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ABSTRACT

GENETIC ALGORITHM-BASED MODEL FOR DETERMINATION 
OF EFFICIENT MANAGEMENT STRATEGIES FOR 

IRRIGATION CANAL NETWORKS

Talaat Taher El Gamel 
Old Dominion University, 2004 

Director: Dr. Laura Harrell

An optimization model for the determination of efficient management strategies 

for an irrigation canal network is developed. The objective is to minimize the total 

water consumed while satisfying various system constraints. An unsteady flow model 

is used to simulate the flow in the network. A genetic algorithm- (GA-) based 

framework is used to solve the model. The suitable GA parameters that should be 

used within the model, as well as the performance of various constraint-handling 

techniques, are studied. Uncertainties in crop pattern and water consumption rates are 

incorporated into the search procedure to identify more reliable solutions. A graphical 

interface is also developed to make the model more user-friendly.
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CH APTER 1 

INTRODUCTION

Enhancing irrigation systems in order to maximize the net benefit or minimize the 

irrigation cost is an important issue, especially in arid and semi-arid countries where 

the water is scarce, and the irrigation is the main water consumer. The fact that the 

water demand increases rapidly as the result of the population increase makes this 

issue more important. According to Schultz, and DeWrachien (2002), “Based on the 

forecasts for population growth and the improvement in the standard of living, it is 

expected that food production will have to be doubled in the next 25 years. In 

addition it is expected that 90% of the increase in food production will have to come 

from existing cultivated land and only 10% from new land reclamation, either in the 

highlands or in the lowlands. There is no way that the cultivated area without a water 

management system can contribute significantly to the required increase in food 

production.” According to the authors, good management and efficient operation are 

basic requisites for improving agricultural water management. This means that 

efficient management and operation of irrigation networks is a critical issues. In 

Egypt, enhancing irrigation efficiency is especially important, as the population is 

increasing rapidly while the water supply remains constant. There is much room for 

improvement in Egypt, considering that “the structures, management and technical 

properties of the Egyptian irrigation system have been designed and operated within 

the situation o f water abundance, which means that up to the late 1980s very little 

emphasis was placed on improving the efficiency of the water use.” (Hvidt, 1998). 

This makes Egyptian agriculture is one of the most consumptive irrigation in the 

world and the reason for this, according to (Samaha, 1979), is related to the wasteful 

use of irrigation water. Given that the likelihood of increasing the water supply 

through establishing new projects in the south countries is small, “The most 

promising way of tackling the water problem [in Egypt] is, therefore, to expend

The journal m odel for this thesis is ASCE, Journal o f  Hydraulics Division.
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resources through water conservation in the old lands by introducing more effective 

on-farm irrigation technologies and practices” (Water Bank, 1993).

Based on Gates and Alshaikh (1993), parameters representing physical properties 

and boundary conditions of irrigation systems can be classified into three categories:

□ Hydrologic properties: streamflow, crops evapotransportation, precipitation, and 

infiltration, etc.

□ Hydraulic parameters: cross-section geometry, resistance coefficients, etc.

□ Management parameters: irrigation application efficiency and water delivery 

schedule.

Most o f the studies that have been done to improve irrigation canal networks were 

done by means related to a combination of first and third categories, which are crops 

pattern and operations schedule (reservoir routing). These studies were done either to 

design a new irrigation network, or rehabilitation of an existing irrigation network. 

These studies were done using linear programming, dynamic programming, non

linear programming, simulation models, or real time operations (Yeh, 1985). Some of 

these studies are summarized below.

Anderson (1968) developed a simulation model to define the optimal crop pattern 

to be grown on irrigated farms. Crop pattern is calculated based on different input 

data such as, the anticipated water seasonal supply of an organization based on its 

water rights and reservoir supply, number and sizes of farms, minimum and 

maximum acreage of each crop, costs and gross return for each crop, water 

requirement for each crop, and yield loss from not watering in specific periods.

Matanga and Miguel (1979a, 1979b) used a linear optimization model to decide 

the best allocation of three crops based on total water supply and maximum amount 

o f water that can be delivered for irrigation. The model considered some constraints. 

Such as the total crop area cannot exceed total area, and total the irrigation depth 

cannot exceed the capacity of the water distribution system. Then they used stochastic 

dynamic programming to define the optimal amount of water to be used for leaching 

prior to the irrigation season and seasonal irrigation depths to maximize the gross 

margin until the end of a finite planning horizon, or to maximize gain in gross margin 

per stage in an infinite planning horizon.
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Afshar et al. (1991) used a mixed integer linear optimization model for a river 

basin development for irrigated agriculture in the planning and design phases. The 

model has 4 components: surface reservoir, conveyance and distributed canals,

limited hectares of land to be developed, and limited number of crops to be 

considered. The model is a monthly chance-constrained optimization model with a 

one-year horizon.

Malek-Mohammadi (1998) made an improvement to Afshar et al. (1991) by 

adding the effect of groundwater and spring withdrawal, the delivery system capacity, 

and the effect o f the cost due to the drainage, land leveling and irrigation network 

construction. He used a chance-constraint optimization technique, and he 

implemented his model for an irrigation canal network with three plains and nine 

cells.

Rovikumar and Venugopal (1998) developed a three-phase optimization model 

for the optimal operation for a large-scale south Indian irrigation system. The first 

phase is a simulation model that uses the historical rainfall data to estimate the 

irrigation demand sequence. The second phase is a stochastic dynamic programming 

model that treats both irrigation demand on the reservoir and inflow into the reservoir 

stochastically. The third part is the simulation model that models the reservoir using 

the optimal release policy from the second phase.

In Egypt, Fawzy (1999) developed a linear optimization model to define the 

optimal crop pattern in Egypt. He used three different alternatives for the objective 

function. The first alternative is to maximize the net benefit of land and water per 

feddan. The second alternative is to maximize the net return of irrigation water 

volume. The third alternative is to rationalize the use of the available water resources 

by minimizing the irrigation needs. Ali (2000) studied the optimal crop patterns 

through a multiobjective linear optimization model that aims to minimize the 

irrigation water consumption, maximum the return from the water unit, and maximize 

the farmers’ profits. He divided the Egyptian cultivated land into three main regions: 

the upper, middle, and lower region, each of which has its climate and though its 

water consumption rate.
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Aside from mathematical models, simulation models provide an effective tool to 

improve the irrigation networks. According to Yeh (1985), “From practitioner’s point 

o f view, mathematical programming techniques have, thus far, not proven to be 

widely useful because of the complexity of water resources and non-commensurable 

objective in water resources management. In this regard, simulation is an effective 

tool for studying the operations of the complex water resource system incorporating 

the experience and judgment of the planner or design engineer into the model.” 

However, direct incorporation of complex simulation models into an optimization 

model is computationally prohibitive (Neelakantan and Pundarikanthan, 2000). The 

conventional way to incorporate a simulation model into an optimization model is 

that the optimization model passes decision variables to the simulation model, 

receives the output of the simulation model, and then decides the next step based on 

evaluation of the objective value. In that case, the direct search methods, such as 

Hooke and Jeevs method (Gates and Alshaikh, 1993, Neelakantan and 

Pundarikanthan, 2000) is used to solve the problem. Evolutionary computation 

provides another effective way to incorporate simulation models in an optimization 

model.

Another means of enhancing irrigation is by controlling the canals operations. The 

automatic gate operation technique is used to increase the crop productivity and 

prevent damage due to flooding. Among these studies, Reddy et al. (1992) presented 

a technique for operation of irrigation canals in the presence of arbitrary external 

disturbances. They solved a linearized form of the continuity and gate-discharge 

equations. They assumed the lateral canals to be located immediately upstream of the 

last node in each pool. They verify their model using a nonlinear open-channel flow 

simulation model. The simulation model estimates the flow rates and water depths at 

each point in the reach, then these data will be used by the observer and the controller 

to calculate the change in the gate opening. After this, the flow through this regulator 

will be calculated and used as a boundary condition in the next time step.

The current study treats the problem of enhancing the irrigation networks 

differently. The goal of the current study is to define the optimal irrigation schedule 

for a short-term irrigation period (eg. For a typical irrigation period of five days in
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Egypt), which can minimize the total water consumed while satisfying the system 

constraints, which are:

□ No water shortage at any point in the network at any time during the irrigation 

period.

□ No flood at any point in the network at any time during the irrigation period.

□ The difference between the upstream water level and the downstream water level 

of any regulator is less than the maximum allowable difference at any time during 

the irrigation period.

□ Water volume in the network at the end of the irrigation period is enough to start 

the next irrigation period.

The importance of tackling the problem this way stems from the following two 

facts:

□ For some irrigation networks, such as that in the case study described in Chapter 

2, defining the optimal crop pattern is not a practical issue, as it is hard to 

implement it in reality. This is because the cultivated area in such networks is 

divided among thousands of owners, who have the freewill to decide the 

cultivated crops. In the current model, the crop pattern will be treated as input 

data, and it will be treated stochastically as there is uncertainty associated with it.

□ Using mean seasonal inflow or monthly inflow can be used while drawing a 

general strategy, but it cannot guarantee prevention of flood or water shortage 

during daily operations, unless suitable operations are defined based on the actual 

consumption rate and the hydraulic characteristic of the network.

Thus, the current study aims to develop an optimization model to define the best 

set of gate operations, and the best boundary conditions to minimize the total water

consumed and prevent damages caused by water shortage, flooding or instability of 

regulators. This optimization model will be solved using a genetic algorithm (GA) 

based-search based procedure, and incorporates an unsteady flow model to evaluate 

each potential solution. A user-friendly interface was developed to make it easier for 

the user to enter the data and present the results. The model is applied to a case study 

involving a large-scale irrigation canal network in Egypt.

The current study is organized as follows:
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Chapter 2 describes the optimization model and gives a brief introduction to GAs, 

and how the GA is implemented on the current study. Also the details of the case 

study in Egypt are presented at the end of this chapter. Chapter 3 describes the 

unsteady flow model that was used within this model. The GA parameter values used 

within this model are tested and discussed in Chapter 4. Different ways to handle the 

constraints are discussed and compared in Chapter 5. Chapter 6 addresses the 

uncertainty that is associated with crops pattern and water consumption rates. Chapter 

7 gives a brief description of the user-friendly interface that was built for this model. 

The conclusions and recommended future works are presented in Chapter 8.
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CHAPTER 2 

OPTIMIZATION MODEL

2.1 Introduction

The goal o f the current model is to define an efficient irrigation canal operation 

schedule (initial gate opening, gate operation and boundary condition) that minimizes 

the irrigation water volume consumed in an irrigation canal network, while satisfying 

four constraints, which are:

□ The water level must stay at or above minimum-required water levels. In most 

irrigation canals, these minimum-required water levels are zero meaning that the 

canals should not run dry.

□ The water levels must not exceed maximum-allowable water levels, which are 

channels’ banks levels.

□ The difference between the water levels upstream and downstream any regulator 

must not exceed the maximum-allowable difference.

□ For some canals in the network, the water levels must not go blow some pre

defined levels at the end o f the routing. This constraint ensures that the water 

volume at the end o f the flow routing will be sufficient for the beginning o f the 

next irrigation period.

An optimization model is developed using the above defined objective and 

constraints, and is solved using a Genetic Algorithm (GA), which has been shown to 

be a powerful tool for solving very complex models without any simplification. An 

unsteady flow model is used to evaluate each potential solution (string) in the GA. 

This chapter describes the optimization model, gives a brief introduction to GAs, and 

how a GA is implemented in the current study. Also, a case study in Egypt will be 

presented in the end o f this chapter.
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2.2 Optimization model

The optimization model used herein is as follows:

Minimize z  =  t2-1)
t e N T  t e N T  o s  NO

Subject to:

y p( t)> y r Vp ,V t ........................ (2.2)

WLp(t) < FLp V p , V t ........................ (2.3)

USWLg(t) -  DSWLg (t) < MDg V# , V /....................... (2.4)

WLp(tend)> R W Lp V p e R P .....................(2.5)

Where:

N T : Number o f time steps o f the flow routing.

Qt : Discharge at the inflow point during time step t.

N O : Total number o f outflow points.

Q : Discharge at the outflow point o during time step t.

y p : Water depth at point p.

y r Minimum required water depth, and for irrigation, it was

considered as zero to just prevent the water shortage.

WLp : Water level at point p.

FLp : Maximum allowable water level at point p.

USWLg : Upstream water level o f regulator g.

DSWLg : Downstream water level o f regulator g.

MDg : Maximum allowable difference between upstream water level and

downstream water level for regulator g.
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RP Number of points that have required water levels at the end o f

simulation.

RWLp Required water level at point p.

t: Routing time step.

tend: Time at the end o f the flow routing.

2.2.1 Decision variables

This model contains two types o f decision variables; gate opening values and 

boundary conditions. Boundary conditions include the upstream boundary condition, 

which is the water level at the upstream end o f the network, and the downstream 

boundary conditions, which represent the discharge at the downstream end o f each 

regulator. Also gate-opening values include both initial gate opening (at the beginning 

o f the routing) and operations during the routing.

2.2.2 Constraint violations tolerance

In a real irrigation network such as the one presented in the case study, there may 

be some weak points, such as a bank with a low elevation, or a branch with an 

entrance that has a higher bed level than that o f the adjacent point in the main canal. 

These points could be actual weak points or could be a result o f inaccuracy in data 

input. These weak points, even if  very few, can make finding a feasible solution very 

difficult. Assuming a small tolerance for constraint violations can prevent these few 

points from controlling the whole network, and can lead to better solutions.

Figure 2.1 presents two examples o f the same scenario o f the case study, with 

and without allowing for a small constraint violation tolerance. Without considering 

tolerance (case the left graph of Figure 2.1), the number o f feasible solutions during 

the whole run is zero, and there are no strings that satisfy the first constraint (water 

shortage). Only 14 strings in the first four generations satisfied the second constraint 

(Flood). The second graph in Figure 2.1 presents the same scenario while using the 

following constraint violations tolerance levels:
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Figure 2.1
Number of the strings that satisfy each constraint, and that satisfy all constraints without and with

constraint violation tolerance respectively

&  Water shortage: 0.01

jsS Flood: 0.005

js£  Regulator stability: 0.0

Required water level: 0.05

The difference between numbers o f feasible solutions is very clear. In the final 

optimal solution, the total flooded length is 90 m (0.0005 o f the total length), and total 

cultivated land affected by water shortage is 630 feddan (0.0009 o f the total cultivated 

area). The method for calculating the violation for each constraint is discussed in 

section 2.4.2.

2.3 Solving the optimization model

Many optimization techniques have been used in hydraulics or water resources 

systems optimizations, including linear, dynamic and non-linear programming, direct 

search methods, evolutionary computation, and complete enumeration techniques.

Linear, and dynamic programming techniques cannot be used with the current 

study because o f the complex nature o f the problem. Also, complete enumeration 

would be impractical, as the decision variables are continuous, and the computational 

time required would be prohibitive.
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Regarding nonlinear optimization, Yeh (1985) compared nonlinear programming 

with other techniques (linear and dynamic) for a reservoir routing problem, and stated 

that nonlinear programming has not been as popular in water resources systems 

analysis as other methods due to the complication in implementing the technique and 

the difficulty to account for the stochastic nature o f the system. Simpson et al. (1994) 

compared genetic algorithm (GA) techniques with complete enumeration and 

nonlinear optimization for a water distribution problem, and they concluded that the 

complete enumeration approach is only applicable with small problems with few 

pipes due to the heavy computational requirements. Nonlinear programming is an 

efficient technique when applied to small network. GA is an efficient technique with 

computational effort relatively high compared to nonlinear optimization, but very 

small compared to total enumeration. Yoon and Shoemaker (1999) compared 

different methods for a groundwater problem, including some evolutionary 

computational methods, some direct search methods, and some derivative-based 

optimization methods. In their study, the binary-coded genetic algorithm performed 

poorly, but an evolution strategy technique achieved a good balance between speed 

and accuracy. Other researchers refer to similar drawbacks o f using gradient-based 

programming compared to genetic algorithm techniques in water resources problems 

(Wu and Simpson, 2001).

Regarding the current study, the complication o f implementing gradient-based 

(nonlinear) programming can be explained by assuming a very simple network with 4 

points (Figure 2.2) and considering the optimization model (Equations 2.1 to 2.5). 

The following points could be mentioned:

□ The decision variables in the problem (B l, B2, and g) are not explicitly expressed 

in the optimization model. However, there is a system o f differential equations 

related stated variables (A and u) with decision variables included in equations FI 

to F8. (Details o f  these equations are in section 3.3)

□ Obtaining a relationship between any o f the stated variables and decision 

variables, and their derivatives, is difficult. For example, defining a direct 

relationship between A l and B2, should be obtained through relationships o f A l 

with A2, A2 with A3, A3 with A4 and A4 with B2. Considering the equations that
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are used within the simulation model, and considering a typical example, like one 

that is used in this study, with hundreds o f points and tens o f decision variables, 

obtaining the derivatives would be very difficult.

FI

Al
ul

oCQ

F2
F3

- 0

F4
F5

1 gJ

A2 ' A3
u2 u3
Regulator

F6
F7

F8

A4
u4

3oQQ

Figure 2.2
Simple example of an irrigation canal network

□ For some situations, relationships between stated variables (A and u), and some 

decisions variables do not exist. As an example, assume a gate operation during 

the routing with a given range (decision variable), and assume that the water level 

at this regulator during the time of the operation is less than the gate opening with 

the given range. In this case, this regulator will be treated as a constriction, and 

this decision variable will not be included in the system o f the equations. Thus, 

one cannot obtain a relationship between any stated variable and this decision 

variable. This situation may happen frequently, especially in small channels.

□ The fact that the problem is dynamic, where values o f A and u are calculated for 

different time steps, and that the number o f stated variables and decision variables 

keep changing from one time to the other, based on the operations or water 

shortage, and some variables should be treated stochastically, all increase the 

difficulty for using nonlinear programming in this problem.

□ Another drawback o f gradient-base optimization is that it can get trapped in local 

optima, and thus many policies (starting points) should be used to guarantee 

achieving optimal or near-optimal solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

Unlike traditional optimization techniques, direct search methods and 

evolutionary algorithms do not require the derivative information. They can be easily 

combined with simulation models by using the output o f the simulation model to 

define the next step. An example o f how these methods works was presented in 

Neelakantan and Pundarikanthan (2000) “In Hooke and Jeeves algorithm, the step 

length along the decision parameter axes is kept constant for each cycle o f moves, 

and a probe is made first in the positive direction and then in the negative direction of 

each axis. Iterative improvement can get stuck in a local minimum, as the algorithm is 

essentially ‘greedy’ and accepts only those moves that optimize the objective 

function. As a result, the solution depends upon the starting configuration. Hence, 

several starting points (policies) are used to make sure that a better solution is found.” 

Many direct search methods were used with hydraulics problems, such as Hooke and 

Jeeves (Neelakantan and Pundarikanthan, 2000, Gates and Alshaikh, 1993) or Nelder 

and Mead (Yoon and Shoemaker, 1999) or response surface method (Gates el al., 

1992). Comparing direct search methods with evolutionary computation, the 

following observations can be noted:

□ Both direct search methods and evolutionary computational can easily incorporate 

a simulation model inside the procedure.

□ Direct search methods are “greedy” optimization techniques that can get trapped 

at local optima, while evolutionary algorithms are more robust, and can move to 

optimal or near optimal solutions.

□ Although direct search methods are considered faster in general, this may depend 

on different factors. One o f these factors is the number o f starting points that will 

be used with direct search methods to make sure a good solution is found. Also, 

the type o f GA that is used associated with the parameters and constraint-handling 

technique, affects the rate o f convergence as well as the accuracy. An example of  

this is what was concluded by Yoon and Shoemaker (1999) while comparing 

different optimization methods including direct search methods and evolutionary 

computational methods. They found that an evolution strategy method was the 

best in combination o f speed and accuracy, while a binary-coded genetic 

algorithm performs poorly regarding the accuracy and the speed.
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The current study will use a genetic algorithm to solve the optimization problem 

and the output o f the simulation model will be used to evaluate each potential 

solution.

2.4 Genetic Algorithms (GAs)

Genetic Algorithms (GAs) are a class o f techniques that mimic the processes of 

natural selection and genetic propagation in nature to “evolve” good solutions to a 

problem. The interest in genetic algorithms is mainly due to their ability to handle 

very complex problems, which do not easily fit into the traditional optimization 

frameworks. The GA search procedure maintains a population o f potential solutions 

to the problem, each o f which is represented as a string o f design features. Unlike 

traditional optimization techniques, a GA requires no gradient information, but 

instead uses an evaluation function to determine the “fitness” or goodness o f a 

solution. The GA-based search framework can incorporate complex simulation 

models without any simplification.

According to Davis (1987), genetic algorithms have five basic components:

□ A genetic representation o f a solution to the problem.

□ A way to create an initial population of solutions.

□ An evaluation function rating solutions in terms o f their fitness.

□ Genetic operators that alter the genetic composition o f children during 

reproduction.

□ Values o f the parameters that the genetic algorithm uses (population size, 

crossover probability, etc.)

A global structure for genetic algorithms is shown in the Figure 2.3.
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Begin
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Assign Fitness

Initialization Population

Figure 2.3
Flow chart of genetic algorithm (Deb, 2001)

2.4.1 Representation

According to Herrera el al. (1998), “Representation is the key issue in GA work 

because GAs directly manipulate a coded representation o f the problem and because 

the representation schema can severely limit the window by which a system observes 

its world.” Regarding representation types, there are two main categories, binary and 

real representation. Binary representation has dominated the field o f GAs since its 

beginning until the early 1990’s. The reason for this is that there are theoretical 

results that show them to be the most appropriate ones, and they are amenable to 

simple implementation. However, binary representations have two main drawbacks: 

Hamming cliff, which means that two adjacent values are different in all o f their bits, 

and redundancy, which means the decoding o f a given code doesn’t belong to the 

domain. For most real-world problems, binary encoding is not the most suitable. 

According to Davis (1989), “We cannot handle most real-world problems with binary 

representations and an operator set consisting only o f binary crossover and binary
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mutation. One should incorporate real-world knowledge in one’s algorithm by adding 

it to one’s decoder or by expanding one’s operator.”

The other way to encode a real-world problem is real representation. The interest 

in real representation began in the 1990’s. There are many advantages to real 

representations such as the following (Wright 1991, Gen and Cheng 2000; 

Michalewicz 1996, Herrera et al., 1989):

□ It moves the genetic algorithm closer to problem space, as the distance between 

the points in the representation space is analogues to the distance between the 

points in the problem space.

□ The use o f real parameters makes it possible to use large domains for the 

variables.

□ The capacity o f real representation to exploit the graduality o f the functions with 

continuous variables, where graduality refers to the fact that slight changes in the 

variables correspond to slight changes in the function.

□ It increases the efficiency and the precision.

□ It doesn’t require a lot o f memory.

The current study uses real representation to encode the decision variables.

2.4.2 Evaluation

This step plays the role o f the environment, and it rates solutions based on their 

fitness. Each potential solution (string) in the population will be evaluated using the 

objective function equation, or a simulation model, to check its fitness. This is a 

straightforward step in unconstrained optimization problems. However, in an 

optimization problem with constraints, a heuristic must be used to handle the 

constraints. Handling constraints in a GA can be challenging and will be discussed in 

detail in Chapter 5.

To evaluate each string, the unsteady flow model is used to route the flow, and the 

output from the model will be used to calculate fitness parameters. These outputs are 

calculated as follows:

□ During the routing and for each time step, the following items will be calculated:
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jb s The difference between the inflow discharge at the first point in the network, 

and outflow discharges from the downstream ends o f the canals that convey 

water outside the network is calculated for each time step. The cumulative 

value o f all these differences during all time steps presents the total water 

consumed (objective value). 

jb s The water shortage will be checked at each time step. Whenever there is a 

zero or negative (numerically) water depth anywhere in the network, the 

program will assume that the part o f the channel downstream is dry, and the 

cultivated area downstream of this point will be used to calculate a penalty for 

water shortage. If the end regulator o f the channel if  not closed, the program 

will add the cultivated area downstream this regulator to the shortage area. 

Even if  the water comes back to this part o f the channel during the routing, the 

program will still consider it as a violation o f the first constraint. The only 

exception is with the operations. When a new channel is opened, the program 

will assume a traveling time for each opened reach, and if  the reach is dry 

only during this time, the program will not consider this as a violation o f the 

water shortage constraint. 

jsS  For the flood penalty, the program will determine all points that have a water 

level higher than the flood level at any time during the flow simulation. The 

total flooded length is used to calculate the flood penalty term. Regardless o f  

the number o f the time steps the water level exceeds the maximum allowable 

water level, the program will consider this as a violation o f the second 

constraint.

jb s For the regulator stability, the program will check each regulator for the 

difference between upstream water level and downstream water level and 

compare this value against the maximum allowable difference o f this 

regulator. If the difference between water levels is higher, this will be 

considered as a violation of the third constraint.

□ At the end o f the routing, the water volume in canals that have a required ending 

water level will be calculated and compared with the volume o f the water based 

on the given required water levels. If the actual water volume is less than the
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required ending water volume, this will be considered as a violation of the fourth 

constraint.

2.4.3 Selection

The selection operator imitates the natural selection and survival o f the fittest in 

nature. It gives strings that have better fitness values a higher probability to get more 

copies, while strings with poor fitness values have a higher probability to die off. 

According to Gen and Cheng (2000), “Selection provides the driving force in genetic 

algorithms. With too much force, genetic search will terminate prematurely; with too 

little force, evolutionary progress will be slower than necessary”. The most 

commonly used selection procedures (Goldberg and Deb (1991), Gen and Cheng 

(2000), Runarsson and Yao (2000)) are:

□ Proportionate Selection: in this class o f selection, a chromosome has a probability 

to be selected proportional to its fitness. In these types o f selection, the number of  

copies o f an individual in any generation is related to the ratio between the fitness 

o f this individual and the average fitness

P . =  P  —1 i,l+1 1 i,l ~T
J  i

Proportionate selection can be preformed using roulette wheel, stochastic 

remainder selection, or stochastic universal selection. According to Goldberg and 

Deb (1991), proportionate selection is found to be significantly slower than other 

methods.

□ Ranking selection: this technique was proposed by Baker (1985), then by 

Grefenstette and Baker (1989). In ranking selection, the population is sorted from 

the best to the worst, and assigns the number o f copies that each individual should 

receive according to a non-increasing assignment function, and then performs 

proportionate selection according to that assignment.

□ Tournament Selection: (Goldberg and Deb, 1991), tournament selection is based 

on randomly selecting a few strings and picking the best from them, and repeating 

until the mating pool is filled. The number of strings that is compared defines the

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



20

sub-category o f this method. Binary tournament selection, where two strings are 

compared at a time is the most commonly used selection technique.

□ Stochastic Random Selection: Runarsson and Yao (2000) proposed this method as 

a constraint-handling technique method to avoid the fine-tuning through using 

penalty functions. The idea is to use only the objective function or the constraints 

for the selection, rather than using the fitness function that is a combination of 

both. The one (objective or constraints) that will be used to determine the winning 

individual in the selection is chosen randomly. They suggested a probability 

between 0.4 & 0.5 for using the objective to rank the individuals (besides the case 

when both individuals are feasible, in which the objective function is used as 

well); otherwise the ranking will be based on the level o f constraint satisfaction. 

Three selection techniques were tested in the current study, which are:

□ Binary tournament selection.

□ Binary tournament selection with superiority o f feasible solution.

□ Stochastic tournament selection, which is a new proposed technique. The details 

about this technique are given in Chapter 5.

2.4.4 Crossover

The selection process increases the average fitness by increasing copies o f  good 

solutions and eliminating some bad solutions, but it doesn’t add any new information 

to the problem. The way of exploring more of the search space is done through 

crossover and mutation. In crossover, two parents, from strings that survive after the 

selection process, will exchange a part o f their data. Just a portion o f the population 

will undergo crossover, while the rest o f the population will move to the next 

generation as they are. The portion is defined by the crossover probability. The 

importance o f  this probability and suggested values will be discussed in Chapter 4.

According to the representation, there are two main categories o f crossover, 

binary-coded crossover, and real-coded crossover.
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2.4.4.1 Binary-coded crossover

Binary crossover is used for GAs with binary representations, and it three 

different types, which are:

□ One point crossover

□ Two point crossover

□ Uniform crossover

Figure 2.4 illustrates examples about these three types o f binary crossover. In one 

point crossover, a location along the string length is selected at random, and all bits to 

the right o f this location will exchange their data. In two point crossover, two 

locations are defined randomly, and the bits between these two locations will 

exchange their data. In uniform crossover, each bit in the first offspring decides (with 

some probability p) which parent will contribute its value to it. The second offspring 

receive the bit from the other parent. The probability that is normally used within 

uniform crossover is 0.5, and so it could be done using a mask with digits o f 0 and 1. 

If the value o f the mask’s chromosome is zero, each parent will give its value to the 

corresponding child (parent 1 for child 1 and parent 2 for child 2). If the value o f  

mask’s chromosome is 1, the values o f parents’ chromosomes will be exchanged.

i i i

Parent 1 1 o l o l l 1 1 0 I 0 I 1 I 0 I I I 0 1 Parent 11 0 I 0 I 1 1 1 0 I 0 I 1 0 1 1 1 0 1

Parent 2 1 o 1 0 1 1 ° 1 1 1 0 1 1 1 1 1 1 1 Parent 2 0 I 1 I 0 1 | 0 1 I 10 ■ I ' M
1
1

Child 1 [T 0 I 1 1 | 0 1 1 1 0 1 1 1 1 1 1 1 Child 1 o i o r n 1 1 0 1 1 10 0 I 1 I 0 I
Child 2 [T 1 0 oooo Child 2 0 1 1 1 0 1 | 0 1 0 1 1 • 1' 1' 1

1
One point Crossover

1 1 
Two points Crossover

Parent 1 Parent 2
1 o 1 o I i | l 0 0 1 0 I 0 I 1 0 i | ° | 1 | ° | 1 0 1 1 1 1 1 1
..V___ k___ ) J

Y Mask .Y ,
1 0 1 0 1 1 1 1 | 0 | 0 | 1 | 1 1 I 0 ]
A.

/ C
1 0 I 0 I 0 | 1 0 I 0 I 0 1 ! 1 1 1 0 1 10 1 | ! | i | ° | i 1 I 0 I 1 I 1

C hild 1 C hild 2
U niform  C rossover

Figure 2.4 
Examples of binary-coded Crossover
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2.4.4.2 Real-coded crossover:

There are many real-coded crossover techniques have been proposed since the 

1990’s. The difference between these methods is how to generate the children from 

their parents. In linear crossover, reported by Wright (1991), three children are 

generated from two parents in the locations (-0.5/^ + 1.5P2) , (0.5P, +0.5P2), and 

(l.5T5 -0 .5 P 2) then the best two children will be chosen to the next generation. In 

simulated binary crossover (SBX) (Deb and Agrawal, 1995), new solutions will be 

randomly chosen from a specific probability distribution around the parents based on 

a random number w(. and a distribution index rjc as in Figure 2.5. A large distribution 

index indicates that the offspring will be close to their parents. In Unimodal 

Normally Distributed Crossover (UNDX) (Ono and Kobayashi, 1997), two children 

are generated from a region o f normal distribution defined by three parents. These 

two children are generated around the center o f mass o f their parents. Simplex 

crossover (SPX) (Tsutsui et al., 1999) assigns a uniform probability distribution for 

creating offspring in a restricted search space around the region marked by the 

parents. In this method, the center o f parents is calculated, then from a space defined 

by this point with the parents, a number o f solutions (200 is suggested) is created, 

then two parents will be replaced by the best from these solutions and parent 

solutions. In blend crossover, proposed by Eshelman and Schaffer (1993), two 

children are generated from the range [p2 + cd ,p l - a l ] ,  where p i and p2 are the 

values o f  the parents, p 2 > p l , I  = p 2 -  p x, and a  is a coefficients between 0 and 1. 

Many other types o f real-coded crossover are listed in Herrera et al. (1998), Gen and 

Cheng (2000), and Deb (2001).
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Figure 2.5 illustrates different types o f real-coded crossover.
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Herrera et al. (1998) conducted an experiment to compare different binary and 

real coded crossover techniques, and they stated, “Generally, BLX-a crossover 

allows the best final results to be obtained. The higher the a  is, the better the results 

are. As a  grows, the exploration level is higher, since the relaxed exploitation zones 

spread over exploration zones, increasing the diversity levels in the population”

The current study uses blend crossover. The optimal value for blend crossover 

extension a  is discussed in detail in Chapter 4.
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2.4.5 Mutation

Originally, the mutation operator was considered to be a background operator. 

According to Holland (1975), “mutation is a ‘background’ operator, assuming that the 

crossover operator has a full range o f alleles so that the adaptive plan is not trapped 

on local optima.” However, later researchers argued about this fact, and they stated 

that mutation has a stronger role than previously recognized (Schaffer et al., 1989). 

The objective o f mutation, like crossover, is to increase the variance o f the population 

and prevent the GA from converging to local optima. In this step, the values o f some 

strings that are selected randomly will be changed. In binary encoding, the value o f  

the bit will be changed from 0 to 1 or vice versa. In real encoding, there are many 

proposed mutation implementations. The one that is used in the current study is 

random mutation, where a new random value will be selected between the maximum 

and minimum allowable values o f the gene that will be mutated. The details o f other 

different mutation techniques can be found in Herrera et al. (1989).

The number o f strings that will undergo mutation is decided based on the 

mutation rate. The effect o f the mutation rate, and suggested values will be discussed 

in Chapter 4.

2.5 Case study

An irrigation canal network in El Monofiya, Egypt is used as a case study (see 

Figure 2.6). In Egypt, the Nile River is the sole source o f irrigation water. It provides 

Egypt with about 55.5 billion cubic meters o f water per year, which barely meets the 

water demand (Abu-Zeid, 1992). It is expected that the water demand in Egypt will 

soon exceed the supply as the population increases. It is estimated that Egyptian 

agriculture consumes between 84% (Abu-Zeid and Rady, 1992) and 95% (Naff and 

Matson, 1984) o f the water used in Egypt. Also, more water is consumed in Egyptian 

agriculture than in many other areas, primarily because o f  the wasteful use of 

irrigation water (Samah, 1979). This means that any plan to address the water supply 

for the future should include more efficient use o f irrigation water. A part o f the 

wasteful use o f irrigation water is the result o f the inability to determine efficient
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strategies to make the best use o f the irrigation water in the network. The network 

used for the case study is shown in Figure 2.6, and consists o f man-made canals used 

mainly for irrigation purposes. The total cultivated area that is served by the network, 

on a rotating basis, is about 187,320 hectares (483,708 acres). All o f the channels 

have mild slopes, as the longitudinal bed slope changes from 0.0 (horizontal bed) to 

0.0001, and thus the flow is subcritical and water levels are gradually varied in the 

entire network. The network contains a main canal (El Monofy Rayah), for which the 

intake at the Nile River is the upstream end o f the network.

All branches in the network divert from this main canal or from its branches. The 

case study considers the network from El Monofy Rayah intake to Meleg regulator 

(km 53.51 on El Monofy Rayah). In this reach o f the main canal, there is one middle 

regulator, which is El Quarinien Regulator at km 29.30. There are two main branches: 

El Bagoriya Canal and Tanta Navigation Canal, which carry discharges to other 

directorates. The water is distributed through the branches on the basis o f  a periodic 

system, whereby a part o f the network is opened for five days and then closed for ten 

days.
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2.5.1 The Data and its accuracy

The data used by the simulation model includes the following:

□ Canals data: this category includes the canal length, the total cultivated land, 

number o f regulators, and number o f branches. These data tend to be very 

accurate.

□ Reaches geometry data: this category includes the length, cultivated land area, 

and cross sectional area o f each reaches. The accuracy may be affected if  the 

actual cross sectional in some places has been changed from the design values. 

Also, the bank levels at each point are interpolated between the values at 

regulators and branches. The actual levels may deviate from this.

□ Regulators design data: this category includes gate width, regulator bed level, 

cultivated land area downstream of the regulator, regulator thickness, and the 

maximum allowable difference between upstream water level and downstream 

water level. Also, this category o f data includes the discharge coefficient o f this 

regulator. The accuracy o f the discharge coefficients is questionable especially 

with small regulators, where there are no field measurements to obtain empirical 

equations for them. In the absences o f better information, the value 0.61 is used 

for such regulators.

□ Initial data: these mainly are the initial water levels upstream o f each canal and 

upstream and downstream of each regulator. Initial water levels were assumed 

with an average o f levels at the time that was used for routing the flow.

□ Boundaries and gate openings: the boundaries and gate openings are decisions 

variables unless they are fixed values. Downstream boundaries for canals that 

carry the water to downstream directorates will always be decisions variables. For 

some branches that the program will route only a part o f them, the boundary 

might be fixed value, and it will be calculated based on the cultivated land area o f  

the downstream part o f this branch, and the average water consumption rate.

□ Water consumption rates and crop allocation data: regarding the water 

consumption rate, the average values defined by the agricultural departments and 

by other previous researchers are used. For the crop allocation ratio, the ratios
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were assumed based on the average ratios for crop allocation in Lower Egypt as

was presented in previous studies (Ali, A. S. (1999), Ali, H. M. (2000), Fawzy, G.

M. (1999), and El Qusoy, D. (1995)).

2.5.2 Suggested scenarios

Three scenarios o f the case study are considered in this study. They are different 

in the number of decisions variables, number o f the constraints and in the difficulty to 

find a feasible solution as a result o f some sudden changes in the flow routing.

The first scenario (Figure 2.7) is the simplest one. It assumes that gate openings 

are constant during the whole run. The boundaries change gradually in four points 

and they are fixed in all other points.

This scenario consists o f the following:

□ Number o f decision variables:

m s There are 19 decision variables as follows:

S  11 initial gate openings (No operations).

•S 8 Boundaries conditions at 4 points (one upstream point and three 

downstream points at canals 1,6, and 12).

□ Number o f constraints:

m s For both water shortage and flood: the model checks 646 points for 120 

time steps

ms For regulator stability: the model checks 12 regulators for 120 time steps

m s For required water level: the model checks 83 points at the last time step

□ Constraint violation tolerance:

m s Constraint violation tolerance for this scenario is zero meaning that the 

solution must satisfy each constraint perfectly to be considered feasible.

The boundaries at the end o f all branches are fixed values, and one gate opening is 

assumed a free opened regulator.

Figure 2.8 displays the water level upstream and downstream o f El Quarinien 

regulator. Water levels change smoothly during the routing. There is an effect from 

the initial condition in the first part o f the routing,
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The second scenario (Figure 2.9) presents the case during a typical irrigation 

period, when there are few changes in the schedule o f the operations. Also, this 

scenario presents the case when the amount o f water delivered to the downstream 

directorates is changed between branches (Increase the discharge o f one branch at the 

expense o f other branches).

This scenario consists o f the following:

□ Number o f decision variables:

jes There are 31 decision variables as follows:

S  19 initial gate openings and 7 gate operations.

S  12 Boundaries conditions at 5 points (one upstream point and four 

downstream points at canals 1 ,6 ,10 , and 12).

□ Number o f constraints:

eS For both water shortage and flood: the model checks from 795 to 837 

points for 120 time steps. 

es For regulator stability: the model checks from 15 to 18 regulators for 120 

time steps.

ss For required water level: the model checks 83 points at the last time step

□ Constraint violation tolerance:

&  Constraint violation tolerance for this scenario is as follows:

■S Water shortage: 0.005 

S  Flood: 0.0 

S  Regulators stability: 0.0 

S  Required water levels: 0.01

□ Operations in the main regulator

■S El Quarinien regulator: gate opening increased twice, at time step 24 

and at time step 96.

□ Boundary at the main outflow

S  Canal 1: gradually changes until time step 24, and then becomes 

constant.

S  Canal 6: suddenly decreases after 24 time steps.

S  Canal 12: suddenly increases after 36 time steps.
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□ Changes that have fixed values (Not decision variables)

S  Canal number 5 will be closed at time 96.

Figures 2.10 to 2.12 represent the water levels from one o f the runs o f this 

scenario. Figure 2.10 presents the water level upstream and downstream El Quarinien 

regulator. The effect o f opening the gate at time step 24 is clear in the downstream, as 

is the effect o f increasing boundary conditions at canal 12 at time step 36. Also, at the 

downstream, the increased difference between water surface elevation and energy 

grade line elevation indicate the increased velocity, and thus the discharge. At the 

upstream, the effect o f decreasing the boundary o f canal number 6 with increasing El 

Quarinien gate opening at time step 24 can be seen. Also, the effects o f opening 

canals 9 and 46 at time step 48, and increasing El Quarinien gate opening after time 

step 96 are clear.

Figure 2.11 presents the water level upstream o f the second regulator o f canal 3. 

Water levels increase for the beginning, but the rate of increase changed after time 

step 24, when the gate opening o f the intake increased. The water levels begin to 

decrease after this due to the opening o f the second regulator.

Figure 2.12 presents the water level upstream o f the intake regulator o f canal 45. 

It is close to the water level upstream of El Quarinien regulator, as it shares it the 

same pool with no structures between them. The effect o f opening the gate at time 

step 48 has no significant effect than the upstream of El Quarinien.

This change in the water levels during the routing increases the chance o f  

violating any constraint, and thus finding a feasible solution is harder than for the first 

scenario.
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The third scenario o f the case study (Figure 2.13) represents a typical change of 

an irrigation period. The flow will be routed for 6 days, the last day in the current 

irrigation period with the five days o f the next irrigation period. The irrigation period 

changes mainly from the branches upstream of El Quarinien regulator to the branches 

downstream of it, in addition to some other branches upstream it. The cultivated land 

for the new irrigation period is less than the cultivated land for the previous one, so 

the gate opening for El Monofy intake will be reduced, and the outflow to the 

directorates downstream o f the network will increase. At the end o f the routing, the 

gate opening of El Monofy intake will increase again to prepare the network for the 

next irrigation period.

This scenario consists o f the following:

□ Decision variables:

mS  There are 52 decision variables as follows:

S  14 initial gate openings and 18 gate operations.

✓ 20 Boundaries conditions at 12 points (one upstream point and 11 

downstream points at 11 different canals as in Figure 2.13).

□ Constraints:

m s For both water shortage and flood: the model checks from 735 to 716 

points for 144 time steps.

m s For regulator stability: the model checks from 15 to 14 regulators for 144 

time steps.

ms For required water level: the model checks 83 points at the last time step.

□ Constraint violation tolerance:

m s Constraint violation tolerance for this scenario is as follows:

S  Water shortage: 0.01

✓ Flood: 0.005

S  Regulators stability: 0.0 

v' Required water levels: 0.05

□ Operations in the main regulator

S  First regulator: gate opening is decreased 2 times (time steps 12 and 

36) and then it is increased 2 times (time steps 108 and 120).

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



37

S  Second regulator: gate opening is increased 5 times (time steps 12, 24, 

36,48, and 60).

□ Boundary at the main outflow

Canals 1, 6, and 12: Sudden increase after 24 time steps

□ Changes that have fixed values (Not decision variables)

S  Six branches that divert from the main canal are closed (3 after 24 

hours, and other 3 after another 12 hours).

S  The boundary o f 11 small branches that divert from canal 3 will 

change after 24 hours to 0.0.

Figures 2.14 to 2.16 present the water levels in some points o f the network during 

the routing in one o f the runs of this scenario.

□ The water level upstream El Quarinien is decreasing until time step 109 when 

it begins to increase again as an effect o f increasing the gate opening o f El 

Monofy intake.

□ The water level downstream of El Quarinien is increasing until time step 24, 

then it begins decreasing when two main branches downstream o f it are 

opened, and the discharge to other directorates increases. From time step 100, 

it begins to increase again. With the decreasing water level, the difference 

between water surface and energy grade line elevation increases meaning that 

the velocity increases. In a typical run of this scenario, the discharge increases 

from 43.7 m3/sec at the beginning o f the routing to 83.8 m3/sec at the end of 

the routing.

□ Figure 2.15 presents the last point in canal 3 before the second regulator that 

was opened at time step 24. Also Figure 2.16 presents the point on canal 46 

upstream o f canal 86 that was opened at time step 12. The effect o f opening 

new reaches or new canals is clear.

This increase o f the decision variables with the sudden changes o f the boundaries 

increases the difficulty in finding a feasible solution unless the decision variables are 

chosen suitably.
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These three scenarios o f the case study present different levels o f difficulty to find 

feasible solutions and will be used to check the best parameters that should be used 

within the GA and suitable constraint-handling techniques in later chapters.
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CHAPTER 3 

THE UNSTEADY FLOW MODEL

3.1 Introduction

To evaluate the solutions in the GA-based optimization model that was defined in 

Chapter 2, an unsteady flow model is used. The model is based on the unsteady flow 

equations with other equations for the junctions, the regulators, and the constrictions. 

The implicit method was used to express the equations mathematically, with a 

weighting factor of 1.0. The Newton-Raphson method was used to solve the system 

of the equations, with some modifications to save memory and computational effort. 

The model is designed to handle operations during the routing, and a new technique 

for zero or negative (numerically) water depth that can achieve the stability without 

affecting the accuracy is proposed. A summary of the unsteady model that is used in 

the current study is given in this chapter. More complete description can be found in 

El Gamel (2001).

3.2 Governing equations and their solution

3.2.1 Governing equations

The governing equations for routing the flow through the reaches, the junctions, 

the constrictions, and the regulators (sluice gates) in a canal network are as follows:

3.2.1.1 Governing equations for the reaches

The complete Saint Venant equations are used to route the flow in the reaches, 

and have the well-known form:

dA d(Au 
dt dx

- < 7  = 0. .(3.1)
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Where:

A= cross sectional area (L2). 

u= mean velocity (LT_1). 

s0= longitudinal bed slope. 

sf= friction slope. 

y= water depth (L)

g= acceleration due to the gravity (LT-2). 

x= distance (L). 

t= time (T).

These two equations represent the continuity and the momentum equations. The 

same equations can be represented in the following form:

Where:

q= lateral inflow or outflow (LT-2), defined as positive in inflow and negative in 

outflow, and sf can be calculated using the Manning equation

The equations use the cross sectional area and the velocity as variables. Equations 

3 and 4 are used to route the flow through each reach in the network. For the 

junctions, regulators, and bridges, and the energy equation will substitute for the 

momentum equation.

(3.3)

(3.4)
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3.2.1.2 Governing equations for the junctions and constrictions

In the junctions and constrictions (see Figure 3.1), the energy equation is used 

with the continuity equation to route the flow. The energy equation between two 

sections can be expressed as follows:

2g 2g / .(3.5)

In the junctions, the head loss is negligible. For the constrictions (see Figure 3.1), 

the following equation, presented by Chow (1959), can be used to calculate the 

friction loss hf:

hf  = La
Q

J

+ L ' Q-^2 .(3.6)

Where

L : Regulator thickness.

La : Acceleration length.

K = the total conveyance that can be calculated as:

 ̂ A d 2/ 3K  = —AR 
n

.(3.7)

In the current study, the acceleration length is assumed to be zero and equation 

(3.6) becomes:

hf = L .(3.8)
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La L

Constriction
Backwater profile

Normal profile — Ah

Canal bottom

Figure 3.1 
Flow through constrictions

3.2.1.3 Governing equations for the sluice gates

An equation for the flow through a sluice gate (see Figure 3.2) can be obtained by 

applying the energy equation between the water sections upstream and the 

downstream of the gate, assuming that the energy loss through the gate is negligible 

and the pressure distribution is hydrostatic. According to Rajaratnam and 

Subramanya (1967), the sluice gate equation can be represented as follows:

Where:

qc = discharge through the regulator per unit width (L2T '1). 

og= height of the gate opening (L). 

cc= contraction coefficient.

a  = kinetic energy correction factor.

Since y2, rather than y3, is typically recorded in an irrigation canal network, the 

previous equation was modified for use in the model as follows:

(3.9)
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Qg = cli * ° 8 * b * P s ( y ] - y 2) ..................................................................... (3.10)

Where:

Q= the discharge through the regulator. 

b= the width of the gate opening.

cd is calibrated for each regulator using field measurements.

Ay

° g
l -  U „  $

( I !

Figure 3.2 
Sluice gate equation

3.2.1.4 Governing equations for submerged hydraulic jumps

The submerged jump exists when the actual tail water depth is greater than the 

corresponding tail water depth due to the free jump (see Figure 3.3). This 

phenomenon occurs downstream of the sluice gates when the flow is subcritical.
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Figure 3.3 
Submerged jump

The hydraulic jumps create energy losses that can be calculated by applying the 

energy equation upstream and downstream of the jump. Different equations have 

been presented in the literature to calculate the energy losses due to submerged 

hydraulic jumps (Chow, 1959; GovindaRao and Rajaratnam, 1963; Ohtsu et ah, 

1999). The equations presented by Ohtsu et al. (1999) are used in the model presented 

herein. The ratio between the head loss and the energy at sections 3 is calculated as 

follows:

s \ J 2 J

E,
(3.11)

Where:

(3.12)

y
Y3 = relative water depth at section 3 = —

og

Y2 = relative water depth at section 2 = —
og

y3= water depth at section 3 just behind the regulator (L) 

u0= mean velocity through the gate (LT_1)
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k= the ratio between the regulator width and the downstream width.

Also Ohtsu et al. (1999) presented the following relationship between Y3 and Y2:

Equation (3.13) is based on the assumption that the pressure is hydrostatic and the 

momentum correction coefficient is unity for both sections upstream and downstream 

of the jump.

3.2.2 Solution of the governing equations

3.2.2.1 Solving the equations for the reaches

The governing equations presented above cannot be solved analytically; thus, a 

numerical model is used to solve them. There are two numerical methods that can be 

used to solve the unsteady flow equations: the method of characteristics and the fixed 

points method. The method of characteristics is a technique that converts two 

simultaneous partial differential equations to four ordinary differential equations 

(Abbott, 1975). The interest in this method has decreased in the last few decades, but 

it is still often used as the boundary equation in the fixed points explicit methods. 

The main drawback of the method of characteristics is that it calculates the flow in 

non-fixed locations and times.

The fixed points methods, either explicit or implicit, use the finite difference 

scheme to approximate the derivatives of the partial differential equations. These 

methods depend on filling the plane of (x,t) with a grid representing the required 

locations and times to calculate the flow variables. The finite difference 

approximations are based on the Taylor series and express the derivative of the 

function based on the discrete points as follows:

(3.13)
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3f _ / ( * o + A x ) - / ( * o )  p
dx ~ A(x)  ( j

The explicit scheme solves the flow for one point at a time. The calculation is 

easier and the requirement of the memory is less than the implicit method, but the 

stability of these schemes is restricted by the Courant number, which requires that the 

computed wave celerity is greater than or equal to the actual wave celerity.

Various explicit schemes have been developed, including the Leap Frog method, 

the Lax-Wendroff second order scheme, and Dronkers’ Explicit scheme (Abbott and 

Basco, 1989; Dronkers, 1964). The implicit scheme is more robust and it has no 

restriction for the time interval. It solves the equations for all points of the canal at 

once for each time step. Although the system of equations is more complicated, the 

accuracy is better and the time interval is larger than the explicit methods. 

Preissmann and Cunge presented the first implicit scheme in the early 1960s (Liggett 

and Cunge, 1975).

The implicit scheme (see Figure 3.4), expresses the variables at one point as a 

function of the conditions at four surrounding points. These four points represent the 

current and the advanced location and the current and the advanced time. Preissmann 

and Cunge expressed the partial differential equations using a finite difference 

technique and then linearized the equations.

Distance

Figure 3.4 
Preissmann implicit scheme
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The system consists of two equations with four unknowns at each node. For a 

reach of N points, the system will contains 2N-2 equations with 2N unknowns. 

Adding 2 boundary equations, a unique system of 2N equations and 2N unknowns is 

obtained.

Other implicit schemes were presented in the 1960s and 1970s. The most 

important of them is the Amein four points scheme (Amein and Fang, 1970). This 

scheme expresses the variables at each point using four surrounding points, as in the 

Preissmann scheme.

However, Amein and Fong suggested solving a system of nonlinear equations 

instead of linearizing the equations. Amein and Fong solved the following unsteady 

flow equations:

Defining the variables at point M using the four points surrounding it as in Figure 

3.5 as follows:

dA . d u d A
u  1- A  1 q = 0

dx dx dt
(3.15)

(3.16)

t +

r
i+l

s At ■ M
 Ax

» o

X
Distance

Figure 3.5 
Amein implicit scheme
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.................................................. (3.17)

^  = ^ [ ( < 1+ < 0 - ( a ; + < ) ] .......................................................... (3.18)

[ ( <  + < , ) - ( “ ; + « ; .,) ] ........................................................... (3.i9)

dx 2Ax

8cc(m )  _  1 
dt 2A t

Substituting equations 3.17 through 3.19 into equations 3.15 and 3.16, the 

following 2 equations are obtained:

+ J L . M
2 Ax I T

\ /+1/2

/./+!/ 2
i+l + M '+i -  M

\  1+ 1 / 2

.(3.20)
/_/+!/2

Y ^ i y / Y y . ,  Y / ' - y ) + ^ (2Ax 2At w/+i + M./ w./+i w'/)+AT

VAxy( z J ~ z j + \ )
+ q

2Ax
r V +l/2 ' u

v z+i/2

/ + I / 2  
/  + l / 2

.(3.21)

As in the Preissmann scheme, the unsteady flow equations with the boundary 

equations will generate a unique system of equations. The Amein four points scheme 

is used in the model presented herein. Other implicit schemes and implementations 

of the previous scheme for different studies can be found in the literature (Fread, 

1971 and 1973, Quinn and Wylie, 1972, Amein and Chu, 1975, and Fread and Smith, 

1978).

3.2.2.2 Solving the equations for the junctions

Several suggestions for routing the flow through channel junctions can be found 

in the literature (Stoker, 1957, Li et al., 1983, Quinn and Wylie, 1972, Fread, 1973, 

and Jotiffe, 1984). The procedure suggested by Fread (1973) can be summarized as 

follows:
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1) Specify the initial conditions and the upstream boundary condition for the 

principle river and the tributary; specify the downstream boundary condition for 

the principle river.

2) Estimate the tributary flow Qtc occurring at the confluence for the time t + At.

3) Solve the implicit difference equations for the principle river by using the lateral 

inflow Qtc/Axc along the finite reach Axc (the width of the tributary). The solution 

obtained for the water surface elevation at the midpoint of Axc is denoted as hc.

4) Solve the implicit difference equation for the tributary by using hc as the 

downstream boundary condition. The solution obtained for the tributary flow is 

denoted as Qts.

5) i f  I Qtc-Qts I < s (predetermined error tolerance), increment the time and return to 

step 2; otherwise, use Qts as an improvement estimate of the tributary flow Qtc 

and return to step 3.

The current study uses a technique that was developed based on this one to route 

the flow through the junctions.

3.3 Governing equations and solution methods used in the model

The model solves the following unsteady flow equations

du dA dA
A  h u  1 v q — 0 ..................................................................................... (3.22)

dx dx dt
.du dA 2 dA du2 d(Ay) / \

4  —  +  u ~  +  u  +  — t g —  --------------------------- -  s f ) + q u  - 0 ................................... ( j - 2 j )
dt dt dx dx dx

It uses the implicit scheme to express the previous equations mathematically, 

using the Amein four-point scheme. For any arbitrary variable a  at point M, the value 

of a  and the derivatives of it with respect to the unknowns can be expressed using the 

variables at points a, b, c and d (see Figure 3. 6) as follows:
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e
a m = {aa + a h) + - { a c + a d) .................................................................... (3.24)

•V  -m(.\vI • I1' " lt' /  "  l ' M" '  "  11 ................................................... (3.25)
dx v '  Ax

« £  =  ,/ (A„  = [ k + « , ) - ( « . + « » ) ]  ........................................................................ (3 26)
dy 2A t

Figure 3.6 
Implicit rectangular net

Using Equations 3.24 to 3.26 with 0 equals 1.0, equations 3.22 and 3.23 can be 

written as follows:

1 r l u\■ — u'j , 1 r . i A', — A\ ,
f , = - U ; , + 4 * - — - + - [ “) i + « ' / * —— — +1 2 yJ Ax 2 /J Ax

A'j + A'_t -  A ?  -
2At

+ q = 0 .0 ...................................................................(3.27)

1 r 1 w /
f 2 = - U ' , + a 'M - l

2 2 7-1 /J 2 At
A ^ + A } - A » - A »  i L 2w

2 At 2 
, 2 \  /

2 H ' J Ax Ax 2

k , + 4 M k + 4 l * K - ,  + ^ ; J + f  k - , + « ; ] = o . o . . . . . . . . . . . . . (3.28>
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For the flow through the junctions, the continuity and the energy equations will be 

used for the continuous canal, while the upstream boundary equation will be used for 

the branched canal as in Figure 3.7. The equations for the continuous canal are as 

follows:

%
V>\

7 \  Q"
Regulator ,

  '   Q, '' v. '
N ... 2

  ' j
Co ^ °

Figure 3.7 
A junction between two canals

Fj = Ax * w, -  A2 * u2 - Q b .................................................................................. (3.29)
2 2 

U,  U ,
F2 = Z ,+ y ,+ ^ — Z2 - y 2 - ^ - ...................................................................... (3.30)

2 g  2 g

For the regulators, the continuity and the energy equations will be used between 

sections 1 and 2, as shown in Figure 3.8.

For the continuity equation, the sluice gate equation will be used as follows:

Fj = A 2 * u 2 - c d * b * o g * ^ 2 g ( y l + zl - y 2 - z 2 ) ........................................... (3.31)
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Figure 3.8
Total energy before the gate and after the submerged jump

For the energy equation between sections 1 and 2, the head loss due to the 

submerged jump will be added to the equations as follows:

f 2 =
2g

■y2- z — £
2 g

T, +
2g

.(3.32)

Where e is the energy loss ratio due to the submerged jump as a function of the 

upstream specific energy, and is expressed as follows:

2 ( r , - r 1)+F,1

e =

i k )
2  '

1-
F,

>

\ 12 J

2 Y,+F02
.(3.33)

For the constrictions, the continuity and energy equations will be used between 

sections 1 and 2 (before and after the constrictions). The head loss due to friction will 

be used in the energy equation. The equations are as follows:
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Fj -  A, * u, -  A2 * u2 (3.34)

(3.35)

(3.36)

For the boundary conditions, a stage hydrograph will be used at the upstream of 

the main canal, and a discharge hydrograph will be used at the downstream end of 

each canal. The equations are as follows:

For the upstream end of the other canals (i.e., all canals except the main canal), 

the program will define the stage hydrograph as the average water level between 

sections 1 and 2 (as shown in Figure 3.7) as follows:

Using these equations, the model uses the following method to route the flow:

□ The flow conditions in the entire network will be solved at once. Each reach of 

the canal between two branches will be divided into some user-specified distance 

intervals (Ax).

□ The initial conditions are specified for each point in the network.

□ The unsteady flow equations will be used for the internal points. For the 

junctions, the regulators, the constrictions and the boundaries, the equations 

previously presented for each are used.

(3.37)

(3.38)

(3.39)
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□ The user will specify the boundary conditions at the upstream end of the main 

canal and the downstream end of each canal. The program will calculate the 

boundary condition at the upstream end of all canals other than the main canal.

□ After defining the equations and their derivatives for all canals, the Newton- 

Raphson procedure will be used to calculate the residuals, and the convergence 

will be checked.

□ After the convergence criterion is met, the results for the current time step will be 

used as the initial data for the next time step, and the procedure repeats.

Using the previous equations for the entire network, a unique system of 2N 

equations with 2N unknowns will be exist, where N is the total number of points in 

the network. The system of equations should look those shown in Figure 3.9. The 

Jacobian matrix, which is required by Netwon-Raphson method, will be 2N*2N as in 

Figure 3.10.

y(0-y  = o 
4»«(A*) + = °
A mu( A t) +  = 0

m - Q =o
'y(0 -y  = o 

• A mu(A x) + ......= 0

....C anal I

....C anal I  +1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 (I (I (

11) i) a n o o o 0 0 (I 0 I) 0 0 (]

) 0 0 (I 0 (1 I) t)
o o o (i i) o

0 0 0 0 t) 0 0 0 o 0
o a o o o o (i o o o o o

Figure 3.9 Figure 3.10
System of equations Jacobian Matrix

The Jacobian matrix is a banded matrix that has a maximum of 4 columns for 

each row. The factorization, forward and backward procedure will be used to solve 

the system of linear equations. The Jacobian matrix will be saved as 2N*4 instead of 

2N*2N, and data will be overwritten after being factorized. To take advantage of the 

sparsity of the matrix, the factorization, forward and backward procedures will be 

implemented as follows:
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For the factorization procedure:

□ The original matrix J will be factorized to lower matrix L and upper matrix U.

□ The first row for each canal will not be computed.

□ Only the first two items of each second row will be computed using the following 

equations:

L V  = J T  ......& U 2,2 =  ^ 2 , 2  ~  h i  * U 12 ..................................................(3 '4 °)
u

□ For the third row, only the first three items will be computed using the following 

equations:

Ls i = ^ . . . . &  L12 = J v  ~ F '  *.t /H .& u i2 = J i2 ~ L 22 * U22 ..(3.41)
1 ,1 U  2,2

□ For the remaining rows, until the last row of each canal, the procedure is as 

follows:

&  For the lower matrix, only one item will be modified in the even rows as 

follows:

r 2 - .......................................................................................................................................... ( 3 - 4 2 )

and only two items will be modified in odd rows as follows:

i , . ,  = j r 1 -  -  & £,.2 = J j  l ~ L; ’> ' u ,  h W ......................................(3 .43)
u u-2),i u tH)a

jsS For the upper matrix, only one item will be modified in the odd rows as 

follows:

=  A /,3  — A / , 2  * ^ 0 - 1 ) ,3  .................................................................................................. ( 3 - 4 4 )

and only two items will be modified in even rows, as follows:

U (J- \ )A  =  A ./-1),4  _  A ./-1 ),2 *^ (./'-2 ),4  ..................................................................................... ( 3 - 4 5 )

UJa = J j a - L JA*Ua_])A ........................................................................................................ ( 3 . 4 6 )

□ For the last row, both non-zero values will be computed as follows:

A/,3 = T T ^ - &  u j a = j j a - l j *  4 ......................................... (3-47)

For the forward procedure:
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□ The first value for each canal can be calculated directly using the following 

equation:

T (l) = - ^ ( 1 ) .............................................................................................(3.48)

□ The values from the second one to the one before the last will be computed, each 

two sequential rows together (unrolled=2), as follows:

y(i) = - F ( i ) - y ( i - l ) * L , j  .....................................................................(3.49)

y(i +1) = -F( i  +1) -  y(i -1 )  * I ((+l), -  y(i) * L(M) 2 .............................(3.50)

□ The last value will be computed as follows:

4 W  ~~^2*N y (2*V-1) * -̂ 2*W,3 .............................................................. (3.51)

For the backward procedure:

□ The last value of each canal can be calculated directly using the following 

equation:

A *™  = 77—  ....................................................................................... (3.52)
U 2* N,4

□ The values from the one before the last to the second one will be computed, each 

two sequential rows together (unrolled=2), as follows:

X 0 -A x ( i  + l )* f / ;,4 ...............................................................

U,, 3
y(i  -1 )  -  Ax(i +1) * U(l n 4 -  Ax(/) * U(i_n 4 

A x ( i - 1) = — ----- -------- ------ ------ ^ ..................... (3.54)
U{i-1),2

□ The first value will be computed as follows:

jv(l) -  Ax(2) * J/, 2
Ax(l) = ............     (3.55)

1̂,1
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3.4. Methods used to improve the robustness of the model

The robustness of the unsteady flow model is an important issue. There are two 

issues that affect the robustness: zero or negative water depth and failure to meet the 

convergence criteria. To address the occurrence of zero or negative water depths, a 

new technique is suggested as follows:

A) For each time step, the program must guess the initial solution for the advanced 

water levels and discharges. The program uses the data of the previous time step 

(or initial data in the first time step) for this guess.

B) The program will run through iterations until convergence. During this running, 

the data of the previous time step is saved.

C) Whenever the program finds a zero or negative water depth for the next time step, 

the following is done:

&  The program will assume the point of this zero or negative water depth as an 

artificial end for this canal, and it will ignore all the areas behind it. 

jsS It will automatically redefine the number of reaches, the number of structures 

(regulators and bridges), and the number o f distance intervals in the last reach 

for this canal.

jsS All branches behind this point will have complete water shortage and will be 

ignored from the routing.

&  If the point with zero or negative water depth is the first or second point in the 

channel, the whole channel will be ignored from the routing. 

jsS The downstream boundary condition (discharge boundary condition in this 

case) will be redefined, so it will contain the lateral outflow that was used in 

the ignored parts.

jsZ The initial guess, which remains unchanged, will be assigned for the 

associated points in the network. 

jsS The iteration counter will be reset to 1.

&  The program will return to step B.

D) For each time step, and if there is any water shortage in the network, the program 

checks if the flow should return back to the water shortage areas. If the flow
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should return back to the water shortage areas, the program will add a new 

distance interval with one or two joints based on the current end of the channel, 

and assume the initial conditions at these joints. These initial conditions are an 

approximated guess that should become actual value with the convergence of the 

next time step. The program add the joints and assume the initial conditions on 

the following basis:

If the flow at the current end of the canal (Joint J in figure 3.11) satisfies 

conditions in equations 3.56 and 3.57, the program will add a new distance 

interval with one or two joints based on the location o f the current end.

Wj > BLJ+X + Ax, * s , ........................................................................ (3.56)

Qj > Ax, * q , ...................................................................................... (3.57)

?.e '4C

Ax(I)

j+ i

Q8̂ ,

J - l
Ax(l)

Figure 3.11 Figure 3.12
Current end of the canal is not an end of a Current end of the canal is an end of a reach 

reach followed by constriction

E) If the current end of the canal is not an end of a reach (Figure 3.11), the program 

will add one joint and define the initial condition for it using equations 3.58 and 

3.59.

w = Wj — Axj * S j....................................................................... (3.58)

V/+1 ={Qj “ Ax, * q ,) /A J+i........................................................... (3.59)
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jes If the current end of the channel is the end of a reach, and there is a regulator 

or constriction following this reach (Figure 3.12), the program will add two 

joints (J) and (J+l) and define the initial condition for them. The data in (J) is 

equivalent to the data at (J-l), and the data at J+l is calculated using equations 

3.58 and 3.59.

jsS If the current end of the channel is the end of a reach, and there is a branch 

following the reach (Figure 3.13), equations 3.57 to 3.59 are used to check 

and define the initial conditions for joints J and J+l as in the previous point. 

Then equations 3.60 and 3.61 are used to check if the water should enter the 

branch (Figure 3.14). If  both conditions are satisfied, equations 3.62 to 3.65 

are used to define the initial conditions for the first two joints in the branch

WJ > BLbj + t e B * sB....................................................................... (3.60)

Qj > A x ,* q i +AxB *qB................................................................. (3.61)

C O '

.a'i A x(I)

C urren t w ate r surface. _AXLli!  " 1  '

Branch'sbed increase
\  ! P revious w ate r surface

Figure 3.13 Figure 3.14
Current end o f the canal is the end o f a reach When the water level in the main canal

followed by branch increases to enter the branch

wRI = w , .............................................................................................(3.62)

WBJ+1 = WBJ - t e a  * SB...................................................................... (3-63)

VBJ = (ABJ*vi - t e a  *qB)/A RJ.......................................................(3-64)

v«/+. =v,-..............................................................................................(3-65)
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jsS The same procedure that was used to check the flow and add joints for 

branches will be used in the case where the water is already found in the main

canal but it was not enough to enter the branch (Figure 3.14), and then it

becomes enough to enter it.

In all previous cases, and when a new distance interval is added to a canal, the 

downstream boundary condition of this channel will be redefined by 

decreasing it by an amount equal to the lateral outflow of the added distance 

interval. When there is no water shortage areas in the channel, the boundary 

value should be returned to it original value.

To address the problem of non-convergence, whenever the program reaches the

maximum number of iterations without convergence, it does the following:

□ The program multiplies the convergence criteria by a specified factor greater than 

1.0, and it will give an error message.

□ It will reassign the initial guess for all points in the network.

□ The iteration counter will be reset to 1, and the procedure continues.
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CH APTER 4 

GENETIC ALG O RITHM  PARAM ETERS

4.1 Introduction

GAs require the user to define the parameters used during the GA process such as 

population size, crossover probability, and mutation rate. These parameters adversely 

affect the performance o f GA if  not chosen suitably. However, finding a good value 

for each parameter is a difficult task because o f the following:

□ GA parameters interact with each other in a complex way, and a complete 

analysis o f their interactions is difficult to achieve.

□ Suitable parameters depend on the class o f problems to be optimized. For instance 

the noise in the function might require a larger population size (Goldberg et al., 

1992; Deb, 2001). Also the mutation-based approach and crossover-based 

approach are suitable for different classes o f problems based on the difficulty 

(Deb and Agrawal, 1999).

□ The parameters must be chosen such that there is a balance between the 

exploitation caused by the selection operator, and the exploration caused by 

recombination and mutation operators. Otherwise, the GA may converge to local 

optima or behave as a random search process.

According to Hart and Belew (1991), “GA parameters interact in complex ways, 

making the task o f finding a suitable parameter scenario not always straightforward. 

In addition, a GA, which excels with a given class o f problems, might yield poor 

results when applied to another class.”

The study o f GA parameters began in 1975 with the work o f De Jong. He 

constructed a test environment o f five functions that present difficulty to gradient 

techniques, and he used two different measures: online performance (measures o f  the 

convergence), which is the average performance o f all tested structures over the 

course o f the search, and offline performance (measures the ongoing performance), 

which is the best performance achieved in the time interval. De Jong studied the
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effect o f population size (N), crossover probability (pc),  and mutation probability 

(pm),  in addition to other parameters. De Jong made the following recommendations:

□ Increasing the population size was shown to reduce the stochastic effect, and 

improve the long-term performance at the expense o f slower initial response.

□ Increasing Mutation rate was seen to improve offline performance at the expense 

of online performance.

□ Reducing the crossover rate resulted in an overall improvement in the 

performance.

The De Jong equations have been revisited several times by other researchers. 

Grefenstette (1986) restudied the De Jong equations with a meta-GA. This meta-GA 

was used to locate the parameter scenarios which themselves were used for the GA 

search. He used the De Jong equations with the following ranges:

□ 16 different population sizes from 10 to 160 with increment o f 10.

□ 16 different crossover rates from 0.25 to 1.0 with increment o f 0.05.

□ 8 different mutation rates from 0.0 to 1.0.

He conducted two experiments for online and offline performance. Then he 

validated his results by testing them against a standard GA (with parameter values 

suggested by De Jong). During both the experiments and the validation, his 

suggestions outperformed De Jong’s parameters. However, the difference was 

statistically significant in only online performance. Grefenstette was aware that this 

work has limitation as some recombination operators were ignored, and the tested 

problems are unconstrained problems.

Goldberg (1985,1989) performed theoretical studies about the optimal population 

size in binary encoding. He derived an expression for optimal population size based 

on the number o f new schemata per population number.

Schaffer el al. (1989) restudied the De Jong functions with 5 other test functions 

to include a wider range o f search characteristics. They used gray encoding instead of 

binary encoding, and they used the following ranges for GA parameters:

□ 6 different population sizes (10,20,30,50,100,200).

□ 10 different crossover rates from 0.05 to 0.95 with increment o f 0.10.

□ 7 different mutation rates (0001,0.002,0.005,0.01,0.02,0.05,0.10).
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They were concerned only about online performance, arguing that offline 

performance is surely quite different. They found that mutation rate has more effect 

than was indicated by previous works. They stated that “ naive evolution (NE) (a GA 

using only selection and mutation) does perform hillclimb-like search and given the 

range o f strategies that can be achieved by varying population size and mutation rates, 

it is likely to be a powerful search algorithm, even without the assistance o f  

crossover.” They also stated that criterion used by Goldberg (1985), (for the optimal 

population size) was too conservative, leading him to recommend unnecessarily large 

populations, based on the argument that “a large population size can achieve a large 

sampling o f the space (exploration) at least in the initial generation. However, a large 

population imposes a large cost per generation, and the exploration for schemata not 

presented in the initial population can be achieved by the operators.”

Deb and Agrawal (1999) studied the interactions between different GA 

parameters (crossover probability, mutation rate, and population size) for five 

different functions representing different levels o f difficulty. They solved the 

functions using a mutation-based approach, crossover-based approach, and both 

operators (crossover and mutation) approach. They concluded with the following 

points:

□ For unimodal and simple functions, the mutation-based approach has performed 

better than the crossover-based approach.

□ With a fixed number o f function evaluations, a mutation-based GA performs best 

with moderate population size.

□ When GAs are applied to more complex problems, mutation-based approach fails 

miserably to solve these functions, while the crossover-based approach is able to 

solve these problems.

□ GAs with both crossover and mutation have performed better than only crossover 

or mutation-based GAs in simpler problems.

Besides defining fixed values or theoretical equations for GA parameters, many 

researchers attempt to adapt the parameters during the run, either through an adaptive 

or self-adaptive process. Hinterding et al. (1996) attempted to adapt the population 

size by using different sub-populations, adjusting their size at regular intervals based
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on the results. Arabas et al. (1994) attempted to use the concept o f age, which is the 

number o f generations the chromosomes stay alive, to influence the size o f the 

population at each stage o f the process.

For mutation rate, Fogarty (1989) used varying mutation rate, either increasing or 

decreasing, and he concluded that varying the probability o f mutation significantly 

improved the performance o f GA if  the problem started by a conservative initial 

population, but not in a randomly generated initial population. Janikow and 

Michalewicz (1991) presented a non-uniform mutation, where the value at time (t+1) 

is shifted from the previous value by A(f, y ) . This A(/, y) returns a value between 0 

and y, and it is closer to zero as the generation number (t) increases. Thus, the model 

searches globally space in the first stages, but very locally in the last stages.

Most o f  the attempts to adapt crossover probability were by the means o f using 

different sub-populations, each o f which has a different crossover probability, and 

different mutation rates as well in some procedures. Through the process o f the GA, 

the subpopulations exchange their values, and shift towards the most successful 

population. Some details about these attempts are given in Eiben et al. (1999).

Considering the previous studies described above, studying the optimal GA 

parameters that should be used within the current model is an important issue as most 

o f the previous studied were done using binary GA operators, using binary or gray 

encoding, with one point or two point crossover, while the current model uses real 

GA encoding and parameters. Also, most o f the previous works used explicit 

equations and unconstrained problems to test these parameters, while the current 

model uses a simulation model to evaluate solutions, so this section is intended to test 

the recommended GA parameters within the current model.

The following issues control the range to be tested for each parameter:

□ The cumulative works in GA parameters gave evidence about an expected range 

for each parameter, although there is no fixed number. An example o f  this is what 

was stated by Eiben et al. (1999) about crossover probability: “Currently, it is 

commonly accepted that the crossover rate should not be too low and values 

below 0.6 are rarely used.” Thus the current study will just go slightly outside this
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range, and the crossover probability is tested from 0.5 to 0.9. The same type of 

procedure was used to define the range for other parameters.

□ The computational time requirement is very large for the current model, which 

makes it very hard to test big ranges o f all parameters.

Considering the interaction between the parameters, and the factors that can affect 

them, the goal o f this chapter is to provide a guidelines for the user o f the model 

about the recommended ranges for the parameters and the effect o f decreasing or 

increasing them, rather than giving a fixed values that must be used.

4.2 Population size (N)

Selecting a suitable population size is an important decision that affects the GA 

performance. Based on Grefenstette (1986), “GAs normally do poorly with very 

small populations because the population provides an insufficient sample size for 

most hyper-planes. A large population discourages premature convergence to sub- 

optimal solutions. On the other hand, a large population requires more evaluations per 

generation, possibly resulting in an unacceptably slow rate o f convergence.” 

However, the results don’t always support that idea that the larger population size will 

always converge to better optimal point. Based on Syswerda (1991) “General wisdom 

dictates that a larger population will work more slowly but will eventually achieve 

better solutions than a smaller population. Experience indicates, however, that this 

rule o f thumb in not always true, and that the most effective population size depends 

on the problem being solved, the representation used, and the operators manipulating 

the representation.” Also, according to Deb and Agrawal (1999), “when GAs are 

applied to simpler problems, an interesting feature o f mutation-based GAs is 

observed. There seems to be two distinct ranges o f population sizes (with a dip in 

performance in intermediate population sizes), where these GAs work the best.”

Some of the suggestions made for population size in the literature are:

□ N  = 50 to 100 (De Jong, 1975)

□ N  = 30 (Grefenstette, 1986)

□ N  = 20 to 30 (Schaffer et al., 1989)
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In the current study, four different population sizes are tested (26, 50, 76, and 

100).

4.3 Crossover probability ( p c )

Crossover probability defines the ratio o f the population that will exchange its 

data during the recombination process to produce new strings (children). The rest of 

the population will pass as they are to the next generation. Based on Grefenstette 

(1986), “If the crossover rate is too high, high-performance structures are discarded 

faster than selection can produce improvements. If the crossover probability is too 

low, the search may stagnate due to the low exploration rate.”

Some o f the suggestions made for crossover probability in the literature are:

□ ^ = 0 .6 0  (De Jong, 1975)

□ p c = 0.95 (Grefenstette, 1986)

□ p c = 0.75 to 0.95 (Schaffer et al., 1989)

In the current study, five different crossover probabilities are tested (0.5 to 0.9 

with increment o f 0.1).

4.4 Mutation rate ( p m )

Based on Grefenstette (1986), “A low level o f mutation serves to prevent any 

given bit position from remaining converged to a single value in the entire population. 

A high level o f mutation yields an essentially random search.”

Some o f the suggestions made for mutation rate in the literature are:

□ p m =0.001 (DeJong, 1975)

□ p m = 0.01 (Grefenstette, 1986)

□ p m = 0.005 to 0.01 (Schaffer et al., 1989)

□ p m = — as (L) is the bit-string length. (Introduced by Muhlenbien, (Eiben et al.,
L

1999)).
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In the current study, three different mutation rates are tested (0.001, 0.01 and 

0.05).

4.5 Blend crossover extension ( a )

Blend crossover extension ( a ) defines the range o f real number variables that 

will be used to randomly select the children in the recombination process. Higher 

values o f blend crossover extension have a better chance to explore the search space 

with the risk o f discarding good values that were already found; however, smaller 

values have a better chance for convergence. According to Deb (2001), “BLX- a  has 

an interesting property: if  the difference between the parent solutions is small, the 

difference between the offspring and parent solutions is also small.” This also brings 

the point that if  the difference between the parent solutions is small, the effect o f  

a  decreases, and for small a  it may be negligible. Vice versa, if  the difference is 

high, the higher values o f a  may affect the convergence. This may require an 

adaptive process for choosing a , which may be changeable based on the difference 

between parent solutions or through generations. However, in the current study, we 

will limit ourselves to the fixed values o f a . As was stated by Deb (2001), a  = 0.5 is 

the best-suggested value for blend crossover extension. In the current study, this value 

(0.5) will be compared with smaller values (0,0.1, and 0.25)

4.6 Analysis

The GA parameters are tested as follows:

□ First, all combinations o f crossover probabilities, mutation rates, and blend 

crossover extension are tested for each scenario o f the case study.

□ The population size will be tested with different crossover probabilities (as it is 

the one that has the higher range), with fixed values for mutation rate and blend 

crossover extension.

□ The multiobjective technique, proposed by Coello (2000) (described in detail in 

the next chapter) is used as a constraint handling technique.
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For each run, two different values will be measured:

□ Best feasible solution found during the whole run (measure 1).

□ The improvement o f the minimum feasible solution during the run (measure 2). 

The objective o f the second measure is to check if  the technique will stop at a

local optima or if  it will keep improving to the end. This measure is defined using the 

distance from the optimal feasible value, and it is calculated using the following 

procedure:

□ The best feasible obtained from all runs in the scenario is noted, and it is 

considered as the global optimum.

□ For each run, generations are divided into sub-generations.

□ For each sub-generation, the minimum feasible solution is defined.

□ The distance from the optimal value is calculated as follows:

According to the previous equation, the inability to get closer to the global 

minimum in the later sub-generation is worse that the inability to get closer to it in the 

early sub-generations.

There are also 4 different tests that will be performed to define the best value for 

each parameter:

□ Test 1, (Mean values): The difference between means of the runs that are related 

to each parameter is tested. First multiple means comparison will be used. If the 

difference between the means is not confirmed statistically, means will be drawn 

to explore which parameter performs better. Multiple means comparison refers to

iJFO(/) = £ y (4.1)

Where:

DFO distance from optimal value.

SG number o f sub-generations.

SG_M minimum value achieved in the sub-generation.

G_M global optimal (best value achieved in the scenario).
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making several tests for statistical significance between means within a group of 

means. The null hypothesis that is tested is:

H o - A = V 2 = • • • •  =  Mk  

The alternative hypothesis is 

H 0 : not all means are equal

Rejecting the null hypothesis means that there is significant difference between 

the means. The statistical technique used in this case is called single-factor 

ANOVA or F-test. MCM can be categorized into single-step or stepwise 

procedure. Stepwise procedure makes comparisons on a series o f steps, where the 

result o f  the current step influences which, if  any, comparisons are made in the 

next step. They can be divided into step-down, and step-up. Duncan multiply 

range tests are an example o f stepwise/step-down procedure, and it is used in the 

current study with confidence level 90% (ALPHA=0.1). This test will determine 

if  the difference between the means of the different values o f each parameter 

reflects a true difference between the means or if  it is a random effect. Besides 

using multiple means comparison, the means o f all parameter values are presented 

in different charts.

□ Test 2, parameter interaction charts: these charts are drawn between crossover 

probability and mutation rate for different measures and different scenarios o f the 

case study. Regarding the population size, a parameter interaction chart between 

the population size and the crossover probability will be drawn. Some examples 

from these parameter interaction charts are presented to explore which parameter 

dominates the parameter interaction chart.

□ Test 3, comparing similar runs: comparisons between runs that share the same GA 

parameters (more than the one in that test) are made, and the number o f times 

each parameter wins is recorded. For example, with crossover probability, from 

the runs that have the same mutation rate, and the same blend crossover 

extension, the crossover probability that gives the best solution is the winner.

□ Test 4, parameters o f the best solution: the parameter values that resulted in the 

best solution for each measure in each scenario o f the case study are recorded and 

presented.
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4.7 Results

The results o f the different tests for different scenarios o f the case study are 

presented here. A discussion about each test is given after presenting the results. 

Section 4.8 presents a summary of all results with a suggestion about the best 

parameter values that for this model. The parameters that perform the best for each 

scenario will be validated by testing them against other parameters with different 

initial seed values.

4.7.1 Test 1 (Means Values)

Figure 4.1 presents an example of SAS program (for the crossover probability 

second measure o f the third case study), and Table 4.1(a-d) presents a summary of the 

output o f SAS program.
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Multiple Means Comparison (MMC) 24

CROSSOVER PROBABILITY 12:57 Tuesday, July 27, 2004 
MEASURE 2 (SET 3)

The ANOVA Procedure

Duncan's Multiple Range Test for FITNESS

NOTE: This test controls the Type I comparisonwise error rate, not the
experimentwise error rate.

Alpha 0.1
Error Degrees of Freedom 55
Error Mean Square 0.14113

Number of Means 2 3 4
Critical Range .2566 ,2711 .2805

Means with the same letter are not significantly

Duncan Grouping Mean N RATE

A
A

3.2353 12 0.9

B A 2.9882 12 0.8
B
B 2.8634 12 0.6
B
B 2.7534 12 0.5

C 2.3931 12 0.7

5
.2872

Figure 4.1 
Example of SAS output 

Crossover probability for measure 2 of the third scenario of the case study

In Figure (4.1), crossover probability parameters are divided to three groups based 

on the mean value o f different runs. The maximum (worst) mean is related to group 

A, which includes p c = 0.9 and p c = 0.8 . Group B includes p c = 0.8 , p c = 0.6 and

p c = 0.5 . The best mean value is related to group C, which has p c = 0.7 and it is the

best value for crossover probability for this measure. There is an overlap between the 

first two groups, meaning that the difference is not significant. Also, from Figure

(4.1), Alpha=0.1, which means that these results are obtained with 90% confidence 

level.
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Tables 4.1(a) to 4.1(d) present summary o f MMC output for different parameters.

Table 4.1-a Summary o f MMC output for crossover probability
Results

Scenarios Measure 1 Measure 2

Pr > F Best
Value Pr > F Best

Value
Scenario

1
0.2900 - 0.01508

Scenario
2

0.4766 — 0.3787

Scenario
3

0.0008 0.7 0.0001 0.7

' 'able 4.1 -b Summary o f MMC output for mutation rate

Scenarios

Results
Measure 1 Measure 2

P r > F Best
Value Pr > F Best

Value
Scenario

1
0.0367 0.01 & 0.05 0.1462

Scenario
2

0.0002 0.01 & 0.05 0.0003 0.01 & 0.05

Scenario
3

0.2286 — 0.6264 -

' 'able 4.1-c Summary o f MMC output for blend crossover extension

Scenarios

Results
Measure 1 Measure 2

Pr > F Best
Value P r > F Best

Value
Scenario

1
0.8676 -- 0.8266 —

Scenario
2

0.1154 - 0.0378 0.5

Scenario
3

0.2328 - 0.3053 —
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able 4.1-d Summary o f MMC output for population size
Results

Scenarios Measure 1 Measure 2

Pr > F Best
Value Pr > F Best

Value
Scenario

1
0.1898 — * 0.0656 — *

Scenario
2

0.3882 - 0.4442 -

Scenario
3

0.0720 „* 0.0817 — *

Remarks about the previous table:

Pr > F Check the validity o f the data. The data is valid if  this value < 0.05.
All means are in one group (there is no significant difference between 
the means)

—* Means are divided to many groups, but there is an overlap between the
groups. (Still there is no significant difference between the means)

From Table (4.1), the following points could be noticed:

□ Regarding crossover probability, it is highly likely that p c = 0.7 is the best value

for the third scenario. It is statistically confirmed in both measures. There are no 

statistically confirmed values for the first two scenarios.

□ For mutation rate, higher mutation rates ( p m -  0.01 and p m= 0.05) perform 

better for the first two scenarios. There are no statistically confirmed values for 

the third scenario o f the case study.

□ Recalling that Deb and Agrawal (1999) stated that in simpler problems, a 

mutation-based approach performs better, while in complex problems, a 

crossover-based approach performs better, a similar observation might be made 

here that in complex problems, there is only an evidence about the best value o f  

the crossover probability, and in simpler problems, there is only an evidence 

about the best value o f the mutation rate.

□ For blend crossover extension, a  = 0.5 is the best value for the second measure 

of the second scenario. There are no other statistically confirmed values.

□ Regarding population size, no value is confirmed statistically.
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Given that the MMC didn’t confirm a winner for many cases, the difference 

between the means o f measure 1 and measure 2 for runs using different GA parameter 

values is presented in Figures 4.2 to 4.5. The best mean value is considered as a 

reference and it has zero value, while the difference between other means values and 

this best mean value is considered.

□ Regarding crossover probabilities (Figure 4.2), p c = 0.7 is the best value for both 

measures o f the third scenario, with a clear difference than other values. For the 

second scenario, p c = 0.6 is the best value in both measures. For the first 

scenario, p c = 0.8 is the best value in both measures with very small difference 

than p c = 0.6 in the second measure. In general, the difference between values in 

the third scenario is higher that the differences in the first two scenarios.

□ Regarding mutations rates (Figure 4.3), higher values ( p m = 0.01 and p m = 0.05)

are the best vales for all scenarios. p m = 0.05 is the best value for both measures 

of the third scenario. p m = 0.01 is the best value for both measures o f the second

scenario. For the first scenario, the best value is different between both measures.

□ Regarding blend crossover extension (Figure 4.4), a  = 0.5 is the best value for 

both measures o f second and third scenarios, with clear difference from the other 

values. For the first scenario, a  = 0.0 is the best value, with very small difference 

from a  = 0.5 in the first measure and slightly big difference from a  = 0.5 in the 

second measure.

□ Regarding the population sizes (Figure 4.5), N=50 is the best value for both 

measures o f the third scenario. N=26 is the best value for the first measure o f the 

second scenario, with very small difference than N=76. N=76 is the best value of 

the second measure o f the second scenario. For the first scenario, N=100 is the 

best value for the first measure, and N=76 is the best value o f the second measure 

with small difference than N=100.
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Difference between means of different crossover probabilities for both measures
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4.7.2 Test 2 (Parameter interaction charts)

The following figures present examples o f the parameter interaction charts for 

different scenarios o f the case study. The parameter interaction charts are drawn 

between crossover probabilities and mutation rates. It could be noticed that the 

differences in the second measure are higher than the differences o f the first measure 

for all scenarios. Figure 4.6 presents four examples for the first scenario o f the case 

study. For the second measure with a  = 0.1 and a  = 0.25, higher mutation rates 

perform better for most o f crossover probabilities, although p m = 0.001 has best

result with p c = 0.9 in one o f the figures.

M easure  1
B lend c ro s s o v e r  e x te n s io n  =0.10

0.01

*6 M easu re  2
B lend c ro s s o v e r  e x te n s io n 0.0

a? °-2l

0.01

M easure 2
Blend c ro sso v e r  ex te n s io n  = 0.10

0.01

"s M easure 2
Blend c ro sso v e r ex te n s io n  -  0.25

0.01

Figure 4.6
Parameter interaction charts for the first scenario of the case study
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For crossover, the best values are p c = 0 .5 , p c = 0.6 and p c = 0.8. The 

significance o f these values could be noticed from different interaction charts, but no 

specific value is consistent in all figures. Also, p c = 0.9 has the best value for one o f  

the figures. In general, evidence about mutation rate can be noticed from some charts, 

but there are no significant effects between crossover probabilities in this scenario.

Figure 4.7 presents examples for the second scenario o f the case study. From this 

figure, increasing mutation rate is associated with an improvement in the results. This 

is more clear in the second measure. There are no clear evidence about the best 

crossover probability, but p c = 0.5 , p c =0.6 and p c =0.8 have good results.

M easure  1
B lend c ro s s o v e r  e x te n s io n  -0 .1 0

0.01

0.0J

6
M easure 1
B lend c ro s s o v e r  e x te n s io n  = 0.25

v,V’o.o)

& o.oj
0.01

M easu re  2
B lend c ro s s o v e r  e x te n s io n  = 0.10

0.01

"e M easure  2
B lend c ro s s o v e r  e x te n s io n  = 0 .25

j j t r  o.OJ

^  °-OJ

O.OJ

Figure 4.7
Parameter interaction charts for the second scenario of the case study
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For the third scenario o f the case study (Figure 4.8), p c = 0.7 outperform all 

other crossover probabilities for both measures. There is no any clear evidence about 

the best mutation rate.

M easu re  1
B lend c ro s s o v e r  e x te n s io n  -0 .1 0

y j r  O.OJ

O.OJ

6 M easu re  1
B lend c ro s s o v e r  e x te n s io n  = 0 .25

O.OJ

O.OJ

M easure 2
B lend c ro sso v e r  e x te n s io n 0.10

O.OJ

M easure  2
B lend c ro s s o v e r  e x te n s io n  = 0.25

O.OJ

O.OJ

Figure 4.8
Parameter interaction charts of the third scenario of the case study

These parameter interaction charts for all scenarios o f the case study support the 

results o f test 1 regarding the following points:

□ Crossover probability p c = 0.7 is the best value for the third scenario.

□ There is no clear evidence about the best crossover probability value in the first 

two scenarios. p c = 0.5 , p c =0.6 and p c =0.8 have good results. Also, p c = 0.9 

has some good results in the first scenario.
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a Higher mutation rates ( p m =0.01 and p m =0.05) perform better in the first two 

scenarios.

□ There is no clear evidence about the mutation rate in the third scenario.

Figure 4.9 presents parameter interaction charts for the population sizes for 

different scenarios o f the case study. The following points can be noticed:

□ In the first two scenarios o f the case study, higher population sizes (N=76 and 

100) perform consistently well for all crossover probabilities. Although smaller 

populations sizes have the smallest point in some case, it is not consistent between 

different crossover probabilities.

□ N=50 is clearly the best population size for the third scenario o f the case study.

M easure 2
S sen a rio  1 of th e  c ase  s tu d y

a>° 50,

26,

°̂V6<>
76

M easure 1
S se n a rio  1 of th e  c a se  s tu d y

26

/« 0 .

e
M easure  2
S se n a rio  2  of th e  c a se  s tu d y

50,

Figure 4.9
Parameter interaction charts for different scenarios for population size
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4.7.3 Test 3 (comparing runs that have the same parameters)

60 runs were conducted for each scenario o f the case study for all combinations of 

five crossover probabilities, three mutation rates, and four blend crossover extension 

values. The runs that share the same parameters are as follows:

□ For each crossover probability, there are 12 categories have the same mutation 

rate and blend crossover extension.

□ Similarly, for each mutation rate, there are 20 different categories, and for each 

blend crossover extension, there are 15 different categories.

□ For each population size, there are five different categories have the same 

crossover probability.

Table 4.2 presents the results o f the comparisons for all o f  these categories, and 

how many each parameter wins from these comparisons.

Table 4.2(a-d): Test 3: number o f wins for each value o f the GA parameters 

Table 4.2 (a): Number o f wins for each crossover probability value

Crossover
Probability

Different measures Different measures Different measures
of scenario 1 of scenario 2 of scenario 3
1 2 1 2 1 2

0.5 4 1 1 4 1 2
0.6 4 7 5 5 1 0
0.7 1 0 1 1 9 8
0.8 2 2 3 1 1 2
0.9 1 2 2 1 0 0

Table 4.2 (b): Number o f wins for each mutation rate value

Mutation
Rate

Different measures 
of scenario 1

Different measures 
of scenario 2

Different measures 
of scenario 3

1 2 1 2 1 2
0.001 6 5 0 3 6 6
0.01 9 8 11 9 6 6
0.05 5 7 9 8 8 8

Table 4.2 (c): dumber o f  wins for each blend crossover extension value
Blend

Crossover
Extension

Different measures 
of scenario 1

Different measures 
of scenario 2

Different measures 
of scenario 3

1 2 1 2 1 2
0.0 3 4 4 3 0 1
0.1 5 3 1 2 2 3
0.25 4 2 0 2 4 5
0.5 3 6 10 8 9 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

Table 4.2 (d): Number o f wins for each population size value

Population
Size

Different measures Different measures Different measures
of scenario 1 of scenario 2 of scenario 3
1 2 1 2 1 2

26 0 0 3 2 0 0
50 2 2 1 1 4 4
76 1 2 1 1 0 0
100 2 1 0 1 1 1

a Regarding crossover probability (Table 4.2(a)), and for the first two scenarios o f  

the case study, p c = 0.5 and p c = 0.6 have the best results for both

measurements. p c = 0.6 performs better. For the third scenario o f the case study,

p c = 0.7 is the best value for both measurements.

□ Regarding mutation rate (Table 4.2(b)), p m =0.05 has the best results for the third 

scenario, and p m =0.01 has the best results for the first and second scenarios.

□ Regarding blend crossover extension (Table 4.2(c)), a  = 0.5 is the best value in 

all cases except for the first measure of the first scenario.

□ For population size (Table 4.2(d)), N=50 is the best value in the third scenario of 

the case study. The difference between this value and other values is clear. N=50 

has also better results in the first scenario, and N=26 has better results in the 

second scenario, but the differences are not clear as in the third scenario.

There are some points, which are consistent with the previous results, such as:

□ p c -  0.7 and N=50 are the best values for the third scenario o f the case study.

□ Higher mutation rates ( p m =0.01 and p m = 0.05) outperform p m =0.001 for all 

scenarios.

For crossover probabilities o f the first two scenario, this test explores that smaller 

crossover probabilities ( p c = 0.5 and p c -  0 .6 )  outperform higher values 

( p c = 0.8 ). Also, there is no clear evidence about the best population size in the first 

two scenarios.
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4.7.4 Test 4 (parameters of the best solution)

Table 4.3 presents the parameters for the value found in any run for each measure 

for each scenario o f the case study.

Table 4.3(a-d): Parameters o f the best value found for each measure.

Table 4.3 (a): Parameters o f the best value for the first scenario 
o f the case study________________________________________

a Pm Pc

Measure 1 0.5 0.05 0.5
Measure 2 0.5 0.05 0.5

Table 4.3 (b): Parameters o f the best value for the second 
scenario of the case study___________________________

a Pm Pc

Measure 1 0.5 0.05 0.6
Measure 2 0.5 0.05 0.6

Table 4.3 (c): Parameters o f the best value for the third 
scenario o f the case study__________________________

a P m Pc

Measure 1 0.25 0.01 0.7
Measure 2 0.25 0.01 0.7

Table 4.3 (d): Population sizes o f the best value for different 
scenarios o f the case study_____________________________

Population size
Scenario 1 Scenario 2 Scenario 3

Measure 1 50 26 50
Measure 2 50 26 50

□ Regarding blend crossover extension, higher values ( a  = 0.25 and a  =0.5) 

perform better, a  = 0.5 is the best value for both measurements o f the first two 

scenarios o f  the case study, a  = 0.25 is the best value for both measurements o f  

the third scenario o f the case study.

□ Regarding mutation rate, higher values ( p m =0.01 and p m =0.05) perform better.

For the first two scenarios o f the case study, p m =0.05 is the best value for both
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measurements. For the third scenario of the case study, p m =0.01 is the best value 

for both measurements.

□ Regarding crossover probability, the best value increases from p c = 0.5 to

p c = 0 .7 , while increasing the difficulty o f the problem and increasing the

number o f decision variables.

□ Regarding population sizes, N=50 is the best value for the first and third

scenarios, and N=26 is the best value for the second scenario o f the case study.

4.8 Summary

A summary o f the results o f the different tests previously described is presented 

here.

□ Crossover probability:

m s Test 1 (Mean values):

S  There is statistical confidence that p c = 0.7 is the best crossover 

probability for the third scenario.

■S p c =0.6 and p c =0.8 have best means for the first and second scenarios,

but they are not confirmed statistically. 

m s Test 2 (parameter interaction charts):

S  There is no clear evidence for the first and second scenarios. p c -  0.5,

p c = 0.6, and p c = 0.8 are the best values for these two scenarios. 

p c = 0.7 is the best for the third scenario. 

m s From test 3 and test 4, p c = 0.7 is the best value for the third scenario and 

smaller values p c = 0.5 and p c = 0.6 are the best values for the first two 

scenarios. 

m s Conclusion:

S  p c = 0.7 is the best crossover probability for the complex scenarios o f this 

model. This is confirmed by all tests. Smaller values ( p c = 0.5 and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

p c = 0 .6) are the best values for simple scenarios o f the model, but this is

not confirmed by all tests.

□ Mutation rate:

m s Test 1 (Mean values):

S  For the first two scenarios o f the case study, higher mutation rates 

( p m =0.01 and p m = 0.05) are the best group with no statistical

difference between them. For scenario 3 o f the case study, there is no 

statistical evidence.

✓ p m = 0.01 has the best mean for the first two scenarios. p m = 0.05 has the 

best mean for the third scenario. 

m s Test 2 (parameter interaction charts):

S  The results are consistent with the first test. The range o f p m =0.01 to

p m =0.05 perform better in the first two scenarios o f the case study, while 

there is no clear evidence about the third scenario. 

es From test 3 and test 4, higher mutation rates p m -  0.01 and p m = 0.05 are the 

best values for all scenarios, but the best o f them is different from test to the 

other. For the third scenario, p m =0.05 is the best value in test 3, and 

p m =0.01 is the best value in test 4. The opposite is true for the first two

scenarios. 

m s Conclusion:

S  Statistically, p m = 0.01 to p m = 0.05 is the best range for the mutation rate 

in the first two scenarios.

•S From other tests, it looks like that p m = 0.01 is the best value for simpler

scenarios, and p m = 0.05 is better for complex scenarios o f the model.

□ Blend crossover extension:

m s There is only statistical evidence that a  = .5 is the best value for the second 

measure o f the second scenario. From other tests, it looks like that this value is 

the best value for all scenarios. Although a  = 0 has a better mean in the first 

scenario, this is not confirmed by other tests.
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□ Population size:

m s Test 1 (Mean values):

S  There is no statistical evidence about the population size.

■S N=50 has the best mean for the third scenario. For the first two scenarios, 

the best mean is different from one measure to the other. 

m s Test 2 (parameter interaction charts):

S  N=50 is the best value for the third scenario. For the first two scenarios, 

higher populations sizes are more stable for most o f the runs, although 

small population sizes have some good results. 

m s From test 3 and test 4, N=50 is the best value for the third scenario, and 

smaller population sizes (N=26 and 50) are the best values for the first two 

scenarios. 

m s Conclusion:

S  N=50 is the best population size for the complex scenarios o f the case 

study.

S  There is some doubt about the best population size for simpler scenarios. 

Some tests support that higher population sizes are the best, while others 

support that smaller population sizes are the best. It is the same 

phenomena mentioned by Deb and Agrawal (1999), where “two distinct 

ranges o f population sizes (with a dip in performance in intermediate 

population sizes) works the best.”

4.9 Validate the results

To validate the previous results, and to check the results that have some doubt, 

different alternatives for each scenario are tested in this section with different initial 

seed values, and with different constraint-handling technique for each scenario.

For the third scenario, where most o f the parameters are confirmed, only two 

alternatives are tested. The first alternative represents the recommended parameters, 

and the second alternative represents different parameters for the comparison.
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For the first and second scenarios, as there is doubt about some parameters, five 

different alternatives are tested. The first four alternatives represent different stages of 

the recommended data, and the fifth represents the different parameters for the 

comparison.

Table 4.4 represents the parameters for all o f these alternatives. The constraint- 

handling techniques that are used with different scenario are (See Chapter 5 for the 

explanation of each technique):

□ Multiobjective technique is used for the first scenario.

□ Adaptive penalty technique, with original tournament selection is used with the 

second scenario.

□ Stochastic tournament selection is used with the third scenario.

Table 4.4: GA parameters for different alternatives

Scenarios Alternatives
GA Parameters

N Pc Pm a

Scenario 1

Alternative 1 76 0.5 0.05 0.5
Alternative 2 76 0.8 0.05 0.5
Alternative 3 76 0.6 0.05 0.5
Alternative 4 76 0.6 0.05 0.0
Alternative 5 50 0.7 0.001 0.5

Scenario 2

Alternative 1 76 0.5 0.05 0.5
Alternative 2 76 0.6 0.05 0.5
Alternative 3 76 0.6 0.01 0.5
Alternative 4 26 0.6 0.05 0.5
Alternative 5 50 0.7 0.001 0.5

Scenario 3 Alternative 1 50 0.7 0.05 0.5
Alternative 2 76 0.5 0.001 0.5

The results are presented in Figures 4.10 to 4.12.

□ Regarding the first scenario, alternative 3 has the best results. The worst average 

is related to alternative 5 (non-recommended parameters). Average values o f  

alternatives 1 and 2 are close to the average value o f alternative 5.

□ Regarding the second scenario, the best results are obtained by alternatives 2 and 

3. The averages are very close to each other. However, alternative 2 slightly 

outperforms alternative 3. The worst results are related to alternative 4, which
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uses a small population size (N=26). Except alternative 4, the recommended 

values (alternatives 1 to 3) outperform other values (alternative 5).

□ Regarding the third scenario, the recommended parameter values (alternative 1) 

outperforms the other values (alternative 2) for most o f the runs and for the 

average.
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Figure 4.10
Different alternatives of recommended parameters for the first scenario
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Different alternatives of recommended parameters for the second scenario
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Different alternatives of recommended parameters for the third scenario
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4.10 Conclusions and future work

An experiment was conducted to define the best values for GA parameters for the 

current model. The importance of defining these parameters stems from the fact that 

most o f the previous works regarding this point were done using binary encoding and 

operators, and with explicit equations and unconstrained optimization models. The 

current model evaluates the strings using a simulation model, and uses real GA 

encoding and operators.

All combinations o f the values o f crossover probabilities, mutation rates, and 

blend crossover extensions have been tested. Population sizes were tested for 

different crossover probabilities. The best parameters values obtained were validated 

by testing them against other parameters values with different initial seed values.

As a conclusion o f this work, it is likely that the following values are most 

suitable for the GA parameters:

□ The best crossover probabilities values are between 0.6 and 0.7. Higher values 

work better for scenarios and higher number o f decision variables.

□ The best mutation rates are between 0.01 and 0.05. Higher values (0.05) are 

recommended for most o f  the scenarios.

□ The best blend crossover extension value is 0.5. This value is recommended 

for all scenarios o f the model

□ The best population sizes are between 50 and 76. Smaller population sizes 

work better for harder scenarios and higher number of decision variables.

For future work, the adaptive and self-adaptive techniques may be useful for the 

current model, as the best parameter values depend on the scenario.
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CHAPTER 5 

CONSTRAINT-HANDLING TECHNIQUES

5.1 Introduction

The presence o f the constraints always increases the difficulty o f  an optimization 

problem, whether using a gradient-based or evolutionary optimization technique. 

Evolutionary techniques are affected more since they cannot handle constraints 

explicitly. This inability to handle constraints requires using a heuristic to guide the 

search toward feasible and good-performing solutions. However, this heuristic is 

affected by many things, including the complexity o f the problem to be solved, type 

o f constraints, and number o f constraints. In this chapter, the performance o f various 

constraint handling techniques will be compared to determine which techniques 

perform best for the current model, which o f them should be used with simpler 

problems, and which are more suitable for more complex problems. Various 

techniques from the literature, as well as two new proposed techniques, are 

investigated with the goal being to check which o f these techniques is more suitable 

for this model based on the level o f difficulty o f the problem to be solve and based on 

the number o f constraints. According to Deb (2001), Michalewicz and Schoenauer 

(1996), and Michalewicz et al. (2000), most constraint handling techniques which 

exist in the literature, can be classified into the following five categories:

□ Methods based on preserving feasibility o f solutions.

□ Methods based on penalty functions.

□ Methods biasing feasible over infeasible solutions.

□ Methods based on decoders.

□ Hybrid methods.

In the current study, most o f the techniques investigated are related to the second 

category, which is penalty functions, including static, dynamic, adaptive and self- 

adaptive forms. These methods also incorporate the third category, as each penalty 

function will be tested twice, with one o f these implementations biasing feasible over
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infeasible solutions. Other methods are also related to the third category, including 

multiobjective and stochastic methods.

5.2 Techniques investigated for the current model

Techniques that are tested in the current study can be categorized as follows:

□ Penalty functions techniques.

□ Multi-objective optimization techniques.

□ Self-adaptive techniques.

□ Stochastic techniques.

□ Adaptive techniques.

5.2.1 Penalty Functions

Penalty functions are by far the most commonly used constraint-handling 

technique. Penalty functions essentially degrade the fitness o f solutions that violate 

constraints by including a penalty term in the fitness function.

According to Michalewicz et al. (1994), the rule to design a penalty function is 

“the penalty should be kept as low as possible, just above the limit below which 

infeasible solutions are optimal.” However, as the authors stated, it is difficult to 

implement this rule effectively.

Also, according to Michalewicz (1995), the appropriate choice o f penalty function 

depends on

□ The ratio between sizes o f  the feasible and the whole search space.

□ The topological properties o f the feasible search space.

□ The type o f the objective function

□ Number o f  variables

□ Number o f constraints

□ Types o f constraints

□ Number o f active constraints at the optimum
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There are no specific regulations for creating penalty functions, but Richardson et 

al. (1989) gave guidelines that should be considered while selecting the penalty 

function, which are:

□ Penalties that are functions o f the distance from feasibility performer better than 

those that are only functions o f the number o f violated constraints.

□ For a problem having few constraints and few feasible solutions, penalties which 

are solely functions o f  the number o f violated constraints are not likely to produce 

any feasible solutions.

□ Good penalty functions can be constructed from two quantities: the maximum 

completion cost and the expected completion cost. The completion cost refers to 

the distance to feasibility.

□ Penalties should be close to the expected completion cost, but should not 

frequently fall below it. The more accurate the penalty, the better will be the 

solution found. When a penalty often underestimates the completion cost, the 

search may fail to find a solution.

There are many approaches to implement penalty functions. The first approach is 

static penalty functions, for which the parameters are kept constant during the whole 

run. This is the easiest form of penalty function to implement, but may be the least 

efficient one. According to Eiben et al. (1999), “any static set o f parameters, having 

the values fixed during an EA run (parameter tuning), seems to be inappropriate.” 

The reason for this, as they stated, is that “EA is an intrinsically dynamic, adaptive 

process. The use o f rigid parameters that don’t change their values is thus in contrast 

to this spirit.”

The second approach is dynamic penalty functions, where the parameters are 

changing during the run. The easiest way is to change the parameters based on the 

number o f generations. According to Siedlecki and Sklanski (1989), “the genetic 

algorithms with a variable penalty coefficient outperform the fixed penalty factor 

algorithms.” Harrell and Ranjithan (1999) tested 22 different penalty functions with a 

watershed management design problem including constant, increasing, and 

decreasing penalty functions, and they stated, “In general, increasing the penalty 

value with generation seems to perform the best in most cases”.
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Another way is to change the penalty function based on some criteria instead of  

changing it based on the generation number. An example o f this is what was proposed 

by Michalewicz and Attia (1994) based on the idea o f simulated annealing. In their 

technique, the penalty coefficient is changed once in many generations after the 

convergence to local optima.

Another approach o f penalty functions is to adapt the penalty coefficients based 

on the feedback o f the previous generations. Many techniques have been proposed 

regarding this approach. Bean and Hadj-Alouane (1992) introduced a procedure in 

which the penalty increases or decreases based on whether the best individual in the 

last k generations was always or was never feasible. Also Homaifar et al. (1994) 

suggested creating several levels o f violations (/) for each constraint, and defining a 

penalty function for each constraint and each level o f  violation. A new adaptive 

technique is proposed and tested in the current study.

Another way o f implementing penalty functions is to use different penalty 

functions simultaneously with different sub-populations, as was introduced by Le 

Riche et al. (1995).

Also some researchers, including Coello (1999) used self-adaptive techniques, 

whereby the GA itself is used to find the best penalty parameters.

Other penalty techniques give superiority to feasible solutions over infeasible 

solution regardless o f the fitness values, including those proposed by Powell and 

Skolnick (1993) and Michalewicz and Xiao (1995). In the current study, each penalty 

function will be tested once using original tournament selection, and again using 

tournament selection with superiority o f feasible solutions.

Regardless o f its widespread use in GAs, penalty functions have the following 

weaknesses:

□ The requirement to fine-tune penalty parameters, which makes the penalty 

functions problem dependent.

□ Penalty functions, especially in the static form, don’t get any feedback from the 

search.

□ The coefficients in the penalty function may lead to under-penalization or over

penalization, which means that the penalty terms could be too small to influence
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the selection o f individuals, or so large that the objective function has little or no 

influence (Runarsson and Yao, 2000).

Among penalty function techniques, three different techniques will be tested for 

the current model, which are described in the following subsections.

5.2.1.1 Additive Static Penalty (ASP)

In this technique, the amount o f the violation is multiplied by factors (penalty 

coefficients), and then added to the objective function. The fitness equation is as 

follows:

F  = z  a  -  I  £  a .  + ", £ ' m +.n2 £ . FLr +,n, £ . DSA, +
teNT teNToeNO reR reR geNSG

n4*m zx((]iW V -W V lO .O ) ................................................................... (5.1)

Where

F Fitness equation.

R Number of reaches in the network.

UIAr The un-irrigated cultivated area at reach r.

FLr The flood length in reach r.

NSG Number of unstable regulators in the network.

DSAg The cultivated area downstream the regulator g.

RW V The required water volume at the end o f the routing.

WV The actual water volume at the end o f the routing.

», , n 2 , n 3 , «4 Coefficients.

The violation is measured as follows:

□ For the water shortage and regulator stability constraints, the violation will be 

measured in a cultivated area (Feddan).

□ For the flood constraint, the violation will be measured as a length (m).
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□ For the required water level constraint, the difference in water volume between 

the required water volume and actual water volume will be used (m3).

The violations for the first three constraints will be considered if  they happen at 

any time step, except for the water shortage of the open branch that will be calculated 

after the traveling time. In the fourth constraint, it will be calculated at the last time 

step.

5.2.1.2 Multiplicative Static Penalty (MSP)

In this technique, the ratio between the amount o f the violation and the total 

possible violation will be used in the fitness equation, which is defined as follows:

Y j u i a ,

Z 0 -  Z  Y Q ,o +ni ^  + —  + «3- ^ —  +
,6f r  Z T C A r Z  T L r Z ^ H g

reR reR geTG

, m z*((RW V-ITV),0.0) 
4 RW V

Where

TCA The total cultivated area of reach r.

TL The total length o f reach r.

TG The total number o f regulators.

5.2.1.3 Additive Linear Dynamic Penalty (ALDP)

In this technique, the fitness equation is similar to equation 5.1, but the 

coefficients will be calculated based on the current generation, as follows.

F = Y .Q . -  S  +»? +
teNT teNToeNO reR reR geNSG

n *  *max({RWV -  W V \0.0)....................................................................... (5.3)

n f =ni * (n base + ninc* .....................................................................................(5.4)
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Where 

nbase &  ninc Coefficients. 

g  The current generation.

G Total generation.

5.2.2 Multiobjective Optimization

The idea o f converting a single objective optimization problem, such as the one in 

the current study, to multiobjective optimization, is to treat constraints as objectives; 

thus, there will be (1+m) objective functions, where (m) is the number o f constraints.

Thus, the ideal solution X would have f t{x)= 0 for 1 <i<m and f(x)= / ( r )  for 

all Y e F .

One main approach in multiobjective optimization is to use Pareto-optimal (non

dominated) solutions. The idea o f non-dominated solutions presented by Srinivas and 

Deb (1995) is “In a typical multiobjective optimization problem, there exists a set of 

solutions which are superior to the rest o f solutions in the search space when all 

objectives are considered but are inferior to other solutions in the space in one or 

more objectives. These solutions are known as Pareto-optimal solutions or non

dominated solutions. Since none o f the solutions in the non-dominated set is 

absolutely better than any other, any one o f them is an acceptable solution.” Based on 

that idea, Srinivas and Deb (1995) and Deb and Goal (2000), presented the Non- 

Dominated Sorting Genetic Algorithm (NSGA & NSGA-II). In this technique, the 

fitness will be calculated as follows:

□ All strings will be ranked using Pareto Fronts based on non-dominance.

□ The fitness values o f all the strings in any front will be the number (rank) o f this 

front. So, the minimum fitness is 1.0, and it will be increased to 2.0, 3.0, and so 

on.

□ In the last rank, and to choose few strings to complete the population, a distance 

will be used as a way to select these few. In this method, the strings that have 

fewer individuals around it will be selected.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



112

□ From the second generation, two generations will be used for ranking, and the 

best number (equal to the population size will be selected).

Another technique based on multiobjective optimization that is tested within the 

current model is based on that presented by Coello (2000). This technique is 

presented in the following subsection.

5.2.2.1 Multiobjective method used in the current study

This technique, proposed by Coello (2000), sorts the solutions based on their 

objective values and their violations o f the constraints, and assigns fitness values for 

different solutions based on that sorting. In this technique, a feasible solution will 

always be superior to infeasible solutions. The procedure o f this technique is as 

follows:

□ The count o f all individuals in the current generation is initialized to zero.

□ Each individual will be tested against every other individual in the population 

using pair wise comparison.

□ If both individuals are feasible, the count o f both will remain unchanged.

□ If one o f the individuals is feasible and the other is infeasible, the count o f the 

infeasible will be increased by one.

□ If both are infeasible and one violates more constraints than the other, the count o f  

the individual that violates more constraints will increase by one.

□ If both are infeasible, and both violate the same number o f constraints, and one 

has total amount o f violations larger than the other, the count o f that one will 

increase by one.

□ Rank the individuals and make selection based on rank.

In this study, the procedure will be modified as follows:

□ The fitness o f feasible solutions will be normalized between 0.0 and 1.0, so the 

highest fitness value o f a feasible solution will be 1.0. This normalized fitness is 

used as the fitness value for each feasible solution.

□ The fitness o f any infeasible solution will be (1 + Count).

□ Binary tournament selection is used.
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5.2.3 Self-adaptive penalty function

The idea o f self-adaptive techniques stems from considering setting suitable 

penalty parameters as an optimization problem itself, and uses the GA to solve this 

problem in addition to solving the original problem. Thus, the GA is used to 

progressively improve the penalty function parameters based on feedback o f the 

progress through the generations. As in a conventional GA, the model will randomly 

define several penalties, in parallel within the optimization problem, and check how 

much each o f them will improve the solution. This measurement o f the improvement 

is treated as the fitness function in the GA. Then GA operators will be applied to 

these parameters, and at the end o f the GA run, the best coefficients are identified, as 

well as the prescribed problem solution.

The following technique is based upon the technique presented by Coello (1999). 

In this technique, two populations, PI and P2, are used. The first population is to 

evolve solutions (as in a conventional GA) and the second is to evolve penalty 

factors. For each member o f P2, an instance o f PI is used. The fitness o f each 

member of PI will be calculated as usual, and after a certain number o f  generations, 

an average fitness that considers the number of feasible solutions (count-feasible) and 

the average fitness value o f the feasible solutions will be calculated. This average 

fitness will be used to evolve the penalty factors.

Coello (1999) proposed an equation to calculate the average fitness as follows:

averagefitness ■ = —Fi*ne?_s{x),—  j + count ̂  feasible \ /X  e  F  (5.5)
777\ count _ feasible )

Coello pointed out that the average fitness should be scaled before adding to 

count-feasible. As the problem investigated in this study is a minimization problem 

(rather than maximization as in the work o f Coello), and to avoid the scaling o f count- 

feasible, Equation 5.5 is modified in this study as follows:

average fitness j = -----Fltne^ s{X )i—
“ 7 ̂  count _  feasible -1  y

If count-feasible equals 1, the average fitness is set to 1.5 * Fitness{X ); , and if  

count-feasible equals 0, the average fitness is set equal to the maximum (worst)

\
V X e F ................................. (5.6)
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fitness obtained during the sub-generations. This will give an advantage to the penalty 

factors that result in more feasible solutions, as the average value will be less than a 

set o f penalty factors that gets the same average from fewer feasible solutions. In this 

study, the penalty function given in Equation 5.2 is used to calculate the fitness values 

of each member o f PI.

5.2.4 Stochastic techniques

The idea o f using stochastic techniques is to avoid the fine-tuning required by 

penalty functions. Among the stochastic methods, Surry and Radcliffe (1997) 

presented the COMOGA method that combine multiobjective optimization with 

stochastic selection, and it works as follows:

□ Calculate constraint violations for all solutions.

□ Pareto rank based on constraints violations.

□ Evaluate the cost o f solutions.

□ Select a portion of parents p msl based on the cost, and the rest based on

constraints ranking.

□ Apply genetic operators (crossover, mutation)

□ Adjust p cosl i f  the proportion of the feasible solution in the population is not close 

to the target proportion.

Another approach was proposed by Runarsson and Yao (2000). This technique 

was presented in section 2.5.3 among selection techniques. In this technique, the 

authors compare all solutions in order to rank them. This comparison is made for N 

times, and during any time, if  there is no change in the ranking, the procedure will 

stop. The rank is made based on the objective value with probability p f  or when both

solutions are feasible, otherwise they rank based on constraints violations. They 

suggested the number o f comparisons N to be equal to the population size, and p f  to

be between 0.4 and 0.5. They used this technique with an evolution strategy.

Another technique using stochastic tournament selection is proposed in this study, 

and is described in the following subsection.
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5.2.4.1 Stochastic Tournament Selection (STS)

This technique uses binary tournament selection, but instead o f using the fitness

value (a combination between the objective and the constraints), it will select based

on only one o f them as follows:

The technique considers the following points:

□ The difference between the objective values and constraint violations o f the two 

solutions. If the difference between the costs o f the solutions is big, and the 

difference between constraints violations o f the solutions is small, it is better to 

use the objective values for the comparison to take advantage o f this big 

difference at the expense o f small constraint violation.

□ The number of feasible solutions in the current generation. If the number o f  

feasible solutions is small, it is better to encourage the model to make more copies 

of these feasible solutions during selection. If there are not any feasible solutions 

at all, more pressure will be added to select based on the constraint violations as a 

way o f finding a feasible solution.

□ Average improvement o f  both objective values and constraints violations in the 

last few generations. More pressure will be applied to the one that has less 

improvement in recent generations to prevent the model from diverging or 

converging to local optima.

□ The selection will be done stochastically.

The technique works as follows:

□ Primary probabilities for both objective and constraints are calculated as follows:

(5.7)

Cons _  Max _ D iff
* BFC * FF. (5.8)
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Where

Primary probabilities for the objective and constraints
PP PPr r o < r r c .

respectively.

C(7), C (I  +1) The cost and constraint violation values for both individuals in 

VC0» V (I + 1) the binary tournament selection

BF0 andBFC Balance factors for both objective and constraints respectively.

FF  Feasibility factor.

Balance factors are used to put more pressure for selecting based on the criteria 

that improved less in the previous generations. These balance factors are 

calculated as follows:

f  (AveiK + V - A v e jK ) ) ^ ,

BFj =1.0 + ̂  ABS(Ave(K))  (5 9)

K=G 1

Where J refers to the objective functions or the constraints. Ave(K) is the 

average o f the objective values or constraints violation ratios during generation K. 

G1 and G2 refer to the first and last generation to be used in calculating the 

balance factors. G2 is the generation just before the current generation, and 

G l= G 2 -U G , where UG is the user-specified number o f generations used in

calculating the factor.

□ The feasibility factor can have one o f the three following values:

ms If one o f the individuals is feasible and the other is not, the primary 

probability for constraint violation ratios will be multiplied by the following 

feasibility factor:

FF -  J ------------Population................  (5.10)
V Number o f feasible solutions
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as If there are no feasible solutions, all primary probabilities for constraint

violation will be multiplied by VGen , where Gen is the number o f the current 

generation. 

as Otherwise FF= 1.0.

□ Both primary probabilities are normalized to defined the final probabilities as 

follows:

PP
FP0 = — — — .................................................................................. (5.11)

PPo + PPc

PP
FPC = — ^— .................................................................................. (5.12)

PPo + PPc

□ Based on the final probabilities, one o f the categories (cost or constraints 

violations) is selected stochastically, and the solution that performs better in this 

category is the winner.

5.2.5 Adaptive penalty function

This technique works as follows:

□ A primary penalty coefficient for each constraint P P C (I) and an expected 

average violation EA V ( /)  associated with this coefficient are defined.

□ The current penalty coefficient for each constraint during the current generation 

CPC (I)  is calculated as follows:

p

CPC(I)  ■ £  a’( / ’J ) .  S E £!J1 .  SEsl....................................................(5.13)
P  EA V ( /)  BF0

Where

<t>(/, j )  The violation o f the constraint I in the solution J.

Same balance factors used in the STS technique (see Equation
BF0 and BFC

5.9)

P  Population size.
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This means that the current penalty coefficients are shifted linearly from the 

primary penalty coefficient based on the ratio between the actual average violation 

and expected average violation. The ratio o f the constraint violations, instead of the 

amount o f  the violation, is used in this procedure.

The procedure will be as follows:

□ During the generation, for each string in the population, the cost and the 

constraints violation ratio will be calculated.

□ At the end o f the generation, the current penalty coefficient for each constraint 

will be calculated, and the fitness equation is calculated for each solution.

□ GA operators continue as usual.

5.3 Comparisons

There are seven techniques that were tested within the model, which are:

□ Additive Static Penalty (ASP)

□ Multiplicative Static Penalty (MSP)

□ Additive Linear Dynamic Penalty (ALDP)

□ Multiobjective technique (MO)

□ Self-Adaptive (SA)

□ Stochastic Tournament Selection (STS)

□ Adaptive technique (AD)

The penalty function techniques and adaptive technique are tested twice, first with 

original tournament selection, and second with tournament selection with superiority 

o f feasible solutions (note: in tables and charts, TS term is used to refer to original 

tournament selection, and SF term is used to refer to tournament selection with 

superiority o f feasible solutions). The self-adaptive technique is used only with 

tournament selection with superiority o f feasible solutions for the first scenario, due 

to the heavy computational time required by the technique. Thus, there are a total of 

11 techniques for the first scenario, and 10 techniques for the second and third 

scenarios. Each o f these techniques will be used with five different initial random 

seed values.
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The GA parameters used with each scenario are presented in Table 5.1, based on 

the results presented in Chapter 4.

Table 5.1: GA parameters associated with each scenario
Population

Size
Crossover

Probability
Mutation

Rate
Blend

Crossover
Extension

Scenario 1 76 0.6 0.05 0.5
Scenario 2 76 0.6 0.05 0.5
Scenario 3 50 0.7 0.05 0.5

For STS and adaptive techniques, the effect o f the previous 10 generations is 

considered.

Two measures are used to compare different techniques:

□ Best feasible solution obtained during the whole run.

□ The improvement o f the minimum feasible solution during the run. The details 

about this measure were given in Chapter 4.

Four different tests are considered to compare different technique, which are:

□ Best solution achieved by each technique: the best value obtained by each 

technique, considering both measurements, during each scenario is defined. The 

best value in the whole scenario is used as a reference, and the difference between 

this value and other values is calculated.

□ Best and worst values: the best five values and the worst value, regarding both 

measures, are recorded, and the technique that produced each o f them is noted.

□ Comparing techniques with the same seed value: for each seed value, the 

technique that obtains the best value, regarding each measure, is recorded as a 

winner. The number of times each technique wins from the five seeds is defined.

□ Means and standard deviations: from the 5 runs o f each technique, and regarding 

both measurements, the mean and the standard deviation are calculated. 

Statistically, there was no significant difference between means, so a schematic 

drawing is drawn to represent the differences between different techniques. In 

both measurements, the difference between the best value in the whole scenario, 

and the best value obtained by each technique is used.
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5.4 Results

The next paragraphs present the results for both measurements. A summary of 

these results is presented at the end.

5.4.1 Test 1

Table 5.2: The total water consumed for the best run 
using each technique, relative to the best run overall, for 
each scenario for measure 1

Method Scenario
1

Scenario
2

Scenario
3

STS 248330 62332 0
TS AD 210970 0 168550
SF AD 9632 192396 262638
MO 83566 207050 184286
TS ASP 110042 22694 179364
SF ASP 75374 60304 646236
TS MSP 134308 131152 264920
SF MSP 131140 213116 264920
TS ALDP 83302 116726 181400
SF ALDP 43654 208320 357210
SF SA 0 — —

Table 5.3: The total water consumed for the best ran 
using each technique, relative to the best run overall, for 
each scenario for measure 2

Method Scenario
1

Scenario
2

Scenario
3

STS 0.823 0.301 0
TS AD 1.028 0 0.534
SF AD 0.155 0.401 0.796
MO 0.179 0.523 0.575
TS ASP 0.230 0.149 1.020
SF ASP 0.009 0.414 1.814
TS MSP 0.376 0.341 0.813
SF MSP 0.292 0.403 0.813
TS ALDP 0.184 0.368 1.066
SF ALDP 0 0.326 1.246
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for each scenario for measure 1
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Figure 5.2
The total water consumed for the best run using each technique, relative to the best run overall,

for each scenario for measure 2
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From Figures 5.1 and 5.2, and Tables 5.2 and 5.3, the following points can be

noticed:

□ STS (Stochastic tournament selection) is the best technique for the third scenario 

for both measurements.

□ TS AD (Adaptive technique that used original tournament selection) is the best 

technique for the second scenario for both measurements.

□ For the first scenario, SF SA (Self-adaptive technique that used tournament 

selection with superiority o f feasible solutions) is the best scenario in the first 

measurement, (note: it considered only in this measurement). For the second 

measurement, SF ALDP (Additive linear dynamic technique that used 

tournament selection with superiority o f  feasible solutions) is the best technique.

□ Regarding techniques that are using two different selection methods, they work 

better with original tournament selection in second and third scenario, while 

working better with tournament selection with superiority o f feasible solutions in 

the first scenario.

□ The differences between techniques in the third scenario are more significant than 

the differences in the first two scenarios.

□ SF_ASP (Additive static technique that used tournament selection with 

superiority o f feasible solutions) is least stable technique between different 

scenarios.

□ MO (Multiobjective technique) is most stable technique between different 

scenarios.

5.4.2 Test 2

Tables 5.4 and 5.5 present the best five techniques and the worst technique for

each scenario.
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Table 5.4: Techniques that produce the five best values and the worst
value regarding the Irst measure

Rank Scenario
1

Scenario
2

Scenario
3

First SF SA TS AD STS
Second SF AD TS ASP STS
Third SF ALDP TS AD STS
Fourth SF ALDP TS AD TS AD
Fifth SF ASP SF ASP TS ASP
Last TS AD SF ASP MO

Table 5.5: Techniques that produce the five best values and the worst 
value regarding the second measure____________ _____________

Rank Scenario
1

Scenario
2

Scenario
3

First SF ALDP TS AD STS
Second SF ASP TS AD STS
Third SF ASP TS AD STS
Fourth SF AD TS ASP TS AD
Fifth MO STS MO
Last TS AD SF ASP SF ASP

The following points can be noticed from these tables:

□ Consistent with the first test, techniques perform better in the first scenario when 

they consider superiority o f feasible solutions during the selection, while they 

perform better in second and third scenarios while they don’t consider it.

□ In the first scenario, SF SA (Self-adaptive technique that used tournament 

selection with superiority o f feasible solutions) got the best optimal, and 

SF ALDP (Additive linear dynamic technique that used tournament selection 

with superiority o f feasible solutions) is the technique that produced two from the 

best five.

□ It is confirmed that TS_AD (Adaptive technique that used original tournament 

selection) is the best in the second scenario, and STS (Stochastic tournament 

selection) is the best technique in the third scenario, as they got the most o f the 

five best values in both measures.

□ MO (Multiobjective technique) performs differently for the two measures. 

Although it has the worst value in the third scenario o f the first measure, it got the 

fifth best in the first and third scenario o f the second measure.
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□ SF_ASP (Additive static technique that used tournament selection with 

superiority o f feasible solutions) is the least stable technique as it showed up 

among the best values and as the worst value many times, as in the first test.

5.4.3 Test 3

Tables 5.6 and 5.7 present the numbers o f times each technique wins compared 

with other techniques that have the same seed value for both measures.

Table 5.6: Number of times each technique wins from 
runs that have same seed value regarding the first 
measure

Method Scenario
1

Scenario
2

Scenario
3

STS 0 1 3
TS AD 0 3 1
SF AD 0 0 0
MO 0 0 1
TS ASP 0 1 0
SF ASP 1 0 0
TS MSP 0 0 0
SF MSP 0 0 0
TS ALDP 0 0 0
SF ALDP 2 0 0
SF SA 1 — —
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Table 5.7: Number of times each technique wins from 
runs that have same seed value regarding the second 
measure

Method Scenario
1

Scenario
2

Scenario
3

STS 0 1 3
TS AD 0 3 1
SF AD 2 0 0
MO 1 0 0
TS ASP 0 1 1
SF ASP 1 0 0
TS MSP 0 0 0
SF MSP 0 0 0
TS ALDP 0 0 0
SF ALDP 1 0 0

From the tables, it can be noticed that:

□ The results for second and third scenarios are consistent with other tests.

□ The results for first scenario are different than the first test. For example, although 

SFJSA (Self-adaptive technique that used tournament selection with superiority 

of feasible solutions) is the best in the first measure, it wins only once in this 

measure. Similarly, although SF_ASP (Additive static technique that used 

tournament selection with superiority o f feasible solutions) is the best in the 

second measure, it wins only once in this measure.

5.4.4 Test 4

Figures 5.3 and 5.4 present the mean and standard deviation o f the difference 

between the best value in the scenario and all other values for the five runs o f each 

technique. From these charts, it can be noticed that:

□ In the first scenario, and considering both measures, MO (Multiobjective 

technique) is the best candidate followed by SF_ALDP (Additive linear dynamic 

technique that used tournament selection with superiority o f feasible solutions). 

The difference between them in the mean value is small, but MO is more 

consistent in both measures. The small values o f standard deviation o f MO in both
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measures might explain why the technique has the best mean in this test, while it 

didn’t give good results in the previous tests. The worst techniques are TS_AD 

(Adaptive technique that used original tournament selection) and STS (Stochastic 

tournament selection). Except for the worst two techniques, the difference 

between different techniques is not significant. Also in general, the techniques 

perform better while considering superiority o f feasible solutions during the 

selection. This is more clear for the adaptive technique than for other techniques.

□ In the second scenario, TS_AD (Adaptive technique that used original tournament 

selection) is the best technique, followed by STS (Stochastic tournament 

selection), in both measures, which is consistent with previous tests. In general, 

techniques perform better when they don’t consider superiority o f feasible 

solutions during the selection. This is more clear in adaptive technique than other 

techniques. The difference between different techniques is more significant than 

the first scenario.

□ In the third scenario, the difference between techniques is more significant than 

for the first two scenarios. In this scenario, STS (Stochastic tournament selection) 

outperforms all other techniques, followed by TS_ALDP (Additive linear 

dynamic technique that used original tournament selection), in both measures. 

Also, in general, techniques perform better when they don’t consider superiority 

of feasible solutions during the selection, as in the second scenario. The 

multiobjective technique is the worst technique for this scenario.
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Figure 5.3
Mean and standard deviation of the first measure of different scenarios
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Mean and standard deviation of the second measure of different scenarios
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5.4.5 Summary

The previous results can be summarized as follows:

□ For first scenario, techniques that consider superiority o f feasible solutions during 

the selection, including multiobjective technique, outperform other techniques. 

The multiobjective technique is the technique that is the most consistent when 

using different seed values regarding this scenario.

□ TS_AD (Adaptive technique that used original tournament selection) outperforms 

all other techniques in the second scenario. Also in general, techniques perform 

better for the second scenario when they don’t consider superiority o f feasible 

solutions during the selection.

□ STS (Stochastic tournament selection) outperforms all other techniques in the 

third scenario. The difference between STS and other techniques in this scenario 

is more significant than the differences between different techniques in the first 

two scenarios.

5.5 The performance of STS technique

Considering the results that were displayed in the last part, STS performed well in 

third scenario, somewhat well in the second scenario, and poorly in the first scenario 

(the simplest example). In this section an attempt is made to explain the reason 

behind that, highlighting the characteristics o f the technique. Also, suggestion are 

made to examine if  the results obtained by the technique is good or bad, given that the 

optimal value is usually not known in such problems, and there are no other runs to 

compare with.

It seems that the technique works well when its average probabilities o f  objective 

function value and constraints are interacting with each other around the value o f  0.5. 

This is explained in the following paragraph. It should be mentioned that this value is 

related to the average o f probabilities o f all solutions, not the probability for each 

comparison.
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Figure 5.5 presents the population average probability o f using objective function 

value and constraints as the basis for selection o f STS for a specific initial seed value 

with which the technique performs poorly in the first scenario, and performs well in 

the third scenario. In the first scenario, and for the first four generations, the 

probabilities were around 0.5, and constraints probability is higher. After this 

generation, the objective function value probability increases, and the constraints 

probability decreases with a diverging pattern. This means the selection is made 

mainly based on the objective function values without paying enough attention to the 

constraints violations. For the third scenario, both probabilities are fairly close to 0.5, 

and they alternate which is smaller and which is higher.

Scenario 1
1

o.e

1 0.7

0.3S
0.2

0.0
9131 41 61 71 8111 21 511

1.0 -j - • -•________________
L C o s t  probability 
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| 0 .8-------------

0.5

0.4

0.3
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71 81 9121 31 41 51 611 11

Generation Generation

Figure 5.5
Average STS probabilities for a specific initial seed value in the first and third scenarios.

The reason for this could be obtained from Figures 5.6 and 5.7. Figure 5.6 

presents the average constraint violations and the ratio o f feasible solutions per 

generation for each o f the same two runs. From figure 5.6, the average constraint 

violations o f the first scenario decreases suddenly and the number o f the feasible 

solutions increases suddenly after a few generations in the first scenario given that the 

problem is simple, and it is easy to find feasible solutions. In the third scenario, the 

constraint violations decrease gradually, and number o f feasible solutions increases 

gradually during generations. At the end o f the run, third scenario performs better 

than the first scenario regarding ratio o f the feasible solutions.
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Figure 5.6
Average constraint violations and the ratio of feasible solutions for scenarios 1 and 3.

Figure 5.7 presents the sorted values o f the objective function value and the 

constraint violation as a ratio o f the maximum value for both scenarios in the ninth 

generation.
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Figure 5.7
Sorted values of the objective function value and the constraints violation as a ratio of the 

maximum value for first and third scenarios in the ninth generation

From Figure 5.7, recalling the equations o f the technique, and considering the first 

scenario, the maximum difference for constraints is big, while many value are close 

to each other (eg., values between solutions 35 and 55). Considering that the number 

o f feasible solutions is big and the improvement in the previous generations is high, 

the final average probability for constraints is expected to be small value, and thus the 

average probability for cost is high value. In the third scenario, the constraint
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violation values are changing gradually, the maximum difference for the objective 

function value is relatively bigger than for the first scenario, the number of the 

feasible solutions is small, and the improvement in the previous generation is 

moderate, and so the constraints average probability is not so small.

As a result o f selecting based on the objective function value without paying 

attention to the constraint violations in the first scenario, the minimum feasible 

solution doesn’t increase gradually after the first few generations, and it reached the 

minimum value at generation 4, which is not a good value compared to other runs in 

the same scenario (see Figure 5.8). In the third scenario, the minimum feasible 

solution keeps decreasing gradually during generations until the end, and it reaches 

the minimum value at generation 94, which is a good value compared to other runs in 

the scenario.

2.70E+07

51 8131 41 61 71 911 11 217121 31 41 51 61 81 911 11
Gwwratfoft Gw*r*ton

Figure 5.8
Minimum and average feasible solutions for first and third scenarios

To provide further evidence that the STS technique performs the best when both 

average probabilities are close to 0.5, and exchanging their positions about which is 

higher and which is smaller, another two examples from the second and the third 

scenarios are presented in Figures 5.9 and 5.10. From both figures, considering that 

the technique performs the best in the third scenario, while performs somewhat well 

in the second scenario, it could be noticed that the best run is associated with the 

average probabilities closer to 0.5 in both cases.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



133

1.0
* °-9—
|  0.8--------

0.7

0.5

0.4

0.3

0.2

0.1

0.0
31 61 9121 41 51 71 811 11

fc 0.9

I 0.8

j r3 * 0.6

! 0.3 

0.2 

0,1 

0.0

- • —Cost probability Scenario 2 - best run
— Constraints pnobabiHty

i til aj/ U u F w r n j Jt V i r
r\!\ A  ? \ r J .  L . K . . . '

j

i ‘ VV: V i / u T ^

i

1 11 21 31 41 51 61 71 81 91

Generation

Figure 5.9
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Figure 5.10
Average STS probabilities for the worst and best runs of the third scenario.

Although the previous explanation proves that the technique may converge to a 

local optimal, it also shows that watching the average probabilities o f the technique, 

which is available through the model, could be used as an indicator o f the quality o f  

the results, given the optimal value is normally not known, and the user will not try 

different techniques to select from. So, whenever both probabilities are close to 0.5, 

interacting and exchanging their positions, it could expected that the results have 

good quality. Whenever one of probabilities denominates the selections, it could be 

expected that the results are poor, and it might be better for the user to switch to 

another technique.
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5.6 The performance of adaptive technique

In this section, it is investigated whether maintaining the balance between the 

improvement o f both cost and constraint violations could be used as the sign for the 

quality o f this technique, as the average probabilities are in STS technique. The 

assumption is that the technique works better if  BFC/BF0 is moving around 1.0 or

closer to it. For each scenario and for the same initial seed value, the results o f both 

selection methods (to assume selection with and without superiority o f feasible 

solutions) are considered.
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Figure 5.11
The value of BFc/BF0for the three scenarios for adaptive technique

From Figure 5.11, and given that the technique works better in the first scenario 

while consider superiority o f feasible solutions (SF), and works better with other 

selection method in the second and third scenario, it could be noticed from Figure 

5.12 that the results for the second and third scenarios support the assumption, while
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it doesn’t support it in the first scenario. Also in the second scenario, the better results

are closer to 1.0, but it doesn’t reach it.

5.7 Conclusions and future work

From the results, the following points can be noticed:

□ For self-adaptive technique, the large computational time requirement is not 

acceptable, especially since its solution quality is not superior to other methods.

□ Techniques perform differently from one scenario to the other, and with different 

selection methods.

□ For simpler problems with relatively few decision variables, such as the first 

scenario, the multiobjective technique and penalty techniques that support 

superiority o f feasible solutions perform better. Among these solutions, 

multiobjective seems to be the most consistent. It has the smallest standard 

deviation using different seed values, and since it does not require any fine- 

tuning, it is the most recommended technique for such cases o f the model.

□ For harder scenarios with many decision variables, such as the second and third 

scenarios, STS (Stochastic tournament selection) and penalty techniques that 

don’t support superiority o f feasible solutions during selection perform better. 

STS performed the best for the third scenario, and TS_AD (Adaptive technique 

that used original tournament selection) performed the best for the second 

scenario.

□ A suggestion was made to check the quality o f  the output o f  STS method in the 

absence o f the optimal value, and when there are no other runs to compare with.

□ Another suggestion was made for the adaptive technique, but it is not supported 

by all scenarios.

□ Since in reality, it is hard to determine the difficulty o f the problem that is being 

analyzed, it is preferable for the user to use STS method, and if  its output doesn’t 

show evidence that the result is likely to be o f good quality, the user could switch 

to any other method that didn’t support superiority o f feasible solution. TS_AD is 

the good alternative in this case.
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Suggested future work:

□ STS method should be tested with different type of problems to check its ability 

to handle the constraints in different situations.

□ The STS technique should be re-studied regarding maintaining the balance 

between the probabilities for the constraints and the cost, and how this could 

prevent the technique from converging to local optima or diverging.
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CHAPTER 6

GENERATING MORE RELIABLE MANAGEMENT 

STRATEGIES UNDER CONDITIONS 

OF UNCERTAINTY

6.1 Introduction

Defining the crop patterns in an irrigation canal network to simulate future 

conditions is associated with a significant amount o f uncertainty. Additionally, the 

water demand per unit area o f each crop varies with time and space due to changes in 

conditions such as temperature, soil characteristics, and the farmers’ actions. The 

solution prescribed by a deterministic model may not perform well when evaluated 

under conditions o f uncertainty. To address this, the deterministic model should be 

extended to incorporate estimates o f reliability in the search procedure to identify 

more robust solutions under conditions of uncertainty. Incorporating uncertainty in 

hydraulic engineering began in the 1970’s. The pioneer works considered the 

parameters ambiguity in the search space while designing hydraulic structures (Yen 

and Ang, 1971; Mays, 1979; Tung and Mays 1982). Regarding water distribution 

systems, most o f the works were related to pipeline distribution systems. Among 

these works, Lansey et al. (1989) used a chance-constrained formulation to determine 

the least cost water distribution network, considering uncertainty in water demands, 

required pressure heads, and pipe roughness coefficients. Regarding irrigation canal 

networks, Molden et al. (1989) incorporated the hydrologic and management 

uncertainty in the hydraulic design o f an open-channel irrigation system. Gates et al. 

(1992) extended this work by incorporating the hydraulic as well as hydrologic and 

management uncertainties in the optimal design o f hydraulic structures. Uncertainty 

has been incorporated within genetic algorithm frameworks in application to many 

hydraulic fields such as groundwater (Ritzel et al., 1994; Cieniawski et al., 1995; 

Chan-Hilton and Culver, 2000) and watershed management (Harrell, 2001)
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Because a GA evaluates the fitness o f each potential solution, it is a 

straightforward extension to evaluate each solution repeatedly using a set o f  

realizations o f uncertain parameters generated based upon their probability 

distributions. The ratio o f the number o f realizations for which a criterion is satisfied 

to the total number o f realizations for which the potential solution is evaluated 

provides an estimate o f its reliability, which is included in the model as an additional 

constraint. Such a framework is referred to as a chance-constrained genetic algorithm, 

or CCGA. CCGAs have been implemented using 200 Monte-Carlo realizations to 

evaluate each potential solution’s reliability (Ritzel et al., 1994; Cieniawski et al., 

1995). In the current study, considering the heavy computational time required, it 

would be prohibitive to work with such a large number or realizations. Some research 

has been performed to investigate ways to reduce the computational time required for 

successful CCGA implementation. Loughlin and Ranjithan (1999) investigated 

various MC sampling strategies for a chance-constrained air quality management 

problem, with promising results for reducing the computational burden by using 

much smaller MC sample sizes. Latin Hypercube Sampling provides a good 

alternative for Monte Carlo, and can yield good results with fewer realizations.

6.2 Crop data and uncertainty

In an irrigation network such as the one presented in the case study, where the 

cultivated land consists o f many parcels owned by a large number o f people, defining 

deterministic values for crop pattern is a difficult issue, as these values are always 

associated with a considerable level o f uncertainty. Water consumption rates for 

different crops also vary over time and space. To account for this, probability 

distributions for both water consumption rate and crop pattern should be defined and 

used instead o f deterministic values. In the current study, probability distributions for 

the crop pattern and water demands were calculated based on some studies that were 

conducted to optimize the crop allocation and water productivity in Egypt, as well as 

some studies that estimated the water demand rate for various crops (Ali, A. S., 1999; 

Ali, H. M. 2000; Fawzy, G. M. 1999; El Qusoy, D. 1995), and from information
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provided by the irrigation and agriculture directorates in Egypt. In the absence o f  

better information, uniform probability distributions were assumed for both crop 

pattern and water demand rate, where the upper and lower bounds for each 

probability distribution were defined based on the reported data. Seven seasonal crops 

and one permanent crop (gardens) were considered. Regarding crop pattern, after 

randomly selecting a ratio o f each crop at each reach, the values o f all crop patterns in 

each reach will be normalized, so the summation of them is unity.

Figures 6.1 and 6.2 present the upper and lower limits for water consumption 

rates and crop pattern for different crops used in the case study.
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Figure 6.1
Upper and lower bounds for water consumption rates for different crops used in the case study
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Figure 6.2
Upper and lower bounds for crop percentages for crops used in the case study

6.3 Chance-constrained technique

Stochastic programming is an optimization technique in which the constraints or 

objective function o f an optimization problem contain stochastic parameters. Chance- 

Constrained Programming (CCP) is one method o f stochastic programming that 

attempts to treat optimization problems with uncertain constraints. The name 

“chance-constrained” follows from the fact that each constraint is realized with a 

minimum probability o f 1 -  otj, where 0 < ocj < 1 (Taha, H. A., 2003). So, in CCP, 

instead o f satisfying the constraints under the deterministic, or average conditions, the 

goal is to provide some confidence level o f satisfying the constraints under conditions 

o f uncertainty. Each constraint can only be violated for a fraction a  o f the 

realizations, and the value (1-a) is called a reliability target or safety margin, which is 

defined by the user.

For example, the following deterministic constraint:
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£  ayXj < bj V i and j ...............................................................(6.1)
M

where a u , are deterministic values will be modified to be:

H  2  avxj -  bj f - 1 “ a i V i and j ........................................ ( 6 .2 )

where a tJ, b j  or both are random values. This chance-constrained technique

requires generation o f random samples, and there are two techniques that can be used 

for this: Monte Carlo Sampling and Latin Hypercube Sampling. The details o f each 

are described in the following section.

6.4 Generating sampling (MCS vs. LHS)

One o f the basic steps for chance-constrained programming is to generate random 

samples for realizations o f uncertain parameters. Monte Carlo Sampling (MCS) is the 

conventional method for generating random samples. Generating a sample using 

Monte Carlo (Figure 6.3) is done as follows:

K- 0.6

0.4

C 02
0.0

Value

Figure 6.3 
Monte Carlo Sampling

□ Generate the Cumulative Distribution Function (CDF) for the random variable.
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□ Generate a random number between 0 and 1 using any random number generator.

□ Read the quantile associated to that random number.

□ Repeat many times and check the percentage that satisfies the conditions.

□ Check this percentage against target reliability.

Monte Carlo sampling requires using a large number o f realizations to achieve 

good results.

Latin Hypercube Sampling (LHS) is a good alternative to the Monte Carlo 

sampling technique that can achieve good results with fewer realizations. Based on 

Wyss and Jorgensen (1998), the procedure works as follows:

□ Divide the range o f each variable into n non-overlapping intervals on the basis o f  

equal density. (Examples o f dividing variables with normal distribution 

probability and uniform probability are presented in Figure 6.4).

□ One value from each interval is selected with respect to the probability density in 

the interval.

□ The n values obtained from the variable XI are paired in a random manner with n 

values o f variable X2.

□ These n pairs are combined with n values o f variables X3 to form n triplets, and 

so on.
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C um ulative  D istribu tion  Function
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02
0.0
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Figure 6.4
LHS Sampling for uniform and normal distribution
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Figure 6.5 illustrates an example o f two variables with five intervals (n=5) for 

each. Each class o f each variable is selected only once.

Variable 2
C lass 1 C lass 2 C lass 3 C lass 4  C lass 5

i t

t t t

I t

i t

Figure 6.5 
An example of LHS Sampling

6.5 Chance-Constrained Genetic Algorithm (CCGA) model

In the CCGA model, the deterministic GA model is modified to incorporate 

estimates o f likelihood o f satisfying the constraints under conditions o f uncertainty. 

Thus, the fitness equation includes additional penalty terms for each reliability 

constraint. In this application, a new set o f realizations is generated for the evaluation 

o f each string. Latin Hypercube Sampling is used to sample the data for each 

realization, where the probability distribution function for each uncertain variable is 

divided into certain number o f classes. The fitness equation for each string is affected 

by the percentage o f the realizations that satisfy each constraint. If the percentage of  

realizations satisfying the constraint is less than the target confidence level for this 

constraint, the fitness is penalized. The new penalty terms for the reliability 

constraints are calculated as follows:

CLSt -  A*  

or
CLS; = 1.0

1 -
R V ' K < V  « ) , ♦ * > ..................................... ( 6 -3)

............................(6.4)
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Where:

The penalty function for constraint i when the number o f realization
CLSi

that satisfy the required confidence is less than the target value.

A A constant.

R Total number o f realizations.

(l -  a \  Target reliability for constraint i.

rn. Number o f the realizations that satisfy the constraint.

To apply the penalty, the fitness value o f each string will be divided by CLSt .

The procedure to implement the CCGA model in the current study is as follows:

□ Third scenario o f the case study (see section 2.5.2) was selected as a case study 

for the uncertainty runs.

□ The best deterministic solution for the third scenario is noted.

□ The same GA parameters that were used with the third scenario in Chapter 5 will 

be used with it here. Also, STS (Stochastic tournament selection) will be used as 

the constraint-handling technique, as it is the technique that resulted in the best 

solution for the third scenario.

□ This best solution was run using the unsteady flow model, using the average data 

for the water consumption rate and crop pattern. The objective (total water 

consumed) obtained from this run is used as reference to compare the results 

when uncertainty is incorporated into the search procedure.

□ Then, the best solution was run for 1000 Monte Carlo samples, using the uniform 

probability distribution functions for water consumption rate and crop pattern.

□ The results o f satisfying the constraints in the Monte-Carlo simulation are shown 

in Table 6.1.

□ The goal is to increase the reliability for satisfying the water shortage and 

required water constraints to the target level shown in Table 6.2
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Table 6.1: Reliability level obtained from 1000

Constraints
Reliability level (%) 

Obtained from Monte 
Carlo runs

Water shortage 61.9
Flood 100.0
Regulators stability 100.0
Required water levels 69.8

Table 6.2: Target reliabili ty level

Constraints Target Reliability 
level (%)

Water shortage 90.0
Flood 100.0
Regulators stability 100.0
Required water levels 100.0

The procedure for this part o f program is as follows:

A. The total number of realizations (R), and the target reliability are defined.

B. The cumulative values for cost, constraint violations, and Reliability Satisfaction 

(RS) are initialized to 0.0.

C. Water consumption rates and crop pattern are defined randomly for each reach.

D. The cost (total water consumed) and the constraint violations for each realization 

are determined.

E. If the current realization satisfies the constraints (with the given tolerance for this 

scenario (see section 2.5.2)), the value o f RS (Reliability Satisfaction) is modified 

as follows:

RS = RS + -  
R

F. Steps C through E will be repeated until the end o f realizations.

G. Average objective function value (total water consumed) from all realizations is 

calculated, considering the effect o f convergence for each realization.

H. If reliability satisfaction is greater than or equal to the reliability target for all 

constraints, the solution is feasible. Otherwise, the differences between them 

represent the constraint violations.
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I. Steps B through H are used for each string.

J. As STS is the constraint-handling technique used here, the objective function 

value (total water consumed) and the constraint violations are used as the 

selection criteria.

K. Other GA operators continue as usual.

6.6 Analysis

To determine the required number of realizations, the CCGA model was 

implemented three times, using 10, 20, and 30 realizations, to evaluate each potential 

solution using the reliability targets in Table 6.2. For each number o f realizations, five 

different runs with different initial seed values are used. Additionally, the effect o f  

changing the reliability target will be investigated in two steps. In the first step, the 

reliability target for WS (water shortage) will be increased to from 90% to 95%, and 

in the second step, the reliability target for RW (required water levels) will be 

decreased to from 100% to 90%.

6.7 Results

Figure 6.6 presents the total water consumed o f the best feasible solutions 

obtained for each number o f realizations using different initial seed values, and using 

uniform probability distribution for water consumption rates and crop pattern. The 

deterministic total water consumed (obtained using the mean values o f water 

consumption rates and crop pattern) is shown in the figure. The total water consumed 

for most o f the runs is higher than the deterministic value. Also, the average total 

water consumed values for all number o f realizations is higher than the deterministic 

total water consumed. However, there is no apparent relationship between increasing 

the number o f the realizations and the change in the objective function (total water 

consumed) values.
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Figure 6.6
Best feasible solution obtained in each run for each number of realizations

Figure 6.7 presents the reliability satisfaction values for the water shortage 

constraint for the best feasible solution of five different runs and the average for each 

number o f realizations. These values are calculated based on the number of 

realizations that satisfy the constraints while using CCGA model. Reliability 

satisfaction for required water levels are 100% for all o f these solutions. Figures 6.8 

and 6.9 present more accurate estimates o f the reliability satisfaction values for the 

water shortage and required water levels constraints calculated using 200 LHS 

realizations. From Figure 6.7, average reliability satisfaction for the solutions found 

by many runs are higher than the target reliability, and for some runs, it is 100%. 

Also, the highest reliability satisfaction was obtained using 10 realizations, and 20 

realizations is the one that got the least reliability satisfaction, with small differences. 

Figures 6.8 and 6.9 have similar trends, but the reliability satisfactions are smaller in 

general. From both figures, using 10 realizations satisfies both constraints. Using 20 

realizations satisfies only water shortage constraint, and using 30 realizations satisfies 

none o f them. However, the difference from target reliability is small.
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Figure 6.7
Likelihood of satisfying the water shortage constraint in CCGA model for different runs and the

average for each number of realizations.

Deterministic 
satisfaction level

Reliability target

Figure 6.8
Likelihood of satisfying the water shortage constraint in CCGA model for different runs and the 

average for each number of realizations using 200 realizations
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Figure 6.9
Likelihood of satisfying the required water levels constraint in CCGA model for different runs 

and the average for each number of realizations using 200 realizations

Figure 6.10 displays the average reliability satisfaction for different solutions per 

generation for the run with the random seed that produced the best solution using 10 

realizations. Figure 6.11 displays the average reliability satisfaction for different 

solutions per generation for the run with the random seed that produced the worst 

solution using 10 realizations. It can be seen that the average reliabilities for the flood 

and regulator stability constraints are higher than average reliabilities for other two 

constraints in both cases. In Figure 6.11, the average reliability for required water 

levels is much less than the average reliability for all other constraints. Figure 6.12 

shows the number o f feasible solutions per generation for each o f these runs. The 

worst run fails to find feasible solutions in many generations, and its number of 

feasible solutions is less in general. It is likely that the difficulty in satisfying the 

target reliability o f required water level is the reason behind this. Changing the values 

for target reliability o f water shortage and required water levels constraints will be 

tested and the results will be compared with the results from Figures 6.10 and 6.11.

The results (Figure 6.6 to 6.12) show that by incorporating estimates o f reliability 

in the search procedure, solutions with higher reliability can be found with relatively
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small increase in the objective function value. The average total water consumed for 

the best solutions obtained by different runs using different realizations are between 

0.42% and 1.59% higher than that o f the deterministic solution, and have much less 

likelihood o f causing water shortages or failing to satisfy the required water level at 

the start o f the next irrigation period in the network.

The results indicate that good solutions can be obtained using a sample size o f 10 

realizations to evaluate each potential solution. The good performance o f this small 

sample is likely due to the fact that over the course o f a number o f generations, a 

given solution is tested with a much larger number of realizations.
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Figure 6.10
Average target satisfactions values for different constraints per generation for the random seed 

run that resulted in the best solution using 10 realizations
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Figure 6.11
Average target satisfactions values for different constraints per generation for the random seed 

run that resulted in the worst solution using 10 realizations
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Figure 6.12
Number of feasible solutions per generation for the random seed runs that resulted in the best and

worst solutions using 10 realizations
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6.7.1 Effect of the number of realizations used to evaluate each solution

From the previous results, using a larger number o f realizations (20 and 30) 

slightly outperform 10 realizations regarding the objective function value (Figure 

6.6). Regarding reliability satisfaction (Figures 6.7 through 6.9), using 10 realizations 

has highest reliability satisfaction value and using 30 realizations has the least 

reliability satisfaction value, but the differences are small. Also comparing the results 

of 20 and 30 realizations (Figures 6.6 through 6.9), the results o f 20 realizations 

outperforms the results o f 30 realizations regarding the objective function value. 

Regarding reliability satisfaction, results are different between using the actual 

number o f realization or higher number o f realizations. All o f the differences are 

relatively small. Thus, the differences between the results for different number o f  

realizations may be due to the random effect, and using a number o f realizations as 

low as 10 can be adequate for achieving good results.

6.7.2 Effect of changing the reliability target

The effect o f changing the reliability target is tested twice. First, the reliability 

target for the water shortage constraint will be increased from 90% to 95%. This is 

tested using a new set o f 20 realizations to evaluate each potential solution. Second, 

the reliability target for required water levels constraint is reduced from 100% to 

90%, and the reliability target o f water shortage is kept as 90%. This is tested using a 

new set o f 10 realizations to evaluate each potential solution. For each case, five runs 

using different starting random seeds were conducted.

Figures 6.13 and 6.14 present the results o f each test. In each figure, the five 

different runs and the average value are presented. In the first test, increasing the 

target reliability o f satisfying water shortage constraint resulted in an increase o f the 

total water consumed for most o f  the runs. The increase o f the average value o f total 

water consumed is 1.1%. In the second test, relaxing the target reliability for the 

required water level constraint resulted in a decrease o f the average total water
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consumed o f about 1.1%. Also, most o f the five runs got lower total water consumed 

when the target reliability is relaxed.
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Figure 6.13
The effect of increasing target reliability of water shortage to 95%
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Figure 6.14
The effect of decreasing target reliability of required water levels to 90%
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Regarding reliability satisfaction for water shortage and required water levels 

constraints, Figures 6.15 to 6.18 display the average reliability satisfaction for both 

constraints versus generations for the runs that produced the best and the worst 

solutions for each o f the two tests. From Figures 6.15 and 6.16, there is not clear 

evidence that increasing the reliability target o f water shortage constraint affected the 

average reliability satisfaction. Also, the effects on the best and worst solutions 

appear to be opposite. While average reliability satisfaction is reduced in the worst 

scenario as the result o f increasing reliability target, it is increased in the best 

solution, indicating that the difference may be a random effect.
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Figure 6.15
Effect of increasing target reliability of water shortage to 95% for the random seed run that

resulted in the best solution
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Figure 6.16
Effect of increasing target reliability of water shortage to 95% for the random seed run that

resulted in the worst solution

Regarding the required water levels constraint, Figures 6.17 and 6.18 shows that 

there is an improvement associated with relaxing the reliability target for this 

constraint for both the best and worst runs.

As expected, results indicate that the model can achieve more reliable solutions at 

the expense o f slightly increasing the objective function value, or it can decrease the 

objective function value at the expense o f decreasing the reliability target.
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Figure 6.17
Effect of decreasing target reliability of required water levels to 95% for the random seed run that

resulted in the best solution
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Figure 6.18
Effect of decreasing target reliability of required water levels to 95% for the random seed run that

resulted in the worst solution
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6.8 Conclusions and Recommendations

The deterministic model described in the Chapters 2, 4, and 5 has been extended 

to incorporate the likelihood of satisfying constraints under conditions o f uncertainty 

in the water consumption rates and crop patterns. A chance-constrained optimization 

technique was used within the GA search process. Latin Hypercube Sampling was 

used to generate a relatively small number of realizations to evaluate each potential 

solution. Uniform probability distribution functions were used to express both 

uncertain variables (water consumption rates and crop patterns). The results show that 

the CCGA model can increase the reliability o f satisfying constraints at the expense 

of a small increase in the objective function value.

Also, the results show that using LHS sampling with as few as 10 realizations to 

evaluate each potential solution can yield good results. From the results (Figures 6.6 

through 6.9), there is no clear relationship between increasing the number of the 

realizations and the improvement in the objective function value or in the reliability 

satisfaction, indicating that the differences between the results produced by different 

numbers o f realizations may be a random effect. The runs are associated with a very 

heavy computational effort. A single run using 10 realizations required about 20 

hours on average on PC Pentium 4 (2.0 GHz with 512 MB RAM), and it is nearly 

proportionally longer for larger number o f realizations.

Suggested future work:

□ Methods for reducing the computational effort should be investigated.

a If possible, more information about the uncertain parameters should be collected 

to express them using more accurate probability distribution functions.

□ The suitable number o f realizations that should be used within the model should 

be investigated again, as no general rule could be obtained for improvement o f the 

results due to increasing the numbers o f realizations.

□ The model should be run repeatedly using various target levels o f reliability to 

generate a tradeoff relationship between reliability and objective function value.

□ Various sampling strategies for the CCGA should be tested to determine the most 

efficient strategy. For example, another strategy that has been shown to perform
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well for an air quality management problem is to use the same set o f realizations 

to evaluate all o f the strings in the population, with a new set o f realizations 

generated for each generation (Loughlin and Ranjithan, 1999). Also, the number 

of realizations used for the evaluation o f each string should be varied to determine 

the most efficient size o f the set o f realizations.
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CH APTER 7 

G RAPH ICAL USER INTERFACE FO R THE M ODEL

7.1 Introduction

A user-friendly interface has been developed to make the model easier to use. The 

model can be used as an unsteady flow simulation model, or as an optimization 

model. In the case o f the optimization model, the best solution that is obtained is 

routed using the unsteady flow model, and the results o f this routing are available 

with the genetic algorithm results.

The interface consists o f four categories as shown in Figure 7.1, which are

□ Files commands, to help the user work with the projects, such as begin a new 

project, open an existing project, and other commands.

□ Data commands, to help the user enter different types o f the data. The data can be 

categorized into two sub-categories: hydraulics data and settings data.

>  Hydraulics data to describe the irrigation network.

>  Settings dialog to define different parameters, such as genetic algorithm 

parameters, uncertainty parameters, etc.

□ Reports, which are summaries about the data that have been entered. Reports are 

presented in one o f two forms: table form for hydraulics data, and page form for 

genetic algorithm data.

□ Results, which may be genetic algorithm results or hydraulics results. Results can 

be presented in three forms: table form, chart form, and page form. Page form is 

used to present the final reports about the whole run. The tables and charts are 

used to present details.

A brief description about each category with examples o f its commands is 

presented in the following sections.
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7.2 File commands

This category o f commands is used to work with projects, and include commands 

such as create, open or delete a project. The interface was designed such that all 

projects are in one folder (projects) under the program folder. The name of the project 

cannot contain any spaces.

Some examples from this category are as follows:

7.2.1 Open Project

m m s m m m m m m m m M

Project name | •»]

Routing date (Month) | 3
rTARGET--------------------------------------------------

Route the Flow (USFM) C

Detign Optimal Operation (GA)

Route the Optimal Operation (USFM) C

Ucertainty for Cropt Alocation Data l~

Begin a New Run F

Q j r j l

Figure 7.2 
Open project dialog

This command will open an existing project. The dialog, as shown in Figure 7.2, 

has five types o f the data describing different characteristics o f the model to be used. 

When a project is selected, all the characteristics o f the project that were previously 

saved will be retrieved. The user can keep these characteristics as they are or change 

them. These characteristics are:

□ Routing date: this is the month when the flow is routed. This date is used to define 

the water consumption rate for each crop.

□ Target: the model can be used for two purposes. It can be used as unsteady flow 

simulation model to route the flow or as an optimization model to define the best
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schedule for an irrigation network. For the unsteady flow model, there are two 

options regarding how to enter decision variables data. These data can be entered 

by the user (choice 1) or it can be the output o f the optimization model (choice 3) 

(the best solution that was found). This third choice was added to give the user the 

chance to modify the output o f the optimization model. For example, one could 

route the flow for smaller time interval and distance interval to get more details, 

round the decision variables to more practical units and check the results, or make 

other desired changes.

□ Uncertainty: This option is enabled only when the model is used as an 

optimization model. With this option, the water consumption rate and the 

allocation o f each crop are treated as uncertain data, as described in Chapter 6.

□ New Run: This option is also enabled only when the model is used as an 

optimization model. If this option is not chosen, the model will continue the GA 

run where the previous run left off (after the last generation). If the new run 

option is chosen, the program will begin from the beginning, discarding the 

results o f previous run. If there is no previous run, choosing this option will have 

no effect.

7.2.2 New project

This command is used to begin a new project. The dialog is similar to the 

previous dialog. The difference is that the user should enter the project name instead 

of selecting it, and must define other characteristics o f the project. Also, it does not 

include the third choice o f the target, and “Begin New Run” option.

7.2.3 Save Project As

This command saves a copy of the current project with a new name. The model 

will save the input data files only. The dialog in Figure 7.3 is used to enter the name 

of the new project.
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Save P ro jec t As...

7.3 Data Commands

Nawprajwtnma

Ld!

Figure 7.3 
Save project As dialog

The model has two types o f the data, hydraulics data, and settings data. The 

hydraulics data contains the characteristics o f the irrigation network. The settings 

dialog describes several parameters o f the model.

There are two points regarding entering the data:

□ The sequence: some data should be entered in a particular order. For example, 

before entering any hydraulics data, the maximum data number in the Settings 

dialog that is used to allocate the memory should be entered. Also, before entering 

the regulators and branches for a channel, this channel should be defined.

□ Checking the data: the model validates the data at three levels. The first level is 

performed during data entry. For instance, some data should have positive or non

negative values. Also, in some dialogs that require maximum and minimum limits 

for a variable, the program will check that the minimum value is smaller than or 

equal to maximum value. The second level is performed before the program is 

run. For this level, the data that are related to different dialogs or different records 

in the dialog will be checked together. For instance, the model will check that the 

numbering o f the canals is acceptable (see section 7.3.1.1 for details about 

numbering requirements). Another example is that the model will check that the 

cultivated areas for all reaches and branches o f a channel equal the total cultivated 

land o f this channel. The third level is during the calculations.

For hydraulics data, there are 11 commands in five different categories, which

are:
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□ Crops. There are two commands in this category. The first is used to enter the 

water consumption rate for each crop in each month, and the data that will be used 

within uncertainty (Maximum and minimum consumption rates, and maximum 

and minimum allocation ratios). The other command is used to enter the ratio of 

each reach that is cultivated by each crop.

□ Geometry data. This contains the canals data, the regulators data, and reaches 

data.

□ Initial data. This consists o f the initial water levels at the upstream end o f each 

channel, and they are found in Canals Data dialog, and the initial data at 

regulators, which is found in a separate dialog.

□ Boundary. These commands define the boundary time, upstream boundary, and 

downstream boundary.

□ Operations. These commands define the operation times and operation data.

For the Settings dialog, there are five different pages, which are:

□ Genetic Algorithm data. This part contains all genetic algorithm parameters, such 

as crossover probability and mutation rate. It is also used for choosing the 

selection method, constraint-handling technique, and tolerance for constraints.

□ Uncertainty data (LHS parameters). This part is used for defining the data that is 

used when considering uncertainty with water consumption rate and crop 

allocation.

□ Maximum data. This dialog defines the maximum expected number o f different 

hydraulic data types such as canals and operations. These numbers are used to 

allocate the required memory for hydraulics data.

□ Routing data. This part defines distance intervals and time intervals. It also used

to define the initial data that is used while opening new gates.

□ Convergence. This part defines values that are used to check the convergence and

also the data that is used to penalize un-converged solutions in GA.

For hydraulics data, all dialogs have the same 10 buttons, which are in the

following categories:

□ Buttons to end the session. There are two ways to end the dialog, either by saving 

the data or by the canceling the changes.
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a Records buttons. This category includes adding new record, deleting a record and 

copying a record. Copying a record is used when two records have similar data, so 

the user can only change the identifier o f the record, such as the canal number, 

then push Copy button to add an identical record with the new identifier.

□ Moving buttons. These buttons are used for moving between records, like moving 

to next, previous, last, or first record. Also, the user can use the GoTo button to 

move to a specific record by defining the identifier o f that record.

7.3.1 Hydraulics Data

The hydraulics data are described in the following subsections.

7.3.1.1 Canals Data

Figure 7.4 presents the dialog for the canal data. This dialog defines general

characteristics o f a channel, and it has the following data:

□ Canal definition, which contains the canal number, number o f the main canal that 

this canal diverts from, the location and the side o f this diversion. It should be 

mentioned that there is a specific way to number canals. The main canal has 

number 1, followed by the canals that divert from it, then canals that divert from 

second branches, beginning from the first branch, and so on. Figure 7.5 gives an 

example about the numbering. While working with this dialog, the model will 

check that the canal number is greater than or equal 1, the main canal that this 

canal is diverging from is greater than or equal to 0, and the location is greater 

than or equal to 0.0. A complete validation o f the numbering o f these data is 

performed before running the model.

□ Canal members, which contains the number o f  regulators and the number o f  

branches for this canal.

□ Total data, which are the total length and the total cultivated area for this channel. 

This data is used for data checking.
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Figure 7.4 
Canals data dialog

Initial water level, which is used with initial data at regulators as the initial data 

for the network during the routing.

There are two options in the dialog which the user can select. The first defines if  

this canal conveys water outside the network, which is used to calculate total 

outflow from the network. The second option defines if  the water levels o f this 

canal will be included in the constraint on the water levels at the end o f the 

routing.

Figure 7.5
Example of how the canals must be numbered
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7.3.1.2 Regulators Dialog:

Hr qnl a t  ms :  ( r y l).»t <i

File Goto Record

DacheroeDele

GataWidth[m)

GA date

-  Regulator Definition--------—

Canal Number

-Regulator Geometry-----------

Regulator 6ed Level (m)

h |12

Reguletot Number Regulator Thickness (m)

h................ .. |10
RegUatcr Location (Rm] Max Difference (US-OS) (at)
|o.i |2 2

Save
TSncaT

r  Record-

Cow
Delete

Ditehmge Coelf
[053

Cultivated Area DS the 
Regulator (Ac]
j800000

Goto-
rm

So To

Figure 7.6 
Regulators data dialog

The Regulator Geometry Data dialog, as shown in Figure 7.6, contains the 

following:

□ Regulator definition data. This group o f data consists o f canal number, regulator 

number, and the location of the regulator.

□ Regulator geometry. This includes the bed level, the regulator width, and the 

maximum allowable difference between the upstream and the downstream water 

levels.

□ Discharge data. This includes the gate width, and the discharge coefficient.

□ The cultivated area downstream of the regulator, which is used to penalized a 

solution that violates the regulator stability in GA. If the model is used as 

unsteady flow simulation model, this part will be disabled.

7.3.1.3 Reaches Dialog

The Reaches Data dialog (Figure 7.7) contains the data for each reach in the 

irrigation network, which includes:
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□ The length and the cultivated area o f that reach.

□ Cross sectional data and Manning coefficient.

□ Bank level and longitudinal slope.

□ Required water levels at the beginning and at the end o f the reach. This part is

enabled only if  the option “Has required WL data” is selected for this canal in

Canals Data dialog.

Reaches: Geometry Data

N» Goto Accord

R M c h  Definition- 

Canal Numb*

Raaoh Number

R u c h M a n d r t c —  

Reach Langlti Dun)

l&i
CuBvetedAreelAe)
|20

.#■» . L.

SddSlow
|80 |7e«B

ttttawtM SidoSlop*
|12 3 I*
MsmgCoaffoiant

jo. 0 1 5

e*nkLw*Mm) Bank Stop*

|16.55 |7e-005

At Fnt Point (m) At L«»t Point (m)

|1G |16

S«vt

Cow

Goto-
Fnt

Pwuiout

Go To

Figure 7.7 
Reaches data dialog

7.3.1.4 Regulators Initial Data Dialog

a

a

a

The initial data at each regulator (Figure 7.8) consists of:

Upstream and downstream water levels.

Gate opening. This value is used with the unsteady flow model.

Minimum and maximum gate openings. These values are used within genetic 

algorithm to randomly select the initial gate opening. This part is enabled only if  

the model is used as an optimization model.
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□ Initial discharge. This part is used only if  the regulator is free opened. Otherwise, 

the discharge will be calculated using the sluice gate equation, and the data in this 

dialog and this discharge value will be ignored.

R e g u la to rs : In itia l D a ta

He Goto Record

-  Regulator Definition-------------- - Regulator Inilid Data

CandNimbet Updream Water Levd(m|

IB |l  6.22

RegtJeter Number

|1
Dowrobean Watar Levdtfit)

|14.32
-  Sanatic Algorithm Data---------

MtnGate Opening (m)

10.85

IriidDiacharge (For Fraa 
OpenRegiiatoct) (m3/teo)

J80.3

Mw Gala Opening (m)

[105
Gate Opening (m)

|0.91

Sovo

Coned

Record-

Now

CoW

Delete

Fta

Piaviout

Go To

Figure 7.8 
Regulators initial data dialog

7.3.1.5 Operation Time and Boundary Time Dialogs

Ojjt-rntiuns lime

m Soto Roeord
tail

Operator Numbv

I----------

|S w ^
Cmcd

Time Stop

pi—
j-Repoiid-

Cow I

Next I Pravwm

j Go To i

Figure 7.9 
Operation time dialog

This dialog (Figure 7.9) is used to define the allowable times for operations. The 

data are the operation number and the time step for this operation. A similar dialog is
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used to define the time o f given boundary conditions. Regarding boundaries, the user 

can enter the boundaries at any channel at any o f these times, and the program will 

interpolate for other time steps.

7.3.1.6 Operations Data Dialog

O p era tio n s  D a ta L*J

Swt
Rtgiiatofc ID -

CwalNimbet

IB
QtMftitjenltaflnbtf
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Ctncal

Cow
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|01

GAD Ms---------------------

MfiG«t#ChonsMm)|*A}

(005

G oto-

Rtot

Hm
Rwviom

Loot

Go To

Figure 7.10 
Operations data dialog

The operations data dialog is used to define the regulator that will have an 

operation and the time for that operation (operation number). It also defines the value 

of the operation. This value is positive for opening and negative for closing. The 

maximum and minimum values for the operation is enabled if  the model is used as an 

optimization model, and they are used to randomly select the operation value. Similar 

dialogs are used to define the upstream and downstream boundary conditions.

7.3.2 Settings Dialog

The settings dialog is used to define different parameters for the model through 

five different pages. The genetic algorithm parameters page is shown in Figure 7.11. 

This dialog defines six different parameters for the genetic algorithm. For the
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population size, since the model uses binary tournament selection, the number should 

be even. Otherwise, the model will give a message error and increase the population 

size by 1.

BtnalieAlgorithm |LHSPaiam etoi*| MmDataj RoutingOota| Convwgonooj

Number of GonotoKon*

JToo

Cro*»0v« Probab#yj_

Papulation S in

I*
Bland Cron Ovoi 
Exton«on

[oT

Initial SoadVoluo

[243

MutfltionRatio

|CL05

-  $ titoticw T'tchriquct---------------------------- r  Comtwnt-Htrainfl TtehniquM

TtclfH§$jt T«chniqu»

3  ' Parameters | N® 3  Paiameters |

SaMaetionl»v«l|

OK 1  Canaal to*

Figure 7.11 
Settings dialog

Also, the dialog defines the selection method, and the constraint-handling 

technique that will be used. Some o f these techniques require defining parameters, 

and this is done through a popup dialog. Also, the dialog is used to define the 

satisfaction level for each constraint. If the run is not a new run, the only enabled item 

in this page is “Number o f Generations”, where the user can increase the number of 

generations and continue the run.

7.4 Reports Commands

This category o f commands displays some types o f data that were entered before. 

There are two types o f reports: hydraulics data reports, which are displayed in table 

form, and a genetic algorithm report, which is displayed in page form. The tables that 

are used in reports commands and in results commands have a fixed format, and each 

has the following options:
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□ Show or hide horizontal and vertical grid lines.

□ Resize the columns and rows: these options are performed by pressing the cursor

on the line between two rows or two columns and drag it.

Also, there are four common commands in all tables, which are:

□ Change font: To change the font o f the table. The font will be changed for the 

entire table (headers and data).

Print Preview: for previewing the printable copy o f the data.

Print: for printing the table.

Close: To close the dialog.

Hydraulics reports include nine different types o f data, which are.

Crops data.

Canals data.

Regulators data.

Regulators water levels data.

□ Reaches data.

□ Downstream boundary data

□ Crops allocation data.

An example o f canals report is presented in Figure 7.12.
Canals D ata Report

CwiMb m m m m N&tfBNMiVI

m

i 0 0.00 Right 3 12

2 i 6.00 Left 2 3

3 i 11.10 Left 3 14

4 i 20.05 Left 2 5

5 i 22.60 Left 2 6

6 i 23.00 Left 1 1

7 i 25.00 Left 3 2

8 i 27.96 Right 3 6

9 i 29 .% Right 3 3

10 42.00 Right 4 11

11 i 52.26 Left 3 5

12 53.49 Left 1 0

13 i 53.50 Left 2 3

14 2 1.82 Right 1 0

15 2 23.42 Right 1 0

16 2 23.42 Right 1 0

*1 1

17 ShowVwfotlinM  
17 Show Hm . few 
17 Alow Row iMiiing 
17 Alow Column m alng

CtungcFonL..

m m ,..

Clow

V

Figure 7.12 
Canals data report
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The GA report shown in Figure 7.13, contains the following data:

□ Number o f generations.

□ Population size.

□ Initial seed value

□ GA parameters: crossover probability, mutation rate, and blend crossover 

extension.

□ Selection method, and constraint-handling technique, with their parameters, if  

applicable.

The report has three buttons to preview, print or quit the dialog.

Number o f Generations: 109

Population Size: 74

Initial Seed Value: 474

Cross Over Probability: MOM

Blend Cross Over Extension; 0.50

Mutation Rate: 9.Q5M

Selection Method: Tournament Selection

Constraint-Handling Technique: A44RH* Static Penalty T>chal<]M 

Parameters Coefficients:

WS: 5 

FL: 25 

RS: 100 

RW: 09

7.5 Run M enu

Pmxlmt I I

Figure 7.13 
Genetic algorithm data report

The run menu has three commands: define the settings, check the data, and 

run the model. First command was described in section 7.3.2 and the other two 

commands are described in the following subsections.
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7.5.1 Check command

This command is used to check the unsteady flow model data before running the 

model. It is also performed automatically when the Run command is used, so the user 

can simply use Run command directly. If there is an error, the model will give a 

message and the run command will not work.

7.5.2 Run command

If the model is used as unsteady flow simulation model, there will be a waiting 

message. If it is used as an optimization model, the screen will look like Figure 7.14. 

There are four dialogs that present the maximum, average and minimum fitness 

dining the run. They are also present the number o f feasible solutions during the run. 

On the right side, there is a dialog showing the generation number, a progress slider 

about how much o f work has been done, the time, and a button to stop the run. If the 

user presses this button, the model will give a message that it will stop after the 

current generation.

It should be mentioned that before the run, all open dialogs will be closed. If the 

dialog is a results or a report dialog, the model will just close it. If it is a data dialog, 

the model will give the user the choice to close the dialog or cancel the Run 

command. Also, during the run, all other commands are disabled.
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7.6 Results

The model display results in one o f three formats: page form, table form, and 

chart form. It has three categories o f commands, which are:

□ Final reports. This category includes the final reports about the whole run, and is 

in page format. There are two final reports; one about the GA run, and one about 

the flow routing. The later is available in both cases o f the model, either as the 

result o f an unsteady flow model, or as the result of routing the optimal solution 

o f the optimization model.

□ Hydraulic results. There are two types o f hydraulic results: hydraulics data at each 

point in the network, and hydraulics data at the regulators. Hydraulics data at each 

point in the network are available in table and chart format. The data at the 

Oregulators are available only in table format.

□ Genetic Algorithm results. This category includes different commands, which are:

>  Fitness data (as in Figure 7.18).

>  Objective (cost) data (as a figure similar to Figure 7.18).

>  Constraints violations data, (as in Figure 7.19).

>  Number o f feasible solutions (as in Figure 7.20)

>  Satisfaction reliability, which is shown in a table, and when uncertainty is 

considered during the run.

> STS average probabilities, which is shown in a chart when STS is used as a 

constraint-handling technique.

Some examples from the results are given in the following subsections.

7.6.1 Water level data

The water level data can be presented in a table (as in Figure 7.15) or as a chart 

(as in Figure 7.16). In both cases, the user can present the data o f a channel for a 

given time step, or the data o f a specific point during all time steps. In addition to that 

charts can present a simulation o f the water level during the whole run.
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Figure 7.15 
Water level data for a given point over time

The charts present the water surface levels and the energy grade line level, as well 

as bed levels, bank levels and the gates in the case o f presenting the data o f a whole 

channel. The table presents different types o f data, including bed level, water surface 

levels, velocities, and other data.

_ S J

VV.S Elev & E.G Elev for Canal # 1 in Time Step 4 120

Length (Km)

W. S Elev &. E.G Elev for Canal H 1 Reach # 1 0  Point H 5

Tune Step

M | WJ.Hn I MLtty I

Figure 7.16
Water levels for a whole channel and for a specific point
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7.6.2 Regulators Data

The regulators dialog (Figure 7.17) presents the data o f all regulators in a channel 

at a specific time step, or the data o f a regulator during all time steps. The presented 

data are upstream water level, downstream water level, gate opening and discharge.

K rq u l . i t  o r«  O u tp u t  D .it.i

TineStapHuftrGmi | | _GoJ
Canal Numbv R*oJatarNu«b«r

DfeptapRagMatoi |T" □D
Cmal * 1  ~ R aw M *  *  2

Ttaa&ap mm tiSttL

<*) <M> inaim) H —>
i 13.55 12.10 0.63 43.66 H

2 13.47 12.15 0.63 44.75 H

3 13.47 12.14 0.63 44.87 H

4 13.47 12.13 0.63 45.07 H

5 13.47 12.13 0.63 45.17 H

6 13.47 12.13 0.63 45.16 H

7 13.48 12.13 0.63 45.31 ■

8 13.49 12.14 0.63 45.40 H

9 13.50 12.14 0.63 45.51 H

10 13.51 12.14 0.63

P ShmVartMiriM 
P Show Hob, fn*t 
P tMawftiwmtfnp 
P AbwCotanmfap

ChanfliFortU |

J

Figure 7.17
Data of a specific regulator at different time steps

7.6.3 Fitness and Cost Data

The fitness values, whether in table or in chart format, are the maximum, average 

and minimum fitness values. In the chart, these data could be presented together or 

separately. The objective (cost) data is presented in a similar manner. Figure (7.18) 

shows an example o f the average fitness value per generation.
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Figure 7.18 
Average fitness values per generation

7.6.5 Constraint Violations Data

The constraint violation data table and the chart present the maximum, minimum 

and average violations per generation for each constraint. In the chart, the value for 

any constraint could be presented together or separately. If the constraint-handling 

technique is any additive method (ASP or ALDP), the constraints will be calculated 

as follows:

Ave F lo o d  V iolations Pei G eneration

Ave C o n s t r a in t  V io l a t i o n s

r

a . t ,n A i

V, u v '/V 'A V ' 'W v . A . '> , V \

Figure 7.19 
Average flood violation ratio per generation
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□ Water Shortage (Feddan)

□ Flood (m)

□ Regulator Stability (Feddan)

□ Required Water Level (m3)

If any other constraint handling method is used, the constraint violations will be 

normalized by dividing by the maximum possible violations. Figure (7.19) shows an 

example o f average flood violation ratio per generation.

7.6.6 Feasible Solutions

The number o f feasible solutions can be presented in table and chart format. The 

number o f solutions that satisfy each constraint, and the number o f solutions that 

satisfy all constraints (feasible solutions) are presented. Regarding chart format, and 

as in other charts, the data for the various constraints can be presented together or 

separately. Figure (7.20) shows an example o f a chart showing the number o f feasible 

solutions per generation.

Num ber o f  strings that satisfy all constraint

8 0

Feasible strings

64

5 6

3 2

24

1 6

6 1 1015 1

Generation

71 8 121

M llEfAn W8 I ft. 1 BS | WW | PM*. | m I <* I

Figure 7.20 
Number of feasible solutions per generation
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7.6.7 STS average probabilities

As described in Chapter 5, the population average probabilities for selecting based 

on objective and constraint violation in STS technique can be used as an indicator of 

the quality o f the solution. An example o f this chart is shown in Figure 7.21.

Average probabilities for STS technique Per Generation

1 . 0 0 ,

Constraints Probability0 . 9 0

0 . 8 0

0 . 7 0

0 . 6 0

<  0 . 3 0

0 . 2 0

0 . 1 0

0 . 0 0
1018 16 1

Generation

Figure 7.21 
Average probabilities for STS method

7.6.8 Final Report

The final report includes a final report about the optimization model, and a final 

report about the unsteady flow simulation model. Figure 7.22 presents an example of 

the optimization model final report and unsteady flow simulation model report. The 

data in the optimization model final report includes:

□ The number o f feasible solutions in the whole run and in the last generation.

□ The best feasible solution in the whole run and in the last generation.

□ The average constraint violations in the last generation.
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System before routing;

Number o f canals: 58 

Number o f regulators; 15 

Number o f  cootroled regulators: 14 

Number o f  reaches: 130

Violations values:

Total water shortage area (Acres): <30 

Water shortage ratio (%): 0.0888 

Total flood length (m): 90 

Flood length ratio (%): 0.0443

System after routing:

Number o f canals: <0 

Number o f regulators: 14 

Number o f controled regulators: 3 

Number o f reaches: 133

Figure 7.22
Final reports of an optimization model and an unsteady flow simulation model

The data in the unsteady slow simulation report includes:

□ System data at the beginning and at the end of the routing. This data includes:

>  Number o f canals

>  Number o f regulators

>  Number o f controlled regulators (that are not free opened)

>  Number o f reaches

□ The amount o f water shortage violation and flood violation

□ The ratio between water shortage violation and maximum possible water shortage 

violation

□ The ratio between flood violation and maximum possible flood violation

GA Find Retort
• • • • • • • • • • • • • • •

Feasible solutions;

In the entire run: 4199

In die last generation: 59

Best feasible (m3):

In the entire nm: 23548452

In the last generation: 24499254

Average constraints violations in the last generation:

ForW S(W ): 1.8344

F orF L (H ): 4.0474

ForRS(*»): 0

For RW (94): 1.4010

-.1 r a," il
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CHAPTER 8 

CONCLUSIONS AND RECOM M ENDATIONS

An optimization model for determination of an efficient management strategy for 

an irrigation canal network has been developed. The objective of this model is to 

minimize the total water consumed in the network while satisfying four constraints, 

which are:

□ No water shortage at any point in the network at any time.

□ No flood at any point in the network at any time.

□ The difference between the upstream water level and the downstream water level

o f any regulator at any time is less than the maximum allowable difference; to

ensure regulator stability.

□ The water levels in the network at the end of the routing are sufficient for the start 

o f subsequent irrigation period.

The decision variables for the model are the gate openings and the boundary 

conditions. Gate openings include initial gate openings at the beginning of the 

simulation period and gate operations during the simulation. The boundary conditions 

include the water level at the upstream end of the network and the discharges at the 

downstream end of each channel. The model is most appropriate for relatively short

term irrigation periods, so the simulation period is typically a few days long, and the 

constraints are checked at relatively small time intervals (generally one hour or less).

A genetic algorithm (GA) was used to search for efficient solutions to the 

optimization problem. It is a suitable and efficient optimization tool for this model 

based on the complexity of the problem. Real representations are used to encode the 

decision variables. Different versions of binary tournament selection (with and 

without superiority of feasible solution and a stochastic form) are used in the model. 

Also, the model uses blend crossover and uniform mutation during GA procedure.

An unsteady flow simulation model was used to evaluate each potential solution 

in the GA. This model solves the complete Saint Venant equations using an implicit 

numerical scheme.
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The model was applied to a case study in Egypt involving a large-scale irrigation 

network. Three different scenarios of this case study, representing different levels of 

difficulty with different number of decision variables were investigated.

GA parameters were tested with the model for the three scenarios. The GA 

parameters tested were: crossover probability, mutation rate, blend crossover 

extension, and population size. Based on the results, values for each parameter were 

recommended for various levels of difficulty of these scenarios.

Different constraint-handling techniques were tested within the current model. 

Among these techniques, two are newly proposed techniques, while the others are 

from the literature. The suitable technique that should be used with different scenarios 

based on the complexity of the scenario, and the number of decision was 

recommended. The results showed that new proposed techniques outperform the 

other techniques for two of the three suggested scenarios. A suggestion was made to 

check the quality of one of the proposed techniques (STS - Stochastic tournament 

selection) in the absence of information about the actual optimal solution.

The uncertainty in crop distribution and consumption water rates of the crops is 

incorporated into the search procedure to identify more robust solutions. A Chance- 

Constrained Genetic Algorithm (CCGA) was used to handle the uncertainty. Latin 

Hypercube Sampling (LHS) was used within the model. The model shows that 

CCGA could be used to achieve more reliable solutions at the expense of a small 

increasing of the objective function value. Also, it proves relatively small LHS 

samples (10 realization to evaluate each solution) produce good results.

A user-friendly interface is developed to aid the decision maker in using the 

model.

The computational effort is between two and four hours for 100 generations for 

different scenarios of the case study using a PC with Pentium 4 processor (2.0 G Hz. 

w ith 512 M B RAM ). For one o f  the constraint-handling techniques (self-adaptive) 

and for the CCGA model, the computational time is expensive (possibly exceed 24 

hours depending on the number of realizations or the size of self-adaptive 

populations).
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Recommended future works include the following:

□ Some features should be added to the simulation model to make it more 

applicable to a variety of irrigation canal networks. For example, the program 

should handle hydraulic structures other than sluice gates. Also, the model should 

have an option to enter natural the cross sectional data rather than requiring 

prismatic ones, since the channels may deviate from the design cross-sections in 

some locations.

□ Regarding the GA parameters, adaptive and self-adaptive parameter specifications 

should be studied with the model, to check if better results can be achieved.

□ Regarding the constraint handling techniques, the STS technique should be 

studied further to ensure it is able to handle different scenarios of the model. Also, 

new techniques based on maintaining the feasibility of the solutions should be 

added to the model. The idea of these techniques is to check the situation 

downstream of each regulator and suggest an operation if the situation is close to 

violating one of the constraints, and these suggested operations will be added to 

the basic operation that are defined by the user.

□ Methods to reduce the computational effort, especially for the CCGA model 

should be investigated.
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