalization 

Factorization 

First and second order nonlinear stiffness matrices 

generation 

Random load generation and re-scaling 

Runge Kutta integration, RMS deflection and 

modal participation factor calculations 

Total time: 

Time(Minutes)* 

0.005248 

0.636123 

0.008153 

33.098150 

0.006952 

0.047998 

134.798800 

0.028494 

7.067228 

175.697147 

Wall-Clock time was reported. (Wright Brothers HPC Environment, small parallel environment: Sun Fire 
V20z cluster, 2.4 GHz, 4 GB RAM) 

7.2 UNSYNCHRONIZED LOAD CASES 

The same problem discussed in the previous section of this chapter is solved when 

the load subjected is unsynchronized in nature. Table 7.10 provides the details about time 

taken by various segments of the problem when only a single processor is used. To solve 

the same problem, parallel computation is adopted. Here, the load is simulated using 

different ISEED numbers for each element, which makes application of parallel 

computation beneficial. First of all, the major time consuming part is identified, and then 

parallel computation is adopted to distribute the task for that particular segment. Here, 

Time step = 1.2207 x 10"4 Sec is used as per the proposed code requirement. Comparison 

in timing shown by Table 7.5 and 7.10 confirms the necessity of parallel computation for 

the part of the code that generates and re-scales random load. Small, medium and large 

scale problems are solved to check efficiency of parallel computation for different scale 

problems. 
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Table 7.10: Time consumed by various segments of sparse FEA code for unsynchronized 

loading using 16x16 mesh size 

Time Zone 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Function 

Read input data 

Linear stiffness and mass matrix generation along 

with symbolic and numerical assembly 

Splitting into bending and membrane dof 

Sparse Sub-space eigen solution 

Modal calculations and mass normalization 

Factorization 

First and second order nonlinear stiffness matrices 

generation 

Random load generation and re-scaling 

Runge Kutta integration, RMS deflection and 

modal participation factor calculations 

Total time: 

Time(Minutes)* 

0.000107 

0.002437 

0.000032 

0.006382 

0.000027 

0.000018 

0.311050 

5.062069 

0.021730 

5.403851 

Wall-Clock time was reported. (Wright Brothers HPC Environment, small parallel environment: Sun Fire 
V20z cluster, 2.4 GHz, 4 GB RAM) 

In case of un-synchronized loading the random load generation, along with rescaling, 

consumes an ample amount of time. This can be noticed by comparing time zone 8 of 

Table 7.5 and 7.10. One can easily visualize the increase in the time difference for 

rescaled random load generation in case of a large scale problem. 

7.2.1 Un-synchronized Load Case: Small Scale Problem with 16 x 16 Mesh Size 

In order to verify the results, the small scale problem is solved first with the mesh 

size of 16 x 16. The program is used to run for synchronized loading, i.e., by providing a 

similar time history for each element. Comparison of RMS deflection proves the 

accuracy of the code. Results show that the Root Mean Square deflections are reduced for 

the unsynchronized loading as compared with the traditional synchronized loading case. 

Table 7.11 shows time consumed by various numbers of processors to solve the problem. 
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Fig 7.2 helps in visualizing the data shown in table 7.11 and efficiency gained using 31 

processors. 

Table 7.11: Time consumed by different number of processors using sparse-parallel FEA 

code to solve small scale problem with un-synchronized loading using 

16 x 16 mesh size 

NP 

1 

2 

3 

5 

7 

11 

15 

27 

31 

Time to solve 
whole problem 
(Mins) * 

7.678 

4.013 

3.038 

2.058 

1.708 

1.397 

1.177 

1.048 

0.988 

Time for 
parallel 
segment (Mins) 

7.340 

3.893 

2.700 

1.737 

1.370 

1.059 

0.840 

0.71 

0.65 

Speed Up * 

1.00 

1.89 

2.72 

4.23 

5.36 

6.93 

8.74 

10.34 

11.29 
Wall-Clock time was reported. (Wright Brothers HPC Environment, small parallel 

environment: Sun Fire V20z cluster, 2.4 GHz, 4 GB RAM) 
Speed up is calculated based on timing for parallel segment of the program (generation and 

re-scaling of un-synchronized load) 

Mesh size:16x 16 

8.000 -

7.000 -' 

6.000 -

1" 5.000 -

~ 4.000 -i 

I • 
p 3.000 -: 

2.000 -

1.000 -

0.000 -, 

1 
1 
\ 

\ 

I 
\ 

X 

10 15 20 

No. of processors 

25 30 35 

Fig. 7.2: Graph of No. of processors Vs. Time (minutes) for small scale problem with un-

synchronized load using 16x16 mesh size 
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7.2.2 Unsynchronized Load Case: Medium Scale Problem (96 X 96 Mesh Size) 

The medium size problem has been solved to compare the efficiency of parallel 

process for different size problems. Table 7.12 shows time consumed by various numbers 

of processors to solve the problem. Fig 7.3 helps in visualizing the data shown in table 

7.12. 

Table 7.12: Time consumed by different number of processors using sparse-parallel FEA 

code to solve medium scale problem with un-synchronized loading Using 96 x 96 mesh 

size 

NP 

1 

2 

3 

5 

7 

11 

15 

27 

31 

Time to solve 
whole problem 
(Mins) 

307.685 

162.470 

118.940 

82.450 

65.170 

49.589 

44.196 

40.130 

37.630 

Time for 
parallel 
segment (Mins) 

292.495 

148.300 

104.750 

68.198 

51.000 

36.743 

30.186 

26.150 

23.650 

Speed-Up" 

1.00 

1.97 

2.79 

4.29 

5.74 

7.96 

9.69 

11.19 

12.37 
Wall-Clock time was reported. (Wright Brothers HPC Environment, small parallel environment: 

Sun Fire V20z cluster, 2.4 GHz, 4 GB RAM) 
Speed up is calculated based on timing for parallel segment of the program (generation and re-

scaling of un-synchronized load). 
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Mesh size: 96 x 96 

350.000 n 

300.000 * 

— 250.000 

| 200.000 

« 150.000 

P 100.000 

50.000 

0.000 , 

0 

Fig. 7.3: Graph of No. of processors Vs. Time (minutes) for medium scale problem with 

un-synchronized load using 96 x 96 mesh size 

7.2.3 Unsynchronized Load Case: Large Scale Problem (192 x 192 Mesh Size) 

It is obvious that the bigger the problem size, the more benefit from parallel 

computation in terms of time saving. Using available resources, maximum size problem 

solved is of mesh size 192 x 192 with 223,494 dof. The large scale problem subjected to 

un-synchronized load is solved using the modal FEA code combined with parallel 

computation. Table 7.14 gives a time comparison using a different number of processors 

to solve the whole problem. Fig.7.4 helps in visualizing the data shown in table 7.14. It 

should be noticed that for this problem, memory restriction does not allow usage of fewer 

than 12 processors. 

10 15 20 

No. of processors 

25 30 35 
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Table 7.13: Time consumed by different number of processors using sparse-parallel FEA 

code to solve large scale problem with un-synchronized loading using 192 x 192 mesh 

size 

NP 
12 
16 
31 

Time to solve whole problem(Mins)* 
340.042 
286.513 
189.233 

Time for parallel 
segment (Minutes)* 

269.042 
213.813 
116.333 

Wall-Clock time was reported. (Wright Brothers HPC Environment, small parallel environment: Sun Fire 
V20z cluster, 2.4 GHz, 4 GB RAM) 

300 y 

2 5 0 -

« " 2 0 0 -
c 
5 - 1 5 0 -
a> 
• | 100 -

5 0 -

0 -

Meshsize: 192x192 

10 15 20 

No. of processors 

25 30 35 

Fig.7.4: Graph of No. of processors Vs. Time (minutes) for medium scale problem 

with un-synchronized load using 192 x 192 mesh size 

7.3 USER INPUT DATA 

The input file is generated separately to provide user defined input data. Table 7.14 

shows details about how required input data is defined for sparse FEA code. 
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Table 7.14: Input data requirement 

Required Input Data: 

Total number of boundary conditions 

Number of dof per node 

Total number of nodes 

Number of dof on which external load is 

applied 

Number of materials 

Number of layers 

Number of sectional properties 

Flag to indicate whether mass matrix is 

lumped or diagonal 

Flag to indicate Eigen solver 

Number of eigen values 

Flag to indicate algorithm to be used for 

reordering 

Level of unrolling 

Defined value to perform shift in eigen 

solver 

Flag to provide printing information on 

output of eigen solver 

Number of elements 

Number of dof per element 

Young's Modulus 

Area of the element surface 

Nodal co-ordinates 

Element-node connectivity 

Load intensity subjected on nodes 

Defined in the code as: 

Nboundc 

Ndofpn 

Numnodes 

Loadof 

Nummat 

Nlayers 

Nsect 

Lumpmass 

Ianal 

Neig 

Nreord 

Nunroll 

Ishift 

Iprint 

Nel 

Ndofpe 

E 

A 

joint# x-coord y-coord z-coord 

element# node-1 

Loaded-dof 
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The input file needs to be in sequential order as follows: 

Table 7.15: Order required for input data 

nboundc ndofpn numnodes loadof nummat nlayers nsect lumpmass ianal neig 

nreord nunroll ishift iprint 

Nel (1,2,3,4,5,6) 
_ _ _ _ _ _ _ _ _ _ 

young-modulus +10 more material properties 

area + 1 1 more cross-sectional properties 

joint# x-coord y-coord z-coord 

element# node-1 node-2 node-3 node-4 

loaded-dof force/moment intensity 

7.4 MAIN PROGRAM 

The main program file is named "sparsenonlinearmodal.F." By calling 

different subroutines explained in Appendix E, the main program performs nonlinear 

modal finite element analysis. Parallel computation is used inside this program to 

distribute the load generation task among different processors. Also, modal displacements 

are converted into displacements in structural dof. Finally, Root Means Square (RMS) of 

maximum deflection is calculated. Modal participation factors are also calculated to 

predict contribution of different modes. The wall clock time for different segments of the 

whole analysis procedure is noted. For MPI procedures timing is measured using function 

mpi_wtime() whereas for sequencial procedure, function system_clock( ) is used for the 

same. 

7.5 JOB SUBMISSION 

The developed MPI FORTRAN source code for nonlinear finite element analysis 

is compiled and run in the UNIX environment. A script file is used to submit the job. A 

similar script file can be used for both synchronized as well as un-synchronized load case. 

But, parallel environment is not recommended in the case of synchronized load case. So, 
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the information regarding number of processors/nodes should be different while dealing 

with such cases. Appendix E shows the script file used to submit the job containing MPI 

Fortran and MATLAB functions usage when 3 MPI processes are used. 

Remarks: 

1. The reported timing, shown in Tables 7.5, 7.7, 7.9, 7.10, 7.11, and 7.12 is based 

on one sample run. 

2. All wall clock time reported in Table 7.9 has already been converted from ODU 

Sun-Fire-280R computer (slow) into Intel Pentium 4 (fast) computer platform. 

3. For medium scale synchronized loading problem, the single precision 

Abaqus/Explicit wall clock time was estimated by running the simulation for 

(several) much shorter time durations than 2 seconds. The wall clock time was 

found to be almost proportional to the time duration. Hence, the timing values 

were extrapolated for the full 2.0 second duration. The time step was 

automatically computed by Abaqus and was estimated to be 9.4 xlO"8 seconds. 



106 

CHAPTER VIII 

CONCLUSION 

The study has been undertaken with an objective to solve large scale problems 

with synchronized or unsynchronized uniform random loads for the response of a plate. 

In this research work, computational issues in conjunction with the nonlinear modal 

methods have been discussed and implemented. The motive of this study started with the 

observation that because of the computational limitations many of the large scale non 

linear analysis problems for random responses take an enormous amount of time for the 

solution or remain unsolved. Also, real-life random loads are not deterministic, leading to 

studying simulation of unsynchronized load and solving the same for large scale 

problems. 

Accuracy of the proposed sparse nonlinear modal algorithms has been validated 

through Table 7.4. Computational efficiency has been established through Table 7.9 and 

Table 7.14. The numerical results have indicated that the proposed sparse nonlinear 

method is accurate and highly efficient. It was reported by Green and Killey12 that only 

running a half-second time for nonlinear time domain Monte Carlo simulation of 5000-

element for a single-bay panel took approximately 10 hours on a Cray C94 computer. 

The developed FEA code consumes only -176 mins (~ 3 hours) for running two second 

time history for nonlinear time domain Monte Carlo simulation of 65,536 elements. The 

comparison between the two programs itself proves the efficiency of the code. In fact, it 

can be noticed that for synchronized load cases, even though using double precision and 
99 9"i 

without using the sparse re-ordering algorithms ' in proposed sparse method, it is about 

72 (-70967 mins/993mins) times faster than Abaqus, which uses single precision. For a 

synchronized load case problem, the maximum size problem solved is for about 400,000 

dof. With capability of more RAM memory, the code is capable of solving even larger 

scale problems. 

For the first time, large scale un-synchronized load cases are solved using the 

proposed code. The proposed code provides - 90 % efficiency to solve a large scale 
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problem using 31 processors. The same problem is unsolvable when fewer than 12 

processors are used, which proves that parallel computation not only benefits by time 

savings but also helps solving memory related problems. The code could solve many 

unsolvable problems because of time and memory limitations. The code has the 

capability to link MATLAB and FORTRAN environment, and data exchange between 

the two. 

Abaqus provides the nonlinear random response (NRR) in the structural dof (but 

not in the modal dof). However, these existing capabilities in current versions of 

commercialized FEA codes are highly inefficient. In Ref21' the 3x3 bay panel with 

approximately 96,000 dof took 24 hours for 0.1 sec nonlinear random response (NRR of 

RMS Max. deflection and RMS Max. Stress) using Abaqus/Explicit on the NASA 

Langley fast computer system (Itanium2). Since we need 2 sec NRR, it will take 20x24 

hours= 20 days or less for each sample. For Monte Carlo simulation, we need 10 or more 

samples, that is almost 200 days for each sound pressure level. This can not be used as 

design tools. The reasons are: a) the nonlinear stiffness matrices K^w) and^^w2 j in 

structural dof are functions of the panel deflection w. They need to be updated at each 

time integration At (or every 5x At, lOx At, etc. this leads to poor accuracy), and (b) very 

small At compared to At in the modal dof. 

Mex script is developed to submit the job for compilation and linking several 

FORTRAN source files into a shared library called a binary MEX-file from MATLAB 

software. At ODU'S Wright Brothers HPC Environment, only "small" environment is set 

up for Mex jobs. It has 8 slots and each slot can run a maximum of 4 processes. 

Especially for the problems which are both CPU and memory intensive, the best result is 

achieved through running 1 process per slot, which is a total of 8 parallel processes. For 

the un-synchronized load case, using 31 processors 36.43% efficiency is achieved for 

smallest scale problem which is increased up to 89.77% for large scale problem. The 

reason behind limiting efficiency up to -90% is the usage of MATLAB function. Time 

consumed by each processor to call MATLAB and pass data from FORTRAN to 

MATLAB and vice versa remains the same, affecting the efficiency of the program. For 

un-synchronized load case, solution of a large scale problem using fewer than 12 
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processors was impossible due to memory limitations of the processors. When fewer than 

12 processors are used, generation, re-scaling and storage of random load exceed the 

memory allotted to each processor. 

For the problems with a large number of dof, the nonlinear finite element analysis 

becomes computationally challenging because large size matrices are involved. The best 

option to overcome such difficulty is usage of modal formulation. The method not only 

reduces the size of matrices drastically but also makes the nonlinear matrices constant 

and uses larger step size resulting in large time savings. In modal formulation, eigen 

solver needs to be employed initially, which restricts size of stiffness and mass matrices 

due to memory limitations. Moreover, conversion of linear and nonlinear matrices from 

structural dof to modal dof and vice versa makes the solution difficult while dealing with 

large dof. Application of sparse technology makes it possible to solve such problems, 

which are complex in terms of time and memory. For large scale problems considering 

unsynchronized loading, the solution becomes extremely difficult to resolve 

computationally and leads to application of parallel computation. It is extremely 

important to develop a software code to work as a design tool that combines nonlinear 

finite element analysis, modal formulation, sparse technology and parallel computation 

along with rescaling of the random load vector, with the capability of solving large scale 

problems. The research work presented in this dissertation fulfils the requirement and 

provides a versatile design tool. 

8.1 FUTURE SCOPE 

Unrolling techniques23 and algorithms for sparse minimizing fill-in terms that 

occurred during the numerical factorization22 have not yet been incorporated into the 

current version of the code. The sparse re-ordering technique is not implemented, either. 

Both of these techniques will further reduce the computational time of the proposed 

nonlinear sparse modal method. 
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Analysis of multi-bay aerospace structures can be extended from this work, by 

simply adding additional subroutines to transform an arbitrarily oriented rectangular plate 

element into the global co-ordinate references. The modeling of a 3x3-bay panel21 

includes a refined mesh for all individual separate panels and stiffeners. The stiffeners 

with various sections such as Z-, L- or hat sections will also be modeled with plate 

elements. Multi-bay structures are much more complicated than the single-bay panels, 

which could result in global (stiffeners) and local (separate panels) vibration modes. 

Therefore, a new challenge is to study the effects of two types of modes and to select the 

proper modes to be retained in the computational procedures. 

The developed research code can be further extended for analysis of composite 

structures. Moreover, the software can be made generalized to perform even stress 

analysis for different kind of structures using curved shell elements and other types of 

elements. Also including the feature to facilitate aerodynamics loads (supersonic and 

hypersonic) and its coupling with thermal loads will help the design and behavior 

understanding of future high-speed flight vehicles. 
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APPENDIX A 

TRANSFORMATION MATRICES [ j j AND [Tm] 

The displacement vector of the BFS element can be written as: 

M= {M MY (A.i) 
where transverse displacement vector is: 

K } = jv^ w2 w3 w4 w,xl w,x2 w^ w,x4 w,yl w,y2 w,y3 w,y4 w,xyl w,xy2 w,xy3 w,JT ( A . 2 ) 

And membrane displacement vector is: 

{wm}= {«! u2 u3 u4 v, v2 v3 v4} (A.3) 

The element transverse displacement function w and the in-plane displacement functions 

u and v are approximated as a bi-cubic and a bi-linear polynomial functions in x and _y, 

which can be written as: 

w[x,y) = a{ + a2x + a3y + a4x
2 +a5xy + a6y

2 +a7x3 + asx
2 y + a9xy2 

+ awy3 + anx
3 y + anx

2 y2 +al3xy3 +aux^y2 +a15x
2yi +al6x

3yi 

W(JC,}>) = bx + b2x + b3y + b4xy 

= [#.ML{*L (A-5) 

v(x, y) = bs + b6x + b7y + b%xy 
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=[#vML (*L (A.6) 

For the BFS C -conforming element, the membrane displacement vector can be 

expressed as: 

Ivl 
l x y x y O O O 0" 

0 0 0 0 1 x y xy 
(A.7) 

And the transverse displacement vector can be expressed as: 

w 

w, 

w. 

w. xy 

1 2 2 3 2 

1 x y x xy y x x y 

0 1 0 2x y 0 3 / 2xy 

0 0 1 0 x 2y 0 x2 

0 0 0 0 1 0 0 2x 

xy2 

y2 

2xy 

2y 

/ 

0 

3 / 
0 

x3y 

3x2y 

x3 

3x2 

2 2 

x y 
2xy2 

2x2y 

Axy 

xy3 

y3 

3xy2 

3y2 

3 2 

x y 
3x2y 

2x3y 

6x2y 

2 3 

x y 
2xy3 

3x2y2 

6xy2 

3 3 " 

x y 
3x2/ 

3*y 
9x2y2

A 

< 

ax 

a15 

(A.8) 

The nodal coordinates of the BFS plate elements are as shown in the fig: 
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Substituting the nodal coordinates into Eq. (A.7), the nodal membrane displacement 

{wm} can be written as: 

W,„=[rXR,. (A-9) 

l V 4 
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1 a b ab 0 0 0 

1 0 b 

0 0 0 
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1 0 0 
1 a 0 
l a b 

1 0 b 

0" 

0 

0 

0 

0 

0 

ab 

0_ 

V 
b2 

b3 

b4 
< > 

b5 

b6 

b7 

A, 

A. 10) 

The in-plane transformation matrix [Tm] is obtained by inverting the above matrix[lm] 

Similarly, by substituting nodal coordinates into Eq. (A. 8), the nodal bending 

displacement {wb} can be written as: 
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The in-plane transformation matrix [Tb ] is obtained by inverting the above matrix [lb ] \ 
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APPENDIX B 

FORTRAN CODE FOR GAUSSIAN-STATIONARY RANDOM LOAD 

GENERATION 

c SIMLOAD 

c N No. of intervals in the spectrum 

c N should be an integer power of two 

c NPT No. of points for the time series 

c NPT should be an integer power of two, NPT > N 

c ISEED Random number seed 

c TTOTAL = N/FMAX - Total Integration Time 

c DT = N/(NPT*FMAX) = Integration Time Step Size 

c======——====================================== 

c INSTRUCTIONS FOR SELECTING INPUT DATA 

c 1. Take Highest Frequency, FMAX 

c 2. Minimum Time Step is STEP_MIN=1/(2.5*FMAX) 

c 3. N=FMAX*2 

c 4. Pick Up Total Running Time (lsec, 2 sec,...) T_total=N/FMAX 

c 5. Select NPT to satisfy 2**(integer number) 

c 6. Select NPT such that STEP=N/(NPT*FMAX) 

subroutine simload(spl, NPT, Fmax, x, y, dt) 

implicit real*8(a-h,o-z) 

parameter (N=Fmax*2) 

real*8y(NPT),sp(N+l),w(N+l),rand(N),spl 

complex x(NPT),zimag 

c===============================================:==== 

c initial variables 



spp=8.4144*10**(-18.+spl/10.)! for distributed acoustic pressure 

pi=3.141592654 

pi2=pi*2.0 

npl-n+1 

zimag=cmplx(0.0,l .0) 

sppw=spp/pi2 

wu=fmax*pi2 

dw=wu/fioat(n) 

dol l9 i=l ,npl 

sp(i)=sppw 

w(i)=(i-l)*dw 

119 continue 

area=spp*fmax 

sq2dw=dsqrt(2.0*dw) 

ttotal=pi2/dw 

dt=ttotal/float(npt) 

c Set x(l)=0. in order to obtain new mean zero time series 

C = = = = = = = = = = = : = z = = = = = = = = : = - = = : = : = = : = : : = r = : = = r : z z : - = = = = = = = = 

x(l)=cmplx(0.0,0.0) 

do 50i=n+l,npt 

x(i)=cmplx(0.0,0.0) 

50 Continue 

c Generate random phase angles uniformly distributed between 

c zero and 2.0*pi 
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iseed=12357 

call random_seed() 

call random_number(rand) 

do 60 i=2,n+l 

phi=rand(i-1 )*pi2 

p 1 =sq2dw*dsqrt(sp(i)) 

x(i)=p 1 *cdexp(-zimag*phi) 

60 continue 

c perform forward transform 

callfft(x,npt,l) 

get real part 

do 70i=l,npt 

y(i)=real(x(i)) ! for pressure loads 

70 continue 

return 

end 

c=============================================== 

c FFT 

C = = = = = = = = = = = = : = = = = = = = = = = r = = - = = = = = = = = = = = = = = = : = = = = = : 

subroutine fft(x,n,k) 

implicit integer (a-z) 

real*4 gain,pi2,ang,re,im 

complex x(n),xtemp,t,u(16),v,w 

logical new 

data pi2,gain,n0,k0/6.283185307,1.0,0,0/ 

new=n0.ne.n 



if(.not.new) go to 2 

12n=0 

nO=l 

1 12n=12n+l 

nO=nO+nO 

if(n0.1t.n) go to 1 

gain=1.0/n 

ang=pi2*gain 

re=cos(ang) 

im=sin(ang) 

2 if(.not.new .and. k*k0.ge.l) go to 4 

u( 1 )=cmplx(re,-sign(im,float(k))) 

do 3 i=2,12n 

3 u(i)-u(i-l)*u(i-l) 

kO=k 

4 sby2=n 

do 7 stage=l,12n 

v=u(stage) 

w=(l -0,0.0) 

s=sby2 

sby2=s/2 

do6L=l,sby2 

do 5 i=l,n,s 

p=i+L-l 

q=p+sby2 

t=x(p)+x(q) 

x(q)=(x(p)-x(q))*w 

5 x(p)=t 

6 w=w*v 

7 continue 

do9i=l,n 
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index=i-l 

jndex=0 

do8j=l,L2n 

jndex=jndex+jndex 

itemp=index/2 

if (itemp+itemp.ne.index) jndex=jndex+l 

index=itemp 

continue 

j=jndex+l 

if(j.LT.i)goto9 

xtemp=x(j) 

x(j)=x(i) 

x(i)=xtemp 

9 continue 

if (k .gt. 0) return 

dol0i=l ,n 

10 x(i)=x(i)*gain 

return 

end 
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APPENDIX C 

LINEAR RANDOM VIBRATION 

From PDE for an isotropic rectangular plate, 

p h ^ + D^W = Po(t) (C.l) 

For a simply supported boundary condition, the plate deflection can be expressed as: 

w(x, y,t)=Y, 2 qm Wmn (*> y) 
m n 

And for a simply supported boundary condition, the mode shapes are: 

(C.2) 

0mn(X>y) = sin 
'mnx^ 

sin 
\ a J 

(mny^ 

V o J 
(C.3) 

Substituting Eq. (C.3) into Eq. (C.l) and applying the modal orthogonality condition, 

The modal equation becomes: 

2 _ P 
Hmn mtijLmn 

. « where m,n =1,3,5, 
m„ 

(C.4) 

Adding a structural damping, 

<L„ +2^mncomnqm„ +a>mnqmn = Pok) (C.5) 
m„ 

®mn = n 

f \ 2 f \ 2 

+ 
W 

n rad /sec (C.6) 



mnn ph 

16 
(C.7) 

where comn and mmn are the natural frequency and modal mass, respectively. 

The response to Eq. (C.5) is given by Eq. (3-57) and (7-37) in reference 26 

4?i]= * s0(f) 
mn~ mn mn 

(C.8) 

Set mn=r and kl=s, 

E[qmn<lki] = E[qrqs} = 
m„ 

(Zra>,+Z,a>g)S0(f) 
ms Wr ~ °>) J + 40,(0, (%rG)r + %s6)s)(%rCOs +%sCOr) 

The root mean square of maximum deflection obtained from Eq. (C.2) can be expressed 

as: 

RMS{WW)-
(« V 

(C.9) 



APPENDIX D 

FORTRAN CODE FOR LOAD VECTOR RE-SCALING 

c RESCALE 

c================—=================== 

c INPUT DATA 

c==================================== 

c spl = Sound Pressure Level 

c y = Random Load vector generated using SIMLOAD 

c NPT = No. of points for the time series used in SIMLOAD 

c Fmax = Frequency 

c— 

c 

c 

o— 

temp_rdn 

OUTPUT DATA 

= Rescaled random load vector 

subroutine rescale(spl, NPT, Fmax, y, temprdn) 

implicit real*8(a-h, o-z) 

#include "fmtrf.h" 

mwpointer engOpen, engGetVariable 

mwpointer mxCreateDoubleMatrix, mxGetPr 

mwpointer ep, x_m, w_m, p, x_ml, w m l , p_m 

integer engPutVariable, engEvalString, engClose 

real*8 y(NPT) 

real*8 dt,spp 

real*8 freq(NPT), psd(NPT),temp_rdn(NPT) 

integer status 
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c Initializing vectors 

Wpp=spp 

do 5 i=l,NPT 

freq(i)=0.0 

psd(i)=0.0 

5 continue 

ep = engOpen('matlab') 

if (ep .eq. 0)then 

write(6,*) 'ERROR: MATLAB engine did not start' 

stop 

endif 

c===============================================:============= 

c Put variable V into MATLAB workspace 

c Create a vector of size NPT X 1 & initialize to zero: 

c = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = : = = = = 

x_m = mxCreateDoubleMatrix(NPT, 1, 0) 

c==========================:==================::==============:==== 

c copy Fortran array y into MATLAB array called mxGetPr 

c x_m is no of elements to copy y(x_m) 

c x_m=NPT 

c copy array y of Fortran to MATLAB array using pointer mxGetPr 

c====================================================:==::==========:= 

call mxCopyReal8ToPtr(y, mxGetPr(xm), NPT) 

c============^==================================================::= 

c Put variable x r n into MATLAB 

c======:==========:================:==============::=:===========:====== 

status = engPutVariable(ep, 'xrn', x_m) 

if (status .ne. 0) then 

write(6,*) 'ERROR: engPutVariable* 



stop 

endif 

c================:==================================== 

c Evaluate PSD using pwelch 
C = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = : 

if(engEvalString(ep,'[Pxx,w_m]=pwelch(x_m,[],[], 16384,8192);') 

ne. 0)then 

write(6,*) 'ERROR: engEvalString' 

stop 

endif 

c Get the variable w r n from MATLAB 

w_m = engGetVariable(ep, 'w_m') 

c=========:=====================================:=::====:==: 

c Copy from MATLAB ARRAY to FORTRAN ARRAY: 

call mxCopyPtrToReal8(mxGetPr(w_m), freq, 1000) 

c================================================:==== 

c Get the variable Pxx from MATLAB which is PSD 

p = engGetVariable(ep, 'Pxx') 

call mxCopyPtrToReal8(mxGetPr(p), psd, 1000) 

c====-:========:========================:======::======== 

c Calculate average of first 1000 PSD values which should be equal to 

c input spp value 

2=====-=======::==================================================== 

Wpp_sim 1=0.0 

do 101 j=l, 1000 

Wpp_siml:=Wpp_siml +psd(j) 

101 continue 



avgl=Wpp_siml/1000 

c= 

c Check the difference by calculating ratio between calculated spp and initial spp 

ratio = avgl/Wpp 

c= 

c Scale the load vector {y} using difference ratio 

dok=l,NPT 

temp_rdn(k) =y(k)/sqrt(ratio) 

enddo 

c Now using the same procedure check the spp values for re-scaled load vector 

c=============================:=::==-=:======================= 

x_ml = mxCreateDoubleMatrix(NPT, 1, 0) 

call mxCopyReal8ToPtr(temp_rdn, mxGefPr(x_ml),NPT) 

status = engPutVariable(ep, 'x_ml',x_ml) 

if (status .ne. 0) then 

write(6,*) 'ERROR: engPutVariable' 

stop 

endif 

if(engEvalString(ep,*[Pxx,w_m]=pwelch(x_ml,[],[], 16384,8192);') 

.ne. 0)then 

write(6,*) 'ERROR: engEvalString' 

stop 

endif 

w_m = engGetVariable(ep,'w_m') 

call mxCopyPtrToReal8(mxGetPr(w_m),freq, 1000) 

p_m = engGetVariable(ep, 'Pxx') 

call mxCopyPtrToReal8(mxGetPr(p_m), psd, 1000) 



Wpp_sim2=0.0 

dol02j=l,1000 

Wpp_sim2=Wpp_sim2 + psd(j) 

102 continue 

avg2=Wpp_sim2/l 000 

c= 

c Calculate % of error between calculated new spp & initial spp 

c================================================== 

c= 

ERROR= (avg2-Wpp)*100/Wpp 

c Delete all the arrays created in MATLAB 

C = = = = = = = = = ; = = = = = = = = = = = = = = = = = = = = = = = = : : 

c= 

call mxDestroyArray(p) 

call mxDestroyArray(w_m) 

call mxDestroyArray(x_m) 

c Close MATLAB environment 

C = = = = = = = = = = = = = = = = = = = = = = = = = = 

status = engClose(ep) 

if (status .ne. 0) then 

write(6,*) 'ERROR: engClose' 

stop 

endif 

stop 

end 



APPENDIX E 

DESCRIPTION OF SUBROUTINES 

1. Subroutine generalip 

Purpose: To read input data for general information regarding the structure 

Output: 

nel = Number of elements; scalar 

ndofpe = Number of dof per element; scalar 

neltype = Element type; scalar 

maxdofpe = Maximum dof per element; scalar 

nboundc = Number of active boundary conditions; scalar 

ndofpn = Number of dof per node; scalar 

numnodes = Number of nodes; scalar 

loadof = Number of nodes at which external load is applied; scalar 

nummat = Number of materials; scalar 

nlayers ; = Number of layers; scalar 

nsect = Number of sections; scalar 

lumpmass = Indicator for lump or diagonal mass matrix; scalar 

ndof = Total number of dof; scalar 

ieall = Total number of different type of elements; scalar 

jeall = Total dof of all different type of elements; scalar 

neig = Number of eigen-solutions; scalar 

nreord = Indicator for reordering technique; scalar 

Iflag = Flag array, vector of 10 x 1 

nunroll = Level of unroll; scalar 

nmode = Number of calculated modes; scalar 

modepick = Number of selected modes; scalar 
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2. Subroutine materprop 

Purpose: To input material properties, assuming maximum 10 materials and each material 

type has 11 properties 

Input: 

nummat = Number of materials; scalar 

Output: 

propmat = Properties of the material; vector of size nummat *11 x 1 

3. Subroutine sectprop 

Purpose: To input information regarding material cross-sectional properties, assuming 

maximum 10 cross sections and each cross sectional type has 12 properties 

Input: 

nsect = Number of sections; scalar 

Output: 

propsect = Cross-sectional properties of the material; vector of size nsect* 12 x 1 

4. Subroutine nodecoor 

Purpose: To provide co-ordinates at each node 

Input: 

numnodes = Number of nodes; scalar 

Output: 

x,y,z = Nodal co-ordinates; vectors of size numnodes x 1 

5. Subroutine elconect 

Purpose: To provide information regarding element connectivity 

Input: 

neltype = Element type; scalar 

nel = Number of elements; scalar 

ndofpe = Number of dof per element; scalar 

ndofpn = Number of dof per node; scalar 
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Output: 

ie = Locations of the first non-zero term of each row,vector of size 

ieall +1x1 

je = Global node numbers associated with each element,vector of size 

jeall x 1 

lm = Indicator to coordinate local dof to global dof, vector of size maxdofbe 

x l 

lmstore = Stores information to coordinate local dof to global dof for all 

elements, matrix of size maxdofbe x nel 

6. Subroutine loads 

Purpose: To input applied loads at the joints 

Input: 

ndof = Number of dof; scalar 

loadof = Number of nodes at which external load is applied; scalar 

Output: 

b = Load vector; vector of size ndof x 1 

7. Subroutine supportdof 

Purpose: To input support dof information 

Input: 

ndof = Number of dof; scalar 

b = Load vector; vector of size ndof x 1 

nboundc = Number of active boundary conditions; scalar 

Output: 

iboundc = Indicator to define location where boundary condition is defined; vector 

of size ndof x 1 

ia = boundary flag array to use in sparse symbolic assembly; vector of size 

ndof + 1 x 1 
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8. Subroutine transa2d 

Purpose: To transpose a sparse matrix 

Input: 

ndof = Number of dof; scalar 

ieall = Total number of different type of elements; scalar 

ie = Locations of the first non-zero term of each row, vector of size 

ieall +1x1 

je = Global node numbers associated with each element, vector of size 

jeall x 1 

Output: 

iet = Transpose of vector ie; vector of size ndof + l x l 

jet = Transpose of vector je; vector of size jeall x 1 

9. Subroutine symbass 

Purpose: To perform symbolic assembly of a sparse matrix 

Input: 

ndof = Number of dof; scalar 

ie = Locations of the first non-zero term of each row, vector of size 

ieall +1x1 

je = Global node numbers associated with each element, vector of size 

jeall x 1 

iet = Transpose of vector ie; vector of size ndof + l x l 

jet = Transpose of vector je; vector of size jeall x 1 

Output: 

ia = starting locations of the first non-zero off-diagonal terms for each row of 

structural stiffness matrix; vector of size ndof+1 x 1 

ja = column numbers (unordered) corespond to each nonzero, off-diagonal 

term of each row of structural stiffness matrix; vector of size ncoefl x 1 

ncoefl = Number to define size of vector j a; scalar 
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10. Subroutine assembly 

Purpose: To assemble element stiffness matrices, element mass matrices and element 

load vectors (by calling subroutines 11 to 15) 

11. Subroutine infojbfs 

Purpose: To provide information regarding each element 

Input: 

iel = Element number, scalar 

lm = Indicator to coordinate local dof to global dof; vector of size 

maxdofpe x 1 

propmat = Properties of the material; vector of size nummat * 11 x 1 

x,y,z = Nodal co-ordinates; vectors of size numnodes x 1 

Output: 

x_bfs,y_bfs = Co-ordinates of the 4 nodes associated with particular element; 

vectors of size numnodes x 1 

el l = Young's modulus of the element material; scalar 

xnul2 = Posision's ratio for the element material; scalar 

rho = Density of the element material; scalar 

t = Element thickness; scalar 

A, D = Matrices to define material properties for composite as well as isotropic 

material; matrices of size 3 x 3 

12. Subroutine bfsls 

Purpose: To evaluate element stiffness matrix 

Input: 

maxdofpe = Maximum dof per element; scalar 

x,y,z = Nodal co-ordinates; vectors of size numnodes x 1 
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A, D = Matrices to define material properties for composite as well as isotropic 

material; matrices of size 3 x 3 

Output: 

Ke = Element stiffness matrix; matrix of size maxdofpe x maxdofpe 

13. Subroutine bfs lm 

Purpose: To evaluate element mass matrix 

Input: 

maxdofpe = Maximum dof per element; scalar 

x,y,z = Nodal co-ordinates; vectors of size numnodes x 1 

A, D = Matrices to define material properties for composite as well as isotropic 

material; matrices of size 3 x 3 

rho = Density of the element material; scalar 

t = Element thickness; scalar 

Output: 

Me =Element mass matrix; matrix of size maxdofpe x maxdofpe 

14. Subroutine bfsjbe 

Purpose: To evaluate element load vector 

Input: 

maxdofpe = Maximum dof per element; scalar 

x,y,z = Nodal co-ordinates; vectors of size numnodes x 1 

A, D = Matrices to define material properties for composite as well as isotropic 

material; matrices of size 3 x 3 

Output: 

be = Element load vector; vector of size maxdofpe x 1 

15. Subroutine numass 

Purpose: To perform sparse numerical assembly 

Input: 
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ia = starting locations of the first non-zero off-diagonal terms for each row of 

structural stiffness matrix; vector of size ndof+1 x 1 

ja = Unordered column numbers correspond to each nonzero, off-diagonal 

term of each row of structural stiffness matrix; vector of size ncoefl x 1 

idir = Flag which stores 1 in the positions correspond to Dirichlet boundary 

conditions, 0 elsewhere; vector of size ndof x 1 

ae = 1-D array which stores element stiffness matrix; vector of size 

(ndofpe ) x 1 

be = Element load vector; vector of size maxdofpe x 1 

lm = Indicator to coordinate local dof to global dof; vector of size 

maxdofpe x 1 

maxdofpe = Maximum dof per element; scalar 

b = Load vector; vector of size ndof x 1 

Before using this sub-routine, values of {b} should be initialized to 

values of prescribed Dirichlet be at proper locations or values of applied 

nodal loads 

Output: 

an = Numerical values of nonzero, off-diagonal terms of structural stiffness 

matrix; vector of size ncoefl x 1 

ad = Numerical values of diagonal terms of structural stiffness matrix; vector 

of size ndof x 1 

b = Assembled load vector; vector of size ndof x 1 

16. Subroutine splitsparsebbmmimproved 

Purpose: To split sparse assembled matrix into 2 sets of sparse matrices, one set is related 

to bending dof and other set is related to membrane dof only. This can be done when 

bending and membrane portions are completely uncoupled. 

Input: 

ndof = Total number of dof; scalar 
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an = Numerical values of nonzero, off-diagonal terms of structural stiffness 

matrix; vector of size ncoefl x 1 

ad = Numerical values of diagonal terms of structural stiffness matrix; vector 

of sizendofx 1 

ia = Starting locations of the first non-zero off-diagonal terms for each row 

of structural stiffness matrix; vector of size ndof+1 x 1 

ja = Unordered column numbers correspond to each nonzero, off-diagonal 

term of each row of structural stiffness matrix; vector of size ncoefl x 1 

Output: 

iabb, jabb, adbb, anbb = Bending dof portion of the vectors ia, ja, ad and an, 

respectively 

iamm, jamm, admm, anmm = Membrane dof portion of the vectors ia, ja, ad and an, 

respectively 

ncoefl_bb, ncoefl mm = Number which indicates the value of ncoefl 

corresponding to bending and membrane dof, repectively 

17. Subroutine eigsoIverOll 

Purpose: To perform eigen solution using Subspace eigen solver for real symmetric 

stiffness and mass matrices when lumped mass matrix is considered. 

Input: 

ndofb = Total number of bending dof; scalar 

ncoefl _bb = Number which indicates the value of ncoefl corresponding to bending 

dof only; scalar 

neig = Number of eigen-solutions; scalar 

lumpmass = Indicator for lump or diagonal mass matrix; scalar 

mtot = Estimated total static memory; scalar 

iabb, jabb, adbb, anbb = Bending dof portion of the vectors ia, ja, ad and an, respectively 

dmbb = Array to store diagonal-mass matrix; vector of size ndofb x 1 

Output: 



evalues = Computed eigenvalues; vector of size nc x 1 where nc is the number of 

eigen values required to compute 

evectors = Computed eigenvectors; matrix of size ndof_b x nc 

ipermb = Permutation vector from the reordering; vector of size ndofb x 1 

18. Subroutine symfactd 

Purpose: To perform symbolic factorization 

Input: 

n = Order of given matrix A; scalar 

ia = Starting locations of the first non-zero off-diagonal terms for each row 

of given matrix; vector of size n+1 x 1 

ja = Unordered column numbers correspond to each nonzero, off-diagonal 

term of each row of given matrix; vector of size ncoefl x 1 

Output: 

iuju = Structure of resulting matrix U; vectors of size n + l x l and ncoef2 x 1, 

respectively 

ncoef2 = Number to define the size of the vector ju; scalar 

ip = Chained lists of rows associated with each column. Also used as the 

multiple switch array; vector of size n x 1 

19. copyint 

Purpose: To save a copy of input array 

Input: 

iarray = Array to be copied;vector of size n x 1 

Output: 

Icopy = copy of the input array; vector of size n x 1 

20. subroutine mvsparse 

Purpose: To perform multiplication of sparse matrix and vector 

Input: 
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n = Number to define size of vectors ia and ad; scalar 

ia, ja, an, ad = Vectors to store given sparse matrix; vectors of size n + 1 x 1, 

ncoefl x 1, ncoefl x 1, n x 1, respectively 

b = Given vector of size n x 1 

Output: 

c = Array resulting after multiplication of given sparse matrix and 

vector; vector of size n x 1 

21. Subroutine transad 

Purpose: After symbolic factorization, ja is just a merge list without ordering (i.e. the 

nonzero column numbers of a particular row are 12, 27, 14, 46, 22, 133). Upon 

completion, this routine will rearrange the nonzero column numbers with ordering, to be 

ready for numerical factorization phase (i.e. 12, 14, 22, 27, 46, 133) 

Input: 

ia, ja, an = Arrays to store sparse matrix 

n = Number of rows of the sparse matrix; scalar 

m = Number of columns of the sparse matrix; scalar 

Output: 

iat, jat, ant = Arrays to store transpose of sparse matrix; 

22. Subroutine EvaTb 

Purpose: To evaluate matrix [Tb] for BFS plate element 

Input: 

a = BFS plate element length; scalar 

b = BFS plate element width; scalar 

Output: 

\Tb ] = Transformation matrix related to bending dof; matrix of size ndoftVpe x 

ndofb_pe. where, ndoftVpe = number of bending dof per element 

23. Subroutine EvaTm 

Purpose: To evaluate matrix [Tm ] for BFS plate element 



Input: 

a = BFS plate element length; scalar 

b = BFS plate element width; scalar 

Output: 

[Tm J = Transformation matrix related to membrane dof; matrix of size ndofm_pe x 

ndofm_pe. where, ndofm_pe = number of membrane dof per element 

24. Subroutine Trans 

Purpose: To evaluate transpose of given matrix 

Input: 

[A] = Given matrix of which transpose needs to be evaluated; matrix of size m x n 

Output: 

[B] = Transpose of matrix [A] ; matrix of size n x m 

25. Subroutine EvaCm 

Purpose: To evaluate matrix [Cm] for BFS plate element. Also provides transpose of 

matrix [Cm] by using subroutine Trans. 

Input: 

x = x co-ordinates of the nodes; scalar 

y = y co-ordinates of the nodes; scalar 

Output: 

[Cm] = Matrix needs for the stiffness matrices evaluation; matrix of size 3 x 8 

[Cmt] = Transpose of matrix [Cm] ; matrix of size 8 x 3 

26. Subroutine EvaCzi 

Purpose: To evaluate matrix [Czi] for BFS plate element. Also provides transpose of 

matrix [Czi] by using subroutine Trans. 

Input: 

x = x co-ordinates of the nodes; scalar 

y = y co-ordinates of the nodes; scalar 



Output: 

[Czi] = Matrix needs for the stiffness matrices evaluation; matrix of size 2x16 

[Czit] = Transpose of matrix [Czi]; matrix of size 16x2 

27. Subroutine VECTM 

Purpose: To evaluate multiplication of given matrix [B] and a vector {c} 

Input: 

[B\ = Given matrix of size m x n 

{c} = Given vector of size n x 1 

Output: 

{A} = Multiplication of given matrix [B] and vector {c}; vector of size m x 1 

28. Subroutine multiply 

Purpose: To evaluate multiplication of a matrix [^(]and a matrix [B] 

Input: 

[A] = Given matrix of size m x 1 

[B] = Given matrix of size 1 x n 

Output: 

[c] = Multiplication of given matrices [A] and [B] ; matrix of size m x n 

29. Subroutine numfald 

Purpose: To perform numerical factorization 

Input: 

ia, ja, an, ad = Vectors to store given sparse matrix; vectors of size n + 1 x 1, 

ncoefl x 1, ncoefl x 1, n x 1, respectively 

n = Number to define size of vectors ia and ad; scalar 

iu, ju = Structure of resulting matrix, U after symbolic factorization; vectors of 

size n + 1 x 1 and ncoef2 x 1,respectively 

Output: 

un = Numerical values of the non-zeros of matrix U 
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di = Inverse of the diagonal matrix D 

Working space: 

ip = Chained lists of rows associated with each column; vector of size 

nx 1 

iup = Auxiliary pointers to portions of rows 

di = Array used as the expanded accumulator 

30. Subroutine fbed 

Purpose: To perform sparse forward/backward solution phase 

Input: 

iu, ju, un = Vectors to store given upper triangular matrix with unit diagonal 

matrix, 

di = Inverses of the diagonal elements of the diagonal matrix D. 

b = Right-hand side vector b. 

n = Order of the system, n>l. 

Output: 

x = Vector of unknowns x. 

31. Subroutine BFS_kl_element 

Purpose: To evaluate element matrix [&l6m]. 

Input: 

xx, yy, zz = Nodal co-ordinates of the element; vectors of size numnodespe x 1. 

where, numnodespe is number of nodes per element. 

[A], [D] = Membrane stiffness matrix; bending stiffness matrix; matrices of size 
3 x 3 

{wbl} = Eigen-vector values for specific element; vector of size maxdofpe x 1 
Output: 

[Kle] = Element matrix [klbm] 

32. Subroutine assemblybfskl 
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Purpose: To perform sparse numerical assembly of element matrices \k\bm ]. It provides 

the output in sparse matrix form. 

Input: 

Same as input data required for subroutines "info_bfs", "BFSklelement" and 

"numass." 

Output: 

ia, ja, an, ad = Vectors to store given system sparse matrix [AT14B)]; vectors of 

size n + 1 x 1, ncoefl x 1, ncoefl x 1, n x 1, respectively. 

33. Subroutine BFS_Kl_modaI 

Purpose: To evaluate first order nonlinear modal stiffness matrix [^Tlim] by calling 

subroutines "BFSkl element" and "assembly_bfs_kl." Also, calculates \K\_modal] 

~ [K^bm \Km J ' l^mb ] • Here, \_Km ]_1 is evaluated using LDLT equation solving method. 

Input: 

[evect] = Eigen vector matrix; matrix of size ndofb x nmode 

ndofpe = Number of dof per element; scalar 

Note: All other required input datas are same as required by subroutines 

"BFS_kl_element" and "assembly_bfs_kl." 

Output: 

[ATI _ mod a/] = Matrix to define triple product[jOAm J ^ P J A T l ^ J ; matrix of 

size nmode x nmode x nmode x nmode 

storeia, store J a, storean, storead = Vectors to store ia,ja,an and ad vectors which 

defines system sparse matrix [Klbm ] 

storencoefl = Number to define size of vectors store J a and store_an; scalar 

34. Subroutine BFS_k2_element 

Purpose: To evaluate element matrix [k2b J. 

Input: 
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xx, yy, zz = Nodal co-ordinates of the element; vectors of size numnodespe x 1. 

where, numnodespe is number of nodes per element. 

[A\ [D] = Membrane stiffness matrix; bending stiffness matrix; matrices of size 
3 x 3 . 

{wbl}, \wbl\ = Eigen-vector values for specific element; vector of size maxdofpe x 1 
Output: 

[K2e] = Element matrix [k2b] 

35. Subroutine BFS_K2_modal 

Purpose: To evaluate second order nonlinear system modal stiffness matrix [K2b] by 

calling subroutines "BFS_k2_element" and "info_bfs." Also, calculates 

[ i :2_moda/]=[of[i :2j[o] .For which, Firstly triple procduct, \f[[klb\(f\ at element 

level is evaluated and then numerical assembly is done. 

Input: 

[evect] = Eigen vector matrix; matrix of size ndofb x nmode 

ndofpe = Number of dof per element; scalar 

Note: All other required input datas are same as required by subroutines 

"BFS_k2_element","MULTIPLY" and "trans." 

Output: 

[K2 modal] = Matrix to define triple product [o] r [K2b J o ] ; matrix of size 

nmode x nmode x nmode x nmode 

36. Subroutine BFS_k2nm_element 

Purpose: To evaluate element matrix [A:2Bmj. 

Input: 

xx,yy,zz = Nodal co-ordinates of the element; vectors of size numnodespe x l . 

where, numnodespe is number of nodes per element. 

[A\ [D] = Membrane stiffness matrix; bending stiffness matrix; matrices of size 

3 x 3 . 
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{wm2] = Element level vector calculated based on eigen-vector values for specific 

element; vector of size ndofjn x 1. 

Output: 

[K2nme] = Element matrix [k2nm ]; matrix of size maxdofpe x maxdofpe 

37. Subroutine BFS_K2nm modal 

Purpose: To evaluate second order nonlinear modal stiffness matrix [K2nm modal] by 

calling subroutines "mvsparse," "numfald," "fbed," "info_bfs," "BFS_k2nm_element." 

Firstly, it calculates triple product, [^]r [k2nm Jfi] at element level and then numerical 

assembly is done. 

Input: 

[evect] = Eigen vector matrix; matrix of size ndof_b x nmode 

store_ia, store J a, store_an, store_ad = Vectors to store ia, ja, an and ad vectors which 

defines system sparse matrix [Klbm ] 

store_ncoefl = Number to define size of vectors store J a and store_an; scalar 

Note: All other required input datas are same as required by subroutines 

"mvsparse'7'numfald", "fbed", "info_bfs", "BFS_k2nm_element". 

Output: 

[K2nm modal] - Matrix to define triple product[oT|iT2nm][o]; matrix of size 

nmode x nmode x nmode x nmode 

38. Subroutine simload 

Purpose: To generate random load time history. It also performs rescaling of the 

generated random load vector by using MATLAB function pwelch. It uses subroutine 

FFT to perform the function. 

Input: 

spl = Sound Pressure Level; scalar 

NPT = Number of time history points; scalar 

N = Number of intervals in the spectrum; scalar 

Fmax = Highest frequency; scalar 

Output: 



142 

y = Random load vector; vector of size NPT x 1 

dt = Integration time step size; scalar 

39. Subroutine FFT 

Purpose: To compute the power spectrum of the responses. 

Input: 

NPT = Number of time history points; scalar 

k = Flag which is equal to 1 to perform forward transform and -1 for inverse 

transform; scalar 

Output: 

x = Complex number indicating spatial points; vector of size NPT x 1 

40. Subroutine RK4 

Purpose: To perform 4th order Runge-Kutta time integration to solve second order 

differential equation. It uses subroutine DERY to evaluate differentiation. 

Input: 

Step s= Integration time step size; scalar 

workl, work2 = Temporary working arrays; vectors of size 2 * nmode + 1 x 1 

Flag = Number to indicate whether the values are initial or not 

bkesi = Modal damping coefficients; vector of size nmode x 1 

Omega = Modal frequency 

modalk = Modal linear stiffness matrix; matrix of size nmode x nmode 

Kl ,K2 = Nonlinear modal first order stiffness matrix, nonlinear modal second 

order stiffness matrix; matrices of size nmode x nmode x nmode and 

nmode x nmode x nmode x nmode 

P = Modal load vector 

N = Number of modes used 

MINV = Diagonal terms of inverse of normalized mass matrix 

Modevalues 

Output: 
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x = Modal displacement and modal velocity vector; vector of size 2*nmode 

+ 1x1 

dx = Modal velocity and modal acceleration; vector of size 2*nmode +1x1 



APPENDIX F 

SCRIPT FILE FOR JOB SUBMISSION 

#!/bin/tcsh 
#$ -cwd 
#$ -j y 
#$ -S /bin/tcsh 
#$ -pe large-impi 1 
echo "" 
echo "*** MPI ***" 
echo " " 
set intel_mpi_env=/share/opt/intel/mpi/env 
echo " " 
source $ {intel mpi_env} 
echo "" 
echo "*** MATLAB ***" 
echo "" 
set intel_mpi_opt=/share/opt/matlab/R2007b/opt/intel jmpi. sh 
set mdir=/opt/matlab/R2007b/bin 
echo " " 
echo "*** PATH ***" 
echo "" 
setenv PATH $ {mdir} :$PATH 
setenv LDLIBRARYPATH ${mdir}/glnxa64:$LDJLIBRARY_PATH 
echo " " 
echo "*** MEX ***" 
echo "" 

mex-f${intel_mpi_opt} -v -fortran -I/opt/matlab/2007a/extern/include/ 
sparsenonlinearmodal.F sparsesubroutines.F nosourcecode.o bfslinear.o 
bfs nonlinear.o bfs_subroutines.o brick8_linear_k.o EigNormcheckl.o 
EigSubspace022.o normcheckR.o reord002.o EigNormcheck2.o New AM.o numfal.o 
reordAdj.o EigPrintOOl.o NewDiagM.o numfa2.o solverOOO.o EigPrint002.o ernorm.o 
numfa8.o solverOOl.o EigPrint003.o fbe.o numfaR.o solver002.o EigPrint004.o gennd.o 
pierrotime.o solver003.o EigPrint005.o jacobi2.o printOOl.o solver004.o EigReadOOl.o 
matmat3.o print002.o solverl.o EigRead002.o print003.o supnode.o EigSolverOOl.o 
metisreord.o print004.o symfact.o EigSolver002.o mmd.o print005.o transa.o 
EigSolverOl l.o multspa.o print006.o transa2.o EigSolver022.o newAN.o readOOl.o 
transaR.o EigSubspaceOOl.o newDiagB.o read003.o EigSubspace002.o newIAJA.o 
reordOOO.o EigSubspaceOll.o normcheck3.o reordOOl.o metOl.o met02.o met03.o 

echo "*** RUN *** 
echo " " 
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@ NPROCS=$NSLOTS * 2 + 1 
echo"" 

mpdtrace 
echo " " 

mpiexec -n $NPROCS -env IMPIDEVICE ssm sparsenonlinearmodal 
echo " " 
echo "*** END ***" 
echo " " 



APPENDIX G 

LISTINGS OF THE ENTIRE FORTRAN SOURCE CODE OF 

PROPOSED SPARSE-PARALLEL NONLINEAR FEA METHOD 

Listing of the entire FORTRAN source code of proposed sparse-parallel nonlinear 

FEA method can be obtained by contacting either of the following persons: 

1. Dr. Swati Chokshi, Email: swati.str.eng@gmail.com, Ph: 757 489 4422 

2. Prof. Due T. Nguyen, ODU, CEE Dept, 135 KAUF, Norfolk, VA 23529,Email: 

dnguyen@odu.edu, Ph: 757 683 3761 

mailto:swati.str.eng@gmail.com
mailto:dnguyen@odu.edu


146 

REFERENCES 

1 Rudder, F.F., and Plumblee, H.E., "Sonic Fatigue Design Guide of Military 

Aircraft," AFFDL-TR-74-112, Wright-Patterson AFB, OH, May 1975, pp. 489. 

2 Lassiter, L.W., Hess, R.W., and Hubbard, H.H., "An Experimental Study of the 

Response of Simple Panels to Intense Acoustic Loading," Journal of Aeronautical 

Sciences, Vol. 24, No. 1, 1957, pp. 19-24. 

3 Clarkson, B.L., "Stresses in Skin Panels Subjected to Random Acoustic Loads," 

Journal of Royal Aero Society, Vol. 72, 1968, pp. 1000-1010. 

4 Wilby, J.F., and Gloyna, F.L., "Vibration Measurement of an Airplane Fuselage 

Structure. Part I: Turbulent Boundary Excitation," Journal of Sound and Vibrandn, 

Vol.23, 1972, pp. 205-210. 

5 Holehouse, I., "Sonic Fatigue Design Techniques for Advanced Composite Aircraft 

Structures," AFWAL TR 80-3019, Wright-Patterson AFB, OH, April 1980, pp. 30-

80. 

6 Choi, S.T., and Vaicaitis, R., "Nonlinear Response and Fatigue of Stiffened Panels," 

Probabilistic Engineering Mechanics, Vol. 4, 1989, pp. 150-160. 

7 Bolotin, V.V., "Random Vibration of Elastic Systems" Martinus Nijhoff Publishers, 

The Netherlands, 1984, pp. 290-292. 

8 Mei, C , and Paul, D.B., "Nonlinear Multimode Response of Clamped Rectangular 

Plates to Acoustic Loading," AIAA Journal, Vol. 24, No. 4, 1986, pp. 643-648. 

9 Mei, C, and Chen, R.R., "Finite Element Nonlinear Random Response of 

Composite Panels of Arbitrary Shape to Acoustic and Thermal Loads Applied 

Simultaneously," WL-TR-97-3085, Wright-Patterson AFB, OH, 1997. 

10 Mei, C , and Wentz, K.R., "Analytical and Experimental Nonlinear Response of 

Rectangular Panels to Acoustic Excitation," AIAA/ASME/ASCE 23rd Structures, 

Structural Dynamics, and Materials Conference, New Orleans, LA, May 1982, pp. 

514-520. 

11 Arnold, R.R., and Vaicaitis, R.R., "Nonlinear Response and Fatigue of Surface 

Panels by the Time Domain Monte Carlo Approach," WRDC-TR-90-3081, Wright-

Patterson AFB, OH, May 1992. 



147 

12 Green, P.D., and Killey, A., "Time Domain Dynamic Finite Element Modeling in 

Acoustic Fatigue Design," Proceedings 6th International Conference on Structural 

Dynamics, Institute of Sound and Vibration Research, University of Southampton, 

UK, 1997, pp. 1007-1026. 

13 Mei, C , Dhainaut, J.M., Duan, B., Spotswood, S.M., and Wolfe, H.F., "Nonlinear 

Random Response of Composite Panels in an Elevated Thermal Environment," 

AFRL-VA-WP-TR-2000-3049, Wright-Patterson AFB, OH, Oct. 2000. 

14 McEvan, M.J., Wright, J.R., Copper, J.E., and Leung, A.Y.T., "A Combined 

Modal/Finite Element Analysis Technique for the Dynamic Response of a Non

linear Beam to Harmonic Excitation," Journal of Sound and Vibration, Vol. 243, 

No. 4, 2001, pp. 601-624. 

15 Hollkamp, J.J., Gordon, R.W., and Spotswood S.M., "Nonlinear Sonic Fatigue 

Prediction From Finite Element Modal Models: a Comparison with Experiments," 

44th Structures, Structural Dynamics, and Materials Conference, AIAA-2003-1709, 

Norfolk, VA, April 2003. 

16 Clarkson, B.L., "Review of Sonic Fatigue Technology," NASA CR 4587, April 1994, 

pp. 1-75. 

17 Mei, C , and Wolfe, H. F., "On Large Deflection Analysis in Acoustic Design," 

Random Vibrations - Status and Recent Developments. The Stephen H. Crandall 

Festschrift, Editors: I. Elishakoff and R. H. Lyon, Elsevier Applied Science 

Publishers, Amsterdam 1986, pp. 279-302. 

18 Rychlik, I., "Rain-Flow Cycle Distribution for Ergodic Load Processes," SIAM 

Journal of Applied Mathematics, Vol. 48, 1988, pp. 662-679. 

19 Dowling, N.E., "Fatigue Failure Predictions for Complicated Stress-Strain 

Histories," Journal of Materials, Vol. 7, 1972, pp. 71-87. 

20 Dhainaut, J.M., and Mei, C, "Nonlinear Response and Fatigue Life of Isotropic 

Panels Subjected to Nonwhite Noise," Journal of Aircraft, Vol. 43, July-August 

2006, pp. 975-979. 

21 Przekop A., Rizzi S.A., and Groen D.S., "Nonlinear Acoustic Response of an 

Aircraft Fuselage Sidewall Structure by a Reduced-Order Analysis," 9th 

International Conference on Recent Advances in Structural Dynamics, Institute of 



148 

Sound and Vibration Research, University of Southhampton, U.K., July 17-19, 

2006. 

22 Nguyen D. T., Finite Element Methods: Parallel-Sparse Statics and Eigen-Solutions, 

Springer, New York, 2006. 

23 Nguyen D. T., Parallel-Vector Equation Solvers for Finite Element Engineering 

Applications, Plenum/Kluwer, New York, 2001. 

24 Przekop Adam (private communication on the timing obtained from ABUQUS and 

MSC/NASTRAN), National Institute of Aerospace, NASA Larc, Mail stop 463, 

Hampton, VA, May 2005. 

25 Hildebrand, F. B., "Advanced Calculus for Applications," Prentice-Hall, 2nd Edition, 

Englewood-Cliffs, New Jersey, 1976. 

26 Lutes, D.L., and Sarkani, S., Stochastic Analysis of Structural and Mechanical 

Vibrations, Prentice-Hall, New Jersey, 1997. 

27 Vaicaitis, R., "Recent Advances of Time Domain Approach for Nonlinear Response 

and Sonic Fatigue," Proceedings 4' International Conference on Structural 

Dynamics, ISVR, University of Southhampton, UK, July 1991, pp.84-103. 

28 Crandall, S. H., and Mark, W. D., Random Vibration in Mechanical Systems, 

Academic Press, New York, 1963. 

29 Zienkiewics O.C., and Taylor R.L., The Finite Element Method, Mc-Graw Hill, 4th 

Edition, Vol. 2, Barcelona, 1991. 

30 Woinowsky-Kreiger, S., "The Effect of an Axial Force on the Vibration of Hinged 

Bars," Journal of Applied Mechanics, Vol. 17, 1950, pp. 35-37. 

31 Rizzi, S. A., and Muravyov, A. A. "Improved Equivalent Linearization 

Implementations Using Nonlinear Stiffness Evaluation," NASA TM-2001-210838, 

March 2001. 

32 Muravyov, A. A., and Rizzi, S. A., "Determination of Nonlinear Stiffness with 

Application to Random Vibration of Geometrically Nonlinear Structures," 

Computers and Structures, Vol. 81, No. 15, 2003, pp. 1513-1523. 

33 Dhainaut, J. M., and Mei, C, "Nonlinear Response and Fatigue Life of Isotropic 

Panels Subjected to Nonwhite Pressure Fluctuations," AIAA 2002-1635, 43th 

Structures, Structural Dynamics and Materials Conference, Denver, CO, April 2002 



149 

(CD-ROM). To appear in Journal of Aircraft. 

34 Przekop, A., Guo, X., Azzouz, S., and Mei, C , "Reinvestigation of Nonlinear 

Random Response of Shallow Shells Using Finite Element Modal Formulation," 

AIAA 2004-1553, 45 Structures, Structural Dynamics and Materials Conference, 

Palm Spring, CA, April 2004 (CD-ROM). 

35 Shinozuka, M., "Monte Carlo Solution of Structural Dynamics," International 

Journal of Computers and Structures, Vol.2, 1972, pp. 855-874. 

36 Shinozuka, M., and Wen, Y. K., "Monte Carlo Solution of Nonlinear Vibrations," 

AIAA Journal, Vol.10, No. 1, 1972, pp. 37-40. 

37 Shinozuka, M., and Jan, D. M., "Digital Simulation of Random Processes and Its 

Applications," Journal of Sound and Vibration, Vol. 25, 1972, pp. 111-128. 

38 Taylor, B. N., and Kuyatt, C. E., "Guidelines for Evaluating and Expressing the 

Uncertainity of NIST Measurement Results," NIST,TN 1297, 1994, p. 8. 

39 Crandall, S., and Zhu, W., "Random Vibration: A survey of Recent Development," 

Journal of 'AppliedMechanics, Vol. 50, No. 5, 1983, pp.953-962. 

40 Iwan, W. D., and Yang, M. I., "Application of Statistical Linearization Techniques 

to Nonlinear Multi-Degree of Freedom Systems," Journal of Applied Mechanics, 

Vol. 39, 1972, pp. 545-550. 

41 Heuer, R., Irschik, H., and Ziegler, F., "Nonlinear Random Vibrations of Thermally 

Buckled Skew Plates," Probabilistic Engineering Mechanics, Vol.8, No. 3-4, 1993, 

pp. 265-271. 

42 Elishakoff, I., and Zhang, X., "An Appraisal of Different Stochastic Linearization 

Techniques," Journal of Sound and Vibration, Vol. 153, No. 2, 1992, pp. 370-375. 

43 Roberts, J. B., and Spanos, P. D.,"Random Vibration of Statistical Linearization," 

John Wiley & Sons, New York 1990. 

44 Ng, C. F.," Nonlinear and Snap-Through Response of Curved Panels to Intense 

Acoustic Excitation," Journal of Aircraft, Vol.26, No.3, 1989, pp.281-288. 

45 Lee, J., "Large Amplitude Plate Vibration in an Elevated Thermal Environment," 

Applied Mechanics Reviews, Vol. 46, part 2, No. 11, 1993, pp. 242-254. 

46 Locke, J., and Mei, C, "Finite Element, Large Deflection Random Response of 

Thermally Buckled Beams," AIAA Journal, Vol. 28, No. 12, 1990, pp. 2125-2131. 



150 

47 Arnold, R. R., and Vaicaitis, R., "Nonlinear Response and Fatigue of Surface Panels 

by the Time Domain Monte Carlo Approach," WRDC-TR-90-3081, Wright-

Patterson AFB, OH, 1990. 

48 Vaicaitis, R., "Generalized Random Forces for Rectangular Panels," AIAA Journal, 

Vol. 11, No. 7, 1973, pp. 984-988. 

49 Abdel-Motagaly, K., Chen, R., and Mei, C, "Nonlinear Flutter of Composite Panels 

Under Yawed Supersonic Flow Using Finite Elements," AIAA Journal, Vol. 37, No. 

9, 1999,pp.l025-1032. 

50 Abdel-Motagaly, K., Duan B., and Mei, C , "Nonlinear Response of Composite 

Panels under Combined Acoustic Excitation and Aerodynamic Pressure," 4(fh 

Structures, Structural Dynamics and Materials Conference, St Louis, MO, 1999, 

pp.1963-1972. Klso AIAA Journal, Vol. 38, No. 9, 2000, pp.1534-1542. 

51 Dhainaut, J. M., Duan, B., Mei, C , Spotttswood, S. M., and Wolfe, H. 

F., "Nonlinear Response of Composites Panels to Random Excitations at Elevated 

Temperatures," 7l International Conference on Recent Advances in Structural 

Dynamics, Southhampton, England, July 2000, pp. 769-784. 

52 Dowell, E. H., "Aeroelasticity of Plates and Shells," Noordhoff International 

Publishing, The Netherlands, 1975. 

53 Dhainaut, J. M., Cheng, G., and Mei, C , "Nonlinear Response of Plates under 

Uniform Random Loads Unsynchronized in Time," AIAA 2007-2111, 48th 

Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, April 

2007. 

54 Bathe K. J., Finite Element Procedures, Prentice Hall, Englewood Cliffs, New 

Jersey, 1996. 

55 Bogner, F. K., Fox, R. L., and Schmit, L.A," The Generation of Inter-Element 

Compatible Stiffness and Mass Matrices by the Use of Interpolation Formulas," 

AFAFFDL-TR-66-80, Wright-Patterson AFB, OH, 1996, pp. 396-443. 

56 Locke, J. E., "A Finite Element Formulation for the Large Deflection Random 

Response of Thermally Buckled Structures," Ph.D. Dissertation, Old Dominion 

University, Norfolk, VA, 1988. 

57 Shi, Y., and Mei, C , "Coexisting Thermal Post Buckling of Composite Plates with 



151 

Initial Imperfections Using Finite Element Modal Methods," Proceedings 37 

Structures, Structural Dynamics, and Materials Conference, Salt Lake City, UT, 

April 1996, pp. 1355-1362. 

58 Shi, Y., Lee, R., and Mei, C , "A Finite Element Multimode Method to Nonlinear 

Free Vibrations of Composite Plates," AIAA Journal, 1997, Vol. 35, pp. 159-166. 

59 Pian, T.H.H., "Derivation of element stiffness matrices by assumed stress 

distribution," AIAA Journal, 1964, Vol. 2, pp. 1332-1336. 

60 Pian, T.H.H., and Tong, P., "Basis of finite element methods for solid continua," 

International Journal for Numerical Methods in Engineering, 1969, Vol. 1, pp. 3-28. 

61 Wood, R. D., and Schrefler, B., "Geometrically Non-Linear Analysis -A Correlation 

of Finite Element Notations," International Journal for Numerical Methods in 

Engineering, Vol. 12, 1978, pp. 635-642. 

62 Barlow, J., "Optimal Stress Locations in Finite Element Models," International 

Journal for Numerical Methods in Engineering, Vol. 10, 1976, pp. 243-251. 

63 Barlow, J., "Optimal Stress Locations in Finite Element Models," International 

Journal for Numerical Methods in Engineering, Vol. 10, 1976, pp. 243-251. 

64 Cook, R. D., Malkus, D. S. and Plesha, M. E., "Concepts and Applications of Finite 

Element Analysis," 3rd Edition, John Wiley, New York, 1989. 

65 Robinson, J. H., "Finite Element Formulation and Numerical Simulation of the 

Large Deflection Random Vibration of Laminated Composite Plates," MS Thesis, 

Old Dominion University, 1990. 



CURRICULUM VITA 
for 

Swati Chokshi 

DEGREES: 

Doctor of Philosophy (Civil Engineering), Old Dominion University, Norfolk, Virginia, 

December 2008. 

Master of Engineering (Civil Engineering), Maharaja Sayajirao University, Baroda, 

Gujarat, August 2002. 

Bachelor of Engineering (Civil Engineering), North Gujarat University, Modasa, Gujarat, 

March 1998. 

AWARDS AND HONORS: 

1. Gold medal, for ranking first in the North Gujarat University, Bachelor of Engineering, 

INDIA, 1996. 

2. Silver medal, for scoring highest marks in final year of engineering, Institute of 

Engineers, INDIA, 1996. 

3. Certification of Graduate Aptitude Test in Engineering (GATE), 2000. 

4. Best Teacher Award, Government Engineering College, INDIA, 2000. 

PROFESSIONAL CHRONOLOGY: 

NASA Langley Center, Hampton, Virginia 

Research Assistant, September 2002 - August 2006. 

Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, 

Virginia 

Teaching Assistant, September 2006 - April 2008. 

EMPLOYMENT: 

Halcrow, Inc., Virginia Beach, Virginia 

Structural Engineer, August 2008 - Present 

Department of Applied Mechanics and Civil Engineering, Government Engineering 

College, Modasa, India 



Assistant Professor, July 1998 - April 2000. 

SCHOLARLY ACTIVITIES COMPLETED: 

1. Chokshi, S.M.; Mei, C ; Nguyen, D.T.; and Rajan. S.; "Nonlinear Random 

Response of Large-Scale Sparse Finite Element Structural Problems." Journal of 

Computational and Applied Mechanics, Vol. 9, No. 1, (2008), pp. 1-12. 

2. Chokshi, S.M.; Mei, C; Nguyen, D.T., "Nonlinear Random Response of Large-

Scale Finite Element Structural Problems under Un-synchronized Loading with 

Parallel-Sparse Methodology." Submitted to Journal of Finite Element Analysis 

and Design, December 2008. 

3. Wilson, J. W.; Korte, J. J.; Sobieszczanski-Sobieski, J.; Badavi, F. F., Chokshi, S. 

M.; Martinovic, Z. N.; Cerro, J. A.; and Quails, G. D. "Radiation Shielding, MDO 

Processes, and RLV Design." Journal of American Institute of Aeronautics and 

Astronautics (AIAA) SPACE 2003 Conference and Exhibit, September 23-25, 

2003, Long Beach, California In Proceedings, AIAA Paper No. 2003-6259. 

4. Chokshi, S.M.; Mei, C; Nguyen, D.T.; and Rajan. S., "Nonlinear Random 

Response of Large-Scale Sparse Finite Element Structural Problems." 

Proceedings, American Institute of Aeronautics and Astronautics Structures, 

Structural Dynamics, and Materials (SDM) Conference, April, 2007. 


	Nonlinear Random Response of Large-Scale Sparse Finite Element Plate Bending Problems
	Recommended Citation

	ProQuest Dissertations

