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ABSTRACT

GENETIC ALGORITHM-BASED MODEL FOR DETERMINATION
OF EFFICIENT MANAGEMENT STRATEGIES FOR
IRRIGATION CANAL NETWORKS

Talaat Taher EI Gamel
Old Dominion University, 2004
Director: Dr. Laura Harrell

An optimization model for the determination of efficient management strategies
for an irrigation canal network is developed. The objective is to minimize the total
water consumed while satisfying various system constraints. An unsteady flow model
is used to simulate the flow in the network. A genetic algorithm- (GA-) based
framework is used to solve the model. The suitable GA parameters that should be
used within the model, as well as the performance of various constraint-handling
techniques, are studied. Uncertainties in crop pattern and water consumption rates are
incorporated into the search procedure to identify more reliable solutions. A graphical

interface is also developed to make the model more user-friendly.
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CHAPTER 1
INTRODUCTION

Enhancing irrigation systems in order to maximize the net benefit or minimize the
irrigation cost is an important issue, especially in arid and semi-arid countries where
the water is scarce, and the irrigation is the main water consumer. The fact that the
water demand increases rapidly as the result of the population increase makes this
issue more important. According to Schultz, and DeWrachien (2002), “Based on the
forecasts for population growth and the improvement in the standard of living, it is
expected that food production will have to be doubled in the next 25 years. In
addition it is expected that 90% of the increase in food production will have to come
from existing cultivated land and only 10% from new land reclamation, either in the
highlands or in the lowlands. There is no way that the cultivated area without a water
management system can contribute significantly to the required increase in food
production.” According to the authors, good management and efficient operation are
basic requisites for improving agricultural water management. This means that
efficient management and operation of irrigation networks is a critical issues. In
Egypt, enhancing irrigation efficiency is especially important, as the population is
increasing rapidly while the water supply remains constant. There is much room for
improvement in Egypt, considering that “the structures, management and technical
properties of the Egyptian irriga'tion system have been designed and operated within
the situation of water abundance, which means that up to the late 1980s very little
emphasis was placed on improving the efficiency of the water use.” (Hvidt, 1998).
This makes Egyptian agriculture is one of the most consumptive irrigation in the
world and the reason for this, according to (Samaha, 1979), is related to the wasteful
use of irrigation water. Given that the likelihood of increasing the water supply
through establishing new projects in the south countries is small, “The most

promising way of tackling the water problem [in Egypt] is, therefore, to expend

The journal model for this thesis is ASCE, Journal of Hydraulics Division.
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resources through water conservation in the old lands by introducing more effective
on-farm irrigation technologies and practices” (Water Bank, 1993).

Based on Gates and Alshaikh (1993), parameters representing physical properties
and boundary conditions of irrigation systems can be classified into three categories:
o Hydrologic properties: streamflow, crops evapotransportation, precipitation, and

infiltration, etc.

0 Hydraulic parameters: cross-section geometry, resistance coefficients, etc.
0O Management parameters: irrigation application efficiency and water delivery
schedule.

Most of the studies that have been done to improve itrigation canal networks were
done by means related to a combination of first and third categories, which are crops
pattern and operations schedule (reservoir routing). These studies were done either to
design a new irrigation network, or rehabilitation of an existing irrigation network.
These studies were done using linear programming, dynamic programming, non-
linear programming, simulation models, or real time operations (Yeh, 1985). Some of
these studies are summarized below.

Anderson (1968) developed a simulation model to define the optimal crop pattern
to be grown on irrigated farms. Crop pattern is calculated based on different input
data such as, the anticipated water seasonal supply of an organization based on its
water rights and reservoir supply, number and sizes of farms, minimum and
maximum acreage of each crop, costs and gross return for each crop, water
requirement for each crop, and yield loss from not watering in specific periods.

Matanga and Miguel (1979a, 1979b) used a linear optimization model to decide
the best allocation of three crops based on total water supply and maximum amount
of water that can be delivered for irrigation. The model considered some constraints.
Such as the total crop area cannot exceed total area, and total the irrigation depth
cannot exceed the capacity of the water distribution system. Then they used stochastic
dynamic programming to define the optimal amount of water to be used for leaching
prior to the irrigation season and seasonal irrigation depths to maximize the gross
margin until the end of a finite planning horizon, or to maximize gain in gross margin

per stage in an infinite planning horizon.
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Afshar et al. (1991) used a mixed integer linear optimization model for a river
basin development for irrigated agriculture in the planning and design phases. The
model has 4 components: surface reservoir, conveyance and distributed canals,
limited hectares of land to be developed, and limited number of crops to be
considered. The model is a monthly chance-constrained optimization model with a
one-year horizon.

Malek-Mohammadi (1998) made an improvement to Afshar et al. (1991) by
adding the effect of groundwater and spring withdrawal, the delivery system capacity,
and the effect of the cost due to the drainage, land leveling and irrigation network
construction. He wused a chance-constraint optimization technique, and he
implemented his model for an irrigation canal network with three plains and nine
cells.

Rovikumar and Venugopal (1998) developed a three-phase optimization model
for the optimal operation for a large-scale south Indian irrigation system. The first
phase is a simulation model that uses the historical rainfall data to estimate the
irrigation demand sequence. The second phase is a stochastic dynamic programming
model that treats both irrigation demand on the reservoir and inflow into the reservoir
stochastically. The third part is the simulation model that models the reservoir using
the optimal release policy from the second phase.

In Egypt, Fawzy (1999) developed a linear optimization model to define the
optimal crop pattern in Egypt. He used three different alternatives for the objective
function. The first alternative is to maximize the net benefit of land and water per
feddan. The second alternative is to maximize the net return of irrigation water
volume. The third alternative is to rationalize the use of the available water resources
by minimizing the irrigation needs. Ali (2000) studied the optimal crop patterns
through a multiobjective linear optimization model that aims to minimize the
irrigation water consumption, maximum the return from the water unit, and maximize
the farmers’ profits. He divided the Egyptian cultivated land into three main regions:
the upper, middle, and lower region, each of which has its climate and though its

water consumption rate.
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Aside from mathematical models, simulation models provide an effective tool to
improve the irrigation networks. According to Yeh (1985), “From practitioner’s point
of view, mathematical programming techniques have, thus far, not proven to be
widely useful because of the complexity of water resources and non-commensurable
objective in water resources management. In this regard, simulation is an effective
tool for studying the operations of the complex water resource system incorporating
the experience and judgment of the planner or design engineer into the model.”
However, direct incorporation of complex simulation models into an optimization
model is computationally prohibitive (Neelakantan and Pundarikanthan, 2000). The
conventional way to incorporate a simulation model into an optimization model is
that the optimization model passes decision variables to the simulation model,
receives the output of the simulation model, and then decides the next step based on
evaluation of the objective value. In that case, the direct search methods, such as
Hooke and Jeevs method (Gates and Alshaikh, 1993, Neelakantan and
Pundarikanthan, 2000) is used to solve the problem. Evolutionary computation
provides another effective way to incorporate simulation models in an optimization
model.

Another means of enhancing irrigation is by controlling the canals operations. The
automatic gate operation technique is used to increase the crop productivity and
prevent damage due to flooding. Among these studies, Reddy et al. (1992) presented
a technique for operation of irrigation canals in the presence of arbitrary external
disturbances. They solved a linearized form of the continuity and gate-discharge
equations. They assumed the lateral canals to be located immediately upstream of the
last node in each pool. They verify their model using a nonlinear open-channel flow
simulation model. The simulation model estimates the flow rates and water depths at
each point in the reach, then these data will be used by the observer and the controller
to calculate the change in the gate opening. After this, the flow through this regulator
will be calculated and used as a boundary condition in the next time step.

The current study treats the problem of enhancing the irrigation networks
differently. The goal of the current study is to define the optimal irrigation schedule

for a short-term irrigation period (eg. For a typical irrigation period of five days in
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Egypt), which can minimize the total water consumed while satisfying the system

constraints, which are:

o No water shortage at any point in the network at any time during the irrigation
period.

o No flood at any point in the network at any time during the irrigation period.

a The difference between the upstream water level and the downstream water level
of any regulator is less than the maximum allowable difference at any time during
the irrigation period.

o Water volume in the network at the end of the irrigation period is enough to start
the next irrigation period.

The importance of tackling the problem this way stems from the following two
facts:

o For some irrigation networks, such as that in the case study described in Chapter
2, defining the optimal crop pattern is not a practical issue, as it is hard to
implement it in reality. This is because the cultivated area in such networks is
divided among thousands of owners, who have the freewill to decide the
cultivated crops. In the current model, the crop pattern will be treated as input
data, and it will be treated stochastically as there is uncertainty associated with it.

a Using mean seasonal inflow or monthly inflow can be used while drawing a
general strategy, but it cannot guarantee prevention of flood or water shortage
during daily operations, unless suitable operations are defined based on the actual
consumption rate and the hydraulic characteristic of the network.

Thus, the current study aims to develop an optimization model to define the best
set of gate operations, and the best boundary conditions to minimize the total water
consumed and prevent damages caused by water shortage, flooding or instability of
regulators. This optimization model will be solved using a genetic algorithm (GA)
based-search based procedure, and incorporates an unsteady flow model to evaluate
each potential solution. A user-friendly interface was developed to make it easier for
the user to enter the data and present the results. The model is applied to a case study
involving a large-scale irrigation canal network in Egypt.

The current study is organized as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 describes the optimization model and gives a brief introduction to GAs,
and how the GA is implemented on the current study. Also the details of the case
study in Egypt are presented at the end of this chapter. Chapter 3 describes the
unsteady flow model that was used within this model. The GA parameter values used
within this model are tested and discussed in Chapter 4. Different ways to handle the
constraints are discussed and compared in Chapter 5. Chapter 6 addresses the
uncertainty that is associated with crops pattern and water consumption rates. Chapter
7 gives a brief description of the user-friendly interface that was built for this model.

The conclusions and recommended future works are presented in Chapter 8.
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CHAPTER 2
OPTIMIZATION MODEL

2.1 Introduction

The goal of the current model is to define an efficient irrigation canal operation
schedule (initial gate opening, gate operation and boundary condition) that minimizes
the irrigation water volume consumed in an irrigation canal network, while satisfying
four constraints, which are:

o The water level must stay at or above minimum-required water levels. In most
irrigation canals, these minimum-required water levels are zero meaning that the
canals should not run dry.

o The water levels must not exceed maximum-allowable water levels, which are
channels’ banks levels.

o The difference between the water levels upstream and downstream any regulator
must not exceed the maximum-allowable difference.

@ For some canals in the network, the water levels must not go blow some pre-
defined levels at the end of the routing. This constraint ensures that the water
volume at the end of the flow routing will be sufficient for the beginning of the
next irrigation period.

An optimization model is developed using the above defined objective and
constraints, and is solved using a Genetic Algorithm (GA), which has been shown to
be a powerful tool for solving very complex models without any simplification. An
unsteady flow model is used to evaluate each potential solution (string) in the GA.
This chapter describes the optimization model, gives a brief introduction to GAs, and
how a GA is implemented in the current study. Also, a case study in Egypt will be

presented in the end of this chapter.
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2.2 Optimization model

The optimization model used herein is as follows:

Minimize 2= ") 0, = D D0, eerrrrerssrsssssssssrsrsssssssssssssssssssisssassses (2.1
teNT teNT 0e NO
Subject to:
y,)>y, VD s Vi (2.2)
WL,(t)<FL, VD, Vi, (2.3)
USWL,(t)— DSWL,(t) <MD, Vg , Vi (2.9
WL,(t,,)2RWL, Vp€eRP ...uueeneen. (2.5)
Where:
NT: Number of time steps of the flow routing.
Q,: Discharge at the inflow point during time step .
NO: Total number of outflow points.
Q,,: Discharge at the outflow point o during time step ¢.
V' Water depth at point p.
¥, Minimum required water depth, and for irrigation, it was

considered as zero to just prevent the water shortage.

WL,: Water level at point p.

FL,: Maximum allowable water level at point p.
USWL,: Upstream water level of regulator g.
DSWL, : Downstream water level of regulator g.

MD_: Maximum allowable difference between upstream water level and

downstream water level for regulator g.
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RP Number of points that have required water levels at the end of
simulation.

RWL Required water level at point p.

t Routing time step.

L ond: Time at the end of the flow routing.

2.2.1 Decision variables

This model contains two types of decision variables; gate opening values and
boundary conditions. Boundary conditions include the upstream boundary condition,
which is the water level at the upstream end of the network, and the downstream
boundary conditions, which represent the discharge at the downstream end of each
regulator. Also gate-opening values include both initial gate opening (at the beginning

of the routing) and operations during the routing.

2.2.2 Constraint violations tolerance

In a real irrigation network such as the one presented in the case study, there may
be some weak points, such as a bank with a low elevation, or a branch with an
entrance that has a higher bed level than that of the adjacent point in the main canal.
These points could be actual weak points or could be a result of inaccuracy in data
input. These weak points, even if very few, can make finding a feasible solution very
difficult. Assuming a small tolerance for constraint violations can prevent these few
points from controlling the whole network, and can lead to better solutions.

Figure 2.1 presents two examples of the same scenario of the case study, with
and without allowing for a small constraint violation tolerance. Without considering
tolerance (case the left graph of Figure 2.1), the number of feasible solutions during
the whole run is zero, and there are no strings that satisfy the first constraint (water
shortage). Only 14 strings in the first four generations satisfied the second constraint
(Flood). The second graph in Figure 2.1 presents the same scenario while using the

following constraint violations tolerance levels:
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Figure 2.1
Number of the strings that satisfy each constraint, and that satisfy all constraints without and with
constraint violation tolerance respectively

& Water shortage: 0.01
& Flood: 0.005
& Regulator stability: 0.0

& Required water level: 0.05
The difference between numbers of feasible solutions is very clear. In the final

optimal solution, the total flooded length is 90 m (0.0005 of the total length), and total
cultivated land affected by water shortage is 630 feddan (0.0009 of the total cultivated

area). The method for calculating the violation for each constraint is discussed in

section 2.4.2.
2.3 Solving the optimization model

Many optimization techniques have been used in hydraulics or water resources
systems optimizations, including linear, dynamic and non-linear programming, direct
search methods, evolutionary computation, and complete enumeration techniques.

Linear, and dynamic programming techniques cannot be used with the current
study because of the complex nature of the problem. Also, complete enumeration

would be impractical, as the decision variables are continuous, and the computational

time required would be prohibitive.
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Regarding nonlinear optimization, Yeh (1985) compared nonlinear programming
with other techniques (linear and dynamic) for a reservoir routing problem, and stated
that nonlinear programming has not been as popular in water resources systems
analysis as other methods due to the complication in implementing the technique and
the difficulty to account for the stochastic nature of the system. Simpson et al. (1994)
compared genetic algorithm (GA) techniques with complete enumeration and
nonlinear optimization for a water distribution problem, and they concluded that the
complete enumeration approach is only applicable with small problems with few
pipes due to the heavy computational requirements. Nonlinear programming is an
efficient technique when applied to small network. GA is an efficient technique with
computational effort relatively high compared to nonlinear optimization, but very
small compared to total enumeration. Yoon and Shoemaker (1999) compared
different methods for a groundwater problem, including some evolutionary
computational methods, some direct search methods, and some derivative-based
optimization methods. In their study, the binary-coded genetic algorithm performed
poorly, but an evolution strategy technique achieved a good balance between speed
and accuracy. Other researchers refer to similar drawbacks of using gradient-based
programming compared to genetic algorithm techniques in water resources problems
(Wu and Simpson, 2001).

Regarding the current study, the complication of implementing gradient-based
(nonlinear) programming can be explained by assuming a very simple network with 4
points (Figure 2.2) and considering the optimization model (Equations 2.1 to 2.5).
The following points could be mentioned:

0 The decision variables in the problem (B1, B2, and g) are not explicitly expressed
in the optimization model. However, there is a system of differential equations
related stated variables (A and u) with decision variables included in equations F1
to F8. (Details of these equations are in section 3.3)

o Obtaining a relationship between any of the stated variables and decision
variables, and their derivatives, is difficult. For example, defining a direct
relationship between Al and B2, should be obtained through relationships of Al
with A2, A2 with A3, A3 with A4 and A4 with B2. Considering the equations that
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are used within the simulation model, and considering a typical example, like one
that is used in this study, with hundreds of points and tens of decision variables,

obtaining the derivatives would be very difficult.

Fl1 F2 F4 F6 F8
F3 F5 F7
&) 0 g 0 &
Al A2 A3 Ad
ul u2 u3 u4
g Regulator 2
3 £
5 5
Q o
23] m
Figure 2.2

Simple example of an irrigation canal network

a For some situations, relationships between stated variables (A and u), and some
decisions variables do not exist. As an example, assume a gate operation during
the routing with a given range (decision variable), and assume that the water level
at this regulator during the time of the operation is less than the gate opening with
the given range. In this case, this regulator will be treated as a constriction, and
this decision variable will not be included in the system of the equations. Thus,
one cannot obtain a relationship between any stated variable and this decision
variable. This situation may happen frequently, especially in small channels.

a The fact that the problem is dynamic, where values of A and u are calculated for
different time steps, and that the number of stated variables and decision variables
keep changing from one time to the other, based on the operations or water
shortage, and some variables should be treated stochastically, all increase the
difficulty for using nonlinear programming in this problem.

Q Another drawback of gradient-base optimization is that it can get trapped in local
optima, and thus many policies (starting points) should be used to guarantee

achieving optimal or near-optimal solutions.
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Unlike traditional optimization techniques, direct search methods and
evolutionary algorithms do not require the derivative information. They can be easily
combined with simulation models by using the output of the simulation model to
define the next step. An example of how these methods works was presented in
Neelakantan and Pundarikanthan (2000) “In Hooke and Jeeves algorithm, the step
length along the decision parameter axes is kept constant for each cycle of moves,
and a probe is made first in the positive direction and then in the negative direction of
each axis. Iterative improvement can get stuck in a local minimum, as the algorithm is
essentially ‘greedy’ and accepts only those moves that optimize the objective
function. As a result, the solution depends upon the starting configuration. Hence,
several starting points (policies) are used to make sure that a better solution is found.”
Many direct search methods were used with hydraulics problems, such as Hooke and
Jeeves (Neelakantan and Pundarikanthan, 2000, Gates and Alshaikh, 1993) or Nelder
and Mead (Yoon and Shoemaker, 1999) or response surface method (Gates el al.,
1992). Comparing direct search methods with evolutionary computation, the
following observations can be noted:

@ Both direct search methods and evolutionary computational can easily incorporate
a simulation model inside the procedure.

a Direct search methods are “greedy” optimization techniques that can get trapped
at local optima, while evolutionary algorithms are more robust, and can move to
optimal or near optimal solutions.

o Although direct search methods are considered faster in general, this may depend
on different factors. One of these factors is the number of starting points that will
be used with direct search methods to make sure a good solution is found. Also,
the type of GA that is used associated with the parameters and constraint-handling
technique, affects the rate of convergence as well as the accuracy. An example of
this is what was concluded by Yoon and Shoemaker (1999) while comparing
different optimization methods including direct search methods and evolutionary
computational methods. They found that an evolution strategy method was the
best in combination of speed and accuracy, while a binary-coded genetic

algorithm performs poorly regarding the accuracy and the speed.
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The current study will use a genetic algorithm to solve the optimization problem
and the output of the simulation model will be used to evaluate each potential

solution.

2.4 Genetic Algorithms (GAs)

Genetic Algorithms (GAs) are a class of techniques that mimic the processes of
natural selection and genetic propagation in nature to “evolve” good solutions to a
problem. The interest in genetic algorithms is mainly due to their ability to handle
very complex problems, which do not easily fit into the traditional optimization
frameworks. The GA search procedure maintains a population of potential solutions
to the problem, each of which is represented as a string of design features. Unlike
traditional optimization techniques, a GA requires no gradient information, but
instead uses an evaluation function to determine the “fitness” or goodness of a
solution. The GA-based search framework can incorporate complex simulation
models without any simplification.

According to Davis (1987), genetic algorithms have five basic components:
A genetic representation of a solution to the problem.
A way to create an initial population of solutions.

An evaluation function rating solutions in terms of their fitness.

0O 0O O 0O

Genetic operators that alter the genetic composition of children during
reproduction.

0 Values of the parameters that the genetic algorithm uses (population size,
crossover probability, etc.)

A global structure for genetic algorithms is shown in the Figure 2.3.
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Flow chart of genetic algorithm (Deb, 2001)

2.4.1 Representation

According to Herrera el al. (1998), “Representation is the key issue in GA work
because GAs directly manipulate a coded representation of the problem and because
the representation schema can severely limit the window by which a system observes
its world.” Regarding representation types, there are two main categories, binary and
real representation. Binary representation has dominated the field of GAs since its
beginning until the early 1990’s. The reason for this is that there are theoretical
results that show them to be the most appropriate ones, and they are amenable to
simple implementation. However, binary representations have two main drawbacks:
Hamming cliff, which means that two adjacent values are different in all of their bits,
and redundancy, which means the decoding of a given code doesn’t belong to the
domain. For most real-world problems, binary encoding is not the most suitable.
According to Davis (1989), “We cannot handle most real-world problems with binary

representations and an operator set consisting only of binary crossover and binary
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mutation. One should incorporate real-world knowledge in one’s algorithm by adding

it to one’s decoder or by expanding one’s operator.”

The other way to encode a real-world problem is real representation. The interest
in real representation began in the 1990’s. There are many advantages to real
representations such as the following (Wright 1991, Gen and Cheng 2000;
Michalewicz 1996, Herrera et al., 1989):

a It moves the genetic algorithm closer to problem space, as the distance between
the points in the representation space is analogues to the distance between the
points in the problem space.

a The use of real parameters makes it possible to use large domains for the
variables.

a The capacity of real representation to exploit the graduality of the functions with
continuous variables, where graduality refers to the fact that slight changes in the
variables correspond to slight changes in the function.

o It increases the efficiency and the precision.

o It doesn’t require a lot of memory.

The current study uses real representation to encode the decision variables.

2.4.2 Evaluation

This step plays the role of the environment, and it rates solutions based on their
fitness. Each potential solution (string) in the population will be evaluated using the
objective function equation, or a simulation model, to check its fitness. This is a
straightforward step in unconstrained optimization problems. However, in an
optimization problem with constraints, a heuristic must be used to handle the
constraints. Handling constraints in a GA can be challenging and will be discussed in
detail in Chapter 5.

To evaluate each string, the unsteady flow model is used to route the flow, and the
output from the model will be used to calculate fitness parameters. These outputs are
calculated as follows:

0 During the routing and for each time step, the following items will be calculated:
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& The difference between the inflow discharge at the first point in the network,
and outflow discharges from the downstream ends of the canals that convey
water outside the network is calculated for each time step. The cumulative
value of all these differences during all time steps presents the total water
consumed (objective value).

& The water shortage will be checked at each time step. Whenever there is a
zero or negative (numerically) water depth anywhere in the network, the
program will assume that the part of the channel downstream is dry, and the
cultivated area downstream of this point will be used to calculate a penalty for
water shortage. If the end regulator of the channel if not closed, the program
will add the cultivated area downstream this regulator to the shortage area.
Even if the water comes back to this part of the channel during the routing, the
program will still consider it as a violation of the first constraint. The only
exception is with the operations. When a new channel is opened, the program
will assume a traveling time for each opened reach, and if the reach is dry
only during this time, the program will not consider this as a violation of the
water shortage constraint.

5 For the flood penalty, the program will determine all points that have a water
level higher than the flood level at any time during the flow simulation. The
total flooded length is used to calculate the flood penalty term. Regardless of
the number of the time steps the water level exceeds the maximum allowable
water level, the program will consider this as a violation of the second
constraint.

& For the regulator stability, the program will check each regulator for the
difference between upstream water level and downstream water level and
compare this value against the maximum allowable difference of this
regulator. If the difference between water levels is higher, this will be
considered as a violation of the third constraint.

Q0 At the end of the routing, the water volume in canals that have a required ending
water level will be calculated and compared with the volume of the water based

on the given required water levels. If the actual water volume is less than the
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required ending water volume, this will be considered as a violation of the fourth

constraint.
2.4.3 Selection

The selection operator imitates the natural selection and survival of the fittest in
nature. It gives strings that have better fitness values a higher probability to get more
copies, while strings with poor fitness values have a higher probability to die off.
According to Gen and Cheng (2000), “Selection provides the driving force in genetic
algorithms. With too much force, genetic search will terminate prematurely; with too
little force, evolutionary progress will be slower than necessary”. The most
commonly used selection procedures (Goldberg and Deb (1991), Gen and Cheng
(2000), Runarsson and Yao (2000)) are:

o Proportionate Selection: in this class of selection, a chromosome has a probability
to be selected proportional to its fitness. In these types of selection, the number of
copies of an individual in any generation is related to the ratio between the fitness

of this individual and the average fitness

P

i1+

iy
i
Proportionate selection can be preformed using roulette wheel, stochastic
remainder selection, or stochastic universal selection. According to Goldberg and
Deb (1991), proportionate selection is found to be significantly slower than other
methods.

0 Ranking selection: this technique was proposed by Baker (1985), then by
Grefenstette and Baker (1989). In ranking selection, the population is sorted from
the best to the worst, and assigns the number of copies that each individual should
receive according to a non-increasing assignment function, and then performs
proportionate selection according to that assignment.

o Tournament Selection: (Goldberg and Deb, 1991), tournament selection is based
on randomly selecting a few strings and picking the best from them, and repeating

until the mating pool is filled. The number of strings that is compared defines the
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sub-category of this method. Binary tournament selection, where two strings are
compared at a time is the most commonly used selection technique.

o Stochastic Random Selection: Runarsson and Yao (2000) proposed this method as
a constraint-handling technique method to avoid the fine-tuning through using
penalty functions. The idea is to use only the objective function or the constraints
for the selection, rather than using the fitness function that is a combination of
both. The one (objective or constraints) that will be used to determine the winning
individual in the selection is chosen randomly. They suggested a probability
between 0.4 & 0.5 for using the objective to rank the individuals (besides the case
when both individuals are feasible, in which the objective function is used as
well); otherwise the ranking will be based on the level of constraint satisfaction.
Three selection techniques were tested in the current study, which are:

Q@ Binary tournament selection.

o Binary tournament selection with superiority of feasible solution.

o Stochastic tournament selection, which is a new proposed technique. The details

about this technique are given in Chapter 5.

2.4.4 Crossover

The selection process increases the average fitness by increasing copies of good
solutions and eliminating some bad solutions, but it doesn’t add any new information
to the problem. The way of exploring more of the search space is done through
crossover and mutation. In crossover, two parents, from strings that survive after the
selection process, will exchange a part of their data. Just a portion of the population
will undergo crossover, while the rest of the population will move to the next
generation as they are. The portion is defined by the crossover probability. The
importance of this probability and suggested values will be discussed in Chapter 4.

According to the representation, there are two main categories of crossover,

binary-coded crossover, and real-coded crossover.
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2.4.4.1 Binary-coded crossover

Binary crossover is used for GAs with binary representations, and it three
different types, which are:
@ One point crossover
o Two point crossover
@ Uniform crossover

Figure 2.4 illustrates examples about these three types of binary crossover. In one
point crossover, a location along the string length is selected at random, and all bits to
the right of this location will exchange their data. In two point crossover, two
locations are defined randomly, and the bits between these two locations will
exchange their data. In uniform crossover, each bit in the first offspring decides (with
some probability p) which parent will contribute its value to it. The second offspring
receive the bit from the other parent. The probability that is normally used within
uniform crossover is 0.5, and so it could be done using a mask with digits of 0 and 1.
If the value of the mask’s chromosome is zero, each parent will give its value to the
corresponding child (parent 1 for child 1 and parent 2 for child 2). If the value of
mask’s chromosome is 1, the values of parents’ chromosomes will be exchanged.

Parent1[0]o] 1] 1Jo]o]1]0o]1]0] ParentllT[o]|i||o|o[|io]||ol

Parent2 [0 [1 o]t [0 Jo [1]1]1] Parent2[0 [1 o1 o sJo 1 ]1]1]
Childl[o]o]lfl]o|1|0|1|1[1| Childl|0LU|i||0[1|oio[1|o|
Child2 fetJo[1JoJoJtfo]1]0o] Child 2 |0[1|0j1|0]o|1]1[1|1|
One point Crossover Two points Crossover
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Examples of binary-coded Crossover
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2.4.4.2 Real-coded crossover;

There are many real-coded crossover techniques have been proposed since the
1990’s. The difference between these methods is how to generate the children from
their parents. In linear crossover, reported by Wright (1991), three children are
generated from two parents in the locations (~0.5P, +1.5P,), (0.5P, +0.5P,), and

(1.5P, —0.5P,) then the best two children will be chosen to the next generation. In
simulated binary crossover (SBX) (Deb and Agrawal, 1995), new solutions will be
randomly chosen from a specific probability distribution around the parents based on

a random number u, and a distribution index 7, as in Figure 2.5. A large distribution

index indicates that the offspring will be close to their parents. In Unimodal
Normally Distributed Crossover (UNDX) (Ono and Kobayashi, 1997), two children
are generated from a region of normal distribution defined by three parents. These
two children are generated around the center of mass of their parents. Simplex
crossover (SPX) (Tsutsui et al., 1999) assigns a uniform probability distribution for
creating offspring in a restricted search space around the region marked by the
parents. In this method, the center of parents is calculated, then from a space defined
by this point with the parents, a number of solutions (200 is suggested) is created,
then two parents will be replaced by the best from these solutions and parent
solutions. In blend crossover, proposed by Eshelman and Schaffer (1993), two
children are generated from the range [p2 +al,p, —al ], where pl and p2 are the

values of the parents, p, > p,, I = p, — p,, and & is a coefficients between 0 and 1.

Many other types of real-coded crossover are listed in Herrera et al. (1998), Gen and
Cheng (2000), and Deb (2001).
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Figure 2.5 illustrates different types of real-coded crossover.
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Figure 2.5
Examples of real-coded crossover

Herrera et al. (1998) conducted an experiment to compare different binary and
real coded crossover techniques, and they stated, “Generally, BLX-o crossover
allows the best final results to be obtained. The higher the a is, the better the results
are. As o grows, the exploration level is higher, since the relaxed exploitation zones
spread over exploration zones, increasing the diversity levels in the population”

The current study uses blend crossover. The optimal value for blend crossover

extension a is discussed in detail in Chapter 4.
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2.4.5 Mutation

Originally, the mutation operator was considered to be a background operator.
According to Holland (1975), “mutation is a ‘background’ operator, assuming that the
crossover operator has a full range of alleles so that the adaptive plan is not trapped
on local optima.” However, later researchers argued about this fact, and they stated
that mutation has a stronger role than previously recognized (Schaffer et al., 1989).
The objective of mutation, like crossover, is to increase the variance of the population
and prevent the GA from converging to local optima. In this step, the values of some
strings that are selected randomly will be changed. In binary encoding, the value of
the bit will be changed from 0 to 1 or vice versa. In real encoding, there are many
proposed mutation implementations. The one that is used in the current study is
random mutation, where a new random value will be selected between the maximum
and minimum allowable values of the gene that will be mutated. The details of other
different mutation techniques can be found in Herrera et al. (1989).

The number of strings that will undergo mutation is decided based on the
mutation rate. The effect of the mutation rate, and suggested values will be discussed

in Chapter 4.

2.5 Case study

An irrigation canal network in El1 Monofiya, Egypt is used as a case study (see
Figure 2.6). In Egypt, the Nile River is the sole source of irrigation water. It provides
Egypt with about 55.5 billion cubic meters of water per year, which barely meets the
water demand (Abu-Zeid, 1992). It is expected that the water demand in Egypt will
soon exceed the supply as the population increases. It is estimated that Egyptian
agriculture consumes between 84% (Abu-Zeid and Rady, 1992) and 95% (Naff and
Matson, 1984) of the water used in Egypt. Also, more water is consumed in Egyptian
agriculture than in many other areas, primarily because of the wasteful use of
irrigation water (Samah, 1979). This means that any plan to address the water supply
for the future should include more efficient use of irrigation water. A part of the

wasteful use of irrigation water is the result of the inability to determine efficient
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strategies to make the best use of the irrigation water in the network. The network
used for the case study is shown in Figure 2.6, and consists of man-made canals used
mainly for irrigation purposes. The total cultivated area that is served by the network,
on a rotating basis, is about 187,320 hectares (483,708 acres). All of the channels
have mild slopes, as the longitudinal bed slope changes from 0.0 (horizontal bed) to
0.0001, and thus the flow is subcritical and water levels are gradually varied in the
entire network. The network contains a main canal (E1 Monofy Rayah), for which the
intake at the Nile River is the upstream end of the network.

All branches in the network divert from this main canal or from its branches. The
case study considers the network from El Monofy Rayah intake to Meleg regulator
(km 53.51 on El Monofy Rayah). In this reach of the main canal, there is one middle
regulator, which is El Quarinien Regulator at km 29.30. There are two main branches:
El Bagoriya Canal and Tanta Navigation Canal, which carry discharges to other
directorates. The water is distributed through the branches on the basis of a periodic
system, whereby a part of the network is opened for five days and then closed for ten

days.
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2.5.1 The Data and its accuracy

The data used by the simulation model includes the following:

0 Canals data: this category includes the canal length, the total cultivated land,
number of regulators, and number of branches. These data tend to be very
accurate.

o Reaches geometry data: this category includes the length, cultivated land area,
and cross sectional area of each reaches. The accuracy may be affected if the
actual cross sectional in some places has been changed from the design values.
Also, the bank levels at each point are interpolated between the values at
regulators and branches. The actual levels may deviate from this.

0 Regulators design data: this category includes gate width, regulator bed level,
cultivated land area downstream of the regulator, regulator thickness, and the
maximum allowable difference between upstream water level and downstream
water level. Also, this category of data includes the discharge coefficient of this
regulator. The accuracy of the discharge coefficients is questionable especially
with small regulators, where there are no field measurements to obtain empirical
equations for them. In the absences of better information, the value 0.61 is used
for such regulators.

0 Initial data: these mainly are the initial water levels upstream of each canal and
upstream and downstream of each regulator. Initial water levels were assumed
with an average of levels at the time that was used for routing the flow.

0 Boundaries and gate openings: the boundaries and gate openings are decisions
variables unless they are fixed values. Downstream boundaries for canals that
carry the water to downstream directorates will always be decisions variables. For
some branches that the program will route only a part of them, the boundary
might be fixed value, and it will be calculated based on the cultivated land area of
the downstream part of this branch, and the average water consumption rate.

o Water consumption rates and crop allocation data: regarding the water
consumption rate, the average values defined by the agricultural departments and

by other previous researchers are used. For the crop allocation ratio, the ratios
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were assumed based on the average ratios for crop allocation in Lower Egypt as
was presented in previous studies (Ali, A. S. (1999), Ali, H. M. (2000), Fawzy, G.
M. (1999), and El Qusoy, D. (1995)).

2.5.2 Suggested scenarios

Three scenarios of the case study are considered in this study. They are different
in the number of decisions variables, number of the constraints and in the difficulty to
find a feasible solution as a result of some sudden changes in the flow routing.

The first scenario (Figure 2.7) is the simplest one. It assumes that gate openings
are constant during the whole run. The boundaries change gradually in four points
and they are fixed in all other points.

This scenario consists of the following:

0 Number of decision variables:

& There are 19 decision variables as follows:
v' 11 initial gate openings (No operations).
v' 8 Boundaries conditions at 4 points (one upstream point and three
downstream points at canals 1, 6, and 12).

@ Number of constraints:

& For both water shortage and flood: the model checks 646 points for 120
time steps

& For regulator stability: the model checks 12 regulators for 120 time steps

& For required water level: the model checks 83 points at the last time step

o Constraint violation tolerance:

& Constraint violation tolerance for this scenario is zero meaning that the
solution must satisfy each constraint perfectly to be considered feasible.

The boundaries at the end of all branches are fixed values, and one gate opening is
assumed a free opened regulator.

Figure 2.8 displays the water level upstream and downstream of El Quarinien
regulator. Water levels change smoothly during the routing. There is an effect from

the initial condition in the first part of the routing,
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The second scenario (Figure 2.9) presents the case during a typical irrigation
period, when there are few changes in the schedule of the operations. Also, this
scenario presents the case when the amount of water delivered to the downstream
directorates is changed between branches (Increase the discharge of one branch at the
expense of other branches).

This scenario consists of the following:

0 Number of decision variables:

& There are 31 decision variables as follows:
v' 19 initial gate openings and 7 gate operations.
v 12 Boundaries conditions at 5 points (one upstream point and four
downstream points at canals 1, 6, 10, and 12).

0 Number of constraints:

& For both water shortage and flood: the model checks from 795 to 837
points for 120 time steps.

& For regulator stability: the model checks from 15 to 18 regulators for 120
time steps.

& For required water level: the model checks 83 points at the last time step

0 Constraint violation tolerance:

& Constraint violation tolerance for this scenario is as follows:
v Water shortage: 0.005
v" Flood: 0.0
v’ Regulators stability: 0.0
v’ Required water levels: 0.01
0 Operations in the main regulator
v" El Quarinien regulator: gate opening increased twice, at time step 24
and at time step 96.
o Boundary at the main outflow
v" Canal 1: gradually changes until time step 24, and then becomes
constant.
v' Canal 6: suddenly decreases after 24 time steps.

v’ Canal 12: suddenly increases after 36 time steps.
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o Changes that have fixed values (Not decision variables)
v" Canal number 5 will be closed at time 96.

Figures 2.10 to 2.12 represent the water levels from one of the runs of this
scenario. Figure 2.10 presents the water level upstream and downstream El Quarinien
regulator. The effect of opening the gate at time step 24 is clear in the downstream, as
is the effect of increasing boundary conditions at canal 12 at time step 36. Also, at the
downstream, the increased difference between water surface elevation and energy
grade line elevation indicate the increased velocity, and thus the discharge. At the
upstream, the effect of decreasing the boundary of canal number 6 with increasing El
Quarinien gate opening at time step 24 can be seen. Also, the effects of opening
canals 9 and 46 at time step 48, and increasing El Quarinien gate opening after time
step 96 are clear.

Figure 2.11 presents the water level upstream of the second regulator of canal 3.
Water levels increase for the beginning, but the rate of increase changed after time
step 24, when the gate opening of the intake increased. The water levels begin to
decrease after this due to the opening of the second regulator.

Figure 2.12 presents the water level upstream of the intake regulator of canal 45.
It is close to the water level upstream of El Quarinien regulator, as it shares it the
same pool with no structures between them. The effect of opening the gate at time
step 48 has no significant effect than the upstream of El Quarinien.

This change in the water levels during the routing increases the chance of
violating any constraint, and thus finding a feasible solution is harder than for the first

scenario.
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The third scenario of the case study (Figure 2.13) represents a typical change of
an irrigation period. The flow will be routed for 6 days, the last day in the current
irrigation period with the five days of the next irrigation period. The irrigation period
changes mainly from the branches upstream of El Quarinien regulator to the branches
downstream of it, in addition to some other branches upstream it. The cultivated land
for the new irrigation period is less than the cultivated land for the previous one, so
the gate opening for El Monofy intake will be reduced, and the outflow to the
directorates downstream of the network will increase. At the end of the routing, the
gate opening of El Monofy intake will increase again to prepare the network for the
next irrigation period.

This scenario consists of the following:

Q@ Decision variables:

& There are 52 decision variables as follows:
v" 14 initial gate openings and 18 gate operations.
v" 20 Boundaries conditions at 12 points (one upstream point and 11
downstream points at 11 different canals as in Figure 2.13).

o Constraints:

& For both water shortage and flood: the model checks from 735 to 716
points for 144 time steps.

& For regulator stability: the model checks from 15 to 14 regulators for 144
time steps.

& For required water level: the model checks 83 points at the last time step.

o Constraint violation tolerance:

& Constraint violation tolerance for this scenario is as follows:
v’ Water shortage: 0.01
v Flood: 0.005
v Regulators stability: 0.0
v Required water levels: 0.05
0 Operations in the main regulator
v’ First regulator: gate opening is decreased 2 times (time steps 12 and

36) and then it is increased 2 times (time steps 108 and 120).
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v' Second regulator: gate opening is increased S times (time steps 12, 24,
36, 48, and 60).
Q Boundary at the main outflow
v' Canals 1, 6, and 12: Sudden increase after 24 time steps

@ Changes that have fixed values (Not decision variables)

v' Six branches that divert from the main canal are closed (3 after 24
hours, and other 3 after another 12 hours).

v" The boundary of 11 small branches that divert from canal 3 will
change after 24 hours to 0.0.

Figures 2.14 to 2.16 present the water levels in some points of the network during

the routing in one of the runs of this scenario.

0 The water level upstream El Quarinien is decreasing until time step 109 when
it begins to increase again as an effect of increasing the gate opening of El
Monofy intake.

o The water level downstream of El Quarinien is increasing until time step 24,
then it begins decreasing when two main branches downstream of it are
opened, and the discharge to other directorates increases. From time step 100,
it begins to increase again. With the decreasing water level, the difference
between water surface and energy grade line elevation increases meaning that
the velocity increases. In a typical run of this scenario, the discharge increases
from 43.7 m*/sec at the beginning of the routing to 83.8 m>/sec at the end of
the routing.

o Figure 2.15 presents the last point in canal 3 before the second regulator that
was opened at time step 24. Also Figure 2.16 presents the point on canal 46
upstream of canal 86 that was opened at time step 12. The effect of opening

new reaches or new canals is clear.

This increase of the decision variables with the sudden changes of the boundaries
increases the difficulty in finding a feasible solution unless the decision variables are

chosen suitably.
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These three scenarios of the case study present different levels of difficulty to find
feasible solutions and will be used to check the best parameters that should be used

within the GA and suitable constraint-handling techniques in later chapters.
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CHAPTER 3
THE UNSTEADY FLOW MODEL

3.1 Introduction

To evaluate the solutions in the GA-based optimization model that was defined in
Chapter 2, an unsteady flow model is used. The model is based on the unsteady flow
equations with other equations for the junctions, the regulators, and the constrictions.
The implicit method was used to express the equations mathematically, with a
weighting factor of 1.0. The Newton-Raphson method was used to solve the system
of the equations, with some modifications to save memory and computational effort.
The model is designed to handle operations during the routing, and a new technique
for zero or negative (numerically) water depth that can achieve the stability without
affecting the accuracy is proposed. A summary of the unsteady model that is used in
the current study is given in this chapter. More complete description can be found in

El Gamel (2001).
3.2 Governing equations and their solution

3.2.1 Governing equations

The governing equations for routing the flow through the reaches, the junctions,

the constrictions, and the regulators (sluice gates) in a canal network are as follows:
3.2.1.1 Governing equations for the reaches

The complete Saint Venant equations are used to route the flow in the reaches,

and have the well-known form:

o4  (Au)
A = 0t 3.1
o a7 G-D
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N L
got gox ox

Where:

A= cross sectional area (L2).

u= mean velocity (LT-1).

so= longitudinal bed slope.

s{= friction slope.

y= water depth (L)

g= acceleration due to the gravity (LT-2).

x= distance (L).

t=time (T).

These two equations represent the continuity and the momentum equations. The

same equations can be represented in the following form:

50 o4
e b e = 0 ——————— ettt et 33
o a1 ©-3)
o0 00 oy

E'f'ua'f' Aa_x—gA(SO sf)—qu=0 .......................................................... (34)

Where:
g= lateral inflow or outflow (LT-2), defined as positive in inflow and negative in

outflow, and s; can be calculated using the Manning equation

The equations use the cross sectional area and the velocity as variables. Equations
3 and 4 are used to route the flow through each reach in the network. For the
junctions, regulators, and bridges, and the energy equation will substitute for the

momentum equation.
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3.2.1.2 Governing equations for the junctions and constrictions

In the junctions and constrictions (see Figure 3.1), the energy equation is used
with the continuity equation to route the flow. The energy equation between two

sections can be expressed as follows:

u2 u2
1 2
zl+y,+—2g_zz+y2+—2g+hf ........................................................................ (3.5)

In the junctions, the head loss is negligible. For the constrictions (see Figure 3.1),
the following equation, presented by Chow (1959), can be used to calculate the

friction loss hg

Where
L : Regulator thickness.

L, : Acceleration length.

K = the total conveyance that can be calculated as:

In the current study, the acceleration length is assumed to be zero and equation
(3.6) becomes:
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Figure 3.1

Flow through constrictions

3.2.1.3 Governing equations for the sluice gates

An equation for the flow through a sluice gate (see Figure 3.2) can be obtained by
applying the energy equation between the water sections upstream and the
downstream of the gate, assuming that the energy loss through the gate is negligible
and the pressure distribution is hydrostatic. According to Rajaratnam and

Subramanya (1967), the sluice gate equation can be represented as follows:

cL'
q - og,/2giy1 -, e (3.9

6=
Ja, -c(og/ )

Where:

q,; = discharge through the regulator per unit width (L2T-1).
og= height of the gate opening (L).

c.= contraction coefficient.

o= kinetic energy correction factor.

Since ys, rather than yj, is typically recorded in an irrigation canal network, the

previous equation was modified for use in the model as follows:
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O =€ 08 D¥ J28(H) = V1) coevrrririiteecceree st (3.10)

Where:
Q= the discharge through the regulator.
b= the width of the gate opening.

cq4 1s calibrated for each regulator using field measurements.

M

! Uy B

Figure 3.2
Sluice gate equation

3.2.1.4 Governing equations for submerged hydraulic jumps

The submerged jump exists when the actual tail water depth is greater than the
corresponding tail water depth due to the free jump (see Figure 3.3). This

phenomenon occurs downstream of the sluice gates when the flow is subcritical.
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Free jump

Figure 3.3
Submerged jump

The hydraulic jumps create energy losses that can be calculated by applying the
energy equation upstream and downstream of the jump. Different equations have
been presented in the literature to calculate the energy losses due to submerged
hydraulic jumps (Chow, 1959; GovindaRao and Rajaratnam, 1963; Ohtsu et al.,
1999). The equations presented by Ohtsu et al. (1999) are used in the model presented

herein. The ratio between the head loss and the energy at sections 3 is calculated as

follows:
2 k
2 -1 )+ K| 1-| -
- e 3.11)
E, 2Y, + F,
Where
2
Uy
B = s o e (3.12)
2g
Y, = relative water depth at section 3 = 223
124
Y, = relative water depth at section 2 = %
08

y;= water depth at section 3 just behind the regulator (L)

uy= mean velocity through the gate (LT-1)
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k= the ratio between the regulator width and the downstream width.

Also Ohtsu et al. (1999) presented the following relationship between Y5 and Y.
Y3 (V2 4+ 2F2K), 4 2F2K% =0 oo (3.13)

Equation (3.13) is based on the assumption that the pressure is hydrostatic and the
momentum correction coefficient is unity for both sections upstream and downstream

of the jump.
3.2.2 Solution of the governing equations
3.2.2.1 Solving the equations for the reaches

The governing equations presented above cannot be solved analytically; thus, a
numerical model is used to solve them. There are two numerical methods that can be
used to solve the unsteady flow equations: the method of characteristics and the fixed
points method. The method of characteristics is a technique that converts two
simultaneous partial differential equations to four ordinary differential equations
(Abbott, 1975). The interest in this method has decreased in the last few decades, but
it is still often used as the boundary equation in the fixed points explicit methods.
The main drawback of the method of characteristics is that it calculates the flow in
non-fixed locations and times.

The fixed points methods, either explicit or implicit, use the finite difference
scheme to approximate the derivatives of the partial differential equations. These
methods depend on filling the plane of (x,t) with a grid representing the required
locations and times to calculate the flow variables. The finite difference
approximations are based on the Taylor series and express the derivative of the

function based on the discrete points as follows:
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The explicit scheme solves the flow for one point at a time. The calculation is
easier and the requirement of the memory is less than the implicit method, but the
stability of these schemes is restricted by the Courant number, which requires that the
computed wave celerity is greater than or equal to the actual wave celerity.

Various explicit schemes have been developed, including the Leap Frog method,
the Lax-Wendroff second order scheme, and Dronkers’ Explicit scheme (Abbott and
Basco, 1989; Dronkers, 1964). The implicit scheme is more robust and it has no
restriction for the time interval. It solves the equations for all points of the canal at
once for each time step. Although the system of equations is more complicated, the
accuracy is better and the time interval is larger than the explicit methods.
Preissmann and Cunge presented the first implicit scheme in the early 1960s (Liggett
and Cunge, 1975).

The implicit scheme (see Figure 3.4), expresses the variables at one point as a
function of the conditions at four surrounding points. These four points represent the
current and the advanced location and the current and the advanced time. Preissmann
and Cunge expressed the partial differential equations using a finite difference

technique and then linearized the equations.

Time

Distance

Figure 3.4
Preissmann implicit scheme
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The system consists of two equations with four unknowns at each node. For a
reach of N points, the system will contains 2N-2 equations with 2N unknowns.
Adding 2 boundary equations, a unique system of 2N equations and 2N unknowns is
obtained.

Other implicit schemes were presented in the 1960s and 1970s. The most
important of them is the Amein four points scheme (Amein and Fang, 1970). This
scheme expresses the variables at each point using four surrounding points, as in the
Preissmann scheme.

However, Amein and Fong suggested solving a system of nonlinear equations
instead of linearizing the equations. Amein and Fong solved the following unsteady

flow equations:

04 ou 04

U At = = 0 oot ee et ee e e e et a e e ra—aeaaraaetaararararaarraaaa 3.15
o o ! (3-15)
ou ou oy qu

Ot 0 (S S )= 0 e 3.16
o "o Poax gls, -5,) y (3.16)

Defining the variables at point M using the four points surrounding it as in Figure

3.5 as follows:

A
t - :—=
} ® Py : i+1
[ \ i
§ | At «M |
S I
[ "' - ‘7‘ o
[ IR !
X
Distance
Figure 3.5

Amein implicit scheme
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a“a(j” )=ﬁ[(a;” T N Lo | (3.17)
aaa(i\/f) A [(01/+1 +a;:11) (a +a )] ...................................................... (3.18)
%zL[(a;”+aﬁ) T 200 | (3.19)

Substituting equations 3.17 through 3.19 into equations 3.15 and 3.16, the

following 2 equations are obtained:

(y;:11 y,/+l y_%l‘)’})"'ﬁ(“}flﬁ) (y,+1+yl,:|1 y, J’I,H)

F’i =
2% At
i+1/2 i1/2
+—1-*(£) *(uﬁl +ul —u —u’”) (i) ............................. (3.20)
20¢ \T )2 ‘ T )02
g i+l i i+l i 1 i+l i+l i i i+/2
F, = 2 Ax (y,+1 tVia—Y;, VY )+ EA—t(u'M tu; U, u',)+ 2 Ax Ui
i+1/2
i+1 i+l i g i+1/2 g u
tvu' —u w2 s )T - =z -z g = 3.21
( Ujn J+l J ./) 4( f).,+1/2 (ij( J i l) q(AJ/‘-HQ ( )

As in the Preissmann scheme, the unsteady flow equations with the boundary
equations will generate a unique system of equations. The Amein four points scheme
is used in the model presented herein. Other implicit schemes and implementations
of the previous scheme for different studies can be found in the literature (Fread,

1971 and 1973, Quinn and Wylie, 1972, Amein and Chu, 1975, and Fread and Smith,
1978).

3.2.2.2 Solving the equations for the junctions

Several suggestions for routing the flow through channel junctions can be found
in the literature (Stoker, 1957, Li et al., 1983, Quinn and Wylie, 1972, Fread, 1973,
and Jotiffe, 1984). The procedure suggested by Fread (1973) can be summarized as

follows:
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1) Specify the initial conditions and the upstream boundary condition for the
principle river and the tributary; specify the downstream boundary condition for
the principle river.

2) Estimate the tributary flow Q,, occurring at the confluence for the time t + At.

3) Solve the implicit difference equations for the principle river by using the lateral
inflow Q,/Ax, along the finite reach Ax, (the width of the tributary). The solution
obtained for the water surface elevation at the midpoint of Ax_ is denoted as h,.

4) Solve the implicit difference equation for the tributary by using h, as the

downstream boundary condition. The solution obtained for the tributary flow is

denoted as Q.
5) If| Q.- Q| <€ (predetermined error tolerance), increment the time and return to
step 2; otherwise, use Q,; as an improvement estimate of the tributary flow Q,

and return to step 3.
The current study uses a technique that was developed based on this one to route

the flow through the junctions.

3.3 Governing equations and solution methods used in the model

The model solves the following unsteady flow equations

N (3.22)
Ox ox Ot
du 04 ,04 out  (A4y) B
A—+u—+u"—+A—+ —gAlS, =S, J+qu=0............... 32
a “a xS e (S1-5)+4 (3-23)

It uses the implicit scheme to express the previous equations mathematically,

using the Amein four-point scheme. For any arbitrary variable o at point M, the value
of o and the derivatives of it with respect to the unknowns can be expressed using the

variables at points a, b, ¢ and d (see Figure 3. 6) as follows:
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o = ;9) (@, +a,)+ g(ac TP D (3.24)
9% _ olax) = 0-0fe, - )0y =)} (3.25)
ox Ax
9% _ o(ar)= o ra)-(ara)l i, (3.26)
oy 2At
t A
. _d] !
,,, M J‘ M
I
53 !
a b
Distance X
Figure 3.6

Implicit rectangular net

Using Equations 3.24 to 3.26 with 6 equals 1.0, equations 3.22 and 3.23 can be
written as follows:

Ir . i u.i' _u‘i‘—l 17, i A‘i‘ _A.i'~l
2 =§[Aj—1 +A.i]* 1 Ax_/ +5[”./—1 +”j]* I A —+
A+ A —AT - A7
J Jj-1 J Jj-1
TG =00 e 3.27
AT q (3.27)
Ir, R YRR YR T T N i
I ZE[AJ—I +Aj]* I JZNJ - +5[”,/—1 +“./]*
A +A4 AT AT . 1AL A
J-1 J J-1 J 2Ni AN Rl | J-1
+lw? Wy Lt
— R
2N\i 2N\i i i
P i VRN €% e TSR
20 ! Ax Ax 2
i il, &1 i i i i ql i i
40, +A»,]+Z[A.,_] w4l +s,_l_]+§[uj_] 1 ]=0.0 (3.28)
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For the flow through the junctions, the continuity and the energy equations will be
used for the continuous canal, while the upstream boundary equation will be used for

the branched canal as in Figure 3.7. The equations for the continuous canal are as

follows:
N N 74
\\;\\ 1 = \\%”a ” )
/ \ \QB \ - -
Regulator — \‘:;,_\ Qz
) —— Q /\.\? /‘?\\" b \,’ -
— (I » 5
_ Ca® T
- co “{\“\)o“s . T 1
,,/{7/ g '///V /
Figure 3.7
A junction between two canals
Fi=A U — Ay ¥ Uy —Op oot (3.29)
2 )
1 2
F=z,+y+—-2z,~-y, E ................................................................. (3.30)

For the regulators, the continuity and the energy equations will be used between

sections 1 and 2, as shown in Figure 3.8.

For the continuity equation, the sluice gate equation will be used as follows:

Fl=A2*u2—cd*b*og*\/2g(yl+zl—yz—zz) ........................................ (3.31)
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Figure 3.8
Total energy before the gate and after the submerged jump

For the energy equation between sections 1 and 2, the head loss due to the

submerged jump will be added to the equations as follows:

2 2 2
R TR S O T e I (3.32)
2g 2g 2¢g

Where ¢ is the energy loss ratio due to the submerged jump as a function of the

upstream specific energy, and is expressed as follows:

For the constrictions, the continuity and energy equations will be used between
sections 1 and 2 (before and after the constrictions). The head loss due to friction will

be used in the energy equation. The equations are as follows:
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Fim Al U — Ay XUy e (3.34)
F, = LI Sy
y =z +y + Z, =¥, [ e (3.35)
2g
2
Q
Pl = Ll 50 | ettt ettt et ettt 3.36
. [Kz (3.36)

For the boundary conditions, a stage hydrograph will be used at the upstream of
the main canal, and a discharge hydrograph will be used at the downstream end of

each canal. The equations are as follows:

FLS W) = Z) = V) wvoveeeeeseeessvomssessessssssmsessesessesesesesereeesseseeseseeesesesesessssenee (3.37)
Py = ) = Ay ¥ lgay coveeveveeerssessessseseeeeeseseeseseeeseseeseeesesesseseseseseseseseesene (3.38)

For the upstream end of the other canals (i.e., all canals except the main canal),
the program will define the stage hydrograph as the average water level between

sections 1 and 2 (as shown in Figure 3.7) as follows:
i 1 i i
w =5<y‘ +zl+y2+zz) ............................................................................. (3.39)

Using these equations, the model uses the following method to route the flow:

o The flow conditions in the entire network will be solved at once. Each reach of
the canal between two branches will be divided into some user-specified distance
intervals (Ax).

a The initial conditions are specified for each point in the network.

0 The unsteady flow equations will be used for the internal points. For the
junctions, the regulators, the constrictions and the boundaries, the equations

previously presented for each are used.
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a The user will specify the boundary conditions at the upstream end of the main
canal and the downstream end of each canal. The program will calculate the
boundary condition at the upstream end of all canals other than the main canal.

o After defining the equations and their derivatives for all canals, the Newton-
Raphson procedure will be used to calculate the residuals, and the convergence
will be checked.

a After the convergence criterion is met, the results for the current time step will be
used as the initial data for the next time step, and the procedure repeats.

Using the previous equations for the entire network, a unique system of 2N
equations with 2N unknowns will be exist, where N is the total number of points in
the network. The system of equations should look those shown in Figure 3.9. The

Jacobian matrix, which is required by Netwon-Raphson method, will be 2N*2N as in

Figure 3.10.
F; y(t) - y = 0 ; - - G0 00 00 DO Q0 00 00 Q0 DO 00
172 Amu(Ax) + ..... - 0 i - - . . No 00 06 00 00 00 00 00
o e s+ s 00 0D 00 DO VO 0O VO 00 }
F, A u(A)+.....=0 G Conat 1
w.Canal I : |
00 00 . . L] . Q0 0 Do g6 ng an H
00 00 . . . s 00 00 00 00 00 00
.
0n 00 D b . . G0 0u Do 0o 0w 0o
= @0-@=0
00 00 00 00 VU 00 e . oo Do we 0n
y(t) - y = O GO 00 0O 0D 00 00 = = = w00 A
M0 00 00 00 00 00 = . - - 00 00
A u(Ax)+ ... = 0pCanal I +1 -
B : Conal -1
QO 00 00 00 0O 0D VY 00 . - - -
00 60 00 DG 00 00 VO VO a . . -
F 00 00 00 00 DO DO DY VO GO 0D . L]
*N
Lt ] | i -
Figure 3.9 Figure 3.10
System of equations Jacobian Matrix

The Jacobian matrix is a banded matrix that has a maximum of 4 columns for
each row. The factorization, forward and backward procedure will be used to solve
the system of linear equations. The Jacobian matrix will be saved as 2N*4 instead of
2N*2N, and data will be overwritten after being factorized. To take advantage of the
sparsity of the matrix, the factorization, forward and backward procedures will be

implemented as follows:
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For the factorization procedure:
0 The original matrix J will be factorized to lower matrix L and upper matrix U.
o The first row for each canal will not be computed.

a Only the first two items of each second row will be computed using the following

equations:
J2,1 %
L, = T & U,;=J,5 =Ly *U ;5 e (3.40)
1,1
a For the third row, only the first three items will be computed using the following
equations:
J S, =L *U
Ly=—t & L, =" 2 & U,,=J,,-L,,*U,, ..(3.41)

1,1 U2,2

a For the remaining rows, until the last row of each canal, the procedure is as
follows:

& For the lower matrix, only one item will be modified in the even rows as

follows:

and only two items will be modified in odd rows as follows:

L =tu gp,, =TTt eme (3.43)
EERYTET ’ Ugna
& For the upper matrix, only one item will be modified in the odd rows as
follows:
U s =T 55 =Ly MU s e (3.44)

and only two items will be modified in even rows, as follows:

/PR D AR J (3.45)

U,y =, =L, ¥U s coveeeineeiesensessseseeseeesesesesssssseseseses e (3.46)

o For the last row, both non-zero values will be computed as follows:

J,
Ly=—22 & U, =J,, =L, *U g oo (3.47)

(j-1).3

For the forward procedure:
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0 The first value for each canal can be calculated directly using the following

equation:

PAL) 2 mF (1) e e s eree (3.48)

a The values from the second one to the one before the last will be computed, each

two sequential rows together (unrolled=2), as follows:

B TR () R R ) L OO (3.49)
YA+ D) ==F@+D) =y —D)* L = Y@ ¥ Liyyg e, (3.50)
a The last value will be computed as follows:

yz*N - _FZ*N _y(Z*N—l) * L2*N,3 .......................................................... (351)

For the backward procedure:
o The last value of each canal can be calculated directly using the following

equation:

a The values from the one before the last to the second one will be computed, each
two sequential rows together (unrolled=2), as follows:

Ay = 29 _Axl(]i“)*U”“ ........................................................... (3.53)

i—)—Ax(i+D)*U,,_,, — Ax@*U,.
Ax(i—1)=y O e G M e O e (3.54)
U(i—l),2

g The first value will be computed as follows:

_ *
ax(y = 29 ﬁ(z) e, (3.55)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

3.4. Methods used to improve the robustness of the model

The robustness of the unsteady flow model is an important issue. There are two

issues that affect the robustness: zero or negative water depth and failure to meet the

convergence criteria. To address the occurrence of zero or negative water depths, a

new technique is suggested as follows:

A) For each time step, the program must guess the initial solution for the advanced

water levels and discharges. The program uses the data of the previous time step

(or initial data in the first time step) for this guess.

B) The program will run through iterations until convergence. During this running,

the data of the previous time step is saved.

C) Whenever the program finds a zero or negative water depth for the next time step,

the following is done:

&

&

&

The program will assume the point of this zero or negative water depth as an
artificial end for this canal, and it will ignore all the areas behind it.

It will automatically redefine the number of reaches, the number of structures
(regulators and bridges), and the number of distance intervals in the last reach
for this canal.

All branches behind this point will have complete water shortage and will be
ignored from the routing. .

If the point with zero or negative water depth is the first or second point in the
channel, the whole channel will be ignored from the routing.

The downstream boundary condition (discharge boundary condition in this
case) will be redefined, so it will contain the lateral outflow that was used in
the ignored parts.

The initial guess, which remains unchanged, will be assigned for the
associated points in the network.

The iteration counter will be reset to 1.

The program will return to step B.

D) For each time step, and if there is any water shortage in the network, the program

checks if the flow should return back to the water shortage areas. If the flow
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should return back to the water shortage areas, the program will add a new
distance interval with one or two joints based on the current end of the channel,
and assume the initial conditions at these joints. These initial conditions are an
approximated guess that should become actual value with the convergence of the
next time step. The program add the joints and assume the initial conditions on
the following basis:
& If the flow at the current end of the canal (Joint J in figure 3.11) satisfies
conditions in equations 3.56 and 3.57, the program will add a new distance

interval with one or two joints based on the location of the current end.

W, > BL, A+ Ax, F S (3.56)
Q) > AX G i (3.57)
/:8‘L » Sy ; Qf’\‘\(
N “eﬂc“ k“ ) o T o Gee. ‘ v\e"\"“ © T
Q&‘(, . S\ ng’-\(‘
o PRSIy ax(l i
1_77 G | p— R I X0 |
Figure 3.11 Figure 3.12
Current end of the canal is not an end of a Current end of the canal is an end of a reach
reach followed by constriction

E) If the current end of the canal is not an end of a reach (Figure 3.11), the program
will add one joint and define the initial condition for it using equations 3.58 and

3.59.

Wi =Wy = AX S (3.58)

Vi =0, =A%, ¥ ) Ay s (3.59)
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&5 If the current end of the channel is the end of a reach, and there is a regulator
or constriction following this reach (Figure 3.12), the program will add two
joints (J) and (J+1) and define the initial condition for them. The data in (J) is
equivalent to the data at (J-1), and the data at J+1 is calculated using equations
3.58 and 3.59.

& If the current end of the channel is the end of a reach, and there is a branch
following the reach (Figure 3.13), equations 3.57 to 3.59 are used to check
and define the initial conditions for joints J and J+1 as in the previous point.
Then equations 3.60 and 3.61 are used to check if the water should enter the
branch (Figure 3.14). If both conditions are satisfied, equations 3.62 to 3.65

are used to define the initial conditions for the first two joints in the branch

*
Wy > BLp, + AX g Sy (3.60)
* *
Q) > A%, ™G+ AX H @i (3.61)
N &ead“@ —
\Qr 3}/\ o C@/ N T
Y apienty, e M
B = %\\— T wﬂ““k =t \\
B\( Q¥ ™ N //// e Current water surface
R T S Watedepthincrease
- ﬂp{ _ T/ Branch’s bed lcvcx\\a‘é e e ter suface
& T | ax(D) ‘ N
Figure 3.13 Figure 3.14
Current end of the canal is the end of a reach When the water level in the main canal
followed by branch increases to enter the branch
Wi, = W eeiiiitenite ettt s ss e st (3.62)
Wyr = Wpr = AX 8 (3.63)
*
Vi = (A ¥ v, = Ay * @) Ay e (3.64)
Virap T Vet et (3.65)
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& The same procedure that was used to check the flow and add joints for
branches will be used in the case where the water is already found in the main
canal but it was not enough to enter the branch (Figure 3.14), and then it
becomes enough to enter it.

& In all previous cases, and when a new distance interval is added to a canal, the
downstream boundary condition of this channel will be redefined by
decreasing it by an amount equal to the lateral outflow of the added distance
interval. When there is no water shortage areas in the channel, the boundary
value should be returned to it original value.

To address the problem of non-convergence, whenever the program reaches the

maximum number of iterations without convergence, it does the following:
o The program multiplies the convergence criteria by a specified factor greater than

1.0, and it will give an error message.

a It will reassign the initial guess for all points in the network.

a The iteration counter will be reset to 1, and the procedure continues.
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CHAPTER 4
GENETIC ALGORITHM PARAMETERS

4.1 Introduction

GAs require the user to define the parameters used during the GA process such as
population size, crossover probability, and mutation rate. These parameters adversely
affect the performance of GA if not chosen suitably. However, finding a good value
for each parameter is a difficult task because of the following:

0 GA parameters interact with each other in a complex way, and a complete
analysis of their interactions is difficult to achieve.

0 Suitable parameters depend on the class of problems to be optimized. For instance
the noise in the function might require a larger population size (Goldberg et al.,
1992; Deb, 2001). Also the mutation-based approach and crossover-based
approach are suitable for different classes of problems based on the difficulty
(Deb and Agrawal, 1999).

0 The parameters must be chosen such that there is a balance between the
exploitation caused by the selection operator, and the exploration caused by
recombination and mutation operators. Otherwise, the GA may converge to local
optima or behave as a random search process.

According to Hart and Belew (1991), “GA parameters interact in complex ways,
making the task of finding a suitable parameter scenario not always straightforward.
In addition, a GA, which excels with a given class of problems, might yield poor
results when applied to another class.”

The study of GA parameters began in 1975 with the work of De Jong. He
constructed a test environment of five functions that present difficulty to gradient
techniques, and he used two different measures: online performance (measures of the
convergence), which is the average performance of all tested structures over the
course of the search, and offline performance (measures the ongoing performance),

which is the best performance achieved in the time interval. De Jong studied the
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effect of population size (N), crossover probability ( c), and mutation probability
(2., ), in addition to other parameters. De Jong made the following recommendations:

0 Increasing the population size was shown to reduce the stochastic effect, and
improve the long-term performance at the expense of slower initial response.

a Increasing Mutation rate was seen to improve offline performance at the expense
of online performance.

o Reducing the crossover rate resulted in an overall improvement in the
performance.

The De Jong equations have been revisited several times by other researchers.
Grefenstette (1986) restudied the De Jong equations with a meta-GA. This meta-GA
was used to locate the parameter scenarios which themselves were used for the GA
search. He used the De Jong equations with the following ranges:

a 16 different population sizes from 10 to 160 with increment of 10.
o 16 different crossover rates from 0.25 to 1.0 with increment of 0.05.
o 8 different mutation rates from 0.0 to 1.0.

He conducted two experiments for online and offline performance. Then he
validated his results by testing them against a standard GA (with parameter values
suggested by De Jong). During both the experiments and the validation, his
suggestions outperformed De Jong’s parameters. However, the difference was
statistically significant in only online performance. Grefenstette was aware that this
work has limitation as some recombination operators were ignored, and the tested
problems are unconstrained problems.

Goldberg (1985,1989) performed theoretical studies about the optimal population
size in binary encoding. He derived an expression for optimal population size based
on the number of new schemata per population number.

Schaffer el al. (1989) restudied the De Jong functions with 5 other test functions
to include a wider range of search characteristics. They used gray encoding instead of
binary encoding, and they used the following ranges for GA parameters:

a 6 different population sizes (10,20,30,50,100,200).
o 10 different crossover rates from 0.05 to 0.95 with increment of 0.10.
a 7 different mutation rates (0001,0.002,0.005,0.01,0.02,0.05,0.10).
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They were concerned only about online performance, arguing that offline
performance is surely quite different. They found that mutation rate has more effect
than was indicated by previous works. They stated that “ naive evolution (NE) (a GA
using only selection and mutation) does perform hillclimb-like search and given the
range of strategies that can be achieved by varying population size and mutation rates,
it is likely to be a powerful search algorithm, even without the assistance of
crossover.” They also stated that criterion used by Goldberg (1985), (for the optimal
population size) was too conservative, leading him to recommend unnecessarily large
populations, based on the argument that “a large population size can achieve a large
sampling of the space (exploration) at least in the initial generation. However, a large
population imposes a large cost per generation, and the exploration for schemata not
presented in the initial population can be achieved by the operators.”

Deb and Agrawal (1999) studied the interactions between different GA
parameters (crossover probability, mutation rate, and population size) for five
different functions representing different levels of difficulty. They solved the
functions using a mutation-based approach, crossover-based approach, and both
operators (crossover and mutation) approach. They concluded with the following
points:

o For unimodal and simple functions, the mutation-based approach has performed
better than the crossover-based approach.

o With a fixed number of function evaluations, a mutation-based GA performs best
with moderate population size.

0 When GAs are applied to more complex problems, mutation-based approach fails
miserably to solve these functions, while the crossover-based approach is able to
solve these problems.

g GAs with both crossover and mutation have performed better than only crossover
or mutation-based GAs in simpler problems.

Besides defining fixed values or theoretical equations for GA parameters, many
researchers attempt to adapt the parameters during the run, either through an adaptive
or self-adaptive process. Hinterding et al. (1996) attempted to adapt the population

size by using different sub-populations, adjusting their size at regular intervals based
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on the results. Arabas et al. (1994) attempted to use the concept of age, which is the
number of generations the chromosomes stay alive, to influence the size of the
population at each stage of the process.

For mutation rate, Fogarty (1989) used varying mutation rate, either increasing or
decreasing, and he concluded that varying the probability of mutation significantly
improved the performance of GA if the problem started by a conservative initial
population, but not in a randomly generated initial population. Janikow and
Michalewicz (1991) presented a non-uniform mutation, where the value at time (t+1)

is shifted from the previous value by A(¢,y). This A(z,y) returns a value between 0

and y, and it is closer to zero as the generation number (t) increases. Thus, the model

searches globally space in the first stages, but very locally in the last stages.

Most of the attempts to adapt crossover probability were by the means of using
different sub-populations, each of which has a different crossover probability, and
different mutation rates as well in some procedures. Through the process of the GA,
the subpopulations exchange their values, and shift towards the most successful
population. Some details about these attempts are given in Eiben et al. (1999).

Considering the previous studies described above, studying the optimal GA
parameters that should be used within the current model is an important issue as most
of the previous studied were done using binary GA operators, using binary or gray
encoding, with one point or two point crossover, while the current model uses real
GA encoding and parameters. Also, most of the previous works used explicit
equations and unconstrained problems to test these parameters, while the current
model uses a simulation model to evaluate solutions, so this section is intended to test
the recommended GA parameters within the current model.

The following issues control the range to be tested for each parameter:

a The cumulative works in GA parameters gave evidence about an expected range
for cach parameter, although there is no fixed number. An example of this is what
was stated by Eiben et al. (1999) about crossover probability: “Currently, it is
commonly accepted that the crossover rate should not be too low and values

below 0.6 are rarely used.” Thus the current study will just go slightly outside this
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range, and the crossover probability is tested from 0.5 to 0.9. The same type of
procedure was used to define the range for other parameters.
a The computational time requirement is very large for the current model, which
makes it very hard to test big ranges of all parameters.
Considering the interaction between the parameters, and the factors that can affect
them, the goal of this chapter is to provide a guidelines for the user of the model
about the recommended ranges for the parameters and the effect of decreasing or

increasing them, rather than giving a fixed values that must be used.

4.2 Population size (N)

Selecting a suitable population size is an important decision that affects the GA
performance. Based on Grefenstette (1986), “GAs normally do poorly with very
small populations because the population provides an insufficient sample size for
most hyper-planes. A large population discourages premature convergence to sub-
optimal solutions. On the other hand, a large population requires more evaluations per
generation, possibly resulting in an unacceptably slow rate of convergence.”
However, the results don’t always support that idea that the larger population size will
always converge to better optimal point. Based on Syswerda (1991) “General wisdom
dictates that a larger population will work more slowly but will eventually achieve
better solutions than a smaller population. Experience indicates, however, that this
rule of thumb in not always true, and that the most effective population size depends
on the problem being solved, the representation used, and the operators manipulating
the representation.” Also, according to Deb and Agrawal (1999), “when GAs are
applied to simpler problems, an interesting feature of mutation-based GAs is
observed. There seems to be two distinct ranges of population sizes (with a dip in
performance in intermediate population sizes), where these GAs work the best.”

Some of the suggestions made for population size in the literature are:

@ N =50 to100 (De Jong, 1975)

Q N =30 (Grefenstette, 1986)
o N =20to 30 (Schaffer et al., 1989)
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In the current study, four different population sizes are tested (26, 50, 76, and
100).

4.3 Crossover probability (p,)

Crossover probability defines the ratio of the population that will exchange its
data during the recombination process to produce new strings (children). The rest of
the population will pass as they are to the next generation. Based on Grefenstette
(1986), “If the crossover rate is too high, high-performance structures are discarded
faster than selection can produce improvements. If the crossover probability is too
low, the search may stagnate due to the low exploration rate.”

Some of the suggestions made for crossover probability in the literature are:

a p,=0.60 (Delong, 1975)
a p, =095 (Grefenstette, 1986)
o p,=0.751t0 095 (Schaffer et al., 1989)

In the current study, five different crossover probabilities are tested (0.5 to 0.9

with increment of 0.1).

4.4 Mutation rate (p,,)

Based on Grefenstette (1986), “A low level of mutation serves to prevent any
given bit position from remaining converged to a single value in the entire population.
A high level of mutation yields an essentially random search.”

Some of the suggestions made for mutation rate in the literature are:

a p, =0.001 (DeJong, 1975)
o p, =0.01 (Grefenstette, 1986)
a p, =0.005 to 0.01 (Schaffer et al., 1989)

Q p, =% as (L) is the bit-string length. (Introduced by Muhlenbien, (Eiben et al.,

1999)).
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In the current study, three different mutation rates are tested (0.001, 0.01 and
0.05).

4.5 Blend crossover extension (a)

Blend crossover extension () defines the range of real number variables that
will be used to randomly select the children in the recombination process. Higher
values of blend crossover extension have a better chance to explore the search space
with the risk of discarding good values that were already found; however, smaller
values have a better chance for convergence. According to Deb (2001), “BLX-a has
an interesting property: if the difference between the parent solutions is small, the
difference between the offspring and parent solutions is also small.” This also brings
the point that if the difference between the parent solutions is small, the effect of
a decreases, and for small a it may be negligible. Vice versa, if the difference is
high, the higher values of a@ may affect the convergence. This may require an
adaptive process for choosing a , which may be changeable based on the difference
between parent solutions or through generations. However, in the current study, we
will limit ourselves to the fixed values of a . As was stated by Deb (2001), a = 0.5 is
the best-suggested value for blend crossover extension. In the current study, this value

(0.5) will be compared with smaller values (0, 0.1, and 0.25)

4.6 Analysis

The GA parameters are tested as follows:

Qo First, all combinations of crossover probabilities, mutation rates, and blend
crossover extension are tested for each scenario of the case study.

0 The population size will be tested with different crossover probabilities (as it is
the one that has the higher range), with fixed values for mutation rate and blend
crossover extension.

o The multiobjective technique, proposed by Coello (2000) (described in detail in

the next chapter) is used as a constraint handling technique.
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For each run, two different values will be measured:
O Best feasible solution found during the whole run (measure 1).
o The improvement of the minimum feasible solution during the run (measure 2).
The objective of the second measure is to check if the technique will stop at a
local optima or if it will keep improving to the end. This measure is defined using the
distance from the optimal feasible value, and it is calculated using the following
procedure:
o The best feasible obtained from all runs in the scenario is noted, and it is
considered as the global optimum.
a For each run, generations are divided into sub-generations.
a For each sub-generation, the minimum feasible solution is defined.

o The distance from the optimal value is calculated as follows:

DFO(l) = JSZ:J * (SG—gI:Af—M) .................................................. 4.1)
Where:
DFO distance from optimal value.
SG number of sub-generations.
SG_M minimum value achieved in the sub-generation.
GM global optimal (best value achieved in the scenario).

According to the previous equation, the inability to get closer to the global
minimum in the later sub-generation is worse that the inability to get closer to it in the
early sub-generations.

There are also 4 different tests that will be performed to define the best value for
cach parameter:

o Test 1, (Mean values): The difference between means of the runs that are related
to each parameter is tested. First multiple means comparison will be used. If the
difference between the means is not confirmed statistically, means will be drawn

to explore which parameter performs better. Multiple means comparison refers to
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making several tests for statistical significance between means within a group of

means. The null hypothesis that is tested is:
Hyipy = py == pig
The alternative hypothesis is

H | :not all means are equal

Rejecting the null hypothesis means that there is significant difference between
the means. The statistical technique used in this case is called single-factor
ANOVA or F-test. MCM can be categorized into single-step or stepwise
procedure. Stepwise procedure makes comparisons on a series of steps, where the
result of the current step influences which, if any, comparisons are made in the
next step. They can be divided into step-down, and step-up. Duncan multiply
range tests are an example of stepwise/step-down procedure, and it is used in the
current study with confidence level 90% (ALPHA=0.1). This test will determine
if the difference between the means of the different values of each parameter
reflects a true difference between the means or if it is a random effect. Besides
using multiple means comparison, the means of all parameter values are presented
in different charts.

Q Test 2, parameter interaction charts: these charts are drawn between crossover
probability and mutation rate for different measures and different scenarios of the
case study. Regarding the population size, a parameter interaction chart between
the population size and the crossover probability will be drawn. Some examples
from these parameter interaction charts are presented to explore which parameter
dominates the parameter interaction chart.

0 Test 3, comparing similar runs: comparisons between runs that share the same GA
parameters (more than the one in that test) are made, and the number of times
each parameter wins is recorded. For example, with crossover probability, from
the runs that have the same mutation rate, and the same blend crossover
extension, the crossover probability that gives the best solution is the winner.

o Test 4, parameters of the best solution: the parameter values that resulted in the
best solution for each measure in each scenario of the case study are recorded and

presented.
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4.7 Results

The results of the different tests for different scenarios of the case study are
presented here. A discussion about each test is given after presenting the results.
Section 4.8 presents a summary of all results with a suggestion about the best
parameter values that for this model. The parameters that perform the best for each
scenario will be validated by testing them against other parameters with different

initial seed values.
4.7.1 Test 1 (Means Values)
Figure 4.1 presents an example of SAS program (for the crossover probability

second measure of the third case study), and Table 4.1(a-d) presents a summary of the

output of SAS program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

Multiple Means Comparison (MMC) 24

CROSSOVER PROBABILITY 12:57 Tuesday, July 27, 2004
MEASURE 2 (SET 3)

The ANOVA Procedure
Duncan's Multiple Range Test for FITNESS

NOTE: This test controls the Type I comparisonwise error rate, not the
experimentwise error rate.

Alpha 0.1

Error Degrees of Freedom 55

Error Mean Square 0.14113
Number of Means 2 3 4 5
Critical Range .2566 L2711 .2805 .2872

Means with the same letter are not significantly different.

Duncan Grouping Mean N RATE
A 3.2353 12 0.9
A
B A 2.9882 12 0.8
B
B 2.8634 12 0.6
B
B 2.7534 12 0.5
C 2.3931 12 0.7
Figure 4.1
Example of SAS output

Crossover probability for measure 2 of the third scenario of the case study

In Figure (4.1), crossover probability parameters are divided to three groups based
on the mean value of different runs. The maximum (worst) mean is related to group

A, which includes p, =0.9 and p, =0.8 . Group B includes p, =0.8, p.=0.6 and
p. =0.5 . The best mean value is related to group C, which has p, =0.7 and it is the

best value for crossover probability for this measure. There is an overlap between the
first two groups, meaning that the difference is not significant. Also, from Figure
(4.1), Alpha=0.1, which means that these results are obtained with 90% confidence

level.
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Tables 4.1(a) to 4.1(d) present summary of MMC output for different parameters.
Table 4.1-a Summary of MMC output for crossover probability

Results
S ) Measure 1 Measure 2
cenarios Best Best
> >

Pr>F Value Pr>F Value
Scen;ano 0.2900 - 0.01508 --*
Scen;arlo 0.4766 - 0.3787 --*
Scegarlo 0.0008 0.7 0.0001 0.7

Table 4.1-b Summary of MMC output for mutation rate

Results
. Measure 1 Measure 2
Scenarios Best Best
> >

Pr>F Value Pr>F Value
Sce';am 0.0367 | 0.01&0.05 | 0.1462
Sce‘;am 00002 | 0.01&0.05| 0.0003 |0.01&0.05
Scel;arlo 0.2286 - 0.6264 -

Table 4.1-c Summary of MMC output for blend crossover extension

Results
S . Measure 1 Measure 2
cenarios Best Best
> >

Pr>F Value Pr>F Value
Scel;arlo 0.8676 - 0.8266 -
Scel;arlo 0.1154 . 0.0378 0.5
Scex;arlo 0.2328 - 0.3053 -
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Table 4.1-d Summary of MMC output for population size

Results
Scenarios Measure :}est Measure f;est
> >
Pr>F Value Pr>F Value
Sceliarlo 0.1898 % 0.0656 -*
Scel;arlo 0.3882 - 0.4442 --
Scel;arlo 0.0720 ¥ 0.0817 -*

Remarks about the previous table:

Pr>F Check the validity of the data. The data is valid if this value < 0.05.
-- All means are in one group (there is no significant difference between

the means)
--*¥ Means are divided to many groups, but there is an overlap between the
groups. (Still there is no significant difference between the means)

From Table (4.1), the following points could be noticed:
0 Regarding crossover probability, it is highly likely that p, = 0.7 is the best value

for the third scenario. It is statistically confirmed in both measures. There are no
statistically confirmed values for the first two scenarios.

o For mutation rate, higher mutation rates (p, =0.01 and p, =0.05) perform

better for the first two scenarios. There are no statistically confirmed values for
the third scenario of the case study.

0 Recalling that Deb and Agrawal (1999) stated that in simpler problems, a
mutation-based approach performs better, while in complex problems, a
crossover-based approach performs better, a similar observation might be made
here that in complex problems, there is only an evidence about the best value of
the crossover probability, and in simpler problems, there is only an evidence
about the best value of the mutation rate.

a For blend crossover extension, a = 0.5 is the best value for the second measure
of the second scenario. There are no other statistically confirmed values.

o Regarding population size, no value is confirmed statistically.
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Given that the MMC didn’t confirm a winner for many cases, the difference
between the means of measure 1 and measure 2 for runs using different GA parameter
values is presented in Figures 4.2 to 4.5. The best mean value is considered as a
reference and it has zero value, while the difference between other means values and
this best mean value is considered.

o Regarding crossover probabilities (Figure 4.2), p, = 0.7 is the best value for both

measures of the third scenario, with a clear difference than other values. For the

second scenario, p,=0.6 is the best value in both measures. For the first
scenario, p, =0.8 is the best value in both measures with very small difference
than p, =0.6 in the second measure. In general, the difference between values in

the third scenario is higher that the differences in the first two scenarios.

o Regarding mutations rates (Figure 4.3), higher values ( p,, =0.01 and p, =0.05)
are the best vales for all scenarios. p, =0.05 is the best value for both measures

of the third scenario. p, =0.01 is the best value for both measures of the second

scenario. For the first scenario, the best value is different between both measures.

0 Regarding blend crossover extension (Figure 4.4), a =0.5 is the best value for
both measures of second and third scenarios, with clear difference from the other
values. For the first scenario, a =0.0 is the best value, with very small difference
from a =0.5 in the first measure and slightly big difference from a =0.5 in the
second measure.

o Regarding the population sizes (Figure 4.5), N=50 is the best value for both
measures of the third scenario. N=26 is the best value for the first measure of the
second scenario, with very small difference than N=76. N=76 is the best value of
the second measure of the second scenario. For the first scenario, N=100 is the
best value for the first measure, and N=76 is the best value of the second measure
with small difference than N=100.
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4.7.2 Test 2 (Parameter interaction charts)

The following figures present examples of the parameter interaction charts for
different scenarios of the case study. The parameter interaction charts are drawn
between crossover probabilities and mutation rates. It could be noticed that the
differences in the second measure are higher than the differences of the first measure
for all scenarios. Figure 4.6 presents four examples for the first scenario of the case

study. For the second measure with @ =0.1 and a =0.25, higher mutation rates

perform better for most of crossover probabilities, although p, =0.001 has best

result with p, = 0.9 in one of the figures.

—~
-
5
2
@
o
2
L]
1]
o
g
=
@

Measure 1

Blend crossover extension =0.10 Measure 2

Blend crossover extension = 0.10

%
H
2
£
g
2
[

Measure 2
Blend crossover extension = 0.25

Measure 2
Blend crossover extension = 0.0

Fitness values (m?)
Fitness values (m?)

Cro,
830,
& °r Brg

7 Paby
8

Figure 4.6
Parameter interaction charts for the first scenario of the case study

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

For crossover, the best values are p,=0.5, p,=06 and p, =0.8. The

significance of these values could be noticed from different interaction charts, but no

specific value is consistent in all figures. Also, p, = 0.9 has the best value for one of

the figures. In general, evidence about mutation rate can be noticed from some charts,

but there are no significant effects between crossover probabilities in this scenario.
Figure 4.7 presents examples for the second scenario of the case study. From this

figure, increasing mutation rate is associated with an improvement in the results. This

is more clear in the second measure. There are no clear evidence about the best

crossover probability, but p, =0.5, p, =0.6 and p, =0.8 have good results.
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For the third scenario of the case study (Figure 4.8), p. =0.7 outperform all

other crossover probabilities for both measures. There is no any clear evidence about

the best mutation rate.
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Parameter interaction charts of the third scenario of the case study

These parameter interaction charts for all scenarios of the case study support the
results of test 1 regarding the following points:

o Crossover probability p, = 0.7 is the best value for the third scenario.

a There is no clear evidence about the best crossover probability value in the first

two scenarios. p, =0.5, p, =0.6 and p, =0.8 have good results. Also, p, =0.9

has some good results in the first scenario.
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o Higher mutation rates ( p, =0.01 and p, =0.05) perform better in the first two
scenarios.

o There is no clear evidence about the mutation rate in the third scenario.
Figure 4.9 presents parameter interaction charts for the population sizes for

different scenarios of the case study. The following points can be noticed:

o In the first two scenarios of the case study, higher population sizes (N=76 and
100) perform consistently well for all crossover probabilities. Although smaller

populations sizes have the smallest point in some case, it is not consistent between

different crossover probabilities.

0 N=50 is clearly the best population size for the third scenario of the case study.
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60 runs were conducted for each scenario of the case study for all combinations of

five crossover probabilities, three mutation rates, and four blend crossover extension

values. The runs that share the same parameters are as follows:

o For each crossover probability, there are 12 categories have the same mutation

rate and blend crossover extension.

o Similarly, for each mutation rate, there are 20 different categories, and for each

blend crossover extension, there are 15 different categories.

o For each population size, there are five different categories have the same

crossover probability.

Table 4.2 presents the results of the comparisons for all of these categories, and

how many each parameter wins from these comparisons.

Table 4.2(a-d): Test 3: number of wins for each value of the GA parameters

Table 4.2 (a): Number of wins for each crossover probability value

Different measures

Different measures

Different measures

IS.'::)S:&V];';I of scenario 1 of scenario 2 of scenario 3
1 2 1 2 1 2

0.5 4 1 1 4 1 2

0.6 4 7 5 5 ! 0

0.7 1 0 1 1 9 8

0.8 2 2 3 1 1 2

0.9 1 2 2 1 0 0

Table 4.2 (b): Number of wins for each mutation rate value

Different measures

Different measures

Different measures

M‘l'zt:ttzon of scenario 1 of scenario 2 of scenario 3
1 2 1 2 1 2
0.001 6 5 0 3 6 g
0.01 9 8 11 9 6 g
0.0 5 7 9 8 8 8

Table 4.2 (¢): Number of wins for each blend crossover extension value

Blend Different measures | Different measures | Different measures
Crossover of scenario 1 of scenario 2 of scenario 3
Extension 1 2 1 2 1 2

0.0 3 4 4 3 0 1
0.1 5 3 1 2 2 3
0.25 4 2 0 2 4 5
0.5 3 6 10 8 9 6
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Table 4.2 (d): Number of wins for each population size value

P . Different measures Different measures Different measures
opulation . . .
Size of scenario 1 of scenario 2 of scenario 3
1 2 1 2 1 2
26 0 0 3 2 0 0
50 2 2 1 1 4 4
76 1 2 1 1 0 0
100 2 1 0 1 1 1

o Regarding crossover probability (Table 4.2(a)), and for the first two scenarios of

the case study, p,=0.5 and p,=0.6 have the best results for both
measurements. p_ = 0.6 performs better. For the third scenario of the case study,
p, = 0.7 is the best value for both measurements.

0 Regarding mutation rate (Table 4.2(b)), p,, =0.05 has the best results for the third
scenario, and p, =0.01 has the best results for the first and second scenarios.

o Regarding blend crossover extension (Table 4.2(c)), a =0.5 is the best value in
all cases except for the first measure of the first scenario.

o For population size (Table 4.2(d)), N=50 is the best value in the third scenario of
the case study. The difference between this value and other values is clear. N=50
has also better results in the first scenario, and N=26 has better results in the
second scenario, but the differences are not clear as in the third scenario.

There are some points, which are consistent with the previous results, such as:

o p, =0.7 and N=50 are the best values for the third scenario of the case study.
0 Higher mutation rates ( p,, =0.01 and p, =0.05) outperform p, =0.001 for all

scenarios.

For crossover probabilities of the first two scenario, this test explores that smaller

crossover probabilities (p,=0.5 and p, =0.6) outperform higher values
(p. =0.8 ). Also, there is no clear evidence about the best population size in the first

two scenarios.
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4.7.4 Test 4 (parameters of the best solution)

Table 4.3 presents the parameters for the value found in any run for each measure

for each scenario of the case study.

Table 4.3(a-d): Parameters of the best value found for each measure.

Table 4.3 (a): Parameters of the best value for the first scenario

of the case study
a P D,
Measure 1 0.5 0.05 0.5
Measure 2 0.5 0.05 0.5

Table 4.3 (b): Parameters of the best value for the second
scenario of the case study

a P b,
Measure 1 0.5 0.05 0.6
Measure 2 0.5 0.05 0.6

Table 4.3 (c): Parameters of the best value for the third
scenario of the case study

a Pm P
Measure 1 0.25 0.01 0.7
Measure 2 0.25 0.01 0.7

Table 4.3 (d): Population sizes of the best value for different
scenarios of the case study

Population size

Scenario 1

Scenario 2

Scenario 3

Measure 1

50

26

50

Measure 2

50

26

50

o Regarding blend crossover extension, higher values (o =0.25 and a=0.5)

perform better. a =0.5 is the best value for both measurements of the first two
scenarios of the case study. a = 0.25 is the best value for both measurements of

the third scenario of the case study.

o Regarding mutation rate, higher values ( p, =0.01 and p, =0.05) perform better.

For the first two scenarios of the case study, p, =0.05 is the best value for both
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measurements. For the third scenario of the case study, p, =0.01 is the best value
for both measurements.

0 Regarding crossover probability, the best value increases from p, =0.5 to
p,=0.7, while increasing the difficulty of the problem and increasing the

number of decision variables.
0 Regarding population sizes, N=50 is the best value for the first and third

scenarios, and N=26 is the best value for the second scenario of the case study.

4.8 Summary

A summary of the results of the different tests previously described is presented
here.
o Crossover probability:

& Test 1 (Mean values):

v’ There is statistical confidence that p,=0.7 is the best crossover

probability for the third scenario.

v' p,=0.6 and p, =0.8 have best means for the first and second scenarios,

but they are not confirmed statistically.
& Test 2 (parameter interaction charts):

v" There is no clear evidence for the first and second scenarios. p, = 0.5,
p.=0.6, and p,=0.8 are the best values for these two scenarios.

p. =0.7 is the best for the third scenario.
& From test 3 and test 4, p, =0.7 is the best value for the third scenario and

smaller values p,=0.5 and p,=0.6 are the best values for the first two

scenarios.
& Conclusion:

v p, =0.7 is the best crossover probability for the complex scenarios of this

model. This is confirmed by all tests. Smaller values (p,=0.5 and
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p. =0.6) are the best values for simple scenarios of the model, but this is

not confirmed by all tests.
0 Mutation rate:
& Test 1 (Mean values):

v For the first two scenarios of the case study, higher mutation rates
(p,=001 and p,=0.05) are the best group with no statistical
difference between them. For scenario 3 of the case study, there is no
statistical evidence.

v' p,, =0.01 has the best mean for the first two scenarios. p, =0.05 has the
best mean for the third scenario.

& Test 2 (parameter interaction charts):

v' The results are consistent with the first test. The range of p, =0.01 to
p,, =0.05 perform better in the first two scenarios of the case study, while
there is no clear evidence about the third scenario.

& From test 3 and test 4, higher mutation rates p,, = 0.01 and p, =0.05 are the
best values for all scenarios, but the best of them is different from test to the
other. For the third scenario, p, =0.05 is the best value in test 3, and
p,, =0.01 is the best value in test 4. The opposite is true for the first two

scenarios.
& Conclusion:

v’ Statistically, p, =0.01 to p, =0.05 is the best range for the mutation rate

in the first two scenarios.

v From other tests, it looks like that p, =0.01 is the best value for simpler

scenarios, and p, = 0.05 is better for complex scenarios of the model.
o Blend crossover extension:
& There is only statistical evidence that a =.5 is the best value for the second
measure of the second scenario. From other tests, it looks like that this value is
the best value for all scenarios. Although a =0has a better mean in the first

scenario, this is not confirmed by other tests.
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o Population size:

& Test 1 (Mean values):

v' There is no statistical evidence about the population size.

v" N=50 has the best mean for the third scenario. For the first two scenarios,
the best mean is different from one measure to the other.

& Test 2 (parameter interaction charts):

v" N=50 is the best value for the third scenario. For the first two scenarios,
higher populations sizes are more stable for most of the runs, although
small population sizes have some good results.

& From test 3 and test 4, N=50 is the best value for the third scenario, and
smaller population sizes (N=26 and 50) are the best values for the first two
scenarios.

& Conclusion:

v' N=50 is the best population size for the complex scenarios of the case
study.

v There is some doubt about the best population size for simpler scenarios.
Some tests support that higher population sizes are the best, while others
support that smaller population sizes are the best. It is the same
phenomena mentioned by Deb and Agrawal (1999), where “two distinct
ranges of population sizes (with a dip in performance in intermediate

population sizes) works the best.”

4.9 Validate the results

To validate the previous results, and to check the results that have some doubt,
different alternatives for each scenario are tested in this section with different initial
seed values, and with different constraint-handling technique for each scenario.

For the third scenario, where most of the parameters are confirmed, only two
alternatives are tested. The first alternative represents the recommended parameters,

and the second alternative represents different parameters for the comparison.
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For the first and second scenarios, as there is doubt about some parameters, five
different alternatives are tested. The first four alternatives represent different stages of
the recommended data, and the fifth represents the different parameters for the
comparison.

Table 4.4 represents the parameters for all of these alternatives. The constraint-
handling techniques that are used with different scenario are (See Chapter S for the
explanation of each technique):

o Multiobjective technique is used for the first scenario.
o Adaptive penalty technique, with original tournament selection is used with the
second scenario.

o Stochastic tournament selection is used with the third scenario.

Table 4.4: GA parameters for different alternatives
GA Parameters

N pC pm a

Alternative 1 76 05 [ 005} 0.5
Alternative 2 76 0.8 | 005 | 0.5
Scenario 1 Alternative 3 76 06 | 005 0.5
Alternative 4 76 0.6 | 0,05 | 0.0
Alternative 5 50 0.7 10.001] 0.5
Alternative 1 76 05 | 005 | 0.5
Alternative 2 76 0.6 | 0.05 | 0.5
Scenario 2 Alternative 3 76 06 | 0.01 | 0.5
Alternative 4 26 0.6 | 005 | 0.5
Alternative 5 50 0.7 10.001| 0.5
Alternative 1 50 07 | 005 ] 0.5
Alternative 2 76 0.5 10.001] 0.5

Scenarios Alternatives

Scenario 3

The results are presented in Figures 4.10 to 4.12.

o Regarding the first scenario, alternative 3 has the best results. The worst average
is related to alternative 5 (non-recommended parameters). Average values of
alternatives 1 and 2 are close to the average value of alternative 5.

a Regarding the second scenario, the best results are obtained by alternatives 2 and
3. The averages are very close to each other. However, alternative 2 slightly

outperforms alternative 3. The worst results are related to alternative 4, which
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uses a small population size (N=26). Except alternative 4, the recommended
values (alternatives 1 to 3) outperform other values (alternative 5).
0 Regarding the third scenario, the recommended parameter values (alternative 1)

outperforms the other values (alternative 2) for most of the runs and for the

average.
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Different alternatives of recommended parameters for the first scenario
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4.10 Conclusions and future work

An experiment was conducted to define the best values for GA parameters for the
current model. The importance of defining these parameters stems from the fact that
most of the previous works regarding this point were done using binary encoding and
operators, and with explicit equations and unconstrained optimization models. The
current model evaluates the strings using a simulation model, and uses real GA
encoding and operators.

All combinations of the values of crossover probabilities, mutation rates, and
blend crossover extensions have been tested. Population sizes were tested for
different crossover probabilities. The best parameters values obtained were validated
by testing them against other parameters values with different initial seed values.

As a conclusion of this work, it is likely that the following values are most
suitable for the GA parameters:

@ The best crossover probabilities values are between 0.6 and 0.7. Higher values

work better for scenarios and higher number of decision variables.

@ The best mutation rates are between 0.01 and 0.05. Higher values (0.05) are

recommended for most of the scenarios.

@ The best blend crossover extension value is 0.5. This value is recommended

for all scenarios of the model

o The best population sizes are between 50 and 76. Smaller population sizes

work better for harder scenarios and higher number of decision variables.

For future work, the adaptive and self-adaptive techniques may be useful for the

current model, as the best parameter values depend on the scenario.
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CHAPTER §
CONSTRAINT-HANDLING TECHNIQUES

5.1 Introduction

The presence of the constraints always increases the difficulty of an optimization
problem, whether using a gradient-based or evolutionary optimization technique.
Evolutionary techniques are affected more since they cannot handle constraints
explicitly. This inability to handle constraints requires using a heuristic to guide the
search toward feasible and good-performing solutions. However, this heuristic is
affected by many things, including the complexity of the problem to be solved, type
of constraints, and number of constraints. In this chapter, the performance of various
constraint handling techniques will be compared to determine which techniques
perform best for the current model, which of them should be used with simpler
problems, and which are more suitable for more complex problems. Various
techniques from the literature, as well as two new proposed techniques, are
investigated with the goal being to check which of these techniques is more suitable
for this model based on the level of difficulty of the problem to be solve and based on
the number of constraints. According to Deb (2001), Michalewicz and Schoenauer
(1996), and Michalewicz et al. (2000), most constraint handling techniques which
exist in the literature, can be classified into the following five categories:

o Methods based on preserving feasibility of solutions.
Methods based on penalty functions.

Methods biasing feasible over infeasible solutions.
Methods based on decoders.

Hybrid methods.

In the current study, most of the techniques investigated are related to the second

0O O O o

category, which is penalty functions, including static, dynamic, adaptive and self-
adaptive forms. These methods also incorporate the third category, as each penalty

function will be tested twice, with one of these implementations biasing feasible over
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infeasible solutions. Other methods are also related to the third category, including

multiobjective and stochastic methods.

5.2 Techniques investigated for the current model

Techniques that are tested in the current study can be categorized as follows:
Penalty functions techniques.

Multi-objective optimization techniques.

Self-adaptive techniques.

Stochastic techniques.

0O 0O 0O o ©

Adaptive techniques.

5.2.1 Penalty Functions

Penalty functions are by far the most commonly used constraint-handling
technique. Penalty functions essentially degrade the fitness of solutions that violate
constraints by including a penalty term in the fitness function.

According to Michalewicz et al. (1994), the rule to design a penalty function is
“the penalty should be kept as low as possible, just above the limit below which
infeasible solutions are optimal.” However, as the authors stated, it is difficult to
implement this rule effectively.

Also, according to Michalewicz (1995), the appropriate choice of penalty function
depends on
The ratio between sizes of the feasible and the whole search space.

The topological properties of the feasible search space.
The type of the objective function

Number of variables

Number of constraints

Types of constraints

C 0 0O 0o o o 0o

Number of active constraints at the optimum
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There are no specific regulations for creating penalty functions, but Richardson et
al. (1989) gave guidelines that should be considered while selecting the penalty
function, which are:

o Penalties that are functions of the distance from feasibility performer better than
those that are only functions of the number of violated constraints.

a For a problem having few constraints and few feasible solutions, penalties which
are solely functions of the number of violated constraints are not likely to produce
any feasible solutions.

o Good penalty functions can be constructed from two quantities: the maximum
completion cost and the expected completion cost. The completion cost refers to
the distance to feasibility.

Q Penalties should be close to the expected completion cost, but should not
frequently fall below it. The more accurate the penalty, the better will be the
solution found. When a penalty often underestimates the completion cost, the
search may fail to find a solution.

There are many approaches to implement penalty functions. The first approach is
static penalty functions, for which the parameters are kept constant during the whole
run. This is the easiest form of penalty function to implement, but may be the least
efficient one. According to Eiben et al. (1999), “any static set of parameters, having
the values fixed during an EA run (parameter tuning), seems to be inappropriate.”
The reason for this, as they stated, is that “EA is an intrinsically dynamic, adaptive
process. The use of rigid parameters that don’t change their values is thus in contrast
to this spirit.”

The second approach is dynamic penalty functions, where the parameters are
changing during the run. The easiest way is to change the parameters based on the
number of generations. According to Siedlecki and Sklanski (1989), “the genetic
algorithms with a variable penalty coefficient outperform the fixed penalty factor
algorithms.” Harrell and Ranjithan (1999) tested 22 different penalty functions with a
watershed management design problem including constant, increasing, and
decreasing penalty functions, and they stated, “In general, increasing the penalty

value with generation seems to perform the best in most cases”.
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Another way is to change the penalty function based on some criteria instead of
changing it based on the generation number. An example of this is what was propoSed
by Michalewicz and Attia (1994) based on the idea of simulated annealing. In their
technique, the penalty coefficient is changed once in many generations after the
convergence to local optima.

Another approach of penalty functions is to adapt the penalty coefficients based
on the feedback of the previous generations. Many techniques have been proposed
regarding this approach. Bean and Hadj-Alouane (1992) introduced a procedure in
which the penalty increases or decreases based on whether the best individual in the
last k generations was always or was never feasible. Also Homaifar et al. (1994)
suggested creating several levels of violations (/) for each constraint, and defining a
penalty function for each constraint and each level of violation. A new adaptive
technique is proposed and tested in the current study.

Another way of implementing penalty functions is to use different penalty
functions simultaneously with different sub-populations, as was introduced by Le
Riche et al. (1995).

Also some researchers, including Coello (1999) used self-adaptive techniques,
whereby the GA itself is used to find the best penalty parameters.

Other penalty techniques give superiority to feasible solutions over infeasible
solution regardless of the fitness values, including those proposed by Powell and
Skolnick (1993) and Michalewicz and Xiao (1995). In the current study, each penalty
function will be tested once using original tournament selection, and again using
tournament selection with superiority of feasible solutions.

Regardless of its widespread use in GAs, penalty functions have the following
weaknesses:

o The requirement to fine-tune penalty parameters, which makes the penalty
functions problem dependent.

g Penalty functions, especially in the static form, don’t get any feedback from the
search.

0 The coefficients in the penalty function may lead to under-penalization or over-

penalization, which means that the penalty terms could be too small to influence
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the selection of individuals, or so large that the objective function has little or no
influence (Runarsson and Yao, 2000).
Among penalty function techniques, three different techniques will be tested for

the current model, which are described in the following subsections.

5.2.1.1 Additive Static Penalty (ASP)

In this technique, the amount of the violation is multiplied by factors (penalty
coefficients), and then added to the objective function. The fitness equation is as

follows:

F=Y0->Y0,+nY Ud +n,> FL +n, Y DSA,+

«NT  (eNToeNO reR reR geNSG
R T (1417472574 78 V1 X0 ) 1RO (5.1)

Where

F Fitness equation.

R Number of reaches in the network.

UlA, The un-irrigated cultivated area at reach r.

FL, The flood length in reach r.

NSG Number of unstable regulators in the network.

DS4, The cultivated area downstream the regulator g.

RWV The required water volume at the end of the routing.

wv The actual water volume at the end of the routing.

n ,n, ,n;,n, Coefficients.

The violation is measured as follows:
o For the water shortage and regulator stability constraints, the violation will be
measured in a cultivated area (Feddan).

o For the flood constraint, the violation will be measured as a length (m).
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a For the required water level constraint, the difference in water volume between
the required water volume and actual water volume will be used (m?).
The violations for the first three constraints will be considered if they happen at
any time step, except for the water shortage of the open branch that will be calculated
after the traveling time. In the fourth constraint, it will be calculated at the last time

step.

5.2.1.2 Multiplicative Static Penalty (MSP)

In this technique, the ratio between the amount of the violation and the total

possible violation will be used in the fitness equation, which is defined as follows:

Su, Y FL D DS4,

r

F=YQ0- Q,,+n L2 +n, LR g SN +
,EZNT ' ,ZN:TZN; °TNYTCA, Y TL, Y DSA,
reR reR g€TG
n,* max(RWV -WV)O0) (5.2)
RWV
Where
TCA The total cultivated area of reach r.
TL The total length of reach r.
TG The total number of regulators.

5.2.1.3 Additive Linear Dynamic Penalty (ALDP)

In this technique, the fitness equation is similar to equation 5.1, but the

coefficients will be calculated based on the current generation, as follows.

F=30->30,+nf> U4 +n§> FL +nf Y DSA, +

teNT teNToeNO reR reR geNSG
nE *MAX((RVV =TV )0.0)..cccvoorerrreoesssinnsssssssssssmssssssssssssessessscess (5.3)
ns =n* (n,,m + 1, * %J .............................................................................. (5.4)
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Where
Myee & 1, Coefficients.
g The current generation.
G Total generation.

5.2.2 Multiobjective Optimization

The idea of converting a single objective optimization problem, such as the one in
the current study, to multiobjective optimization, is to treat constraints as objectives;

thus, there will be (1+m) objective functions, where (m) is the number of constraints.

Thus, the ideal solution X would have f,.(_)-(_)= 0 for1<i<m and f (-.5(-)= f (_}7) for

all e F.

One main approach in multiobjective optimization is to use Pareto-optimal (non-
dominated) solutions. The idea of non-dominated solutions presented by Srinivas and
Deb (1995) is “In a typical multiobjective optimization problem, there exists a set of
solutions which are superior to the rest of solutions in the search space when all
objectives are considered but are inferior to other solutions in the space in one or
more objectives. These solutions are known as Pareto-optimal solutions or non-
dominated solutions. Since none of the solutions in the non-dominated set is
absolutely better than any other, any one of them is an acceptable solution.” Based on
that idea, Srinivas and Deb (1995) and Deb and Goal (2000), presented the Non-
Dominated Sorting Genetic Algorithm (NSGA & NSGA-II). In this technique, the
fitness will be calculated as follows:

a All strings will be ranked using Pareto Fronts based on non-dominance.

Q@ The fitness values of all the strings in any front will be the number (rank) of this
front. So, the minimum fitness is 1.0, and it will be increased to 2.0, 3.0, and so
on.

a In the last rank, and to choose few strings to complete the population, a distance
will be used as a way to select these few. In this method, the strings that have

fewer individuals around it will be selected.
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o From the second generation, two generations will be used for ranking, and the

best number (equal to the population size will be selected).

Another technique based on multiobjective optimization that is tested within the

current model is based on that presented by Coello (2000). This technique is

presented in the following subsection.

5.2.2.1 Multiobjective method used in the current study

This technique, proposed by Coello (2000), sorts the solutions based on their

objective values and their violations of the constraints, and assigns fitness values for

different solutions based on that sorting. In this technique, a feasible solution will

always be superior to infeasible solutions. The procedure of this technique is as

follows:

Q

Q

Q

The count of all individuals in the current generation is initialized to zero.

Each individual will be tested against every other individual in the population
using pair wise comparison.

If both individuals are feasible, the count of both will remain unchanged.

If one of the individuals is feasible and the other is infeasible, the count of the
infeasible will be increased by one.

If both are infeasible and one violates more constraints than the other, the count of
the individual that violates more constraints will increase by one.

If both are infeasible, and both violate the same number of constraints, and one
has total amount of violations larger than the other, the count of that one will
increase by one.

Rank the individuals and make selection based on rank.

In this study, the procedure will be modified as follows:

a

The fitness of feasible solutions will be normalized between 0.0 and 1.0, so the
highest fitness value of a feasible solution will be 1.0. This normalized fitness is
used as the fitness value for each feasible solution.

The fitness of any infeasible solution will be (1 + Count).

Binary tournament selection is used.
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5.2.3 Self-adaptive penalty function

The idea of self-adaptive techniques stems from considering setting suitable
penalty parameters as an optimization problem itself, and uses the GA to solve this
problem in addition to solving the original problem. Thus, the GA is used to
progressively improve the penalty function parameters based on feedback of the
progress through the generations. As in a conventional GA, the model will randomly
define several penalties, in parallel within the optimization problem, and check how
much each of them will improve the solution. This measurement of the improvement
is treated as the fitness function in the GA. Then GA operators will be applied to
these parameters, and at the end of the GA run, the best coefficients are identified, as
well as the prescribed problem solution.

The following technique is based upon the technique presented by Coello (1999).
In this technique, two populations, P1 and P2, are used. The first population is to
evolve solutions (as in a conventional GA) and the second is to evolve penalty
factors. For each member of P2, an instance of P1 is used. The fitness of each
member of P1 will be calculated as usual, and after a certain number of generations,
an average fitness that considers the number of feasible solutions (count-feasible) and
the average fitness value of the feasible solutions will be calculated. This average
fitness will be used to evolve the penalty factors.

Coello (1999) proposed an equation to calculate the average fitness as follows:

M1 ( Fi itness(X ),.

averagefitness; = Z

‘o'\ count _ feasible

Coello pointed out that the average fitness should be scaled before adding to
count-feasible. As the problem investigated in this study is a minimization problem
(rather than maximization as in the work of Coello), and to avoid the scaling of count-

feasible, Equation 5.5 is modified in this study as follows:

count _ feasible —1

i=1

M1 3
averagefitness; = Fitness(X), L2, =3 IR (5.6)
J

If count-feasible equals 1, the average fitness is set to 1.5* Fitness(X),, and if

count-feasible equals O, the average fitness is set equal to the maximum (worst)
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fitness obtained during the sub-generations. This will give an advantage to the penalty
factors that result in more feasible solutions, as the average value will be less than a
set of penalty factors that gets the same average from fewer feasible solutions. In this
study, the penalty function given in Equation 5.2 is used to calculate the fitness values

of each member of P1.

5.2.4 Stochastic techniques

The idea of using stochastic techniques is to avoid the fine-tuning required by
penalty functions. Among the stochastic methods, Surry and Radcliffe (1997)
presented the COMOGA method that combine multiobjective optimization with
stochastic selection, and it works as follows:

a Calculate constraint violations for all solutions.
o Pareto rank based on constraints violations.
o Evaluate the cost of solutions.

o Select a portion of parents p., based on the cost, and the rest based on

constraints ranking.
0 Apply genetic operators (crossover, mutation)

o Adjust p,,, if the proportion of the feasible solution in the population is not close

to the target proportion.

Another approach was proposed by Runarsson and Yao (2000). This technique
was presented in section 2.5.3 among selection techniques. In this technique, the
authors compare all solutions in order to rank them. This comparison is made for N
times, and during any time, if there is no change in the ranking, the procedure will

stop. The rank is made based on the objective value with probability p, or when both

solutions are feasible, otherwise they rank based on constraints violations. They

suggested the number of comparisons N to be equal to the population size, and p, to

be between 0.4 and 0.5. They used this technique with an evolution strategy.
Another technique using stochastic tournament selection is proposed in this study,

and is described in the following subsection.
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5.2.4.1 Stochastic Tournament Selection (STS)

This technique uses binary tournament selection, but instead of using the fitness
value (a combination between the objective and the constraints), it will select based
on only one of them as follows:

The technique considers the following points:

o The difference between the objective values and constraint violations of the two
solutions. If the difference between the costs of the solutions is big, and the
difference between constraints violations of the solutions is small, it is better to
use the objective values for the comparison to take advantage of this big
difference at the expense of small constraint violation.

g The number of feasible solutions in the current generation. If the number of
feasible solutions is small, it is better to encourage the model to make more copies
of these feasible solutions during selection. If there are not any feasible solutions
at all, more pressure will be added to select based on the constraint violations as a
way of finding a feasible solution.

O Average improvement of both objective values and constraints violations in the
last few generations. More pressure will be applied to the one that has less
improvement in recent generations to prevent the model from diverging or
converging to local optima.

a The selection will be done stochastically.

The technique works as follows:

o Primary probabilities for both objective and constraints are calculated as follows:

PR, = SOZCUHD wpp e .7)
Obj Max Diff
pp =Y DVAID swpp sk pp e (5.8)

Cons _Max _Diff
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Where
Primary probabilities for the objective and constraints
PP,, PP,
respectively.
C(I),C(I +1) The cost and constraint violation values for both individuals in
V(I),V(I+1) the binary tournament selection
BF,and BF.  Balance factors for both objective and constraints respectively.

FF Feasibility factor.

Balance factors are used to put more pressure for selecting based on the criteria
that improved less in the previous generations. These balance factors are

calculated as follows:

f (4ve(K +1) - Ave(K)), K
BF, =104t ABS(velK)) (5.9)
2K
K=G1

Where J refers to the objective functions or the constraints. Ave(K) is the
average of the objective values or constraints violation ratios during generation K.
Gl and G2 refer to the first and last generation to be used in calculating the
balance factors. G2 is the generation just before the current generation, and

Gl1=G2-UG, where UG is the user-specified number of generations used in

calculating the factor.
o The feasibility factor can have one of the three following values:
& If one of the individuals is feasible and the other is not, the primary
probability for constraint violation ratios will be multiplied by the following

feasibility factor:

FF = J Population e (5.10)
Number of feasible solutions
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& If there are no feasible solutions, all primary probabilities for constraint

violation will be multiplied by +/Gen , where Gen is the number of the current

generation.
& Otherwise FF=1.0.

0 Both primary probabilities are normalized to defined the final probabilities as

follows:
) = i R (5.11)
PP, + PP,
= iR (5.12)
PP, + PF,

o Based on the final probabilities, one of the categories (cost or constraints
violations) is selected stochastically, and the solution that performs better in this

category is the winner.

5.2.5 Adaptive penalty function

This technique works as follows:

0 A primary penalty coefficient for each constraint PPC(]) and an expected
average violation EAV (I) associated with this coefficient are defined.

a The current penalty coefficient for each constraint during the current generation

CPC(I) is calculated as follows:

P
> o(,J)
CPC(l)=+L wPPCUI) y BEG e (5.13)
P EAV(I) BF,
Where

o(1,J) The violation of the constraint I in the solution J.

Same balance factors used in the STS technique (see Equation
BF, and BF

5.9)
P Population size.
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This means that the current penalty coefficients are shifted linearly from the
primary penalty coefficient based on the ratio between the actual average violation
and expected average violation. The ratio of the constraint violations, instead of the
amount of the violation, is used in this procedure.

The procedure will be as follows:

o During the generation, for each string in the population, the cost and the
constraints violation ratio will be calculated.

a At the end of the generation, the current penalty coefficient for each constraint
will be calculated, and the fitness equation is calculated for each solution.

o GA operators continue as usual.

5.3 Comparisons

There are seven techniques that were tested within the model, which are:

Additive Static Penalty (ASP)

Multiplicative Static Penalty (MSP)

Additive Linear Dynamic Penalty (ALDP)

Multiobjective technique (MO)

Self-Adaptive (SA)

Stochastic Tournament Selection (STS)

Adaptive technique (AD)

The penalty function techniques and adaptive technique are tested twice, first with

0O 0O 0O o 0 o O

original tournament selection, and second with tournament selection with superiority
of feasible solutions (note: in tables and charts, TS term is used to refer to original
tournament selection, and SF term is used to refer to tournament selection with
superiority of feasible solutions). The self-adaptive technique is used only with
tournament selection with superiority of feasible solutions for the first scenario, due
to the heavy computational time required by the technique. Thus, there are a total of
11 techniques for the first scenario, and 10 techniques for the second and third
scenarios. Each of these techniques will be used with five different initial random

seed values.
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The GA parameters used with each scenario are presented in Table 5.1, based on

the results presented in Chapter 4.

Table 5.1: GA parameters associated with each scenario

Population | Crossover | Mutation Blend
Size Probability Rate Crossover
Extension
Scenario 1 | 76 0.6 0.05 0.5
Scenario 2 | 76 0.6 0.05 0.5
Scenario 3 | 50 0.7 0.05 0.5

For STS and adaptive techniques, the effect of the previous 10 generations is
considered.
Two measures are used to compare different techniques:

a Best feasible solution obtained during the whole run.

o The improvement of the minimum feasible solution during the run. The details
about this measure were given in Chapter 4.

Four different tests are considered to compare different technique, which are:

o Best solution achieved by each technique: the best value obtained by each
technique, considering both measurements, during each scenario is defined. The
best value in the whole scenario is used as a reference, and the difference between
this value and other values is calculated.

o Best and worst values: the best five values and the worst value, regarding both
measures, are recorded, and the technique that produced each of them is noted.

o Comparing techniques with the same seed value: for each seed value, the
technique that obtains the best value, regarding each measure, is recorded as a
winner. The number of times each technique wins from the five seeds is defined.

0 Means and standard deviations: from the 5 runs of each technique, and regarding
both measurements, the mean and the standard deviation are calculated.
Statistically, there was no significant difference between means, so a schematic
drawing is drawn to represent the differences between different techniques. In
both measurements, the difference between the best value in the whole scenario,

and the best value obtained by each technique is used.
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5.4 Results

The next paragraphs present the results for both measurements. A summary of

these results is presented at the end.

5.4.1 Test 1

Table 5.2: The total water consumed for the best run
using each technique, relative to the best run overall, for
each scenario for measure 1

Method Scexiario Scel;ario Scen;ario
STS 248330 62332 0
TS AD 210970 0 168550
SF AD 9632 192396 | 262638
MO 83566 207050 | 184286
TS ASP 110042 22694 179364
SF ASP 75374 60304 646236
TS MSP 134308 131152 | 264920
SF MSP 131140 | 213116 | 264920
TS ALDP 83302 116726 | 181400
SF ALDP 43654 208320 | 357210
SF SA 0 -- -

Table 5.3: The total water consumed for the best run
using each technique, relative to the best run overall, for
each scenario for measure 2

Method Sceliario Scen;ario Sce:;ario
STS 0.823 0.301 0
TS AD 1.028 0 0.534
SF AD 0.155 0.401 0.796
MO 0.179 0.523 0.575
TS ASP 0.230 0.149 1.020
SF ASP 0.009 0.414 1.814
TS MSP 0.376 0.341 0.813
SF MSP 0.292 0.403 0.813
TS ALDP 0.184 0.368 1.066
SF ALDP 0 0.326 1.246
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Figure 5.1
The total water consumed for the best run using each technique, relative to the best run overall,
for each scenario for measure 1
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Figure 5.2
The total water consumed for the best run using each technique, relative to the best run overall,
for each scenario for measure 2
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From Figures 5.1 and 5.2, and Tables 5.2 and 5.3, the following points can be

noticed:

Q

STS (Stochastic tournament selection) is the best technique for the third scenario
for both measurements.

TS_AD (Adaptive technique that used original tournament selection) is the best
technique for the second scenario for both measurements.

For the first scenario, SF_SA (Self-adaptive technique that used tournament
selection with superiority of feasible solutions) is the best scenario in the first
measurement, (note: it considered only in this measurement). For the second
measurement, SF_ALDP (Additive linear dynamic technique that used
tournament selection with superiority of feasible solutions) is the best technique.
Regarding techniques that are using two different selection methods, they work
better with original tournament selection in second and third scenario, while
working better with tournament selection with superiority of feasible solutions in
the first scenario.

The differences between techniques in the third scenario are more significant than
the differences in the first two scenarios.

SF_ASP (Additive static technique that used tournament selection with
superiority of feasible solutions) is least stable technique between different
scenarios.

MO (Multiobjective technique) is most stable technique between different

scenarios.

5.4.2 Test 2

Tables 5.4 and 5.5 present the best five techniques and the worst technique for

each scenario.
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Table 5.4: Techniques that produce the five best values and the worst

value regarding the first measure

R Scenario Scenario Scenario
ank 1 2 3
First SF SA TS AD STS
Second SF AD TS ASP STS
Third SF ALDP TS AD STS
Fourth SF ALDP TS AD TS AD
Fifth SF ASP SF ASP TS ASP
Last TS AD SF ASP MO

Table 5.5: Techniques that produce the five best values and the worst
value regarding the second measure

Scenario Scenario Scenario
Rank 1 2 3
First SF ALDP TS AD STS
Second SF ASP TS AD STS
Third SF ASP TS AD STS
Fourth SF AD TS ASP TS AD
Fifth MO STS MO
Last TS AD SF ASP SF ASP

123

The following points can be noticed from these tables:

o Consistent with the first test, techniques perform better in the first scenario when
they consider superiority of feasible solutions during the selection, while they
perform better in second and third scenarios while they don’t consider it.

Q In the first scenario, SF_SA (Self-adaptive technique that used tournament
selection with superiority of feasible solutions) got the best optimal, and
SF_ALDP (Additive linear dynamic technique that used tournament selection
with superiority of feasible solutions) is the technique that produced two from the
best five.

o It is confirmed that TS _AD (Adaptive technique that used original tournament

selection) is the best in the second scenario, and STS (Stochastic tournament
selection) is the best technique in the third scenario, as they got the most of the
five best values in both measures.

a MO (Multiobjective technique) performs differently for the two measures.
Although it has the worst value in the third scenario of the first measure, it got the

fifth best in the first and third scenario of the second measure.
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o SF ASP (Additive static technique that used tournament selection with
superiority of feasible solutions) is the least stable technique as it showed up

among the best values and as the worst value many times, as in the first test.

5.4.3 Test3

Tables 5.6 and 5.7 present the numbers of times each technique wins compared

with other techniques that have the same seed value for both measures.

Table 5.6: Number of times each technique wins from
runs that have same seed value regarding the first
measure

Method

STS

TS _AD
SF_AD
MO

TS _ASP
SF_ASP
TS MSP
SF_MSP
TS _ALDP
SF_ALDP
SF_SA

Scenario | Scenario | Scenario

OIC|QO|IC|O|—O|O|W|—|N
OICIO| OO~ |O|=[w]|w

= INOIOIO|—|O|C|C|O|O| -
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Table 5.7: Number of times each technique wins from
runs that have same seed value regarding the second

measure
Method Scenario | Scenario | Scenario
1 2 3
STS 0 1 3
TS AD 0 3 1
SF AD 2 0 0
MO 1 0 0
TS ASP 0 1 1
SF ASP 1 0 0
TS MSP 0 0 0
SF MSP 0 0 0
TS ALDP 0 0 0
SF ALDP 1 0 0

From the tables, it can be noticed that:

0 The results for second and third scenarios are consistent with other tests.

o The results for first scenario are different than the first test. For example, although
SF_SA (Self-adaptive technique that used tournament selection with superiority
of feasible solutions) is the best in the first measure, it wins only once in this
measure. Similarly, although SF_ASP (Additive static technique that used
tournament selection with superiority of feasible solutions) is the best in the

second measure, it wins only once in this measure.

5.4.4 Test 4

Figures 5.3 and 5.4 present the mean and standard deviation of the difference
between the best value in the scenario and all other values for the five runs of each
technique. From these charts, it can be noticed that:

a In the first scenario, and considering both measures, MO (Multiobjective
technique) is the best candidate followed by SF_ALDP (Additive linear dynamic
technique that used tournament selection with superiority of feasible solutions).
The difference between them in the mean value is small, but MO is more

consistent in both measures. The small values of standard deviation of MO in both
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measures might explain why the technique has the best mean in this test, while it
didn’t give good results in the previous tests. The worst techniques are TS_AD
(Adaptive technique that used original tournament selection) and STS (Stochastic
tournament selection). Except for the worst two techniques, the difference
between different techniques is not significant. Also in general, the techniques
perform better while considering superiority of feasible solutions during the
selection. This is more clear for the adaptive technique than for other techniques.

@ Inthe second scenario, TS _AD (Adaptive technique that used original tournament
selection) is the best technique, followed by STS (Stochastic tournament
selection), in both measures, which is consistent with previous tests. In general,
techniques perform better when they don’t consider superiority of feasible
solutions during the selection. This is more clear in adaptive technique than other
techniques. The difference between different techniques is more significant than
the first scenario.

a In the third scenario, the difference between techniques is more significant than
for the first two scenarios. In this scenario, STS (Stochastic tournament selection)
outperforms all other techniques, followed by TS_ALDP (Additive linear
dynamic technique that used original tournament selection), in both measures.
Also, in general, techniques perform better when they don’t consider superiority
of feasible solutions during the selection, as in the second scenario. The

multiobjective technique is the worst technique for this scenario.
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5.4.5 Summary

The previous results can be summarized as follows:

a For first scenario, techniques that consider superiority of feasible solutions during
the selection, including multiobjective technique, outperform other techniques.
The multiobjective technique is the technique that is the most consistent when
using different seed values regarding this scenario.

o TS_AD (Adaptive technique that used original tournament selection) outperforms
all other techniques in the second scenario. Also in general, techniques perform
better for the second scenario when they don’t consider superiority of feasible
solutions during the selection.

o STS (Stochastic tournament selection) outperforms all other techniques in the
third scenario. The difference between STS and other techniques in this scenario
is more significant than the differences between different techniques in the first

two scenarios.
5.5 The performance of STS technique

Considering the results that were displayed in the last part, STS performed well in
third scenario, somewhat well in the second scenario, and poorly in the first scenario
(the simplest example). In this section an attempt is made to explain the reason
behind that, highlighting the characteristics of the technique. Also, suggestion are
made to examine if the results obtained by the technique is good or bad, given that the
optimal value is usually not known in such problems, and there are no other runs to
compare with.

It seems that the technique works well when its average probabilities of objective
function value and constraints are interacting with each other around the value of 0.5.
This is explained in the following paragraph. It should be mentioned that this value is
related to the average of probabilities of all solutions, not the probability for each

comparison.
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Figure 5.5 presents the population average probability of using objective function
value and constraints as the basis for selection of STS for a specific initial seed value
with which the technique performs poorly in the first scenario, and performs well in
the third scenario. In the first scenario, and for the first four generations, the
probabilities were around 0.5, and constraints probability is higher. After this
generation, the objective function value probability increases, and the constraints
probability decreases with a diverging pattern. This means the selection is made
mainly based on the objective function values without paying enough attention to the
constraints violations. For the third scenario, both probabilities are fairly close to 0.5,

and they alternate which is smaller and which is higher.

Probability for selecting based on cost or
constraints violations

Probability tor selecting based on cost of constraint:

t 1 2 3 4 s & T 8 % LI LI B L L R A D B
Generation Generation

Figure 5.5
Average STS probabilities for a specific initial seed value in the first and third scenarios.

The reason for this could be obtained from Figures 5.6 and 5.7. Figure 5.6
presents the average constraint violations and the ratio of feasible solutions per
generation for each of the same two runs. From figure 5.6, the average constraint
violations of the first scenario decreases suddenly and the number of the feasible
solutions increases suddenly after a few generations in the first scenario given that the
problem is simple, and it is easy to find feasible solutions. In the third scenario, the
constraint violations decrease gradually, and number of feasible solutions increases
gradually during generations. At the end of the run, third scenario performs better

than the first scenario regarding ratio of the feasible solutions.
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Figure 5.6
Average constraint violations and the ratio of feasible solutions for scenarios 1 and 3.

Figure 5.7 presents the sorted values of the objective function value and the
constraint violation as a ratio of the maximum value for both scenarios in the ninth

generation.
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Figure 5.7
Sorted values of the objective function value and the constraints violation as a ratio of the
maximum value for first and third scenarios in the ninth generation

From Figure 5.7, recalling the equations of the technique, and considering the first
scenario, the maximum difference for constraints is big, while many value are close
to each other (eg., values between solutions 35 and 55). Considering that the number
of feasible solutions is big and the improvement in the previous generations is high,
the final average probability for constraints is expected to be small value, and thus the

average probability for cost is high value. In the third scenario, the constraint
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violation values are changing gradually, the maximum difference for the objective
function value is relatively bigger than for the first scenario, the number of the
feasible solutions is small, and the improvement in the previous generation is
moderate, and so the constraints average probability is not so small.

As a result of selecting based on the objective function value without paying
attention to the constraint violations in the first scenario, the minimum feasible
solution doesn’t increase gradually after the first few generations, and it reached the
minimum value at generation 4, which is not a good value compared to other runs in
the same scenario (see Figure 5.8). In the third scenario, the minimum feasible
solution keeps decreasing gradually during generations until the end, and it reaches

the minimum value at generation 94, which is a good value compared to other runs in

the scenario.
1.98E407 1 - 2.70E407 - S
'
Scenaro3 | Minimum feasible finess
1.90E407 1 2.60E+07 n
£ £ \ .
%u&emr 1 %z.soe«n
guoe«n !2.405007
: 2
1.756+07 2.30E+07
1.7OE+07 2.20E407
1 1" 21 3 4 51 61 n 81 91 1 1 2 ki) 4 81 61 " 81 "
Generation Generation
Figure 5.8

Minimum and average feasible solutions for first and third scenarios

To provide further evidence that the STS technique performs the best when both
average probabilities are close to 0.5, and exchanging their positions about which is
higher and which is smaller, another two examples from the second and the third
scenarios are presented in Figures 5.9 and 5.10. From both figures, considering that
the technique performs the best in the third scenario, while performs somewhat well
in the second scenario, it could be noticed that the best run is associated with the

average probabilities closer to 0.5 in both cases.
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Although the previous explanation proves that the technique may converge to a
local optimal, it also shows that watching the average probabilities of the technique,
which is available through the model, could be used as an indicator of the quality of
the results, given the optimal value is normally not known, and the user will not try
different techniques to select from. So, whenever both probabilities are close to 0.5,
interacting and exchanging their positions, it could expected that the results have
good quality. Whenever one of probabilities denominates the selections, it could be
expected that the results are poor, and it might be better for the user to switch to

another technique.
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The performance of adaptive technique

In this section, it is investigated whether maintaining the balance between the
improvement of both cost and constraint violations could be used as the sign for the
quality of this technique, as the average probabilities are in STS technique. The
assumption is that the technique works better if BF,./BF, is moving around 1.0 or
closer to it. For each scenario and for the same initial seed value, the results of both
selection methods (to assume selection with and without superiority of feasible

solutions) are considered.

——SF
—v-TS

Scenario 1

Figure 5.11
The value of BF/BF, for the three scenarios for adaptive technique

From Figure 5.11, and given that the technique works better in the first scenario
while consider superiority of feasible solutions (SF), and works better with other
selection method in the second and third scenario, it could be noticed from Figure

5.12 that the results for the second and third scenarios support the assumption, while
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it doesn’t support it in the first scenario. Also in the second scenario, the better results

are closer to 1.0, but it doesn’t reach it.

5.7 Conclusions and future work

From the results, the following points can be noticed:

o For self-adaptive technique, the large computational time requirement is not
acceptable, especially since its solution quality is not superior to other methods.

o Techniques perform differently from one scenario to the other, and with different
selection methods.

o For simpler problems with relatively few decision variables, such as the first
scenario, the multiobjective technique and penalty techniques that support
superiority of feasible solutions perform better. Among these solutions,
multiobjective seems to be the most consistent. It has the smallest standard
deviation using different seed values, and since it does not require any fine-
tuning, it is the most recommended technique for such cases of the model.

o For harder scenarios with many decision variables, such as the second and third
scenarios, STS (Stochastic tournament selection) and penalty techniques that
don’t support superiority of feasible solutions during selection perform better.
STS performed the best for the third scenario, and TS_AD (Adaptive technique
that used original tournament selection) performed the best for the second
scenario.

o A suggestion was made to check the quality of the output of STS method in the
absence of the optimal value, and when there are no other runs to compare with.

a Another suggestion was made for the adaptive technique, but it is not supported
by all scenarios.

a Since in reality, it is hard to determine the difficulty of the problem that is being
analyzed, it is preferable for the user to use STS method, and if its output doesn’t
show evidence that the result is likely to be of good quality, the user could switch
to any other method that didn’t support superiority of feasible solution. TS_AD is

the good alternative in this case.
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Suggested future work:

a STS method should be tested with different type of problems to check its ability
to handle the constraints in different situations.

a The STS technique should be re-studied regarding maintaining the balance
between the probabilities for the constraints and the cost, and how this could

prevent the technique from converging to local optima or diverging.
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CHAPTER 6
GENERATING MORE RELIABLE MANAGEMENT
STRATEGIES UNDER CONDITIONS
OF UNCERTAINTY

6.1 Introduction

Defining the crop patterns in an irrigation canal network to simulate future
conditions is associated with a significant amount of uncertainty. Additionally, the
water demand per unit area of each crop varies with time and space due to changes in
conditions such as temperature, soil characteristics, and the farmers’ actions. The
solution prescribed by a deterministic model may not perform well when evaluated
under conditions of uncertainty. To address this, the deterministic model should be
extended to incorporate estimates of reliability in the search procedure to identify
more robust solutions under conditions of uncertainty. Incorporating uncertainty in
hydraulic engineering began in the 1970’s. The pioneer works considered the
parameters ambiguity in the search space while designing hydraulic structures (Yen
and Ang, 1971; Mays, 1979; Tung and Mays 1982). Regarding water distribution
systems, most of the works were related to pipeline distribution systems. Among
these works, Lansey et al. (1989) used a chance-constrained formulation to determine
the least cost water distribution network, considering uncertainty in water demands,
required pressure heads, and pipe roughness coefficients. Regarding irrigation canal
networks, Molden et al. (1989) incorporated the hydrologic and management
uncertainty in the hydraulic design of an open-channel irrigation system. Gates et al.
(1992) extended this work by incorporating the hydraulic as well as hydrologic and
management uncertainties in the optimal design of hydraulic structures. Uncertainty
has been incorporated within genetic algorithm frameworks in application to many
hydraulic fields such as groundwater (Ritzel et al., 1994; Cieniawski et al., 1995;
Chan-Hilton and Culver, 2000) and watershed management (Harrell, 2001)
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Because a GA evaluates the fitness of each potential solution, it is a
straightforward extension to evaluate each solution repeatedly using a set of
realizations of uncertain parameters generated based upon their probability
distributions. The ratio of the number of realizations for which a criterion is satisfied
to the total number of realizations for which the potential solution is evaluated
provides an estimate of its reliability, which is included in the model as an additional
constraint. Such a framework is referred to as a chance-constrained genetic algorithm,
or CCGA. CCGAs have been implemented using 200 Monte-Carlo realizations to
evaluate each potential solution’s reliability (Ritzel et al., 1994; Cieniawski et al.,
1995). In the current study, considering the heavy computational time required, it
would be prohibitive to work with such a large number or realizations. Some research
has been performed to investigate ways to reduce the computational time required for
successful CCGA implementation. Loughlin and Ranjithan (1999) investigated
various MC sampling strategies for a chance-constrained air quality management
problem, with promising results for reducing the computational burden by using
much smaller MC sample sizes. Latin Hypercube Sampling provides a good

alternative for Monte Carlo, and can yield good results with fewer realizations.

6.2 Crop data and uncertainty

In an irrigation network such as the one presented in the case study, where the
cultivated land consists of many parcels owned by a large number of people, defining
deterministic values for crop pattern is a difficult issue, as these values are always
associated with a considerable level of uncertainty. Water consumption rates for
different crops also vary over time and space. To account for this, probability
distributions for both water consumption rate and crop pattern should be defined and
used instead of deterministic values. In the current study, probability distributions for
the crop pattern and water demands were calculated based on some studies that were
conducted to optimize the crop allocation and water productivity in Egypt, as well as
some studies that estimated the water demand rate for various crops (Ali, A. S., 1999;

Ali, H. M. 2000; Fawzy, G. M. 1999; El Qusoy, D. 1995), and from information
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provided by the irrigation and agriculture directorates in Egypt. In the absence of
better information, uniform probability distributions were assumed for both crop
pattern and water demand rate, where the upper and lower bounds for each
probability distribution were defined based on the reported data. Seven seasonal crops
and one permanent crop (gardens) were considered. Regarding crop pattern, after
randomly selecting a ratio of each crop at each reach, the values of all crop patterns in
each reach will be normalized, so the summation of them is unity.

Figures 6.1 and 6.2 present the upper and lower limits for water consumption

rates and crop pattern for different crops used in the case study.
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Upper and lower bounds for water consumption rates for different crops used in the case study
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Upper and lower bounds for crop percentages for crops used in the case study

6.3 Chance-constrained technique

Stochastic programming is an optimization technique in which the constraints or
objective function of an optimization problem contain stochastic parameters. Chance-
Constrained Programming (CCP) is one method of stochastic programming that
attempts to treat optimization problems with uncertain constraints. The name
“chance-constrained” follows from the fact that each constraint is realized with a
minimum probability of 1 — oy, where 0 < a; < 1 (Taha, H. A., 2003). So, in CCP,
instead of satisfying the constraints under the deterministic, or average conditions, the
goal is to provide some confidence level of satisfying the constraints under conditions
of uncertainty. Each constraint can only be violated for a fraction a of the
realizations, and the value (1-o) is called a reliability target or safety margin, which is
defined by the user.

For example, the following deterministic constraint:
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where a,, b ; are deterministic values will be modified to be:

P{Zaijxj < b,} 21-a, AT 1) SO (6.2)
J=1

where a,, b, or both are random values. This chance-constrained technique
requires generation of random samples, and there are two techniques that can be used
for this: Monte Carlo Sampling and Latin Hypercube Sampling. The details of each

are described in the following section.

6.4 Generating sampling (MCS vs. LHS)

One of the basic steps for chance-constrained programming is to generate random
samples for realizations of uncertain parameters. Monte Carlo Sampling (MCS) is the

conventional method for generating random samples. Generating a sample using

Monte Carlo (Figure 6.3) is done as follows:
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Figure 6.3
Monte Carlo Sampling

o Generate the Cumulative Distribution Function (CDF) for the random variable.
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Read the quantile associated to that random number.
Repeat many times and check the percentage that satisfies the conditions.

Check this percentage against target reliability.
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Generate a random number between 0 and 1 using any random number generator.

Monte Carlo sampling requires using a large number of realizations to achieve

good results.

Latin Hypercube Sampling (LHS) is a good alternative to the Monte Carlo

sampling technique that can achieve good results with fewer realizations. Based on

Wyss and Jorgensen (1998), the procedure works as follows:

o Divide the range of each variable into # non-overlapping intervals on the basis of

equal density. (Examples of dividing variables with normal distribution

probability and uniform probability are presented in Figure 6.4).

a One value from each interval is selected with respect to the probability density in

the interval.

o The n values obtained from the variable X1 are paired in a random manner with n

values of variable X2.

o These n pairs are combined with n values of variables X3 to form # triplets, and

SO on.
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Figure 6.5 illustrates an example of two variables with five intervals (n=5) for

each. Each class of each variable is selected only once.

Variable 2

Class1 Class2 Class3 Class4 Class 5

Variable 1
Class1 Class2 Class3 Class4 Class §

\

Figure 6.5
An example of LHS Sampling

6.5 Chance-Constrained Genetic Algorithm (CCGA) model

In the CCGA model, the deterministic GA model is modified to incorporate
estimates of likelihood of satisfying the constraints under conditions of uncertainty.
Thus, the fitness equation includes additional penalty terms for each reliability
constraint. In this application, a new set of realizations is generated for the evaluation
of each string. Latin Hypercube Sampling is used to sample the data for each
realization, where the probability distribution function for each uncertain variable is
divided into certain number of classes. The fitness equation for each string is affected
by the percentage of the realizations that satisfy each constraint. If the percentage of
realizations satisfying the constraint is less than the target confidence level for this
constraint, the fitness is penalized. The new penalty terms for the reliability

constraints are calculated as follows:

CLS, = A* [1 - (R%ﬂ if (7, <(L= @) * R)eorrevvresrerrrnen (6.3)
or
CLS, =1.0 TR | E7'd T - T (6.4)
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Where:
cLs, The penalty function for constraint ; when the number of realization
that satisfy the required confidence is less than the target value.
A A constant.
R Total number of realizations.

(1-a@),  Target reliability for constraint i.

r Number of the realizations that satisfy the constraint.

ni

To apply the penalty, the fitness value of each string will be divided by CLS;.

The procedure to implement the CCGA model in the current study is as follows:

o Third scenario of the case study (see section 2.5.2) was selected as a case study
for the uncertainty runs.

a The best deterministic solution for the third scenario is noted.

o The same GA parameters that were used with the third scenario in Chapter 5 will
be used with it here. Also, STS (Stochastic tournament selection) will be used as
the constraint-handling technique, as it is the technique that resulted in the best
solution for the third scenario.

0 This best solution was run using the unsteady flow model, using the average data
for the water consumption rate and crop pattern. The objective (total water
consumed) obtained from this run is used as reference to compare the results
when uncertainty is incorporated into the search procedure.

a Then, the best solution was run for 1000 Monte Carlo samples, using the uniform
probability distribution functions for water consumption rate and crop pattern.

0 The results of satisfying the constraints in the Monte-Carlo simulation are shown
in Table 6.1.

o The goal is to increase the reliability for satisfying the water shortage and

required water constraints to the target level shown in Table 6.2
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Table 6.1: Reliability level obtained from 1000

Monte-Carlo samples

Reliability level (%)
Constraints Obtained from Monte
Carlo runs
Water shortage 61.9
Flood 100.0
Regulators stability 100.0
Required water levels 69.8

Table 6.2: Target reliability level

Constraints Targl:t’:}t’il:/i;)lllty
Water shortage 90.0
Flood 100.0
Regulators stability 100.0
Required water levels 100.0
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The procedure for this part of program is as follows:

A. The total number of realizations (R), and the target reliability are defined.

B. The cumulative values for cost, constraint violations, and Reliability Satisfaction
(RS) are initialized to 0.0.

C. Water consumption rates and crop pattern are defined randomly for each reach.

D. The cost (total water consumed) and the constraint violations for each realization
are determined.

E. If the current realization satisfies the constraints (with the given tolerance for this
scenario (see section 2.5.2)), the value of RS (Reliability Satisfaction) is modified

as follows:

RS=RS+—1—
R

=

Steps C through E will be repeated until the end of realizations.

G. Average objective function value (total water consumed) from all realizations is
calculated, considering the effect of convergence for each realization.

H. If reliability satisfaction is greater than or equal to the reliability target for all

constraints, the solution is feasible. Otherwise, the differences between them

represent the constraint violations.
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I. Steps B through H are used for each string.

J. As STS is the constraint-handling technique used here, the objective function
value (total water consumed) and the constraint violations are used as the
selection criteria.

K. Other GA operators continue as usual.

6.6 Analysis

To determine the required number of realizations, the CCGA model was
implemented three times, using 10, 20, and 30 realizations, to evaluate each potential
solution using the reliability targets in Table 6.2. For each number of realizations, five
different runs with different initial seed values are used. Additionally, the effect of
changing the reliability target will be investigated in two steps. In the first step, the
reliability target for WS (water shortage) will be increased to from 90% to 95%, and
in the second step, the reliability target for RW (required water levels) will be
decreased to from 100% to 90%.

6.7 Results

Figure 6.6 presents the total water consumed of the best feasible solutions
obtained for each number of realizations using different initial seed values, and using
uniform probability distribution for water consumption rates and crop pattern. The
deterministic total water consumed (obtained using the mean values of water
consumption rates and crop pattern) is shown in the figure. The total water consumed
for most of the runs is higher than the deterministic value. Also, the average total
water consumed values for all number of realizations is higher than the deterministic
total water consumed. However, there is no apparent relationship between increasing
the number of the realizations and the change in the objective function (total water

consumed) values.
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Figure 6.6
Best feasible solution obtained in each run for each number of realizations

Figure 6.7 presents the reliability satisfaction values for the water shortage
constraint for the best feasible solution of five different runs and the average for each
number of realizations. These values are calculated based on the number of
realizations that satisfy the constraints while using CCGA model. Reliability
satisfaction for required water levels are 100% for all of these solutions. Figures 6.8
and 6.9 present more accurate estimates of the reliability satisfaction values for the
water shortage and required water levels constraints calculated using 200 LHS
realizations. From Figure 6.7, average reliability satisfaction for the solutions found
by many runs are higher than the target reliability, and for some runs, it is 100%.
Also, the highest reliability satisfaction was obtained using 10 realizations, and 20
realizations is the one that got the least reliability satisfaction, with small differences.
Figures 6.8 and 6.9 have similar trends, but the reliability satisfactions are smaller in
general. From both figures, using 10 realizations satisfies both constraints. Using 20
realizations satisfies only water shortage constraint, and using 30 realizations satisfies

none of them. However, the difference from target reliability is small.
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Figure 6.7
Likelihood of satisfying the water shortage constraint in CCGA model for different runs and the

average for each number of realizations.
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Figure 6.8
Likelihood of satisfying the water shortage constraint in CCGA model for different runs and the

average for each number of realizations using 200 realizations
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Figure 6.9
Likelihood of satisfying the required water levels constraint in CCGA model for different runs
and the average for each number of realizations using 200 realizations

Figure 6.10 displays the average reliability satisfaction for different solutions per
generation for the run with the random seed that produced the best solution using 10
realizations. Figure 6.11 displays the average reliability satisfaction for different
solutions per generation for the run with the random seed that produced the worst
solution using 10 realizations. It can be seen that the average reliabilities for the flood
and regulator stability constraints are higher than average reliabilities for other two
constraints in both cases. In Figure 6.11, the average reliability for required water
levels is much less than the average reliability for all other constraints. Figure 6.12
shows the number of feasible solutions per generation for each of these runs. The
worst run fails to find feasible solutions in many generations, and its number of
feasible solutions is less in general. It is likely that the difficulty in satisfying the
target reliability of required water level is the reason behind this. Changing the values
for target reliability of water shortage and required water levels constraints will be
tested and the results will be compared with the results from Figures 6.10 and 6.11.

The results (Figure 6.6 to 6.12) show that by incorporating estimates of reliability

in the search procedure, solutions with higher reliability can be found with relatively
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small increase in the objective function value. The average total water consumed for
the best solutions obtained by different runs using different realizations are between
0.42% and 1.59% higher than that of the deterministic solution, and have much less
likelihood of causing water shortages or failing to satisfy the required water level at
the start of the next irrigation period in the network.

The results indicate that good solutions can be obtained using a sample size of 10
realizations to evaluate each potential solution. The good performance of this small
sample is likely due to the fact that over the course of a number of generations, a

given solution is tested with a much larger number of realizations.
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Figure 6.10
Average target satisfactions values for different constraints per generation for the random seed
run that resulted in the best solution using 10 realizations
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Number of feasible solutions per generation for the random seed runs that resulted in the best and
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6.7.1 Effect of the number of realizations used to evaluate each solution

From the previous results, using a larger number of realizations (20 and 30)
slightly outperform 10 realizations regarding the objective function value (Figure
6.6). Regarding reliability satisfaction (Figures 6.7 through 6.9), using 10 realizations
has highest reliability satisfaction value and using 30 realizations has the least
reliability satisfaction value, but the differences are small. Also comparing the results
of 20 and 30 realizations (Figures 6.6 through 6.9), the results of 20 realizations
outperforms the results of 30 realizations regarding the objective function value.
Regarding reliability satisfaction, results are different between using the actual
number of realization or higher number of realizations. All of the differences are
relatively small. Thus, the differences between the results for different number of
realizations may be due to the random effect, and using a number of realizations as

low as 10 can be adequate for achieving good results.

6.7.2 Effect of changing the reliability target

The effect of changing the reliability target is tested twice. First, the reliability
target for the water shortage constraint will be increased from 90% to 95%. This is
tested using a new set of 20 realizations to evaluate each potential solution. Second,
the reliability target for required water levels constraint is reduced from 100% to
90%, and the reliability target of water shortage is kept as 90%. This is tested using a
new set of 10 realizations to evaluate each potential solution. For each case, five runs
using different starting random seeds were conducted.

Figures 6.13 and 6.14 present the results of each test. In each figure, the five
different runs and the average value are presented. In the first test, increasing the
target reliability of satisfying water shortage constraint resulted in an increase of the
total water consumed for most of the runs. The increase of the average value of total
water consumed is 1.1%. In the second test, relaxing the target reliability for the

required water level constraint resulted in a decrease of the average total water
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consumed of about 1.1%. Also, most of the five runs got lower total water consumed

when the target reliability is relaxed.
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Figure 6.13
The effect of increasing target reliability of water shortage to 95%
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Figure 6.14
The effect of decreasing target reliability of required water levels to 90%
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Regarding reliability satisfaction for water shortage and required water levels
constraints, Figures 6.15 to 6.18 display the average reliability satisfaction for both
constraints versus generations for the runs that produced the best and the worst
solutions for each of the two tests. From Figures 6.15 and 6.16, there is not clear
evidence that increasing the reliability target of water shortage constraint affected the
average reliability satisfaction. Also, the effects on the best and worst solutions
appear to be opposite. While average reliability satisfaction is reduced in the worst
scenario as the result of increasing reliability target, it is increased in the best

solution, indicating that the difference may be a random effect.
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Figure 6.15
Effect of increasing target reliability of water shortage to 95% for the random seed run that
resulted in the best solution
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Effect of increasing target reliability of water shortage to 95% for the random seed run that
resulted in the worst solution

Regarding the required water levels constraint, Figures 6.17 and 6.18 shows that
there is an improvement associated with relaxing the reliability target for this

constraint for both the best and worst runs.

As expected, results indicate that the model can achieve more reliable solutions at
the expense of slightly increasing the objective function value, or it can decrease the

objective function value at the expense of decreasing the reliability target.
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Effect of decreasing target reliability of required water levels to 95% for the random seed run that
resulted in the best solution
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Effect of decreasing target reliability of required water levels to 95% for the random seed run that
resulted in the worst solution
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6.8 Conclusions and Recommendations

The deterministic model described in the Chapters 2, 4, and 5 has been extended
to incorporate the likelihood of satisfying constraints under conditions of uncertainty
in the water consumption rates and crop patterns. A chance-constrained optimization
technique was used within the GA search process. Latin Hypercube Sampling was
used to generate a relatively small number of realizations to evaluate each potential
solution. Uniform probability distribution functions were used to express both
uncertain variables (water consumption rates and crop patterns). The results show that
the CCGA model can increase the reliability of satisfying constraints at the expense
of a small increase in the objective function value.

Also, the results show that using LHS sampling with as few as 10 realizations to
evaluate each potential solution can yield good results. From the results (Figures 6.6
through 6.9), there is no clear relationship between increasing the number of the
realizations and the improvement in the objective function value or in the reliability
satisfaction, indicating that the differences between the results produced by different
numbers of realizations may be a random effect. The runs are associated with a very
heavy computational effort. A single run using 10 realizations required about 20
hours on average on PC Pentium 4 (2.0 GHz with 512 MB RAM), and it is nearly
proportionally longer for larger number of realizations.

Suggested future work:

0 Methods for reducing the computational effort should be investigated.

a If possible, more information about the uncertain parameters should be collected
to express them using more accurate probability distribution functions.

a The suitable number of realizations that should be used within the model should
be investigated again, as no general rule could be obtained for improvement of the
results due to increasing the numbers of realizations.

@ The model should be run repeatedly using various target levels of reliability to
generate a tradeoff relationship between reliability and objective function value.

Q Various sampling strategies for the CCGA should be tested to determine the most

efficient strategy. For example, another strategy that has been shown to perform
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well for an air quality management problem is to use the same set of realizations
to evaluate all of the strings in the population, with a new set of realizations
generated for each generation (Loughlin and Ranjithan, 1999). Also, the number
of realizations used for the evaluation of each string should be varied to determine

the most efficient size of the set of realizations.

6.9 References

Ali, A. S. “Water productivity in Egyptian Agriculture,” International conference on
integrated management of water resources in the 2Ist century, Cairo, Egypt,
November 21-25, 1999

Ali, H. M. “Determining optimal crop pattern in Egypt by the use of multicriteria
analysis,” Water Science (The scientific magazine published by the National
Water Research Center, Ministry of Water Resources and Irrigation, Egypt), 28th
— 29th Issue, October 2000-April 2001

Chan Hilton, A. B. and T. B. Culver., “Optimizing Groundwater remediation
design under uncertainty,” Proceedings of the joint conference on water
resources engineering and water resources planning and management, July 30-
Augut 2, 2000, Minneapolis, MN: ASCE, 2000

Cieniawski, S. E., Eheart, J. W., and Ranjithan, S. (1995). “Using genetic algorithms
to solve a multiobjective groundwater monitoring problem,” Water Resources
Research, Vol. 31, No 2, pp. 399-409

El Qusoy, D. “Possibilities of using the treated sewage water in Irrigation” (In
Arabic), Annual conference of the National Water Research Center, Cairo, Egypt,
December, 26-27, 1995

Fawzy, G. M. “The efficient use of irrigation water in the Egyptian agriculture,”
International conference on integrated management of water resources in the 21st
century, Cairo, Egypt, November 21-25, 1999

Gates, T. K., Alshaikh, A. A., Ahmed, S. I, and Molden, D. J., “Optimal Irrigation
Delivery System Design Under Uncertainty,” Journal of Irrigation and Drainage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



161

Engineering, American Society of Civil Engineers, Vol. 118 No. 3, MAY./JUN.
1992, pp. 433-449

Harrell, L. J., "Evolutionary Algorithm-based Design of a System of Wet Detention
Basins Under Uncertainty for Watershed Management,” Proceedings of the ASCE
World Water and Environmental Resources Congress, May 2001.

Lansey, K., Duan, N., Mays, L., and Tung, Y. “Water Distribution Systems Design
Under Uncertainty,” Journal of Water Resources Planning and Management,
American Society of Civil Engineers, Vol. 115 No. 5, SEP./OCT. 1989, pp. 630-
645

Loughlin, D. H. and Ranjithan, S. R. (1999). “Chance-Constrained Genetic
Algorithms,” Genetic and Evolutionary Computation Conference (GECCO), pp.
369-376.

Mays, L. W., “Optimal Design of Culverts Under Uncertainty,” Journal of Hydraulic
Engineering, May 1979, pp. 443-459.

Morgan, M. Granger and Henrion, Max (1990). Uncertainty: A Guide to Dealing with
Uncertainty in Quantitative Risk and Policy Analysis, Cambridge University
Press.

Ritzel, B. J., Eheart, J. W., and Ranjithan, S. (1994). “Using genetic algorithms to
solve multiple objective groundwater pollution containment problem,” Water
Resources Research, Vol. 30, No 5, pp. 1589-1603

Taha, H. A., Operations Research: An Introduction, Pearson Education, Inc., New
Jersey, 2003

Tung, Y. K., and Mays, L. W., “Optimal Risk-Based Hydraulic Design of Bridges,”
Journal of Water Resources Planning and Management, American Society of
Civil Engineers, Vol. 108 No. 2, MAR./APR. 1982, pp. 191-203

Yen, B. C., and Ang, A. H.-S. “Risk Analysis in Design of Hydraulic Projects,”
Stochastic Hydraulics, Proceeding of the 1* Int. Symp., University of Pittsburgh,
Pittsburgh, Pa., 694-701.

Wyss, G. D., and Jorgensen, K. H., 1998. "A User s Guide to LHS: Sandia's Latin
Hypercube Sampling Software," Sandia National Laboratories Technical Report
SAND98-0210, Albuquerque, NM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



162

CHAPTER 7
GRAPHICAL USER INTERFACE FOR THE MODEL

7.1 Introduction

A user-friendly interface has been developed to make the model easier to use. The
model can be used as an unsteady flow simulation model, or as an optimization
model. In the case of the optimization model, the best solution that is obtained is
routed using the unsteady flow model, and the results of this routing are available
with the genetic algorithm results.

The interface consists of four categories as shown in Figure 7.1, which are
o Files commands, to help the user work with the projects, such as begin a new

project, open an existing project, and other commands.

o Data commands, to help the user enter different types of the data. The data can be
categorized into two sub-categories: hydraulics data and settings data.

» Hydraulics data to describe the irrigation network.

» Settings dialog to define different parameters, such as genetic algorithm

parameters, uncertainty parameters, etc.

o Reports, which are summaries about the data that have been entered. Reports are
presented in one of two forms: table form for hydraulics data, and page form for
genetic algorithm data.

0 Results, which may be genetic algorithm results or hydraulics results. Results can
be presented in three forms: table form, chart form, and page form. Page form is
used to present the final reports about the whole run. The tables and charts are
used to present details.

A brief description about each category with examples of its commands is

presented in the following sections.
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7.2 File commands

This category of commands is used to work with projects, and include commands
such as create, open or delete a project. The interface was designed such that all

projects are in one folder (projects) under the program folder. The name of the project
cannot contain any spaces.
Some examples from this category are as follows:

7.2.1 Open Project

Qpen Project

Project name ‘ vl
Routing date (Month) | j’
TARGET
Route the Flow (USFM) c
Deaign Oitimal Operation (GA) 3
Route the Optimal Operation (USFM) c
Ucertainty for Crops Allocation Data r
Begin a New Run r
Figure 7.2
Open project dialog

This command will open an existing project. The dialog, as shown in Figure 7.2,
has five types of the data describing different characteristics of the model to be used.
When a project is selected, all the characteristics of the project that were previously

saved will be retrieved. The user can keep these characteristics as they are or change

them. These characteristics are:

a Routing date: this is the month when the flow is routed. This date is used to define
the water consumption rate for each crop.

o Target: the model can be used for two purposes. It can be used as unsteady flow

simulation model to route the flow or as an optimization model to define the best
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schedule for an irrigation network. For the unsteady flow model, there are two
options regarding how to enter decision variables data. These data can be entered
by the user (choice 1) or it can be the output of the optimization model (choice 3)
(the best solution that was found). This third choice was added to give the user the
chance to modify the output of the optimization model. For example, one could
route the flow for smaller time interval and distance interval to get more details,
round the decision variables to more practical units and check the results, or make
other desired changes.

0 Uncertainty: This option is enabled only when the model is used as an
optimization model. With this option, the water consumption rate and the
allocation of each crop are treated as uncertain data, as described in Chapter 6.

a New Run: This option is also enabled only when the model is used as an
optimization model. If this option is not chosen, the model will continue the GA
run where the previous run left off (after the last generation). If the new run
option is chosen, the program will begin from the beginning, discarding the
results of previous run. If there is no previous run, choosing this option will have

no effect.

7.2.2 New project

This command is used to begin a new project. The dialog is similar to the
previous dialog. The difference is that the user should enter the project name instead
of selecting it, and must define other characteristics of the project. Also, it does not

include the third choice of the target, and “Begin New Run” option.

7.2.3 Save Project As

This command saves a copy of the current project with a new name. The model
will save the input data files only. The dialog in Figure 7.3 is used to enter the name

of the new project.
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Save Project As...

Figure 7.3
Save project As dialog

7.3 Data Commands

The model has two types of the data, hydraulics data, and settings data. The
hydraulics data contains the characteristics of the irrigation network. The settings
dialog describes several parameters of the model.

There are two points regarding entering the data:

o The sequence: some data should be entered in a particular order. For example,
before entering any hydraulics data, the maximum data number in the Settings
dialog that is used to allocate the memory should be entered. Also, before entering
the regulators and branches for a channel, this channel should be defined.

o Checking the data: the model validates the data at three levels. The first level is
performed during data entry. For instance, some data should have positive or non-
negative values. Also, in some dialogs that require maximum and minimum limits
for a variable, the program will check that the minimum value is smaller than or
equal to maximum value. The second level is performed before the program is
run. For this level, the data that are related to different dialogs or different records
in the dialog will be checked together. For instance, the model will check that the
numbering of the canals is acceptable (see section 7.3.1.1 for details about
numbering requirements). Another example is that the model will check that the
cultivated areas for all reaches and branches of a channel equal the total cultivated
land of this channel. The third level is during the calculations.

For hydraulics data, there are 11 commands in five different categories, which

arc:
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@ Crops. There are two commands in this category. The first is used to enter the
water consumption rate for each crop in each month, and the data that will be used
within uncertainty (Maximum and minimum consumption rates, and maximum
and minimum allocation ratios). The other command is used to enter the ratio of
each reach that is cultivated by each crop.

0 Geometry data. This contains the canals data, the regulators data, and reaches
data.

0 Initial data. This consists of the initial water levels at the upstream end of each
channel, and they are found in Canals Data dialog, and the initial data at
regulators, which is found in a separate dialog.

0 Boundary. These commands define the boundary time, upstream boundary, and
downstream boundary.

o Operations. These commands define the operation times and operation data.

For the Settings dialog, there are five different pages, which are:

a Genetic Algorithm data. This part contains all genetic algorithm parameters, such
as crossover probability and mutation rate. It is also used for choosing the
selection method, constraint-handling technique, and tolerance for constraints.

o Uncertainty data (LHS parameters). This part is used for defining the data that is
used when considering uncertainty with water consumption rate and crop
allocation.

0 Maximum data. This dialog defines the maximum expected number of different
hydraulic data types such as canals and operations. These numbers are used to
allocate the required memory for hydraulics data.

0 Routing data. This part defines distance intervals and time intervals. It also used
to define the initial data that is used while opening new gates.

o Convergence. This part defines values that are used to check the convergence and
also the data that is used to penalize un-converged solutions in GA.

For hydraulics data, all dialogs have the same 10 buttons, which are in the
following categories:

o Buttons to end the session. There are two ways to end the dialog, either by saving

the data or by the canceling the changes.
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@ Records buttons. This category includes adding new record, deleting a record and
copying a record. Copying a record is used when two records have similar data, so
the user can only change the identifier of the record, such as the canal number,
then push Copy button to add an identical record with the new identifier.

o Moving buttons. These buttons are used for moving between records, like moving
to next, previous, last, or first record. Also, the user can use the GoTo button to

move to a specific record by defining the identifier of that record.

7.3.1 Hydraulics Data

The hydraulics data are described in the following subsections.

7.3.1.1 Canals Data

Figure 7.4 presents the dialog for the canal data. This dialog defines general
characteristics of a channel, and it has the following data:

o Canal definition, which contains the canal number, number of the main canal that
this canal diverts from, the location and the side of this diversion. It should be
mentioned that there is a specific way to number canals. The main canal has
number 1, followed by the canals that divert from it, then canals that divert from
second branches, beginning from the first branch, and so on. Figure 7.5 gives an
example about the numbering. While working with this dialog, the model will
check that the canal number is greater than or equal 1, the main canal that this
canal is diverging from is greater than or equal to 0, and the location is greater
than or equal to 0.0. A complete validation of the numbering of these data is
performed before running the model.

o Canal members, which contains the number of regulators and the number of
branches for this canal.

o Total data, which are the total length and the total cultivated area for this channel.

This data is used for data checking.
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Figure 7.4
Canals data dialog

0 Initial water level, which is used with initial data at regulators as the initial data
for the network during the routing.

0 There are two options in the dialog which the user can select. The first defines if
this canal conveys water outside the network, which is used to calculate total
outflow from the network. The second option defines if the water levels of this

canal will be included in the constraint on the water levels at the end of the

routing.

Figure 7.5
Example of how the canals must be numbered
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7.3.1.2 Regulators Dialog:
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Figure 7.6
Regulators data dialog

The Regulator Geometry Data dialog, as shown in Figure 7.6, contains the
following:

o Regulator definition data. This group of data consists of canal number, regulator
number, and the location of the regulator.

0 Regulator geometry. This includes the bed level, the regulator width, and the
maximum allowable difference between the upstream and the downstream water
levels.

o Discharge data. This includes the gate width, and the discharge coefficient.

a The cultivated area downstream of the regulator, which is used to penalized a
solution that violates the regulator stability in GA. If the model is used as

unsteady flow simulation model, this part will be disabled.

7.3.1.3 Reaches Dialog

The Reaches Data dialog (Figure 7.7) contains the data for each reach in the

irrigation network, which includes:
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The length and the cultivated area of that reach.
Cross sectional data and Manning coefficient.

Bank level and longitudinal slope.

0 0O 0O ©

Required water levels at the beginning and at the end of the reach. This part is
enabled only if the option “Has required WL data” is selected for this canal in

Canals Data dialog.
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Figure 7.7
Reaches data dialog

7.3.1.4 Regulators Initial Data Dialog

The initial data at each regulator (Figure 7.8) consists of:

o Upstream and downstream water levels.

o Gate opening. This value is used with the unsteady flow model.

0 Minimum and maximum gate openings. These values are used within genetic
algorithm to randomly select the initial gate opening. This part is enabled only if

the model is used as an optimization model.
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0 Initial discharge. This part is used only if the regulator is free opened. Otherwise,
the discharge will be calculated using the sluice gate equation, and the data in this

dialog and this discharge value will be ignored.

Requiators: Initial Data

Figure 7.8
Regulators initial data dialog

7.3.1.5 Operation Time and Boundary Time Dialogs

Operation Nuinber Titne Step
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Figure 7.9

Operation time dialog

This dialog (Figure 7.9) is used to define the allowable times for operations. The

data are the operation number and the time step for this operation. A similar dialog is
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used to define the time of given boundary conditions. Regarding boundaries, the user
can enter the boundaries at any channel at any of these times, and the program will

interpolate for other time steps.

7.3.1.6 Operations Data Dialog

Regudotors (D
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e =
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Figure 7.10
Operations data dialog

The operations data dialog is used to define the regulator that will have an
operation and the time for that operation (operation number). It also defines the value
of the operation. This value is positive for opening and negative for closing. The
maximum and minimum values for the operation is enabled if the model is used as an
optimization model, and they are used to randomly select the operation value. Similar

dialogs are used to define the upstream and downstream boundary conditions.
7.3.2 Settings Dialog
The settings dialog is used to define different parameters for the model through

five different pages. The genetic algorithm parameters page is shown in Figure 7.11.

This dialog defines six different parameters for the genetic algorithm. For the
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population size, since the model uses binary tournament selection, the number should
be even. Otherwise, the model will give a message error and increase the population

size by 1.

godithe Iwmimmlwal Convergance |

J100 j243
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'|SF v] -Parameters | IMO “'l Pajareters i

Figure 7.11
Settings dialog

Also, the dialog defines the selection method, and the constraint-handling
technique that will be used. Some of these techniques require defining parameters,
and this is done through a popup dialog. Also, the dialog is used to define the
satisfaction level for each constraint. If the run is not a new run, the only enabled item
in this page is “Number of Generations”, where the user can increase the number of

generations and continue the run.

7.4 Reports Commands

This category of commands displays some types of data that were entered before.
There are two types of reports: hydraulics data reports, which are displayed in table
form, and a genetic algorithm report, which is displayed in page form. The tables that
are used in reports commands and in results commands have a fixed format, and each

has the following options:
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o Show or hide horizontal and vertical grid lines.

0 Resize the columns and rows: these options are performed by pressing the cursor
on the line between two rows or two columns and drag it.
Also, there are four common commands in all tables, which are:

a Change font: To change the font of the table. The font will be changed for the
entire table (headers and data).

o Print Preview: for previewing the printable copy of the data.

Q Print: for printing the table.

Close: To close the dialog.

(W]

Hydraulics reports include nine different types of data, which are.
Crops data.

Canals data.

Regulators data.

Regulators water levels data.

Reaches data.

Downstream boundary data

0O 0 0O 0O 0 O O

Crops allocation data.

An example of canals report is presented in Figure 7.12.
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Figure 7.12
Canals data report
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The GA report shown in Figure 7.13, contains the following data:
Number of generations.
Population size.

Initial seed value

0 0o o o

GA parameters: crossover probability, mutation rate, and blend crossover
extension.

o Selection method, and constraint-handling technique, with their parameters, if
applicable.

The report has three buttons to preview, print or quit the dialog.

Gemetic Algorithen Parameters
ettt ertinaressasestter

Number of Generations: 100
Population Size: 76
Initial Seed Value: 474
Cross Over Probability: 9.6000
Blend Cross Over Extension. 6.50
Mutation Rate: 0.0500
lection Method: T Selecti
C int-Handling Techni: Additive Static Pensity Technlque
Parameters Coefficients:
WS: §
FL: 28
RS: 100
RW: 80

Figure 7.13
Genetic algorithm data report

7.5 Run Menu

The run menu has three commands: define the settings, check the data, and

run the model. First command was described in section 7.3.2 and the other two

commands are described in the following subsections.
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7.5.1 Check command

This command is used to check the unsteady flow model data before running the
model. It is also performed automatically when the Run command is used, so the user
can simply use Run command directly. If there is an error, the model will give a

message and the run command will not work.

'7.5.2 Run command

If the model is used as unsteady flow simulation model, there will be a waiting
message. If it is used as an optimization model, the screen will look like Figure 7.14.
There are four dialogs that present the maximum, average and minimum fitness
during the run. They are also present the number of feasible solutions during the run.
On the right side, there is a dialog showing the generation number, a progress slider
about how much of work has been done, the time, and a button to stop the run. If the
user presses this button, the model will give a message that it will stop after the
current generation.

It should be mentioned that before the run, all open dialogs will be closed. If the
dialog is a results or a report dialog, the model will just close it. If it is a data dialog,
the model will give the user the choice to close the dialog or cancel the Run

command. Also, during the run, all other commands are disabled.
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7.6 Results

The model display results in one of three formats: page form, table form, and

chart form. It has three categories of commands, which are:

o Final reports. This category includes the final reports about the whole run, and is

in page format. There are two final reports; one about the GA run, and one about

the flow routing. The later is available in both cases of the model, either as the

result of an unsteady flow model, or as the result of routing the optimal solution

of the optimization model.

0 Hydraulic results. There are two types of hydraulic results: hydraulics data at each

point in the network, and hydraulics data at the regulators. Hydraulics data at each

point in the network are available in table and chart format. The data at the

Oregulators are available only in table format.

o Genetic Algorithm results. This category includes different commands, which are:

»

>
>
>
>

Fitness data (as in Figure 7.18).

Objective (cost) data (as a figure similar to Figure 7.18).

Constraints violations data. (as in Figure 7.19).

Number of feasible solutions (as in Figure 7.20)

Satisfaction reliability, which is shown in a table, and when uncertainty is
considered during the run.

STS average probabilities, which is shown in a chart when STS is used as a
constraint-handling technique.

Some examples from the results are given in the following subsections.

7.6.1 Water level data

The water level data can be presented in a table (as in Figure 7.15) or as a chart

(as in Figure 7.16). In both cases, the user can present the data of a channel for a

given time step, or the data of a specific point during all time steps. In addition to that

charts can present a simulation of the water level during the whole run.
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Figure 7.15
Water level data for a given point over time

The charts present the water surface levels and the energy grade line level, as well
as bed levels, bank levels and the gates in the case of presenting the data of a whole

channel. The table presents different types of data, including bed level, water surface

levels, velocities, and other data.
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Water levels for a whole channel and for a specific point
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7.6.2 Regulators Data

The regulators dialog (Figure 7.17) presents the data of all regulators in a channel
at a specific time step, or the data of a regulator during all time steps. The presented

data are upstream water level, downstream water level, gate opening and discharge.
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Figure 7.17
Data of a specific regulator at different time steps

7.6.3 Fitness and Cost Data

The fitness values, whether in table or in chart format, are the maximum, average
and minimum fitness values. In the chart, these data could be presented together or
separately. The objective (cost) data is presented in a similar manner. Figure (7.18)

shows an example of the average fitness value per generation.
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Average Fitness Values Per Generation
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Figure 7.18

Average fitness values per generation

7.6.5 Constraint Violations Data

The constraint violation data table and the chart present the maximum, minimum
and average violations per generation for each constraint. In the chart, the value for
any constraint could be presented together or separately. If the constraint-handling
technique is any additive method (ASP or ALDP), the constraints will be calculated

as follows:
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Figure 7.19
Average flood violation ratio per generation
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Water Shortage (Feddan)
Flood (m)
Regulator Stability (Feddan)

0O 0o 0o O

Required Water Level (m®)
If any other constraint handling method is used, the constraint violations will be
normalized by dividing by the maximum possible violations. Figure (7.19) shows an

example of average flood violation ratio per generation.
7.6.6 Feasible Solutions

The number of feasible solutions can be presented in table and chart format. The
number of solutions that satisfy each constraint, and the number of solutions that
satisfy all constraints (feasible solutions) are presented. Regarding chart format, and
as in other charts, the data for the various constraints can be presented together or
separately. Figure (7.20) shows an example of a chart showing the number of feasible

solutions per generation.
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Figure 7.20
Number of feasible solutions per generation
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7.6.7 STS average probabilities

As described in Chapter S, the population average probabilities for selecting based
on objective and constraint violation in STS technique can be used as an indicator of

the quality of the solution. An example of this chart is shown in Figure 7.21.
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Figure 7.21
Average probabilities for STS method

7.6.8 Final Report

The final report includes a final report about the optimization model, and a final
report about the unsteady flow simulation model. Figure 7.22 presents an example of
the optimization model final report and unsteady flow simulation model report. The
data in the optimization model final report includes:

o The number of feasible solutions in the whole run and in the last generation.
o The best feasible solution in the whole run and in the last generation.

o The average constraint violations in the last generation.
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anennenavennane
Feasible solutions:
In the entire run: 4199
In the last generation: 59

Best feasible (m3):

In the entire run: 23568452

In the last generation: 24999254
Average in the last
For WS (%): 1.8368
For FL (%): 0.0070
For RS (%): 0
For RW (%): 1.6010

USF Final Report

seensensensancenr

Syatem before routing:
Number of canals: 58
Number of regulators: 18
Number of controled regulators: 14
Number of reaches: 130

Violations values:
Total water shortage area (Acres): 630
Water shortage ratio (%): 0.0888
Total flood length (m): 90
Flood length ratio (%): 0.0463

System after routing:
Number of canals: 0
Number of regulators: 14
Number of controled regulators: 3
Number of reaches: 133

Figure 7.22
Final reports of an optimization model and an unsteady flow simulation model

The data in the unsteady slow simulation report includes:

o System data at the beginning and at the end of the routing. This data includes:

» Number of canals

» Number of regulators

» Number of controlled regulators (that are not free opened)

» Number of reaches

o The amount of water shortage violation and flood violation

185

u The ratio between water shortage violation and maximum possible water shortage

violation

o The ratio between flood violation and maximum possible flood violation
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CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS

An optimization model for determination of an efficient management strategy for
an irrigation canal network has been developed. The objective of this model is to
minimize the total water consumed in the network while satisfying four constraints,
which are:

o No water shortage at any point in the network at any time.

o No flood at any point in the network at any time.

o The difference between the upstream water level and the downstream water level
of any regulator at any time is less than the maximum allowable difference; to
ensure regulator stability.

0 The water levels in the network at the end of the routing are sufficient for the start
of subsequent irrigation period.

The decision variables for the model are the gate openings and the boundary
conditions. Gate openings include initial gate openings at the beginning of the
simulation period and gate operations during the simulation. The boundary conditions
include the water level at the upstream end of the network and the discharges at the
downstream end of each channel. The model is most appropriate for relatively short-
term irrigation periods, so the simulation period is typically a few days long, and the
constraints are checked at relatively small time intervals (generally one hour or less).

A genetic algorithm (GA) was used to search for efficient solutions to the
optimization problem. It is a suitable and efficient optimization tool for this model
based on the complexity of the problem. Real representations are used to encode the
decision variables. Different versions of binary tournament selection (with and
without superiority of feasible solution and a stochastic form) are used in the model.
Also, the model uses blend crossover and uniform mutation during GA procedure.

An unsteady flow simulation model was used to evaluate each potential solution
in the GA. This model solves the complete Saint Venant equations using an implicit

numerical scheme.
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The model was applied to a case study in Egypt involving a large-scale irrigation
network. Three different scenarios of this case study, representing different levels of
difficulty with different number of decision variables were investigated.

GA parameters were tested with the model for the three scenarios. The GA
parameters tested were: crossover probability, mutation rate, blend crossover
extension, and population size. Based on the results, values for each parameter were
recommended for various levels of difficulty of these scenarios.

Different constraint-handling techniques were tested within the current model.
Among these techniques, two are newly proposed techniques, while the others are
from the literature. The suitable technique that should be used with different scenarios
based on the complexity of the scenario, and the number of decision was
recommended. The results showed that new proposed techniques outperform the
other techniques for two of the three suggested scenarios. A suggestion was made to
check the quality of one of the proposed techniques (STS - Stochastic tournament
selection) in the absence of information about the actual optimal solution.

The uncertainty in crop distribution and consumption water rates of the crops is
incorporated into the search procedure to identify more robust solutions. A Chance-
Constrained Genetic Algorithm (CCGA) was used to handle the uncertainty. Latin
Hypercube Sampling (LHS) was used within the model. The model shows that
CCGA could be used to achieve more reliable solutions at the expense of a small
increasing of the objective function value. Also, it proves relatively small LHS
samples (10 realization to evaluate each solution) produce good results.

A user-friendly interface is developed to aid the decision maker in using the
model.

The computational effort is between two and four hours for 100 generations for
different scenarios of the case study using a PC with Pentium 4 processor (2.0 G Hz.
with 512 MB RAM). For one of the constraint-handling techniques (self-adaptive)
and for the CCGA model, the computational time is expensive (possibly exceed 24
hours depending on the number of realizations or the size of self-adaptive

populations).
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Recommended future works include the following:

0 Some features should be added to the simulation model to make it more
applicable to a variety of irrigation canal networks. For example, the program
should handle hydraulic structures other than sluice gates. Also, the model should
have an option to enter natural the cross sectional data rather than requiring
prismatic ones, since the channels may deviate from the design cross-sections in
some locations.

0 Regarding the GA parameters, adaptive and self-adaptive parameter specifications
should be studied with the model, to check if better results can be achieved.

0 Regarding the constraint handling techniques, the STS technique should be
studied further to ensure it is able to handle different scenarios of the model. Also,
new techniques based on maintaining the feasibility of the solutions should be
added to the model. The idea of these techniques is to check the situation
downstream of each regulator and suggest an operation if the situation is close to
violating one of the constraints, and these suggested operations will be added to
the basic operation that are defined by the user.

@ Methods to reduce the computational effort, especially for the CCGA model

should be investigated.
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